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Abstract i 

Abstract	

The Simultaneous Localization and Mapping (SLAM) task is widely acknowledged as one 
of the fundamental problems to solve in perception and robotics to produce actual mobile 
robotic agents. The problem itself is that of how a mobile robot agent can operate in an a 
priori unknown environment, using the sensory systems available (usually on-board) to 
perceive its surroundings, build a map with this knowledge, and localize itself in the map 
tracking its own position. 

This relevance, combined with the diversity of approaches available to solve it, and the 
depth of the challenges it presents, makes the SLAM problem one of the more active areas 
of research in robotics. One of the most complex challenges in any approach is the data 
association, as it generally conveys hard a trade-off between robustness and computational 
time required, and can impact the whole architecture of a SLAM method.  

In terms of sensors used, the field was originally dominated by range finder sensors, but 
visual SLAM research has grown in popularity in the last decade. Camera sensors have 
been expanding its capabilities and specifications thanks to the consumer demand for them. 
As a sensor, they provide lightning measurements of the projected points at known 
bearings, which through computer vision can be converted into bearing measurements for 
visual features, which can be themselves of several levels of complexity. 

The same consumer demand has also pushed technical developments in MEMS and robotic 
devices with a direct impact in the field of cooperative robotics and the emergence of 
wearable device technology, where human can wear or carry devices with several sensors 
in an unobtrusive way. These technologies have opened many opportunities for research in 
robotics, including the field of collaborative SLAM and the area of human-robot interaction 
(HRI). 
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This thesis is focused in the study and development of a visual SLAM methodology based 
on the delayed inverse-depth feature initialization (DI-D) monocular SLAM which can 
benefit from the advantages of working in a HRI collaborative framework. In order to 
achieve this, the research has been developed two different areas. Firstly, the known and 
tested DI-D monocular SLAM is studied: its procedures and algorithms detailed and 
analyzed; with emphasis in the data association problem (DA). The DA process is 
reviewed, and a new validation algorithm is introduced to strengthen and give robustness to 
the data association technique used. 

Once the DI-D has been studied and updated, the HRI collaborative framework is 
introduced, with an initially focus into solving one of its inconveniences: the requirement of 
a scaled metric initialization with a priori knowledge. The HRI is introduced by deploying 
into a human being a custom built wearable device which includes a camera and some other 
sensors. The data from this secondary monocular sensor, whose pose is approximately 
known with respect to the camera used to solve the SLAM problem, allows speeding up the 
feature initialization process of the DI-D, and even ignoring the requirement of scale 
initialization.  

As the introduction of the HRI framework was successful, its advantages were further 
expanded to the rest of the SLAM process, including the measurement and update steps. 
This integration was performed based in a virtual sensor methodology, where the 
collaborative measurement process was treated as a single sensor with its own 
specifications and covariances, allowing seamless fusion into the EKF-SLAM. To evaluate 
the specific impact of the HRI with respect to the behaviour of the secondary camera, 
several new metrics have been proposed and studied. 

All the methods have been proved and validated through experimentation with real data. 
When it was found relevant, the experiments were evaluated in real-time scenarios, and 
several simulations have been included when needed to prove some theoretical hypothesis. 
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	Part	I	

Introduction 

 
 

 

The automata “Clockwork Prayer”, built around the decade of 1560 by Juanelo Turriano, Court Clock Master 
to Holy Roman Emperor Charles V. Currently keep at the Smithsonian Institution, is was able to move 

autonomously, and emulate facial gestures, prayer movements, and other devotion acts, such as kissing the 
cross. Will truly human-like artificial intelligence ever present traits such as faith and devotion? 

The human quest to produce autonomous robots can be explained and understood in several 
ways. From a pragmatic point of view it can be interpreted as a testimony of its conflicting 
nature: the lust for power and conquest, the will to achieve greatness even at the expense of 
others’ efforts; and the nurturing and empathic instincts which produce the ethical 
commitment to avoid unnecessary suffering unto the fellow man. In this same train of 
thought, note how the same term robot finds its origins in the medieval serfdom, where 
Slavic languages knew as robota the works done by serfs –technically free people- to serve 
their lieges. Thus, as groups, humans know that there are some unpleasant tasks required to 
achieve a functional society, but as individuals we tend to reject several of those tasks for 
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egoist reasons. In fact, this rejection can reach the point to find it undesirable to be inflicted 
even upon others. 

Another explanation will collude how automatization of tasks could be easily attributed to 
instincts embedded into to human behaviour by evolution. Conserving energy, finding the 
best way to achieve the desired results, and dealing with task which shall produce benefits 
only in the long term are behaviours found even in common animal species, though in 
many cases they are purely of instinctual nature (isn’t it funny when evolution works as an 
optimality solver?). 

But robots are not only created and imagined to perform the robota, but also to bring 
human achievements to new heights: we are still decades far from sending humans into 
another planet, perhaps centuries away from traveling beyond the solar system; but there 
are already robotic devices exploring the surface of Mars and going deep into space, 
sending back home images of stars and planets far beyond the distance human mind can 
actually comprehend and figure. If we look toward back into the Earth, robotic 
manipulators process and move products in factories at speeds several orders of magnitude 
beyond human capabilities, while small exploratory robots survey crisis sites where human 
life expectancy is only a few hours, to put a few example. Humans, as individuals, cannot 
conquer all the challenges in the world, but we are good at producing the means to achieve 
them. This generally means that these robots are limited, even the so called smart ones, and 
will be useful in a reduced set of problems, being useless when generality is required. 

Sometimes need and will marry to birth designs and ideas: the need of mercenaries and 
soldiers, and the will to have the best possible ones must have been driving forces behind 
the multiple designs through history of “automata soldiers”, like Leonardo’s mechanical 
knights, and several other attempts. Although given the state of the art at the time, most of 
these automata, like those machines with simple special effects commonly found in temples 
and sites of adoration, would only serve to produce illusions and fool uneducated lower 
classes, resulting lacking in the fields of warfare. 

Anyway, we are still far from fully replacing humans, especially as there are no clear 
definitions for many of the features and characteristics that differentiate humans and other 
beings: science is still unable to provide a comprehensive and coherent definition for 
intelligence across different fields of the same disciplines; and there has been never an 
agreement upon the existence of free will. Without clear objectives, any pretension of 
building artificial humans belongs into science fiction instead of science. Nevertheless, 
robotics research still has to address several challenges, even to build not so intelligent 
robots. 

One of these key challenges is to give robots the spatial sense of self, i.e., make then 
capable of telling where they are with respect to an environment where they have been 
operating for a time. This in turn means that the robots have to be able to localize itself in 
an environment, and produce a representation of said environment. These two different 
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challenges, giving a robot the capability to produce a map of an unknown environment and 
making it able to perceive the same environment and localized itself with respect to a 
reference (generally a point in the map), are the tasks that compose the SLAM problem. 
Although the description is pretty simple and clear enough, some thought on it reveals 
many issues and challenges: to begin with, the description provided fits exactly a chicken 
and egg dynamic, that is, a map is needed to perform localization, and the location must be 
known to build a map. In its apparent simplicity, the SLAM problem encapsulates several 
challenges to be solved, many of them depending on specifics related to the sensors used, 
the environment explored, the type of robot, the movements it perform, and many other 
factors. As such, the SLAM problem is probably one of the most complex and diverse 
challenges in robotics research, while at the same time being of capital importance not only 
for autonomous robotics, but also for any other field were exploration and mapping 
constitute a relevant task. 

 





  

	

Chapter	1	

Motivation and Objectives 

 

 

The da Vinci Surgical System is a medical robot, commonly referred as Leonardo, why allows performing 
complex surgery in a minimally invasive way. According to its developers, Intuitive Surgical, over 200.000 

surgeries are perfomed yearly. Though it is essentially a complex surgery tool, the social impact of this 
robotic device is beyond any doubt. 

1. Motivation	and	Objectives	

1.1 Motivation	

As it has been already discussed, SLAM is one of the most important problems to address 
in robotics, especially in autonomous robotics, as it is the only way to enable robotic agents 
to operate in a priori unknown environments. This relevance, combined with the diversity 
of approaches available to solve it, both in physical (i.e. hardware) and mathematical terms, 
and the depth of multiple of the challenges it presents, makes the SLAM problem one of the 
more active and valued areas of research in robotics. It is worth noting that the most 
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successful SLAM solutions as of today tend to rely in range finder sensors, but as it will be 
discussed during this dissertation, they present multiple weaknesses that make them less 
versatile than other approaches. 

In this sense of versatility and, to a minor degree, robustness, I like to think that as the 
general goal of autonomous robotics points towards seamless human replacement and/or 
collaboration, and human capabilities should be the design guidelines and benchmarks to 
beat. So, although the human spatial awareness is closely related to the sense of self, and 
there are several senses beyond vision relevant to the task, like the vestibular sense and the 
kinesthetic perception, human deal with mapping and localization essentially through 
vision. Even if we open up to general biological existence, we can observe how evolution 
has clearly judged the vision based approaches the way to go for the SLAM problem, while 
the range-finder solutions are found only in specific biological niche scenarios. Even the 
famed echolocation of bats is pushed aside and in open spaces or properly illuminated 
scenarios most species of bats use vision1 for navigation. While applying design decision 
found in life forms to decide on robotics research disjunctives may look unsubstantiated, 
we have to consider which criteria and circumstances brought forth this judgements. Both 
for hardware sensors and living being, vision sense is a much more versatile perception 
system, which can solve not only the SLAM problem but be useful in many other tasks, as 
it provides not only geometric but also photometric information. Vision is, also for both 
cases, generally a passive sensor: from a technical point of view, a passive sensor is 
generally cheaper, as it is built of a receptor only, and simpler; and from a biological and 
evolutionary point of view, a passive sense is simpler and avoid emitting signals, which 
could be subjected to disruption attacks and reveal the position in a hostile environment. 

Beyond the biological inspired criteria to decide for vision as the sensing technology to 
solve the SLAM problem, there is still the matter of the goal of autonomous robotics: as we 
strive to build robot replacements or companions to humans, these entities will necessarily 
operate in environments designed or transformed to fit human needs and capabilities. This 
implies that as we operate using sight as our main sensor, robots presenting good vision 
based perception capabilities will be able to extract the most data from these environments, 
being knowledge derived from this data the key enabler of versatility action. Note that as 
we are still far from achieving truly intelligent robotic devices with the adaptability and 
generality of human capabilities, cooperation between robots and humans will probably be 
the most common scenario in the next decades. Under these assumptions, the humans not 
only condition the SLAM problem so that the preferred solutions will be based on vision, 
but also the emergence of collaborative frameworks where human and robot work towards 
the same objectives.  

1 Bats’ blindness is largely a myth, and although smaller species present poor vision compared to human 
sight, the bigger species’ sight is considered notably better than human vision. 
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Solutions to the SLAM problem under collaborative frameworks with humans are of 
critical relevance to human society, as their current main area of application is that or 
search and recovery operation under emergency situations. As such, their performance 
could be determinant to save lives or simply improve the management of an emergency 
situation. Then, it is clear that solutions to the SLAM problem should contemplate and 
explore all the options available. Under this pretense, it is worth noting that most of the 
collaborative approaches to SLAM focus the cooperative efforts in the data fusion process 
at map level, be it based on recursive filtering or optimization algorithms. So, the most 
frequent architectures ignore the opportunity to exploit the advantages of the collaborative 
framework during the sensing and measurement process unchecked. Thus, although the 
cooperative SLAM problem has been solved in several works in the classical sense, there is 
still much work to do in this field, given the societal impact that any breakthrough could 
imply. 

1.2 Objectives	

The primary objectives of this thesis are the study and analysis of the delayed feature 
initialization inverse depth monocular SLAM technique, and refine it to explore its viability 
to produce a collaborative SLAM framework where human perception forms part of the 
solution. In an initial phase the research is focused in studying and comparing how other 
techniques deal with several challenges within the SLAM problem, and bringing the 
knowledge into the DI-D monocular SLAM. 

This initial study in the DI-D framework should focus in those of the core challenges in 
SLAM which can be addressed and improved in a in a monocular framework; i.e.; firstly 
the data association problem, including data validation, and the feature initialization. This 
study and the solutions provided should be aware of higher level problem in SLAM which 
are dependent on them, like large map management, loop closing, and place recognition. 
Any solution provided to lower level problem should also be proved to provide 
improvements into (or at least not disrupt) solutions of the higher level problems, as even if 
they are not explicitly solved into this thesis, they are an integral part of any SLAM 
solution aimed at solving a real problem. 

Once the DI-D framework has been thoroughly studied, and probably some developments 
have been introduced, the focus will be shifted into the study of the opportunities that 
collaborative exploration scenarios provide. Ideally the collaboration should focus into the 
perception part of the framework, enhancing the data extracted from the monocular sensors. 
Though other sensors will probably be present, we consider that it would be most 
interesting trying to minimize their impact into the general estimation procedure, and try to 
exploit them into the perceptive procedures. This will mean working over virtual sensor 
based architectures. 
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Note that the collaborative framework will probably provide additional opportunities to 
address problems that were not entirely solved under the strictly monocular DI-D SLAM. 
This opportunities should be exploited when possible, studying the different trade-offs of 
working them under the pure monocular and the collaborative sensing solutions. 

Sub‐objectives	and	other	considerations:	

 Study the general data association problem, and analyse the impact of the different 
data association solutions available within the monocular EKF framework. A 
specific solution to the data association validation problem is required and will be 
introduced or developed. 

 Any solution or development introduced into the delayed inverse-depth monocular 
SLAM should keep the scale estimation or improve it. The ability to produce scaled 
maps is one of the greatest advantages of the DI-D when compared to other 
approaches, and as such, it should be conserved. 

 As SLAM based in bearing-only monocular cameras is a partially observable 
problem, the initialization of features constitutes one of the most complex problems, 
as they cannot be fully observed in a frame. Under the DI-D framework, the 
requirement of an scaled metric initialization removes chances to introduce many 
approaches based on map splitting, sub mapping, and in general, any kind of 
technique which allows for reinitialization of any part of the state. This should be 
addressed explicitly, as it would open the possibility to use many well-known 
solutions to the higher level SLAM challenges. 

 The impact of the changes introduced during the eventual development of the 
collaborative sensing framework should be studied and validate, especially with 
respect to the human component of the system. 

 Loop-closing and large map management problems should be accounted for, as any 
full SLAM solution should aim to include them. So even if they are not explicitly 
addressed, they cannot be ignored, and any development should contribute towards 
the future inclusion into the DI-D framework. 

1.3 Thesis	Dissertation	Outline	

The present thesis has been structured in five different blocks, which group the different 
chapter which compose this work: 

Part I presents the necessary context and information to fully assimilate and study the 
presented research. After framing the research and mission of this thesis, the initial research 
objectives are presented in Chapter 1. 

In Chapter 2, several aspects of the SLAM problem are studied and described. A survey on 
the main hardware technologies sets the context to discuss the advantages and weaknesses 
of monocular cameras as sensors for SLAM. Then, the SLAM problem itself is discussed 
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form a mathematical point of view, discussing its roots and the convenience of the 
development of SLAM as a single problem to address localization and mapping 
concurrently. After the general formulation is presented, several of the most challenging 
issues and problems to address in SLAM are listed. This allows introducing the state of the 
art and solutions to several of these challenges, while introducing multiple notions and 
concepts that will be relevant further down the dissertation. 

Chapter 3, after the general discussion into the SLAM problem and the most relevant 
challenges, focuses the dissertation into the visual SLAM field. As such, it starts with a 
brief review of some key concepts of projective geometry and point based image 
processing. In terms of projective geometry, formulation for the ‘camera’ models is 
provided and detailed, including the pinhole camera model and discussion on the distortion 
models; followed by a brief summary of key concepts relevant in epipolar geometry, which 
will be useful in same Chapter 3 and in part III of the dissertation. To conclude Chapter 3, 
one of the main research precedents in visual SLAM developed at the Vision and Intelligent 
Systems research group (VIS) is described and analysed, i.e., the delayed feature 
initialization inverse-depth monocular EKF SLAM (DI-D monoSLAM). The formulation, 
though extensive, is far from complete, and focuses on the key aspects required to 
understand the general procedure of the DI-D monocular SLAM and the works presented in 
the dissertation. Emphasis is put in the augmented state initialization process, which is 
responsible for setting an initial metric scale through a priori known landmarks. 

Part II of the dissertation focuses in the data association problem, presenting the block with 
a more detailed review of the main challenges within the association problem, and 
discussing several taxonomies to classify the solutions applied. Within this block, Chapter 
4 presents the research performed in the data association problem in the DI-D SLAM. After 
a study of the state of the art and main procedures to deal with data association in EKF 
visual SLAM, the active search technique, used in the DI-D SLAM is described and 
studied. The study includes an evaluation of several patch-correlation operators available, 
in order to determine which offers better performance and robustness to the most usual 
aberrations and issues found during the data association step. Notice that this will be 
especially relevant as the utilization of CMOS-based rolling shutter cameras intensify some 
of the visual artifacts and introduce other, as seen in Chapter 2. After review of the active 
search methodology, the issue of validating the results of the data association process is 
addressed. As the results of the standard batch validation procedure proved unsatisfactory, 
leading to frequent combinatorial explosions in terms of computational time cost, we 
developed a new algorithm to perform batch validation of the data association based upon 
the joint compatibility notion. The joint compatibility notion is largely based on 
measurement of the squared Mahalanobis distances, which normally requires inversion 
operations over the covariance matrix. As such, our proposed algorithm, the HOHCT, tried 
to minimize the number of these measurement required by exploiting heuristic assumptions 
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made upon the characteristics of the DI-D SLAM and its feature initialization process. This 
allowed our algorithm to reduce the exponential tendency with respect to the number of 
landmarks in the map to almost linear most of the time. 

Part III introduces the second block of research of this thesis. As this block deals with the 
research done with the objective of developing a collaborative SLAM framework where 
human becomes part of the perception system, Part III starts with a brief review of the main 
lines of research in human-robot interection (HRI) SLAM, and a short survey on the field 
of collaborative SLAM. Once the state of the field has been presented, the works done in 
the framework is presented in Chapter 5 and 6. 

Chapter 5 presents the initial works performed to develop the collaborative sensing 
framework, the challenges that appeared, and the main criteria used to decide on the 
strategies to solve them. As our study during the first research block of this thesis (Part II) 
could not provide a way to skip the metric scale initialization step without sacrificing the 
known-scale characteristic of the DI-D monoSLAM, this problem is explicitly addressed, 
and a new solution is proposed and tested. The proposed approach shares information from 
a secondary camera sensor carried by a human as part of a wearable device. The data from 
this secondary camera is exploited to produce instant depth estimations for the landmarks to 
be initialized. The different possible approaches to solve the correspondence problem are 
discussed, focussing on the apparent strengths and weaknesses of an stereo vision system. 
As the proposed approach introduces an additional camera sensor, a procedure to predict 
the expected utility of any given frame from the secondary camera, based on geometrical 
modelling of the expected fields of view, is used to avoid unnecessary computational 
efforts. This same procedure also helps to optimize the correspondence problem by 
defining subregions on the images where to solve the problem, ignoring the rest of the 
image. The mathematical formulations of the new inverse observation model and its 
Jacobian are presented, under the assumption that the landmark is initialized as unified 
inverse depth point coming from a ‘virtual sensor’ which can provide depth estimation 
w.r.t. to the camera position. The ability to measure the candidate landmarks prior to the
initialization according to different methods means that the initialization process itself
becomes more complex, and a new multiple criteria algorithm, based on the delayed feature
initialization of the DI-D monocular SLAM is also presented. To validate the presented
approach, a set of experiments were performed, evaluating the results according to the
impact in the position estimation error, and the performance and behaviour of the feature
initialization process. This required recording synchronized data sequences using a robotic
platform and a wearable device which are described and validated through simulated
experiments.

Chapter 6 further expands the collaborative sensing framework. Based upon work described 
in the previous Chapter, the ‘virtual sensor’ methodology used initially only for depth 
estimation during feature initialization is fully integrated during the residuals computation 
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of the EKF filter. This means updating the formulation of the observation models, deriving 
the new Jacobians required, and modifying the update step algorithms so that they can work 
with landmark observations measured in different spaces, i.e., landmarks can be measured 
as pixels or as 3D world points. The approach is evaluated from a theoretical point of view 
in terms of the gains with respect to the augmented state observability, which is greatly 
improved, with the state becoming fully observable under some circumstances. A set of 
indoor and outdoor sequences captured with the hardware described in the previous chapter 
is then used to test the approach against the non-collaborative DI-D approach. The results 
are studied in terms of accuracy and the impact of the incidence of overlapping field of 
view during the trajectory, with special emphasis in singular trajectories, which normally 
are avoided during SLAM experimentation. In order to further study the effects of the 
collaborative sensing and its availability frequency and distribution several new metrics 
have been formulated and evaluated. 

The dissertation is closed by Part IV, which contains Chapter 7 and the bibliography. 
Chapter 7 provides a list of all the publications related to the research presented detailing 
the contributions, and presents the final conclusions of this thesis, with discussion of future 
works and the author’s expectations for the future of the research in the SLAM field. 

Part V contains some annexes with listings and materials useful to read several sections of 
the dissertation. 
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Chapter	2	

Background and mathematical 
foundations 

Willard S. Boyle and George E. Smith, 2009 Nobel Laureates for the invention of the CCD sensor. Picture 
taken in Bell Laboratories, 1974. It has been claimed their original intention was to use CCD as a memory 

circuit and application to imaging was proposed by Eugene Gordon and Michael Tompsett. 

2. Background	and	mathematical	foundations

2.1 Introduction	

The SLAM problem has been a subject of study in the robotics field for some decades now. 
It states how a mobile robot can operate in an unknown environment by means of only 
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onboard sensors to build a map of its surroundings and use it to localize itself inside the 
environment. 

The works defining the roots of the field can be traced to (Smith and Cheeseman, 1986) and 
(Durrant-Whyte, 1988), which established how to describe the relationships between 
landmarks while accounting for the geometric uncertainty through statistical methods. 
These eventually led to the breakthrough presented in Smith’s work (Smith et al., 1987). In 
that work the problem was presented for the first time as a combined problem with a joint 
state composed of the robot pose and the landmarks estimations. These landmarks were 
considered correlated due the common estimation error on the robot pose. This work would 
lead to several works and studies, being (Durrant-Whyte et al., 1996) the first work to 
popularize the structure and acronym of SLAM as known today. 

In the years following SLAM gained weight in the robotics field, as there came the 
realization that it was one of the most important problems to solve in order to build truly 
autonomous mobile robots. Plenty of techniques and algorithms have been developed to 
address the different problems in a given SLAM approach (Durrant-Whyte and Bailey 
2006)(Bailey and Durrant-Whyte, 2006), but most of them rely on estimating features of 
the environment through one or more sensors, and use them to produce the map. The 
utilization of different sensors generally defines which kind of filtering or estimation 
techniques can be used, which different problems may arise at each SLAM step, and how 
they can be addressed. Thus, in an applied SLAM problem, the sensors to be used are of 
capital interest. 

2.2 Sensors	used	in	mapping	and	localization	

In robotic systems all relations between the system and the physical environment are 
performed through transducers, which are the devices responsible of converting one kind of 
energy into another. In robotics there are basically two broad types of transducers: sensors 
and actuators. Actuators use energy from the robotic system to produce physical effects, 
like forces and displacements, sounds, and lightning. Sensors are the transducers 
responsible for sensing and measuring by way of the energy conversion they perform: 
turning the energy received into electrical signals, which can be coded into useful 
information. Note that the classification into actuators or sensors accounts only the 
functionality of the transducer, as many types of sensors also produce emissions as part of 
the sensing process. These sensors generally operate measuring the perceived reflection of 
the emitted energy, and thus are considered active, while those which operate based only on 
measuring environmental energies and effects (that they have not produced) are classified 
as passive sensors. 

The sensors used in SLAM, just like in any other fields of robotics, can be classified 
according to several criteria. From a theoretical point of view, one of the most meaningful 
classifications is that if the sensor is of proprioceptive or exteroceptive nature. 
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Proprioceptive (that is,’sense of self’) sensors are those generally responsible for measuring 
values internal to the robot system, like the position of a joint, the remaining battery charge, 
or a given internal temperature. On the other side, exteroceptive sensors measure different 
characteristics and aspects of the environment, normally with respect to the sensor itself. 

2.2.1 Non‐vision	based	sensing	for	the	SLAM	problem	

There are plenty of sensors used in the SLAM problem that would fall out of the category 
of ‘vision based’. In fact the most successful SLAM approaches, with applications in real 
life scenarios, generally rely on a combination of sensors, generally including both 
proprioceptive and exteroceptive sensors, with pairings of range finders and encoders being 
very popular. This section will discuss briefly some of the sensors commonly used in 
SLAM, excluding those based in artificial vision, summing up the main features in TABLE

2.1 for reference. 

The encoders are proprioceptive sensors, responsible for measuring the position or 
movement of a given joint. Though there are linear encoders, only the rotary encoders are 
used with frequency in the SLAM problem (Armesto and Tornero, 2004). These encoders 
can measure directly the position of the rotary axis, in terms of position if they are ‘absolute 
encoders’ or in terms of movement for the ‘incremental encoders’. The great accuracy 
when measuring rotation allows computing the exact distance traveled by a wheel, if the 
radius is known. Still they present several problems related to the nature of how they 
measure: the derived odometers assume that all the translation of a given wheel is 
transformed into rotation at a constant and exact rate, which is false in many circumstances. 
This makes them vulnerable to irregular and sliding surfaces. As a proprioceptive sensor, 
with no exterior feedback, the error of a pure odometry based SLAM approach will grow 
unbounded, suffering the drift due to dead reckoning. 

Rangefinders are exteroceptive sensors which measure distances between them and a point 
in the environment. They use a variety of active methods to measure distance, sending out 
sound, light, or radio waves, and then listening to the returning waves. Generally these are 
known as sonar, laser, or radar systems. The devices destined to robotics applications 
generally perform scans (FIGURE 2.1), where a set of measurements is performed 
concurrently or over such a short time that they are considered all simultaneous. This 
approach produces data that generally take the form of point planes or point clouds. 

Sonar systems use sound propagation through the medium to determine distances (Diosi et 
al., 2005). Active sonar creates a pulse of sound (a ping) and listens for its reflections 
(echoes). The time in-between the transmission of the pulse and its reception is measured 
and converted to distance by knowing the speed of sound, thus acting as a time-of-flight 
measurement. Laser scan rangefinders (Ila et al., 2010) (also known as LIDAR) can work 
on different principles, using time-of-flight measurements, interferometers or the phase 
shift method. As the laser rays are generally more focused compared to other types of 
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waves, they tend to provide higher accuracy measurements, but they can also be disrupted 
more easily, as discussed at the survey (Pomerleau et al., 2012). Radars (Checchin et al., 
2010) also employ electromagnetic waves, using time-of-flight measures, frequency 
modulation, and phased array method to produce measurements. They generally produce a 
repeated pulse at a given frequency (RPF), which sets its range. 

FIGURE 2.1: Three scan range finder. Left: LRF for security in industrial robots (courtesy of 
Leuze). Centre: Submarine robotics sonar (courtesy of University of Oregon). Right: Car 
safety radar (courtesy of Bosch). 

These sensors can have great accuracy given enough time (the trade-off between data 
density and frequency is generally punishing), and as they capture the environment they do 
not suffer from dead reckoning effects. On the other side, the data they provide (point 
planes and point clouds) are just a set of distance at given angles, so these data need to be 
interpreted and associated, requiring cloud matching methodology (like Iterative Closest 
Point (ICP)(Besl and McKay, 1992) and other derived techniques), which is 
computationally expensive. Besides they have all their specific weaknesses: sonar has 
limited usefulness outside the water given how sound works on the air; LIDAR are 
vulnerable to ambient pollutants (dust, vapors) that may distort the lightning processes of 
the measurement; radar has very good range but tends to be lacking in accuracy compared 
to the other rangefinders. 

The GPS (Global Positioning System) (Kotani et al., 1998) is an exteroceptive sensor (see 
FIGURE 2.2 for a size reference of the receptor chipset) based on synchronizing radio 
signals received from multiple satellites. With that information it can compute the 
coordinates and height position of the sensor on any point of the world with up to 10m 
margin. This 10m error grows rapidly as less satellites are visible (direct radio wave 
reception is required), making it useless on closed environments, like urban canyons 
(Joerger and Pervan, 2006), etc.… Besides the weakness to satellite occlusion and wide 
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error margin, the GPS presents other challenges, like a rather slow update rate for most of 
the commercial solutions. An enhancement available to the GPS is the differential GPS 
(DGPS), which improves the accuracy up to 10cm in the best implementations. This 
enhancement is obtained thanks to a network of ground-based fixed reference stations that 
broadcast the difference between the satellite measurement and the actually known fixed 
positions. Because of this, the availability of DGPS signal is even more limited than GPS 
signal. 

FIGURE 2.2: A highly integrated GPS receiver microchip, with matches for size reference. 

There are two main alternatives to GPS which work under similar principles: GLONASS 
and Galileo. GLONASS (Globalnaya navigatsionnaya sputnikovaya Sistema) is the 
Russian response to the development of GPS, and although having suffered from a slow 
deployment, it is widely reported as being more accurate, with an error within the 2m range 
instead of 10m like GPS. On the other side, Galileo, the European analogous initiative, is 
still being deployed, though is expected to provide 1m accuracy when completed, around 
2019. Though listed as alternatives, and being designed to be fully operational alone, the 
different global navigation satellite system (GNSS) can be combined to improve the 
availability of visible satellites, and thus the accuracy of the sensor (Dale et al., 1989). 

The inertial measurement unit (IMU) is a proprioceptive sensor that combines several 
sensing components to produce estimations of the linear and angular velocities and the 
forces of the device. They generally integrate linear and angular accelerometers, and 
sometimes they include also gyroscopes and magnetometers, producing the sensory part of 
an inertial navigation system (INS). The INS includes a computing system to estimate the 
pose and velocities without external references. Systems derived from the IMU generally 
present good accuracy, but they are vulnerable to drift when used in dead reckoning 
strategies due their own biases. The introduction of external references can improve the 
accuracy, so they are frequently combined with GPS. Introduction of external references 
led to the development of the visual-inertial odometry field (Lupton and Sukkarieh, 
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2012)(Li and Mourikis, 2013), which is closely related to the SLAM (Piniés et al., 2007). 
Still, the accuracy gain is limited by the nature of the exteroceptive sensor added (which 
keeps its own weaknesses), and the IMU part of the system becomes unreliable in the 
presence of strong electromagnetic fields. 

TABLE 2.1: FREQUENT NON-VISION SENSORS IN ROBOTICS 

Sensors Typea Perception Measurement Features 

Encoders Passive Propioceptive Joint pose and/or 
derivatives 

Widely used. Dead reckoning 
drift. 

LIDAR Active Exteroceptive Range and bearing 
scan, laser-based 

Computationally expensive 
to process. 

Radar Active Exteroceptive Range and bearing 
scan, radio-based  

Long range, affected by 
electromagnetic artifacts. 

Sonar Active Exteroceptive Range and bearing 
scan, sound-based  

Short range, better suited for 
underwater operations. 

GPS/DGPS Passiveb Propioceptive Position in global 
coordinates 

Only for outdoor 
enviroments. 

Inertial Passive Propioceptive Specific force, 
angular rates 

Sensors bias drifts over time. 

aPassive sensors do not produce waves/light/sound/mechanical forces.
bThe receptor is passive. The GPS infrastructure (satellites, radio networks, etc.) is active.

2.2.2 Vision	based	sensing	and	measurement	

Vision based sensors are exteroceptive sensors which measure the environment through the 
reflection of light on it, capturing a set of rays conformed as a matrix, thus producing 
images. The most common visual sensor is the camera, which captures images of the 
environment observed in a direction, similarly to the human eye. Still, there are many types 
of cameras, depending on the technology which they are based on, which light spectra they 
capture, how they convert measurement into information, etc. A standard camera can 
generally provide colour or greyscale information as an output, at 25 frames per second 
(fps) or more, being generally focused on the wavelength range visible by the human eye, 
and presenting that information in a pleasant way to the human eye. Nevertheless, specific 
cameras can be designed for different scenarios or uses as a target, thus capturing other 
spectra not seen by human eye (IR, UV…), producing vastly higher fps rates, etc.… 

One of the main weaknesses of cameras within the context of the SLAM problem is that 
they produce bearing-only data (from a geometry point of view): each element of the matrix 
which composes an image shows the information about a point where a ray (which 
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theoretically can extend to the infinite) finds a solid object. Thus, cameras alone cannot 
produce depth estimation in a given time instant. This can be solved by more specialized 
sensors, like time-of-flight cameras (ToF). But these camera sensors generally have lower 
resolutions and framerates, and present reduced dynamic ranges and overall performance, 
while being several times more expensive. These features made them barely used for 
robotics research until few years ago, except in highly funded research areas. 

2.2.2.1 Capture	challenges	

Standard digital cameras sensors are mainly based on two technologies: CCD (charge-
couple device) and CMOS (complementary metal-oxide semiconductor). CCD technology 
was developed earlier, and still offers better image quality, with reduced noise and greater 
light sensitivity (enabling near-infrared light, night-vision, and zero or near zero-lux 
devices). A critical advantage of using CCD-based sensors is that they work natively using 
‘global shutter’ instead of the ‘rolling shutter’ usually found in CMOS cameras. In a 
camera using ‘global shutter’ all the pixels are captured simultaneously, thus providing a 
clear image without distortions or artifacts due to movements (unless the movement are of 
speed and magnitude significant w.r.t. to the capture time). On the other side, ‘rolling 
shutter’ captures pixels consecutively, i.e., one-by-one or row-by-row, introducing 
additional artifacts (see FIGURE 2.3 and FIGURE 2.4). 

FIGURE 2.3: Left: static image for reference. Right: same office scene captured with movement, 
showcasing artifacts induced by rolling shutter: not only is the image is blurred due 
movement, but the straight lines are distorted presenting a slight curvature. 
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FIGURE 2.4: Rolling shutter in a CMOS sensor with non-continous lightning. Left: effects of a 
camera flash from another device in a professional CMOS camera. Right: image taken 
under a fluorescent light with incorrect capture synchronization timing in the camera. 

Although on an ideal case the different shutter methods should not affect, there are several 
circumstances that can make ‘rolling shutter’ a problem. In dim light environments, the 
increase in exposition time (more acute in CMOS sensors presenting lesser light sensibility) 
can be combined with movements to skew the image: straight lines can be combed, and 
some objects might present blur during panning (Liang et al., 2008). Shifts in lighting can 
also disturb the capture process: a sudden flash can make an image appear divided in two 
regions, one much brighter than the other; and the flicker of fluorescents is usually a 
challenge, as several periodic artifacts and intensity distortions appear in video sequences. 

Still, CMOS is becoming the standard digital imaging sensor technology in general 
consumer markets, as CCD production requirements make it much more expensive2. CCD 
is still the default technology for applications were budgeting is a lesser concern than the 
capabilities and performance, such as well-funded scientific research, industrial 
applications, medical fields, defense technologies, etc. 

2.2.2.2 Complex	Vision	Based	Sensors		

There are several other types of camera sensors based on the technology of CCD/CMOS 
sensors, introducing additional hardware to modify the data captured, as shown in TABLE

2.2. Omnidirectional cameras open the horizontal field of view to 360º by using a smart 
trick to project all of the surrounding environment through a mirror into the sensor (see 
FIGURE 2.5 left). The frame captured by the sensor will be a concentric projection of the 
environment (see FIGURE 2.5 right), generally with a blind spot at the centre. They have 
been used successfully within the SLAM problem, both in filtering (Tardif et al., 2008) and 
bundle adjustment approaches (Lukierski et al., 2015), and are well suited for optical flow 
applications. 

2 For the same resolution and framerate the difference can be almost an order of magnitude. 
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FIGURE 2.5: Omnidirectional camera (courtesy of Olympus). Left: Camera sensor with mirrors to 
project 360º around yaw axis. Right: Sample shot from an omnidirectional camera. 

Stereo cameras are based in building upon the basic digital camera: usually 2 similar 
camera sensors are set on a ‘stereo rig’ configuration, where the precise geometry between 
their poses is known with great accuracy. This configuration produces stereo images, that 
is, pairs of calibrated frames, which can be processed by epipolar-based stereo vision 
algorithms. The same camera sensor can include the hardware required to compute a dense 
depth map, which would convert the camera into a depth sensor (known as RGB-D 
camera). Although the default assumption for stereo systems is using 2 cameras in a fixed 
configuration with coplanar projective planes, it is possible to use other setups (see FIGURE

2.6), for example introducing more cameras (Gallup et al., 2008), or variable geometry 
(Fanto, 2012). 

FIGURE 2.6: Stereo camera, with variable geometry, from (Fanto, 2012). 

RGB-D cameras are a wide category of different technologies which deliver the same 
results: an image frame with depth measurement at pixel level. This kind of sensors can be 
based on stereo cameras (see FIGURE 2.7 left) with heavy image processing embedded at 
hardware level. Others rely on time-of-flight (ToF) cameras, where the entire frame is 
capture by a suitable sensor each time a laser pulse is emitted. Several devices based on 
analogous technologies have been made available to the general public since the launch of 
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Kinect®3, which has helped popularizing the technology to the wider public, lowering the 
entry requirements for RGB-D technology in general (see FIGURE 2.7 right). SLAM 
approaches relying on RGB-D technologies have proven to be successful, as shown in 
(Endres et al., 2012) and (Kerl et al., 2013), to name some examples. 

FIGURE 2.7: Left: stereo based RGB-D camera (courtesy of PointGrey). Right: Kinect, with its IR 
emitter, IR depth camera, and colour camera all visible (courtesy of Microsoft). 

There are other approaches to vision based sensing which produce visual data and images 
in alternative ways. Event based cameras optimize the bandwidth available to transfer data 
minimizing the data sent. This is achieved by avoiding full frame synchronous images, and 
instead each pixel is sent asynchronously when a given variation threshold is reached. This 
technology has been applied to visual odometry (Censi and Scaramuzza, 2014) and SLAM 
(Weikersdorfer et al., 2014), and has been proved to offer a good trade-off in terms of 
accuracy versus computational power required in tested scenarios. 

The ability to produce imaging sensor chips with higher resolutions, and the advances in 
fabrication of microlenses with much higher quality have opened many options based on 
field of light imaging (Chebira et al., 2003), making the plenoptic camera (Ives, 1930) a 
reality. In a plenoptic camera, a microlens array placed between the sensor and the main 
lens allows to decompose the scene captured into ‘subimages’, i.e, the same scene seen 
from slightly different points of view. This way the scene is capture through different 
images, forming a ‘field of light’. This field of light as sensor measurement requires 
processing to produce conventional images (see FIGURE 2.8). The great advantage is that 
the lightfield data captured allows refocusing images, modifying the depth of field the 
images, focusing on different depths and elements. The novelty and pricing of the 
technology used makes plenoptic vision still a not-so-well studied approach in robotics 
research, but it has been already applied to visual odometry (Zeller et al., 2016). 

3 Which, although originally conceived as a videogame accessory, has been a critical success in multiple 
research fields. 
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FIGURE 2.8: Schema showing how the light is projected through an array of optical lenses into the 
plenoptic camera, and how microlenses refocus the rays into different regions of the sensor, 
building a mosaic of different subimages for the same capture (courtesy of Lytro). 

TABLE 2.2: CAMERA SENSORS IN ROBOTICS 

Sensors Type Features 

CCD Passive sensor  First digital imaging sensor. Global shutter, higher 
sensibility and price. 

CMOS Passive sensor Cheaper technology, presents rolling shutter and the 
related artifacts. 

Stereo Multiple sensor Multiple camera in a rig. Allows for depth 
estimation using CV/photogrammetry. 

Omnidirectional Sensor & hardware Sensor using mirror based projection of the whole 
environment. Complex projection. 

RGB-D (stereo) Two sensors, extra 
processing unit 

As stereo, the photogrammetry part is integrated at 
hardware level, images and point clouds as output. 

RGB-D (ToF) Active sensor ToF sensor, with optional RGB-D, sensor produces 
cloud points and images. 

Event Based Sensor Sensor outputs pixel variations asynchronously 
instead of full frames. 

Plenoptic Sensor Special lens to capture field of light. Images are 
produced through CV approaches, can be refocused 
later. 
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2.3 Simultaneous	Localization	and	Mapping	as	a	Filtering	Problem	

The SLAM problem is characterized by uncertainty and noise on the sensor input, so, many 
algorithms for SLAM are of probabilistic nature. As stated earlier, the objective in the 
SLAM problem is to estimate the environment and the localization with respect to it with 
the available data; and given that the data available will grow with each measurement, this 
data should be incorporated into the solution. A good fit to this problem thus is an 
incremental Bayesian filter approach. 

In general, the objective of filtering methodologies is refining the knowledge available 
about the state of a given system with the information available through measurements. 
Note that refining is a different process, unlike simply adding new information and 
replacing older data. This can be observed in FIGURE 2.9, where an example trajectory in an 
environment with landmarks is illustrated. At the top left image the actual trajectory and 
environment are shown, with the trajectory perceived by the proprioceptive sensors of the 
robot in light grey shading. This measured trajectory presents drift and errors, like those 
that could be expected (see section 2.2.1 for more details on sensors). At the top right 
image the different measurements that the exteroceptive sensors of the robot would produce 
are shown, linking each pose of the robot with the different landmarks that would be 
observed. Assuming that the distance measurements between the robot and the landmarks 
in the map present no errors, such measurements are added to the map referenced with 
respect to the instant of the trajectory when they were observed, in the bottom left image, 
and introduced into a SLAM framework on the bottom right. This leads to the differences 
seen in FIGURE 2.9 bottom, the dead reckoning at the left produces a drift that cannot be 
corrected, and the landmarks are placed without accounting for their correlations, while in 
the right the iterative refining keeps the initial error bound (though this error can be 
observed in the landmark estimations). 

A filtering methodology usually requires both previous knowledge to the process itself like 
the mathematical models representing the system and the initial state data, and later data 
like the measurements and inputs obtained during the process. It is worth noting that while 
the models representing the system are deterministic in nature, both the initial state and the 
data obtained through measurements are uncertain, thus, of stochastic nature. Then, it is 
required to note mathematically both known (or assumed to be known) models, as 
equations, and solve a problem stated as finding at each given time instant the best 
estimation given all the sequence of measurements since the initial state. 

Note how, after each measurement, it is desired to have the best possible estimation given a 
growing sequence of data, so there are two available approaches: 

 After each measurement, analyze and use all the information available.

 When a new measurement is available, refine the estimation obtained after the last
previous measurement, in an incremental way.
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FIGURE 2.9: Why SLAM is necessary? Top Left: the environment (green stars), with the actual and 
measured trajectories (black and light grey respectively). Top Right: measurements of the 
environment landmarks. Bottom Left: trajectory and measurements using a dead 
reckoning strategy. Red ellipses envelope the actual and estimated position of a landmark. 
Bottom Right: trajectory and measurements using a SLAM strategy. 

It is obvious that dealing with all the information at each step would suppose a great cost, 
thus, a filter able to use the second approach will have to deal only with a bounded amount 
of information, thus making it more suitable for on-line operations. The incremental nature 
of this approach allows using recursive formulations, which in turn can be converted into 
iterative algorithms. 

To formulate the problem, suppose that we describe as the state to estimate the pose of a 
given robotic device, noted as x, and a map m that will be built incrementally with each 
measurement. Index k denotes the discrete time sequence, and it is assumed that for each k 
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instant there will be new measurements and control signals for the robot. Under the 
assumption of a static world, the problem formulation assumes that the probability 
distribution P in equation (2.1) will be computed at each k time: 

 0: 0: 0, , ,k k kP x m Z U x . (2.1) 

This probability distribution describes the joint posterior4 density of vehicle x at time k and 
the map m, given the measurement observation history Z0:k and the control signal sequence 
U0:k, considering x0 as the initial state of the system. This equation denotes all the stochastic 
information of the system, which is estimated and uncertain. But to solve this problem it is 
required to assume that some knowledge is considered certain, or deterministic, and can be 
used to model the relations between the data. This knowledge is represented by two 
different models, the state transition model (how the robot relates with the environment) 
and the observation model (how the measurements, so the robot, relate with the estimated 
map). 

The state transition model describes, as seen in equation (2.2), the motion of the robotic 
device according to a given control signal uk from the control signal sequence U: 

 1,k k kP x x u . (2.2) 

As mentioned before, the problem is to be dealt in such way that only the most recent state 
estimation is needed to avoid dealing with all the information in the sequences U and Z. So 
the state transition process is assumed to satisfy the Markovian property5, where the current 
xk state depends on the preceding state xk-1 and the last applied control signal uk, becoming 
independent from the measurements, the map, and all the other previous states. 

The observation model describes the probability distribution of the measurements to be 
obtained at k. As such, assuming that the state of x at k is known, only probabilities of the 
already known parts of the environment (thus, already available in the map) can be 
described. So, this model can be noted in the form: 

 ,k kP z x m . (2.3) 

Introducing recursive filtering, we can use these models to link the posterior of a 
probability distribution at k-1 with that of k. To achieve this, following the Bayes filter 
framework, a two-step process is used. Firstly, a prediction step is used to propagate the 
posterior density at k-1 into a prior density of xk-1 at k by using the knowledge of the system 
dynamics represented by the state transition model. Then, this prior density is refined into a 
corrected posterior using the new information added through the measurements. 

4 The posterior (a posteriori) and prior (a priori) convention is used w.r.t. the measurement at instant k. 
5 Which can be summarized as the future is independent from the past given the current state. 
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2.3.1 Prediction	Step	

The prediction step (also known as time update) computes the prior density for time k 
propagating the posterior at k-1 by using the knowledge about the system and the inputs 
dynamics described in equation (2.4). 
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This means that the Markovian evolution that it is expected to take place according to the 
dynamics described by the transition model is applied to the knowledge considered certain 
about the system (the posterior at k-1). 

2.3.2 Correction	Step	

The correction step (or measurement update), gives the posterior probability density at k by 
adding the information obtained through the measurement process. This step, described by 
equation (2.5), uses the Bayes Theorem based on the observation model distribution and the 
prior distribution to compute for the robot position distribution and map, thus obtaining the 
joint posterior distribution seen in equation (2.1). 
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The dependence of the observations w.r.t. to both the robot and the map is explicity noted 
in the observation model, equation (2.3). This dependence precludes the simplification of 
the observation model through partition in separate terms for the probabilities of the map 
and the robot, as seen in equation (2.6): 

     ˆ ˆ,k k k k kP P Px m z x z m z . (2.6) 

This is coherent with results already predicted and presented in early mapping literature 
like (Smith and Cheeseman, 1986) and (Durrant-Whyte, 1988), where it is discussed how 
such partitioning would lead to estimation inconsistencies. 

2.3.3 Emergent	properties	of	SLAM	as	a	Filtering	Problem	

The incremental structure of the solution implies that the map m must be built adding 
chunks of new information and refining previous data. Each new individual datum mn is 
usually referred as a ‘landmark’, with the map acting essentially as a collection of 
landmarks. Another consequence of the incremental nature of the problem is that errors in 
the posterior distributions will be propagated into the following priors, meaning that errors 
in the robot pose have an impact in all the landmarks being observed. This effect can be 
mitigated in Bayesian filtering, as additional observations over the same datum mn reduces 
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its uncertainty, and even without this mitigation, it is a better solution than just directly 
introducing data (see dead reckoning result in FIGURE 2.9 bottom left). 
The effects of the error on the robot pose estimates can be observed in several of the 
landmarks. This means that the errors in the landmarks estimates are highly correlated, with 
the consequence that for a given set of landmarks observed concurrently, the relative pose 
between them can be estimated with low errors while at the same time the absolute position 
of each of them can be widely inaccurate. In terms of probabilities this means that the joint 
distribution for a given pair of landmarks P(mi, mj) can be valuable as information source 
even if their marginal probability distributions are sparse. This becomes more apparent 
when considering that most of the time the biggest sources of error are introduced by a 
spurious estimation of the robot pose, which affects the landmark measurements, and is 
propagated through the filter. This can be seen in FIGURE 2.9 bottom right, which shows 
how the initial error in the robot pose is propagated, but bounded. 

As more observations are performed, the correlations between landmarks increase, meaning 
that the relative pose between landmarks generally tends to improve. In (Dissanayake et al., 
2001) the monotonically increasing nature of the correlations between landmarks was 
proved for the linear Gaussian case. This implies that, regardless of the movement of the 
robot, new observations introduce measurements of the relative poses between landmarks 
of nearly independent nature, meaning that the relative measurement between landmarks 
can be considered almost independent from the position of the robot. Considering this, it 
becomes intuitive the fact that the more the robot travels, more relative measurements 
between landmarks are available, increasing the correlation between them, thus, improving 
the believe estimation. 

An analogy with a spring network was discussed in (Durrant-Whyte and Bailey, 2006). 
This analogy presented the map seen as a spring network, with each relative measurement 
between positions available represented with a spring. As the landmarks are observed from 
different positions due the robot movement, new springs are added, and those re-observed 
become stiffer as the correlations grow. This analogy shows in an intuitive way that the 
same way the spring network would become eventually rigid, an accurate map of 
landmarks’ relative positions would be produced. 

2.4 Kalman	Filter	and	Extended	Kalman	Filter	

The most used technique in monocular SLAM is the extended Kalman Filter (EKF), which 
is derived from the Kalman Filter (KF). The Kalman Filter considers that all uncertainties 
are of Gaussian nature, and adds a restriction assuming linear evolution and observation 
models, which allows for a finite formulation of the prediction-correction loop that can be 
solved for the optimal result. The derived EKF (McElhoe, 1966) relaxes this restriction, 
requiring only that the models used are locally linearizable around the last estimation of the 
state (prior or posterior). 
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2.4.1 Kalman	Filter	

KF is a Bayes filter whose distributions are Gaussians, and makes a series of assumptions: 

 Both the motion model, or state transition function, and the observation model, must
be linear with added Gaussian noise.

 The initial uncertainty is Gaussian.

 And last, the state xk is dependent on xk-1, but no other previous states (satisfying the
Markovian property).

The KF was fully proposed around 1960 (Kalman, 1960), being the first optimal estimation 
filter for linear system models with additive independent white noise. Some of its 
theoretical basis had been proposed by (Swerling, 1959) earlier, with the most known form 
of the recursive filter presented in (Kalman and Bucy, 1961). 

There are plenty of works which deal with the details, not only the seminal literature 
mentioned above, but extensive works like (Hargrave, 1989), and those more recent and 
focused into specific applications (Fischer et al., 2013). As the focus of this dissertation is 
to deal with different aspects of the SLAM problem, we will describe and discuss the EKF 
directly, while inviting the reader to check the proposed literature. 

2.4.2 Extended	Kalman	Filter	

As both the state transition and observation model are normally governed by nonlinear 
trigonometric functions and have non-Gaussian noises, the KF is rarely used in the SLAM 
problem. Instead, through linearization of the relevant models, the EKF accommodates the 
nonlinear terms.  

Thus, the EKF-SLAM formulation uses equation (2.7) to describe the robot motion 

   0: 0: 1, , , ,k k k k k k k kP   x m Z U x x f x u w (2.7)

where f models the robot movement, and wk are additive, zero mean uncorrelated Gaussian 
motion disturbances with covariance Qk. The observation model is described in the form 

   , ,k k k kk
P   z x m z h x m v , (2.8) 

where h describes the geometry of the observation and vk are additive, zero mean 
uncorrelated Gaussian observation errors with known covariances. 

With these definitions, the standard EKF filter can be applied to compute the mean 
estimation and covariance, as equations (2.9) and (2.10), of the joint posterior distribution 
seen in equation (2.1). 
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In order to apply the prediction step to equations (2.9) and (2.10) time is updated increasing 
k, thus previous measurement become noted as k-1, and the estimations are update 
according to equations (2.11) and (2.12), for state and covariance respectively. 

 1 1 1
ˆ ˆ ,   kk k k kx f x u (2.11) 

 , 1 , 1 1 1 ^ 1
ˆP P Q ,T

k kxx k k xx k k k k       f f x u (2.12) 

 f is the Jacobian of f evaluated at the estimation point at instant k. Note that equation׏
(2.12) explicitly requires linearization of the model, and for models with very strong non-
linearities constitutes a source of error through misrepresentation. The assumption of static 
environment allows considering the landmark to remain in the same place. 

After time is updated in the prediction step, data from the new measurements are 
introduced in the estimation during the correction step, refining the estimation mean and 
covariance with equations (2.13) and (2.14). 
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1P P S T
k k kk k k k  W W (2.14) 

In these equations gk denotes the Kalman innovation vector (also known as residuals), 
which contains the difference between the actual measurements, zk, and predicted 
measurement of the landmarks, as seen in equation (2.15). The covariance of this 
innovation, denoted Sk, is computed according to equation (2.16). The term Wk is usually 
known as ‘Kalman gain’ or ‘gain’, and modulates the impact of the innovation into the 
mean estimation. Note that for a given state where the uncertainties, annotated in Pk|k-1, are 
of great magnitude, the Kalman gain will also be of great magnitude, and this will imply 
that the innovation can have a much bigger impact. 

 11
ˆˆ ,  k k kk kg z h x m (2.15) 

1S P RT
k kk k   h h (2.16) 

1
1P ST

k kk k


 W h (2.17) 

It is worth noting that the term ׏h, which describes the Jacobian of the observation model h 
evaluated at the estimated joint posterior distribution, appears both in equations (2.16) and 
(2.17). Once again, non-linearities in the models are always undesirable, but in the 
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observation model case, it becomes twofold: not only they produce misrepresentation errors 
in the linearization steps, but as they are frequently related with angular magnitudes, most 
of the time they also increase the Abbe error. 

Through this formulation, the EKF can be used to perform SLAM, being commonly the 
adopted solution. Still, there are some aspects that must be considered. For starters, EKF-
SLAM uses linearized models in several parts, both in the prediction and correction steps. 
Problems due linearization errors may arise, as it has been commented at several points. 
This may lead to inconsistent solutions and disrupt the filter convergence. Moreover, the 
cost of the EKF SLAM grows rather rapidly, as fast as quadratically with respect to the 
number of landmarks in the map. Several optimizations can improve this performance, 
being a problem that has received much attention, leading to some alternative formulations, 
commented in the next section. 

2.5 Other	Filtering	approaches	

The EK-EKF framework has become one of the most relevant filtering frameworks in 
general estimation problems. Its wide utilization has led to the development of several 
variants and derived techniques, with many of them finally being used in the SLAM 
problem. Some of them can be seen as simple upgrades or modifications, which allow an 
easy transition from the EKF framework, while others require essentially a full 
reformulation of the SLAM problem. The most impactful are discussed in this section. 

2.5.1 Gaussian	Sum	Filter	

The Gaussian Sum Filter (GSF) (Alspach and Sorenson, 1972) may be viewed as a further 
extension of the EKF. The main idea behind it is the approximation of the pdfs by Gaussian 
mixtures, i.e. sums of weighted Gaussians, each one of them adequately fulfilling the EKF 
requirements on linearization. Each Gaussian will be processed by a different EKF, and an 
additional method will be needed to adequately update the Gaussian weights during 
predictions and corrections. 

As each of the weighted Gaussian distributions used will be dealt with an EKF, it will be 
necessary to maintain a bank of EKFs. The advantages of this filter lie in that it weakens 
greatly two restriction of the EKF: 

 The initial distributions and uncertain knowledges (like noise) can be described as a
Gaussian mixture instead of a purely Gaussian distribution, thus fitness of
knowledge representation improves.

 The restriction of local linearizability around the estimates becomes more relaxed,
so extreme non-linearities which could disrupt easily the EKF can be treated.

As the methodology keeps the estimation of a bank of EKFs, to obtain the actual estimation 
of the state an additional step to fuse the distributions is required. Moreover, given how the 
prediction step is performed, the size of the EKF bank grows at each prediction-correction 
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cycle, making the filter computationally unfeasible rather fast. Thus, an additional 
procedure is required to keep the size of the EKF bank manageable. 

2.5.2 Information	Filter	

The EKF accommodates the nonlinearities from the real world, by approximating the robot 
motion model using linear functions. An alternative approach, but still closely related, 
would be the utilization of the information filter (IF) or the extended information filter 
(EIF). The IF is implemented by propagating the inverse of the state error covariance 
matrix. There are several advantages of the IF filter over the KF. Firstly, the data is filtered 
by simply summing the information matrices and vector, providing more accurate estimates 
(Thrun and Liu, 2003). Secondly, IF are more stable than KF (Thrun et al., 2004). Finally, 
the main feature is that in the information form the information matrix is approximately-
sparse, with weaker correlations having really small values, which can be marginalized. 

However, the IF has also some important limitations. A primary disadvantage is the need to 
recover a state estimate in the update step when applied to nonlinear systems. This process 
requires the inversion of the information matrix. Further matrix inversions are required for 
the prediction step of the information filters. For high dimensional state spaces the need to 
compute all these inversions is generally believed to make the IF computationally worse 
than the Kalman filter. In fact, this is one of the reasons why the EKF has been vastly more 
popular than the EIF (Wang and Dissanayake, 2010). Nevertheless, as the information 
matrix is approximately sparse, with lower values far from the diagonal eliminated, the 
matrix can be dealt as an sparse graph. This approach has allowed developing methods to 
make the updates in an iterative fashion, with efficient costs, and better performance for 
large mapping than EKF filtering. 

2.5.3 Unscented	Kalman	Filter	

The Unscented Kalman Filter (UKF) (Julier and Uhlmann, 1997) addresses the 
approximation issues of the EKF and the linearity assumptions of the KF. The KF is used to 
propagate a Gaussian Random Variable (GRV) in systems with linear dynamics, and the 
EKF approximates the optimal terms by linearization of the dynamic models. Thus, in the 
EKF the state distribution is approximated by a GRV which is propagated analytically 
through the linearization of the system. As approximations and linearization can induce 
errors in the state and covariance, another approach would be to represent the state 
distribution by sampling the state in a reduced set of points which can capture the dynamics 
and covariance of the state distribution. These points are propagated through the non-linear 
space, avoiding linearizations and their effects. This is achieved through the unscented 
transformation (Julier and Uhlmann, 2004), which is used to estimate the result of applying 
the nonlinear models to the state distribution, characterizing with a limited subset of state 
points. Even if it overcomes several of the problems of the EKF, it can still produce 
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inconsistencies, and usually presents a worse computational cost, as it was discussed in 
(Huang et al., 2009). 

2.5.4 Particle	filters	and	Fast	SLAM	

The particle filter (PF) techniques are derived from the sequential Monte-Carlo (SMC) 
method, tracing back to the late forties (Metropolis and Ulam, 1949). In order to represent a 
Bayesian posterior distribution the SMC uses a set of random point clusters, the particles. 
As a nonparametric method, the particle filter represents the distribution by a set of samples 
drawn from the same distribution. This feature allows handling great non-linearities and 
non-Gaussian noise. But unlike the UKF, which uses the unscented transformation to 
deterministically choose the samples, the PF takes a number of randomly selected samples. 
This procedure forces the filter to take many particles, making the computational 
complexity grow rapidly.  

The solution adopted at FastSLAM (both 1.0 (Montemerlo et al., 2002) and 2.0 
(Montemerlo et al., 2003)) was to apply Rao-Blackwellization to reduce the dimensionality 
of the state-space. The part of the state related to the robot is represented by a set of 
weighted sample particles, while the map accompanying each particle is composed of 
independent Gaussian distribution. Then the recursive estimation is achieved by applying 
the PF to the robot pose estimation, and standard EKF filtering for map estimation. 

To do this, the algorithm first computes a ‘proposal distribution’, and starts drawing from 
particles this distribution. For each particle, the ‘importance function’ assigns a weight, and 
a particle filter is applied to the robot part, with a resampling process that reassigns weights 
if needed. After this process is done for all the particles, the map for each particle is update 
as an EKF filter considering the robot part of the state (usually the pose) as known. To 
refine the estimation and avoid degeneration of the maps due effects of particles relevant to 
previous states, several strategies were introduced, such a map marginalization. This still 
presents issues, as the map dependence on the robot and the removal of the measurement 
history may induce disturbances during the resampling step (Bailey et al., 2006). 

2.6 Optimization	Based	approaches	

The Structure from Motion problem (SfM), from the computer vision field of research, has 
many similarities with the SLAM problem in robotics, but it presents several key 
differences that kept them separated for decades. In classical SfM approaches the focus was 
set into obtaining the best possible map (concentrating on the geometry of the environment, 
through photogrammetry) from a given set of images, generally in an offline computing 
environment. This led to a heavy focus on geometrical modelling and optimization 
procedures as prevalent solutions. On the other hand, SLAM approaches focused on real-
time continuous estimation, especially of the sensor poses, thus leading to incremental 
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solutions. Besides, while SfM always dealt with 3D scene reconstruction from image 
sequences, the SLAM problem not always is considered to include cameras as a sensor. 

Still, the introduction of Bayesian methods in both fields allowed closing the divide 
between the SfM and SLAM problems, leading to the emergence of keyframe methods 
based on Bundle Adjustment (BA). On these keyframe methods the main strategy is to 
select a subset of image frames from the image stream, and perform optimization over them 
analogously to the SfM strategies. Several of these strategies still rely on filtering SLAM 
approaches to track the pose variations, using the filter estimation as a seed for the 
optimization processes. 

These approaches have a rigid algorithmical structure that is tightly coupled to the 
hardware on which they will run. In (Klein and Murray, 2007), where PTAM (Parallel 
Tracking and Mapping) was first introduced, an architecture based on splitting the classical 
problem into two different tasks (tracking the pose and building a map) is described. Each 
of these tasks was mapped as a different thread on a different processing unit, and would 
exchange the data required asynchronously. The continuation of this work (Klein and 
Murray, 2008) improved the resilience of the method to sudden motions, introducing also a 
direct image-based method to estimate inter-frame rotations using full frames, and the 
utilization of edgelets as features, taken from (Eade and Drummond, 2009). 

DTAM (Dense Tracking and Mapping) was presented in (Newcombe et al., 2011), acting 
as a real-time SfM method, based in a full direct image approach. In that work the map was 
modelled as a dense textured 3D mesh, estimated through keyframe optimization at pixel 
level, finding dense (at pixel spatial resolution) depth maps. The novelty of the work 
resided not only in the taken approach, but also in the level of technical development, 
exploiting high parallelization GPGPU6 methods and techniques. 

2.7 Mapping	&	Localization:	Robot	&	Environment	Representation	

One of the most critical aspects of any SLAM methodology is the representation of the 
system, that is, how the localization of the robot is noted, and how the environment is 
described. Most of the filtering approaches deal in a straightforward way: the state is 
represented by an augmented state vector, which denotes consecutively the state of the 
robot and the ‘map’. 

 Trx x m (2.18) 

The robot state is generally described through its pose and velocities in a given notation. It 
is worth noting that for many methodologies, given the nature of the filter they use, it is 
desirable to employ a parametrization that produces prediction models with the lowest non-
linearities possible. Thus, the position of the robot is commonly parametrized as an 

6 General-Purpose computing on Graphics Processing Units. 
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Euclidean point with respect to the starting point of the estimation procedure, while the 
orientation has been reported to be noted through several representations, generally related 
to the Euler angles given their intuitiveness. Still, the quaternion (Hamilton, 1844) has 
become the orientation representation most commonly used, given its advantages in terms 
of avoiding singularities and ambiguities. 

The nature of the map is essentially dependent on the nature of the observations available 
through sensor measurements. For example, scan range-finders can produce dense and 
accurate maps (with limitations according to the dimensionality of their scanning process), 
but are limited in range, and require to store and correlate the data in some fashion. Visual 
based approaches rely on the qualities of the observations produced by algorithms that 
process the images and extract the information. As such, the images obtained in visual 
SLAM are processed to extract geometric primitives observable in the image projection of 
the environment (e.g., points and lines). 

  0 ...
T

r nx x y y  (2.19) 

As the filter based approaches deal with the knowledge acquired during the estimation in an 
incremental fashion, it is possible to parametrize new data into the map in a direct way: the 
map considered to hold data about the environment is composed of chunks of this 
information, in the form of landmarks. Thus, each landmark yn will correspond to one key 
element of the environment, like the observed primitives for a visual SLAM procedure. If 
the element was previously observed, the information will be used to refine its 
representation already parametrized into the map. 

2.7.1 Landmark	parametrization	

When speaking of landmarks in a visual SLAM context, for most of the cases the term 
itself is used to describe point landmarks, as they are by far the most used. Still, it is worth 
noting that other types of features exist and have been used successfully. 

Though other approaches may use analogous representations for the different elements of 
the map/state/filter represented, the following section discusses landmark parametrization 
in the context of visual EKF or equivalent filtering SLAM approaches. This is relevant 
because the Bayesian nature of the EKF allows using redundant parametrization. As 
pointed in (Sola et al., 2012), EKF, as a Bayesian estimator, uses an initial prediction to 
generate the prior distributions that constrains the redundant DoF that would disrupt 
convergence in other approaches (such as those based on bundle adjustment or other 
iterative optimizations). 

Euclidean	points:	
An Euclidean point codifies a given position in 3D space with three Cartesian coordinates 
(see FIGURE 2.10 left). They represent the simplest possible parametrization, as seen in 
equation (2.20), and allows for annotating rotations with quaternions, which avoids the 
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gimbal lock problem. Moreover, rotation matrices based on quaternion rotations tend to 
present bilinear relations which simplify Jacobian computations. 

3[ ]T
e x y z p  (2.20) 

Even using quaternions, the Euclidean points are unsuitable for bearing-only SLAM 
systems, as they introduce severe non-linearity on the models, aggravating Abbe’s errors. 
This has been long reported and known, since (Chiuso et al., 2000). 

FIGURE 2.10: Left: Visual representation of the Euclidean coordinates of point p. Right: 
Geometrical interpretation of the homogeneous coordinates for p. 

Homogeneous	Points	
Homogeneous points are coded by a vector of 4 elements, mapping a projective ℙ3 space. 
Although this representation is widely known and used in computer vision, it is rather new 
in the SLAM field, first seen in (Marzorati et al., 2008). This vector is composed of a 3D 
vector, noted m, and a scalar p, the homogeneous part:	 

4[ ]T
h x y z

p
p m m m

 
   
 

p
m

 . (2.21) 

The conversion of a homogeneous point to Euclidean coordinates is straightforward, being 
pe = m/p. This means that each pe can be represented by an equivalence class through 
proportional transformations of the 4-vector of a homogeneous point (see FIGURE 2.10 
right). Different choices for the canonical values can produce several representations 
widely known in computer vision: p = 1 is the original Euclidean parametrization; mz = 1 is 
the inverse-depth; and ||m|| = 1 is the inverse-distance.  

As discussed in (Sola et al., 2012), the inverse-distance is isotropic, and if a given point is 
expressed w.r.t. to a camera sensor, m is the director vector of an optical ray to the point, 
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and p presents linear dependency with the inverse of the distance between said sensor and 
the point. 

Plücker	Coordinates	
Plücker lines codify a line in ℙ3 space through 6 parameters, based on the Plücker 
coordinates introduced by Julius Plücker in the 19th century. Assuming, in a 3-dimensional 
projective space ℙ3, a line L crossing homogeneous points ah and bh, the Plücker 
coordinates can be represented as a 6-vector lp  	ℙ5. The elements of this 6-vector can be 
obtained through several ways, though in the context of SLAM (especially bearing-only 
approaches) the most used representation is that proposed at (Bartoli and Sturm, 2001), 
shown in equation (2.22): 

5 6T

p x y z x y zn n n v v v
          

n
l

v
 , (2.22) 

which represents the corresponding Plücker Matrix Lp: 

  3,
0

x
p T

,
 

  
  

n v
L n v

v
 . (2.23) 

The general formula of the Plücker Matrix describes a given line L using two different 
points in homogeneous coordinates, and this can be used, as seen in equation (2.24), to 
obtain a 4x4 skew-symmetric matrix subject to the Plücker constraint, that is, the 
determinant must be zero. 

4 4· ·T T
p h h h h

  L b a a b  (2.24) 

So, the representation considered in equation (2.22) allows to define vectors n and v as: 

e e p pa b   n a b v b a . (2.25) 

This representation means that the Plücker constraint is now equivalent to the orthogonality 
condition nTv = 0, and is conditioned in a way to make it easy to visualize from an 
Euclidean intuition point of view, as seen in FIGURE 2.11 . Vector n is normal to the plane 
which passes through the origin of coordinates and contains the line, while v is a director 
vector for the line, going from a to b. Then, the distance from the origin of coordinates to 
the line can be computed as ||n||/||v||. 
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FIGURE 2.11: Visual representation of the Plücker line coordinates. Line defined by points a and b 
is denoted by the vector v and n in Plücker coordinates, lying on the plane U (shaded in 
grey). 

Unified	Inverse	Depth	Parameterization	
In (Civera et al., 2006) a new approach to parametrize point features was introduced. The 
‘inverse depth points’ (IDP) method presents a formulation which combines characteristics 
from the homogeneous points representation and from earlier works on simplified polar 
coordiantes (Aidala and Hammel, 1983). A given point p is parametrized as pidp according 
to equation (2.26): through an anchor p0 = (x0,y0,z0), a director vector m, and a distance to 
the point, codified through the inverse of its value, ρ. 

 
0

0 0 0

T

idp x y z   


 
   
  

p

p m  (2.26) 

To find the Euclidean coordinates of a point under IDP notation, the director vector m must 
be applied to the inverse of ρ, and translated to the anchor, as illustrated in FIGURE 2.12 
seen in equation (2.27): 

 0

1
,e  


 p p m  (2.27) 

where 

   , cos sin sin cos cos
T       m . (2.28) 
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In a visual SLAM context, the anchor p0 is generally set to be the Euclidean coordinates of 
the camera optical centre when the point was first parametrized. This allows decoupling the 
uncertainty of the term multiplying the most uncertain value, the distance to the point 
(inverse distance in our case). The notation of the distance to the point through its inverse is 
especially fit for visual approaches: ranges up to near infinite can be codified within a 
bounded range, and representing the uncertainty with a low range of values also makes the 
filtering approaches more numerically stable. 

 

FIGURE 2.12: Visual representation of the inverse depth points (IDP) parametrization for a given 
point p anchored a p0 with director vector m at distance 1/ρ. 

Introducing the anchor p0 improves the accuracy of the representation in the long term: the 
uncertainty between the camera pose and position p0 is initially low, and while the camera 
is near p0 the uncertainty remains low, but as soon as the camera moves from the anchor, 
the relative uncertainty grows quickly between camera and anchor. Without this anchor, the 
isolated position uncertainty would have a big impact in the director vector, m, which 
would be modified so that it is considered to have origin in the moving camera optical 
centre. 

2.7.2 Other	Representations	

The Graphical SLAM approaches represent the whole state as a graph of poses, where the 
pose nodes are related through spatial constraints acting as edges. This kind of 
methodologies often rely on the sensors ability to perform scan measurements, like many 
types of range finders, associating each scan measurement with a node. The last node added 
to the graph is the last pose of the robot where a full scan measurement was performed, and 
can be linked to several other nodes. To build the map, a Graphical SLAM technique will 
initially store the whole trajectory and all the relevant measurements, then all this data can 
be used to retrieve a visualizable map. Graphical SLAM approaches rely heavily on 
detection of loop closures, as in passing near a previously recorded pose, which allow 
optimizing the whole trajectory, refining and removing redundant data. This data has been 
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generally stored as vectors and sparse matrices, but as the trajectory grows it becomes 
inconvenient. Several graphical SLAM algorithms have been designed to used alternative 
representations, like (Paskin, 2003). In that work the thin junction tree filter (TJTF) is used, 
treating a long trajectory as a set of coupled maps, analogously to a submapping approach, 
where each cluster of the junction tree could be seen as a submap. 

More recently, in (Kaess et al., 2010), a new data structure specifically designed for 
graphical SLAM approaches was proposed. Loosely based on clique trees (Blair and 
Peyton, 1993), the Bayes tree is used to codify factored probability densities, with directed 
edges to map the information matrix, and as shown in (Kaess et al., 2012), it outperforms 
the TJTF without omitting belief information. 

In DTAM, the map is represented by a dense textured 3D mesh with millions of points, 
obtained by multi-view reconstruction over sets of keyframes, enabling subpixel 
resolutions. Then localization of the camera is performed through image registration of 
obtained frames against said 3D mesh which models the scene. 

2.7.3 Map	Management	and	Loop	closing	

Some SLAM approaches can deal with large and complex maps with relative ease, like 
those based on the information form of the Kalman Filter (Thrun and Liu, 2003), also 
known as the inverse covariance filter. This is possible because the information matrix is 
approximately-sparse in information form, with weaker correlations having really small 
values, which can be marginalized. As commented earlier, it can deal with relatively large 
maps through the utilization of several techniques to linearize the cost of succesive matrix 
inversion operations over time. 

With regard to EKF based SLAM and similar techniques, the most usual approaches to deal 
with complexity over large maps are based on partial updates or directly dividing the map, 
improving greatly the performance. This allows performing the update step of the filter, 
which is the most expensive computationally, over a reduced state. The compressed EKF 
method (Guivant and Nebot, 2001) restricts the state to be updated to the vehicle position 
and a subset of the nearest and most recently observed features.  

A brief survey of submap based techniques can be found in (Bailey and Durrant-Whyte, 
2006). Most of them rely on sequentially creating different maps, and joining them at a 
later point. There are some criteria to classify them, but the most relevant would be how the 
position of the different submaps is treated: in global submap methods the position of each 
submap is represented with respect a global reference frame (FIGURE 2.13 left), while the 
relative submap methods (FIGURE 2.13 right) work with the position of each submap in 
relation to other close submaps. 
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FIGURE 2.13: Left: globally sharing an initial reference point. Right: locally referenced submaps, 
each one referenced with respect to other maps. 

Hierarchical SLAM (Estrada et al., 2005) creates different submaps, with features added 
relative to the point where each map is started. Joining operations of the different submaps 
are performed when a loop closure is detected, optimizing then the location of the submaps. 
This allows hierarchical SLAM to reduce the computational dependence from quadratic 
time with respect the number of landmarks to linear or constant time. There are other 
techniques based on similar approaches, like the constant time SLAM (Leonard and 
Newman, 2003), achieving also constant time. The downside is that to achieve this reduced 
cost, the local maps are related to a common reference frame, leading to bigger 
linearization errors due an increased uncertainty. 

On the other side, the local map joining (Tardós et al., 2002) builds independent, totally 
separated maps: once a given size of map is reached, an entirely new EKF filter is initiated, 
with a new covariance matrix. The divide and conquer SLAM (Paz et al., 2008) introduces 
complex policies to manage the submaps, joining preferably smaller maps and delaying the 
more expensive operations of joining the larger maps. The conditionally independent 
SLAM also relies on keeping different submaps, but they are not required to be completely 
independent, thus, they can share information, which will be useful during the joining step. 
An earlier work, the constrained local submap filter (CLSF) schedules explicitly when the 
global covariance matrix must be updated. This way it can maintain several relative 
submaps, and obtain map and vehicle estimates matching those of an EKF-SLAM without 
a submapping technique (Williams et al., 2002). 

A common approach to describe the relationships between the submaps in the relative 
submapping methods is creating a graph. This would work in a similar way to Graphical 
SLAM (Folkesson and Christensen, 2004), and other graph-based SLAM approaches. The 
Atlas framework (Bosse et al., 2003) implements a submapping methodology independent 
from the technique used to create the different submaps. In general, the relative submaps 
framework presents the advantage of creating locally optimal maps, numerically stable, 
while keeping the computational complexity reduced. As the updates are performed locally, 
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with a reduced number of features, it also reduces the cost of the association and loop 
closing problems; and it lowers the error from the possible linearization assumptions done 
with respect to the global submap methods. 

2.8 Conclusions	

In this chapter the prerequisites to have a wide vision of the SLAM problem, both from the 
technical and mathematical points of view, have been presented and discussed. From a 
technical point of view, a review of the most used sensors in the SLAM research 
community is presented. As this dissertation deals with aspects of the visual SLAM 
problem, the vision-based sensors have been discussed in detail, in terms of capabilities, 
weaknesses and convenience of each type of sensor. Additional focus was put on discussing 
the features of low-price CMOS sensors, and the additional challenges they present, as the 
experiments described in other chapters of this work were based in this technology. 

The mathematical foundations of SLAM as a probabilistic recursive estimation problem 
have been described, studying its origin and most important solutions. The most influential 
solution to the SLAM problem, the Extended Kalman Filter, has been detailed in terms of 
Bayesian probabilities, detailing how this can be translated into a general formulation for 
the SLAM problem. The main alternatives to the EKF have been commented and 
discussed, with emphasis on their advantages and weaknesses when compared to the EKF 
in the context of the visual SLAM problem. 

Several other aspects of the general and visual SLAM problems have been also discussed 
beyond the estimation method, such as modelling aspects, including how to describe the 
maps and the elements present in them. Special attention was placed in the parametrization 
of landmarks, discussing key points of the different mathematical characterizations and 
some of their properties which have an impact in the SLAM problem. The map 
management was also discussed, in terms of structure and classification of methods, 
including the detection of loops (place recognition problem) and management of extended 
maps and long trajectories. 
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Chapter	3	

Computer Vision and research 
antecedents in SLAM 

A set of reconstructed 692 nm high resolution specle images of TRAPPIST-1, with linear and logarithmic flux 
scale, courtesy of (Howell et al., 2016). The star observed was later found to present 7 orbiting telluric 

planets, 3 of them within its habitable zone. Several of them could present water, making them habitable. 

3. Computer	Vision	and	research	antecedents	in	SLAM

3.1 Introduction	

Although there are plenty of sensors that can be used to solve the SLAM problem, as we 
just reviewed in Chapter 2, cameras are one of the most usual sensory devices. Though 
traditionally this meant stereo or monocular vision, recent developments in hardware and 
integration technology have opened the option to work with cameras of more complex 
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nature, like the different types of RGB-D sensors, or the omnidirectional cameras. This 
chapter presents an in depth review of the DI-D monocular SLAM approach, which was 
used as the basis for this thesis, preceded by the foundations on computer vision and 
projective geometry required through this dissertation. 

3.2 Projective	Geometry	and	Camera‐Based	Artificial	Vision	

As we stated when formulating the SLAM problem, the objective of any solution is to build 
a map and perform localization w.r.t. this same map. The landmarks composing this map 
have to be modeled in mathematical terms, as it was seen in Section 2.7. That section 
discussed the notation of the landmarks according to different models working on real 
world coordinates, but in fact they are to be perceived as data extracted from a subset of 
pixels in an image. The data are extracted from the image through computer vision, 
applying techniques which detect significant points that present certain qualities, known as 
point features; while the spatial relation between the observed environment and the data 
extracted is provided through projective geometry. 

3.2.1 Mathematical	Monocular	Cameras	

From a mathematical point of view, a camera is a mapping between 3D real world and a 2D 
image space. Although there are several camera models, most of them are, including all 
based in the central projection, specializations of the known projective camera. In this 
section, we will focus in the well-known pinhole camera model, which idealizes the thin 
lens model7. 

This pinhole camera model maps the points through a projection operation, which can be 
seen as an injective application P, noted as: 

     3 2: ; , , , , ,P X Y Z x y P X Y Z    . (3.1) 

This projection P is assumed to follow the central projection, so we can consider that the 
centre of projection C is the origin of an Euclidean coordinate system, and that there is a 
plane Z = f which act as the image plane or focal plane. Then, a point r in the 3D space is 
mapped into the image point rimg; which lies in the intersection of image plane and the line 
joining the camera centre C with point r, as seen in FIGURE 3.1. 

7 Real cameras are built and operated according to the thin lens model, as actual pinhole cameras offer very 
poor specifications due physical limitations. 
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FIGURE 3.1: Diagram of the pinhole camera model geometry. C is the camera centre, origin of 
coordinates and a ray advancing towards Z axis, the principal axis. This ray ends 
intersecting the plane image in the principal point p. 

It is easy to see then that a given point in coordinates (X, Y, Z)T will be projected into the 
image plane into a set of coordinates according to the following equation: 
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thus mapping it from 3D to 2D coordinates. In this model, the camera centre C is also 
known as optical centre, and the ray from it crossing the image plane perpendicularly is 
known as principal axis or principal ray, intersecting the plane at the principal point p. 

This projection P can be easily described as a linear mapping if the different points are 
represented by homogeneous vectors denoting their homogeneous coordinates. Thus, the 
central projection can be annotated as a matrix multiplication: 
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 ; (3.3) 

which in turn, if we consider points r and rimg to be represented from in homogeneous 
coordinates, with 4 coordinates for the 3D point r and 3 coordinates for the 2D projection 
rimg, we can write also as rimg = Pr. Now we have that the projection operation is 
represented by ways of a 3-by-4 camera projection matrix P. This projection matrix may 
also be written as P = diag( f, f, 1) [ I | 0 ], where diag( f, f, 1) is a 3-by-3 diagonal matrix, I 
is a 3-by-3 identity matrix, and the “0” term represents a vector of zeros. 



3-4 Data association and sensing through a human-assisted uncalibrated visual system 
 

 

FIGURE 3.2: Image plane coordinates (x,y) at the origin of the plane,  and camera coordinates 
(xcam,ycam), originated a principal point p. 

This camera projection matrix assumes that the origin of coordinates of the image plane is 
at the principal point, but this is not necessarily true. As it is shown in FIGURE 3.2 , an image 
plane is usually considered to have the origin of coordinates in a corner, so equation (3.3) is 
rewritten as follows: 
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  (3.4) 

in order of include the offset of the principal point p, with coordinates (px, py). Note that the 
term diag( f, f, 1) in the previously shown decomposition now presents a triangular matrix 
structure, and it is known as the camera calibration matrix K. 
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 (3.5) 

The formulation until now assumes that the coordinates of r are noted with respect to a 
coordinate frame originated in the camera optical centre. If said assumption is removed, the 
projection operation can be compactly described as: 

  3 3 3 1| 0img camK I  r r ,   where   

1

cam

X

Y

Z

 
 
 
 
 
 

r . (3.6) 

Where rcam is the homogeneous vector annotating the position of a given point r in a 3D 
Euclidean space in a coordinate frame centered in the optical centre of the camera with the 
Z axis aligned along the principal axis. This system of coordinates is generally known as 
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the camera coordinate frame8. This notation comes handy when working with cameras and 
other elements noted as points in space, as it is common that each element has its own 
coordinate frame, while there is a shared one, known as world coordinate frame. This 
world coordinate frame is related to the camera coordinate frame by means of a rotation R 
and a translation t, as seen in FIGURE 3.3.  

 

FIGURE 3.3: Transformation between camera coordinate frame and world coordinate frame, as a 
rotation R and a translation t. 

The projection matrix P for r in this case would depend on 3 parameters from the K matrix, 
3 parameters describing the position of the optical centre C through the translation t, and 3 
parameters to describe the rotation R. The parameters in K are known as the internal or 
intrinsic camera parameters, as they belong to the camera, while those used to describe the 
position and orientation of the camera, R and t, are known as extrinsic or external camera 
parameters. The main difference relies in the fact that intrinsic camera parameters rarely 
vary on most artificial vision systems9, while the extrinsic camera parameters can vary 
easily as they depend on the pose of the camera. This partition leads to equation (3.7), used 
to compute camera projection matrix P, which is similar to (3.6), but the ‘empty’ terms now 
contain the relevant parameters to model the pose of the camera. 

 
 |

img

P K R

P





t

r r
 (3.7) 

Note that the equations up to this point assume that the coordinates in the image plane will 
be in the same units as the real world coordinates, and that the scale is uniform in both X 
and Y image axis. But it is known that in vision systems these assumptions are not usually 
satisfied: camera sensors quantize space in the tiny regions covered by each of their pixels, 
ignoring which metric unit is used to measure world space; besides, due technical 
limitations and historical reasons related to the broadcasting industry and practices, is not 
uncommon to find still today some cameras presenting uneven scaling between the vertical 
and horizontal axes, i.e. non-square pixels. 

                                                 
8 Also known as camera frame for short when there is no risk of ambiguities. 
9 Unless the vision system has varying focal length, or can alter other relevant properties of the sensors. 
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Then, assuming that the pixel count per distance unit for directions x and y are mx and my 
respectively, K in (3.5) is multiplied by diag(mx, my, 1). Then, including all the elements 
and terms, the calibration matrix K for camera sensors to use in equation (3.7) can be 
written as follows: 
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 (3.8) 

where αx = f∙mx and αy = f∙my denote the focal length in pixels for each x and y direction; 
and x0 = mx∙px and y0 = my∙py describe the principal point p in pixel dimensions. The final 
parameter, s, denotes the skew, that is, models the defects of the pixels in terms of 
presenting an angle between the x and y axis differing from the right angle. This produces a 
shear transformation, but commonly this angle is considered to be zero10. 

As the resulting coordinates for rimg obtained through equation (3.7) with the calibration 
matrix from equation (3.8) describe a 2D point in an image plane with dimensions in axis 
adjusted according to pixel size in homogeneous coordinates, its representation is a 3-
element vector. These coordinates then are converted to the plane Z = 1, considering the 
equation: 
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The pixel coordinates of rimg, rpix, represent the ideal projection according to the intrinsic 
and extrinsic camera parameters contained in matrix P according to (3.7) and (3.8). This 
assumes that the optical lenses are perfect from a geometrical and projective point of view, 
matching exactly the thin lens model, and it is not the case. In fact, most of the efforts 
related to optics development are focused in producing better lenses for photography, i.e., 
improving the photometrical aspects of the lens, but not the geometrical ones that are 
interesting for photogrammetry. 

One of the aberrations present in real lenses is the optical distortion. Optical distortion 
evidences the fact that the camera sensors cannot be constructed as ideal pinhole cameras: 
the points in the image are not in a straight line crossing the optical centre toward the origin 
spatial point which the map. Although there are several types of distortions, the most 
commonly found distortions are known as radial distortions, as they present radial 
symmetry due to the symmetric nature of the lens. The radial distortion patterns usually 
observed include the barrel and the cushion distortions, where the scale with respect to the 

                                                 
10 Although it is also common that automated calibration algorithms that consider skew end producing values 
infinitesimally different to zero due errors and depending on how the optimization is perfomed. 
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optical axis decreases and increases respectively, as seen in FIGURE 3.4. Several works have 
studied radial distortion and how to model it, in (Henrique Brito et al., 2013) the authors 
review many previous works on radial distortion in order to study and produce a self-
calibration algorithm for this optical aberration. 

FIGURE 3.4: Radial distortion patterns. Left: Barrel distortion. Right: Pincushion distortion. 

Another distortion pattern found recurrently in computer vision is the fisheye distortion. 
This is found in fisheye lenses, which because of being panoramic wide-angle lenses 
produce not only heavy barrel distortion but also projective distortion. Although some of 
the cameras used during the experiments described in chapters 4 through 6 of this 
dissertation were wide-angled, they did not present projective distortions to fall under 
fisheye category, so a simplified radial distortion model like the one presented in (Davison 
et al., 2004) was used. 

3.2.2 Epipolar	geometry	

The epipolar geometry is commonly defined as the intrinsic projective geometry between 
two views. It is of interest for the present dissertation, as in several occasions the geometry 
between two views studying the same scene is considered. It is worth noting that the 
epipolar geometry itself, being of intrinsic projective nature, depends only on the cameras 
internal parameters and their relative pose11. 

11 Note that the term camera is referred in the mathematical sense just detailed, with each camera being w.r.t. 
one of the multiple views or images. So it is possible to consider the epipolar geometry between different 
views captured by the same camera. 



3-8 Data association and sensing through a human-assisted uncalibrated visual system 

FIGURE 3.5: Epipolar geometry and point correspondence. The camera centres C and C’ determine 
the baseline and the location of the epipoles. Left: The ray projected from C through x 
points toward X. Right: All the possible projection of X (found along the ray traced from C 
to x) onto the right image lie into the epipolar line l’ originated at the epipole e’. 

Thus, assuming two views, with known relative poses, the epipolar geometry studies the 
geometry of the intersection of the images and a set of epipolar planes. These epipolar 
planes are a set of planes which contain the baseline, which is the line that joins the camera 
centres C and C’. For any given point X in the Euclidean scene observed in both views, an 
epipolar plane π will be defined between X and its projections on the pixels x and x’. The 
epipoles, e and e’, are found at the intersection of the baseline and the images, and are 
contained by the epipolar lines l and l’, which are the intersections between the views and 
the epipolar plane π. 

The most interesting feature of the epipolar geometry from the point of view of robotic 
vision and photogrammetry is that for any given pair of views taken with known cameras, 
with known relative pose, the epipoles can be computed; and this fact allows, for any given 
point X seen as x at the image captured in C, to determine the epipolar line l’ where it is to 
be found on the image captured by C’. Thus, searching matching points between different 
views can be reduced to searching in a linear region instead of full image explorations. 

Generally, the epipolar geometry of a given set of cameras or views can be represented in 
matrix form under the fundamental matrix F. This fundamental matrix can be computed in 
several ways, dependent on the transformation between the camera poses, and requires 
knowledge of the camera calibration matrix K of both cameras/views. A survey of the 
fundamental methods to compute F can be found in (Armangué and Salvi, 2003). 

3.3 Feature	Based	Image	Processing:	detectors	and	descriptors	

The camera can provide bearing-only information about the different points present on the 
image. But then, some criteria are needed to choose which points are of interest, as they 
will eventually be the landmarks composing the map. So they should be meaningful an easy 
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to find and track. There are several techniques to detect and identify these points of interest, 
also known as features. The most commonly used techniques range from simple 
approaches, like Harris detector (Harris and Stephens, 1988) or SUSAN (Smith and Brady, 
1995), to more complex approaches, like SIFT (Lowe, 2004), SURF (Bay et al., 2006), and 
FAST (Rosten et al., 2005). More recent techniques include BRIEF (Calonder et al., 2010), 
BRISK (Leutenegger et al., 2011), FREAK (Alahi et al., 2012) and ORB (Rublee et al., 
2011). In (Krig, 2014) the authors offer an extensive review including most of the known 
feature detectors and descriptors, including discussions on their fitness according different 
criteria; while in (Kashif et al., 2016) several descriptors are compared in the context of 
biomedical imaging applications. Still, SIFT remains the most accurate descriptor 
according to literature consensus, with SURF and BRISK providing a good trade off in 
terms performance. 

The Harris corner detector relies on finding salient corners (Harris and Stephens, 1988), 
that is, starting from a corner the image intensity will change largely in multiple directions 
following certain patterns. This can alternatively be formulated by examining the changes 
of intensity due to shifts in a local window: when the window is centered on corner point, 
the image intensity will change greatly when the window is shifted in an arbitrary direction. 
This allows using a second moment matrix, known as the autocorrelation matrix, to 
evaluate if there is a point of interest or not. The family of Harris-based feature detectors 
remains popular as it is very effective in structured and artificial environments, and it is 
used commonly when the problem of tracking or discerning matches for the detected point 
at posterior times is not a critical aspect to consider. 

The SUSAN method is also a corner detector (Smith and Brady, 1995), though it was 
patented in 1994, which did not help its popularity and spread. It is based on segmenting 
image features based on local areas of matching intensity, producing bimodal features. The 
technique itself uses an Univalue Segment Assimilating Nucleus (USAN), which creates 
areas of similar intensity by comparing pixels within a given radius from a reference pixel. 
The FAST (Fast Accelerated Segment Test) family of methods (Rosten et al., 2005) is 
partially derived from SUSAN, as they aim to detect segments based on bimodal 
segmentation. Instead of dealing with all the pixels inside the circle determined by the 
reference radius, only those in the Bresenham circle12 around the point of interest are 
considered. 

The scale-invariant feature transformation, or SIFT (Lowe, 2004), is widely considered to 
be the most accurate modern feature descriptor, dealing also with the detection. It is based 
on producing a database of features through a four step process (scale-space extrema 
detection, keypoint localization, orientation assignment and keypoint descriptor). SIFT 
features are reported to present the highest discerning rate, presenting lower false positives 
rates. Still they have had relatively low use in the monocular SLAM field, because of two 

12 An approach to rasterization of curves well-known in computer graphics. 



3-10 Data association and sensing through a human-assisted uncalibrated visual system 

characteristics: SIFT descriptors are time consuming to compute; and the detector used by 
SIFT tends to find too many points of interest in environments with rich textures, thus 
dampening performance. These problems have been addressed in some works like (Suzuki 
et al., 2011) or (Chekhlov et al., 2006), where they use the SIFT as base to create multi-
resolution descriptors. Anyway SIFT descriptors are rarely used in monocular SLAM. 
Another approach taken in relation to SIFT is combining it with principal components 
analysis (PCA). This PCA technique is an standard technique for dimensionality reduction, 
thus making SIFT feature vectors smaller, and improving its efficiency, but making it 
weaker against image blurring, as reported in (Juan and Gwun, 2009). 

One of the main problems of SIFT, the computational cost, was addressed by the Speeded 
Up Robust Features (SURF) detector (Bay et al., 2006). This method, inspired by SIFT 
uses an integer approximation to the determinant of Hessian blob detector, which can be 
computed extremely quickly with an integral image. Though reported to be faster than SIFT 
(Juan and Gwun, 2009), it still produces an excessive amount of features that will lead to 
association problems between frames, and SIFT is still more accurate and has a better 
matching rate. 

Binary robust independent elementary features (BRIEF) is a binary descriptor based on 
intensity comparisons. These comparisons are performed between a set of chosen pixels 
found in a patch around a given interest point. For each set of pixels, a binary value is set 
into the descriptor depending on which presents higher intensity. This fact makes them 
resilient to illuminance changes, but weak to rotation and scale variations. An updated 
version, Binary robust invariant scalable keypoints, or BRISK, solved the orientation 
problem, defining 2 subsets, with a long distance set of comparisons used to determine the 
orientation computing local intensity gradients. This allowed to rotate the patches after 
determining the orientation, and using a set of short distances comparison analogously to 
the BRIEF descriptor. The Fast Retina Keypoint descriptor, FREAK, is also partially 
derived from BRIEF and BRISK, introducing biologically inspired concepts. A retinal 
sampling pattern is used to compute binary values through intensitiy comparison, like 
BRISK, but introducing symmetric fields instead of long distance comparison. 

The ORB (Oriented FAST and rotated BRIEF), combined both FAST detector and BRIEF 
descriptor to produce an alternative to SIFT. While in terms of accuracy it is not able to 
match SIFT, ORB is about an order of magnitude faster than SURF and 2 orders of 
magnitude than SIFT (Rublee et al., 2011). This fact has made ORB popular, and a 
successful ORB based monocular SLAM method is described in (Mur-Artal et al., 2015). 

3.4 Delayed	Inverse‐Depth	feature	initialization	monocular	SLAM	

This section describes previous works by the research group Vision and Intelligent Systems 
(VIS) in the field of monocular SLAM with delayed feature initialization, with works like 
(Munguia and Grau, 2007a), (Munguia and Grau, 2007b), and (Munguia and Grau, 2012). 
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These works constitute the base upon the developments presented on this thesis started. The 
diagram on FIGURE 3.6 shows a block schema describing the different subprocesses 
performed and the different flows of information between said processes. The most relevant 
features of these processes and data flows will be described in the subsequent subsections, 
with focus on the mathematical basis that will be required on further chapters. 

FIGURE 3.6: Block diagram of the delayed inverse-depth feature initialization Monocular SLAM, 
detailing the different processes and how they relate to build the MAP m though iterative 
EKF filtering. 

3.4.1 System	Parameterization	

The system state is denoted by an augmented state vector, as described in Chapter 2: 

   ˆ ˆ ˆ ˆ, , ...
T v 1 nx x y y (3.10) 

where x̂v represents the state of a free robotic camera moving in any direction in Թ3, with 6 
DoF, and the map is denoted as a set of landmarks represented by feature points in the 3-
dimensional environment. These feature points are parametrized according the inverse-
depth model, described in section 2.7.1. 
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The state of the robotic camera, x̂v, can be decomposed into pose, including both position 
and orientation, and the instantaneous speeds, both linear and angular, as seen in equation 
(3.11)13: 

ˆ
TWC WC W W

v    x r q ν ω , (3.11) 

where 

 TWC
v v vx y zr (3.12) 

rCW denotes the optical centre of the robotic camera in Cartesian coordinates and 

 1 2 3 4

TWC q q q qq (3.13) 

qCW denotes the orientation of the camera with respect to the global reference frame using a 
unit quaternion form parametrization. Quaternions, although they do not present the 
intuitiveness of Euler angles in terms of interpretation, they present a composition 
formulation simpler, while avoiding the gimbal lock. When compared with rotation 
matrices, they present better numerical stability and efficiency in terms of parametrization, 
being these features critical for filtering techniques like the EKF. 

The terms ωW and νW in equation (3.11) denote linear and angular velocities respectively, 
descomposed according to equation (3.14): 
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   

   

ν

ω
 . (3.14) 

In these equations the speeds are denoted w.r.t. global reference coordinates, even though 
they are applied to the robot camera as local combination of translation and location. 

The rest of the augmented state vector is composed of features, which are annotated 
according to equation (3.15). Note that said features are parametrized under the inverse-
depth parametrization (discussed in section 2.7.1, equation 2.27 and 2.28). In FIGURE 3.7 
the features codification according to this method and the structure of the state initialization 
(described in the next section) are illustrated. 

 Ti i i i i i iy x y z     (3.15)

13 The superscripts are used to denote the reference frame relevant, so the W superscript denotes the world 
reference, thus global coordinates, while C will be used to denote the camera reference frame. When the 
superscripts denote multiple reference frames, they denote a transformation (be it rotation, translation, or full 
homogeneous transformation) from the first reference frame to the ending frame.  
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FIGURE 3.7:Inverse depth parametrization of points, with detail of the set of a priori known coplanar 
points used for system initialization. 

3.4.2 System	Initialization	

Pure monocular SLAM approaches largely ignore the scale problem and focus on 
producing scaleless reconstructions, even the most advanced and recent techniques, like 
(Engel et al., 2014) and (Mur-Artal et al., 2015). Still, obtaining the metric scale of the map 
is necessary if the map reconstructed is to be used later in localization and navigation 
applications. Monocular SLAM approaches generally ignore the scale of the observed 
world given the nature of the camera, which as a bearing-only sensor, only produces 
angular data, but no distance information. Thus, additional information from other sensors 
or previous knowledge about the dimensions of a given reference to be found is required to 
retrieve the scale of the world. 

The system metric initialization process is solved analogously to the n-point perspective 
problem (PnP) (Chatterjee and Roychowdhury, 2000). In PnP the challenge relies on 
finding the position and orientation of a camera with respect to a set of n known points.  A 
solution for the case with 4 known points (thus P4P problem) used, solving it completely 
under the assumption that the four points are coplanar. A similar approach is used to solve 
the initialization problem. 

Thus, to initialize the system, a set of 4 coplanar known points are used. These points can 
be present in any object (present a priori or specifically added) as long as 2 criteria are met: 

 The exact geometrical relations between the coplanar point are known. 
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 The points are identified by a process which guarantees that there is zero
probabilities of mismatch or false positives.

For this given set of points and a calibrated camera, the extrinsic parameters RCW (world to 
camera rotation) and t (translation vector from world coordinate origin to camera optical 
centre) are computed. As discussed previously in this chapter, considering a camera as 
calibrated implies knowing the intrinsic parameters of the camera, namely: focal distance f, 
the optical centre (i0,j0), and the radial distortion parameters k1 … kn. The 4 coplanar points, 
with coordinates (xi,yi,0) for i = [1 .. 4] are assumed to lie at the same distance from the 
camera projection plane, in a plane with world coordinates z = 0 , thus putting the world 
coordinates origin in the same plane. 

The method used is based on (Ganapathy, 1984), thus a system of linear equations is built, 
as described in equation (3.16), with an unknown vector b: 
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where 
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This linear equation system is solved for 

 1 2 3 4 5 6 7 8

T
b b b b b b b bb ; (3.18) 

then t3 is determined as 
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 . (3.19) 

Once a solution for t3 is found, solutions for RCV and t are computed according to equations 
(3.20) and (3.21). 
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  3 7 3 8 3

T
t b t b tt  (3.21) 

The terms Rij found at the third column of RCW refer to the elements of the same RCW 
matrix. Once the extrinsic parameters of the camera, that is, the camera pose with respect to 
the world coordinates (which have been set with the origin in the plane defined by the 
coplanar points), the augmented state is initialized prior to starting the EKF filtering. 

This state initialization follows equation (3.22), with estimated state x̂ini containing the 
initial pose and velocities of the camera and the four points (xi,yi,0) initialized as ŷi. 

 1 2 3 4ˆ ˆ ˆ ˆ ˆini

TWC WC W W
ini ini ini ini   x r q ν ω y y y y  (3.22) 

rWC
ini will be the same vector t describing the camera extrinsic translation, while qWC

ini will 
be the quaternion obtained14 from transposed RCW, from equation (3.20), and the camera 
will be considered to be initially inmobile, all as describe in equation (3.23): 

 ini

WC tr ,     TWC CW
ini q Rq ,    3 10W

ini ν ,    3 10W
ini ω . (3.23) 

As the map part contains the initial features ŷi, each of these are initialized following 
equations (3.24) and (3.25), where [g1 g2 g3] are the coordinates for the landmark w.r.t. an 
origin of coordinates translated from the plane where the coplanar points lie to the initial 
position of the camera: 
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    1 2 3 0 ini

WC
i ig g g x y r . (3.25) 

Finally the initial covariance matrix is set. Note that although it is entirely possible to fill it 
with zeros, it generally provides better results to try to characterize the initial belief, thus 
normally arbiratry small values are chosen, according to the knowledge about and 
experience with the system: 

  37 37ini xP  . (3.26) 

3.4.3 Prediction	Step:	camera	model	and	prediction	equations	

Following the EKF SLAM schema described in chapter 2, each iteration starts with the 
prediction or time-update step. An unconstrained prediction model for a constant-
acceleration camera motion, defined in equation (3.27) is applied to the x̂v part of the state 
vector: 

                                                 
14 See equation (V.2) at the annexes for quaternion from a rotation matrix. 
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(3.27)

Δt is the time increment between each k instant, defined by the rate of the sensors, in this 
case, the framerate of the camera. The velocities ωW and νW are modied at each step k by an 
input vector u, which contains linear and angular accelerations aW and αW, each them being 
a zero-mean Gaussian random process, as seen in equation (3.28). The final orientation of 
the camera is obtained by quaternion multiplication of the current orientation with the 
quaternion q((ωW 

+ ΩW) Δt), derived from converting the orientation increment vector into 
quaternion15. 
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t
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V
(3.28)

These unknown linear and angular velocities entries VW and ΩW
 are introduced into the 

system covariance by the process noise covariance matrix U: 
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. (3.29) 

Thus, after defining the time-update model for the camera movement at equation (3.27), 
and the uncertainty characterization of the process at equation (3.29), the augmented state 
vector and the covariance matrix can be updated following equations (3.30) and (3.31): 
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
, (3.30) 

1
T T

k x k x u uP F P F F Q F      . (3.31) 

Notice that the map part m in equation (3.30) follows the static world assumption, i.e., the 
landmarks do not move thus they present no variation at the time-update step, as detailed in 
section 2.4.2. This means that the Jacobians 	׏Fx and ׏Fu w.r.t. the process and the input 
signal must consider the partitioned state, as shown in equation (3.32), with n being the size 
of the parametrization of the landmarks present in the map m: 

15 See equation (V.1) at annexes for converting orientation vector to quaternion. 
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The main component of the Jacobian of the camera motion model ׏Fx, δfv/δfv is in turn 
built as a block matrix, following the structure in equation (3.33): 
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with the block components detailed in equations (3.34), (3.35), and (3.38). Equation (3.34) 
describes the derivatives of the position rWC w.r.t. to the linear velocities: 
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Equation (3.35) details the derivatives of the orientation quaternion with respect to its 
previous state: 
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where 
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and 
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
 . (3.37) 

Finally, equation (3.38) denotes the derivatives of the orientation (as a quaternion) w.r.t to 
the angular velocities in the Brownian motion model: 
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where 
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The term (δq(ωW
k + ΩW

k) Δt )/δωW
k+1 can be computed from the conversion formula from a 

rotation vector to quaternion representation. This conversion is noted in equation (3.40): 
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The derivatives for this expression can be then separated by components, 
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where the components are computed according to: 
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Finally, δfv/δu denotes the Jacobian of fv w.r.t the input noise process Q, built with blocks 
already computed, namely equations (3.34) and (3.38): 
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3.4.4 Measurement	prediction	model	

As it was discussed in Chapter 2, one of the procedures which an EKF methodology will 
perform during the update step is the measurement prediction. Using data from the 
augmented state posterior to the time-update step, the measurement prediction model 
forecasts the distorted pixel coordinates in the image plane for all the landmarks in x̂k: 
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u
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. (3.46) 

Thus, for each landmark ŷi the correspondent (ud,υd) coordinates are found with the 
following process: the observation model of any given landmark, parametrized according to 
section IDP notation in section 2.4.2, defines a ray hc w.r.t. the camera frame: 
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where RCW is the transformation from global reference to camera reference frame, and m is 
the director vector described in equation (2.28), within the IDP parametrization (see 
equation (2.27)). This vector representation hc of the ray between the landmark and the 
camera optical centre is projected into the camera coordinates appliying the following 
equation: 
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which produces the pixel coordinates w.r.t. the ideal camera optical centre. These 
coordinates in turn are converted into actual undistorted pixel coordinates applying the 
offset of the actual camera centre: 
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, (3.49) 

producing (uu,υu), which in turn are applied a radial distortion model to obtain the distorted 
pixel coodinates. Equation (3.50) describes the applied distortion model, originally 
proposed in (Davison et al., 2004), using the distortion coefficient ki: 
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If the distorted pixel coordinates for the prediction of a given landmark ŷi fall within the 
image, that is, both uu and υu have values between 0 and the image height and width 
respectively, then a match for the landmark prediction will be searched. Note that if the 
landmark falls within the image, but its uu,υu coordinates are near the image edges, the 
search will be skipped due the possibility that the actual measured landmark will lay out of 
the image. This is especially risky given how the matching process is performed, described 
in the next section, as the chances of false positives increase in these cases. 

3.4.5 Feature	Matching	and	measurement	update	

For the features found in the image, within a safe distance from the edges, the data 
association problem is solved, that is, the actual pixel coordinates for landmark ŷi at instant 
k are to be found. These coordinates constitute the measurement matched to the predicted 
landmark, corresponding to one of i parts of the measurement vector zk found in equation 
(2.15) and described in section 2.4.2. Note that the predicted uu,υu coordinates are also 
present in the same equation, being the term h(x̂k|k-1,m̂k-1). 

The strategy to solve the data association is based on and active search technique (Davison 
and Murray, 2002), which is widely described and discussed in Chapter 4. To summarize it, 
a matching point is to be found in a search area defined as a function of the innovation of 
the covariance matrix, as shown in equations (4.4) to (4.6). In order to determine which of 
the pixels lying in the area is the match, a likehood function is applied between the aspect 
of a patch captured around the landmark when it was first seen, and current image 
appearance, as described in section 4.3. 

Once the data association problem is fully solved, the measurement update step takes 
places. The Kalman innovation covariance, see equation (3.51), required to apply the active 
search technique, is computed using the Jacobian ׏Hk of the observation model, described 
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in the previous section. This Jacobian is decomposed as the set of partial derivatives noted 
in equation (3.52), and applied to each one of the ŷi landmarks. 

 1
T

kS H P H R    (3.51) 
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 (3.52) 

δhi/δx̂v contains the derivatives of the measurement prediction model for the landmark with 
i index w.r.t. the camera state, and δhi/δŷi the derivatives w.r.t. the same landmark. Note 
that for all the other landmarks the Jacobian ׏Hi is zero, so for each one of them, ׏Hi will 
contains a submatrix of zeros of rank 2×6 (the measurement contains 2 coordinates and the 
IDP parametrization presents parameters). 

After the data association is solved the procedure described in 2.4.2 can be fully applied, so 
the Kalman innovation or residuals are computed: 

  ˆH g z x ; (3.53) 

and, as the innovation covariance was previously solved, the Kalman gain can be 
calculated: 

 1
1

T
kW P H S
  . (3.54) 

With all the data available, the measurement-update, or correction step, can be completed 
by updating both the state and the covariance matrix, with equations (3.55) and (3.56). 

 k k+1ˆ ˆ= +Wx x g  (3.55) 

 1
T

k kP P WSW   (3.56) 

3.4.6 Delayed	Inverse‐Depth	Feature	Initialization	

The key difference between the most common approaches to SLAM and the delayed 
approach discussed lays in how the feature depth is initialized. In order to initialize a 
feature, it must have been detected and tracked during enough frames to achieve significant 
parallax so that the depth can be estimated. 

In order to achieve this, points are detected using the Harris detector in areas where there 
are no landmarks or candidates points. When a good candidate λi is detected, it is stored 
into a database, with the following parametrization: 

  1 1, , , ,i rr q u v   , (3.57) 

where rλ is the optical centre of the camera rWC when the point is detected 

    1 1 1, , , ,v v vr x y z x y z   ; (3.58) 
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σr denotes the covariances of rWC, taken from Pk: 

        1 1 1, , 2,2 , 2,2 , 3,3r x y z k k kP P P     ; (3.59) 

qλ is the same quaternion qWC denoting the orientation of the camera, with σr noting its 
covariances 

          1 1 1 2 1 3 1 4, , , 4,4 , 5,5 , 6,6 , 7,7q q q q q k k k kP P P P      ; (3.60) 

and u1,v1 denotes the pixel coordinates of the landmark where the candidate λi was detected 
for the first time. Those candidates stored in the database are tracked between frames, until 
there is need for new landmarks to be introduced into the EKF filter. Many of the 
candidates λi will not be introduced into the filter, as they will be pruned during the tracking 
following several criteria. 

For a candidate λi to become a new landmark ŷnew, it must be tracked until achieving 
parallax  αmin. To compute this parallax, the data stored in λi and the current state of the 
camera is used. Notice that as λi contains rλ and the posterior state holds rWC

k, it is possible 
to estimate the baseline of the displacement b, thus the parallax estimation results 
reminiscent of epipolar geometry, as observed in FIGURE 3.8. 

FIGURE 3.8: Feature initialization process diagram, with parallax estimation schema. 

So, for each candidate λi the parallax α is computed when a match zi in a new frame is 
detected, as 

        (3.61)

where angles β and γ are determined form the respective director vectors h1 and h2 , and the 
baseline director vectors b1 and b2 (seen in FIGURE 3.8). So, the director vector h1 in 
equation (3.62) 
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is the vector annotating the projective ray h1 = [h1x  h1y  h1z] in Euclidean world coordinates. 
This ray is computed from the camera position and the pixel coordinates stored in λi, as 
seen in equation (3.63): applying the transformation RWC(qλ) from camera reference (when 
λi was detected) into the global frame reference to the directional vector between the 
camera optical centre and the pixel coordinates, hC

1(u1u,υ1u). 
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This hC
1(u1u,υ1u) vector is computed per equation (3.64) 
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which uses the undistorted pixel coordinates (u1u,υ1u), These undistorted pixel coordinates 
are obtained by applying the undistortion model (the inverse of the distortion model) at 
equation (3.65) to the pixel coordinates stored in λi. 
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The baseline director vector, b1, is computed as the difference between the current position 
of the camera optical centre, rWC

k = [xk  yk  zk]T, minus the camera optical centre when λi 
was first observed, rλ: 

     1 1 1 1k k kb x x y y z z      (3.66)

The computation of γ is analogous to that of β, so the angle is estimated from the director 
vector h2 and baseline directional vector b2 according to equation (3.67): 
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where h2 is the director vector in world coordinates describing a ray which is the projection 
of the match found to the candidate λi in the current frame. This h2 is found by applying the 
transformation from current camera frame into world reference RWC(qWC

k) to the vector ray 
hC

2(u2u,υ2u). 

   2 2 2 2,
WC WC C

u uh R q h u (3.68)
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This hC
2(u2u,υ2u) ray is obtained from the undistorted coordinates of the current observation 

zi of the candidate λi: 
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where the undistorted coordinates are found applying the inverse distortion model to the 
pixel coordinates of the last measurement of λi, zi = (u,υ): 
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. (3.70) 

In turn, director vector b2 is just a vector with same direction and module as b1, but 
opposite sense, so b2 = -b1, and the baseline b is just the Euclidean norm of b1 or b2. 

2 1 1 2;b b b b b   (3.71)

After estimating β and γ, α is tested against αmin: if it is greater, ŷnew is introduced into the 
state vector x̂ as part of the map m, applying the inverse observation model g, in equation 
(3.72): 

 ˆ ˆ( , , )
T

new k i i i i i i i ig x z x y z    y   . (3.72) 

The position of the camera optical centre is taken from the current rWC
k camera position, as 

equation (3.73). 
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(3.73)

The attitude and heading are computed from the director vector h2: 
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and the inverse depth is computed as: 

 
 

sin

·cosi b




  . (3.75) 

Once the feature ŷnew has been added at the end of the state vector as ŷn+1 through equation 
(3.10), the covariance matrix needs to be updated. As a new feature has been added, the 
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new covariance matrix Pnew has to include new elements to describe the uncertainties 
related to the new landmark: 
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where  
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Rj contains the variances of the pixel at which the landmark was seen for the first time, 
(σu1

2, σv1
2); the variances of the pixel coordinates when initialized, (σu

2, σv
2); the variances 

for the camera optical centre during the first observation, (σx1
2, σy1

2, σz1
2); and the variances 

of the quaternion describing the orientation of the camera optical centre, (σ1q1
2, σ1q2

2, σ1q3
2, 

σ1q14
2). 

The Jacobian ׏Y of the initialization model follows a block structure: 
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where δg/δx̂v contains the partial derivatives of the inverse observation model g (equation 
(3.72)) w.r.t the state of the camera, x̂v, and δg/δRj are the derivatives of the same inverse 
observation model w.r.t. to the covariance parameters of the initialization process, as noted 
in the matrix Rj. 

Alternatively, it is possible to introduce landmarks according the undelayed method (Civera 
et al., 2006). Though undesirable, this may be needed in scenarios where the environment is 
deprived of robust features in short distances, but which present strong far landmarks. This 
is because the far landmarks may never achieve enough parallax to satisfy the condition α > 
αmin, but they are still valuable to estimate the orientation of the camera. In order to enable 
this, a set of heuristic rules can be implemented, so that once the estimated baseline b for a 
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given candidate λi has reached a value that satisfy b > bmin, it can be initialized, even if α < 
αmin. A method to adjust the values of αmin, bmin and the initial uncertainties modelled in the 
covariance matrices is proposed in (Munguia and Grau, 2012). 

3.4.7 Map	Management	

As the computational costs of any EKF based SLAM methodology grow with the number 
of landmarks present in the state, a common strategy also applied in this method is to 
remove the older features. By doing this the EKF-SLAM modifies its behaviour to 
resemble that of a visual odometry technique. It is also pretty common to store those 
features removed from the EKF state, and deal with them with other strategies related to the 
problems of place recognition and big map management (discussed in section 2.7.3). 

In a related work (Munguia and Grau, 2009), researchers at VIS proposed a virtual sensor 
architecture, where the real-time EKF-SLAM process works similarly to visual odometry, 
and a different slower SLAM process decoupled from the camera rate is used to deal with 
the global mapping and localization. 

With regards to the monocular EKF-SLAM itself and the work developed in this thesis, the 
strategy used is assuming that a similar architecture to that described at (Munguia and 
Grau, 2009), or any other posterior long trajectory map management technique is available. 
Under this assumption, the focus is to produce locally robust trajectory and map 
estimations, as the introduction of global mapping techniques will maintain the robustness, 
as discussed in (Strasdat et al., 2010). 

So, once a certain threshold of features is reached, older features, and those that are 
predicted but not observed during the matching step, are removed from the state. This 
process is much simpler than the initialization of the same features, just requiring to remove 
those columns and rows which contains its correlations; e.g.: 
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3.5 Conclusions	

In this chapter the basics of projective geometry for computer vision have been reviewed, 
both for the single camera approach and for multiple view/camera scenario, and the main 
point feature detectors and descriptors have been discussed. Discussion on these items was 
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presented leading to a detailed description of the delayed inverse depth feature initialization 
approach to monocular SLAM (DI-D monocular SLAM). This monocular SLAM 
technique, derived from the undelayed monocular SLAM approach popularized by works 
like (Davidson et al., 2006) and (Clemente et al., 2007), was developed in the Vision and 
Intelligent Systems (VIS) research group, and presented and discussed in (Munguía and 
Grau, 2012). Although the delayed visual SLAM approach is a monocular SLAM 
approach, thus working with only a camera, the introduction of delayed initialization 
through parallax estimation uses concepts based on epipolar geometry and multiple view 
geometry. Many of these concepts are further commented and discussed during the 
development presented in Part III of this dissertation. 





Equation Chapter 4 Section 1 

Part	II	

The Data Association 
Problem 

Trial model of the Analytical Engine, proposed by Charles Babbage in 1837, and considered the first Turing-
complete general-purpose computer, displayed at the Science Museum, London. 

II.A Introduction

The data association problem, also known as the correspondence problem16, is that of 
finding the correspondence relations between new data available from the sensors and the 
previous data about the environment already present in the map. This means that the 
objective is to associate new uncertain data (under the guise of new measurements or 

16 Within computer vision community the term correspondence problem is widely extended due the influence 
of the stereo vision field; at the same time the data association problem expression remains used in the 
SLAM community, probably inherited from the tracking methodologies in detection and ranging sensors. 
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observations) to known environmental landmarks, thus concluding that both measurements 
correspond to the same physical object/feature in the world.  

For any given system which relies on solving the data association problem, there is a set of 
critical factors that define which will be the suitable approaches to solve it. The single most 
defining feature is the kind of sensor/s to be deployed. This will define how are the 
landmarks that can be detected as features, and in turn, configures the set of landmark 
parametrizations available. For example, it is common for multimodal systems having to 
address the data association in different spaces or multiple times in order to associate 
readings from the various sensors, as seen in (Atrey et al., 2010). Besides, the specifications 
of sensors and landmarks are the defining factors in two other problems: the landmark 
detection and, depending on the sensors, the filtering of false positives. The landmark 
detection problem is pretty straight forward for most of the approaches, as once it is clear 
what is defined as a landmark, it becomes just an issue of signal processing and feature 
detection in the sensor space. 

On the other hand, filtering false positives is a harder challenge, as not only these false 
positives may arise in terms of landmark detection, but in the association step itself. The 
false positives for the landmark detection step may be produced by the spuriousness of the 
sensor, or by the characterization used to detect the landmark, e.g: in structured 
enviroments, like furnished rooms, it is usual that the Harris corner detector (Harris and 
Stephens, 1988) denotes as salient non-existent points where two orthogonal edges at 
different surfaces/depths overlap. The false positives due incorrect association tend to be an 
issue largely caused by the environment; if the detected landmarks are too similar or too 
close in sensor space, the probability of false associations grows. These can be the most 
disruptive cases for probabilistic SLAM, and many of the research in the association 
problem within SLAM is destined to pruning them, going as far as being preferable risk 
losing correct associations, as will be described in this chapter. 

II.B Challenges	on	Data	Association

In the probabilistic SLAM framework, the data association requires that the prediction step 
has been completed, and new sensor data are available. The problem itself can be 
considered as three different smaller problems or tasks: finding landmarks (as 
distinguishable data on the environment) in sensor reading; measurement of said 
landmarks, thus, interpreting their spatial relations with respect to the sensor or robot; and 
finally establish the correspondence relation with the previous landmarks on the map, if 
possible. FIGURE II.1 illustrates these tasks within the general EKF framework procedure. 
The prediction of the observations (that is, how the known data are expected to be 
perceived by the sensor), is computed with the direct observation model h (equation 2.8), 
and although it is always a critical part on EKF-SLAM approaches, it is not a required step 
in many data association solutions. This theoretical division within the correspondence 
problem is rarely as clear in practice, and it is largely dependent on the approach, e.g.: in 
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LRF-based SLAM approaches the most common approach to data association is the ICP 
(Besl and McKay, 1992), where the whole sensors scan is matched, producing association 
without extracting landmarks. 

FIGURE II.1: General EKF SLAM procedure and details on the processes considered within the 
Data Association Problem. 

In the context of visual SLAM, the landmark measurement step is affected by the 
limitations of the camera sensors: without additional information, with cameras being 
bearing-only sensors, the depth is not directly observable, producing incomplete 
measurements. Also, as will be discussed along this chapter, the final association step 
depends largely on the parametrization model and the landmark initialization processes 
(seen in sections 2.7.1 and 3.5.6 respectively).  

The methods to deal with landmark detection and observation problem can be classified in 
two large groups: model-based and appearance-based approaches. This division is related to 
the parametrization of the landmarks (seen in 2.7.1), as model-based approaches (Gee and 
Mayol-Cuevas, 2006) work with non-point geometric primitives17 used as geometric 
models, which allow modelling more complex elements of the environment with 
meaningful structure (Flint et al., 2010). On the other side, appearance-based approaches 
rely directly on the appearance of elements; thus, relying directly on the image data at pixel 
level. This means that the geometry, shape and size of an object is meaningless, but that the 
potentially relevant data are over the whole image, and a vision-based interpretation 
method is required to extract and reduce the information. 

17 As in computer graphics: atomic irreducible objects. 
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This information reduction is a way to remove irrelevant data, as an average camera sensor 
can yield hundreds of megabytes per second. The information that will be kept (let be it 
colour of a pixel/region, illumination, optical defocus, image-spatial relations, etc.) depends 
largely on the strategy used to produce the features. These strategies are usually divided in 
two wide categories: localized features, and whole-image features. The localized features 
involve sub-regions of a given image, generally denoting a pixel or/and its vicinity, while 
whole-image features are derived from full images (Lovegrove and Davison, 2010). Note 
that there are plenty of whole-image feature techniques relying on localized features to 
build upon using histograms (Dalal and Triggs, 2005) and other image classification 
techniques such as Bag of Words (Galvez-López and Tardós, 2012). These approaches are 
used frequently in the context of loop closing18, where the association problem has more 
relaxed real-time constraints. Several examples of the approaches taken to the association 
problem when dealing with loop closing can be found in (Williams et al., 2009). 

18 Also known as the place recognition problem. 



Chapter	4	

Data Association & Validation 
for Monocular SLAM 

“Relativity”, by M.C. Escher (1953), one of his works, famously inspired by Mathematics. Physically 
impossible perspectives and gravitational pulls combine. 

4. Data	Association	&	Validation	for	Monocular	SLAM

4.1 Introduction	

The general solutions to the data association (DA) problem are based in two different 
approaches, the Bayesian and the non-Bayesian methods. Under the Bayesian approach, 
full distributions (or representative enough approximations) in the DA space are computed 
from prior and posterior beliefs; on the other side, the non-Bayesian approaches rely on 
computing maximum likehood estimates from different sets of DA solutions. This 
difference means Bayesian DA generally delays “solving an association” until enough 
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confidence on the beliefs is achieved by producing complex models to represent the 
different distributions at each step, and frequently multiple DA hypotheses. 

The  main representatives of  Bayesian DA, the multihypothesis  tracking approaches, are 
closely related to object tracking problems in cluttered environments (Bar-Shalom, 1987). 
When association ambiguities arise new data association tracks are produced, representing 
different hypotheses, and maintained until the ambiguities are solved. This generally means 
pruning the hypotheses with the lowest likehoods, and fusing when possible those that 
present better odds. These approaches are computationally expensive both  in  terms of  
memory space and time to process and update all the hypothesis, thus the pruning and 
reconditioning are critical processes. This is especially true in the SLAM context, where 
each new hypothesis can represent an additional map estimation. These characteristics 
make the loop closing problem (Rizzini and Caselli, 2011) and the optimizations (Cummins 
and Newman, 2008) achieved very significant. 

On the other side, non-Bayesian techniques tend to take a best effort approach (generally 
under the form of a greedy algorithm) to synthesize the knowledge and beliefs available at 
each step to produce a single DA solution with respect to the set of observations using a 
likehood function (i.e. after each data association step, each single landmark is associated to 
a single observation). 

Whether they are  of Bayesian  nature or not, many of the DA approaches rely on the 
expectations on known landmarks to prune out those observations that pose a risk in terms 
of producing distant false positives. In order to achieve this, the measurements of the 
landmarks found in the map are predicted, and these predicted observations are  used  to  
define an area in the sensor space where the actual new observations from the sensor are 
expected. This area is called a validation gate (Bar-Shalom and Tse, 1975), and it is 
commonly based on the notion of the Mahalanobis distance (concretely the squared 
Mahalanobis distance, SMD), although there are other approaches (Blanco et al., 2012). 

4.2 Mahalanobis	distance	gating	

The Mahalanobis distance describes the distance between a given point and a distribution, 
in  the DA case between an  observation  x and the measurement process probability p(z). 
Thus, for a given measurement process where the measurement likehood model in equation 
(4.1) describes the pdf of the observations with predicted measurement ẑ(k) and covariance 
Ŝ (k) 

         ˆˆ;p z k x k z k S k  (4.1)

the Mahalanobis distance between a measurement x produced by the sensor and the 
predicted expectation would be described by the expression: 

   1ˆˆ ˆd x z S x z   . (4.2) 
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Conceptually, the Mahalanobis distance can be interpreted as measuring how far off is a 
given point from the centre of the distribution in terms of standard deviations. This can be 
observed on the example in FIGURE 4.1, where a random distribution is sampled, and the 
isoprobability curves describe the probability boundaries, illustrating how the distance is 
scaled according to the covariance. The Mahalanobis distance then presents several features 
which makes it useful when evaluating the goodness of measurements from an statistical 
point of view, namely: it accounts for different variances in each dimension of a 
distribution; it accounts for the covariance between variables; and if the covariance is a 
diagonal matrix, the Mahalanobis distance becomes the normalized Euclidean distance. A 
special case of the latter property is found when covariance matrix is not only diagonal, but 
also the identity matrix (I), then the Mahalanobis distance reduces to the Euclidean 
distance. 

FIGURE 4.1: Plot of random data produced by a given bivariate normal distribution, with 
prediction ellipses overlaid. The ellipses describe isoprobability contours, containing the 
10%, 20% ….90% probabilities. Although geometrically p1 at (0,2) is nearer to the centre 
than p2 at (4,0), if we account for variances p1 is at the 0.9 probability contour while p2 lays 
near the 0.7 contour, thus presenting a much shorter distance in terms of standard 
deviations. 

Using the Mahalanobis distance as basis for a gating procedure requires a set of conditions 
and assumptions to be met (Montiel and Montano, 1998), namely: 

 The known measurements (landmarks) are measured with known covariance.

 The sensors produce measurement of Gaussian nature (i.e. white noise).

 Any other source of noise or uncertainty in the system can be described through
Gaussian pdfs.

 The function to transform from landmark or measurement representation to sensor
space is known and computable, thus allowing prediction of the appearance of
measurements.

The general probabilistic SLAM framework satisfies all those conditions. Within the 
context of visual SLAM, the Gaussian character of the sensors and mapping reversibility of 
the measurement model are also generally assumed, although they are only naturally 
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satisfied in part: sensors rarely present an error function that truly behaves as white noise 
(although they tend to be similar enough), and the mapping gap between sensor space and 
representation space can be solved even if the measurement model function is not fully 
invertible. 

Then, a validation gate G can be defined, as seen in equation (4.3). In this area it is 
guaranteed that the Mahalanobis distance between a measurement and its expectation is 
bounded by the threshold γ : 
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(4.3)

The threshold γ is generally computed as the inverse χ2 cumulative distribution at a 
significance level α, with k degrees of freedom. Note that this formulation means that G(k, 
γ) describes an hyper-ellipsoid where measurements are expected to appear with a known 
probability. Thus, the gate is essentially an iso-probability contour produced by intersecting 
the Gaussian pdf of the measurement with an hyperplane. This means that interpreting the 
Mahalanobis distance as a sum of squared standard normal random variables, G acts as a 
gate which excludes 100(1- α)% of the true measurements according to the pdf. The value 
of α is typically of 0.95 or 0.99, which are approximately equivalent to 2σ and 3σ 
respectively18. 

The impact of the properties of the Mahalanobis distance, and its relation with the different 
concepts of distance depending on the dimensionality and uncertainty management is 
illustrated in FIGURE 4.2. The same points present hugely different measurements 
depending on what distance is measured and how estimated errors and uncertainties are 
treated. The first plot directly measures 2D Euclidean distance, which results pretty 
intuitive in human terms. The second plot considers only uncertainties in term of 
position/measurement, achieved by estimating the Mahalanobis distance using a diagonal 
Covariance Matrix, ignoring the rest of the terms, and assuming that the error probability is 
homogenous in all the directions. Some isoprobability contours show how the pure 
uncertainty (without considering prior knowledge in described correlations) propagates 
probability equally in all directions. The third plot describes the actual effects of using 
Mahalanobis distance: the correlations describe different errors and scaling of the 
uncertainty along dimensions due previous movements/actions of the system. 

18 2σ and 3σ have values of 95.45% and 99.73% respectively. 
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FIGURE 4.2: Examples of 2D pairwise data association based on different distance measurements. 
Left: distance in terms of actual position (Euclidean distance). Centre: distance accounts 
positions and uncertainty (Mahalanobis distance computed only with the diagonal of 
Covariance Matrix). Right: positions, uncertainties and correlations are accounted (full 
Covariance Matrix to compute Mahalanobis distance). 

4.2.1 Nearest	neighbour	based	matching	

The simplest algorithm to perform gate-based data association was the Individual 
Compatibility Nearest Neighbor filter (ICNN, or simply nearest neighbour, NN) (Neira and 
Tardós, 2001), which works as a greedy algorithm: for each predicted landmark, it 
evaluates measurements in the sensor space, computes the Mahalanobis distance to each 
measurement, and accepts the one with the minimal distance. This approach is largely 
based on the simple NN algorithm, a well-known and studied technique in tracking problem 
(Bar-Shalom, 1987). The notion of individual compatibility reflects two important aspects 
about the algorithm: the association is performed individually, and no matter if a given 
measurement is the nearest one to the prediction, if it does not satisfy validation gate G it is 
rejected, thus considering the landmark to have no measurement. 

This algorithm presents, given a set of m measurements for n landmarks in a map, a linear 
cost O(mn) with respect to the size of the map in terms of compatibility tests with the 
Mahalanobis distance. The computation of the Mahalanobis distance requires the inversion 
of the covariance matrix Ŝ, which can become a burden in some characterizations. Still, the 
greatest limitation of this method comes from the individual aspect of the algorithm: pairs 
of data association individually compatible might not be jointly compatible. Moreover, as a 
greedy algorithm, it is entirely possible that an observed measurement xn, whose minimal 
Mahalanobis distance would match it to a predicted observation zn, is associated with a 
different predicted landmark zi (where i < n) given that a better measurement xi is not found 
for zi. Besides, when treating measurements individually, the correlations between 
measurements are ignored, as those present in the map (Castellanos et al., 1999) and those 
introduced in the predicted observations due the robot/sensor pose uncertainty, as discussed 
in Section 2.3.3. These weaknesses limit the suitability of the approach to setups where two 
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conditions can be guaranteed: the pose uncertainty is smaller than the distance between 
features (to avoid mismatches); and the spuriousness of the sensor is low enough so that the 
probabilities of fake measurement appearing in the gating area is low. 

To overcome the described weaknesses, several derived techniques were developed. The 
sequential compatibility nearest neighbour (SCNN) (Neira and Tardós, 2001), introduced 
the notion of joint compatibility, where the gating is performed considering not individual 
pairings, but a set of them. The direction of the association is reversed, i.e., for each of the 
new measurements found, the nearest predicted landmark which complies the validation 
gate is matched. Then, after each new pairing is added, the state and covariance are 
updated, so new pairs are tested accounting for the previous pairings. This process makes 
the SCNN an O(mn) + O(mn2) algorithm: with mn tests to evaluate the Mahalanobis 
distances, and m updates of the state, which is quadratic (n2) with respect to the size of the 
map. 

While the SCNN guaranteed that the validation gate is accepted for all the measurements, it 
is still far from perfect. As a greedy algorithm, a pairing deemed compatible with those 
previously associated is never revaluated. This means that in early stages, it is possible to 
accept an spurious measurement or incorrect association, to update the state considering it 
correct, and to affect the rest of the associations. Moreover, as the uncertainty represented 
in Ŝ decreases, but not the error (given an incorrect association), the risk of producing map 
inconsistencies grows. Several later approaches in the NN family of algorithms overcame 
some of the weaknesses inherent to the original NN approaches. 

4.3 Active	Search	and	Cross‐Correlation	operators	for	data	association	

In the context of visual SLAM, detection of new points of interest over a whole image is a 
computationally demanding operation, as discussed during Part I. As such, any way to 
reduce the area to search produces enormous gains in terms of performance and efficiency. 
Proposed as a way to solve stereo correspondence in (Davison and Murray, 2002), and 
applied to monocular SLAM in (Davison, 2003), the active search technique solves the 
measurement and matching challenges through direct appearance correlation. In a similar 
fashion to the concept of validation gate, an area around a given landmark prediction is 
defined, but in sensor space. And instead of testing Mahalanobis distances (or any other 
likehood function), a matching measurement to the landmark is brute-forced through a 
correlation operator used as a likehood function. This is possible as full information about 
the map and the uncertainty on the present elements is propagated and updated at each 
iteration, thus the search area can be computed with an assigned probability for the 
matching feature to lie in it. 
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4.3.1 Active	Search	for	Visual	feature	matching	

The area where the correlation operator-based search is performed is defined according to 
the uncertainty on each landmark prediction (see FIGURE 4.3); that is, using the uncertainty 
terms (the diagonal of the covariance matrix P), and scaled according to a number of 
standard deviations that must be covered (i.e. assigning a probability for the landmark to lie 
into the area). Equation (4.4) details how to compute this area under the monocular vision 
assumption for a SLAM process: 

(1,1)

(2,2)

2

2

ix

y i

n SS

S n S

          
(4.4)

where n is the number of standard deviations to explore at each direction, with values 
ranging normally between n=2 and n=3 (~0.95 and ~0.99 respectively). Si is the expression 
of the covariance for the ith feature prediction, computed according to equation (4.5), 
which is just an instanced expression of the standard covariance equation (2.16). 
For this expression, the white noise error described in terms of pixel variance, 
σu

2and σv
2, is assumed to take values of 1 pixel both for u and v directions. 
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FIGURE 4.3: Search area defined by equation (0.4), according to the 2σ or 3σ criteria. Depending 
on the characterization of Sxy, the seach area covers an excess of pixels in the vicinity. This, 

although not optimal, is preferable to spend computation time interpolating an ellipse to guarantee 
the borders of the region instead of matching points. 

The general method is described in ALGORITHM 4.1. This algorithm describes only the part 
of the search procedure, as there are several steps that would depend largely on the exact 
correlation operator used as a likehood function. So, for each landmark in the map m whose 
predicted appearance is within the current image, this search region is computed and the 
patch which was stored when initially observed is retrieved. As the camera pose probably 
has varied since the landmark was first observed the patch is linearly warped considering 
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the scale and rotation19 in order to maximize the outcome of the likehood function. Then, 
for all the pixels in the given search area, the correlation between this warped patch and 
new patch centred on each pixel is found. The best correlation score, which depends on the 
operator used, is considered the candidate. In the case of normalized operators, this value 
can be tested against a given threshold, as variance in illumination will not affect the score. 

function (zi, Si) := ActiveSearch (hi, ׏Hi, Pk+1, img, Ri, dB) 

Input: 
Pk+1 estimation covariance 
hi predicted observations  
 Hi observation Jacobian׏
img image from sequence 
Ri observation process covariance 
dB features patch database 

Output: 
Si innovation covariance matrix 

zi matching observations found 

Si :=׏Hi Pk+1׏Hi
T+ Ri 

for all predicted observations k in hi do 
if hi( k ) is not NULL then 

compute search Regionk with Si 

patchk := retrieve dB(k).patch 
warp(patchk) 
(px,py) := NULL; 
maxCorrelation := 0; 
for all the points ‘i,j’ in Regionk do

tempCorrelation := correlationOp([i,j], img, patchk) 
if tempCorrelation >= maxCorrelation then 

(px,py) := ‘i,j’ 
maxCorrelation := tempCorrelation 

end if 
end for 
if maxCorrelation > correlationThreshold then 

add ‘i,j’ to vector zi as the matched observation to prediction k 
end if 

end if 
end for 
return (zi, Si)

ALGORITHM 4.1: Pseudocode for the general active search strategy implemented, independent from 
the correlation operator ‘correlationOp’ used (except for the test value). 

19 Retrieved from the initial pose of the landmark and the predicted position w.r.t. the sensor. 
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4.3.2 Correlation	operators	used	in	data	association	

As it is described in ALGORITHM 4.1, once the area is defined to cover the possible 
appearance of the matching point for the predicted landmark with a given n probability20, a 
likehood function to choose the best matching pixel is required. Different correlation based 
operators have been proposed over the years. In (Davison and Murray, 2002), where the 
active search was proposed, the sum of squared differences (SSD) (Anandan, 1987) is used, 
a well-known correlation correspondence detector based in cumulative aggregation of a 
cost function over an area around the pixel (see equation (0.8)). The main characteristics 
that made it a suitable choice was better discriminating performance than most of the direct 
cost aggregation operators (SAD, ZSAD, etc…), while having a computational cost well 
bounded below those based on cross-correlation, CC, like NCC and ZNCC. 

Note that the correlation between a given image patch, call it Ip, and a search region within 
an image, Is, is closely related to the signal process and communications theory fields. Most 
of the visual correspondence detectors can be traced signal processing techniques, as 
discussed in (Martin and Crowley, 1995), as they tend to rely on forms of cost aggregation 
that can be described as comparing signals over a discrete space. This discrete space tends 
to be quantized on the pixel notion, but it can be based on more complex spaces, like multi-
resolution/scale pyramids, tensors spaces, filter banks, and many other approaches which 
today are linked with high level feature descriptors (Krig, 2014). In (Scharstein and 
Szeliski, 2002) a survey presents and discusses over 35 different correlation approaches, 
though focused on their features with respect to the stereo correspondence problem. 

With respect to the cross-correlation based matching approaches it is worth remembering 
that the expression for cross-correlation can be derived directly from an inner product of 
two vectors, or from the sum of squared differences of two neighbourhoods. This means 
that the normalization approach taken can have a noticeable impact, e.g.: in  (Martin  and  
Crowley, 1995) it is shown how SSD is equivalent to performing a cross-correlation step 
with a suitable normalization of the pixel sets Ip and Is. 

4.3.2.1 Correlation	operators	for	visual	SLAM	

The most used operators for correlation based matching can be grouped according to which 
criteria they apply. SAD, SSD, and ZSAD (described in equations (4.7), (4.8) and (4.9) 
respectively) are based on distance measurements. SSD leads essentially to a square-
minimization solution to the matching problem w.r.t. distance between the image  
coordinates of the matched points. SAD optimizes the solution by working over the 
differences directly, without square minimization, but this makes it vulnerable to outliers. 
ZSAD introduces the zero-mean modification (used also in ZNCC) which makes the 
method invariant to brightness. 

20 In terms of standard deviations. 
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The most used cross-correlation coefficients, NCC and ZNCC (equations (4.10) and (4.11), 
respectively), use the correlation operator from signal processing to quantify the likeness of 
the patches, discussed in previous section. The advantage of NCC over the classic  cross-
correlation operation lies in the fact that the normalization step introduces invariance to 
contrast variations, as the operation is equivalent of equalizing the histograms of the 
patches being processed through CC. As in the SAD case, introduction of the zero-mean 
variant makes ZNCC also invariant to luminosity variance. 

 Sum of absolute differences (SAD):
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 Sum of squared differences (SSD):

 2
( , ) ( , )

p p

p p

n n

p s
i n j n

SSD I i j I x i y j
 

     (4.8)

 Zero-Mean Sum of absolute differences (ZSAD):
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 Normalized cross-correlation (NCC):
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 Zero-Mean Normalized Cross-correlation (ZNCC):

   

   2 2
2

( , ) ( , , ) · ( , ) ( , , )

( , ) ( , , ) · ( , ) ( , , )

p p p p

p p p p

p p p p

p p p p

n n n n

p p s s
i n j n i n j n

n n n n

p p s s
i n j n i n j n

I i j I i j n I x i y j I x i y j n

ZNCC

I i j I i j n I x i y j I x i y j n

   

   

     



     

   

   
(4.11) 

4.3.2.2 Evaluation	of	correlation	operators	

A set of experiments have been performed to study the performance of the different 
operators. These tests were used as guidelines to determine which of the operators was 
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convenient to use in the active search methodology within the delayed monocular SLAM. 
The experiments consisted in a series of sensibility analyses, to see which operators 
perform better as likehood functions under different circumstances.  

To generate the different circumstantial perturbations, a set of images was treated with 
several filters and noise sources, at multiple levels of intensity or characterization for each 
case. FIGURE 4.4 show some examples of the effects of the perturbations induced into the 
image set. Each resulting disrupted image was processed matching it with the original 
image to evaluate the impact of the perturbations. Notice that these experiments implicitly 
assume that the matching process is perfect, as it is not accounted, and the metrics are 
computed for whole images21. 

FIGURE 4.4: Example of image treated with several disturbances. Top right: original undisturbed 
image. Top centre: white Gaussian additive noise (σ=0.1) introduced. Top left: salt and 
pepper (ratio of pixels affected = 0.2). Bottom left: motion blur (40 pixels, 10º). Bottom 
centre: motion blur (80 pixels, 225º). Bottom right: motion blur (150 pixels, 60º). 

The sensor disruptions studied were noise (modelled as additive zero-mean white noise) 
and capture artifacts (modelled as ‘salt and pepper’ noise). The sensibility to movement 
blur was also tested, using image processing filters to simulate its effects. TABLE 4.1 shows 
the values studied for each disruption. Each disturbance parameter was tested with 7 
different intensity levels, including the standard deviation of the white noise, the amount of 
pixels affected by salt and pepper noise, and the distances in the motion blur. For this last 
disturbance an additional parameter, angle, was needed, which was set at three levels in 15º 
increments. 

21 Which is irrelevant for normalized operators (NCC & ZNCC), but scales the values of the other tests. 
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TABLE 4.1: VALUES USED TO CHARACTERIZE THE DIFFERENT DISTURBANCES USED IN THE

SENSIBILITY ANALYSIS

Disturbance Parameter Magnitude 

White Noise std. dev.= σ σ = 0.1i for i= [1..7] 

Salt and Pepper Noise pixel ratio = p p = 0.05i for i= [1..7] 

Motion pixel distance=d d = 10i for i= [1..7] 

angle=α α = 15j for j= [1..3] 

FIGURE 4.5: Left column: Sensibility analisis for SAD, SSD and ZSAD (lower is better). Right 
column: Normalized operators: NCC and ZNCC (higher is better). Top row: Average 
results of the operators for zero-mean Gaussian noise with σ from 0.1 to 0.7. Bottom row: 
Average results of the operators for salt and pepper noise, with p = [0.05 .. 0.35]. 
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The application of the described disturbances over the image set produced many 
experimental data. Some selected results of these experiments are shown in FIGURE 4.5 and 
FIGURE 4.6, describing the cases for the sensor/capture noise (white noise, salt and pepper) 
and a selection of the motion blur disturbance results, respectively. 

FIGURE 4.6: Results for the motion blur disturbance. Left column: Sensibility analysis for SAD, 
SSD and ZSAD (lower is better). Right column: Normalized operators: NCC and ZNCC 
(higher is better). Top row: Average results of motion blur with α = 30º and d = 10i for i= 
[1..7]. Bottom row: Average results of motion blur with α = 45º and d = 10i for i= [1..7]. 

In FIGURE 4.5 top left it can be observed that for average cases the difference between using 
or not the square minimization is minimal. This was to be expected, accounting for the 
assumption of perfect matching and the absence of fake positives and outliers. When 
comparing with FIGURE 4.5 top right, for the normalized operators, it is worth noting that 
the ZNCC presents approximately the same sensibility to white noise as non-normalized 
operators, i.e., the difference in the score between the best and worst case is about 50%. At 
the same time NCC shows much more robust results against both disturbances. 
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In FIGURE 4.6 the difference between the normalized cross-correlated operators and those 
based on aggregations is even more evident. The left column reveals a much greater degree 
of sensibility, even with the square-based minimization SSD. On the other side, ZNCC 
presents much less sensibility against motion blur than against capture artifacts (in FIGURE

4.5), with a variation of between 10% to 15% between best and worst cases. The NCC 
shows again the strongest results, resulting practically invariant to the disruption. 

The results obtained show a clear divide in sensibility: the cross-correlation methods are 
notably more resilient against noisy types of disturbances, and result practically invariant 
with respect to the motion blur. Although it is well-known that the aggregation based 
methods present better computational costs, as (Scharstein and Szeliski, 2002) already 
discussed, the difference is not of a relevant order of magnitude when considered as part of 
a visual SLAM process. Moreover, there are plenty of optimization techniques to avoid 
redundant computations, like those discussed in (Luo and Konofagou, 2010). 
It is worth noting that in a given visual SLAM sequence the lighting conditions will vary, 
especially in an outdoor scenario. As such, once determined that in spite of the cost 
differences, the cross-correlation based operators offer much better results, it becomes 
apparent that the most suitable operator would be the ZNCC. This choice makes the data 
association process more resilient to illumination changes, as ZNCC adds lighting intensity 
invariance to the contrast invariance presented by the NCC. The resilience to the motion 
blur is also a desirable feature, as most of the robotics applications outside 
automation/health/other highly funded industries rely on CMOS-based camera sensors, 
with the weaknesses described before (section 2.2.2.1). 

4.4 Data	Association	Batch	Validation	

The active search matching methodology just described addresses the problem of data 
association by allowing to produce a matching observation for each predicted landmark in 
the map. This yields a set of pairs, a data association hypothesis, composed each one of a 
predicted landmark and its matching feature pixel point in image. As it was discussed 
earlier, finding a correct association pairs list is usually a critical problem in any EKF-
based SLAM system, and the active search technique with ZNCC produces accurate 
pairings within an acceptable computational time. Still, as there are many factors that may 
introduce errors, the data association pairings may be association errors even without being 
incorrectly matched: a moving object can be correctly matched, but produces a dynamic 
landamark which can disrupt the map, as this spurious landmark does not comply the  static 
assumption (see sections 2.3 and 3.4.3). Other errors may arise when dealing with 
ambiguous textures and features on the mapped environment. Thus, even after solving data 
association through a technique analogous to a validation gate, many monocular SLAM 
approaches present an additional validation gate step to reject those data association pairs 
found that can be considered erroneous. This is especially true for EKF-based approaches 
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(such as our base DI-D MonoSLAM), as they do not present any other mechanism to 
marginalise the impact of an spurious or incorrect landmark on the map. 

4.4.1 Joint	Compatibility	Branch	and	Bound	

In the context of classical approaches to inverse-depth (I-D) feature parametrization 
monocular SLAM, the undelayed I-D technique Joint Compatibility Brach and Bound 
(JCBB), as seen in (Clemente et al., 2007), has probably been the most influential batch 
validation methodology. For a decade the JCBB has been considered the golden rule of data 
association batch validation (Civera et al., 2009), widely reported and studied (Bailey and 
Durrant-Whyte, 2006). This test is based on the notion of Joint Compatibility (Neira and 
Tardós, 2001) introduced with the SCNN, and its evaluation for different data association 
hypotheses. The data association hypotheses, briefly mention earlier, are subsets of the set 
of pairs produced by the measurement matching technique, in this case, the ZNCC-active 
search combination. Then, this validation test just evaluates the joint compatibility using 
the Mahalanobis distance-based validation gate, determining if all the pairs on a given 
hypothesis or set are ‘jointly compatible’, thus consistent and valid, or inconsistent as a 
whole. 

The validation gate, once instanced for the monocular SLAM problem, takes the form  

1 2
,

2 T
H H H H dofD S  g g  , (4.12) 

where the squared Mahalanobis distance DH
2 (SMD) is approximated using the values of 

the Kalman innovation gH or residuals (see equation (3.53) at section 3.4.5), and the 
covariance SH of the innovation (per equation (3.56)), for the given association hypothesis 
H. Note that for each hypothesis to evaluate, the covariance matrix has to be inverted, and
the all data structures need to be update, as they may vary in size according to the number
of pairings being evaluated in H. The Chi-square distribution will have a range equal to
twice the number of measurements to test, as each observation is measured in terms of u,v
coordinates in the image; with the same commented values of confidence α of 0.95 or 0.99.

Although this test appears to be computationally expensive, note that gH and SH will be 
already available as they are updated through the EKF methodology in the observation 
matching and update steps. Besides, as not all the data association pairs are taken into 
account in each hypothesis H, gH and SH will not be taken completely to obtain the 
Mahalanobis distance, only those rows related to the considered pair, without necessity of 
fully computing gH and SH again. 
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FIGURE 4.7: Batch validation with joint compatibility illustrated. In this simplified example, the 
pairing between prediction h3 and observation obs3 is removed as the ‘gain’ is not 
compatible with the rest of the pairings. 

As the test to determine if a given data association set is joint compatible or not is available, 
an algorithm which enables exploration of the hypothesis space is needed. This is solved by 
the JCBB, exploiting the fact that the data association hypotheses to be validated are 
essentially a set of ordered decisions. As such, they can be represented as an array of 
Boolean values, as shown in FIGURE 4.7, where each found pair is accepted (true or “1”) or 
rejected (false or “0”). If an initial optimistic hypothesis which tries to accept all the data 
pairings (where the full vector is true) fails the compatibility test, then a search for an 
smaller hypothesis is performed. Thus the JCBB algorithm builds a binary recursive 
exploration tree to make sure that it finds the best remaining hypothesis, defined as: 
achieving the maximal number of compatible data associations, and best compatibility 
between the hypotheses with the same order, i.e., presenting the lowest SMD. This best 
compatibility criterion also means that the algorithm has a conservative behaviour, as the 
SMD is proportional to the innovation, so the JCBB always takes the more complete but 
less divergent hypotheses. 



Data Association & Validation for Moncular SLAM 4-17

ALGORITHM 4.2: Pseudocode JCBB algorithm, from (Clemente et al., 2007) 

The pseudo-code implementation in ALGORITHM 4.2, from (Clemente et al., 2007), shows 

how the JCBB makes a branch and bound search on a binary tree to increasingly build the 

Boolean vector representing the hypothesis. The results of this process are order-

independent: the algorithm will try all the hypotheses, even after a jointly compatible one 

has been found, in order to guarantee the optimality of the given result (see the Star node 

annotation on ALGORITHM 4.2). Because of this uninformed, unordered exhaustive search, 

the algorithm has a strong tendency to exponential cost, with no mechanism to control the 

growth or keeping it low beyond the branching procedure. Note that to enable this 

branching the JCBB requires to estimate the SMD at each node of the exploration tree to 

test the current hypothesis H. This penalization at each node is partially mitigated by 

exploiting the linearizability of the costs of successive incremental matrix inversions, as 

described in (Harville, 1998), and using the fact that the Mahalanobis distance can be 
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considered as sum of squared standard normally distributed random variables to cut as early 

as possible bad branches of the tree. 

4.5 Highest	Order	Hypothesis	Compatibility	Test	

This section describes the proposed algorithm to deal with the data association batch 
validation problem using the SMD-based joint compatibility test. 

4.5.1.1 JCBB	computational	costs	under	DI‐D	Monocular	SLAM	

The JCBB has shown good results within the context of Undelayed I-D initialization 
monocular SLAM techniques (Davison et al., 2007)(Williams et al., 2007)(Grasa et al., 
2011), and other non-visual SLAM approaches (Fenwick et al., 2002), but it proved to be 
rather inefficient within the context of the Delayed I-D SLAM approach, first presented in 
(Munguia and Grau, 2007a) and(Munguia and Grau, 2007b). Initial tests on the MATLAB 
based prototypes of DI-D became unstable, with a computational time increased by a factor 
well over an order of magnitude, and viability issues due excessive memory consumption 
crashing the Java Virtual Machine. Profiling of the partial results obtained pointed clearly 
to the issue: the binary exploration of the data association hypothesis space produced a 
combinatorial explosion. It was also noticed that the JCBB achieved slightly better 
performances with greater number of incorrect data association pairings (noticed on worst 
cases experiments where the EKF fails to converge and the mapping a positioning becomes 
useless). Introducing the optimization of the sequential inversion of growing matrices 
(Harville, 1998) proved helpful in order to avoid memory management crashes, and it 
produced a slight improvement in performance. But the introduction of JCBB still resulted 
in an unfeasible performance. 

With the JCBB proven a non-viable solution in the DI-D SLAM framework, it is worth 
noting that there are some key differences between the undelayed I-D (Davison et al., 2007) 
and the delayed I-D SLAM techniques (Munguia and Grau, 2007): while the undelayed 
approach tries to initialize a good number of features as landmarks as soon as possible with 
an heuristic value for depth representation, the delayed approach generally considers less 
features, but present greater robustness and an initial estimation of the depth obtained 
through stochastic triangulation (as detailed in section 3.4.6).  This robustness is provided 
by a series of tests and conditions to be passed by candidate features to be considered 
landmarks, hence the initialization delay, and the requirement to be tracked correctly within 
a minimal number of frames achieving a parallax value greater than a minimum αmin to 
guarantee the depth estimation accuracy. This makes the delayed approach more expensive 
in terms of computational cost per feature, but as it holds more accurate information it 
requires less mapped features initialized to work, thus achieving better performance as 
odometry estimator (Munguia and Grau, 2009)(Munguía and Grau, 2012). Another 
consequence of the greater accuracy when initializing features in DI-D is that rate of 
incompatible data associations which present more than one incompatible pairing is very 
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low, as DI-D generally produces more stable features. This means that the JCBB will prune 
out a relatively low number of branches, so the binary search tree will be fully built and 
expanded frequently. 

4.5.1.2 Impact	of	the	validation	of	data	association	results	

It has been discussed earlier how data association validation is necessary for the undelayed 
approaches to reject hastily initialized landmarks which can prove themselves disruptive for 
the trajectory estimation and the map build process. It has also been largely discussed how 
the DI-D initialization generally produces stronger features, and the rejection rate is 
generally lower when compared to undelayed approaches. Considering the discussion in 
previous section on the cost penalization incurred by JCBB (or similar batch validation 
techniques), is it really worth? Which could be the actual impact? 

FIGURE 4.8 illustrates some of the spurious features that were deemed incompatible in a 
sample run of the DI-D Monocular SLAM with JCBB (using the same environment as 
described in section 4.6.1.1). The star markers appear around the point or features that were 
initialized according to the DI-D methodology, and thus were proved robust enough to be 
tracked (at least temporarily) and achieved enough parallax (though it is evident that in 
many cases they are not even actual features). It is worth noting that the indoor scenery, 
being completely artificial, presents a favourable rate of corners and easily detected points 
of interest, but at the same time presents repeated textures and patterns, structured 
occlusions, and other inconvenient characteristics. 

The frame in FIGURE 4.8 top left shows an example of a composite landmark (emerged at 
the partial occlusion between structure solids) which has been fully initialized, thus passed 
through the DI-D, but the batch validation of DA has deemed it incompatible and is to be 
removed. Note how the cords produce several early candidates of similar characteristics, 
and though most of them will not be initialized, they still pose a risk. 

In FIGURE 4.8. top right the landmark rejected was deemed incompatible due the repeated 
pattern with the same design found around, in the cardboard file/box. Note in the same 
image how there are multiple early candidates for DI-D (marked with a blue cross), which 
clearly are not real points (in a 3-dimensional sense), but the result of partial occlusions 
between structured solids, as found at the border of the right desk. This kind of visual 
features are generally rejected by the DI-D methodology, as they are not robust enough to 
be tracked during sufficient frames, but sometimes they are initialized posing a risk to the 
filter convergence. 

FIGURE 4.8 bottom left illustrates the risks associated to reflective and curved surfaces, and 
other commonly found elements with repetitive structure. Note how the landmarks were 
fully initialized over the desktop PC front, on a curved reflective surface. The left one could 
be especially disruptive, as there is also a repeated texture, so the data pairing can find a 
match along the whole surface wherever the reflection slides to. These cases help to remark 
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the relevance of a data association validation, even in the context of the less spurious DI-D 
initialization, in spite of the JCBB being computationally unfeasible. 

FIGURE 4.8: Top left: Incompatibility found at composite landmark. Top right: incompatibility due 
repeated design. Bottom left: incompatibilities produced by reflections on materials and 
curved surfaces. 

4.5.2 An	alternative	to	JCBB:	the	HOHCT	algorithm	

So accounting for DI-D initialization characteristics, a new batch validation technique was 
proposed, the Highest Order Hypothesis Compatibility Test (HOHCT). This new technique 
uses the same joint compatibility notion, but the search algorithm is built to exploit said DI-
D characteristics to optimize the performance. Two criteria were used to build the 
algorithm, based on the JCBB prototype test results and the differential features between 
the undelayed and the delayed initialization of landmarks: 

 As the number of incompatible landmarks in DI-D will be generally low,
hypotheses with low number of rejections tend to pass the compatibility test; also
the objective is to maximize the number of accepted pairs, the algorithm should deal
with the biggest22 hypotheses first.

 Even with the matrix inversions optimization, performing the full compatibility test
at each node of an exploration tree is too expensive, so, the number of SMD tests to
be performed should be minimized.

Note that, once a hypothesis with a given number of accepted pairs is produced, any effort 
dealing with hypotheses with a lower number of accepted pairings is wasteful, and should 

22 Meaning that they contain the greater number of accepted data pairing possible. 

 Possible candidates tracked for DI-D 
 Candidate landmark for ID-D 
 Landmark observation 
 Feature point predicted 

 Removed landmarks 
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be avoided. JCBB is able to detect these cases, and stops considering them, but only after 
the compatibility test of the partial hypotheses. This can lead to explore undesirable parts of 
the tree, where previously found incompatible pairing are to be tested, as per JCBB star 
node exploration. Then, considering these criteria, the best option is to perform an ordered 
search, guaranteeing it deals with the biggest hypotheses earlier, so when a compatible 
hypothesis is found, only those with the same number of accepted pairs need to be tested.  

The new search algorithm is implemented through a hybrid recursive and iterative 
algorithm, which considers said criteria to exploit the DI-D features to reduce the 
computational effort required during the data association step. Once the search starts, all the 
hypotheses containing an exact number of rejected pairing (initially one), are tested; and if 
none is able to pass the compatibility test, the number of rejected pairings to be searched 
for is increased. The pseudocode for this search procedure can be seen in ALGORITHM 4.3 
and ALGORITHM 4.4. 

Function (hi, zi, Si,׏Hi) := HOHCT-test (hi, zi, Si,׏Hi) 

Input: 
zi matching observations found
hi features observation prediction  
Si innovation covariance matrix
 Hi observation Jacobian׏
Output: 
zi matching observations with incompatible ones excluded
hi features observation prediction excluding those without a match 
Si innovation covariance matrix with compatible observations only 

 Hi Jacobian considering only compatible observations׏

m: = Number of Matches in zi 
hyp := [1] m   // Grab all matches 
if  ~JointCompatible( hyp, hi,zi, ׏Hi,Si) then 

i := 1 
while i< m do // Hypothesis reducer loop 

(hyp,d2) := HOHCT-Rec(m,0,[],i,hi, zi,׏Hi,Si) 
if JointCompatible(hyp,hi, zi,׏Hi,Si) then 

i := m 
else 

i := i + 1 
end if 

end while 
remove incompatible pairings from hi and zi 

update jacobian ׏Hi and matrix Si 
end if 
return (hi, zi, Si,׏Hi)

ALGORITHM 4.3: Initial HOHCT-test function, SMD-testing the optimistic hypothesis, and iterating 
the creation of n-ary search trees over the number of pairings to be rejected. 
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Function (hypb, d2b) := HOHCT-Rec (m, mhyp, hyps, rm, hi, zi,׏Hi,Si) 

Input: 
m size of full hypothesis 
mhyp size previously formed hypothesis 
hyps hypothesis built through recursion 
rm number of incompatible pairings to find  
zi matching observations found
hi features observation prediction  
Si innovation covariance matrix
 Hi observation Jacobian׏
Output: 
hypb best hypothesis found from hyps 
d2b best Mahalanobis distance 

if (rm = 0) or (m = mhyp) then 
hypb:= [mhyp [1]m-mhyp] 
d2b := Mahalanobis (hi, zi,׏Hi , Si) 

else 
hypb:= [hyps[1]m-mhyp] 
d2b := Mahalanobis(hi, zi, ׏Hi,  Si) 
for r:= (mhyp+1) : (m-rm+1) do 

(h,d):=HOHCT-Rec (m, mhyp+1, [hyps0],rm-1,hi,zi, ׏Hi, Si) 
if (d < d2b) then 

d2b := d ;  hypb := h 
end if 
hyps:= [hyps1] ;  mhyp:= mhyp +1 

end for 
end if 
return (hypb, d2b) 

ALGORITHM 4.4: Search HOHCT-Rec function, which SMD tests all the hypotheses containing the 
number of ‘rm’ rejected data association pairings. 

ALGORITHM 4.3 checks the optimistic hypothesis taking all the pairs ‘m’, and failing it, it 
starts an iterative process to find the lowest number of data pairs to be rejected so that the 
joint compatibility test is passed. At each iteration this process will perform the test 
searching for all the hypotheses which have an exact number of pairs, considering as 
rejected as much association pairs as the number of times the test has failed, noted as ‘i’. 
So, after the initial fail, with ‘i=1’, and ‘m’ data pairs, the hypotheses tested would include 
only those containing exactly m-1 accepted data pairs. As the number of test fails ‘i’ 
increase, the recursive search test will be repeated, searching only hypotheses which 
include ‘m-i’ accepted data pairs, thus avoiding repetition of previously tested hypotheses. 
Assuming that the first criterion is correct, the number of test fails ‘i’, i.e. the number of 
data parings to reject, should be low, avoiding having to perform too many calls to the 
search function. 
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The algorithm to perform each of the search calls mixes both recursive and iterative steps to 
build an n-ary tree (ALGORITHM 4.4). This n-ary tree essentially works as a binary tree but 
allows skipping exploration of nodes (see FIGURE 4.9). To achieve this, the iterative steps 
add accepted pairs into the hypothesis (noted as ‘1’), and the recursive steps introduce 
rejected pairs (noted as ‘0’). Thus, in the end, the search is performed on a subtree of the 
hypothetical binary search tree, and the compatibility test (so the SMD) is only computed 
on the leaf nodes. By comparison, JCBB evaluates each node of the tree to know if it 
should cut the branch, so the SMD estimation is computed an exponentially growing 
number of times. Note also how if the assumptions done at the first criterion are true (the 
sparse error conditions found in the DI-D initialization SLAM), the whole ordered search 
(after the optimistic hypothesis fails) will usually have linear cost with the number of 
landmarks matched (meaning that ‘i=1’), with exceptional cases achieving up to cubic cost 
over some frames (reaching ‘i=3’). Although cubic, this cost over the whole number of 
data pairings is very far from the exponential cost (with and average m between 15 and 25 
depending on the algorithm settings) that a recursion search over a binary tree could 
suppose, as JCBB. 
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FIGURE 4.9: Example with m = 4 with increasing number of pairs to be rejected generating 
different pseudo-binary trees. 

4.6 Evaluation	of	the	HOHCT	

In order to evaluate the validity of the proposed algorithm, and study its usefulness and 
potential applicability, this section will present the results obtained with the HOHCT and 
analyse them and their impact both from theoretical and empirical point of view. To 
perform this study, three different sets of multiple sequences were captured, two of them 
indoor, with and without an exact ground truth, and one outdoor sequence set with help 
from a robotic device. These sets were used to experiment with different implementations 
in order to evaluate the system produced by combining the DI-D Monocular SLAM 
technique with the HOHCT algorithm; and compare it against the JCBB, the standard in 
batch validation of data association. 

The performance achieved during experiments is described in terms of the two wide 
evaluation areas: quality of the results, understood as the fitness of the estimations 
produced for the trajectories and maps; and performance in terms of computational effort 
and resources required, be it time, computational complex operations with respect to the 
size of the data, or other metrics. 

4.6.1 Mapping	and	trajectory	estimation	

A Logitech C920 HD camera was used in experiments to record the sequences. This low 
cost camera has an USB interface and wide angle lens. It is capable of acquiring HD colour 
video. The video sequences and images, including those required for the calibration 
process, were captured with full resolution and colour. This allowed, through image 
processing, to test the system at different resolutions. However, in experiments, grey level 
video sequences with a resolution of 480 × 270 pixels, captured at 15 frames per second, 
were used. It is important to note that all the sequences of video were captured at a 
relatively low frame rate of 15 frames per second (fps). While this frame rate would 
increase the difficulty of the SLAM process itself, and make it more prone to error, it would 
also give a bigger window of time to process each frame in an implementation aiming for 
real-time. So, although satisfactory results would be easier to achieve assuming 30 fps 
streams of image (in literature, most of the experiments are reported to be captured at least 
at 25 frames per second, using high cost IEEE1394 cameras), it has been considered a 
better option to evaluate SLAM results with at 15 fps, to eventually allow easier 
implementation into systems with compromised computational budgets, such as 
autonomous robots, and embedded or mobile systems. 

In experiments, the following defaults values for the models parameters have been used: 
variances for linear and angular velocity respectively σV=4(m/s)2, σΩ=4(º/s)2, noise 
variances σu= σv= 1 pixel, minimum base-line bmin=15cm and minimum parallax angle 
αmin=5º. The default confidence level for the χ2 distribution was set to τ = 0.95. 
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4.6.1.1 Indoor	Sequences	and	Experiments	

All the indoor video sequences were captured inside the Vision and Intelligent Systems 
Research Group laboratory at UPC. For the initial sequence test, a 4m rail guide was 
assembled in order to provide an approximate ground truth reference, as seen in FIGURE 
4.10. Every video sequence on this scenario was captured by sliding the camera (manually) 
while looking sideways, at different swiftness, over the rail guide. The duration of the 
different sequences for this scenario ran from 35 seconds to 1 minute (525 to 900 frames) 
for different runs on the same trajectory, with the camera moved manually. Though 
deploying the rail to emulate having a ground truth looks like an ardours task, it was 
initially considered a valuable effort as it could help evaluate the accuracy of the on-line 
scale estimation. This differentiates DI-D Monocular SLAM from most of the works on 
monocular SLAM (Davison et al., 2007) (Civera et al., 2010), even when compared with 
newer works which produce scaleless maps (Engel et al., 2014) (Mur-Artal et al., 2015). 

FIGURE 4.10: First indoor experimental scenario, with ground truth reference rail. 

FIGURE 4.11 and FIGURE 4.12 illustrate the estimated map and trajectory for a selection of 
experiments of the first indoor scenario set. The left and right columns show the results for 
each sequence, experiments a through d, with and without HOHCT validation, 
respectively. Note that the application of JCBB or any other batch gating methodology 
based on the joint compatibility notion tested through the Mahalanobis distance estimation 
would produce similar results, albeit at a different computational cost, as long as the 
procedure guarantees to find the optimal hypothesis. As it could be expected, the 
estimations obtained with the HOHCT validation were consistently better. Case a shows a 
sequence with average results obtained without any data association validation. The final 
position error for the sequence is well over a meter, with a noticeable drift in the odometry 
estimation. Still the orientation errors are small when compared to the worst cases. On the 
other side, introducing data association validation reduces drastically the trajectory and map 
scale error, with the final position accruing an error much lower that the non-validated case 
(around a quarter of the error, 0.28%). 
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FIGURE 4.11: Map and trajectory estimation results obtained from two sequences of video. Top 
row: case a, 845 frames. Bottom row: case b, 675 frames. Left column displays results 
using HOHCT, while right column displays results for the same sequences without using 
HOHCT batch validation. 

Sequence b shows how the drift induced by the orientation error disrupts the scale 
propagation through the Abbe error (Abbe, 1890). Though at the end of the first segment 
the trajectory estimation looks displaced but of correct magnitude, as if having travelled 
with wrong orientation, the successive segment introduced growing scale errors. This can 
be attributed to the orientation presenting enough error to disrupt the depth estimation (thus 
the linear component of the odometry), but still producing clearly defined straight 
segments, although incorrectly aligned. 

The third sequence (case c in FIGURE 4.12) shows an example of one of the worst possible 
cases (before filter convergence loss, which invalidates the whole procedure), where the 
scale becomes irrelevant as the orientation error grows to the point of totally disruption the 
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map. Note the gap in the right region of the estimated map without validation, and its 
distinctive lack of the mapped corner observed on the validated experiment, which presents 
a good approximation to the scale of the map, but with plenty of orientation drift. Although 
the batch validated map estimation would not be useful for accurate autonomous 
navigation, the improvement over the non-validated approach showcases the impact of the 
HOHCT. 

FIGURE 4.12: Map and trajectory estimation results obtained from two sequences of video. Top 
row: case c, 615 frames. Bottom row: case d, 750 frames. Left column displays results 
using HOHCT, while right column displays results for the same sequences without using 
HOHCT batch validation. 

Sequence d (shown in FIGURE 4.12) helps emphasize the effects of the validation in scale 
estimation, showing what it could be described as an average case for the raw odometry and 
map estimation. In the two experiments, with and without HOHCT validation, the 
orientation error looks similar, with both trajectories showing the same turning 
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underestimation pattern. On the other side, the magnitude of the linear movements is much 
more accurate in the validated case, especially on the third segments. 

FIGURE 4.13: Environment used to capture sequences with approximate ground truth for trajectory, 
second indoor experimental set.  

The results of the first set of indoor experiments showed that the proposed algorithm had a 
disproportionate impact on the scaling and linear aspects of the trajectory and map 
estimation, with a more limited effect on the orientation error. As the need for an actual 
ground truth (built upon rails) limited the possible trajectories, it was considered the 
possibility that the bias towards better scale estimation was produced by the features of the 
experiment. To test this, an additional set of image sequences was captured in other parts of 
the same environment (seen in FIGURE 4.13), presenting a wider variety of trajectories, with 
curves and twists. 

Experiment e, in FIGURE 4.14, starts with a U-turn around a table with several objects (the 
cluttered zone on the centre of the map), and continues along a straight line of three meters. 
Note how the experiment with HOHCT data validation (FIGURE 4.14 upper left plot) 
displays a blue trajectory which follows approximately the described path, while the same 
experimental sequence without HOHCT (FIGURE 4.14 upper right plot) presents a clear 
drift in orientation, making a more open turn. Besides, once the turn is complete, the 
straight part of the trajectory is clearly too long on the top right map, probably exceeding 
the actually travelled distance by one third in this segment (from 3m to about 4m). 
Experimental sample sequence f shows similar results. The experimental trajectory 
consisted on an almost full turn around a cluttered table. The map with data association 
applied shows how the estimated trajectory resulted in a more open path than the ground 
truth; and as expected, the trajectory estimated without data validation resulted in an even 
greater orientation error, which in turn led to scale drift towards the end. Note that the 
implemented DI-D approach does not incorporate any loop closing technique, so the results 
were considered very solid. At the same time, it is clear that ranging from the best cases to 
the worst cases, the introduction of HOHCT improves the results both in terms of odometry 
and map estimation. As such, the indoor experimental results presented shown the 
importance and impact of incorporating a data association validation technique in the 
context of monocular SLAM. As the data validation rejects erroneous and weak matching 
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features, it helps to reduce the drift, and in many cases, it keeps the EKF from losing 
convergence capabilities. Specifically, the HOHCT validation test significantly improves 
the algorithm robustness, by rejecting harmful matches, clearly noted in the improvement 
on orientation estimation, observed specially in sequences c, e, and f. Another improvement 
observed was the enhanced preservation of the metric scale on estimations, emphasized in 
sequences a, b and c. The sequences taken with slower camera movements tend to produce 
better results, although this can be easily attributed to the low frame rate of the camera 
used. 

FIGURE 4.14: Results of two trajectories, e and f, with HOHCT applied, at the left; and without at 
the right column. 
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4.6.1.2 Outdoor	Sequences	and	Experiments	

Indoors experiments are generally a good fit for monocular SLAM approaches: structured 
environments, controlled lightning, and plenty of easy to detect artificial features23. To test 
the full DI-D with HOHCT approach in less controlled circumstances, a small set of 
outdoor image sequences was captured with the help of a robotic platform, which carried 
the camera looking sideways along a pre-fixed trajectory. The robot platform used was a 
Pioneer 3-AT, running over an Ubuntu 12.04 distribution with ROS Fuerte as middleware 
and in order to provide control, navigation, and other required software tools. 

FIGURE 4.15: Outdoor environment used to record experimental sequences. 

This robotic platform traversed repeatedly a known trajectory in a near courtyard with 
columns, benches and multiple reflective surfaces among other elements (FIGURE 4.15). 
This trajectory described an ‘L’ shaped course running along 12m, with a 90º turn. While 
going through this course, a camera installed on top of the platform captured the sequences, 
looking sideways. Although the physical space was still highly artificial and manmade in 
nature, this courtyard allowed performing outdoor tests, with open space and longer 
trajectories, and still presenting disturbances from uncontrolled lightning and other 
difficulties usually associated to outdoor environments. 

The sequences were taken with the platform moving at different speeds, ranging from 
0.25m/s to 1m/s. Thus, the duration of sequences went approximately from 20 seconds to 
90 seconds (600 to 1300 frames) for different takes of the same trajectory. FIGURE 4.16 
shows the result of off-line application of the DI-D SLAM technique, with and without 
application of the HOHCT, with the robotic platform moving at 0.65 m/s. The most notable 
difference with indoor handheld experiments is the capability to move at greater speeds 
while keeping filter convergence in the SLAM process. This was due mainly two facts: the 
robotic platform described a less spurious trajectory, with constant speeds along the straight 
parts, and smother turns; and the presence of objects at a wider depth range, which allowed 
keeping better estimation of the orientation. The effects of the HOHCT can be seen in the 
different trajectory estimations at FIGURE 4.16: while both the SLAM with and without 
HOHCT are able to estimate quite accurately the length of the trajectory, without data 
association validation, the estimation drifts greatly, especially in terms of orientation. 

23 Although the risk of repeated patterns make them a double-edged sword. 
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FIGURE 4.16: Example of outdoor trajectory experiment results with navigation from the Pioneer 3-AT 
platform at 0.65m/s. 

4.6.2 Performance	of	the	HOHCT	

The HOHCT algorithm was developed to enable the introduction of a data association 
batch validation technique into the delayed inverse-depth monocular SLAM framework 
(Munguía and Grau, 2012), as other approaches had proved unfeasible due computational 
costs. The impact of batch validation techniques has been already proved, but they must be 
still evaluated in terms of the efficiency of the proposed approach. 

4.6.2.1 Exploration	of	the	hypothesis	space:	theoretical	costs	

The benefits of the application of the HOHCT validation comes together with the addition 
of the computational cost of exploring an n-ary tree (which can be interpreted easily as a 
binary tree) to build hypotheses and test them at the leaf nodes against the squared 
Mahalanobis distance. The number of data association pairings defines the size of the 
hypotheses, so it will also define the magnitude of the search space to be explored as a tree. 
On the other side, the JCBB estimates the SMD at each node, which includes a matrix 
inversion operation, unlike HOHCT that performs the test only at leaf nodes. So, although 
it does not account for the JCBB optimization described in (Neira and Tardós, 2001), we 
consider that a relevant data point to study the costs of the HOHCT algorithm is the number 
of SMD tests performed per batch validation process. This assumes that the initial 
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optimistic hypothesis failed the SMD test and the search for an optimal hypothesis is 
performed; otherwise the cost is of a single SMD for both HOHCT and JCBB. 

The cost of using JCBB in terms of number of performed SMD tests, noted as hn
JCBB, can 

be bounded below the full cost of building the complete binary tree, 2n, but on average 
tends to that same cost subtracting all the nodes present in the subtrees pruned due detected 
incompatibilities, as seen in equation (4.13). This equation (4.13), and equation (4.14), 
denote as n and r the number of observations matched by  the data association process and 
the number of these association pairings to be deemed incompatible at the optimal 
hypothesis, respectively. In the upper bound and average behaviour of hn

JCBB, equation 
(0.13), it can be noticed how the term with the biggest weight is the number of data pairs n, 
on term 2n, which increases the cost exponentially. This exponential cost can be relieved by 
a high number of rejected data pairs, r. But as it has been previously said in this same 
dissertation, the delayed I-D monocular SLAM introduces low numbers of weak 
undesirable features that would eventually be deemed incompatible and rejected as r. 
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The cost of the HOHCT in terms of SMD tests to be performed can be predicted accurately 
with ease: each recursive search (ALGORITHM 4.4) will be essentially a case of 
permutations over n with multiplicities of n-i and i, with i being the growing number of 
pairings to be rejected (until the biggest jointly compatible hypothesis is found). Noting 
down this as an expression, described in equation (4.14), makes it evident that for lower 
r values the number of terms to be summed will be low (the hybrid search HOHCT-Rec 
is performed fewer times). At the same time, the cost of each search as function of the 
number of SMD tests will be dominated by the term n!/(n-i)!, becoming linear cost (n), 
quadratic cost (n2), and so on for for low i values, i=1, i=2, etc. 
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The difference between these different characterizations of cost is shown in FIGURE 4.17. 
The cost of the JCBB will be bounded above the JCBB expected average (blue), and below 
the red line picturing the exponential case (red line). The actual cost will lie nearer to the 
expected average than to the upper limit most of the time, although it is largely dependent 
on the order of appearance of the incompatible data pairings. On the other side, the 
HOHCT cost grows following a sigmoid function with respect to the number of data 
pairings to be rejected (green line). This can be explained observing the cost of each 
HOHCT recursive search for the different number of rejected pairings (green asterisks). 
The cost for the HOHCT at each r value would be the accumulated cost of all the HOHCT 
recursive searches up to itself, and it is intuitive that the bigger ‘search trees’ are built when 
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n-r and r are balanced24. So the HOHCT costs grow faster when r is around half of the n
data association pairings, which gives the sigmoid characteristic to the cost.

FIGURE 4.17: Costs in terms of nodes evaluated, with each executing a joint compatibility test (SMD), for a 
sample group of 20 data association pairings, which contains r =[1 … 19] incompatible matches. 
The number of SMD tests performed by JCBB decreases with the number of incompatible pairings, 
thanks to the pruning strategy. On the other hand, as long as the number of incompatible pairing is 
low, HOHCT presents a lower cost. 

Accounting for the cost of the HOHCT and the bounds computed for the JCBB cost, a 
conservative estimation would be that as long the expected number of pairing rejections r is 
bound below a third of the total n pairings, the HOHCT will outperform the JCBB in terms 
of SMD tests performed. Moreover, the HOHCT should present enough advantage to 
outperform the JCBB even in actual computation time although it cannot benefit from the 
matrix inversion optimizations. 

4.6.2.2 Exploration	of	the	hypothesis	space:	statistics	

The total durations, number of frames, and SMD executions of a batch validation technique 
in the indoors experiments are shown in TABLE 4.2, accounting for 20 sequences. Although 
a SMD test is performed at each frame at least, to check the optimistic hypothesis that all 
the data association pairings are jointly compatible, for the sake of these statistics, we refer 
as ‘application of JCBB/HOHCT/validation technique’ to the cases when said optimistic 
hypothesis does not comply and the algorithm to search the biggest compatible hypothesis 
is executed. On average, the relevant batch validation algorithm was performed for about a 

24 Otherwise the n-ary tree is very deep or wide, but presents low branch expansion. 
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tenth of the frames (~10.02 %). It must be noted that frequently most of the 
incompatibilities emerged towards the end of the trajectories when drift is already 
noticeable, as commented earlier. Thus the number of batch validation searches performed 
could still be probably reduced further with the introduction of submapping/map splitting 
techniques to reduce the drift. 

TABLE 4.2: AVERAGE AND TOTAL STATISTICS ON SEQUENCE DURATION AND BATCH

VALIDATION USE

Metric Average Accumulateda 

Sequence Length 857.5 frames 17150 frames 

Sequence Runtime 57.17 s 1143.5 s 

  HOHCT searchesb 87.55 1751 

aStatistics aggregated over the 20 indoor sequences.
bHOHCT/JCBB searches due optimistic hypothesis failing the SMD test.

The number of SMD tests performed on average per video sequence by the different 
techniques is shown in TABLE 4.3, accounting also for the ratio with respect to the number 
of average frames and searches performed. As discussed earlier, the count of SMD tests for 
the JCBB will be equal to the number of nodes build upon the binary three, while in the 
case of the HOHCT the count of SMD will equal the aggregated number of leaf nodes of 
the n-ary trees built during the search. The difference in the order of computational cost on 
average is between two and three orders of magnitude; while an average HOHCT search 
performed under a hundred SMD tests, the JCBB technique had to compute it over fifteen 
thousand. 

TABLE 4.3: SMD TESTS PERFORMED AT EACH EXPERIMENTAL SEQUENCE ON AVERAGE 

Metric HOHCT JCBBa 

Total SMD tests 1432916 5713.21 

SMD test/frame 1671.36 5.18 

SMD tests/searchb 16366.01 65.26 

aAccounting all nodes during the expansion of the search tree.
bHOHCT/JCBB searches due optimistic hypothesis failing the SMD test.

This can be comprehended observing the number of features n considered each time, and 
the number of data pair rejections r, being the two main factors leading the complexity, 
shown in TABLE 4.4. Consequently, for the average case, the low number of pairs rejected 
on average when searching for a jointly compatible hypothesis makes the cost for the 
HOHCT almost linear with respect the number of data association pairs; while in the case 
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of the JCBB the cost is still dominated by an exponential term (although rather low). This 
low average number is obtained from a really low counting of data pairs deemed 
incompatible at each search, see TABLE 4.5. 

TABLE 4.4: AVERAGE DATA ASSOCIATION PAIRINGS FOUND AND REJECTED AT EACH

VALIDATION SEARCH

Avg. Data Association Pairings Quantity 

Pairings present at each search 15.18 

Pairings rejected per search 1.22 

Most of the time HOHCT/JCBB searches had to reject only a pair, with linear cost, with a 
chance of less than a fifth to have to reject two pairs. As this number grows, the chances are 
reduced, with a very low chance of having to reject 4 pairings, for the used dataset, less 
than one per sequence on average. It is worth noting how in fact the cases are concentrated 
on a subset of video sequences representing worst case scenarios, with difficult conditions. 
Still, with an average number of data pairs of 15.18 at each search, these found worst case 
costs for HOHCT can be present a computational time requirement not dissimilar to that of 
the average case using JCBB.  

TABLE 4.5: AVERAGE CASES OF MULTIPLE DA REJECTIONS IN A HOHCT VALIDATION STEP 

Pairs rejected per search Avg. per sequencea Percentageb 

1 pairing incompatible 73.45 83.90 % 

2 pairings incompatible 9.90 11.32 % 

3 pairings incompatible 3.44 3.93 % 

4 pairings incompatible 0.74 0.85 % 
aFor an average sequence over the aggregated 20 indoor sequences.
bOver the average.

4.6.2.3 Execution	and	Profiling:	computational	performance	

A profiling implementation showed that both approaches could achieve real-time 
performance, with results obtained shown on TABLE 4.6. This table presents the average 
computation times required per frame for several processes: the raw DI-D Monocular 
SLAM, the same DI-D approach using a batch validation technique (without the cost of the 
technique itself), and the penalization of the JCBB and the HOHCT. The results were 
obtained in an average powered laptop, running on a Linux system (Ubuntu Lucid Lynx), 
using OpenCV 2.1 as support library. 
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TABLE 4.6: AVERAGE TIMING OBTAINED BY THE DI-D ALONE, WITH BATCH VALIDATION, AND

BY THE JCBB AND HOHCT PROCESSES 

Process measured average time (ms)  σ 

DI-D MonoSLAMa
37.98 7.12 

DI-D MonoSLAM with validationb
38.43 6.93 

JCBBc 24.58 16.35 

HOHCTd 2.36 4.37 
aFor an average sequence over the aggregated 20 indoor sequences.
bHOHCT/JCBB searches due optimistic hypothesis failing the SMD test.
c,d JCBB/HOHCT penalization added to DI-D MonoSLAM with validation (a).

It is noticeable that the Delayed I-D SLAM itself is a computationally expensive procedure, 
requiring by itself 37.98ms per frame on average. This statistic grows with the introduction 
of a batch validation technique, as they introduce a slight penalization in the form of 
computational effort spent in map management and state augmentation (removing the non-
compliant landmarks and searching for new ones). The JCBB and HOHCT produce each 
one a noticeable penalization by themselves, with the penalization for the JCBB being an 
order of magnitude greater. This difference is lower than what TABLE 4.3 would predict, but 
the number of search does not account for the reduction to quadratic cost of the iterative 
matrix inversion required, which cannot be implemented into the HOHCT method. This 
optimization hugely reduces the cost of the SMD tests in the JCBB, partly compensating 
for the wider hypotheses space. Also, this means that the cost for each test is cubic (n3 w.r.t. 
the number of landmarks) for the HOHCT, and the advantage comes from the lower 
number of SMD tests. Given the cumulative nature of the cost for HOHCT (in SMD tests 
as in 4.6.2.1) seen in FIGURE 4.17, it is clear that the advantage of the HOHCT is clearly 
local and depends intrinsically on the quality of the features initialization process and the 
robustness of the data association process. 

4.7 Conclusions	

The data association problem has been studied in this chapter, starting with a theoretical 
overview of the main procedures, until dealing with the actual problems found in the 
monocular DI-D SLAM. The main aspects dealt with were on one side, the correlation 
based search, and the suitability of the available operators, and on the other side, the need 
of introducing a data association validation procedure. This would lead to the development 
of the HOHCT algorithm, which would constitute one of the main contributions of this 
dissertation. 

The testing of the different matching operators was performed in order to evaluate with 
some objective metrics not subjected to sampling bias or unknown effects produced by 
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probing them inside the monocular SLAM technique. The robustness of the delayed I-D 
monocular SLAM is known, and would have impacted any study, so the tests were 
performed independently. As many of the literature (commented in section 4.3.2) already 
discussed the operators performance and efficiency against lighting variations, our tests 
focused on the disturbances that were expected to have greater impact: the different kinds 
of noises expected to be introduced by the utilization of inexpensive sensors; and the 
motion blur, typically aggravated by the CMOS technology. The tests modelled said 
disturbances over a set of images, from insignificant levels to those at the limit of what 
could be realistically expected, and tested each operator. As it was expected, the cross-
correlation based operators outperformed those based on aggregation/squared aggregation. 
To conclude, the chosen operator was ZNCC, which presented the robustness to motion 
blur of the cross-correlation technique, with the invariance to contrast variation from the 
normalization and to illumination due the zero-mean modification. 

As it is discussed and probed in section 4.5.1.2, even a robust SLAM technique like the DI-
D monocular SLAM can benefit from the introduction of a validation method. The main 
characteristic of the DI-D monocular SLAM (discussed in Chapter 3) is that landmarks are 
only introduced into the EKF once the depth estimation is accurate enough, finding this 
estimation through the parallax effect. This introduces a slight computational burden on the 
algorithm, compensated by the fact that as the information about landmarks present at the 
map and filter is more accurate, the filter can proceed with fewer landmarks mapped than in 
the undelayed approach. Although the landmarks mapped are highly precise, it is still 
needed a data association gating technique to treat with multiple disruptions that may arise 
from incorrect or inconsistent matching obtained through active search.  

The computational issues produced by the JCBB introduction (the golden rule in data 
association for a decade) in the early tests motivated the development of the proposed 
HOHCT, the Highest Order Hypothesis Compatibility Test. This techniques is largely 
based in the Squared Mahalanobis Distance test, just like the JCBB, but optimized the 
search to prioritize hypotheses based on the order of the solution.  

Both the effectiveness and the efficiency of the HOHCT have been validated theoretically 
and experimentally, including indoor and outdoor experiments. These experiments results 
show how the introduction of the batch validation based on joint compatibility improves the 
technique resilience to erroneous data association and false features or landmarks, produced 
by difficult illumination and feature detection errors. At the same time, the HOHCT costs 
have been studied and compared to that of JCBB. While having worst case scenario of 
exponential cost, just like the JCBB, the HOHCT has been probed to tend most of the time 
to the linear, quadratic and cubic cases. This tendency to linearity of cost has been probed 
experimentally, compiling statistics over tens of sequences. It is worth noting that, as it is 
discussed in sections 4.6.2.1 and 4.6.2.3, the structure of the JCBB enables using matrix 
inversion optimization, while HOHCT algorithm makes this optimization much more 
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complex to apply, with greater memory requirements. In any case, the HOHCT clearly 
outperforms JCBB in the context of the DI-D monocular SLAM by over an order of 
magnitude in the average case. 
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Part	III	

Collaborative sensing for 
Visual SLAM 

Robot rebellion scene in the play R.U.R.,Rossum's Universal Robots, by Karel Capek(1921). Though 
conceived as organically built machine-workers, the term robot (‘robota’) was first coined referring to this 

caste of slaves. 

III.A Introduction

The general monocular EKF-SLAM procedure is based on detecting points of interest, 

chosen between those considered to be landmarks and introduced into the EKF, and 

tracking them through frames, estimating both their pose and camera odometry, as 

described during Part I of this dissertation. The estimation process is based on probabilistic 

filtering, where an initial prediction step makes a prediction of the movement, and a further 

update (or correction step) compares the predicted observations obtained according to the 

movement prediction with actual observations from the sensor. While the undelayed 

approaches try to chose the points to become landmarks and initialize them when seen for 
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the first time, the delayed approaches generally rely on obtaining a previous depth 

estimation. These two types of strategies define many characteristics of the SLAM 

procedures. As undelayed approaches try to use point features as landmarks just after have 

been seen, the points are quickly introduced into the filter, accepting many outliers that 

have to be validated later. This validation step generally removes many points, thus an 

undelayed approach needs to add constantly new feature points. On the other side, delayed 

approaches track and estimate the points before using them. Although a validation process 

is still required, the used landmarks are generally more stable and reliable. This way, while 

the undelayed approaches put less effort per landmark during initialization, the performance 

is similar compared with delayed approaches, using less points and with computationally 

cheaper validation algorithms, as shown during Chapter 4. The diagram in Figure III.1 

shows the process steps of the delayed I-D EKF SLAM, as an example of a delayed feature 

initialization EKF architecture, including the initial state initialization through sythetic 

features. 

Figure III.1:Delayed inverse-depth (DI-D) Monocular EKF-SLAM. 

All the developments commented, including those presented earlier in this dissertation, 

generally assume that the robotic devices where the mapping and localization tasks are 

performed are autonomous robots operating as stand-alone units. This paradigm, though 

clearly inherited from the most utilitarian conceptualization of robots25, is still challenged 

both from a practical and a philosophical point of view. Although fully autonomous robots 

with capabilities to substitute human elements in a given system have been developed, 

these work only for constrained problems. Even the most advanced robots lack the 

generality and adaptability required to match human versatility, both in terms of physical 

25 Where a robot replaces an individual human. 
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actuation power and mobility in relation to mass, and in terms of ‘intelligence’26. From a 

philosophical perspective, the idea of designing machines able to match mankind both 

physically and cognitively still makes the general public and many members of the 

academia uncomfortable. 

One of the answers to these challenges comes from the Human-Robot Interaction (HRI) 

field: note, that while a human can do many different things, robots can generally 

outperform them in those scenarios and tasks for what they were designed. Thus, it is only 

natural that the SLAM problem would be studied from a HRI perspective, where robots and 

humans collaborate in exploratory tasks, exploiting the human adaptive nature and the 

accuracy and repeatability of robotic systems to measure the environment.  

Another widely used form of dealing with the limitations of robots when treating the 

SLAM problem is the introduction of multiple agents: both as repeated instances of a 

generic robot, which can explore the environment through different pathways, or as sets of 

different devices, each one with different features and capabilities. These approaches, 

collectively known as collaborative or cooperative SLAM, generally rely on each of the 

robotic devices solving locally the SLAM problem so that they produce an initial solution 

which is used as a basis to join the different estimations and compute a global solution 

which joins data form all of them. 

III.B 	 HRI	in	SLAM	

In HRI collaborative context, the SLAM problem has been studied by several works in the 

domains of emergency response and companion/assistant robotics. While the specific 

properties in each domain may vary according to the application, the need for indoor and 

outdoor SLAM techniques where the human component is present as a key factor is clear. 

In (Kleiner et al., 2007), for example, large areas are explored by a wide group of persons 

and robots, where the human carry a wearable device, while in (Fallon et al., 2012) a 

human explores and maps a building while carrying a mapping robotic device. Introducing 

HRI within the classical SLAM framework usually means increased complexity, like 

having to deal with dynamic objects in the vicinity and increasing the multimodal range of 

sensors. All these issues have responses in the SLAM research, thus it is better to 

concentrate on the new possibilities, such as trying to improve the depth estimation, or 

overcome other challenges. Thus, exploratory HRI opens the door to improve known 

mapping techniques exploiting the opportunities provided by the human component. 

                                                 
26 However it is defined. Although scientific community finds agreeing on a definition for intelligence a hard 
to solve problem, it is indeed agreed that AI research has struggled to deliver on the promises it made in the 
1950s decade. 
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Another field of application where SLAM approaches are tightly integrated within HRI 

frameworks is the assistance robotics. In (Cheein et al., 2010) a semi-autonomous robotic 

wheelchair combined an EKF-SLAM with LRF and a muscle-computer interface (MCI) 

adapted to the disabilities of the user. This allowed the chair mapping the environment in 

real-time and at the same time learn to interpret electromyographic signals obtained through 

the MCI, allowing semi-autonomous navigation guided by the user.  

III.C Collaborative	SLAM

The collaborative SLAM problem is closely related to other problem in multi-robot system, 

such as multi-robot tracking (Mazo et al., 2004), cooperative localization (Spletzer et al., 

2001), distributed multi-view reconstruction (Seitz et al., 2006), etc., generally englobed in 

the fied of distributed perception and estimation. Many solutions, not only to collaborative 

SLAM, but to the other cited problems, are based in decentralized data fusion (DDF) 

approaches (Durrant-Whyte et al., 2001), where robot and mobile sensors are to infer the 

variables from measurements and other data communicated by nearby robotic devices. 

These kind of frameworks present many advantages, like good scalability and resilience to 

failure of a component thanks to being of decentralized nature. 

When dealing specifically with the SLAM problem, one of the first works dealing with 

cooperative estimation and positioning was (Kurazume et al., 1994), where two groups of 

robots alternated in moving and taking measurements of each other. In (Roumeliotis and 

Bekey, 2002) another of the seminal works was presented, where a fully distributed EKF 

estimation algorithm was used satisfactorily under the assumption that robots could take 

relative pose estimation w.r.t each other and a global frame. Similarly to the general SLAM 

problem, early works were based on EKF methodologies, which remain the most popular 

with newer non-linear optimization based approach, but there are also plenty of works 

based on other techniques like particle filters, as (Fox et al., 2000) and (Carlone et al., 

2011). 

The early works discussed and many newer approaches, like (Bailey et al., 2011), present 

one common feature: they deal with observations considering robot states from the same 

time instant. The inherent restrictions of the SLAM problem refer to space: in a multi-

robot/multi-agent SLAM scenario what is needed is that the different observations pertain 

to the same scene. But there is no inherent time restriction to the SLAM problem: a robot 

could stop for a period of time, and retake the SLAM task from the same place, or a near 

place if the SLAM approach can solve the loop closure/place recognition problem. Then, 

collaborative SLAM approaches that can work without temporal concurrency restrictions 

need to work with observations not formulated w.r.t. the robot states at a given time, but 
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referenced to other variables. These variables can be landmarks or set of robots states at 

different time instants. 

The research into this scenario has produced approaches based in well-known techniques. 

The SAM (Smoothing and Mapping) framework (Dellaert and Kaess, 2006) has been 

expanded to deal with multiple agents by several authors. In (Andersson and Nygards, 

2008) the authors presented the collaborative SAM, C-SAM, which developed support for 

the multi-robot case based in a centralized framework, while in (Cunningham et al., 2010) 

an extended formulation of the SAM problem within the DDF framework was presented. 

Other works have dealt with specific challenges within the problem, such as unreliable 

communications and initialization requirements. In (Walls and Eustice, 2013) and (Walls et 

al., 2015) the authors developed a cooperative localization method based in the 

decentralized extended information filter (DEIF) considering low-bandwidth and very 

unreliable communications for underwater operation. With respect to initialization related 

challenges, one of the most usually assumed restrictions is that the robots known the exact 

spatial relations between each other at the start, thus enabling a shared reference frame. 

Works like (Howard, 2004) and (Zhou and Roumeliotis, 2006) started to work towards 

removing these constraints, and have also helped develop the previously commented branch 

of multi-robot SLAM with agents separated in time. 
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Chapter	V	

Collaborative Sensing in 
Feature Initialization 
 

 

Mercury and Argos (‘Mercurio y Argos’) by Diego Velázquez (1659), depicting the hundred-eyed giant 
Argos Panoptes, the all-seeing one. The idea of perfect observability has fascinated scholars of multiple 
disciplines, introducing derivatives of the panoptic concept in geometry, architecture, and sociology, not 

always for the betterment of humankind (e.g., Bentham’s Panopticon and Foucault’s Panopticism) 

5. Collaborative	sensing		in	feature	initialization	

5.1 Introduction	

Some of the challenges in the delayed feature initialization (Munguía and Grau, 2012) 
discussed in previous chapters could be dealt with a different approach in HRI cooperative 
context. After improving the robustness of the DI-D monocular SLAM through the 
introduction of a batch validation technique with better computational costs than the 
competing approaches in Chapter 4, the requirement of an initial scaled state estimation is 
one of these challenges that can benefit from solutions considering a collaborative 
framework. Work on this requirement can improve the generality of the delayed I-D SLAM 
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approach, at the cost of producing a more specialized version dependent on the features of 
the designed collaborative framework. 

As it is discussed in III.B, several works have considered the option of introducing the 
human factor into solutions to the SLAM problem, especially in the field of urban search 
and rescue robotics (USAR). In search and rescue (SAR) operations, it is common for 
humans to wear robotized equipment, in the form of wearable smart sensors. These sensors 
usually include a camera device with streaming capabilities so that the image feed can be 
observed and recorded. The robot platforms normally deploy themselves a combination of 
exteroceptive and proprioceptive sensors to perform localization and measurements of the 
environment. 

For the sake of this work, a sample robotic platform system is considered, which will work 
as a part of a human-robot collaborative exploration team. As the robot is assumed to 
operate at least in a partially autonomous manner, it must have the sensors required to 
perceive the environment, which can be used to measure where the human component is 
w.r.t. the robot. At the same time, the human is supposed to wear robotized equipment,
which includes a camera and an AHRS. The data of these sensors is to be used to solve the
initial scale initialization challenge and improve the general feature initialization procedure.
In order to produce a solution which can be exported to other framework, it is required that
is decoupled from the general delayed EKF-SLAM as much as possible. Thus, the sensors
deployed on the human are considered part of a virtual sensor which is not always
available, which enables depth estimation of features for initialization. The general EKF-
SLAM formulation will remain largely the same except for the initialization of features,
where this virtual sensor is considered to switch on and be used to produce the depth
measurements.

In this chapter, besides a new solution to the initial scale initialization challenge, a non-
constant multiple view estimation of depth technique for feature initialization is proposed 
within an EKF monocular SLAM process. After framing the basics of the solution within 
the delayed I-D problem and the merits and disadvantage of stereo vision for the problem 
proposed, the new processes introduced are described in theoretical and implementation 
terms. To conclude, the system is validated through theoretical and experimental results. 

5.2 Problem	statement	

Let us assume the presence of a secondary camera device worn by the human, which moves 
freely (thus noted as free camera, or Cf), without any way to predict position or orientation; 
but with an approximately known translation27 w.r.t. to the camera performing SLAM 
(known as SLAM camera or Cs), rCs

Cf , measured through the robot sensors. If it is also 
assumed that we the orientation of Cf in global coordinates, qWC

cf is known, with an AHRS 
rigidly solidary to the camera, the whole pose (as position and rotation) can be retrieved 

27 Or an approximation deemed good enough. 
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both w.r.t. the global frame and w.r.t. Cs frame. As this camera Cf will be used only as part 
of the virtual sensor for depth estimation operation, and its pose is retrieved from other 
sensors, it does not produce explicit observations into EKF-SLAM filter, so its state is not 
modelled into it. 

 

FIGURE 5.1: System diagram with the general structure of the human-robot team assumed and the 
steps to produce the EKF SLAM solution. Green boxes denote the new processes added to 
the original delayed I-D monocular SLAM. 

The new augmented state vector will consider x̂cs and the landmarks, in a similar manner to 
the method described in Chapter 2 and 3: 
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where x̂cs contains the position rWC
cs, orientation qWC

cs and velocities ωWcs and νWcs. The 
pose of Cf w.r.t to world coordinates is found using equation (5.3), where rCs

cf denotes the 
position of Cf measured w.r.t. Cs, and RCW(qWC

cs) denotes the rotation matrix obtained from 
the orientation of Cs to transform the coordinates to world frame reference: 
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Once the pose of both the cameras is estimated with the sensors deployed, the strategy to 
follow consists in: firstly, join observations from both cameras by solving the 
correspondence problem28 if both camera sensors are capturing concurrent sections of the 
environment; then, proceed to use this data to initialize the feature. The effect achieved by 
this strategy is that of replacing the temporal separation of the observations of a given 
landmark seen by the same sensor with spatial separation obtained by introducing a 
secondary camera in the virtual sensor.  

To implement the strategy just described there are 3 different problems that need to be 
addressed in order to use the multiple view data to initialize the features: 

 Determine if the different camera sensors measurements pertain to the same scene.

 Find the matches between the point features of relevant landmarks in the different
images.

 Compute the depth exploiting the data from both sensors accounting for the actual
knowledge about them, producing a virtual sensor that temporarily enhances the
monocular camera Cs with depth measurements.

This procedure operates as a non-constant multiple view estimation of depth, which can 
provide the initial scaled state required in the delayed I-D monocular SLAM without 
relying on synthetic or previously known features. Note that the most common strategies 
used to deal multiple view measurement and estimation usually rely in epipolar geometry-
based stereo vision. Thus, the main advantages and inconveniences of using stereo vision 
within the context of the studied problem are discussed. 

5.3 Applicability	of	Epipolar	Geometry‐based	Stereo	Vision	

Classical stereo approaches, like (Loop and Zhang, 1999), (Fusiello et al., 2000), and 
(Howard, 2008) rely on epipolar geometry to create a calibrated camera rig with multiple 
geometrical constraints. These constraints typically include that both cameras projection 
planes need to be coplanar in world coordinates, and generally with parallel axes. These 
configurations allow optimizing the correspondence problem as the match on an image of 
another’s image pixel will lie in the corresponding epipolar line, and rectification can turn 
them into straight-lines, parallel to the horizontal axis, which in turn is parallel to the 
baseline. Several works have dealt with rectification of stereo images for unrestricted pose 
cameras, both calibrated (Fusiello et al., 2000) and uncalibrated (Fusiello and Irsara, 2008), 
(Kumar et al., 2010). 

In (Fusiello et al., 2000), the author detailed the first method to rectify stereo pairs with any 
given pairs of calibrated cameras. The method is based on rotating the cameras until they 
have one of their axis aligned to the baseline, and forcing them to have their projective 
planes contained within the same plane to achieve horizontal epipolar lines. Other works 

28 Noted as in the field of stereo vision as it is essentially a multiple view scenario. 
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have proposed similar approaches to rectify stereo pairs assuming calibrated, uncalibrated, 
or even multiple view stereo configurations (Kang et al., 1995) (Gallup et al., 2008), 
including automatized variable stereo rigs (Fanto, 2012). These approaches need to warp 
both images according to the homography found (see FIGURE 5.2 versus FIGURE 5.3), and in 
some cases producing great variations in terms of orientation and scale (FIGURE 5.4).  

 
FIGURE 5.2: Pair of images captured in an outdoor environment. 

 
FIGURE 5.3: Pair of images rectified according to the method described in (Fusiello et al., 2000). 

  
FIGURE 5.4: Pair of images rectified and matched. 
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These characteristics make the introduction of stereo vision (based in epipolar geometry) to 
enable the collaborative initialization of features in the proposed system less desirable: the 
main advantage of said strategies would be optimizing the computational efforts required to 
solve the correspondence problem by working over the reprojected images, where the 
correspondence problem would be limited to the area around the epipoles, which can be 
easily predicted. At the same time, this implies computing the homographies required to 
reproject images, and perform the reprojection operations for the whole images. This would 
mean that the reduction in computational time required to solve the correspondence 
problem would be just spent in image processing operations to perform the reprojection and 
additional data processing to ensure that estimation of the relative pose between cameras is 
accurate enough. 

Then, considering the characteristics of the base monocular SLAM framework studied, 
dealing with multiple view features without stereo vision-based correspondence should not 
prove specially challenging, as the multiple view feature initialization operation will be 
performed sparsely. Working directly over the same frames, without the stereo 
photogrammetry, will also allow optimizing the process exploiting direct geometric 
intuitions based on the parallax threshold. 

5.4 Feature	initialization	under	unreliable	multiple	view	sensing	

5.4.1 Multiple	view	sensing	for	scaled	feature	initialization	

The requirement of metric scale initialization of the DI-D method can be solved assuming 
the presence of the described cooperating camera Cf. The previously used methodology 
(Munguía and Grau, 2012) required the presence of a set of known, easily identifiable 
features to estimate them initially through the PnP problem (Section 3.4.2). Then, assuming 
that at the start of the exploration a cooperating, free moving camera is near, the data from 
this camera (Cf) can produce the depth estimations required through multiple view 
photogrammetry. A diagram of this multiple view estimation process is shown in FIGURE

5.5. 

Initially, the poses of the SLAM camera Cs and the free camera Cf are known, as camera Cs 
starts at the origin of the map29, and the different sensors present in the system allow 
estimating the translation from Cf to Cs in world coordinates, rWC

cf, as described in equation 
(5.3). Then, a limit to bound the distance l at which all landmarks with minimal parallax 
αsmin  can lie at most can be approximated: 

29 Like most of the vision-based SLAM approaches, the map is generated w.r.t. to the camera so initially is at 
the origin of the world coordinates of the map built. 
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WC
c sl  r . (5.4) 

This l distance is used to scale a model of the field of view of each camera, built using the 
respective Kcf and Kcs intrinsic camera matrices, and their known poses. Each field of view 
is modeled as a pyramid in Թ3, that is, a set of points with the apex points positioned in the 
respective optical centres of Cf and Cs, and the bases parallel to each camera projection 
plane, at a distance l along the visual axis. 

 

 

FIGURE 5.5: Block diagram of the multiple view overlap detection and correspondence ROI 
estimation. 

 

Then it can be assumed that any point with parallax –between cameras- equal or greater 
than αsmin lies in the space intersected by the two Թ3 polyhedron modelling the fields of 
view, as seen FIGURE 5.6. Note that the accuracy of this process is heavily correlated with 
that of the estimated pose between cameras, so a strategy which allows adjusting margins 
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of error is followed in the next steps. The intersection between the different polygons 
composing the field of view models is computed as a set of segments, represented as tuples 
of two Թ3 points as described by ALGORITHM 5.1. Once all the segments are known, their 
ends are projected into the 2D projective space of Cs and Cf respectively, and a search 
region is adjusted around them in each image plane, determining the regions of interest 
(ROI), or correspondence regions, where the multiple view correspondence may provide 
useful matches. 

FIGURE 5.6: Polyhedron found intersecting fields of view extended until a set depth where minimum 

parallax αsmin could be found. 

This adjustment can be fitted in several ways, permitting the introduction of offsets or 
tolerances to compensate possible errors: exact fitting defines a polygonal region with the 
convex hull of the approximate projection of the segments as edges30; while bounding box 
defines the minimal rectangle which fully envelopes all the projections. 

The use of this procedure to determine if there is an area where salient features can be 
matched between images allows reducing/avoiding the computational effort at the initial 
estimation process notably, as it avoids trying to find correspondences between views when 
it is predicted that no useful data may be retrieved, skipping the cost altogether, and 
removing completely the chance of false positives. 

30 Note that due radial distortions, it is possible that the actual projection of an edge presents parts outside the 
estimated projection. 
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Function: (ris, rif):=find-Stereo-ROI (Cs, Cf, αsmin) 

Input: 
Cs  SLAM camera calibration model data 
Cf  free camera calibration model data 
αsmin desired minimum parallax for depth estimation 
Output: 
ris  correspondence region in Cs image 
rif correspondence region in Cf image 

distance := FindDistance (Cs.pose, Cf.pose) 
PyramidDepth := FindMaxDepth (distance, αsmin) 
Py1 := ModelFoV(Cs,PyramidDepth)  
Py2 := ModelFoV(Cf,PyramidDepth)  
intersection = Ø; 
for each polygon_i in Py1 

segment := Ø 
for each polygon_j in Py2 

segment := Intersect(polygon_i, polygon_j) 
if ¬ (segment = Ø) 

intersection.add(segment) 
segment := Ø 

end if 
end for 

end for 
ris := Ø; rif := Ø 
if  ¬(intersection = Ø) then 

ris := Envelope(ProjectTo2D(Cs.pose, intersection.points)) 
rif := Envelope(ProjectTo2D(Cf.pose, intersection.points)) 

end if 
return (ris, rif) 

ALGORITHM 5.1: Process to predict the occurrence of concurrent field of views and determining the 
correspondence region of interest for the matching process. 

The whole procedure to find the areas of interest for the correspondence problem is 
described in ALGORITHM 5.1. Once this procedure determines if the camera sensors observe 
concurrent scenes, and the regions of interest in the views of Cs and Cf are found, a search 
for correspondences based on feature point descriptors is performed (see Section 3.3). The 
first time that features are initialized, substituting the synthetic features initialization 
process, up to ten features are initialized in the EKF state vector, analogously to the process 
described in section 3.4.2, as reflected on FIGURE 5.5 diagram. SURF (Bay et al., 2006) is 
chosen over SIFT and FAST due the more convenient trade-off offered in terms of 
matching accuracy and efficiency (Juan and Gwun, 2009). 

   , , ,fs

new s s new f f

cc
c c c cu u  y yp p (5.5)
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Points outside of the relevant region of interest in their respective images are ignored in this 
matching process. Then, the pixel coordinates in each image of the matched feature 
descriptors, (ucs,υcs) in Cs and (ucf,υcf) in Cf as shown in equation (5.5), are used to estimate 
the world coordinates of the landmark detected through stochastic triangulation. The 
landmarks are backtraced from Cs through pCs

ynew, and the ray from Cf through pCf
ynew is 

used to determine the depth from Cs to ŷnew. Then, the set of landmarks found and estimated 
are introduced in the monocular EKF according to the inverse depth parametrization. 

5.4.2 Parametrization	of	features	initialized	through	uncalibrated	
multiple‐view	estimation	

New features detected with the multiple-view initialization process are also introduced into 
the EKF augmented state vector, similarly to equations (3.10) and (3.11), under the IDP 
model discussed in section 2.4.2, noted in equation (5.6). 

ˆ ˆ ˆˆ ˆ ˆ ˆ
T

new i i i i i ix y z      y  (5.6)

For the sake of simplicity, all features are still annotated into the EKF under the IDP w.r.t. 
the camera Cs, meaning that from the point of view of the EKF filter methodology, all the 
models and operations not related with the initialization process remain the same. So for 
ŷnew the optical centre of the camera annotated will be that of the camera performing the 
SLAM process, rW

cs: 
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The parameters to define the director vector m from equations (2.27) and (2.28) are 
retrieved using equation (5.8) on the values obtained from the directional ray vector 
equation hW

cs. 
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(5.8)

This projection ray vector hW
cs (similar to those described in section 3.4.6, equations 3.63) 

is referenced to the world frame W, originating on position of the optical centre of Cs, to be 
used as anchor. Then, RWC is the transformation matrix form camera Cs to world reference 
frame, which is derived from the quaternion qWC with Cs orientation: 
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The projection ray vector hcs(uus,υus) describes the same ray as hW
cs but with respect to the 

same camera, pointing from the optical centre of the camera to the position of the 
landmark, and can be found from the undistorted pixel coordinates (uus,υus) and Cs 
calibration data: 
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s s
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These undistorted pixel coordinates (uus,υus) are found applying the inverse of the distortion 
model (described in sections 3.2.1 and 3.4.6): 
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The inverse depth is computed as the inverse of the norm the vector between rW
cs and the 

intersection point between the rays hW
cs and hW

cf, hcs
cs: 
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Note that the computation of the ray coordinates hW
cf is analogous to that for hW

cs, being the 
director vector of the ray originated at rWC

cf through pixel (ucf,υcf), computed similarly to 
equations (5.9) to (5.11). The intersection between the two rays is computed according to 
equation (5.13), so hcs

cf will be the nearest point to hW
cf lying in the ray hW

cs. 
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Once all the parameters of ŷnew have been computed, the new feature is added to the state 
vector, at the end of the map. 
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As the state vector grows, the covariance matrix P is updated, using equation (5.15), where 
Rj is the covariance matrix of the initialization measurement process, found at equation 
(5.16), and ׏ϒ is the Jacobian of the initialization process described earlier. 
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Matrix Rj contains the measurement error variances σu
2 and συ2 in pixel units, and the 

covariance of the depth estimation process σρ2. 

 2 2 2diagj uR         (5.16)

The Jacobian ׏ϒ is composed of an identity matrix with size equal to the prior covariance 
matrix P, Im×m, the derivatives of the initialization model with respect to the camera Cs 
position δŷ/rcs

WC, w.r.t. Cs orientation δŷ/qcs
WC, and the derivatives δŷ/Rj with respect to the 

parameters of the covariances matrix Rj. 
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FIGURE 5.7: Block diagram of the proposed feature initialization process for the case using the 
non-constant multiple view sensing, thus assuming that there is multiple view 
correspondence, and the correspondence region of interest presents landmarks to be 
initialized. 
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5.4.3 State	augmentation	step:	introduction	of	new	landmarks	under	
multiple	view	sensing	

The original DI-D initialization, proposed in (Munguia and Grau, 2009) (and discussed in 

Section 3.4), adds new landmarks into the map part m of the state vector x̂ when a feature 

achieves enough parallax. This process is easily disrupted if the features cannot be tracked 

long enough due to motion blur, illumination problems, trajectory irregularities, etc., 

probably disrupting the filter performance and convergence. 

Although the introduction of data association validation generally improves convergence of 

the filter (as it was discussed in Part 2), it may also deprive the filter of features, as it is 

possible that landmarks are removed faster than they are initialized. These problems can be 

reduced under the assumption of the temporary multiple view correspondence between 

cameras Cs and Cf just discussed, introducing the features much earlier with accurate depth 

estimation, using the non-constant multiple view I-D feature initialization presented. 

 

             

FIGURE 5.8: Feature initialization process according to the single monocular camera approach. 
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FIGURE 5.9: Proposed feature intialization method with non-constant multiple view feature 

initialization. 

The previous delayed I-D feature initialization procedure and the one proposed exploiting 

the multiple-view depth estimation are shown in FIGURE 5.8 and FIGURE 5.9, respectively. 

The schema for the standard delayed I-D approach follows the strategy of storing and 

tracking candidate landmarks, detecting them through the Harris salience operator, seing if 

enough parallax is reached (αi >αmin) within a given number of frames (Obsmax), and then 
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proceed to initialize them with the estimated depth value. On the other side, the proposed 

scheme shows how the non-constant multiple view approach presents several chances to 

optimize the initialization process, and how it can work without an initial set of known 

features. 

If during the correspondence prediction step a correspondence region of interest is not 

found, the process to introduce new features will try to work using the delayed I-D 

approach. If a correspondence region is found, the matching feature descriptor in Cf (with 

pixel coordinates uif,υif) will be searched for those candidates whose pixel coordinates uis,υis 

lay in the ROI ris. The parallax αi will be also computed, so the landmarks which comply 

(αi >αmin) and (αi >αsmin) while having a match uif,υif in rif will be given priority. For these 

candidates, the feature will be initialized with the parametrization which presents lower 

uncertainty. This allows performing an additional validation check, and if the depth 

discrepancy is too large between the two methods, the candidate will be ignored during the 

current iteration. 

If not enough candidates were found, those that present a multiple view match and comply 

with (αi >αsmin) will be initialized following the multiple view depth estimation approach, 

with a penalization to the σρ2 variance, as the depth estimation could not be validated 

between the two methods. 

As an additional last effort, if the candidates available through the database are not enough 

to fill the minimum required number of features required into the EKF after a set number of 

frames, the stereo matched regions will be searched for new features to initialize, just as in 

the state vector initialization process described in section 5.4.1. 

5.5 Experimental	setup	study	and	validation	

To test the feature initialization methodology presented several experiments, both with real 

and synthetic data, were performed. In the case of the real data experiments, multiple 

sequences of synchronized data were captured, with each sequence consisting in a 

collaborative exploration of the environment at low speeds, including a human and a 

robotic platform. Each one of them was equipped with the monocular sensors assumed 

earlier, Cf for the human and Cs for the robotic platform, respectively. The data collected 

include the monocular sequences, odometry estimation from the robot (to have an 

approximate ground truth), estimation of the human pose with respect to the robot, and the 

orientation of the camera. 
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FIGURE 5.10: Robotic platform Pioneer AT3 with a test webcam and laser range finders. 

The robot used was a robotic platform based on the Pioneer 3 AT, shown in FIGURE 5.10. 
The platform runs ROS Fuerte robotics middleware over an Ubuntu 12.04 LTS distribution, 
and it was equipped with a pair of laser range finders Leuzer RS4-4 and a Logitech C170 
webcam. This webcam is able to work at 1024x768 pixels (XGA). The sensors worn by the 
human were deployed on a helmet, including a C170 camera and a Xsens AHRS. All the 
sensors, both in the robotic platform and the helmet, produce streams of data captured and 
synchronized by tools available in the ROS middleware. 

To estimate the pose of Cf, orientation data from the AHRS are combined with the 
approximate pose of the human, estimated with the range finders, as presented by (Sanfeliu 
et al., 2010) and (Ferrer et al., 2013). The final position of the camera is computed 
geometrically as a translation from the estimated position of the Atlas and Axis vertebrae 
(which allow most of the freedom of movement of the head). These vertebrae are 
considered to be at a vertical axis over the person position estimated with the range finders, 
with height modeled individually for each person. In this work, it is assumed that the 
environment is a flat area, reducing the perturbations when trying to compose the estimated 
poses of the human and the camera Cf. FIGURE 5.11 depicts the helmet with the deployed 
sensors, and the coordinate frames considered for the transformations to compute the pose 
of Cf. 
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FIGURE 5.11: View of the helmet with the camera and AHRS unit placement detail. 

Note that for the described method, accounting for the hardware available, the pose of the 
camera worn by the human respect to the SLAM camera is not assumed to be perfectly 
known. Instead, it is considered that when needed, a ‘noisy’ observation of the pose of Cf 
respect Cs is available by means of the methodology described above. The inherent error to 
the observation process is modeled assuming that the observation is corrupted by Gaussian 
noise. The value of the parameters used to model the inaccuracies for computing the pose 
of Cf were obtained statistically by comparing actual and estimated values. It is also 
important to note that an alternate method could be used for computing the relative pose of 
Cf, for instance using different sensors. However, even with the use of a more reliable 
methodology the errors would not be completely eliminated. 

To estimate the impact of the errors introduced by the multiple view virtual sensor, and its 
effects in the system accuracy, a Monte Carlo test was performed. This test showed that the 
errors introduced had little impact in the system, with the test consisting in simulating the 
initialization of a single feature using side-by-side:  

 the ID-delayed monocular method, and

 the pseudo-calibrated stereo rig approach.

In the simulation, camera Cs is located at [x,y]=[0,0] at instant k. Cf is located at [x,y]=[2,0] 
at instant k. Thus, it is assumed that the base-line between Cs and Cf is equal to 2m. A 
landmark is located at [x,y]=[0.21,5]. For comparison purposes it is assumed that Cs was 
moved (at some instant k+t) to its right to [x,y]=[0.42,0] in order to generate a parallax 
equal to 5 degrees. This amount is a typical value used as a threshold in the ID-Delayed 
method for initializing new features.  

In the simulation, the drift associated with the estimated displacement of Cs is modeled 
adding Gaussian noise with standard deviation σ=0.1m to the actual location of Cs at instant 
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k+t. The angular measurements provided by Cs are modeled adding to its actual value a 
Gaussian noise with σ=0.5º. In order to model the inaccuracies associated with the multiple 
view approach hardware, the estimated location of Cf was modeled adding a Gaussian noise 
with σ=0.3m to its actual location. The errors introduced by the AHRS device have been 
taken into account by considering that the angular measurements provided by Cf are 
corrupted by Gaussian noise with σ=1.5º. 

 

FIGURE 5.12: Initialization of a single landmark using: i: the delayed I-D monocular method (black 
dots), and ii: the multiple view approach (blue dots). The actual position of the cameras 
and the landmark are indicated by red dots. Green dots show the estimated poses of camera 
Cf in different runs. 

Using the above conditions, the location of the landmark was estimated by stochastic 
triangulation with the location of Cs (at instant k + t) and with Cf. In both cases the location 
of Cs (at instant k) was used as common pivot. The experiment was carried out 200 times. 

For the experimental setup, even considering that the location of Cf is estimated with many 
uncertainties, the likelihood region obtained with the multiple view approach is always 
smaller than the likelihood region obtained with the delayed I-D approach. This is because 
landmark depth estimation is heavily dependent on parallax. In the shown case, the parallax 
at the feature for the multiple view initialization approach is about 22º. 

5.6 Results	and	Discussion	

5.6.1 Experimental	Results	

The introduction of an auxiliary monocular sensor which can provide non-constant multiple 

view information was tested with multiple sequences. One of the disadvantages discussed 

on previous chapters was the need to manually introduce an initial metric scale, which is 
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removed with the proposed methodology. This grants more autonomy to any SLAM 

technique, exploiting capabilities in a multiple-element/multimodal scenario, and enabling 

the generation of scaled vision-based maps. The additional sensing capabilities exploited 

come from the implicit human-robot interaction captured by the sensors worn by the 

human. In addition to skip the prior knowledge requirement (i.e. artificial or known 

landmarks), thanks to multiple view system initialization, the scale propagates generally in 

a smoother way with reduced drift as the proposed method can introduce more features into 

the initial state because it is not limited by the prior knowledge. 

 

FIGURE 5.13: Left: trajectory estimated with DI-D monocular SLAM. Right: trajectory estimated 

with the multiple view feature initialization approach. Green line denotes robot ground 

truth, orange line denotes Cf ground truth, and the estimated Cs trajectory is shown in blue. 

Red features (only left) have been artificially calibrated and introduced to have an initial 

scale estimation for the delayed I-D. 

FIGURE 5.13 shows results for one of the experimental trajectories, with and without the 

utilization of the proposed non-constant stereo I-D feature initialization approach, right and 

left maps respectively. The introduction of multiple-view initialization allows state 

augmentation where reliable depth estimation is achieved in a shorter time, thus making the 

system more resilient to quick view changes, such as turning. This can be seen on FIGURE 

5.13 right, where the orientation drift is visibly minor. On the left trajectory estimation, the 

accumulated drift forces estimations so distant from actual observations within the data 

validation algorithm that most of the features are rejected. These rejections, combined with 

the drift itself, disrupt the estimation. On the other side, the trajectory estimated with the 

non-constant multiple view procedure minimizes the drift and orientation deviation, thus 
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keeping an accurate estimation even after the U-turn. Results obtained are consistent 

through several runs, with multiple examples obtained shown on FIGURE 5.14 and TABLE 5.1. 

 

TABLE 5.1: FINAL POSE ESTIMATION ERRORS AT THE END OF THE TRAJECTORY.  

Experiment 

& FIGURE 

Original DI-D Multiple View 

|x|(m) |y|(m) d (m) Angle(º) |x|(m) |y|(m) d (m) Angle(º) 

1 (5.11) 2.02 2.14 2.93 26 0,93 1,02 1,39 13.6 

2 (5.12.a) 1,53 2,92 3,29 -51 0,89 0,71 1,14 -29.4 

3 (5.12.b) 1,30 1,89 2,30 43 0,62 0,93 1,12 37.6 

5 (5.12.c) 2,15 1,78 2,79 48 1,33 1,25 1,83 31.2 

 

 

FIGURE 5.14: Estimations obtained for the rest of captured sequences, performing the trajectory 
several times and processed with the proposed approach. 

The proposed approach allows using features which normally would be rejected in the DI-
D approach after being unable to achieve enough parallax in a given time. There are two 
critical cases were features are usually unable to achieve enough parallax: the first one is 
when they are distant features, and the camera would have to travel great distances in 
certain ways to see parallax; the second one affects features which lie in projective rays 
near the visual axis when camera moves in singular trajectories, like forward. Several 
works, like (Civera et al., 2006) and (Clemente et al., 2007), have dealt with distant features 
initializing them with heuristic values, as in the undelayed general approach, as they tend to 
be useful to estimate orientation (Munguia and Grau, 2009). In the presented approach, the 
number of distant features used increases with respect to the DI-D approach (up to a range 
limited by the minimum parallax required and the distance between Cs and Cf), but those 
lying near the visual axis are the most benefitting, as they will always present more parallax 
between Cf and Cs than that achieve through temporal separation over a singular movement. 
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5.6.2 Costs	and	Analysis	

The apparent increase of the computational effort that would suppose the utilization of the 
presented approach could be hard to justify within the field of filter based SLAM, which 
tries to keep reduced computational costs. But the cost increase is bounded and could be 
further reduced. For our Cs sequence set, made of a total of 7120 frames in all sequences, 
only 38.22 % (2721 frames) presented field of view overlap with the Cf camera. While this 
overlap ratio supposed an overhead of processing almost 40% more images, the exploration 
area was reduced with the search of the corespondence ROI. It is also interesting how the 
newly proposed approach made less effort per feature to be initialized in terms of number 
of frames requiring it to be tracked, compensating the larger number of features used. 

TABLE 5.2: STATISTICS OF FEATURES USED AND TRACKING DUE DELAYED INITIALIZATION FOR

ORIGINAL DI-D MONOCULAR AND FOR MULTIPLE VIEW APPROACH  

Metric DI-D Monocular Multiple view 

Features initialized (total) 1487 1549 

Features initialized (avg.) 297.4 309.8 

Average tracking period 24.6 10.4 

TABLE 5.2 shows the features used on each feature initialization approach, and the tracking 
effort required (measured in number of frames where the feature is tracked) until the 
initialization of the features. For the experimental set, the multiple view approach uses 
about 4% more features, but the time required to initialize them is smaller. This is because 
many features that are being tracked are instantly initialized through the multiple view 
method once they lay in the overlapped field of view. This is advantageous because it 
allows introducing features known to be strong (enough to be tracked) directly, avoiding 
the computational costs of tracking them, offsetting the additional costs introduced by by 
the multiple view approach. 

Furthermore, in real-time applications employing this technique, the Cf sensor could be 
upgraded to an intelligent sensor, i.e., presenting processing capabilities. This approach 
would integrate the image processing in the Cf sensor, allowing parallel processing of 
SURF features, and sending only extracted features, minimizing communications delay. 
This processing step could be done while the robotic camera Cs makes the general EKF-
SLAM process, and thus it would be possible to have the SURF landmarks information 
after the EKF update, in time for the possible inclusion of new features. 

5.7 Conclusions	

In this chapter a new approach for feature initialization in SLAM has been proposed and 
discussed. A multiple view depth estimation procedure is proposed for feature initialization 



5-22 Data association and sensing through a human-assisted uncalibrated visual system 

under a collaborative sensing assumption. The approach is based on the DI-D technique 
discussed in Chapter 3 (Munguia and Grau, 2012) and expanded in Chapter 4 (Guerra et al., 
2013), being heavily focused towards human-robot interaction frameworks, under the form 
of collaborative explorations of the environment. The human collaboration has been 
introduced through a monocular sensor with total freedom of movement and approximately 
known pose, which is a set of assumptions generally satisfied in collaborative SAR 
robotics. As the different monocular sensors move freely, sometimes their fields of view 
will be concurrent: both cameras observing the same elements of the environment, 
producing non-constant multiple view measurements of them. As the relative pose between 
the cameras and the calibration matrices of each one of them are known, the fundamental 
matrix of a stereo system could be found. Even though this would allow the utilization of 
stereo-based rectification to ease the correspondence problem, it was deemed inconvenient 
for the approach, and descriptor-based feature matching was considered a better option. 

Utilization of non-constant multiple view depth estimation allows improving the 
performance of two specific aspects in the local scale EKF-SLAM framework. Firstly, the 
requirement of an initial metric scale introduced through synthetic features can be removed, 
substituted by the initialization of a set of features with collaborative depth estimation. This 
depth estimation has proven to have a multiple advantages: the number of features 
introduced initially is not limited to four coplanar points; and the use of a larger number of 
features presenting diverse depth values makes the metric scale propagation smoother. 
Secondly, the introduction of later landmarks through multiple view depth estimation 
enables utilization of far distance features with real depth estimation, instead of the 
heuristically assigned value used in previous works, and the initialization of frontal 
landmarks when the camera Cs moves forward and other singular trajectories. These 
changes have produced a locally strong and robust SLAM approach, thus enabling its future 
utilization on larger scale SLAM, as commented on section 2.7.3. Using the proposed 
approach in an SLAM framework considering loop closure and large map management 
would further reduce the drift of the estimated trajectory, thanks to the covariance reduction 
produced by loop closure. 

As the viability of the proposed approach has been demonstrated, research could focus on 
maximizing the advantages obtained from the HRI, while studying in depth the costs of the 
proposed technique. In terms of exploiting the HRI, the multiple view depth estimation 
could be introduced the measurement and update step of the EKF SLAM. This would 
probably require a general overhaul of the prediction and observation models currently 
used, but it should improve the accuracy of the approach. In line with this overhaul, the use 
of non-constant stereo allows to reinitialize a metric scale whenever the field of view 
overlaps, permitting the introduction of submapping techniques and other methods related 
with large map management to and achieve larger trajectories, including loop closing. 
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The proposed technique could be also expanded, with some techniques taken from the 
collaborative SLAM field, to deal with more Cf agents, e.g.: a group of different humans 
could explore an environment accompanied by a robot mapping their surroundings with 
data from the sensors deployed on the humans. While this approach would require much 
more computational power and an insightful architecture, it would be of great interest due 
its resemblance to hypothetical real cases where not a human alone, but a team, would 
explore new zones with robotic assistance. 





Equation Chapter 6 Section 1 

Chapter	6	

Multiple-view sensing for 
Monocular SLAM 

A few hundreds of Kilobots. Developed by Harvard’s Self-Organizing Systems Research Group, swarms of 
these 3.3cm robots, up to a thousand, can cooperate to execute tasks impossible for a single unit, like shape 

self-assembly, human-swarm interaction and collective transportation. 

6. Multiple‐view	sensing	for	Monocular	SLAM

6.1 Introduction	

The main contribution of the multiple view feature initialization approach presented in the 
previous chapter relied on the presence of a secondary monocular sensor (Cf) worn by a 
human29 which satisfies three conditions: 

 its pose with respect to the camera performing the SLAM process, Cs, is
approximately known/measured;

 it produces data of similar nature to Cs;

29 Though it could be carried by another robot. 
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 during some frames Cf would observe the same scenes as Cs.

These three conditions, frequently satisfied in collaborative robotics environments, have 
allowed speeding up the feature initialization process, reducing the number of required 
observations of an interest point along frames. Under this collaborative initialization 
process a feature whose multiple view depth estimation is available can be initialized 
without delays, like in the undelayed approach, but with an actual depth estimation instead 
of a heuristic value. As features can be initialized instantly, the risk of spurious/dynamic 
points increases, thus a data association validation step, like the HOCHT discussed in 
Chapter 4, becomes a critical component of the SLAM method. The feature initialization 
process designed in Chapter 5 also permitted keeping the EKF architecture at the core 
largely unchanged. And as the landmarks initialized through the described method presents 
better initial depth estimations, the uncertainty components in the covariance matrix P are 
usually lower, producing a more aggressive rejection threshold on the HOHCT gate (as this 
gating area is adjusted as a function of the innovation covariance, which in turn depends on 
the state covariance P). 

This chapter describes how to expand the benefits of the collaborative, sensing under the 
framework proposed in the previous chapter, so that the virtual sensor is exploited during 
the measurement update step, removing the limitation of using it only during the state 
augmentation step. The described collaborative SLAM method is studied from a theoretical 
point of view, considering the gains in terms of state observability and evaluating the 
increased accuracy in depth estimation through simulation. Additional experiments are used 
to test the technique in locally relevant challenges and generalist short trajectories. These 
tests allow proposing new methodologies and metrics to study how the behaviour of the 
collaborating sensor affects the performance of the SLAM methodology, and measure the 
additional computational effort required versus the classical approach. 

6.2 Full	non‐continuous	collaborative	Monocular	SLAM	

6.2.1 Kalman	Update	with	full‐observability	based	residuals	

In Chapter 3 the inverse depth parametrization is the basis for the observation model hc. 
The inverse depth model for camera Cs, hcs in equation (6.1), is largely identical to hc in 
equation 3.47, producing 3D world coordinates with respect to the camera, (hx,hy,hz). These 
can be projected into a camera plane with equation (6.2), and obtain undistorted pixel 
coordinates (ucs

u,υcs
u) in the projective plane. These coordinates are to be converted to pixel 

space, and distorted to produce, following the same equations (3.47) and (3.48), 
measurement predictions for the landmarks in map m. These predictions of the 
observations in pixel coordinates are used during the measurement and correction processes 
at the update step of the EKF methodology (described for the general approach in Section 
2.4.2 and for the delayed approach in 3.5.5) as the predicted observations for the map; and 
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the matches to them found are used as measurements obtained from the sensors (per active 
search, section 4.3.1). 
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As the collaborative virtual sensor architecture (see FIGURE 6.1) allows the SLAM process 
to work with observations both in pixel space and in real world coordinates, it is possible to 
compute the Kalman update using the residuals from fully observed features measured 
through the multiple view virtual sensor. Utilizing these measurements requires that a new 
specific measurement prediction model is derived for said features in world coordinates. 
This way, the multiple view observation data sparsely available can be used not only for the 
state augmentation step (introduction of new features), but also for the estimation and 
measurement. The new feature measurement prediction model, noted in equation (6.3), is to 
be used to predict the measurement of the landmarks satisfactorily observed and measured 
with the multiple view virtual sensor. 
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Although the idea is simple enough, that is, if it is possible to exploit the multiple view data 
in the monocular SLAM to initialize features, then it is possible to do the same during the 
update step, it presents many ramifications and require multiple modifications into the EKF 
methodology (which in Chapters 4 and 5 remained largely unchanged). Under standard 
monocular SLAM approaches, measurement and data association processes are performed 
in one step with the active search (Section 3.5.5), but to support measurement and 
observations in world space (w.r.t. the Cs camera) an additional pipeline is required to solve 
the correspondence problem, produce the measurements, and adapt the EKF to work with 
an innovation vector containing two different types of landmarks. 

The matching and state update procedure with the new pipeline integrated into the 
monocular SLAM is initialized as in previous chapters: the known features are matched 
through active search between frames in the sequence obtained with camera Cs in order to 
keep tracking accuracy consistent when only monocular data is available. The features 
matched through active search found in the correspondence ROI determined to be observed 
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by both Cs and Cf are modelled with an additional descriptor. To this end SURF descriptors 
are used similarly to the process described in section 5.4.1. Afterwards, possible points of 
interest are detected in the correspondence ROI found at the matching frame from Cf, and 
the SURF descriptors are build. 

These SURF point descriptors from Cf are then matched with the SURF descriptors from 
the known features found in the correspondence ROI of Cs. Known features without a 
match in Cf will be treated as only-bearing features, using the pixel position on image as 
measurement, and thus will use the same procedures described in Section 3.5 during the 
state update step, as in the standard delayed monocular SLAM. Those with a matching 
point in Cf, are measured in terms of world coordinates with respect to Cs through 
stochastic triangulation (Section 5.4.2). This in turn implies that from that point on, all the 
processes and equations must account that these landmarks are measured with actual depth, 
and thus described as Euclidean points w.r.t. to Cs frame, and their measurement prediction 
model will be through equation (6.3) instead of equations (3.47) and (3.48). 

FIGURE 6.1: Monocular EKF-SLAM with complete multiple view collaborative sensing, including 
measurement and matching. 
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As it was detailed in section 3.5.5, during the update step of EKF there are several 
computations performed in matrix that model relations of the landmarks and their 
measurements with the state (equation (3.51) to equation (3.56)). These matrices are 
generally consistent in the sense that they present a repeating structure, as described earlier, 
and one of their dimensions is dependent on the size of the innovation vector g (equation 
2.15 and equation 3.53). Note that innovation vector is essentially a stack with the residuals 
of the observations obtained and the predicted observations from known features; and the 
new update procedure considers some measurements as observable through only-bearing 
data while others are considered fully observable. This means that g size will vary 
accordingly to the number of seen features, as previously, and how these features are 
observed (be it as pixel coordinates or as Euclidean points in space). 

6.2.1.1. Measurement	Prediction	Jacobian	

Note that the augmented state vector and the covariance matrix will remain the same, as the 
features ŷi are keep in the filter parametrized as IDPs. But the Jacobian matrices of the 
observation model, used on several equations, like (2.16), (2.17), (3.54) and (3.56), will 
change not only in size, but in the way they are built. In previous works (Munguía and 
Grau, 2012), as hc is to be projected into Cs and distorted once in pixel coordinates, the 
only relevant information was the bearing represented by the director vector m to define a 
director ray w.r.t. Cs. 

This means that the general approach is replacing equation (3.47) with (6.4), as a means to 
simplify the symbolical computation of the Jacobian ׏H in equation (3.52). 
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This change allows for a simpler derivation of the required Jacobian for the bearing-only 
observation case, but also implies that its partial components are not reusable to compute 
the Jacobian of hxyz as the coordinates of hC describe a ray, with no consideration of the 
depth required to produce the full observation measurement. Hence, to complete the full 
procedure, the Jacobian ׏Hixyz is formulated, as noted in equation (6.5), derived from 
equation (3.47) without any simplification: 

 3 6 3 6... 0 ... ... 0 ...
ˆ ˆ

s

xyz xyz
xyz i i
i

c i

h h
H  

  
   

   x y
. (6.5) 

The partial derivatives in ׏Hixyz are w.r.t. the camera Cs state and to the noted feature ŷi 
parametrization, expanded in equations (6.6) and (6.20) respectively. 
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The measurement model w.r.t. to Cs, δhi
xyz/δx̂cs, can be decomposed into those dependent in 

the position, δhi
xyz/δrWC

cs, and δhi
xyz/δqWC

cs, according to equation (6.6). These are 
respectively defined in equations (6.7) and (6.8). Note that the derivatives of hi

xyz w.r.t. the 
velocities in the state of x̂cs are zero, as seen in the third block of equation (6.6), as the 
direct observation model does not consider them.  
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The Jacobian with respect to the orientation is split into two pieces: 

s

s s s

CWxyz xyz
ci i

WC CW WC
c c c

h h  


  

q

q q q
 , (6.8) 

where δqCW
cs/δqWC

cs described the derivative of the orientation quaternion qWC
cs w.r.t to its 

conjugate quaternion qCW
cs: 
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and the partial derivatives of the model w.r.t. the conjugate quaternion can be divided into 
the derivatives w.r.t. each of the components of the quaternion qCW

cs. 
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(6.11)

Each of the derivatives w.r.t. each component only affects to the rotation matrix RCW, 
obtained according to equation (V.3) found at the annexes. 
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Then, the derivatives of the matrix RCW with respect to the quaternion components 
(assuming that the conversion is performed with equation V.3), can be defined as: 
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Once all the partial derivatives w.r.t. the camera state are computed, the only remaining 
step is to compute the derivatives with respect to the parametrization of the landmark: 
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6.2.2 State	aumentation	and	the	Covariance	Matrix	

When a new landmark is introduced as a feature in the EKF state vector the data describing 
the landmark uncertainty and relations with previous estimations must be introduced into 
the covariance matrix. The general EKF SLAM methodology introduces the new data using 
equation (3.76), updated as equation (6.21): 
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where Rj is a diagonal matrix containing the error variance parameters of the sensor and the 
parameters stored for the new landmark, and ׏Y is the Jacobian of the inverse observation 
model. The inverse observation model is used to compute the characterization of an 
observed landmark as an inverse-depth feature, using data from the sensors and the current 
estimates of the system. In the previous chapter, and in (Guerra et al., 2014), the features 
initialized through the delayed method used the DI-D initialization process (section 3.5.6), 
while those added through the multiple view estimation used a classic monocular inverse-
depth model, as proposed by (Civera et al., 2006), with an accurate depth estimation, as 
described in section 5.4.2. This fact supposes an underrepresentation of the uncertainty 
related to the secondary camera Cf. This problem can be addressed modifying this method, 
so that matrix Rj and Jacobian ׏Y used to add features to matrix P (augmented state 
covariance matrix) account for the uncertainties derived from both cameras. 

This modification over the approach presented in the previous chapter means having a total 
of 11 parameters to represent uncertainty instead of 3. Thus, instead of updating the 
covariance matrix for the new features with depth estimation using equation (5.15) and 
(5.16), this step will be performed according to equation (3.76), so Jacobian ׏Y is 
analogous to the delayed feature initialization (discussed in section 3.5.6, equation (3.78)), 
accounting for the origin coordinates for two different rays. This in turn means that matrix 
Rj will be formed as shown in equation (6.22): 
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 (6.22) 

where (σui
2, σvi

2) denotes the pixel uncertainty for the cameras, (σxλ, σyλ, σzλ) denotes the 
uncertainty of the position of Cf, and (σq0λ, σq1λ, σq2λ, σq3λ) denotes the uncertainty in Cf 
orientation quaternion. 
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6.3 Theoretical	validation	

The intuitive impact of the introduction of the multiple view virtual sensor in the 
measurement and update steps of the EKF is clear: the landmarks yi that compose the map 
m are to be observed as 3-dimensional points instead of pixel coordinates, which leads to 
an immediate perception of depth. In turn, this ability to estimate the actual depth instantly 
allows to keep the scale map without the prior knowledge initialization, and without 
suffering the drift introduced by the degeneration of the accuracy of the initial calibration. 
Still, we desire to study and confirm these theoretical hypotheses. The results related to 
accuracy and physical realities are easy to confirm experimentally, as they will, but to test 
other aspect, different studies are required.  

 

 

FIGURE 6.2: A 2DOF simplified version of the proposed system used for performing an 
observability test. 

 
One point of interest is to study the observability of the system. As it was discussed in 
chapter 2, bearing-only sensors like camera are unable to fully observe30 the real world as 
they perceive only the orientation aspects of the geometrical relations or transformations, 
lacking the capabilities to perceive scale in translation transformations. In this section an 
observability analysis is carried out. This analysis will show that the observability of the 
system is improved when multiple view measurements are incorporated into the SLAM 
system, as some landmarks in the map are considered to be fully observed. 

A system is defined as observable if the initial state x0 at any initial time t0 can be 
determined given the state transition and observation models of the system and 
observations y[t0,t] from time t0 to a finite time t. When a system is fully observable, the 
lower bound of the error in our estimate of its state will only depend on the noise 

                                                 
30 In the sense of complete measurement of the pose without additional data or processing. 
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parameters of the system and will not be reliant on initial information about the states. This 
has important consequences in the context of SLAM. 

In order to carry out the analysis, a simplified version of the proposed system is assumed 

(see FIGURE 6.2). Assuming the following unconstrained camera model ( , )cx f x u  for the 

camera Cs: 
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(6.23)

where xc=[xc, zc, θc, vx, vz, ωc] is the system state of camera Cs. [xc, zc, θc,] represent the 
position and orientation of the camera, and [vx, vz, ωc] their first derivatives. In this model, it 
is assumed an unknown input, u = [Vx, Vz, Ω], of linear and angular accelerations with 
zero-mean and known covariance Gaussian processes. It is also assumed that the camera Cs 
it is capable of detecting and tracking feature points with perfect matching accuracy, coded 
in their inverse depth. In this case, the measurement process is modelled by equation (6.24): 
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where [ xi, zi] is the Euclidean position of a ith feature coded by its inverse form: 
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(6.25)

The state of the ith feature wi is defined by wi=[x0i, z0i, θi, ρi], where [x0i, z0i] is the position 
of the camera Cs when the feature was first detected, θi is the first bearing measurement, 
and ρi =1/di is the inverse of the feature depth di. Because, [x0i, z0i, θi] is given directly when 
the ith feature is initialized, it is assumed that the system state to be estimated, x̂, is 
composed of the state of the camera Cs and the inverse depth of the features. Hence 

1 2ˆ ˆ ˆˆ ˆ[ , , ,..., ]c nx x    . 

Fully observable measurements from the multiple view virtual sensor, which are available 
when there is some overlapping of the FoV of both cameras Cs and Cf, provide information 
about the feature depths. Thus, a multiple view measurement of a ith feature is modelled by 
equation (6.26): 

1
( ) 

 i i
i

y h x . (6.26) 

Thus, for n landmarks being measured by the camera Cs, and assuming that m ≤ n multiple 
view measurements are available, the system output is defined as y = [hθ1, …, 
hθn,hρ1,…,hρm]T. 
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In (Hermann and Krener, 1977) it is demonstrated that a nonlinear system is locally weakly 
observable if the observability rank condition rank (O) = dim(x) is verified. The 
observability matrix O is computed from equation (6.27): 
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Where Li
f (h) is the ith order Lie Derivative (Slotine and Li, 1991) of the scalar field of the 

measurement h with respect to the vector field f. Note that in equation (6.27) the zero-order 
and first-order Lie Derivatives are used for each bearing measurement yi = hθi(x). In the 
case of multiple view measurements yi = hρi(x) only the zero-order Lie Derivative is used. 

In particular, it is investigated the case when bearing measurements yi = hθi(x) of four 

landmarks are available. Hence 1 2 3 4ˆ ˆ ˆ ˆˆ ˆ[ , , , , ]cx x     , and dim( x̂) = 10. The observability 

matrix O was symbolically computed for three different assumptions: i) no multiple view 
measurements are available, ii) one multiple view measurement is available, iii) two 
multiple view measurements are available. These assumptions gave the following results: 

 First case, when there is no availability of multiple view measurements the rank(O) 
= 8,  so there are two non-observable modes in the system. 

 Second case, with a unique multiple view measurement, rank(O) = 9, which makes 
one more mode observable. 

 Third case, when two multiple view measurements are available, rank(O) = 10, then 
the whole system becomes fully observable. 

The above result is interesting because shows that the system could become fully 
observable even if only a sub-set of the landmarks seen by camera Cs is also detected by 
camera Cf. Also, as it could be expected, the observability of the system is improved by 
incorporating multiple view measurements. 

6.4 Results	and	discussion	

The whole data fusion process described, together with the inclusion of additional data 
during both the EKF update step and the initialization of new landmarks, was evaluated and 
tested within multiple environments. The tests have shown clearly how monocular SLAM 
approach can greatly benefit from the sparsely distributed in time data provided by the 
secondary camera sensor, Cf. This Cf camera, acting as an auxiliary bearing-only 
monocular sensors deployed as a wearable device by a human, helps composing a virtual 
sensor with instant depth estimation capabilities, creating a new hybrid monocular SLAM 
approach with greater accuracy and reliability. 

Special focus was put in singular trajectories and worse case scenarios, like front advance 
in corridors and indoor closed turns. This are commonly found in areas designed for human 
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use, and present specific challenges. Note how monocular SLAM approaches rely most of 
the time in side-ways movement to avoid the singular –forward advance– trajectories, and 
avoid close turns, expanding them to long curves. Another recurrent issue, not only on 
indoor visual mapping, but in structured environments, is the appearance of texture, 
repeated patterns, or simply, similarly looking objects, which raise the challenge of the data 
association problem from ‘looking for a good match’ to ‘discriminating the correct match 
between the good ones’. 

6.4.1 Experimental	Simulations	

To study performance of the method in terms of depth estimation, a robotic camera was 
simulated, assuming that this camera moved in a trajectory approximately parallel to a wall 
with known points that can be used by the system as visual landmarks (FIGURE 6.3). The 
orientation of the camera varies a few degrees, but it is maintained approximately 
perpendicular to the landmarks. In the simulations it is assumed that camera is able to track 
without error all the landmarks inside its field of view. The objective of the experiment is to 
evaluate the benefits obtained from incorporating multiple view measurements into the 
system for short periods of time. 

The following parameters were used in simulations for the SLAM camera Cs: noise for 
angular measurements σCs = 1°, field of view FoV = 70°. Multiple view measurements, 
which are available when there is some overlapping of the FoV of both cameras Cs and Cf, 
are emulated by assuming noisy measurements of range and bearing. In this case, the noise 
for angular measurements is σCsf = 6°, and the noise for range measurements is σr = 0.5 m. 
In the simulated experiments, the camera was moved approximately 14 meters during 30 
seconds of simulation time. For two periods of time, from the second 8th to the 9th, and from 
the second 17th to the 19 th, it was assumed that multiple view measurements were available 
for being incorporated into the system. 

The upper plot of FIGURE 6.3 shows the results obtained from a run of the simulation when 
no multiple view measurements are available (pure monocular DI-D SLAM). In this case it 
can be clearly appreciated a huge drift in the error of the estimated map and trajectory. In 
this plot it is also noticeable the degradation of the metric scale in the estimations. The 
lower plot of FIGURE 6.3 shows the results obtained when multiple view measurements are 
incorporated into the system. It is worth noting that virtual sensor measurements were 
available only during two short periods, yet this was enough to improve the estimation. 
FIGURE 6.4 shows the average MAE (mean absolute error) in scale (top) and camera position 
(bottom), obtained after 20 Monte Carlo runs of simulation. The degradation of the metric 
scale was measured using the function at equation (6.28): 
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where di is the actual depth of a feature, and the set i={1,2,..n} represents the features seen 
by the camera at a given time instant. The variable d̂i is the estimated depth for the same i 
feature. In this case a relation di /d̂i =1 represents that the metric scale of a feature has been 
perfectly recovered. The above expression is only computed for those features with a small 
covariance where it is assumed that the estimated depth has converged. Hence, in equation 
(6.28), small values of s imply that the metric scale is correctly propagated by the system. 

 

 

FIGURE 6.3: Estimated map and trajectory obtained. Top: with monocular DI-D SLAM. Bottom: 
with collaborative monoSLAM. 

 

In FIGURE 6.4 it can be clearly appreciated how both the drift in the metric scale and the 
error in position are minimized just after the inclusion of multiple view measurements into 
the system. Note that the above effect is especially notorious during the second period 
where Cf and Cs observe concurrent scenes. 
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FIGURE 6.4: Top: Average MAE for drift in scale. Bottom: Average MAE for camera position. For 
the results obtained with collaborative SLAM, the translucent rectangles indicate periods of 
time during of which multiple view measurements are available. Note how MAE is 
minimized just after that the above occur. 

FIGURE 6.5: Average MAE computed from camera position for different values of uncertainty σr in 
multiple view measurements. Note that even with a considerable value of uncertainty in 
estimates of depth provided by the virtual sensor, the MAE is well bounded compared with 
the purely monocular approach. 

FIGURE 6.5 shows the average MAE in camera Cs position when parameter σr is varied. The 
objective is to investigate the effectiveness of the proposed approach for different values of 
uncertainty in virtual sensor measurements. As it can be appreciated from this experiment, 
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even, if noisy multiple view measurements are incorporated into the system, the error in the 
estimates can be considerably mitigated, thus proving the expected robustness of the 
described approach. 

 

 

FIGURE 6.6: Relationship between depth measurement uncertainty and average MAE position 
uncertainty. 

In order to see the relationship between the measurement uncertainty and the camera 
trajectory estimation uncertainty, the average MAE for the trajectories with varying σr was 
computed. FIGURE 6.6 shows the different average MAE for the trajectories, whose 
measurement uncertainty varies between 0.25m and 1m. The plot shows a strong 
correlation between the uncertainties in the measurement process and the estimation of the 
trajectory. Thus, we can conclude that an improvement in the accuracy of the depth 
estimation should provide a strong improvement in the general estimation of the map, 
reducing the uncertainty inside the EKF. 

6.4.2 Singular	trajectories	and	movements	

A set of front advancing sequences were captured through ROS running over Ubuntu 
12.04, and processed offline with the described technique. During the recording, the 
exploration team composed of a human and the robotic platform travelled a straight 
corridor. Note that under movements aligned with the camera depth axis only really long 
trajectories produce enough parallax to enable landmark depth measurement, thus these are 
the worst cases for delayed monocular approaches, on which this work is based. At the 
same time, long movements generally produce the effect that the relative perceived size of 
the elements on the environment vary, inducing scale variability, which combined with 
reflective phenomena and possible repetitive textures, reduces robustness and reliability. 
Many works, both in delayed and undelayed approaches, like (Clemente et al., 2007) and 
(Munguía and Grau, 2012), exploit distant features, initializing them with heuristic values, 
and rely on them to reduce the effects of noise on orientation estimation and improve 
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stability. Though similar to this case, note that in singular movements, especially in 
corridors, most of the solid landmark candidates will be found as unreliable to be fully 
initialized under a delayed approach in a reasonable number of frames. 

FIGURE 6.7: Worst (red) and average (blue) cases for standard monocular DI-D SLAM within a 
corridor in singular trajectory. 

FIGURE 6.8: Worst (red) and average (blue) cases (same sequences as FIGURE 6.7) for collaborative 
monocular SLAM within a corridor in singular trajectory. 

The battery of tests consisted in a series of several sequences captured in similarly looking 
corridors, trying to obtain a 15-meter trajectory map without using any of the classic large 
map management techniques (Bailey and Durrant-Whyte, 2006). The robot speed was 
adjusted to approximately match that of a walking person, between 0.75m/s and 1.5m/s. 
FIGURE 6.7 and FIGURE 6.8 show the estimated odometry results (the sequence of camera 
optical centre rWC

cs
 values) for 2 of the cases: one of the worst scenarios (red) and the 

average case scenario, with FIGURE 6.7 showing the trajectories for the monocular SLAM 
and FIGURE 6.8 those for the proposed collaborative SLAM. In the worst case trajectory (red 
line in both figures) both approaches underestimated the displacement and achieve a huge 
orientation error. Still, in the proposed approach errors are lesser, with almost double the 
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distance advance along the depth camera axis, traveling almost 60% of the 15m. For the 
blue trajectory (average case in both figures), the standard procedure manages to advance a 
notable 8.9 meters, but still incurs in a noticeable orientation error, which in larger 
scenarios could make all the process useless given that it was supposed to be a straight 
trajectory. On the other hand, the proposed approach falls short of the target by less than 
1m with minimal orientation error (about 9.5º). Average error metrics from the whole set of 
sequences are found in TABLE 6.1. 

TABLE 6.1 AVERAGE METRICS FOR DI-D MONOSLAM AND COLLABORATIVE MONOSLAM. 

Technique 
Avg. accumulated 

position error εacc (m) 
Avg instantaneous 
position error(m) 

Avg final 
position 
error(m) 

Avg. overlap 
time ratio(s/s) 

DI-D 
MonoSLAM 

694 5.56 6.78 - 

Collaborative 
MonoSLAM 

276 2.21 3.17 0.387 

 

The accumulated and instantaneous position errors are computed according to equations 
(6.29) and (6.30) respectively, with the averages for all the 15m long experiments shown on 
TABLE 6.1. εj denotes the sum of the position error for each estimated point i={1..k}, in a 
given trajectory j, and εacc denotes the average ε of the different sequences. At the same 
time,  j computes the average position error for all the k steps in sequence j, and  acc 
accumulates this same value on average for all the 10 sequences. The average error metrics 
in TABLE 6.1 show how the collaborative approach has a strong advantage over the classical 
approach in singular movements. 
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All the error metrics observed produce noticeable lower values for the proposed approach 
than the classical DI-D approach metrics. As the drift accumulates, with locally long 
trajectories (without map splitting or similar approach), the error grows faster the longer it 
runs, so for both approaches we see that the final position error is notably over the average 
instantaneous error. 

6.4.3 High	angular	speeds	within	small	view	spaces	

Another recurrent issue detected in monocular SLAM approaches is that during turns the 
observable environment changes very quickly, frequently producing an scenario where all 
the features ŷi available in the map m are no longer seen in a matter of fractions of seconds 
(which translate into few frames). This problem is very present in the delayed feature 



6-18 Data association and sensing through a human-assisted uncalibrated visual system 

initialization approaches: while the undelayed approaches will initialize landmarks with 
inaccurate depth estimations, it is entirely possible that a delayed approach is not able to 
find and initialize new features as quick as those in the map become no longer visible. 
When the number of features seen in an environment drops below a threshold (which 
depends on several factors, as the movement and rotation speeds, the quality of the detected 
features, etc.)31, the EKF loses convergence quickly, leading to completely distorted 
trajectories, or in some cases, estimated trajectories which do not match the actual ones 
even in direction. When combined with forward aligned movements w.r.t. the camera 
visual axis, turn and twist become an even worse issue (see FIGURE 6.9). 

FIGURE 6.9: Two sample trajectories, performed with delayed monocular SLAM, red line, and the 
multiple view collaborative monocular SLAM, blue line. Left: A sample 90º turn, one of the 
most common features to be found in large building dedicated to human activities. Right: 
Sample full U-turn (180º). Notice how the trajectory estimation fails for the pure delayed 
MonoSLAM approach as it is unable to initialize enough features in time. 

FIGURE 6.9 shows two experiments focused on turning. The robotic platform is traveling at 

0.8m/s and performs a 90º turn and a full 180º respectively, with the human following 

approximately the dashed blue line. In FIGURE 6.9 left, the red trajectory shows how a pure 

monocular SLAM approach cannot really deal with a close turn, and the turn is 

overestimated. The trajectory estimation is further disrupted by the inability of the non-

collaborative approach to fully deal with the forward camera depth movements. The final 

result overstates the turn by almost 80º and is not even able to keep the position estimation 

inside the corridors/observable environment. 

31 From a mathematical point of view, in an ideal situation 4 landmarks provide enough information to 
compute camera pose solving any ambiguity. But those assumptions mean very little when confronted with 
the reality of having approximately modelled uncertainties for each mathematical magnitude considered. 
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In FIGURE 6.9 right the trajectories estimated for the 180º show with clarity the difficulty of 

turning for EKF based monocular SLAM procedures. The purely monocular approach 

simply ends losing convergence (thus not being able to process the complete sequence in a 

meaningful way) after losing the orientation estimation and turning sense. As before, the 

forward movements are shown to be especially unsuitable for monocular SLAM 

approaches. The collaborative approach (blue trajectory) is able to estimate most of the 

trajectory done in the sequence. It is worth noting that the position error, at 0.94m, is 

almost as big as the case shown FIGURE 6.9 left, while the distance travelled is much shorter 

(about 6.65m). Introducing the turn, even when the orientation can be considered as 

correctly estimated, with a final orientation of 21.4º, has increased the drift error, with a 

final position error proportionally more than twice bigger than in a straight trajectory. 

6.4.4 General	trajectories	and	performance	

In order to further evaluate the gains and effectivity of the proposed technique, and 
specifically, the impact of the measurements with the pseudo stereo procedure, a series of 
metrics have been developed. These metrics allow studying the effect of the periods where 
the overlap is available, taking into consideration factors such as the duration of the 
overlaps and their distribution. To test them and obtain relevant numbers, a more general 
sequence set, with both straight sections and turns has been captured. 

The main interest is to study the interaction of the overlap periods with the gain in accuracy 
in the odometry estimation. With that end, two different metrics are used to study the 
overlap periods distribution and duration, the τ overlap time regularity, equation (6.31), and 
the κ non-overlap time deviation, equation (6.32). In these expressions, N and M are the 
number of intervals with and without overlap respectively, with ηi being the duration of ith 
interval with overlap, and μj the duration of the jth interval without overlap. These 
expressions are only useful for cases with more than a single field of view overlap period, 
as they measure the relation between them, trying to identify whether certain overlap 
distributions provide more advantages. 
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The two coefficients represent the regularity of the separation between overlap periods (κ), 
and the similarity between the duration of these overlapping periods (τ). In both metrics, the 
lower values, tending to zero, represent what is considered a better distribution of the 
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overlap time (with the requisite that both M and N are greater than 1). A low κ value means 
that the intervals where overlap is present are distributed uniformly; while a lower τ value 
implies that these intervals of overlap are of similar duration, and that the overlap time is 
not concentrated mostly in a reduced number of periods. 
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An additional metric has been designed to evaluate the return rate of the computational 
overhead (U) supposed by actively following the proposed collaborative SLAM strategy. 
Equation (6.33) describes this value, which is based on the cumulative squared error of the 
position, but considering also the length of the trajectories and the duration of the overlap 
periods. The duration of the overlap periods is introduced as a penalizing factor: if the 
squared errors are lowered by the use of the collaborative perception approach, they can 
offset the penalization, but if the improvements are low, U will grow. The inverse of the 
length of the trajectory is used as a normalizing factor: as the drift grows faster the longer 
the local trajectory is extended, the growth of the quadratic error and overlap penalization 
must be distributed along the whole trajectory. 

FIGURE 6.10: Trajectories for DI-D and collaborative SLAM for cases a through c. 

The error and proposed metrics of the general set of sequences are shown in TABLE 6.2. 
Three examples of trajectories are shown in FIGURE 6.10. The introduction of the 
collaborative measurement into the state augmentation and estimation update processes 
leads to a consistent improvement into the odometry estimation. In several cases at TABLE

6.2, like FIGURE 6.10 c, it is observed how pure monocular SLAM cannot make locally long 
trajectories without further help, but the proposed approach helps improve the results 
notably. It is also worth noting that there may be correlation between the time where the 
multiple view measurement is available (noted as overlap time), and a decrease in the 
odometry error. 
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TABLE 6.2: METRICS FOR COLLABORATIVE MONOSLAM OVERLAP TIME EVALUATION. 

Sequence 

DI-D SLAM errors (m) 
Collaborative 

MonoSLAM err.(m) Overlap time 

ratio (s/s) 
τ κ U 

Final 

position 

Avg. 

instant 

Final 

error 

Avg. instant 

error 

a 3.88 3.17 1.24 0.82 0.23 1.9 1.4 33.8 

b 2.84 2.00 1.19 0.69 0.32 1.1 0.7 36.9 

c 4.12 3.04 2.51 1.72 0.22 1.4 1.2 126.2 

d 3.19 2.26 1.46 0.98 0.27 2.2 2.9 54.3 

e 5.32 4.12 2.43 1.73 0.38 3.4 2.5 223.1 

f 3.45 2.15 1.68 1.28 0.37 2.8 3.3 115.6 

g 4.83 3.34 1.74 1.12 0.58 4.1 1.8 159.1 

h 3.96 2.87 1.97 1.34 0.33 1.7 2.3 122.4 

i 5.91 4.43 2.73 2.26 0.49 1.6 0.8 316.7 

j 4.73 3.92 2.35 1.54 0.44 3.8 3.2 232.5 

 

 

FIGURE 6.11 plots the final position error for each sequence, with and without the 
introduction of virtual sensor measurements, linking the errors of each sequence, against 
the overlap time rate. In this figure it can be observed how the distance between the errors 
for the classic approach and the proposed approach grow as the overlap time ratio grows.  

The proposed metrics, κ, τ and U produced mixed results. While τ showed no appreciable 
correlation between the regularity of the overlap periods and the different error metrics, κ 
exhibits some more relation between the results. Although intuitively, splitting the overlap 
time in several periods in a spaced manner should be more convenient, as it reduces the 
covariance between the observed features and the camera to that uncertainty of the multiple 
view measurement, the data obtained is not conclusive enough to infer a correlation. 
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FIGURE 6.11: Final position error versus overlap time rate for sequences a through j. 

On the other side, the U value offered insight and helped provide an analysis less focussed 
on accuracy and centred on the costs of the multiple view measurements. The 
computational costs of the DI-D monocular SLAM have been already discussed in (Guerra 
et al., 2013), and given a fixed maximum on the number of features, it can be assumed to be 
bound by an upper limit. Then it is logical to observe the other process with great 
computational costs associated, which is the introduction of the virtual sensor. The costs 
are incurred because the proposed technique requires to search for points of interest at one 
image and to compute SURF descriptors of two frames at each EKF iteration where is 
applied. Thus, the U value helps to keep in perspective the trade-off between accuracy and 
cost. On average, the additional overhead introduced by the multiple view measurement 
procedure supposed less of a quarter of the total computational cost (about 23% of time) in 
the simple MATLAB implementation. Still, this cost could increase as this overhead was 
only incurred in 37% of the frames on average. In a worst case run, where the virtual 
sensor cost penalty is incurred for each frame (even when there is no overlap between 
fields of view), this penalty becomes almost the 45% of the time consumed. This increased 
computational cost would probably make the approach unmanageable in real time, unless 
deep work at optimization was performed. 
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6.5 Conclusions	

This chapter describes a completed approach to the monocular SLAM problem, where data 
obtained from a human-deployed sensor is fully fused into the EKF SLAM methodology. 
The data produced by the secondary sensor allows converting the standard monocular 
measurements (detailing heading and attitude)32 into full-observability measurements, 
which also include the depth. These augmented measurements are used in all the steps of 
the EKF, including the measurement and update step of the extended Kalman filter and the 
feature initialization, building upon previous chapter, where only the feature initialization 
task (Guerra et al., 2014) used the multiple view virtual sensor depth estimation. This 
implies that the multiple view measurement procedure has to be accounted for both in the 
direct and inverse observation models, as it is used in both steps. While the Cf camera can 
move freely, a combination of data from the robotic sensors and the wearable devices 
allows estimating its pose with respect to the robotic camera Cs. It was discussed in Chapter 
5, although it is possible to perform a full stereo process based on epipolar geometry with 
the available data, the epipolar stereo estimation was reject based on the image processing 
required warping images according to the relevant homographies, according (Fusiello et al., 
2000) or any related approaches. Thus, matching points with SIFT/SURF descriptors 
proved to be the most convenient approach. 

One of the shortcomings in the work described in chapter 5 and presented in (Guerra et al., 
2014) is the utilization of a standard undelayed inverse observation model to compute the 
update of the covariance matrix once a new feature was introduced into the EKF. As the 
complete approach requires the formulation of new Jacobians to compute the Kalman gain 
and innovation covariance during the update step, the initialization process has been 
updated to use a more accurate representation of the process covariance, although its impact 
is thought to be small. The update step has been deeply modified, introducing 
measurements with full depth obtained without delay, instead of only measuring features in 
terms of pixel coordinates. In order to support these measurements, the classical Kalman 
innovation formulation for pixel-based features has been updated. The described procedure 

builds the Jacobian H once all the features have been correctly measured, in order to 
know if any given feature will be treated as pixel in camera frame coordinates or as fully 
measured point. While delaying the construction of the Jacobian produces a slower 
approach than building it along the measurement process, as typically done in monocular 
approaches (Munguía and Grau, 2012), it avoids the dynamic matrix resizing penalization 
incurred by having to refit a partially built Jacobian matrix. 

An initial study in simulations allowed characterizing the gains and advantages of the 
approach with respect to the uncertainty in the feature measurements. The results of these 

                                                 
32 Pixel coordinates are essentially the description of a ray w.r.t. the camera optical center, thus they can be 
interpreted as spherical coordinates. 
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simulations showed a high correlation between the uncertainty in the depth measurement 
and that of the state of the system, especially in terms of the camera position estimation. 

The experimental sequences captured have allowed testing the proposed methodology with 
real data. The main focus has been evaluating the strengths of the proposed technique, both 
as a general approach, and specifically against the most troublesome scenarios for classical 
monocular SLAM, be it delayed or undelayed. Thus, multiple sets of sequences were 
captured: on one hand those looking like a general trajectory, and on the other hand specific 
sequences with singular movements in mind, like those aligned with the depth axis of the 
camera, and close turns. For processing the sequences, no large map management technique 
was used, thus all the drift was accumulated over. These sequences show how the proposed 
approach has much more accuracy and resilience than ordinary monocular EKF SLAM. 
The forward advance sequences show clearly how monocular EKF SLAM has many 
troubles estimating the forward movement, while the proposed approach estimates the 
trajectory with greater accuracy. On the other side, the turning sequences showed that close 
turns are probably one of the hardest movements for monocular SLAM to estimate, to the 
point of completely losing convergence if quick enough. These claims have been further 
proved by the computed error metrics. 

During the experiments the collaborative SLAM approach was executed offline in a 
MATLAB implementation, thus time performance data would be unreliable. Still, previous 
works based on the same monocular SLAM methodology performed robustly on real-time, 
as seen in Chapter 4 and (Guerra et al., 2013). Additional computational overhead 
introduced by processing two images per frame when overlap is found and matching the 
SURF descriptors could be dealt using parallel processing of the images within a strong 
implementation from a computer science point of view. 
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Part	IV	

Concluding Remarks 
 

 

Excerpt from Carry on my wayward son, from Kansas. Many researchers have faced the struggle, tribulations 
and self-doubt of the wayward son, with its lyrics being curiously resounding in the field of robotics, 

especially for perception and AI. 

 

This thesis has presented efforts of some years, both with successes and failures, 
researching the field of monocular SLAM. In a certain sense, after all this research, I feel 
more like an expert in how you should not try to solve the SLAM problem, possessing a 
clear sight over the vast void we still have to fill to actually solve it, than someone who 
knows the actual solution. It makes me wonder how far we are from a generalist solution 
with human-like performance33 within assailable computational requirements, and many 
other questions: Are we even on the right path? Which is the penalization we are paying in 
terms of computational efforts by working with points, lines, and other accurate 
mathematical entities instead of uncertain generalizations like the human brain? Will we 

                                                 
33 Measured in results. Though we are far from solving the SLAM problem, I am pretty confident that 
neuroscience is several orders of magnitude farther away of comprehending how the human mind works. 

Though my eyes could see I still was a 
blind man, 

though my mind could think I still was a 
mad man. 

Masquerading as a man with a reason, 
my charade is the event of the season. 

And if I claim to be a wise man, well, it 
surely means that I don't know 

 

Carry on my wayward son -Kansas 
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even be able to emulate the performance and adaptability of the human sensory system 
without knowing its inner workings? 

From the vantage point of having studied the SLAM problem and its vision based solutions, 
it can be seen that many of the ‘solved challenges’ still are in its infancy, and the general 
SLAM solution looks far away. Still, as it will be presented and discussed in the following 
chapter, I am confident that the research developed can prove itself useful to the field, 
maybe not by becoming a universally accepted standard, but by providing and proving 
certain insights otherwise untested or unfounded. As it has been discussed, under certain 
circumstances our developments for data association validation can suppose a reduction in 
computational efforts of several orders of magnitude. At the same while filter based visual 
SLAM is starting to feel dated, our work in collaborative perception focused on joining the 
data through a virtual sensor strategy, being an uncommon and untested approach, which 
was proven successful, presenting new opportunities and challenges applicable to any 
strategy of visual SLAM in the right circumstances. 
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Chapter	7	

Conclusions and future work 

 

 

Flyability Elios UAV vs ascience fiction mapping drone (courtesy of Flyability and 20th Century Fox, 
respectively). The german word weltschmerz was coined by Jean Paul to denote the pain and anxiety 
produced by the comparison between how it is and how we think should be. Which word should we use to 
denote the deception between what was promised by visionaries, salesmen and tech gurus, and what was 
actually delivered? 

7. Conclusions	and	future	works	

7.1 Introduction	

The relevance of the SLAM problem has been commented several times, and cannot be 
overstated. The research in this problem has led to several publications as well as the work 
presented in this thesis. To conclude this thesis, this chapter lists the publications produced 
in the research field, with commentary on the contribution of each publication, the work 
done, the achievements, and also the frustrations and failures. This means that the list 
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includes even those works and results which, although pertaining to the SLAM field, ended 
largely unrelated to the visual SLAM focus of the thesis. The final section is devoted to 
present the general conclusions of my research, briefly discussing the results achieved, the 
future opportunities that remain opened in the lines of research I worked, and commenting 
what I expect of the research in the SLAM problem for the future. 

7.2 Publications	and	contributions	

The work and results presented in this dissertation are the fruit of an initial will to melt 
several areas of research and interest of the members of the Vision and Intelligent Systems 
research group into a unique crucible. The initial preliminary research pointed towards 
studying the viability of producing new bearing-only mapping approaches, not necessary 
based on vision. Thus, the first publication on the SLAM area of research proposed an 
approach based on sound mapping, and discussed some of the early results obtained: 

 Edmundo Guerra, Yolanda Bolea, Antoni Grau, Rodrigo Munguía (2011).
New approach on bearing-only SLAM for indoor environments, in
Proceedings of the 16th IEEE Conference on Emerging Technologies Factory
Automation (ETFA).
DOI:10.1109/ETFA.2011.6059227.

As sound probed being too unreliable as a way of measuring the environment with the 
available resources, the research was eventually redirected into studying the viability and 
expected gains of introducing modelling techniques generally associated with the field of 
automatic control, like linear parameter varying (LPV) EKF, and pseudo-measurement 
methodologies. 

 Edmundo Guerra, Yolanda Bolea, Antoni Grau (2012). Pseudo-measured
LPV Kalman filter for SLAM, in Proceedings of the 10th IEEE International
Conference on Industrial Informatics (INDIN).
DOI:10.1109/INDIN.2012.6301358

Though in terms of mathematical theoretical development and 2D simulations the method 
appeared to be advantageous, this did not translate into actual gains into the real vision-
based SLAM methodology: the mathematical development enabling the pseudo-
measurement method in 2D was not applicable in the 3D scenario.  

Tests with the delayed I-D monocular SLAM developed in parallel with the commented 
works, revealed that it still presented weaknesses and issues that could be addressed. The 
most urgent need detected was a way to address robustly the data association problem, 
which led to Part II of this dissertation. An initial proposal for the HOHCT method for data 
validation was presented in: 
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 Edmundo Guerra, Rodrigo Munguía, Yolanda Bolea, Antoni Grau (2013). 
New validation algorithm for data association in SLAM, in ISA 
Transactions. Vol 52(2013): 662-671. DOI:10.1016/j.isatra.2013.04.008. 
(2013 IF: 2.256 Ranking: 9/85 - Q1) 

In addition to the results presented in paper commented above, several more tests were 
performed, and the profiling implementation of the algorithm was polished to obtain more 
real-time-like statistics. All these improvements were published in: 

 Edmundo Guerra, Rodrigo Munguía, Yolanda Bolea, Antoni Grau (2013). 
Validation of Data Association for Monocular SLAM, in Mathematical 
Problems in Engineering. Volume 2013, Article ID 671376, 11 pages. 
DOI:10.1155/2013/671376. (2013 IF: 1.082 Ranking: 33/87 Q2) 

Additional work with the HOHCT was developed, trying to reduce the penalization 
produced removal of “good features” due to a single failure of the SMD test. A multiple 
strike-based policy was tested, delaying removal of landmarks until they tested as jointly 
incompatible multiple times. The results probed that the trade-off was neutral in the ‘best 
case’ scenarios; but in the average cases it penalized performance, as it increased the 
possibilities of multiple incompatible pairings, which are inconvenient, as discussed in 
Chapter 4. 

 Edmundo Guerra, Yolanda Bolea, Antoni Grau (2014). Policy-based 
optimization for matching validation algorithm in monocular robotics, in 
Proceedings of the 2014 Complexity in Engineering (COMPENG). Barcelona, 
Spain, 16-18 June 2014. DOI:10.1109/CompEng.2014.6994678. 

The approach to producing a collaborative virtual sensor was focused initially in dealing 
with the metric scale initialization problem, as discussed in Chapter 5. The initial works 
with the collaborative sensing, including description of the hardware system, the theoretical 
framework to work the multiple view geometry and the first results solving the feature 
depth initialization problem in a multimodal system were published in: 

 Edmundo Guerra, Rodrigo Munguía, Antoni Grau (2014). Monocular SLAM 
for Autonomous Robots with Enhanced Features Initialization. Sensors, 
Vol. 14, pages 6317–6337. DOI:10.3390/s140406317. ( IF: 2.245 Rank 10/53 
Q1). 

A follow-up to this work, introducing an accurate Jacobian for the inverse observation 
model, as described in Chapter 5, and additional experimentation focused in industrial like 
corridors was presented in: 

 Edmundo Guerra, Rodrigo Munguía, Antoni Grau (2015). Human-Robot 
SLAM in industrial environments. In Proceedings of the IEEE 
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International Conference on Industrial Informatics 2015 (INDIN). Pages 390-
395. 

This line of research also produced an invited chapter in a book, focusing in an expanded 
state of the art review, and shifting the work’s discussion towards a more theoretical 
approach. 

 Edmundo Guerra, Yolanda Bolea, Rodrigo Munguía, Antoni Grau (2016). 
Recent Development in Monocular SLAM within an HRI Framework. 
Published in Recent Advances in Robotics Systems, pages 87-105. Digital 
version: ISBN 978-953-51-2571-6; Printed version: ISBN 978-953-51-2570-
9. DOI: 10.5772/63820 

The method was further expanded to include the full total of the works presented in Part III, 
including the hybridized monocular SLAM with the virtual sensor to enable multiple view 
estimation fully integrated in the EKF methodology (including the measurement and update 
steps). This work, with a small set of results was presented as an invited presentation in a 
workshop at the IROS congress: 

 Edmundo Guerra, Yolanda Bolea, Antoni Grau (2015) Human-assisted 
mapping of urban environments in a robotic framework/with bearing-
only cameras. In Urban Robotics Applications Workshop of the 2015 
IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS). Hamburg, Germany, September 28 - October 02, 2015 

Once the fully integrated multiple view estimation was thoroughly tested, and the new 
metrics developed to evaluate the behaviour of the secondary monocular sensor and the 
effects of the availability of the collaborative measurements in short local trajectories were 
completed, the results were collected in a paper: 

 Edmundo Guerra, Rodrigo Munguía, Yolanda Bolea, Antoni Grau (2016). 
Human collaborative localization and mapping in indoor environments 
with non-continuous stereo Sensors Vol. 16, num. 3, p. 1-23. DOI: 
10.3390/s16030275. (2015* IF:2.033 12/56 Q1). 

In addition to the original research performed with the VIS group, the author also 
collaborated in other works related to the SLAM problem: 

 David Gómez, Rodrigo Munguia, Edmundo Guerra, Antoni Grau (2014). Full 
autonomous navigation for an aerial robot using behavior-based control 
motion and SLAM. In Proceedings of the 19th IEEE International 
Conference on Emerging Technologies and Factory Automation (ETFA). 
DOI: 10.1109/ETFA.2014.7005240 
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7.3 Conclusions	and	future	work	

The SLAM problem is probably the most important challenge to be solved in order to have 
truly autonomous robots. This problem constitutes the essential perception task to 
understand the environment, learn it, and comprehend the spatial relations between the 
elements present and the robot itself. The work have been developed in a feature point 
based visual framework: as we are willing to create autonomous robots that shall operate in 
spaces developed for human beings, it is only natural that we try to match human senses 
used for the tasks. Thus, the utilization of visual perception, as we commented earlier 
during the thesis, provides enormous quantities of data, introducing the problem of 
processing it. This problem, closely related to the map representation, can be solved in 
different ways depending on which level we want to work: most of the approaches deal it 
using salient point features as landmarks, based on point detectors and descriptor; but there 
are also works dealing higher level primitives, complex object and relation detection based 
approaches. 

Keeping a point feature-based strategy to process the measurements and represent the 
environment may probe unsuitable for achieving a comprehensive spatial mapping and 
producing semantically rich maps: there are plenty of works which consider additional data, 
for example, higher level features like lines, or including object recognition and plane 
estimation. Still, these techniques generally provide little gains in terms of accuracy in the 
localization34 problem. Moreover, especial care is required when dealing with recognition 
of high level patterns and objects that are commonly repeated in human inhabited 
environment. Thus, point feature based SLAM is still the standard monocular SLAM 
strategy.  

Notice that when discussing the fitness of point features as basis for a SLAM approach, I 
denoted specifically in monocular SLAM. Although when I started my research monocular 
sensors were the obvious choice, the current availability of inexpensive sensors, pushed by 
the development of MEMS for consumer electronics, makes that decision questionable as 
of today. Introduction of inertio-visual strategies could help enhance results, as many other 
sensors, and their availability would make hard to justify ignoring them from a logistics 
point of view. Still, introduction of said sensors is known to add complexity to the SLAM 
problem. I feel that even today this could disrupt research lines where the problem still have 
not been fully explored, hindering development of purely monocular solutions by 
producing earlier improvements through multimodal techniques; and also hinder 
developments in the emergent research trying to gap the divide between the visual SLAM 
problem and the novel computer vision techniques based in convolutional neural networks. 

As for the work presented itself, our research into the data association problem has 
improved the base considered monocular SLAM technique with the introduction of the 

                                                 
34 Understanding localization as pose estimation with respect to the map. 
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HOHCT algorithm to assess the joint compatibility. As it was reported in (Munguía and 
Grau, 2012), this algorithm was able to compete with state of the art approaches without 
using data association validation. Then, the introduction of the HOHCT improved the 
delayed monocular SLAM, giving it not only more accuracy in the general cases, but 
improving greatly its robustness against disruptive conditions. The HOHCT algorithm has 
also been probed to beat which used to be considered the golden standard of data validation 
(JCBB) in the average cases for the considered delayed monocular SLAM approach. 

Work with respect to the data association problem can progress in several directions, 
accounting for the current state of the art in SLAM. Firstly, given the increase in 
computational power and the emergence of new development tools to program at GPU 
level, there is margin to work in the matching and measurement step keeping the EKF 
architecture. This could be combined with map management techniques to produce denser 
maps. Notice that although modern approaches, dominated by the Bundle Adjustement 
(BA) technique, use high level feature descriptors to solve both detection and matching, 
and improve the solutions to other problems like place recognition, active search strategies 
are still active an active field of research in high performance computation specialized 
works, as mentioned in (Törtei Tertei et al., 2016). Thus, the presented work could be 
expanded aiming towards highly specific architectures where, through parallelization and 
other advanced programming techniques, it could be possible to introduce several upgrades, 
e.g.: working with denser maps, or introduction of advanced measurement models allowing
estimation at subpixellic resolution.

Within validation step itself, as current trends in visual SLAM point towards optimization 
based approaches, the use of a batch gating based technique may look dated. Still, as it was 
discussed in (Strasdat et al., 2010), below a given computational power threshold, filter-
based SLAM approaches produce a better trade-off than BA in terms of accuracy against 
computational power required. Thus, apart from high-end purely research-based 
application, most of the real world applications still are based on filtering approaches. 
Moreover, data association (DA) is still being solved through JCBB and its derivatives are 
being researched in several problems, like multimodal sensing (Li et al., 2014), scan based 
association (Shi et al., 2014), and point cloud matching (Shen et al., 2016). 

Besides the data association, the other feature identified in the delayed monocular SLAM 
approach which offered the most interesting opportunities was the landmark feature 
initialization. As it has been described, the delayed monocular SLAM generally requires an 
initialization process to introduce some landmarks with actual depth measurements to 
produce scale. The shift towards the multiple view architecture under the human 
collaborative sensing framework offered the chance to introduce an improved method to 
initialize the features. Instead of introducing a given set of known features, thus requiring 
calibration a measurements, the produced technique allows initialization under fully 
unknown scenarios. Moreover, the scale is propagated in a smother way, as the initial 
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feature set is not limited to a small set of coplanar features, thus being more representative 
of the different depths observed in the environment. 

As the results of introducing the multiple view sensing into the feature initialization process 
were successful, the logical conclusion was to complete the integration of the multiple view 
sensing into the SLAM methodology. For the data collected, the analysis of the impact 
produced by the availability of the alternative sensing process probed that the most positive 
outcome was when the multiple view sensing was available during the whole sequence at 
regular intervals. This validates the intuitive idea that the multiple view sensing, although it 
presents a set of errors and uncertainties due the composition of transformations estimated 
by several sensors, it helps bounding the uncertainties, as new landmarks and multiple view 
measurements present an approximately constant scale error, unlike pure delayed 
monocular SLAM. This improves the general accuracy of the localization, becoming 
especially noticeable in singular movements, as it has been studied, and in rapid turns, 
which constitute the worse cases for SLAM. 

Still, the proposed collaborative sensing framework can be further developed to exploit the 
multiple view sensing capabilities and the HRI opportunities. Fully integrating the state of 
the different elements of the collaborative virtual into the EKF state should provide 
interesting results, though it would rapidly converge into an approach to collaborative 
mapping. The opportunities here would range from introducing additional mapping 
elements (like the camera performing SLAM), to add sensing capabilities through 
additional secondary devices, e.g., instead of a human and a robot collaborating, a small 
group of humans with one or more robotic devices exploring and exhaustively mapping an 
area. In this latter example, the HRI could become explicit: the humans can provide 
knowledge and object recognition capabilities to enhance the map, thus upgrading the 
mapping results to include clouds of points and annotations about specific areas or clusters 
of features. An approach like this can be directly applied into SAR situations, and would 
provide invaluable help. 

Going back to the field of monocular SLAM, I would like to note how the most successful 
approaches in recent years have been more a result of masterful technical integration, than 
purely novelty research. This has translated into an increased threshold to produce relevant 
research, as any novel SLAM approach is expected to implement solutions to all the 
different challenges within the SLAM problem35. Although at first thought this should not 
constitute too much of a problem, it is worth noting how for example, in the current bundle 
adjustment architectures, although there are different threads to perform the different tasks, 
the coupling between said processes, not only from a technical point of view but also from 
a theoretical and mathematical one, has increased, and is even greater than in classical 
filtering approaches. This means that novel research into any of the challenges of SLAM 

                                                 
35 Not necessarily all the solutions must be novel research. In fact it is becoming increasingly common to 
produce research where the contribution lays more into the innovation than in the novelty. 
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tends to represent increasing loads of technical work for diminishing returns in terms of 
validation of new theoretical approaches.  

Because of this, and the influence that has already been exerted by the open source and free 
software movements in many research, I feel inclined to believe36 that we should start 
seeing in a few years the emergence of modular architecture/s to solve the SLAM problem. 
In this architectures software design criteria will become more relevant, and different layers 
of interfaces will eventually become de-facto standards. These interfaces, in the same 
measure that they fix certain criteria that should be met, will also allow to work more freely 
inside the different problems they isolate, and will help sharing solutions, both for 
dissemination and cross testing. Still, the complexity in the design steps of these modular 
architectures means that though it is possible that more than one appear, I would not expect 
them to be common enough to fragment the research community back into a point where 
producing novel results require more technical effort than theoretical development. 

36 I would not go as far to say expect, but I would not consider it a vain hope. 
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Annexes 
 

 

The Great Library of Alexandria, impression by Otto Von Corven, around the 19th century.  

V. Ocultar, los pone auto 

V.A List	of	Abbreviations	

 

BA  Bundle Adjustment 

CCD  Charge-Coupled Device 

CLSF   Constrained Local Submap Filter 

CML  Concurrent Mapping and Localization Problem (a.k.a. SLAM) 

CMOS  Complementary Metal-Oxide Semiconductor 

C-SAM Collaborative Smoothing and Mapping 
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CV  Computer Vision 

DA  Data Association 

DDF  Distributed Data Framework 

DGPS  Differential Global Positioning System 

DoF  Degrees of Freedom 

DI-D  Delayed Inverse-Depth 

DSLR  Digital Single-Lens Reflex (camera) 

DTAM  Dense Tracking and Mapping 

EIF   Extended Information Filter 

EKF   Extended Kalman Filter 

FAST  Features from Accelerated Segment Test (feature detector and descriptor) 

fps   frames-per-second 

GLONASS  Globalnaya Navigatsionnaya Sputnikovaya Sistema 

GNSS   Global Navigation Satellite System 

GPGPU  General-Purpose computing on Graphics Processing Units 

GPS   Global Positioning System 

GPU  Graphical Processing Unit 

GRV   Gaussian Random Variable 

GSF   Gaussian Sum Filter 

HOHCT Highest Order Hypotheses Compatibility Test 

HRI  Human-Robot Interaction 

ICNN  Individual Compatibility Nearest Neighbour 

ICP   Iterative Closest Point 

I-D   Inverse-Depth (feature parametrization) 

IDP  Inverse Depth Points 

IEEE1394 High Performance Serial Bus specification (used in cameras) 

IEKF   Iterated Extended Kalman Filter 

IF   Information Filter 

IMU  Inertial Measurement Unit 

INS   Inertial Navigation System 

IR  Infrared (light spectrum) 
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JC  Joint Compatibility 

JCBB  Joint Compatibility Branch & Bound 

KF  Kalman Filter 

Laser  Light Amplification by Simulated Emission of Radiation 

LIDAR Laser Imaging Detection And Ranging 

LRF  Laser Range Finders 

MCI  Muscle-computer Interface 

MEMS  Microeletromechanical systems 

NCC  Normalized Cross-Correlation 

NN  Nearest Neighbour 

P4P  Perspective of 4 Points 

pdf/s   Probability Distribution Function/s 

PF  Particle Filter 

PnP  Perspective of n Points 

PTAM  Parallel Tracking and Mapping 

Radar  Radio Detection And Ranging 

RGB-D Red Green Blue Depth 

ROI  Region of Interest 

ROS  Robot Operating System 

RPF   Repeated Pulse Frequency 

SAD  Sum of Absolute Differences 

SAM  Smoothing and Mapping 

SAR  Search and Rescue 

SfM   Structure from Motion 

SIFT  Scale-Invariant Feature Transform 

SLAM  Simultaneous Localization And Mapping 

SMC   Sequential Monte-Carlo 

SMD  Squared Mahalanobis Distance 

SSD  Sum of Squared Differences 

SURF  Speeded-Up Robust Features 

TJTF   Thin Junction Tree Filter 

ToF  Time of Flight (camera) 
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UKF Unscented Kalman Filter 

USAR Urban Search and Rescue 

UV Ultraviolet (light spectrum) 

w.r.t. with respect to 

ZNCC Zero-Mean Normalized Cross-Correlation 

ZSAD Zero-Mean Sum of Absolute Differences 
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V.B Orientation	notation	and	conversion

Compute a quaternion from a directional vector:

 

cos
2

sin
2








  
    

  
     
  
    

q (V.1)

Compute a quaternion from a rotation matrix: 

 

   

   

   

     

1

1

1

1

1

3, 2 2,3

4

, 1 1,1 2, 2 3,31,3 3,1

4

2,1 1, 2

4

q

R R

q

q R where q R R RR R

q

R R

q

 
  
 
      
 
 

 
  

 (V.2) 

Compute a rotation matrix form a quaternion: 

     
     
     

2 2 2 2
1 2 3 4 1 2 0 3 1 0 2 3

2 2 2 2
1 2 0 3 1 2 3 4 2 3 0 1

2 2 2 2
1 0 2 3 2 3 0 1 1 2 3 4

2 2

2 2

2 2

q q q q q q q q q q q q

R q q q q q q q q q q q q

q q q q q q q q q q q q

     
 

      
 

      

 (V.3) 
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