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Abstract
Classical planning is the problem of finding a sequence of actions that achieve a desired
goal from an initial state, assuming deterministic actions. Dynamic epistemic logic
(DEL) on the other hand, provides formal frameworks that allow the modeling of com-
plex beliefs in multi-agent settings and define how those beliefs change due to physical
and communication actions. In this dissertation we focus on bridging the gap between
the expressivity of DEL and the computational approaches used in classical planning.
First, we present formulations that capture a fragment of the expressivity of DEL and
can model nested knowledge in two different multi-agent settings. Second, we tackle the
computational problem of finding plans by providing translations to classical planning
that allow the use of classical planners and heuristic search. We empirically evaluate
our approaches and discuss their formal properties.

Resumen
La Planificació Clàssica és un problema que busca una seqüència d’accions per arribar
a una meta o objectiu des d’un estat inicial, assumint que les accions són deterministes.
Per una altra banda, la Lògica Epistèmica Dinàmica (LED), proporciona una eina de tre-
ball formal que permet el modelatge de creences complexes en un entorn de múltiples
agents, i defineix com aquestes creences varien aplicant accions fı́siques i de comuni-
cació. En aquesta disertació ens centrem en connectar l’expressivitat de LED amb els
diferents enfocaments que s’utilitzen a planificació clàssica. Primer presentem les for-
mulacions que capturen un fragment de l’expressivitat de LED i que pot modelar conei-
xement anidat en dos configuracions diferents amb múltiples agents. Després abordem
el problema computacional de trobar plans, tot proporcionant traduccions de planifica-
ció clàssica que permeten utilitzar planificadors clàssics amb búsquedes heurı́stiques.
Finalment, evaluem de forma empı́rica els nostres enfocaments i parlem sobre les seves
propietats formals.
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Preface
Classical planning is the problem of finding a sequence of actions that achieves a goal,
given an initial situation. It is the simplest problem of automated planning, since it as-
sumes complete knowledge of the environment and deterministic actions. The problem
can be mapped to a path finding problem, where nodes represent states (the values of a
set of variables) and directed edges represent actions that allow the transition from one
state to the next.

In the worst case, determining if a given classical planning instance in STRIPS has
a solution is PSPACE-complete (Bylander, 1994). Despite the worst-case complexity,
state-of-the-art classical planners (which take as input a compact representation of the
problem) efficiently solve a variety of problems, as demonstrated by their performance
on benchmarks from planning competitions 1. This was achieved by devising a number
of search approaches, such as heuristic search (Bonet et al., 1997; McDermott, 1996),
where the search for a solution is guided by a function which estimates the distance (in
terms of action cost) of a state to a goal state, and width-based search (Lipovetzky and
Geffner, 2012), where states are not evaluated based on their distance to the goal but
on their novelty. Further efficiency has been achieved with search enhancements such
as helpful actions and landmarks (Hoffmann and Nebel, 2001; Richter and Westphal,
2010).

Classical planning predominantly refers to single-agent planning: an agent that acts
within an environment in order to achieve his goal. In the presence of other agents,
planning must take into consideration a number of additional factors: are the agents
collaborating or not, do they need to coordinate, must they reach an agreement about
resources etc. We are interested in a specific aspect of multi-agent planning which is
the ability to plan by taking into consideration the knowledge the agents have about (i)
the environment and how their actions affect it, and (ii) the knowledge the other agents’
have and how it is affected by actions and communication.

Dynamic Epistemic Logic (DEL) (Van Benthem, 2011) focuses on such issues: how
to reason about knowledge and beliefs in a dynamic, multi-agent setting. DEL is an
umbrella term for a number of different logics that study how actions and communi-
cation affect knowledge and beliefs. Based on Kripke models and the notions of state
and indistinguishability (Kripke, 1971), DEL approaches provide formal frameworks
for modeling complex beliefs in multi-agent situations and how they change due to
physical and information-sharing actions.

1http://www.icaps-conference.org/index.php/Main/Competitions

IX



“tesi2” — 2017/9/30 — 11:48 — page X — #10

Classical planning focuses on computationally efficient approaches for solving plan-
ning problems, while DEL investigates the formal semantics and expressivity of theo-
ries about knowledge/beliefs and change. In this dissertation we focus on bridging the
gap between them by providing formulations that (i) capture part of the expressivity
of DEL in terms of high-order (nested) knowledge, and (ii) allow, through translation
approaches, the use of classical planners and heuristic search to find plans.

In Part I of the dissertation we review the necessary background. We start with the
classical, conformant and contingent planning models. The classical planning model is
relevant to the translations we present in later chapters, the conformant and contingent
planning models are relevant to the problems we have and their type of solutions. Then
we present a categorization of multi-agent planning problems and, lastly, we review
(Dynamic) Epistemic Logic, in terms of language and semantics.

In Part II we introduce a belief representation B(t), which is the starting point for the
rest of the work in this dissertation. In the first chapter of this part, the belief represen-
tation B(t) is used for modeling linear, multi-agent planning problems, where a plan is
a sequence of actions that must achieve the goal for all possible initial states. It allows
for nested epistemic literals to appear in goals, preconditions and as parameters in sens-
ing and update actions. We present the dynamics of our formulation by specifying how
different types of actions change the belief representation B(t), and how B(t) can be
mapped to a Kripke model K(t), whose accessibility relations are reflexive, symmetric
and transitive. We then present a sound and complete translation to a classical plan-
ning problem which is quadratic to the number of possible initial states and is based on
similar translations for conformant and contingent problems to classical ones.

In the second chapter of Part II, we extend the previous belief representation to ac-
commodate on-line, multi-agent planning problems, where the plan must achieve the
goal for one possible initial state: the true, hidden state. We introduce the notion of a
planning agent and define how to evaluate truth in relation to the states that the plan-
ning agent considers possible at each given point in time. Our approach is based on a
plan-execute-observe-and-replan cycle, for which we provide an algorithm and a new
translation to classical planning. The new translation expresses a relaxation where the
planning agent chooses one of the possible initial states as the assumed, hidden state
(instead of being provided one from an external source). This assumed, hidden state is
the source of all observations during planning. If the execution of the plan fails due to
some observation which contradicts the assumption, then the assumed, true state is no
longer considered as a possible candidate for the true, hidden state, and we replan. The
translation is sound and complete, and the number of calls to the classical planner is
bounded by the number of states and agents in the problem. We show that our approach
can be used within the framework of generating dialogues. We present dialogues where
agents can volunteer and ask for information, by considering what the other agents need
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to know or might know, in a goal-directed manner.

In Part III we provide two optimizations: a translation which is linear in the number of
possible initial states and a decomposition approach. Though none of the two optimiza-
tion is general enough to be applied to the entirety of our problems, we show that at least
one optimization can be applied to most of the problems that are presented in this dis-
sertation. For a linear translation to be possible, passive sensors must contain only static
literals, while sensing actions must either contain only static literals or involve all agents
(e.g. public announcements). A preprocessing phase is necessary in order to determine
which sensing actions and passive sensors allow an agent to distinguish between two
states. The decomposition approach is based on dividing the original problem into sub-
problems. We identify subproblems by first partitioning the set of literals based on their
initial relevance. Two literals are initially relevant if, by knowing the truth value of one,
an agent can derive the truth value of the other. The second step is to define whether
two literals are dynamically relevant due to some conditional effect of a physical action,
a sensing action or passive sensor. For example, given the sensing action of a formula,
two literals are dynamically relevant if they both appear in the formula. By determining
the sets of relevant literals, we can define the decomposition of the original problem into
subproblems. where each subproblem corresponds to a partial joint belief Bi(t) whose
states are partial states. We then provide a translation which is sound, complete, and
quadratic to the number of partial states of the largest subproblem.

The formulations and experimental results presented in this dissertation have been pub-
lished in the following articles:

Filippos Kominis and Hector Geffner. Beliefs in multiagent planning: From one
agent to many. In the 24th International Conference of Automated Planning
and Scheduling (ICAPS-14), Workshop on Distributed and Multi-Agent Planning,
pages 62-68. [Chapter 4]

Filippos Kominis and Hector Geffner. Beliefs In Multiagent Planning: From One
Agent to Many. In the 25th International Conference of Automated Planning and
Scheduling (ICAPS-15). [Chapter 4]

Filippos Kominis and Hector Geffner. Multiagent Online Planning with Nested
Beliefs and Dialogue. In the 27th International Conference of Automated Plan-
ning and Scheduling (ICAPS-17). [Chapter 5]
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CHAPTER 1

Classical Planning

1.1. The Classical Planning Problem

Classical planning is the task of finding a sequence of deterministic actions with known
effects such that, when applied in the initial, fully-known state, it results in a state where
the goal is satisfied. It can be formulated as a path-finding problem over a directed
graph: nodes represent the different states of the environment, while edges are actions
indicating the transition from one state to another due to the action. A plan then is a
path from the node representing the initial state to a node where the goal is satisfied.

Definition 1.1.1. The classical planning model S is defined as the tuple
〈S, s0, SG, A, f, c〉 where:

S is a finite and discrete set of states.

s0 ∈ S is the known initial state,

SG ⊆ S is a non-empty set of goal states

A(s) ⊆ A the set of actions in A that are applicable in each state s ∈ S,

s′ = f(a, s) is a deterministic transition function which, given a state s ∈ S and
an action a ∈ A(s), returns the resulting state s′.

c(a, s) is the positive cost of applying action a in the state s.
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The solution to a classical planning model is called a plan π, where:

Definition 1.1.2. A plan π for a classical planning model S is a sequence of actions
π = [a0, a1, ..., an] such that, when applied to the initial state s0, it results in a sequence
of states [s0, s1, ..., sn] where sn ∈ SG.

1.2. Syntax and Semantics

In most cases, the set of possible states is too large to be represented explicitly. For this
reason, factored representations are used. The most common representation is STRIPS
(Fikes and Nilsson, 1971), which consists of only boolean variables (called fluents or
facts or atoms) and allows states and actions to be described through these variables.
Each boolean variable denotes whether a proposition about the world is true or false at a
given state, and a state is defined as the set (implicitly a conjunction) of the truth values
of all the variables in that state. The actions are defined based on their precondition and
postconditions: the precondition of an actions is a set of fluents that need to hold in a
state in order for the action to be applicable on that state, while post-conditions define
which fluents become true/false after the action. Formally:

Definition 1.2.1. A classical planning problem P in STRIPS is defined as the tuple
〈F, I, A,G〉 where:

F is the set of fluent symbols in the problem.

I is the set of atoms over F which are true initially,

A is the set of actions, where every α ∈ A is a tuple 〈pre(α), add(α), del(α)〉,
where pre(α), add(α), del(α) ⊆ F ,

G a set of atoms over F that define the goal.

The set add(α) contains the atoms which are to become true when α is applied, while
the set del(α) the atoms which are to become false. We assume that if a fact does not
appear in I , then it is considered to be false (closed-world assumption).

A classical planning problem defines a classical planning model where:

each state s ∈ S is a subset of F , s ⊆ F , and if p ∈ s then p is true, while for
every p′ ∈ F s.t. p′ 6∈ s, p′ is false in s,

the initial state s0,

4
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Figure 1.1: A single agent planning problem, where the agent needs to pickup block B and
move it to position Ig.

the goal states SG are all the states s ∈ S s.t. G ⊆ s,

an action α is applicable in a state s, α ∈ A(s), iff pre(α) ⊆ s,

the transition function f(α, s) is defined by add(α) and del(α). More specifically,
f(α, s) is (s/ del(α)) ∪ add(α), given α ∈ A(s).

In the presence of a cost function, the evaluation of a plan is based on its total cost:

cost(π) =

|π|∑
j=0

cost(aj, sj)

If a cost function is not provided, we assume actions to have a uniform cost. i.e. each
action has a cost 1. Based on the total cost of a plan, an optimal plan π∗ is a plan with
the minimum cost.

1.3. Example

Consider a single agent on a N ×N grid, where N = 5. The agent is in position I1 and
the goal is for both the agent and the packageB to be in position Ig, as depicted in Figure

5
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1.1. We can model this problem as a classical planning problem P = 〈F, I, O,G〉
where:

F : {a at x(pi), a at y(pi), p at x(pi), p at y(pi), holding package}, for 1 ≤
i ≤ N , with a at x(pi), a at y(pi) denoting the position of the agent and p at x(pi), p at y(pi)
denoting the position of the package.

I : {a at x(p2), a at y(p3), p at x(p3), p at y(p5)}

A :

• action α = pick up(pi, pj), for any 1 ≤ i < N and 1 ≤ j < N , with

◦ pre(α) : a at x(pi), a at y(pj), p at x(pi), p at y(pj)

◦ add(α) : holding package

◦ del(α) : p at x(pi), p at y(pj)

• action α = drop(pi, pj), for any 1 ≤ i < N and 1 ≤ j < N , with

◦ pre(α) : a at x(pi), a at y(pj), holding package

◦ add(α) : p at x(pi), p at y(pj)

◦ del(α) : holding package

• action α = up(pi), for any 1 ≤ i < N , with

◦ pre(α) : a at y(pi)

◦ add(α) : a at y(pi+1)

◦ del(α) : a at y(pi)

• action α = down(pi), for any 1 < i ≤ N , with

◦ pre(α) : a at y(pi)

◦ add(α) : a at y(pi−1)

◦ del(α) : a at y(pi)

• action α = left(pi), for any 1 < i ≤ N , with

◦ pre(α) : a at x(pi)

◦ add(α) : a at x(pi−1)

◦ del(α) : a at x(pi)

• action α = right(pi), for any 1 ≤ i < N , with

6
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◦ pre(α) : a at x(pi)

◦ add(α) : a at x(pi+1)

◦ del(α) : a at x(pi)

G : a at x(p5), a at y(p5), p at x(p5), p at y(p5),

One of the plans for this problem is:

π = {up(p3), up(p4), right(p2), pick up(p3, p5),
right(p3), right(p4), drop(p5, p5)} (1.1)

1.4. The Planning Domain Definition Language

The Planning Domain Description Language (PDDL) (McDermott, 2000) has become
the standard language for expressing classical planning problems. PDDL allows the us-
age of STRIPS, as well as extensions of it, and different versions of PDDL denote dif-
ferences in the expressivity of the language (Fox and Long, 2003; McDermott, 2003).
In this dissertation, we use two specific extensions of STRIPS: conditional effects and
axioms.

1.4.1. Conditional Effects

Conditional effects refer to effects that are conditioned on the truth values of fluents: if
the condition holds the effect takes place, otherwise it is not.

Definition 1.4.1. Given a classical planning problem P with a set of actions A, each
action α ∈ A is defined as a tuple 〈pre(α), eff (α)〉 where:

pre(α) ⊆ F of P ,

eff (α) = {e1, ..en}, where ej = cj → addj, delj

and cj, addj, delj are sets of fluents. The set cj is the condition of the effect, while addj
and delj represent its effects. In addition, cj can be the expression true, indicating that
the effect can take place in all states where the action can be applied.

As before, α ∈ A(s) if pre(α) ⊆ s, and f(α, s) stands for (s/ Dels(α, s))∪Adds(α, s),
where:

7
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Dels(α, s) =
⋃
cj⊆s

delj

Adds(α, s) =
⋃
cj⊆s

addj

for all ej ∈ eff (α).

The applicability of an action in a state depends on its preconditions, and the applica-
bility of each of its (conditional) effects on their respective conditions.

1.4.2. Axioms

Actions define a relationship between two states, as we saw with the definition of the
transition function s′ = f(α, s): the truth value of fluents in state s′ depend on the truth
value of fluents in state s and the action α. An axiom, on the other hand, defines a
relationship between the truth values of fluents and derived predicates in the same state:
whether a derived predicate is true depends on whether some other fluent(s) is true in
the same state (McDermott, 2000).

We define derived atoms as the atoms whose truth value depends only on the truth values
of (i) other derived atoms, and/or (ii) non-derived, called primitives, fluents. This means
that a derived atom cannot be explicitly defined as true in the initial state - only through
explicitly defining the truth value of the primitives it depends on - and its truth value
cannot be changed directly through some action’s effects. On the other hand, they can
be used in preconditions, in the conditions of conditional effects and in the goal. The
presence of derived predicates allows us to extend the definition of a classical planning
problem:

Definition 1.4.2. A classical planning problem with axioms is the tuple P = 〈F, I, A,X,G〉
where:

F = Fd ∪ Fp, where Fd is the set of derived atoms and Fp the set of primitive
ones, with Fd ∩ Fp = ∅

I is the set of literals over Fp which are true initially,

A is the set of actions, where every α ∈ A is a tuple 〈pre(α), eff (α)〉, where
pre(α) ⊆ F and for every ei ∈ eff (α) we have that ci ⊆ F and addi, deli ⊆ Fp.

8
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G a set of atoms over F that define the goal.

X is the set of axioms, where every ax ∈ X is a pair 〈px,Fx〉, where px ∈ Fd and
Fx a formula in first order logic.

Two clarifications are necessary: first, given an axiom αx, px can only be positive. That
is, we cannot derive the negation of a derived atom, yet there is no need to because
atoms that do not explicitly appear true in a state are assumed to be false (closed world
assumption). Secondly, in order to not get trapped in a circular definition and, at the
same time, be able to use derived fluents in the first-order formula Fx of another derived
fluent, the set of axioms X must be stratified (Thiébaux et al., 2005).

Definition 1.4.3. An axiom set X is stratified iff there exists a partition of the set of
derived fluents Fd into non-empty sets {F i

d, 1 ≤ i ≤ n} such that for every pi ∈ F i
d and

every axiom αx = 〈pi,Fx〉 ∈ X:

1. if pj ∈ F j
d appears in NNF(Fx), then j ≤ i,

2. if pj ∈ F j
d appears negated in NNF(Fx), then j < i

Any stratification of Fd induces a stratification on X . Applying all axioms in each stra-
tum X i before applying the axioms in stratum X i+1, always leads to the same fixed
point independently of the chosen stratification.

Though axioms are not strictly necessary, since they can be compiled away, they prove
to be useful, both in terms of modeling PDDL domains, as well as computational effi-
ciency. First, they provide an intuitive, natural way of defining recursive relationships,
such as reachability. There are no intuitive ways to define such relationships without
axioms in PDDL, and such ways usually lead to complex action definitions. Second,
compiling axioms away leads to either domain descriptions which, in the worst-case,
are exponential in size to the original one, or to plans of worst-case exponential length
(Thiébaux et al., 2005).

Example with conditional effects and axioms

In Figure 1.2 we can see part of the PDDL encoding: action up(p3) and action up with
conditional effects, taken from the problem we described in Example 1.3. We also show
the PDDL encoding of an axiom: the derived atom ”at-corner” represents the fact that
the agent is present in one of the corners of the grid, while the formula defining its truth
value is written in disjunctive normal form (DNF) where every term denotes one of the
corner positions.

9
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action α = pick up, with

• pre(α) is empty.

• eff (α) = a at x(pi),a at y(pj),p at x(pi),p at y(pj)→
holding package,¬p at x(pi),¬p at y(pj), for 1 ≤ i < N and 1 ≤ j < N
.

action α = drop, with

• pre(α) = holding package

• eff (α) = a at x(pi),a at y(pj),→
p at x(pi),p at y(pj),holding package, for 1 ≤ i < N and 1 ≤ j < N .

action α = up, with

• pre(α) is empty.

• eff (α) = at y(pi)→ at y(pi+1),¬at y(pi), for 1 ≤ i < N .

action α = down, with

• pre(α) is empty.

• eff (α) = at y(pi)→ at y(pi−1),¬at y(pi), for 1 < i ≤ N .

action α = left, with

• pre(α) is empty.

• eff (α) = at x(pi)→ at x(pi−1),¬at x(pi), for 1 < i ≤ N .

action α = right, with

• pre(α) is empty.

• eff (α) = at x(pi)→ at x(pi+1),¬at x(pi), for 1 ≤ i < N .

in which case, one plan could be:

π = {up, up, right, right, right}

1.5. Complexity

Given a classical problem P in STRIPS, the problem of determining whether a plan
exists for an arbitrary problem instance is PSPACE-complete (Bylander, 1994). This is
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Figure 1.2: PDDL encoding of an action without conditional effects, an action with conditional
effects and an axiom.
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the class of problems that can be solved using memory which is polynomial to the input
size and unrestricted amount of time. The problem of finding optimal plans (minimum
cost) for arbitrary instances also belongs in the same class. Given that in the worst
case, planning problems are intractable, current approaches are generally assessed in
terms of performance (memory/time) and/or plan quality on benchmarks. There are no
complexity results for dynamic epistemic logic with common knowledge.

1.6. Classical Planners

Despite the theoretical worst-case results, classical planning approaches have proved
to do quite well in terms of performance, evident by the results of the International
Planning Competitions (IPC). The situation is similar to satisfiability problems: while
difficult in the worst case to tackle, current approaches do well in terms of time and
problem-size’s they tackle (Kautz and Selman, 1996; Gomes et al., 2008).

There are two techniques that allow classical planners to do so well. The first is heuris-
tic search, with the first heuristic planner being HSP (Bonet and Geffner, 1999). Since
then, the planners that have dominated the IPC use heuristic search (Bonet and Geffner,
2001; Hoffmann and Nebel, 2001; Helmert, 2006; Richter and Westphal, 2010), or
portfolios techniques which combine different heuristics and search algorithms (Val-
lati et al., 2015). Heuristics estimate the distance of a state to the goal, and, based on
that distance, states can be pruned (and thus reduce the search space) or have less pri-
ority concerning expansion.The second technique is search enhancements, like helpful
actions (Hoffmann and Nebel, 2001; Helmert, 2006) and landmarks (Richter and West-
phal, 2010). Helpful actions are used to reduce the branching factor of the search. Just
like heuristics can be used to reduce the number of states to be considered, helpful ac-
tions reduce the number of the applicable actions that need to be checked. Landmarks
are propositional formulas than have to become true at some point in all plans. They can
be considered as subgoals of the original problem and used for measuring the distance
of a state to a goal state, based on the number of unachieved landmarks.

Classical planning is more than heuristics guiding the search for plans. It tries to (i)
explain how certain heuristics are related to each other (Helmert and Domshlak, 2009),
and (ii) understand the nature of the heuristics, by finding connections with different
approaches (Bonet and Geffner, 2008). Recently, it has moved from taking advantage
of heuristics to taking advantage of the structure of the planning problems, as captured
by the notion of width (Lipovetzky and Geffner, 2012; Lipovetzky and Geffner, 2017).

12
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CHAPTER 2

Planning with Incomplete Information

2.1. Introduction

In the previous chapter we considered the model of classical planning that assumes de-
terministic actions and a fully known initial state. These two assumptions are quite
strong, especially if we consider real-life problems where (i) having complete informa-
tion is either too difficult or impossible, and (ii) predicting the effects an action is not
always feasible. Such scenarios include agents being placed in unknown environments,
like the ruins of a building after a natural disaster, with actions in their disposal which
might fail, like picking up a rock, in which case the agent might need to retry until he
succeeds.

The notions of uncertainty and partial observability are important for this dissertation
when multiple agents are acting in the same environment. The agents may originally
know different aspects of the environment (like different parts of the same map), they
might sense different facts about the environment while acting in it and they can com-
municate in order to reduce their uncertainty.

In single-agent scenarios, uncertainty is limited to the environment: there are facts
whose truth value is not known to the agent. In multi-agent scenarios, uncertainty is
about the environment but also about the knowledge that other agents have, or if we
take it one step further: the knowledge other agents have concerning the knowledge
other agents have, and so on.

13
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In this chapter, uncertainty denotes the fact that the initial state is not known to the
agent and partial observability denotes the agent’s ability to observe certain facts about
the world based on some condition, and we will refer to it as sensing. Also, we will
assume that all actions are deterministic.

2.2. Conformant Planning

The deterministic conformant planning model is the classical planning model where the
initial situation is not fully known. This means that there is no specific initial state, but
a set of possible initial states. The conformant planning problem is to find a sequence
of actions such that its execution guarantees that the goal is achieved independently of
the actual true state.

A conformant planning problem can be formulated as a path-finding problem over a di-
rected graph, just like the classical planning one. The key difference is that nodes are not
states as defined in classical planning, but belief states: sets of states the agent considers
possible in a given situation (Bonet and Geffner, 2000). It is this distinction that points
out the role of actions with conditional effects: an action may be executable in the belief
state but have no effects, or, even more interestingly, each state in the belief state might
be affected differently by the applied action, depending on which conditional effects
take place.

Definition 2.2.1. A deterministic conformant planning modelQ is a tuple 〈S, S0, SG, A, f〉
where:

S is a finite set of states,

S0 ⊆ S is the set of initial states,

SG ⊆ S is the set of goal states,

A is a set of actions, with A(s) denoting the set of actions applicable in state
s ∈ S,

a transition function s′ = f(α, s), for α ∈ A(s).

We now define the representation of a deterministic conformant problem.

14
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Definition 2.2.2. A deterministic conformant planning problem P is a tuple 〈F, I, O,G〉,
where:

F stands for the fluents or atoms of the problem,

I is the set of clauses over F that define the set of initial states,

A the set of deterministic actions,

G a set of literals over F defining the goal.

The deterministic conformant planning model P is the same as the classical planning
one, with the difference that the initial state s0 is replaced by S0, the initial set of states.
That is, the deterministic conformant problem defines a model where the states s of the
state space S are set of literals that represents truth values over all literals in F , the
initial belief state b0 is composed of all the states s that satisfy all clauses in I , the set
of goal states is composed of all the states s where G ⊆ s, an action α belongs to O(s)
if α ∈ O and pre(α) ⊆ s, and the deterministic state transition function s′ = f(α, s),
which maps pairs of action-state to states.

By extension, since an action is applicable on a state if its preconditions hold in the
state, an action is applicable in a belief state if the preconditions of the actions hold in
all the states in the belief state. Formally, if A(b) is the set of all actions applicable in
the belief state b, we define:

A(b) = { α | f(α, s) 6= ∅, s ∈ b, α ∈ A}

Similarly, applying an action α to a belief state b, at time t results in

bt+1 = {s′ | s′ = f(α, s), s ∈ bt}

We write P |s to refer to the classical planning problem P which is like the conformant
planning problem except the initial belief state contains only the state s.

Definition 2.2.3. A conformant plan π for a deterministic conformant planning problem
P is a sequence of actions α0, α1, ..., αn such that π is a solution to the classical planning
problem P |s, for each possible initial state s of S0.

Example 2.2.1. Consider a single agent on aN×N grid. Ig indicates the goal position
of the agent, and initially the agent has uncertainty about his position. I1 to I4 indicate
the possible initial positions of the agent.
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Figure 2.1: A conformant planning problem, where the agent needs to reach position Ig while
having uncertainty about his initial position. I1 to I4 denote the possible initial positions of the
agent.

This example can be formulated as a deterministic conformant problem P = 〈F, I, O,G〉,
with:

F : at x(pi), at y(pi), for 1 ≤ i ≤ 5

I : oneof(at x(p2), at x(p3)), oneof(at y(p2), at y(p3)),¬at x(pj),¬at y(pj),
for j ∈ {1, 4, 5}.

O is the set of actions up, down, left, right as defined in the example of section
1.3.

G = at x(p5), at y(p5).

The oneof(l1, .., ln) expression stands for the fact that only one lj can be true. In this
example, the oneofs represent that the agent can be in one out of two specific rows and
one out of two specific columns.

A plan for this conformant problem is:

π = {up, up, up, right, right, right}

which guarantees that the goal will be achieved, no matter which of the four possible
initial states is the true one. This is achieved by the third repetition of the actions up
and right. After the execution of the first three actions, the agent is at the top row
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of the grid with certainty, either at (2,5) or at (3,5). Executing the rest of the plan re-
sults to either the agent achieving the goal with the last action, or achieving the goal
with the previous to last action - in which case the execution of the last action has no
effect (since no conditional effect take place) and the agent remains in the same position.

2.3. Contingent Planning

Contingent planning extends conformant planning with sensing actions. It deals with
problems were the agent has some uncertainty about the environment initially, as in
conformant planning problems, but he is able to receive partial information about the
true state through his sensors. Planning with uncertainty and partial observability of
the environment is viewed a complex form of planning: both classical and conformant
planning are special cases of contingent planning.

The contingent planning model extends the conformant one with a deterministic sensor
model (Geffner and Bonet, 2013).

Definition 2.3.1. The deterministic contingent planning model is the tupleQ = 〈S, S0, SG, A, f, O, n〉
where:

S is a finite set of states,

S0 ⊆ S, the initial belief state,

SG ⊆ S, the set of goal states,

A is a set of actions,

a transition function s′ = f(α, s), for α ∈ A(s).

O is the set of observations tokens,

n is a sensor model O(s, a) ∈ O, that associates state-actions pairs to a single
observation token.

In terms of belief states, b′ = f(b, α) is the belief state b′ resulting after applying action
α to the belief state b. The belief state bo is the belief state resulting after an observation
o on a belief state b and it contains only the states s ∈ b that are compatible with the
observation.

Definition 2.3.2. A contingent planning problem is a tuple P = 〈F, I, A,O,G〉, where:
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F a set of Boolean fluents

I a set of clauses over F defining the initial situation,

A a set of actions, where each action α ∈ A is a tuple 〈pre(α), eff (α)〉, and eff (α)
is a set of conditional effects e, where ei : ci → addi, deli, each a conjunction of
literals in F ,

O a sensor model, where each o ∈ O is a tuple 〈C, l〉, where C is a set of literals
and l a positive literal in F .

G ⊆ F , describing the set of goal states.

A tuple o = 〈C, l〉 indicates that the truth value of l is observable to the agent if C holds
in the state.

While a plan for classical and conformant planning problems is a sequence of actions, in
the case of contingent planning problems the plan is a tree whose nodes are mapped to
actions. If the action results in an observation then the node has two children represent-
ing the two possible outcomes of the sensing. In other words, the branching represents
the two different observations.

Example 2.3.1. We extend the example of 2.2.1 to a contingent planning problem with
sensing. Specifically, the agent can observe whether he is next to a wall.

We model the problem as a deterministic contingent planning problem P = 〈F, I, A,O,G〉
where:

F : wu, wl, wd, wr, at x(pi), at y(pi), for 1 ≤ i ≤ 5

I : oneof(at x(p2), at x(p3)), oneof(at y(p2), at y(p3)),¬at x(pj),¬at y(pj),
for j ∈ {1, 4, 5}.

A is the same as in the classical planning version of the same example.

O :

• sense-upper-wall: 〈{at y(p5)} , wu〉

• sense-left-wall: 〈{at x(p1)} , wl〉

• sense-right-wall: 〈{at x(p5)} , wr〉

• sense-down-wall: 〈{at y(p1)} , wd〉

G = at x(p5), at y(p5).

18
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A contingent plan for this problem can be seen in Figure 2.2. The first observation
appears after the second action up since the outcome of all sensing actions before that
can be predicted in terms of the uncertainty the agent has initially.

2.4. Complexity

The problem of showing whether there is a valid plan for an arbitrary deterministic con-
formant problem instance is PSPACE-complete and for non-deterministic conformant
problems EXPSPACE-complete (Haslum and Jonsson, 1999). The problem of showing
whether a valid plan for an arbitrary deterministic contingent problem instance exists is
shown to be EXPSPACE-complete (Rintanen, 2004).

Classical planning appears to be the easiest form of planning when we consider plan
verification: determining whether there is a classical plan with length at most k (where
k is polynomial in the size of the problem) is NP-complete, while the same problem for
conformant planning is ΣP

2 -complete (Turner, 2002).

2.5. Translations

Conformant and contingent planning must address two main issues: the first is the prob-
lem of belief tracking and how to represent those beliefs in a compact way. The sec-
ond problem is having informed heuristics over those beliefs for solving the problems.
Translation approaches (Palacios and Geffner, 2006; Palacios and Geffner, 2007; Albore
et al., 2009; Albore et al., 2010; Palacios and Geffner, 2009) address these issues by
compiling the deterministic conformant problem to a classical planning problem, and
the deterministic contingent problem to a fully-observable non-deterministic (FOND)
one. Such translations allow the usage of heuristics and search enhancements imple-
mented by classical and FOND planners.

These translations are of special interest for us, since our work is built on similar ideas.
In conformant translations, like KO (Palacios and Geffner, 2009), belief states are rep-
resented as a plain state. This is achieved by using an epistemic encoding which maps
the belief state to a set of epistemic literals, representing the uncertainty of the agent ex-
plicitly through literals KL, denoting that L is known to the agent. Actions then make
changes on the knowledge level (Petrick and Bacchus, 2002). An extension of K0 is the
translationKT,M , where T is a set of tags andM a set of merges. The idea behindKT,M

is that, through T , they can track truth values of literals in a state through tracking what
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Figure 2.2: A contingent plan for the problem in Example 2.3.1.
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was true initially in that state. Given a literal L and a tag t ∈ T , KL/t stands for ”if t is
true initially, then L is true”. Merges m ∈M are pairs of a set of tags in T and a literal
L and are used to define when KL. The intuition is that if L is known to hold over all
tags in M , then L is known to hold in the current belief state.

We will appeal to these translations below.
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CHAPTER 3

Multi-agent Planning and Epistemic
Logic

3.1. Multi-agent Planning

3.1.1. Introduction

In the planning problems we have seen so far, a single agent is planning, acting and
sensing. A multi-agent planning problem is the problem of planning in the presence of
multiple agents who also plan and act in the same environment.

Several real-world applications are multi-agent planning problems. For example:

RoboCup, where a team of agents is playing against another team in the game of
football.

Exploration problems, where a number of autonomous robots are mapping an
area, e.g. drones over inhabited areas identifying fields or structures.

Search and Rescue problems, where robots are deployed to areas affected by a
disaster, looking for survivors or recording damages.

Logistics problems, where a group of robots need to coordinate their plans in order
to deliver products or working within an industrial environment, e.g. assembly
lines.
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All of the above are multi-agent problems with very different properties and planning
approaches. In the following section we will identify a taxonomy of multi-agent prob-
lems based on these properties and mention some of the techniques currently used to
solve them.

3.1.2. Taxonomy of Multi-agent Problems

Multi-agent planning cannot be defined with a single model, since there are families of
multi-agent planning problems where many different factors are involved (Weiss, 1999).
We will present some of these factors, relevant to our work.

A first taxonomy can be based on whether the agents can achieve the goal by themselves
or they need to collaborate with other agents (Brafman and Domshlak, 2008)

Tightly-coupled problems are the problems where agents must coordinate in order
to achieve the goal.

Loosely-coupled problems are the problems where the need for interaction among
the agents is small.

An example for the first case would be a logistics problem, where in order for the pack-
age to be moved from one location to another, one agent must make sure that the package
will be in the first location, and another agent will pick it up from the second. An exam-
ple for the second case would be an exploration problem, where each agent is assigned
an area to explore and his plan would not intervene with the plans of the other agents.
On the other hand, if the agents exploring share finite resources, such as power stations
for charging, then the sub-tasks of the problem are strongly related.

Multi-agent problems can be also categorized based on the relation between the agents
(Shamma, 2008; Stone, 2002):

Collaborative agents with a common goal/utility .

Adversarial agents trying to optimize their own utility.

In a logistics problem agents must cooperate in order to achieve the goal, which is the
delivery of a package (as long as the agents do not try to optimize their own utility
function but a common one). On the other hand, security problems are examples of
adversarial agents: an agent trying to prevent another agent from entering a facility
undetected, or from gaining access to a system remotely.

Another distinction is based on communication (Goldman and Zilberstein, 2003; Braf-
man and Beer Sheva, 2015):
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Agents can share everything or agents much preserve some privacy.

Communication is not possible, limited, or without restrictions.

In the logistics example, privacy might be important since some agents do not want to
share e.g. the names of their clients or the final destinations of their packages etc. In
the exploration problem, communication might be necessary if the agents need to share
their current state (position, fuel needs, collaboration requests) but not possible (e.g. in
a hostile environment) or limited (due to resources).

Last, there is an important distinction between planning for the agents or by the agents
(De Weerdt and Clement, 2009):

Centralized approach, where an agent plans for all agents.

Decentralized approach, where all agents plan.

In the centralized approach, an agent must be aware of the capabilities (set of actions)
of each agent and of their goals in order to plan for them.In the decentralized approach,
each agent plans for himself and coordination of plans must be achieved either before
(based on some convention) or during the planning phase (Jonsson and Rovatsos, 2011;
Tonino et al., 2002).

Choosing the approach depends on the problem at hand. Centralized planning is useful
when optimal (or close to optimal) plans are necessary or when communication is lim-
ited (in centralized planning there are two phases of communication: one for receiving
information from the agents, and two, for sending the corresponding sub-plans to their
agents). Decentralized planning is useful when we give priority to scalability, privacy
and robustness. On the other hand, in strongly-related tasks, decentralized approaches
depend on conventions being agreed upon before planning, or communication in order
to achieve coordination.

In this dissertation we are interested in collaborative, multi-agent planning problems
with partial observability, where the agents share a common goal, communication is
without restrictions, and we use a centralized approach for solving them.

3.2. Epistemic Logic

3.2.1. Introduction

Planning agents make decisions that allow them to achieve their goal in a given envi-
ronment. Their decisions are based on what they know about the environment and their
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actions. For example, in classical planning the agent knows everything about the world,
while in contingent planning the agent knows only parts of it and uses sensing to get
more information.

When a planning agent is placed in an environment with multiple agents who also act,
more things need to be taken into account. For example, what do the other agents know
or don’t know, what do they know that I know, which information is common knowledge
etc. Reasoning by taking into consideration the knowledge the other agents have, allows
the agent to make more intelligent decisions. For example, he will not ask another agent
about some information that he already knows the other agent cannot possess, and he
will not share information with agents he knows are already aware of them. In other
words, the planning agent must be able to reason by considering not only the state of
the world but the epistemic states of the other agents.

Epistemic logic is the logic of knowledge and belief (Hintikka, 1962). It is a formal
approach that allows the study of individual, group and common knowledge based on
what information is available to each agent. With roots in modal logic (Van Benthem
et al., 2010) and Kripke semantics (Kripke, 1963), it offers a formulation which allows
us to evaluate, given a situation, propositions such as ”Ann does not know the light is
on”, ”Bob knows Ann does not know the light on” etc. Though epistemic logic is quite
expressive in the problems it can model, in this thesis we will make use of a part of
its expressiveness: we are interested in the notion of knowledge (and not of belief), the
notion of multiple agents (of which the single-agent is a special case), the idea of public
actions (in contrast with private) and the notion of common knowledge.

3.2.2. Muddy Children Puzzle

The Muddy Children puzzle (Fagin et al., 1995) is a representative example of how
knowledge and lack of knowledge are communicated and the effect they can have. Here
we present one version of the puzzle.

Example 3.2.1. Three children, who are perfect logicians, are playing in the mud. The
father calls them to the house and makes sure that each child can see every other child.
He, then, tells them ”At least one of you has mud on his forehead”. He then says ”If
you know your forehead is muddy say it now”. No child speaks. Father repeats ”If you
know your forehead is muddy, say it now”. Some of the children say that they know.
How many children have muddy foreheads?

The above puzzle can be seen in different variations, where the context or the end ques-
tion changes. In all cases, the Muddy Children puzzle is a classic example of:
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The role of common knowledge: the father’s first announcement ”At least one of
you has mud on his forehead” makes common knowledge that fact - all children
know that all children know that all children know.. that not all of them have clean
foreheads.

The role of communicating knowledge or lack of it: a child not speaking, which
has the same effect as saying it does not know if he has mud on its forehead,
provides information which is necessary for the rest of the children.

Since we will study the example in detail later on, we will give a general idea of the
solution to the problem here. Suppose that the names of the children are Ann, Bob and
Cadie.

Suppose the only one with a muddy forehead is Ann (which is not the case in the ex-
ample). Ann sees Bob and Cadie clean, and the father says that at least one of them
is muddy. Ann can derive that it must be her who has the muddy forehead. When the
father asks them to say whether they know they have a muddy forehead, Ann will reply
positively. From the point of view of Bob, Bob sees Ann with a muddy forehead but has
no knowledge about his forehead. He also sees Cadie is not muddy, and he knows that
Ann can also see Cadie. When Ann says that she knows she is muddy, Bob can infer
that the only way for Ann to know that is if himself and Cadie are clean. Cadie can do
the same inference. After Ann’s announcement of knowing she has a muddy forehead,
both Bob and Cadie will get to know they are not muddy.

Now, suppose both Ann and Bob have muddy foreheads. The first time the father asks,
no one will reply since Ann and Bob see at least one more child muddy. From the point
of view of Ann, Bob has a muddy forehead while Cadie does not. She can infer that if
herself did not have a muddy forehead, it would mean that Bob sees both of them clean,
which means that he would have replied after the father asked. Since Bob did not reply,
it must be that he sees at least one child with a muddy forehead and Cadie is clean, so
she infers it must be her. Thus, the second time the father asks, she replies that she does
know she is muddy. Bob does the same for the same reason. It is easy to show that if
m, out of a total number of n, children are muddy, the muddy children will reply that
they know they are muddy the mth time the father asks - which means that they will get
to know if they are muddy after the (m− 1)th question.
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3.2.3. Kripke Models and the Logical System S5

Language

Given P , a finite set of atomic propositions, and A the finite set of agents (or agent-
symbols) the language of (multi-agent) epistemic logic L with common knowledge
(Van Ditmarsch et al., 2007) is generated by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | Cφ

where p ∈ P and i ∈ A. The Ki is the knowledge operator, the C the common knowl-
edge operator, and we will refer to Kiφ and Cφ as epistemic literals, and formulas
which which contain epistemic (and, possibly, propositional) literals as epistemic for-
mulas. For every agent i, Kiφ will be read as ”i knows that φ is true”, while Cφ as
”φ is common knowledge”. The sentence ”i knows the truth value of φ” corresponds to
Kiφ∨Ki¬φ, and ”i does not know the truth value of φ” to ¬Kiφ∧¬Ki¬φ. Lastly, com-
mon knowledge can be defined over a set of agents, for example CBφ where B ⊆ A,
which is read as ”φ is common knowledge among all agents in B”. Nevertheless, from
here on we will assume that the common knowledge operator is over all agents (B = A).

Returning to the Muddy Children puzzle, we have F = {ma,mb,mc}, where mi in-
dicates that i is muddy, and A = {a, b, c}, for Ann (a), Bob (b) and Cadie (c). After
the father’s announcement that at least one child is muddy, we have C(ma ∨mb ∨mc),
while the formula that expresses that at least one child knows whether it’s muddy would
be:

(Kama ∨Ka¬ma) ∨ (Kbmb ∨Kb¬mb) ∨ (Kcmc ∨Kc¬mc)

If we wanted to write that all children that are muddy know that they are muddy:

(ma → Kama) ∧ (mb → Kbmb) ∧ (mc → Kcmc)

and the fact that Bob knows that Ann knows whether Cadie is muddy, as:

Kb(Kamc ∨Ka¬mc)
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Semantics

The semantics of epistemic logic are based on Kripke models (Kripke, 1963). Infor-
mally, a Kripke model is a representation of states and indistinguishability between
states. States correspond to truth-valuations over P , while the indistinguishability be-
tween two states for an agent, is denoted by the existence of the accessibility relations,
which represent the fact that that agent cannot distinguish between the two states - from
the point of view of the agent, they are equally possible.

Definition 3.2.1. A Kripke model is a structure K = 〈W,R, V 〉, where

W is a set of state names.

R is a set of accessibility relations Ri ⊆ W ×W , for every i ∈ A. We will write
Ri(s, s

′) to denote that agent i cannot distinguish between states s and s′.

V : P → 2S is a valuation function that for every p ∈ P returns the set of states
where p is true. We will also write V (s) to denote the set of atoms that are true in
state s.

A pointed Kripke model is a pair (K, s), where K is a Kripke model and s a state s.t.
s ∈ W .

Given Definition 4.3.1, we define how to interpret formulas on some state s of a given
Kripke model K.

Definition 3.2.2. We define that a formula φ is true in a state s of a given Kripke model
K, also written as K, s |= φ, as:

K, s |= p iff p ∈ V (s).

K, s |= φ ∧ ψ iff K, s |= φ and K, s |= ψ.

K, s |= ¬φ iff K, s 6|= φ.

K, s |= Kiφ iff for all s′ such that Ri(s, s
′), K, s′ |= φ.

K, s |= ¬Kiφ iff there exists a state s′ such that Ri(s, s
′), K, s′ |= ¬φ.

K, s |= Cφ iff for all states s′ such that R∗(s, s′) is true, K, s′ |= φ

K |= φ iff K, s |= φ for all states s ∈ W .

R∗(s, s′) is true if state s′ is reachable from state s through any path of accessibility
relations of any agent j ∈ A.
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K Ki(φ→ ψ)→ (Kiφ→ Kiψ)
D Kiφ→ ¬Ki¬φ
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ

Table 3.1: Epistemic axioms

The accessibility relations between states of a model K, semantically, characterize the
system in which K belongs. In this thesis we focus on the S5system, which means that
the accessibility relation is

reflexive: if for all s ∈ W and i ∈ A, we have Ri(s, s)

symmetric: if Ri(s, s
′) then Ri(s

′, s)

transitive: if Ri(s, s
′) and Ri(s

′, s′′), then Ri(s, s
′′) ∈ Ri

When an accessibility relation is reflexive, symmetric and transitive, it is called an equiv-
alence relation.

In Table 4.1 we can see five axioms relating to epistemic logic (Van Ditmarsch et al.,
2007). Axiom D states that agents do not hold inconsistent knowledge, axiom T that
agents do not hold false knowledge, axiom 4, also called positive introspection, states
that agents know what they know, and axiom 5, also called negative introspection, states
that agents know what they do not know.

Semantically, an important property of the epistemic axioms is that they correspond to
algebraic properties of a Kripke model, i.e. an epistemic axiom is valid in a Kriple
model if the accessibility relation of that model satisfies certain conditions like reflex-
ivity, symmetry etc. For example, axiom T is valid in all Kripke models where the
accessibility relation is reflexive, while axiom 4 is valid in the Kripke models which are
transitive.

The S5system we are interested in is the system where the axioms K, T, 4 and 5 hold.

Revisiting the Muddy Children problem

In Figure 3.1 we can see the Kripke model K of the Muddy Children problem before
the father’s announcement. Each node represents a state, and the tuple within represents
the truth values of the propositional literals. Example, the node with (1, 0, 1) stands for
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the state where ma is true, mb is false and mc is true. Each state represents a possible
combination of muddy children, while the accessibility relations show which states are
indistinguishable for each agent. For example, we have that agent a cannot distinguish
between states (0, 0, 1) and (1, 0, 1): both states agree on what a can see (thatmb is false
and mc is true) but she does not know if she is muddy or not (if ma is true or false). We
do not show the reflexive relations (Ri(s, s)), which are present for all states and for all
agents.

The father’s announcement is ”at least one of you is muddy”, which can be written as
(ma ∨mb ∨mc). After the public announcement it is common knowledge the fact that
all states s where M, s 6|= (ma ∨ mb ∨ mc) are not to be considered as possible, thus
removing the state (¬ma,¬mb,¬mc) which in Figures 3.1 is represented with (0, 0, 0).
This announcement results in Figure 3.2.

Given the Kripke model K, we can evaluate formulas based on Definition 3.2.2:

Does Ann know she is muddy in the situation where only she is muddy? is the same
as checking whether K, s1 |= Kama, where s1 = (1, 0, 0). The only accessibility
relation inRa involving s1 isRa(s1, s1), and we haveK, s1 |= ma. In other words,
in all the states Ann cannot distinguish from s1, she is muddy - thus, she knows
she is muddy.

In the situation where only Bob is muddy, does Ann know that Cadie knows that
Bob is muddy? is the same as checking whether K, s2 |= KaKcmb, where s2 =
(0, 1, 0). Ann cannot distinguish between s2 and s4, which means that it has to be
K, s2 |= Kcmb and K, s4 |= Kcmb for KaKcmb to be true in s2.

• Cadie cannot distinguish between s2 and s6, and we have that K, s2 |= mb

and Ks, 6 |= mb, so K, s2 |= Kcmb.

• Cadie cannot distinguish between s4 and s7, and we have that K, s4 |= mb

and Ks, 7 |= mb, so K, s4 |= Kcmb.

which means K, s2 |= KaKcmb.

3.2.4. Dynamic Epistemic Logic

So far, we introduced epistemic logic as static: a formalization that allows us, given a
situation at a fixed moment in time, to evaluate whether some epistemic formula φ is
true or not at that moment in that situation. In real-world applications, agents interact
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Figure 3.1: The Kripke model K of the Muddy Children problem before the father’s announce-
ment.

Figure 3.2: The Kripke model of the Muddy Children problem after the father’s announcement.
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with each other, either through their actions or by communicating information.

In the single-agent planning problems we have seen so far, there were two types actions:
(i) the world-altering actions (or ontic actions or physical actions) which when applied
change the environment (an agent moving, picking up an object, opening a door etc),
and (ii) in the case of contingent planning problems, the sensors, which when triggered
provide information to the agent.

In the presence of multiple agents, both acting and sensing extend their effect from
just the environment and the beliefs an agent has, to the other agents’ perception of the
environment and their beliefs. As an example, if agent i publicly (as in ”it becomes
common knowledge that”) senses the truth value of p then:

Agent i knows the truth value of p: Kip ∨Ki¬p, and

All agents j know that he knows: Kj(Kip ∨Ki¬p)

Dynamic epistemic logic (DEL) is an umbrella term: it includes logics that deal with
information change. Such logics extend the static formalization to one which incorpo-
rates how the agents’ knowledge change due to physical, sensing and communicating
actions (Gerbrandy and Groeneveld, 1997; Baltag et al., 1998; Baltag, 2000; Baltag and
Moss, 2004a).

The intuition is that such events (sensing, communication, physical actions) can be mod-
eled in a way similar to the one we use for modeling situations (Baltag et al., 1998; Bal-
tag and Moss, 2004a; Van Ditmarsch et al., 2007). Given a Kripke model and an action
model representing the applied event, we can produce a new Kripke model representing
the new situation that occurs after the application of the action.

Definition 3.2.3. An action model is a structure Q = 〈E,EA, pre〉, where

E is a set of events,

EA is a set of accessibility relations RA
i ⊆ E × E, for every i ∈ A,

pre : E → L, a precondition function s.t. pre(e) ∈ L for e ∈ E.

Constructing action models is similar to constructing Kripke models: identify how many
events are possible and the perspective of each agent for each event (is he aware it oc-
cured? Can he distinguish it from another event? Does he know whether another agent
is aware of it? etc).
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Figure 3.3: Examples of action events for the Muddy Children problem.

The action model we defined cannot model physical actions, but only actions that
change the agents’ information about the worlds and about other agents. Neverthe-
less, there are ways to extend it in order to include physical actions, as has been done
in (Van Benthem et al., 2006; van Ditmarsch and Kooi, 2008a; van Ditmarsch et al.,
2005; Baral et al., 2012). The main idea of the approaches is to add a set post of effects
(switch the truth value of a literal or define it) for each event e ∈ E, which will be
applied only on states where the e is applicable.

Product update

Given a Kripke model and an action model, the product update is a method for obtaining
a new Kripke model, representing the situation that occurs after applying the action
model to the original Kripke model.

Definition 3.2.4. (Product Update) Given a Kripke modelK = 〈W,R, V 〉 and an action
model Q = 〈E,EA, pre〉, we obtain a Kripke model KQ = 〈WQ, RQ, V 〉 where:

the worlds WQ are the pairs (s, e) ∈ W × E such that K, s |= pre(e)
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for each agent i, there exists RQ
i (se, s

′
e′) iff RA

i (s, s′) ∈ RA and EA
i (e, e′) ∈ EA.

for the truth values of propositions in the new states, we have V Q((s, e)) = V (s),
for all worlds (s, e).

Similar to pointed Kripke models (K, s), we have pointed action models (Q, e). In this
case, the result would be a pointed Kripke model (KQ, (s, e)).

In Figure 3.3 (1 to 3), we can see different actions events, defined over the Muddy
Children problem. Events are represented with squares so that they are distinguished
from the states of Kripke models. Figure 3.3.1., where Φ1 = (ma ∨ mb ∨ mc), is the
action event of the father’s announcement. All children hear the same announcement,
and the action event is the one which takes us from the Kripke model in Figure 3.1 to
the Kripke model in Figure 3.2. The action event in Figure 3.3.2, where Φ2 = ¬Φ1,
represents the situation where agents a and c get to know the truth value of Φ1, and
b knows this fact. As an example, suppose Φ1 = Kcmc. We can interpret the action
event as the case where c tells a whether he knows the truth value of mc. Agent b will
not be able to distinguish between states where Kcmc is true and state where it is not,
but he knows that a can. In the third example, suppose Φ1 is some formula, and Φ2

is just the statement true. In this case, the action event can be interpreted as the case
where a and c get to know Φ1, while b is not aware of that and believes that nothing has
occurred.

We can now define a language for dynamic epistemic logic (Van Ditmarsch et al.,
2007).

Definition 3.2.5. Given a set of atoms F and a set of agents A, the language Ld with
common knowledge is defined by:

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | Cφ | [π]φ

π ::= (Q, e) | (π ∪ π)

where p ∈ F , i ∈ A, and (Q, e) is a pointed action model, as defined in 3.2.4. Intuitively,
[π]φ is a dynamic operator and stands for ”φ holds after the occurrence of the event
π”.

3.2.5. Complexity

Given a pointed Kripke model (K, w) and a formula φ ∈ Ld, the model checking prob-
lem is defined as the problem of evaluating whether K, w |= φ. The satisfiability prob-
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lem, given a formula φ ∈ Ld, is defined as the problem of determining if there exists
a pointed Kripke model (K, w) such that K, w |= φ. For public announcement logic,
which is a fragment of dynamic epistemic logic (the action model contains only one
event and the reflexive relation to that event includes all agents), the model checking
problem is in P (with common konwledge) (Kooi and van Benthem, 2004) and the
satisfiability problem is PSPACE-complete without common knowledge (EXPTIME-
complete with common knowledge) (Lutz, 2006). Without common knowledge, the
model checking problem of Ld is PSPACE-complete and the satisfiability problem of
Ld is NEXPTIME-complete (Aucher and Schwarzentruber, 2013). There are no known
results concerning the complexity of DEL with common knowledge.

3.2.6. Knowledge vs Belief

Based on the axioms in Table 4.1, we defined S5to be the system with axioms K, T,4
and 5, which denotes a Kripke model where the accessibility relation is an equivalence
relation. Axiom T is also called the truth axiom: an agent can only know things which
are true. For systems where T does not hold, we are talking about belief instead of
knowledge: it is possible to believe something which might be wrong. The KD45 sys-
tem is usually considered a system which suffices to model belief : axiom T has been
dropped and D has been added, denoting that agents may believe certain things to be
true while they are false, but they cannot believe contradictory things. KD45 is charac-
terized by accessibility relations which are serial, transitive and euclidean.

3.2.7. Discussion

In this dissertation, we will talk about beliefs of agents. This should not be read as
belief in terms of epistemic logic. We will use the word beliefs to denote the fact that
agents hold some uncertainty about the world, and as a term it is borrowed from the
notion of belief state that we mentioned in Chapter 2. Concerning individual agents, the
uncertainty they hold about the world defines their knowledge (and not belief ) about the
world: what they know to be true, is actually true.

We saw that (dynamic) epistemic logic offers formal frameworks that allow to (i) model
a (complex) situation that represents the knowledge and beliefs of multiple agents, and
(ii) compute the next situation after an action is applied through a state-transition func-
tion in the form of product update. There are two restrictions, concerning these formu-
lations, which are of importance to automated planning. The first is that defining action
models is not clear: modeling an action can be as difficult (and complex) as modeling
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the world. The second restriction is that there are no computational techniques that al-
low to automatically generate plans. Given a Kripke model and an action model we can
compute the resulting situation, but given an initial Kripke model, a goal Kripke model
and a set of action models, there are no computational approaches that will generate a
sequence of action models that achieve the goal. In this work we are trying to bridge
this gap by considering a fragment of dynamic epistemic logic and providing a mapping
to classical planning problems which will allow us to take advantage of the computation
techniques in classical planning.
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PART II

Belief Representations And
Translations
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CHAPTER 4

Linear Multi-agent Planning

4.1. Introduction

Single-agent planning in partially observable settings is a well understood problem and
existing planners can represent and solve a wide variety of meaningful instances. In the
most common formulation, single-agent planning in partially observable environments
is cast as a non-deterministic search problem in belief space where the beliefs are sets
of states that the agent regards as possible (Bonet and Geffner, 2000). The work in
partially observable or contingent planning has been focused on ways for representing
beliefs and selecting actions (Bertoli et al., 2001; Brafman and Hoffmann, 2004; Albore
et al., 2009; To et al., 2011; Brafman and Shani, 2012a).

Current approaches for representing beliefs in multi-agent dynamic settings, on the other
hand, are based on Kripke structures (Fagin et al., 1995). multi-agent Kripke structures
are triplets defined by a set of worlds, accessibility relations among the worlds for each
of the agents, and truth valuations that define the propositions that are true in each world.
While a truth valuation determines the objective formulas that are true in a world, the
accessibility relation among worlds provides the truth conditions for epistemic formulas.

Dynamic epistemic logics extend epistemic logics with the ability to deal with change
(van Ditmarsch et al., 2007a; van Ditmarsch and Kooi, 2008b; Van Benthem, 2011).
The standard approach relies on event models and product updates by which both the
agent beliefs and the events are represented by Kripke structures, and the resulting be-
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liefs are captured by a suitable cross product of the two (Baltag et al., 1998; Baltag and
Moss, 2004b). Syntactically, axiomatizations have been developed to capture the valid
inferences in such a setting, and a number of approaches have been developed to facil-
itate modeling and inference (Baral et al., 2012; Herzig et al., 2005). A simple form of
planning, however, where an event sequence is sought to achieve a given goal formula,
has been shown to be undecidable in dynamic epistemic logic (Aucher and Bolander,
2013), while decidable subsets have been identified as well (Löwe et al., 2011).

In this chapter, we build on the methods developed for representing beliefs in single-
agent planning to introduce a simple but expressive formulation for handling beliefs
in multi-agent settings. The resulting formulation deals with multiple agents that can
act on the world (physical or ontic actions), and can sense either the state of the world
(truth of objective formulas) or the mental state of other agents (truth of epistemic for-
mulas). The formulation captures and defines a fragment of dynamic epistemic logics
that is simple and expressive, but which does not involve event models or product up-
dates, and has the same complexity of belief tracking in the single agent setting and can
benefit from the use of similar techniques. We show indeed that the problem of comput-
ing linear multi-agent plans (Bolander and Andersen, 2011) can be actually compiled
into a classical planning problem, using the techniques that have been developed for
compiling conformant and contingent problems in the single agent setting (Palacios and
Geffner, 2009; Brafman and Shani, 2012b).

The proposed formulation exploits certain conventions and restrictions. First, while the
agents can have private information as they have private sensors, they are all assumed
to start with a common initial belief on the set of worlds that are possible. Second,
the effects of physical actions on the world are assumed to be deterministic. And third,
the sequence of events (physical actions, sensing events, and public announcements)
that can change the state of the world or the knowledge state of the agents, is public
to all the agents. In the formulation it is crucial to distinguish between the event of
sensing the truth value of an objective or epistemic formula, and the agent coming to
know that the formula is true or false. While the sensing event is public, as when all
agents know the sensor capabilities of the other agents, the actual information provided
by these sensors is private. For example, in the muddy children problem (Fagin et al.,
1995), every child i is assumed to be capable of sensing the truth value of the atoms
mj encoding whether child j is muddy for j 6= i, and every child knows that. Yet this
doesn’t mean that children have access to the truth values revealed by the sensors that
are not their own. The formulation does imply however that agents know what the other
agents may potentially know, as agents start with the same knowledge and then learn
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about the world or about other agents using sensing events that are public.1

4.2. Language

We consider planning problems P = 〈A,F, I, O,N, U,G〉 where A is a set of agent
names, F is a set of atoms, I is the initial situation, O is a set of physical actions, N is a
set of sensing actions, U is set of public (action) updates, and G is the goal. A plan for
P , as in classical planning, is a sequence of actions for achieving the goal G from the
initial situation described by I . The main differences to classical planning result from
the uncertainty in the initial situation, and the beliefs of the multiple agents involved.
In addition the actions may come from any of the sets O, N , or U . If we let S stand
for the set of all possible truth-valuations s over the atoms in F and call such valuations
states, we assume that I is an objective formula over F which denotes a non-empty
set of possible initial states bI . A physical action a in O denotes a deterministic state-
transition function fa that maps any state s into a state s′ = fa(s). A (parallel) sensing
action in N is a set of expressions of the form sense[Ak](φk), where Ak is a non-empty
set of agent names and φk is an objective or epistemic formula over the atoms F and the
knowledge modalitiesKi for i ∈ A. The action updates in U are denoted by expressions
of the form update(φ) where φ is a formula. Finally, each action a has a precondition
Pre(a), which like the goal G are formulas as well. The grammar of these formulas can
be expressed as:

φ = p | ¬φ | (φ ∧ φ) | (φ⇒ φ) |Kiφ

where p is an atom in F , and i an agent in A.

We regard plans as linear sequences of actions (Bolander and Andersen, 2011), and
call P a linear multi-agent planning problem. While many problems require non-linear
plans, as it is the case in contingent planning, linear plans suffice for a number of
non-trivial contexts and provide the basis for more complex forms of plans. These lin-
ear plans involve sensing, however, but like conformant plans, no conditional branch-
ing.

1 The assumptions in the model have points in common with the finitary S5 theories (Son et al., 2014)
and with the notion of “only knowing” (Levesque, 1990; Halpern and Lakemeyer, 2001).
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4.3. Dynamics of Knowledge Updates

In order to define the belief representation and dynamics, let us represent the event se-
quences or plans σ over a problem P by sequences of the form e(0), . . . , e(t), where
e(k) is the event from P that occurs at time k. When convenient, we will assume that
the agent names are positive numbers i, i = 1, . . . ,m for m = |A|, or that they can be
enumerated in this way.

The beliefs of all the agents at time step t, called also the joint belief, will be denoted as
B(t), and it is represented by a vector of conditional beliefs B(s, t), where s is one of
the possible initial states, s ∈ bI ; namely,

B(t) = {B(s, t) | s ∈ bI } . (4.1)

The conditional beliefs B(s, t) represent the beliefs of all the agents at time t, under
the assumption that the true but hidden initial state is s. The reason for tagging beliefs
with possible initial states is that for a fixed (hidden) initial state s, the evolution of
the beliefs B(s, t) after an arbitrary event sequence is deterministic. These conditional
beliefs B(s, t) are in turn represented by tuples:

B(s, t) = 〈v(s, t), r1(s, t), r2(s, t), ..., rm(s, t)〉 (4.2)

where v(s, t) is the state of the world that results from the initial state s after the event
sequence e(0), . . . , e(t − 1), and ri(s, t) is the set of possible initial states s′ ∈ bI that
agent i cannot distinguish at time t from the actual initial state s. Note that s may be
the true initial state, and yet the agents may not know about it. Indeed, initially, they
only know that if s is the true initial state, it must be part of the initial common belief
bI .

More precisely, the initial beliefs B(s, t) at time t = 0 are given by:

v(s, t) = s and ri(s, t) = bI (4.3)

for all agents i, meaning that under the assumption that the hidden initial state is s and
that no events have yet occurred, the actual state is s and the set of possible initial states
is bI .
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The belief B(t + 1) at time t + 1 is a function of the belief B(t) and event e(t) at time
t:

B(t+ 1) = F(B(t), e(t)) (4.4)

We express this function by defining how the type of event e(t) at time t affects the state
v(s, t+1) and the relations ri(s, t+1) that define the beliefB(t+1) at time t+1.

Physical Actions: If e(t) = do(a) for action a denoting a state-transition function fa,
then the current state v(s, t) associated with the hidden initial state s changes accord-
ing to fa, but the sets of initial states ri(s, t) that agent i regards as possible remain
unchanged

v(s, t+ 1) = fa(v(s, t)) (4.5)
ri(s, t+ 1) = ri(s, t) (4.6)

where the index i ranges over all the agents in A.

All the other event types affect instead the sets ri(s, t + 1) but not the state v(s, t + 1)
that is regarded as current given the assumption that s is the true initial hidden state.
That is, for the following event types v(s, t+ 1) = v(s, t).

Sensing: If e(t) = [sense[A1](φ1), . . . , sense[Al](φl)]] is a sensing action denoting the
set of sensing expressions sense[Ak](φk) done in parallel at time t, the current state
given s does not change, but the set of possible initial states compatible with the hidden
initial state s for agent i given by ri(s, t+ 1) becomes:

{s′ | s′ ∈ ri(s, t) and B(t), s′ |= φk iff B(t), s |= φk} (4.7)

where k ranges over all the indices in [1, l] such that Ak includes agent i. If there are no
such indices, ri(s, t + 1) = ri(s, t). The expression B(t), s |= φ denotes that φ is true
in the belief at time t conditional on s being the true hidden state. The truth conditions
for these expressions are spelled out below.

Updates: If e(t) = update(φ), ri(s, t+ 1) is

{s′ | s′ ∈ ri(s, t) and B(t), s′ |= φ} . (4.8)
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The intuition for all these updates is the following. Physical actions change the current
state of the world according to their state transition function. Sensing actions do not
change the world but yield information. More specifically, when agent i senses the truth
value of formula φ at time t, the set of initial states ri(s, t + 1) that he thinks possible
under the assumption that the true initial state is s, preserves the states s′ in ri(s, t) that
agree with s on the truth value predicted for φ at time t. Finally, a public update φ
preserves the possible initial states s′ in ri(s, t) that predict the formula φ to be true, and
rules out the rest. The conditions under which a possible initial state s predicts that a
formula φ will be true at time t, and the conditions under which a formula φ is true at
time t, are made explicit below. Physical, sensing, and update actions are applicable at
time t only when their preconditions are true at t.

4.4. From B(t) to Kripke Structures

A Kripke structure is a tuple K = 〈W,R, V 〉, where W is the set of worlds, R is a set of
binary accessibility relations Ri on W , one for each agent i, and V is a mapping from
the worlds w in W into truth valuations V (w). The conditions under which an arbitrary
formula φ is true in a world w of a Kripke structure K = 〈W,R, V 〉, written K, w |= φ,
are defined inductively:

K, w |= p for an atom p, if p is true in V (w),

K, w |= φ ∨ ψ if K, w |= φ or K, w |= ψ,

K, w |= (φ⇒ ψ) if K, w |= φ implies K, w |= ψ,

K, w |= Kiφ if K, w′ |= φ for all w′ s.t. Ri(w,w
′), and

K, w |= ¬φ if K, w 6|= φ

A formula φ is valid in the structure K, written K |= φ, iff K, w |= φ for all worlds w in
K. The conditions under which a possible initial state s predicts the truth of a formula
φ at time t, written B(t), s |= φ, follow from replacing the belief B(t) by the Kripke
structure K(t) = 〈W t, Rt, V t〉 defined by B(t) where

W t = {s | s ∈ Poss(t)},

Rt
i = {(s, s′) | if s′ ∈ ri(s, t) },

V t(s) = v(s, t)

In these expressions, Poss(t) stands for the initial states that remain possible at t;
Poss(t) = ∪s∈bI ∪i=1,...,m ri(s, t). The worlds w in the structure K(t) are the possi-
ble initial states s ∈ bI that have not been ruled out by the updates. The worlds that
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are accessible from a world s to the agent i are the possible initial states s′ that are in
ri(s, t). Last, the valuation associated to a world s in this structure is the state v(s, t)
that deterministically follows from the possible initial state s and the event sequence up
to t− 1. B(t), s |= φ is thus true when K(t), s |= φ is true, and B(t) |= φ iff K(t) |= φ.
It is simple to show that the accessibility relations Ri(t) are reflexive, symmetric, and
transitive, meaning that the valid formulas satisfy the axioms of the epistemic logic
S5.

4.5. Examples

4.5.1. Selective Communication

Let a, b, and c be three agents in a corridor of four rooms (p1, p2, p3 and p4 from left
to right). The agents can move from a room to a contiguous room, and when agent i
communicates (tells) some information, all the agents that are in the same room or in a
contiguous room, will hear what was communicated. For example, if agent i expresses
in room p3 his knowledge about q, all agents in rooms p2, p3 and p4 will come to know
it. We consider the problem where agent a is initially in room p1, b in p2, c in p3, and a
has to find out the truth value of a proposition q and let c know without agent b learning
it. The planning problem is encoded as the tuple P = 〈A,F, I, O,N, U,G〉 where
A = {a, b, c}, F = {q}∪{p(x, i)}, x ∈ A, i ∈ [1, 4], I = {p(a, 1), p(b, 2), p(c, 3)}∪D,
where D contains the formulas expressing that each agent is in a single room, U is
empty, and the goal is

G = (Kcq ∨Kc¬q) ∧ (¬Kbq ∧ ¬Kb¬q) .

The set of physical actions is O = {right, left} affecting the location of agent a in the
obvious way (the actions have no effects when they’d move the agent away from the
four rooms).

The sensing actions in N are two: the first about a learning the value of q when in p2,
the other, about a expressing his knowledge regarding q, which translates into agents
b and c learning this when they are close enough to a. The first sensing action is thus
sense(a, q) with the precondition p(a, 2), and the second is

tell(a, q) : [sense(b, φb ⇒ Kaq), sense(b, φb ⇒ Ka¬q),
sense(c, φc ⇒ Kaq), sense(c, φc ⇒ Ka¬q)] ,

where tell(a, q) is the abbreviation of the action that we will use, and φb is the formula
expressing that agent b is at distance less than 1 from agent a; namely φb = ∨i,j[p(a, i)∧
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p(b, j)] for i and j in [1, 4] such that |i − j| ≤ 1. The formula φc is similar but with c
instead of b.

Initially, bI contains the two states s1 and s2 satisfying I , the first where q is true, and the
second where it is false. The initial belief at time t = 0 is B(t) = {B(s1, t), B(s2, t)},
where B(si, t) = 〈v(si, t), ra(si, t), rb(si, t), rc(si, t)〉, i = 1, 2, and rx(s, t) = bI for
x ∈ A and s ∈ bI . The shortest plan is

do(right), sense(a, q),do(right),do(right), tell(a, q) .

The first sensing action can be done because its precondition p(a, 2) holds in B(1), and
as an effect it removes agent a’s uncertainty regarding q making ra(s1, 2) = {s1} and
ra(s2, 2) = {s2}. Agent a then knows whether q is true or false, and in principle, he
could communicate this from his current location p2 by performing the action tell(a, q)
right away. But since the condition φb is true, b would come to know whether q is true,
making the problem goalG unachievable. The effect of the two right actions is to make
p(a, 4) true, and all other p(a, i) atoms false, thus making the formula φb false and the
formula φc true (i.e., agent a is now near c but not near b). The final event in the plan
makes the truth value of q known to agent c but not to agent b, thus achieving the goal
G. The first part follows because the state v(s1, 5) where agent a is at p4 and q is true,
makes the formula φc ⇒ Kaq sensed by agent c true, while the state v(s2, 5) makes this
formula false, and similarly, the state v(s2, 5) makes the formula φc ⇒ Ka¬q sensed
by agent c true, while the state v(s1, 5) makes it false. As a result, the state s2 is not
in rc(s1, 5), the state s1 is not in rc(s2, 5), both sets become singletons, and hence, the
truth value of q becomes known to agent c. The same reasoning does not apply to agent
b because the condition φb is false in the two states v(s1, 5) and v(s2, 5), and hence, both
states trivially satisfy the formulas φb ⇒ Kaq and φb ⇒ Ka¬q that are sensed by agent
b, so that rb(s1, 5) and rb(s2, 5) remain unchanged, and equal to bI .

4.5.2. Collaboration through Communication

As a third example, we consider a scenario where two agents volunteer information to
each other in order to accomplish a task faster that would otherwise be possible without
information exchange. It is inspired in the BW4T environment, a proposed testbed for
joint activity (Johnson et al., 2009). There is a corridor of four rooms, p1, p2, p3 and p4
as in the previous example, four blocks b1, . . . , b4 that are in some of the rooms, and
two agents a and b that can move back and forth along this corridor. Initially, the two
agents are in p2 and do not know where the blocks are (they are not in p2). When an
agent gets into a room, he can see which blocks are in the room if any. The goal of
the planning problem is for agent a to know the position of block b1, and for agent b to
know the position of block b2. A shortest plan for the problem involves six steps: one
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agent, say a, has to move to p1, the other agent has to move to p3, they both must sense
which blocks are in these rooms, and then they must exchange the relevant information.
At that point, the goal would be achieved whether or not the information exchanged
explicitly conveys the location of the target blocks. Indeed, if agent a does not see block
b1 in p1 and agent b doesn’t see this block either at p3, agent a will then know that
block b1 must be in p4 once b conveys to a the relevant piece of information; in this case
¬Kbin(b1, p3).

The planning problem is P = 〈A,F, I, O,N, U,G〉, where A = {a, b}, F = {at(x, pk),
in(bi, pk)}, x ∈ A i, k ∈ [1, 4], I = {at(a, p2), at(b, p2)}∪D, whereD contains the for-
mulas expressing that each block has a unique location. The set of updates U is empty,
the goal isG = (∨k=1,4Kaat(b1, pk))∧(∨k=1,4Kbat(b2, pk)), the actions inO are rightx
and leftx, for each agent x ∈ A with the same semantics as in the example above, while
the sensing actions are sense(x, [in(b1, pk), . . . , in(b4, pk)] with precondition at(x, pk)
by which agent x ∈ A finds out in parallel which blocks bi, if any, are and are not in pk,
and sense(x, [Kyin(bi, pk]), by which agent y communicates to agent x 6= y, whether
he knows in(bi, pk), i, k ∈ [1, 4]. There are thus four physical actions, eight actions that
sense the world, and thirty-two communication actions. A shortest plan is:

do(lefta), do(rightb), sense(a, [in(b1, p1), . . . , in(b4, p1)]),
sense(b, [in(b1, p3), . . . , in(b4, p3)]),

sense(a,Kbin(b1, p3)), sense(b,Kain(b2, p1)).

This sequential plan achieves the goal in spite of the uncertainty of the agents about the
world and about the beliefs of the other agents.

4.6. Translation into Classical Planning

We show next how a linear multi-agent planning problem P can be compiled into a
classical planning problem K(P ) such that the plans for P are the plans for K(P ). The
language for K(P ) is STRIPS extended with negation, conditional effects, and axioms.
This is a PDDL fragment supported by several classical planners. We will use ¬L for a
literal L to stand for the complement of L, so that ¬¬L is L. A conditional effect is an
expression of the form C → E associated with an action a that states that the head E
becomes true when a is applied and C is true. We write such effects as a : C → E when
convenient. In addition planners normally assume that C and E are sets (conjunctions)
of literals. If C,C ′ → E is one such effect, we take C,¬C ′ → E as a shorthand for the
effects C,¬L→ E for each literal L in C ′. Axioms allow the definition of new, derived
atoms in terms of primitive ones, called then the primitive fluents. The derived fluents
can be used in action preconditions, goals, and in the body of conditional effects. While
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it’s possible to compile axioms away, there are benefits for dealing with them directly
in the computation of heuristics and in state progression (Thiébaux et al., 2005).

For mapping the multi-agent problem P = 〈A,F, I, O,N, U,G〉 into the classical prob-
lemK(P ), we will make some simplifying assumptions about the types of formulas that
may appear in P . We will assume as in planning, and without loss of generality, that
such formulas correspond to conjunctions of literals, where a literal L is an (objective)
atom p from F or its negation, or an epistemic literal KiL or ¬KiL where L is a literal
and i is an agent in A. Other formulas, however, can easily be accommodated by adding
extra axioms to K(P ). We will denote the set of objective literals in P by LF (P ); i.e.,
LF (P ) = {p,¬p|p ∈ F}, and the set of positive epistemic literals appearing in P by
LK(P ); i.e., LK(P ) is the set of KiL literals that appear as subformula of an action pre-
condition, condition, goal, or sensing or update expression. Indeed, while the set ofKiL
literals is infinite, as they can be arbitrarily nested, the set of such literals appearing in
P is polynomial in the size of P . As an example, if ¬K2K1¬K3p is a goal, then LK(P )
will include the (positive epistemic) literals K3p, K1¬K3p and K2K1¬K3p.

The translation K(P ) comprises the fluents L/s for the objective literals L in LF (P ),
and possible initial states s ∈ bI , and fluents Di(s, s

′) for agents i ∈ A. The former
express that the objective literal L is true given that s is the true initial state, while
the latter that agent i can distinguish s from s′ and vice versa. The epistemic literals
KiL appearing in P , such as K3p, K1¬K3p and K2K1¬K3p above, are mapped into
derived atoms in K(P ) through the use of axioms. The expression C/s where C is a
conjunction of literals L stands for the conjunction of the literals L/s.

Definition 4.6.1. Let P = 〈A,F, I, O,N, U,G〉 be a linear multi-agent planning prob-
lem. Then the translation K(P ) of P is the classical planning problem with axioms
K(P ) = 〈F ′, I ′, O′, G′, X ′〉 where

F ′ = {L/s : L∈LF (P ), s∈bI} ∪ {Di(s, s
′) : i∈A, s, s′∈bI},

I ′ = {L/s : L ∈ LF (P ), s ∈ bI , s |= L},

G′ = G,

O′ = O ∪N ∪U ; i.e., same set of actions a with same preconditions Pre(a), but
with

• effects a : C/s→ E/s for each s ∈ bI , in place of the effect a : C → E for
physical actions do(a), a ∈ O,

• effects a : C/s,¬C/s′ → Di(s, s
′), Di(s

′, s) for each pair of states s, s′ in bI
and (parallel) sensing actions a in N that involve a sense(i, C) expression,
and
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• effects a : ¬C/s′ → Di(s, s
′) for each pair of states s, s′ in bI and i ∈ A,

for actions a of the form update(C),

X ′ is a set of axioms:

• one for each positive derived fluent KiL/s where KiL ∈ LK(P ) and s ∈ bI
with (acyclic) definition L/s ∧ ∧s′∈bI [L/s′ ∨Di(s, s

′)],

• one for each literalL inLF (P )∪LK(P ) with definition∧s∈bI [L/s∨Di(s, s)]

In words, the primitive fluents in K(P ) represent the truth of the literals L in P condi-
tioned on each possible hidden initial state s as L/s, and the (in)accessibility relation
Di(s, s

′) among worlds. Initially, the worlds are all accessible from each other and
Di(s, s

′) is false for all such pairs. On the other hand, L/s is true initially if L is true in
s. The goal G′ of K(P ) is the same as the (conjunctive) goal G of P , and the actions
O′ in K(P ) are the actions in the sets O, N , and U of P with the same preconditions.
However, in the translation, the effect of physical actions is on the L/s literals, while the
effect of sensing actions and updates is on the Di(s, s

′) literals, with the literals Di(s, s)
for any i being used to denote that the world s is no longer possible. Last, the truth
conditions for epistemic literals in the translation is expressed by means of axioms in
terms of the primitive literals L/s and Di(s, s

′).

The complexity of the translation is quadratic in the number |bI | of possible initial states.
Its soundness and completeness properties can be expressed as follows:

Theorem 1. An action sequence π is a plan that solves the linear multi-agent planning
problem P iff π is a plan that solves the classical planning problem with axioms K(P ).

The translation above follows the pattern of other translations developed for conformant
and contingent planning problems in the single agent setting (Palacios and Geffner,
2009; Albore et al., 2009; Brafman and Shani, 2012a) and is closest to the one formu-
lated by Brafman and Shani (2012b). Actually, Brafman, Shani and Zilberstein have
recently developed a translation of a class of multi-agent contingent planning problems
that they refer to as Qualitative Dec-POMDPs (Brafman et al., 2013), as it’s a “qual-
itative” (logical) version of Decentralized POMDPs (Bernstein et al., 2000). A key
difference with our linear multi-agent planning problems is that in Q-Dec-POMDPs
the agents have beliefs about the world, but not about each other. Hence there are no
epistemic modalities or epistemic formulas.
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Problems #Atoms #Actions #Axioms #States A*(max) A*(cea) BFS(add) FF-X

MuddyChildren(3) 212 5 72 8 (0.02 - 0.01) / 6 (0.02 - 0.02) / 6 (0.02 - 0.02) / 6 0.01 / 6
MuddyChildren(4) 816 6 192 16 (0.16 - 0.06) / 8 (0.1 - 0.01) / 8 (0.15 - 0.02) / 8 0.1 / 8
MuddyChildren(5) 3312 7 480 32 (1.64 - 1.1) / 10 (0.7 - 0.1) / 10 (0.8 - 0.22) / 10 3.6 / 10
MuddyChildren(6) 14080 8 1152 64 (24.5 - 20.1) / 12 (5.4 - 1.1) / 12 (8 - 3.3) / 12 87 / 12
MuddyChildren(7) 61504 9 2688 128 (360 - 311) / 14 (55.1 - 9) / 14 (109.8 - 64) / 14 –

Collab-and-Comm(2) 348 22 132 9 (0.1 - 0.04) / 6 (0.06 - 0.02) / 6 (0.06 - 0.02) / 6 0.05 / 8
Collab-and-Comm(3) 1761 28 546 27 (1.6 - 1.1) / 6 (0.8 - 0.25) / 6 (0.85 - 0.25) / 6 9.3 / 8
Collab-and-Comm(4) 10374 34 2112 81 (48.1 - 33) / 6 (20.3 - 5.3) / 6 (22 - 6.5) / 6 765 / 8

Selective-Comm 59 7 20 2 (0.01 - 0.01) / 9 (0.01 - 0.01) / 9 (0.01 - 0.01) / 9 0.01 / 9

MuddyChild(3,1) 180 6 40 8 (0.01 - 0.01) / 5 (0.01 - 0.01) / 5 (0.01 - 0.01) / 5 0.01 / 5
MuddyChild(4,1) 720 8 96 16 (0.1 - 0.02) / 7 (0.1 - 0.01) / 7 (0.1 - 0.02) / 7 0.05 /7
MuddyChild(5,2) 3056 10 224 32 (1.3 - 0.06) / 8 (1.14 - 0.02) / 8 (1.2 - 0.06) / 8 1.75 / 8
MuddyChild(5,1) 3056 10 224 32 (1.3 - 0.08) /9 (1.14 - 0.02) / 9 (1.2 - 0.08) / 9 1.82 / 9
MuddyChild(6,2) 13440 12 512 64 (23 - 0.6) / 10 (22.1 - 0.2) / 10 (22.6 - 0.7) / 10 50 / 10
MuddyChild(6,1) 13440 12 512 64 (23 - 0.6) / 11 (22.1 - 0.25) / 11 (22.7 - 0.7) / 11 51.5 / 11
MuddyChild(7,2) 59968 14 1152 128 (554.5 - 4.5) / 12 (551 - 1.5) / 12 (555 - 5.7) /12 –

Sum(3) 306 10 90 9 (0.02 - 0.01) / 3 (0.02 - 0.01) / 3 (0.04 - 0.02) / 3 0.02 / 3
Sum(4) 963 13 234 18 (0.32 - 0.2) / 5 (0.2 - 0.02) / 5 (0.2 - 0.06) / 5 0.6 / 5
Sum(5) 2325 16 480 30 (26.5 - 26) / 7 (0.7 - 0.1) / 7 (0.8 - 0.25) / 7 9.1 / 7
Sum(6) 4770 19 855 45 – (2.4 - 0.7) / 10 (3.2 - 1.5) / 10 53 / 10
Sum(7) 8757 22 1386 63 – (7.5 - 2.9) / 11 (9.5 - 5.3) / 11 241 / 13

WordRooms(25,8) 935 56 535 8 (9.4 - 9.3) / 9 (0.25 - 0.1) / 11 (0.25 - 0.1) / 11 6.2 / 11
WordRooms(25,10) 1183 56 663 10 (18 - 17.8) / 9 (0.5 - 0.2) / 11 (0.5 - 0.2) / 11 11.9 / 11
WordRooms(25,12) 1439 56 791 12 (60 - 59.6) / 10 (0.6 - 0.26) / 14 (0.6 - 0.3) / 14 20.3 / 10
WordRooms(30,14) 1913 56 1059 14 (134.3 - 133.7) / 10 (1.1 - 0.5) / 15 (1.1 - 0.5) / 15 49.2 / 14
WordRooms(30,16) 2215 56 1207 16 (207 - 206) / 10 (1.5 - 0.7) / 15 (1.5 - 0.6) / 15 73 / 16

Table 4.1: Experimental results. Problems P shown on the left. The columns indicate number
of atoms, actions, and axioms in K(P ), the number of possible initial states for P , and the
resulting times and plan lengths. FF-X refers to the version of FF that supports axioms. The
other columns refer to three different configurations of Fast Downward using the same search
algorithm A* and the heuristics hmax, hcea and hadd. The first configuration yields provably
shortest plans. In the FF-X column, X/Y stands for X seconds and plan length Y . For Fast
Downward, X-Y/Z stands for X seconds of total time, Y seconds spent on the search, and plan
length Z. Unsolved problems indicated as “–”.

4.7. Experiments

We have tested the translation above by taking a number of problems P and feeding
the translations K(P ) into classical planners. The results are shown in Table 4.1.2 As
classical planners we used the version of FF known as FF-X (Thiébaux et al., 2005) that
supports axioms and is available from J. Hoffmann, and three configurations of Fast
Downward (Helmert, 2006) in a version that we obtained from M. Helmert that does
less preprocessing. The three configurations differ just on the heuristic that is used to
guide an A* search which is optimal for the admissible hmax heuristic. The results
have been obtained on a Linux machine running at 2.93 GHz with 4 GB of RAM and a
cutoff of 30 minutes.

2Software and data at http://www.dtic.upf.edu/∼fkominis/
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A couple of optimizations have been implemented in the translationK(P ). In particular,
we take advantage of the symmetry of the Di(s, s

′) predicates to reduce these atoms in
half. In addition, for sensing actions sense(i, C) where C is a static objective atom, we
define the effects unconditionally for all pairs s, s′ ∈ bI such that s and s′ disagree on
the truth value of C.

About the list of domains in the table, the first three have been discussed already:
MuddyChildren(n) with n children, Collab-through-Comm(n) with n blocks, (only two
blocks are relevant though), and Selective-Communication. The new domains are dis-
cussed below.

4.7.1. Active Muddy Child

MuddyChild(n,m) is a reformulation of MuddyChildren where a particular child must
find out whether he is muddy or not. For this he can ask individually each other child i
whether i knows that he is muddy, with all other children listening the response. Thus,
while in MuddyChildren(n) there is just one epistemic sensing action that lets every
child know whether each child knows that he is muddy, in MuddyChild(n,m), there
are n − 1 epistemic actions depending on the child being asked. In addition, to make
things more interesting, the goal in MuddyChild(n,m) is for the selected child k to
find out whether he is muddy, given that m of the children are not muddy in the actual
world. For example, in MuddyChild(5, 2), this goal can be encoded by the formula
(¬m1 ∧ ¬m2) ⊃ (K3m3 ∨ K3¬m3). The result of this conditional goal is that in the
resulting (shortest) plans, child 3 will not ask questions to children 1 and 2, as there is
nothing to achieve in the worlds where either one of them is muddy. While this is not
initially known, the child has physical sensors to discover that. Actually, in this domain,
in order to represent the initial situation where the children have received the father’s
announcement and the information from their physical sensors, we force on all plans an
initial sequence of actions that contain these n+ 1 actions. This is easy to do by adding
extra fluents. The shortest plans for MuddyChild(n,m) thus will involve these n + 1
actions followed by n−m− 1 epistemic actions.

4.7.2. Sum

Sum(n) is a domain based on ”What is the Sum?” (van Ditmarsch et al., 2007b), which
in turn borrows from the ”Sum and Product Riddle” (van Ditmarsch et al., 2008) and
the Muddy Children. There are three agents a, b, and c, each one with a number on his
forehead between 1 and n. It is known that one of the numbers must be the sum of the
other two. In addition, each agent can see the numbers on the other agent’s foreheads,
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and can be asked to publicly announce whether he knows that he has a specific number.
The goal is for one selected agent or two to learn their numbers. Atoms xi, for x ∈
A = {a, b, c} and 1 ≤ i ≤ n are used for indicating that agent x has the number i on
his forehead. We use one action that lets all agents know the numbers on the forehead
of the other agents in parallel. In addition, there are 3n actions that let all agents sense
whether agent x knows that he has the number i, x ∈ A and 1 ≤ i ≤ n.

The problem is subtle. Consider for example the smallest problem with n = 3 where
agent a must learn his number, i.e., G = Kaa1∨Kaa2∨Kaa3. Since the largest number
must be the sum of the other two, and hence must be larger than the other two, these two
other numbers can be 1 and 1, or 1 and 2. There are thus two different tuples of numbers
that are possible, 1, 1, 2 and 1, 2, 3, to be distributed among the 3 agents, resulting into
9 possible (initial) states and |bI | = 9.

If agent a sees that a second agent has the number 3, he will know his number from
looking at the third agent: if he has number 2, then a must have number 1, and if the
third agent has number 1, a must have number 2. On the other hand, if a sees only
numbers 1 and 2, he will not know whether he has number 1 or 3. Yet he can ask the
agent with the number 1 whether he knows that he has the number 1: if he knows, then
a knows that he has number 3, else, he has number 1. These various scenarios can be
obtained by setting the goal to an implication like ¬a3 ⊃ Kaa1 ∨Kaa2. The goals for
the instances in the table do not involve conditions on the actual world and thus must
work for all the worlds that are possible.

In Sum(3), the goal is for one agent, say a, to learn his number and the plan involves
all agents sensing the numbers of the others in parallel, and then b and c reporting in
sequence whether they each know that his own number is 1. The total number of actions
in the plan is thus 3. There are three cases to consider to show that the plan works. If
the report from b is Kbb1, a and c must have the numbers 2 and 3, or 3 and 2, but since
a can see c, he can figure out his number. Let us thus assume that the report from b is
¬Kbb1 followed by c reporting Kcc1. In such a case, from the first observation, agents
a and c cannot have 2 and 3, or 3 and 2, and from the second, a1 and b1 cannot be both
true either. Thus a and b must have the numbers 2 and 1, 2 and 3, or 3 and 2. Once
again, since a can see b, a can figure out his number. Last, if the sensing results in
¬Kbb1 followed by ¬Kcc1, a and b must have the numbers 1 and 1, 1 and 2, or 1 and 3.
Therefore a will be able to know that his number is 1.

Interestingly, there is no plan for the goal when all agents must learn their numbers. Let
us assume that b reports first, and let us focus on two of the possible initial states where
the numbers for a, b and c are 2,1,1 and 2,3,1 respectively. In state 2,1,1, a will know
his number, and b will express ignorance, from which c will learn that his number is 1.
Agent b can predict this, and hence will not learn anything else from either a or c. Thus,
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the first agent that speaks up in the linear plan, won’t be able to figure out his number
in all states.

4.7.3. Word Room

WordRoom(m,n) is a variation of the collaboration through communication example.
It involves two agents a and b that must find out a hidden word from a list of n possible
words. The words can have at most 7 letters with the i-th letter of the word being in
room ri, i = 1, . . . , 7. The two agents can move from a corridor to each of the rooms,
and from any room back to the corridor. There is no direct connection among rooms, the
two agents cannot be in the same room, and they both start in the corridor. The agents
have sensors to find out the letter in a room provided that they are in the room, and they
can communicate the truth of the literals Kxli where x is one of the two agents and li
expresses that l is the i-th letter of the hidden word. The former amounts to 14 sensing
actions of the form sense(x, [li, l

′
i, l
′′
i , . . .]) with the precondition that agent x is in room

i, and where l, l′, . . . are the different letters that may appear at position i of some of the
n words. The parameter m in problem WordRoom(m,n) stands for the total number of
li atoms. There are also 7 actions sense(a, [Kbli, Kbl

′
i, Kbl

′′
i , . . .]) where b communicates

what he knows about room i to a, and similarly, 7 actions where a communicates to b.
If we add the 14 actions for each agent moving from a room to the corridor and back,
the total pool of actions is 56. The shortest plan for these problems is interesting when
there is a lot of overlap among the n possible words, and in particular, when it may be
more efficient for an agent to communicate not the letters that he has observed, but the
letters that he can derive from what he knows.

4.8. Relation to Single Agent Beliefs and DEL

The proposed formulation for handling beliefs in a multi-agent setting sits halfway be-
tween the standard formulation of beliefs in single agent settings as found in conformant
and contingent planning (Geffner and Bonet, 2013), and the standard formulation of be-
liefs in the multi-agent settings as found in dynamic epistemic logics (van Ditmarsch
et al., 2007a; van Ditmarsch and Kooi, 2008b). In the single agent settings, beliefs are
represented as the sets of states b that are possible, and physical actions a, whether de-
terministic or not, affect such beliefs deterministically, mapping a belief b into a belief
ba = {s | s ∈ F (a, s′) and s′ ∈ b} where F represents the system dynamics so that
F (a, s) stands for the set of states that may follow action a in state s. If the action a is
deterministic, F (a, s) contains a single state. The belief resulting from doing action a in
the belief b and getting an observation token o is boa = {s | s ∈ ba such that o ∈ O(a, s)}
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where O represents the sensor model so that O(a, s) stands for the set of tokens that
can be observed after doing action a, resulting in the (possibly hidden) state s. Sensing
is noiseless or deterministic, when O(a, s) contains a single token. Interestingly, when
both the actions and the sensing are deterministic, the set of beliefs B′(t) that may fol-
low from an initial belief bI and a given action sequence is B′(t) = {b(s, t) | s ∈ bI }
where b(s, t) is the unique belief state that results from the action sequence and the initial
belief state bI when s is the hidden state. This expression has indeed close similarities
with the beliefs B(t) defined by (4.1) and (4.2) above.

While the proposed formulation is an extension of the belief representation used in
single-agent planning, it represents also a fragment of dynamic epistemic logics where
the Kripke structure K(t + 1) that represents the belief at time t + 1 is obtained from
the Kripke structure K(t) representing the beliefs at time t and the Kripke structure
representing the event at time t called the event model. The update operation is known
as the product update as the set of worlds of the new structure is obtained by taking the
cross product of the sets of worlds of the two time t structures. In particular, using the
framework laid out in (van Ditmarsch and Kooi, 2008b; Bolander and Andersen, 2011)
for integrating epistemic and physical actions, the basic actions in our language can be
all mapped into simple event models. The event model for do(a) is given by a single
event whose postcondition in a state s is fa(s). The event model for update(φ) has also
a single event with precondition φ and null postcondition. Finally, the event model for
sense(A, φ) has two events that can be distinguished by the agents in A but not by the
other agents, one with precondition φ, the other with precondition¬φ, and both with null
postconditions. While the proposed formulation captures only a fragment of dynamic
epistemic logics, for this fragment, it provides a convenient modeling language, a simple
semantics, and a computational model.

4.9. Conclusion

We have introduced a framework for handling beliefs in the multi-agent setting that
builds on the methods developed for representing beliefs in single-agent planning. The
framework also captures and defines a fragment of dynamic epistemic logics that does
not require event models or product updates, and has the same complexity as belief
tracking in the single agent setting (exponential in the number of atoms). We have also
built on these connections to show how the problem of computing linear multi-agent
plans can be mapped into a classical planning problem, and have presented a number of
examples and experimental results.

A basic assumption is that all uncertainty originates in the set of states that are possi-
ble initially and hence that actions are deterministic. Still, non-deterministic physical
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and sensing actions can be introduced by reducing them to deterministic actions whose
effects are made conditional on extra hidden variables. Similarly, while all agents are
assumed to start with the same belief state, different initial beliefs that result from a
common belief and different public sensing events can be handled easily as well.
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CHAPTER 5

Online Planning and Dialogues

5.1. Introduction

Single-agent planning with partial observability is a hard computational problem where
even the size of the required policies is often exponential in the problem size (Rintanen,
2004). For avoiding this bottleneck, on-line approaches have been developed that rather
than computing full policies off-line, compute the next action to do given the obser-
vations gathered (Albore et al., 2009; Brafman and Shani, 2012b; Bonet and Geffner,
2014b).

In this chapter, we address the problem of on-line planning in partially observable en-
vironments in the presence of multiple agents that share a common goal and plan with
beliefs that can be about the world or about the possibly nested beliefs of other agents.
While this is a setting addressed by dynamic epistemic logics (van Ditmarsch et al.,
2007a; van Ditmarsch and Kooi, 2008b; Van Benthem, 2011), we build on the formu-
lation we presented in the previous chapter that captures a fragment of DEL, for which
it provides a convenient modeling language, a simple semantics, and procedures akin
to those used in the single-agent setting (Kominis and Geffner, 2015). In this approach,
the basic assumptions are that physical actions are deterministic, all agents know the
sensors available to each of the agents, and the set of possible initial states and actions
that have been applied are common knowledge. There is a clear tradeoff between ex-
pressivity, simplicity, and computational efficiency, and other approaches addressing
planning in a multi-agent setting make different tradeoffs (Baral et al., 2012; Brafman
et al., 2013; Muise et al., 2015; Engesser et al., 2015; Cooper et al., 2016).
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For using the previous chapter’s formulation in the on-line setting, three issues need to
be addressed. First, beliefs must take into account the actual observations gathered by
the agents. Second, plans must be computed by the agents themselves using their own
private information. And third, plans do not have to achieve the goal for all possible
initial states, but for the true hidden initial state. We address these issues by adopting
a suitable formulation of truth in the on-line setting that is used within a plan-execute-
observe-and-replan cycle along with a translation into classical planning for selecting
actions. The resulting on-line planning algorithm is guaranteed to reach the goal in a
bounded number of calls to a classical planner provided that there are no dead-ends,
even if different agents are chosen to plan in the different replanning episodes. We also
show that interesting agent dialogues arise in this setting where agents request, provide,
and volunteer information in a collaborative, goal-directed manner.

5.2. Motivation

We will use the Active Muddy Child problem of Section 4.7.1 for illustrating the differ-
ences between the off-line and on-line settings, where planning with epistemic goals is
more crucial than in the standard partially observable setting of single-agent planning.
While in the original puzzle, the father announces that at least one child is muddy, and
then asks the children repeatedly whether they know whether they are muddy or not until
the muddy children all infer that they are muddy, in the Active version, one of the chil-
dren is the one asking the questions to find out whether he is muddy or not. Moreover,
he has to ask these questions to one child at a time, whose answer, however, is heard by
all the children. A conformant plan for the Active Muddy Child problem is one where
the active child asks the question to each one of the children in turn without leaving any
one out, in any order. The plan achieves the goal regardless of the true initial state. The
problem has indeed 2n − 1 possible initial states where different subsets of children are
muddy, excluding the state where no child is muddy that is common knowledge.

In the on-line version of the Active Muddy Child problem, the child asking the questions
to figure out whether he is muddy or not, does not have to ask each of the children in
turn whether they are muddy or not. The “planning child”, like the other children,
senses the world and can perfectly see which children are muddy and which ones are
not, except for himself. A more effective strategy in the on-line setting is to approach
only the children that are seen to be muddy. Any plan where the “planning child” asks
the question to each of the children that he sees muddy, will achieve the goal.

The difference between the off-line and on-line setting is not the presence of observa-
tions that the planning agent can use for selecting actions. This is actually a result of
a partially observable environment. The key difference is that in former the plans are
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supposed to work for all possible initial states, while in the latter they are supposed to
work for one possible initial state only: the true hidden state. For example, the standard
solutions to contingent planning problems are contingent trees. This form of contingent
planning makes use of observations but it’s an off-line method: the trees cover all the
possibilities and hence all possible initial states. The solution form in on-line planning
is not a tree but an action sequence, as the solution is supposed to work for one par-
ticular state: the true hidden state. In such a setting, the actual observations provide
information about the hidden state, and hence, about the next actions to be done so that
the planning agent will be certain that the goal is true. The planning agent in the on-line
setting may find useful to consider many and even all possibilities before deciding what
to do next. Yet, this is a criterion for choosing actions; the solution of the on-line prob-
lem is given by the sequence of actions taken if the actions and the observation let the
agent know that the goal was reached.

The distinction between off-line and on-line planning is often left implicit and without
formalization in the single-agent, partial observable setting, because goals in the latter
are objective and refer to the world. In the on-line setting of epistemic, multi-agent plan-
ning, on the other hand, things are different and force us to make explicit and formal
the conditions under which an epistemic goal is achieved from the internal perspec-
tive of the planning agent, and hence the role that the hidden true state plays in such
conditions.

5.3. Language

We consider planning problems P = 〈A,F, I, O,N, S,G〉 where A is the set of agent
names or indexes, F is the set of relevant atoms or fluents, I represents the initial sit-
uation in the form of an objective formula over F , O is the set of physical actions, N
is the set of sensing actions, S is the set of (passive) sensors, and G is the goal. States
represent truth-valuations over F , and the set of possible initial states bI is made of the
states that satisfy I . The physical actions a define a mapping fa such that fa(s) rep-
resents the state that result from applying action a in the state s. Syntactically, such
mappings are defined through a set of conditional effects of the form C → L, where
L is a literal and C is a formula over F or the atom true that is normally omitted. A
sensing action in N is a set of expressions of the form sense[i](φ), where i is an agent,
and φ is an objective or epistemic formula. A result of the action is that the truth value
of φ is revealed to agent i. A (parallel) sensing action in N is a set of expressions of
the form sense[Ak](φ), where the truth of φ is revealed to all the agents j ∈ Ak. Unlike
sensing actions, sensors reveal information without having to act. We denote passive
sensors like sensing actions but with the letter “p” in front; namely, as psense[i](φ) and
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psense[Ak](φ). Also, we write sense(φ) and psense(φ) when the sensing involves all
the agents, i.e. Ak = A.

The goal G and the formulas φ above can be epistemic. The epistemic formulas φ
include the atoms in F , and recursively, the formulas Kiφ for i ∈ A, and the boolean
combinations of such formulas whereKi is the standard operator in logics of knowledge
(Fagin et al., 1995).

Finally, physical actions a have a precondition formula Pre(a) that can be objective or
epistemic. We assume that each action has an ‘owner” and that the action is applicable
if the owner knows that the precondition is true (Engesser et al., 2015).

5.4. Beliefs

Beliefs are represented by a suitable collection of sets of states. The beliefs define a
Kripke structure where arbitrary epistemic formulas can be evaluated.

5.4.1. External View

The beliefs of all the agents at time step t, denoted as B(t), is represented by the beliefs
B(s, t) conditional on s ∈ bI being the true initial state, given as in Section 4.3:

B(s, t) = 〈v(s, t), r1(s, t), r2(s, t), ..., rm(s, t)〉

where v(s, t) is the state of the world that results from the initial state s after the action
sequence π(0), . . . , π(t − 1), and ri(s, t) is the set of possible initial states s′ ∈ bI that
agent i cannot distinguish at time t from the actual initial state s.

For t = 0, v(s, t) = s and ri(s, t) = bI for all agents i, while for t > 0, B(t + 1) is
determined by B(t) and the action π(t) at time t.

If π(t) is a sensing action or contains such actions, the current state given s does not
change, i.e., v(s, t + 1) = v(s, t), but the set of possible initial states compatible with
the hidden initial state s for agent i given by ri(s, t+ 1) becomes:

{s′|s′ ∈ ri(s, t), B(t), s′ |= ψ iff B(t), s |= ψ,∀ψ ∈ Oi(t)}

where Oi(t) represents the observables at time t and contains all the formulas φ such
that the action sense[Ak](φ) is in π(t) or psense[Ak](φ) is a passive sensor, in both
cases with i ∈ Ak. The expression B(t), s |= φ denotes that φ is true in the belief B(t)
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conditional on s being the true hidden state. The truth conditions for such expressions
are spelled out below.

If π(t) is a physical action a, the current state v(s, t) associated with the hidden initial
state s changes according to transition function fa as v(s, t + 1) = fa(v(s, t)), while
the sets of initial states ri(s, t) change according to the displayed formula above, where
the observables in Oi(t) result from the passive sensors only. In addition, if the action
a is “owned” by agent j, states s ∈ ri(s, t + 1) where B(t), s |= KjPre(a) does not
hold are removed from ri(s, t + 1), meaning that agents i learn that action a is then
applicable.

5.4.2. From Beliefs to Kripke Structures

A Kripke structure is a tuple K = 〈W,R, V 〉, where W is the set of worlds, R is a set of
binary accessibility relations Ri on W , one for each agent i, and V is a mapping from
the worlds w in W into truth valuations V (w). The conditions under which an arbitrary
formula φ is true in a world w of a Kripke structure K = 〈W,R, V 〉, written K, w |= φ,
are defined inductively (Fagin et al., 1995):

K, w |= p for an atom p, if p is true in V (w),

K, w |= φ ∨ ψ if K, w |= φ or K, w |= ψ,

K, w |= (φ⇒ ψ) if K, w |= φ implies K, w |= ψ,

K, w |= Kiφ if K, w′ |= φ for all w′ s.t. Ri(w,w
′),

K, w |= ¬φ if K, w 6|= φ

A formula φ is valid in the structure K, written K |= φ, iff K, w |= φ for all worlds
w in K. The conditions under which a possible initial state s predicts the truth of a
formula φ at time t, written B(t), s |= φ, follow from replacing the belief B(t) by the
Kripke structure K(t) = 〈W t, Rt, V t〉 defined by B(t) where W t = {s | s ∈ bI},
Rt
i = {(s, s′) | s′ ∈ ri(s, t) }, and V t(s) = v(s, t).

The worlds w in the structure K(t) are thus the possible initial states s ∈ bI , while the
worlds that are accessible from a world s to the agent i are the possible initial states s′

that are in ri(s, t). Finally, the valuation associated to a world s in this structure is the
state v(s, t) that deterministically follows from the possible initial state s and the action
sequence up to t− 1. B(t), s |= φ is defined as true when K(t), s |= φ is true.
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5.4.3. Agent’s View

While in the off-line setting, a formula φ is regarded as true at time t when K(t), s0 |= φ
is true for all possible initial states s0 ∈ bI , i.e., all worlds in the structure, in the on-line
setting, truth is defined in relation to the single actual world, which corresponds to a
true but hidden initial state denoted as s∗0:

Definition 5.4.1 (On-line Truth). A formula φ is true at time t in the on-line setting,
written B(t) |= φ, iff K(t), s∗0 |= φ where s∗0 ∈ bI is the hidden initial state.

This a simple but crucial definition in our formulation. No similar explicit account for
truth is required in on-line accounts of partially-observable planning in the single-agent
setting where the hidden state s∗0 plays an indirect role only. This is because goals are
then objective formula and it is then sufficient to keep track of the set of states that are
possible at a given time point; the so-called belief state (Bonet and Geffner, 2000).

Agents, however, do not have the information to evaluate arbitrary formulas according
to Definition 5.4.1 as they do not know the hidden state s∗0. Yet, each agent i can use
this definition to evaluate formulas Kiφ

′ provided that the set Si(t) of initial states that
are possible to agent i by time t is tracked. This set depends on the actual observations
gathered by agent i. Initially Si(0) = bI and Si(t+ 1) is:

Si(t+ 1) = {s′|s′ ∈ Si(t), B(t), s′ |= ψ,∀ψ ∈ O+
i (t)}

where O+
i (t) stands for the set of observations available to agent i at time t; namely,

the formulas ψ (observable) in Oi(t) that have been observed to be true at t, and the
negation of the formulas ψ (observable) in Oi(t) that have been observed to be false.
Provided with this set of possible initial states, the truth of formulas Kiφ according to
Definition 5.4.1 can be evaluated as follows:

Theorem 2. B(t) |= Kiφ iff K(t), s0 |= φ, ∀s0 ∈ Si(t).

Indeed, for evaluating the formulaKiφ in s∗0, the agent does not need to know the hidden
state s∗0 but ri(s∗0, t); i.e., the set of states that agent i cannot tell apart from s∗0 at time t.
Yet this set is precisely Si(t).

As an illustration, if the problem P involves two agents 1 and 2, two fluents p and q,
I = {p ≡ q}, and π is given by the action π(0) = sense[1](p) followed by π(1) =
sense[2](q), we get a joint belief B(t) for t = 2 that defines a Kripke structure K(t)
where formulas such as K1p ≡ K2q hold in all the states, and formulas such as K1p and
K2q do not. Yet, if the true hidden state s∗0 is such that p and q are true in s∗0, formulas
such as K2q and K2K1p would be true in B(t) according to Definition 5.4.1 for t = 2,
and false for t = 1.
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5.5. Planning

Planning in our setting involves the incremental computation and execution of a se-
quence of actions that makes the goal true. The algorithm shown in Figure 1 computes
such sequences using a replanning method that is similar to those developed for single-
agent on-line planning in partial observable settings (Brafman and Shani, 2012b; Bonet
and Geffner, 2014b). Initially, a selected planning agent i computes an action sequence
π by calling a classical planner over a translation K(P,B(t), Si(t)) that expresses a
relaxation where agent i is allowed to make a guess about the true hidden state s∗0.
This simplification does not make the hidden state known to the planning agent but de-
termines the outcomes of all sensing actions which thus become deterministic. If the
planning agent i is “lucky”, the execution of the (normalized) action sequence π will
not reveal to agent i that the choice is wrong. In such a case, the action sequence can be
applied fully, achieving KiG and hence the goal G. On the other hand, if the execution
of π reveals to agent i at time t′ > t that s is not the true hidden initial state, then s
is removed from Si(t

′), and the process repeats with the updated beliefs B(t′) and sets
Si(t

′), possibly with a different planning agent. One agent is selected as the planning
agent in each replanning episode. A fixed ordering among the agents is also assumed
so that if for the selected planning agent i, the classical problem K(P,B(t), Si(t)) has
no solution, the selected planning agent becomes the next agent in the ordering. Notice
that an action like sense[j](Kiφ) in a plan computed by agent k represents information
sharing when k = i and information request when k = j. Similarly, a physical action
a planned by agent i and owned by agent j represents a request from i to j to do the
action a.

Algorithm 1 Online planning and execution for problem P

1: Inputs: B(0), S(0), initial planning agent i
2: t← 0
3: Loop: Generate classical problem K(P,B(t), Si(t))
4: Compute classical plan π from K(P,B(t), Si(t))
5: Normalize π removing auxiliary actions
6: Execute π incrementally updating B(t) and Si(t) til first t′ where KiG achieved

or inconsistency detected
7: Agents j update Sj(t) til t = t′ with own observations
8: if KiG achieved then
9: exit

10: else
11: t← t′

12: Set new planning agent i
13: Go to Loop
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5.5.1. Properties

Before considering the translation in detail, we present the basic properties which can
also be understood as the requirements that the translation must fulfill. The translation
introduces auxiliary actions, such as assuming a hidden true state and simulating the
passive sensors. For an action sequence π obtained from the translation, the normaliza-
tion of π, denoted as n(π), is the same sequence but with the auxiliary actions removed.
The notion of consistency results from matching the observations assumed by the plan
and the actual observations gathered. The former follow from the choice of the hid-
den state which is captured by an auxiliary action assume(s) that must be unique and
appear first in the plan.

Definition 5.5.1 (Consistency). Let π be a prefix of a plan for P ′ = K(P,B(t), Si(t)).
The normalized sequence n(π) is consistent with the observations iff a) for any formula
φ rendered observable by n(π) at time t′ from active or passive sensing, B(t′), s |= φ
iff φ is observed to be true at time t′, and assume(s) is the first action in π, and b) the
physical actions a in n(π) are all applicable in P (i.e., owners know the preconditions).

The results below assume further that a physical action a owned by agent j that is not
applicable in the plan computed by agent i 6= j from the translation, is replaced by a
communication; namely, the action sensei(Kj(Pre(a))). That is, agent i learns that the
action is not applicable.

Theorem 3 (Soundness). a) If π is plan for K(P,B(t), Si(t)) that is consistent with the
observations, the execution of n(π) leads to the goal in P . b) Otherwise, if π′ is the
shortest prefix of π that is inconsistent and π includes the action assume(s), after the
execution of n(π′) in P , s 6∈ Si(t′) where t′ is the resulting time step.

Theorem 4 (Completeness). If s = s∗0 ∈ Si(t) is the true hidden state in P and there
is an action sequence that achieves KiG for an agent i, then there is a plan π for
K(P,B(t), Si(t)) that starts with the action assume(s), and any such plan is consis-
tent.

These properties of the translation ensure that Algorithm 1 is a sound and complete
replanning algorithm for P provided that no execution of P can reach a dead-end, i.e.,
a situation from which no action sequence can lead to KiG for any agent i:

Theorem 5 (Goal Achievement). If the executions in P cannot reach a dead-end, Al-
gorithm 1 will solve P after a number of calls to the classical planner that is bounded
by |bI | × |A|2, where bI is the set of initial states in P and A is the set of agents.

In the worst case, a protocol may have to iterate over all the agents until finding an
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agent i that can find a plan in the translation for the goal KiG. The execution of that
plan ensures that the goal KiG is reached or that at least one state s is removed from
Si(t). The number of such removals is bounded by |bI | × |A|.

5.5.2. Translation into Classical Planning

The language for the translation P ′ = K(P,B(t), Si(t)) in Algorithm 1 is STRIPS
extended with negation, conditional effects, and axioms. The primitive fluents in P ′ are
used to represent the states v(s, t) and the collection of states rj(s, t) that define the
beliefs B(t). For encoding the states v(s, t), P ′ contains atoms L/s that express that the
objective literal L is true in the current state if s is the initial state, while for encoding
the sets rj(s, t), P ′ contains fluents Dj(s, s

′) that are true when s′ 6∈ rj(s, t). P ′ also
features atoms T (s) for representing that s is the assumed true initial state, and atoms
Di(s) for representing that s 6∈ Si(t). Formulas appearing in action preconditions,
goals, and sensing expressions in P are assumed to be all literals or conjunctions of
possibly epistemic literals L. A positive epistemic literal is an objective literal preceded
by a sequence of epistemic operators possibly separated by negations, like Ka¬KbKcp.
The axioms in the translation are used to maintain the truth of epistemic literals. We
denote the set of objective literals in P as LF (P ), the set of positive epistemic literals
in P as LK(P ), and the set of positive epistemic literals L that are suffixes of literals
in LK(P ) as LX(P ). The literals φ/t in the translation are used to encode the truth
of formulas φ in the assumed initial state; i.e., φ/t iff φ/s and T (s). Such formulas φ
are the ones appearing in sensing and preconditions. The actions in K(P,B(t), Si(t))
comprise the physical actions in P , the auxiliary actions assume(s) for guessing the
initial state, the action E for capturing the effects of passive sensing, and the sensing
actions sense[A](φ) in P . The action assume(s) must appear first in any plan for some
possible s, excluding all other assume(s′) actions from being applied.

Definition 5.5.2. The classical problem with axiomsK(P,B(t), Sα(t)) = 〈F ′, I ′, O′, G′, X ′〉
where α is the planning agent and P = 〈A,F, I, O,N, S,G〉 is such that:

F ′ = {L/s : L ∈ LF (P ), s ∈ bI} ∪ {T (s) : s ∈ bI} ∪ {Di(s, s
′) : i ∈A, s, s′ ∈

bI} ∪ {Dα(s) : s∈bI},

I ′ = {L/s : L ∈ LF (P ), s ∈ b′(t), s |= L} ∪ {Dα(s) : s ∈ bI , s 6∈ Sα(t)} ∪
{Di(s, s

′) : s, s′ ∈ bI , s 6∈ ri(s′, t), i ∈ A}

G′ = ∧s∈bI (Dα(s) ∨G/s)

Axioms X ′:

• KiL/s iff ∧s′∈bI [L/s′ ∨Di(s, s
′)], KiL ∈ LX(P )
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• φ/t iff ∧s∈bI [¬T (s) ∨ φ/s], φ in sensing

Actions O′:

• auxiliary actions assume(s), for s ∈ bI , with prec. ¬Dα(s) and effect
T (s),

• physical actions a ∈ O owned by j have prec. Kj(Pre(a))/t and effects
¬Kj(Pre(a))/s → Di(s, s

′) ∧ Dα(s) for s, s′ ∈ bI and C/s → E/s for
each s ∈ bI and effect C → E of a in P

• sensing actions sense[B](φ) ∈ N with α 6∈ B mapped into same action
without precs, and effects:

◦ φ/s ∧ ¬φ/s′ → Di(s, s
′), Di(s

′, s) for s, s′ in bI and i ∈ B,

• sensing actions sense[B](φ) ∈ N with α ∈ B mapped into the same ac-
tions, with effects

◦ φ/s ∧ ¬φ/s′ → Di(s, s
′), Di(s

′, s) for s, s′ in bI and i ∈ B, and

◦ φ/t ∧ ¬φ/s→ Dα(s),

◦ ¬φ/t ∧ φ/s→ Dα(s), for s ∈ bI ,

• auxiliary action E with effects

◦ φ/s ∧ ¬φ/s′ → Di(s, s
′), Di(s

′, s) for each pair of states s, s′ in bI ,
psense[B](φ) in S, and i ∈ B,

◦ φ/t ∧ ¬φ/s′ → Dα(s′), if α ∈ B, s, s′ ∈ bI .

◦ ¬φ/t ∧ φ/s′ → Dα(s′), if α ∈ B, s, s′ ∈ bI .

In the above translation we omit the auxiliary literals used for specifying ordering of
actions (forcing as first action one of assume(s), action E being applied after every
other action). Also, while not covered in the above translation, sensing actions can be
parallel.

The translation is quadratic in the number of possible initial states |bI |, and hence expo-
nential in the number of atoms in the worst case. The same is true however for sound
and complete translations in the single-agent setting (Brafman and Shani, 2012a).

5.5.3. Protocols

The results above make no assumption about which agent is selected as the planning
agent for the next episode. Yet this choice can make a significant difference in the type of
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agent dialogues (information exchanges) that result. We consider four protocols.

In fixed agent, the initial planning agent remains so throughout the execution until reach-
ing the goal.

In last-agent, when the shortest inconsistent plan ends with a sensing action sense[B](Kjφ)
or a physical action owned by an agent j different than the planning agent, the control
is given to agent j.

Third is the volunteering protocol. When the shortest inconsistent plan ends with a
sensing action involving agent j (eg sense[i](KjL)) and i is the planning agent, j “vol-
unteers” information to i. This is achieved by selecting the most informative sens-
ing action of the form sense[i](KjL

′) to be applied. As most informative we define
the action which, when applied, will remove the largest number of states from the set
of states R that i may consider possible, according to j. Formally, R = { s | s ∈
ri(s

′, t) and s′ ∈ Sj(t)} is the set of states i may consider possible, from the perspec-
tive of j. Then, for all possible sensing actions sense[i](KjL

′), we define R(KjL
′) =

{ s | s ∈ R, B(t), s |= KjL
′ iff B(t) |= KjL

′}, the set of all states in R which agree
with the truth value of KjL

′. The action with the smallest |R(KjL
′)| is chosen as the

most informative. Ties break randomly, and no sensing action will be applied if there is
no |R(KjL

′)| < |R|.

The forth, and last, protocol is the vol-mutex protocol. Similarly to the volunteering
protocol, when the shortest inconsistent plan ends with a sensing action involving agent
j (eg sense[i](KjL)), and i is the planning agent, j “volunteers” information to i. The
difference is that instead of j volunteering the most informative information, he will
volunteer the information most relevant to L. We define this relevance using predefined
sets of mutex literals - two literals L and L′ are relevant if they belong to the same set of
mutexes. If the plan ended with a sensing action sense[i](KjL), where i expected KjL
to be true but he actually sensed that it is false, and there exists a literal L′ relevant to
L such that j knows L′, then the sensing action sense[i](KjL

′) is applied. If for all L′

relevant to L we have that B(t) 6|= KjL
′, then a parallel sensing action occurs of the

form sense[i](KjL
′, ..., KjL

′′) for L′..L′′ ∈M .

The difference between the volunteering and the vol-mutex protocol is a subtle one. We
can see that in the volunteering protocol the agent shares the knowledge which will
have possibly the biggest impact, yet it is possible that the information is irrelevant
to the asking agent. Imagine a problem where two balls are placed in a grid. Ball
1 has 20 possible positions while ball 2 only four, the corners of the grid. Imagine
agent j already knows the positions of both balls, and i, who is the planning agent,
has as goal to learn only the position of ball 2. Agent i will execute a plan where he
assumed the ball is in one specific corner of the grid, ask j if he knows it, expecting a
positive answer. If in the hidden, true state the ball is in a different corner, j will reply
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negatively. The volunteering protocol specifies that j will announce the position of ball
1, since that removes most of the states, even though it is irrelevant to i’s goal. The
vol-mutex protocol on the other hand, where there is a set of mutexes which contains
the four possible positions of ball 2, specifies that j will share the position of the second
ball.

5.6. From plans to dialogues

In this section we show that there is an intuitive mapping between executed actions and
natural language, based on the fact that all actions are public, sensing actions can be of
epistemic literals etc.

Acting: a physical action a with owner i and preconditions Pre(a) is translated
into ”i: I apply a”.

Requesting: a physical action a with owner j and preconditions Pre(a) is trans-
lated into ”i: j, apply action a”, to which a response will follow: ”j: I applied
a” or ”j: I cannot apply a”, depending on whether KjPre(a). If the action has
no preconditions, no response will follow since it is known that the action can be
applied.

Providing: a sensing action sense[D](KiL) is translated into ”i: I tell all agents
in D whether I know L”, and if D = A− {i} then into ”i: I do know L”, or ”i: I
do not know L”, depending on the hidden true state.

Asking: a sensing action sense[D](KjL), where i 6∈ D, is translated into ”i: j, tell
all agents in D whether you know L”, to which a response will follow ”j: I did
tell all agents in D”. If i ∈ D, the response depends on the view of the plan we
have: if we present it from the point of view of the planning agent, the response
will be ”j: I do (not) know L”, otherwise it would be ”j: I did tell all agents in
D”. If D = A− {j}, then the the question would be ”j: do you know L?”, while
the response will be ”j: Yes, I do know L” or ”j: I do not know L”.

In certain cases, a more natural mapping is possible. For example, if i applies the action
“pick-up-red-ball” of which he is the owner, then we would translate the action to ”i: I
picked up the red ball”. Similarly, if we have a sensing action sense[i](KjL), where L
represents the fact that j sees the red ball, it would be translated to ”i: j, tell me that
you see the red ball”.
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5.7. Examples and experimental results

We present the dialogue traces for three problems, using various protocols. We ob-
tained the results using the on-line replanning algorithm shown, and the FD planner as
the classical planner (Helmert, 2006), over a Linux machine at 2.93GHz with 4GB of
RAM. In our implementation, each planning phase is a different call to FD, with the
corresponding PDDL files. We present experimental results as tuples 〈S, T,R〉 next to
each problem and protocol used. In these tuples, S stands for the average search time ,
T is the average total time, and R is the average number of replans. Search (total) time
is the average search (total) time for each planning phase, while the average number of
replans is taken by running the experiments over each possible initial state as the true
initial state. An asterisk ‘*’ next to an action indicates that a replanning phase occurred
after the action, and we report when a change of planning agent or a volunteering oc-
curred. Due to space, we collapse actions when the execution is clear. For example, a
“j, move right twice. Do you see l?” indicates two consecutive physical actions and a
sensing action, all relating to j.

5.7.1. Meeting problem

We have two agents (a, b) and a ring-shaped grid of size six (p1, .., p6). Within the grid
there are three landmarks (l, q, r), each one positioned in either p2, p4 or p6, and no two
landmarks can be in the same position. The agents do not know the actual position of
the landmarks. It is known that a is initially positioned in either p1 or p2, while b in one
of p2, p4 and p6. An agent can see a landmark only if they are in the same position. The
goal is for agent a to know that both agents are in p1.

Each agent has a physical action “move-clockwise” and “move-anticlockwise”, three
sensors for seeing a landmark, and three actions for communicating if he is in the same
position with one of the landmarks. We introduce auxiliary derived atoms i@L with
definition

∨
x∈{2,4,6} i@px ∧ L@px, where i the agent, L one of the landmarks. Agents

can sense their respective auxiliary derived atoms.

We have in total 4 physical actions: “move-clockwise(i)” with conditional effects i@p6 →
¬i@p6∧i@p1 and i@px → ¬i@px∧i@px+1 for x ∈ {1..5}, and “move-anticlockwise(i)”
with conditional effects i@p1 → ¬i@p1 ∧ i@p6 and i@px → ¬i@px ∧ i@px−1 for
x ∈ {2..6} and i ∈ {a, b}. There are 6 sensors psense[i](i@L), for i ∈ {a, b} and
6 sensing actions, sense[a](Kbb@L), sense[b](Kaa@L, for L ∈ {l, r, q}, representing
what the agent sees in the position he is at and what he communicates. The number of
possible initial states are 36: 6 possible states due to the initial unknown positioning of
landmarks, 2 possible states due to the uncertainty of a’s position, and 3 possible states
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concerning b’s positioning (6 ∗ 2 ∗ 3). Goal G = Kaa@p1 ∧Kab@p1.

The following executions assume a hidden true state where a is positioned at p1, b is
positioned at p4, and the position of the landmarks is: r@p2, q@p4 and l@p6.

Fixed-agent protocol. Experiments: 〈0.3s, 1.9s, 2.1〉.

1. A: B, do you see l?
2. B: No, I do not see l.∗

3. A: B, do you not see q?
4. B: No, I do see q.∗

5. A: B, move clockwise twice. Do you

not see l?
6. B: No, I do see l.∗

7. A: I move anticlockwise. I move clock-
wise.

8. A: B, move clockwise.

In order for a to achieve the goal he needs to learn the position of b in terms of landmarks
and the position of the landmarks on the grid. After the first two questions, a knows b
sees q. He then moves b to a different location and a learns that b sees l. Up to this point,
a knows that he is in p1 since he sees no landmark, has learned that l is clockwise next
to q and that b is now at the same position with l. Then, a moves to p2, and by seeing r
learns the actual positions of the landmarks, and, subsequently, the position of b.

Last-agent protocol. Experiments: 〈0.3s, 1.9s, 3.3〉.

1. A: B, do you see l?
2. B: No, I do not see l.∗

3. B: A, do you see q?
4. A: No, I do not see q.∗

5. A: B, do you not see q?
6. B: No, I do see q.∗

7. B: A, do you see r?
8. A: No, I do not see r.∗

9. A: B, move clockwise twice. Do you
not see l?

10. B: No, I do see l.∗

11. B: A, do you see l?
12. A: No, I do not see l.∗

13. A: I move anticlockwise. I move clock-
wise. B, move clockwise.

In the above execution, we see that both agents, when they are the planning agent, try
first to reduce their uncertainty. We have a constant exchange of information, up to
the point where a happens to become the planning agent while he knows the hidden
true state. If a was at p1, his last response would have made his position known to b,
as well as the fact that he knows b’s position as well, allowing b to achieve the goal
KbKaa@p1 ∧KbKab@p1.

Vol-mutex protocol. Experiments: 〈0.3s, 1.9s, 1.7〉.
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Figure 5.1: Situated dialog example: on the left we see what agent a knows, in the middle
what b knows and on the right the hidden, true state. Covered positions on the table indicate the
positions that the respective agent cannot see.

1. A: B, do you see l?
2. B: No, I do not see l.
3. B: I do see q.∗ (volunteering)
4. A: B, move clockwise twice. Do you

not see l?
5. B: No, I do see l.∗

6. A: I move anticlockwise. I move clock-
wise. B, move clockwise.

Literals b@q, b@r and b@l are mutexes: since b can be in only one position, he can see
only one landmark. When he is asked about l and he responds negatively, he volunteers
the information of what he actually sees, saving a from asking another question.

A general strategy for solving the problem would be for a to move to a position with
a landmark, asking b if he sees the same landmark, and if he does not, move him to
another position and ask him again the same question. Such a policy is good since it
takes into account the issue that replans may be needed. Though such a plan is possible
to be found by our approach, the fact that a state is assumed as true in every planning
phase leads to optimistic plans, in terms of that assumption. Imagine a assuming a state
where he is right next to landmark l and b is in the same position as l. From a’s point of
view, the plan where he asks first b if he sees l and then amoves left and sees l himself, is
the same as first moving to l and then asking b. Yet, the second plan is better considering
the possibility of replanning since he at least knows the position of one landmark, while
in the first he only learns where b isn’t.

5.7.2. Situated dialogue

In this problem, we have a table of size 6x6 (with the (0, 0) coordinates on the top
left), six objects (Q,W,E,R, T, Y ) placed on it in different positions, and two agents
a and b. Each agent can see only part of the table: a can see the entire table except
of five positions which are hidden to him, and it is known that object Q is placed in
one of these positions. Similarly, there are five, different that a’s, positions which are
hidden for agent b, and it is known that object W is in one of them. In other words, it is
known that each agent can see 5 out of 6 objects and the the positions of four of them
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(E,R, T, Y ) are known to both, leading to 25 possible initial states (5 for the position
of W and 5 for the position of Q).

Objects E,R, T and Y can be moved in four directions by b, and agents can communi-
cate only spatial relationships: they cannot communicate the position of the objects W
and Q but they can communicate whether that object is on left/right/over/under another
object. The goal is for a to know the position of Q and for agent b to know the position
of W .

We have four physical actions for each of the four objects, ”move-object-X-right / left
/ up / down”, each with conditionals effect X@px,y → ¬X@px,y ∧ X@px′,y′ , for X ∈
{E,R, T, Y }, and for all positions px,y to a new position px′,y′ , depending on which
direction the object is move.

Agent a can communicate whether objectW is on the left/right/over/under of one of the
E,R, T , and Y , and agent b similarly, for object Q. This means that we have in total
32 sensing actions: 16 sensing actions of a communicating sense[b](KaWrZ), and 16
sensing actions for b: sense[b](KbQrZ), both with r ∈ {right, left, over, under} and
Z ∈ {E,R, T, Y }. LiteralsXrZ are derived literals with definitions indicating whether
the spatial relationship between X and Z holds. As an example, WoverE is derived by
a DNF formula with terms W@px,y ∧ E@px,y+1, where x, y are the five possible initial
positions of W (since W cannot be moved there is no reason to define the derived literal
over all possible positions of the grid).

The goal is written as G = (KaQ@p0,3 ∨ KaQ@p1,4 ∨ KaQ@p3,3 ∨ KaQ@p2,1 ∨
KaQ@p4,2)∧ (KbW@p1,1∨KbW@p1,3∨KbW@p3,2∨KbW@p3,4∨KbW@p4,1).

The true hidden initial state for the executions below is shown in Figure 5.1.

Fixed agent protocol; Experiments: 〈0.92s, 2.86s, 2.1〉.

A: B, do you know Q is left of E?
B: No, I do not know.∗

A: B, do you know Q is left of Y ?
B: No, I do not know.∗

A: B, do you know Q is under of Y ?
B: No, I do not know.∗

A: B, move E down. Do you know Q is under E?
B: Yes, I do know.
A: B, move R right. Move R up. I do know W over R.

Initially, agent a tries to find out the position ofQ, learning thatQ does not have a spatial
relationship with any object. Object E is then moved next to the remaining possible
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positions of Q, creating the necessary relationships. When a learns the position of Q,
objectR is moved to allow a to communicate his knowledge of the position ofW .

Volunteering protocol. Experiments: 〈1.1, 2.9, 1.4〉.

A: B, do you know Q is left of E?
B: No, I do not know Q is left of E.
B: I do not know Q under Y .∗ (volunteering)
A: B, do you know Q is left of Y ?
B: No, I do not know Q is left of Y .∗

A: B, move E down. B, do you know Q is under E?
B: Yes, I do know Q is under E.
A: B, move R right. B, move R up. I do know W is over R.

After the first question of a, to which b replies negatively, b volunteers that he also
does not know that Q is under Y . If Q had a spatial relationship with another object, b
would choose to volunteer that relationship, after which a would know the hidden true
state and with one planning phase achieve the goal. Since there is no such relationship,
volunteering that Q does not have a spatial relationship with an object removes 5 states
from the set of possible initial states.

5.7.3. The Lights problem

In this problem there are four lights (l1, l2, l3, l4) and three agents (a, b, c). Initially
it is known that at least one of the lights is on. No agent can see the lights them-
selves, but agent b can sense whether at least one of the lights l1 and l2 are on (l1 ∨ l2).
Similarly, agent c can sense (l3 ∨ l4), while a cannot sense anything about the phys-
ical world. Additional to these two passive sensors, there are eleven sensing actions.
In one sensing action agent b is the sensing agent, sense[b](Kc(l3 ∨ l4)), while in
the other ten it is—— agent a: sense[a](Kb(l1)), sense[a](Kb(l2)), sense[a](KbKcL)),
sense[a](Kb¬KcL), sense[a](KbKc¬L), and sense[a](Kb¬Kc¬L), with L ∈ {l3, l4}.
Simply, c can communicate his knowledge about what he senses only to b, and b can
communicate to a his knowledge about the lights he can sense and his knowledge
about the knowledge of c concerning l3 and l4. Lastly, there are four physical actions
“toggle(L)”, for L ∈ {l1, l2, l3, l4}, that toggle light L: turn it on if it was off, and
off if it was on, whose owner is a. The goal is for a to know that all lights are on:
Kal1 ∧Kal2 ∧Kal3 ∧Kal4.

The true hidden initial state for the execution is the one where only l2 and l4 are on. Note
that when b responds to a, c is only aware that b responded and not the actual response.
Similarly, when c responds to b, a is only aware that a communication took place and
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not what it was shared. In the execution we show the actual response of b since a is the
planning agent.

Fixed agent protocol; Experiments: 〈0.8s, 1.5s, 3.2〉.

1. A: B, tell me, do you know that C does not know that l4 is off?
2. B: No, I do not know.∗

3. A: C, tell B whether you know l3 ∨ l4.
4. C: I told B.
5. A: B, tell me, do you know that C knows that l4 is off?
6. B: No, I do not know that.∗

7. A: I toggle the second light. B, tell me, do you know l1 is on?
8. B: No, I do not know it.∗

9. A: I toggle the first, the second and the third light. C, tell B whether you know l3 ∨ l4.
10. C: I told B.
11. A: B, tell me, do you not know that C knows that l4 is on?
12. B: Yes, I do.
13. A: I toggle the fourth light. C, tell B whether you know l3 ∨ l4.
14. C: I told B.
15. A: B, tell me, do you know that C knows that l3 is on?
16. B: Yes, I do know that.
17. A: I toggle the fourth light.

Agent b’s first response allows a to derive that l1 ∨ l2 is true. Otherwise, b would know
l3∨ l4 is true (at least one of lk must be initially on) and since c can sense l3∨ l4, b would
also know that c could not know l4 was off. After c tells b what he sensed (4), b knows
that c knows either both l3 and l4 to be off, or that at least one of them is on. Since b
does not know that c knows l4 is off, a is able to derive that l3 ∨ l4 is true. Toggling l2 at
step 7, while l1∨ l2 is true, creates a situation where either both are off or l1 is definitely
on. The response of b allows a to derive both are off, and turning them on at step 9.
Similarly, for achieving l3 ∧ l4.

5.8. Related Work

In recent years, there has been a growing interest in multi-agent epistemic planning
with a number of works placing emphasis on different aspects of the problem. Some
place the focus on expressivity and modeling (Baral et al., 2012; Cooper et al., 2016),
others in distributed computation and coordination (Engesser et al., 2015), while the
most closely related approaches focus on computational issues and the use of classical
planners (Brenner, 2010; Brafman et al., 2013; Muise et al., 2015). The works most
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relevant to ours are (Muise et al., 2015) and (Cooper et al., 2016). A key difference
to our approach is they can only represent beliefs about literals, not about arbitrary
formulas. This is how they manage to reason about nested beliefs without using explicit
or implicit Kripke structures.

5.9. Conclusion

We have extended the belief tracking formulation, presented in the previous chapter,
to the on-line setting where plans are supposed to work for the true hidden state as re-
vealed by the observations, and have developed an alternative translation into classical
planning for selecting actions within a replanning architecture. Planning is done from
the perspective of the agents themselves that have beliefs about the world and nested
beliefs about each other. As in the single-agent setting, the replanning approach ensures
that goals are reached in a bounded number of episodes provided that dead-ends are not
reached.

We have shown that interesting agent dialogues can arise in the proposed setting where
agents collaborate by requesting or volunteering information in a goal-directed manner.
In spite of the restrictions, however, the approach is not yet scalable, as only problems
with tens of possible initial states can be handled in this way. One way for scaling up
further to have a more practical dialog system is by adapting the techniques that have
been used to improve scalability in the single-agent setting.
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PART III

Optimizations and Variations
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CHAPTER 6

A Linear Translation

The previous translations we presented in Chapters 4 and 5 are quadratic in the number
of states due to the use of theDi(s, s

′) literals for representing the accessibility relations
between two states given an agent. In this chapter we will present a translation which is
linear in the number of states, and can be used for problems where sensing actions and
passive sensors which are not common to all agents involve only static literals. A literal
is static if there is no action or axiom in the problem that changes the initial truth value
of the literal in a state. We take advantage of this property in a preprocessing phase in
order to identify which sensing actions allow the agents to distinguish between which
states.

6.1. Requirements for a Linear Translation

The formulations we have seen in the previous chapters (for linear, multi-agent planning
problems and for on-line multi-agent problems) share the same requirements:

1. Agents share a common, initial belief on the set of initially possible states.

2. Actions are deterministic.

3. The sequence of events that can change the physical world or the knowledge of
the agents is public.
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For each of the formulations, we also provided a translation to classical planning, which
allowed us to use off-the-shelf planners. The translations are quadratic in the number of
initial states due to the sets ri(s, t) ∈ B(s, t), for all s ∈ bI , denoting the accessibility
relations between states in the corresponding Kripke structure.

The linear translation we present here introduces a fourth requirement:

All literals that appear in a sensing action or a sensor are static.

By static, we refer to objective literals whose truth value cannot be changed during plan-
ning. Epistemic literals are considered as non-static, even when they involve objective
literals which are static. The reason is that even though the truth value of an objective
literal cannot change, an agent’s knowledge of its truth value can (assuming that ini-
tially all agents consider all states as possible and the truth value of the static literal is
not common knowledge).

This fourth requirement allows us to predefine which states an agent can distinguish
from a specific state, based on the sensing actions/sensors that have occurred so far,
instead of keeping track of the accessibility relations through a quadratic number of lit-
erals. In the following examples, where we assume some familiarity with the previous
translations, we show the intuition of how we take advantage of the fourth require-
ment.

Example 6.1.1. Suppose a problem P with three states (s1 = {p, q}, s2 = {p,¬q} and
s3 = {¬p, q}) and only one sensing action sense[1](p). In the translations we have
presented to classical planning, the conditional effects of the action would be written
(simplistically):

p/s1 ∧ ¬p/s2 → D1(s1, s2)
¬p/s1 ∧ p/s2 → D1(s1, s2)
p/s1 ∧ ¬p/s3 → D1(s1, s3)
¬p/s1 ∧ p/s3 → D1(s1, s3)
p/s2 ∧ ¬p/s3 → D1(s2, s3)
¬p/s2 ∧ p/s3 → D1(s2, s3)

ThenD1(s, s
′) literals are used in the definition of derived, epistemic literals. We remind

the reader that the definition of an axiom for KiL/s is conditioned on the accessibility
relations that s has with the rest of the states. For example, the definition of the axiom
for K1q/s2 would be:

(q/s1 ∨D1(s1, s2)) ∧ (q/s2 ∨D1(s2, s2)) ∧ (q/s3 ∨D1(s2, s3))
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Suppose now that p is static. We can take advantage of this fact by having the effects of
the sensing action represent only that the action has occurred. The effect of sense[1](p)
would then be just an auxiliary literal:

(1 sensed p)

Since we already know the states that disagree in the truth value of p, the definition of
the axiom for K1q/s2 can be written as:

q/s1 ∧ (q/s2 ∨D1(s2, s2)) ∧ (q/s3 ∨ (1 sensed p))

where q/s1 must be true since there is no sensing action that would allow agent 1 to
dinstinguish between s1 and s2, while D1(s2, s3) has been replaced by (1 sensed p).
The literal D1(s2, s2) denotes that s2 is not considered possible by agent 1.

In our previous formulations, sensing actions are used to depict not only the agent’s
observations of the environment, but also communication between agents: sensing the
epistemic literal KiL represents the fact that agent i is communicating if he knows L or
not.

The fourth requirement, necessary for our linear translation, is quite restrictive by ex-
cluding sensing of epistemic literals. For this reason, we introduce a modification of the
on-line belief representation of Chapter 5 which allows us to explicitly remove states
from the set of possible states. In the on-line translation of Chapter 5, such removal of
states was implicit: given a sensing action where all agents sensed a formula φ at the
same time, all accessibility relations leading to states which disagreed with the assumed
state on the truth value of φ were removed. The same states where also removed from
the set of states the planning agent i considered possible (Si(t)) based on his actual
observations. Thus, those states were rendered irrelevant in the valuation of epistemic
literals. We can achieve the same effect by removing the states themselves, which al-
lows us to drop the explicit representation of the accessibility relation between pair of
states.

Even though such a modification does not allow us to have an action sense[B](φ) where
B ⊂ A and φ contains atoms which are not static, it allows for sensing actions of the
form sense[A](φ), where A is the set of agents. Specifically, applying a sensing action
sense[B](φ), or a passive sensor psense[B](φ), B ⊂ A, has the same effects as in
Section 5.4.1, while the action sense[A](φ) updates the sets ri(s, t+ 1):

ri(s, t+ 1) = {s′ | s′ ∈ ri(s, t) and B(t), s′ |= φ} (6.1)

for i ∈ A and s ∈ bI .

We can see the intuition of this approach in the following example.
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Example 6.1.2. We extend Example 6.1.1 with (i) an assumed hidden, true state st
representing either s1, s2 or s3, (ii) the auxiliary literals D(si) denoting that state si is
not considered possible by the agents, and (iii) with the sensing action sense[A](K1q),
where q is not static and A is the set of agents.

The definition of the axiom for K1q/s2 becomes:

(q/s1 ∨D(s1)) ∧ (q/s2 ∨D(s2)) ∧ (q/s3 ∨D(s3) ∨ (1 sensed p))

which, after the action sense[1](p) is applied, is false since both q/s2 and D(s2) are
false. Again, there is no sensing action which can allow agent 1 to distinguish between
states s1 and s2. Thus, the clause (q/s1 ∨D(s1)) does not contain any auxiliary literal,
while the clause (q/s3 ∨D(s3) ∨ (1 sensed p)) does.

The same occurs with K1q/s1, which happens to have the same definition:

(q/s1 ∨D(s1)) ∧ (q/s2 ∨D(s2)) ∧ (q/s3 ∨D(s3) ∨ (1 sensed p))

and it is false for the same reasons. On the other hand, the axiom deriving K1q/s3 with
the definition:

(q/s1 ∨D(s1) ∨ (1 sense p)) ∧ (q/s2 ∨D(s2) ∨ (1 sense p)) ∧ (q/s3 ∨D(s3))

is true, since (1 sense p) is true, which makes the first and second clauses true, and
q/s3 is true, which, ultimately, makes the definition true.

The effects of sense[A](K1q) is now written as:

K1q/st ∧ ¬K1q/s1 → D(s1)
K1q/st ∧ ¬K1q/s2 → D(s2)
K1q/st ∧ ¬K1q/s3 → D(s3)
¬K1q/st ∧K1q/s1 → D(s1)
¬K1q/st ∧K1q/s2 → D(s2)
¬K1q/st ∧K1q/s3 → D(s3)

where the number of conditional effects is twice the number of initial states (2 ∗ |bI |). If
st = s3, then D(s1) and D(s2) become true (denoting the two states as impossible), as
expected since s3 is the only state where K1q is true. If st 6= s3, only D(s3) becomes
true.

The fourth requirement now becomes less restrictive, and can be written as:

All literals that appear in sensors and sensing actions, that do not involve all agents,
must be static.

84



“tesi2” — 2017/9/30 — 11:48 — page 85 — #105

6.2. Preprocessing

Before defining the linear, classical translation of an on-line multi-agent planning prob-
lem P , we need to identify all pairs of states that are distinguishable from the point of
view of an agent, based on his sensing actions and passive sensors.

We consider planning problems P = 〈A,F, I, O,N, S,G〉 where A is the set of agent
names or indexes, F is the set of relevant atoms or fluents, I represents the initial sit-
uation in the form of an objective formula over F , O is the set of physical actions, N
is the set of sensing actions, S is the set of (passive) sensors, and G is the goal. States
represent truth-valuations over F , and the set of possible initial states bI is made of the
states that satisfy I . A sensing action inN is a set of expressions of the form sense[i](φ),
where i is an agent, and φ is an objective formula. A (parallel) sensing action in N is a
set of expressions of the form sense[Ak](φ), where the truth of φ is revealed to all the
agents j ∈ Ak. We denote passive sensors like sensing actions but with the letter “p” in
front; namely, as psense[i](φ) and psense[Ak](φ), where Ak ⊂ A. For presenting the
precompilation, we will refer to both sense[Ak](φ) and psense[Ak](φ) as α[Ak](φ).

We will assume that the preprocessing is applied to problems for which we know that all
four requirements mentioned in the previous section are satisfied. This means that for
every sensing action sense[Ak](φ) or passive sensor psense[Ak](φ), where Ak ⊂ A, φ
must contain only static literals. Thus, checking whether sensing actions/passive sensors
involve only static literals, or they involve all agents, is not part of the preprocessing.

We define O+ as a vector denoting the distinguishability between pairs of states for a
specific agent:

O+ = { O+(s, s′, i) | s, s′ ∈ bI , i ∈ A } (6.2)

where O+(s, s′, i) is a set of sensing actions and passive sensors, where:

O+(s, s′, i) = { α[Ak](φ) | α[Ak](φ) ∈ N ∪S, i ∈ Ak, Ak ⊆ A, s |= φ, s′ 6|= φ } (6.3)

In other words, a sensing action or a passive sensor belongs in the set O+(s, s′, i) if by
applying the sensing action or the passive sensor, agent i gets to distinguish between
states s and s′.
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6.3. Linear Translation into Classical Planning

The language for the linear translation P ′ = K(P,B(t), Si(t), O
+, O(t)) is STRIPS

extended with negation, conditional effects, and axioms. The addition to P ′ is the set
O+, which was computed during the preprocessing, and the set O(t) which is the set of
sensing actions/passive sensors that have been applied up to time t.

For encoding the states v(s, t), P ′ contains atoms L/s that express that the objective lit-
eral L is true in the current state, if s is the true, initial state. P ′ also features atoms T (s)
for representing that s is the assumed true initial state, and atoms Di(s) for represent-
ing that s 6∈ Si(t), while atoms D(s) are used for representing that state s is no longer
possible and this fact is common knowledge among the agents. We will use s 6∈ Poss
to denote that s is no longer a possible initial state. In other words, if s 6∈ Poss, then
s 6∈ ri(s′, t), for i ∈ A and s′ ∈ bI .

Additionally, for each sensing action and passive sensor α[Ak](φ) ∈ N ∪ S, Ak ⊂ A
of P , we introduce an atom a+Ak,φ

denoting that the sensing action/passive sensor has
been applied. These atoms belong to O(t) if the sensing action/passive sensor they
correspond to has been applied during execution of the plan.

Formulas appearing in action preconditions, goals, and sensing expressions in P are
assumed to be all literals or conjunctions of possibly epistemic literals L. A positive
epistemic literal is an objective literal preceded by a sequence of epistemic operators
possibly separated by negations, like Ka¬KbKcp.

The axioms in the translation are used to maintain the truth of epistemic literals. We
denote the set of objective literals in P as LF (P ), the set of positive epistemic literals
in P as LK(P ), and the set of positive epistemic literals L that are suffixes of literals in
LK(P ) as LX(P ).

The literals φ/t in the translation are used to encode the truth of formulas φ in the as-
sumed initial state; i.e., φ/t iff φ/s and T (s). The actions inK(P,B(t), Si(t), O

+, O(t))
comprise the physical actions in P , the auxiliary actions assume(s) for guessing the
initial state, the action E for capturing the effects of passive sensing, and the sensing
actions sense[A](φ) in P . The action assume(s) must appear first in any plan for some
possible s, excluding all other assume(s′) actions from being applied.

Definition 6.3.1. The linear, classical problem with axiomsK(P,B(t), Sα(t).O+, O(t)) =
〈F ′, I ′, O′, G′, X ′〉 where α is the planning agent and P = 〈A,F, I, O,N, S,G〉 is such
that:

F ′ = {L/s : L∈LF (P ), s∈ bI} ∪ {T (s) : s∈ bI} ∪ {D(s) : s∈ bI} ∪ {Dα(s) :
s∈bI} ∪ {a+Ak,φ

: a[Ak](φ)∈N ∪ S},
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I ′ = {L/s : L ∈ LF (P ), s ∈ b′(t), s |= L} ∪ {Dα(s) : s ∈ bI , s 6∈ Sα(t)} ∪
{D(s) : s 6∈ Poss},∪{a+Ak,φ

: a[Ak](φ)∈O(t)}

G′ = ∧s∈bI (Dα(s) ∨G/s)

Axioms X ′:

• KiL/s iff∧s′∈bI [L/s′∨D(s′)
∨

a[Ak])(φ)∈O+(s,s′,i)

a+Ak,φ
],KiL ∈ LX(P )∪LK(P ),

O+(s, s′, i) ∈ O+,

• φ/t iff ∧s∈bI [¬T (s) ∨ φ/s],

Actions O′:

• auxiliary actions assume(s), for s ∈ bI , with prec. ¬Dα(s) and effect
T (s),

• physical actions a ∈ O owned by j have prec. Kj(Pre(a))/t and effects
¬Kj(Pre(a))/s → D(s) ∧ Dα(s) for s′ ∈ bI and C/s → E/s for each
s ∈ bI and effect C → E of a in P

• sensing actions sense[B](φ) ∈ N with α 6∈ B mapped into same actions
with effect:

◦ a+B,φ,

• sensing actions sense[B](φ) ∈ N with α ∈ B mapped into the same ac-
tions, with effects

◦ a+B,φ, and

◦ φ/t ∧ ¬φ/s→ Dα(s),

◦ ¬φ/t ∧ φ/s→ Dα(s), for s ∈ bI ,

• sensing actions sense[B](φ) ∈ N with B = A mapped into the same ac-
tions, with effects

◦ φ/t ∧ ¬φ/s→ D(s) ∧Dα(s),

◦ ¬φ/t ∧ φ/s→ D(s) ∧Dα(s), for s ∈ bI ,

• auxiliary action E with effects

◦ a+B,φ for each psense[B](φ) in S, and

◦ φ/t ∧ ¬φ/s→ Dα(s),

◦ ¬φ/t ∧ φ/s→ Dα(s), if α ∈ B, s ∈ bI .

87



“tesi2” — 2017/9/30 — 11:48 — page 88 — #108

In the above translation we omit the auxiliary literals that are used for specifying or-
dering of the actions (forcing as first action one of assume(s) and that no other action
assume(s′) can be applied, action E being applied after every action).

The translation is linear to the number of initial states, and it has the same properties as
the quadratic translation, presented in Section 5.5.1. We can replace K(P,B(t), Si(t))
in Algorithm 1 with the linear translation K(P,B(t), Sα(t).O+, O(t)), with the addi-
tional requirement that while executing plan π we also update O(t) by adding to it all
sensing actions that have been applied.

Theorem 6 (Soundness). a) If π is plan for K(P,B(t), Si(t), O
+, O(t)) that is consis-

tent with the observations, the execution of n(π) leads to the goal in the problem P .
b) Otherwise, if π′ is the shortest prefix of π that is inconsistent and π includes the ac-
tion assume(s), after the execution of n(π′) in P , s 6∈ Si(t

′) where t′ is the resulting
time step.

Theorem 7 (Completeness). If s = s∗0 ∈ Si(t) is the true hidden state in P and there
is an action sequence that achieves KiG for an agent i, then there is a plan π for
K(P,B(t), Si(t), O

+, O(t)) that starts with the action assume(s), and any such plan
is consistent.

A difference between the linear translation and the quadratic translation of Section 5.5.2
is the size of the axioms used to derive epistemic literals. In the quadratic translation,
the definition of the axioms are 2-CNF formulas. Specifically, each of the axioms has
a definition of n clauses (one clause for each possible, initial state), where each clause
has a size of 2 (L/s ∨ Di(s, s

′)). In the linear translation, the number of the clauses is
the same but their size may differ, since they depend on the number of sensing actions
that allow two states s and s′ to be distinguished.
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CHAPTER 7

A Decomposition Approach

Decomposition approaches have been used in planning in order to obtain more com-
pact representations of the original problem (Bonet and Geffner, 2014a). The intuition
behind decomposition approaches is, instead of tackling the problem in its entirety, to
divide it into subproblems, and take into consideration at each step only the literals
which are relevant to each subproblem.

Suppose a problem where the initial position of two agents, 1 and 2, on a 10 × 10 grid
is known to both agents. Suppose also that there are two balls, b1 and b2, on the grid,
where each one can be in any position. Agents can see a ball only if they are in the same
position, and the goal is for agent 1 to know the position of b1 and for agent 2 to know
the position of b2. This problem has 10000 initial states: 100 possible positions for the
first ball, and 100 for the second. Intuitively, we can see that the problem of finding
one ball (and communicating its position) is independent of the problem of finding the
second. The knowledge an agent might have about the position of one of them does
not provide any information about the position of the other one. The idea behind the
decomposition approach is, rather than solving one problem with 10000 states, to have a
formulation that allows us to model and solve two problems of 100 states each. 1.

In this section, we present a simple decomposition approach which addresses the size
of the joint belief.

1In case there was an initial restriction such as ”the two balls cannot be in the same position”, then the
position of one ball does provide information for the position of the other. Mainly, if we know a ball is in
a certain position, we know that the other ball cannot be in the same position.
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7.1. Decomposition through Relevance

We consider planning problems P = 〈A,F, I, O,N, S,G〉 where A is the set of agent
names or indexes, F is the set of relevant atoms or fluents, I represents the initial situ-
ation in the form of an objective formula over F , O is the set of physical actions, N is
the set of sensing actions, S is the set of (passive) sensors, and G is the goal. We refer
the reader to Chapter 5 for further details.

7.1.1. Initial Decomposition

Before we define the decomposed belief representation, we need to specify how we
compute the decompositions, given a planning problem P . This is achieved by consid-
ering two notions of relevance between literals: the initial relevance, and the dynamic
relevance.

The initial relevance between two literals is defined over the initial formula I . Intu-
itively, given an agent i, two literals L and L′ are initially relevant if agent i can derive
the truth value of L′ by learning the truth value of L. As an example, consider a problem
P ′ with I ′ = (p ∨ q) and A = {i}. If agent i knows that p is false, he is able to derive
that q must be true. In this example, literals p and q are initially relevant.

In other words, the initial decomposition captures the fact that observations of certain
literals allow an agent to infer the truth value of other literals.

Given the formula I denoting the initial situation for the problem P , the question is how
do we derive all pairs of initially relevant literals. To achieve it, we will use the notion
of prime implicates (Darwiche and Marquis, 2002):

Definition 7.1.1. A clause λ is a prime implicate of a formula I if and only if:

I |= λ, and

if I |= λ′ such that λ′ |= λ, then λ |= λ′.

We will write PI(I) to denote the set of prime implicates of formula I . In other words,
PI(I) is a set of clauses such that every clause which can be derived from I is subsumed
by a clause in PI(I), and no clause in PI(I) can be subsumed by another clause in
PI(I).

Given that the set PI(I) is the set of the strongest, derivable clauses from the initial
situation denoted by I , we can now define the initial relevance as:
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Definition 7.1.2. Given a planning problem P = 〈A,F, I, O,N, S,G〉, and the set of
clauses I ′ = PI(I)∪ (l∨¬l), for every l ∈ F and l 6∈ L(PI(I)), two literals L,L′ ∈ F
are initially relevant if and only if:

1. there exists a clause C ∈ PI(I) such that L,L′ ∈ C, or

2. there exists a literal L′′ such that L is initially relevant to L′′ and L′′ is initially
relevant to L′.

The initial relevance of literals L that appear in F defines a partition, where each subset
contains only literals which are relevant to each other. We call this partition the initial
decomposition Q(P ):

Q(P ) = {Q1(P ), ..., Qn(P )}

where each Qj(P ) ∈ Q(P ) denotes a different subset of initially relevant literals.

Definition 7.1.3. Given a planning problem P with I the formula depicting the initial
situation and O the set of physical actions, a literal L is common, denoted as c(L), if
L appears as a unit clause in the prime implicates of I , and for each conditional effect
e : C → E of the actions in O, if L appears in the effects E then C contains only
common literals.

In other words, a common literal is a literal whose truth value is guaranteed to be always
known to the agents. Common literals can only appear as unit clauses in the prime
implicates of the initial formula, which means they appear alone in their corresponding
set Qj(P ). We define

Qc = { Qj(P ) | Qj(P ) ∈ Q(P ), Qj(P ) = {L}, c(L)}

as the set of all common literals and we rewrite the initial decompositionQ(P ) as:

Q′(P ) = {Q′1(P ), ..., Q′n(P )}

where Q′j(P ) = Qj(P ) ∪Qc.

The following definition will help us define the dynamic relevance.

Definition 7.1.4. Given a formula φ with objective and epistemic literals, L(φ) is the
set of all objective literals that appear in φ, either by themselves or as part of epistemic
literals.
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As an example, given φ = (¬p ∧Ki(q → Kj¬r)), we have L(φ) = {p, q, r}.

7.1.2. Dynamic Decomposition

We define the dynamic decomposition of a problem P through the initial decomposition
Q(P ):

Definition 7.1.5. Given a planning problem P and a partial decomposition Q(P ), two
sets Qj(P ), Qk(P ) ∈ Q(P ) are dynamically relevant if and only if:

1. there exists an action α ∈ O with a conditional effect e : C → E such that
there are at least two, not common literals L and L′ for which we have L,L′ ∈
L(C) ∪ L(E), L ∈ Qj(P ) and L′ ∈ Qk(P ).

2. there exists a sensing action o ∈ N or a sensor o ∈ S, which denotes some
agent(s) sensing the truth value of a formula φ, such that there are at least two,
not common literals L and L′ for which we have L,L′ ∈ L(φ), L ∈ Qj(P ) and
L′ ∈ Qk(P ).

3. there exists a sensing action or a physical action with precondition Pre such that
L,L′ ∈ L(Pre), L ∈ Qj(P ) and L′ ∈ Qk(P ).

4. there exists a clause C in goal G such that there are at least two, not common,
literals L and L′ for which we have L,L′ ∈ L(C), L ∈ Qj(P ) and L′ ∈ Qk(P ).

5. there exists a set Ql(P ) such that Qj(P ) is dynamically relevant to Ql(P ) and
Ql(P ) is dynamically relevant to Qk(P ).

While the initial relevance defines a partition Q(P ) of F , the dynamic relevance defines
a partition D(P ) of Q(P ). We call D(P ) a decomposition of P .

D(P ) = {D1(P ), ...., Dn(P )}

Each Dk(P ) is a union of dynamically relevant sets from Q(P ). Lastly, for every
Dk(P ) ∈ D(P ) we define I(Dk) to be:

I(Dk(P )) = { C | C ∈ PI(I),L(C) ⊆ Dk(P ) }

In other words, given an on-line multi-agent planning problem P , every set of literals
Dk(P ) ∈ D(P ) defines:
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a subformula I(Dk(P )) which contains only the clauses of I whose literals are in
Dk(P ).

a set of states S(Dk(P )) denoted by the subformula I(Dk(P )). States s ∈
S(Dk(P )) will be called partial states since they contain only a subset of the
set of literals F of the original problem P .

7.2. Belief Representation and Updates

7.2.1. The Decomposed Joint Belief

We define the beliefs of all agents at time t as the decomposed joint belief BD(t) and,
given a decomposition D(P ), it is represented by a vector of partial beliefs:

BD(t) = { B1(t), ..., Bn(t), Bc(t) }

Each partial belief Bj(t) ∈ BD(t) corresponds to a set Dj(P ) ∈ D(P ) and it is a tuple
representing the beliefs of the agents conditioned on partial states:

Bj(t) = { Bj(s, t) | s ∈ S(Dj(P )) }

with

Bj(s, t) = 〈υj(s, t), rj1(s, t), ..., rjn(s, t)〉

where s is a partial state from S(Dj(P )), υj(s, t) the partial state which resulted after
executing an event sequence e(0), ..., e(t−1), and rji (s, t) the set of partial, initial states
that agent i cannot distinguish from s at time t, for all agents i ∈ A.

For Bj(s, t) ∈ Bj(t) and t = 0 we have that υ(s, t) = s and ri(s, t) = S(Dj(P )).
In other words, initially, agents cannot distinguish between the states of a partial be-
lief.

7.2.2. Updates

The definition of dynamic relevance ensures that for all the passive sensors, sensing
actions and conditional effects of physical actions of a problem P (which we will call
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events), there exists a partial belief Bj(t) whose partial states contain truth values for all
the literals in the event.

The effects that each event has on the corresponding partial belief is the same as de-
noted in the belief representation B(t) of Chapter 5, by extending sensing actions with
preconditions and owners as in physical actions.

We can identify the partial belief Bj(t), on which an event e(t) will be applied, by
checking whether the literals that appear in e(t), either as part of a formula φ or within
a conditional effect C → E, also appear in the truth valuations of the partial states of
Bj(t). Specifically:

Definition 7.2.1. Given a decomposed, joint belief BD(t), based on a decomposition
D(P ), a partial joint belief Bj(t) ∈ BD(t) corresponds to a formula φ if and only if all
literals in φ appear in the set of dynamically related literals Dj(P ).

For each physical action, sensing action and sensor in a problem P , we can identify a
partial joint belief to which the update will be applied. Assuming all formulas are in
conjunctive normal form, we have:

given an event sense[A](φ) or psensor[A](φ), the event will be applied on the
partial belief Bj(t) for which we have that L(φ) ⊆ Dj(P ),

given a physical action α, each conditional effect e : C → E which contains only
common literals will be applied to each partial belief Bj(t) ∈ BD(t), while the
remaining conditional effects will be applied to the partial belief Bj(t) for which
we have L(C) ⊆ Dj(P ) and L(E) ⊆ Dj(P ).

given any event with preconditions Pre, the precondition will be evaluated on the
partial belief Bj(t), for which we have L(Pre) ⊆ Dj(P ).

Due to Definition 7.1.5, it is guaranteed that there exists a unique partial joint belief for
each sensing action, sensor and conditional effect of a physical action.

7.3. From BD(t) to Kripke Structures

We defined the decomposed, joint beliefBD(t) as a vector of partial beliefs. Each partial
belief Bj(t) ∈ BD(t) corresponds to a Kripke structure Kj(t) = 〈W t, Rt, V t〉 defined
by Bj(t) where

W t = {s | s ∈ S(Dj(P ))},

Rt
i = {(s, s′) | s′ ∈ rji (s, t) },
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V t(s) = υj(s, t).

In other words, W is the set of partial states S(Dj(P )), while the states that are accessi-
ble from a state s for an agent i are the possible states s′ that are in rji (s, t). Finally, the
valuation associated to a state s in this structure is the state υj(s, t) that deterministically
follows from the possible initial state s and the action sequence up to t− 1.

Since each partial belief corresponds to a Kripke structure, a decomposed joint belief
corresponds to a collection of Kripke structures. The evaluation of the truth value of
objective and epistemic formulas φ, with Bj(t) its corresponding partial belief, is then
done as defined in Definition 4.3.2, where the Kripke modelK is replaced by the Kripke
model Kj(t) of the partial belief Bj(t).

7.4. Agent’s view

In the case of on-line multi-agent problems, we also need to keep track of what an agent
actually knows. The set Si(t) in Section 5.4.3, representing the set of states that agent i
considers possible based on his actual observations, is replaced with:

SDi (t) = { S1
i , S

2
i , ..., S

n
i }

where Sji is the set of partial states of the partial belief Bj(t) that agent i considers
possible at time t.

The reason is that we do not have a set of possible states anymore, but rather a set of sets
of possible partial states. While in the on-line formulation of Chapter 5, a problem P
had one hidden, true state, in this formulation the hidden, true state of the problem P is
a vector of partial states: one partial state for each partial belief Bj(t) ∈ BD(t).

In other words, SDi (t) is used to keep track of the partial states agent i considers possible
in each partial belief that resulted from the decomposition. Through these sets we can
evaluate the truth value of epistemic formulas such as Kiφ.

Theorem 8. BD(t) |= Kiφ iff Kj(t), s0 |= φ,∀s0 ∈ Sji (t), where Kj(t) is the Kripke
structure for the partial joint belief Bj(t) that φ corresponds to.
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7.5. Example

We will use a version of the Collaboration through Communication problem from Chap-
ter 5, with three blocks in total, in order to illustrate the decomposition approach.

Formally we have the planning problem P = 〈A,F, I, O,N, S,G〉, where A = {a, b},
F = {at(x, pk′), in(bi, pk)}, x ∈ A, k′ ∈ [1, 4], k ∈ {1, 3, 4}, i ∈ [1, 3], I =
{at(a, p2), at(b, p2),¬at(a, pk),¬at(b, pk)} ∪ M , where M contains the formulas ex-
pressing that each block has a unique location and k = {1, 3, 4}. The physical actions
in O are rightx and leftx, for each agent x ∈ A, and the set of sensors is empty.
The set of sensing actions is N = {sense(x, [Kyin(bi, pk]), sense[x](in(bi, pk))}, for
x, y ∈ A, x 6= y, i ∈ [1, 3], k ∈ {1, 3, 4}, and the actions sense[x](in(bi, pk)) have pre-
condition at(x, pk) and the owner is agent x. The goal is G = (∨k=1,4Kaat(b1, pk)) ∧
(∨k=1,4Kbat(b2, pk)). In total, there are four physical actions and 36 sensing actions.

7.5.1. Decomposition

First, we need to compute the initial decomposition Q, based on the initial formula
I .

I = {at(a, p2), at(b, p2),¬at(a, p1),¬at(a, p3),¬at(a, p4),
¬at(b, p1),¬at(b, p3),¬at(b, p4)} ∪M (7.1)

where M is:

⋃
i=[1,4]

{in(bi, p1) ∨ in(bi, p3) ∨ in(bi, p4),¬in(bi, p1) ∨ ¬in(bi, p3),

¬in(bi, p1) ∨ ¬in(bi, p4),¬in(bi, p3) ∨ ¬in(bi, p4)} (7.2)

We can see that I = PI(I), that is the clauses of I are already the prime implicates of
I - the unit clauses cannot be resolved (or subsume) any other clause in I , the clauses
in M that denote the unique position of a block either cannot be resolved with other
clauses or lead to tautologies.

Based on PI(I), we have the initial decomposition Q(P ):
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Q(P ) = {Q1(P ), ..., Q12(P )}

where

Q1(P ) to Q8(P ) stand for each unit clause in PI(I)

Q9(P ) = {in(b1, p1), in(b1, p3), in(b1, p4)}.

Q10(P ) = {in(b2, p1), in(b2, p3), in(b2, p4)}.

Q11(P ) = {in(b3, p1), in(b3, p3), in(b3, p4)}.

All the unit clauses in PI(I) contain common literals: their truth value is known ini-
tially to all agents and all the conditional effects in which they appear are composed by
common literals (in actions rightx and leftx where the conditional effects are of the
form at(a, px)→ at(a, px−1),¬at(a, px) etc).

We update the initial decomposition Q(P ) to

Q(P ) = {Q1(P ), Q2(P ), Q3(P )}

where

Q1(P ) = {in(b1, p1), in(b1, p3), in(b1, p4)} ∪M .

Q2(P ) = {in(b2, p1), in(b2, p3), in(b2, p4)} ∪M .

Q3(P ) = {in(b3, p1), in(b3, p3), in(b3, p4)} ∪M .

with M = {at(a, p1), ..., at(a, p4), at(b, p1), ..., at(b, p4)}.

The next step is to compute the dynamic decomposition D(P ) based on Q(P ), the
sensing and physical actions.

First, we have the sensing actions sense[x](in(bi, pk)) with precondition at(x, pk). Since
the sensed formula and the precondition contain only one literal, there is no dynamic
relevance between any pair of sets Qj(P ), Qk(P ) ∈ Q(P ).

Secondly, we have the sensing actions sense(x, [Kyin(bi, pk)]), which contain only one
objective literal (in(bi, pk)), which means that there is no dynamic relevance between
any pair of sets Qj(P ), Qk(P ) ∈ Q(P ).

Lastly, we have the two physical actions rightx and leftx. Each of these actions
have conditional effects, denoting that agent x changes his position. Action rightx
has e : at(x, pk) → ¬at(x, pk), at(x, pk+1), for k = {1, 2, 3}, and action leftx has
e : at(x, pk) → ¬at(x, pk), at(x, pk−1), for k = {2, 3, 4}. The conditional effects of
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rightx and leftx contain only common literals, so there is no dynamic relevance be-
tween any pair of sets Qj(P ), Qk(P ) ∈ Q(P ).

Based on the actions, we get the decomposition D:

D(P ) = {D1(P ), D2(P ), D3(P )}

where

D1(P ) = {in(b1, p1), in(b1, p3), in(b1, p4)} ∪M .

D2(P ) = {in(b2, p1), in(b2, p3), in(b2, p4)} ∪M .

D3(P ) = {in(b3, p1), in(b3, p3), in(b3, p4)} ∪M .

with M as defined previously.

Each Dj(P ) ∈ D(P ) defines a I(Dj(P )) which has 12 clauses (8 unit clauses denoting
the position of the agents and 4 unit clauses denoting the possible positions of one
block) and a S(Dj(P )) which contains 3 states (for the three possible positions of the
block).

7.5.2. Belief Representation

Decomposition D(P ) allows us to define the decomposed, joint belief BD(t):

BD(t) = { B1(t), B2(t), B3(t) }

with:

B1(t) = {B1(s1, t), B1(s2, t), B1(s3, t)}

B2(t) = {B2(s1, t), B2(s2, t), B2(s3, t)}

B3(t) = {B3(s1, t), B3(s2, t), B3(s3, t)}

and, as an example:

B2(s1, t) = 〈υ2(s1, t), r2a(s1, t), r2b (s1, t)〉
υ2(s1, t) = {in(b2, p1),¬in(b2, p3),¬in(b2, p4), at(a, p2), at(b, p2),¬at(x, pk)}

ra(s2, t) = rb(s2, t) = {s1, s2, s3}

for t = 0, x ∈ A, k ∈ {1, 3, 4}.
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Figure 7.1: The Kripke stuctures that correspond to BD(0) for the Collaboration-through-
communication example. From left to right, and top to bottom, the Kripke structures correspond
to B1(0), B2(0) and B3(0). Reflexive relations and agents’ positions are omitted.
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In Figure 7.1, we can see the Kripke structures that correspond to BD(t), for t = 0.
As we noted, the decomposed, joint belief BD(t) corresponds to a joint belief B(t),
as presented in Chapters 4 and 5. The Kripke structure of B(t) for the same problem
would resemble a complete graph with 27 nodes (states).

7.6. Translation into Classical Planning

The language for the translation P ′ = K(P,BD(t), SDi (t)) is STRIPS extended with
negation, conditional effects, and axioms.

The translation P ′ is based on the decomposed joint belief BD(t). For every partial
belief Bj(t) ∈ BD(t) (with its corresponding decompositionDj(P ) and the set of states
S(Dj(P )) it defines) we have that P ′ contains:

L/(s, j) for encoding the states υ(s, t) ∈ Bj(s, t), for each L ∈ Dj(P ) and
s ∈ S(Dj(P )), that express that the objective literal L is true in the current state
s of the partial belief Bj(t).

Di(s, s
′)/j for encoding the sets rj(s, t) ∈ Bj(s, t), for all s, s′ ∈ S(Dj(P )) and

j ∈ A that express that agent i can distinguish between the states s and s′ of the
partial belief Bj(t).

T (s, j) for each s ∈ Dj(t), that express that s is the assumed true initial state of
the partial belief Bj(t), and atoms Di(s, j) for representing that s 6∈ Sji (t).

Formulas appearing in action preconditions, goals, and sensing expressions in P are
assumed to be all literals or conjunctions of possibly epistemic literals L. A positive
epistemic literal is an objective literal preceded by a sequence of epistemic operators
possibly separated by negations, like Ka¬KbKcp. The axioms in the translation are
used to maintain the truth of epistemic literals.

We denote the set of objective literals in P as LF (P ), the set of positive epistemic
literals in P as LK(P ), and the set of positive epistemic literals L that are suffixes of
literals in LK(P ) as LX(P ). All objective and epistemic literals L will be characterized
by the unique partial belief Bj(t) to which they belong.

The literals φ/t in the translation are used to encode the truth of formulas φ in the
assumed initial state of each partial belief; i.e., φ/t iff φ/(s, j) and T (s, j), such that
L(φ) ⊆ Dj(P ). Such formulas φ are the ones appearing in sensing and preconditions.
The actions in K(P,BD(t), SDi (t)) comprise the physical actions in P , the auxiliary
actions assume(s, j) for guessing the initial state in each partial belief Bj(t), the action
E for capturing the effects of passive sensing, and the sensing actions sense[A](φ) in P .
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The actions assume(s, j) must appear first in any plan for some possible s, excluding
all other assume(s′, j) actions from being applied, for all Bj(t) ∈ BD(t). We assume
that the goal G is a formula in conjunctive normal form, where objective and epistemic
literals can appear.

Definition 7.6.1. The classical problemK(P,BD(t), SDα (t)) = 〈F ′, I ′, O′, G′, X ′〉 with
axioms, where α is the planning agent and P = 〈A,F, I, O,N, S,G〉 is such that:

F ′ = {L/(s, j) : L ∈ LF (P ), L ∈ Dj(P ), s ∈ S(Dj(P ))}∪{T (s, j) : s ∈
S(Dj(P )), Dj(P ) ∈ D(P )}∪{Di(s, s

′)/j : i ∈ A, s, s′ ∈ S(Dj(P )), Dj(P ) ∈
D(P )}∪{Dα(s, j) : s∈S(Dj(P )), Dj(P ) ∈ D(P )},

I ′ = {L/(s, j) : L ∈ LF (P ), L ∈ Dj(P ), s ∈ S(Dj(P )), s |= L} ∪ {Dα(s, j) :
s ∈ S(Dj(P )), s 6∈ Sjα(t)}∪{Di(s, s

′)/j : s, s′ ∈ S(Dj(P )), Dj(P ) ∈ D(P ), s 6∈
rji (s

′, t), rji (s
′, t) ∈ Bj(t), i ∈ A}

G′ =
∧

C∈G,L(C)⊆Dj(P ))

(Dα(s, j) ∨ C/(s, j), for all s ∈ S(Dj(P ))

Axioms X ′:

• KiL/(s, j) iff ∧s′∈S(Dj(P ))[L/(s
′, j) ∨ Di(s, s

′)/j], for KiL ∈ LX(P ) and
L(L) ⊆ Dj(P ), Dj(P ) ∈ D(P ).

• φ/t iff ∧s∈S(Dj(P ))[¬T (s, j) ∨ φ/(s, j)], for L(φ) ⊆ Dj(P )

Actions O′:

• auxiliary actions assume(s, j), for all s ∈ Dj(P ) and Dj(P ) ∈ D(P ),
with prec. ¬Dα(s, j) and effect T (s, j),

• physical actions a ∈ O owned by l have prec. KlPre(a)/t and effects

◦ ¬KlPre(a)/(s′, j) → Di(s, s
′)/j ∧ Dα(s, j), for Prec(a) ⊆ Dj(P ),

Dj(P ) ∈ D(P ), i ∈ A and s, s′ ∈ S(Dj(P )),

◦ for each C → E that does not contain only common literals, we have
C/(s, j)→ E/(s, j) for s ∈ S(Dj(P )), where Dj(P ) ∈ D(P ),L(C ∪
E) ⊆ Dj(P ). otherwise:

◦ C/(s, j)→ E/(s, j) for s ∈ S(Dj(P )), where Dj(P ) ∈ D(P ),

• all sensing actions e with owner l and preconditions Pre(e) are mapped to
actions with precondition KlPre(e)/t, and effect:

◦ ¬KlPre(e)/(s
′, j) → Di(s, s

′)/j ∧ Dα(s, j), for Prec(a) ⊆ Dj(P ),
Dj(P ) ∈ D(P ), i ∈ A and s, s′ ∈ S(Dj(P )),
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• sensing actions e = sense[B](φ) ∈ N with α 6∈ B are mapped into the
same actions, with effects:

◦ φ/(s, j) ∧ ¬φ/(s′, j)→ Di(s, s
′)/j,Di(s

′, s)/j where L(φ) ⊆ Dj(P ),
and s, s′ in S(Dj(P )), i ∈ B,

• sensing actions sense[B](φ) ∈ N with α ∈ B mapped into the same ac-
tions, with the effects

◦ φ/(s, j) ∧ ¬φ/(s′, j)→ Di(s, s
′)/j,Di(s

′, s)/j

◦ φ/t ∧ ¬φ/(s, j)→ Dα(s, j),

◦ ¬φ/t ∧ φ/(s, j) → Dα(s, j), where L(φ) ⊆ Dj(P ), and for each pair
s, s′ in S(Dj(P )), i ∈ B,

• auxiliary action E that for each psense[B](φ) has effects

◦ φ/(s, j) ∧ ¬φ/(s′, j)→ Di(s, s
′)/j,Di(s

′, s)/j, for i ∈ B,

◦ φ/t ∧ ¬φ/(s′, j)→ Dα(s′, j), if α ∈ B,

◦ ¬φ/t ∧ φ/(s′, j)→ Dα(s′, j), if α ∈ B, where L(φ) ⊆ Dj(P ), and for
each pair s, s′ in S(Dj(P )).

The auxiliary actions assume(s, j) have additional preconditions to enforce that only
one partial state from each partial belief will be denoted as the assumed hidden partial
state.

The translation is quadratic to the number of states of the largest partial belief and its
properties are the same as in Section 5.5.1, where we replace the notion of assuming one
state as the hidden true state (assume(s)) with the notion of assuming a partial state for
each partial belief Bj(t), denoted as assume(s, j).

Definition 7.6.2 (Consistency). Let π be a prefix of a plan for P ′ = K(P,BD(t), SDi (t)).
The normalized sequence n(π) is consistent with the observations iff a) for any formula
φ rendered observable by n(π) at time t′ from active or passive sensing, Bj(t

′), s |= φ
iff φ is observed to be true at time t′, and assume(s, j) is one of the assume actions in
π, where Bj(t

′) is the partial belief that corresponds to φ, and b) the physical actions a
in n(π) are all applicable in P (i.e., owners know the preconditions).

Theorem 9 (Soundness). a) If π is plan for K(P,BD(t), SDi (t)) that is consistent with
the observations, the execution of n(π) leads to the goal in the problem P . b) Oth-
erwise, if π′ is the shortest prefix of π that is inconsistent and π includes the action
assume(s, j), after the execution of n(π′) in P , s 6∈ Sji (t′), S

j
i (t
′) ∈ SDi (t′) where t′ is
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the resulting time step and j indicates the partial belief Bj(t) where the inconsistency
occurred.

Theorem 10 (Completeness). If s∗ is the true hidden state in P , and there is an action
sequence that achievesKiG for an agent i, then there is a plan π forK(P,BD(t), SDi (t))
that starts with the actions assume(s, j), where s∗ is the union of all s that appear in
an assume action in π, and any such plan is consistent.
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CHAPTER 8

Examples and Experiments

8.1. Gossiping Problem

The Gossiping Problem was introduced in 1979 by (Entringer and Slater, 1979), It can
defined as follows:

There are n agents each of which knows some secret not known to anybody else. Two
agents can make a telephone call and exchange all secrets they know. How many calls
does it take to share all secrets, i.e., how many calls have to take place until everybody

knows all secrets?

If we represent the problem as a graph, where the nodes are agents and the edges indicate
which pairs of agents can communicate with each other, we would get a complete graph.
It is proven that the minimum number of calls needed for all agents to know all secrets
is 2(n− 2) (Harary and Schwenk, 1974).

Different variations of the problem exist depending on whether agents can communicate
with all the other agents or with only specific ones, whether agents when communicat-
ing share all the secrets they know or only one, whether the communication is one way
or both-ways etc (Hedetniemi et al., 1988). Variations also exist in terms of knowl-
edge. The problem, as we defined it, necessitates that in the end all secrets are shared
knowledge (all agents know all secrets) and there are variations where the agents need
to achieve second-order shared knowledge (all agents know that all agents know all
secrets) and so on (Herzig and Maffre, 2017).

We introduce a variation of the original Gossiping problem called Public Gossiping. Our
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Public Gossiping
Num. Agents

Decomposition
h(add) h(max)

4 0.02 0.02
5 0.02 0.6
6 0.02 138

10 0.3 -

Table 8.1: Experimental results for the Public Gossiping problem with the decomposition ap-
proach, using A∗ with the additive and the max heuristic. Times are in seconds.

variation introduces three additional properties to the original problem. First, all phone
calls are public. This means that all agents are aware that a communication between
two agents has occurred. Second, all sensors are public, which, in combination with
all phonecalls being public, means that at every time t all agents know which secrets
the other agents know. Third, when a pair of agents communicate they share their
knowledge about all secrets.

The Public Gossiping planning problem then is P = 〈A,F, I, O,N, S,G〉 (Kominis and
Geffner, 2015), where A is the set of agent names (1, ..., n + 1), F = {p1, ..., pn} the
secrets, I represents the initial situation which is

∧
i∈{1,...,n}(pi ∨ ¬pi), O is the set of

physical actions which is empty, N is the set of sensing actions, where for each pair of
agents i, j ∈ A\{(n+1)}, we have a parallel sensing action sense[i, j](Kip1, ..., Kipn,
Kjp1, ..., Kjpn) indicating that the agents share their knowledge about all secrets, S is
the set of (passive) sensors, where for each agent i ∈ A \ {(n + 1)} we have a passive
sensor psense[i](pi) indicating that each agent knows initially one secret, and G is the
goal where G =

∧
i,j∈{1...n}(Kipj ∨Ki¬pj), indicating that all agents know all secrets.

Agent (n+ 1) takes the role of the planning agent. This allows us to solve the problem
in just one planning phase: since there are no physical actions and the planning agent
does not have a passive sensor, nor does he participate in any sensing action, if a plan is
found then it cannot fail during execution and the goal will be achieved.

In Table 8.1 we can see the experimental results for the Public Gossiping problem with
the decomposition approach, using the additive and max heuristics. The size of the
decomposition D(P ) is equal to n, one decomposition per each secret, and all decom-
positions Dj(P ) ∈ D(P ) have the same number of initial states which is 2 (the two
different truth values each secret can take). The length of the plans, in the case where
the maximum heuristic was used, was, as predicted, 2(n − 2), where n the number of
agents without considering the planning agent. In the cases where the additive heuristic
was used, the length was 2(n− 2) + 1.
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Problems Linear translation Decomposition
Active Muddy Child 3 7

Sum 3 7

Wordrooms 3 7

Collaboration-through-Comm 3 3

Meeting Problem 7 7

Situated Dialogue 7 3

Lights 7 7

Public Gossiping 7 3

Table 8.2: Planning problems for which the linear translations and the decomposition approach
can be used.

8.2. Experiments

The linear translation and the decomposition approach cannot be used for all the prob-
lems we have seen in Chapters 4 and 5. The linear translation depends on an additional
requirement that not all problems satisfy, while the decomposition approach relies on
the structure of each problem. Table 8.2 shows the problems on which the two methods
can be applied.

Concerning the linear translation, we can see that the Meeting Problem, the Situated
Dialogue problem, the Lights and the Public Gossiping problem do not fulfill the re-
quirements. In the first two problems, agents sense non-static objective literals. In the
first case, whether an agent is in the same position with a landmark, in the second case
whether a block that can be moved has a spatial relationship with a hidden block. The
Public Gossiping problem has sensing of epistemic literals that do not involve all agents
(only pair of agents) and the Lights problem has both: sensing of non-static objective
literals (lights that can be turned on and off) and sensing of epistemic literals that do not
involve all agents.

Concerning the decomposition approach, the Active Muddy Child does not have a de-
composition due to the fact that the initial uncertainty is given by a formula of one clause
that contains all literals (representing the fact that at least one of them is muddy). Even
if we added this information as a sensing action, simulating the fact that all agents get to
know it during execution (assuming the hidden true state is not the one where all agents
are clean), the problem would not have a decomposition since all literals would be dy-
namically relevant to each other due to the formula in that sensing action. Similarly,
there is no decomposition for the Sum problem, the Wordrooms, the Meeting problem
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Problems #States Decomposition
Collaboration-through-Comm (3) 27 3 - 3 - 3
Collaboration-through-Comm (4) 81 3 - 3 - 3 - 3
Collaboration-through-Comm (5) 243 3 - 3 - 3 - 3 - 3
Situated Dialogue (2,5) 25 5 - 5
Situated Dialogue (4,5) 625 5 - 5 - 5 - 5
Situated Dialogue (2,6) 36 6 - 6
Public Gossiping (4) 16 2 - 2 - 2 - 2
Public Gossiping (6) 64 2 - 2 - 2 - 2 - 2 - 2

Table 8.3: For the Collaboration through Communication, the number in the parenthesis is the
number of blocks in the problem. For the Situated Dialogue, (X,Y) stands for X blocks whose
position is unknown, with Y possible positions each. For the Public Gossiping, the number in
the parenthesis is the number of secrets. In column #States we see the number of possible initial
states of the original problem. In the decomposition column l1− l2− ...− ln stands for n partial
beliefs, where lj is the number of possible initial partial states of the partial belief Bj(t)

and the Lights problem.

The three problems that do have a decomposition (Collaboration through Communi-
cation, Situated Dialogue and Public Gossiping) share a common property: the initial
uncertainty the agents have about a certain object in the problem is independent of their
uncertainty about the rest of the objects. Specifically, for Collaboration through Com-
munication and Situated Dialogue, the possible positions of the blocks whose initial
position is not known do not (and cannot) overlap. In the case of Public Gossiping, the
truth values of the secrets are independent of each other.

In Table 8.3 we see the results of the decomposition approach in terms of the size the
decomposed, joint beliefBD(t). In the case of ”Collaboration through communication”,
the size of the decomposed joint belief depends on the number of blocks, while the
number of states of each partial belief on the possible positions of each block. The same
is true for the Situated Dialogue. In the case of the Public Gossiping problem, each
secret corresponds to a partial belief with two possible states (the two possible truth
values of the proposition modeling the secret).

Table 8.4 shows the experimental results of our optimizations in comparison with the
quadratic translation of Chapter 5. The results were obtained by using the FD planner
as the classical planner (Helmert, 2006), the A∗ algorithm with the additive heuristic,
on a Linux machine at 2.93 GHz and 4GB of RAM.
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Problems # States Quadratic Linear Decomposition
Active Muddy Child (5) 31 2.2 0.04 X
Active Muddy Child (6) 63 73 0.17 X
Active Muddy Child (7) 127 - 0.7 X
Coll-through-comm (3) 27 2.3 0.3 0.02
Coll-through-comm (4) 81 96 2.2 0.02
Coll-through-comm (5) 243 - - 0.07
Situated Dialogue (2,5) 25 2.8 X 0.1
Situated Dialogue (2,6) 36 5.8 X 0.15
Public Gossiping (4) 16 0.92 X 0.02
Public Gossiping (5) 32 22 X 0.02
Public Gossiping (6) 64 660 X 0.02
Public Gossiping (10) 1024 - X 0.26

Table 8.4: Experimental results of optimizations in comparison with the quadratic translation.
Times are in seconds and an X denotes that the approach was not applicable in the problem.
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PART IV

Conclusions
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8.3. Contributions

In this section we outline the main contributions of this thesis.

We introduced a framework for linear, multi-agent planning problems which al-
lows the handling of arbitrary epistemic formulas. We show that this framework
captures a fragment of dynamic epistemic logic (S5) and, though simple, it pro-
vides a convenient modeling language, simple semantics and a computational
model for reasoning with nested beliefs. Furthermore, we presented a translation
to classical planning, which is based on similar translation approaches for single
agent contingent and conformant planning. Such translation approaches take ad-
vantage of the work done in classical planning and allow for usage of off-the-shelf
classical planners. The translation is sound and complete, and its complexity is
quadratic in the number of initial states.

We introduced a framework for on-line, multi-agent planning in partially observ-
able environments. This framework is an extension of our work for linear, multi-
agent planning problems, where we included the notion of a planning agent and
we made explicit and formal the conditions under which an epistemic formula
is true in an on-line setting. Furthermore, we provided an algorithm and a new
translation to classical planning that allows us to compute a plan within a plan-
execute-observe-replan cycle. The algorithm, assuming no dead ends, guarantees
termination after a bounded number of calls to the classical planner. The trans-
lation itself introduces the paradigm where the planner chooses the next assumed
state, in contrast with being provided with one externally.

We identified two special cases that allow for more scalable approaches. The
first case concerns problems where (i) the objective literals contained in sensing
action/sensors are static, and (ii) the sensing actions that contain epistemic lit-
erals include all the agents of the problem. A translation to classical planning
was presented for these problems and its complexity is linear to the number of
initial states. The second case concerns problems which can be decomposed to
sub-problems. We introduce the notion of relevance among propositional atoms
which allows us to define a partial belief for each sub-problem, and provided a
translation to classical planning which is quadratic to the number of initial states
of the largest subproblem.
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8.4. Ongoing and Future Work

8.4.1. A Syntactic Approach

Work has been done on a different type of approaches for multi-agent planning, most
notably in (Cooper et al., 2016) and (Muise et al., 2015). These approaches do not make
use of Kripke structures but they depend on formulas that contain epistemic literals.
This means that the knowledge (or beliefs) the agents possess is explicitly represented
in the formula with the usage of propositions KiL (or BiL).

We have preliminary work concerning a similar syntactic approach. The aim of our
approach is to have a framework which is independent of Kripke structures and allows
us to evaluate (objective and epistemic) queries on an objective formula. This is the key
difference between our formulation and similar syntatic approaches: the knowledge of
the agents is not expressed within the formula itself but it is compiled into propositional
logic.

To achieve this, we keep track the set of possible states at time t, which is represented by
an objective formula φ(t) and for each agent we keep track of the set of literals Si(t) that
he has sensed up to time t. The assumptions we make about the problems we deal with
are that there are no physical actions, plus the additional requirements that are needed
for the linear translation.

More specifically, given φ(t) and Si(t), we can efficiently:

1. evaluate the truth value of any epistemic literalKiLwhereL is an objective literal,
and

2. compute an objective formula ψ that identifies all and only the states where KiL
would be evaluated to true.

Both operations, the evaluation of epistemic literals and the computation of ψ, are done
in time polynomial to the size of PI(φ(t)). The fact that we can compute the objective
formula ψ allows us to define how communication affects the knowledge of agents. In-
tuitevely, since ψ identifies all and only the states whereKiL is true, announcingKiL at
time t means excluding from the set of all possible states at time t− 1 the states where
KiL is not true. This is the same as φ(t) = φ(t − 1) ∧ ψ, since ψ identifies only the
states KiL is true.

The following example is indicative of how we evaluate epistemic literals.

Example 8.4.1. Suppose PI(φ(0)) = {(a ∨ b), (a ∨ c)}, Si(t) = {b, c} and the hidden
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true state s∗ = {a,¬b, c}. The operation of evaluating K1a is achieved by adding to
PI(φ(0)) all the truth values of the literals that agent 1 has sensed (which excludes all
states that are not possible base on the knowledge agent 1 has about the true state) and
apply unit resolution. The unit clause (¬b) will be resolved with the clause (a ∨ b),
resulting to (a), which means that K1a.

In other words, since we haveK1(a∨b) (because in all states a∨b is true, agent 1 knows
it), which can be written as K1(¬b → a), and we know that K1¬b (because he has
sensed it), we can derive that K1a is true without actually representing the knowledge
of the agent with epistemic literals.

The operation of computing the formula ψ that corresponds to KiL, where L is objec-
tive, is the following:

1. if agent i has sensed L, then ψ = L, otherwise

2. identify all clauses C1...Cn that contain L, Ck = L ∨ C ′k, since at least one of
these must be resolved to obtain L,

3. from all subclauses C ′1...C
′
n identify the ones which contain only propositions

which have been sensed by i (C ′1...C
′
m) since only those propositions can be used

for resolution and, possibly, provide L,

4. agent 1 must know the negation of at least one of these subclauses (¬C ′1 ∨ ... ∨
¬C ′m), since at least one clause needs to be resolved to the point that only L
remains,

In our example, the objective formula that corresponds to K1a is ψ = ¬b ∨ ¬c, and
announcing K1a means adding ψ to the original formula, which results in φ(1) = (a ∨
b) ∧ (a ∨ c) ∧ (¬b ∨ ¬c), while announcing ¬K1a means adding ¬ψ to the original
formula, which results in φ(1) = (a ∨ b) ∧ (a ∨ c) ∧ (b) ∧ (c)

Concerning the nested epistemic literals, e.g. KiKjL, the approach is similar. For i to
know KjL it means that i can distinguish between some states where KjL is true and
all the states where it is false. But, all the states where KjL is true are identified by ψ,
which means that KiKjL is evaluated as true only in the states where Kiψ is evaluated
as true. In turn, Kiψ corresponds to a new objective formula ψ′ which can be used as
defined above 1.

The operations are done in polynomial time given that we have the prime implicates

1Additional definitions are necessary concerning the computation of the formula that corresponds to
KiΦ, where Φ is a formula in CNF. First, that Ki is distributable over conjunctions, and second, how we
deal with Ki(l1 ∨ ... ∨ ln). Mainly, we need to compute the formula that corresponds to every subset
of l1 ∨ ... ∨ ln without taking into consideration the literals lk that are sensed by i, which are treated
individually.
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of formula φ(t). Unfortunately, the number of the prime implicates of a formula φ can
be exponential to the size of φ, and we need to compute them every time there is a
communication between the agents. Nevertheless, computing the prime implicates of
PI(Φ) ∧Ψ can be done in polynomial time as long as Ψ consists of unit clauses and/or
clauses that contain only pure literals (literals that appear only negated or only positive
in the entire formula). This allows us to identify special cases where the formulation
can be used efficiently:

when the announcement consists only of sensed literals, thus adding only unit
clauses

when the announcement consists of clauses that cannot be resolved with any other
clause, or resolutions lead to tautologies

The ”Situated Dialogue” problem falls under the first case: agents communicate literals
they have sensed. The problems ”Collaboration through Communication” and ”Word-
rooms” have plans that fall in the same category. The ”Muddy Children” and ”Active
Muddy Child” problems fall under the second case: all the announcements before the
one that achieves the goal have formulas that contain only pure literals.

We want to study further such syntactic formulations. Our objective is to have an ap-
proach that will allow us to solve meaningful problems without having the restriction of
recomputing the prime implicates of a formula multiple times.We expect such formula-
tions to be sound but not complete.

8.4.2. Incorporating Belief

The belief representation B(t) and its extension for on-line, planning problems deals
with knowledge. Although knowledge is sufficient for many meaningful cooperative
planning problems, we would like to be able to incorporate belief: agents may believe
something to be true while it is actually false. As an example, imagine an agent who
leaves in his drawer a book and exits the room. While he is away, another agent enters
the room, takes the book from the drawer and hides it in the closet. When the first agent
returns to the room, he believes that the book is still in the drawer, since he does not
know about the actions of the second agent. At the same time, the second agent knows
that the book is not in the drawer but in the closet.

Extending our formulation to incorporate belief would allow the relaxation of the as-
sumptions we make concerning the problems we deal with. Specifically, the require-
ment that all actions (physical and sensing) and sensors are public. Dealing with beliefs
will further allow us to tackle problems where communication is noisy or restricted due
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to resources, as well as problems where agents have information that do not want to
share and/or private goals.

Besides the question of how to incorporate beliefs in our formulation and at the same
time be scalable, a number of questions arise as to how we should treat knowledge and
beliefs. Planning problems are about achieving a goal with certainty. An agent believing
that a goal is achieved is not enough, the agent must know that the goal is achieved. This
implies that we need a framework which allows knowledge and belief to co-exist (Kraus
and Lehmann, 1988; van der Hoek, 1990), which in terms of automated planning would
also need to address an additional question: when does a belief become knowledge and
when knowledge becomes a belief in terms of actions being applied.
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APPENDIX A

Properties of K(P ) translation

In the following proofs, φ/s stands for a formula φ where every objective and epistemic
atom is tagged with the state s. For example, if φ = (p1∨ ...∨pn)∧ (Kip∨Ki¬p), then
φ/s = (p1/s ∨ ... ∨ pn/s) ∧ (Kip/s ∨Ki¬p/s).

Lemma A.1. Suppose an action sequence π which is applicable in both P and K(P ).
If π achieves L/s, where L is an objective literal, in K(P ), then π achieves L in the
state s of P , s ∈ bI .

Proof. Suppose π is empty. This means L/s ∈ I ′ which is true only if I |= s and
s |= L, s ∈ bI .

Suppose π = π′, α. Two cases to consider: (i) action α after π′ achieves L/s, or (ii) π′

achieves L/s and α does not delete it.

If (i) is true, then α in P must contain a conditional effect C → L, and by inductive
hypothesis, π must achieve C in state s of P . Therefore, α achieves L in state s of P .
If (ii) is true, by inductive hypothesis, it means that π′ achieves L, and for every effect
C ′ → ¬L, π′ achieves ¬L′ in state s of P , for some literal L′ in C ′, and thus, π must
achieve L in state s of P too.

Translation K(P ) introduces atoms Di(s, s
′) that represent the fact that s′ 6∈ ri(s, t).

These atoms, after they have been achieved, cannot become false. This means that all
the uncertainty the agents have is due to the initial set of states and this uncertainty is
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monotonically decreasing. This is evident in our formulation B(t) from the fact that
there is no action whose effect is to add a state s to a set ri(s′, t) - there are only
actions that remove states that disagree with s′ in the truth value of some formula φ.
Similarly, in the K(P ) translation, atoms Di(s, s

′) do not appear negated in the effect
of an action.

Lemma A.2. Suppose an action sequence π which is applicable in both P and K(P). If
π achieves Di(s, s

′) in K(P), then π achieves s′ 6∈ ri(s, t) in P , s, s′ ∈ bI .

Proof. If π is empty it cannot achieve Di(s, s
′) since for t = 0 we have ri(s, t) = bI for

s ∈ bI .

Suppose π = π′, α. There are two cases to consider: (i) action α is a sensing action (or
an update action) that achieves Di(s, s

′), or (ii) π′ achieves Di(s, s
′) and action α does

not delete it.

If (i) is true, then α has a conditional effect with condition φ/s ∧ ¬φ/s′ (or ¬φ/s′) and
effectDi(s, s

′). This means that π′ achieves φ/s∧¬φ/s′ (or ¬φ/s′), and by Lemma A.1,
π′ achieves s |= φ and s′ 6|= φ (or just s′ 6|= φ) in P . Therefore π achieves s′ 6∈ ri(s, t)
in P . If (ii) the proof is direct since there is no action that can delete Di(s, s

′).

Lemma A.3. Suppose an action sequence π which is applicable in both P and K(P). If
π achieves KiL/s in K(P), and L is an objective literal, then π achieves B(t), s |= KiL
in P .

Proof. An epistemic literal KiL/s is true when the axiom 〈KiL/s, L/s∧
∧
s′∈bI (L/s

′∨
Di(s, s

′))〉 is true.

Since π achieved KiL/s we have that L/s is achieved, and for all states s′ ∈ bI , either
L/s′ is achieved or Di(s, s

′) is achieved.

Suppose that B(t), s 6|= KiL. It must be that there exists an s′ ∈ bI such that (i)
B(t), s′ 6|= L and (ii) s′ ∈ ri(s, t). By Lemma A.1 we have that if π achieves L/s′, then
s′ |= L in P . By Lemma A.2 we have that if π achieves Di(s, s

′), then s′ 6∈ ri(s, t) in
P . Therefore, π must achieve B(t), s |= KiL.

Lemma A.4. Suppose an action sequence π which is applicable in both P and K(P). If
π achieves L in K(P), then π achieves B(t) |= L in P .

Proof. An atom L is true when the axiom 〈L,∧s∈bI (L/s ∨Di(s, s))〉 is true.
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Since π achieved L we have that for all states s ∈ bI , either L/s is achieved or Di(s, s)
is achieved.

Suppose that B(t) 6|= L. It must be that there exists an s ∈ bI such that (i) B(t), s 6|= L
and (ii) s ∈ ri(s, t). By Lemma A.1 we have that if π achieves L/s, then s |= L in P .
By Lemma A.2 we have that if π achieves Di(s, s), then s 6∈ ri(s, t) in P . Therefore, π
must achieve B(t), s |= L for all possible states in P , and as a result B(t) |= L.

Lemma A.5. If an action sequence π is applicable in K(P ), then π is applicable in P .

Proof. If π is empty it is trivial. Suppose π = π′, α. Since π is applicable in K(P ), π′

is applicable in K(P ), and by inductive hypothesis π′ is applicable in P . Furthermore,
since π is applicable in K(P ), then π′ achieves L for L ∈ Pre(α). By Lemma A.4, π′

achieves L in all states s that are possible in P . Therefore, π is applicable in P .

Theorem A.1. If an action sequence π is a plan for K(P ), then π is a plan for P .

Proof. Direct from previous lemma. Consider a problem P ′ which is the same as P ,
with the addition of an action α′ which has precondition the goal G of P . If π is a
plan for K(P ), then π′ = π, α′ is a plan for K(P ′), and by the previous lemma, π′ is
applicable in P , thus, it achieves G and π is a plan for P .

Lemma A.6. Suppose an action sequence π which is applicable in both P and K(P ).
If π achieves L, where L is an objective literal, in some possible initial state s of P ,
s ∈ bI , then π achieves L/s in K(P ).

Proof. Suppose π is empty. Since L is true in s and I |= s, L/s must be true in K(P ).

Suppose π = π′, α. Since π achieves L in state s of P , then (i) α is a physical action
with a conditional effect C → L, and π′ must have achieved C in s, or (ii) π achieves L
in state s of P , and for any conditional effect of α, C ′ → ¬L, π achieves ¬L′ in state s
of P , for some L′ ∈ C ′.

If (i) is true, then α in K(P ) must contain a conditional effect C/s → L/s, and by
inductive hypothesis, π must achieve C/s inK(P ), and, therefore L/s. If (ii) is true, by
inductive hypothesis, π achieves L/s and ¬L′/s, for some L′/s ∈ C ′/s, so π achieves
¬C ′/s and L/s in K(P ).

Lemma A.7. Suppose an action sequence π which is applicable in both P and K(P). If
π achieves s′ 6∈ ri(s, t) in P , s ∈ bI , then π achieves Di(s, s

′) in K(P ).
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Proof. If π is empty it cannot achieve s 6∈ ri(s, t) since for t = 0 we have ri(s, t) = bI
for s ∈ bI .

Suppose π = π′, α. Since α is a sensing action (or an update action) that achieves
s′ 6∈ ri(s, t), π′ achieves s |= φ and s′ 6|= φ (or just s′ 6|= φ), and, by Lemma A.6,
π′ achieves φ/s and ¬φ/s′ (or just ¬φ/s′) in K(P ). Action α has a conditional effect
φ/s ∧ ¬φ/s′ → Di(s, s

′) (or ¬φ/s′ → Di(s, s
′)), therefore π achieves Di(s, s

′).

Lemma A.8. Suppose an action sequence π which is applicable in both P and K(P). If
π achieves B(t), s |= KiL in P , and L is an objective literal, then π achieves KiL/s in
K(P ).

Proof. Since π achieves B(t), s |= KiL, then for all states s′ ∈ bI either s′ |= L or
s′ 6∈ ri(s, t).

Suppose that π when applied in K(P ) does not achieve KiL/s. This means that there
exists a state s′ such that ¬L/s′ and ¬Di(s, s

′). By Lemma A.6, if π achieves s′ |= L in
P , then π achieves L/s′ in K(P ), and by Lemma A.7, if π achieves s′ 6∈ ri(s, t) in P ,
then π achieves Di(s, s

′) in K(P ). Therefore, π achieves KiL/s in K(P ).

Lemma A.9. Suppose an action sequence π which is applicable in both P and K(P). If
π achieves B(t) |= L in P, then π achieves L in K(P ).

Proof. Atoms L are achieved in K(P ) through axioms of the form 〈L,
∧
s∈bI (L/s ∨

Di(s, s))〉.

Since π achieved B(t) |= L we have that for all states s ∈ bI , either s |= L is achieved
or s 6∈ ri(s, t) is achieved.

Suppose that, after the execution of π, L is false in K(P ). It must be that there exists an
s ∈ bI such that (i) L/s has not been achieved, and (ii) Di(s, s) has not been achieved.
By Lemma A.6 we have that if π achieves s |= L in P , then L/s is true in K(P ). By
Lemma A.7 we have that if π achieves s 6∈ ri(s, t) in P , then Di(s, s) is true in K(P ).
Therefore, π must achieve L/s for all possible states in K(P ) at time t = |π|, and as a
result, L is true.

Lemma A.10. If an action sequence π is applicable in P , then π is applicable inK(P ).

Proof. If π is empty it is trivial. Suppose π = π′, α. Since π is applicable in P , π′

achieves s |= L for L ∈ Pre(α) and s ∈ bI . By Lemma A.9, π must achieve L/s for
L ∈ Pre(α) and s ∈ bI in K(P ). Therefore, π is applicable in K(P ).
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Theorem A.2. If an action sequence π is a plan for P , then π is a plan for K(P ).

Proof. Direct from previous lemmas. Consider a problem P ′ which is the same as P ,
with the addition of an action α′ which has precondition the goal G of P . If π is a plan
for P ′, then π′ = π, α′ is a plan for K(P ′), and by the previous lemma, π′ is applicable
in K(P ), thus, it achieves G and π is a plan for K(P ).

Theorem 1. (p.51) An action sequence π is a plan that solves the linear multi-agent
planning problem P iff π is a plan that solves the classical planning problem with ax-
ioms K(P ).

Proof. Direct from theorems A.1 and A.2.
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APPENDIX B

Properties of K(P,B(t), Si(t))
translation

From now on we will refer to the translation K(P,B(t), Si(t)) as P ′.

Definition B.1. Given a sequence of actions π = assume(s), a1, ε, a2, ε..., an, ε, where
ε is the auxiliary action representing the application of all passive sensors, the normal-
ization of π is n(π) = a1, a2, ..., an.

Lemma B.1. Suppose a sequence of actions π that is applicable in P ′ and n(π) that
is applicable and consistent with the observations in P . If π achieves L/s in P ′, then
n(π) achieves s |= L in P .

Proof. Suppose π, and by extension n(π), is empty. Since L/s is true in I ′, then I |= s
and s |= L.

Suppose π = π′, α. There are two cases to consider: (i) action α after π′ achieves L/s,
or (ii) π′ achieves L/s and α does not delete it.

If (i) is true, then α in P contains a conditional effect C → L, and by inductive hypoth-
esis, n(π′) must achieve C in state s of P . Therefore, n(π) achieves L in state s of P .
If (ii) is true, by inductive hypothesis, n(π′) achieves L and, for every conditional effect
C ′ → ¬L in α, n(π′) achieves ¬L′ in state s of P , for a literal L′ in C ′. Therefore n(π)
achieves L is state s of P .

The K(P,B(t), Si(t)) translation introduces atoms Di(s, s
′) and Di(s) that represent
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the fact that s′ 6∈ ri(s, t) and s 6∈ Si(t). These atoms, after they have been achieved,
cannot become false. For Di(s, s

′), this means that all the uncertainty the agents have
is due to the initial set of states and this uncertainty is monotonically decreasing. For
Di(s), this means that as long as a state is not consider possible at some time t due to an
observation that disagrees with the assumed state, the state cannot become possible at a
later time t′ > t. This is evident in our formulation from the fact that there is no action
whose effect is to add a state s to a set ri(s′, t) or Si(t) - there are only actions that
remove states that disagree with s′ in the truth value of some formula φ, or states from
Si(t). Similarly, in the translation, none of these atoms appear negated in the effect of
an action.

Lemma B.2. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves Di(s, s

′) in P ′ due
to a sensing action sense[i](φ) or a passive sensor psense[i](φ), where φ is an objective
formula, then n(π) achieves s′ 6∈ ri(s, t) in P .

Proof. Suppose π is empty. Since Di(s, s
′) ∈ I ′ then s′ 6∈ ri(s, t).

Suppose π = π′, α. There are two cases to consider: (i) α is a sensing action sense[i](φ)
(or a passive sensor psense[i](φ)) that achieves Di(s, s

′), and (ii) π′ achieves Di(s, s
′)

and α does not delete it.

If (i) is true, α has a conditional effect φ/s∧¬φ/s′ → Di(s, s
′), and π′ has achieved φ/s

and ¬φ/s′. By Lemma B.1, n(π′) achieves s |= φ and s′ 6|= φ. Therefore, by definition
of the sensing action update, we have s′ 6∈ ri(s, t). If (ii) is true, it is direct due to the
fact that no action can delete Di(s, s

′).

Lemma B.3. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves KiL/s in P ′, then
n(π) achieves B(t), s |= KiL in P .

Proof: Epistemic literals KiL/s are achieved through axioms of the form 〈KiL/s,∧
s′∈bI (L/s

′ ∨Di(s, s
′))〉.

Since π achieved KiL/s, for all states s′ ∈ bI , either L/s′ is achieved or Di(s, s
′) is

achieved.

Suppose that B(t), s 6|= KiL. It must be that there exists a state s′ ∈ bI such that (i)
s′ 6|= L and (ii) s′ ∈ ri(s, t). By Lemma B.1 we have that if π achieves L/s′, then n(π)
achieves s |= L in P . By Lemma B.2 we have that if π achieves Di(s, s

′), then n(π)
achieves s 6∈ ri(s, t) in P . Since for all states, either s |= L or s 6∈ ri(s, t) is achieved,
there cannot be a state s′ s.t. s′ 6|= L and s′ ∈ ri(s, t). Therefore, n(π) must achieve
B(t), s |= KiL.
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Lemma B.4. Suppose a sequence of actions π that is applicable in P ′ and the first
action in π is assume(s). We have that φ/t is achieved if and only if φ/s is achieved.

Proof: Since there is only one assume(s) action that appears in π, s ∈ Si(t), as the first
action, and its effect is T (s), then for all s′ ∈ bI such that s 6= s′, we have that ¬T (s′)
is true.

Atoms φ/t are achieved through axioms 〈φ/t,
∧
s′∈bI (¬T (s′) ∨ φ/s′)〉. Since for all

s′ ∈ bI such that s 6= s′, we have that ¬T (s′) is true, φ/t is true only if φ/s is true.

Lemma B.5. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves Di(s) in P ′, then
n(π) achieves s 6∈ Si(t) in P .

Proof. Suppose the first action of π is assume(s′) and the hidden, true state in P is s∗.
If π is empty, then Di(s) is true if s 6∈ Si(t).

If π = π′, α achieves Di(s) in P ′, then (i) α after π′ achieves Di(s), or (ii) π′ achieves
Di(s) and α does not delete it.

If (i), then α is (a) a sensing action sense[i](φ) or a passive sensor psense[i](φ), or (b)
α is a physical action.

If (a) then α has a conditional effect φ/t ∧ ¬φ/s → Di(s), then by Lemmas B.1 and
B.4, φ is true in state s′ of P and ¬φ is true in state s of P . Since n(π) is applicable
and consistent with the observations, state s∗ and s′ agree in the valuation of φ, there-
fore n(π) achieves s 6∈ Si(t) in P . If (b) is true, then by Lemmas B.3 and B.4, n(π)
achieves B(t), s′ |= KjPre(α) and B(t), s 6|= KjPre(α). Since n(π) is applicable and
consistent with the observations, B(t), s′ |= KjPre(α), therefore s 6∈ Si(t) in P .

Lemma B.6. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves KiL/t, where i the
planning agent, in P ′, then n(π) achieves B(t), sj |= L in P , for sj ∈ ri(s∗, t), and s∗

the hidden, true state.

Proof: By previous lemma B.4, ifKiL/t is achieved and assume(s) was the first action
of π, then KiL/s is achieved. KiL/s is derived by the axiom 〈KiL/s,

∧
s′∈bI (L/s

′ ∨
Di(s, s

′)). By definition, Di(s
′) is true if and only if Di(s, s

′) is true, for s′ ∈ bI . This
means that we can replace Di(s, s

′) with Di(s
′) in the definition of the axiom, which

will become 〈KiL/s,
∧
s′∈bI (L/s

′∨Di(s
′)). ForKiL/s to be true, L/s′ must be true for
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all states s′ such that ¬Di(s
′). Since n(π) is consistent with the observations, ¬Di(s

∗)
must be true. Therefore, by lemmas B.1 to B.3, B(t), sj |= L, for sj ∈ ri(s∗, t).

Lemma B.7. Suppose a planning agent i and a sequence of actions π that is applicable
in P ′. If n(π) is consistent with the observations, then n(π) is applicable P with s∗ the
hidden, true state.

Proof. If π is empty it is trivial. Suppose π = assume(s), π′, a, ε. Since π is applicable
in P ′, then π′ is applicable in P ′, and by inductive hypothesis, n(π) is applicable in P .
Furthermore, since π is applicable in P ′. then π′ achievesKjPre(α)/t, for action α and
owner of the action agent j in P ′. By Lemma B.4 and B.6, π achieves KjPre(α)/s,
and since n(π) is consistent with observations, n(π) achieves B(t), s∗ |= KjPre(α),
therefore, n(π) is applicable in P .

Theorem 3 (p.66) If π is a sequence of actions that achievesG′ in P ′, then n(π) achieves
the goal G in P for a hidden, true state s∗, if n(π) is consistent with the observations,
b) Otherwise, if π′ is the shortest prefix of π that is inconsistent and π includes the action
assume(s), after the execution of n(π′) in P , s 6∈ Si(t′) where t′ is the resulting time
step.

Proof. Direct from previous lemma. Since π achievesG′ then π, for all s ∈ bI , achieves
either G/s or Di(s). Since n(π) is consistent with the observations, Di(s) (and, by
extension, s 6∈ Si(t) in P ) cannot become true, for s∗ = s. Thus, since π achieves G/s
for s ∈ Si(t), then n(π) achieves B(t), s |= G.

Lemma B.8. Suppose a sequence of actions π, with first action assume(s) that is ap-
plicable in P ′ and n(π) that is applicable and consistent with the observations in P . If
n(π) achieves s |= L in P , where L is an objective atom, then π achieves L/s in P ′.

Proof: Suppose π is empty. If I |= s and s |= L then L/s ∈ I ′.

Suppose π = π′, α. There are two cases: (i) α achieves, after n(π′), L at state s, or (ii)
n(π′) achieves L and α does not delete it.

If (i), α is a physical action with conditional effectC → L, and n(π′) achievesC in state
s in P . Then α in P ′ has a conditional effect C/s→ L/s, and by inductive hypothesis,
π′ must achieve C/s. Therefore, π achieves L/s. If (ii) is true, by inductive hypothesis,
π′ must achieve C/s and ¬L′/s for some L′/s ∈ C ′/s, so π achieves L/s.

Lemma B.9. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If n(π) achieves s′ 6∈ ri(s, t) in
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P due to a sensing action sense[i](φ) or a passive sensor psense[i](φ), where φ is an
objective formula, π achieves Di(s, s

′) in P ′.

Proof: Suppose n(π) = π is empty. If s′ 6∈ ri(s, t), then Di(s, s
′) ∈ I ′.

Suppose n(π) = n(π′), α. There are two cases: (i) α achieves, after n(π), s 6∈ ri(s, t),
or (ii) n(π) achieves s 6∈ ri(s, t) and α does not achieve s ∈ ri(s, t).

If (i), α is a sensing action sense[i](φ) in P , or a physical action followed by a passive
sensor psense[i](φ) in P . Suppose α is a sensing action. Since α achieves s′ 6∈ ri(s, t),
n(π′) achieves s |= φ and s′ 6|= φ. By Lemma B.8, π′ achieves φ/s and ¬φ/s′. The
sensing action α = sense[i](φ) in P ′ has a conditional effect φ/s ∧ ¬φ/s′ → Di(s, s

′).
Therefore, Di(s, s

′) is achieved in P ′. Similar, if α = psense[i](φ). if (ii), it is direct
since there is no action that can add a state to a set ri(s, t).

Lemma B.10. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If n(π) achieves B(t), s |= KiL
in P , then π achieves KiL/s in P ′.

Proof: Since n(π) achieves B(t), s |= KiL, then for all states s′ ∈ ri(s, t), we have
s′ |= L.

Epistemic literalsKiL/s in P ′ are achieved through axioms of the form 〈KiL/s,
∧
s′∈bI (L/s

′∨
Di(s, s

′))〉.

Suppose that π does not achieve KiL/s. It must be that there exists a state s′′ such that
¬L/s′′ and ¬Di(s, s

′′). By Lemma B.8 we have that if n(π) achieves s′ |= L, π achieves
L/s′. By Lemma B.9 we have that if s′ 6∈ ri(s, t) is true after the execution of n(π),
Di(s, s

′) is true in π. Therefore, KiL/s is achieved by π.

Lemma B.11. Suppose a sequence of actions π that is applicable in P ′ and the first
action in π is assume(s). Further, suppose n(π) is applicable and consistent with the
observations in P , where the hidden true state is s∗. If n(π) achieves B(t), s∗ |= KiL,
then π achieves KiL/t.

Proof: Since B(t), s∗ |= KiL is true, then B(t), s′ |= L, for all s′ ∈ ri(s
∗, t). The

definition of the axiom for a derived atom φ/t is
∧
s′∈bI (¬T (s′) ∨ φ/s′). This means

that, since assume(s) is unique and makes T (s) true, KiL/t is true if KiL/s is true.
The definition of the axiom KiL/s is

∧
s′∈bI (L/s

′ ∨Di(s, s
′)).

Suppose KiL/s is not achieved. This means that there exists a state s′′ such that ¬L/s′′
and ¬Di(s, s

′′). By Lemmas B.8 and B.9 we have that since B(t), s′ |= L, for all
s′ ∈ ri(s∗, t), then for all states s′ either L/s′′ is true or Di(s, s

′′). Therefore, KiL/t is
true.
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Lemma B.12. Suppose a sequence of actions π that is applicable in P ′ and n(π) that
is applicable and consistent with the observations in P . If n(π) achieves s 6∈ Si(t) in
P , then π achieves Di(s) in P ′.

Proof: Suppose the first action of π is assume(s′) and the hidden, true state in P is s∗,
where s∗ 6= s′.

If n(π) is empty, since s 6∈ Si(t) in P , then Di(s) ∈ I ′ in P ′.

Suppose n(π) = n(π′), α. There are two cases: (i) α after n(π′) achieves s 6∈ Si(t), or
(ii) n(π′) achieves s 6∈ Si(t) and α does not achieve s ∈ Si(t).

If (i) there are two more cases: (a) α is a sensing action or a passive sensor, or (b) α is a
physical action.

If (a), then agent i senses the truth value of a formula φ, such that B(t), s∗ |= φ and
B(t), s 6|= φ. Furthermore, since π is applicable and n(π) consistent with the observa-
tions, the sensing action/passive sensor has a conditional effect φ/t ∧ ¬φ/s → Di(s),
and by lemmas B.8 and B.10, we have that π achieves Di(s). If (b) α with owner j is
such that the precondition isKjPre(α) andB(t), s 6|= KjPre(α). Since π is applicable,
and by Lemmas B.10 and B.11, we have that π achieves Di(s).

If (ii), it is direct since no action can achieve s ∈ Si(t).

Lemma B.13. If an action sequence n(π) is applicable in P , then π = assume(s), π′

is applicable in P ′, if π is consistent with the observations.

Proof: If n(π) is empty, it is trivial. Suppose n(π) = n(π′), α is applicable in P .
Since α is applied, its preconditions are achieved by n(π′), and by inductive hypothesis,
n(π′) is applicable in P . Also, since n(π′) achieves B(t), s |= KjPre(α), for s ∈
Sj(t), by Lemma B.10 we have that π′ achieves KjPre(α)/s for the same states. By
Lemma B.11, π achieves the preconditions of the actions and, thus, is applicable in P ′,
if consistent with observations.

Theorem 4 (p.66) Suppose an action sequence π = assumes(s), π′ and the corre-
sponding normalized sequence n(π). If n(π) is a plan that achieves KiG for P , for a
hidden true state s∗, then π is a plan for P ′ for s = s∗, and any such plan is consis-
tent.

Proof. Direct from previous lemma, if we consider a problem P ′′ same as P , with the
addition of an action α′ which has as a precondition KiG. If n(π) is a plan for P , then
π′ = π, a′ is a plan for P ′′, and by the previous lemma π′ is applicable in P ′, thus it
achieves KiG. Furthermore, any such plan is consistent since, by previous theorem, the

130



“tesi2” — 2017/9/30 — 11:48 — page 131 — #151

shortest prefix of the plan that is consistent and applied is sound, thus, if s |= φ in P ,
φ/s is true. Therefore, the observation cannot be inconsistent.

Theorem 5 (p.66) If the executions in P cannot reach a dead-end, Algorithm 1 will
solve P after a number of calls to the classical planner that is bounded by |bI | × |A|2,
where bI is the set of initial states in P and A is the set of agents.

Proof. Direct since the translation is sound and complete and the protocol chooses a new
planning agent j as long as Sj(t) 6= ∅. At every iteration, either the goal is achieved due
to previous theorems, or a state s is removed from Si(t), where i the current planning
agent. Thus, in the worst case, there will be |bI | × |A| calls to the planner.
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APPENDIX C

Properties of
K(P,B(t), Si(t), O

+, O(t)) translation

From now on we will refer to the translationK(P,B(t), Si(t), O
+(t), O(t)) as P ′.

Lemma C.1. Suppose a sequence of actions π that is applicable in P ′ and n(π) that
is applicable and consistent with the observations in P . If π achieves L/s in P ′, then
n(π) achieves s |= L in P .

Proof. Suppose π, and by extension n(π), is empty. Since L/s is true in I ′, then I |= s
and s |= L.

Suppose π = π′, α. There are two cases: (i) α achieves L/s after π′, or (ii) π′ achieves
L/s and α does not delete it.

If (i) is true, α in P ′ contains a conditional effect C/s → L/s, and π′ achieved C/s in
P ′. Also, α in P must contain a conditional effect C → L, and by inductive hypothesis,
n(π′) must achieveC in state s of P . Therefore, n(π) achieves L in state s of P . If (ii) is
true, π achieves L/s and α is a physical action with a conditional effect C ′/s→ ¬L/s,
and by inductive hypothesis, n(π′) achieves L and ¬L′ in state s of P , so n(π) achieves
L is state s of P .

TheK(P,B(t), Si(t), O
+(t), O(t)) translation introduces atomsD(s),Di(s) and a+Ak,φ

:
the first represents that the state s is completely removed from the set of possible states
(and that is common knowledge), the second that the planning agent i does not consider
the state s possible, and the third that the sensing action corresponding to the specific
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auxiliary atom has been applied. These atoms, after they have been achieved, cannot
become false. For D(s) and Di(s), if the states have been deemed not possible at
some time t due to an observation that is inconsistent with the hidden state, they cannot
become possible at a later time t′ > t. For a+Ak,φ

, similarly, if the action has been applied
then the agents in Ak can distinguish between certain states s and s′ due to that action
and, since all actions are public and deterministic, they can distinguish the states from
that point on.

Lemma C.2. Suppose a sequence of actions π that is applicable in P ′ and the first
action in π is assume(s). We have that φ/t is achieved if and only if φ/s is achieved.

Proof. Since there is only one assume(s) action that appears in π, s ∈ Si(t), as the first
action, and its effect is T (s), then for all s′ ∈ bI such that s 6= s′, we have that ¬T (s′)
is true.

Atoms φ/t are achieved through axioms 〈φ/t,
∧
s′∈bI (¬T (s′) ∨ φ/s′)〉. Since for all

s′ ∈ bI such that s 6= s′, we have that ¬T (s′) is true, φ/t is true only if φ/s is true.

Lemma C.3. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves D(s′) in P ′ due to
a sensing action sense[A](φ) or a passive sensor psense[A](φ), where φ is an objective
formula, then n(π) achieves s′ 6∈ ri(s, t) in P .

Proof. Suppose π is empty. Since D(s′) ∈ I ′ then s′ 6∈ ri(s, t).

Suppose π = π′, α. There are two cases to consider: (i) action α after π′ achieves D(s′)
(Di(s

′)), or (ii) π′ achieves D(s′) and action α does not delete it.

If (i) is true, then α has a conditional effect φ/t∧¬φ/s′ → D(s′). By Lemma C2, since
φ/t is achieved, φ/s is achieved. By Lemma C1, n(π′) achieves s |= φ and s′ 6|= φ.
Therefore, by definition of the sensing action, we have s′ 6∈ ri(s, t). If (ii) is true, it is
direct since D(s′) cannot be deleted.

Lemma C.4. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves α+

Ak,φ
in P ′, such

that α+
Ak,φ
∈ O(s, s′, i) and O(s, s′, i) ∈ O+, then π achieves s′ 6∈ ri(s, t).

Proof. By definition of the construction of O(s, s′, i). Since alpha+Ak,φ
∈ O(s, s′, i),

then φ is a static formula and the states s and s′ disagree on its truth value. Since π
achieves α+

Ak,φ
, there was a sensing action or a sensor which allowed agent i ∈ Ak to
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sense the truth value of φ, and thus, distinguish between states s and s′ (s′ 6∈ ri(s, t)).

Lemma C.5. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves KiL/s in P ′, then
n(π) achieves B(t), s |= KiL in P .

Proof. Epistemic literalsKiL/s are achieved through axioms of the form 〈KiL/s,∧s′∈bI [L/s′∨
D(s′)

∨
a[Ak])(φ)∈O+(s,s′,i)

a+Ak,φ
]〉, for O+(s, s′, i) ∈ O+.

Proof: Epistemic literals KiL/s are achieved through axioms of the form 〈KiL/s,∧
s′∈bI (L/s

′ ∨Di(s, s
′))〉.

Since π achieved KiL/s, for all states s′ ∈ bI , either L/s′ is achieved or D(s′) is
achieved, or an atom a+Ak,φ

which denotes that agent i sensed some formula φ which
allows him to distinguish between s and s′.

Suppose that B(t), s 6|= KiL. It must be that there exists a state s′ ∈ bI such that (i)
s′ 6|= L and (ii) s′ ∈ ri(s, t). By Lemma C1 we have that if π achieves L/s′, then
n(π) achieves s |= L in P . By Lemma C3 we have that if π achieves D(s′), then
n(π) achieves s′ 6∈ ri(s, t) in P . By Lemma C4 we have that if π achieves a+Ak,φ

, and
a+Ak,φ

∈ O(s, s′, i), then n(π) achieves s′ 6∈ ri(s, t) in P .

Since for all states we have that s |= L is achieved or s 6∈ ri(s, t) is achieved, there
cannot be a state s′ s.t. s′ 6|= L and s′ ∈ ri(s, t). Therefore, n(π) must achieveB(t), s |=
KiL.

Lemma C.6. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves KiL/t, where i the
planning agent, in P ′, then n(π) achieves B(t), sj |= L in P , for sj ∈ ri(s∗, t), and s∗

the hidden, true state.

Proof: By lemmas C2 and C5, if KiL/t is achieved and assume(s) was the first action
of π, then KiL/s is achieved.

KiL/s is derived by the axiom 〈KiL/s,
∧
s′∈bI (L/s

′∨Di(s, s
′)). By definition,Di(s

′) is
true if and only if Di(s, s

′) is true, for s′ ∈ bI . This means that we can replace Di(s, s
′)

with Di(s
′) in the definition of the axiom, which will become 〈KiL/s,

∧
s′∈bI (L/s

′ ∨
Di(s

′)). For KiL/s to be true, L/s′ must be true for all states s′ such that ¬Di(s
′).

Since n(π) is consistent with the observations, ¬Di(s
∗) must be true. Therefore, by

lemmas B.0.1 to B.0.3, B(t), sj |= L, for sj ∈ ri(s∗, t).
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Lemma C.7. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If π achieves Di(s) in P ′, then
n(π) achieves s 6∈ Si(t) in P .

Proof. Suppose the first action of π is assume(s′) and the hidden, true state in P is s∗.
If π is empty, then Di(s) is true if s 6∈ Si(t).

Suppose π = π′, α, ε. There are two cases to consider: (i) action α after π′ achieves
Di(s) in P ′, or (ii) π′ achieves Di(s) and α does not delete it.

If (i) is true, then α must be a sensing action sense[i](φ), or ε contains a passive sensor
psense[i](φ), each with conditional effect φ/t ∧ ¬φ/s → Di(s). By Lemmas C1 and
C2, n(π′) achieves s′ |= φ and s 6|= φ. Since n(π) is consistent with observations and
the φ is true in assumed state s′, we have that s∗ |= φ as well. Therefore, n(π) achieves
s 6∈ Si(t). if (ii) is true, it is direct by inductive hypothesis and the fact thatDi(s) cannot
be deleted by an action.

Lemma C.8. Suppose a planning agent i and a sequence of actions π that is applicable
in P ′. If n(π) is consistent with the observations, then n(π) is applicable P with s∗ the
hidden, true state.

Proof. If π is empty it is trivial. Suppose π = assume(s), π′, a, ε. Since π is applicable
in P ′, then π′ is applicable in P ′, and by inductive hypothesis, n(π) is applicable in P .
Furthermore, since π is applicable in P ′. then π′ achieves KjPre(α)/t, for action α
and owner of the action agent j in P ′. By Lemmas C2 and C5, π achieves KjPre(α)/s,
and since n(π) is consistent with observations, n(π) achieves B(t), s∗ |= KjPre(α),
therefore, n(π) is applicable in P .

Theorem C.1. If π is a sequence of actions that achieves G′ in P ′, then n(π) achieves
the goal G in P for a hidden, true state s∗, if n(π) is consistent with the observations.

Proof: Direct from previous lemma. Since π achieves G′ then π, for all s ∈ bI , achieves
either G/s or Di(s). Since n(π) is consistent with the observations then Di(s) (and, by
extension, s 6∈ Si(t) in P ) cannot become true, for s∗ = s. Thus, since π achieves G/s
for s ∈ Si(t), then n(π) achieves B(t), s |= G.

Lemma C.9. Suppose a sequence of actions π, with first action assume(s) that is
applicable in P ′ and n(π) that is applicable and consistent with the observations in P .
If n(π) achieves s |= L in P , where L is an objective atom, then π achieves L/s in P ′.
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Proof. Suppose π is empty. If I |= s and s |= L then L/s ∈ I ′.

Suppose π = π′, α, ε, There are two cases to consider: (i) α achieves s |= L, or (ii) π′

achieves s |= L and α does not achieve s 6 modelsL.

If (i) is true, then α in P ′ has a conditional effect C/s → L/s, and by inductive hy-
pothesis, π′ must achieve C/s. Therefore, π achieves L/s. If (ii) is true, by induc-
tive hypothesis, π′ must achieve C/s and ¬L′/s for some L′/s ∈ C ′/s, so π achieves
L/s.

Lemma C.10. Suppose a sequence of actions π that is applicable in P ′ and n(π) that
is applicable and consistent with the observations in P . If n(π) achieves s′ 6∈ ri(s, t) in
P due to a sensing action sense[B](φ) or a passive sensor psense[B](φ), where φ is an
objective formula, π achieves D(s) or a+B,φ in P ′.

Proof: Suppose n(π) = π is empty. There are two cases: (i) s′ 6∈ ri(s, t) is true for
B = A and s ∈ bI , or (ii) s′ 6∈ ri(s, t) is true for some s ∈ bI .

If (i) is true, then I ′ |= D(s). If (ii) is true, then s′ 6∈ ri(s, t) can only be achieved by the
application of a sensing action or a passive sensor during some earlier execution, with
φ being a static formula. Therefore, I ′ |= a+B,φ due to a+B,φ ∈ O(t)

Suppose n(π) = n(π′), α. There are two cases to consider: (i) α after n(pi′) achieved
s′ 6∈ ri(s, t), or (ii) n(pi′) achieved s′ 6∈ ri(s, t) and α did not reverse it.

If (i) is true, and B = A, α achieves s′ 6∈ ri(s, t) and since π is applicable, π achieves
a+B,φ. If (ii), it is direct since there is no action that adds a state in a set ri(s, t).

Lemma C.11. Suppose a sequence of actions π that is applicable in P ′ and n(π) that is
applicable and consistent with the observations in P . If n(π) achieves B(t), s |= KiL
in P , then π achieves KiL/s in P ′.

Proof: Since n(π) achieves B(t), s |= KiL, then for all states s′ ∈ ri(s, t), we have
s′ |= L.

Epistemic literals KiL/s in P ′ are achieved through axioms of the form 〈KiL/s, ∧s′∈bI
[L/s′ ∨D(s′)

∨
a[Ak])(φ)∈O+(s,s′,i)

a+Ak,φ
]〉, for O+(s, s′, i) ∈ O+.

Suppose that n(π) achieves B(t), s |= KiL but π does not achieve KiL/s. It must be
that there exists a state s′ such that ¬L/s′ and agent i cannot distinguish between s and
s′, which entails that ¬D(s′) is true and O+(s, s′, i) is empty. By Lemma C9 we have
that if n(π) achieves s′ |= L, π achieves L/s′. By Lemma C10 we have that if n(π)
achieves s′ 6∈ ri(s, t), then (a) it was the effect of an action sense[A](φ) and D(s) is
achieved, or (b) it was the effect of an action sense[B](φ), with B ⊂ A, thus φ is static
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and a+B,φ ∈ O(s, s′, i. Therefore, and since π is applicable in P ′, the action is applied
and achieves a+B,φ. Therefore, KiL/s is achieved by π.

Lemma C.12. Suppose a sequence of actions π that is applicable in P ′ and the first
action in π is assume(s). Further, suppose n(π) is applicable and consistent with the
observations in P , where the hidden true state is s∗. If n(π) achieves B(t), s∗ |= KiL,
then π achieves KiL/t.

Proof: Since B(t), s∗ |= KiL is true, then B(t), s′ |= L, for all s′ ∈ ri(s
∗, t). The

definition of the axiom for a derived atom φ/t is
∧
s′∈bI (¬T (s′) ∨ φ/s′). This means

that, since assume(s) is unique and makes T (s) true, KiL/t is true if KiL/s is true.
The definition of the axiom KiL/s is

∧
s′∈bI (L/s

′ ∨Di(s, s
′)).

Suppose KiL/s is not achieved. This means that there exists a state s′′ such that ¬L/s′′
and ¬Di(s, s

′′). By Lemmas C1 and C3 we have that since B(t), s′ |= L, for all s′ ∈
ri(s

∗, t) we have s′ |= L, which is a contradiction. Therefore, KiL/t is true.

Lemma C.13. Suppose a sequence of actions π that is applicable in P ′ and n(π) that
is applicable and consistent with the observations in P . If n(π) achieves s 6∈ Si(t) in
P , then π achieves Di(s) in P ′.

Proof: Suppose the first action of π = π′, α is assume(s′) and the hidden, true state in
P is s∗, where s∗ 6= s′.

There are two cases to consider: (i) α, after π achieves s 6∈ Si(t), or (ii) π achieves
s 6∈ Si(t) and α does not add the state back in Si(t).

If (i), then (a) α is a sensing action or a passive sensor, or (b) α is a physical action with
owner j and precondition KjPre(α).

If (a), agent i senses the truth value of a formula φ, such that B(t), s∗ |= φ and
B(t), s 6|= φ. Since π is applicable and n(π) consistent with the observations, the
sensing action/passive sensor has a conditional effect φ/t ∧ ¬φ/s→ Di(s), by lemmas
C2 to C4, we have that π achieves Di(s).

If (b) α with owner j has precondition KjPre(α), and B(t), s 6|= KjPre(α). By Lem-
mas C2 and C5, we have that π achieves Di(s).

Lemma C.14. If an action sequence n(π) is applicable in P , then π = assume(s), π′

is applicable in P ′, if π is consistent with the observations.

Proof: If n(π) is empty, it is trivial. Suppose n(π) = n(π′), α is applicable in P . Since
α is applied, its preconditions are achieved by n(π′), and by inductive hypothesis, n(π′)
is applicable in P . Also, since n(π′) achieves B(t), s |= KjPre(α), for s ∈ Sj(t), by
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Lemma B.0.10 we have that π′ achieves KjPre(α)/s for the same states. Therefore, π
is applicable in P ′, if consistent with observations.

Theorem C.2. Suppose an action sequence π = assumes(s), π′ and the corresponding
normalized sequence n(π). If n(π) is a plan that achieves KiG for P , for a hidden true
state s∗, then π is a plan for P ′ for s = s∗, and any such plan is consistent.

Proof. Direct from previous theorem, if we consider a problem P ′′ same as P , with the
addition of an action α′ which has as a precondition KiG. If n(π) is a plan for P , then
π′ = π, a′ is a plan for P ′′, and by the previous lemma π′ is applicable in P ′, thus it
achieves KiG. Furthermore, any such plan is consistent since, by previous theorem, the
shortest prefix of the plan that is consistent and applied is sound, thus, if s |= φ in P ,
φ/s is true. Therefore, the observation cannot be inconsistent.
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APPENDIX D

Properties of K(P,BD(t), S
D
i (t))

translation

The proofs for theK(P,BD(t), SDi (t)) translation are exactly the same withK(P,B(t), Si(t))
if, instead of considering the joint belief B(t), we consider the partial belief Bj(t) ∈
BD(t) that corresponds to every sensing action or conditional effect. Thus, literals of
the form L/s will be written as L/(s, j), Di(s) as Di(s, j), ri(s, t) as rji (s, t) etc.

141



“tesi2” — 2017/9/30 — 11:48 — page 142 — #162



“tesi2” — 2017/9/30 — 11:48 — page 143 — #163

Bibliography

143



“tesi2” — 2017/9/30 — 11:48 — page 144 — #164



“tesi2” — 2017/9/30 — 11:48 — page 145 — #165

Bibliography

Albore, A., Palacios, H., and Geffner, H. (2009). A translation-based approach to con-
tingent planning. In Proc. IJCAI-09, pages 1623–1628.

Albore, A., Palacios, H., and Geffner, H. (2010). Compiling uncertainty away in non-
deterministic conformant planning. In Proc. ECAI, pages 465–470.

Aucher, G. and Bolander, T. (2013). Undecidability in epistemic planning. In Proceed-
ings of the Twenty-Third international joint conference on Artificial Intelligence,
pages 27–33. AAAI Press.

Aucher, G. and Schwarzentruber, F. (2013). On the complexity of dynamic epistemic
logic.

Baltag, A. (2000). A logic for suspicious players: Epistemic actions and belief-update
in games. Report-Software engineering, (44):1–30.

Baltag, A. and Moss, L. S. (2004a). Logics for epistemic programs. Synthese,
139(2):165–224.

Baltag, A. and Moss, L. S. (2004b). Logics for epistemic programs. Synthese,
139(2):165–224.

Baltag, A., Moss, L. S., and Solecki, S. (1998). The logic of public announcements,
common knowledge, and private suspicions. In Proc. of the 7th Conf. on Theoreti-
cal aspects of rationality and knowledge, pages 43–56.

Baral, C., Gelfond, G., Pontelli, E., and Son, T. C. (2012). An action language for
reasoning about beliefs in multi-agent domains. In Proc. of the 14th International
Workshop on Non-Monotonic Reasoning.

Bernstein, D., Zilberstein, S., and Immerman, N. (2000). The complexity of decentral-
ized control of Markov decision processes. In Proc. of the 16th Conf. on Uncer-
tainty in Artificial Intelligence, pages 32–37.

145



“tesi2” — 2017/9/30 — 11:48 — page 146 — #166

Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001). Planning in nondetermin-
istic domains under partial observability via symbolic model checking. In Proc.
IJCAI-01.

Bolander, T. and Andersen, M. B. (2011). Epistemic planning for single and multi-agent
systems. Journal of Applied Non-Classical Logics, 21(1):9–34.

Bonet, B. and Geffner, H. (1999). Planning as heuristic search: New results. In Euro-
pean Conference on Planning, pages 360–372. Springer.

Bonet, B. and Geffner, H. (2000). Planning with incomplete information as heuristic
search in belief space. In Proc. of AIPS-2000, pages 52–61.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,
129(1–2):5–33.

Bonet, B. and Geffner, H. (2008). Heuristics for planning with penalties and rewards
formulated in logic and computed through circuits. Artificial Intelligence, 172(12-
13):1579–1604.

Bonet, B. and Geffner, H. (2014a). Belief tracking for planning with sensing: Width,
complexity and approximations. Journal of Artificial Intelligence Research,
50:923–970.

Bonet, B. and Geffner, H. (2014b). Flexible and scalable partially observable planning
with linear translations. In Proc. AAAI, pages 2235–2241.

Bonet, B., Loerincs, G., and Geffner, H. (1997). A robust and fast action selection
mechanism for planning. In Proc. AAAI-97, pages 714–719.

Brafman, R. and Hoffmann, J. (2004). Conformant planning via heuristic forward
search: A new approach. In Proc. ICAPS-04.

Brafman, R. I. and Beer Sheva, I. (2015). A privacy preserving algorithm for multi-agent
planning and search. In IJCAI, pages 1530–1536.

Brafman, R. I. and Domshlak, C. (2008). From one to many: Planning for loosely
coupled multi-agent systems. In ICAPS, pages 28–35.

Brafman, R. I. and Shani, G. (2012a). A multi-path compilation approach to contingent
planning. In Proc. AAAI.

Brafman, R. I. and Shani, G. (2012b). Replanning in domains with partial information
and sensing actions. Journal of Artificial Intelligence Research, 45(1):565–600.

Brafman, R. I., Shani, G., and Zilberstein, S. (2013). Qualitative planning under partial
observability in multi-agent domains. In Proc. AAAI.

146



“tesi2” — 2017/9/30 — 11:48 — page 147 — #167

Brenner, M. (2010). Creating dynamic story plots with continual multiagent planning.
In Proc. AAAI.

Bylander, T. (1994). The computational complexity of STRIPS planning. Artificial
Intelligence, 69:165–204.

Cooper, M., Herzig, A., Maffre, F., Maris, F., and Regnier, P. (2016). A simple account
of multiagent epistemic planning. In Proc. ECAI.

Darwiche, A. and Marquis, P. (2002). A knowledge compilation map. Journal of Arti-
ficial Intelligence Research, 17:229–264.

De Weerdt, M. and Clement, B. (2009). Introduction to planning in multiagent systems.
Multiagent and Grid Systems, 5(4):345–355.

Engesser, T., Bolander, T., Mattmüller, R., and Nebel, B. (2015). Cooperative epistemic
multi-agent planning with implicit coordination. In Proc. Workshop on Distributed
and Multi-Agent Planning (DMAP-15), pages 68–76.

Entringer, R. C. and Slater, P. J. (1979). Gossips and telegraphs. Journal of the Franklin
Institute, 307(6):353–360.

Fagin, R., Halpern, J., Moses, Y., and Vardi, M. (1995). Reasoning about Knowledge.
MIT Press.

Fikes, R. and Nilsson, N. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 1:27–120.

Fox, M. and Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of AI Research, 20.

Geffner, H. and Bonet, B. (2013). A Concise Introduction to Models and Methods for
Automated Planning. Morgan & Claypool Publishers.

Gerbrandy, J. and Groeneveld, W. (1997). Reasoning about information change. Journal
of logic, language and information, 6(2):147–169.

Goldman, C. V. and Zilberstein, S. (2003). Optimizing information exchange in co-
operative multi-agent systems. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 137–144. ACM.

Gomes, C. P., Kautz, H., Sabharwal, A., and Selman, B. (2008). Satisfiability solvers.
Foundations of Artificial Intelligence, 3:89–134.

Halpern, J. Y. and Lakemeyer, G. (2001). Multi-agent only knowing. Journal of Logic
and Computation, 11(1):41–70.

147



“tesi2” — 2017/9/30 — 11:48 — page 148 — #168

Harary, F. and Schwenk, A. J. (1974). The communication problem on graphs and
digraphs. Journal of the Franklin Institute, 297(6):491–495.

Haslum, P. and Jonsson, P. (1999). Some results on the complexity of planning with
incomplete information. In Proc. ECP-99, Lect. Notes in AI Vol 1809, pages 308–
318. Springer.

Hedetniemi, S. M., Hedetniemi, S. T., and Liestman, A. L. (1988). A survey of gossiping
and broadcasting in communication networks. Networks, 18(4):319–349.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelli-
gence Research, 26:191–246.

Helmert, M. and Domshlak, C. (2009). Landmarks, critical paths and abstractions:
what’s the difference anyway? In ICAPS, pages 162–169.

Herzig, A., Lang, J., and Marquis, P. (2005). Action progression and revision in multia-
gent belief structures. In Proc. 6th Workshop on Nonmonotonic Reasoning, Action,
and Change (NRAC 2005).

Herzig, A. and Maffre, F. (2017). How to share knowledge by gossiping. AI Communi-
cations, 30(1):1–17.

Hintikka, J. (1962). Knowledge and belief.

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302.

Johnson, M., Jonker, C., van Riemsdijk, B., Feltovich, P., and Bradshaw, J. M. (2009).
Joint activity testbed: Blocks world for teams (bw4t). In Engineering Societies in
the Agents World X, pages 254–256. Springer.

Jonsson, A. and Rovatsos, M. (2011). Scaling up multiagent planning: A best-response
approach.

Kautz, H. and Selman, B. (1996). Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proc. AAAI, pages 1194–1201.

Kominis, F. and Geffner, H. (2015). Beliefs in multiagent planning: From one agent to
many. In Proc. ICAPS, pages 147–155.

Kooi, B. and van Benthem, J. (2004). Reduction axioms for epistemic actions. AiML-
2004: Advances in Modal Logic, number UMCS-04-9-1 in Technical Report Series,
pages 197–211.

Kraus, S. and Lehmann, D. (1988). Knowledge, belief and time. Theoretical Computer
Science, 58(1-3):155–174.

148



“tesi2” — 2017/9/30 — 11:48 — page 149 — #169

Kripke, S. (1971). Semantical considerations on modal logic. In Linsky, L., editor,
Reference and Modality, pages 63–72. Oxford University Press.

Kripke, S. A. (1963). Semantical analysis of modal logic i normal modal propositional
calculi. Mathematical Logic Quarterly, 9(5-6):67–96.

Levesque, H. (1990). All I know: a study in autoepistemic logic. Artificial intelligence,
42(2):263–309.

Lipovetzky, N. and Geffner, H. (2012). Width and serialization of classical planning
problems. In Proceedings of the 20th European Conference on Artificial Intelli-
gence, pages 540–545. IOS Press.

Lipovetzky, N. and Geffner, H. (2017). Best-first width search: Exploration and ex-
ploitation in classical planning. In AAAI, pages 3590–3596.
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