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INTRODUCTION

In the past century we have learned a lot about the Universe, and there are
two main aspects responsible for this advance. On the one hand, the foundation of
General Relativity enabled the development of a coherent, testable theory of the
Universe. On the other hand, the improvement of technology and observational
techniques have led to the collection of an enormous amount of data. Remarkably,
there exists a model for which theory and observations are in quantitative agree-
ment. This standard cosmological model, called ⇤CDM and presented in Chapter
1 of this thesis, appears to be robust and simple, but only with the addition of
two components of unknown nature and origin: dark matter and dark energy.
Furthermore, these two components constitute the vast majority of the energy
content in the Universe. For that reason, it is of capital importance to understand
these components in depth, as they may be holding the key to the discovery of
new physics beyond the standard cosmological model and the standard model of
particle physics.

Galaxy surveys provide detailed information on the large-scale structure of
the Universe, which, in turn, helps us understand its geometry, composition, evo-
lution and fate. Over the past decades, these maps of the Universe have grown
from thousands of galaxies in the pioneering Center for Astrophysics (CfA) Red-
shift Survey (1977-1982) to several million galaxies in the Sloan Digital Sky Sur-
vey (SDSS, started in 2000). In this thesis we analyze data from the Dark Energy
Survey (DES), which is an ongoing imaging survey, started in 2012, that will cover
about one eighth of the sky (5000 sq. deg.) to an unprecedented depth, imaging
about 300 million galaxies in 5 broadband filters in the optical and near infrared
parts of the electromagnetic spectrum. DES and its necessary associated tech-
niques are presented in detail in Chapter 2, and that, together with the theoretical
background introduced in Chapter 1, consititues Part I of this thesis.

The accuracy of the science to be performed with DES and any other photo-
metric galaxy survey strongly depends on the correct estimation of galaxy red-
shifts, which are related to the distances to those detected galaxies. The pho-
tometric redshift estimation technique, to which we devote Part II of this thesis,
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INTRODUCTION

relies purely on galaxy colors, and its associated inaccuracies constitute one of
the most important sources of observational systematic uncertainties in imaging
galaxy surveys and hence in modern cosmology. The principles of this technique
are presented, followed by an extensive analysis of different photometric redshift
estimation methods applied to DES data, including the characterization of photo-
metric redshift algorithms later used for cosmological studies in DES.

Naturally, galaxy surveys grant us access to the large-scale structure of the Uni-
verse through the observation of the galaxy distribution. However, galaxies are
not unbiased tracers of the total matter distribution, which appears to be com-
posed predominantly by dark matter. Crucially, imaging galaxy surveys enable
the measurement of the weak gravitational lensing effect, which produces small
distortions in the shapes of distant galaxies due to the gravitational pull of fore-
ground structures, and is sensitive to the total, both luminous and dark, matter
distribution. The combination of galaxy clustering and weak gravitational lens-
ing, which is the subject of Part III of this thesis, enables the characterization
of the galaxy–dark matter connection and unlocks crucial information about the
growth of cosmic structures and the local expansion rate, representing one of the
more promising avenues to understand the underlying physical mechanism re-
sponsible for the accelerated expansion of the Universe. In this part we present
a study of potential systematic effects that can plague the galaxy clustering and
weak gravitational lensing measurements, and study their combination to obtain
cosmological constraints.

Beyond the usage of galaxies to learn about dark energy and cosmology, there
is important and independent information in studying cosmic voids. Cosmic voids
are large, underdense regions in space surrounded by a filamentary network of
galaxies and dark matter. They are usually identified in spectroscopic galaxy sur-
veys, where accurate 3D large-scale structure information is available. Neverthe-
less, with the enormous amount of data coming from current and future imag-
ing surveys, developing void science for this kind of surveys has the potential to
exploit the constraining power of cosmic voids and represent a key advance for
cosmology. That is the main subject of Part IV and Chapter 5 of this thesis, where
we present a new void finding algorithm designed for photometric surveys and
demonstrate the emptiness of the resulting set of voids measuring the gravita-
tional lensing signal around them.

Finally, at the end we present the summary and major conclusions from the
thesis, also analyzing its implications and potential extensions.
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Chapter 1

COSMOLOGICAL FRAMEWORK

Cosmology is the branch of physics that studies the origin, evolution and struc-
ture of the Universe as a whole, and it was mainly developed in the twentieth cen-
tury, definitely moving from philosophy to science. Modern cosmology is based
on the belief that the place we occupy in the universe is not special, statement that
we know as the cosmological principle. In particular, it states that the universe is
homogeneous1 and isotropic2. Needless to say, the cosmological principle is not
exact, but an approximation that holds better and better the larger the length
scales we consider.

Before 1900 the universe was considered a static and inalterable system, due
to the appearance of the dark sky and all far-away celestial objects occupying fixed
angular positions on it. Together with the basis established by the cosmological
principle, the evolution of the universe as a whole should be governed by the laws
of gravity, as the other fundamental forces do not play a role on such large scales.
In 1915, Einstein presented his theory of General Relativity (GR, 1915), the most
accurate description of gravity, represented in the theory as the consequence of
the curvature of spacetime produced by the distribution of mass and energy in the
universe.

Shortly after these theoretical developments, in 1929, Edwin Hubble mea-
sured the motion of various galaxies along the line of sight using the 100-inch
Hooker telescope at Mount Wilson Observatory and he found that most of these
galaxies were indeed receding, the faster the further they were from us. It was
therefore realized that the universe was actually not static, but expanding. This
observational breakthrough eventually led to the development of the Big Bang the-
ory, which describes the Universe as expanding from an initial very high density
and high temperature state. The Big Bang theory still remains the basis of today’s

1The same in all locations.
2The same in all directions.
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Standard Cosmological Model, supported by other crucial observations like the
abundance of primordial elements and the measurements of the relic light from
the early Universe, the Cosmic Microwave Background radiation.

Within the framework of GR, which naturally accomodates (or even predicts!)
a dynamical Universe, the expansion rate of the Universe depends on its energy
content in a way that, for instance, a universe containing only matter should even-
tually slow down due to the attractive force of gravity. However, in 1998, obser-
vations of type Ia supernovae (SNe) at distances up to about 6 bilion light years
by two independent research groups, led by Saul Perlmutter and by Brian Schmidt
and Adam Riess respectively, revealed that presently the expansion is instead ac-
celerating.

This acceleration of the expansion is attributed in the Standard Cosmological
Model to the presence of an unknown kind of fluid, possibly related to a cosmo-
logical constant, that we call Dark Energy (DE). If p = w⇢ is the equation of state
relating pressure p to energy density ⇢ (and being w the equation-of-state pa-
rameter), then the requirement for that fluid is to have w < �1/3, representing
a negative pressure. So far, we do not know what is the nature of this energy
content that makes the expansion of the universe to accelerate. Moreover, cur-
rent measurements of the energy content of the universe show that DE accounts
for about 70% of the total energy density of the universe. Of the remainder, more
than 25% is due to an unknown form of matter (called Dark Matter, DM) and only
less than 5% of the energy density corresponds to ordinary matter like protons,
electrons and neutrinos.

1.1 THE SMOOTH UNIVERSE

1.1.1 THE FIELD EQUATIONS

As mentioned above, gravity is the fundamental force describing the dynam-
ics of bodies on large, cosmological scales. Over such large distances, space itself
behaves differently from the well-known Euclidean space we are used to in ev-
eryday life. In that way, gravity is described by the theory of General Relativity,
which relates the mass-energy content with the geometry of space-time through
the Einstein’s field equations (in natural units3):

Gµ⌫ = 8⇡GTµ⌫, (1.1)

3Natural units are defined by normalizing some universal physical constants to one. We choose
c = 1 (speed of light), ~h = 1 (Planck constant) and kB = 1 (Boltzmann constant). We will use this
system of units from now on, unless we state otherwise.

6



1.1 THE SMOOTH UNIVERSE

where Gµ⌫ is the Einstein tensor depending on space-time second order derivatives
of the metric gµ⌫ and Tµ⌫ is the energy-momentum tensor depending on the mass-
energy distribution.

1.1.2 THE FLRW METRIC

The cosmological principle presented at the beginning of this chapter states that
the universe is homogeneous and isotropic. These properties are fundamental in
order to find a particular simple solution to the field equations (1.1).

We start working on that solution by building a metric from the above men-
tioned principle. The metric of space-time used in Cosmology comes from the
Minkowski metric used in Special Relativity,

ds2 = gµ⌫d xµd x⌫ = �d t2 + dl2 = �d t2 + dr2 + r2d⌦2, (1.2)

adding some assumptions (with d⌦2 ⌘ d✓2+sin2 ✓d�2, in spherical coordinates,
being used). For a space-time that is homogeneously expanding (or contracting),
the spatial component of the metric has to allow for time dependence. For that
purpose, it is convenient to define a coordinate system that expands (or contracts)
with the universe (see Fig. 1.1). The distance between two galaxies D12, which
changes with time in a non-static universe, can be parametrized in such coordinate
system by a comoving distance �12 (independent of time) times a scale factor a(t)
as

D12(t) = a(t)�12, (1.3)

where a(t) is normalized to the present value a(t0) = 1. Allowing also for some
curvature in space, the only metric that is compatible with homogeneity and
isotropy in the universe can be shown to be the so-called Friedmann-Lemâitre-
Robertson-Walker (FLRW) metric:

ds2 = �d t2 + a2(t)


dr2

1� kr2
+ r2d⌦2

�
, (1.4)

where k is an undetermined constant that represents the curvature of space-time.
The possibilities k positive, zero or negative correspond to the three possible spa-
tial geometries spherical, flat or hyperbolic, respectively.
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t1

8 1. Geometry and Dynamics

time

Figure 1.3: Expansion of the universe. The comoving distance between points on an imaginary coordinate
grid remains constant as the universe expands. The physical distance is proportional to the comoving
distance times the scale factor a(t) and hence gets larger as time evolves.

• Using (1.1.13), the FRW metric in polar coordinates reads

ds2 = dt2 � a2(t)

�
dr2

1 � kr2
+ r2d�2

�
. (1.1.19)

This result is worth memorizing — after all, it is the metric of our universe! Notice that

the line element (1.1.19) has a rescaling symmetry

a � �a , r � r/� , k � �2k . (1.1.20)

This means that the geometry of the spacetime stays the same if we simultaneously rescale

a, r and k as in (1.1.20). We can use this freedom to set the scale factor to unity today:7

a0 � a(t0) � 1. In this case, a(t) becomes dimensionless, and r and k�1/2 inherit the

dimension of length.

• Using (1.1.14), we can write the FRW metric as

ds2 = dt2 � a2(t)
�
d�2 + S2

k(�)d�2
�

. (1.1.21)

This form of the metric is particularly convenient for studying the propagation of light.

For the same purpose, it is also useful to introduce conformal time,

d� =
dt

a(t)
, (1.1.22)

so that (1.1.21) becomes

ds2 = a2(�)
�
d�2 �

�
d�2 + S2

k(�)d�2
��

. (1.1.23)

We see that the metric has factorized into a static Minkowski metric multiplied by a

time-dependent conformal factor a(�). Since light travels along null geodesics, ds2 = 0,

the propagation of light in FRW is the same as in Minkowski space if we first transform

to conformal time. Along the path, the change in conformal time equals the change in

comoving distance,

�� = �� . (1.1.24)

We will return to this in Chapter 2.
7Quantities that are evaluated at the present time t0 will have a subscript ‘0’.

t2 t3

time

Figure 1.1: The comoving coordinate system. As the universe expands, the comoving distance
between reference points on this imaginary coordinate grid remains constant. In turn, the physical
distance is given by the comoving distance times the scale factor a(t). As seen in the figure, for
t3 > t2 > t1 we have a(t3) > a(t2) > a(t1) and hence the physical distance gets larger as time
evolves in an expanding universe.

1.1.3 THE FRIEDMANN EQUATIONS

The main possible constituents of the universe are all examples of so-called
perfect fluids, and are described by the following energy momentum tensor:

Tµ⌫ = diag(⇢, p, p, p), (1.5)

⇢ being the energy density and p the pressure. Given that energy-momentum ten-
sor form, if we insert the metric (1.4) into (1.1) we obtain the famous Friedmann
equations, describing the time evolution of the scale factor:

H2(t)⌘
Å

ȧ
a

ã2
=

8⇡G
3
⇢ � k

a2
, (1.6)

ä
a
=
�4⇡G

3
(⇢ + 3p). (1.7)

H(t) = ȧ
a is known as the Hubble parameter and it measures the expansion rate

of the universe. Its present value, H0 = H(t0), is usually parametrized in the form
H0 = 100 km

Mpc·s · h, with h a dimensionless number.

From the two last equations we can build a third one, that is not independent

8
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but useful, called the fluid equation:

⇢̇ + 3
ȧ
a
(⇢ + p) = 0. (1.8)

With the Friedmann equations in hand, one can solve for the time evolution
of different components of the universe, given their equation of state p = p(⇢):

• matter: pm = 0 ) ⇢m/ a�3;

• radiation: pr = ⇢r/3 ) ⇢r/ a�4;

• cosmological constant: ⇢⇤ = constant ) p⇤ = �⇢⇤ ;

• general DE: pDE = w⇢DE ) ⇢DE/ a�3(1+w), if w is constant;

where we have used the fluid equation.
The densities⇢ of all components can be normalized to the critical density⇢cr ,

the one that makes the universe flat today, from (1.6): ⇢cr = 3H2
0/8⇡G. With this

normalization, the densities of all components are written as ⌦i = ⇢i/⇢cr . The
first Friedmann equation is usually written in terms of all these normalized density
parameters (simply called cosmological parameters):

H2(a) = H2
0

⇥
⌦r a�4 +⌦m a�3 + (1�⌦0) a�2 +⌦⇤

⇤
, (1.9)

where ⌦0 = ⌦r +⌦m +⌦⇤ is the total density today. Our knowledge about these
parameters has been significantly improved over the last decade, in the sense
that different kinds of observations now yield concordant values and errors of
a few percent in their determination. Although they are not exactly the best-fit
parameters, ⌦m = 0.3, ⌦⇤ = 0.7 and ⌦r = 0 are good approximations.

1.2 FUNDAMENTAL OBSERVATIONS

1.2.1 THE EXPANSION OF THE UNIVERSE: HUBBLE’S LAW

We have already anticipated at the beginning of the chapter that Hubble found
evidence for the expansion of the universe by measuring the movement of distant
galaxies along the line of sight. But he actually did not measure velocities directly,
he instead observed that the light from a given galaxy was shifted further toward
the red end of the spectrum the further that galaxy was from our galaxy. At low
redshifts (low recession velocities), the relation between redshift (z) and velocity

9
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(�) is given by the well known Doppler effect:

z =
�o

�e
� 1=

vt1+�/c
1��/c � 1' �

c
, (1.10)

with subscript ’e’ denoting quatities at the emission of the photons, and ’o’ denot-
ing quantities at the observation.

Back in 1929, Hubble not only noted that distant galaxies are receding from
us, he also found that the recession velocity increases linearly with distance. This
behavior is exactly what one expects in an expanding universe. We have seen that
the physical distance between two galaxies is given by D = a� , where � is the
comoving distance (a distance measured in the coordinate system that expands
with the universe). In the absence of comoving motions (�̇ = 0), the relative
velocity between these two galaxies is:

�= Ḋ = ȧ� =
ȧ
a

D = HD. (1.11)

Then, at low redshift where (1.10) is valid, there exists a linear relation between
redshift and distance. This relation is exactly what Hubble found (Fig. 1.2), since
he was looking at galaxies not very far from us, with small redshifts. There are
two main reasons for the dispersion in Fig 1.2. On the one hand, since the galaxies
considered are not very far from us, they have velocities driven by local gravita-
tional fields (comoving motions) that are not due to the expansion of the universe
but are comparable in speed. These velocities, called peculiar velocities, introduce
a dispersion. On the other hand, the estimation of the distance to those galaxies
by Hubble was not very accurate, introducing further dispersion.

The redshift z can be related to the scale factor a. Let’s consider two wave-
fronts emitted at times te and te + �e/c. Taking into account that light travels in
geodesics (ds2 = 0, in (1.4)), we have:

Z t0

te

d t
a(t)

=
Z 0

R

drp
1� kr2

;

Z t0+�0/c

te+�e/c

d t
a(t)

=
Z 0

R

drp
1� kr2

. (1.12)

The right-hand sides of the two integral equations above are identical, so we can
write:

Z t0

te

d t
a(t)

=
Z t0+�0/c

te+�e/c

d t
a(t)

)
Z te+�e/c

te

d t
a(t)

=
Z t0+�0/c

t0

d t
a(t)

. (1.13)

Now we can consider that the scale factor is constant over the small period of one
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Figure 1.2: Original plot from Hubble. Note the wrong units (km instead of km/s for velocity) in
the vertical axis.

cycle of a light wave, and therefore:

te +�e/c
ae

� te

ae
=

t0 +�0/c
a0

� t0

a0
) �0

�e
=

a0

ae
. (1.14)

Using the definition of redshift in Eq. (1.10) we find the relation between redshift
and the scale factor to be:

1+ z =
a0

ae
=

1
ae

. (1.15)

1.2.2 THE COSMIC MICROWAVE BACKGROUND

After the observation of an expanding universe, cosmologists could reach the
conclusion that the Universe was smaller in size in the past. This means, for
instance, that earlier in time the physical distance between us and other galaxies
was smaller than it is today. It also means that the electromagnetic radiation filling
the Universe was more energetic (or hotter) than it is today, as radiation energy is
inversely proportional to its wavelength and hence to the scale factor, and that is
smaller for earlier times in an expanding universe. If we define the temperature
of that radiation to be T0 today, then we can simply express the temperature at
any time as

T (t) =
T0

a(t)
(1.16)
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a) b)

Figure 1.3: a) Intensity of CMB radiation as a function of frequency (and wavelength) for the COBE
FIRAS experiment (Mather et al 1994), showing impressive agreement with a blackbody sepctrum
(note that errorbars are magnified by a factor of 400 in the plot!). b) Anisotropies in the CMB (color
scale shows relatve differences of order 10�5) as seen by three different satellites: COBE, WMAP
and Planck; clearly apparent is the increase in angular resolution from one experiment to another.

where a(t) today is simply a0 = 1. Therefore, by deduction, the temperature of
the Universe must have been very high at early times. In particular, it may have
been high enough to be able to ionize atoms such as hydrogen or Helium, and then
the Universe at that time must have been a hot ionized plasma of particles and
radiation (and dark matter and dark energy). In that state, photons and electrons
were coupled via Thomson scattering, and the mean free path of photons was very
short, effectively making the Universe opaque. Also, any hydrogen atoms being
formed in that period were quickly ionized by ambient photons. Crucially, as a
consequence of these constant interactions, photons were in equilibrium in that
early period of the Universe, and radiation in equilibrium has a very particular
spectral distribution: the blackbody spectrum.

As the Universe expanded and cooled, the energy of ambient photons was
no longer high enough to ionize Hydrogen, and the mean free path of photons
grew drastically, effectively making the Universe transparent. In the mid twen-
tieth century, cosmologists started looking for the remnants of this radiation in
equilibrium coming from the very early Universe, as a proof of the Big Bang the-
ory and a way to see how the Universe looked like when it was in its infancy. The
Cosmic Microwave Background (CMB), called like this for its higher intensity in
the microwave part of the radio spectrum today, was first detected by Penzias &
Wilson (1965), in a single-wavelength experiment. This first detection was further
confirmed by other experiments but it was the COBE satellite, in 1992, that im-
pressively extended it to a broad range of wavelengths, confirming its agreement
with a blackbody spectrum and hence providing direct observational evidence for
the Big Bang (Panel a) in Fig. 1.3).
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1.2 FUNDAMENTAL OBSERVATIONSPlanck collaboration: CMB power spectra, likelihoods, and parameters
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Figure 50. Planck 2015 CMB spectra, compared with the base �CDM fit to PlanckTT+lowP data (red line). The upper panels
show the spectra and the lower panels the residuals. In all the panels, the horizontal scale changes from logarithmic to linear at
the “hybridization” scale, � = 29 (the division between the low-� and high-� likelihoods). For the residuals, the vertical axis scale
changes as well, as shown by di�erent left and right axes. We show D� = �(� + 1)C�/(2�) for TT and T E, but C� for EE, which
also has di�erent vertical scales at low- and high-�.
62

Figure 1.4: Planck 2015 CMB power spectrum (blue dots and error bars), with Dl ⌘ l(l+1)/(2⇡)Cl ,
and ⇤CDM best-fit model (red line). The upper panel shows the spectrum and the lower panel the
residuals. Note the change of scale from logarithmic to linear at the vertical dotted line, l = 29,
and the change in the residuals y-axis between these two regimes.

After COBE, many experiments including other satellites like WMAP and more
recently Planck have measured and characterized the CMB properties. In detail,
now we know that CMB radiation comes from the Universe when it was about
400,000 years old, (redshift z ' 1100) and its spectrum today corresponds to a
blackbody at a tempreature of T0 = 2.72548 ± 0.00057 K (Fixsen 2009). Even
though the CMB represents the most precise blackbody spectrum in nature, and
it looks the same in all directions without variations at the percent level (what is
known as the CMB monopole), it is not perfectly isotropic. First, there exists an
anisotropy of the order of 1 part in 103 which corresponds to the Doppler effect
caused by the movement of the Milky Way with respect to the CMB reference rest
frame; this is known as the CMB dipole anisotropy. More interestingly, once the
dipole is corrected for, smaller temperature variations at the 1 part in 105 level also
exist and have been studied in detail (Panel b) in Fig. 1.3). Such anisotropies are
caused by the density fluctuations in the early Universe which eventually led to the
structures we see today (galaxies, clusters of galaxies, filaments...). In particular,
the most important effect comes from oscillations of the baryon-photon plasma
in the early Universe. Gravity tries to compress the photon-baryon fluid sitting
on primordial gravitational potential wells, while radiation pressure acts in the
opposite way, resulting in acoustic oscillations. These anisotropies are usually
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analyzed using a decomposition in spherical harmonics Yl,m(✓ ,�) such as:

�T (✓ ,�)
T0

=
1X

l=0

lX

m=�l

al,mYl,m(✓ ,�), (1.17)

where the al,m coefficients, provided they are independent, can be completely
characterized by what is known as the CMB power spectrum:

Cl =
1

2l + 1

lX

m=�l

��al,m
��2 , (1.18)

which describes CMB fluctuations at a given multipole moment, l, corresponding
to an angular scale of about l ⇠ ⇡/✓ . Figure 1.4 shows the Planck 2015 mea-
sured CMB power spectrum and its excellent agreement with the ⇤CDM best-fit
theoretical model. The baryon-photon acoustic oscillations are responsible for its
peak structure, as photons decoupling when a particular mode is in its peak am-
plitude create ressonances which correspond to the different peaks. There are
other effects occurring at later times in the Universe which are also imprinted in
the CMB, as its photons are free to interact with ionized electrons and they also
feel the gravitational fields of the late-time large-scale structure of the Universe.
As a consequence of the variety of the physical phenomena involved, the analysis
of the CMB power spectrum provides an enormous amount of information about
the composition of the Universe and hence about the cosmological parameters de-
fined in Eq. (1.9). For instance, the position and amplitude of the first peak with
respect to the secondary peaks provides crucial information about the geometry
or curvature of the Universe, and about the matter and baryon densities. In fact,
some of the tighest constraints on cosmological parameters come nowadays from
the analysis of the latest CMB experiments such as the Planck satellite, and they
are also crucial for the combination with different cosmological probes, especially
those probing the late-time Universe.

1.2.3 THE ABUNDANCE OF PRIMORDIAL ELEMENTS

As another consequence of Eq. (1.16), the temperature in the Universe must
have been high enough for nuclear reactions to take place, as it happens, for in-
stance, in the interiors of stars such as the Sun. These nuclear reactions may have
allowed some light elements, like Helium or Lithium, to form from the combina-
tion of protons and neutrons during that period of the early Universe. This process
is refererd to as Big Bang Nucleosynthesis (BBN).

The Big Bang model predicts the abundances of light elements formed from
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23. Big-Bang nucleosynthesis 3

Figure 23.1: The primordial abundances of 4He, D, 3He, and 7Li as predicted by
the standard model of Big-Bang nucleosynthesis—the bands show the 95% CL range
[5]. Boxes indicate the observed light element abundances. The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL).

March 7, 2016 13:42

Figure 1.5: From PDG Astrophysics and Cosmology Review (2015): Lines and their bands in this
plot show the Big Bang Nucleosynthesis predicted 95% CL abundances of primordial 4He, D, 3He
and 7Li as a function of the baryon-to-photo ratio. Yellow boxes indicate the corresponding observa-
tions. The vertical narrow band corresponds to the CMB measurement of the baryon-to-photon ratio
and the wider band shows the constraints on same quantity from the combination of the different
abundance measurements, both at 95% CL.
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that process as a function of the fraction of ordinary matter present in the early
Universe. The latter can be well determined by analyzing CMB data from ex-
periments such as WMAP or Planck. Using these data, the predictions for the
abundances of light elements are in good overall agreement with observations
(Fig. 1.5). This is a remarkable validation of the Big Bang theory, especially given
the fact that these abundances span about nine orders of magnitude.

1.3 DISTANCES IN THE UNIVERSE

We have seen in §1.2 that redshift and distance are directly related. However,
the definition of distance in Cosmology is quite ambiguous, since the distance to
a given object varies with the propagation time of the emitted light, due to the
expansion of the universe. That’s why there exist several definitions of distance,
that are used for different applications.

1.3.1 COMOVING DISTANCE

The comoving distance measures the distance between two objects in a coor-
dinate system that expands with the universe. In this way, if both objects have no
peculiar velocities then that distance remains constant.

For radial light rays (d✓ = 0 and d� = 0), when traveling along null geodesics
(ds2 = 0), the metric reduces to:

d t2 = a2(t)
dr2

1� kr2
⌘ a2(t)d�2. (1.19)

And then we can define the comoving distance as the following integral:

� =
Z t0

te

d t 0

a(t 0)
=
Z z

0

dz0

H(z0)
, (1.20)

where in the second equality we have used the definiton of H in Eq. (1.6) and the
relation between redshift and the scale factor in Eq. (1.15) as:

dz
d t
=
�1
a2

da
d t
=
�ȧ
a2
=
�H
a
) d t

a
= �dz

H
(1.21)

1.3.2 ANGULAR DIAMETER DISTANCE

One way to measure distances in astronomy is to measure the angle ✓ sub-
tended by an object of already known physical size l. The distance to that object
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is called the angular diameter distance DA, and is defined (assuming ✓ is small) as:

DA =
l
✓

. (1.22)

In an expanding universe, the light we observe from the object was emmited when
the Universe had the scale factor a, and hence the comoving size of the object
is l/a. Since the comoving distance to the object is � , the angle subtended is
✓ = (l/a)/� . Now, using (1.22) we can write DA as:

DA = a� =
�

1+ z
. (1.23)

1.3.3 LUMINOSITY DISTANCE

The luminosity distance DL is defined through a relationship between the bolo-
metric4 luminosity L of an object and its bolometric flux F :

F =
L

4⇡D2
L

. (1.24)

Working with comoving coordinates, centering this time the source at the origin,
the observed flux is written as:

F =
L(�)
4⇡�2

, (1.25)

where L(�) is the luminosity through a comoving spherical shell of radius � . If we
assume, for simplicity, that all photons are emitted at the same energy, then L(�)
is the energy of the photons times the number of photons crossing a comoving
spherical shell per unit time. In a given time interval, photons travel farther on the
comoving grid at early times than at late times, since the corresponding physical
distance at early times is smaller. Then, the number of photons passing through
a shell in the given time interval is smaller today than at emission, by a factor of
a = 1/(1+ z). In a similar way, the energy of the photons is smaller today than at
emission (also by a factor of a) due to the increase of the associated wavelength
driven by the expansion. Therefore, the total energy per unit time crossing a
comoving spherical shell of radius � (being � the comoving distance between us
and the source) is smaller than the luminosity at the source by a factor of a2. The
observed flux, then, is:

F =
La2

4⇡�2
. (1.26)

4Integrated over all frequencies.
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Figure 1.6: Plot showing the luminosity distance, scaled in magnitudes m/ log(DL), as a function
of redshift (1.28). It contains data from the two groups that discovered the acceleration of the uni-
verse. One can see that Hubble’s law starts to fail beyond z = 0.1, diverging differently depending
on the assumed cosmic densities of mass and DE. Different red lines represent different models of
DE and mass densities changing from ⇢cr to zero. The blue line shows the best fit, corresponding
to a mass density of about ⇢cr/3 and a DE density twice that.

Finally, comparing this to (1.24) we obtain the luminosity distance:

DL =
�

a
= (1+ z)� = (1+ z)2DA. (1.27)

1.4 THE ACCELERATING UNIVERSE

In the late 1990’s two independent teams, the Supernova Cosmology Project
and the High-z SN Search, took advantage of a couple of developments in the field.
One was the realization that type Ia supernovae (SNe) can be turned into standard
candles5, and the other was the development of large CCD cameras to be used in
ground-based telescopes with the capability of performing systematic searches of
these supernovae by comparing deep, wide images taken weeks apart. With these
developments in hand, they measured the generalized Hubble relationship,

DL = (1+ z)� = (1+ z)
Z z

0

dz0

H(z0)
, (1.28)

5In astronomy, a standard candle is a type of astrophysical objects which have definite luminosity
due to some characteristic quality possessed by the entire class of objects.
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to much larger distances than it had been measured before, and they found that
distant SNe were fainter than expected in a decelerating universe (note that the
cosmological parameters enter in (1.28) through H(z0)). Overall, both groups
provided evidence for ⌦⇤ > 0 at greater than 99% confidence level. Figure 1.6
shows the data corresponding to that discovery, and also the best fit correspond-
ing to cosmological parameters about ⌦⇤ = 0.7, ⌦m = 0.3 and ⌦r = 0. This
cosmological model is known as the ⇤CDM model.

1.5 THE LARGE-SCALE STRUCTURE OF THE UNIVERSE

At the end of §1.2.2 and Fig. 1.3 we have seen the CMB is not perfectly uni-
form, but there are small anisotropies imprinted on it as measured by several ex-
periments. Actually, a completely homogeneous density field cannot exist: quan-
tum fluctuations must occur on microscopic scales. However, the fluctuations
observed in the CMB are way too large compared to those expected from a pure
quantum process.

The inflationary theory, which describes a period of exponential expansion of
space in the early Universe, was initially proposed as a way to solve the flatness
and the horizon problems. These refer, respectively, to the fact that Universe ap-
pears to be flat, and also homogeneous and isotropic while there being widely sep-
arated regions of the observable Universe that cannot have equilibrated because,
due to the expansion, they move apart from each other faster than the speed of
light and then have never been in causal contact. Importantly, it also provides
a simple mechanism for the generation and growth of perturbations: quantum
fluctuations in the very early Universe were magnified to cosmic size due to the
exponential expansion, becoming the seeds of the anisotropies observed in the
CMB and, at later times, the Large-Scale Structure (LSS) of the Universe.

1.5.1 LINEAR STRUCTURE FORMATION

The initial conditions set by the inflationary theory determine how the matter
distribution looks like in the present-day Universe, provided we assume a model
for the evolution of structure. On large scales, perturbations remain small and
linear theory can be used. Therefore, by analyzing the LSS matter distribution
as measured by galaxy surveys, which is the main subject of this thesis, we can
derive cosmological parameters.

For that purpose, let us define the mean matter density of the Universe as ⇢̄,
and the local density at any three-dimensional position as ⇢(x). Then we can
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define the matter density fluctuations as:

�(x) =
⇢(x)� ⇢̄
⇢̄

. (1.29)

If � is positive (negative) at some position x, this means there is a local mat-
ter over(under)-density in there. Following a Newtonian approach, valid if the
length scales of these perturbations are smaller than the cosmological horizon,
dH = c/H0, and assuming the perturbations are small, � ⌧ 1, one can com-
bine mass and momentum conservation with the Poisson equation for the Newto-
nian gravitational potential and show that the evolution of density perturbations
should be described by the following second order harmonic differential equation:

�̈+ 2H�̇� 3
2

H2� = 0, (1.30)

where H is the Hubble parameter defined in Eq. (1.6). This equation has a gen-
eral solution consisting on two independent modes, growing and decaying, for
the evolution of perturbations. Since the growing mode dominates, we write the
solution as:

�(x, t) =
D(t)
D(t0)

�(x, t0), (1.31)

where D(t) is called the growth factor, describing the growth of structures in the
expanding Universe. D(t) depends on the cosmological density paramters and
can be computed explicitly for different cosmologies. For instance, D(t) = a(t)
for the case ⌦⇤ = 0, ⌦m = 1, and D(t)< a(t) for the case of a ⇤CDM cosmology.

1.5.2 THE PRIMORDIAL POWER SPECTRUM

A successful cosmological theory of structure formation cannot predict the ex-
act distribution of matter in the Universe. Instead, it should predict the statistical
properties of such distribution, in particular concerning how it deviates from ho-
mogeneity, what we know as the clustering in a distribution. For a density field
�(x) that is homogeneous and isotropic on large scales, we can define the 2-point
correlation function (2PCF) as

⇠(|x� y|) = ⇠(r) = h�(x)�⇤(y)i , (1.32)

where the brackets h...i denote an ensemble average over many realizations or,
lacking an ensemble of universes, an average over different volumes, assuming
that well-separated regions of the Universe can be considered as independent
realizations of the same underlying density field. Implicit in the definition above
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we have included homogeneity, ⇠ depends only on (x � y) and not (x,y) and,
additionally, isotropy, as ⇠ depends only on r = |x� y|. It is also useful to define
the Fourier transform of the 2PCF, known as the power spectrum:

P(|k|) =
Z

d3 xe�ix·k⇠(|x|), (1.33)

which obeys: ⌦
�(k)�⇤(k0)

↵
= (2⇡)3�D(k� k0)P(|k|), (1.34)

where �D is the three-dimensional Dirac delta function and �(k) is can be ex-
pressed as:

�(k) =
Z

d3 xeix·k�(x). (1.35)

The inflationary theory predicts that the primordial power spectrum P0(k)
should not depend on a characteristic scale, and then it should have the form
of a power law:

P0(k)/ kns . (1.36)

The case where ns = 1 is often refereed to as the Harrison-Zeldovich spectrum
(Harrison 1970, Zeldovich 1972). In fact, inflation predicts a spectral index that
is smaller but very close to unity. With the latest measurements using the Planck
satellite, ns = 0.9655± 0.0062 (TT + LowP, Planck2015 et al).

The amplitude of the power spectrum cannot be deduced from theory but
should be measured from observations. This amplitude is usually parameterized
in terms of�8, defined as the square root of the variance of the density fluctuations
in spheres of radius 8 h�1 Mpc scattered througout the Universe:

�2
R =

1
2⇡2

Z
k2P(k)

ï
3 j1(kR)

kR

ò2

dk, (1.37)

where R= 8 h�1 Mpc, and we have integrated the power spectrum using a window
function which is the Fourier transform of a spherical top-hat of radius R: W (kR) =
3 j1(kR)/(kR), with j1(kR) being the spherical Bessel function of order 1.

The matter power spectrum today is usually connected to the primordial power
spectrum via the so-called transfer function, T (k, z), which depends on the con-
tents of the Universe and hence is a function of the particular cosmological model:

P(k, z) = T (k, z)2P0(k). (1.38)

The redshift dependent part of the transfer function can be expressed as function
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of the scale and the growth factors:

T (k, z) =
D(z)

D(z = 0)
a(z)T (k). (1.39)

For ⇤CDM, there exist analytic fitting formulas for the tranfer function. As an
example, particularly popular is the one provided by Bardeen, Bond, Kaiser &
Szalay (BBKS, 1996):

T (q) =
ln[1+ 2.34q]

2.34q

⇥
1+ 3.89q+ (16.1q)2 + (5.46q)3 + (6.71q)4

⇤�1/4
, (1.40)

where q = k/(� h Mpc�1). � ⌘ ⌦mh is called the shape parameter and can also
depend weakly on the baryon density, although that dependency is usually ne-
glected. Using this transfer function, the resulting power spectrum predicts the
formation of small structures first, merging to form bigger structures later in time,
as we shall discuss next.

1.5.3 NON-LINEAR EVOLUTION

Structures in the Universe grow under the influence of gravity, which attracts
matter around overdensities thereby making the density field less and less ho-
mogeneous as time passes. In ⇤CDM, the formation of structures is hierarchical:
small structures form first around peaks in the initial density field, collapsing into
virialized dark matter halos, and larger structures form later, either from the accre-
tion of mass in the neighborhood of existing overdensities or from the merging of
smaller halos. Following the Spherical Collapse model (Mo & White 1996, Peebles
1980, Press and Schechter 1974), overdensities collapse to form a gravitationally
bound dark matter halo when they exceed a given value for the critical density
�c . Under this paradigm, baryonic matter falls into already formed dark mat-
ter halos by feeling their gravitational attraction, as the temperature of baryonic
matter was still too high to form bound objects from their own gravitational field,
as opposed to cold dark matter (CDM) which could form gravitationally bound
structures earlier in time. The accretion of baryonic matter by dark matter halos
sets the (gravitational) conditions for galaxy formation to happen.

In order to study the evolution of perturbations that become the seeds of galax-
ies, linear theory is no longer valid and a different approach is needed. The non-
linear collapse of dark matter halos, the possible merging between them and the
subsequent galaxy formation processes are so complicated that nowadays most
predictions about the non-linear power spectrum and hence about the clustering
of matter on small scales are the result of large N-body simulations. The matter
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structures generated in the simulations are then used to obtain fitting formulas for
the non-linear power spectrum, as in e. g. Smith et al. (2003) and more recently
Takahashi et al. (2012).

1.5.4 THE GALAXY 2-POINT CORRELATION FUNCTION

Since galaxies are the main observable of the Large-Scale Structure of the
Universe, next we will show how to study the properties of their distribution in a
statistical sense, which enables the comparison between theory and observations.
The clustering in the distribution of galaxies can be quatified by measuring the
2-point correlation function (2PCF) of galaxy positions, ⇠g(r), which quantifies
the departure of the galaxy distribution from homogeneity. An alternative is to
measure the Fourier transform of the galaxy 2PCF, the galaxy power spectrum.
The galaxy 2PCF, ⇠g(r), is defined as the excess probability dP of finding a galaxy
in a volume element dV at a 3D separation r from another galaxy above a uniform
Poisson distribution,

dP = n̄(1+ ⇠g(r))dV, (1.41)

where n̄ is the mean galaxy density. In practice, ⇠g(r) is estimated from counting
pairs of galaxies and random points following the same geometrical coverage as
the galaxies. The simplest estimator involves counting pairs of galaxies as a func-
tion of separation and dividing over the same measure for random points [ref]:

⇠g =
n̄R

n̄D

DD
RR
� 1, (1.42)

where DD and RR are the number of galaxy and random pairs, respectively, with
a 3D separation between r and r +�r, and n̄D,R are the galaxy and random num-
ber densities. The estimator can be improved, for instance to better handle edge
effects, which can affect the clustering at large separations. The most common
estimator nowadays is the LS estimator, which takes the form

⇠g =
1

RR


DD

Å
n̄R

n̄D

ã2
� 2DR

Å
n̄R

n̄D

ã
+ RR

�
, (1.43)

which also uses the number of galaxy-random pairs at a given separation, DR. Due
to the importance of random-random and galaxy-random pair counting in the
equations above, it is of capital importance to construct a set of random points
which accurately mimics the geometrical selection effects of the data. In addi-
tion, the random points should also follow the same redshift distribution as the
galaxies. In order to minimize the shot noise from random catalogs, the standard
approach is to create many of them, typically several times the number of galaxies
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in hand.
As we will see in the next chapter, obtaining accurate 3D positions of galaxies

is observationally difficult and expensive, as one has to rely on spectroscopy to
obtain the redshifts of galaxies, providing their line-of-sight position. One com-
mon approach, also followed in this thesis, is to use photometry instead, which
yields only approximate redshift information but at much faster rate. Therefore,
we will not use the three-dimensional 2PCF, but rather the galaxy angular 2PCF
in this work. In analogy to the 3D case, the galaxy angular 2PCF, w(✓ ), is defined
as the probability above Poisson of finding two galaxies within the solid angle d⌦
at an angular separation ✓ :

dP = N̄(1+ w(✓ ))d⌦, (1.44)

where N̄ is now the mean number of galaxies per unit area. It is in practice
estimated using again the Landy & Szalay estimator in Eq. (1.43), with galaxy and
random pairs are now found with an angular separation between ✓ and ✓ + d✓ .
The angular 2PCF can be connected to the 3D power spectrum via the following
relation:

w(✓ ) =
Z 1

0
P(k)g(k✓ )kdk (1.45)

with the kernel g(k✓ ) defined as:

g(k✓ ) =
1

2⇡

Z 1

0
dzJ0 (k✓�(z))

Å
dN
dz

ã2 dz
d�

F(z) (1.46)

(Limber 1953; Baugh & Efstathiou 1993). In the expression above, �(z) is the
comoving distance to redshift z, defined in Eq. (1.20), J0 is the Bessel function of
order zero and F(z) is a function encapsulating the redshift evolution of density
fluctuations in the given galaxy sample. Importantly, dN/dz is the redshift prob-
ability distribution in the galaxy sample, which contains the radial information
needed in the 3D to angular 2D projection.

1.5.5 THE GALAXY BIAS

At this point, we have a way of comparing theory to observations through the
clustering of galaxies. However, most of the cosmological information is contained
in the matter correlation function (or the matter power spectrum), so we need to
connect the two. Fortunately, as a consequence of the way structure forms in the
Universe, the distributions of galaxies and dark matter are correlated: galaxies
form within dark matter halos, which are the highest-density regions in the dark
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matter distribution. Therefore, galaxies trace the matter distribution, but they are
generally not unbiased tracers. This is usually expressed in terms of the so-called
galaxy bias, b, which relates the galaxy and matter density fluctuations and can
be generally written as

�g = b �. (1.47)

This relation translates into a connection between the galaxy and matter 2PCFs:

⇠g(r) = b2 ⇠m(r), (1.48)

which, in turn, directly translates to the corresponding angular 2PCF version:

wg(✓ ) = b2 wm(✓ ). (1.49)

In general, the galaxy bias will be a function of scale (or angular separation in the
2D case) and redshift, so that, for instance, b = b(✓ , z) in Eq. (1.49). For a given
galaxy sample, with a specific redshift selection, the galaxy bias will be constant
as a function of scale at large enough separation, where the density field follows
linear evolution. In addition to the general galaxy bias, there may exist further
differences between the galaxy and matter distributions, which are parametrized
in terms of the so-called cross-correlation parameter, r, which may also depend
on scale and redshift, and is defined as:

r =
⇠gm∆
⇠m ⇠g

, (1.50)

where ⇠gm is the galaxy-matter cross-correlation function, which is then related
to the matter correlation function:

⇠gm = b · r ⇠m. (1.51)

On large enough scales, in the linear regime, we expect the galaxy and matter
distributions to trace the same structures and hence the cross-correlation coeffi-
cient to approach r = 1. In that case, the galaxy-matter 2PCF is simply ⇠gm =
b ⇠m. Therefore, due to the different dependencies on the galaxy bias, having
together the galaxy and galaxy-matter 2PCFs we are able to break degeneracies
between the galaxy bias and the matter 2PCF, and hence access the cosmologi-
cal information contained in the latter as well as information about how galaxies
populate dark matter halos. In order to access the galaxy-matter 2PCF, galaxy
clustering is not sufficient and we will need a different cosmological probe, the
so-called weak gravitational lensing effect, which is the subject of the next section.
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1.6 WEAK GRAVITATIONAL LENSING

General relativity describes how space-time curves under the influence of mat-
ter and energy. As particles (including photons) follow geodesics of space-time,
light from distant sources will bend when passing around foreground mass-energy
concentrations. Consequently, the images of distant galaxies are distorted due to
the presence of foreground matter structures, an effect that is known as gravita-
tional lensing. We can extract key information from gravitational lensing, as the
distortions in the light are produced by the total matter gravitational field, not
only by the matter we can see (e. g. galaxies or dust). Then, by quantitatively
measuring these distorsions we can infer information about the mass distribution
in the universe. The importance of that knowledge lies in the fact that, without
lensing, all we know about the mass distribution of the universe comes from the
galaxy distribution, and then it is subject to our knowledge about how light traces
matter, i. e. our understanding of the galaxy bias described in the previous sec-
tion. Using gravitational lensing, we can directly compare observations to theory
avoiding the problem of galaxy bias, or we can learn about it to extract the most
information from the combination of galaxy clustering and gravitational lensing
observations.

Although gravitational lensing, in some extreme cases, can produce very im-
pressive distortions, these cases are not very useful to obtain cosmological infor-
mation out of them. Extracting large-scale structure information from gravita-
tional lensing requires the study of faint distortions in the shapes of distant galax-
ies induced by foreground mass overdensities. We are not interested in any single
overdensity (corresponding to, for instance, a cluster of galaxies) but rather in
the large-scale properties of them throughout the universe. In this way, we do not
need to infer exactly the mass distribution but we want to measure some simple
statistics, as the correlation function and its Fourier transform, the power spec-
trum. Measuring these quantities is very useful since they enable us to directly
compare cosmological theory, that predicts the behavior of these simple LSS statis-
tics, with observations.

The typical gravitational lens system is depicted in the diagram of Fig. 1.7,
with a mass concentration at redshift zd (corresponding to an angular diameter
distance Dd) deflecting the light rays from a source located at redshift zs (at an
angular diameter distance Ds). In this simple scenario, and provided the extent
of the deflecting mass along the line-of-sight is much smaller than the distance
to the lens plane, Dd , and the distance between the lens and source planes, Dds,
the light rays path, which is smoothly curving in reality, can be approximated as
two straight rays with a sharp twist near the deflecting mass. The magnitude and
direction of such twist are described by the so-called deflection angle, ↵̂, which is
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determined by the deflecting mass distribution and the impact parameter ⇠.

1.6.1 THE DEFLECTION ANGLE

In Sect. 1.1.2, we have introduced the FLRW metric, which provides a solu-
tion for the Einstein equations in a perfectly homogeneous universe. However, as
gravitational lensing is produced by mass overdensities in the large-scale struc-
ture of the Universe, we need to consider light propagation in an inhomogeneous
universe in order to study its effects. The line element for a general metric that
describes an expanding Universe with first-order perturbations to its homogeneity
is given by

ds2 =
Å

1+
2 
c2

ã
c2d t2 � a2(t)

Å
1� 2�

c2

ã
dl2, (1.52)

where dl2 is taken from Equations (1.2) and (1.4). The two potentials  and �
describe weak gravitational fields, with masses M and potentials  , � ⇠ GM/R=
(c2/2)(Rs/R)whose extents R are much larger than their Schwarzschild radius Rs.
In General Relativity and in the cases we will be considering, the two potentials
are equal,  = � (Kilbinger 2015). Also, if there are no perturbations, the metric
reduces to the FLRW metric in Eq. (1.4).

Photons, as well as particles, will propagate through space-time following null
geodesics, ds2 = 0. Then, from the equation above and assuming weak gravita-
tional fields we get the time of light ray travel to be:

t =
1
c

Z Å
1� 2�

c2

ã
dr, (1.53)

where the integral here is along the light path in physical coordinates r. From this
equation, an analogy can be established between the gravitational potential and a
medium with variable refractive index n= 1�2�/c2 (Schneider et al. 1992), and
hence the name of gravitational lensing. Working with this optical lens analogy,
we can use Fermat’s principle, stating that light travels along the path that can be
traversed in the least time, �t = 0. From this condition, and integrating along
the light path we can obtain the expression for the deflection angle ↵̂, defined as
the difference between the directions of the emitted and received light rays (see
Fig. 1.7):

↵̂= � 2
c2

Z
rp
?�dr, (1.54)

where the integration proceeds along the whole light path, in physical coordi-
nates, and the gradient is taken perpendicular to it. Considering a point-like body
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Figure 2.1: Gravitational lens schematic showing source and lens planes. The distances are
angular diameter distances. From Bartelmann and Schneider (2001).

Figure 1.7: Diagram representing a typical gravitational lens system, showing the observer, lens and
source planes, and (angular diameter) distances between them. From Bartelmann and Schneider
(2001).
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of mass M and its corresponding gravitational potential,

�(⇠, z) = � GMp
⇠2 + z2

, (1.55)

where ⇠ is the impact parameter as described in Fig. 1.7 and z is the distance
along the unperturbed light path, the deflection angles reduces to:

↵̂=
4
c2

GM
⇠

. (1.56)

This is usually expressed in terms of the so-called Schwarzchild radius, RS =
2GM/c2, simply as ↵̂ = 2RS/⇠. Importantly, this GR derivation using the met-
ric in Eq. (1.52) yields a deflection angle which is a factor of two larger than
the expected from purely Newtonian arguments. In 1919, during a solar eclipse,
Arthur Eddington and collaborators measured the apparent change in position
of stars as their light passed near the Sun, and proved the measurements to be
consistent with the GR prediction (Dyson, Eddington & Davidson 1920).

1.6.2 THE LENS EQUATION

From the geometry of the gravitational lensing diagram in Fig. 1.7 we can
relate the deflection angle to the other angles of interest, namely � , the angular
position of the source galaxy had it not been lensed, and ✓ , the observed (lensed)
position of the source galaxy, through the lens equation which also uses the rele-
vant angular diameter distances:

✓Ds = �Ds + ↵̂Dds. (1.57)

It is common to define the reduced deflection angle as

↵=
Dds

Ds
↵̂, (1.58)

and then the lens equation simply becomes:

� = ✓ �↵. (1.59)

This equation relates the observed (lensed) position of a galaxy to its true (un-
lensed) position via the (reduced) deflection angle, and hence it plays a central
role in the formulation of gravitational lensing. It can happen that, for fixed � , the
equation has more than one solution, in which case the source galaxy has several
images at different points in the sky. Such phenomenon is commonly referred
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to as strong lensing and occurs when the so-called convergence field (✓ ) � 1
somewhere, with the dimensionless convergence being defined as

(✓ ) =
⌃(✓Dd)
⌃crit

. (1.60)

Here ⌃(✓Dd) is the surface mass density,

⌃(✓Dd) =
Z
⇢(✓Dd , z)dz, (1.61)

where ⇢(✓Dd , z) is the mass density and we have used ✓Dd = ⇠ from Fig. 1.7,
and

⌃crit =
c2

4⇡G
Ds

Dd Dds
(1.62)

is the critical surface mass density, depending on both the lens and source red-
shifts, and sets the distinction between weak and strong lenses.

In terms of the convergence (✓ ), one can write the reduced deflection angle
as

↵(✓ ) =
1
⇡

Z
d2✓ 0(✓ 0)

✓ � ✓ 0
|✓ � ✓ 0|2

. (1.63)

From this expression, it follows that the deflection angle can be expressed as the
gradient of a potential,

↵(✓ ) =r (✓ ), (1.64)

with

 (✓ ) =
1
⇡

Z
d2✓ 0(✓ 0) ln

��✓ � ✓ 0
��2 (1.65)

being the deflection or lensing potential, the 2D analogue of the Newtonian po-
tential, satisfying the Poisson equation as r2 (✓ ) = 2(✓ ).

1.6.3 DISTORTION AND MAGNIFICATION

From the lens equation we can obtain the different possible angular positions
↵ of the images of a source at � . For an extended source, such as a typical galaxy,
gravitational lensing can change its shape due to distinct light rays being deflected
differently. When gravitational lensing is strong, for instance around massive
galaxy clusters, the shape of source galaxies whose light passes near the cluster
mass concentration can be distorted forming impressive and distinctive luminous
arcs, as can be seen in Fig. 1.8. This is due to light rays coming from an extended
source being more distorted the closer the pass to the cluster center (see Fig. 1.9
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Figure 1.8: The massive foreground cluster (Abell 2218) distorting the images of background galax-
ies and forming arcs, due to strong gravitational lensing. The arcs are aligned in a way that their
ellipticity is oriented tangent to the direction of the foreground mass, in this case the galaxy cluster
center. Image credit: NASA/ESA.

for a graphical representation).

In general, the observed surface brightness distribution I is related to that at
the source plane I s by the following mapping:

I(✓ ) = I s[�(✓ )], (1.66)

where surface brightness is conserved due to the absence of emission and absorp-
tion of photons in gravitational lensing. If the extent of a source is much smaller
than the scale in which the lens properties vary, we can linearize the lens equation
and then the distortion of the image can be described by the amplification matrix
A, defined as

A=
@ �

@ ✓
. (1.67)

Using the lens equation and the definition of the lensing potential,

Ai j =
@ �i

@ ✓ j
= �i j �

@ ↵i

@ ✓ j
= �i j �

@

@ ✓ j

Å
@ 

@ ✓i

ã
(1.68)

It is then convenient to parametrize the amplification matrix in terms of the scalar
convergence  and a two-component shear field �⌘ �1 + i�2 = |�| e2i� as:

A=
✓

1� � �1 ��2
��2 1� + �1

◆
. (1.69)
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(a) (b) (c) 

Figure 10.2. (a) Circular galaxy, the source, sits behind a foreground mass distribution rep-
resented by points at bottom. The observer is out of the page so that the foreground mass is 
between the observer and the source, (b) Light rays from source are deflected as they pass by 
mass distribution. Rays traveling closest to mass get deflected the most, (c) Resulting image 
is an arc. 

the mass. (This is the only subtle part of the argument: rays are bent toward the 
mass distribution, so that as you extrapolate backward, the source appears farther 
away. See Figure 10.4.) Images will therefore be distorted as in Figure 10.2b. The 
net effect, therefore, is to turn a circular galaxy into the arc shown in panel c. 

A very active field of research uses background galaxies to try to infer the mass 
distribution of clusters (e.g., Clowe et a/., 1998). Most times, the images are not 
as dramatic as those shown in Figure 10.1. The lack of drama is offset by the huge 
numbers of background galaxies. By adding up many small distortions, observers 
have succeeded in obtaining mass estimates for a number of clusters. This idea 
of statistically averaging small distortions is the hallmark of weak lensing. The 
mass estimates are important information for cosmologists: several cosmological 
constraints are based on cluster masses and abundances (e.g.. Section 9.5, Carlberg 
et a/., 1997; Bahcall et a/., 2000). 

We will be interested in weak lensing not by a single identifiable lens such as a 
cluster, but rather by the generic large-scale structure in the universe. Inferring the 
distribution of the dark matter — i.e., pointing to a spot on the sky and identifying 
it as an overdense region — is not necessarily the goal. Rather, we should be satisfied 
if we can measure some simple statistics, for example the correlation function or 
its Fourier transform, the power spectrum. Indeed, these are the quantities we, as 
cosmologists, are most interested in anyway. We don't care where the overdense 
and underdense regions are; we simply want to compare theory with observations. 
So our main goal here is to relate the observations (which have already begun) of 
distortions of galaxy images to the underlying mass power spectrum. 

Figure 1.9: (a) Source circular galaxy placed behind a foreground mass distribution, represented as
black points at the bottom. The observer is located where the reader is, so that the mass distribution
lies between the observer and the source. (b) Light rays from the source get deflected as they pass
near the mass distribution. The closer they pass to the center of the mass overdensity, the more
deflected they get. (c) The resulting image is an arc, similar to the ones aparent in Fig. 1.8. From
Dodelson (2003).

In this parametrization, both the shear and the convergence can be expressed as
second derivatives of the lensing potential  :

=
1
2
(@1@1 + @2@2) =

1
2
r2 

�1 =
1
2
(@1@1 � @2@2) 

�2 = @1@2 .

In order to understand the lensing effect on the observed source image, let’s
consider ✓0 to be a point within that observed image, corresponding to a point
�0 = �(✓0) on the source. Then, using the linearized lens equation, the observed
surface brightness (1.66) becomes:

I(✓ ) = I s[�0 + A(✓0) · (✓ � ✓0)]. (1.70)

Given this mapping, the images of circular sources become ellipses under the effect
of gravitational lensing, and the properties of such ellipse are related to the matrix
A(✓0) (Bartlemann and Schneider 2001). On one hand, the ratios of the semi-
axes of the ellipse to the radius of the source are given by the inverse of the
eigenvalues of A(✓0), 1� ± |�|. On the other hand, the ratio between the solid
angles subtended by the observed and the unlensed source images, called the
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Figure 1.10: Effect of the convergence
() and the real (Re) and imaginary
(Im) parts of the shear (�⌘ |�| e2i�) on
a circular source, represented in the dia-
gram as a solid green circle. Image from
Wikipedia.

magnification µ, is given by the inverse of the determinant of A:

µ=
1

det A
=

1
(1� )2 � |�|2 . (1.71)

Therefore, gravitational lensing distorts the source images in both shape and size
(see Fig. 1.10). In addition, when estimating the shear of a galaxy, measurements
are based in the shapes of galaxies, and do not consider their sizes. In that context,
it is useful to rewrite A as

A= (1� )
✓

1 0
0 1

◆
� �

✓
cos 2� sin2�
sin2� � cos2�

◆
, (1.72)

where we can see the (1� ) term only affects the size and not the shape of the
observed image. Then, when using the shape of galaxies to estimate the shear,
the observable is the reduced shear g and not the shear �:

g =
�

1�  . (1.73)

In weak gravitational lensing, the values of the shear and the convergence are of
the order of a few percent, �,⌧ 1, and, therefore, the reduced shear is a good
approximation to the shear.

1.6.4 THE LENSING CONVERGENCE AS THE PROJECTED MATTER DENSITY

We have already presented the lensing potential as a 2D analogue of the 3D
Newtonian potential. Using the 2D Laplacian and the 3D Poisson equation in
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comoving coordinates, we can see the analogy as

r2 = 2 , r2�=
3H2

0⌦

2a
�. (1.74)

Then, we can also think of the convergence  as a 2D projected analogue of the
matter overdensity �. This relation, assuming the Universe to be flat for simplicity,
can be expressed in the following way (Bartlemann & Schneider 2001):

(✓ ,�) =
3H2

0⌦m

2c2

Z �

0
d� 0

� 0(� �� 0)
�

�(� 0✓ ,� 0)
a(� 0)

. (1.75)

For a redshift distribution of sources pz(z)dz = p�(�)d� , the convergence
becomes:

(✓ ) =
Z

d� p� (�)(✓ ,�) =

=
3H2

0⌦m

2c2

Z �h

0
d� g(�)�

�(� ✓ ,�)
a(�)

,
(1.76)

where �h is the comoving horizon distance, defined as the comoving distance ob-
tained for infinite redshift, and g(�) is the source-redshift weighted lens efficiency
factor:

g(�) =
Z �h

�

d� 0 p�(� 0)
(� 0 ��)
� 0

, (1.77)

which indicates the lensing strength at a distance � of the combined background
galaxy distribution.
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Chapter 2

THE DARK ENERGY SURVEY

We have seen in the last chapter that in order to constrain and unravel the
nature of dark energy we need large data sets of galaxies with not only positions
(in the sky plane) but also with redshifts measured. In this way, we intend to
measure the large scale properties of the Universe by surveying large volumes
and detecting the galaxies on them. The projects designed for such task are called
galaxy redshift surveys and over the history of cosmology there are many examples
of such observations. For instance, we can think of the Hubble’s 1929 discovery
of the expansion of the universe (§1.2.1) being the result of the first successful
galaxy survey, and we have already mentioned the CfA galaxy redshift survey as
providing the first evidence of the fact that galaxies lie on bubble-like structures
with clusters of galaxies at their junctions. More recently, other galaxy surveys
have proved successful in constraining cosmology, especially the 2-degree Field
Galaxy Redshift Survey (2dFGRS1) and the Sloan Digital Sky Survey (SDSS2),
and yet there are some ongoing and proposed projects expected to shed more
light about the present unknowns in cosmology.

The Dark Energy Survey (DES) is an international, collaborative effort to study
the origin of the accelerating expansion of the Universe and hence help under-
stand the nature of dark energy by measuring the history of cosmic expansion as
well as the history of the growth of structure in the Universe to high accuracy.
More than 400 scientists from over 25 institutions in the United States, Spain,
the United Kingdom, Brazil, Germany, Switzerland and Australia are working on
the project (Fig. 2.1). This international collaboration has built and is using an
extremely sensitive 570-Megapixel digital camera, DECam (Flaugher et al. 2015,
Fig. 2.2), mounted at the prime focus of the 4-meter Blanco telescope at Cerro
Tololo Inter-American Observatory (CTIO), in Chile.

1http://www.2dfgrs.net
2http://www.sdss.org
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United Kingdom 
DES Collaboration 

Spain DES 
Collaboration 

DES-Brazil Consortium

The Dark Energy Survey Collaboration 

Australian Collaborating 
Institutions

Santa Cruz-
SLAC-Stanford 

DES Consortium

Figure 2.1: Map of the institutions involved in the Dark Energy Survey. Credit: Judit Prat.

The construction of the instrument started in 2008 and finished in 2011. The
first assembly and testing were performed at Fermilab on an exact reproduction
of the telescope structure, and then the camera and related components were
shipped to CTIO between 2010 and 2011. DECam installation at the Blanco
started in February 2012 and finished in September 2012, and it was led by CTIO
and the DECam design and construction team. The DECam imager consists of a
set of 74 state-of-the-art CCDs (charge-coupled devices), specifically designed by
scientists at the Lawrence Berkeley National Laboratory (LBNL) to observe red
light from distant galaxies, with thicknesses around 10 times larger than those of
conventional CCDs to increase the chance of detecting long-wavelength photons.
In addition, the camera has several other components:

• five optical lenses, one of which has a diameter of almost one meter and
weighs 176 kilograms, making it the largest optical corrector component
used in astronomy at the time of construction,

• five optical filters, spanning 400 nm to 1080 nm, also being the largest filters
used in the astronomical community,

• a positioning and alignment system, consisting of an Hexapod mechanism
with six pneumatically driven pistons which are used to align the optical
lenses between exposures and to keep the camera on focus,
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2 Dark Energy Survey

The Dark Energy Survey (DES) is designed to probe the origin of the accelerating expansion of the Universe

and help understand the nature of dark energy by measuring the history of cosmic expansion with high

precision, as well as the history of the growth of structure in the Universe. More than 300 scientists from

23 institutions in the United States, Spain, the United Kingdom, Brazil, and Germany are working on

the project. This collaboration has built an extremely sensitive 570-Megapixel digital camera, DECam,

which is shown in Fig. 1, mounted at the prime focus of the Blanco 4-meter telescope at Cerro Tololo

Inter-American Observatory, high in the Chilean Andes (Flaugher et al. 2015). DECam was installed in

the second semester of 2012.

(a) (b)

Figure 1: The Dark Energy Camera, mounted at the Blanco telescope at the Cerro Tololo Inter-American

Observatory in Chile. The Dark Energy Camera features 62 charge-coupled devices (CCDs) for imaging and 12

CCDs for guiding and focus, which record a total of 570 megapixels per snapshot (Flaugher et al. 2015). Credits:

Reidar Hahn/Fermilab.

The Dark Energy Survey o�cially began taking data in August 2013 and will continue to do so for 5 years,

525 nights in total. The survey will cover 5000 square degrees of the southern sky. DES will measure

shapes, photometric redshifts (see § 3.5) and positions for over 300 million galaxies. Also, it will detect

over 100000 galaxy clusters and about 3000 type Ia SNe. DES represents an increase in volume over the

Sloan Digital Sky Survey (SDSS) by roughly a factor of 7 (Flaugher et al. 2015).

DECam observes in 5 optical filters (grizY, see Tab. 1) with a nominal limiting magnitude iAB � 24. This

is actually an unprecedented depth for a galaxy survey, and corresponds to a redshift of z � 1.4. The

camera also has a large field of view with a diameter of 2.2 degrees (Flaugher et al. 2015) (see Fig. 2). In

2

Figure 2.2: a) The Dark Energy Camera (DECam), mounted at the Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO) in Chile. b) DECam features 62 charge-coupled devices
(CCDs) for imaging and 12 CCDs for guiding and focus, which make a total of 570 megapixels
(Flaugher et al. 2015). Credits: Reidar Hahn/Fermilab.

• a shutter, to shield the imager from light between exposures,

• and a cooling system using liquid nitrogen, which keeps the camera oper-
ating at -100oC in order to minimize noise and dark current in the CCDs.

DECam saw its first light on the telescope on September 12, 2012. The com-
missioning of the camera took place during September and October 2012, and a
Science Verification period of observations, covering around 200 deg.2 at the nom-
inal depth of the survey lasted from November 2012 to February 2013. Starting
August 2013, the DES Collaboration is using 525 nights of DECam observations
over five years (2013-2018) to carry out a multi-band (grizY ) imaging survey that
will cover around 5000 deg.2 of the southern sky to a depth of around iAB = 24
magnitude. By the end of the survey, DES will have measured positions, photo-
metric redshifts (§2.1) for around 300 million galaxies and shapes (§2.2) for over
200 million of those galaxies. In addition, DES will detect over 100000 galaxy
clusters and, by devoting a fractio of its time to observe smaller patches of sky
roughly once a week, about 3000 type Ia SNe. Compared to previous galaxy sur-
veys, DES represents an increase in volume over the Sloan Digital Sky Survey
(SDSS) by roughly a factor of 7 (Flaugher et al. 2015). In this chapter we re-
view two crucial techniques in a photometric survey like DES: the procedures to
measure photometric redshifts and galaxy shapes.
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2.1 SPECTROSCOPIC AND PHOTOMETRIC REDSHIFT SURVEYS

In galaxy redshift surveys, angular positions are measured directly through
the positions of galaxies in the sky plane, while radial information in the line of
sight is related to the redshift of individual objects. In this way, measuring angular
positions for galaxies is straighforward, but obtaining radial information is not.

In Astronomy, the redshift of a distant celestial object is measured through the
shift in its spectrum S(�). We call spectrum to the flux distribution in wavelength
space, also known as spectral density flux (units of [energy]/([area] · [time] ·
[wavelength]). We compute the redshift by comparing a spectrum in the rest
frame S(�) to a spectrum of a distant object that appears to be moving with respect
to us due to the expansion of the universe S0(�0; z). The transformation from the
rest frame to a distant one from which we extract the redshift goes as follows:

S(�)! S0(�0; z) =
S(�= �0/(1+ z))

(1+ z)2
, (2.1)

where the wavelength transformation comes from equation (1.10). The factor (1+
z)�2 comes from two different facts. On the one hand, using again the wavelength
transformation �0 = (1 + z)� from equation (1.10) and the energy of a photon
E�/ ��1 we obtain E0 = E/(1+ z). Since S(�) measures energy, we get the first
(1+ z)�1 factor from here. On the other hand, the time between two consective
photon receptions ⌧ increases for an emitter object moving along the line of sight
such that ⌧0 = (1 + z)⌧. So, since S(�) has units of time�1 we get the second
(1+z)�1 factor from there. A graphical representation of equation (2.1) is shown
in Figure 2.3, where we can see how spectra get decreased, stretched and moved
to higher wavelenghts when redshift increases. However, the most commonly
used detectors in astronomical observations are Charged Couple Devices (CCDs)
and they are not sensitive to the energy of the detected photon, but only to the
number of photon counts. Therefore, if we define the spectral density flux in
number of counts units instead of energy, the transformation (2.1) will have only
one (1+ z)�1 factor.

There are two main kinds of galaxy redshift surveys, corresponding to the way
in which they observe galaxies and then related to the way in which they measure
redshifts. Although in the past redshifts were mainly measured spectroscopically,
recently there are many projects that are only based on imaging, using photometry
to determine the redshift of each galaxy. On the one hand, the traditional spec-
troscopic redshift technique uses a spectrograph to measure redshifts with high
accuracy but has some drawbacks like the amount of observing time required for
those accurate determinations, or the need for previous galaxy targetting, with the
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Figure 2.2: The di�erent curves corresponds to the same spectrum shown in Fig. 3.4
evaluated at di�erent z values; z = 0.0 for the solid red curve, z = 0.2 for the dashed
green curve, z = 0.4 for the dashed blue curve and z = 0.6, 0.8 & 1.0 for the consecutive
shifted curves. It is like if the spectrum had been decreased, stretched and moved to higher
wavelength.

It is called the equation of state of a prefect fluid and � is a factor called state pa-
rameter that depends on the kind of perfect fluid. For example, � � 0 for dust (non-
relativistic matter) and � = 1/3 for radiation (relativistic matter). The perfect fluid
energy-momentum tensor can be written as:

Tµ� =
�

�

�
P (�)gµ� +

�
�(�) + P (�)

� dxµ

ds

dx�

ds

�
(2.13)

If we use the Einstein equations (2.11) for a perfect fluid in a FLRW metric (2.5), we
obtain the di�erential equation:

H2 = H2
0

�

�

��

�a0

a

�3(1+�)

(2.14)

which is called the Friedmann-Lemâıtre (F-L) equation and where H � ȧ/a is the Hubble
expansion rate parameter and is another one of the cosmological observables that we will
see, �� � �(�)

0 /�c is the density parameter with �c � 3H2
0/8�G � 1.878·10�29h2 g cm�3

[6] the critical density. All the quantities subindexed with 0 are taken at the current time
t0 which coincides with tobs. The sum over � always contains the case � = �1/3 with
�k � �k/a2

0H
2
0 to take into account the e�ect of curvature. Today the sum has to be

equal to 1 according to our definitions. This is what determines the k value. A set of
values {��} is usually called the cosmology of the universe.

Figure 2.3: The different curves corresponding to the same spectrum at different redshifts. z = 0.0
for the solid red curve, z = 0.2 for the dashed green curve, z = 0.4 for the dashed blue curve and
z = 0.6, 0.8 & 1.0 for the consecutive shifted curves.

risk of producing a biased sample. On the other hand, the photometric redshift
technique is not generally comparable to the spectroscopic equivalent in accuracy
in determining redshifts, but has the advantatge that you can obtain redshifts
much faster in a systematic way, without the need of targetting.

As we have already sketched, the accuracy on measuring redshifts for indi-
vidual galaxies is directly related to the radial information we get for them. In
this way, we can consider that spectroscopic surveys provide 3D cosmological in-
formation while photometric surveys provide 2.5D information, as they also get
some radial information, but not so precise.

2.1.1 SPECTROSCOPIC REDSHIFT DETERMINATION

With this technique, one starts the determination of the redshift of a given
object from the measurement of its spectrum S(�; z) (e.g. one of the curves shown
in Figure 2.3). The light from the object is separated into narrow wavelength
bins a few Å across by dispersing the light with, for instance, a prism. Each bin
recieves then only a small fraction of the total light from the object. Hence, to
achieve a sufficiently high signal-to-noise ratio in each bin, long integration times
are required.
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Suppose we have measured the green curve in that figure and we want to es-
timate the redshift of that object taking into account the spectrum for the same
class of galaxies, called in this example Luminous Red Galaxies (LRGs) and cor-
responding to the red curve in the same figure. We observe in that red curve a
characteristic feature at 4000 Å, which consists on a abrupt increase of the spec-
tral energy density. This feature is known as the 4000 Å break in LRGs. Now, we
observe that the same feature in the green curve is observed instead at 4800 Å,
so by equation (1.10) we compute the redshift for that object as:

z =
4800� 4000

4000
= 0.2. (2.2)

So, in general, if we are able to measure the spectrum of an object and also have
information about the spectrum at rest for that given class of objects we can look
at some features (the 4000 Å break in the example of LRGs but there are other
examples like Emission line galaxies, ELGs, where you look at the positions of
some narrow peaked lines) of the spectrum and by comparing the wavelengths at
which we encounter those features we can measure the redshift for that object by
applying the same simple equation (1.10), as already done in (2.2).

2.1.2 PHOTOMETRIC REDSHIFT DETERMINATION

The photometric redshift determination technique is a method to measure
the redshifts of objects using imaging instead of spectroscopy. In this method, the
photometry of observed objects is converted into low resolution spectra and, then,
redshifts are determined by comparing these measured spectra to redshifted tem-
plate galaxy spectra for that given class of objects or to some other low-resolution
measured spectra for which we already have spectroscopy. The different photo-
metric redshift methods used by the Dark Energy Survey, and the precision ac-
quired with them using Science Verification data, are the subject of Part II of this
thesis.

The main advantage of the photometric redshift technique is speed. In this
case, we don’t disperse light but we use filters3, which effectively integrate all the
light in a given wavelength range. These filters are usually wide (typically of the
order of 100 nm). If each different filter i has throughput Ri(�) (the response of
a filter as a function of � with units of distance�1), where i =1, ..., N = number of
filters, then, instead of the spectrum, we will have the fluxes of the object in each

3In astronomy, a filter is some mechanism that allows the selection of only a given range of
wavelengths for the electromagnetic spectrum of an object.
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filter, being proportional to the following integral:

Fi/
Z 1

0
S(�; z)Ri(�)�d�. (2.3)

The measured fluxes for all filters (up to normalization) are all we need to extract
the redshift of the measured object, as we will see below. It is also important
to stress that in astronomy usually one works with magnitudes instead of fluxes
or counts. A magnitude is a logarithmic measure of the brightness of an object,
and can also be measured in a specific filter4. Since we know the area of the
telescope and the exposure times for each filter we may easily change from fluxes
to magnitudes later on.

Since filters are usually wide enough, it requires only a short exposure time to
reach a high signal-to-noise ratio measurement. Furthermore, imaging detectors
usually cover a larger area of the sky compared to multi-object spectrographs, and
hence they can measure redshifts of more objects at the same time. Not only that,
but using imaging we obtain low-resoltion spectra for every galaxy detected in a
given image, without the need of targetting a priori.

On the other hand, the main disadvantage of photometric redshifts is the low
precision acquired in the redshift estimation. While spectroscopic redshifts have
precision better than �z = 0.001, photometric redshifts usually have precision of
the order of �z = 0.1.

There are two main different techniques for computing photometric redshifts.
Both techniques start from having a low resolution spectra but they differ in the
way to measure the redshift: either comparing it with redshifted spectral tem-
plates or comparing it with real galaxy low-resolution (photometric) spectra for
which the redshift is known through additional spectroscopic measurements.

TEMPLATE-BASED TECHNIQUES

This technique uses a predefined set of theoretical spectra for different types
of objects that are called templates. Then, the idea is to integrate these templates
using the same integral as in equation (2.3) while redshifting the templates using
(2.1), obtaining a set of fluxes for each band depending on redshift {F (tem)

i (z)}.
After that, we compute the redshift of the object by comparing the measured fluxes
{Fi} with the ones computed out of the redshifted templates {F (tem)

i (z)} and look-
ing for the z that makes the match better. Taking into account that measured fluxes
have associated an uncertainty as well, {Fi ,�Fi

}, we minimize the following �2

4The magnitude of an object is defined as m = �2.5 log10
F
F0

, where F is the measured flux of
the object and F0 is a flux of reference.
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function in order to obtain the redshift of the object:

�2(z)⌘
NX

i=1

2
4 Fi � kF (tem)

i (z)
�Fi

3
5 , (2.4)

where k is a normalization constant and N is the number of filters, typically
around 4-6, although there are galaxy surveys using many narrower filters, as
it is the case of the PAU (Physics of the Accelerating Universe) survey5.

Here we have introduced the basics of the template-fitting method. Never-
theless, there are many ways to go beyond these basics in many aspects. For in-
stance, one usual way to improve the redshift precision is to perform interpolation
between many different templates for a given object. However, more important
is the use of bayesian statistics to improve the quality of the fit by introducing
some prior knowledge of the distribution of objects one expects to find (Benitez
et al. 2000). In this framework one ends up having a probability density function
(pdf) for the redshift of each galaxy, delivering more information about each sin-
gle object, together with other advantages as, for example, recovering the whole
redshift distribution for the whole sample.

Moreover, template-based methods are necessary in order to estimate redshifts
for objects that are not accessible to spectroscopic measurements because they are
too faint. While this technique to estimate redshifts is still necessary, it has some
drawbacks like the need for a precise understanding of the relative efficiency of
each filer band or the need for galaxy templates spanning the whole wavelength
range and all spectral types involved.

TRAINING-BASED TECHNIQUES

The other widely used approach for computing photometric redshifts is more
empirical. In that alternative case, we start by having a set of objects for which
we know both spectroscopy and photometry that is known as training sample or
training set. Then, for those specific objects we have measured fluxes in all bands
but we also know their spectroscopic (i.e. high precision) redshifts. So we know
{Fi ,�i , zi} for the training sample, or {mi ,�mi

, zi} if we work in magnitude space.
In fact, one usually works with colors instead of magnitudes, which are defined as
differences between magnitudes in different bands. In an ideal case, this training
set will span both the whole redshift and color space of our survey and it will be
representative of the sample of objects we aim to measure. The training set could
also be derived from a set of templates or from simulated catalogues.

5http://www.pausurvey.org
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Given a representative training sample, the method consists in finding a trans-
formation from points in the multidimensional color space to points in redshift
space, i.e. a mapping function from color to redshift space. As soon as we have
determined this transformation we will be able to apply such transformation for all
the other measured objects for which we don’t have spectroscopy (known some-
times as testing sample or testing set, those being the bulk of the survey objects)
and obtain a redshift for all of them.

Setting up the mapping between the space of observed magnitudes and red-
shift space can be considered as a machine-learning problem. Many different
methods can be utilized to find such mapping. The most popular examples are ar-
tificial neural networks, k-nearest neighbor algorithms, random forests or boosted
decision trees.

Training-based methods are normally used when it is difficult to find repre-
sentative templates for the objects, the parameter space of the observables is not
too large and a large training sample is available. Moreover, some other advan-
tages of those methods lie on the fact that they can also use other parameters
(not only fluxes or magnitudes in each filter) to estimate the redshift of an object.
For instance, they can use galaxy shapes or information about the environment as
inputs in the estimation.

2.2 MEASURING GALAXY SHAPES

Similar to the need of measuring galaxy redshifts in order to access LSS in-
formation and probe cosmology using galaxy surveys, in order to study the weak
gravitational lensing (WL) effect described in the previous chapter we need to
measure the shapes of galaxies to excellent accuracy. That is another major ad-
vantage of photometric surveys over spectroscopic surveys: those of the latter type
cannot measure galaxy shapes as, for that, images are needed.

We have seen that the WL effect produces distortions in the size and the shape
of background galaxies, due to the gravitational field of foreground mass struc-
tures. We are most interested in the elliptical shape distortions produced by the
shear field, as depicted in Fig. 1.10. In order to detect these, we need to precisely
measure the ellipticity of galaxies detected in the survey images. For that purpose,
we start by defining image ellipticities. Let I( ~✓ ) be the brightness distribution of
an isolated galaxy image on the sky. Then, for instance, the center of the image is
defined as

~̄✓ ⌘
R

d2✓ I( ~✓ )qI[I( ~✓ )] ~✓R
d2✓ I( ~✓ )qI[I( ~✓ )]

, (2.5)

where qI (I) is a chosen weight function. Galaxy shapes are usually defined in
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terms of the weighted second moments of the brightness distribution,

Qi j =

R
d2✓ I( ~✓ )qI[I( ~✓ )] (✓i � ✓̄i)(✓ j � ✓̄ j)R

d2✓ I( ~✓ )qI[I( ~✓ )]
, i, j 2 {1,2}. (2.6)

For an image with circular isophotes, Q11 = Q22, and Q12 = 0. The trace of Q
relates to the size of the image, while the traceless part contains the ellipticity
information. Then, one can define a complex ellipticity (Schneider 2006),

✏⌘ Q11 �Q22 + 2iQ12

Q11 +Q22 + 2
q

Q11Q22 �Q2
12

. (2.7)

When the image has elliptical isophotes of minor-to-major ellipse axis ratio of
r  1, one obtains:

✏=
1� r
1+ r

e2i� , (2.8)

where � is the position angle. Before gravitational lensing occurs, each galaxy
has an intrinsic complex ellipticity ✏s, defined in analogy to (2.7). Then, ✏s is
modified by the (reduced) gravitational shear g, yielding the observed ellipticity
✏. In this way, the observed ellipticity as a function of the intrinsic ellipticity and
the reduced shear (for |g| 1) is (Schneider 2006)

✏=
✏s + g

1+ g⇤es
, (2.9)

where the asterisk denotes complex conjugation. In the weak lensing regime, this
expression can be approximated to

✏⇡ ✏s + �. (2.10)

If the intrinsic ellipticities of the galaxies are randomly oriented, the mean of the
observed ellipticity is an unbiased estimator of the shear, since h✏si= 0, and then

h✏i ⇡ �. (2.11)

In practise, this estimator is biased by the presence of intrinsic galaxy alignments,
an effect given by the correlation of galaxy shapes in the absence of gravitational
lensing, due solely to gravitational interactions between galaxies. Because galaxy
ellipticities are no longer randomly oriented, intrinsic alignments can add an ex-
cess of correlation between galaxy shapes and introduce a bias in gravitational
lensing analyses.

In the weak lensing regime, the shear of a galaxy cannot be estimated on a
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We can get an idea of how the error in the determination of the PSF during

deconvolution can propagate into the derived properties of the pre-seeing (lensed)

galaxy by looking at the case where the sizes and shapes of the PSF and galaxies are

expressed in terms of second moments (Equations [1.85]).

Figure 1.4: Forward process in shear measurements. An original galaxy with an
intrinsic shape is lensed, blurred, pixelated, and then made noisy (upper panels).
Stars can be considered point-like sources and undergo the same process (without
being sheared). Our task is to recover the (reduced) shear g using only the information
in the last image of each row. Image taken from Bridle et al. (2009)

In this case, the unweighted second moments of the observed galaxy are simply

the sum of those of the PSF and the pre-seeing galaxy. Thus, if we have a PSF

with ellipticity e� and radius r� convolved with a galaxy of shape eg and size rg, the

ellipticity of the observed galaxy is given by (for simplicity we only consider the first
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Figure 2.4: Forward process in shear measurements. The upper row is showing the different effects
occuring to a galaxy from its intrinsic shape to the observed image. The lower row shows the same
effects occuring on stars (note there is no gravitational lensing shear for stars). The main task in
shape estimation is to recover an unbiased estimate of the shear of galaxies using the information
in the last image of each row. Credit: Bridle et al. (2009).

galaxy-by-galaxy basis. This is because the typical distortions produced by LSS
induced gravitational lensing are of the order of �⇠ 0.03, much smaller than the
typical intrinsic ellipticity scatter �s

✏ =
⌦
|✏|2

↵1/2 ⇠ 0.3 (Kilbinger 2014).
Observationally, gravitational lensing is not the only effect altering the intrin-

sic shape of galaxies when they are detected. Effectively, galaxy images are also
convolved by a kernel, known as the Point Spread Function (PSF), which describes
the response of the telescope to a point-like source. An isotropic PSF will make
galaxies look rounder, hence erasing the shear effect, while anisotropies in the
PSF will directly contaminate the shear signal by making galaxies look more elon-
gated in the direction of the anisotropy. Figure 2.4 shows a visualization of the
different effects altering the intrinsic image of a galaxy when observed, from grav-
itational lensing to PSF convolution, and even pixelization in the imager and the
corresponding noise.

In this context, in order to measure the shapes of galaxies to perform a weak
gravitational lensing measurement we need to deconvolve the effect of the PSF on
the galaxy images to recover an unbiased estimate of the shear. For this purpose,
a model for the PSF along the camera field of view is created for every exposure.
That is performed by identifying a number of stars in each of these exposures and
characterizing their detected shape, as sketched in the lower row of Figure 2.4.
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An accurate model for the PSF and its variations along the field of view is crucial
to correct for circularizing effects as well as biases coming from potential PSF
anisotropies. Optical effects in the telescope should be properly included in the
modeling as well. A correct deconvolution of the PSF is another crucial step, as
the PSF ellipticity can be as large as 10% while the shear effect can be an order of
magnitude smaller. Furthermore, the PSF needs to be interpolated to the different
galaxy locations using the limited number of stars available in each exposure.

In DES, the survey area, the observed depth and the size of the PSF will allow
the Collaboration to measure over 200 million galaxy shapes, with an effective
number density of around 10 galaxies per arcmin2. That will be the largest data
set ever used in any weak gravitational lensing analysis, bringing down statistical
errors to an unprecendented level, and making it crucial to control systematic
errors so that they do not dominate the error budget.
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Photometric redshifts
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Chapter 3

PHOTOMETRIC REDSHIFTS IN THE DES-SV DATA

3.1 INTRODUCTION

Large galaxy surveys provide detailed information on the large-scale structure
of the Universe, which, in turn, helps understand its geometry, composition, evo-
lution and fate. On one hand, spectroscopic surveys like 2dF (Colless et al., 2001),
VVDS (Le Fèvre et al., 2005), WiggleZ (Drinkwater et al., 2010) or BOSS (Daw-
son et al., 2013) provide a three-dimensional picture of the galaxy distribution,
but they are costly in time and resources, and may suffer from limited depth,
incompleteness and selection effects. On the other hand, photometric surveys
such as SDSS (York et al., 2000), PanSTARRS (Kaiser, Tonry & Luppino, 2000),
KiDS (de Jong et al., 2013), HSC1 or LSST (Tyson et al., 2003) are more efficient
and usually deeper, more complete and nearly unbiased, but do not provide a
complete 3D view of the Universe, due to their limited resolution in the galaxy
positions along the line of sight, which are computed by measuring the photo-
metric redshift (photo-z) of each galaxy from the fluxes measured through a set
of broadband filters. Even with their limited resolution along the line of sight,
photometric surveys, because of their larger volume, are extremely useful for cos-
mology and, furthermore, uniquely provide some of the most stringent probes of
dark energy, such as weak lensing.

There are two main approaches for measuring photometric redshifts: template
fitting methods (e.g. Hyperz, Bolzonella, Miralles & Pell (2000); BPZ, Benitez
(2000); Coe et al. (2006); LePhare, Arnouts et al. (2002); Ilbert et al. (2006);
EAZY, Brammer, van Dokkum & Coppi (2008)), in which the measured broadband
galaxy spectral energy distribution (SED) obtained from the fluxes is compared
to a set of redshifted galaxy templates until a best match is found, thereby deter-
mining both the galaxy spectral type and its redshift; and training methods (e.g.

1http://www.naoj.org/Projects/HSC/index.html
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ANNz, Collister & Lahav (2004); ArborZ, Gerdes et al. (2010); TPZ, Carrasco Kind
& Brunner (2013)), in which a set of galaxies with known spectroscopic redshifts
is used to train a machine-learning algorithm (an artifitial neural network, for ex-
ample), which is then applied over the galaxy set of interest. Each technique has
its own advantages and disadvantages, as we will discuss in this chapter, and a
combination of them can fully exploit this fact (Carrasco Kind & Brunner, 2014).

In order for photo-z’s to be useful for cosmological studies, it is necessary
to calibrate them, by understanding the statistical properties of the distribution
of the differences between the true galaxy redshifts and their photo-z estimates:
its mean value (for the bias), its width (for the resolution), and its tails (for the
fraction of outliers, with grossly misestimated photo-z’s). To accomplish this, a
sample of galaxies with spectroscopic redshifts is required, ideally with a galaxy
population that reproduces the population in the photometric survey.

The Dark Energy Survey (DES, Flaugher (2005)) is one such photometric red-
shift survey, and will cover about one eighth of the sky (5000 sq. deg.) to an
unprecedented depth (iAB < 24), imaging about 300 million galaxies in 5 broad-
band filters (grizY ) up to redshift z = 1.4. The DES camera (DECam, Flaugher
et al. (2012); Diehl et al. (2012)) was installed and commissioned in the second
semester of 2012, and a Science Verification (SV) period of observations followed,
lasting from November 2012 to February 2013. The survey officially started in late
August 2013.

The SV observations provided science-quality data for almost 200 sq. deg. at
close to the nominal depth of the survey. The SV footprint was chosen to con-
tain areas already covered by several deep spectroscopic galaxy surveys, includ-
ing VVDS (Le Fèvre et al. (2005)), ACES (Cooper et al. (2012)), and zCOSMOS
(Lilly et al. (2007)), which together provide a suitable calibration sample for the
DES photometric redshifts. This chapter presents a study of the photo-z precision
achieved by DES during the SV period, by taking advantage of the available spec-
troscopic data in its footprint, and by using a large number of photo-z algorithms
of different nature.

It has been pointed out (Cunha et al., 2012a) that cosmic variance in the spec-
troscopic samples used for photo-z calibration may bias the results of an analysis
such as the one we present here, which uses spectra in four relatively small (1
sq. deg. each) patches of sky. A robust photo-z calibration requires galaxy spec-
tra distributed all over the photometric survey’s footprint, calling for as many as
O(50–100) patches (Cunha et al., 2012a) . While the plan for the ultimate photo-
z calibration of the whole DES data will need such a spectroscopic calibration
sample, and steps are being taken towards the acquisition of the relevant data,
the currently available spectroscopic data set is good enough for a first analysis of
the photo-z precision that can be achieved with the early DES data. Analogously,
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the ultimate DES photo-z calibration will have to worry about the effects of the
possible incompleteness of the spectroscopic calibration samples, effects that we
can safely ignore here, given the scope of this first study.

Many studies have been performed in the past comparing in detail several
photo-z codes over the same, real or simulated, data set (Hogg et al., 1998; Ab-
dalla et al., 2011; Hildebrandt, Wolf & Benítez, 2008; Hildebrandt et al., 2010;
Dahlen et al., 2013). Particularly comprehensive is the work by Hildebrandt et al.
(2010), which compares the performance of 19 photo-z codes both over simu-
lated and real (including HST) observations taken in 18 optical and near-infrared
bands. Similarly, Dahlen et al. (2013) compares 11 codes over real data in 14
bands, including also some HST data. On the other hand, Abdalla et al. (2011),
analyzed the performance of six photo-z algorithms on the MegaZ Luminous Red
Galaxy sample extracted from the SDSS Data Release 7 five-band photometry, with
a magnitude limit around iAB = 20. This chapter differs from these previous stud-
ies in that, on the one hand, it uses solely DECam five-band photometry (grizY ),
and on the other, it studies all kinds of galaxies up to the DES nominal limiting
magnitude iAB = 24. Furthermore, in the present study, rather than trying to carry
out a thorough comparison of all the photo-z codes available in the literature, we
concentrate on assessing the performance of the early DES data with respect to
the photometric redshift determination, and, in order to do so, we try the codes
in which members of the DES collaboration have a certain degree of expertise,
without attempting to be complete or even necessarily fair in the comparison. Be-
yond providing a snapshot of the quality of the DES-SV data regarding photo-z
estimation and accuracy, a secondary goal of this work is to tune these photo-z
codes to the particular characteristics of the DES data: filter set, depth, etc, in
preparation for the upcoming larger data sets.

Since even the deep spectroscopic samples mentioned above fail to repro-
duce exactly the depth and colors of the DES-SV photometric galaxy sample, a
multi-dimensional weighting technique (Lima et al. (2008); Cunha et al. (2009))
was used in order to bring the spectroscopic and photometric samples into better
agreement. Matching the galaxies in the spectroscopic samples with those in the
DES-SV photometric sample and comparing their spectroscopic redshifts with the
DES photo-z’s, we will show that, even at this early stage, the DES-SV data fulfill
the set of photo-z requirements on bias, resolution and outlier fraction that were
defined prior to the start of the survey.

The outline of the chapter is as follows. Section 2 describes the DES-SV pho-
tometric galaxy sample, whereas the spectroscopic galaxy samples are presented
in Section 3, together with the weighting technique that has been used to match
their depth and colors to those of the DES-SV sample. Section 4 describes briefly
the conditions in which the 13 different photo-z codes studied were run, and con-

51



PHOTOMETRIC REDSHIFTS IN THE DES-SV DATA

tains the bulk of the results of the chapter, including the comparison between the
results obtained with the different photo-z codes, the dependence of the results
on both the depth of the DES-SV data and the specific spectroscopic calibration
samples used, and an in-depth presentation of the results obtained with four rep-
resentative photo-z codes, in particular with respect to the set of requirements of
the DES survey, which we set up at the beginning of Section 4. A discussion of
the main results in the chapter can be found in Section 5. Finally, we present our
conclusions in Section 6, while we confine to an appendix the detailed description
of the metrics used to characterize the photo-z distributions.

3.2 DES-SV PHOTOMETRIC SAMPLE

DECam imaging on fields overlapping those from deep spectroscopic redshift
surveys were obtained for the following four DES fields: SN-X3, SN-C3, VVDS
F14, and COSMOS, whose positions in the sky are shown in Fig. 3.1. SN-X3
and SN-C3 are the two deep fields in the DES supernova survey, and dithered
observations of these fields were obtained routinely during the DES SV period.
The SN-X3 field includes the VVDS-02hr field of the VVDS Deep survey (Le Fèvre
et al., 2005, 2013), while SN-C3 overlaps with the CDFS (Chandra Deep Field
South) area of the ACES survey (Cooper et al., 2012). The VVDS F14 field was
centered on the VVDS-Wide redshift survey 14hr field (Garilli et al., 2008), and
dithered imaging to DES main survey depth of this field was likewise obtained
during DES SV. Deep dithered imaging data for the COSMOS field, centered on
the Cosmological Evolution Survey (COSMOS) area (Lilly et al., 2007, 2009) were
obtained during February 2013 by a DECam community program.2 Each one of
the four fields covers about the area of a single DECam pointing, or about 3 deg2.
See Section 3.3 for a detailed description of the spectroscopic data matched in
each of the fields.

All fields include imaging in the 5 DES filters grizY , and additionally in the
u band, which is part of DECam but not used by the DES survey. The data have
been processed to two imaging depths: Main, corresponding to approximately
DES main survey exposure times, and Deep, corresponding to about 3 times the
exposure of a single visit to a DES supernova deep field (for SN-X3 and SN-C3) or
deeper (for COSMOS). Differences in S/N between the Main and Deep samples
can be appreciated in Fig 3.2; details of the data, the exposure times used and
the magnitude depths are given in Table 3.1. Similar to DES science requirements
convention, the 10� magnitude limit is defined to be the MAGAUTO value (see

2Proposal 2013A-0351 Made available for DES photo-z calibration use by arrangement with PI
Arjun Dey.
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Figure 3.1: Positions in the sky of the four calibration fields. In the zoomed-in inset panels it
is possible to observe the spectroscopic matched galaxies, in red, in front of all the DES galaxies
detected in the fields, in black.

definition below in this section) at which the flux in a 2-arcsec diameter aperture
is measured at 10�. Note that for the SN-X3 and SN-C3 fields, we selected those
SV observations that approximately met DES main survey sky background and
seeing criteria in constructing the processed data used for this chapter.

The data were processed using the same routines used by DES Data Man-
agement (DESDM) in their processing pipeline (Mohr et al., 2012; Desai et al.,
2012), in particular for image detrending, astrometric calibration (SCAMP, Bertin
(2006)), image remapping and coaddition (SWarp, Bertin et al. (2002)), point
spread function modeling (PSFEx, Bertin (2011)), and object detection and pho-
tometry (SExtractor, Bertin & Arnouts (1996)). The data were processed by run-
ning these codes in standalone mode at Fermilab, rather than by running them
within the DESDM processing framework at NCSA. Running standalone was needed
as the DESDM framework was not yet fully setup at the time (Spring 2013) to pro-
cess and calibrate the data for these isolated fields all the way through to image
coaddition.
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Table 3.1: Imaging exposure times and depths for photo-z calibration
fields.

Field Filter Tot. Exp. Time (sec) 10� Depth
SN-X3 Main u 900 22.6
SN-X3 Main g 800 24.1
SN-X3 Main r 1200 24.3
SN-X3 Main i 1080 23.6
SN-X3 Main z 990 22.7
SN-X3 Main Y 500 21.0
SN-C3 Main u 900 22.9
SN-C3 Main g 800 24.3
SN-C3 Main r 1200 24.3
SN-C3 Main i 1080 23.6
SN-C3 Main z 990 22.9
SN-C3 Main Y 500 20.9
VVDS F14 Main u 900 22.5
VVDS F14 Main g 900 24.0
VVDS F14 Main r 900 23.6
VVDS F14 Main i 900 23.1
VVDS F14 Main z 900 22.4
VVDS F14 Main Y 750 21.6
SN-X3 Deep u 900 22.6
SN-X3 Deep g 2000 24.5
SN-X3 Deep r 3600 24.9
SN-X3 Deep i 5400 24.5
SN-X3 Deep z 10890 24.0
SN-X3 Deep Y 1000 21.0
SN-C3 Deep u 900 22.8
SN-C3 Deep g 1800 24.6
SN-C3 Deep r 3600 24.9
SN-C3 Deep i 5400 24.5
SN-C3 Deep z 10890 24.3
SN-C3 Deep Y 500 20.8
COSMOS Deep u 33600 25.2
COSMOS Deep g 4500 24.8
COSMOS Deep r 4800 24.9
COSMOS Deep i 12000 24.8
COSMOS Deep z 7000 23.5
COSMOS Deep Y 2400 21.6
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Figure 3.2: S/N vs. magnitude for g, r, i
and z DES bands, and for Main (red
dots) and Deep (black dots) samples.

Though we basically used the DESDM codes, there were some detailed differ-
ences in processing and photometric calibration that we highlight here. For image
detrending we did not include corrections for CCD nonlinearity, pupil ghost, and
illumination that are now used by DESDM, as these corrections were not available
at the time. Image coaddition was done using a median coadd rather than by us-
ing a weighted mean as in DESDM. Photometric calibration in the ugriz filters for
the SN-X3, VVDS F14, and COSMOS fields was done by matching against overlap-
ping bright stars from the SDSS Data Release 9 database (Ahn et al., 2012). This
was done to calibrate each individual CCD on each separate DECam exposure, be-
fore image coaddition. In the Y band for all fields, and in all filters for the SN-C3
field (which did not overlap SDSS), we picked a fiducial exposure for each field,
adopted the typical DECam CCD-by-CCD photometric zeropoints as determined
from DES SV data, and then tied the photometry for subsequent exposures/CCDs
to the fiducial exposure by matching overlapping bright objects. In addition, we
also applied a further relative photometric calibration step, by selecting bright
r = 18–22 galaxies in each field and offsetting the zeropoints in the other 5 filters
so that the median galaxy colors relative to r (i.e., g � r, r � i, etc.) would match
those for fiducial DECam data of the VVDS-Deep 02hr field (part of SN-X3). This
additional step was intended to match up the median galaxy colors among the
different fields by using photometry of galaxies directly, as the earlier calibration
steps use photometry of stars, and there can be small (percent level) systematic
differences between the stellar and galaxy photometric zeropoints, in particular
due to seeing. We also applied corrections for Milky Way extinction based on the
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Schlegel, Finkbeiner & Davis (1998) dust maps evaluated at the center of each
field.

As for the use of imaging data by photo-z algorithms, either MAGAUTO or
MAGDETMODELmagnitudes (or both) were employed by the different photo-z codes.
MAGAUTO magnitudes come from the flux (counts) measured in an elliptical aper-
ture defined as in Bertin & Arnouts (1996). It provides an estimation of the total
magnitude of the object. MAGDETMODEL magnitudes are measured from the shape
(a Sersic profile model (Sérsic, 1963)) fit to the object in the SExtractor detection
image (either the r band or the i band for our data), and the flux is then mea-
sured separately in each band using that same model shape. Also available are
MAGMODEL magnitudes, which fit the shape of the object independently in each of
the bands. However, MAGDETMODEL magnitudes, which result from one unique
best-fit shape for the object, are in general better suited for color measurement
and hence more appropriate to use for photo-z estimation.

We want to emphasize here that because of the differences mentioned above
between the reductions of SV data used in this chapter and the improved DESDM
reductions of SV data (to be released and described elsewhere), the results of
this chapter are meant to reflect the photo-z quality achievable from early DES
data, rather than from final DES data or even from SV data. We expect that final
DESDM reductions of the calibration field data will be better in terms of photo-
metric quality and consequently of photo-z quality, so the results in this chapter
will serve as a lower bound on the photo-z quality that may be achieved by final
DES data. Nonetheless, as we will show later in this chapter, the photo-z quality
achieved in these early DES data is good and already sufficient to meet the basic
DES science requirements on photo-z scatter and outlier fractions.

3.3 DES-SV SPECTROSCOPIC SAMPLE

In general, to exploit a galaxy photometric survey to its maximum scientific
potential, it is necessary to be able to calibrate or control the performance of the
photo-z estimation by using data from a spectroscopic survey. To accomplish this,
it is necessary to have, for a subset of galaxies, both the spectroscopic redshifts
and the estimated photo-z’s. With this information in hand, the characterization
of the behavior of the photometric redshifts is possible, and it becomes a crucial
step for cosmological probes such as galaxy clustering or weak lensing. In partic-
ular, among other quantities, it is very important to characterize the true redshift
distribution of a set of galaxies after a selection in photo-z space.

A photometric survey like DES will therefore need to observe one or several
regions of the sky that have been previously covered by a spectroscopic survey,
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and then match the galaxies in the catalog of the spectroscopic survey to galaxies
observed photometrically by DES. In this chapter, the matching between DES and
spectroscopic galaxies is performed by using the positions of the galaxies in the
sky plane, with a matching radius of 1 arcsec.

Four regions of the sky included in the DES-SV footprint have been used for
photo-z calibration in this study (Fig. 3.1):

• SN-X3 field: This area, centered at RA ⇠ 36, DEC ⇠ -5, overlaps with the
VIMOS (Le Fèvre et al. (2003)) VLT Deep Survey (VVDS) 02hr field. DES
photometry has been matched in this field with spectroscopic redshift data
from VVDS Deep (Le Fèvre et al. (2005, 2013)).

• VVDS F14 field: This area, centered at RA ⇠ 209, DEC ⇠ 5, overlaps with
the VIMOS VLT Deep Survey (VVDS) 14hr field. DES photometry has been
matched in this field with spectroscopic redshift data from VVDS Wide (Gar-
illi et al. (2008)).

• SN-C3 field: This area, centered at RA ⇠ 52, DEC ⇠ -28, overlaps with the
Chandra Deep Field South. DES photometry has been matched in this field
with spectroscopic redshift data from both VVDS Deep and ACES (Cooper
et al. (2012)).

• COSMOS field: This area, centered at RA⇠ 150, DEC⇠ -1.4, overlaps with
the Cosmic Evolution Survey field. DES photometry has been matched in
this field with spectroscopic redshift data from both VVDS Wide and zCOS-
MOS (Lilly et al. (2007, 2009)).
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Figure 3.3: Redshift distributions for
the spectroscopic matched galaxies in
the Main and Deep calibration sam-
ples.
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We have also used data from brighter, shallower spectroscopic surveys avail-
able in these four regions: OzDES (Kuehn et al. (2014), Yuan et al., in prepa-
ration); SDSS-I/II (Strauss et al., 2002; Eisenstein et al., 2001); SDSS-III BOSS
Data Release 9 (Ahn et al., 2012) and 2dF Galaxy Redshift Survey (Colless et al.,
2001). Galaxies matched to these surveys help to increase the statistics on the
brighter tail of the distribution for galaxies used for this study.

Next we build a set of training and testing samples, using DES photometry
from the Main and Deep samples and spectroscopy from different surveys. Note
that only high-confidence spectroscopic redshifts, i.e., having redshift flags be-
tween 3 and 5, corresponding to secure and very secure (> 95% accuracy) red-
shift determinations, have been selected to construct these samples. Spectroscopic
failures can bias cosmological results, as studied in Cunha et al. (2012b), where
they showed how for a final DES analysis such failures need to be reduced to the
percent level. While a complete study concerning spectroscopic failures will have
to take place for the analysis of the final DES data set, here we rely on the high-
confidence redshift flags for the photo-z calibration of the early DES data. Below
we describe how the data is distributed on each of the four calibration samples
(training and testing for both Main and Deep catalogs):

• Main training sample: 5859 galaxies, photometry from Main catalogs, spec-
troscopic redshifts from the following data sets:

- One randomly selected half of VVDS Deep, SDSS/BOSS in the SN-X3 field,
ACES, 2dFGRS, OzDES in the SN-C3 field, and VVDS Wide, SDSS/BOSS in
the VVDS F14 field.
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• Main testing sample: 6381 galaxies, photometry from Main catalogs, spec-
troscopic redshifts from the following data sets:

- The other half left out from the samples in the Main training set.

- All VVDS Deep in the SN-C3 field.

• Deep training sample: 7249 galaxies, photometry from Deep catalogs, spec-
troscopic redshifts from the following data sets:

- One randomly selected half of VVDS Deep, SDSS/BOSS in the SN-X3 field,
ACES, 2dFGRS, OzDES in the SN-C3 field and zCOSMOS, SDSS/BOSS, 2dF-
GRS in the COSMOS field.

• Deep testing sample: 8358 galaxies, photometry from Deep catalogs, spec-
troscopic redshifts from the following data sets:

- The other half left out from the samples in the Deep training sample.

- All VVDS Deep in the SN-C3 field.

- All VVDS Wide in the VVDS F14 field.

The spectroscopic redshift distributions of the Main and Deep calibration sam-
ples defined above, spanning all the redshift range of interest for DES (0 < z <
1.4), are shown in Fig. 3.3.

3.3.1 THE WEIGHTING PROCEDURE

In order to assess the photo-z performance of the DES-SV data we would ide-
ally need a calibration sample being representative of the DES-SV full sample,
i.e. having exactly the same photometric properties (magnitude and colour distri-
butions). However, spectroscopic galaxy samples are shallower, and suffer from
selection effects. A weighting procedure, which assigns a weight to each of the
galaxies in the calibration sample so that the distributions of their photometric ob-
servables reproduce the distributions of the same observables in the full sample,
can be used provided there is enough overlap between the photometric spaces of
the calibration and full samples (Lima et al., 2008; Cunha et al., 2009).

Different algorithms can be used to compute the weights, but basically all
compare local densities in the photometric spaces of the two samples (calibration
and full) and assign a weight to each photometric region of the calibration sample
equal to the ratio between the densities of galaxies in the full sample and the
calibration sample in a given region. In this study we use a nearest neighbour
algorithm to compute the weights that we use extensively throughout the chapter.
A detailed description of the method can be found in Lima et al. (2008).
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Table 3.2: Definition of the metrics used in the text to present the main results. These are com-
puted in the whole redshift range as well as in bins of width 0.1 in photometric redshift. Detailed
definitions can be found in the appendix.

Metric Description Req.
�z mean of the �z distribution -
��z standard deviation of the �z distribution -
�z50 median of the �z distribution -
�68 half width of the interval around �z50 containing 68% of the galaxies < 0.12
out2� fraction of galaxies with: |�z ��z|> 2��z < 0.1
out3� fraction of galaxies with: |�z ��z|> 3��z < 0.015
�z0 mean of the �z0 =�z/✏phot distribution -
��z0 standard deviation of the �z0 distribution -
Npoisson difference between N(z)phot and N(z)spec normalized by Poisson fluctuations -
KS Kolmogorov - Smirnov statistic for N(z)phot, N(z)spec -

We apply the weighting technique within a region in the multidimensional
space defined by 18 < iAB < 24; 0 < g � r < 2; 0 < r � i < 2. In Fig. 3.4 one can
check how the weighting procedure is efficiently applied for the sample used in
this study. The figure shows, for two DES bands, and the Main and Deep samples,
the magnitude distributions for the full sample, the calibration sample and the
weighted calibration sample, whose distributions agree very well with those of
the full sample.

3.4 PHOTOMETRIC REDSHIFTS IN THE DES-SV CALIBRATION

SAMPLES

In this section we include all the photo-z analyses using the calibration data
defined in Sec. 3.3. The analysis is carried out employing an extensive set of
statistics. To construct most of the metrics used in this chapter, we first define
the bias to be �z = zphot � zspec and the normalized bias by its reported error as
�z0 = (zphot� zspec)/✏phot, where ✏phot is the error in the estimation of the photo-
z’s. We present the standard metrics used to compare the accuracy of the different
codes in Table 3.2, together with the DES science requirements for photo-z’s, set
before the start of the survey. The DES science requirements are driven by the
Dark Energy science that DES plans to carry out, in particular by weak lensing
and large-scale structure tomographic measurements.

The photo-z metrics we consider are intended to measure the quality of the
photometric redshifts in terms of their bias, scatter, and outlier fraction statistics,
and also in terms of the fidelity of the photo-z errors and of the agreement between
the photo-z and true redshift distributions. Detailed definitions of these metrics
are given in Appendix A, while here we briefly summarize and motivate our choice
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of metrics:
• Bias: To quantify the overall photo-z bias, we use the mean bias �z and the

median bias �z50.
• Scatter: To measure the photo-z scatter, we use both the standard deviation

��z of �z and the 68-percentile width �68 of �z about the median (i.e., �z50 ±
�68 covers 68% of the �z distribution). For a Gaussian distribution of �z, we
would have ��z = �68. However, in general �z is not distributed as a Gaussian,
so that �68 measures the width of the core of the �z distribution, whereas ��z is
sensitive to the tails. The DES science requirements specify �68 < 0.12 for a 90%
of the selectable sample of galaxies.
• Outlier Fractions: To quantify the fraction of objects with large |�z|, we

measure the 2��z and 3��z outlier fractions out2� and out3�, respectively, both
defined relative to the mean photo-z bias�z. The DES science requirements limit
these outlier fractions to be out2� < 0.1 and out3� < 0.015.
• Fidelity of Photo-z Errors: To assess the fidelity of the reported photo-z er-

ror ✏phot, we normalize �z by ✏phot and calculate the resulting error-normalized
mean bias �z0 and standard deviation ��z0 . Ideally, we would obtain �z0 = 0
and ��z0 = 1, as for a Gaussian distribution of zero mean and unit variance.
Deviations from these values would indicate inaccuracies in the photo-z errors.
• Redshift Distributions: Finally, to compare the photometric redshift distribu-

tion N(zphot) to the true redshift distribution N(zspec), we use two metrics. The
first is Npoisson, which measures the rms difference between N(zphot) and N(zspec),
normalized by Poisson fluctuations

∆
N(zspec). The second is the Kolmogorov-

Smirnov (KS) metric that tests whether N(zphot) and N(zspec) are consistent with
being drawn from the same parent distribution.

Some of the key DES science analyses, such as the galaxy angular correlation
functions for large-scale structure studies, or cosmic shear tomography measure-
ments for weak lensing and dark energy constraints, will use DES galaxies divided
into separate photo-z bins. For these photo-z bins, the DES science requirements
also specify stringent limits on the differences in bias, scatter, and outlier fractions
between the DES photometric sample and the spectroscopic calibration sample.
For example, there is a requirement that the mean bias |�z| < 0.001(1 + z) in
bins of 0.1 in redshift. Accurate characterization of the full P(zspec|zphot) distribu-
tion, i.e., the distribution of true redshift in bins of photo-z, will also be needed
for these DES science analyses. However, consideration of these more stringent
DES photo-z science requirements is premature for the present chapter, because of
the limited number and sky distribution of the SV spectroscopic calibration fields.
These fields are subject to sample variance effects, i.e., fluctuations in galaxy den-
sities and redshift distributions due to clustering and large-scale structure, and in
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fact, as detailed in Cunha et al. (2012a), meeting the requirements will necessitate
a much larger number of widely-distributed spectroscopic calibration fields (e.g.,
⇠100) than are currently available from completed redshift surveys. We will thus
postpone discussion of these issues and tests of these more stringent requirements
for future DES photo-z papers. Nonetheless, we do present in a later section some
example P(zspec|zphot) distribution for several selected photo-z codes.

All the results shown in this chapter have been weighted according to the
technique presented in Section 3.3.1, and they include a cut on the 10% of the
galaxies having larger estimated photo-z error, as given from each particular code
(this 10% cut on photo-z error is allowed by the DES science requirements). This
cut introduces small differences among the testing samples used by each photo-z
code in the comparison. With this we test the ability of each particular code to
select the most problematic objects in the sample. In addition, clustering mea-
surements can be affected by severe photo-z quality cuts as presented in Martí
et al. (2013), where they also show a procedure to correct for these effects.

All the errors for the statistics presented in the chapter come from bootstrap
resampling using 100 samples, unless otherwise stated.

3.4.1 METHODS

Before going in detail into the photo-z analysis we present here a brief descrip-
tion of the different methods we have used to estimate photo-z’s, which include
most of the relevant photo-z codes available. We have emphasized in the details
at the time of running these codes; for an exhaustive description of them see Table
3.3. For template-based methods, a standardized set of filter throughput curves
has been used. Most of the codes have been run in standalone mode, while a
fair fraction of them has been run within the DES Science Portal, with compatible
results. Due to the large number of codes used, the chapter, other than show-
ing the DES-SV photo-z capabilities, also serves as a helpful reference to compare
different photo-z codes using real data from a deep galaxy survey.

DESDM

The DESDM (default) photo-z’s were computed using the same artificial neu-
ral network method that was applied to the Sloan Digital Sky Survey Data Release
6 (DR6) sample, as described in detail by Oyaizu et al. (2008b). In brief, we used
a neural network configuration with 10 input nodes, consisting of the 5 grizY
MAGAUTO magnitudes and the 5 grizY MAGDETMODEL magnitudes, followed by
3 hidden layers with 15 nodes per layer. The formal minimization to determine
the neural network weights was done on the training set data, while choosing
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Table 3.3: List of methods used to estimate photo-z’s. Code type and main references are given.

Code Type Reference
DESDM, Artificial Neural Network Training Oyaizu et al. (2008b)
ANNz, Artificial Neural Network Training Collister & Lahav (2004)
TPZ, Prediction Trees and Random Forest Training Carrasco Kind & Brunner (2013, 2014)
RVMz, Relevance Vector Machine Training Tipping (2001)
NIP-kNNz, Normalized Inner Product Nearest Neighbor Training de Vicente et al., in preparation
ANNz2, Machine Learning Methods Training Sadeh et al., in preparation
ArborZ, Boosted Decision Trees Training Gerdes et al. (2010)
SkyNet, Classification Artificial Neural Network Training Bonnett (2013); Graff et al. (2013)
BPZ, Bayesian Photometric Redshifts Template Benitez (2000); Coe et al. (2006)
EAZY, Easy and Accurate Redshifts from Yale Template Brammer, van Dokkum & Coppi (2008)
LePhare Template Arnouts et al. (2002); Ilbert et al. (2006)
ZEBRA, Zurich Extragalactic Bayesian Redshift Analyzer Template Feldmann et al. (2006)
Photo-Z Template Bender et al. (2001)

the set of network weights that gave the lowest photo-z scatter on the testing set,
after 300 iterations of the weight minimization. Moreover, to reduce sensitivity
to initial conditions in the minimization procedure, we repeated the procedure 10
times, starting each time at a different initial position in the space of weights. The
final photo-z for a galaxy was taken to be the average of the photo-z’s computed
from the optimal weights for each of the 10 network minimizations.

We also computed accompanying photo-z errors using the empirical nearest
neighbor error (NNE) technique, described in detail by Oyaizu et al. (2008a). The
NNE method estimates the photo-z error for each galaxy empirically, based on the
photo-z’s and true redshifts of the galaxy’s 100 nearest neighbors in the spectro-
scopic testing set, where neighbor distance is defined using a simple flat metric
in the space consisting of the 10 input magnitudes noted above. Specifically, the
NNE photo-z error � is defined so that it corresponds to the width of 68% of the
|zphot � zspec | distribution of the nearest neighbors.

ANNZ

ANNz (Collister & Lahav (2004)) is a training-based method that uses a neu-
ral network scheme to find a functional relationship between a given set of input
parameters (e.g. magnitudes, colors, etc) and outputs a desired quantity (e.g.
redshift). The results shown in this chapter have been obtained by using a neural
network architecture of 2 layers with 10 nodes each, and using as inputs the set
of 5 MAGAUTO and 5 MAGDETMODEL magnitudes. Attempts to use a larger number
of nodes as well as colors as inputs resulted in larger photo-z errors. The uncer-
tainties in the photo-z estimation are computed using standard propagation of
the errors in the input magnitudes to the error in photo-z, by using the functional
relationship between these input parameters and the output photo-z.
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TPZ (TREES FOR PHOTO-Z)

TPZ3 (Carrasco Kind & Brunner, 2013, 2014) is a machine learning, parallel
algorithm that uses prediction trees and random forest techniques to produce both
robust photometric redshift pdfs and ancillary information for a galaxy sample.
A prediction tree is built by asking a sequence of questions that recursively split
the input data taken from the spectroscopic sample, frequently into two branches,
until a terminal leaf is created that meets a stopping criterion (e.g., a minimum
leaf size or a variance threshold). The dimension in which the data are divided is
chosen to be the one with highest information gain among the random subsample
of dimensions obtained at every point. This process produces less correlated trees
and allows the exploration of several configurations within the data. The small
region bounding the data in the terminal leaf node represents a specific subsample
of the entire data with similar properties. Within this leaf, a model is applied that
provides a fairly comprehensible prediction, especially in situations where many
variables may exist that interact in a nonlinear manner as is often the case with
photo-z estimation.

By perturbing the data using their magnitude errors and by taking bootstrap-
ping samples, many (600 in this application) uncorrelated trees can be created
whose results are aggregated to construct each individual pdf. For the application
to DES-SV data, we have used both MAGAUTO and MAGDETMODEL magnitudes in
the five DES bands, together with all the corresponding colors as well as their
associated errors.

RVMZ

RVMz is an empirical photo-z code based on the relevance vector machine
algorithm from Tipping (2001), a Bayesian sparse kernel method for regression.
The relevance vector machine (RVM) has characteristics similar to the support
vector machine, but includes a Bayesian treatment for the determination of the
model weights. This has the advantage that the parameters governing model com-
plexity and noise variance are found in the training run itself, and therefore the
RVM does not require cross validation to optimize these parameters. We use the
RVM implementation in the R-package kernlab from Karatzoglou et al. (2004).
To obtain photo-z estimates, we used MAGDETMODEL magnitudes (grizY ) and col-
ors (g � r, r � i, i � z, z � Y ) as input. We reconstruct the pdf by combining the
uncertainties in the datasets and the model. In the training set we use the k-fold
cross validation technique, which consists of partitioning the data in k groups,
then k�1 of these groups are used to train the model which is then evaluated on

3http://lcdm.astro.illinois.edu/research/TPZ.html
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the hold-out group. This process is then repeated for all possible choices of the
hold-out group and the resulting mean squared error for the redshift prediction
is evaluated. At this stage we obtain the model error as the RMS of the predicted
pdf. Details of the method will be described in Rau et. al. (in prep.).

NIP-KNNZ

NIP-kNNz (Juan De Vicente et al. (2014), in preparation) is a novel technique
that computes the photo-z from a Nearest Neighbour approach based on the Nor-
malized Inner Product (NIP). While Euclidean magnitude-distance ensures that
close galaxies in magnitude space are assigned the same redshift, it does not con-
siders as neighbors galaxies with the same color but separated in overall mag-
nitude. NIP metrics corrects this by considering two galaxies as neighbors, and
hence with close redshift, when they have similar colors, rather than magnitudes.
The metric is based on the inner product definition:

NIP= cos↵=
Mt ·Mp

Mt Mp
, (3.1)

where Mt and Mp are the multi-magnitude vectors of training and photometric
galaxies respectively. For this particular application, the five MAGDETMODEL mag-
nitudes were used and turned into fluxes. The normalized inner product is related
to the angle that the two multi-magnitude vectors form. Maximizing NIP is equiv-
alent to minimize the angle between the two vectors. Regarding the photo-z error,
an empirical formula has been derived to account for three different contributions.
The first term is the floor error related to the finite spectroscopic redshift precision,
which is all that remains In the best case scenario, when the magnitude vectors
of the photometric and the spectroscopic galaxies point in the same direcction.
The second contribution comes from the characterization of the photo-z errors in
the spectroscopic sample. NIP-kNN is run over all galaxies in the spectroscopic
sample to obtain their photo-zs. One half of the difference between the spectro-
scopic z and the photo-z of the spectroscopic galaxy is taken as its photo-z error.
When NIP-kNN is applied to a galaxy in the photometric sample, it inherits not
only the z of the closest spectroscopic galaxy but also its photo-z error. The third
term is the metric distance sin(↵) that accounts for neighborhood, multiplied by
a constant determined empirically. Assuming the spectroscopic sample spans the
range of redshifts of the photometric sample, NIP-kNNz achieves, by construction,
an accurate reconstruction of the redshift distribution N(z)
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ANNZ2

ANNz2 is a new major version of the public photo-z estimation software, ANNz
(Collister & Lahav, 2004), which will be made public in 2015. The new code in-
corporates several machine-learning methods, such as artificial neural networks
(ANNs), boosted decision trees (BDTs, Freund & Schapire (1997), described be-
low in 3.4.1) and k-nearest neighbors (KNNs). The different algorithms are used
in concert in order to optimize the photo-z reconstruction performance, and to
estimate the uncertainties of the photometric solutions. This is done by gener-
ating a wide selection of machine-learning solutions with e.g., different ANN ar-
chitectures, initialized by different random seeds. The optimization is performed
by ranking the different solution according to their performance, which is deter-
mined by the respective photo-z scatter of each solution.

The single solution with the best performance is chosen as the nominal photo-
z estimator of ANNz2. In addition, the entire collection of solutions is used in
order to derive a photo-z probability density function (pdf), constructed in two
steps. First, each solution is folded with an error distribution, which is derived
using the KNN error estimation method of Oyaizu et al. (2008b). The ensemble of
solutions is then combined. This is done by weighing the different estimators, in
such a way as to produce a pdf which describes the underlying photometric errors.
The inputs used in this study were the five MAGAUTO and the five MAGDETMODEL
magnitudes.

ARBORZ

The ArborZ algorithm (Gerdes et al., 2010; Sypniewski, 2014) is a training-
set-based, publicly-available (Sypniewski & Gerdes, 2013) photo-z estimator that
makes use of boosted decision trees (BDTs). BDTs were developed to classify ob-
jects characterized by a vector of observables x into two categories. Decision trees
are trained iteratively, with initially misclassified objects given higher weight, or
“boosted”, in the next training cycle. An individual decision tree is a relatively
weak classifier. But the “forest” of trees generated during the training process,
when their outputs are combined in a way that assigns higher weight to trees
with lower misclassification rates, collectively constitutes a strong classifier. To
adapt a binary classifier to the problem of determining a continuous quantity like
redshift, we divide the redshift range of interest into N discrete bins with a width
roughly 25-50% of the expected photo-z resolution, and train a separate BDT clas-
sifier for each redshift bin, using a forest size of 50 trees. Each classifier is trained
to identify galaxies with a redshift falling in its particular bin as “signal,” and to
reject galaxies falling more than 3�z,phot away from its bin as “background.” The
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3�z,phot exclusion region between signal and background objects is introduced in
order to avoid the overtraining that could result from treating a galaxy with, e.g.,
a redshift of 0.999 as signal and one with 1.001 as background. Each BDT clas-
sifier in this ensemble, when presented with a new galaxy, produces a probability
that the given galaxy falls within its redshift bin. This collection of probabilities
constitutes the ArborZ pdf. ArborZ also provides a single best-estimate photo-z
(from the median of the pdf) and its error, �68 (from its width); however, the full
pdf provides the best characterization of a galaxy’s photo-z.

In the DES-SV sample, we train ArborZ using the MAGAUTO and MAGDETMODEL
magnitudes in grizY , with 50 fixed-width redshift bins out to z = 1.5. The results
are fairly robust with respect to reasonable variations in the forest size, number
of bins, the choice of fixed- or variable-width bins, and the use of either or both
sets of magnitudes.

SKYNET, CLASSIFICATION NEURAL NETWORK

This method, first used in Bonnett (2013), consists of using a neural network
to classify galaxies in classes, in this case redshift bins. A neural network with
a so f tmax transformed output (Pyle, 1999) is able to estimate the probability
that an object belongs to a certain class. Given the fact that a galaxy cannot live
in more than one redshift bin at the same time, a neural network with a softmax
transformation is ideally suited to return a pdf for each galaxy. Before training
the neural network, we bin our data in n redshift bins, the classes. The neu-
ral network is fed the MAGAUTO magnitudes, the MAGDETMODEL magnitudes and
the correct classes. The neural network outputs n values between [0, 1] for each
galaxy. These n values sum up to 1 and hence can be interpreted as the probabil-
ity that a galaxy resides in a redshift bin. In this particular run we used n = 40,
resulting in a �z = 0.035 granularity in the probability density function. The pub-
licly available neural network software SkyNet (Graff et al., 2013) was used for
this work. The neural net is trained using 3 hidden layers with respectively 20,
30 and 40 nodes per layer.

BPZ

The BPZ (Bayesian Photometric Redshifts) photo-z code from Benitez (2000)
and Coe et al. (2006) is a template-based method that returns the whole probabil-
ity density distribution p(z|mi) that the galaxy is at redshift z when its magnitudes
in each band are mi , and also a single photo-z value computed as the maximum
of p(z|mi). Following Bayes Theorem, p(z|mi) is the product of a likelihood and a
prior probability function that represents our previous knowledge of the redshift
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and spectral type t distributions of the sample in the analysis. In the likelihood,
we use the five MAGDETMODEL magnitudes.

• Templates: We use the eight spectral templates that BPZ carries by default
based on Coleman, Wu & Weedman (1980); Kinney et al. (1996), and add
two more interpolated templates between each pair of them by setting the
input parameter INTERP=2 (option by default).

• Prior: We explicitly calibrate the prior in each test by fitting the empirical
function ⇧(z, t|m0) proposed in Benitez (2000) to the corresponding DES-
SV training sample. With this, we are able to remove most of the catas-
trophic outliers which for template-based methods tend to constitute a siz-
able fraction of all galaxies.

• Training: No other training or calibration has been attempted.

EAZY

The EAZY photo-z code (Brammer, van Dokkum & Coppi, 2008) is a template-
based maximum likelihood method that has been specifically optimized for use
when representative spectroscopic redshifts are not available for training set based
estimators. In this implementation we use the five MAGDETMODEL magnitudes.

• Templates: The code uses a novel non-negative matrix factorization algo-
rithm to construct a minimal set of templates which are linear combina-
tions of templates derived from semi-analytic models, based on the Bruzual
& Charlot (2003) models but with the star formation histories computed
from the semi-analytic models of De Lucia & Blaizot (2007). These model
templates are likely to be more representative of galaxies, particularly at
high redshifts, compared to the commonly used Coleman, Wu & Weedman
(1980) or Bruzual A. & Charlot (1993) templates. The code also makes use
of a template error function to account for uncertainties in templates over
specific wavelength ranges.

• Priors: No priors are used.

• Training: No calibration of the templates is performed using spectroscopic
training data. Equally, photometric offsets cannot be derived using spectro-
scopic training sets. In instances where significant offsets need to be applied
to the photometric catalogues, the code is therefore unlikely to perform
well relative to template-based codes where these offsets can be directly
estimated from the training data.
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LEPHARE

LePhare (Arnouts et al. (2002); Ilbert et al. (2006)) is a public template fitting
code that uses a �2 minimization of differences between observed and theoretical
magnitudes to find the best template (galaxy type) and redshift. The code also
provides for each object upper and lower 1-sigma limits for this estimate, a maxi-
mum likelihood estimate for the redshift, K-corrections and absolute magnitudes
for each band and a probability distribution function. An adaptive method can
be used to improve theoretical magnitudes, as well as an N(z) prior to minimize
catastrophic errors. The effect of emission lines on the theoretical magnitudes can
be estimated and taken into account. Several sets of SEDs and extinction laws are
available in the code to be used. For this study we use the five MAGDETMODEL
magnitudes.

• Templates: A set of 66 SEDs were used in the analysis of the CFHTLS data by
Ilbert et al. (2006) obtained from interpolation of the largely used Coleman,
Wu & Weedman (1980) templates for different Hubble types and Kinney
et al. (1996) for starburst galaxies. Since template fitting codes are time
consuming, we searched for a reduced group of templates from this large
set, yielding essentially the same overall statistics as far as dispersion and
outlier fraction are concerned. We performed several tests using the VVDS-
02hr sample with available spectroscopic redshifts and found a reduced set
of 21 templates encompassing SEDs for 12 Ellipticals, 6 Spirals, 1 Im and 2
starburst with satisfactory results. Several tests removing the u-band from
VVDS and CFHTLS data indicated that the discrepancies of photo-z from
the true (spectroscopic) value increase due to galaxy type–extinction de-
generacy. From these tests we concluded that in order to minimize this
problem we should keep the extinction values E(B-V) less or equal to 0.25
(for types Scd and later) and use only three very late type SEDs (1 Im and
2 starbursts).

• Prior: Although the N(z) prior available in LePhare refers to the (B-I) color
from the VVDS survey, we verified that applying the procedure to the g � i
DES color we achieved a significant minimization of the outlier fraction, and
therefore we used this prior.

• Training: The adaptive training method available in LePhare was used to
obtain a re-calibration (zero-points offsets) in each band. This procedure
was first applied to the training sets and the shifts obtained were used when
the code was run on the testing samples.
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ZEBRA

The Zurich Extra-galactic Bayesian Redshift Analyser (Feldmann et al. (2006))
is a flexible and powerful photometric redshift code, based around template fit-
ting. The code produces a posterior distribution for each galaxy in redshift and
template space, P(z, T ), as well as marginalized distributions for P(z) and p(T ).
For redshift computation, the filters were smoothed over a scale of 100, and the
templates smoothed over 30. The tests were conducted with a redshift resolution
in linear steps of �z = 0.01. The five MAGDETMODEL grizY magnitudes were
used in this analysis.

• Templates: 81 templates were used in ZEBRA’s Bayesian mode. These tem-
plates were selected from a super-set of SEDs, and consist of the most fre-
quent best-fit templates at z = zspec for galaxies in the training sample.
The super-set of template SEDs were produced by ZEBRA’s template correc-
tion module from log interpolations between the Coleman, Wu & Weedman
(1980) and Kinney et al. (1996) templates. The module allows the user to
define redshift intervals within which the templates are modified to better
fit the input photometry. For this stage a photometric sample from the COS-
MOS field was used. A fraction of the testing set galaxies have counterparts
within this photometric sample, but the photometry is independent from
the DES-SV data and the specroscopic redshifts were not used.

• Prior: In Bayesian mode, ZEBRA constructs a self-consistent iterative prior
from the galaxy likelihood functions, L(z, T ). The approach is similar to
that taken by Brodwin et al. (2006), but operates in 2-dimensional redshift
and template space. The prior constructed from the training sample was
used for both samples.

• Training: Bordoloi, Lilly & Amara (2010) describe a method of using known
(spectroscopic) redshifts to correct the individual marginalized redshift prob-
ability distributions, P(z). The method demands that the spectroscopic red-
shifts sample their respective P(z) fairly, i.e. the distribution of cumulative
probabilities between zero and zspec should be flat. We apply a simple first
pass of their approach in bins of redshift, with width �zphot = 0.1. Galax-
ies were assigned to these bins based on their maximum posterior redshift.
After correction of the individual P(z), a new zphot was computed as the
maximum of the corrected P(z).
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PHOTOZ

PhotoZ (Bender et al., 2001) is a Bayesian template fitting photometric red-
shift code. The redshift probability of an object is obtained by multiplying the
probability of a �2 fit of template SEDs by prior probabilities for redshift and
luminosity. The total probability of a model then reads:

P(~µ|m)/L (m|~µ) · P(~µ), (3.2)

where m denotes the photometric data (in magnitudes or fluxes), and ~µ are the
model parameters, i.e., redshift z and luminosity M . In this analysis we used the
five MAGDETMODEL grizY magnitudes.

• Templates: The template set we use contains templates ranging from star-
forming (blue) to passively evolving (red) galaxies. It includes model SEDs
from Bender et al. (2001), which were created from spectroscopically ob-
served objects from the Hubble Deep Field North. Another three templates
(an S0, Sac, and an Sbc galaxy) are from Mannucci et al. (2001), and two
empirical SEDs (of an Scd and an Sbc galaxy) are from Coleman, Wu &
Weedman (1980). Our model set additionally includes 13 SEDs from Ilbert
et al. (2006) which are based on spectra from Coleman, Wu & Weedman
(1980) and were optimized to match local star-forming galaxies. This is
a combination of template sets already used in the past for photometric
redshift estimation (e.g., Bender et al. 2001 and Brimioulle et al. 2013).
Furthermore, we incorporate a set of red SEDs in our model set which were
created in order to match the colors of luminous red galaxies (LRGs) from
SDSS-II (Greisel et al., 2013).

• Priors: The redshift and luminosity priors have the form
P(x)/ exp (�((x � x̂)/�)p), where x̂ , �, and p are defined individually
for each model SED. Setting x̂ , �, and p accordingly, we can, for instance,
decrease the probability of observing red models at higher redshifts (z ¶
0.9), or of galaxies that are too bright in absolute magnitude to exist. In
addition to that, we adapt the z and M (absolute magnitude) priors for every
model SED in such a way that photometric redshift outliers with |zphot �
zspec |/(1 + z) > 0.15 (Ilbert et al., 2006) in the Main and Deep DES-SV
training sets are less likely. Therefore, we identify their location in the z
vs. M space and modify the priors in such a way that they assign smaller
probabilities to those regions. This is done solely if the outliers of a template
are isolated from good photometric redshift estimates of the same template
in the z vs. M space.

71



PHOTOMETRIC REDSHIFTS IN THE DES-SV DATA

• Training: We iteratively adapt the zero-points for the training catalogs using
the median magnitude offsets between the data and the model predictions
while optimizing the photometric redshift performance.

3.4.2 RESULTS OF THE PHOTO-z ANALYSES

After the description of the codes, we turn to the study of their performance in
a number of tests using different configurations of the data samples. While most
of these tests focus on estimating how the photo-z determination will perform for
the standard DES data, others look for improvements by using deeper photometry
or additional bands. We also check the differences in the results under variations
in the calibration data and the weights used. Note that the results presented in
this subsection are those considering all the galaxies (with quality cuts), which
are represented by one single statistic, later in the chapter we analyze some of
these results in more detail.

TEST 1: Main-Main

This test is the most representative of the results shown in this chapter, the
default case. We use here the Main training sample to train and calibrate the
photo-z algorithms and the Main testing sample to validate them, therefore, the
test represents the real situation for most of the data collected in the DES survey.

In order to display the performance of all codes, and only for this test in par-
ticular, in Fig. 3.5 we show the zphot vs. zspec scatter plot for all the codes listed
in Table 3.3. Furthermore, we compute all the metrics presented in Table 3.2 and
described in Appendix A. The results, using all the objects in the testing sample
except for the 10% quality cut mentioned above, are shown in Table 6 and Figs
3.6-3.9. The legend is only shown in Fig. 3.6, but applies to subsequent figures
corresponding to this test.

Figure 3.6 shows �68, related to the precision of the photometric redshifts
(and defined in Appendix A), versus the mean bias of the photo-z’s. The black
dashed line sets the DES science requirement on �68, and one can check how
most of the codes presented in this work are below this line, thus fullfilling this
important requirement on precision. Also, among the codes satisfying the �68
requirement, there is a subgroup having very low bias as well. In Fig. 3.6 we show
a zoomed-in of this region of interest, where we can see how training-based codes,
either producing a single photo-z estimate or a probability density function, P(z),
are the ones showing best performance (all the codes in the zoomed-in region
belong to the training-based category).

Figure 3.7 shows the 3� vs. 2� outlier fractions for Test 1. The requirement
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Figure 3.5: zphot vs. zspec scatter plot for all the codes analyzed in Test 1 and listed in Table 3.3.
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Figure 3.6: �68 vs. bias for all the
codes analyzed in Test 1. Black dashed
lines represent the DES science require-
ments in this and subsequent figures.
Training-based codes have triangles as
markers, template-based have circles,
and codes producing a probability den-
sity function (pdf) for the redshift are
marked with a square. This will also
be the convention for the next figures.
Training-based codes, either producing
a single photo-z estimate or a pdf, are
the only ones present in the region of
best performance (zoom-in).

on the 2� outlier fraction (0.1) is beyond the range of the plot, meaning that all
codes fullfill this. However, the 3� outlier fraction requirement, shown as the
black dashed line, is only met by a few codes. Among these codes, there are cases
from the two types of photo-z codes, training and template-based. Also, there is
more homogeneity in this plot: many codes agree with others within error bars.
Both of these requirements are set based on the spread of the �z distribution and
no with respect to a fixed distance from the mean, therefore these values quantify
how sharp the �z distribution is with respect to its center.

Figure 3.8 shows RMS vs. bias for the �z distribution normalized by its error
(�z0) of each of the codes analyzed in Test 1 (��z0 vs. �z0 in our notation). A
large fraction of the codes yield very high values of ��z0 (expected to be close
to 1), meaning that all these codes underestimate their photo-z errors, however,
there is a group of codes with normalized�z distributions approaching a Gaussian
with mean equals to zero and variance equals to one. Also, we do not see a particu-
lar type of photo-z code being problematic here, both training and template-based
codes populate good and bad regions of the plot.

One crucial aspect of photo-z studies, which will be discussed in more de-
tail in Section 3.4.3, is the estimation and calibration of the true galaxy redshift
distributions. In this chapter we use two metrics to compare the reconstruction
of the true redshift distribution by the different photo-z algorithms: the Npoisson
and KS statistics, defined in Appendix A. In both cases, the smaller the value, the
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Figure 3.7: 3� vs. 2� outlier frac-
tion for all the codes analyzed in Test
1. The results are more homogeneous
than those for �68 vs. bias (Fig. 3.6).
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Figure 3.8: RMS vs. bias of the
normalized �z distribution �z0 =
�z/✏phot for all the codes analyzed
in Test 1. Most codes underestimate
✏phot, leading to large values of ��z0.
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Figure 3.9: Npoisson vs. KS statis-
tics for all the codes analyzed in Test
1. Both metrics show how the true
galaxy redshift distribution is recon-
structed through photo-z’s, for each
code. The smaller the value of the
metric, the better the reconstruction.
A strong correlation between the two
metrics is observed, as expected.

closer are the true redshift distribution and its reconstruction through photo-z’s.
Figure 3.9 shows these values for all the codes analyzed in Test 1. As expected,
the two metrics are strongly correlated. It can also be seen how having a redshift
pdf for each galaxy, instead of a single-estimate photo-z, helps a given code to
have a better redshift reconstruction. This can be inferred looking at the cases
where both the pdf and the single-estimate are displayed (TPZ, ANNz2, BPZ): in
all these cases the pdf version of the code obtains better results in terms of these
two metrics. As for the results, TPZ and the nearest-neighbor code, NIP-kNNz,
show the best performance in this regard.

To summarize the results from Test 1, we note that most of the codes pre-
sented in this work fulfill the requirements for �68 and 2� outlier fraction, while
only a few fulfill the 3� outlier fraction requirement. Also, training-based codes
seem to yield better photo-z precision on average and better N(z) reconstruction,
but, when evaluating other quantities like outlier fraction or the estimation of
photo-z errors, there is no a clear indication as of which class of photo-z approach
show more accurate metrics. As pointed out in Carrasco Kind & Brunner (2014)
these results might vary for different regions on the multidimensional photomet-
ric space or within the redshift range. Usually, training-based algorithms perform
better on areas well populated with training galaxies and poorly on those less
dense regions (as in high redshift bins), fact that we can observe from Figure
3.5 where training-based methods tend to have tighter distributions at the center
while some template-based methods can compute photo-z’s for galaxies at higher
redshift more efficiently.
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Figure 3.10: �68 vs. bias for all the
codes analyzed in Test 2. Results of
Test 1 for each code are shown as
a point without error bars (for sim-
plicity) and connected to the result
in this test through a solid line. This
convention will also be used in sub-
sequent plots for easier comparison
against Test 1, which is the default
case. All codes improve in photo-z
precision (�68) due to the deeper pho-
tometry.

TEST 2: Deep-Deep

In this test we train or calibrate the algorithms using the Deep training sample
and we apply them on the Deep testing sample (see results in Table 7). The goal
of this test is to check the differences in photo-z performance when we use higher
S/N data, with the caveat that this sample has also a slightly different redshift
range. In order to enable an easier comparison with Test 1, we include in the
plots for this Test 2 the data from the analogous plots in Test 1, and we do it
by including the points for Test 1 (without error bars, for simplicity) connected
by a straight line to the corresponding point for Test 2 (with error bars). Figure
3.10 shows �68 versus the mean bias of the computed photo-z’s for Test 2. This
is analogous to Fig. 3.6. There we can see that there is general improvement
in �68: most of the codes move to lower values in the plot with respect to Test
1. So we conclude that using higher S/N photometry observations increases the
photometric redshift precision of a sample. However, in the case of the bias there
is no general trend: some codes improve and some others do not.

Figures 3.11 and 3.12 are analogous to Figs. 3.7 and 3.8, respectively. In
the plot showing the outlier fraction (Fig. 3.11), Test 2 seems to introduce an
additional scattering, i.e. codes that did better in Test 1 seem to improve more in
Test 2 than codes that did not do so well in Test 1, which now seem to worsen on
average. This fact somehow removes the homogeneity we saw in Fig 3.7, where
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Figure 3.11: 3� vs. 2� outlier frac-
tion for all the codes analyzed in Test
2. This test shows a larger scatter
in the points with respect to the re-
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ing well for Test 1 improve in Test 2
while codes doing not so well for Test
1 show a worsening in Test 2.
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Figure 3.12: RMS vs. bias of the nor-
malized photo-z distribution for all
the codes analyzed in Test 2. Here the
results are, in general, close to those
observed in Test 1.
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Figure 3.13: �68 vs. bias for all the
codes analyzed in Test 3. Results
are overall compatible with Test 1 al-
though some particular codes, such as
ArborZ, show a significant improve-
ment by using deeper data for train-
ing.

many codes produced results compatible within errors. Figure 3.12 shows the
RMS and bias for the normalized�z distribution, which, similarly to Test 1, shows
that many codes underestimate the photo-z errors. The behavior here is similar
to the one regarding outlier fractions: Test 2 introduces even more differences
between codes doing well and codes that are less accurate.

TEST 3: Deep-Main

Test 3 uses the Deep training sample for training or calibration of the algo-
rithms and uses the Main testing sample to compute photo-z’s (see results in Ta-
ble 8 in the Appendix). In contrast to Test 2, this is a realistic case since a Deep
training sample already exists and is available to use for photo-z calibration of
DES data, with the same depth as the Main testing sample. Therefore, this test
explores the possibility of improving the photo-z performance of Test 1 by using
higher S/N data for training or calibration.

Figure 3.13 shows the results on precision and bias for Test 3, and, as before,
compares with Test 1. Some template-based codes are not included in this test
so less points are shown with respect to Fig. 3.6. In this test, basically all codes
fulfill the�68 requirement. In addition, some codes show important improvement
when using this higher S/N data for training, such as ArborZ. However, there is
no general �68 improvement as there was for Test 2, and the results are generally
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Figure 3.14: 3� vs. 2� outlier frac-
tion for all the codes analyzed in Test
3. There is a general agreement with
the results from Test 1.

comparable with those from Test 1. Figures 3.14 and 3.15 show also a high degree
of compatibility with Test 1, contrary to what we saw in Test 2, where larger
differences were appreciated.

IMPORTANCE OF THE u BAND

In this part of the chapter we want to adress the effect of adding u band pho-
tometry to the photo-z performance. It is important to stress that a u band is
available in DECam, although it is not planned to be used in the DES survey.

We show the effect of incorporating the u band to Test 1. On one hand, in Fig.
3.16 we can appreciate this effect in the overall photo-z precision for the whole
redshift range, and we clearly see an improvement on �68 with respect to Test 1
(shown again as the points without error bars connected through a solid line) for
most of the codes present in the plot.

On the other hand, since u is an ultraviolet band one expects it to be more
relevant for low-redshift galaxies. Therefore, in Fig. 3.17 we show the effect of
adding the u band to Test 1 in �68 as a function of photometric redshift for 4
selected photo-z codes (the same ones we select for further analysis in 3.4.3).
There we can clearly observe a signficant improvement in �68 at low redshift
(zphot < 0.5), while the precision at higher redshift is compatible within error bars
in the two cases. Furthermore, in order to visually appreciate the improvement
at low redshift, in Fig. 3.18 we show the zphot vs. zspec scatter plot after adding
the u band to Test 1 for the 4 same codes shown before, to be compared directly
with Fig. 3.5.
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Figure 3.15: RMS vs. bias of the nor-
malized photo-z distribution for all
the codes analyzed in Test 3. Again,
results generally agree with Test 1.
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selected codes and for Test 1
+ u band. As expected, the
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When comparing with the
corresponding plots in Fig.
3.5, a clear improvement at
low redshift, with an impor-
tant reduction in the number
of outliers, can be appreci-
ated.
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Table 3.4: �68 for the four cases in Test 4, corresponding to training on each of the four major
spectroscopic samples and testing on the full Main testing sample. The results for Test 1 are also
shown, for comparison.

Codes, �68 Test 1 Test 4 VVDS Deep Test 4 VVDS Wide Test 4 ACES Test 4 zCOSMOS
DESDM 0.094 ± 0.002 0.106 ± 0.002 0.139 ± 0.005 0.103 ± 0.003 0.148 ± 0.008
ANNz 0.086 ± 0.002 0.101 ± 0.003 0.138 ± 0.004 0.091 ± 0.003 0.104 ± 0.003
TPZ 0.078 ± 0.002 0.090 ± 0.002 0.110 ± 0.005 0.093 ± 0.003 0.097 ± 0.003
NIP-kNNz 0.120 ± 0.004 0.146 ± 0.006 0.156 ± 0.007 0.127 ± 0.005 0.148 ± 0.007
ANNz2 0.089 ± 0.003 0.099 ± 0.003 0.143 ± 0.008 0.104 ± 0.004 0.137 ± 0.006
BPZ 0.097 ± 0.003 0.096 ± 0.002 0.095 ± 0.002 0.095 ± 0.003 0.095 ± 0.002
LePhare 0.111 ± 0.003 0.110 ± 0.003 0.110 ± 0.003 0.111 ± 0.003 0.112 ± 0.003
PhotoZ 0.097 ± 0.003 0.101 ± 0.003 0.096 ± 0.002 0.096 ± 0.003 0.097 ± 0.003
TPZ P(z) 0.078 ± 0.002 0.091 ± 0.001 0.108 ± 0.004 0.093 ± 0.003 0.094 ± 0.002
BPZ P(z) 0.101 ± 0.002 0.096 ± 0.002 0.097 ± 0.002 0.097 ± 0.002 0.100 ± 0.002
ANNz2 P(z) 0.085 ± 0.002 0.103 ± 0.003 0.217 ± 0.009 0.103 ± 0.005 0.140 ± 0.009

TEST 4: IMPORTANCE OF DIFFERENT SPECTROSOPIC SETS

In all previous tests we have considered a single training sample (in two ver-
sions: Main and Deep) constructed with joint data from different spectroscopic
surveys with different properties, as described in Section 3.3. Now we want to
study the importance of the different major spectroscopic data sets used in the
photo-z performance using different photo-z codes, both training and template-
based. In particular, this test, that we call Test 4, consists on selecting from each
of the 4 calibration fields depicted in Fig. 3.1 the major spectroscopic set used
in the field, then training or calibrating the algorithms using only this subset of
spectroscopic objects in the training sample, and then apply the algorithms on the
full testing sample, including all the spectroscopy available. In this way, we have
selected spectroscopy from VVDS Deep in the SN-X3 field, from ACES in the SN-C3
field, from VVDS Wide in the VVDS F14 field and from zCOSMOS in the COSMOS
field. For simplicity, we have considered only the Main training and testing sam-
ples (i.e. main survey depth photometry), so the results should be compared with
Test 1.

Table 3.4 shows the photo-z precision (�68) for the different cases in Test 4 and
for Test 1, for comparison. As a first conclusion from this table, we observe how
template-based codes, such as LePhare, BPZ or PhotoZ, are not very dependent on
the spectroscopic data used for calibration and they show very consistent results
for Test 1 and the four cases in Test 4. This is expected since these codes get the
photometric information of the galaxies from a given set of predefined templates,
either empirical or theoretical, and only use the galaxies in the training sample for
calibration of the priors (see 3.4.1 for more information about calibration of the
priors for each particular template-based code). On the contrary, and as a second
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Figure 3.19: i band magni-
tude distributions for the four
training samples used in Test
4, each corresponding only to
one of the four major spec-
troscopic samples used, one
from each of the calibration
fields.

conclusion, we observe in the table how training-based codes are dependent on
the data used for their training. For this class of codes (e.g. DESDM, ANNz, TPZ,
...) we can observe how the Test 1 result is generally better than any of the Test
4 results, given that, in this case, all the photometric information of the galaxies
comes from the training set and thus having a more complete set helps in the
photo-z performance.

Additionally, there are substantial differences in the photo-z performance de-
pending on the spectroscopic data used for training. In order to understand this,
we show in Fig. 3.19 the i magnitude distribution for each of the four training
sets used in this test. On one hand, the VVDS Deep and the ACES cases of Test 4
give the most similar results to Test 1 since VVDS Deep and ACES are the deepest
spectroscopic samples, and the only ones reaching iAB = 24 as can be appreciated
in Fig. 3.19. On the other hand, Test 4 VVDS Wide gives the poorest results com-
pared to Test 1 due to the fact that the VVDS Wide spectroscopic data is much
shallower (iAB < 22.5) than DES, hence the training sample is not complete. Fi-
nally, using zCOSMOS data as a training sample seems to work better than VVDS
Wide but not as well as VVDS Deep and ACES spectroscopy.

STABILITY AFTER REMOVING THE HIGHEST-WEIGHT GALAXIES

In every application of a weighting method there exists the danger of the anal-
ysis being dependent on a few, highly weighted objects in the sample. Here we
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Table 3.5: �68 results after removing the 5% of the galaxies with highest weights in Test 1. Also
showing the default Test 1 for comparison.

Codes Test 1 Test 1 cut
DESDM 0.094 ± 0.002 0.088 ± 0.002
ANNz 0.086 ± 0.002 0.085 ± 0.002
TPZ 0.078 ± 0.002 0.073 ± 0.002
RVMz 0.116 ± 0.004 0.103 ± 0.004
NIP-kNNz 0.120 ± 0.004 0.110 ± 0.004
ANNz2 0.089 ± 0.003 0.084 ± 0.003
BPZ 0.097 ± 0.003 0.095 ± 0.002
EAZY 0.109 ± 0.003 0.123 ± 0.002
LePhare 0.111 ± 0.003 0.109 ± 0.003
PhotoZ 0.097 ± 0.003 0.089 ± 0.003
TPZ P(z) 0.078 ± 0.002 0.073 ± 0.002
ArborZ P(z) 0.128 ± 0.003 0.117 ± 0.003
ANNz2 P(z) 0.085 ± 0.002 0.082 ± 0.002
SkyNet P(z) 0.077 ± 0.002 0.067 ± 0.002
BPZ P(z) 0.101 ± 0.002 0.097 ± 0.002
ZEBRA P(z) 0.109 ± 0.004 0.100 ± 0.004

demonstrate that the conclusions of this analysis do not change after removing
the highest-weight galaxies. We test it only on the photo-z precision of Test 1, for
simplicity.

In Table 3.5 we show the�68 results for Test 1 together with the same test after
removing the 5% of the galaxies with the highest weights (accounting for almost
30% of the total weight) in the Main testing sample. Comparing the two results
for each of the photo-z codes we clearly see an improvement in photo-z precision
when the 5% cut is applied, but this is expected since removing the highest-weight
galaxies also means removing the faintest galaxies in the catalog, which are the
most difficult galaxies to get photo-z’s of. However, this predicted improvement
is both small and uniform among all codes so that the main conclusions reached
in the chapter remain valid.

3.4.3 RESULTS FOR DESDM, TPZ, SKYNET AND BPZ PHOTO-z CODES

So far we have compared a large number of photo-z codes in a variety of sit-
uations and configurations. Next we look in greater detail at four photo-z codes:
DESDM, TPZ, SkyNet and BPZ. The DESDM photo-z code, a regression artificial
neural network, is integrated within the DES Data Management service, so its re-
sults will be made available together with all the DES data products, making it
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a clear choice to be studied in detail here. TPZ and SkyNet are state-of-the-art
training-based methods using, respectively, random forests and artificial neural
networks to compute photo-z’s , and yielding the best performance among all the
codes utilized in this analysis. Finally, BPZ is the template-based photo-z code
showing best performance in the tests previously shown, and it has been widely
used by other galaxy surveys such as CFHTLenS (Heymans et al., 2012; Hilde-
brandt et al., 2012). All these four codes are public.

In 3.4.2 we have studied the default configuration for this analysis, showing
the most relevant quantities for all the codes and testing them against the DES
requirements. However, we have not looked at the redshift dependence of these
quantities, mainly due to difficulties showing that much information for a large
number of codes. Figure 3.20 shows the photo-z bias, precision and outlier frac-
tions as a function of photometric redshift for the four selected codes. We can
see how the four codes behave similarly for all the metrics displayed there. The
�68 requirement is fulfilled by the codes in most of the redshift range, except at
high redshift where error bars are large due to the small number of objects. As
we previously observed, the 3� outliers fraction is the most difficult requirement
to meet, although the results are close to this limit within error bars, while the
2� outliers fraction required is met in the whole redshift range for all the codes.
As mentioned at the begining of section 3.4, the requirement on the mean bias
in photo-z bins of width 0.1, |�z| < 0.001(1 + z), is not currently being ana-
lyzed, since it necessitates a larger spectroscopic sample in order to be able to
calibrate the mean bias away. However, the top plot in Fig. 3.20 shows that for
the training-based codes the mean bias in each photo-z bin is compatible with
zero within errors, although the current errors are too large to assess whether the
requirement is met. In some cases the overall photo-z bias is already at the 0.001
level, as can be seen in Tables 6–8, although again the errors are large.

A very important issue, which is actually the most important result needed
from photo-z studies in order to perform many cosmological analyses, is the esti-
mation of true redshift distributions N(z). In Fig. 3.21 we observe how the full
redshift distribution reconstructed from the four photo-z codes compares to the
spectroscopic distribution. The DESDM code produces one single value for the
photo-z of each galaxy in the testing sample while the other three are P(z) codes,
so that they return a probability density function (pdf) for each galaxy to be at
a given redshift. This is the reason why the N(z) reconstruction looks smoother
for TPZ, SkyNet and BPZ, since these are computed from stacking all individual
photo-z pdfs. Quantitatively, one can measure how good an N(z) reconstruction
is by looking at the Npoisson and KS metrics in Table 6: the lower these values are,
the better is the agreement between the true N(z) and the photo-z-reconstructed
one. As for the advantage of using P(z) codes, one can observe in Table 6 how
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Figure 3.20: Results of Test
1 for the 4 selected photo-z
codes. From top to bottom,
the photo-z bias, �68 and the
2� and 3� outlier fractions,
in bins of zphot . DES require-
ments, displayed as a black
dashed line, are shown for the
latter 3 metrics.

the Npoisson values for TPZ and BPZ are significantly smaller in their P(z) versions
than in their single-estimate photo-z versions.

On the other hand, although this full redshift distribution is interesting for
photo-z analyses, most of the cosmological studies split the galaxy sample into
multiple photo-z bins, therefore there is a need to know the true redshift distri-
bution inside each of those photo-z bins. Figure 3.22 shows the redshift distribu-
tions, both spectroscopic and photometric, for six photo-z bins of width 0.2 from
z = 0.1 to z = 1.3, and for the four photo-z codes selected. The limited number
of spectroscopic galaxies available makes the distributions shown in the figure
somewhat noisy, especially in the last photo-z bin, where a very small number of
galaxies is available. The third and fourth bins in photo-z are the ones presenting
the narrowest spectroscopic redshift distributions, which agrees with the fact that
the photo-z precision is the highest in this redshift range as can be appreciated in
Fig. 3.20.

In Fig. 3.22, we observe how single-estimate photo-z codes produce a top-hat
photo-z distribution for each (photo-z selected) redshift bin. In this case, de-
picted in the left column of Fig. 3.22, the photometric and spectroscopic redshift
distributions of each bin are very different and therefore a spectroscopic sample
is needed to calibrate the broadening of the redshift bin due to photo-z errors. On
the other hand, when using P(z) codes to bin a sample in photometric redshift,
one selects a galaxy to be inside a given redshift bin by looking at the position of
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Figure 3.21: Full weighted
spectroscopic redshift dis-
tribution and its photo-z
reconstruction using the four
selected codes for Test 1.
TPZ, SkyNet and BPZ produce
redshift pdfs for each galaxy,
thus yielding smoother
photo-z distributions.

the median of the pdf (other choices are also possible, e.g. the mode), checking
whether it is within the boundaries of the the bin and summing the full pdf of
the galaxies inside, including probabilities beyond the bin limits. That makes the
photo-z distribution broader than the bin limits and closer to the spectroscopic
redshift distribution of the bin, as can be seen in the three rightmost columns in
Fig. 3.22. We can see on those panels how the tails of the spectroscopic distribu-
tions are well represented by the photo-z distributions. This is an important point
in favor of P(z) codes since their ability to reproduce the spectroscopic redshift
distribution of a photo-z selected bin by stacking their redshift pdfs makes them
less dependent on a spectroscopic calibration sample.

In summary, we have characterized for each code the true redshift distribution
inside each photo-z bin. This is the most important quantity to be extracted from
any photo-z analysis, since it is the starting point for many cosmological studies
such as galaxy clustering and weak lensing. Regarding the performance in such
task, the four codes studied in this section show similar spectroscopic redshift
distributions for each photo-z bin, but P(z) codes are able to yield a better re-
construction of these distributions by adding up the redshift pdfs for each galaxy
which makes them somewhat less reliant in the precise photo-z calibration.
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Figure 3.22: Weighted spectroscopic redshift distributions and their photo-z reconstruction using
the four selected codes, for photo-z bins of width 0.2. The number of spectroscopic galaxies inside
each photo-z bin is shown. The DESDM is a single-estimate photo-z code, while TPZ, SkyNet and
BPZ are P(z) codes. This is the reason why the photo-z distributions returned by the latter codes
can reconstruct the tails of the spectroscopic distributions beyond the photo-z bins. The photo-z
bins are defined using the best estimate zphot for each code, while, for TPZ, SkyNet and BPZ the
recostructed redshift distributions are obtained by stacking the probability density functions for
each galaxy.
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3.5 DISCUSSION

We now discuss some of the results and implications of the analyses presented
above. First, we consider the results from different types of photo-z codes, and
afterwards we compare the main outcomes from this study with previous results
in the literature.

The photo-z codes showing the best performance in the analysis are all training-
based methods. Among them, there are various codes using Artificial Neural Net-
works (ANNs) in different ways and configurations (see Section 3.4.1), and the
similarities and differences between them go beyond the network architecture.
DESDM uses hyperbolic tangent activation functions in the hidden layer while
ANNz and SkyNet use a sigmoid activation function. ANNz2 results are a mean
of several runs where both activations functions are used in the different runs.
Vanzella et al. (2004) came to the conclusion that the choice of activation be-
tween sigmoid and hyperbolic tangent functions has little effect on the photo-z
performance. SkyNet was also run with rectified linear units as activation func-
tion, which have been shown to outperform more traditional activation functions
in object classification (Glorot, Bordes & Bengio, 2011), but no improvement in
the photo-z problem was observed. SkyNet, ANNz and ANNz2 use weight regular-
ization to avoid over fitting while all the four methods monitor the performance
on a validation set to prevent overtraining. DESDM and ANNz use first-order gra-
dient information while SkyNet and ANNz2 also use second-order derivative in-
formation to train the network. SkyNet and ANNz2 are the only networks adding
a constraint to the outputs: ANNz2 does this on a redshift bin per redshift bin
basis while SkyNet uses a softmax transformation in the final layer, adding a con-
straint on all redshift bins simultaneously. In conclusion, the neural networks with
regularization perform better than the un-regularized DESDM network while the
fact that SkyNet uses a softmax constrained output in combination with a back-
propagation algorithm that uses second order derivative information seems to give
it the edge over the rest of ANNs.

Aside from ANNs, TPZ, which is a state-of-the-art photo-z code using Predic-
tion Trees and Random Forests, performs remarkably well in all the tests in this
work. The prediction trees and random forest techniques used by TPZ have the
advantage that they have fewer hyper parameters to be chosen compared to neu-
ral networks. Neural networks have, amongst others, to choose the amount of
hidden layers, the amount of nodes per hidden layer, the learning rate and at
least one regularization parameter if present. Random forests used in TPZ have
only 2 hyper parameters to choose: the amount of trees used and the size of the
subsample set of features used at each split. This leaves out the choice of acti-
vation function in neural networks and the choice of the measure of information

90



3.5 DISCUSSION

gain at each split in random forests, maximizing its performace.
Furthermore, training-based photo-z codes show lower bias compared to that

of template-based codes, which indicates possible systematic inaccuracies in the
template sets. This can be solved by using adaptive recalibration procedures,
which adjust the zero-point offsets in each band using the training sample. Such
technique has been succesfully applied by LePhare in this work, as was also the
case in Hildebrandt et al. (2010).

The photo-z precision values obtained by template-based methods in this study
are all compatible with each other within 10%. BPZ and PhotoZ yield the highest
photo-z precision among the methods of this class. The reason for this is probably
not the template sets they use, which for BPZ is a combination of Coleman, Wu &
Weedman (1980) and Kinney et al. (1996), and a more complex combination of
templates for PhotoZ (see 3.4.1), since other codes include similar libraries. The
fact that they both use Bayesian priors calibrated on DES data, and not only on
previous datasets, can be relevant here, although this makes the result more de-
pendent on how representative the training sample is of the full DES data sample.

In order to set up a context for DES photo-z results, it is worth checking the
performance obtained by previous similar surveys. Of particular interest is the
comparison to the CFHTLS and CFHTLenS (which are two different reductions of
the same survey), photo-z results (Coupon et al., 2009; Hildebrandt et al., 2012),
due to the similarities between CFHTLS and DES in terms of survey specifications.
However, it is important to stress the differences between DES and CFHTLS. For
instance, CFHTLS uses deep u band photometry by default, although they also test
the importance of this band by computing their photo-z’s without it (Ilbert et al.,
2006). They find a clear degradation in their photo-z precision at zspec < 0.4,
compatible with our findings. Another difference comes from the fact that they
do not apply any weighting technique to their calibration sample, thus leaving
room for discrepancies between their calibration and full samples. In addition
we should point out that their spectroscopic samples for training/calibration are
much larger than the ones used here by about a factor of 5. Finally, their pho-
tometry (S/N' 11 at iAB = 24) is deeper than the Main reduction in this chapter,
being close to our Deep sample (see Fig. 3.2). In Coupon et al. (2009), CFHTLS
photo-z’s show a precision of about �68 ' 0.085 (roughly translating their result
to the metric used here) for ugriz photometry in galaxies up to iAB < 24. So,
despite the differences stated above, their value of the photo-z precision is at the
level of the DES photo-z precision shown in this chapter. Moreover, this level of
precision is obtained already in Test1, which uses slightly shallower photometry
and lacks the u band. Even so, the differences in photo-z precision obtained by
different algorithms might be relevant here. In particular, the results reported in
Coupon et al. (2009) used a template-based photo-z code, while the most pre-
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cise methods reported in this study come from training-based codes. If we do the
comparison between template-based codes, the results in this study are close but
do not exceed the precision reported by CFHTLS.

In terms of outlier fraction, Coupon et al. (2009) report a value for the frac-
tion of galaxies with |�z/(1+ z)| > 0.15 of ⌘ = 10.1%. In order to enable the
comparison, since the metric used in this chapter differs from their approach, we
have computed ⌘ for two cases in this study. On the one hand, we have estimated
⌘ for a template-based photo-z code (BPZ), trying to make a fair comparison since
this is the class of algorithm used in Coupon et al. (2009). In this case, we obtain
⌘= 10.0%, in perfect agreement with their result. On the other hand, computing
this outlier rate for a template-based code (DESDM) yields ⌘= 6.1%, significantly
improving the template-based code result.

We conclude that the overall photo-z results shown in this chapter are within
the expectations for DES if we take into account the performance reported by
previous comparable studies for a survey of similar characteristics.

3.6 SUMMARY AND CONCLUSIONS

The Dark Energy Survey succesfully installed DECam during the second semester
of 2012, starting its operations in November 2012 with a Science Verification (SV)
period lasting until February 2013. Among the 150 sq. deg. covered by SV obser-
vations, four different fields, of about 3 sq. deg. each, overlap with areas with
substantial spectroscopic coverage such as VVDS 02hr or COSMOS. Using grizY
photometry for galaxies matched to the existing spectroscopic data in these four
calibration fields, this chapter presents the photometric redshift performance of
the DES survey in the SV period. Most of the relevant photo-z codes have been
used in the analysis.

Since spectroscopic galaxy samples are generally shallower, a weighting tech-
nique is used to make the calibration sample of galaxies to mimic the DES full
sample in magnitude and color space in order to properly estimate the photo-z
performance in the DES galaxy sample.

Calibration and testing samples have been produced with two different depths:
Main is the default depth in the DES survey, and Deep corresponds to the depth
in SNe fields. Test 1, which uses the Main training and testing samples, repre-
sents the default case for photo-z estimation in DES. Results from 13 different
codes are analyzed in this case, showing fluctuations in photo-z performance but
a general agreement in codes of the same type (machine-learning or template fit-
ting algorithms). In particular, most of the codes analyzed comfortably meet the
DES science requirements in terms of photo-z precision and several also meet the
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requirements on the fractions of outliers.
In Test 2 we explore the impact of deeper and higher S/N photometry in photo-

z calculations, showing that all the codes used improve their results significantly,
as expected. In Test 3 we explore the possibilty of using deeper photometry only
for training/calibration of the algorithms. In this case we see no general improve-
ment, although there is a significant enhancement using specific codes.

In an additional test, we consider the incorporation of the u band, which is
available in DECam but not used in the DES survey, demonstrating a general im-
provement in photo-z precision, particularly at low redshift (< 0.5). This is ex-
pected since the u band is crucial for the filter set to bracket the 4000Å break in
low redshift galaxies. However, due to the high mean redshift of the full DES
sample, the impact of not using that band in the overall photo-z precision is less
important than in previous, shallower surveys such as SDSS. Moreover, we study
the importance of the different spectroscopic data sets used, showing how the sets
spanning the whole photometric space are crucial for training-based methods, and
demonstrated that the results are stable under the removal of the galaxies with
highest weights from the analysis.

Generally, training-based photo-z codes show the best performance in the tests
in terms of photo-z precision and bias. Among them, TPZ, using Prediction Trees
and Random Forest, and SkyNet, a state-of-the-art Artificial Neural Network ap-
plication, seem to yield the most accurate results, achieving a core photometric
redshift resolution below �68 = 0.08. The fact that these two new codes perform
better than others extensively used in the literature shows how there is room for
improvement in the photo-z industry. On the other hand, all template fitting meth-
ods employed show consistent results between them, although the use of Bayesian
priors specifically calibrated on DES data and adaptive template-recalibration pro-
cedures appears to help significantly.

Finally, in the last part of the chapter, we choose four photo-z codes, repre-
senting different techniques and types, and we present a more detailed analysis of
their results. We show some of the most relevant metrics as a function of redshift
and, most importantly, we study the estimation of the true redshift distributions
N(z) computed using photo-z’s . For these four codes, we obtain the true redshift
distributions in six photo-z bins. Figure 3.21 shows the DES photo-z capabilities
in such crucial task, and demonstrates the ability to split the DES full sample in
tomographic redshift bins of width 0.2 already with these early data. Further-
more, the calibration of the true redshift distribution of a photo-z selection is the
most important ingredient for cosmological studies involving galaxy clustering or
weak lensing, and it is an important outcome from this chapter, enabling further
science analyses.

The photo-z analyses carried out in this work using these early stage DES data
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will serve as a benchmark for future data releases, and as the survey area grows
during the observation period, more spectroscopic data will be available allow-
ing a better calibration and a better sampling for training algorithms. Therefore
these promising early results will do nothing but improve in the near future, which
will allow putting tighter constrains on several cosmological parameters. Further-
more, the 5-band optical and near-infrared photometry of DES can be combined
with the infrared J and Ks photometry provided by the VHS survey (McMahon
et al., 2013) in 90% of the DES footprint. This should result in improved photo-
metric redshift estimations, particularly at high redshift (Banerji et al., 2008).
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Cosmology from LSS and WL
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Chapter 4

COSMOLOGY FROM LARGE SCALE GALAXY

CLUSTERING AND GALAXY-GALAXY LENSING WITH

DES-SV DATA

4.1 INTRODUCTION

Since the discovery of cosmic acceleration, the nature of dark energy has
emerged as one of the most important open problems in cosmology. Wide-field,
large-volume galaxy surveys are promising avenues to answer cosmological ques-
tions, since they provide multiple probes of cosmology, such as Baryon Acoustic
Oscillations (BAO), large scale structure, weak lensing and cluster counts from a
single dataset. Moreover, some of these probes can be combined for greater ef-
fect, since each is sensitive to their own combination of cosmological parameters
and systematic effects. In this chapter, we will focus on combining the large scale
angular clustering of galaxies with measurements of the gravitational lensing pro-
duced by the large scale structure traced by the same galaxies, as observed in the
Dark Energy Survey (DES).

Measurements of the large scale clustering of galaxies are among the most
mature probes of cosmology. The positions of galaxies are seeded by the distri-
bution of dark matter on large scales and the manner in which the growth of
structure proceeds from gravitational collapse is sensitive to the relative amounts
of dark matter and energy in the Universe. There is a long history of using
large-volume galaxy surveys for the purposes of constraining cosmology, includ-
ing DES, Sloan Digital Sky Survey (SDSS) (York et al. , 2000), Hyper Suprime-
Cam (HSC) (Miyazaki et al., , 2012), the Kilo-Degree Survey (KiDS) (de Jong et
al., 2013; de Jong et al. , 2015; Kuijken et al., 2015), and the Canada France
Hawaii Telescope Lensing Survey (CFHTLenS) (Heymans et al. , 2012; Erben et
al., 2013).
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Gravitational lensing, the deflection of light rays by massive structures, pro-
vides a complementary method of probing the matter distribution. Here we fo-
cus on galaxy-galaxy lensing (Tyson et al., 1984; Brainerd, Blandford & Smail ,
1996), when both the lenses and sources are galaxies. This involves correlating
the amount of distortion in the shapes of background galaxies with the positions
of foreground galaxies. The amount of distortion is indicative of the strength of
the gravitational potential along the line of sight and therefore tells us about the
amount of matter contained in the lens plane. Weak gravitational lensing pro-
duces two effects, magnification of the source and shearing of its image, but this
analysis is only concerned with the latter. These have been used to probe both
cosmology (Mandelbaum et al., 2013; Cacciato et al., 2013; More et al., 2015)
and the structure of dark matter halos and its connection to the galaxy distribu-
tion and baryon content of the Universe (Sheldon et al., 2004; Mandelbaum et
al., 2006, 2008; Cacciato et al., 2009; Leauthaud et al., 2012; Gillis et al., 2013;
Velander et al., 2014; Hudson et al., 2015; Sifón et al., 2015; Viola et al., 2015;
van Uitert et al., 2016).

Individual studies of large scale structure (Crocce et al., 2015), galaxy-galaxy
lensing (Clampitt et al. , 2016) and cosmic shear (Becker et al., 2015; The Dark
Energy Survey Collaboration , 2015) using DES data as well as combined analyses
focusing on smaller scales (Park et al., 2015) have been presented elsewhere. In
this chapter, we combine angular clustering and galaxy-galaxy lensing to jointly
estimate the large-scale galaxy bias and matter clustering and constrain cosmo-
logical parameters.

The plan of the chapter is as follows. Section 4.2 outlines the theoretical
framework for modelling the angular galaxy correlation function and galaxy-galaxy
lensing. Section 4.3 describes the galaxy sample used and the measurements from
DES data, as well as the covariance between the two probes. Our cosmology
results are summarized in Section 4.4 including constraints on a five-parameter
⇤CDM (Cold Dark Matter) model and a six-parameter wCDM model, where w, the
dark energy equation of state parameter is also allowed to vary. We discuss the
robustness of our results and our tests for systematic errors in Section 4.5. Finally,
we combine our analysis with other probes of cosmology and compare our results
to previous results in the literature in Section 4.6. Our conclusions are presented
in Section 4.7.

4.2 THEORY

We are interested in describing the angular clustering of galaxies, w(✓ ), and
the tangential shear produced by their host dark matter halos, �t(✓ ), as a function
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of cosmology. The angular correlation function, w(✓ ), can be expressed in terms
of the galaxy power spectrum as:

C(`) =
1
c

Z
d�

Å
nl(�)H(�)

�

ã2

Pg g(`/�), (4.1)

w(✓ ) =
Z
`d`
2⇡

C(`)J0(`✓ ), (4.2)

where Pg g is the galaxy auto power spectrum, J0 is the Bessel function of order 0, l
is the angular wavenumber, � is the comoving radial co-ordinate, H(�) is the Hub-
ble relation, c is the speed of light, and nl(�) is the number of galaxies as a func-
tion of radial distance from the observer, normalized such that

R �max

�min
nl(�) d� = 1.

Note that Eq. 4.2 uses the Limber approximation (Limber , 1953; Kaiser , 1992),
such that the radial distribution of galaxies, nl(�), is assumed to be slowly vary-
ing over our redshift slice. We have also ignored the contribution of redshift-space
distortions to the angular clustering; this is expected to be small due to the width
of the redshift intervals used; for the full expression, see Crocce et al. (2015).

The tangential shear is given by:

h�t(✓ )i= 6⇡⌦m

Z
d� nl(�)

f (�)
a(�)

Z
dk kPg�(k,�)J2(k,✓ ,�), (4.3)

where f (�) =
R

d� 0ns(� 0)�(� � � 0)/� 0 is the lens efficiency, a is the scale fac-
tor and nl(�) and ns(�) are the selection functions of the lenses (foreground)
and source (background) galaxies respectively. The foreground galaxies supply
the gravitational potentials that lens the background galaxies. The tangential
shear is a measurement of the amount of distortion introduced into the images
of background galaxies from the gravitational potentials along the line of sight as
a function of scale. We will discuss the impact of photometric redshift (photo-z)
errors on the lens and source distributions and propagate these to the measured
cosmological constraints in Section 4.5.

The combination of these two probes has been extensively discussed in the
literature (Baldauf et al., 2010; Yoo & Seljak, 2012; Mandelbaum et al., 2013;
Park et al., 2015) and provide another means by which we can mine the rich, well
calibrated DES-SV dataset. Unlike Park et al. (2015), we restrict our modelling
to sufficiently large scales such that we are not sensitive to how galaxies populate
individual halos, i.e. Halo Occupation Distribution (HOD) modelling is unneces-
sary. On these scales, we are only concerned with correlations between galaxies
that reside in different halos (the 2-halo term of the power spectrum), and we can
relate the matter power spectrum, P��, to the galaxy power spectrum, Pg g , and
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galaxy-dark matter cross-power spectrum, Pg�, via the following relationships:

Pg g(k)⇡ b2
g P��(k), (4.4)

Pg�(k)⇡ bgrP��(k), (4.5)

where bg is the linear bias that relates the clustering of galaxies to that of dark
matter and r is the cross-correlation coefficient that captures the stochasticity
between the clustering of dark matter and the clustering of galaxies; see for ex-
ample Seljak (2000); Guzik & Seljak (2001).

The measurement of w(✓ ) depends on b2
g P��, while the tangential shear, �t(✓ ),

depends on bgP�� if r = 1, a reasonable approximation on the large scales we use
in this work (we allow for and marginalize over possible stochasticity through
our non-linear bias modelling; see Section 4.2.1). The measurements of w(✓ )
and �t(✓ ) in combination allow us to estimate both the clustering amplitude and
the linear galaxy bias, thus enabling us to obtain useful cosmological information.

4.2.1 NON-LINEAR BIAS MODEL

The assumption of linear bias in Eqs. (4.4) and (4.5) is expected to break down
at small scales. In order to account for this effect, we use the non-linear biasing
scheme of McDonald (2006), where the galaxy over-density, �g , is written as

�g = ✏+ b1�+ b2�
2 + next leading order bias terms, (4.6)

where b1 is the usual linear bias, b2 is the next leading order bias term and ✏ is the
shot noise. The bias parameters, b1 and b2 are not known a priori and become
free parameters to be constrained during the analysis. Under this perturbation
theory scheme, the galaxy-dark matter and galaxy-galaxy power spectra become

Pg� = b1P�� + b2A(k), (4.7)

Pg g = b2
1 P�� + b1 b2A(k) + b2B(k) + N , (4.8)

where N is the shot noise and A(k) and B(k) can be calculated using standard
perturbation theory as follows:

A(k) =
Z

d3q
(2⇡)3

F2(q,k� q)P��(q)P��(|k� q|), (4.9)

B(k) =
Z

d3q
(2⇡)3

P��(q)P��(|k� q|), (4.10)
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Figure 4.1: Redshift distributions
of the four galaxy samples used
in this work. Red and yellow
curves correspond to the two red-
MaGiC lens bins while cyan and
purple curves correspond to the
two source bins in the fiducial con-
figuration (ngmix shears, SkyNet
photo-z’s).
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k2
1k2

2
. Note that this non-linear biasing

scheme generates departures from r = 1 as r ⇡ 1�1/4(b2/b1)2⇠g g , where ⇠g g is
the correlation function. As such we do not include an additional free parameter
for the cross-correlation coefficient. We found that for reasonable values of the
shot noise, N , given the density of our galaxy sample, has a less than 5% effect
on w(✓ ) on scales below our regime of interest (< 200) and so have ignored this
term for the remainder of our analysis. We do, however, include an additional ad-
ditive constant term in configuration space as discussed in Section 4.5. This term
mainly alters the large scale clustering to allow for possible systematics coming
from observational effects (see Section 4.5.6).

We investigate the inclusion of the next order biasing term in Section 4.5.1, in
which we vary both the lower limit on the angular scale cutoff and the modelling
of non-linear bias.

4.3 DATA AND MEASUREMENTS

The Dark Energy Survey (DES) is an ongoing photometric survey that aims
to cover 5000 sq. deg. of the southern sky in five photometric filters, grizY , to
a depth of i ⇠ 24 over a five year observational program using the Dark Energy
Camera (DECam, Flaugher et al. (2015)) on the 4m Blanco Telescope at the
Cerro Tololo Inter-American Observatory (CTIO) in Chile. In this analysis, we
will be utilizing DES-SV (Science Verification) data, in particular a contiguous ⇠
139 sq. deg. patch known as the SPT-E region (because of its overlap with the
South Pole Telescope survey footprint). This is only a small (⇠ 3%) subset of the
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expected eventual sky coverage of DES, but observations in all five filters have
been performed at full depth, although substantial depth variations are present
(see e.g. Leistedt et al. 2015), mainly due to weather and early DECam opera-
tional challenges. The DES-SV data have been used for constraining cosmology
in this work, but a rich variety of science cases are possible with this data sample
(see The Dark Energy Survey Collaboration (2016) and references therein).

The lens galaxy sample used in this work is a subset of the DES-SV galaxies
selected by redMaGiC1 (Rozo et al., 2015b), which is an algorithm designed to
define a sample of Luminous Red Galaxies (LRGs) by minimizing the photo-z un-
certainty associated with the sample. It selects galaxies based on how well they
fit a red sequence template, as described by their goodness-of-fit, �2. The red
sequence template is calibrated using redMaPPer (Rykoff et al., 2014; Rozo et al.,
2015a) and a subset of galaxies with spectroscopically verified redshifts. The cut-
off in the goodness of fit, �2

cut, is imposed as a function of redshift and adjusted
such that a constant comoving number density of galaxies is maintained, since
red galaxies are expected to be passively evolving. The redMaGiC photo-z’s show
excellent performance, with a median photo-z bias, (zspec � zphot), of 0.005 and
scatter, �z/(1+ z), of 0.017. Equally important, their errors are very well char-
acterized, enabling the redshift distribution of a sample, N(z), to be determined
by stacking each galaxy’s Gaussian redshift probability distribution function (see
Rozo et al. 2015b for more details).

The galaxy shape catalogs used in this work were presented in Jarvis et al.
(2015), and they have been used in several previous analyses (Vikram et al., 2015;
Becker et al., 2015; The Dark Energy Survey Collaboration , 2015; Gruen et al.,
2015; Clampitt et al. , 2016). Two different catalogs exist corresponding to the
ngmix 2 (Sheldon, 2014) and im3shape 3 (Zuntz et al., 2013) shear pipelines,
both producing model fitting shape measurements to a subset of DES-SV galax-
ies. The two catalogs differ in their approach to modelling the intrinsic galaxy
shape (ngmix uses a Gaussian mixture model to approximate an exponential disk
galaxy profile while IM3SHAPE determines the maximum likelihood for fitting a
bulge and/or disk profile) and also in the number of filters used (ngmix uses riz
bands while IM3SHAPE only uses r band). This results in the ngmix catalog con-
taining more sources than IM3SHAPE (⇠6.9 galaxies per arcmin2 vs.⇠4.2 galaxies
per arcmin2). More details about the pipelines and an extensive set of null and
systematics tests can be found in Jarvis et al. (2015). The photo-z distributions of
the galaxies in the shear catalogs were studied in detail in Bonnett et al. (2015),
using 4 different photo-z codes that performed well in a previous more extensive

1
https://des.ncsa.illinois.edu/releases/sva1

2
https://github.com/esheldon/ngmix

3
https://bitbucket.org/joezuntz/im3shape
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photo-z code comparison (Sánchez et al., 2014). The four methods are SkyNet
(Graff et al., 2014; Bonnett et al., 2015), ANNz2 (Sadeh et al. , 2015), TPZ (Car-
rasco Kind & Brunner , 2013) and BPZ (Benítez, 2000). The first three methods
are training-based, and the last is a widely used template-based code. Details
about their training or calibration procedures and about the validation against
spectroscopic data can be found in Bonnett et al. (2015).

In this chapter we use the ngmix shear catalog and SkyNet photo-z’s for the
fiducial results, but we will test the robustness of our results with the IM3SHAPE

shear catalog as well as using the source distributions derived from the other
photo-z algorithms in the analysis.

4.3.1 MEASUREMENTS

We use two lens bins, selected using redMaGiC photo-z’s: 0.20< z < 0.35 and
0.35< z < 0.50, and two source bins, selected using SkyNet photo-z’s: 0.55< z <
0.83 and 0.83 < z < 1.30. The same lens photo-z bins are analyzed in Clampitt
et al. (2016) while the source photo-z bins are studied in detail in Bonnett et al.
(2015) and used for cosmology in The Dark Energy Survey Collaboration (2015).
Individual analyses involving �t(✓ ) and w(✓ ) with DES-SV have been presented
in Clampitt et al. (2016) and Crocce et al. (2015), respectively. Figure 4.1 shows
the redshift distributions for the lens and source bins utilized in this analysis. For
each lens bin, we measure the galaxy clustering and the galaxy-galaxy lensing
signals using the estimators defined next. The correlation functions have been
estimated using the code TreeCorr4 (Jarvis et al. , 2004).

ANGULAR CLUSTERING – w(✓ )

On the galaxy clustering side, we compute the angular correlation function
for each redshift bin using the minimum variance estimator of Landy & Szalay
(1993),

w(✓ ) =
DD� 2DR+RR

RR
, (4.11)

where ✓ is the angular separation in the sky, and DD, DR and RR are data-data,
data-random and random-random pairs of galaxies, with data and random galax-
ies having the exact same geometry in the sky. For the random catalogs, we use
136185 random points (⇠ 7 and ⇠ 15 times the number of galaxies in the fiducial
bin and low-z bin respectively) and apply the same angular masking as the red-
MaGiC galaxies in the SV region. The resulting measurement is shown in Fig. 4.2.
The clustering amplitude falls from ⇠ 10�1 to 10�2 over the range ✓ = 10� 100

4
https://github.com/rmjarvis/TreeCorr
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Figure 4.2: Angular galaxy clustering and galaxy-galaxy lensing measurements used in this work.
For the two lens bins (left and right columns), we show the clustering measurements (upper row)
and the galaxy-galaxy lensing measurements (lower row) for the two source bins, with error bars
coming from jackknife resampling. The shaded region shows excluded scales in the fiducial analysis,
explored in Section 4.5.1. The predictions for the best fitting curves presented in Section 4.4 are
shown as the solid curves in each panel. The goodness-of-fit, as measured by the �2 value is 6 (3.5)
for 12 (9) degrees of freedom for the high�z (low-z) bin. While these reduced �2 values seem low,
there is no evidence that the errors are overestimated to within 2-�.
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Figure 4.3: (left panel): DES-SV SPT-E footprint and an example of the kmeans jackknife regions
used to compute the covariance matrices used in this work. (center panel): For the first lens bin, the
joint jackknife correlation matrix for w(✓ ) and �t(✓ ) for the two source bins. For each submatrix of
the joint correlation matrix, the angular scale ranges from 4 to 100 arcminutes in logarithmic bins.
(right panel): Same as the center panel, for the second lens bin.

arcminutes. Only scales ⇠ 20 arcminutes and above will be used in the cosmol-
ogy fits (see Sec. 4.5.1 for details). The details of the calculation of the error or
covariance matrix for w(✓ ) will be presented in Section 4.3.2.

TANGENTIAL SHEAR – �t(✓ )

On the lensing side, the observable is the tangential shear, i.e., the shear of
the source galaxy which is perpendicular to the projected line joining the lens and
source galaxies. For a given lens-source pair ( j) this is given by

�t, j = ��1, j cos(2� j)� �2, j sin(2� j) (4.12)

where �1, j and �2, j are the two components of shear measured with respect to a
cartesian coordinate system with origin in the lens galaxy, and � j is the position
angle of the source galaxy with respect to the horizontal axis of the cartesian
coordinate system. Since the intrinsic ellipticity of individual source galaxies is
much larger than the weak lensing shear, it is necessary to average over many
such lens-source pairs. For our measurements, we compute the average in angular
separation bins, ✓ , so that

h�t(✓ )i=
P

j! j�t, jP
j! j

, (4.13)
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where the tangential shear for each lens-source pair, j, is weighted by a factor ! j
as follows:

! j =
1

�2
shape +�

2
m, j

, (4.14)

where �shape is the shape noise intrinsic to each background galaxy, and �m, j is
the error derived from the shape measurement. We use �shape = 0.233 for the
im3shape shear catalog and �shape = 0.243 for the ngmix shear catalog. The
weights ! j corresponding to the shear catalogs used in this work are computed
and described in Jarvis et al. (2015). In order to correct for possible geometric
and additive shear systematic effects, we compute the tangential shear around
random lenses and subtract this from the galaxy lensing signal (as in Clampitt et
al. (2016)). The result is shown in the lower panels of Fig. 4.2, over the same
range of scales as for w(✓ ). For each lens bin we show the tangential shear using
the two source bins.

4.3.2 COVARIANCES

Our measurements of w(✓ ) and �t(✓ ) are correlated across angular and source
redshift bins. The joint covariance for all the measurements corresponding to each
lens redshift bin is estimated from jackknife (JK) resampling, using the following
expression (Norberg et al., 2009):

C(xi , x j) =
(NJK � 1)

NJK

NJKX

k=1

(xk
i � x̄ i)(xk

j � x̄ j), (4.15)

where the complete sample is split into a total of NJK groups, xk
i is a measure

of the statistic of interest in the i-th bin using all JK regions excepting the k-th
sample, and x̄ i is the mean of NJK resamplings. Jackknife regions are obtained
using the kmeans algorithm5 run on a homogeneous random points catalog and,
then, all catalogs (lenses, sources and random points) are split in N = 100 JK
samples. kmeans is a clustering algorithm that subdivides n observations into N
clusters (see Appendix B in Suchyta et al. 2016 for details). By applying it to a
uniform random catalog with the same sky coverage as DES-SV, we define regions
that are well suited for JK subsampling. The left panel in Fig. 4.3 shows our JK
patches created by the kmeans algorithm. The resulting covariance matrices for
both lens bins are also shown in Fig. 4.3 (center and right panels). The covariance
is strongest between points within the w(✓ ) data vector. Note that: (i) we do not
jointly fit both lens bins in the fiducial case so no covariances between lens bins

5
https://github.com/esheldon/kmeans_radec
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are shown, and, (ii) when performing cosmology fits with the lower (higher) lens
bin we only use 21 (24) data points (see Sec. 4.5.1).

The JK covariance matrices shown in Fig. 4.3 contain a non-negligible level
of noise. Hartlap et al. (2007) showed that the inverse of an unbiased but noisy
estimator of the covariance matrix is actually not an unbiased estimator of the
inverse covariance matrix. Therefore, when using a JK covariance matrix, a cor-
rection factor of (NJK � Nbins � 2)/(NJK � 1) should be applied to the inverse co-
variance, where NJK is the number of jackknife regions and Nbins is the number of
measurements (Hartlap et al., 2007). We include this correction factor in all our
cosmology results.

The performance of JK covariances in DES-SV has been studied separately for
galaxy clustering and galaxy-galaxy lensing in Crocce et al. (2015); Giannantonio
et al. (2015) and Clampitt et al. (2016), respectively. There we generally find
good agreement between true covariances from simulations or theory and the JK
estimates, especially at small scales. At large scales the comparison points to an
overestimation of the covariance by the JK method in the lensing case.

We have tested our method of estimating JK covariances and in particular the
Hartlap correction factor, by generating a number of log-normal realizations of
the convergence and matter density fields, as described in Friedrich et al. (2015).
These mocks were constructed to match the lens and source galaxy densities and
survey area of the DES-SV region. We used 600 mocks as an estimate of the ’true’
covariance and as well as a subset of 100 mocks to represent a noisy covariance
derived from independent samples. A comparable JK covariance was generated
from a log-normal mock at random and dividing it into 100 patches using the same
algorithm as the DES-SV data. We found that error in applying the Hartlap correc-
tion to JK samples instead of independent mocks is only a few percent compared
to the total difference between using JK samples and independent samples.

In this work we also estimate the cross-covariance between galaxy clustering
and galaxy-galaxy lensing, for which we find a small positive correlation among
all clustering scales and large galaxy-galaxy lensing scales – the regime where
the lensing errors are no longer dominated by shape noise. This is consistent with
related previous work like Mandelbaum et al. (2013), where they were able to ne-
glect this contribution due to their different noise properties. However, Marian et
al. (2015) found a significant non-zero cross correlation between angular cluster-
ing and galaxy-galaxy lensing, that could contribute to biased and over optimistic
constraints if ignored. As a check on the amount of covariance between probes,
Fig. 4.6 also shows the result of ignoring the cross-covariance on the constraints on
⌦m and�8. The derived cosmology shows little deviation from our fiducial results
and we find that our constraints are only minimally stronger on �8 (by about 3%)
and weaker on ⌦m (also ⇠3%) with a 2% improvement on S8 = �8(⌦m/0.3)0.16.
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This shows that the impact of the correlation between probes is subdominant to
the covariance within the same probe.

4.4 FIDUCIAL COSMOLOGICAL CONSTRAINTS
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Parameter Prior range
⌦m 0.1 – 0.8 Normalized matter density
⌦b 0.04 – 0.05 Normalized baryon density
�8 0.4 – 1.2 Amplitude of clustering (8 h�1Mpc top hat)
As 1.0 – 4.0 ⇥10�9 Amplitude of clustering of primordial power

spectrum at pivot scale of 0.05 Mpc�1

ns 0.9 – 1.0 Power spectrum tilt
w -5 – -0.33 Equation of state parameter
h 0.5 – 1.0 Hubble parameter (H0 = 100h)
⌧ 0.04 – 0.12 Optical depth
b1 1.0 – 2.2 Linear galaxy bias
b2 -1.5 – 1.5 Next order bias parameter
�i -0.3 – 0.3 Shift in photo-z distribution (per source bin)
mi -0.2 – 0.2 Shear multiplicative bias (per source bin)
mIA -0.3 – 0.35 Intrinsic alignment amplitude (low-z source bin only)
↵ -5 – -1 Additive constant w(✓ )! w(✓ ) + 10↵

Table 4.1: Parameters and their corresponding priors used in this work. Not all parameters are
allowed to vary in every analysis. Nuisance parameters are contained in the lower half of the
table. When choosing a prior range on cosmological parameters, we allowed a sufficiently wide
range to contain all of the 2-� posterior on ⌦m, �8, w and h, with Planck priors on ⌦b and ns,
for which we have less sensitivity. For the systematic parameters, our choice of prior range is
informed from previous DES analyses that studied the effect of shear calibration (Jarvis et al., 2015),
photo-z distributions (Bonnett et al., 2015), and intrinsic alignment contamination (Clampitt et al. ,
2016; The Dark Energy Survey Collaboration , 2015) on the SV catalogues. The prior on the bias
parameters were taken from studies of the redMaGiC mock catalog (see Section 4.5.1 for details).
In addition to the prior range on the nuisance parameters for the shear calibration and photo-z bias,
there is a Gaussian prior centered around zero of width 0.5, as explained in the text.
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In this section we present our fiducial DES-SV cosmological constraints from
a joint analysis of clustering and galaxy-galaxy lensing. The data vector consists
of w(✓ ) and the two �t(✓ ) measurements for the 0.35 < z < 0.5 redMaGiC bin
(see Fig. 4.2), over angular scales of 17-100 arcminutes. We chose this lens bin
as our fiducial, as we estimate greater contamination from systematic errors, on
both the clustering and lensing side, for the 0.2 < z < 0.35 redMaGiC bin (see
Section 4.5.6 and Clampitt et al. (2016)). To compute the model we use CAMB
(Lewis et al., 2000; Howlett et al., 2012) and Halofit (Smith et al., 2003; Taka-
hashi et al., 2012) for the linear and non-linear matter power spectra, respectively.
Because the accuracy of Halofit can be confirmed only to ⇠5% for certain ⇤CDM
models, we have checked that using the Cosmic Emulator, a more precise mod-
elling scheme for the nonlinear dark matter power spectrum (1% to k = 1 Mpc�1,
Lawrence et al. 2010) would only affect our results at the level of ⇠5% down to
100. We use the CosmoSIS package6 (Zuntz et al., 2015) as our analysis pipeline
and explore the joint posterior distribution of our cosmological (and nuisance)
parameters using the multi-nest MCMC algorithm of Feroz et al (2009), with a
tolerance parameter of 0.5, which controls the convergence of the chains, and an
efficiency parameter of 0.8. Our cosmological parameters and priors are summa-
rized in Table 4.1 and described in greater detail next in this section.

In the fiducial case, we have included two nuisance parameters per source
bin (one for errors in the photo-z distribution and one for biases in the shear
calibration) and one nuisance parameter per lens bin (the linear bias, b1; the
non-linear bias, b2, accounting for scale dependence and stochasticity, is studied
in Section 4.5.1), plus an additional term, ↵, to account for potential systematic
errors induced by observational effects that might induce an overall shift in the
normalisation of the amplitude of w(✓ ) (see Section 4.5.6). The full set of nui-
sance parameters and their priors are listed in the lower half of Table 4.1 and
summarized below.

• Photometric redshift calibration: For each source bin i, we marginalize
over a photo-z bias parameter, �i , defined such as ni(z) ! ni (z + �i). In
Bonnett et al. (2015), it was found that a single additive parameter for the
photo-z distribution with a Gaussian prior centered on zero with a disper-
sion of 0.05, was sufficient to account for any statistical bias on ⌃crit and
hence �8 within the degree of statistical error expected for the SV catalogs.

• Shear calibration: For each source bin i, we marginalize over an extra
nuisance parameter mi , to account for the shear calibration uncertainties,
such that �t;i(✓ )! (1+mi)�t;i(✓ ), with a Gaussian prior with mean 0 and

6
https://bitbucket.org/joezuntz/cosmosis
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width 0.05, as advocated in Jarvis et al. (2015).

• Additive w(✓ ) constant: We marginalize over an additive constant param-
eter, ↵, in the galaxy angular correlation function: w(✓ )! w(✓ )+10↵. This
parameter accounts for possible systematics arising from variations in ob-
serving conditions across the field, stellar contamination and masking (Ross
et al., 2011), which we also test for in the next section.
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The resulting constraints in the ⌦m and �8 plane are shown in Fig. 4.4. The
2D contours are centered around ⌦m ⇠ 0.3 and �8 ⇠ 0.75, and marginalizing
out the other parameter we find the following 1D constraints: ⌦m = 0.31± 0.10
and �8 = 0.74 ± 0.13. Comparing to measurements from Planck (The Planck
Collaboration et al. , 2015) and DES Cosmic Shear (The Dark Energy Survey
Collaboration , 2015) alone, we are consistent at the ⇠ 1� or better level. We
combine results from the two experiments in Section 4.6. In addition, we see the
same direction of degeneracy between these two parameters as with cosmic shear,
although the degeneracy is not quite as strong with w(✓ ) and �t(✓ ).

We also include w, the dark energy equation of state parameter, as an ad-
ditional free parameter in Fig. 4.5. We found that the DES-SV data alone was
unable to provide strong constraints on w and obtained w= �1.93± 1.16. How-
ever, compared to Planck (red contours), the DES-SV constraints on ⌦m and �8
are degraded far less when w is introduced as a free parameter. Also, we note
that the preference for w < �1 values is determined by our choice of prior on w;
we require �5 < w < �0.33, so the prior volume covered by w < �1 is greater
than w> �1 and in the absence of a strong constraint on w, values of w< �1 are
favored.

Table 4.2 contains a more detailed summary of our findings for this fiducial
setup, assuming either a ⇤CDM or wCDM cosmology. In addition to DES w(✓ )
and �t(✓ ), we show results combined with Planck. Table 4.2 also shows results
for our lower redshift lens bin, 0.2< z < 0.35. For these results we vary only the
cosmological parameters {⌦m,⌦b, h, ns,�8} and w where noted (in addition to
the nuisance parameters described in the present and following sections). When
combined with constraints from Planck, we also allow the optical depth, ⌧, to vary
as well, since the CMB has additional sensitivity to physics that is only weakly
captured by large scale clustering at late times and we fit for the amplitude of the
primordial power spectrum, As, rather than �8. Table 4.3 shows the constraints
on the nuisance parameters related to photo-z and shear calibration described
above.

In the following section, we will study the robustness of these results under
changes in the configuration of the data vector and the systematics modelling.

4.5 ROBUSTNESS OF THE RESULTS

In this section, we describe the suite of tests performed to check that our con-
clusions are unbiased with respect to errors in the shear and photo-z calibrations,
intrinsic alignments, survey geometry, choice of angular scales and theoretical
modelling of the data vectors. The results in this section are displayed in Fig. 4.6,
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Figure 4.6: Marginalized 1D posterior constraints on {⌦m,�8, S8, b1} for the lens bin 0.35< z < 0.5
for various configurations in our pipeline. For this figure, we have defined S8 ⌘ �8(⌦m/0.3)0.16, that
is, we hold the index fixed to the degeneracy direction found for our fiducial analysis. Note that this
value is substantially different to one favoured by Planck data alone, but we have chosen a constant
value to enable comparisons between the systematic tests. Our fiducial results use shear catalogs
from ngmix, SkyNet photometric redshifts, and linear bias in a ⇤CDM cosmology, as described
in Section 4.4. The different rows in this plot are obtained by varying the fiducial assumptions
individually to test their impact on the parameter constraints, and they are all detailed in Section 4.5
and the Appendix. Tests involving (nearly) independent data are highlighted in red near the end
of the table.
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for the parameters we are most sensitive to in this work: {⌦m,�8, b1}. The dif-
ferent rows correspond to the different tests described in this section or in the
Appendix, where we check the results from a different lensing estimator. Despite
the changes in the photo-z algorithms, the shear catalogs, the weighting of the
lens-source pairs, non-linear bias modelling and choice of scale, our estimates for
these cosmological parameters in Fig. 4.6 usually remain within 1-� of the fiducial
constraints.

A number of systematics that are unique to the measurement of the tangential
shear such as the calibration of galaxy ellipticities, the effect of different shear
calibration pipelines, null detection of the cross component and effect of photo-
z errors in the lens and source catalogs on the measurement have already been
accounted for in Clampitt et al. (2016), so we do not present tests for these effects
again. For more information on tests of the shear pipeline, we refer the reader
to Jarvis et al. (2015) while Bonnett et al. (2015) contains extensive tests of the
photo-z calibration algorithms. We also check for possible systematics introduced
by the effects of survey geometry, depth and varying observing conditions in the
survey following the techniques in Crocce et al. (2015).

Our analysis pipeline accounts for the effect of a number of systematics which
are folded into our final constraints on cosmology. To first order, these nuisance
parameters are responsible for altering the amplitude of w(✓ ) and �t(✓ ), and so
are strongly degenerate with one another. As a result, we were unable to constrain
these parameters beyond their prior distributions and the results in Table 4.3 show
that the posterior distributions of the nuisance parameters no more informative
than the priors. To determine which of these most affect our results, we have
analysed each of these systematics individually by running chains in four scenar-
ios: no systematics, shear calibration only, photo-z errors only, full weak lensing
systematics but no constant offset in w(✓), and shear calibration with photo-z er-
rors (our fiducial set up). We found that including an additive constant to w(✓ )
was responsible for the greatest decrease in precision on the 1D marginalized con-
straints on ⌦m, with the 1-� error on ⌦m increasing by as much as 17% compared
to the no systematics case. However, �8 was much less affected with a difference
below 3%. In comparison, accounting for photo-z errors with an additional two
free parameters in the N(z) distribution increased the error on both parameters
by about 8%. The change from including two shear calibration parameters was
smaller still, with only a 3% reduction in precision for ⌦m and 5% for �8 relative
to the no systematics case. We also found small changes to the best fitting values,
well within the 1-� confidence interval, as expected from Fig. 4.6.
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Figure 4.7: The posterior distribution
on the bias parameters, b1, b2 from sim-
ulations of w(✓ ) for the redshift bin
0.35 < z < 0.5. We fit the McDon-
ald (2006) model to a minimum cut in
scale at 100 (cyan) and 170 (purple) and
a linear bias model to 170 (red point)
to demonstrate the insensitivity of our
fiducial results with a 170 cutoff to b2.

4.5.1 CHOICE OF SCALES

There are several reasons to limit the range of scales that we consider in our
analysis. The large scale cutoff is set by the size of the SV patch and how well the
geometry of the region can be modelled; we found that our jackknife estimates
of the covariance matrix overestimated the covariance matrix obtained from 50
independent N-body simulations above 700 (see Fig 5, Clampitt et al. 2016).

On small scales, we are limited by how well we can model the nonlinear clus-
tering of matter and of redMaGiC galaxies. Galaxy formation preferentially occurs
in high density environments within dark matter halos and is subject to a number
of complex baryonic processes; these are not captured in our model predictions
for the mass power spectrum and potentially introduce a non-trivial bias between
the dark matter and the galaxies. This is particularly important for the tangential
shear, which contains a mixture of small and large scale information; i.e. imposing
a sharp cutoff in angular scale does not completely eliminate the effect of scales
below that cutoff (Mandelbaum et al., 2013). On small enough scales, we ex-
pect to observe effects such as stochasticity, non-local bias and scale dependence.
These could invalidate the linear bias model used in our analysis.

In this section, we present simulation based tests to determine the smallest
scales for which the linear bias model and perturbation theory model of McDonald
(2006) are valid. We use a mock catalog designed to reproduce the properties

of the DES-SV survey. The catalog is based on an N-body simulation (c-400; see
also Mao et al. (2015); Lehmann et al. (2015)) run with the L-GADGET code,
a variant of GADGET (Springel , 2005). The simulation has a box size of 400
Mpc/h with 20483 particles and a force resolution of 5.5 kpc/h. Halo catalogs
were generated with the ROCKSTAR halo finder (Behroozi et al. , 2013a) and the
CONSISTENT TREES merger tree builder (Behroozi et al. , 2013b). A galaxy catalog
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was produced using an abundance matching technique, as described in Reddick
et al. (2013) and Lehmann et al. (2015), with halos ranked according to the peak
halo velocity and assigned a luminosity from the Blanton et al. (2003) luminosity
function, using a scatter of 0.2 dex. Snapshots from the simulation were combined
into a lightcone with the same footprint as the DES-SV region. Galaxy colors were
assigned using the empirically derived relationship between luminosity, projected
distance to the fifth nearest neighbor galaxy, and galaxy SED (this method for
assigning colors has been used in previous generations of catalogs, see e.g. Cunha
et al. 2012; Chang et al. 2015). Photometric errors were added to match
the depth distribution of DES-SV galaxies. The redMaGiC algorithm was run on
the lightcone, using the same technique as applied to the DES-SV data and this
produced a mock redMaGiC catalog. The redMaGiC color model is retuned to
the simulations before identifying these galaxies, but was found to have similar
properties to that seen in the data. We find that the clustering properties of the
redMaGiC galaxies in this catalog are consistent with those measured in DES-SV
data.

From the mock catalog, we have measured w(✓ ) in the same bins in redshift,
0.2< z < 0.35 and 0.35< z < 0.5, from 100 < ✓ < 1000. Our covariance matrix is
calculated from a jackknife resampling of the catalog as described in Section 4.3.2.

We test our bias modelling by making two cuts in angular scale at 100 and
170, corresponding to (⇠ 3 Mpc/h) and (⇠ 5.5 Mpc/h), because we expect the
bias to transition between its large scale asymptotic limit to scale dependence
somewhere in this regime for the galaxy type that we consider. We fit both a linear
and a quasilinear bias model with two free parameters, b1 and b2, as described in
Section 4.2.1 to the simulated w(✓ ) while holding the cosmological parameters
fixed to the value of the N-body simulation. Note that the effect of the shot noise
parameter, N , on w(✓ ) is negligible on our scales of interest so we do not include
it in our tests. Figure 4.7 shows the recovered biases when all the cosmological
parameters are fixed at the simulation values for the fiducial lens bin of 0.35< z <
0.5. The measured w(✓ ) is insensitive to the value of b2 when a minimum angular
scale of 170 is chosen (cyan filled contour) and we are simply recovering our prior
distribution on b2.

When we change the minimum scale to 100 (purple dashed contour), there is
a 1-� preference for a non-zero value. Using a linear model of biasing (Fig. 4.7;
red point) with the same fixed cosmology set up, we find that we recover the
same value of b1 as in the non-linear case. We obtain similar results for the low-z
lens bin, except that the minimum scale cutoff is now at 220 for w(✓ ) to be well
modelled by a linear bias. Figure 4.7 demonstrates that our choice of using a
linear bias up to these angular scales for the redMaGiC sample should not affect
our ability to constrain cosmology. Based on these results, we can conclude that
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applying a linear bias model with ✓min = 170 (220) for the high�z (low-z) lens
bin will not bias our results in the presence of scale dependent non-linear biasing.
Since our simulations do not address the lensing component of our analysis, we
have performed to additional checks using the data. We have rerun our fiducial
analysis with b2 as an additional free parameter, while keeping ✓min = 170. For
these fits, we obtained ⌦m = 0.32 ± 0.10, �8 = 0.73 ± 0.13, b1 = 1.63 ± 0.29
and b2 = �0.14±0.76, which is consistent with our fiducial results. We have also
tested our small scale cut off by using ✓min = 100 with our fiducial set up. We found
that this increased the value of �8 to 0.887 ± 0.134 from �8 = 0.741 ± 0.134.
Since the decrease in the error bars on our cosmological parameters of interest is
not significant, we kept our existing value of ✓min to 17’.

For the shear catalogues, Jarvis et al. (2015) identified 30 as the angular scale
in the shear auto correlation function at which the additive errors contribute to
half of the total forecasted error on the measurement of �8 or about ⇠ 3%. Al-
though it is expected that position-shear correlations are less sensitive to additive
systematics in the shear, we only consider angular scales ✓ � 100 even for the
tests of the bias model above. This 30 cutoff is well outside of the minimum scales
considered in our cosmological analysis which use at most ✓ > 170.

4.5.2 PHOTO-z SYSTEMATICS

Since DES-SV is an imaging survey, the quality of our constraints rely heavily
on being able to robustly calibrate the photometric redshifts of the lens and source
galaxy samples. However, because w(✓ ) does not use radial information, apart
from the selection function, it is relatively insulated from photometric errors com-
pared to the full 3D correlation function. Furthermore, because the photometric
error in the lens redMaGiC sample is so small (Rozo et al., 2015b), the poten-
tial systematic errors in the cosmology analysis are dominated by the photometric
redshifts of the source galaxy sample.

We deal with photometric redshift systematics in two different ways. First,
we follow the recommendations of Bonnett et al. (2015) and define an additional
photo-z bias parameter for each source bin, i, as:

npred
i (z) = nobs

i (z + �i) (4.16)

where �i is a free parameter with a Gaussian prior of width 0.05 to be constrained
during the fitting process. The width of the prior is set to be consistent with Bon-
nett et al. (2015), where it was found that the difference between photometric and
spectroscopic estimates of the redshift of the training samples that most closely
resemble our shear catalogs have a relative mean bias with a Gaussian dispersion
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of 0.05. This method was also used in the DES-SV Cosmic Shear Cosmology pa-
per (The Dark Energy Survey Collaboration , 2015). We found that introducing an
additional photo-z bias parameter for each source bin increases our uncertainty
by, at most, 8% compared to the constraints we would have if we did not fit for
any systematic parameters.

In addition, we check that our constraints are robust to our choice of photo-
z algorithm. Our fiducial shear catalogs use photometric redshifts derived from
the SkyNet algorithm (Graff et al., 2014; Bonnett et al., 2015), and we have re-
peated our analysis by using the redshift distribution given by three other photo-
z codes studied in Bonnett et al. (2015), namely BPZ, TPZ and ANNz2. For
this test, we assume a ⇤CDM cosmology and allow the cosmological parameters
{⌦m,⌦b,h,�8, ns, b1} to vary. In addition, we also fit for the usual systematic pa-
rameters, �i for the photo-z bias and mi for the multiplicative bias in the shear
calibration and the same prior distributions. The resulting constraints in Fig. 4.8
(and 4.6) show that our results are insensitive to the choice of the photo-z algo-
rithm.

Interested readers should refer to Bonnett et al. (2015) for a full discussion of
the photo-z methods considered and the systematics modelling that we have only
summarized here.

4.5.3 SHEAR CALIBRATION SYSTEMATICS

Here we present our approach to modelling a possible residual error in the
shear calibration. For the interested reader, the full details of the production and
testing of the shear catalogs used in this analysis are given in Jarvis et al. (2015).

Similar to the photometric redshift case, we deal with potential shear calibra-
tion systematics on two fronts. Firstly, we include an extra nuisance parameter
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for the shear calibration, mi , as:

�
pred
t;i (✓ ) = (1+mi)�obs

t;i (✓ ) (4.17)

with a Gaussian prior, p(mi), with mean 0 and width 0.05, for each source bin
i in our analysis as recommended in Jarvis et al. (2015). Contamination from
additive errors in the shear estimation are expected to be minimal for galaxy-
galaxy lensing, because of the azimuthal symmetry of the lens system. Including
an additional parameter for the shear calibration degrades our constraints by, at
most, 5%, compared to all systematic parameters being ignored or set to fixed
values.

Secondly, galaxy images in the DES-SV region were analyzed with two pipelines,
ngmix and im3shape. Jarvis et al. (2015) showed that they both produced con-
sistent results that satisfied the SV requirements for weak lensing, i.e. that less
than half of the forecasted error on �8 (about 3%) originates from systematics in
the measurement of the shear. Although we have chosen to use the ngmix catalog
for our analysis, we have also rerun the analysis pipeline on the im3shape catalog
to check that our results are not sensitive to the shear catalog used (see Fig. C.1 for
a comparison of lensing measurements using the two shear pipelines). We found
that the cosmological parameters varied imperceptibly when the im3shape cata-
log was used instead of ngmix. This is demonstrated in Fig. 4.6.

4.5.4 INTRINSIC ALIGNMENTS

Correlations between the intrinsic shapes and orientations of lensing sources,
known as “intrinsic alignments” (IA), are one of the most significant astrophysical
sources of uncertainty in weak lensing measurements (see Troxel & Ishak 2015;
Joachimi et al. 2015 for recent reviews). Although typically considered in the
context of shear-shear correlations, IA can also contaminate galaxy-galaxy lensing
measurements due to uncertainties in photo-z estimates which lead to overlap in
the true lens and source distributions (see Fig. 4.1). The intrinsic shapes of sources
can be correlated with the positions of lenses at the same redshift (Blazek et al. ,
2012).

In general, the contamination from IA reflects the (potentially nonlinear) rela-
tionship between large-scale structure and galaxy shapes, as well as the clustering
of lenses and physically associated sources. However, observational evidence (e.g.
Joachimi et al. 2011; Blazek et al. 2011; Singh & Mandelbaum 2015) indicates
that the dominant IA contribution is likely from elliptical (pressure-supported)
galaxies, for which the IA component is linearly related to the large-scale tidal
field. This “tidal alignment” paradigm (Catelan et al. , 2001; Hirata & Seljak ,
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2004; Blazek et al. , 2015) was recently used to mitigate IA in the DES-SV Cos-
mic Shear Cosmology analysis (The Dark Energy Survey Collaboration , 2015).
In this work, we consider scales on which the clustering of lens-source pairs is
negligible (see Clampitt et al. 2016 for further discussion). In this regime, tidal
alignment predicts that the fractional IA contamination to the lensing signal is
nearly scale-invariant. Both the IA and lensing are sourced by the same matter
power spectrum, even in the presence of nonlinear evolution, and we find that the
different line-of-sight weighting for IA and lensing (e.g. Eq. 4.3) leads to negligible
relative scale-dependence in angular correlations.

We thus account for the potential impact of IA in our analysis by including
an additional term that modifies the amplitude of the tangential shear, such that
�t(✓ )! (1+mshear cal+mIA)�t(✓ ). We place a Gaussian prior on mIA of 8% ±4%
for the lower redshift source bin, corresponding to the IA amplitude constraint
of approximately AIA = 2± 1 from the cosmic shear analysis of the same sources
on the DES-SV patch (The Dark Energy Survey Collaboration , 2015). The same
calculation indicates that the higher redshift source bin is sufficiently separated
from the redshift of the lenses that the potential IA contamination is negligible.
Potential IA contamination in the galaxy-galaxy lensing measurement is discussed
further in Clampitt et al. (2016).

We do not observe a significant detection of IA contamination beyond the prior
imposed; we find that mshear cal,1+mIA,1 ⇠ 8.0±3.7% for the low redshift sources
with mshear cal,2 ⇠ �5.3⇥10�4±4.5% for the higher source bin. Including IA only
affects the cosmology results by, at most, inducing a ⇠3% shift towards a lower
value of ⌦m compared to the fiducial case without IA, as shown in Fig 4.6. For
�8, the change was much smaller, with a fractional shift of less than a percent.
Because the inclusion of IA contamination has a negligible effect on our results,
compared to the statistical errors, we do not include IA modelling for our fiducial
analysis.

4.5.5 IMPACT OF BARYONS

One of the most challenging sources of systematic error affecting weak lens-
ing results is the impact of baryonic effects on small scale clustering. Much of the
behavior of baryonic content on small scales is unknown; the nonlinear cluster-
ing can only be modelled by computationally expensive N-body simulations but
the results vary greatly with the simulation parameters such as the amount of
supernova and active galactic nuclei (AGN) feedback allowed. To minimize the
impact of baryonic effects on our results, we choose to truncate our measurements
conservatively to large scales. However, we have implemented a scheme for eval-
uating the effect of baryons on our results similar to that used for the DES cosmic
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shear analysis The Dark Energy Survey Collaboration (2015). We take the power
spectrum measured from the OWLS simulation (van Daalen et al. , 2011) with
AGN feedback, since this model induces the most extreme changes to small scale
clustering while also matching results of X-ray and optical observations (McCarthy
et al. , 2011), and replaced the dark matter power spectrum evaluated by Halofit
thusly:

P(k, z)! PAGN

PDM
P(k, z) (4.18)

where PAGN and PDM are the power spectra measured from AGN and dark matter
only models from the OWLs simulations respectively. We found that including
baryonic effects in this way, affects our results by a negligible amount as shown
in Fig. 4.6 and the constraints shift to �8 = 0.784± 0.14 and ⌦m = 0.287± 0.09
from �8 = 0.741± 0.13 and ⌦m = 0.306± 0.09. For our fiducial results, we have
chosen to ignore the impact of baryons.

4.5.6 IMPACT OF OBSERVING CONDITIONS

Photometric galaxy surveys such as DES are affected by time-dependent fluc-
tuations in observing conditions that may impact the galaxy catalogs. There are
a number of effects that can modulate the detection efficiency of galaxies and
cause density variations across the survey footprint. In this section we follow the
approach of Crocce et al. (2015) and consider single-epoch properties that affect
the sensitivity of the survey and hence may affect the galaxy clustering and galaxy-
galaxy lensing observables. We use projected HEALPix7 (Górski et al., 2005) sky
maps (with resolution nside=4096) in grizY bands for the following quantities:

• depth: mean survey depth, computed as the mean magnitude for which
galaxies are detected at S/N = 10.

• FWHM: mean seeing, in pixel units, computed as the full width at half maxi-
mum of the flux profile.

• airmass: mean airmass, computed as the optical path length for light from
a celestial object through Earth’s atmosphere (in the secant approximation),
relative to that at the zenith for the altitude of CTIO.

• skysigma: mean sky background noise, computed as the flux variance per
amplifier in chip of the CCD.

7
http://healpix.sf.net
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Figure 4.9: redMaGiC galaxy density as a function of airmass in g, r and i bands for the two lens
redshift bins considered in this work. A significant correlation is present for the g and r bands in
the low-z bin, which we correct by weighting galaxies inversely by the airmass values at the sky
position. Note that we do not apply a correction to the high-z bin since it doesn’t show a significant
correlation with any systematics parameter.
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• USNO: mean stellar density, as measured by the USNO-B1 stellar catalog
(Monet et al., 2003) with B magnitude brighter than 20 to ensure constant
depth across the field.

See Leistedt et al. (2015) for a full description of these maps.
We study the density of redMaGiC galaxies in the two lens bins as a function of

each of these quantities that can potentially result in systematic effects. To ensure
the data is free of such systematics, we require the galaxy density to be uncorre-
lated with the observed depth, FWHM, airmass, skysigma and USNO, otherwise
we apply a correction to remove the dependency. Among the five quantities for
each band and each lens bin considered here, we only find a significant corre-
lation in the low-z bin with airmass in the g and r DES bands. This trend is
demonstrated in Fig. 4.9, which shows the redMaGiC galaxy density as a function
of airmass in g, r and i bands for the two lens bins. In order to correct for this
correlation, we weight galaxies according to the inverse of a linear fit to the ob-
served trend of airmass in the g band. This procedure is similar to that applied
in Ross et al. (2012, 2014) to correct for systematic relationships with stellar den-
sity and airmass. The corrected results are shown in Fig. 4.9, where we see that
the g band weighting also corrects the trend in the r band, as expected given the
correlation present among the airmass maps in the g and r bands.

In addition to the weighting correction described above, we have also applied
the procedure used in Crocce et al. (2015), in which galaxy and systematics maps
are cross-correlated and used to correct the galaxy correlation functions. At the
galaxy clustering level, the two approaches yield consistent results. Furthermore,
in both cases the correction is compatible with an additive constant in the angu-
lar galaxy clustering signal. Nonetheless, we introduce an additive constant as a
systematics parameter in the corrected measurement of w(✓ ) as outlined in Sec-
tion 4.4 to deal with any residual systematic effects. This is marginalized over
in the cosmological analysis according to the prior defined in Table 4.1. On the
other hand, the impact of the airmass correction in the galaxy-galaxy lensing
observables is not significant given the statistical power of these observations in
DES-SV.

As opposed to Crocce et al. (2015) we do not find the depth and FWHM maps
to be relevant for our lens sample, mainly because redMaGiC galaxies are much
brighter than the DES main galaxy sample (Benchmark) considered in that work.
On the other hand, correlations between airmass maps and galaxy positions
were not found to be a significant systematic in Crocce et al. (2015), while for
redMaGiC galaxies in the low-z lens bin, this was the only observing condition
with a substantial impact on clustering. While Crocce et al. (2015) includes all
types of galaxies, the redMaGiC selection process preferentially chooses red galax-
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ies as described in Section 4.3. It is plausible that these galaxies are more affected
by airmass, via their sensitivity to atmospheric extinction. At high airmass, the
filter bandpasses shift to the red and the RedMapper color selection, in which
redMaGiC relies, do not compensate for this. The effect is more important for
the bluer DES bands g and r (Li et al., 2016), and the key spectral features of
red galaxies, like the 4000Å break, fall in a bluer window of the filter set at lower
redshifts, and hence the effect of atmospheric extinction is enhanced for our low-z
lens bin.

In the following subsection, we present cosmology results with the low-z lens
bin after correcting for the correlation with airmass.

4.5.7 LOW-z LENS BIN RESULTS

In this section we present the cosmology results obtained for the low-z red-
MaGiC lens bin (0.20 < z < 0.35), described in Section 4.3.1 and for which
measurements are shown in Fig. 4.2. For this bin, a significant correlation of the
galaxy density with airmass was found and corrected for in Section 4.5.6.

The photo-z and shear systematics treatment in the cosmology pipeline is
equivalent to that of the fiducial lens bin and we use these results as another
robustness check for the cosmological analysis performed in this work.

The cosmological constraints obtained from these measurements are shown
in Fig. 4.6 and Table 4.2, and the constraints on ⌦m and �8 from the combination
with the fiducial high-z lens bin are shown in Fig. 4.10. For most of the parame-
ters, these lower redshift lenses are in agreement with our fiducial setup, but ⌦m
shows a preference for higher values after correcting for the observing conditions
described in Section 4.5.6. Still, the results for both lens bins are within 1� of
each other.
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Having confirmed that the results from both the low and high redshift lens
bins are consistent, we explore fitting them jointly in the same analysis pipeline
to improve our constraints on cosmology. The covariance between lens bins may
include a contribution from shape noise in the shear catalog. We estimate this
contribution by introducing a random direction to the measured ellipticities be-
fore calculating the tangential shear. This is performed ⇠300 times to obtain a
jackknife estimate of the shape noise across lens and source bins. We then add the
shape noise as an off-diagonal component to the covariance matrix between lens
bins with the diagonal components being the usual JK covariance matrices used
for individual fits. We find that the marginalized constraints are ⌦m = 0.36±0.09
and �8 = 0.76±0.11, which show very little improvement on our fiducial results.
However, the constraint on S8 ⌘ �8(⌦m/0.3)↵, where ↵ is chosen to be perpen-
dicular to the degeneracy direction in the ⌦m-�8 plane, shows a reduction in the
error, from S8 = 0.735±0.117 (↵= 0.16; high-z lenses only) to S8 = 0.782±0.088
(↵ = 0.21; all lenses). These values of ⌦m, �8 and S8 are shown in Fig. 4.6. We
do not however consider this arrangement as our ‘fiducial’ model, leaving joint
constraints to future work with additional survey area.

4.6 DISCUSSION

We have presented our baseline cosmological results from DES data in Sec-
tion 4.4, assuming a flat ⇤CDM model in Figure 4.4 and a flat wCDM model in
Figure 4.5. Our results for the marginalized mean parameter values are contained
in Table 4.2 for each lens bin, with and without external data sets. We also show
results for each of the nuisance parameters used in our fits in Table 4.3.

4.6.1 EXTERNAL DATASETS

We performed a joint analysis of our measurements with the Planck 2015
temperature and polarization auto and cross multipole power spectra, C T T (`),
C T E(`), C EE(`) and CBB(`). Specifically, we use the full range of C T T (`) from 29
< ` < 2509 and the low-` polarization data from 2 < ` < 29, which we denote
as Planck (TT-lowP). The inclusion of the maps allows for stronger constraints on
⌧ which in turn affects As, the primordial power spectrum amplitude. We have
also chosen this configuration to allow for an easy comparison with the DES-SV
Cosmic Shear Cosmology paper (The Dark Energy Survey Collaboration , 2015).
The constraints from only using this configuration of Planck data when assuming
a wCDM model are shown as the red contours in Fig. 4.5.

With the inclusion of the DES �t(✓ ) and w(✓ ) measurements, we were able
to improve on the constraints on �8 and w from just Planck alone, which prefers
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Figure 4.11: Constraints on �8, w and ⌦m using DES (w(✓ ) x �t(✓ )) in combination with Planck
(solid purple) and DES in combination with Planck plus BAO, SN Ia and H0 measurements (dashed
red). Also shown are the constraints from Planck only (filled blue) and BAO, SN Ia and H0 mea-
surements only (filled yellow).

w⇡ �1.5 and �8 ⇡ 1. This is in part because DES provides modest constraints on
H0 which help break the degeneracy between h and ⌦m in the CMB. In addition,
the Planck dataset prefers higher values of �8 and h than the DES data, such
that in combination, the two probes carve out a smaller area in parameter space.
This produces strong constraints on w when the two datasets are combined. In
combination with Planck, we find that ⌦m = 0.32± 0.02, �8 = 0.88± 0.03 and
w= �1.15± 0.09.

Fig. 4.11 shows the result of combining our measurements with additional
data sets beyond the CMB. The other probes that we consider are BAO measure-
ments from 6dF (Beutler et al., 2011), BOSS (Anderson et al., 2014; Ross et al. ,
2015), Supernova type Ia measurements (Betoule et al. , 2014) and direct mea-
surements of H0 (Efstathiou , 2014). These data sets alone give constraints of
⌦m = 0.33± 0.02 and w = �1.07± 0.06 and no constraint on �8 (the posterior
distribution on �8 is fully informed by the prior). Combining these data sets with
DES and the CMB gives an improvement in precision and strengthens our results
to ⌦m = 0.31± 0.01 and �8 = 0.86± 0.02 and w= �1.09± 0.05.

4.6.2 COMPARISON WITH DES COSMIC SHEAR

The Dark Energy Survey Collaboration (2015) measured the 2-point shear
correlations, for the same DES-SV area and source catalogs. The best fitting cos-
mological parameters in that work were �8 = 0.81+0.16

�0.26 and ⌦m = 0.36+0.09
�0.21. Figs.

4.4 and 4.5 show the constraints from the analysis presented in this work on those
parameters together with constraints from the shear 2-point correlations for the
⇤CDM and wCDM models, respectively. There is very good agreement between
the two analyses and a similar degeneracy direction in the ⌦m – �8 plane as well.

The shape of the contours for the two methods in Fig. 4.4 is somewhat dif-
ferent, with the cosmic shear contours being more elongated. We find that the
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slope ↵ in the derived parameter S8 ⌘ �8(⌦m/0.3)↵ is 0.16 for w(✓ ) and �t(✓ )
instead of 0.478 for cosmic shear. In part because the covariance between ⌦m and
�8 is weaker, the constraints on each parameter are slightly stronger for the w(✓ )
and �t(✓ ) case. The results in this analysis are less sensitive to errors in the lens-
ing shear and redshift distribution of source galaxies since these do not impact
w(✓ ) at all, and additive errors in the shear cancel out of �t(✓ ) at lowest order.
On the other hand, cosmic shear measurements are unaffected by errors in the
galaxy biasing model and systematic errors in the measurement of galaxy cluster-
ing. Furthermore, the derived parameter S8 is better constrained by DES cosmic
shear. While there is significant complementarity in the two measurements, they
are also correlated because of the shared source galaxies. The combination of all
three 2-point functions taking into account covariances is an important next step
in the cosmological analysis of DES.

Cosmic shear measurements obtained from CFHTLenS (Heymans et al. , 2013)
constrain the combination of S8 = �8(⌦m/0.3)↵, where ↵ = 0.46, to be S8 =
0.774+0.032

�0.041 as their primary result. Again, the directionality of the parameter de-
generacy between�8 and⌦m is slightly stronger than for our joint probes analysis,
but the results appear consistent.

4.6.3 COMPARISON WITH THE LITERATURE

A number of previous papers have considered the combination of w(✓ ) and
�t(✓ ) as probes of cosmology. Mandelbaum et al. (2013) perform an analysis
with SDSS DR7 using luminous red galaxies as the lenses and derive comparable
constraints. With some cosmological parameters fixed, Mandelbaum et al. (2013)
used a combination of three lensing and angular clustering measurements in the
redshift range 0< z <0.5 to obtain �8 = 0.76 ± 0.08 and ⌦m = 0.27+0.04

�0.03. Sev-
eral details of our analysis differ from Mandelbaum et al. (2013), but the broad
approach of employing a quasilinear analysis on large scales is similar and the
results are consistent.

Cacciato et al. (2013) also measure the tangential shear and angular cluster-
ing from SDSS DR7 data, but differ in that they include small scale clustering and
consider a subset of the galaxy samples used by Mandelbaum et al. (2013). They
adopt a halo model approach which allows them to extend their analysis to much
smaller scales than Mandelbaum et al. (2013), at the expense of requiring addi-
tional free parameters and model ingredients that are calibrated with simulations.
With this small scale approach, Cacciato et al. (2013) obtain⌦m = 0.278+0.023

�0.026 and
�8 = 0.763+0.064

�0.049, again consistent with our derived constraints.
Similarly, More et al. (2015) use a halo model approach to calculate the joint

likelihood using galaxy clustering, galaxy-galaxy lensing and galaxy abundance
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for the CMASS sample observed in BOSS using CFHTLenS sources. They report
that ⌦m = 0.31± 0.02 and �8 = 0.79± 0.04. Applying an HOD model motivates
the inclusion of small scale information in their cosmology fits. In terms of number
density and typical halo mass, the CMASS galaxies used by More et al. (2015) are
closer to our redMaGiC sample than the LRGs in Mandelbaum et al. (2013), but
they all derive consistent cosmological constraints.

4.7 CONCLUSIONS

In this chapter we have presented cosmological constraints from the combina-
tion of large-scale structure and weak gravitational lensing in the Dark Energy Sur-
vey. Using a contiguous patch of 139 sq. deg. from the Science Verification period
of observations, we have placed constraints on the matter density and the ampli-
tude of fluctuations in the Universe as ⌦m = 0.31±0.09 and �8 = 0.74±0.13, re-
spectively. We also present joint constraints with CMB measurements from Planck,
and additional low-redshift datasets. When allowing for a dark energy equation of
state parameter w different to the ⇤CDM value of �1, we find DES data improve
the constraints on �8 as well as w. We leave a full tomographic analysis with
multiple lens bins and a joint analysis with cosmic shear for future DES releases.

We have assessed the robustness of our results with respect to several vari-
ations in the choice of data vector, modelling and treatment of systematics. In
particular, the results are stable under the use of two different shear catalogs,
four different photo-z codes and two different estimators of the lensing signal.
They also show consistency with the fiducial results when using a different lens
bin, a different selection of angular scales or when adding a nonlinear galaxy bias
parameter.

The DES-SV region comprises only ⇠3% of the eventual survey coverage, and
we expect to greatly improve on our constraining power with future data releases.
For now, the analysis presented in this chapter is complementary to and provides a
useful consistency check with the analysis of the shear 2-point function presented
in The Dark Energy Survey Collaboration (2015). These analyses validate the
robust modelling of systematic errors and galaxy bias, as well as the exhaustive
testing of the shear pipeline, photo-z estimation and the redMaGiC galaxy sample
selection in the Dark Energy Survey.
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Cosmic voids and void lensing
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Chapter 5

COSMIC VOIDS AND VOID LENSING IN THE DES-SV
DATA

5.1 INTRODUCTION

Cosmic voids are low-density regions in space surrounded by a network of
dark matter halos and the galaxies that populate them. Given their intrinsic low-
density environment, voids are only weakly affected by complicated non-linear
gravitational effects which have a strong impact in crowded environments such
as galaxy clusters. This simplicity makes it possible to constrain cosmological pa-
rameters with voids (Betancort-Rijo et al., 2009; Lavaux & Wandelt, 2010; Sutter
et al., 2014b; Kitaura et al., 2015; Hamaus et al., 2016; Mao et al., 2016; Sahlén,
Zubeldía & Silk, 2016). Furthermore, the unique low-density environments of
voids make possible probes of the nature of dark energy, alternate theories of
gravity (Lee & Park, 2009; Bos et al., 2012; Spolyar, Sahlén & Silk, 2013; Cai,
Padilla & Li, 2015; Barreira et al., 2015), and primordial non-Gaussianity (Song
& Lee, 2009).

A number of different void finding algorithms exist in the literature: Voronoi
tesselation and watershed methods (Platen, Van De Weygaert & Jones, 2007;
Neyrinck, 2008; Lavaux & Wandelt, 2012; Sutter et al., 2012; Nadathur et al.,
2015), growth of spherical underdensities (Hoyle & Vogeley, 2002; Colberg et al.,
2005; Padilla, Ceccarelli & Lambas, 2005; Ceccarelli et al., 2006; Li, 2011), hy-
brid methods (Jennings, Li & Hu, 2013), 2D projections (Clampitt & Jain, 2015),
dynamical criteria (Elyiv et al., 2015), and Delaunay Triangulation (Zhao et al.,
2015), among other methods (Colberg et al., 2008). Most void finders currently
applied to data use galaxies with spectroscopic redshifts to define voids. However,
when using far less precise photometric redshifts (photo-z’s), the void-finding pro-
cess needs to be revisited to overcome the smearing in the line-of-sight position
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of tracer galaxies.
Spectroscopic surveys like 2dF (Colless et al., 2001), VVDS (Le Fèvre et al.,

2005), WiggleZ (Drinkwater et al., 2010) or BOSS (Dawson et al., 2013) provide
3D information of the galaxy distribution, but they are expensive in terms of time,
and may suffer from selection effects, incompleteness and limited depth. In con-
trast, photometric surveys such as SDSS (York et al., 2000), PanSTARRS (Kaiser,
Tonry & Luppino, 2000), KiDS (de Jong et al., 2013) or LSST (Tyson et al., 2003)
are more efficient and nearly unaffected by selection bias, more complete and
deeper, but do not provide complete 3D information of the galaxy distribution
due to their limited resolution in the galaxy line-of-sight positions, obtained by
measuring the photo-z of each galaxy from the fluxes measured through a set of
broadband filters.

A few void catalogs exist that use photometric redshift tracers (Granett, Neyrinck
& Szapudi, 2008). Many voids about the size of the photo-z error or smaller will
not be found at all; in other cases, spurious, or Poisson, voids will appear in the
sample due to photo-z scatter. For the larger voids in the sample, those with sizes
much larger than the photo-z error, the photo-z scatter should not affect the void
sample substantially. However, these huge voids are very few due to the rapidly
falling size distribution of cosmic voids in the universe. In any case, it should also
be possible to find voids smaller than the photo-z scatter, since the latter acts to
smooth out the density field, but retains the topology of the large-scale structure
to some extent. Therefore, by designing a void finding algorithm specifically for
photometric redshift surveys, the purity and completeness of the resulting void
sample can be improved.

Qualitatively, our void finding method can be understood with an analogy to
galaxy clustering measurements. In that case, the ideal scenario is to measure
the 3D correlation function of galaxies when spectroscopic redshifts are available.
However, for photometric survey data sets, one usually avoids computing the 3D
correlation function of galaxies because of the photo-z dispersion affecting the
line-of-sight component. The standard approach is therefore to split galaxies into
tomographic photometric redshift bins, and compute the 2D angular correlation
function in the projection of each of these line-of-sight bins. The photometric red-
shift errors make the actual size of the redshift bins to be effectively comparable
or larger than the photo-z scatter (see for instance Crocce et al. 2011). Then, in
order to minimize the noise in the measurement, the optimal approach is to set
the width of the redshift bins to be comparable or larger than the photo-z scatter.
Finally, one measures the angular clustering in each of these redshift bins, and
hence the evolution of clustering with redshift. In this work we present a void
finder that follows the same approach: finding voids in the angular projection of
the galaxy distribution in redshift slices that are broader than the photo-z disper-
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sion, and then combining the slices to get the most of the line-of-sight information
in the data.

Before applying the algorithm to the DES Science Verification (DES-SV) data
set, we use simulations with mock spectroscopic and realistic photometric red-
shifts to validate the method, running the void finder in both cases and studying
the differences among the void catalogs coming from the corresponding projected
slices. Once the DES-SV void catalog is defined, we measure the weak gravita-
tional lensing signal around voids and confirm the voids are also empty in the
dark matter.

The plan of the chapter is as follows. In Sec. 2 we describe the Dark Energy
Survey Science Verification data used in this chapter, together with the simulations
used to test the validity of the finder. Section 3 presents the 2D angular void finder
algorithm and some simulation tests comparing the algorithm output when using
spectroscopic and photometric redshifts for the tracer galaxies. Then, in Sec. 4
we apply the algorithm to DES-SV data and discuss the choice of redshift slices
and the way we deal with survey edge effects. Finally, in Sec. 5 we use the final
DES-SV void catalog to measure the weak gravitational lensing around voids and
we discuss our results and conclusions in Sec. 6.

5.2 DATA AND SIMULATIONS

The Dark Energy Survey (DES, Flaugher 2005; Flaugher et al. 2015; Dark En-
ergy Survey Collaboration et al. 2016) is a photometric redshift survey that will
cover about one eighth of the sky (5000 sq. deg.) to a depth of iAB < 24, imaging
about 300 million galaxies in 5 broadband filters (grizY ) up to redshift z = 1.4.
The DES camera (DECam, Flaugher et al. 2015) includes sixty-two 2048x4096 sci-
ence CCDs, four 2048x2048 guider CCDs, and eight 2048x2048 focus and align-
ment chips, for a total of 570 megapixels. In this chapter we use 139 sq. deg. of
data from the Science Verification (SV) period of observations (Diehl et al., 2014),
which provided science-quality data at close to the nominal depth of the survey.

In a photometric redshift survey, such as DES, the photo-z’s of tracer galaxies
will impact the identification of voids with sizes comparable to the photo-z scatter
�z , in a way that renders some voids smeared and undetected. For DES main
galaxies, this is a problem since �z ' 0.1 (Sánchez et al., 2014), corresponding
to ⇠ 220 Mpc/h at z = 0.6, and typical voids have a comoving size of about 10-
100 Mpc/h. However, we do not need to use all DES galaxies as void tracers.
Instead, we can restrict ourselves to the Luminous Red Galaxies (LRGs) in the
sample, which are still good tracers of the large-scale structure and have much
better photo-z resolution.
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5.2.1 VOID TRACER GALAXIES: THE REDMAGIC CATALOG

The DES-SV redMaGiC catalog (Rozo et al., 2015) presents excellent photo-z
performance: redMaGiC photometric redshifts are nearly unbiased, with median
bias (zspec�zphot)⇡ 0.5%, a scatter �z/(1+z)⇡ 1.70%, and a⇡ 1.4% 5� redshift
outlier rate. That scatter corresponds to a redshift resolution of ⇠ 50 Mpc/h at
z = 0.6, a substantial improvement over DES main galaxies. Next we summarize
the redMaGiC selection algorithm, but we refer the reader to Rozo et al. (2015)
for further details.

The red-sequence Matched-filter Galaxy Catalog (redMaGiC, Rozo et al. 2015)
is a catalog of photometrically selected luminous red galaxies (LRGs). We use
the terms redMaGiC galaxies and LRG interchangeably. Specifically, redMaGiC
uses the redMaPPer-calibrated model for the color of red-sequence galaxies as
a function of magnitude and redshift (Rykoff et al., 2014). This model is used
to find the best fit photometric redshifts for all galaxies under the assumption
that they are red-sequence members, and the �2 goodness-of-fit of the model is
then computed. For each redshift slice, all galaxies fainter than some minimum
luminosity threshold Lmin are rejected. In addition, redMaGiC applies a cut �2 
�2

max, where the cut �2
max as a function of redshift is chosen to ensure that the

resulting galaxy sample has a constant space density n̄. In this work, we set n̄ =
10�3h3Mpc�3 with ⇤CDM cosmological parameters ⌦⇤ = 0.7, h0 = 100, and
redMaGiC galaxies are selected in the redshift range 0.2 < z < 0.8. We expect
the redMaGiC galaxy selection to be only marginally sensitive to the cosmological
parameters assumed (see Rozo et al. 2015 for details). The luminosity cut is
L � L⇤(z)/2, where the value of L⇤(z) at z = 0.1 is set to match the redMaPPer
definition for SDSS (Rykoff et al., 2014), and the redshift evolution for L⇤(z) is
that predicted using a simple passive evolution starburst model at z = 3 (Bruzual
& Charlot, 2003).

We use the redMaGiC sample because of the exquisite photometric redshift
performance of the redMaGiC galaxy catalog. Also, because void properties de-
pend on the tracer sample used, the constant comoving density of redMaGiC trac-
ers helps in assuring the resulting voids have similar properties. For example, the
dark matter profile (Sutter et al., 2014a) and void bias (Chan, Hamaus & Des-
jacques, 2014; Clampitt, Jain & Sánchez, 2016; Pollina et al., 2016) have been
shown to depend on the tracer density or tracer bias used to define voids.

Aside from the data catalog presented above, in this work we also use ⇤CDM
simulations that mimic the properties of the DES-SV redMaGiC data set. The
mock galaxy catalog is the Buzzard-v1.0 from the Blind Cosmology Challenge
(BCC) simulation suite, produced for DES (Wechsler et al, in preparation). These
catalogs have previously been used for several DES studies (see e.g. Chang et al.
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2015; Leistedt et al. 2015; Becker et al. 2015; Clampitt et al. 2016; Kwan et al.
2016). The underlying N-body simulation is based on three cosmological boxes,
a 1050 Mpc/h box with 14003 particles, a 2600 Mpc/h box with 20483 particles
and a 4000 Mpc/h box with 20483 particles, which are combined along the line of
sight producing a light cone reaching DES full depth. These boxes were run with
LGadget-2 (Springel, 2005) and used 2LPTic initial conditions (Crocce, Pueblas
& Scoccimarro, 2006) with linear power spectra generated with CAMB (Lewis &
Bridle, 2002). ROCKSTAR (Behroozi, Wechsler & Wu, 2013) was utilized to find
halos in the N-body volumes. The ADDGALS algorithm (Wechsler 2004, Busha
et al. 2013, Wechsler et al, in preparation) is used to populate the dark mat-
ter simulations with galaxies as a function of luminosity and color. ADDGALS
uses the relationship between local dark matter density and galaxy luminosity, to
populate galaxies directly onto particles in the low-resolution simulations. This
relationship is tuned to reproduce the galaxy–halo connection in a higher resolu-
tion tuning simulation, in which galaxies are assigned using subhalo abundance
matching (e.g. Conroy, Wechsler & Kravtsov, 2006; Reddick et al., 2013), in this
case matching galaxy luminosity to peak circular velocity. Finally, each galaxy
is assigned a color by using the color-density relationship measured in the SDSS
(Aihara et al., 2011) and evolved to match higher redshift observations. The red-
MaGiC algorithm has been run on the simulation in a similar way as it is run on
the DES data. This produces a simulated sample with the same galaxy selection
and photometric redshift performance as the DES-SV redMaGiC catalog but gives
us access to the true redshifts of the galaxies in the sample, a fact that we will use
to test the void finder presented in this work.

5.2.2 LENSING SOURCE CATALOG

The catalog of galaxy shapes used in the lensing measurement of this work is
the ngmix1 catalog presented in Jarvis et al. (2015). ngmix is a shear pipeline
which produces model fitting shape measurements, and that was applied to a
large subset of DES-SV galaxies, meeting the requirements of an extensive set of
null and systematics tests in Jarvis et al. (2015). The photometric redshifts of
the galaxies in the ngmix shear catalog were studied in detail in Bonnett et al.
(2015), using 4 different photo-z codes. In this work we use the SkyNet photo-z
method, which demonstrated excellent performance in that comparison.

1https://github.com/esheldon/ngmix
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5.3 PHOTO-Z VOID FINDER ALGORITHM

In this Section we present a new void finder designed specifically to work
on photometric surveys. We explain the algorithm and test its performance on
simulations, providing validation for the results shown later in the chapter.

5.3.1 VOID FINDER ALGORITHM

The void finder works by projecting galaxies in redshift slices and finding un-
derdensities in the 2D angular distribution of galaxies in the given slices. If the
line-of-sight width of the projected slice is sufficiently large, at least about twice
the photo-z resolution, then most galaxies will still be assigned to the correct
slice. Since the finder works by projecting all galaxies within a given slice onto a
2D surface, the line-of-sight position within the slice does not affect the results.

The void finder of Clampitt & Jain (2015) also begins by treating each slice
in isolation, but has the disadvantage that voids are required to be completely
empty of galaxies near the center. Thus, photo-z scatter, which moves a single
galaxy between slices, can inappropriately break up a single large void into several
smaller voids, or even result in no void being detected at all. To overcome this
problem, we smooth the 2D projected galaxy density field in each slice and then
voids are found from minima of the smoothed density field. This means a few
galaxies moving between different slices will not greatly affect the resulting set of
voids, as will be demonstrated in Sec. 5.3.2.

In detail, the void finding algorithm involves the following steps:

1. We select the galaxies from a redshift slice of thickness 2sv (we define sv to
be half the slice thickness) and we project them into a HEALpix map (Gorski
et al., 2005), with a resolution of Nside = 512 representing an angular res-
olution of 0.1 deg. and a physical resolution of 1.5 Mpc/h at z = 0.3 (3
Mpc/h at z = 0.6).

2. We compute the mean density in the map corresponding to the given red-
shift slice, n̄2d , and convert the galaxy map to a density contrast map as
� = n2d/n̄2d � 1, where n2d is the galaxy map.

3. Then we smooth the density contrast map with a Gaussian filter of comoving
scale �s = 10 Mpc/h.

4. We take this smoothed contrast map and consider only the most underdense
pixels (with � < �m = �0.3) as potential void centers. We define the most
underdense pixel in the map as the first void center.
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Figure 5.1: Graphical description of the void-finding algorithm presented in this chapter. The back-
ground gray-scaled field is the smoothed galaxy field (� = 10 Mpc/h) in a redshift slice used by the
void-finder. The two solid (red) dots show two void centers. For the upper void, we show a circular
shell or radius Ri . Since the density contrast �(Ri) < 0, the algorithm checks larger shells, up to
radius Rj such that �(Rj)� 0. The void radius is then defined as Rv = Rj .

5. Next we start defining circular shells of increasing radius around that center,
stopping when the mean density within the slice (� = 0) is reached. That is,
starting with a shell of radius R i

v , we measure the average galaxy density in
the shell �(R i

v), and if the density is negative we check the next larger shell
�(R i+1

v ), where the increment between shells is 1 Mpc/h in radius. For some
shell R j

v the density contrast reaches zero, �(R j
v) � 0, and at that point the

void radius is defined as Rv = R j
v (see Fig. 5.1 for a graphical explanation).

6. Then all pixels contained in this void are removed from the list of potential
void centers, preventing any of these pixels to become the center of any
other void. From the remaining pixels that satisfy � < �m = �0.3, we define
the next most underdense pixel as the second void center. The process is
repeated until all pixels with � < �m = �0.3 have been assigned to a void.

Beyond the dependency on the line-of-sight size of the projected slice in which
the finder is executed, studied in more detail later in this section, the void catalog
produced by this algorithm depends on two parameters: the smoothing scale, �s,
and the maximum density contrast of a pixel to become a void center, �m. The
smoothing scale (�s = 10 Mpc/h) is chosen to be about half the radius of the
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Figure 5.2: (left panel): Comparison of 2D spectroscopic galaxy density profiles of voids found in
the simulations using galaxy spectroscopic redshifts (solid line) or photometric redshifts (dotted,
red). The shaded regions show the corresponding error bars computed as the standard deviation
among all the stacked voids. The projected 2D slice width is 25 Mpc/h(comoving distance), a scale
corresponding to⇠ 1/2 the photometric redshift scatter. For this thin slice, the galaxy density profile
is damped significantly by photo-z scatter, making the galaxy profile of photo-z defined voids more
shallow. (center panel): The same, but for a thicker slice of width 50 Mpc/h, comparable to the
photo-z scatter. (right panel): The same, but for a projected slice of width 100 Mpc/h, twice the
size of the typical photo-z scatter. In this case there is a good match between the profiles of spec-z
and photo-z selected voids. For such a thick slice, the fraction of galaxies that are placed in the
incorrect slice due to photometric redshift scatter is smaller, allowing accurate void identification
from the smoothed galaxy field.

smallest voids we can access in our data sample (because of photo-z smearing),
and increasing it would erase the structure leading to some of these smallest voids,
leaving the large voids intact. On the other hand, the most significant voids found
by the algorithm, the deepest ones, are independent of the choice �m = �0.3 since
their void center pixel is more underdense than that. By changing the value of
�m we are only affecting the shallower voids of the sample. The impact of the �m
choice is studied in Appendix D. Also, voids found by this algorithm can overlap
or even enclose one another, but just in the case where a subvoid is deeper than
the bigger void enclosing it.

The process detailed above will produce a list of voids for a given redshift slice.
Before describing how various slices are combined to obtain the full void catalog,
we first study the performance of the single slice results in simulations.

5.3.2 PERFORMANCE ON SIMULATIONS

In order to validate the performance of the algorithm we use the simulations,
where we have both spectroscopic and photometric redshift for void tracer galax-
ies, and we compare the voids found by the algorithm in spec-z and photo-z space.
In particular, we run the void finding algorithm twice on each redshift slice: first
using spectroscopic redshifts for selecting the galaxies that go into the slice and
then using photometric redshifts that mimic the ones we have in real DES data.
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Figure 5.3: (upper panel): Void radius
distribution for voids found in spec-z
and photo-z simulated galaxy samples,
for a slice thickness of 2sv = 100 Mpc/h.
(lower panel): Relative difference be-
tween the distributions (with respect to
the spectroscopic redshift case). Some
voids with size smaller than the photo-
z scatter (�z ' 50 Mpc/h) are smeared
out due to photo-z scatter and not de-
tected, resulting in a smaller number of
voids relative to the spectroscopic case.
For large voids this effect is not im-
portant and the two distributions agree
within errors.

Once we have the spec-z and photo-z defined void catalogs, we measure the
projected galaxy density profiles of the voids in them in radial annuli using the true
redshifts. Figure 5.2 shows the resulting density profiles for both cases in different
slice comoving thicknesses. As expected, the void finder performs poorly if the
size of the projected slice is smaller or similar to the photo-z dispersion �z ' 50
Mpc/h. Therefore, the accuracy of the finder is a function of the thickness of
the projected slice: for slice width ⇠ 2 times the size of the typical photometric
redshift scatter, the difference between the average density profiles of voids found
in spec-z and photo-z is not significant, being smaller than the standard deviation
of the stacked void profiles.

Figure 5.2 shows that voids found by the algorithm in photo-z space can in-
deed have very similar density profiles as voids found in spec-z space. However,
it is also important to know the relative number of voids found in the two cases.
Photometric redshifts produce a smearing in the line-of-sight position of tracers
that can actually erase some of the structure, especially on scales comparable to
the size of the photo-z scatter or smaller. That will have the consequence of some
small voids not being detected in the photo-z case. The voids of size larger than
the photo-z scatter should be detected in both cases. Figure 5.3 shows the distri-
bution of void radii in simulations for spec-z and photo-z samples. As expected,
we find less voids in the photo-z case, with the difference being more important
for small voids and becoming negligible for the voids substantially larger than the
photo-z dispersion (�z ' 50 Mpc/h).

In addition to the comparison of the galaxy density profiles of voids, which
is the most important test of the algorithm, Fig. 5.4 shows a visual comparison
between the positions and radius of spec-z and photo-z defined voids in a random
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Figure 5.4: Comparison between voids
found in spec-z (centers: solid black
points; radius: solid circles) and photo-
z (centers: open red squares; radius:
red dashed circles) in the simulations
for a slice of thickness 2sv = 100 Mpc/h.
The background gray-scaled field is the
smoothed galaxy field (� = 10 Mpc/h)
used by the void-finder. The correla-
tion between spec-z and photo-z de-
fined voids is clear: in many cases the
void position and radius match almost
exactly.

100 Mpc/h-thick slice of our simulations. The correlation between the two sets
of voids is very clear, in both positions and radii. In some cases, especially for
the biggest voids, the match between spec-z and photo-z voids is almost perfect.
This is remarkable given the magnitude of the scatter in the line-of-sight direction
being added by photometric redshifts.

5.4 DES-SV VOID CATALOG

In the previous Section we have presented a void finder that works by pro-
jecting galaxies into redshift slices (see Sec. 5.3.1 for a detailed description and
parameters used in the algorithm). We have shown (Sec. 5.3.2) that as long as the
thickness of the projected slice is large enough compared to the photo-z scatter,
using photometric redshifts for the position of void tracers works nearly as well
as using spectroscopic redshifts. Nevertheless, the algorithm will find some voids
that are not likely to correspond to voids in the dark matter density field. Such
false voids may be due to a number of effects: (i) at the survey edge or masked
areas we have no information on galaxy positions, and (ii) duplicate voids may
appear if slices overlap in redshift. In this Section we apply the algorithm to
real DES-SV data, and present the way we deal with voids near the survey edge
(Sec. 5.4.1) and the strategy we follow to get the most of the line-of-sight infor-
mation in the data (Sec. 5.4.2). The properties of the final DES-SV void catalog
are presented in Sec. 5.4.3.
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Figure 5.5: Distribution of random
point density inside DES-SV voids,
where the random points are dis-
tributed uniformly through the DES-SV
area. The distribution shows roughly
a Gaussian shape at high densities cor-
responding to voids inside the survey
mask, and a low density tail corre-
sponding to edge voids. We remove
all voids with random point density less
than 9000 points/deg2 (shaded region),
most of them near the survey edge. This
cut removes 33% of the total number of
voids.

5.4.1 VOIDS NEAR THE SURVEY EDGE

The assignment of each void’s radius does not distinguish between voids that
are fully contained within the survey and those that extend beyond it. The void
radius may stretch beyond the edge of the survey, into areas which may or may
not correspond to voids in the galaxy distribution. To remove such voids which
extend far beyond the survey edge, we use the method of Clampitt & Jain (2015).
A random point catalog drawn using the survey mask is generated, and for each
void we calculate the density of random points inside Rv . The distribution of ran-
dom points density inside voids is shown in Fig. 5.5, and it presents a Gaussian-
like shape at high densities (peaked around 9500 points/deg2 with � ' 2000
points/deg2), corresponding to voids centered in the survey mask, and a low den-
sity tail reaching almost zero density, which corresponds to edge voids. Due to
the small size of the DES-SV patch used in this work, with an area of 139 sq. deg.,
and the size of some of the voids detected (a void with Rv ⇠ 80 Mpc/h would
span more than 10 deg. in diameter at z = 0.3), we place a conservative cut
and discard voids with random point density less than 9000 points/deg2, which
constitute 33% of the total number of voids.

5.4.2 LINE OF SIGHT SLICING STRATEGY

To obtain more information about the line-of-sight position of each void we
oversample the volume with a number of different slice centers. In particular,
first we slice the line-of-sight range of the survey, 0.2 < z < 0.8, in equal slices
of comoving thickness 2sv = 100 Mpc/h taking the upper redshift limit, z = 0.8,
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LO
S

z = 0.8

z = 0.2

Figure 5.6: Graphical representation
of the line-of-sight (LOS) slicing per-
formed in this chapter. The black verti-
cal arrow represents the redshift range,
0.2 < z < 0.8, and the red horizon-
tal bars represent the boundaries of the
redshift slices in which the void finder
is run. As the diagram shows, we over-
sample the line of sight with slices of
thickness 100 Mpc/h every 20 Mpc/h.
In Fig. 5.7 we show the way voids in ad-
jacent slices are combined to form the
final catalog.
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Figure 5.7: (left panel): 3D position of voids found in the slicing shown in Fig. 5.6. Each void
candidate is shown as a sphere with size proportional to the void radius. Due to oversampling in
the line of sight, slices overlap and duplicates of the same physical void are found in different slices,
apparent in this plot as elongated structures in redshift. The inset square shows the case of a three
void group. (center panel): Voids corresponding to the same physical underdensity are grouped
together (as described in Sect. 5.4.2) and plotted with a common color. (right panel): The final
void positions are computed as the median 3D position of the members of each group.
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Figure 5.8: Distribution of comoving
void radii of the final DES-SV void cat-
alog used in this work, using slices of
thickness 100 Mpc/h and after the cuts
described in Sections 5.4.1 and 5.4.2.
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Figure 5.9: Comparison of 2D galaxy
density profiles of voids found in DES-
SV data and simulations, using galaxy
photometric redshifts. The shaded re-
gions show the corresponding error
bars computed as the standard devia-
tion among all the stacked voids.

as the upper limit of the furthest slice. Then we apply a shift to this slicing of 20
Mpc/h towards low redshift, and we repeat the process four times so that we have
a slice of thickness 100 Mpc/h centered every 20 Mpc/h of the line-of-sight range
in the data (see Fig. 5.6 for a graphical representation).

Since the volume has been oversampled with a number of different slice cen-
ters, sometimes the same physical void will be found in multiple slices, creating
elongated void structures in the line of sight (left panel in Fig. 5.7). Each of these
structures may actually correspond to one physical underdensity, or at least their
void candidate members will have a consistent lensing profile since they are es-
sentially at the same redshift and have very similar sizes. In order to remove the
duplicate voids, and also to pick up the right void center in the line-of-sight direc-
tion, we need to group these void structures together. The groups are found by
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joining voids in neighboring (and hence overlapping) slices that have a small an-
gular separation between them. In particular, two voids with radii Ri

v and Rj
v and

found in neighboring slices will become part of the same group if the angular dis-
tance between their centers is smaller than half the mean angular radii of the two
voids: R̄v/2= (Ri

v +Rj
v)/4. The groups are shown in the central panel in Fig. 5.7,

and the right panel shows the final void catalog, without obvious elongated struc-
tures in the line of sight. This resulting void catalog is not very sensitive to the
choice of R̄v/2: Increasing this minimum separation from 0.5R̄v to 0.6R̄v (0.8R̄v)
results in removing 6% (10%) of the voids in the final catalog.

Once we have the void groups corresponding to those line-of-sight structures,
we compute the 3D position of each group (RA, Dec and redshift) as the median
position of the different void members of the group. The relative scatter in this
determination inside each group (taken as the standard deviation of each quantity
with respect to its mean value) is very small (less than 0.4% for RA and Dec and
around 2% in redshift). The void radius is also computed as the median void
radius of the different void members in each group, with a relative scatter around
14%. The final void candidates, after removal of duplications of potential physical
underdensities due to the oversampled slicing, are shown in the right panel of
Fig. 5.7. The effect of the LOS slicing strategy in the void lensing measurement
is tested in Appendix E, where we show it helps reduce the noise but it does not
affect the main outcomes from the measurement.

5.4.3 FINAL VOID CATALOG

Applying the void finding algorithm described in Sect. 5.3, using slices of 100
Mpc/h thickness, to the DES-SV redMaGiC catalog, and after making the cuts pre-
sented in Sections 5.4.1 and 5.4.2, we find a total of 87 voids in the 139 sq. deg. of
survey area. These voids are identified in the redshift range 0.2 < z < 0.8, and
they have comoving sizes ranging from Rv = 18 Mpc/h to Rv = 120 Mpc/h, with
a mean void radius of R̄v = 37 Mpc/h. Figure 5.8 shows the full void radius distri-
bution for the sample. The mean angular radius of voids in the sky is 1.5 degrees
while their mean redshift is z̄ = 0.57.

Figure 5.9 shows the 2D galaxy density profiles of voids found in the DES-
SV data and in simulations, using galaxy photometric redshifts. The agreement
between data and simulations is good, and so is the agreement between the sim-
ulation profiles measured with photometric (Fig. 5.9) and spectroscopic redshifts
(right panel of Fig. 5.2).
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Figure 5.10: (Upper panel): Variance
in the stacked weak lensing measure-
ment of voids in DES-SV data, in bins of
R/Rv , as estimated from jackknife (JK)
resampling and lensing shape noise, the
two techniques described in Sect. 5.5.2.
(Lower panel): Ratio of the two error
estimations in the upper panel. The
two agree well on small scales (which
are shape noise dominated) and dif-
fer significantly at medium to large
scales since the jackknife includes other
sources of variance in addition to shape
noise.

5.5 VOID LENSING

Using the void catalog defined in the previous section we now focus on the
lensing measurement around voids. This represents a key result, since a signifi-
cant lensing signal around voids proves them to be underdense in the matter field,
this way demonstrating the void catalog is primarily composed of real underden-
sities rather than spurious detections, tracer density effects or any systematics in
the data.

In this section we present the details of the lensing measurement and covari-
ance, the results for the tangential and cross components of that measurement
and their significance, and the fit of the tangential component to a void model
widely used in the literature.

5.5.1 MEASUREMENT

Assuming an axisymmetric density profile, the stacked excess surface mass
density �⌃ is related to the tangential shear �t of source galaxies by

�⌃(R/Rv) = ⌃crit�t(R/Rv) , (5.1)

where the proportionality factor describing the lensing strength is

⌃crit(zL, zs) =
c2

4⇡G
DA(zs)(1+ zL)�2

DA(zL)DA(zL, zs)
, (5.2)
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with ⌃�1
crit(zL, zs) = 0 for zs < zL, where zL and zs are the lens and source galaxy

redshifts, respectively. Note both the use of comoving units and that we need
to assume a certain cosmology (flat ⇤CDM with ⌦m = 0.3) when calculating the
angular diameter distances DA in ⌃crit. Our lensing projected surface density esti-
mator is therefore given by

�⌃k(R/Rv; zL) =

P
j

⇥
wj�k, j(R/Rv)⌃crit, j(zL, zs)

⇤
P

j w j
(5.3)

where k denotes the two possible components of the shear (tangential and cross),
the summation

P
j runs over all the source galaxies in the radial bin R/Rv , around

every void position, and the optimal weight for the j-th galaxy is given by (Sheldon
et al., 2004):

wj =
[⌃�1

crit, j(zL, zs)]2

�2
shape +�

2
m, j

. (5.4)

Here �shape is the intrinsic shape noise for each source galaxy, and �m, j is the
shape measurement error. In Sec. 5.5.5 we relate the differential surface density
�⌃ to the 3D void profile ⇢v.

Note that since the projected void radius Rv ranges from 20 to more than 100
Mpc/h, we stack the measured shear profiles in units of the void radius, R/Rv .
Stacking the profiles in physical distance would smooth out the stacked void den-
sity profiles and hence some of the signal would be lost.

5.5.2 COVARIANCE

In order to estimate the covariance for the �⌃(R) measurements in this work
we combine two different approaches: we rely on the jackknife (JK) method to
estimate the signal variance while we estimate the off-diagonal shape of the co-
variance from the lensing shape noise of the measurement (Melchior et al., 2014).
The main reason for that combination is the limitation in the JK technique due to
the small number of voids (⇠ 100) in our catalog, yielding very noisy off-diagonal
correlations. However, we can obtain smooth shape-noise-only covariances by ap-
plying any number of random rotations to the ellipticities of source galaxies. Next
we explain the precise combination of the two approaches.

Due to the small number of voids in the DES-SV catalog, we perform a void-
by-void jackknife: we carry out the measurement multiple times with each void
omitted in turn to make as many jackknife realizations as voids we have in the
sample (N). Then, the variance of the measurement (Norberg et al., 2009) is
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given by

�2
JK(�⌃i) =

(N � 1)
N
⇥

NX

JK�k=1

⇥
(�⌃i)JK�k ��⌃i

⇤2
(5.5)

where the mean value is

�⌃i =
1
N

NX

JK�k=1

(�⌃i)JK�k , (5.6)

and (�⌃i)JK�k denotes the measurement from the k-th JK realization and the i-th
spatial bin.

The shape noise (SN) covariance of the measurement is estimated by ran-
domly rotating the orientation of each source galaxy ellipticity many times (NSN =
300 in this analysis) and repeating the �⌃ lensing measurement each time. Then
the covariance is estimated as:

CovSN[�⌃i ,�⌃ j] =
1

NSN

⇥
NSNX

SN�k=1

⇥
(�⌃i)SN�k ��⌃i

⇤ ⇥
(�⌃ j)SN�k ��⌃ j

⇤
(5.7)

where the mean value is

�⌃i =
1
N

NX

SN�k=1

(�⌃i)SN�k , (5.8)

and (�⌃i)SN�k denotes the measurement from the k-th shape noise (SN) realiza-
tion and the i-th spatial bin.

Figure 5.10 shows a comparison of the measurement variance estimated from
jackknife and shape noise, following the techniques described above. The errors
coming from the two approaches agree well on the smallest scales, as expected
since the small-scale regime is dominated by shape noise. However, at mid to
large scales (R ⇠ 0.28Rv and above) the JK errors get bigger than SN only, as
they can trace other effects such as systematics in the data or sample variance.
The shape noise calculation is, on the other hand, more adequate for off-diagonal
elements of the covariance since it avoids the intrinsic noise limitation of the JK
technique. Hence, in order to have a smooth covariance matrix with variance
accurately estimated from JK, we follow the approach of fixing the shape of the
covariance as given by the shape noise calculation, and renormalize it to the JK
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estimates of the variance:

Cov[�⌃i ,�⌃ j] = CorrSN[�⌃i ,�⌃ j]�JK(�⌃i)�JK(�⌃ j) (5.9)

where CorrSN[�⌃i ,�⌃ j] is the shape noise correlation matrix (or reduced covari-
ance) given by:

CorrSN[�⌃i ,�⌃ j] =
CovSN[�⌃i ,�⌃ j]
�SN(�⌃i)�SN(�⌃ j)

(5.10)

The approach of renormalizing a smooth covariance to a JK estimated variance
has been used before in the literature, for example by Crocce et al. (2016).

5.5.3 NULL TESTS: CROSS-COMPONENT AND randomized VOIDS

The cross-component of the measurement described in Sect. 5.5.1 is not pro-
duced by gravitational lensing and therefore is expected to vanish at first order.
Similarly, the tangential component of the same measurement around random-
ized voids, which follow the size and redshift distribution of true voids but are
randomly distributed in the survey area (Appendix F), is also expected to vanish.
Figure 5.11 shows the cross-component of the stacked lensing measurement for
true voids and the tangential component for randomized voids.

With dof= Nbin as the number of R/Rv bins in the measurement and no model
parameters, the null hypothesis �2 can be computed as

�2
null =

X

i, j

�⌃iCov�1
i j �⌃ j (5.11)

where i, j correspond to radial bins in �⌃ and Cov is the covariance matrix.
The cross-component of the measurement yields a �2

null/dof = 8.2/16, and
the tangential measurement around randomized voids, which are 10 times more
numerous than true voids and whose production is described in greater detail in
Appendix F, yields a �2

null/dof= 18.7/16, both showing consistency with the null
hypothesis.

5.5.4 TANGENTIAL SHEAR PROFILE

Figure 5.12 shows the measurement of the tangential component of the stacked
lensing signal around voids. Assuming a non-central �2 distribution we can com-
pute the signal-to-noise (S/N) of the measurement as

(S/N)2 = �2
null � dof=

X

i, j

�⌃iCov�1
i j �⌃ j � Nbin (5.12)
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Figure 5.12: Stacked tangential shear
profile around voids in DES-SV data
(black points) and simulations (red
points) in bins of R/Rv . The black
solid line shows the best-fit model (see
Sect. 5.5.5) to the data shear sig-
nal. The �2 for the null hypothesis in
the data measurement is �2

null/dof =
35.5/16, yielding an estimated S/N =
4.4, while the theory model provides
a good fit to the data with �2/dof=
13.2/14. The measurement in the
simulations shows consistent with the
data best-fit model, yielding �2/dof=
10.1/14.
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The evaluation of this expression yields �2/dof = 35.5/16 and hence S/N = 4.4.
The significance of the signal is complemented with the null tests in the previous
subsection being consistent with the null hypothesis. Furthermore, we test the
robustness of the signal to changes in the LOS slicing strategy in Appendix E and
to changes in the value of �m in Appendix D.

5.5.5 MODEL FITS

We use the 3D void profile of Hamaus, Sutter & Wandelt (2014) (henceforth
HSW14)

⇢v(r)
⇢̄
� 1= �c

1� (r/rs)↵

1+ (r/Rv)�
, (5.13)

and fit two parameters: the central underdensity �c and the scale radius rs. Note
that r here denotes the 3D (in contrast to projected) radius. We do not fit the
inner and outer slopes ↵ and � using the lensing data, but fix their values to the
simulation fits of HSW14. That work showed that ↵ and � are not independent
parameters but determined by the ratio rs/Rv, which yields ↵ = 2.1 and � = 9.1
for the best fit rs shown in Fig. 5.13. Following Krause et al. (2013) the lensing
observable �⌃(R/Rv) is related to the 3D density by

�⌃(R/Rv) = ⌃̄(< R/Rv)�⌃(R/Rv) , (5.14)

where the projected surface density is given by

⌃(R/Rv) =
Z

drlos⇢v

⇣«
r2
los + R2

⌘
� ⇢̄ , (5.15)

and ⇢̄ is the cosmological mean mass density.
The resulting parameter constraints are shown in Fig. 5.13. The reduced

�2/dof = 13.2/14 implies a good fit to the theory model. Even though the un-
certainties are important, the best-fit �c = �0.60 is in agreement with the density
profile shown in Fig. 9, which is at the same time in agreement with the profile
measured in simulations. In order to further support the data measurement us-
ing simulations, we have measured the lensing signal in the simulations using the
same number of voids as in the data. The resulting measurement can be found
in Fig 5.12, and it shows consistency with the best-fit model to the data with
�2/dof= 10.1/14.

Additionally, the best-fit �c and the trend in Fig. 5.13 are in agreement with
findings in HSW14. However, note the important differences between our work
and HSW14: we use photometric galaxies instead of N-body dark matter parti-
cles. More importantly, we are using a different void finder. Thus it should not be
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Figure 5.13: Constraints on void cen-
tral underdensity �c and scale radius rs
from the DES-SV data void lensing mea-
surements in Fig. 5.12. Best-fit values
are rs = 1.05Rv and �c = �0.60, and
the �2/dof for the fit is 13.2/14. There
is good agreement between the void
edge determined from galaxies, Rv , and
the void edge determined from lensing,
rs.

surprising that our mean void radius (Rv), scale radius (rs), and mean void under-
density (�c) do not match all the relations obeyed by theirs. For example, their
void sample with rs/Rv ' 1.05 (matching our best-fit value) is slightly smaller
(Rv ' 29 Mpc/h) and more empty (�c ' �0.7) than ours.

Finally, we can use the constraints on �c being negative as an alternative es-
timate of the significance in the lensing detection, which is consistent with the
estimation in eq. (5.12): marginalizing over rs, we find �c < 0 with a significance
of 4.6� (4.8� if we fix rs to its best-fit value). The best-fit value of rs is compat-
ible with Rv at the 1-� level. Based on eq. (5.13), r = rs is just the place where
the local 3D density returns to the cosmic mean, ⇢ = ⇢̄. The definition of Rv is
based on where the local galaxy density returns to the mean (Fig. 1). So given
this best-fit model we see that the void wall in the mass distribution (determined
from lensing) agrees well with the void wall in the galaxy distribution.

5.5.6 COMPARISON TO PREVIOUS MEASUREMENTS

Other measurements of weak gravitational lensing around voids or under-
densities have been performed in recent years. Melchior et al. (2014) used the
SDSS void catalog of Sutter et al. (2012) to carry out the first detection of lensing
around voids, although at low S/N . Clampitt & Jain (2015), using a similar data
sample, optimized the void finding strategy for lensing purposes and were able
to achieve a higher S/N ⇠ 7 in the lensing measurement. The void finder in this
work is similar to that of Clampitt & Jain (2015), even though we did not attempt
to optimise the lensing detection but to minimise the photo-z related impact in
the void finding procedure. Our comparable lensing S/N is encouraging given the
use of photometric redshifts and a smaller dataset – this highlights the viability of
photometric void finders as well as the quality of the DES data.

153



COSMIC VOIDS AND VOID LENSING IN THE DES-SV DATA

Gruen et al. (2016) changed the approach and, instead of looking at individual
cosmic voids, measured the lensing signal around troughs in the DES-SV galaxy
distribution, defined as underdensities in the projection of lens galaxies over a
wide range in redshift. That produced a high S/N lensing measurement around
those structures, and they succesfully modelled that to probe the connection be-
tween galaxies and matter. In that respect, trough lensing does not constrain void
profiles or abundances but it is sensitive to the galaxy bias and even cosmology.

5.6 DISCUSSION

We have presented a new void finder designed for photometric surveys and
applied it to early Dark Energy Survey data and simulations. Fixing the line-of-
sight size of the slice to be at least twice the photo-z scatter, we find the number
of voids found in simulated spectroscopic and photometric galaxy catalogs to be
within 20% for all transverse void sizes, and indistinguishable for voids with pro-
jected size larger than 70 Mpc/h. For such large voids, most have a one-to-one
match with nearly the same assigned center and radius.

This result – that the largest voids are the ones most faithfully preserved in
a photometric redshift survey – has implications for the expected spatial and dy-
namic properties of our voids. Ceccarelli et al. (2013) classified voids into those
with and without surrounding overdense shells: large voids without shells tend
to expand, while smaller voids surrounded by overdense shells are in the process
of being crushed by the surrounding shell. This is a useful division for under-
standing void dynamics, as predicted analytically by Sheth & van de Weygaert
(2004) and later studied in simulations (Paz et al., 2013; Ceccarelli et al., 2013;
Hamaus, Sutter & Wandelt, 2014) and data (Ruiz et al., 2015). Furthermore, this
classification has been useful for predicting large-scale bulk flows of voids in both
simulations (Lambas et al., 2016) and data (Ceccarelli et al., 2015). These works
found that large voids are on average receding from each other, while small voids
in overdense shells are approaching each other.

Most importantly, we have applied the algorithm to the DES-SV data and found
a total of 87 voids over the redshift range 0.2 < z < 0.8. Our ⇠ 4� detection of
the weak gravitational lensing signal of these voids shows they are truly under-
dense in the matter field and hence not simply a product of Poisson noise, tracer
density effects or any systematics in the data. Assuming a model profile (Hamaus,
Sutter & Wandelt, 2014), we find a best-fit central density of �c ⇠ �0.6 and scale
radius rs ⇠ Rv . Since rs is the void edge determined from lensing, and Rv is the
edge determined from the galaxy distribution, the best-fit lensing model shows
consistency between the mass and galaxy distributions of voids. Note however
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that the contours are broad and still allow for the possibility of rs ¶ Rv .
Further applications of the same void finder will be explored in future DES

data samples. Of particular interest is the study of the CMB cold imprint of voids
(Kovács et al. in prep), related to the properties and presence of Dark Energy
through the integrated Sachs-Wolfe effect (Granett, Neyrinck & Szapudi, 2008;
Cai et al., 2010; Cai, Padilla & Li, 2014; Hotchkiss et al., 2014).

The advances in this work towards finding voids in photometric surveys are
also exciting in light of recent advances in void cosmology. Clampitt, Jain &
Sánchez (2016) studied void-void and void-galaxy clustering and derived void
bias using the spectroscopic SDSS luminous red galaxy (LRG) sample. Hamaus
et al. (2016) applied the Alcock-Paczynski test to void clustering statistics to put
⇠ 10% constraints on ⌦m using voids identified using CMASS galaxies as tracers,
a result that was anticipated in simulations by the same group (Hamaus et al.,
2014a,b, 2015). Kitaura et al. (2015) reported greater than 3� evidence of the
presence of baryonic acoustic oscillations (BAO) in void correlations, again using
CMASS galaxies. This impressive measurement was made possible by the new
void finder presented in Zhao et al. (2015) and detailed studies with mock CMASS
samples presented in Liang et al. (2015). While the CMASS sample from BOSS
covers a very large area, it lacks a suitable background source sample for direct
lensing measurements of void density profiles. Upcoming photometric surveys,
which will have many background sources available, will make the combination
of void clustering and lensing over large volumes a reality.

In addition to constraining standard cosmological parameters, voids have been
used to investigate alternative dark matter scenarios like warm dark matter (Yang
et al., 2015), or the effects of neutrinos on void lensing (Massara et al., 2015).
Especially numerous are the studies on void abundance (Li, 2011; Clampitt, Cai
& Li, 2013; Cai, Padilla & Li, 2015; Zivick et al., 2015; Lam et al., 2015; Pollina
et al., 2016) and lensing (Cai, Padilla & Li, 2014; Barreira et al., 2015) as promis-
ing probes of alternatives to General Relativity (GR). In particular, Barreira et al.
(2015) used simulations of Galileon gravity to show that the lensing signal of voids
can be double that in GR. Comparing to the SDSS void lensing results of Clampitt
& Jain (2015), they showed that the size of the difference is comparable to cur-
rent observational errors. Furthermore, another recent development by Cautun,
Cai & Frenk (2015) has shown that the signal-to-noise for void lensing can be
increased by describing the void profile relative to the boundary rather than the
center. Such advances, combined with the increasing quality and volume of data
from ongoing surveys, will bring modified gravity constraints using voids within
reach. The algorithm in this work ensures that the statistical power of these new
photometric datasets can be brought to bear on void measurements.
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SUMMARY AND CONCLUSIONS

In this thesis we have studied cosmology from the combination of large-scale
structure (LSS) and weak gravitational lensing (WL) using data from the ongoing
Dark Energy Survey (DES), producing the first cosmological constraints from the
combination of LSS and WL probes in DES, and broadly using only photometric
data. For that purpose we have also worked extensively on the characterization
of the predominant systematic effects, such as those coming from photometric
redshifts and shear estimation mis-calibration. Complementary to using galaxies
as lenses, we have also measured the WL signal around cosmic voids, using a void
finder developed specifically to be used in photometric surveys, broadening the
potential applications of void science as an alternative cosmological probe.

In Chapter 3 we assessed the photometric redshift capabilities of the DES Cam-
era by using an extensive set of photo-z algorithms, and data from the DES Science
Verification (SV) period matched to spectroscopic data from surveys like VVDS,
zCOSMOS and ACES. That study provides a thorough comparison between train-
ing and template-based photo-z methods using real data, and the results for most
of the codes surpass the DES requirements on photo-z precision that were defined
prior to the start of the survey. In addition, such study sets the basis for subsequent
photometric redshift analyses in DES, and the best-performing methods from that
comparison are the ones used for the cosmological analysis performed in this the-
sis, and are still being used nowadays by the DES Collaboration on subsequent
data sets.

As the main topic in this thesis, in Chapter 4 we measured the angular cluster-
ing and the galaxy-galaxy lensing of red galaxies in the DES-SV data sample and
combined them to obtain cosmological constraints. This combination of LSS and
WL probes breaks the degeneracies between galaxy bias and cosmological infor-
mation and it substantially increases the constraining power compared to single
probe analyses. In this context, we performed an extensive set of null tests to
study potential systematic effects present in the DES-SV data sample. By design-
ing specific tests for each potential systematic, we learned about the impact of the
point spread function (PSF) modelling, the survey geometry, mask, and observing
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conditions, photometric redshift errors, and possible biases due to source galaxy
properties like size or photometric signal-to-noise. The cosmological results of
the analysis show consistency with the DES cosmic shear analysis performed us-
ing the same underlying data sample. The cosmic shear signal suffers from lower
signal-to-noise and different systematics but is sensitive to the matter distribution
directly, hence being independent of the complicated galaxy bias.

From the agreement and the complementarity between the analysis in this the-
sis and the cosmic shear DES analysis, we can conclude that the optimal extraction
of cosmological information from photometric galaxy surveys like DES, and future
galaxy surveys like LSST, WFIRST and Euclid, will involve the full combination of
galaxy clustering, galaxy-galaxy lensing and cosmic shear. This combination not
only will maximize the information but also will help in constraining systematic
effects that influence each probe differently. Such analyses will have a profound
impact in our knowledge about the nature of dark energy, potentially providing
hints to new extensions beyond the concordance cosmological model.

Finally, in Chapter 5 we developed a new void finder designed for minimizing
the impact of photo-z errors in DES and other photometric surveys, and measured
the lensing signal around voids with a significance of more than 4� using DES-
SV data. This measurement is the first detection of void lensing in a photometric
survey, and it provides confirmation that the obtained voids are truly underdense
in the matter field and hence not a product of Poisson noise, tracer density effects
or systematic effects in the data. This void-finder opens the door of void science
to the vast amount of data coming from current and future photometric surveys,
since while some studies have attempted the extraction of cosmology from cosmic
voids, none of them have used data from photometric surveys. Analyses based on
cosmic voids are highly complementary to analyses based on the clustering and
weak lensing of galaxies. In addition, voids have the advantage of suffering less
from non-linearities due to their low-density environment, and therefore they are
easier to model and can be of key importance in providing robust and independent
cosmological constraints.
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Appendix A

DESCRIPTION OF THE METRICS

Here we describe the metrics used throughout this work. For each photo-z
code and each galaxy we have either the photo-z estimation and its associated
error or a probability density function P(z). As described in the text, a vector
of weights were computed in order to match the spectroscopic and photometric
samples in multi-color and magnitude space. On each sample we have a vector!
of weights corresponding to the N galaxies on each test set, where

PN
i=1!i = 1.

If no weights are used, the default value !i =
1
N is assigned to each galaxy. We

define the individual bias as �zi = zphot,i � zspec,i and the statistics used in this
work as follows:

1. mean bias(�z):

�z =
P
!i�ziP
!i

(A.1)

2. ��z :

��z =

 P
!i
�
�zi ��z

�2

P
!i

! 1
2

(A.2)

3. median (�z50), the median of the �z distribution, fulfilling:

P50 = P(�z �z50) =
Z �z50

0
!(�z)d(�z) =

1
2

(A.3)

4. �68, half of the width of the distribution, measured with respect to the me-
dian, where 68% of the data are enclosed. This is computed as:

�68 =
1
2

�
P84 � P16

�
(A.4)
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5. out2�, the fraction of outliers above the 2��z level:

out2� =
P

WiP
!i

(A.5)

where,

Wi =

®
!i , if |�zi ��z|> 2��z

0, if |�zi ��z| 2��z

6. out3�, the fraction of outliers above the 3��z level:

out3� =
P

WiP
!i

(A.6)

where,

Wi =

®
!i , if |�zi ��z|> 3��z

0, if |�zi ��z| 3��z

7. �z0, the mean of the distribution of �z is normalized by their estimated
errors. Ideally this distribution should resemble a normal distribution with
zero mean and unit variance. We define �z0i = �zi/✏phot,i where ✏phot,i is
the computed error of the photometric redshift for galaxy i. Then:

�z0 =
P
!i�z0 iP
!i

(A.7)

8. ��z0 :

��z0 =

 P
!i
�
�z0 i ��z0

�2

P
!i

! 1
2

(A.8)

9. Npoisson, a metric that quantifies how close the distribution of photometric
redshifts N(zphot) is to the distribution of spectroscopic redshifts N(zspec).
For each photometric redshift bin j of width 0.1, we compute the difference
of N(zphot)� N(zspec) normalized by the Poisson fluctuations on N(zspec):

npoisson, j =

Ç
P

zphot,i ✏bin j

!iN �
P

zspec,i ✏bin j

!iN

å

vt P
zspec,i ✏bin j

!iN
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Then Npoisson is computed as the RMS of the previous quantity:

Npoisson =

 
1

nbins

nbinsX

j=1

n2
poisson, j

! 1
2

(A.9)

10. KS is the Kolmogorov-Smirnov test that quantifies whether the two redshift
distributions (N(zphot) and N(zspec)) are compatible with being drawn from
the same parent distribution, independently of binning. It is defined as the
maximum distance between both empirical cumulative distributions. The
lower this value, the closer are both distributions. The empirical cumulative
distribution function is calculated as:

Fspec(z) =

NP
i=1
⌦zspec,i<z

P
!i

where,

⌦zspec,i<z =

®
!i , if zspec,i < z

0, otherwise

Similarly, the empirical cumulative distribution function Fphot(z) is com-
puted for N(zphot). Then the KS statistic is computed as:

KS=max
z

�
|Fphot(z)� Fspec(z)|

�
(A.10)

For the submissions with a P(z) for each galaxy, these cumulative distributions
are computed taking into account the p(z) distribution for each galaxy.
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Appendix B

EXCESS SURFACE DENSITY �⌃

In this section, we present complementary cosmology results obtained for the
fiducial redMaGiC lens bin (0.35 < z < 0.50) by using the excess surface den-
sity, �⌃(R) as a proxy for the galaxy-galaxy lensing signal of redMaGiC galax-
ies. For this purpose, we define another lensing estimator that optimally weights
each lens-source pair of galaxies depending on the line-of-sight distance separat-
ing them. This effectively downweights pairs of galaxies which are very close and
for which we expect a small lensing efficiency. The observable is estimated from
the measured shapes of background galaxies as

�⌃lens(R; zL) =

P
j

î
!0j�t, j(R)/⌃�1

crit, j(zL, zs)
ó

P
j!
0
j

(B.1)

where the summation
P

j goes over all the source galaxies in the radial bin R,
around all the lens galaxy positions, and the weight factor for the j-th galaxy is
given by

!0j =! j ⌃
�2
crit, j(zL, zs) . (B.2)

Note that, in contrast with �t(✓ ), for �⌃ we bin source galaxies according to
radial distance R in the region around each lens galaxy, instead of angular scale
✓ . In order to estimate distances, we assume a flat ⇤CDM model with ⌦m = 0.3.
The weighting factor ⌃crit(zL, zs) is computed as a function of lens and source
redshifts for the assumed cosmology as

⌃crit(zL, zs) =
c2

4⇡G
DA(zs)

DA(zL)DA(zL, zs)
, (B.3)

where ⌃�1
crit(zL, zs) = 0 for zs < zL and DA is the angular diameter distance. We

have checked that changes in the assumed cosmology have little impact in the es-
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EXCESS SURFACE DENSITY �⌃
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Figure B.1: Same as our fiducial measurement plot in Fig. 4.2, but using the alternative lensing esti-
mator�⌃. In addition, the data are binned with respect to projected physical distance (R [Mpc/h])
rather than angle (✓ [arcmins]). The measurements are very similar to our fiducial results, as are
the corresponding cosmological constraints in Fig. 4.6.
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timation of�⌃ so that they are not relevant for the analysis presented in this work
(see also Mandelbaum et al. 2013). Finally, just as we do with tangential shear
measurements, our final estimator involves subtracting the contribution around
random points, to which now we assign redshifts randomly drawn from the real
lens redshift distribution.

Figure B.1 shows the clustering and the galaxy-galaxy lensing signals, the lat-
ter using the alternative �⌃ estimator, both binned according to projected radial
distance R around lenses. In this case, we use all source galaxies available in the
ngmix fiducial shear catalog and we weight each lens-source galaxy pair accord-
ing to their individual photometric redshifts so that nearby pairs for which we
expect a small lensing efficiency are effectively downweighted. For the angular
clustering, essentially the same dataset is used in Fig. B.1 as for our fiducial results
pictured in Fig. 4.2. Thus, the two plots are very similar, with the main difference
being the range of scales shown on the x-axis.

Our cosmological constraints obtained from fitting for �⌃(R) and w(R) are
shown in Fig. 4.6. These are consistent with our fiducial results, and show tighter
constraints on parameters like ⌦m, due to the optimal lens weighting and the
larger number of source galaxies effectively used. However, we do not use this
estimator as the fiducial since we follow the photo-z error modelling of Bonnett et
al. (2015) and The Dark Energy Survey Collaboration (2015), where the nuisance
parameters act as an overall shift in the full stacked distribution instead of on a
galaxy-by-galaxy basis. Our choice of estimator does not seem to have a large
impact on the constraints derived from our analysis (see Fig. 4.6).

167





Appendix C

ngmix VS. im3shape

In Section 4.5.3 we studied the consistency of the obtained cosmological con-
straints when using the two shear pipelines presented in Jarvis et al. (2015).
In Fig. C.1 we show the actual comparison of the lensing measurements from
the two shear pipelines, for all the different lens - source bin configurations.
The im3shape results are an excellent match to our fiducial measurements with
ngmix (shown earlier in Fig. 4.2).
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ngmix VS. im3shape
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Figure C.1: Comparison of the tangential shear signal using ngmix (solid purple circles) and
im3shape (open red circles) shear pipelines. The result is shown for the two lens redshift bins
(left and right columns) and the two source redshift bins (upper and lower rows) used in this work.
For all bin combinations, the agreement between pipelines is excellent.
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Appendix D

CHOICE OF �m

The void finder presented in Sect. 5.3 of this chapter produces a void catalog
which depends on the chosen value for the maximum density contrast (�m) of a
pixel to become a void center (see Sect. 5.3.1). The most significant, and hence
deepest voids found by the algorithm are independent of the choice of �m, but the
total number of voids in the catalog will vary with that choice. With the fiducial
value being �m = �0.30, in this appendix we vary that value by 10% high and
low, and test the impact of these changes in the void lensing signal in the data.

The fiducial void catalog with �m = �0.30 contains 78 voids and the goodness
of the best-fit model to its lensing signal (see Sect. 5.5.5) is 13.2/14. The catalog
with �m = �0.33 contains 73 voids and the goodness of the lensing fiducial best-
fit model is 12.9/14. The catalog with �m = �0.27 contains 107 voids and the
goodness of the lensing fiducial best-fit model is 11.9/14. The good agreement
between the lensing signal in the three cases is also shown in Fig. D.1.
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Figure D.1: Stacked void lensing signal in DES-SV data for three choices of �m: �0.33, �0.30 (fidu-
cial), �0.27. The black line shows the best-fit model to the fiducial measurement. The comparison
shows good agreement between the three sets of measurements.
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Appendix E

LENSING ON INDIVIDUAL SLICINGS

In Sect. 5.4.2 we presented a way of combining different slicings of the line of
sight (LOS), oversampling it with slices of 100 Mpc/h thickness every 20 Mpc/h,
in order to get more information in that direction. Voids found in neighboring
slices are joined if their centers are close enough, and the resulting group of voids
is considered an individual physical underdensity.

In this appendix we test the impact of that procedure on the void lensing
results presented in this chapter (Sect. 5.5). For that purpose, we perform the
lensing measurement on the set of voids found in each individual slicing, corre-
sponding to the five columns in the graphical representation of Fig. 5.6. Note that
in the case of individual slicings there is no overlap between the slices in which
voids are found. The corresponding five lensing measurements, together with its
mean and standard deviation, are shown in Fig. E.1, where they are compared to
the lensing measurement presented in Sect. 5.5. The comparison in that plot, with
the majority of points from the combined slicings measurement being within 1�
of the mean individual slicings case, shows how the combined slicing approach is
not affecting the lensing results in this work in any other way than reducing the
noise in the measurement.
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Figure E.1: Stacked void lensing signal in DES-SV data for each of the five individual slicings (thin
black lines) and for their mean (thick black line), compared to the standard deviation of the individ-
ual slicings measurements (shaded grey region). The actual measurement of the final void catalog
from Sect. 5.5 is also shown (red data points with errors). This comparison shows good agreement
between the combined and individual slicings.
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Appendix F

Randomized VOID CATALOG

The randomized void catalog in this chapter is produced such that it mimics
the properties of the true void catalog in redshift and radius. We start from a
set of random points inside the data mask; they will constitute the centers of the
randomized voids. We assign a redshift to each random point drawn for the true
redshift distribution of voids and, to each randomized void, we assign an angular
radius from the true distribution of angular radii for voids of similar redshift (in a
window of �z = 0.1), this way preserving the redshift - angular radius relation.
Finally, from the angular radius and the redshift we compute the comoving radius
of the randomized voids.

After this process we have a randomized void catalog with the same properties
as the true one. Then, we also apply the process described in Sect. 5.4.1 to get rid
of voids near the survey edges. At the end, the randomized void catalog has 10
times as many objects as the true one. Figure F.1 shows the agreement between
the distributions of the true and randomized voids in redshift and comoving and
angular radius.
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