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Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Doctor per la UPC

2017



This book is dedicated to its readers.



Acknowledgements

I am afraid that, if I said that my advisor, Ernest Teniente, is an ex-
traordinary hard-working researcher, I would not be the first one, neither
the last one, but one of the most sincerest. I would like to thank him
for everything I have learnt, including what he has taught me in the re-
search discipline, and computer science, and appreciate the patience he
has showed towards me so many times.

In addition, I want to highlight that many of the contributions of this
thesis have been developed working with him and other researchers. In
particular, Enrico Franconi, Alessandro Mosca and Guillem Rull (for the
OCL expressiveness study part), Albert Tort (for the maintenance part),
and Giuseppe De Giacomo, Domenico Fabio Savo, and Riccardo Rosati
(for the application in DL-Lite).

I have also to thank my family for their support materialized under the
mandatory easily-replicable question ‘when are you going to finish?’, and
all the (office and non-office) friends with whom I have shared so many
coffees, pizzas and beers avoiding such topic in a friendly manner.

Finally, I would like to thank her, Cristina, for showing me that everything
in this life is perishable and pointless... until you make it funny. You do
not know how much I laugh you.



Abstract

Ensuring the data correctness of some information system is a crucial
task. So, software engineers specify sets of integrity constraints that
should be satisfied by the system’s data. These constraints, however, can
be violated every time a user modifies the data state. To avoid so, the
system should either check that the current update does not cause any
violation before applying it, or maintain the constraints after applying
the update (i.e., apply the update together some additional corrective
measures to avoid the violation).

This thesis contributes on both problems, i.e., how to automatically check
and/or maintain a set of integrity constraints after a user update, con-
sidering information systems and constraints described with two of the
currently most spread conceptual modeling languages: UML for describ-
ing the information schema, and OCL for defining its constraints.

In the first part of the thesis, we start analyzing the expressiveness of
OCL for defining integrity constraints. In this analysis, we observe that a
broad subset of the OCL language is expressively equivalent to relational
algebra. Consequently, in the second part, we tackle the integrity check-
ing/maintenance problem departing from a currently existing method for
relational databases (the event rules) which we extend in several direc-
tions. For the case of checking constraints, we extend the event rules to
deal with aggregation functions, thus, pushing the expressiveness of the
constraints they can deal with, and exploit this extension to increase the
performance of the original method. For the case of maintenance, we
show that, with a slight modification of the event rules, we can maintain
the constraints using a simple complete implementation of the well-known
chase algorithm. Furthermore, in order to show the high applicability of
our approach, in the third part, we export our work into the context of
Description Logics, in which we present a variant of the event rules that
permits maintaining a DL-Lite ontology in polynomial time.
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Chapter 1

Introduction

In the developed world, everybody is almost constantly interacting with some infor-
mation system. Indeed, people communicate, work, buy, get informed, organized and
entertained, through data intensive applications we refer as information systems.

The data stored by such information systems changes fast and worldwide. Clearly,
messages, purchases, commands, etc. are constantly created, updated and deleted
by simple clicks in our PCs or smartphones.

This fact leads to a very simple question: how can we ensure that all these updates
are done properly in the information systems? That is, how can the information
systems ensure that a user only sends messages to their contacts? How can they
ensure that the purchases are done by users with sufficient credit? etc.

For the moment, all these checks are manually implemented in the applications,
which might be time consuming and error prone. So, the true question is, can
we automatize them? This is basically, the main question that has motivated the
development of this PhD Thesis.

In the following, we first discuss the problem we want to tackle with the intention
to give the reader an intuitive understanding of our main target. Then, we give an
overview of our solution that sketches the full approach that is developed in this
thesis. Afterwards, we summarize all our contributions, and finally, we describe the
whole document structure.

1.1 The Checking/Maintenance Problem

One of the main functions of any information system is to store the current state of
the real world domain we want to capture [12]. In order to guarantee the correctness
of the data underlying the information system, the system should be only capable to
store valid states of the domain [84], that is, states that might potentially occur in
the real world. This is a crucial point since the capability to store invalid states lets
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the user store incorrect data in it, either by accident or not.
We can force an information system to store only valid states of the domain by

means of integrity constraints. An integrity constraint is a condition that the data of
the information system should always satisfy. In this way, if our information system
admits some invalid data state regarding the real world, we can prune it by adding
a convenient constraint. For example, assume that we want to build an information
system for storing TV shows and its episodes. Clearly, in the real world, any TV show
has, at least, one episode. Thus, we should define a constraint specifying that every
TV show stored in the information system should have, at least, one episode stored.

Such integrity constraints can be violated when a user changes the data of the
system by means of executing some operation. Continuing the previous example,
a user might try to store the TV show Modern Family without storing any of its
episodes, thus, causing the violation of the previous constraint.

To avoid this violation, the system has mainly two options. The first option
consists in checking whether the update requested by the user cause an integrity
constraint violation before applying it (and cancel its application if a violation is
found). The second option consists in applying the update and maintaining the
violated integrity constraints, i.e., applying additional updates to avoid the constraint
violation. Following the previous example, the system can either reject the addition
of the TV show Modern Family, or add it in the system and additionally associate to
it a new episode (e.g. episode 1).

Unfortunately, such policies are, for the moment and to the best of our knowledge,
manually implemented.

Manually implementing the treatment of integrity constraint violations is an er-
ror prone practice [110]. Given that, and considering that industrial-size information
systems might store hundreds of concepts [69], it becomes clear that manually im-
plementing the integrity constraints policy associated to them can be a tedious time
consuming effort.

This problematic phenomenon leads to the main topic we tackle in this thesis.
Indeed, we are interested on how to automatically perform checking/maintenance of
constraints in some information system.

Automatically dealing with integrity constraints is an old challenge, present in
different communities, still under research. For instance, in the context of databases,
the problem appeared when the create assertion statement was defined in the
SQL-92 standard [7] to give support to checking integrity constraints. However,
despite more than 20 years has passed, none of the releases of the current most
popular relational database management systems deals with them (Oracle 12, MySQL
5.7, SQLServer 2014, PostgreSQL 9.5, DB2 10.5).

This thesis focuses in the problem of checking/maintenance in the context of
conceptual modelling, where the problem appears in its research agenda figuring as a
grand challenge [85].
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1.1.1 Checking/Maintenance in Conceptual Modelling

The target of conceptual modeling is to build a description of an information sys-
tem called conceptual schema [84]. A conceptual schema consists of two parts: a
structural schema describing the data structure and its constraints, and a behavioral
schema describing the operations available for the user to modify such data. Struc-
tural schemas are mainly defined by means of a class diagram complemented with
textual integrity constraints, and behavioral schemas are mainly composed of a set of
operation contracts defining the pre/postconditions of the operations.

A remarkable pair of modeling languages for defining conceptual schemas is UML
and OCL, which are standard languages maintained by the OMG group [86, 87].
Whereas UML permits defining the class diagram, and thus, the data to store in the
system, OCL allows defining its constraints and operations, and thus, the constraints
to check/maintain and the operations that might violate those constraints.

Possibly, one of the greatest software engineering dreams is to exploit these
UML/OCL conceptual schemas to automatize the development of the information
systems they describe [45, 83]. This goal can be achieved either by directly inter-
preting the UML/OCL schema, or by (semi)automatically compiling them into actual
executable code. In this line, the well-known Model-Driven Architecture approach
was proposed more than 10 years ago [79].

However, when pursuing this target, the checking/maintenance problem appears
immediately. That is, assuming that we can effectively execute the information sys-
tem specified by the UML/OCL schema, either by interpreting the schema or by
implementing it in code, how can we check/maintain the constraints specified in it?
Moreover, how can we efficiently do so?

In response, one promising approach to the checking/maintenance of UML/OCL
constraints is the so called incremental approach [18, 60]. Briefly, incrementally
checking/maintaining a constraint consists into (1) only apply the already defined
checking/maintenance policy to the constraints when the user has applied an opera-
tion that might violate them, and (2) only check the values affected by the operation.
E.g., in our previous example, we would like to only check/maintain the constraint
asserting that each TV show has at least one episode only for the newly inserted TV
show Modern Family (thus, skipping the rest of TV shows stored in the system), and
we do not want to check this constraint for some operation that adds new TV show
episodes (since this data update cannot cause the violation of the constraint).

In this thesis, we contribute on the problem of integrity checking/maintenance of
constraints, following an incremental approach, and considering data and constraints
specified in the UML/OCL language. Nevertheless, as we will see in next chapters,
our results can be exported into different languages.

In the following, we state such problems formally. To do so, we assume a function
apply that given a set of structural events E (i.e., a set of insertions/deletions of
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data), and some finite data state I, returns the new data state In corresponding to
apply the insertions/deletions E into it.

Problem 1. UML/OCL Incremental Integrity Checking

Given a UML schema S, a finite data state I, a set of UML/OCL con-
straints C, and a set of structural events E (i.e., a set of insertions/dele-
tions into I), where I |= C, the problem of incremental integrity checking
consists in assessing whether apply(E , I ) |= C.

Problem 2. UML/OCL Incremental Integrity Maintenance

Given a UML schema S, a data state I, a set of UML/OCL constraints
C, and a set of structural events E (i.e., a set of insertions/deletions
of instances into I), where I |= C, the problem of incremental integrity
maintenance consists in finding the minimal sets of structural events R
s.t. apply(E ∪ R, I ) |= C. We call R to be a repair for E, I, and C.

1.2 Our Approach Overview

In the following, we first give a UML/OCL Schema example that will be used along
all the thesis to explain our approach. Afterwards, we give a brief overview of our
method with the idea to give the reader an intuitive understanding of it.

1.2.1 The Online TV Service UML/OCL Schema

Consider the UML class diagram depicted in Figure 1.1 representing the information
system of some streaming TV content service. In this service, users can buy and
visualize some contents, where some of these contents might be movies or series
episodes, and some of the users might be premium.

We show several OCL constraints for such schema in Figure 1.2. The first two
define the primary key attributes of content and user to be code and name, respec-
tively. The SeenIsBought and BoughtContentIsAppropiate constraints specify that
the contents seen by a user should be bought contents, and that their minimal rec-
ommended age should be lower than the age of the user. The AllEpisodesMaxPrice
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User
name: String
age: Integer

Content
code: String
price: Integer
minAge: Integer
description: String

*    *

Movie
title: String
year: Integer

Episode
number: Integer
season: Integer

Series
title: String

bought

seen

1..* 1

PremiumUser
discount: Integer

Buys

*    *Visualizes

{disjoint, incomplete}

Figure 1.1: UML Schema of an online TV service

limits the sum of the prices of all the episodes of the same series to be, at most, 100,
and PremiumUserBoughtCompleteSeries establish that a premium user should have
bought, at least, all the episodes of some series.

context Content inv ContentID :

Content.allInstances()->forAll(c1,c2|c1<>c2 implies c1.code <> c2.code)

context User inv UserID :

User.allInstances()->forAll(u1,u2|u1<>u2 implies u1.name<>u2.name)

context User inv SeenIsBought :

self.seen->includesAll(self.bought)

context User inv BoughtContentIsAppropriate :

self.seen->forAll(c|c.minAge <= self.age)

context Series inv AllEpisodesMaxPrice :

self.episode.price->sum() < 100

context PremiumUser inv PremiumBoughtCompleteSeries :

Series.allInstances()->exists(s|self.bought->includesAll(s.episode))

Figure 1.2: OCL Constraints for an online TV service

1.2.2 Our Approach To Checking/Maintenance

Our final goal is to provide some method/s to perform incremental integrity checking
and maintenance of the constraints defined in some UML/OCL schema like the one
presented in Section 1.2.1.

To do so, our first step is to analyze the expressiveness of OCL constraints, which
determines the complexity of the problems to solve. Then, we define what we call
the Event-Dependency Constraints, which are some logic rules that permits solving
the problem of checking. Next, we transform the Event-Dependency Constraints into
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another logic rules we call Repair-Generating Dependencies to solve the problem of
maintenance. Finally, to show the applicability of our method, we adapt the Repair-
Generating Dependencies for solving the problem of integrity maintenance in DL-Lite.

In the following we briefly overview each of this steps separately.

OCL Expressiveness Analysis

Interestingly, as we are going to show, OCL is so expressive that checking an arbitrary
OCL constraint is not even semidecidible. That is, there cannot be any algorithm that
can check an arbitrary OCL constraint ensuring its termination. Moreover, termination
cannot be ensured not even in the case where the constraint is, in fact, being satisfied.

To tackle this high complexity, we characterize an OCL subset for which the
problem of checking is tractable. This approach, of course, encompasses loosing part
of the OCL expressive power, so, the idea is to find a balance between expressiveness
and checking complexity.

For achieving so, our strategy consists into look for the subset of OCL equivalent
to another well studied language: relational algebra. We call such subset OCLFO

1.
Indeed, most OCL constraints can be translated into a relational algebra query that
looks for the objects that violates it. For instance, given the OCL constraint SeenIs-
Bought, we can build the SQL query looking for those users who has seen some
content without buying it:

SELECT V i s u a l i z e s . u s e r
FROM V i s u a l i z e s

LEFT JOIN Buys ON (
V i s u a l i z e s . u s e r = Buys . u s e r AND
V i s u a l i z e s . s e e n = Buys . bought )

WHERE Buys . u s e r I S NULL

The OCL subset equivalent to relational algebra is a good starting point for our
work since it offers several nice properties. First, its equivalence with relational algebra
makes it expressive because it guarantees that any (domain independent) first-order
logic constraint can be encoded in it. Second, it ensures good computational prop-
erties since checking these constraints can be reduced to executing relational algebra
queries. Third, it permits us to build the algorithms for checking/maintaining them
departing from current solutions on constraints checking/maintenance in relational
databases. Actually, once we have this subset at hand, we continue our work by study-
ing how to solve the incremental integrity checking/maintenance problem adapting a
technique whose origins are in the database field.

1FO stands for First-Order, since relational algebra is essentially equivalent to first-order logics.
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Checking Through Event-Dependency Constraints

Intuitively, our idea to perform incremental integrity checking is to build some logic
rules we call Event-Dependency Constraints (EDCs, for short). An EDC is a logic
rule that states under which conditions some insertions/deletions causes the violation
of some integrity constraint. For instance, for the SeenIsBought constraint, we build
the following rule (among others):

ιvisualizes(u, c) ∧ ¬buys(u, c) ∧ ¬ιbuys(u, c)→ ⊥

Roughly speaking, this rule states that, if we insert that some user u visualizes
some content c that u has not bough neither we are inserting as bough, then, there
is a constraint violation.

Interestingly, such EDCs can be easily implemented as SQL queries. For instance,
assume that the previous UML/OCL schema is stored as an SQL schema, and that,
for each SQL table T, we have two additional tables (ins T and del T ) containing
the tuples we want to insert/delete in T. Given this situation, we can implement the
previous EDC as the following SQL query:

SELECT i n s V i s u a l i z e s . u s e r
FROM i n s V i s u a l i z e s
LEFT JOIN Buys ON (

V i s u a l i z e s . u s e r = Buys . u s e r AND
V i s u a l i z e s . s e e n = Buys . bought )

LEFT JOIN i n s B u y s ON (
V i s u a l i z e s . u s e r = Buys . u s e r AND
V i s u a l i z e s . s e e n = Buys . bought )

WHERE Buys . u s e r I S NULL AND i n s B u y s . u s e r I S NULL

In this manner, we can incrementally check the previous constraint through ex-
ecuting such SQL queries. Indeed, this query is retrieving those users for which we
insert some visualized content c, where c is not bought, neither we insert as bought.
In other words, the query returns data that witnesses the constraint violation. Note
that by using SQL queries, we can exploit all the optimizations present in current
relational databases in our favor.

Since there are multiple ways to violate some constraint, each constraint requires
several EDCs to incrementally check it. To automatically obtain the complete set of
EDCs required for some constraint, we use the so called event rules [82], which is a
method that was designed for deductive databases to automatically find all the possi-
ble ways a constraint can be violated through insertions/deletions. This immediately
permits us to incrementally check all the constraints in OCLFO.

Now, we want to push a little bit further the expressiveness of the constraints
we can deal with. In particular we show in this thesis how to extend the event rules
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to be able to generate EDCs for constraints involving aggregate operators, such as
the constraint AllEpisodesMaxPrice of our example. Since, in general, constraints
involving aggregate operations are not encodable in relational algebra, we are pushing
the expressiveness of the constraints we can deal with beyond OCLFO.

Moreover, as we are going to see, we can exploit these extension for OCL ag-
gregates to improve the treatment of OCL constraints involving existential variables.
Indeed, as we are going to see, the EDCs generated by the original event rules for
OCL constraints involving existential variables lead to some rules whose evaluation,
intuitively, encompassed inspecting almost all the data state. However, we improve
such behavior by treating existential variables as aggregates.

Additionally, we show in this thesis how to reduce the hight number of EDCs
generated by the event rules. Indeed, the event rules generate an exponential number
of EDCs for each constraint c, with the length of c. However, we illustrate in this
thesis that, if we abstract the common parts of the different generated EDCs, we can
generate a linear number of EDCs for each constraint, which suppose an improvement
of orders or magnitude with respect to the original proposal.

Maintenance Through Repair-Generating Dependencies

To illustrate our integrity maintenance approach, consider the constraint SeenIs-
Bough, and the previous EDC we have obtained for it. Now, instead of translating
this EDC into SQL as we do for integrity checking, suppose that we move its negated
literals representing insertions/deletions from the left-hand side to the right-hand side
of the rule:

ιvisualizes(u, c) ∧ ¬buys(u, c)→ ιbought(u, c)

Intuitively, this new rule says that, if some user u visualizes some content c which
he has not bought, then, we have to insert that u buys c. That is, this rule is telling
which are the events (i.e., the insertions/deletions) that we have to apply to satisfy
the constraint. We call these rules that tells which are the events that we have to
apply to satisfy some constraint Repair Generating Dependencies (RGDs, for short).

Then, the basic idea is that we can repair some integrity constraints by means of
chasing its RGDs. That is, each time that the left-hand side of some RGD holds, we
have to instantiate its right-hand side to avoid a constraint violation. When doing
so, it might happen that the left-hand side of another RGD turns to evaluate to true,
indicating thus a new constraint violation, which requires instantiating its right-hand
side too. Thus, the chasing process follows iteratively until no constraint is violated.

However, at this point we identify two new challenges that gains the thesis focus.
First, the problem of maintaining OCL constraints is not decidable, not even in

the case for OCLFO, which implies that the previous chase procedure cannot ensure
termination. To deal with such problem, we look for some OCL fragment in which
maintenance is, at least, decidable. This lead to the definition of a new OCL fragment
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we call OCLUNIV. Intuitively, OCLUNIV is a fragment of OCL in which all the variables
are universally quantified. Thus, since the source of undecidability are the existential
variables [103], and no existential variables occurs in OCLUNIV, chasing the OCLUNIV

RGDs ensures termination.
Second, the number of different ways that some violated OCL constraints can

be maintained might be exponential. To deal with this problem, we develop some
techniques to reduce such exponential search space. In particular, we show that
RGDs can be easily customized by the users to permit/disallow some concrete repairs
to some constraint violations. For instance, consider that we violate the minimum
cardinality constraint stating that each series should have, at least, one episode,
because of deleting some episode in some series. In such case, the RGDs tells us that
we can maintain such constraint by means of either adding a new episode to such
series, or removing such series. However, we can easily customize the RGD to decide
one of the two options, in function of the user requirements.

Application in DL-Lite

Finally, we export our technique for integrity maintenance into the context of ontolo-
gies.

Differently from the community of conceptual modelling and databases, ontology
practitioners usually works with the so called open-world assumption instead of closed-
world. That is, whereas in closed-world assumption, some fact is true if and only if it
is present in the DB, under the open-world, some fact might be true even when it is
not present in the data (since the database is considered that might be incomplete).
For instance, consider that the movie Suicide Squad is not present in some movie
database. According to the open-world assumption, a film called Suicide Squad might
exists although we do not know. In contrast, under the closed-world assumption, it
is considered that Suicide Squad is not an existing movie (definitely and for sure).

This different assumption adds some crucial differences in the notion of constraint
violation. For instance, under closed-world, a data state with some series without
episodes is considered to violate the min. cardinality constraint between series and
episodes. However, under the open-world semantics, the same data state is considered
not to violate such constraint (since the data is considered to be just incomplete). It
might be argued that this problem can be solved by just completing the data before
checking the constraints, however, the completion process might never terminate
which makes it unfeasible in the general case.

To avoid all this difficulties, we focus our work in DL-Lite language, which is the
basis for the owl 2 ql standard [97]. Indeed, in DL-Lite it is possible to reduce
the problem of open-world integrity checking/maintenance into closed-world integrity
checking/maintenance [20]. Thus, intuitively, we can check and maintain DL-Lite
ontologies by means of checking/maintaining some closed world constraints with our
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approach. Moreover, DL-Lite ensures that checking/maintenance is decidable. In
fact, in this thesis we show that the additional insertions/deletions that we might need
to incrementally repair a DL-Lite ontology can be computed through SQL queries, that
is, incrementally repairing a DL-Lite ontology is not only decidable, but polynomial
(with respect to data complexity).

1.3 Contributions

In the following, we briefly review our contributions by topic, we enumerate the
prototype tools we have developed for this thesis, and finally, we list all its related
publications.

1.3.1 Contributions by Topic

OCL Constraints Expressiveness

• Proving OCL checking non-semidecidability To the best of our knowledge,
this is the first study on the complexity of checking OCL constraints. Surpris-
ingly, we find that general OCL constraints checking is not even semidecidable.
That is, no algorithm can check a general OCL constraint ensuring its termi-
nation, not even when the constraint is, in fact, satisfied.

• Defining OCLFO To tackle the OCL checking non-decidability, we suggest a
new OCL subset we call OCLFO. OCLFO is the subset of OCL equivalent to
relational algebra (RA). That is, every constraint in OCLFO can be checked
through checking the emptiness of some relational algebra query (which guar-
antees OCLFO checking efficiency), and every constraint that can be evaluated
through checking the emptiness of a relational query can be written in OCLFO

(which guarantees OCLFO expressiveness). OCLFO is formally and concisely de-
fined through set-theory semantics.

• Defining OCLCORE To make OCLFO an easy object of study, we present OCLCORE,
a minimal subset of OCLFO expressively equivalent to it.

UML/OCL Inc. Integrity Checking

• Definition of EDCs to deal with aggregations We depart from the work
of [82] to perform incremental integrity checking in deductive databases, and
extend it to deal deal with constraints with certain aggregations (i.e., size, sum,
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and count). In this manner, we are able to efficiently incrementally check con-
straints beyond OCLFO, since such aggregations are not encodable in relational
algebra.

• Improving the event rules treatment of existentials We show that we can
translate constraints involving existentials to constraints involving aggregations.
Thus, we can apply the previously incremental techniques developed for aggre-
gations to improve the performance of constraints with existentials, which was
one of the most complex cases to treat in [82]

• Reducing the number of generated EDCs We improve the event rules
technique to generate a linear number of queries to check a constraint. Taking
in account that in the original proposal the number of generated queries was
exponential with the length of the constraint, this suppose an improvement of
orders of magnitude with respect the original proposal.

UML/OCL Inc. Integrity Maintenance

• Definition of RGDs We show that with a slight modification of the EDCs, we
can obtain some new rules we call RGDs. Using the RGDs, we can compute
the repairs (i.e., the additional set of insertions/deletions required to maintain
a set of constraints) with a chase procedure, thus, simplifying the previous
maintenance methods which were based on first-order resolution techniques
[109]

• Defining OCLUNIV Since the problem of maintaining a set of OCL constraints is
not decidable, and not even in the case of OCLFO, we define a new OCL subset
we call OCLUNIV for which the problem of maintenance is decidable. That is,
maintaining OCLUNIV constraints by means of chasing its corresponding RGDs
ensures termination.

• Techniques for dealing with multiple solutions We show that, with the
RGDs, we can easily customize the method to reduce the inherent combinatorial
explosion in the solution search space of the maintenance problem.

Application in DL-Lite

• Adapting the EDCs/RGDs to DL-Lite We show that EDCs/RGDs can be
effectively adapted to the DL-Lite language to incrementally check/maintain
DL-Lite ontologies.

• Computing DL-Lite repairs through SQL queries Using the RGDs, we show
that the problem of DL-Lite incremental maintenance can be solved through
executing SQL queries.
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1.3.2 Implemented Tools

During the development of this thesis, we have implemented the following prototype
tools to show the feasibility of our techniques. In particular, we have implemented
TINTIN for the case of integrity checking, and IDEFIX for the case of integrity
maintenance.

TINTIN A Tool for INcremental INTegrity checking [92]. TINTIN receives as input
a set of constraints and an SQL schema, and automatically generates all the necessary
SQL code to automatically check if some data update violates the given constraints.
The expressiveness of the constraints TINTIN can deal with is the one of relational
algebra (and thus, OCLFO).

IDEFIX IDEntifying missing structural events to FIX-up operation contracts. IDEFIX
receives as input a UML class diagram, some OCL constraints, and a set of OCL
operation contracts, and returns the set of structural events not specified in the
OCL operation contracts that should be included in each operation to ensure their
executability.

1.3.3 List of Publications

In the following, we include the list of our publications classified in JCR-indexed
journals, international conferences, international workshops/seminars, national con-
ferences, and final degree projects directed.

JCR-Indexed Journals

1. Xavier Oriol and Ernest Teniente. “Simplification of UML/OCL Schemas for
Efficient Reasoning”. Journal of Systems and Software 2017 (JCR-Q1) [91]

2. Xavier Oriol, Ernest Teniente and Albert Tort. “Computing Repairs for Con-
straint Violations in UML/OCL Conceptual Schemas”. Data & Knowledge
Engineering 2015 (JCR-Q2) [95]

3. Enrico Franconi, Alessandro Mosca, Xavier Oriol, Ernest Teniente and Guillem
Rull. “OCLFO: Expressive OCL Constraints for Efficient Integrity Checking”
(Submitted to SoSyM)
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International Conferences
We include, for each publication, the grade of the international conference ac-

cording to the GII-GRIN Computer Science and Computer Engineering Rating 1 which
aggregates several rankings and ratings such as CORE, Microsoft Academic Research
Ranking, and the Google-Scholar-Based Conference Ranking.

4. Giuseppe de Giacomo, Xavier Oriol, Montserrat Estañol, and Ernest Teniente.
“Linking Data and BPMN Processes to Achieve Executable Models”. CAiSE
2017 (A Conference) [36]

5. Giuseppe de Giacomo, Xavier Oriol, Riccardo Rosati, and Fabio Savo. “Updat-
ing DL-Lite Ontologies through First-Order Queries”. ISWC 2016 (A+ Confer-
ence) [37]

6. Xavier Oriol, Ernest Teniente, and Guillem Rull. “TINTIN: a Tool for INcre-
mental INTegrity checking of Assertions in SQL Server”. EDBT 2016 (demo
track) (A Conference) [92]

7. Xavier Oriol and Ernest Teniente. “Incremental Checking of OCL Constraints
with Aggregates through SQL”. ER 2015 (A- Conference) [90]

8. Xavier Oriol, Ernest Teniente and Albert Tort. “Fixing up Non-executable
Operations in UML/OCL Conceptual Schemas”. ER 2014 (Best Student
Paper Award) (A- Conference) [94]

9. Enrico Franconi, Alessandro Mosca, Xavier Oriol, Ernest Teniente and Guillem
Rull. “Logic Foundations of the OCL Modelling Language”. JELIA 2014 (short)
(B Conference) [54]

10. Xavier Oriol and Ernest Teniente. “OCLuniv: Expressible UML/OCL Concep-
tual Schemas Finite Reasoning”. (Submitted to ER 2017)

11. Giuseppe de Giacomo, Domenico Lembo, Xavier Oriol, Domenico Fabio Savo,
and Ernest Teniente. “Practical Update Management in Ontology-based Data
Access”. (Submitted to ISWC 2017)

1http://valutazione.unibas.it/cs-conference-rating/ratingSearch.jsf
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International Workshops/Seminars

12. Xavier Oriol and Ernest Teniente. “Incremental Checking of OCL Constraints
through SQL Queries”. OCL Workshop 2014 [89]

13. Xavier Oriol, Albert Tort and Ernest Teniente. “Reasoning about the Effect
of Structural Events in UML”. Dagstuhl Seminar on Automated Reasoning on
Conceptual Schemas 2013 [22]

National Conferences

14. Xavier Oriol, Ernest Teniente, and Guillem Rull. “TINTIN: comprobación in-
cremental de aserciones SQL”. JISBD 2016 [93]

15. Xavier Oriol and Ernest Teniente. “Ejecución de Operaciones de un Esquema
Conceptual de forma Persistente y Consistente”. Doctoral Consortium - Sist-
edes 2014 [88]

Final-Degree Projects Direction

• Maria Claver. “SafeEx: Eina per a l’execució d’esquemes conceptuals en UML”
(codirected with Ernest Teniente) [26]
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1.4 Research Methodology

Some result is scientific if it has been obtained by means of a scientific method.
However, there is not a single definition of a scientific method, but several.

Indeed, pure formal sciences like mathematics base his knowledge acquisition by
means of demonstrations. Thus, starting from a simple set of definitions (the axioms),
some new assertions are proofed (the theorems). In contrast, some other sciences
such as medicine base his knowledge on experimentation. Thus, starting from some
observations, some hypothesis are made, and such hypothesis are then tested by
means of well-defined and replicable experiments.

We argue that software engineering, is in the middle between formal and exper-
imental sciences. Indeed, to know, for instance, to what extend is efficient some
software application, it is important not only to give the theoretical computational
complexity, which can be obtained by means of formal proofs based on well defined
concepts, but also to test that program in some realistic scenario.

With this in mind, we have applied the research methodology which Hevner defined
under the name of Design Science Research. Briefly, we have spotted a real world
important problem to tackle (mainly, integrity checking/maintenance of constraints
and subproblems related to it), we have checked the literature for current solutions,
and we have pushed them to new limits (as in the case of the event rules), and then,
we have published our results to make them accessible to the scientific community.
These basic interconnected processes are the iterative cycles that Hevner named as
Relevance Cycle, Design Cycle, and Rigor Cycle. For more details on the definition
and activities of such cycles, we invite the reader to check its publication [64].

Thus, following the previous processes we have: (1) defined the relevant problems
we wanted to tackle, (2) specified new solutions to them, (3) mathematically proofed
our intended solutions, (4) shown its feasibility by means of tool prototypes, and (5)
empirically evaluated our solutions by testing such prototypes. Finally, the major part
of these thesis contributions have been reviewed and approved by high-quality con-
ferences and journal committees (including core A conferences and indexed journals),
or are in process of revision.
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...

Conclusions

7. Conclusions

Figure 1.3: Structure of the document

1.5 Document Structure

Figure 1.3 shows the structure of the document. As it can be seen, the thesis starts
with some Introduction and Basic concepts chapters. These chapters bring some
background and terminology used during the thesis. Afterwards, the document con-
tinues with three self-contained parts:

(I) OCL Constraints Expressiveness: studying the expressiveness of the OCL lan-
guage for defining constraints.

(II) Inc. Integrity Checking/Maintenance in UML/OCL: showing our technique for
incrementally checking/maintaining UML/OCL constraints.

(III) Application in Description Logics: showing how similar ideas for maintaining
UML/OCL constraints can be applied in DL-Lite.

A reader should be able to read and understand any of these parts separately,
thus, he/she can focus on the part that catch his/her interests the most. In any case,
we strongly recommend to take a look, at least, to the first section of each chapter
before skipping it. This first section is meant to bring the main intuitions and results
that might make the following chapters more understandable, apart from bringing the
whole picture that has directed this thesis.

Finally, some conclusions and further research are discussed in the last chapter.

17



Chapter 2

Basic Concepts

Terms, atoms and literals A term t is either a variable or a constant. An atom
is formed by a n-ary predicate p together with n terms, i,e., p(t1, ..., tn). We may
write p(t) for short. If all the terms t of an atom are constants, we call the atom to
be ground (and to be an instance of p). A literal l is either an atom p(t), a negated
atom ¬p(t), or a built-in literal ti ω tj, where ω stands for <,≤,=, or 6=.

Derived/base/aggregate predicates A predicate p is said to be derived if the
boolean evaluation of an atom p(t) depends on some derivation rules, otherwise, it
is said to be base. A derivation rule has the form: ∀t. p(tp)← φ(t) where tp ⊆ t. In
the formula, p(tp) is an atom called the head of the rule and φ(t) is a conjunction of
literals called the body. We restrict all derivation rules to be safe (i.e., any variable
appearing in the head or in a negated or built-in literal of the body also appears in
a positive literal of the body) and non-recursive. Given several derivation rules with
predicate p in its head, p(t) is evaluated to true if and only if one of the bodies of
such derivation rules is evaluated to true.

An aggregate predicate pa (aka aggregate query/rule [3, 28, 29]) is a predi-
cate defined over some predicate p that aggregates one of the terms of p with
some aggregation function f . An aggregate predicate is defined by means of a
rule: ∀t. pa(tp, f(x)) ← p(t) where tp ⊆ t and x ∈ t. An atom pa(tp, xf )
evaluates to true if and only if xf equals to aggregating all values x in p(t) by
means of f . E.g. given the aggregate predicate sumSalaries(e, x) defined by
sumSalaries(e, sum(s)) ← salary(e, s), sumSalaries(e, x) evaluates to true if
and only if x is equal to the sum of all salaries s such that salary(e, s).

We also extend the notion of base/derived/aggregate predicate to atoms and
literals. I.e., when the predicate of some atom/literal is base/derived/aggregate, we
say that such atom/literal is base/derived/aggregate respectively.

Substitution A substitution θ is a set of the form {x1/t1, ..., xn/tn} where each
variable xi is unique. The domain of a substitution is the set of all xi and is referred
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as dom(θ). We say that θ is ground if every ti is a constant. The literal lθ is
the literal resulting from simultaneously substituting any occurrence of xi in l for its
corresponding ti. Similarly, we define the conjunction φθ as the conjunction resulting
from simultaneously applying the substitution θ to all the literals of φ.

Logic formalization of the UML Schema. As proposed in [103] we formalize
each class C in the class diagram with attributes {A1, . . . , An} by means of a base
atom c(Oid) together with n atoms of the form cAi(Oid,Ai), each association R
between classes {C1, . . . , Ck} by means of a base atom r(C1, . . . , Ck), and, similarly,
each association class R between classes {C1, . . . , Ck} with attributes {A1, . . . , An}
by means of a base atom r(Oid, C1, . . . , Ck) together with n atoms rAi(Oid,Ai). In
the context of relational algebra, we might refer to such formalization as the relational
view of the UML schema.

Data state A data state of some schema is a finite representation of the state of its
domain. We represent a data state I as a finite set of ground base atoms.

Constraints A constraint is a logic assertion posed over a schema S that must be
satisfied by the data state. Given a constraint c defined over a schema S and an
I of S, we say that I satisfies c, i.e., I |= c, if and only if c evaluates to true in I.
Otherwise, we say that I violates c (I 6|= c). We naturally extend this notion for a set
of constraints C, i.e., I |= C iff ∀c ∈ C. I |= c.

Dependencies. A Tuple-Generating Dependency (TGD) is a formula of the form
∀x, z. ϕ(x, z) → ∃ y. ψ(x, y). For our purposes, ϕ(x, z) will be a conjunction of
literals and ψ(x, y) will be a conjunction of positive base atoms and optionally some
built-in literals constraining its terms. A denial constraint is a special type of TGD of
the form ∀x

(
ϕ(x) → ⊥), in which the conclusion only contains the ⊥ atom, which

cannot be made true. A Disjunctive Embedded Dependency (DED) is a variation of
TGDs where disjunctions are admitted in the conclusion of the rule. In particular,
they follow the form: ∀x, z. φ(x, z) →

∨
∃y. ψ(x, y). From now on, we omit the

logic quantifiers since they can be understood by context.

Structural events and event literals. A structural event is an elementary change
in the population of a class or association of the schema [84]. That is, a change in the
contents of the data state. We consider six kinds of structural events: class instance
insertion/deletion, association instance insertion/deletion and attribute instance in-
sertion/deletion. Attribute updates are simulated by means of a simultaneous deletion
and insertion of the old and new value respectively.

We denote atom insertions by ι and deletions by δ. That is, given a base atom
p(x), we denote its insertion using the atom ιp(x) and its deletion by the atom δp(x).
Base atoms of this kind are called event literals. Moreover, derived literals containing
event literals in their bodies are also considered to be event literals.
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Part I

OCL Constraints Expressiveness
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Chapter 3

Expressiveness of OCL

In this chapter, we start by studying the expressiveness of the OCL language. In
particular, we focus on the expressiveness of OCL for defining constraints over UML
schemas.

As we are going to see, OCL is so expressive that we can define non-decidable
constraints, that is, constraints that cannot be checked in finite time by any algorithm.
Moreover, we are going to see that checking general OCL constraints is, in fact, not
even semidecidible. In other words, no algorithm can assess the satisfaction of some
OCL constraints, not even in the case where these constraints are satisfied.

Motivated by this issue, we define OCLFO, a fragment of OCL that is equivalent to
relational algebra (RA). That is, any constraint in OCLFO can be checked through a RA
query, and any constraint that can be checked through RA can be defined in OCLFO.
Thus, OCLFO constraints are not only decidable, but can be checked in polynomial
time (w.r.t. data complexity) and using SQL implementations. This (sub)language is
syntactically defined through a formal grammar, and its semantics are given through
standard set theory.

To complete the study, we identify the minimal subset of OCLFO. That is, the
minimal set of OCLFO constraints that has the full expressive power of RA. We call
such subset OCLCORE.

In the following, we first motivate our OCL expressiveness study, and continue by
showing that checking general OCL constraints is not decidable (neither semidecid-
able). Afterwards, we bring the syntax and semantics of OCLFO. The next sections
prove that OCLFO is expressively equivalent to RA, and identify the OCLCORE. Finally,
we discuss some related work and bring some conclusions.
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3.1 Motivation and Main Results

Since the definition of the Entity-Relationship (ER) language by Peter Chen in his
seminal paper of 1976 [24], several new graphical modeling languages have been
proposed so far by different researchers and institutions. Some prominent examples
might be the Object Role Modeling language (ORM)[63], and the Unified Modeling
language (UML) [86].

Using these languages, a software engineer can specify the conceptual schema of
an information system. That is, the relevant concepts of the domain of interest, and
how these concepts are related.

For instance, in Figure 3.1 we show a UML conceptual schema for some messaging
application. The domain of such application consists of users, conversation groups
(which can be divided into pairs, and groups) and messages. In this schema, users
belong to conversation groups, and messages are sent by users to these groups.

ConversationGroup  IsSentTo

msg*

receiver
0..1

owned

Writes
Message

body: String
sentTime: Date[0..1]

User

age: Integer
phone: String
state: String
lastConnect: Date

IsFormedBy 
2

*

1
owner

1 *
author msg

{disjoint, complete} 

PairGroup

crTime: Date

HasMember 

Owns

2..*

**

Figure 3.1: UML class diagram

In order to make these schemas precise, conceptual schemas may include con-
straints, i.e., conditions that the data of the schema should fulfill to be considered
valid. Then, modeling languages provide themselves some graphical constructs that
allow the definition of some frequent constraints. For instance, in our running exam-
ple, we have stated the constraint that each message is sent to exactly one conver-
sation group by means of two graphical UML cardinalities.

However, due to the limited expressiveness of graphical constraints, we also need
in general to adopt a textual language to express some more sophisticated constraints.
Indeed, constraints such as Users only send messages to groups they belong to, and
Messages of a group are sent after the group creation cannot be graphically expressed
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in the previous UML schema.
Currently, OCL (Object Constraint Language) [87] is probably the most popular

notation to specify textual constraints and an ISO/IEC standard. Roughly, OCL per-
mits defining constraints by means of building navigations from classes/associations,
and applying some OCL operators to such navigations. For instance, the previously
mentioned constraints can be specified in OCL as:

context Group inv MessagesAreFromGroup:
self .user ->includesAll(self .msg.author)

context Group inv MessagesAreSentAfterCreation:
self .msg->forAll(m|m.sentTime > self .crTime)

Figure 3.2: OCL constraints

However a natural question arising is to what extent is OCL expressive for defining
constraints. That is, is OCL expressive enough for defining all the constraint we might
require? or, on the contrary, is it even excessively expressive? In fact, the expressive
power of a language determines the complexity to check or to analyze its expressions.
Therefore, we may want to avoid a language which is too expressive because of its lack
of efficiency, but it may happen also that a restrictive language might be efficiently
checked but useless.

This is an important question, which has no answer yet in the OCL literature.
Probably, the closest study in this area is the one by Mandel and Cengarle in [75]
but it was performed more than 15 years ago, and for an old version of OCL which
did not include new constructs and capabilities that have been released since then.
This is why we understand that a new and more careful analysis must be done. This
is specially important if we take in account that, in the OCL panel hold in the OCL
Workshop 2014, the OCL community discussed about whether OCL should include
more operations (and which ones), or if OCL should just reorganize the current existing
ones [13].

In this context, the first contribution of this chapter is to show that full OCL is
currently so expressive that it is able to encode non-decidable constraints (and even
non-semidecidable ones). That is, we can write OCL constraints for which there is no
algorithm able to check them in finite time. That means that OCL interpreters might
not be able to assess whether an OCL constraint is satisfied by some data, even in the
case that the data is indeed satisfying the constraint. Clearly, this is causing serious
difficulties to OCL tool developers like [1, 8, 58] to provide support for the full OCL
language.

To overcome this situation we should restrict the expressiveness of the OCL ex-
pressions used to specify the constraints. With this purpose, we identify a fragment
of OCL which is expressive enough to write the most typically used textual constraints
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but without loosing good computational properties for checking them. The key idea
is to look for the OCL fragment whose expressions can be checked through relational
algebra (RA) queries in the sense that the constraint is violated iff the RA query
returns a non-empty answer.

For instance, we have that the OCL constraints in Figure 3.2 can be checked by
means of the following RA queries:

1. π(Groupon IsSentToonWrites) \ π(GrouponMember)

2. σsentTime≤crTime(Groupon IsSentToonMessage)

Intuitively, the first query looks for the users which send messages to groups they
do not belong to. In this way, one can check if the MessagesAreFromGroup constraint
is satisfied by checking if this query is empty. Similarly, the second query looks for
the messages whose sent time is previous to its group creation time.

We name this fragment of OCL as OCLFO
1. We define the syntax of OCLFO with a

formal grammar and determine its semantics by means of set theory. In this way, the
language is fully described in an unambiguous and concise way so that such concise
description may be easily understood and adopted by current practitioners. Note that,
those approaches aimed at bringing formal semantics to the full OCL require much
larger definitions, and even relying on third party languages [14, 76, 87].

Regarding its expressiveness, we show that OCLFO is not only expressible in rela-
tional algebra, but equivalent to relational algebra. That is, every OCLFO constraint
can be checked by means of a relational algebra query, and every constraint that can
be checked by means of a relational algebra query can be written in OCLFO. This
basic property ensures that OCLFO is as expressive as the main language of relational
databases and guarantees that the complexity of checking the constraints is exactly
the complexity of executing relational queries, that is, polynomial in data complexity
(and in particular, AC0). Moreover, it opens the door to reuse all the accumulated
knowledge for efficient query answering in relational databases into efficiently checking
of OCLFO constraints, as proposed by incremental approaches like the one in [90].

Finally, in order to make OCLFO an easy object of study, we also identify a core of
the language that we call OCLCORE. Indeed, OCLFO is targeted to include the fragment
of OCL that can be encoded into relational algebra. On the one hand, this makes
OCLFO a language containing most of the operators that an OCL practitioner might
use. On the other, this makes OCLFO a difficult object of study since it inherits a lot
of the OCL syntactic sugar. The core of the language is aimed at overcoming this
situation since it is a minimal fragment of OCLFO (consisting only of 5 operations)
able to express any constraint written in the whole OCLFO.

The identification of this core of the language is also an important issue since it
provides two significant contributions. First, it allows to easily state the relationship of

1FO stands for First-Order, since relational algebra is, essentially, first-order logic
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any fragment of OCL with OCLFO, by determining whether this fragment incorporates
or not the five operations in OCLCORE. Second, it entails that any implementation
handling OCLCORE will also be able to deal with OCLFO.

3.2 Undecidability of OCL Constraint Checking

It is well known that there is a trade-off between the expressiveness of a language and
the computational complexity to reason with it. I.e., the greater its expressiveness,
the difficult is to evaluate/analyze its expressions.

Bearing this in mind, we are interested to know the computational complexity
of checking a general OCL constraint in terms of data complexity. That is, how
difficult is to evaluate an OCL constraint regarding the size of a UML instantiation.
Surprisingly, to our knowledge, although there are similar studies on other problems
like OCL maintenance [95] or reasoning [101], this analysis has not been yet performed
for integrity checking of OCL constraints.

In fact, it turns out that, unfortunately, current full OCL is so expressive that it is
not decidable. That is, it is impossible to build an algorithm guaranteed to terminate
and correctly assessing whether an OCL constraint is satisfied or not in an arbitrary
UML instantiation. Things get even worse because we can also prove that OCL is
not even semidecidable. Therefore, the algorithm is not ensured to terminate even
in the case of UML instantiations that satisfy the constraint. Clearly, this entails a
huge problem to OCL constraint evaluator techniques since this result implies that
they might hang infinitely when checking that some valid UML instantiation is valid.

We prove the previous results by means of reducing the problem of checking an
OCL constraint into a non-decidable problem. In particular, we reduce the problem
of checking whether some word is accepted by a 0-type grammar to OCL constraint
checking by exploiting OCL recursion, and OCL string operators. In the following, we
formally state and proof such result.

Property 1. OCL checking is undecidable

Checking whether an OCL constraint is satisfied in an arbitrary UML
instantiation is not decidable, and not even semidecidable.

Proof. First, we prove non-decidability. Then, we prove non-semidecidability.
To prove non-decidability, we bring a UML schema that describes a 0-type gram-

mar structure and the notion of accepted/non-accepted words. Then, we add an
OCL constraint assessing that instances of accepted words should be produced by
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the grammar instance. In this way, the problem of checking whether some word is
produced by the grammar is reduced to instantiate this grammar and word in our
UML schema and then checking whether this OCL constraint is satisfied. Since the
former, is a non-decidable problem, the latter turns out to be non-decidable too.

Assume the UML schema of Figure 3.3. This UML schema contains the concepts
of a 0-type grammar. That is, symbols (distinguishing whether they are terminal, non-
terminal, or the start symbol), and production rules over such symbols. Moreover,
the UML schema also contains the concept of word, distinguishing between accepted
and non-accepted words.

Symbol

symbol: String

{disj, compl}

TerminalNonTerminal

StartSymbol

ProductionRule
1..*

1..*

left

right
*

*

Word

word: String

{disj, compl} 

NonAcceptedAccepted

{ordered}

{ordered}

Figure 3.3: UML class diagram for a 0 type grammar

From here, we build an OCL constraint asserting that the instances of accepted
words should be produced by the grammar instance. That is, it should exist some
production rule that produces the accepted word from the start symbol (either directly,
or by means of subsequent production rule applications). This can be defined as
follows:

context Accepted inv IsProducedWord :
ProductionRule.allInstances()->exists( p| StartSymbol .allInstances()->exists( s|

p.produces( s.symbol ,self .word)))

where produces is an OCL operation that returns true if the first input string directly
produces the second one, or if it produces some other word from which we can produce
it. This operation can be defined in OCL as follows:

context ProductionRule def produces ( current: String, target: String): Boolean =
self.replacements( current)->exists( newWord |

newWord = target or
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ProductionRule.allInstances()->exists( p| p.produces( newWord, word))

This definition makes use of the replacements operation, which returns the dif-
ferent words we can obtain by applying the production rule. Replacements can be
defined recursively in OCL. Intuitively, we need to first compute the strings represent-
ing the left and right part of the production rule. Then, if the input word is empty,
there is no replacement to apply and thus, we can return the empty set. Otherwise,
we have to recursively compute the replacements of the word without the first char-
acter, and iterate the given result to concatenate this first character at the beginning
of each returned word. Finally, we have to check if the word’s beginning matches the
left part of the rule, and if so, add into the result the word corresponding to replace
the beginning with the right part of the production rule. Formally:

context ProductionRule def replacements( current: String): Set(String) =
let leftW : String = self.left->iterate( s; l : String = ”” | l+s.symbol) in
let rightW : String = self.right->iterate( s; r : String = ”” | r+s.symbol) in
if current = ”” then Set{}
else self .replacements(

current.substring(2,current.size())
)->iterate( i ; acc: Set{}|

acc->including( current.substring(1,1)+i)
)->union(

if current.substring(1,leftW .size())=leftW
then Set{rightW +current.substring( leftW .size(),current.size())}

else Set{} endif )
endif

Thus, we can check whether some word is rejected by a 0-type grammar by
instantiating the word and the grammar in the previous UML schema and checking
the satisfaction of the given IsProducedWord OCL constraint. Since checking whether
some word is rejected by a 0-type grammar is not decidable, checking OCL constraints
is not decidable either.

Now, to prove that checking OCL constraints is not even semidecidable, we reduce
the problem of checking whether some word is rejected by some 0-type grammar,
which is a well known non-semidecidable problem.

Let us consider a constraint specifying that non-accepted words are words that
cannot be produced by the grammar. In OCL, this constraint can be stated by simply
negating the previous one:

context NonAccepted inv IsNotProducedWord :
not ProductionRule.allInstances()->exists( p|StartSymbol .allInstances()->exists( s|

p.produces( s.symbol ,word.word)))

We can check now whether some word is rejected by a 0-type grammar by in-
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stantiating the word and the grammar in the previous UML schema and checking the
satisfaction of the given IsNotProducedWord OCL constraint. Therefore, checking
OCL constraints is not even semidecidable.

3.3 The OCLFO Fragment of OCL

We provide in this section the syntax and the semantics of OCLFO. Since our goal is
to use OCLFO as a language for specifying constraints, we make special emphasis on
OCLFO boolean statements.

The syntax is defined by means of a formal grammar which limits the standard
OCL boolean statements to those that can be computed through relational algebra
queries. Since, intuitively, relational algebra is known to be equivalent to (domain in-
dependent) first-order logic, such grammar leaves out the OCL higher-order operators
like transitive closure, or (most) aggregation functions.

Semantics is defined by means of set theory. Roughly, OCL navigations are inter-
preted as sets, or single objects/values, and OCL boolean operators are interpreted as
checks over them (e.g. the semantics of includes consists in checking whether some
object/value belongs to a set, etc.). Therefore, this semantics does not distinguish
among different collection types, as OCL does (e.g. it does not contemplate bags,
nor ordered sets). However, this is not a limitation since RA only supports sets and
most OCL operators regarding collections brings the same results when interpreting
an OCL collection as a set.

After defining the syntax and the semantics of OCLFO, we make a brief discussion
about the OCL operations outside OCLFO while distinguishing whether they could be
effectively emulated in OCLFO, or not.

3.3.1 OCLFO Syntax

The grammar of OCLFO is stated in Figure 3.4. Briefly, an OCLFO constraint is an OCL-
Bool statement written in some class context as shown in Figure 3.2. Such boolean
statement might make use of navigations, i.e., OCL-Set, OCL-Object, or OCL-Value
statements. Intuitively, the first kind of statements describe a set of objects, whereas
the last two determine a single object/value, respectively. Such navigations are then
used as the input of some OCLFO operator to obtain the OCL-Bool statement that
defines the constraint.
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OCL-Bool ::= OCL-Bool BoolOp OCL-Bool | not OCL-Bool |
OCL-Set ->includesAll(OCL-Set) | OCL-Set ->excludesAll(OCL-Set) |
OCL-Set ->includes(OCL-Single) | OCL-Set ->excludes(OCL-Single) |
OCL-Set ->forAll(VarL OCL-Bool) | OCL-Set ->exists(VarL OCL-Bool) |
OCL-Set ->isEmpty() | OCL-Set ->notEmpty() |
OCL-Set ->size() CmpOp Integer | OCL-Set ->one(Var OCL-Bool) |
OCL-Set ->isUnique(attr) |
OCL-Object.oclIsKindOf(Class) | OCL-Object.oclIsTypeOf(Class) |
OCL-Object = null | OCL-Object <> null |
OCL-Navig = OCL-Navig | OCL-Navig <> OCL-Navig |
OCL-Value CmpOp OCL-Value |
OCL-Object.bAttr | Var

OCL-Navig ::= OCL-Set | OCL-Single
OCL-Set ::= OCL-Set ->union(OCL-Set) | OCL-Set ->intersection(OCL-Set) |

OCL-Set ->select(Var OCL-Bool) | OCL-Set ->reject(Var OCL-Bool) |
OCL-Set ->selectByKind(Class) | OCL-Set ->selectByType(Class) |
OCL-Set.role [ [role] ] | OCL-Set.assoClass [ [role] ] |
OCL-Object.nfRole [ [role] ] | OCL-Object.nfAssoClass [ [role] ] |
OCL-Set.attr | OCL-Object.nfAttr |
Class.allInstances() | OCL-Single

OCL-Single ::= OCL-Object | OCL-Value
OCL-Object ::= OCL-Object.oclAsType(Class) |

OCL-Object.fRole | OCL-Object.fAssoClass | Var | self
OCL-Value ::= Constant | Var

OCL-Object.fAttr |
OCL-Set->min() | OCL-Set->max() |

BoolOp ::= and | or | xor | implies
CmpOp ::= < | <= | = | >= | > | <>
VarL ::= Var (,Var)*
Var ::= 〈a variable name〉
Class ::= 〈a class name〉
assoClass ::= 〈an association class name〉
fAssoClass ::= 〈an association class name of a functional role〉
nfAssoClass ::= 〈an association class name of a non functional role〉
role ::= 〈a role name〉
fRole ::= 〈a functional role name〉
nfRole ::= 〈a non functional role name〉
attr ::= 〈an attribute name〉
bAttr ::= 〈a boolean attribute name〉
fAttr ::= 〈a functional attribute name〉
nfAttr ::= 〈a non functional attribute name〉
Integer ::= 〈an integer number〉
Constant ::= 〈a constant name〉

Figure 3.4: Syntax of OCLFO

These OCLFO statements are built over a signature consisting of a set of class
names, role/attribute names (where some might be functional -i.e. with a maxi-
mum cardinality of 1-), association class names, and constant names. Typically, this
signature is provided by an associated UML class diagram.

For the seek of simplifying the language, we limit OCLFO statements to evaluate
to valid results. Thus, we require the expressions to apply the proper safety checks to
avoid rising the OCL invalid value in runtime. For instance, if we have some object
of type T1, and we want to cast it to T2, we might need to check that the object
has also the type T2 (unless T1 is a subclass of T2). Note that we can analyze in
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which cases are these safety checks necessary with a syntactic inspection of the OCL
expression and the class diagram.

3.3.2 OCLFO Semantics

To define the semantics of OCLFO we interpret the OCL-Bool statements as true
or false values, the OCL-Set statements as sets of objects/values, and the OCL-
Object/OCL-Value statements as a single object/value respectively.

We define first the semantics of OCLFO without considering null values. That is,
assuming that when interpreting an OCL-Object or OCL-Value expression, we always
reach some defined object/value. We will include the treatment of nulls later on.

OCLFO semantics without nulls

The semantics of an OCLFO statement is defined through the interpretation of its
signature. Such interpretation represents a specific database state of the class diagram
where the constraint is attached to. Namely, it indicates the classes each object is
instance of, the relations between objects via associations, and the values objects
have via their attributes. Since the interpretation of an association name determines
the interpretation of its role names, instead of considering the interpretation of the
roles, we assume a function ass : role 7→ Assoc, for retrieving the association name of
some role name. In this way, the interpretation of some role r is obtained by taking
the interpretation of its association ass(r).

Formally, an interpretation is a pair I = 〈∆I, ·I〉, where ∆I is a non-empty set of
object identifiers and values referred as the interpretation domain, and ·I is a function,
referred as interpretation function, that maps each element in the signature of the
OCLFO statements to ∆I tuples. In particular, class names are mapped to a set of
domain elements, attribute names are mapped to a set of domain element pairs, k-ary
association (class) names are mapped to a set of k-ary (k+1-ary) domain element
tuples, and constant names are interpreted to domain elements with the same name
(i.e., we follow the standard name assumption).

For example, an interpretation I0 for the signature defined by our running UML
schema example might be:

∆I0 = {#user1,#user2,#group1,#msg1,
1/1/2016, 12/12/2015, ‘Happy new year!’, . . .}

UserI0 = {#user1,#user2}
GroupI0 = {#group1}
MessageI0 = {#msg1}
crTimeI0 = {< #group1, 12/12/2015 >}
sentTimeI0 = {< #msg1, 1/1/2016 >}
isSentToI0 = {< #msg1,#group1 >}

30



OCL-BoolI ∈ {true, false}
(OCL-Bool1 BoolOp OCL-Bool2)I ≡ OCL-Bool1I BoolOp OCL-Bool2I

(not OCL-Bool)I ≡ ¬OCL-BoolI

(OCL-Set1->includesAll(OCL-Set2))I ≡ OCL-Set1I ⊇ OCL-Set2I

(OCL-Set1->excludesAll(OCL-Set2))I ≡ OCL-Set1I ∩ OCL-Set2I = ∅
(OCL-Set->includes(OCL-Single))I ≡ OCL-SingleI ∈ OCL-SetI

(OCL-Set->excludes(OCL-Single))I ≡ OCL-SingleI 6∈ OCL-SetI

(OCL-Set->forAll(Var OCL-Bool))I ≡ (not OCL-Bool)I,Var,OCL-Set = ∅
(OCL-Set->forAll(VarL,Var OCL-Bool))I ≡ OCL-Set->forAll(Var OCL-Set->forAll(VarL OCL-Bool))I

(OCL-Set->exists(Var OCL-Bool))I ≡ OCL-BoolI,Var,OCL-Set 6= ∅
(OCL-Set->exists(VarL,Var OCL-Bool))I ≡ OCL-Set->exists(Var OCL-Set->exists(VarL OCL-Bool))I

(OCL-Set->isEmpty())I ≡ OCL-SetI = ∅
(OCL-Set->notEmpty())I ≡ OCL-SetI 6= ∅
(OCL-Set->size() CmpOp n)I ≡ ||OCL-SetI|| CmpOp n
(OCL-Set->one(Var OCL-Bool))I ≡ ||OCL-BoolI,Var,OCL-Set|| = 1
(OCL-Set->isUnique(attr))I ≡ OCL-Set->forAll(v1,v2 v1 = v2 or v1.attr <> v2.attr)I

(v.oclIsKindOf(Class))I ≡ v ∈ ClassI

(v.oclIsTypeOf(Class))I ≡ v ∈ ClassI \ Subclasses(Class)I
(OCL-Single = null)I ≡ OCL-SingleI = null
(OCL-Single <> null)I ≡ OCL-SingleI 6= null
(OCL-Set1 = OCL-Set2)I ≡ OCL-Set1I = OCL-Set2I

(OCL-Set1 <> OCL-Set2)I ≡ OCL-Set1I 6= OCL-Set2I

(OCL-Object1 = OCL-Object2)I ≡ OCL-Object1I = OCL-Object2I , or OCL-Objecti = null
(OCL-Object1 <> OCL-Object2)I ≡ OCL-Object1I 6= OCL-Object2I , or OCL-Objecti = null
(OCL-Value1 CmpOp OCL-Value2)I ≡ OCL-Value1I CmpOp OCL-Value2I , or OCL-ValueiI = null
(OCL-Object.bAttr)I ≡ OCL-Object.bAttrI= true, or OCL-Object.bAttrI = null
(v)I ≡ v

OCL-BoolI,Var,OCL-Set = {v ∈ OCL-SetI | (OCL-Bool[Var/v])
I = true}

OCL-SetI ⊆ ∆I

(OCL-Set1->union(OCL-Set2))I = OCL-Set1I ∪ OCL-Set2I

(OCL-Set1->intersection(OCL-Set2))I = OCL-Set1I ∩ OCL-Set2I

(OCL-Set->select(Var OCL-Bool))I = OCL-BoolI,Var,OCL-Set

(OCL-Set->reject(Var OCL-Bool))I = OCL-SetI \ OCL-BoolI,Var,OCL-Set

(OCL-Set->selectByKind(Class))I = OCL-SetI ∩ ClassI

(OCL-Set->selectByType(Class))I = OCL-SetI ∩ ClassI \ Subclasses(Class)I
(OCL-Set.role)I = πrole(OCL-SetI onns ass(role)I)
(OCL-Set.assoClass)I = πassoClass(OCL-SetI onns (assoClass)I)
(OCL-Object.nfRole)I = πnfRole({OCL-ObjectI} onns ass(nfRole)I)
(OCL-Object.nfAssoClass)I = πnfAssoClass({OCL-ObjectI} onns (nfAssoClass)I)
(OCL-Set.attr)I = πattr (OCL-SetI onoid(attr)

I)
(OCL-Object.nfAttr)I = πnfAttr ({OCL-ObjectI} onoid(nfAttr)

I)
(Class.allInstances())I = ClassI

(OCL-Single)I = {OCL-SingleI} if OCL-SingleI 6= null, ∅ otherwise

OCL-ObjectI ∈ ∆I∪ {null}
(OCL-Object.oclAsType(Class))I = (OCL-Object)I

(OCL-Object.fRole)I = πfRole({OCL-Object}I onns ass(fRole)I), or null
(OCL-Object.fAssoClass)I = πfAssoClass({OCL-ObjectI} onns ass(fAssoClass)I), or null
(v)I = v

OCL-ValueI ∈ ∆I ∪ {null}
(v)I = v
(OCL-Object.fAttr)I = πfAttr ({OCL-ObjectI} onoid(fAttr)

I) , or null
(OCL-Set->min()I = (OCL-Set)I \ (π (σ>(OCL-SetI × OCL-SetI)), or null
(OCL-Set->max()I = (OCL-Set)I \ (π (σ<(OCL-SetI × OCL-SetI)), or null

Figure 3.5: Semantics of OCLFO
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Given an interpretation I, an OCLFO statement is interpreted according to the
recursive definition specified in Figure 3.5. Such definition is mainly provided in terms
of set theory, together with some relational algebra operators (such as join on, project
π, or select σ), to easily define the interpretation of OCLFO navigations. Moreover,
to define these navigations, we assume that ns is the role name of the navigation
source which corresponds to the [role] expression of a navigation, or the opposite of
some role in navigations through binary associations. Lastly, we use the expression
Subclasses(Class)I to refer to those objects belonging to a subclass of Class.

Thus, given an OCLFO constraint φ of the form:

context R inv ConstraintName: OCL-Bool

We say that an interpretation I satisfies the constraint φ, and write I |= φ if and
only if it evaluates to true for all the objects of its context class R. More formally:

I |= φ iff ∀v∈RI OCL-BoolI[self/v] = true

For example, I0 satisfies the OCLFO constraint MessagesAreSentAfterCreation
since for its unique group #group1 it holds that:

{v ∈ πmsg({#group1} on isSentToI0) |
πsentT ime({v} on sentTimeI0) ¡

πcrT ime({#group1} on crTimeI0)} = ∅
In case I satisfies φ, we say that I is a model of φ, otherwise, we say that I

violates φ. We naturally extend the notions of model, satisfaction, and violation to
sets of OCLFO constraints Φ. E.g. I satisfies a set of constraints Φ if and only if I
satisfies each φ ∈ Φ.

OCLFO semantics with nulls

Sometimes, the interpretation of some OCL-Object or OCL-Value results into no
value. Indeed, consider that in our running example, some message #msg1 has no
value defined for the attribute sentTime. In this case, when navigating from the user
#msg1 to its sentTime, we obtain no value. More formally, we obtain ∅.

In such case, we define the OCL-Object/OCL-Value to be interpreted as a new
value called null not present in ∆I . In particular, we cast the ∅ to null (and
viceversa) depending on the OCL expression it appears. Note that such interpretation
corresponds to the one given in the OCL standard in [87].

Thus, when ∅ appears when interpreting some OCL-Object/OCL-Value, we au-
tomatically cast it to the new value null. Since the null value is not present in
∆I , the null value does not join any value in the signature interpretation I. That
is, it does not join any value present in the interpretation of any association or at-
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tribute. This implies that, when navigating from a null value to obtain another
object/value, we obtain again ∅, which is cast to null if this navigation is an OCL-
Object/OCL-Value. This behavior perfectly emulates the standard OCL semantics
proposal [87].

Finally, we need to extend the interpretation of the OCL-Bool to determine if
they are evaluated to true or false when they use some OCL-Object/OCL-Value
that evaluates to null. This differs from standard OCL since OCL considers that
an OCL-Bool expression might return null or even invalid. However, since we
want OCLFO to be a two-valued logic language, we restrict OCL-Bool values to either
true or false.

Thus, and following the criteria already used in [103], we consider that an OCL-
Bool is true if some of its OCL-Object/OCL-Value subexpression are evaluated to
null. The idea behind this interpretation is that an OCLFO constraint is not violated
unless the values that determine its satisfaction/violation are defined. For instance,
the constraint MessagesAreSentAfterCreation would be satisfied in the previous ex-
ample if #msg1 had not sentTime defined yet, since then, its sent time would not
be previous to the creation group time.

Note that this interpretation is just a default behaviour to apply in case of finding
a null value. However, note that it is possible to write a constraint that it is
violated when some of its expressions evaluate to null by simply adding the boolean
subexpression and OCL-Single/OCL-Object <> null to the OCL constraint.

3.3.3 OCL Operations not in OCLFO

As we will prove in the next two sections, an OCLFO constraint is equivalent to re-
lational algebra query. For this reason, we know that OCLFO is also equivalent to
(domain independent) first-order logic. Therefore, it can be stated straightforwardly
that all OCL operations which are not first-order cannot be included in OCLFO. Ex-
amples of such kind are closure, or aggregation functions such as count. It is worth
noting, however, that the aggregation function size can be used in OCLFO to compare
the size of some set with some fixed integer, but not with another set size neither
with the value obtained from some attribute.

Additionally, basic type operations such as +, -, *, and / cannot be included in
OCLFO expressions since they are not supported by relational algebra. Finally, op-
erations which are only used to express boolean conditions for other artifacts such
as behavioural models but which cannot appear in a constraint definitions are not
included either in OCLFO. Examples of such operations may be oclIsNew and oclIsIn-
State.

As a final remark to this section, it is worth mentioning that we have intentionally
left out from OCLFO some OCL operations that can also be translated into relational
algebra such as let ... in, if ... then ... else ... endif, including or excluding. This has
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been done for the sake of having a compact fragment of the language and because
these operations are not frequently used when defining OCL constraints. However,
not including these operations in OCLFO does not suppose a limitation of our choice
because their consideration would not increase the expressive power of OCLFO and
because they can be translated into equivalent OCLFO expressions according to the
OCL equivalences among operations.

3.4 Checking OCLFO Constraints by RA Queries

The main goal of this section is to show that any OCLFO constraint can be checked
by means of a RA query since given an OCLFO constraint we can build a RA query
that retrieves the objects that violate it. Therefore, the OCLFO constraint is satisfied
if and only if its corresponding query is empty.

This result entails that checking an OCLFO constraint is at most as difficult as
executing a RA query and, thus, checking an OCLFO constraint can be solved in poly-
nomial time with regarding to data complexity (and in particular, it belongs to the
AC0 complexity class). Moreover, this also enables reusing current techniques devel-
oped in the community of relational databases for the treatment of OCLFO constraints.
For instance, incremental OCLFO constraints checking can be solved by means of incre-
mental query answering (e.g. following [90], or [11]), and repairing OCLFO constraints
can be solved by view updating techniques (as studied for instance in [95]).

The RA query is built from an OCLFO constraint in two steps. First, we normalize
the OCLFO constraint into an equivalent one that uses a lower number of OCLFO

operators. Then, we translate the normalized OCLFO constraint into a RA query that
returns the objects that violate the constraint.

3.4.1 Normalizing OCLFO Constraints

The grammar presented in Figure 3.4 admits very complex OCL expressions, us-
ing lots of different OCL operations. Therefore, defining directly a translation from
pure OCLFO constraints into RA queries becomes very cumbersome. To make things
simpler, we initially translate each OCLFO constraint into a normalized one, whose
expression is defined only by means of a small number of operations.

We say that an OCLFO constraint is normalized if it is defined only by means of
the following operations: and, not, forAll, =, and < for OCL-Bool expressions; and
union, intersection, -, select for OCL-Set expressions; although their expression can
also contain the usual navigations through roles and attributes, and the oclAsType
cast operation.

To normalize an OCLFO constraint, we recursively apply the rewritings defined
in Figure 3.6. It is not difficult to verify that such rewriting preserve the original
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OCL-Bool
OCL-Bool1 or OCL-Bool2 = not( not OCL-Bool1 and notOCL-Bool2)
OCL-Bool1 implies OCL-Bool2 = not OCL-Bool1 or OCL-Bool2
OCL-Set1->includesAll(OCL-Set2) ≡ OCL-Set2->forAll(e2 not OCL-Set1->forAll(e1 e1<>e2))
OCL-Set1->excludesAll(OCL-Set2) ≡ OCL-Set2->forAll(e2 OCL-Set1->forAll(e1 e1<>e2))
OCL-Set->includes(OCL-Single) ≡ not OCL-Set->forAll(e e <> OCL-Single))
OCL-Set->excludes(OCL-Single) ≡ OCL-Set->forAll(e e <> OCL-Single))
OCL-Set->exists(Var OCL-Bool) ≡ not OCL-Set->forAll(Var OCL-Bool)
OCL-Set->isEmpty() ≡ OCL-Set->forAll(e 1 6= 1)
OCL-Set->notEmpty() ≡ not OCL-Set->forAll(e 1 6= 1)
OCL-Set->size() < n ≡ OCL-Set->forAll(e1, ..., en e1=e2 or e1=e3 or ... en−1=en)
OCL-Set->size() <= n ≡ OCL-Set->forAll(e1, ..., en+1 e1=e2 or e1=e3 or ... en=en+1)
OCL-Set->size() = n ≡ OCL-Set->size() ¡= n and not OCL-Set->size() ¡ n-1
OCL-Set->one(Var OCL-Bool) ≡ OCL-Set->select(Var OCL-Bool)->size() = 1
OCL-Set->isUnique(attr) ≡ OCL-Set->forAll(v1,v2 v1 = v2 or v1.attr <> v2.attr)
v.oclIsKindOf(Class) ≡ Class->forAll(e e = v)
v.oclIsTypeOf(Class) ≡ Class->forAll(e e = v) and Subclass->forAll(e e <> v) ...
OCL-Single = null ≡ OCL-Single->forAll(e 1 <> 1)
OCL-Single <> null ≡ not OCL-Single->forAll(e 1 <> 1)
OCL-Set1 = OCL-Set2 ≡ OCL-Set1->includesAll(OCL-Set2) and

OCL-Set2->includesAll(OCL-Set1)
OCL-Set1 <> OCL-Set2 ≡ not OCL-Set1 = OCL-Set2

OCL-Set
OCL-Set->reject(Var OCL-Bool) = OCL-Set->select(Var not OCL-Bool)
OCL-Set->selectByKind(Class) = OCL-Set->select(e e.oclIsKindOf(Class))
OCL-Set->selectByType(Class) = OCL-Set->select(e e.oclIsTypeOf(Class))

OCL-Value
OCL-Set->min() = OCL-Set->select(min OCL-Set->forAll(e min <= e))
OCL-Set->max() = OCL-Set->select(max OCL-Set->forAll(e max >= e))

Figure 3.6: OCLFO normalization rewrittings

semantics of the constraint by means of directly inspecting the operation semantics
defined in Figure 3.5.

In our running example, the normalized version of the constraint MessagesAre-
FromGroup is:

self .msg.author->forAll(a|
not self .user ->forAll(u|not a = u))

3.4.2 Drawing RA Queries from Normalized Constraints

To obtain the RA query of a normalized OCLFO constraint, we first translate each
OCLFO navigation (i.e., OCL-Set, OCL-Object and OCL-Value expressions) into RA
queries retrieving its corresponding set, object, or value. Then, the resulting RA query
is obtained by translating the OCL-Bool expressions through the composition of the
translation of its navigations.

More precisely, the crucial point for translating the navigations are the OCLFO

variables (i.e, the self variable and the iteration variables appearing in forAll and
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select expressions) since our goal is to build a RA query with one relational attribute
for each OCLFO variable alive in the OCLFO navigation, together with one additional
attribute containing the result of the navigation. For instance, when translating
the normalized MessagesAreFromGroup constraint, the navigation self.msg.author is
translated as a relational query with the attributes self and result.

Intuitively, when executing such queries over some interpretation I, each retrieved
tuple t represents a combination of values that the OCLFO variables may take when
evaluating the OCLFO navigation with I. For instance, if in the interpretation I we
have that a group #group1 has some message #msg1 written by #John, then, the
row <#group1, #John> appears in the query result that translates the navigation
self.msg.author.

Then, the idea of composing those translations to obtain the translation of the
whole OCL-Bool expression defining the constraint is to select those tuples that
witness the violation of the boolean condition. That is, we want to select the row
<#group1, #John> from the previous example in case that #John is not a member
of #group1.

All translations are recursive and use the input variable qc, the context query,
which is the relational query that retrieves the values for the alive OCLFO variables
defined in the upper expression of the expression being translated. For instance, to
translate self.msg.author, we need a context query qc retrieving the values that the
variable self might take, e.g. qc = Group.

In the rest of this section, we first present the algorithms for translating each
OCLFO navigation, while discussing their intuition and providing a formal proof of
their correctness. Afterwards, we show and prove how to use these algorithms to
translate the whole OCL-Bool expression defining the OCLFO constraint.

For the seek of simplicity, we omit some relational algebra low-level details such
as relational algebra attribute renamings and some selection conditions since they can
be easily understood from the context.

OCL-Set Translation

Algorithm 1 translates an OCL-Set into a relational query retrieving the same val-
ues/objects than the ones in the OCL-Set. Since the OCL-Set expression might have
OCL free variables (such as self ), we need the context query qc to bring the different
possible substitutions to apply to such variables. Thus, each tuple t in the result of
the query has the form < t1, ..., tn, v >, where t1, ..., tn represents a substitution for
the OCLFO variables appearing in the OCL-Set (which are taken from qc), and v a
value appearing in the OCL-Set according to such substitution for the free variables.

The idea behind the algorithm is to use the relational operation corresponding to
each OCLFO set operation. I.e., union is translated into ∪, role navigations as on, etc.
The major difficult, however, relies on the translation of the select operation, which
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is translated using the translation of OCL-Bool expressions. In this case, the idea is
to first, translate the OCL-Set source expression, and then, remove all those rows not
satisfying the inner OCL-Bool expression.

As an example, consider the OCL-Set expression self.msg.author with a context
query qc=Group defining the values that the OCLFO variable self might take. Such
expressions is translated as:

πgroup,author(Group on IsSentTo on Writes)

Intuitively, the translation just translates the role navigations to RA joins, and
then, projects the result to only retrieve the reachable messages for each group.

In the following we formally proof the correctness of this algorithm.

Algorithm 1 raTranslation(OCL-Set, qc)
if OCL-Set = OCL-Set1->union(OCL-Set2) then

q1 := raTranslation(OCL-Set1, qc)
q2 := raTranslation(OCL-Set2, qc)
return q1∪ q2

else if OCL-Set = OCL-Set1->intersection(OCL-Set2) then
q1 := raTranslation(OCL-Set1, qc)
q2 := raTranslation(OCL-Set2, qc)
return q1 ./ q2

else if OCL-Set = OCL-Set1− OCL-Set2 then
q1 := raTranslation(OCL-Set1, qc)
q2 := raTranslation(OCL-Set2, qc)
return q1 \ q2

else if OCL-Set = OCL-Set1->select(Var|OCL-Bool) then
qs := raTranslation(OCL-Set1, qc)
qr := raTranslation(OCL-Bool, qs)
return qs\ qr

else if OCL-Set = OCL-Set1.role then
q1 := raTranslation(OCL-Set1, qc)
return π(q1 on ass(role))

else if OCL-Set = OCL-Set1.assoClass then
q1 := raTranslation(OCL-Set1, qc)
return π(q1 on assoClass)

else if OCL-Set = OCL-Object1.nfRole then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 on ass(nfRole))

else if OCL-Set = OCL-Object1.nfAssoClass then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 on nfAssoClass)

else if OCL-Set = OCL-Set1.attr then
q1 := raTranslation(OCL-Set1, qc)
return π(q1 on attr)

else if OCL-Set = OCL-Object1.nfAttr then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 on nfAttr)

else if OCL-Set = R.allInstances() then
return qc × R

else if OCL-Set = OCL-Object1 then
return raTranslation(OCL-Object1, qc)

end if
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Property 2. OCL-Set raTranslation correctness

Let φ be an OCL-Set over a UML conceptual schema SUML, q a relational
algebra expression defined over the relational view of SUML, and qc a
context query such that q = raTranslation(φ, qc) (Algorithm 1). Then,

v ∈ φI[St] iff < t[0], ..., t[n], v > ∈ q(I)

for any value v, any interpretation I, and any substitution St obtained
from qc(I).

Proof. The proof is based on structural induction over the OCLFO grammar. In the
following we bring the proof for the base case and one inductive case. The rest of
cases follows analogously. Consider the base case:

φ = R.allInstances()

According to Algorithm 1,

q = raTranslation(φ, qc) = qc ×R
Clearly, according to the semantics of OCLFO, v ∈ R.allInstances()I iff v ∈ RI .

Moreover, it is guaranteed that St is obtained from qc(I). Hence, v ∈ R.allInstances()I[St]

iff < t[0], ..., t[n], v > ∈ qc(I)× RI .
Consider the inductive case:

φ = OCL-Set.select(s | OCL-Bool)

According to Algorithm 1,

q = raTranslation(φ, qc) = qs \ qr
where

qs = raTranslation(OCL-Set, qc)

qr = raTranslation(OCL-Bool, qs)

According to the semantics, we have that v ∈ OCL-Set.select(s | OCL-Bool)I[St]

if and only if v ∈ OCL-Bool I,s,OCL-Set
[St]

. This is the case if and only if v ∈ OCL-SetI[St]

and OCL-BoolI[St∪{s/v}] = true. Equivalently, this is the case iff v ∈ OCL-SetI[St]

and not OCL-BoolI[St∪{s/v}] = false. Now, by induction hypothesis, we have that

v ∈ OCL-SetI[St]
iff < t[0], ..., t[n], v > ∈ qs(I), and OCL-BoolI[St∪{s/v}] = false

iff < t[0], ..., t[n], v > ∈ qr(I). Hence, v ∈ OCL-Set.select(s | OCL-Bool)I[St]
iff

< t[0], ..., t[n], v > ∈ q(I). �

38



OCL-Object and OCL-Value Translation

Algorithm 2 defines the translation of an OCL-Object or OCL-Value expression into a
relational query that, intuitively, returns the object/value referred by the expression.
Similarly as before, each tuple < t1, ..., tn, v > returned by the query represents an
evaluation that the OCLFO variables appearing in the expression might take (values
t1, ..., tn taken from a context query qc), together with the value retrieved by the
OCL-Object/OCL-Value expression according to that evaluation (v).

Again, the idea behind the translation is to use the relational algebra operator
that corresponds to those defined in the OCLFO semantics. E.g, role navigations are
translated by means of the same join we have defined in the OCLFO semantics.

For instance, consider the OCL-Single expression m.sentTime with a context
query qc = πmsg(Group on IsSentTo) defining the values for the OCLFO variable m.
Such expression is translated as:

(πmsg(Group on IsSentTo)) on SentTime

Intuitively, the translation converts the attribute navigation as a new join to re-
trieve the sentTime attribute for each value that e might take.

In the following, we formally proof the correctness of Algorithm 2.

Algorithm 2 raTranslation(OCL-Single, qc)
if OCL-Single = Constant then

return qc × {Constant}
else if OCL-Single = Variable then

return qc
else if OCL-Single = OCL-Object1.fAttr then

q1 := raTranslation(OCL-Object1, qc)
return π (q1 on fAttr)

else if OCL-Single = OCL-Object1.oclAsType(Class) then
return raTranslation(OCL-Object1, qc)

else if OCL-Single = OCL-Object1.fRole then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 on ass(fRole))

else if OCL-Set = OCL-Object1.fAssoClass then
q1 := raTranslation(OCL-Object1, qc)
return π(q1 on fAssoClass)

end if
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Property 3. OCL-Single raTranslation correctness

Let φ be an OCL-Single over a UML conceptual schema SUML, q a rela-
tional algebra expression defined over the relational view of SUML, and qc
a context query such that q = raTranslation(φ, qc) (Algorithm 2). Then,
for any interpretation I, and any substitution St obtained from qc(I), we
have:

null = φI[St] iff ¬∃v. < t[0], ..., t[n], v > ∈ q(I)

and, for any value v different from null:

v = φI[St] iff < t[0], ..., t[n], v > ∈ q(I)

Proof. The proof is based on structural induction over the OCLFO grammar. In the
following we bring the proof for one base case and one inductive case. The rest of
cases follows analogously. Consider the base case:

φ = self

According to Algorithm 2,

q = raTranslation(φ, qc) = qc (3.1)

According to the semantics, we have that v = selfI[St] iff self [St] = v. This is the case
if and only if we have < t[0], ..., v, ..., t[n] > ∈ qc.

Consider the inductive case:

φ = OCL-Object.fAttr

According to Algorithm 2,

q = π(q1 on fAttr)

where

q1 = raTranslation(OCL-Object, qc)

According to the semantics, we have that v = (OCL-Object.fAttr)I[St]
iff v = π

(OCL-ObjectI[St]
on fAttr I). This is the case if and only if there exists some value

v′ in OCL-ObjectI[St]
whose join with fAttr I retrieves v. By induction hypothesis

we know that < t[0], ..., t[n], v′ > ∈ q1(I) iff v′ = OCL-ObjectI[St]
. Thus, v =

(OCL-Object.fAttr)I[St]
iff < t[0], ..., t[n], v > ∈ q(I). �
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OCL-Bool Translation

In Algorithm 3 we show how to make use of the previous translations to obtain
the values that cause the violation of the OCL-Bool condition. The output of this
algorithm is a query that returns the evaluation of the OCLFO variables alive in OCL-
Bool that make the expression evaluate to false.

The intuition behind the translation is to use the relational algebra selection σ to
select those values that contradict the OCL-Bool expression.

For instance, consider the OCL-Bool expression self.user ->forAll(u|not a = u)
with the context query qc = πgroup,author(Group on IsSentTo on Writes) defining the
values for the OCLFO variable a depending on the value given to self. Such expression
would be translated as:

σauthor=user(qc on (qc on HasMember))

Intuitively, qc retrieves the values that a might take for every value of self (that
is, all the authors of messages sent to some group self ), then, (qc on IsMemberOf)
retrieves the values that u might take for every value of self (that is, all the users
of some group self ). Then, the join of both expressions retrieves the values that a
and u might take for the same value of self (that is, all the authors and members of
some group self ). Finally, the selection picks those tuples in which the value for a is
equal to the value for u.

Note that, to translate the other normalized OCLFO boolean operations such as
and and not we just need to compose the previous translation pattern. That is,
and is translated by unifying the set of rows that causes the violation of the first
condition, with those causing the violation of the second one; and not is translated
by computing those rows violating the inner expression (in other words, those rows
satisfying its negation), and removing them from the context query (so we have those
rows violating the negated statement).

In the following, we formally proof the correctness of Algorithm 3.

Property 4. OCL-Bool raTranslation correctness

Let φ be an OCL-Bool over a UML conceptual schema SUML, q a rela-
tional algebra expression defined over the relational view of SUML, and qc
a context query such that q = raTranslation(φ, qc) (Algorithm 3). Then,
for any interpretation I, and any substitution St obtained from qc(I), we
have:

φI[St] = false iff t ∈ q(I)
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Algorithm 3 raTranslation(OCL-Bool, qc)
if OCL-Bool = OCL-Bool1 and OCL-Bool2 then

q1 = raTranslation(OCL-Bool1, qc)
q2 = raTranslation(OCL-Bool2, qc)
return q1 ∪ q2

else if OCL-Bool = not OCL-Bool1 then
return qc \ raTranslation(OCL-Bool1, qc)

else if OCL-Bool = OCL-Set->forAll(Var|OCL-Bool1) then
qs := raTranslation(OCL-Set, qc)
qb := raTranslation(OCL-Bool1, qs)
return π qb

else if OCL-Bool = OCL-Single1 CompOp OCL-Single2 then
q1 = raTranslation(OCL-Single1, qc)
q2 = raTranslation(OCL-Single2, qc)
return πσ q1 on q2

else if OCL-Bool = OCL-Value1 then
q1 := raTranslation(OCL-Value1, qc)
return πσ q1

end if

Proof. The proof is based on structural induction over the OCLFO grammar. In the
following we bring the proof for the base case and one inductive case. The rest of
cases follows analogously. For the base case, we consider the expression:

φ = OCL-Single1 CompOp OCL-Single2

According to Algorithm 3,

q = πσ(q1 on q2)

where

q1 = raTranslation(OCL-Single1, qc)

q2 = raTranslation(OCL-Single2, qc)

According to the semantics, φI[St]
= false iff the values v1 = OCL-Single1

I
[St]

, and

v2 = OCL-SingleI[St]
do not satisfy the comparison operator CompOp. By induction

hypothesis we have that < t[0], ..., t[n], v1 > ∈ q1(I), and < t[0], ..., t[n], v2 > ∈
q2(I). Thus, we can obtain the values v1 and v2 by joining q1 and q2, and select the
row < t[0], ..., t[n] > iff v1 and v2 do not satisfy the corresponding CompOp. Thus,
φI[St]

= false iff t ∈ q(I).
For the inductive case, we consider:

φ = OCL-Set->forAll(Var|OCL-Bool)

According to Algorithm 3,

q = πqb
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where

qb = raTranslation(OCL-Bool, qs)

qs = raTranslation(OCL-Set, qc)

According to the semantics, we have that OCL-Set->forAll(Var|OCL-Bool)I[St]
=

false iff (not OCL-Bool)I,Var,OCL-Set
[St]

6= ∅. This is the case iff ∃v.v ∈ OCL-SetI[St] and

OCL-BoolI[St∪{Var/v}] = false. By induction hypothesis, we have that, for any value

v, v ∈ OCL-SetI[St] if and only if < t[0], ..., t[n], v > ∈ qs(I). Moreover, by induction

again we know that v ∈ OCL-SetI[St] and OCL-BoolI[St∪{Var/v}] = false if and only if

< t[0], ..., t[n], v > ∈ qb(I). Thus, OCL-Set->forAll(Var|OCL-Bool)I[St]
= false if

and only if t ∈ q(I). �

Translating an OCLFO Constraint

To translate an OCLFO constraint, it is enough to invoke Algorithm 3 with the body
of the constraint as the OCL-Bool parameter and the context class in which the
constraint is defined as the context query qc, so that, the variable self is going to be
evaluated to all the objects of the given context class.

For instance, consider the constraint of our running example MessagesAreFrom-
Group. This constraint would be translated into:

π(Group on IsSentTo on Writes)\
πσ((Group on IsSentTo on Writes) on
(Group on IsSentTo on Writes on HasMember))

Intuitively, the query picks up all users who have written in some group (first line
of the translation), and it takes out all those users who are indeed members of such
group (second and third line of the translation). Thus, note that the constraint is
satisfied if and only if the previous query is empty.

In the following we formally proof the correctness of the translation.

Property 5. Any OCL constraint can be translated into an equiv-
alent RA query

Let φ be an OCLFO constraint over a UML conceptual schema SUML,
defined on the context class R, and q a relational algebra expression, de-
fined over the relational view of SUML, such that q = raTranslation(φ,R)
(Algorithm 3). Then, for any interpretation I, we have:

I |= φ iff q(I) = ∅
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Proof. Directly from Property 4 we have that q(I) retrieves those values for the
OCLFO variable self from RI s.t. that makes the OCL-Bool in φ evaluate to false.
Thus, I |= φ iff q(I) = ∅. �

.

3.5 RA queries to OCLFO Constraints

Now, we show that any constraint that can be checked by means of a relational
algebra query can be encoded as an OCLFO constraint. That is, for any relational
query q, we can build an OCLFO constraint φ such that, for any interpretation I, we
have that q(I) = ∅ iff I |= φ.

This result implies that the language of OCLFO is as expressive for defining con-
straints as relational algebra. Taking in account that in Property 5 we showed that
any OCLFO constraint can be checked by means of a relational query, we may con-
clude that OCLFO is exactly as expressive for defining constraints as relational algebra.
Thus, checking OCLFO constraints is as difficult as executing a relational query, that
is polynomial with regarding to data complexity (and AC0 in particular).

We define the oclTranslation from a RA query to an OCLFO constraint in Algo-
rithm 4. This algorithm receives three input parameters: a context query qc, an
OCLFO boolean statement OCL-Bool, and a mapping M that makes explicit which
attributes from qc are mapped to which OCLFO variables from OCL-Bool. Then, the
idea is that the algorithm returns a new OCLFO boolean statement φ such that, for
any given interpretation I, I |= φ iff OCL-BoolI[St] = true for any given substitution
St obtained from qc(I).

Then, we can then obtain the OCLFO constraint corresponding to a relational
query q by invoking oclTranslation(q, false,∅). Indeed, the unique way that for all
substitutions St obtained from q we can have falseI[St] = true is that q(I) = ∅.

Intuitively, the algorithm works by recursively removing relational operators from
the input query q and placing them in the OCL-boolean expression given as a param-
eter. For instance, if we invoke:

oclTranslation(R \ S, false, ∅)

We first recursively translate:

oclTranslation(S, r <> s, {s → S})

to obtain an OCLFO boolean expression that characterizes those values of some variable
r that are different to any element in S. In particular, we obtain the new OCL-boolean
φ:

S.allInstances()->forAll(s|r <> s)
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Algorithm 4 oclTranslation(qc, OCL-Bool, M)
if qc = q1∪ q2 then

OCL-Bool1 = oclTranslation(q1, OCL-Bool, M)
OCL-Bool2 = oclTranslation(q2, OCL-Bool, M)
return OCL-Bool1 + ‘ and ’ + OCL-Bool2

else if qc = πaq1 then
return oclTranslation(q1, OCL-Bool, M)

else if qc = σaωb q1 then
M′ := getCompleteMap(M, q1)
OCL-Bool ’ := M′.getVar(q.a) ω M′.getVar(q.b) + ‘ implies ’ + OCL-Bool
return oclTranslation(q1, OCL-Bool ’, M’)

else if qc = q1× q2 then
OCL-Bool2 := oclTranslation(q2, OCL-Bool, M)
return oclTranslation(q1, OCL-Bool2, M)

else if qc = q1\ q2 then
M1 := getCompleteMap(M, q1)
M2 := getCompleteMap(M, q2)
ocl-ineq := getInequalities(M1, M2, q1, q2)
OCL-Bool ’ := oclTranslation(q2, ocl-ineq, M2) + ‘ implies ’ + OCL-Bool
return oclTranslation(q1, OCL-Bool ’, M1)

else if qc = R then
M2 := getCompleteMap(M, R)
return ‘R.allInstances()->forAll( ’+M.getVar(R.id)+‘|’ + OCL-Bool+‘)’

end if

Then, we recursively translate:

oclTranslation(R, φ implies false, {r → R})

obtaining:

R.allInstances()->forAll(r |
S.allInstances()->forAll(s | r <> s) implies false)

This boolean expression iterates through all elements r of R, it checks whether r
is different from every s in S, and, if so, it returns false. Clearly, such OCL-boolean
statement only evaluates to true iff the relational query R \ S evaluates to the empty
set.

Algorithm 4 makes use of some auxiliary functions. Function getCompleteMap(M,
q) returns a copy of the map M but adding some new correspondences between
relational attributes in q and new fresh OCLFO variables. For instance, this function
allowed us to create the new OCL free variables r and s, and map them to the
relational tables R and S respectively. Function getInegualities(M1, M2, q1, q2)
returns a conjunction of OCLFO variable inequalities. In particular, one inequality for
each pair of OCLFO variables that are mapped to the same i-th relational attribute in
q1, and q2, respectively. This function allowed us to build the inequality r <> s in
our previous example.
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Property 6. RA oclTranslation correctness

Let OCL-Bool be an OCLFO boolean statement defined over a UML con-
ceptual schema SUML, qc a relational algebra expression defined over
the relational view of SUML, and M a mapping from qc attributes
to OCLFO variables in φ1. Let φ be the OCLFO statement such that
φ = oclTranslation(qc,OCL-Bool,M) (Algorithm 4). Then, for any in-
terpretation I, and any substitution S, we have:

I |= φ[S] iff ∀StOCL-BoolI[St][S] = true

where the substitutions St are obtained from the context query qc and
the mapping M.

Proof. The proof is inductive on the number of relational algebra operators present
in the input context query q, thus, following the recursive nature of the Algorithm.

For the base case, consider a context query with the following form, where R is
the name of some relation:

qc = R

Applying Algorithm 4 we get:

φ = R.allInstances()->forAll(r | OCL-Bool)

Then, according to the semantics, for any substitution S, we have that I |=
R.allInstances()->forAll(r | OCL-Bool)[S] if and only if it does not exists a value
v ∈ RI s.t. OCL-Bool I[r/v][S] = false. This is the case iff for all the values v ∈ RI we

have OCL-Boolr
I
[r/v][S] = true. Equivalently, this is the case iff for all the possible

substitutions St we can obtain from R, we have that OCL-Bool I[St][S] = true.
We deal now with the inductive cases. Consider first:

qc = q1 ∪ q2

Applying Algorithm 4 we get:

φ = OCL-Bool1 and OCL-Bool2

where

OCL-Booli = oclTranslation(qi,OCL-Bool,M)
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According to the semantics, I |= φ[S] if and only if OCL-Bool1
I
[S] = true and

OCL-Bool2
I
[S] = true. By induction we know that OCL-Booli

I
[S] = true iff for every

substitution St that can be obtained from qi we have OCL-Bool I[St][S] = true. Thus,

I |= φ[S] if and only if OCL-Bool I[St][S] = true for every substitution that can be
obtained from q1 ∪ q2.

Consider now the case:

qc = πq1

Applying Algorithm 4 we get:

φ = OCL-Bool1 = oclTranslation(q1,OCL-Bool,M)

And we have that I |= φ[S] iff OCL-Bool1
I
[S] = true. By induction we know that

OCL-Bool1
I
[S] = true iff for every substitution St that can be obtained from q1 we

have OCL-Bool I[St][S] = true. Thus, I |= φ[S] if and only if OCL-Bool I[St][S] = true
for every substitution that can be obtained from πq1.

Consider the case:

qc = σaωbq1

Applying Algorithm 4 we get:

φ = oclTranslation(q1,OCL-Bool’,M′)

where

OCL-Bool’ = ‘va ω vb implies’ + OCL-Bool

va = M′.getV ar(q1.a)

vb = M′.getV ar(q1.b)

M′ = getCompleteMap(M, q1)

By induction we know that I |= φ[S] iff for every substitution St obtained from q1

it holds that OCL-Bool’I[St][S] = true. Unfolding OCL-Bool’ we get: I |= φ[S] iff for

every substitution St obtained from q1 it holds that va ω vb implies OCL-Bool I[St][S]

= true. According to the OCLFO semantics, we know that for every substitution St
obtained from σaωbq1, it holds that va ω vb

I
[St][S] = true. Thus, I |= φ[S] iff for every

substitution St obtained from σaωbq1 we have OCL-Bool I[St][S] = true.
Consider the case:

qc = q1 × q2
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Applying Algorithm 4 we get:

φ = oclTranslation(q1,OCL-Bool2,M)

where

OCL-Bool2 = oclTranslation(q2,OCL-Bool,M)

By induction we know that I |= φ[S] iff for every substitution St1 from q1 we
have OCL-Bool2

I
[St1][S] = true. By induction again, we see that I |= φ[S] iff for

every substitution St1 from q1, and every substitution St2 from q2, we have OCL-
Bool I[St2][St1][S] = true. Taking in account that any substitution St from qc is obtained

from any pair of substitutions St1 and St2 from q1, and q2 (respectively), we finally
get I |= φ[S] iff for every substitution St from qc we have OCL-Bool I[St][S] = true.

Consider the case:

qc = q1 \ q2

Applying Algorithm 4 we get:

φ = oclTranslation(q1,OCL-Bool’,M1)

where

OCL-Bool’ = oclTranslation(q2, ocl-ineq + ‘implies’+

OCL-Bool,M2)

ocl-ineq = getInequalities(M1,M2, q1, q2)

M1 = getCompleteMap(M, q1)

M2 = getCompleteMap(M, q2)

By induction we know that I |= φ[S] iff for any substitution St obtained from
q1 it holds that OCL-Bool’I[St][S] = true. Unfolding OCL-Bool’ using the induction

hypothesis we have that I |= φ[S] iff for any substitution St from q1, and any sub-
stitution St2 from q2, it holds that (ocl-ineq implies OCL-Bool)I[St2][St][S] = true.

Equivalently, I |= φ[S] iff for any substitution St from q1, and any substitution St2
from q2, it holds that ocl-ineqI[St2][St][S] = false or OCL-Bool)I[St][S] = true. Since

we know that, for any substitution St obtained from q1 \ q2 there is no substitution
St2 obtained from q2 for which ocl-ineqI[St2][St][S] = false, we see that , I |= φ[S]

iff for any substitution St obtained from q1 \ q2 we have OCL-Bool)I[St][S] = true.
�
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With this algorithm at hand, we now proof that any constraint that can be checked
by means of relational algebra can be written in OCLFO.

Property 7. Any RA query can be translated into an equivalent
OCLFO constraint

Let SUML be a UML conceptual schema, and q a relational algebra expres-
sion defined over the relational view of SUML. Then, consider the OCLFO

constraint φ s.t. φ = oclTranslation(q, false, ∅) (Algorithm 4). Then, for
any interpretation I, we have:

I |= φI iff q(I) = ∅

Proof. From Property 6 we know that I |= φI iff for every substitution St obtained
from q, falseISt

= true. This is the case if and only if there is no substitution St
obtained from q. That is I |= φI iffq(I) = ∅. �

3.6 OCLCORE

To conclude our analysis, we identify a minimum subset of OCLFO that we call OCLCORE.
OCLCORE is minimum in the sense that any of its proper subsets is not sufficient to
encode the whole OCLFO. Several minimum core fragments might exist.

Finding the smallest equivalent fragment of a language is crucial since it allows
focusing on the relevant expressions of the language without considering cumbersome
syntactic sugar. Therefore, it facilitates determining the relationship with OCLFO of
any fragment of OCL that might be proposed and it entails that any implementation
handling OCLCORE will also be able to deal with OCLFO.

In Figure 3.7 we define OCLCORE. which only contains the operations: allInstances,
forAll, implies, <, and =, together with the operation to navigate from a variable to
a role/attribute.

Next property states that this fragment is able to encode all constraints in OCLFO.
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OCL-Bool ::= OCL-Bool implies OCL-Bool |
OCL-Set->forAll(Var OCL-Bool) |
OCL-Object = OCL-Object |
OCL-Value < OCL-Value

OCL-Set ::= Class.allInstances()
OCL-Object ::= Var |

Var.role
OCL-Value ::= Var.fAttr |

〈a constant name〉

Figure 3.7: Syntax of OCLCORE

Property 8. OCLCORE captures OCLFO

For any OCLFO constraint φ, there is an OCLCORE constraint φc such that,
for any interpretation I:

I |= φ iff I |= φc

Proof. Given any φ constraint written in OCLFO, we can obtain its corresponding
constraint φc written in OCLCORE by first translating φ to a RA query q, and then,
translating q to OCLCORE. Any OCLFO constraint can be translated into a relational
algebra query q following the process described in Section 3.4. Then, we can translate
q back into OCL using the process described in Section 3.5, thus, obtaining an OCLFO

constraint φ′. By construction, this φ′ already accommodates the OCLCORE syntax
described in 3.7, except for operations and and not that might appear in φ′ but
are not included in OCLCORE. However, we can easily get rid of these operations
using common boolean equivalences with implies (e.g. not OCL-Bool is equivalent
to OCL-Bool implies 1=2). �

Now, it only lacks to show that OCLCORE is minimal since we cannot remove any
operation from it without loosing expressiveness. We cannot remove allInstances
since it is the only operation that allows obtaining a set of instances from a UML
class. We cannot take out forAll because it is the only operation that can be applied
after allInstances. The implies operation is mandatory to encode, for instance, the
OCL not. Finally, without <, or =, we would not be able to encode <= (among
others).
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3.7 Related Work

The expressiveness of OCL and its relationship with Relational Algebra has been
previously discussed by Mandel and Cengarle in [75]. However, whereas Mandel and
Cengarle addressed the expressive power of OCL as a query language, we look at OCL
as a constraint language. The main difference is that a constraint language deals only
with boolean expressions, so when looking at the equivalence of OCL w.r.t. RA, we
focus on whether we can check some OCL constraint through checking the emptiness
of a RA query q, and viceversa. In contrast, Mandel and Cengarle investigate whether
for every RA query q we can build an OCL expression that returns the same tuples as
q. In particular, the authors argue that this is impossible since (1) OCL has no tuple
constructor, and (2) OCL has no way to dynamically create new types. This implies
that an OCL expression returns either a value of a primitive type, or an object of a
previously defined UML class; thus, it is not possible in OCL to formulate RA queries
that produce arbitrary structures. However tuple constructors were later introduced
in OCL 2.0.

Since OCL 2.0 introduced tuple facilities, Balsters argued that OCL is able to
encode any RA query composed of the basic RA operations [9], that is: union,
difference, product, renaming, selection and projection operations. However, Balsters
stressed in his work that, still, OCL is not equivalent to RA in a maximal sense since it
is impossible in OCL to define a new operation that receives as input two arbitrary sets
of tuples, and outputs the natural join of them. Note that this supposed impediment
does not affect us since our goal is to show that any given RA query can be rewritten
into an equivalent OCLFO (not necessarily in a generic way).

From a more practical point of view, Queralt and Teniente proposed in [103] a
translation from OCL to domain-independent first-order logics, which is equivalent to
relational algebra. The fragment covered in their translation is expressively equivalent
to OCLFO since they cover OCLCORE. Interestingly, their translation is also based on
first normalizing an OCL constraint into another one composed of less expressions.
Probably, a further study of such normalization might bring another OCLCORE for
OCLFO. However, since their intention was to apply first-order reasoners on OCL rather
than discussing OCL expressiveness, they did not prove that domain-independent first-
order logic statements were expressible in OCL, neither that such normalization could
bring a core, as we have done.

Another translation of a fragment of OCL into first-order logic is proposed by
Clavel et al in [25]. By naturally extending their translation of inequalities to in-
equalities with objects, we can see that their OCL fragment covered is expressively
equivalent to OCLFO. In contrast, the translation given by Beckert et al in [10] seems
to deal with a broader subset of OCL. However, their translation is not pure first-order
logics since, for instance, it uses some built-in functions to count the number of times
an object appears in a collection unrestrictedly, which is not a first-order capability.
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It is important to note that none of these proposals departs from an OCL formal
semantics. Thus, none of the previous translations has a proof of soundness. It
can be argued that no soundness proof is required since, in the absence of formal
OCL semantics, the semantics of OCL turns to be the translation itself. However,
using such translations as the semantics for OCL is cumbersome and error prone.
Indeed, they are defined by means of multiple algorithms and functions. Thus, it is
extraordinarily difficult to assess, for instance, whether the semantics given by Queralt
and Teniente [103] is equivalent to the one given by Clavel et al [25]. In contrast, the
OCLFO semantics we provide in this paper is concise and based on basic set theory (i.e.,
set inclusion, exclusion, etc). Then, it could be used to proof that some translation is
sound w.r.t. OCLFO semantics, and thus, two OCL translations would be equivalent
if they are both sound with respect to OCLFO semantics.

There are some tools that implement translations from OCL into SQL. Egea et al
introduced MySQL4OCL[41], which generates MySQL code for a subset of OCL ex-
pressions. However, the translation defined clearly falls out of RA since it uses MySQL
specific procedures. Another tool, part of the well-known Dresden OCL Toolkit [8], is
OCL2SQL. It produces a translation in standard SQL, but lacks theoretical basis for
sophisticated cases. Indeed, the translation is based on some straightforward patterns
without any formal proof [39], thus, it is not clear the correctness of the translation
when dealing with, for instance, null values. Indeed, OCL2SQL makes use of SQL
not exists expressions which is known to have spurious behavior when dealing with
null values, but no discussion on this aspect is given.

OCLFO is a fragment of OCL defined for ensuring efficient integrity checking.
However, other fragments of OCL has been defined pursuing different objectives like
OCL-Lite [101]. OCL-Lite is an OCL fragment designed to ensure satisfiability check-
ing decidability. Indeed, checking whether there exists some instance I that satisfies
a set of OCL constraints is known to be undecidable. This suppose a problem to
early artifact verification/validation approaches [103]. Thus, Queralt et al defined the
OCL-Lite fragment of OCL, an expressive fragment of OCL for which satisfiability
checking is decidable. Inspecting its syntax, we can see that OCL-Lite is a subset
of OCLFO. Moreover, we know that it is a proper subset since we know that OCLFO

satisfiability checking is undecidable.

3.8 Conclusions

OCL is a formal language for defining constraints that serves as a complement for
graphical modelling languages such as UML. However, full OCL is so expressive that
checking OCL constraints is not even semidecidible. That is, no algorithm can check
whether a general OCL constraint is satisfied in an arbitrary UML instance in finite
time, not even in the case that the OCL constraint is, in fact, satisfied.
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To tackle this issue, we have identified OCLFO, the fragment of OCL equivalent
to relational algebra. That is, any OCLFO constraint can be evaluated by checking
if some RA query is empty (which guarantees efficiency), and any RA query can be
translated into OCLFO (which guarantees expressiveness).

The syntax and semantics of OCLFO are defined in a concise way and thus, we
argue that can be easily adopted by OCL practitioners. Moreover, we identify the
minimal subset of OCLFO with its same expressive power, OCLCORE, which makes OCLFO

an easy object of study.
As further work, we would like to identify the subset of OCL equivalent to first-

order logics with least fixed points, since it is known that such language captures
exactly the constraints that can be checked in polynomial time w.r.t. data complexity
[65].

53



Part II

Incremental Integrity
Checking/Maintenance in

UML/OCL
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Chapter 4

Incremental Checking of UML/OCL
Constraints

In the previous chapter we have identified OCLFO, a subset of OCL such that can
be evaluated efficiently. Now, our intention is to build the necessary mechanisms to
perform such efficient evaluation.

Briefly, our method for incrementally checking UML/OCL constraints is based
on building a set of logic rules called Event-Dependency Constraints which, roughly
speaking, captures the different ways some structural events can cause the violation of
an integrity constraint. Then, such EDCs can be easily implemented as SQL queries.
In this manner, we can incrementally evaluate some constraint by executing some
SQL queries and checking whether they retrieve the empty set, or not.

Formally, our presented method is an extension of an already existing proposal
for incremental integrity checking in the context of databases (i.e., the event rules
[82]). In this thesis, we extend this method to deal with constraints using aggregation,
exploit such extension to better treat constraints involving existential variables, and
reduce the number of EDCs generated. For doing so, we slightly modify the event
rules basic definitions and proofs, so that it can be easily extended for our purposes
while proving the overall method soundness and completeness.

In the following, we start giving a first intuitive approach on how to build the
EDCs and how to implement them in SQL. Then, we formalize the method and prove
its soundness and completeness. Afterwards, we show some experiment results based
on a SQL implementation of the method, and present TINTIN, a tool for incremental
integrity checking assertions in databases based on this technique. We continue by
discussing the related work and finish discussing some future work and conclusions.
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4.1 An Intuitive Approach to EDCs

In this section, we give a first approach on building the EDCs for UML/OCL con-
straints, and how to implement them in SQL. To do so, we start showing how to build
and implement the EDCs for the easiest possible constraints, that is, constraints not
involving aggregations nor existential variables (e.g. OCL constraints 1-4 of our run-
ning example). Then, we move to constraints with aggregate operations (e.g. OCL
constraint 5), and finally we deal with constraints involving existential variables (e.g.
OCL constraint 6).

4.1.1 EDCs for Simple Constraints

The process to build the EDCs from some UML/OCL constraint has two steps. In the
first step, we write the UML/OCL constraints as logic denials, and then, we translate
such logic denials to EDCs.

To write the UML/OCL constraints as denials, we can either use the translation
we have defined in Chapter 3, together with a translation from relational algebra to
predicate logic (e.g. [27]), or we can directly rely on a UML/OCL constraints to
denials translation such as [103]. We decide for the latter since it has already been
implemented, optimized, and proved in other applications [106]. However, any other
approach to obtain logic denials would also suit our purposes.

Using this translation, we can encode UML min/max cardinality constraints, hi-
erarchies, disjoint/complete constraints, and OCLFO textual constraints as denials.
That is, we are able to encode any graphical UML constraint and almost all the OCL
constraints we want to tackle with the exception of the OCL constraints involving
aggregations. We briefly exemplify such denials encoding in the next lines.

The basic idea to encode each UML/OCL constraint as a denial is to write a
logic rule that states the condition that causes the constraint violation. Indeed, it is
well-known that every first-order constraint can be written as a denial [74].

Logic denials are written over the logic signature determined by the UML class
diagram as in Chapter 3. For instance, the logic denials corresponding to our OCL
constraints in Figure 1.2 are written over the following signature:

content(c), contentPrice(c, price), contentAge(c, age),

movie(m), episode(e), series(s), episodeSeries(e, s),

user(u), userAge(u, age), premiumUser(p),

buys(u, c), visualizes(u, c)

For the sake of simplicity, and without loss of generality, we omit the contentCode
and userName predicates since we use the code/name attributes directly as the OIDs
of Content/User instances.
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Given the previous logic signature, the constraint SeenIsBought can be written as
the following denial:

visualizes(u, c) ∧ ¬buys(u, c)→ ⊥

Intuitively, this denial states that, if there is some user u visualizing some content
c that u does not buy, then, there is a constraint violation.

Obtaining EDCs for Logic Denials

An event dependency constraint (EDC) identifies a particular situation in which the
logic denial would be violated in a data state In resulting from applying some set
of structural events to some initial data state I. Therefore, each denial constraint
obtained in the previous step is translated into several EDCs, each one corresponding
to a different way in which the constraint may be violated.

The main idea for obtaining the EDCs is to replace each literal in the denial
constraint by some expression that evaluates it in the new state In. Positive and
negative literals in the denial are handled in a different way according to the event
rules equivalences [82]:

∀x. pn(x) ≡ (ιp(x)) ∨ (¬δp(x) ∧ p(x)) (4.1)

∀x. ¬pn(x) ≡ (δp(x)) ∨ (¬ιp(x) ∧ ¬p(x)) (4.2)

Rule 4.1 states that an atom p(x) will be true in the new state In if its insertion
structural event has been applied or if it was already true in the initial state I and its
deletion structural event has not been applied. In an analogous way, rule 4.2 states
that p(x) will not hold in In if it has been deleted or if it was already false and it has
not been inserted.

By applying the substitutions according to the above equivalences, we get a set of
EDCs. Each EDC states a different way to violate a constraint by means of applying
structural events, and the whole set of EDCs obtained covers all the possibilities.
From the previous denial constraint we get:

ιvisualizes(u, c) ∧ δbuys(u, c)→ ⊥ (4.3)

ιvisualizes(u, c) ∧ ¬buys(u, c) ∧ ¬ιbuys(u, c)→ ⊥ (4.4)

visualizes(u, c) ∧ ¬δvisualizes(u, c) ∧ δbuys(u, c)→ ⊥ (4.5)

visualizes(u, c) ∧ ¬δvisualizes(u, c) ∧ ¬buys(u, c) ∧ ¬ιbuys(u, c)→ ⊥ (4.6)

Intuitively, the EDC 4.3 states that there is a constraint violation if we insert that
some user u visualizes some content c and, at the same time, we delete that u buys
c. EDC 4.4 says that a violation also occurs if u does not buy c in the current data
state, and we are not inserting that u buys c with the structural events. Similarly, the
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EDC 4.5 states that a violation takes place when deleting that u buys c in case u has
visualized c and we do not delete such visualization. Finally, the last EDC 4.6 says
that there is a violation if, in the current data state, u visualizes c without buying
it, and we do not apply any structural event to delete the visualization nor insert the
purchase.

Note that, the last generated EDC corresponds to the case where a violation
occurs in the current data state I, and we do not apply any structural event that
might change the constraint violation. Since we assume that the current data state
satisfies all the constraints, we can remove the last generated EDC from our set
without compromising the completeness of our method.

In its original proposal, the number of generated EDCs from a given denial grew
exponentially with the length of the denial. This is because each literal is replaced
with two different possibilities, thus, if the original denial has k literals, we end up
with 2k-1 EDCs.

However, in this thesis we propose to introduce disjunctions in the EDCs to avoid
such problem. By introducing disjunctions, we can abstract the common part of two
different EDCs and thus, generate a linear number of them. For instance, the previous
EDCs, could be written as:

ιvisualizes(u, c) ∧ (δbuys(u, c) ∨ ¬buys(u, c) ∧ ¬ιbuys(u, c))→ ⊥ (4.7)

visualizes(u, c) ∧ ¬δvisualizes(u, c) ∧ δbuys(u, c)→ ⊥ (4.8)

That is, using disjunctions we build, for a given denial constraint with k con-
straints, exactly k denials with at most 2k literals each.

Implementing EDCs as SQL queries

Now, we show how to implement EDCs as SQL queries. In this manner, we can use any
relational database management system to incrementally check integrity constraints.
In other words, we can exploit query optimization techniques to solve the problem
of incrementally checking constraints (e.g., query execution planners, different join
algorithms, cache memories, indexes, etc).

To do so, we assume that we have an SQL schema version of the UML schema.
That is, we have an SQL schema in which there is a table T for each UML class/asso-
ciation in the UML schema. For our purposes, and without loss of generality, we also
assume that each attribute/role of a class/association is codified as an SQL attribute
of its corresponding SQL table.

Moreover, we suppose that, for each class/association/attribute of the UML
schema, we have two additional tables ins T/del T. Intuitively, each table ins T/del T
contains the facts about T that we insert/delete, that is, ins T/del T tables contain
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the structural events. Attribute updates are codified using the traditional technique
of considering a deletion and an insertion of a new value.

In this manner, we can implement EDCs as SQL queries by mapping the literals
l representing UML classes/associations/attributes to SQL tables T representing the
same concept, and mapping the literals ιl/δl, to the tables ins T/ins T representing
the same structural event insertion/deletion.

In particular, each literal from the EDC is mapped into its corresponding SQL
table reference, and such table reference is placed in the From clause of the query
being build. When doing so, we define an SQL Join for the table reference when the
original literal is positive and it has some variable in common with another previously
translated literal. In contrast, we define an SQL antijoin (by means of a Left Join
together a is null condition) for negative literals. Built-in literals and constant
bindings are directly translated in the Where clause. Following our previous example,
we would translate EDC 4.8 as:

Select V.user, V.content

From visualizes as V

Left Join del visualizes as dV

on (V.user = dV.user and V.content = dV.content)

Join del buys as dB

on (dB.user = v.user and dB.content = v.content)

Where dV.cast is null

Intuitively, this SQL query looks for those users u in the table visualizes such
that: (1) they visualize some content c, (2) there is no structural event deleting such
visualization of c, (3) there is some structural event deleting that u has bought c.

When executing this query, the query planner specifies its start from the del buys
table, rather than visualizes. This is because the cardinality of del buys is expected
to be much lower than the one of visualizes. Indeed, del buys only contains insertion
structural events, whereas visualizes contains all the current visualization relationships
of the current data state. In this way, the DBMS does not look through all current
data (i.e., all data in visualizes), but only to the data that joins the applied structural
events. Moreover, if del buys has no tuples, the query returns the empty set without
accessing any other data. This is because any join with no tuples trivially returns the
empty set. In this way, our queries behave incrementally since they only look to the
data related to the update, and only when the update may cause a violation.

4.1.2 The Event-Dependency Constraints for Aggregations

We extend now the previous approach to deal with aggregates.
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There exist several kinds of aggregates according to the complexity to incremen-
tally update them when some structural event is applied [59]. In this work, we focus
on distributive aggregation. Intuitively, distributive aggregates are those that can be
updated by taking into account the current aggregated value of the data, the aggre-
gated value of the data inserted, and the aggregated value of the data deleted. The
distributive aggregates of OCL are: sum, size and count.

As we did before, we first translate any OCL constraint into a logic denial con-
straint; then, we translate this denial constraint into several EDCs and, finally, we
translate each EDCs into an SQL query.

Logic Denial Encoding of OCL Aggregations

Any OCL aggregation expression is defined by means of a source (i.e., a navigation)
and an aggregation operation (e.g. sum), where the resulting aggregate value is nor-
mally used in some arithmetic comparison. We translate the source of the expression
following the same lines as [103], and from there, we use an aggregate predicate to
aggregate the required value. Once we obtain the aggregated required value, we can
define the built-in literal encoding the arithmetic comparison.

For instance, given the AllEpisodesMaxPrice constraint, the source of the OCL
aggregation expression is self.castMember.episodes.price. This expression is translated
as the following conjunction of literals:

episodeSeries(e, s) ∧ contentPrice(e, p)

From there, we can aggregate the prices (i.e., the p term) by means of defining
an aggregate predicate:

sumPrices(s, sum(p))← episodeSeries(e, s) ∧ contentPrice(e, p)

In this way, the atom sumPrices(s, x) indicates that the sum of prices of the
episodes of s is x. Thus, we can use x to check whether the sum of the episode
prices for some series is greater than 100 with the following logic denial:

sumPrices(s, x) ∧ x >= 100→ ⊥

Obtaining EDCs for Denial Constraints with Aggregates

The most important issue for obtaining the EDCs in the presence of aggregate pred-
icates relies on how to compute the aggregate value in the new data state In. We
make use of two aggregate event predicates for this purpose: one for computing the
aggregated value xι for the data being inserted, and another one for computing the
aggregated value xδ for the data being deleted. Since we focus on OCL distributive
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aggregation functions, we know that the aggregated value in the new state In equals
to the current aggregated value x plus xι minus xδ.

For instance, the previous denial would be translated as the following EDC:

sumPrices(s, x) ∧ ιsumPrices(s, xι) ∧ δsumPrices(s, xδ) ∧ xι > xδ∧
x < 100 ∧ x+ xι − xδ >= 100→ ⊥ (4.9)

Intuitively, ιsumPrices(s, xι) and δsumPrices(s, xδ) computes the sum of the
prices of the new episodes being added/deleted to some series s; xι > xδ ensures
that the sum of prices of the new episodes is greater than the sum of the removed
episodes, which means that the aggregation variable x changes its value in In in a
manner that might violate the constraint; finally, x <= 100 ∧ x + xι − xδ >= 100
ensures that the old aggregated value was satisfying the constraint, but the new one
is not.

Now, we need to define the aggregate event predicates ιsumPrices and δsumPrices.
Recall that, for ιsumPrices, we want to sum the prices of the new episodes being
added to the source self.castMember.episodes.price. Again, we can compute the new
instances added to the source by replacing their literals according to the formulas 4.1
and 4.2:

ιsumPrices(s, sum(p))← ιepisodeSeries(e, s) ∧ ιcontentPrice(e, p)
ιsumPrices(s, sum(p))← ιepisodeSeries(e, s) ∧ contentPrice(e, p) ∧ ¬δcontentPrice(e, p)
ιsumPrices(s, sum(p))← episodeSeries(e, s) ∧ ¬δepisodeSeries(e, s) ∧ ιcontentPrice(e, p)

Similarly, we can define δsumPrices. In this case, we have to replace insertions by
deletions since we are looking for instances which are deleted from the source:

δsumPrices(s, sum(p))← δepisodeSeries(e, s) ∧ δcontentPrice(e, p)
δsumPrices(s, sum(p))← δepisodeSeries(e, s) ∧ contentPrice(e, p) ∧ ¬δcontentPrice(e, p)
δsumPrices(s, sum(p))← episodeSeries(e, s) ∧ ¬δepisodeSeries(e, s) ∧ δcontentPrice(e, p)

Note that, in both cases, the different rules form a partition of the instances
being inserted/deleted in the source expression. In this way, we can compute the
total aggregated value xι and xδ by the sum of the aggregated values obtained from
the various rules.

Implementing EDCs with Aggregated Events into SQL

Implementing EDCs with aggregates into SQL queries follows the same principles as
before: each literal is translated as a table reference in the From clause possibly
with a Join condition.
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However, in this case, and for the sake of efficiency, we propose to materialize the
aggregated value referred by the EDC. That is, for instance, to implement the EDC
4.9 we assume that we have some table sumPrices containing the sum of the episode
prices for each series. In this manner we avoid to recompute such aggregate each
time we need to verify that constraint.

Thus, the rule EDC 4.9 can be implemented as the SQL query:

Select sumPrices.series, sumPrices.X + ins sumPrices.X - del sumPrices.X

From sumPrices

Left Join ins sumPrices on(sumPrices.series = ins sumPrices.series)

Left Join del sumPrices on(sumPrices.series = del sumPrices.series)

Where ins sumPrices.X > del sumPrices.X and sumPrices.X < 100 and

sumPrices.X+ins sumPrices.X -del sumPrices.X >= 100

Where ins sumPrices and del sumPrices are two views computing the aggregation
of the prices of the episodes being inserted and deleted for the different series. Note
that we can update the materialized aggregate value by means of such views in case
we finally commit the structural events.

Now, we need to define the SQL views ins sumPrices and del sumPrices. Such
views are defined by means of translating into SQL the different definition rules of
the predicates ιsumPrices and δsumPrices specified in the EDCs. For instance, the
second definition rule of ιsumPrices is translated as:

Create View ins sumPrices2 as

Select iES.series, sum(CP.price) as X

From ins episodeSeries as iES

Left Join contentPrice as CP on (CP.content = iES.episode)

Left Join del contentPrice as dCP on (dCP.content = CP.content)

Where dCP.content is null

Group By iES.series

These views are obtained by translating the body of the rule into SQL following
the same principles as before, then applying a Group By with the attributes corre-
sponding to the terms of the rule’s head, and finally aggregating the corresponding
term.

At this point, we only need to define a view combining all the different episode
prices sums corresponding to the different definition rules. For instance, in the case
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of ins sumPrices, we define the SQL query:

Create View ins sumPrices as

Select iSP1.series, iSP1.X + iSP2.X + iSP3.X as X

From ins sumPrices as iSP1

Full Outer Join ins sumPrices2 as iSP2 on (iSP1.series = iSP2.series)

Full Outer Join ins sumPrices3 as iSP3 on (iSP1.series = iSP3.series)

4.1.3 The EDCs for Existential Variables

We refer as existential variables to those variables that appear in the body of some
derivation rule, but not in its head. For instance, consider the derivation rule: 1

existsUnboughtEpisode(u, s)← episodeSeries(e, s) ∧ ¬buys(u, e)

Intuitively, such derivation rule returns true, if and only if for the given user u and
series s, there exists some episode e of s such that u has not bought. Thus, e is an
existential variable of this derivation rule.

We naturally extend the notion of existential variables of a derivation rule to
derived literals and predicates. That is, we refer as existential variables of some
derived literal l (or predicate p) to the existential variables of the derivation rule of l
(or p). In the previous example, e is an existential variable of any literal with predicate
existsUnboughtEpisode.

Dealing with existential variables for incremental checking can be challenging.
Indeed, when deleting some data, we might loose the value that witnessed the truth
evaluation of the derivation rule, thus, forcing the incremental checking engine to
essentially look through all the data to find another witness, if it exists. However, as
we are going to see, we can treat existential variables using aggregate predicates, and
thus, increase the efficiency to deal with them in case we decide to materialize the
aggregation in the SQL implementation.

In the following, we first argue the difficulty to deal with existential variables
through an illustrative example, and then, we show how this difficulty can be avoided
using the aggregate predicates.

The Existential Variables Problem

To illustrate the difficulty to deal with existential variables, consider the Premium-
BoughtCompleteSeries OCL constraint of our running example. Such OCL constraint,

1This derivation rule is not safe because of the term u, but it is still admissible. A rule is called
admissible if its unsafe terms appear in the head of the rule. It is known that a non-recursive logic
program can be correctly (top-down) evaluated through an interpretation I, if the positive literals
built from admissible predicates do not contain unsafe terms [38].
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when encoded into logics, gives rise to the following denial:

premiumUser(u) ∧ ¬existsCompleteSeries(u)→ ⊥
existsCompleteSeries(u)← series(s) ∧ ¬existsUnboughEpisode(u, s)

existsUnboughtEpisode(u, s)← episodeSeries(e, s) ∧ ¬buys(u, e)

Intuitively, the logic denial checks if for all the premium users u, there exists some
series s, for which there is no episode unseen by u. Note that there are two existential
variables in this logic formalization: s (ranging the series), and e (ranging the episodes
of some series).

Now, consider the case in which some premium user, e.g. Phil, has bought all
the episodes of the series Modern Family. Thus, Modern Family witnesses that
Phil satisfies the PremiumBoughtCompleteSeries constraint. Now, assume that a
new episode of Modern Family is added in the data state, so, we no longer know
if Phil satisfies the PremiumBoughtCompleteSeries constraint. Thus, to check this
constraint we have to, essentially, iterate through all the series and all its episodes to
verify if Phil has another series for which he has bought all its episodes. That is, we
need to almost look through all the data of the system, which might be prohibitive.
Moreover, we will have to do so for each premium user who had bought all the
episodes of Modern Family.

Dealing with Existential Variables Through Aggregates

The basic idea to efficiently deal with existential variables is to aggregate the number
of witnesses they have. That is, in the case of the PremiumBoughtCompleteSeries
OCL constraint, we can count, for each premium user u, the number of series such
that u has seen all its episodes, and state in the denial that there is a violation in
case such number is 0.

In this manner, we can use the previous mechanism defined for dealing with
aggregate values. In particular, we can implement such EDC into SQL by materializing
the aggregate value, which means that, in case that some premium user u looses some
witness for the existential variable, we only need to check if the counter of witnesses
is 0 to assess if there is a constraint violation. We argue that this is a much more
efficient behavior rather than apply a complete search for a new witness.

For instance, the previous OCL constraint can be reformulated as:

premiumUser(u) ∧ completeSeries(u, x) ∧ x <= 0→ ⊥
completeSeries(u, count())← series(s) ∧ unboughtEpisodes(u, s, y) ∧ y <= 0

unboughtEpisodes(u, s, count())← episodeSeries(e, s) ∧ ¬buys(u, e)

Note that we have aggregated two existential variables, that is, we count the
number x of series that each user u has seen all its episodes, and also the number y of
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episodes each user has not seen from each series, with the purpose to materialize them
in the SQL implementation. This means materializing and maintaining a polynomial
amount of aggregates. However, we argue that this materialization is still feasible
and worthwhile. Indeed, as we are going to see in the experiments, maintaining such
aggregates have very low time penalties.

4.2 Formalizing EDCs

In the previous section we have given an intuitive understanding of what EDCs are,
how can they be obtained, and how can they be implemented in SQL. Now, we
formalize the basic notions of EDCs to unambiguously describe our method, and to
give a proof for its correctness.

As we have previously argued, obtaining the EDCs of some given UML/OCL
constraint is a two steps process: first, we encode the UML/OCL constraint as logic
denials, and then, we translate the denials into EDCs. In the following, we explain
both steps separately.

4.2.1 Encoding UML/OCL Constraints as Logic Denials

Our intention here is to encode any UML minimum/maximum cardinality, hierarchy,
disjoint/complete constraint, and OCLFO constraint including distributive aggregations
into an equivalent logic denial. Moreover, as discussed in the previous section, we
want to avoid the existential variables of such logic denial encoding, and replace them
with aggregates.

To do so, we depart and extend the current encoding defined in [103]. Such
translation is able to deal with any UML and OCLFO constraint, however, it was
not though to give support to OCL aggregation operators, and might bring to several
existential rules in their derivation rules. So, we extend such encoding to: (1) deal with
OCL distributive aggregates, and (2) apply a postprocess to replace any existential
variable with an aggregate predicate.

To encode the OCL distributive aggregates (i.e., size, sum, count) into denials,
we bring 3 different algorithms, each one for each OCL aggregate.

Algorithm 5 translateSize(OCL-Set set)

derivationRule := translateSet(set)
derivationRule.getHead().putLastTerm(count())
return derivationRule

Algorithms 5, 6, 7 receive as input an OCL-Set expression (and an OCL-Single
in the case of count) and return the derivation literal whose last term represents
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Algorithm 6 translateSum(OCL-Set set)

derivationRule := translateSet(set)
x := derivationRule.getHead().popLastTerm()
derivationRule.getHead().putLastTerm(sum(x))
return derivationRule

Algorithm 7 translateCount(OCL-Set set, OCL-Single single)

derivationRuleSet := translateSet(set)
derivationRuleSingle := translateSingle(single)
x := derivationRuleSet.getHead().popLastTerm()
y := derivationRuleSingle.getHead().popLastTerm()
derivationRuleSet.addLiteral(derivationRuleSingle.getHead())
derivationRuleSet.addLiteral(x = y)
derivationRule.getHead().putLastTerm(count())
return derivationRuleSet

the aggregated value of the set. These algorithms makes use of the translate-
Set/translateSingle functions, which receive as input an OCL-Set/OCL-Single ex-
pression and return a derived literal whose last term represents any value that can be
obtained from such expression. These functions are already given in [103].

Due to the absence of concise formal semantics for OCL aggregations in its stan-
dard [87], it is not possible to give any formal proof of the correctness for such
algorithms. Nevertheless, we argue that the intuitive intended meaning of the OCL
aggregates corresponds to the semantics underlying our translations. E.g. an OCL
size corresponds to count the cardinality of the OCL source set.

Up to here, we have extended the encoding of OCL constraints in [103] to deal
with aggregations. Now, our intention is to use the aggregate predicates to aggregate
the existential variables that might appear in it. Indeed, as we have already discussed
in the previous section, aggregating the existential variables permits us to improve
the performance of the whole method.

Without loss of generality, we assume that any derived literal present in the input
is defined by only one derivation rule. Indeed, given any predicate p defined with
n > 1 derivation rules of the form p(x)← bodyi(x, y), we can rename the predicate
p of all its heads. For instance, we can rename them to pi(x)← bodyi(x, y) for each
derivation rule i ∈ {0..n}. Then, any other rule containing a positive literal of p
should be replaced with n rules, each one replacing p for pi; and any rule containing
a negative rule of p should be replaced for the conjunction ¬p1(x), ...,¬pn(x). In this
way, the semantics of all the rules are preserved and the all the derived predicates are
defined with a single derivation rule.

To aggregate the existential variables appearing in this rules, we bring Algorithm
8. Intuitively, this algorithm receives as input a conjunction of literals, and returns
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a conjunction of literals where every existential variable has been replaced with an
aggregate predicate of counting, together with a built-in literal comparing such ag-
gregate value with 0. That is, to check whether some x exists, it is sufficient to count
the number of x and comparing such number with 0.

Algorithm 8 existentialVariablesAggregation(Literals lits)

result := ∅
for all Literal l in lits do

if l is base or built-in then
result.addLiteral(l)

else
ulits := existentialVariablesAggregation(l.unfoldLiterals())
if l is positive then

result.addLiterals(ulits))
else

if l has existential variable then
l′ := createLiteral(l.getPredicateName()+’Count’, l.getTerms())
createDerivationRule(l′.getPredicateName(), l′.getTerms() ∪

{’count()’}, ulits)
l′.putLastTerm(x)
result.add(x <= 0)

else
result.addLiteral(l)

end if
end if

end if
end for
return result

The idea is thus, to apply such algorithm to every denial to aggregate every
existential variable that might appear in it. In the following, we prove the algorithm
correctness for performing such task.

Property 9. ExistentialVariablesAggregation correctness

Consider any denial φ. Then, applying Algorithm 8 to the body of φ we
obtain a new denial φ′ s.t. (1) all existential variables are aggregated by
counting, and (2) for any given data state I, we have that:

I |= φ iff I |= φ′
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Proof. Since all predicates are non-recursive, assign to each predicate the following
strata: 0 for base predicates, and i+ 1 for derived predicates defined over predicates
whose maximum strata is i.

Given this strata, it is clear that the algorithm terminates (since at each recursive
call, the maximum strata of the literals being treated decreases, and cannot decrease
forever), and it is immediate to realize, by induction over the maximum strata of the
literals, that all the existential variables are aggregated.

Thus, we concentrate into proving that, for any I, I |= φ iff I |= φ′. We do so by
showing that each literal l in φ is translated into an equivalent set of literals l′ in φ′.
Such proof is by induction on the maximum strata of the input literals. In the base
case, the maximum strata is 0, so, all the literals are base, thus, for each literal l in
φ we add l in φ′. Since l is equivalent to itself, this concludes the base case proof.

For the inductive case, for every derived literal l, the algorithm obtains the un-
folding of l, and then, recursively aggregate the existential variables of its unfolded
literals to obtain a new set of literals ulits. Clearly, l is equivalent to its unfolding
by definition. Moreover, the unfolding is equivalent to ulits by induction hypothesis.
Thus, ulits is equivalent to l. If, l is positive, we add ulits in φ′ which concludes
the proof with regarding the positive literals. If, we have ¬l in φ, we show that the
formula lCount(..., x) ∧ x <= 0 we add in φ′ is equivalent to ¬l. Indeed, we know
that, for any data state I and substitution σ, I |= ¬l[σ] iff I 6|= l[σ]. Equivalently,
I |= ¬lσ iff I 6|= ulits[σ][σE ] for any substitution σE for the existential variables of l.
By definition, I |= lCount(..., x)[σ] iff such number of substitution σE is x. Thus,
I |= ¬l[σ] iff I |= lCount(..., x)[σ] ∧ x <= 0, which concludes the proof.

4.2.2 From Logic Denials to EDCs

Now, we formally define how to translate the previous logic denials into EDCs.
The core to obtain the EDCs are the so called event rules [82]. The event rules are

a set of equivalences that maps any literal l from some signature S to some formula ψ
of an augmented signature S ′. Such augmented signature contains all the predicates
in S and the necessary predicates to represent the structural events, thus, intuitively,
φ is true in any data state I with some structural events E iff l is true after applying
the structural events E in I.

For our purposes, we bring a new definition and demonstration of the event rules in
comparison with its original proposal in [82]. Indeed, the event rules were thought for
deductive databases in which only base and derived literals existed, so, no framework
for extending the event rules was given since they were already complete in their own
context. However, since we want to export the event rules into another context and
to include the treatment for more kinds of literals (in our case, aggregate literals)
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we define them in a new way that permits easily extending them and proving their
correctness.

In particular, we define the event rules by means of two mappings: new/old. The
mapping new maps each literal l to some formula ψ in S ′ s.t. new(l) evaluates to
true iff l was false in I and becomes true after applying the structural events E (so
that, l is new). Similarly, the mapping old maps each literal l to some formula ψ
s.t. old(l) evaluates to true iff l was true in I and remains true after applying the
structural events E (so that, l is old). Thus, l is true in the new state after applying
E iff new(l) or old(l) are true. We would like to highlight that such mappings were
already appearing in [82] as some shortcut notation, however, we give them a key role
for our demonstrations.

So, the idea is to define the new/old mappings for base literals, derived literals
(without existential variables since all of them have been replaced for aggregations
as discussed in Section 4.2.1), and aggregate literals recursively. The base literals
serve as base case and thus, its definition and proof is non-recursive. In contrast, the
definition of the new/old mappings for derived literals is going to be defined through
the new/old mapping itself, and its correctness proved by induction. In this manner,
when defining the new/old mappings for aggregate literals recursively, and proving
its correctness by induction, we get for free that the mappings for derived literals are
well-defined and correct when containing aggregate literals in its body, and aggregate
literals containing derived literals in its body are also well-defined and correct. Note
that, in this way, extending the event rules to deal with other kinds of literals can
be done by simply recursively defining such mappings for the intended new kind of
literals, and proving their correctness by induction.

The new/old mappings for base and derived literals are extracted from [82],
but we rewrite and repeat the demonstration here to bring the inductive proof that
permits easily extending them. The definition and proof of the new/old mappings
for aggregate literals is a pure new contribution of this thesis.

In the following, we first bring the basic definitions from which to define the
new/old mapping. Then, we show the mappings for base literals, derived literals
(without existential variables), and aggregate literals separately. Finally, we show
how to build the EDCs using such mappings.

Augmented Signature, Update, New/Old Mappings

The augmented signature S ′ of some signature S is the signature resulting from
adding a couple of predicates ιp/δp for each predicate p ∈ S. Roughly speaking,
such couple of predicates are used to represent insertions/deletions of p.

69



Definition 1. Augmented signature of a signature

Given some signature S, its augmented signature S ′ is the signature:

S ′ =
⋃
p∈S

{p, ιp, δp}

where ιp and δp have the same arity as p.

We now define a function to update a data state. In particular, consider a function
apply that receives a set of instances of the structural events E written over S ′, some
instances I over S, and returns a new set of instances In over S. We say that such
function apply is an update function if, intuitively, it applies the insertions/deletions
denoted by ιp/δp described in E into I and does not perform any other change. More
formally:

Definition 2. Updating function

Given a signature S and its augmented signature S ′, consider E to be
the universe of structural events sets that can be defined in S ′, and I to
be the universe of instances that can be defined in S.
Then, a function apply :E× I→ I is an update function if and only if for
any data state I ∈ I, structural events E ∈ E, base predicate p from S
and array of constants X:

apply(E, I) |= p(X) iff E |= ιp(X) or (I |= p(X) and E 6|= δp(X))

apply(E, I) 6|= p(X) iff E |= δp(X) or (I 6|= p(X) and E 6|= ιp(X))

In the following, we assume that apply is an update function.
Note that such definition of update function permits applying redundant structural

events. That is, if E contains some instance ιp(X) when p(X) is already present in
I, the update function leads to a new state In containing p(X). However, note that
there is no true insertion since p(X) was already true in the initial data state I. To
avoid redundant structural events, we define the concept:
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Definition 3. Non-redundant structural events

A set of structural events E is non-redundant with respect to a data state
I of some signature S iff, for each base predicate p in S, we have that:

E |= ιp(X) only if I |= ¬p(X)
E |= δp(X) only if I |= p(X)

In the following, we assume our structural events to be non-redundant with respect
to the data state.

Now, we define the notions of New/Old mappings. We define a mapping new:
Literals(S) → Formulas(S ′) to be a New mapping if the formula new(l) evaluates
to true iff l was false in the initial data state but, because of the structural events,
it becomes true in the new data state. Similarly, a mapping old: Literals(S) →
Formulas(S ′) is an Old mapping if, the formula old(l) evaluates to true iff l was true
in the initial data state, and, after applying the structural events, it is still true in the
new data state. Formally:

Definition 4. New/Old Mapping

Consider two mappings new, old: Literals(S) → Formulas(S′).
new is a New mapping iff, for any literal l, ground substitution σ, data state
I, and set of structural events E:

E ∪ I |= new(l)[σ] iff I 6|= l[σ] and apply(E, I) |= l[σ]

old is an Old mapping iff, for any literal l, ground substitution σ, data state
I, and set of structural events E:

E ∪ I |= old(l)[σ] iff I |= l[σ] and apply(E, I) |= l[σ]

New/Old Mappings for base literals

Now, we define a pair of New/Old mappings for the base literals.
Intuitively, the new map just maps each literal p(x)/¬p(x) to the structural event

that makes the literal true in the new data state (e.g. ιl/δl). In contrast, the old
map just maps the literal to itself together the negation of the structural event that
would falsify it (e.g. p(x) is mapped to p(x) ∧ ¬δp(x) ). Formally:
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Definition 5. A New/Old mapping for base literals

Given any base predicate p and array of terms x, we define the maps:

new(p(x)) = ιp(x)
new(¬p(x)) = δp(x)

old(p(x)) = p(x) ∧ ¬δp(x)
old(¬p(x)) = ¬p(x)) ∧ ¬ιp(x)

We now prove that such mappings are, indeed, New/Old mappings:

Proof. We make the proof by cases. In particular, we start proving the new mapping
for positive/negative literals. Then, we move to the old mapping.

We start proving that E ∪ I |= new(l)[σ] iff I 6|= l[σ] and apply(E, I) |= l[σ]. By
definition of new, E ∪ I |= new(l)[σ] iff E ∪ I |= ιl[σ]. By non-redundancy of E, and
the definition of update function, E ∪ I |= ιl[σ] iff I 6|= l[σ] and apply(E, I) |= l[σ].
Thus, E ∪ I |= new(l)[σ] iff I 6|= l[σ] and apply(E, I) |= l[σ].

We continue proving that E ∪ I |= new(¬l)[σ] iff I |= l[σ] and apply(E, I) 6|= l[σ].
By definition of new, E ∪ I |= new(¬l)[σ] iff E ∪ I |= δl[σ]. By non-redundancy of E,
and the definition of update function, E∪I |= δl[σ] iff I |= l[σ] and apply(E, I) 6|= l[σ].
Thus, E ∪ I |= new(¬l)[σ] iff I |= l[σ] and apply(E, I) 6|= l[σ].

Until here we have proved that new is a correct New mapping, we now prove the
correctness of the old mapping.

We start proving that E ∪ I |= old(l)[σ] iff I |= l[σ] and apply(E, I) |= l[σ]. By
definition of old, E∪I |= old(l)[σ] iff I |= l[σ] and E∪I 6|= δl[σ]. Since δl[σ] is, actually,
new(¬l), we have E ∪ I |= old(l)[σ] iff I |= l[σ] and E ∪ I 6|= new(¬l[σ]). Thus, by
correctness of new we see: E ∪ I |= old(l)[σ] iff I |= l[σ] and apply(E, I) |= l[σ].

We conclude proving that E∪I |= old(¬l)[σ] iff I |= ¬l[σ] and apply(E, I) |= ¬l[σ].
By definition of old, E ∪ I |= old(¬l)[σ] iff I |= ¬l[σ] and E ∪ I 6|= ιl[σ]. Since ιl[σ] is,
actually, new(l), we have E∪I |= old(¬l)[σ] iff I |= ¬l[σ] and E∪I 6|= new(l[σ]). Thus,
by correctness of new we see: E ∪ I |= old(¬l)[σ] iff I |= ¬l[σ] and apply(E, I) |=
¬l[σ].

New/Old Mappings for Derived Literals without Exists. Vars.

In case p is a derived predicate in S, we define its corresponding ιp and δp to be
derived in its augmented signature S ′. In particular, we only deal with the case
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in which p has no existential variables since we have already seen that existential
variables can be eliminated through aggregation.

The idea is to define the derivation rules of ιp/δp in such a way that ιp(X)/δp(X)
is true if and only if there is an insertion/deletion of the derived instance of p(X)
after applying the structural events. In this manner, the semantics of ιp(X) when p
is a derived predicate coincides with the semantics of ιp(X) when p is base.

To define such derivation rules we assume that we already have, for its in-
ner literals, two New/Old mappings: new/old. Moreover, we assume a new map
all :Literals(S) → Formulas(S ′) which maps each literal l to the formula new(l) ∨
old(l). That is, all(l) is true iff l becomes true after applying the structural events
(either because the structural events make l true, or it was already true and the
structural events do not falsify l).

In particular, the derivation rules defined when p has no existential variables are
the following:

Definition 6. Ins. Rules for Derived Predicates

Given p a derived predicate whose derivation rule body is l1 ∧ ... ∧ ln ∧ b,
where each li is a literal and b is a conjunction of built in literals, we define n

derivation rules for ιp, where each ιpi rule has the form:

ιpi(x)←

 ∧
j=1..i−1

old(lj)

 ∧ new(li) ∧

[ ∧
k=i+1..n

all(lk)

]
∧ b

For instance, given the derived predicate p(x)← q(x) ∧ r(x) ∧ ¬s(x), we define
the following derivation rules:

ιp(x)← new(q(x)) ∧ all(r(x)) ∧ all(¬s(x))

ιp(x)← old(q(x)) ∧ new(r(x)) ∧ all(¬s(x))

ιp(x)← old(q(x)) ∧ old(r(x)) ∧ new(¬s(x))

Equivalently:

ιp(x)← ιq(x) ∧ (ιr(x) ∨ r(x) ∧ ¬δr(x)) ∧ (δs(x) ∨ ¬s(x) ∧ ¬ιs(x))

ιp(x)← q(x) ∧ ¬δq(x) ∧ ιr ∧ (δs(x) ∨ ¬s(x) ∧ ¬ιs(x))

ιp(x)← q(x) ∧ ¬δq(x) ∧ r(x) ∧ ¬δr(x) ∧ δs(x)

In a very similar way, we define the δp derivation rules.
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Definition 7. Del. Rules for Derived Predicates

Given p a derived predicate whose derivation rule body is l1 ∧ ... ∧ ln ∧ b,
where each li is a literal and b is a conjunction of built in literals, we define n

derivation rules for δp, where each δpi rule has the form:

δpi(x)←

 ∧
j=1..i−1

old(lj)

 ∧ new(¬li) ∧

[ ∧
k=i+1..n

lk

]
∧ b

For instance, given the derived predicate p(x)← q(x) ∧ r(x) ∧ ¬s(x), we define
the following derivation rules:

δp(x)← new(¬q(x)) ∧ r(x) ∧ ¬s(x)

δp(x)← old(q(x)) ∧ new(¬r(x)) ∧ ¬s(x)

δp(x)← old(q(x)) ∧ old(r(x)) ∧ new(s(x))

Equivalently:

δp(x)← δq(x) ∧ r(x) ∧ ¬s(x)

δp(x)← q(x) ∧ ¬δq(x) ∧ δr ∧ ¬s(x)

δp(x)← q(x) ∧ ¬δq(x) ∧ r(x) ∧ ¬δr(x) ∧ ιs(x)

Using these derivation rules, we can now define the New/Old mapping for derived
literals. Such mappings follows the same pattern as the base predicates. E.g. a
derived instance of p is true after applying the structural events if its derivation rules
ιp is true, or p was already true before applying the structural events, and δp is not
derived. Formally:

Definition 8. A New/Old mapping for derived literals

Given any derived predicate p and array of terms x, we define the maps:

new(p(x)) = ιp(x)
new(¬p(x)) = δp(x)

old(p(x)) = p(x) ∧ ¬δp(x)
old(¬p(x)) = ¬p(x)) ∧ ¬ιp(x)
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In the following we prove that such mappings are, indeed, correct New/Old map-
pings.

Proof. We start proving the correctness of the new mapping. Then, we move to old.
In both cases, we distinguish between the map for positive/negative literals.

We start proving that E ∪ I |= new(l)[σ] iff I 6|= l[σ] and apply(E, I) |= l[σ].
Assume that we have E ∪ I |= new(l)[σ]. This is the case iff for some derivation rule
we have E ∪ I |= ιl[σ]. By construction of the derivation rules, this is the case iff for
some literal lbi inside the derivation rule body of l we have E ∪ I |= new(lbi)[σ], and
for the rest of literals lbj in the body we have E∪I |= all(lbj)[σ]. Thus, we see that for

all literals lb in the body of l we have apply(E, I) |= lb[σ], thus, apply(E, I) |= l[σ].
Moreover, because E ∪ I |= new(lbi)[σ], we see that I 6|= lbi[σ], thus, I 6|= l[σ]. The
proof the other direction of the iff follows similarly.

We continue proving that E ∪ I |= new(¬l)[σ] iff I 6|= ¬l[σ] and apply(E, I) |=
¬l[σ]. Assume that we have E∪I |= new(¬l)[σ]. This is the case iff for some derivation
rule we have E ∪ I |= δl[σ]. By construction of the derivation rules, this is the case iff
for some literal lbi inside the derivation rule body of l we have E ∪ I |= new(¬lbi)[σ],
and for the rest of literals lbj in the body we have E∪I |= lbj[σ]. Thus, we see that for
all literals lb in the body of l we have I |= lb[σ], thus, I |= l[σ], and therefore I 6|= ¬l[σ].
Moreover, because E ∪ I |= new(¬lbi)[σ], we see that apply(E, I) |= ¬lbi[σ], thus,
apply(E, I) |= ¬l[σ]. The proof the other direction of the iff follows similarly.

Until here we have proved that new is a correct New mapping. We now prove
that old is a correct Old mapping.

We start proving that E ∪ I |= old(l)[σ] iff I |= l[σ] and apply(E, I) |= l[σ].
Assume that we have E ∪ I |= old(l)[σ]. By definition, this is the case iff E ∪ I |= l[σ]

and E ∪ I 6|= δl[σ]. Thus, this is the case iff I |= l[σ] and E ∪ I 6|= new(¬l)[σ]. Using
the correctness of the new mapping, this is the case iff I |= l[σ] and (I |= ¬l[σ] or
apply(E, I) 6|= ¬l[σ]). Equivalently, this is the case iff I |= l[σ] and apply(E, I) |= l[σ].

We conclude by proving that E ∪ I |= old(¬l)[σ] iff I |= ¬l[σ] and apply(E, I) |=
¬l[σ]. Assume that we have E ∪ I |= old(¬l)[σ]. By definition, this is the case
iff E ∪ I |= ¬l[σ] and E ∪ I 6|= ιl[σ]. Thus, this is the case iff I |= ¬l[σ] and
E ∪ I 6|= new(l)[σ]. Using the correctness of the new mapping, this is the case iff
I |= ¬l[σ] and (I |= l[σ] or apply(E, I) 6|= l[σ]). Equivalently, this is the case iff
I |= ¬l[σ] and apply(E, I) |= ¬l[σ].

Finally, we introduce some properties that will turn out to be crucial when dealing
with aggregations.

By construction, ιp derivations rules are disjoint. That is, any instance of ιp that
is true in E ∪ I is derived by one and only one derivation rule.
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Property 10. Insertion rules disjointness

For any two different derivation rules ιpi ιpj of the same derived literal
ιp, for any data instance I, and structural events E, we have that:

I ∪ E |= ιpi(X) implies I ∪ E 6|= ιpj(X)

Proof. Consider any two different derivation rules ιpi and ιpj for the same predicate
ιp. By construction, there is, at least, one literal l s.t. new(l) appears in ιpi but
old(l) appears in ιpj (or viceversa). This implies that both rules cannot be true at
the same time since E ∪ I cannot satisfy new(l) and old(l) together.

Similarly, δp derivations rules are disjoint by construction. That is, any instance
of δp that is true in E ∪ I is derived by one and only one derivation rule.

Property 11. Deletion rules disjointness

For any two different derivation rules δpi δpj of the same derived literal
δp, for any data instance I, and structural events E, we have that:

I ∪ E |= δpi(X) implies I ∪ E 6|= δpj(X)

Proof. Consider any two different derivation rules δpi and δpj for the same predicate
δp. By construction, there is, at least, one literal l s.t. new(¬l) appears in ιpi but
old(l) appears in ιpj (or viceversa). This implies that both rules cannot be true at
the same time since E ∪ I cannot satisfy new(¬l) and old(l) together.

New/Old Mappings for Aggregation Literals

In case p is an aggregate predicate, then, we define ιp/δp to be derived literals too.
In this case, however, we define ιp/δp to represent the increasing/decreasing of the
aggregated value. That is, ιp represents the aggregated value of the instances that
are inserted in the body of p, and δp represents the aggregated value of the instances
that are removed from the body of p. Since we work with distributive aggregations,
note that the value of the aggregate value in apply(E, I) is, precisely, the one in I
plus the one of the instances being inserted, and minus the aggregated value of those
being deleted.
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To achieve so, we define ιp/δp for aggregate predicates as we do for normally
derived predicates, but adding the aggregating function f in the head of the derivation
rule. That is:

Definition 9. Ins. Rules for Aggregate Predicates

Given p an aggregate predicate with aggregation function f whose derivation
rule body is l1 ∧ ...∧ ln ∧ b, where li is a literal and b is a conjunction of built

in literals, we define n derivation rules for ιp, where each ιpi rule has the
form:

ιpi(x, f())←

 ∧
j=1..i−1

old(lj)

 ∧ new(li) ∧

[ ∧
k=i+1..n

all(lk)

]
∧ b

Definition 10. Del. Rules for Aggregate Predicates

Given p an aggregate predicate with aggregation function f whose derivation
rule body is l1 ∧ ...∧ ln ∧ b, where li is a literal and b is a conjunction of built

in literals, we define n derivation rules for δpi, where each δpi rule has the
form:

δpi(x, f())←

 ∧
j=1..i−1

old(lj)

 ∧ new(¬li) ∧

[ ∧
k=i+1..n

lk

]
∧ b

Now, we give a New/Old mappings for p in terms of such ιp and δp. To do so,
we first introduce some notation to make easier the following definitions.

We use the abbreviation p(x) ω z to refer to p(x, y)∧ y ω z. Certainly, we know
that any aggregate literal p(x, y) with aggregation variable y is always accompanied
by some built-in literal y ω z constraining the value for y. Thus, we simply abbreviate
both literals in a unique one. Note that this notation corresponds to use p(x, y) as
a function rather than a predicate. Indeed, p(x, y) behaves as a function since, for
each array of constants X, there is exactly one value Y s.t. p(X,Y ).

In addition, we use the symbol ω′ to refer to the arithmetic comparison that assess
the relation that should have two values Xι, and Xδ, to achieve that X+Xι−Xδ ω Y
when X ω Y . For instance, if we have X < 100, we clearly need that Xι > Xδ to
achieve X+Xι−Xδ ≥ 100, thus, the symbol (≥)′ refers to >. It is easy to show that
the corresponding arithmetic comparison to (<)′, and (≤)′ is >; the corresponding
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arithmetic comparison to (6=)′, and (=)′ is 6=; and that the corresponding arithmetic
comparison to (>)′, and (≥)′ is <.

Using this notation we can define the new/old mappings for some aggregate
predicate p as follows:

Definition 11. A New/Old mapping for aggregated literals

Given any aggregated literal with arithmetic comparison p(x) ω z, we
define the maps:

new(p(x) ω′ z) = ιp(x) 6= δp(x) ∧ p(x) ω z ∧ p(x) + ιp(x)− δp(x) ω z
old(p(x) ω z) = p(x) ω z ∧ p(x) + ιp(x)− δp(x) ω z

The idea is that p(x) ω z becomes true because of the structural events if the
aggregated value of the instances of p being inserted/deleted contributes to violate
the constraint, the current aggregated value does not satisfy the arithmetic com-
parison, and after adding/subtracting the aggregated value of the instances being
inserted/deleted it does. Similarly, p(x) ω z remains true despite the structural
events if the arithmetic comparison was satisfied by the old aggregated value, and re-
mains satisfied after adding/subtracting the aggregated value for the instances being
inserted/deleted.

In the following, we proof that such new/old mappings are correct.

Proof. We prove that the new map is a correct New mapping. The prove that old
is a correct Old mapping follows analogously.

We want to prove that E ∪ I |= new(p(x) ω z)[σ] iff I 6|= (p(x) ω z)[σ] and
apply(E, I) |= (p(x) ω z)[σ]. Assume that, E ∪ I |= new(p(x) ω z)[σ]. According
to our map definition, this is the case iff E ∪ I |= (ιp(x) ω′ δp(x))[σ] and E ∪
I |= (p(x) ω z)[σ] and E ∪ I |= (p(x) + ιp(x) − δp(x) ω z)[σ]. Clearly, we see
that E ∪ I |= (p(x) ω z)[σ] and E ∪ I |= (p(x) + ιp(x) − δp(x) ω z)[σ] implies
E ∪ I |= (ιp(x) ω′ δp(x))[σ], thus, we can safely omit such condition. So we have,
E ∪ I |= new(p(x) ω z)[σ] iff I 6|= (p(x) ω z)[σ] and E ∪ I |= (p(x) + ιp(x) −
δp(x) ω z)[σ]. Since we limit to distributive aggregations, apply(E, I) |= (p(x) ω z)[σ]

is equivalent to E ∪ I |= (p(x) + ιp(x) − δp(x) ω z)[σ] if ιp(x) and δp(x) correctly
computes the aggregation value of the instances being inserted/deleted in the body
of p. By correctness of the mapping for derived literals, ιp and δp captures any
instance being inserted/deleted in the body of p. Moreover, by construction, the
rules of ιp and δp are disjoint, thus, any instance being inserted/deleted from the
body of p is derived through one and exactly one derivation rule. Thus, aggregating
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ιp/δp correctly computes the aggregated value of the instances being inserted/deleted
respectively.

4.2.3 Obtaining EDCs from New/Old Mappings

Until here we have defined two maps from literals l in S to formulas ψ in S ′ that
permits evaluating the truth of l after applying some structural events E. In particular,
the new map retrieves a formula that evaluates to true if and only if the application
of some structural events has made l become true (when it was false), and the old
map retrieves the formula that evaluates evaluates to true if and only if l was already
true, and despite the application of the structural events it remains true.

Now, we want to move this mapping from literals to constraints. That is, we
want to map a denial constraint φ in signature S into a set of denial constraints Ψ
in some augmented signature S ′ s.t. Ψ is violated iff φ is violated after applying the
structural events.

This leads to the definition of EDCs:

Definition 12. EDCs

Given a denial φ over some signature S, we refer as the EDCs of φ to
the set of logic denials Ψ such that, for any given data state I satisfying
φ, and structural events E, we have:

apply(E, I) |= φ iff E ∪ I |= Ψ

We can build the EDCs by means of the New/Old map we have built in the
previous section. Indeed, assume that our denial φ has the form l0 ∧ ...∧ ln ∧ b→ ⊥.
In this case, to obtain the EDCs Ψ we simply need to replace each literal l of the
denial for the formula that permits evaluating l in the data state after applying the
structural events, that is, new(l) ∨ old(l). Since we suppose that I satisfies φ, we
know that, if φ is violated in In, it is because some literal li in φ was not true in I
but becomes true in In, that is, because some literal li is new. More formally, we can
obtain the EDCs in the following manner:

79



Property 12. EDCs can be obtained through the New/Old map-
pings

Given a denial φ with the form l1 ∧ ... ∧ ln ∧ b, where li is a literal and b a
conjunction of built-in literals, consider the following n denials ψ:

ψi =

 ∧
j=1..i−1

old(lj)

 ∧ new(li) ∧

[ ∧
k=i+1..n

all(lk)

]
∧ b→ ⊥

Then, the set Ψ = ∪i=1..n{ψi} is the set of EDCs of φ.

Proof. We start proving that when some EDC ψi is violated in E ∪ I, then, φ is
violated in apply(E, I) (i.e., soundness). Then, we prove than when φ is violated in
apply(E, I), then, some ψi is violated in E ∪ I (i.e., completeness).

Assume that, for some ψi, E ∪ I 6|= ψi. By definition of ψi we have E ∪ I |=[∧
j=1..i−1 old(lj)

]
∧ new(li) ∧

[∧
k=i+1..n all(lk)

]
∧ b. Thus, by correctness of the

old/new mapping we have: apply(E, I) |= l1 ∧ ...∧ ln ∧ b. Hence, apply(E, I) 6|= φ,
which concludes the proof for soundness.

Assume that, apply(E , I ) 6|= φ, but I |= φ. Then, for all literal lj we have
apply(E , I ) |= lj and for some literal li we have I 6|= li. Thus, for all literals lj we
have that E ∪ I |= all(li), and for some literal li, E ∪ I |= new(li). So, for some

i, we have E ∪ I |=
[∧

j=1..i−1 old(lj)
]
∧ new(li) ∧

[∧
k=i+1..n all(lk)

]
∧ b. Hence,

E ∪ I 6|= ψi, which concludes the proof for completeness.

By construction, it is clear that each EDC ψi always contains some formula
new(li). This property is the key for incrementallity and, thus, efficiency, when im-
plementing EDCs through SQL.

Indeed, the EDCs guarantees that we only check some constraint when some
structural event might cause its violation. This is because the new(li) is only satisfied
when some literal li was not true in the initial data state I but becomes true in
In because of the structural events. Note that checking whether new(li) is true
is efficient since it can be assessed by inspecting the structural events alone (e.g.
checking if there is a ground substitution σ s.t. ιp(x)[σ], or ιp(x) ω′ δp(x) in case of
aggregates). Thus, if it is false, we know for sure that the EDC is satisfied without
the need to inspect the data in I. In this manner, we only need to inspect the data
in I if, intuitively, the structural events can cause the violation of the constraint.

Moreover, using the EDCs we only need to inspect the data in I that might rise
a violation according to the structural events applied. Indeed, we expect new(li) to
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have some variables in common with other literals in the same EDC (otherwise, the
original constraint would speak about totally disconnected objects). Thus, we can
check an EDC by means of first, looking for those ground substitutions σ that makes
new(li)[σ] true. These substitutions σ are limiting the instances in I that we need
to inspect. Indeed, we do not need to inspect all the instances in I, but only those
instances that joins the values appearing in σ, which are, actually, the instances that
might violate the constraint according to the structural events applied.

If we implement the EDCs through SQL, all this behavior is achieved through the
query planner capabilities of the relational database management system.

Indeed, the query planner is going to first compute the tuples that satisfies the
formula new(li). This is because, to do so, it only needs to inspect the tables con-
taining the structural events, and the cardinality of these tables are much lower than
the cardinality of the tables containing the actual data.

Moreover, at this point, if the computed set of tuples is the empty set, the query
execution stops since any join with the empty set trivially returns the empty set.
Thus, the query engine do not look to the actual data if there is no structural events
that might potentially violate the constraint.

In addition, once the query engine has computed the set of tuples satisfying
new(li), the query engine is going to use such tuples to compute the join with the
rest of tuples from the database that might violate the constraint. However, note
that this is a join of tuples rather than a complete full scan, that is, the inspection of
the actual data is limited to the data joining the structural event tuples. Finally, note
that we can always enhance the performance of such joins by means of incorporating
indexes.

4.3 SQL Implementation Experiments

As we have already discussed, EDCs can be implemented through SQL queries in case
we have an SQL translation of the UML schema, and some tables to materialize the
structural events we want to apply. Intuitively, each EDC can be translated as an
SQL query that looks for the instances that violates the constraint according to the
contents in the structural event tables.

When limited to base/derived literals (without existential variables), the imple-
mentation of the EDCs is based on translating positive literals as joins, and negative
literals as anti-joins. When including aggregation literals we need to include sub-
queries to compute the aggregation variables. In order to avoid a hard penalization
for computing such aggregation variables, we propose to materialize the current ag-
gregated value, and maintain such value according to the queries that computes its
increasing/decreasing.

To show the feasibility of this approach, we have conducted an illustrative exper-
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Person
name: String

Role
name: String

Movie
title: String
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1..* 1..*

*    *

CastMember
salary: Integer

Figure 4.1: Simplified UML class diagram for the IMDb Information System

iment. To do so, we have first looked for some UML/OCL schema that could be
populated with real data, thus, enhancing the reliability of our results. In particular,
we have built a simple UML/OCL schema of the IMDb database, an information
system of movies and cast members, and we have populated it with the real data
available in its public interface.

In the following, we first explain the UML/OCL schema used and its initial data
state, then, we discuss the experiment design, and finally, we discuss the results.

4.3.1 Experimenting UML/OCL Schema

Consider the UML schema in Figure 4.1. This schema specifies an information system
storing data about movies and the people participating in them as cast members,
where each cast member exercises a role (e.g. director, actor, actress, etc.).

In this schema, we have defined the integrity constraints shown in Figure 4.2.
The first one states, there should not be any cast member playing the role of actor
and actress at the same time; the second forces the sum of any movie budget to
be higher than the salaries of its cast members; the last one, ensures that there is
one cast member playing the role of director for each movie. Note that aggregate
operations such as sum or count are used in the constraint definitions.

context CastMember inv NotActorAndActress:

self.role.name->excludes(’actor’) or self.role.name->excludes(’actress’)

context Movie inv BudgetIsHigher :

self.budget >= self.castMember.salary->sum()

context Movie inv HasSomeDirector :

self.castMember.role.name->count(’director’) > 0

Figure 4.2: OCL Constraints for the simplified UML class diagram of IMDb

In this schema, we have loaded the IMDb public interface available data (about
13*104 movies and 2.5*106 cast members).
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4.3.2 Experiment Design

The goal of this experiments is to show the benefits of our approach. In order to
be able to compare the performance of our technique with other proposals, we have
decided to compare our results with those obtained with Dresden OCL [8]. Dresden
OCL is a tool that translates an OCL constraint into an SQL query that retrieves the
violating instances of the constraint (thus, in a similar way as we do). However, and
different from us, Dresden OCL has no incremental capabilities. Thus, we expect to
see, via this experiment, the benefits of the incremental approach we propose.

The experiment consisted in measuring the execution time of our method to
check the OCL constraints of Figure 4.2 in three different scenarios: adding new
movies, modifying salaries of cast members, and deleting movie directors. All these
experiments have been conducted in MySQL 5.6 running on Windows 8 in an Intel
i7-4710HQ up to 3.5GHz machine with 8GB of RAM.

For each scenario, we have executed our method several times increasing the
number of structural events applied in each case. Note that inserting a movie requires
several structural events: inserting the movie, its budget, its cast members, etc.;
updating a salary requires two events: deleting the old salary and inserting the new
one; and deleting a director from a movie requires three: deleting its cast membership,
its role and its salary.

4.3.3 Experiment Results

In Table 4.1 we show the execution times in seconds for checking each constraint
of the example, using our technique, in function of the number of structural events
applied to each scenario.

From these results we can see that the time to check any constraint increases with
the number of movie insertions. This is because all three constraints can be violated
in this scenario. Insertions of 1000 movie had better response times than those of
inserting 500 due to the cache memories of MySQL. When analyzing salary updates,
we see that only the constraint BudgetIsHigher gets worse results when increasing
the number of events considered, while the other two remain almost constant. This
is because it is impossible to violate them when updating salaries. The same phe-
nomena occurs with the constraint NotActorAndActress in the third scenario since it
is impossible to violate it by deleting cast members.

It is worth noting that most of the experiments took less than one second and
that only one of them was over 30s. Moreover, the cache memories improved the
results of the last experiments with the largest number of structural events. In the
case with most number of data changes (22,037 structural events), it took 12.37s to
check one constraint in a database with more than 3 million rows.

We also show in Table 4.2 the execution time in seconds required to update
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the materialized aggregates for each scenario once the constraint check has been
performed. Note that updating the materialized aggregates does not suppose any
scalability problem since none of them takes more than 0.5 seconds.

Regarding the results obtained by Dresden OCL, the execution time to check No-
tActorAndActress was 21.47s, while checking HasSomeDirector and BudgetIsHigher
did not finish within two hours. We could improve these last execution times after
manually rewriting the automatic translation provided by the tool, but their results
were still hight: 238.33s and 79.44s. Note that, since this method is not incremental,
its execution time is independent of the events applied, thus, it takes these times even
when the events applied cannot violate any of the constraints.

Table 4.1: Time in seconds to check constraints
#Movie Insertions 1 5 10 50 100 500 1000
#Structural Events 28 149 272 1254 2059 10876 22037

NotActorAndActress 0.36 0.75 5.31 3.51 5.54 9.39 9.13
HasSomeDirector 0.28 0.08 0.33 0.41 0.56 1.42 0.38
BudgetIsHigher 0.41 0.90 5.37 5.54 9.82 30.34 12.37

#Salary Updates 1 5 10 50 100 500 1000
#Structural Events 2 10 20 100 200 1000 2000

NotActorAndActress 0.14 0.05 0.05 0.03 0.05 0.03 0.06
HasSomeDirector 0.31 0.00 0.00 0.02 0.02 0.00 0.00
BudgetIsHigher 0.17 0.09 0.30 0.69 1.16 1.00 1.44

#Director Deletions 1 5 10 50 100 500 1000
#Structural Events 3 15 30 150 300 1500 3000

NotActorAndActress 0.19 0.20 0.17 0.13 0.16 0.70 0.12
HasSomeDirector 0.45 0.53 0.95 1.79 2.07 13.09 3.93
BudgetIsHigher 0.30 0.47 0.37 0.44 2.38 0.60 0.48

Table 4.2: Time in seconds to update the materialized aggregates
1 5 10 50 100 500 1000

Movie Insertions 0.05 0.14 0.12 0.15 0.11 0.48 0.35
Salary Updates 0.08 0.08 0.12 0.08 0.06 0.11 0.10
Director Deletions 0.05 0.05 0.08 0.06 0.42 0.06 0.14

4.4 TINTIN: A Tool for INcremental INTegrity Check-
ing

TINTIN is a tool designed to give support to standard SQL assertions by means
of the EDCs technique already exposed. Indeed, we can encode SQL assertions as
denials, and thus, apply all the previous exposed technique to incrementally check
SQL assertions.
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Basically, a database user can provide TINTIN with a database and a set of SQL
assertions, and TINTIN builds in the database all the necessary queries and procedures
to incrementally check the given assertions. The unique requirement for the user is to
call the automatically created procedure safeCommit() at the end of its transactions.

When invoking safeCommit(), the automatically generated code checks if the tu-
ple insertions/deletions specified since the last call to safeCommit violates or not
the provided SQL assertions. If such insertions/deletions cause some assertion vi-
olation, the insertions/deletions are rejected and the user receives a message with
the conflicting assertion. Otherwise, the insertions/deletions are committed into the
database.

In the following, we first briefly review the problem of implementing SQL asser-
tions, then, we describe the TINTIN under the perspective of a user, that is, its input
and output. Finally, we present the tool architecture.

4.4.1 The Problem: Implementing SQL Assertions

In standard SQL, users can specify general constraints using the Create Assertion
statement. The basic technique for writing assertions is to specify a query that selects
those tuples that violate the desired condition. By including this query inside a Not
Exists clause, the assertion will specify that the query result must be empty. Thus,
the assertion is violated if and only if the query result is not empty [44].

Assertions were initially defined in SQL-92 [7] and they serve as a means for
expressing global integrity constraints not tied to a particular table, but ranging over
several ones. They are sufficient for expressing most constraints since almost the
full expressiveness of SQL can be used to define the query inside the Not Exists
clause. It is also well known that many integrity constraints can only be expressed
via assertions since the other constructs provided by SQL are not powerful enough.
Thus, assertions provide an elegant way to define general constraints in SQL.

However, assertions are still not supported by any of the most well-used commer-
cial RDBMS (Oracle, MySQL, SQL Server, PostgreSQL, DB2). It might be argued
that assertions can be emulated via manually writing a set of triggers, which is a
widely supported feature of RDBMS. However, its manual definition is error prone
and the whole set of necessary triggers to write might not be evident when given a
complex constraint, thus, compromising the integrity of the data if just one trigger is
missing or ill-defined. Hence, it is better to delegate this complex checking code to
RDBMS capabilities [110], as we do in TINTIN1.

1http://www.essi.upc.edu/~xoriol/tintin/
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Figure 4.3: TINTIN Graphical User Interface

4.4.2 TINTIN: A User’s Perspective

TINTIN is a Java standalone tool that provides incremental integrity checking capa-
bilities of assertions in a SQL Server database specified by the user.

In particular, a user must provide to TINTIN with a DB connection (that is,
a connection string, a database name and a database schema), and a set of SQL
assertions. In Figure 4.3 we show the graphical user interface provided to the user to
bring such input.

TINTIN accepts assertions to be defined through selection, projection, join, sub-
select (exists, in), negation (not exists, not in) and union. Future releases will allow
functions (e.g. aggregates, arithmetic functions).

As a result, TINTIN creates all the necessary triggers and procedures to trans-
parently capture all the insertions/deletions specified by the user. That is, if a user
applies a Insert Into or Delete From statement, such insertions/deletions are
not committed to the database, but are captured and stored in some auxiliary tables
storing the tuples that are being inserted/deleted from the database.

In addition, TINTIN builds a procedure called safeCommit that is responsible to
commit such captured insertions/deletion only if they do not cause any constraint
violation. That is, users need to invoke such automatically created procedure to try
to commit their insertions/deletions. When doing so, safeCommit executes several
queries that corresponds to the EDCs of the different specified SQL assertions. If
the queries returns the empty set, this means that the captured insertions/deletions
do not cause any constraint violation, and thus, are committed by the procedure.
If some query returns different from the empty set, such query result is shown to
the user together with the name of the SQL assertion corresponding to such query.
In any case, after invoking safeCommit, the auxiliary tables storing the captured
insertions/deletions are emptied.

Note that TINTIN is only necessary in compilation time. In other words, TINTIN
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is only used to install in the database the necessary triggers and procedures to check
some SQL assertions. However, once this step is done, the user can normally operate
with the database with its favorite database client with the unique condition to invoke
safeCommit at the end of his/her transactions, and no more need of the TINTIN tool
is required. In this manner, TINTIN offers a decoupled, transparent usage to the
database users.

4.4.3 TINTIN: Tool Architecture

The architecture of TINTIN is shown in Figure 4.4.
When the user introduces the DB connection, the SQL Server Controller creates

a new auxiliary database event DB to store the different events applied to it; that is,
for each table T in DB, the SQL Server Controller builds two new tables (ins T and
del T ) to store the different tuples being inserted and deleted in T . In order to capture
these tuples, the SQL Server Controller creates two different Instead Of triggers,
which capture the tuple insertions/deletions and place them in the corresponding
ins T or del T table.

Afterwards, when the user introduces the SQL assertions, they are firstly encoded
as logic denials reusing a component already implemented in . Then, these denials are
translated into EDCs and, finally, the EDCs are implemented as SQL queries. Each
of these steps is implemented in a different module following the previously presented
method.

The resulting SQL queries are stored as views in event DB. Then, the SQL Server
Controller builds the safeCommit procedure. This procedure, when called, performs
the following:

1. Queries the previous views.

2. If all queries are empty, it disables the triggers capturing the insertions/deletions,
applies the update (insert in the DB the tuples contained in the ins tables, and
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remove from the DB the tuples contained in the del tables), and enables again
the triggers.

3. Truncates the ins/del tables.

The prototype has been developed in Java, with the exception of the Assertions
to denials translator component, for which we have reused a previously existing C#
software.

4.5 Related Work

We review the related work found in the literature in three main blocks:

• OCL evaluators: approaches relying on OCL interpreters.

• OCL to database techniques: approaches based on checking OCL constraints
through DB mechanisms such as SQL queries/procedures.

• OCL to graph patterns: approaches based on checking OCL constrains through
graph pattern queries.

As we are going to see, although there are some approaches for making OCL
evaluators follow an incremental checking policy, their techniques are not fully in-
cremental. That is, they repeat some evaluations that, because of the nature of
the update applied, cannot cause the violation of any constraint. Moreover, these
approaches intrinsically suffer from the lack of OCL interpreter support tools.

The approaches based on translating OCL to DB technologies appeared to, essen-
tially, make database servers capable of evaluating OCL constraints. Unfortunately,
none of the presented translations permits an incremental evaluation of the OCL
constraints, which drastically penalizes their execution times.

Finally, the OCL to graph patterns approach tries to evaluate OCL constraints
incrementally using graph database technology. In particular, they propose the usage
of the RETE algorithm [53] to perform this incremental evaluation. Unfortunately,
the RETE algorithm basically consists in materializing all the relational algebra in-
termediate results necessary to evaluate an OCL constraint, which involves a huge
memory cost to store these auxiliary data, and the time penalty necessary to maintain
it.

In contrast, our proposal permits incrementally evaluating OCL constraints with
relational databases, which are still one of the most well-known and wide spread
database technologies. Moreover, our approach based on materializing aggregates
(and existential variables), permits benefiting from the good incremental checking
without incurring in a prohibitive maintainment cost of such materialized information.

In the following, we review all these approaches by blocks.
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4.5.1 OCL Evaluators

Several OCL evaluator tools can be found in the literature. Some prominent examples
are USE [58], the Dresden OCL Toolkit [8], the Eclipse Modelling Framework OCL
evaluator [61], or mOdCL [105]. Anyway, although these tools are capable of checking
whether a data state satisfies a given set of OCL constraints, none of them implements
an incremental approach for doing so. Thus, whenever a change in the data state
occurs, they must check again all the constraints over the whole new data state. In
order to solve this inconvenience, several approaches for incremental OCL evaluation
have been suggested.

In this line, the work in [60] is based on, for each OCL constraint, mapping the dif-
ferent context elements of the OCL constraint to the related data required to perform
such evaluation. Thus, when any of these related data is modified, the corresponding
OCL constraint is reevaluated for such context element. This approach, although
intuitive, makes an intensive usage of memory which has already been criticized [48].

Differently, the work presented in [111] is based on, given a data update, compute
the context elements from which we should reevaluate the whole OCL constraint.
Intuitively, the method is based on tracing back the source of the OCL operations
affected by the update. Note that, in this case, no auxiliary data structures are
required.

However, both techniques are thought to reevaluate an OCL constraint whenever
its truth/false evaluation changes. That is, they do not only reevaluate an OCL
constraint when it could be violated, but also when some update might repair the
constraint. For instance, in our example, they do not only evaluate the SeenIsBought
constraint when we apply insertions of visualizes (which might make the OCL con-
straint evaluate to false, and thus, raise a violation), but also when applying insertions
of bought (which might make the OCL constraint evaluate to true, and thus, repair
the violation). Therefor, these approaches are not optimal for incremental integrity
checking as we have defined, although they would be for other problems such as
incremental OCL query evaluation.

Another approach specifically targeted to only evaluate an OCL constraint when it
can be violated is the one explained in [18]. This approach computes: (1) which OCL
constraints should be evaluated because of some data update, (2) for which context
element, and (3) it rewrites the OCL constraint to change the context element if
doing so improves its evaluation.

Unfortunately, all the presented approaches seen so far share the same weakness:
they can only determine one object for which to reevaluate the whole OCL constraint,
but not the set of its related objects for which to perform the evaluation. For instance,
in our example, if we add the fact that John sees ‘Some like it hot’, clearly, we should
check if John has bought ‘Some like it hot’ in order to incrementally check whether
the SeenIsBought constraint has been violated. However, all the previous approaches
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reevaluate the SeenIsBought constraint for the context element John. That is, they
check the constraint for all the contents seen by John, instead of only checking so for
the new one ‘Some like it hot’.

4.5.2 OCL to Database Techniques

In order to bring support to OCL, the OCL community has built several tools that
translate OCL to other languages that can be executed. In this section, we discuss
the tools aimed at translating OCL to SQL/NoSQL languages.

The OCL2SQL is a component inside the Dresden OCL Toolkit that translates
OCL constraints into SQL queries [8]. Similarly to our approach, the Dresden OCL
returns a query such that returns the values that violate the input OCL constraint.
That is, the query evaluates to the empty set if and only if the OCL constraint is
satisfied. However, we have not been able to find the formalization of the Dresden
OCL to SQL translation, which makes difficult to assess its mathematical correctness
and also the expressiveness of the OCL constraints they can deal with.

In contrast, the MySQL4OCL tool is defined through a formal translation from
OCL to MySQL queries/procedures [41]. In this case, the tool is intended to build
some MySQL code that returns exactly the same values returned by the input OCL
expressions. That is, for a given OCL constraint, its generated code returns true if
and only if the constraint is satisfied. Differently from ours, this approach deals with
a three-valued logic. That is, the code for some OCL boolean expression might return
true, false, or null. Regarding its expressiveness, the OCL constraints they can deal
with are the same as ours with the exception that they can also deal with OCL Bags.

However, none of the previously discussed tools behaves incrementally, which
makes them unsuitable for efficient integrity checking. Following the same lines, the
work in [34] presents a translator from OCL to a NoSQL query language (Gremlin),
and [114] presents a translation from an extended OCL (UnifiedOCL) to several
languages (including SQL), again without incremental checking capabilities.

4.5.3 OCL to Graph Patterns

The work of [11] consists in translating OCL constraints into graph patterns to benefit
from graph-pattern incremental queries. Such method uses the RETE algorithm
to achieve the incremental behavior, which, intuitively, materializes every relational
algebra operation performed by the queries [53]. Such materialization has already
been criticized because of its huge memory usage and the penalization time required
to maintain such materialization.

To solve such issues, other algorithms have been suggested to replace RETE, such
as TREAT [80]. Intuitively, TREAT is based on storing only the final query result (and
not the intermediate results), and incrementally update this result according to the
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changes applied in the data state. However, this algorithm suffers from the existential
variables problem we have discussed in Sections 4.1.3. That is, given a constraint
involving an existential variable, whenever we delete a witness of such existential
variable, the TREAT algorithm requires inspecting essentially the whole data set to
look for another witness for the existential variable.

Thus, it seems that there is a trade-off between materializing/no-materializing
intermediate information. In this thesis, we defend a balanced approach consisting in
materializing uniquely the number of witnesses each existential variable has. Indeed,
in this manner we keep the advantages found in both algorithms. That is, we avoid the
existential variables problem (like in RETE), without having to maintain a materialized
version of every intermediate result (like in TREAT).

4.6 Conclusions

In this chapter, we have presented a method for incrementally checking UML/OCL
constraints. This method is based on what we call event dependency constraints
(EDCs), which are some rules that state all the possible ways that some structural
events can cause a constraint violation according to the data. To build the EDCs, we
have augmented the signature of the logic schema by introducing two new predicates
(ιp and δp) for each predicate p to represent the insertions and deletions of p instances,
and rewrite the original constraints in terms of these new predicates.

Using this technique we can deal with OCLFO constraints extended with OCL
distributive aggregation (i.e., sum, count, size). To deal with these aggregates, we
have proposed to materialize the current materialized value of such aggregates into
the data, and to incrementally maintain such materialization. In this way, we skip
iterating through all the current data to compute the aggregate value to check the
constraint, which would be prohibitive. Moreover, we have also proposed to use
such aggregation technique to deal with the existential variables. That is, we have
proposed to aggregate the number of witnesses that each existential variable has, so
that, in case some witness is deleted, we do not need to inspect all the data to look
for another witness.

We have mathematically proved the correctness of this method, and experimen-
tally shown its benefits. In particular, we have seen that some constraints whose
non-incremental evaluation using automatic tools could not finish within hours (but
whose execution took minutes after manual optimization) reduced its execution time
to seconds with this automatic incremental technique. Such experiments were per-
formed using real data coming from the IMDb system consisting of 3 million rows,
and considering sets of 22,000 structural events applied at the same time.

Given these promising results, we have developed the TINTIN tool, a tool for
incrementally checking SQL assertions. With this tool, a user can specify which SQL
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assertions does he/she want to check in some relational database, and TINTIN builds
all the necessary triggers/procedures to do so. Then, a user only needs to invoke
the automatically generated safeCommit procedure at the end of his/her transac-
tions. After invoking safeCommit, the structural events applied in the transaction are
committed unless an SQL assertion violation is detected. In such case, the events
are rejected and a message to the user with the conflicting data and violated SQL
assertion is shown.

As future work, we would like to extend the current method to deal with even more
expressive constraints. In particular, right now it only works with a two-valuated logic,
thus, it would be interesting to deal also with null values as it happens with standard
OCL and SQL. Another future work would be to consider 1st order constraints with
least fixed points, as in the case of datalog.

92



Chapter 5

Incremental Maintenance of
UML/OCL Constraints

Our method for incrementally maintaining UML/OCL constraints is based on mod-
ifying the previously described EDCs to obtain a new set of logic rules that we call
Repair-Generating Dependencies (RGDs). Roughly speaking, the RGDs do not only
capture the different ways some structural events can cause the violation of a con-
straint, but also determine which structural events can repair it. Then, such RGDs
can be chased to find the repairs R i.e., the missing structural events that, when
applied together with the initial structural events, lead the current data state to a
new consistent state.

Formally, our method is a variation of an already existing proposal for integrity
maintenance based on the event rules [109]. In this thesis, however, we vary such
proposal to reduce the process of computing R to a chase of RGD logic rules. More-
over, we permit a domain expert to customize these RGDs to control the generated
solutions, and thus, avoid maintaining some constraints in undesired manners.

The constraints we can maintain with this method are pure OCLFO constraints.
That is, we do not consider constraints involving aggregations. This is because,
maintaining OCLFO constraints is already non decidable, which means that chasing
the previous RGDs might never terminate. To deal with the non-decidability problem,
we are going to define a subset of OCLFO where such problem is, actually, decidable,
and reuse some decidability results already present in the literature which we redefine
under the name of Finite Canonical Property.

In the following, we start with an intuitive approach on the RGDs method. Then,
we formalize the method, prove its soundness and completeness, and show its cus-
tomization possibilities. Afterwards, we show some experiment results based on a
C# implementation of the method. Next, we present IDEFIX, a tool for identifying
missing structural event in OCL operation contracts based on this technique. Next,
we discuss the related work. Finally, we present some future work and conclusions.
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5.1 An Intuitive Approach to RGDs

In this section, we first exemplify how to obtain and chase the RGDs of some con-
straints distinguishing whether the original constraint has (or not) existential variables.
Afterwards, we show how to customize RGDs to control the solutions found by the
chase.

5.1.1 RGDs without Existential Variables

In the previous chapter we have seen that EDCs point out the situations where an
integrity constraint is violated as a consequence of the application of a set of structural
events. However, EDCs do not directly provide any information on the repairs for that
violated constraint. We transform EDCs into RGDs for this purpose.

Obtaining RGDs

We obtain the RGDs by removing the negated structural events of the EDCs, and
placing them positively in the right-hand side of the rule. Indeed, each negated
structural event in the premise of an EDC is a structural event that, if applied, avoids
the violation of its corresponding constraint. Thus, these structural events repair the
constraint in case of violation. If there is more than one negated structural event in
the EDC, then there is more than one possible repair. Thus, all these events are all
placed in the conclusion of the RGD as a disjunction.

For instance, the EDCs corresponding to the SeenIsBought constraint (4.3, 4.4,
4.5, and 4.6) give rise to the following RGDs:

ιvisualizes(u, c) ∧ δbuys(u, c)→ ⊥ (5.1)

ιvisualizes(u, c) ∧ ¬buys(u, c)→ ιbuys(u, c) (5.2)

visualizes(u, c) ∧ δbuys(u, c)→ δvisualizes(u, c) (5.3)

visualizes(u, c) ∧ ¬buys(u, c)→ δvisualizes(u, c) ∨ ιbuys(u, c) (5.4)

Note that we obtain exactly one RGD for each EDC.
RGD 5.1 states that if we insert that u visualizes c whereas we delete, at the

same time, that u buys c, then, there is a constraint violation that cannot be repaired.
Indeed, there is no structural event that can be applied to compensate such constraint
violation.

In a different way, RGD 5.2 states that, if we insert that u visualizes c when u has
not bought c, then, there is a constraint violation unless we also insert that u buys c.
Similarly, RGD 5.3 states that, if we delete that u buys c when u has not visualized
c, then, we should delete that u has visualized c.
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Finally, RGD 5.4 states that, if u has visualized some content that he has not
bought, then, we should either delete such visualization or add that u buys such
content to avoid a constraint violation. Again, this RGD corresponds to the case in
which the current data state I violates the constraint, and thus, using the assumption
that the current data state satisfies all the constraints, we can safely remove such
RGD without compromising the completeness of the method.

Chasing RGDs

Suppose that we have some set of RGDs of some constraints, the initial data state
I, and some initial structural events E. Now we want to compute those sets of extra
structural events R s.t. when applying E ∪ R into I, leads to a new data state
satisfying all the constraints.

To compute these repairs R, we are going to chase the RGDs. Chasing the RGDs
consists into, first, set R to be the empty set. Then, we look which instances from
I∪E∪R violate some RGD, and repair such violation by adding into R the structural
events specified in the right-hand side of the RGD.

For instance, consider the previous given RGDs for the constraint SeenIsBought,
and the following initial data state and structural events:

I = {userAge(Luke, 14), contentAge(“The Shining”, 18)}
E = {ιvisualizes(Luke, “The Shining”)}

Clearly, I ∪E violates the RGD 5.2, thus, to repair such violation, we need to add
in R the instance ιbuys(Luke, “The Shining”)} specified in the RHS of the RGD.

However, when adding such new instances, new RGDs might be violated. In-
deed, consider the following RGD corresponding to the BoughtContentIsAppropiate
constraint:

ιbuys(u, c) ∧ contentAge(c, a) ∧ userAge(u, a2) ∧ a > a2 →
δcontentAge(c, a) ∨ δuserAge(u, a2)

After adding the instance ιbuys(Luke, “The Shining”)}, we need to add in R
either δcontentAge(c, a) or δuserAge(u, a2) to avoid the violation of BoughtCon-
tentIsAppropiate constraint. These two different possibilities will lead to the different
ways to maintain some constraint.

Note that chasing is an iterative process. Indeed, every time we repair some RGD,
we might violate some other RGD that might require being repaired. Moreover, since
some violations might have several repairs, the chase execution follows a tree structure
where each branch represents a different repair selection for each violation. Note also
that some violations cannot be repaired (such as RGD 5.1). When these RGDs are
violated, no structural event can be applied to repair them, which means that no
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solution exists in such branch. In this manner, depending on the number of solutions
found in the different branches, the chase might found 0, 1, or several sets R of
missing structural events.

5.1.2 RGDs with Existential Variables

We see now how to obtain the RGDs for existential variables.
In summary, this encompasses to first building the EDCs for the constraint involv-

ing existential variables, and then, applying again the process of moving the negated
structural events from the LHS of the EDC to its RHS. Remember that, in the previous
chapter, we have not built the EDCs involving existential variables. This is because,
whenever we found an existential variable, we used the technique of aggregating it
for improving the performance of integrity checking. However, we cannot longer use
such technique since we restrict ourselves to OCLFO constraints, which do not contain
this kind of aggregation capabilities.

In the following we first exemplify how to obtain the EDCs for denials with exis-
tential variables, and then, how to obtain the RGDs from them. Next, we show how
to chase RGDs with existential variables.

Obtaining EDCs with existential variables

Consider the following denial encoding the minimum cardinality constraint stating
that each Series have at least one Episode e:

series(s) ∧ ¬hasEpisode(s)→ ⊥ (5.5)

hasEpisode(s)← episodeSeries(e, s)

Stating the EDCs for such constraint encompasses a careful treatment of the
existential variable e. This is because, whenever we delete some episode e for some
series s, this does not mean that hasEpisode(s) becomes necessarily false in the new
data state In. Indeed, it might also happen that we insert, at the same time, some
new episode for such series, or it might also happen that there is another old episode
for such series which is not being removed.

Thus, for such constraint we define the following EDCs:

ιseries(s) ∧ δhasEpisode(s) ∧ ¬ιhasEpisode(s) ∧ ¬hasEpisodeo(s)→ ⊥ (5.6)

ιseries(s) ∧ ¬hasEpisode(s) ∧ ¬ιhasEpisode(s)→ ⊥ (5.7)

series(s) ∧ ¬δseries(s) ∧ δhasEpisode(s) ∧ ¬ιhasEpisode(s) ∧ ¬hasEpisodeo(s)→ ⊥ (5.8)

series(s) ∧ ¬δseries(s) ∧ ¬hasEpisode(s) ∧ ¬ιhasEpisode(s)→ ⊥ (5.9)
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Intuitively, EDC 5.6 tells us that there is a constraint violation if we insert a
new series s whereas, at the same time, the following 3 things occur: (1) we delete
some episode in s, (2) we do not insert any new episode for s, and (3) there is no
other old episode for s not being removed. So, the idea is to ensure each of these
conditions by means of the derived literals δhasEpisode(s), ¬ιhasEpisode(s), and
¬hasEpisodeo(s), respectively. Bearing this in mind, we define the derivation rules
of such literals as follows:

ιhasEpisode(s)← ιepisodeSeries(e, s) (5.10)

δhasEpisode(s)← δepisodeSeries(e, s) (5.11)

hasEpisodeo(s)← episodeSeries(e, s) ∧ ¬δepisodeSeries(e, s) (5.12)

The EDCs 5.7 and 5.8 define two other possible ways to violate the constraint.
In particular, the former states that there is a constraint violation if we insert a new
series s which has no episodes and for which we do not insert new episodes; while the
latter raises a violation if we delete some episode of some series s that is not being
deleted, where s has no other episode neither we insert some other episode for it.

EDC 5.9 represents, again, that some violation remains in the new data state In

if it existed in the initial data state I, and no structural event is applied to avoid it.
Thus, assuming that the initial data state satisfies all the constraints, we can also
safely remove this last EDC.

Obtaining the RGDs

The idea to obtain RGDs for EDCs with existential variables is to move the negated
literals defined with events (that is, negated structural event literals, or negated
derived literals defined over event literals) from the LHS to the RHS. However, in this
case, some of these literals are derived literals instead of base, so, we need to unfold
them after placing them in the RHS of the rule.

For instance, consider the EDC 5.7 which contains the ¬ιhasEpisode(s) event.
After moving such literal into the RHS we obtain:

ιseries(s) ∧ ¬hasEpisode(s)→ ιhasEpisode(s) (5.13)

Since RGDs require all the literals in the conclusion to be base, we need to unfold
the literal ιhasEpisode(s). This is a necessary condition to ensure that chasing the
RGDs computes repairs that contain only structural events and no derived events.
So, after unfolding we obtain:

ιseries(s) ∧ ¬hasEpisode(s)→ ιepisodeSeries(e, s) (5.14)

Moreover, in some cases we might need to apply a postprocess to explicitly forbid
the chase to apply some structural events. For instance, assume that we delete some
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episode e from some series s, then, we have 3 possible ways to avoid violating its
minimum cardinality constraint: (1) deleting s, (2) inserting a new episode e′ in s,
(3) in case s has already some episode e′, forbid removing such episode.

This is, actually, the case of the EDC 5.8. Certainly, after moving to its RHS
the negated event literals and the negated derived literals containing events in its
derivation rule, we obtain:

series(s) ∧ δhasEpisode(s)→ δseries(s) ∨ ιhasEpisode(s) ∨ hasEpisodeo(s)

And then, after unfolding the derived literals, we have the following rule:

series(s) ∧ δhasEpisode(s)→δseries(s)∨
ιepisodeSeries(e, s)∨
(episodeSeries(e′, s) ∧ ¬δepisodeSeries(e′, s))

The first two disjuncts represents, respectively, repairing the constraint by means
of deleting the series, and repairing the constraint by inserting a new episode. The
third disjunct represents the possibility that the series has already some other episode
avoiding the violation, and we do not delete it.

The chase should remember not to delete δepisodeSeries(e′, s) only if it decides
to avoid such constraint violation by means of preserving this episode e′. To do so, it
should first ensure that such episode e′ exists, and then, ensure that it is never deleted.
We do so by introducing two new literal types, ιcontain and ιforbid, replacing the
previous ones in the following way:

series(s) ∧ δhasEpisode(s)→δseries(s)∨ (5.15)

ιepisodeSeries(e, s)∨
ιcontainEpisodeSeries(e′, s) ∧ ιforbidDeltaEpisodeSeries(e′, s)

now we define two new rules to ensure that if ιcontainEpisodeSeries(e′, s) is true,
then there is some episode e′ for the series s, and that if ιforbidδepisodeSeries(e′, s)
is true, then, we do not delete e′ from s:

ιcontainEpisodeSeries(e′, s) ∧ ¬episodeSeries(e′, s)→ ⊥ (5.16)

ιforbidDeltaEpisodeSeries(e′, s) ∧ δepisodeSeries(e′, s)→ ⊥ (5.17)

The first rule needs no longer transformation, but the second one needs to reapply
recursively all the process for obtaining RGDs in case δepisodeSeries(e′, s) is derived
(i.e., unfold such literal, move negated events appearing in it to the RHS, etc). This
recursion is guaranteed to terminate since we only deal with non-recursive literals.
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Chasing RGDs

Chasing RGDs with existential variables encompasses the difficulty of inventing new
values for them. Indeed, when the LHS of some RGD holds for some ground substi-
tution σ, we need to include in R the literals of its RHS after replacing its variables
according to the ground substitution σ. However, σ does not give a value for the
existential variables in the RHS of the RGD. Thus, the chase needs to invent some
values for them.

For instance, consider the data state I = {content(PilotEpisode)}, and the
initial set of the structural events E = {ιseries(Modern Family)}. In this situ-
ation, the RGD 5.14 says that we need to include in R some literal of the form
ιepisodeSeries(e,Modern Family), but it does not specify which value should take
the existential variable e.

Our strategy to give a value to the existential variables is to consider, for each
existential variable, all the values currently present in I ∪ E ∪R together with some
new fresh value. Each of these values leads to a different possible repair R. Such
strategy is based on the Variable Instantiation Patterns [50], which are grounded on
the concept of canonical databases [112]. A more difficult treatment of the existential
variables with the presence of <, ≤ comparisons is explained in [50].

In the previous example, we would consider to give e the value PilotEpisode (since
it is already present in I), together some new fresh value such as Episode 1. Both
possibilities lead to two different sets R of repairing structural events.

In this case, note that chasing RGDs with existential variables might never ter-
minate. Indeed, it is possible that, to repair some constraint, we need to give a
fresh new value to some existential variable, that is, we need to create a new object.
Such new object, in its turn, might violate another constraint that might need to
be repaired by means of creating a new object. Thus, the chase might be infinitely
creating new objects, and new objects to repair such objects. As we are going to see,
this non-terminating phenomenon is due to the fact that maintaining OCL constraints
with existential variables is non-decidable.

To solve this undecidability, we propose two alternatives: (1) limiting the OCL
language to avoid bringing RGDs with existential variables, and (2) reuse some de-
cidability results coming from the world of conceptual schema reasoning [103, 107].

For the first option, we define a new OCLFO subset we call OCLUNIV which, basi-
cally, consists in removing from OCLFO the exists operation, and any other operation
that can be used to emulate it. The complete grammar of OCLUNIV together the
demonstration that it brings to a set of RGDs without existential variables can be
seen in the formalization Section 5.2.3

For the second option, we show that that the decidability conditions stated in
[103, 107] for showing decidability for specific conceptual reasoning tasks can be
described in a concise logic way, which we call Finite Canonical Property (FCP), that
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can be exported to other reasoning tasks. Intuitively, a set of dependencies (such
as RGDs) Σ enjoys FCP if for any initial data state I, all its possible repairs can
be captured by a finite set of finite canonical models. Then, this FCP entails chase
termination, as we show in the formal definitions and proofs of Section 5.2.4.

5.1.3 Customizing RGDs

Chasing RGDs permits computing all the possible ways to maintain all the constraints.
That is, fixed some initial data state I, initial structural events E, and constraints C,
chasing the RGDs of C permits computing all the possible missing structural events
R s.t. apply(E ∪R, I) |= C.

However, it is possible that the information system should not maintain all the
possible constraint violations, but combine checking and maintenance policies.

For instance, consider the constraint SeenIsBought. Recall that the RGDs of such
constraint are the formulas 5.1, 5.2, and 5.3. Clearly, in order to repair the violation
of this constraint, it might have sense for some TV-content providing company to
automatically consider that some user u buys some content c if s/he starts visualizing
it (RGD 5.2). In contrast, it might be undesired to repair the same constraint by
deleting the fact that some user has seen some content c when such user cancels
the purchase of c (RGD 5.3). Actually, in this case it is probably more desirable to
cancel the deletion of the purchase since the user has already visualized the content.
In summary, the information system should apply a maintenance policy for the first
kind of violation of the SeenIsBought constraint, whereas it should probably apply a
checking policy for the second one.

To achieve this combination of checking and maintenance policies, we can simply
replace RGDs for its corresponding EDCs. That is, in the previous example, we should
replace the RGD 5.3 for its corresponding EDC 4.5. Thus, when chasing the RGDs,
we are not going to compute the repairs for such kind of violation.

Moreover, it might also be desirable to disallow some of the possible repairs
pointed by the remaining RGDs. For instance, when deleting some episode for some
series, it might not be desirable to delete the series to repair a minimum cardinality
constraint violation, but it might be ok to insert a new episode to it.

In order to disallow some of the possible repairs pointed by some RGD, we can
simply move the repair from the RHS to the LHS of the rule again. Following our
previous example, we can disallow from RGD 5.15 the repair consisting in deleting
the series s by moving the literal δseries(s) from the LHS to the RHS as follows:

series(s) ∧ δhasEpisode(s) ∧ ¬δseries(s)→ ιepisodeSeries(e, s)∨ (5.18)

ιcontainEpisodeSeries(e′, s) ∧ ιforbidDeltaEpisodeSeries(e′, s)
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Note that, if we remove all literals from the RHS to the LHS of the RGD, we
obtain again the EDC rule.

5.2 Formalizing RGDs

In the previous section we have given an intuitive understanding of what RGDs are,
how can they be obtained, and how can they be chased to compute the repairs R.
Now, we formalize the basic notions of RGDs to unambiguously describe our method,
and to give a proof for its correctness to compute repairs.

As we have previously shown, obtaining the RGDs from a given set of UML/OCL
constraint departs from its translation to EDCs. In this case, however, we need
to obtain the EDCs for constraints involving existential variables. In order to deal
with these existential variables, we provide the new/old mappings for derived literals
containing existential variables, and prove its correctness.

Then, we bring an algorithm to obtain the RGDs from these EDCs. Intuitively, the
RGDs obtained are equivalent to the input EDCs in the sense that, roughly speaking,
any model of the EDCs is a model of the RGDs. Thus, any set of structural events E
and data state I satisfies the RGDs if and only if applying E in I satisfies the original
constraints.

Afterwards, we show that by chasing RGDs we can compute the repairs R for
some given data instance I and set of structural events E. To do so, we distinguish
two cases: RGDs without existential variables, and RGDs with existential variables.
Indeed, computing repairs with RGDs with no existential variable is decidable, whereas
it turns to be undecidable when existential variables are involved.

In order to tackle such undecidability issue with RGDs, we define the concept of
Finite Canonical Property (FCP). Briefly, a set of RGDs enjoys FCP if all its canonical
models are finite, which is a situation that guarantees decidability for computing
repairs.

Finally, we formally present the RGDs customization possibilities. To do so, we
show how can we customize an RGD and redefine the concept of repair based on the
notion of well-supported models [46], next we show how can we chase such RGD to
obtain these new customized repairs.

5.2.1 Obtaining EDCs with Existential Variables from UML/OCL
Constraints

The first step to obtain the RGDs consists in obtaining the EDCs from the UML/OCL
constraints. To do so, we benefit from the method already explained in Section 4.2.
That is, we first translate UML/OCL constraints into logic denials, and then, we apply
the new/old mappings to the literals in such denials to obtain the EDCs.
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The translation from UML/OCL constraints into denials is exactly the same as
before, but without aggregating the existential variables (i.e., without applying the
postprocessing Algorithm 8). This is because since we do not deal with aggregated
literals for the problem of integrity maintenance, we no longer benefit from such
transformation.

As a result, we need to extend the new/old mappings to deal with derived literals
containing existential variables. Indeed, in Section 4.2 we only gave such mappings
for derived literals without existential variables since all the derived literals with exis-
tentials were replaced by aggregations according to Algorithm 8.

In the following we present the new/old mapping for derived literals with existen-
tial literals. Since positive derived literals can be unfolded, this mapping only treats
negated literals. Recall that the new/old mappings map a literal l from some signa-
ture S to a formula φ in an augmented signature S ′ s.t., for any given data state I
and structural events E, I ∪ E |= φ iff apply(E, I) |= l.

In particular, given a derived predicate p, and its corresponding derived predicates
ιp and δp as defined in Section 4.2.2., we define the new/old mapping for p literals
as follows:

Definition 13. A New/Old mapping for derived literals with exists.

Given any derived predicate p whose derivation rule body is l1∧ ...∧ ln∧b,
we define the maps:

new(¬p(x)) = δp(x) ∧ ¬ιp(x) ∧ ¬po(x)
old(¬p(x)) = ¬p(x)) ∧ ¬ιp(x)

where po is a derived predicate defined as follows:

po(x)← old(l1) ∧ ... ∧ old(ln) ∧ b

Intuitively, these mappings says that p(x) becomes false when it was true when
some deletion occurs in the body of p, and there is no insertion neither no tuple in
the body of p survives the structural events being applied. Similarly, p(x) remains
false when it was false and no insertion occurs in its body.

In the following, we formally proof that both mappings are correct New/Old
mappings:

Proof. We start proving the correctness of the new mapping. Then, we move to old.
We prove that E∪I |= new(¬l)[σ] iff I |= l[σ] and apply(E, I) 6|= l[σ]. Assume that

we have E ∪ I |= new(¬l)[σ]. Then, for some derivation rule we have E ∪ I |= δl[σ].
By construction of the derivation rules, this is the case iff for some literal lbi inside
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the derivation rule body of l we have E∪I |= new(¬lbi)[σ], and for the rest of literals
lbj in the body we have E ∪ I |= lbj[σ]. Thus, we see that for all literals lb in the
body of l we have I |= lb[σ], thus, I |= l[σ]. We now prove that apply(E, I) 6|= l[σ].
We do it by contradiction. If apply(E, I) |= l[σ], then, for all the literals lb inside l,
we would have apply(E, I) |= lb[σ]. Thus, for each literal lb, either E∪I |= old(lb[σ])
or E ∪ I |= new(lb[σ]). If for all literals lb we have E ∪ I |= old(lb[σ]), then, by
construction E ∪ I |= lo[σ], and thus apply(E, I) 6|= l[σ], contradiction. If for some
literal lb we have E ∪ I |= new(lb[σ]), then, by construction, E ∪ I |= ιl[σ], and thus,
apply(E, I) 6|= l[σ], contradiction.

The proof of the other direction of the iff follows similarly. We now prove that
old is a correct Old mapping.

We prove that E ∪ I |= old(¬l)[σ] iff I 6|= l[σ] and apply(E, I) 6|= l[σ]. Assume
that we have E ∪ I |= old(¬l)[σ]. By definition, this is the case iff E ∪ I |= ¬l[σ] and
E∪ I |= ¬ιl[σ]. Thus, we see that I |= ¬l[σ]. We now proof that apply(E, I) |= ¬l[σ]

by contradiction. If apply(E, I) |= l[σ], then, for all literals lb in the body of l we
would have apply(E, I) |= lb[σ]. Since it cannot be the case that for all literals lb,
I |= lb[σ] (otherwise, I |= l[σ], which is a contradiction), we know that for some
literal lb, E ∪ I |= new(lb[σ]). Thus, by construction, E ∪ I |= ιl[σ], which implies
E ∪ I 6|= old(¬l)[σ], contradiction.

The proof of the other direction of the iff follows similarly.

Finally, we need to remove the disjunctions used in the LHS of the EDCs. In
Section 4.2 we used disjunctions in order to reduce the number of generated EDCs.
However, now we need the body of the EDCs to be pure conjunctions of literals in
order to be able to move the negated structural events to the RHS of the rule.

In order to remove such disjunctions it is sufficient to apply an unfolding-like
procedure. For instance, given an EDC with disjunctions in its LHS like the following:

ιp(x) ∧ (ιq(x) ∨ (q(x) ∧ ¬δq(x)))→ ⊥

We obtain the following 2 EDCs without disjunctions:

ιp(x) ∧ ιq(x)→ ⊥
ιp(x) ∧ q(x) ∧ ¬δq(x)→ ⊥

5.2.2 Obtaining RGDs from EDCs

The basic idea to obtain the RGDs from EDCs consists into moving negated structural
events from the LHS to the RHS. However, in order to have all the possible structural
events that might repair a constraint in the RHS of the rule, we need to apply
additional transformations such as literal unfolding.
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In Algorithm 9, we formally define how to obtain the RGDs of a given EDC by
applying all these transformations. It receives as input an EDC and returns as output a
set of RGDs. The number of RGDs obtained depends on the derived literals appearing
in the EDC.

Algorithm 9 getRGDs(premise→ ⊥)
result := ∅
if premise contains a positive derived literal l then

for all unfoldedPremise in unfoldingPremise(l, premise) do
result := result ∪ getRepairGeneratingDependencies(unfoldedPremise→ ⊥)

end for
else

new Conclusion := ⊥
new Premise := >
% First loop: Place negative literals containing structural events to the conclusion
for all Literal l in premise do

if l is a negative event literal then
new Conclusion := new Conclusion ∨ positive(l)

else
new Premise := new Premise ∧ l

end if
end for
% Second loop: Apply all the possible unfoldings
for all Positive derived literal l in new Conclusion do

new Conclusion := unfoldingConclusion(l, new Conclusion)
end for
% Third loop: Remove negative literals from the conclusion
for all Negative literal l in new Conclusion do

new Conclusion := replace(¬l, ιforbidL, new Conclusion)
result := result ∪ getRepairGeneratingDependencies(ιforbidL ∧ l→ ⊥)

end for
% Fourth loop: Remove non structural event literals from the conclusion
for all Non structural event literal l in new Conclusion do

new Conclusion := replace(l, ιcontainL, new Conclusion)
result := result ∪ {ιcontainL ∧ ¬l→ ⊥}

end for
result := result ∪ {new Premise→ new Conclusion}

end if
return result

The algorithm starts by checking the existence of positive derived literals in the
premise. If this is the case, the algorithm unfolds the literal and recursively calls
the algorithm until all the literals are base. Since, in our settings, the predicates are
non-recursive, this recursion is guaranteed to terminate.

Then, the algorithm performs four loops, each one corresponding to a different
transformation.

The first loop moves the negative literals involving structural events (i.e., struc-
tural/derived event literals, or derived literals containing event literals in its body)
from the premise to the conclusion.

The second loop applies the usual unfolding for derived literals placed in the
conclusion, which is also guaranteed to terminate.

The third loop removes negative literals p from the conclusion by considering a
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new EDC. This transformation encompasses a recursive call to the algorithm to build
the RGD for such new EDC. This recursion directly terminates if the predicate p
is base since the formula ιforbidP ∧ p → ⊥ would need no more transformations.
Again, the absence of recursive predicates guarantees that at some point predicate p
will be base and, thus, the recursion is finite.

The last loop removes non-structural event literals from the conclusion. We re-
place any non-structural event literal p for ιcontainP and add a new EDC ιcontainP∧
¬p → ⊥. In this case, we do not need to call the algorithm recursively to translate
this EDC to RGDs because we know that, since p is base, no transformation would
be applied to the rule.

Since all the recursions and loops are guaranteed to terminate, the algorithm
terminates.

Now, we proof that such algorithm is correct. That is, we first proof that the
output are, indeed, RGDs, and then, that such RGDs are equivalent to the input
EDCs.

Property 13. Algorithm’s output are RGDs

For any given EDC, applying Algorithm 9 we obtain a set of RGDs, that
is, a set of rules with the form:

l1 ∧ ... ∧ lm ∧ b→
∨
i=1..n

li1 ∧ ... ∧ lim ∧ bi

where each li is a positive base event or a non-event literal; each lij is
a positive base event literal, and b and bi are conjunctions of built-in
literals.

Proof. The proof is based on checking that every rule added in the result variable
of the algorithm fits the previous RGD form. We do so by induction following the
recursive nature of the algorithm.

The rules directly added from algorithm’s recursive calls fits such form immediately
by induction hypothesis. This is because the recursion is finite since all predicates are
non-recursive, and thus, at some point the recursion reaches some base case. So, we
only lack to prove these base cases. That is, the rules created and added in the result
variable that do not directly come from recursion.

It is easy to see that there are only two kinds of rules added in result not coming
from a recursive call of the algorithm: {ιcontainL ∧ ¬l → ⊥} (added in the fourth
loop), and {new Premise→ new Conclusion}.
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For the first one, l is ensured to be a positive non-event base literal. We now
show so by contradiction. If l was negated, it would have been replaced in the third
loop, so l must be positive. If l is positive but derived, it would have been unfolded
in the second loop, so l must be positive and base. Finally, since l appears in the
fourth loop, which iterates through non-event literals, then, it is for sure a positive
non-event base literal. Thus, taking in account that ιcontainL is a positive event
literal {ιcontainL ∧ ¬l→ ⊥} fits the previous form.

For the latter, we first show that new Premise literals are base literals or non-event
literals. Then, we show that the new Conclusion literals are all base event literals.

new Premise cannot contain derived literals since all of them have been unfolded
at the beginning of the algorithm. The unique exception are the negated literals,
which cannot be unfolded. However, those negated literals that are event literals are
removed from the premise in the first loop. Thus, since no more literals are added in
the new Premise after such loop, all its literals are base literals or non-event literals.

We now conclude the proof by showing that new Conclusion literals are all base
positive event literals. All the literals are base since all the derived literals are unfolded
in the second loop and no derived literal is inserted in new Conclusion after that loop.
All the negated literals are removed in the third loop and no negated literal is inserted
after that. Lastly, all the literals that are not events are removed in the last loop.

Property 14. Algorithm’s output is equivalent to EDCs input

For any given EDC ψ, applying Algorithm 9 we obtain a set of equivalent
formulas Σ. Such formulas are equivalent in the sense that, for any data
instance I and set of structural events E, we have that:

I ∪ E |= ψ iff for some A, I ∪ E ∪ A |= Σ

where A is a set of instances for the auxiliary predicates ιcontainX and
ιforbidX .

Proof. We proof so by showing that each transformation applied to the input EDC
leads to an equivalent formula. In particular, we first show that the transformations
applied by the first two loops preserve the equivalence in the classical sense (i.e., φ ≡
Σ), whereas the last transformation is equivalent in the previously defined meaning.

The first loop moves literals from the LHS to the RHS of the rules. Such trans-
formation leads to an equivalent logic formula because φ∧¬l→ ψ ≡ ¬φ∨ l ∨ ψ ≡
φ→ l ∨ ψ
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The second loop only applies literal unfoldings, which are well-known to produce
equivalent logic formulas.

The third loop replaces the negated literals l from the conclusion for a literal
ιforbidL and adds the new formula forbidL ∧ l → ⊥. We now show that such
transformation is equivalent to the original formula according to the previous equiv-
alence definition. Assume that the initial formula is ψ, and that after applying such
transformation for some negated literal l in the conclusion of ψ we obtain a new
formula Σ. Consider some data state I and set of structural events E. In case
I ∪ E |= ψ[σ], for some substitution σ then, clearly, I ∪ E 6|= l[σ]. Consider now
A = forbidL[σ]. It is easy to see that I ∪E ∪A |= Σ. In case I ∪E 6|= ψ[σ], we now
show by contradiction that, for any A, I ∪ E ∪ A 6|= Σ[σ]. Assume that we have an
A s.t. I ∪ E ∪ A |= Σ[σ]. Then, because of the rule forbidL ∧ l → ⊥ included in
Σ, we know that I ∪ E ∪ A 6|= l[σ]. Thus, I ∪ E |= ¬l[σ]. Moreover, I ∪ E |= ψ[σ],
contradiction.

The fourth loop replaces the non-event literals l from the conclusion for a literal
ιcontainL and adds the new formula ιcontainL ∧ ¬l → ⊥. We now show that
such transformation is equivalent to the original formula according to the previous
equivalence definition. Assume that the initial formula is ψ, and that after applying
such transformation for some literal l in the conclusion of ψ we obtain a new formula
Σ. Consider some data state I and set of structural events E. In case I ∪E |= ψ[σ],
for some substitution σ then, clearly, I ∪ E |= l[σ] if the LHS of ψ[σ] holds in I ∪ E.
Consider now A = containL[σ] if the LHS of ψ[σ] holds in I∪E. It is easy to see that
I ∪E ∪A |= Σ. In case I ∪E 6|= ψ[σ], we now show by contradiction that, for any A,
I ∪E ∪A 6|= Σ[σ]. Assume that we have an A s.t. I ∪E ∪A |= Σ[σ]. Then, because
of the rule containL∧¬l→ ⊥ included in Σ, we know that I ∪E ∪A |= l[σ]. Thus,
I ∪ E |= l[σ]. Moreover, I ∪ E |= ψ[σ], contradiction.

We summarize both properties in the following one:

Property 15. Algorithm’s output are equivalent RGDs

For any given EDC ψ, applying Algorithm 9 we obtain a set of equivalent
RGDs Σ, in the following sense:

I ∪ E |= ψ iff for some A, I ∪ E ∪ A |= Σ

where A is a set of instances for the auxiliary predicates ιcontainX and
ιforbidX .

Proof. Directly from the Properties 13, and 14.
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For our purposes, we strengthen the previous result to sets of EDCs and sets of
RGDs. That is, a set of EDCs is equivalent to the set of RGDs obtained by applying
Algorithm 9 to each EDC.

Property 16. A set of EDCs is equivalent to its set of RGDs

For any given set of EDC Ψ, the set of RGDs Σ obtained by applying
Algorithm 9 to every ψ ∈ Ψ, we have:

I ∪ E |= Ψ iff for some A, I ∪ E ∪ A |= Σ

where A is a set of instances for the auxiliary predicates ιcontainX and
ιforbidX .

Proof. First, we show that if I ∪E |= Ψ, we can build a set of auxiliary instances A
s.t. I∪E∪A |= Σ. Then, we proof that if I∪E 6|= Ψ, then, for no A, I∪E∪A |= Σ.

Assume that I ∪ E |= Ψ. Then, build A in the following way. Initialize A = ∅,
and then, pick any ξ ∈ Σ that is violated in I ∪ E ∪ A. Consider additionally ψ to
be the EDC where ξ comes from. Because of Property 15, we know that, for this ξ,
there are some minimal set of instances Aξ s.t. makes I ∪ E ∪ Aξ |= getRGDs(ψ).
Include such Aξ into A until every ξ is satisfied. We now show that adding such
minimal set of instances Aξ into A does not encompass the violation of any other
ξ′ ∈ Σ, and thus, such process eventually terminates.

Assume that when adding the minimal set of instances Aξ into A we cause I∪E∪A
to violate some other RGD ξ′. This is only the case if ξ′ contains an auxiliary literal
in its LHS. Clearly, ξ′ 6∈ getRGDs(ψ). However, all the RGDs that might unify some
newly created auxiliary literal to repair ξ appears in getRGDs(ψ) by construction,
contradiction.

Now, we proof that if I ∪E 6|= Ψ, then, for no A, I ∪E ∪A |= Σ. If I ∪E 6|= Ψ,
then, for some ψ ∈ Ψ, I ∪ E 6|= ψ. Thus, by Property 15, for no A, I ∪ E ∪ A |=
getRGDs(φ). Hence, for no A, I ∪ E ∪ A |= Σ.

5.2.3 Computing Solutions through RGDs

For our purposes, we define the notion of an RGD repair. Intuitively, given a set of
RGDs Σ, some data state I, and structural events E, an RGD repair is a minimal set
of structural events R that makes I ∪ E ∪ R satisfy Σ. By minimal, we mean that
no proper subset R′ of R is itself a repair. Formally:
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Definition 14. RGDs repair

Given a set of RGDs Σ, a data state I, and a set of structural events E,
a set of structural events R is a repair for I ∪ E and Σ iff:

• There exists some set of instances A for the auxiliary predicates
ιcontainX and ιforbidX s.t. I ∪ E ∪R ∪ A |= Σ, and

• There is no such set of instances A for a subset R′ ⊂ R.

Now, the crucial point is that an RGD repair is the set of additional structural
events such that, when applied to the initial data state I with the initial structural
events E, permits reaching a new data state In that does not violate any integrity
constraint. That is, given a set of integrity constraints written as denials Φ, consider
the RGDs Σ obtained by translating the EDCs of Φ to RGDs through Algorithm 9.
Then, given any data state I, and structural events E, a set of structural events R is
an RGD repair for Σ and I ∪E if and only if applying E ∪R into I does not violate
any constraint in Φ. In virtue of this result, we say that RGD repairs are (constraint)
repairs as defined in the preliminaries. Formally:

Property 17. RGDs repairs are constraint repairs

Consider a set of denials Φ, and its corresponding set of RGDs Σ obtained
by translating the EDCs of Φ through Algorithm 9. Then, for any data
state I, and structural events E we have that:

R is a (constraint) repair for Φ,I,E iff R is an (RGD) repair for Σ,I,E.

Proof. Consider any set of of denials Φ, its corresponding set of EGDs Ψ, and its
corresponding set of RGDs Σ. Moreover, consider also an arbitrary data state I and
set of structural events E. We start proving that any constraint repair R for Φ,I,E
is also an RGD repair for Σ,I,E and then, we proof the converse.

Suppose R is a (constraint) repair for Φ,I,E. Then, because of Definition 12,
I ∪ E ∪ R also satisfies the EDCs Ψ. By Property 16 we have that there is some
set of auxiliary instances A s.t. I ∪ E ∪ R ∪ A |= Σ. Moreover, R is minimal since,
otherwise, it would not be a constraint repair. Thus, R is a (RGD) repair for Σ, I,E.

Conversely, assume that R is a (RGD) repair for Σ,I,E. Then, because of Property
16 we have that I∪E∪R |= Ψ. Thus, by Definition 12 we have apply(E∪R, I) |= Φ.
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Moreover, R is minimal since, otherwise, it would not be an RGD repair. Thus, R is
a (constrain) repair for Φ,

Thus, we can compute constraint repairs for Φ through computing RGD repairs for
its corresponding Σ. For ease of presentation, in the following we are going to speak
about computing repairs for RGDs, but we must keep in mind that this is equivalent
to compute the repairs for the denials Φ and, in the last term, it is equivalent to
compute the repairs for the UML/OCLFO constraints.

The interesting fact about working with RGDs is that its repairs can be com-
puted using a chase algorithm. This is because RGDs follows the syntactic form of
dependencies (with built-in literals, disjunctions, negation in the LHS, and ⊥), and
the chase is an algorithm though for computing the necessary literals to satisfy sets
of dependencies. In this manner, we see that the chase algorithm, is not only suitable
for solving the certain answers of some query, or computing data exchange universal
solutions [40], but also to perform incremental integrity maintenance.

In the following, we explain how can we chase the previous RGDs to compute
such repairs. To do so, we distinguish whether the RGDs have existential variables,
or not.

In the case where no existential variable is present in the RGDs, we are going to
see that: (1) any complete chase implementation can be used to compute all the
sets of repairs R, (2) such computation always terminates, (3) there is an expressive
fragment of OCL that only generates RGDs without existential variables, and thus,
benefits from the previous two properties.

In the case where existential variables exists, we are going to see that: (1) the
traditional chase implementations might bring results that are not repairs, (2) a new
chase-like algorithm can be defined solving the previous problem, (3) chase termi-
nation cannot be guaranteed since the problem of computing the repairs R is not
decidable.

Computing Repairs through RGDs without existential variables: the chase

The chase is an algorithm for computing universal model sets [40], that is, given
an initial data state I and some set of dependencies Σ, compute a set U of sets of
instances U (possibly with labelled nulls) satisfying the following properties:

– (soundness) I ∪ U |= Σ,

– (universality) for any M s.t. I ∪M |= Σ, there is some U ∈ U, and some
ground substitution σ for the labelled nulls in U s.t. Uσ ⊆M

– (minimality) for each U ∈ U, there is no other U ′ ∈ U, and ground substitution
σ for the labelled nulls in U ′ s.t. U ′σ ⊆ U
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Intuitively, the first property means that the models in U satisfy the dependencies
in Σ. The second, ensures that any other model M satisfying the dependencies Σ is
captured in U. The third, guarantees that we cannot remove any model from U.

The idea is that, in the absence of existential variables, the universal model set of
the RGDs is the set of all its possible repairs. We formally state so in the following
property:

Property 18. Universal Model Sets of RGDs (without existential
variables) are Repairs

Consider a set of RGDs Σ without existential variables. Then, for any
data state I, and structural events E we have that:

R is a repair for Σ,I,E iff R ∈ U∗

where U∗ is the universal model set of Σ, I, E after removing, for each
U ∈ U, the auxiliary literals ιcontainX and ιforbidX , and removing any
U∗2 from U∗ if U∗ contains some U∗1 ∈ U∗ s.t. U∗1 ⊆ U∗2 .

Proof. We start proving that if R is a repair for Σ,I,E, then, R ∈ U∗. Afterwards,
we prove the converse.

Assume that R is a repair for the RGDs Σ and data state I, with structural
events E. In addition, consider U the universal model set of Σ with I, E. Now,
by Definition 14, we see that there is some minimal set of auxiliary instances A s.t.
I∪E∪R∪A |= Σ. Thus, by universality of models sets, there exists some U ∈ U s.t.
for some substitution σ for the labelled null, Uσ ⊆ R ∪ A. Since U has no labelled
nulls due to the absence of existential variables in Σ, we can omit such substitution σ,
thus, U ⊆ R∪A. However, U cannot be a proper subset of R∪A (since this would
imply A not to be minimal, or R not to be minimal, which would be a contradiction),
thus, U = R ∪A. Hence, the set U∗ corresponding to remove the A literals from U
satisfies that U∗ ∈ U∗, and U∗ = R, thus R ∈ U∗.

We now proof the converse. Consider any set of structural events R ∈ U∗. Then,
by construction of U∗ from U, and soundness of U, there is some set of auxiliary
instances A s.t. I∪E∪R∪A |= Σ. We lack to proof that R is minimal to show that
it is an RGD repair. We do so by contradiction. Assume that R is not minimal, and
thus, there is some other R′ ⊂ R for which there is another A′ s.t. I∪E∪R∪A |= Σ.
Moreover, assume this R′ to be minimal. In this case, by universality of U we have,
R′∪A′ ∈ U. Thus, R′ would appear in U∗, which would mean that U∗ would contain
both R′, and R. But this would mean that U∗ would not be minimal, contradiction.
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Thus, R is minimal, and thus, it is a repair of Σ for I, E.

Hence, any complete chase able to compute universal model sets can be used to
compute denial repairs, if their RGDs have no existential variables.

Moreover, since there are no existential variables, the chase is going to terminate.
Intuitively, the chase is going to create instances using a finite number of constants
(those present in I ∪ E), and a finite number of predicates (those appearing in the
RHS of RGDs). Thus, the number of new instances a chase can create is finite,
and since the chase terminates when it does not create a new instance, the chase is
ensured to terminate.

In the following, we formally state and proof such statement. To do so, we use
the notion of complete chase. By complete chase we mean any chase-like algorithm
ensuring termination when the universal model set U is finite (i.e. ||U|| is finite, and
for each U ∈ U, ||U || is finite).

Property 19. Computing repairs of RGDs (without existential
variables) through chase terminates

Given a set of RGDs Σ without existential variables, computing the repairs
of Σ for any data state I and structural events E through a complete
chase terminates.

Proof. The proof is based on showing that the universal model set U is finite.
Indeed, consider the set of all possible instances V we can build with (1) the set of

predicates appearing in the RGDs Σ, and (2) the set of constants appearing in I ∪E.
Since the number of predicates is finite, and the number of constants appearing in
I ∪ E is finite, then, ||V || is finite.

Since there are no existential variables in Σ, for each U ∈ U, we have U ⊆ V ,
thus, ||U || is finite. In addition, U ⊆ 2V , thus, ||U|| is finite.

So, since a complete chase terminates if U is finite, and we have shown that U is
finite, the chase is ensured to terminate.

Hence, any complete chase dealing with disjunctions, ⊥, and built-in literals can
be used to repair a set of RGDs (without existential variables). Examples of chase-like
algorithms that are complete in such case are, for instance, the ded chase described
in [78], and the extended core chase [40]. The last one does not natively support
built-in literals, although, we argue that we can naturally extend it to do so. 1

1Indeed, a built-in literal such as x > 3 is no more than a literal with a prefixed set of instances
with the particularity that, instead of storing such instances in a data state (which would be im-
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ExpBool ::= ExpBool and ExpBool | ExpBool or ExpBool

| ExpOp
ExpOp ::= Path->excludesAll(Path) | Var.Member->includesAll(Path)

| Path->excludes(Path) | Var.Member->includes(Var)
| Path->isEmpty() | Path->forAll(Var| ExpBool)

| Path OpComp Constant | not Path.oclIsKindOf(Class)

| Path OpComp Path | Path.oclIsKindOf(Class)
Path ::= Var.Role | Class.allInstances().Nav
Nav ::= Role.Nav | oclAsType(Class).Nav

| Role | Attribute
| oclAsType(Class)

Figure 5.1: OCLUNIV syntax

Finally, we show that there is an expressive subset of OCLFO whose RGDs have
no existential variables. That is, the constraints written in this language can be
maintained through a chase procedure ensuring its termination. We call such OCLFO

subset as OCLUNIV.
The syntax of OCLUNIV is given in the grammar of Figure 5.1. Briefly, OCLUNIV

limits OCLFO to avoid the exists operator, which is the cause for existential variables,
and any other OCL operator that could be used to emulate the exists. For instance
the use of not is restricted, since combining a not with a forAll would emulate the
exists operator.

Property 20. Computing repairs of OCLUNIV RGDs through chase
terminates

Given a set of RGDs Σ coming from a set of OCLUNIV constraints C,
computing the repairs of C for any data state I and structural events E
through a complete chase procedure terminates.

Proof. By construction, OCLUNIV constraints only give rise to denials with atomic
negation [103]. Thus, no derivation rule is required to define such denials, and
hence, they do not have existential variables. By construction again, we see that
denials without existential variables give raise to EDCs without existential variables.
This is because the New/Old mappings defined for transforming denials into EDCs
do not create derivation rules if the denials do not use derivation rules. Finally,

possible since they are infinite, e.g. there are infinitely many x with x > 3), they are computed on
demand.
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by construction of RGDs, EDCs without existential variables brings RGDs without
existential variables. Thus, by Property 19 we see that chasing the RGDs of some
OCLUNIV constraints terminates, and its result is the set of all the possible repairs.

OCLUNIV is expressive enough to codify most of the constraints appearing in our
running UML/OCL schema example. In particular, it permits encoding the first 4 OCL
constraints, all the UML maximum cardinality constraints, the hierarchy constraints,
and the disjointness. That is, a total of 20 constraints out of 36 constraints.

Furthermore, OCLUNIV is able to encode almost a superset of the first-order con-
straints patterns proposed in [31], which have been shown to be useful for defining
around the 60% of the integrity constraints found in real schemas. The only exception
is the path inclusion constraint pattern for which we can only specify the situations
that are compliant to our grammar to avoid existential variables.

Computing Repairs through RGDs with existential variables: the vips-chase

In the previous subsection, we have computed the repairs of the RGDs (without
existential variables) by chasing them.

Now we want to deal with RGDs with existential variables. Indeed, if we deal with
RGDs with existential variables, we are going to be able to repair any set of OCLFO

constraints, for any initial data state, and any set of initial structural events.
However, when introducing existential variables, the result of chasing RGDs are

not necessarily repairs since they might contain labelled nulls. Indeed, in the standard
chase, existential variables are instantiated with labelled nulls rather than constants,
and according to our definitions, an RGD repair should be ground, thus, no labelled
nulls are allowed.

In order to obtain the repairs, we can apply substitutions for the labelled nulls
appearing in the chase result. That is, we can obtain the repairs by replacing each
labelled null for a constant, in all the sets of instances retrieved by the chase.

However, applying such substitutions only ensures completeness for finding all the
repairs R, but not soundness. That is, although all the repairs R can be obtained
through these replacements (completeness), some replacements might lead to sets of
instances that are not repairs (unsoundness). In the following we first exemplify the
problem, and then, go to the solution.

Consider the following set of dependencies Σ:

ιP (x)→ ιQ(x, y)

ιQ(x, 1)→ ⊥

And that the initial data state and structural events are I = ∅, E = ιP (1). Chasing
Σ with I, E returns a universal model set composed of only one model U :

U = {ιQ(1, null1)}
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Certainly, a repair R such as ιQ(1, 2) can be obtained from U by the substitution
σ = {null1/2}, but a non-repair such as ιQ(1, 1) can also be obtained using the
substitution σ = {null1/1}. Note that ιQ(1, 1) is not a repair because it directly
violates the second dependency in Σ.

In order to restrict the universal model sets to only characterize repairs, our in-
tention is to provide them with a set of built-in literals restricting the values that the
labelled nulls might take in a similar way to the intensional solutions described in [32].
In the previous example, we would like to have:

U = {ιQ(1, null1), null1 6= 1}

Hence, for our purpose, we define the notion of canonical model set.

Definition 15. Canonic Model set

Given an initial set of instances I and some set of dependencies Σ, a
canonical model set U is a set of pairs 〈U , B〉, where U is a set of
instances and B is a (consistent) set of built-in literals about its labeled
nulls, satisfying the following properties:

– (soundness) For any 〈U , B〉 ∈ U, and ground substitution σ s.t.
Bσ is true, we have I ∪ Uσ |= Σ.

– (universality) For any M s.t. I ∪M |= Σ, there is some pair 〈U ,
B〉 ∈ U, and some ground substitution σ for the labelled nulls in
U s.t. Uσ ⊆M and Bσ is true.

– (minimality) For every 〈U1, B1〉 ∈ U and substitution σ1 for the
labelled nulls in U1 s.t. B1σ1 is true, we have that for any other
〈U2, B2〉 ∈ U and substitution σ2 s.t. B2σ2 is true, U2σ2 6⊆ U1σ1.

Each pair 〈U , B〉∈ U is referred as a canonical model for Σ, and I.

Then, the idea is that each canonical model in U captures a different repair. That
is, each canonical model 〈U , B〉 defines a different way to repair the dependencies,
up to renaming the labelled nulls with values satisfying the built in literals stated in
B. Note that, in this way, although a set integrity constraints might have an infinite
number of different repairs (e.g. by considering different values to their existential
variables), we might be able to describe them all using a finite set of pairs 〈U , B〉.
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Property 21. The Canonic Model Sets of RGDs capture its repairs

Consider a set of RGDs Σ. Then, for any data state I, and structural
events E we have that:

R is a repair for Σ,I,E iff
there is some 〈U , B〉∈ U∗ and substitution σ s.t. R = Uσ, and Bσ

evaluates to true.

where U∗ is the canonical model set of Σ, I, E after removing, for each
U ∈ U, the auxiliary literals ιcontainX and ιforbidX , and removing any
U∗2 from U∗ if U∗ contains some U∗1 ∈ U∗ s.t. U∗1 ⊆ U∗2 .

Proof. First we proof that for any 〈U , B〉∈ U∗ and substitution σ s.t. Bσ evaluates
to true, then, Uσ is a repair for Σ, I, and E. Then, we proof the other direction.

Assume that we have some 〈U , B〉∈ U∗ and substitution σ s.t. Bσ evaluates
to true. By construction and soundness of U∗, we have that there exists some set
of auxiliary instances A s.t. I ∪ E ∪ Uσ ∪ Aσ |= Σ. We lack to prove that Uσ is
minimal to proof that it is a repair. We proof so by contradiction. Assume that there
is some U ′ ⊂ Uσ′ s.t. I ∪ E ∪ U ′ ∪ A′ |= Σ, for some set of auxiliary instances
A′. Then, by universality of U, there is some 〈U2, B2〉 ∈ U∗ and substitution σ2 s.t.
B2σ is true and U2σ2 ⊆ U ′. Moreover, U2σ2 ⊆ Uσ. Thus, U would not be minimal,
contradiction.

Assume that we have some repair R for Σ, I, and E. Thus, there exists some set
of auxiliary instances A s.t. I ∪ E ∪ R ∪ A |= Σ. By universality and construction
of U∗, we have that there exists some 〈U , B〉 and substitution σ s.t. Bσ evaluates
to true, and Uσ ⊆ R. We lack to prove that Uσ = R. We do so by contradiction.
Assume Uσ ⊂ R, then, by soundness and construction of U∗, there would be some
set of auxiliary instances such that I ∪ E ∪ A ∪ Uσ |= Σ. Thus, R would not be a
repair since it would not be minimal, contradiction.

Now, we define a new chase-like algorithm that computes the canonical models
〈U , B〉 for a given set of dependencies Σ and a set of instances I ∪ E. Note that
this chase needs to create, apart from the ordinary instances in U , the built in literals
in B.

We compute the built-in literals present in B with a method based on the Variable
Instantiation Patterns (VIPs) technique [50]. For the self-containment of the thesis,
we quickly overview the VIPs approach, and how do we apply it in our thesis.

116



The core idea underlying VIPs consists in, for every labelled null created dur-
ing the chase, considering all the relevant built-in literals relations we can build be-
tween the new labelled null, and the rest of constants and labelled nulls already
present. For instance, assume the current state of the chase is the following: U =
{P (1, 5), Q(5, null1)}, and B = {null1 6= 1, null1 6= 5}, and the chase needs to cre-
ate a new labelled null null2 for some instance Q(1, null2). Then, the chase has to
consider four different relevant possibilities: null2 = 1, null2 = 5, null2 = null1, and
null2 6= 1 ∧ null2 6= 5 ∧ null2 6= null1. Thus, it needs to consider the following new
chase states (or branches):

• U = {P (1, 5), Q(5, null1), Q(1, 1)}, and B = {null1 6= 1, null1 6= 5}

• U = {P (1, 5), Q(5, null1), Q(1, 5)}, and B = {null1 6= 1, null1 6= 5}

• U = {P (1, 5), Q(5, null1), Q(1, null1)}, and B = {null1 6= 1, null1 6= 5}

• U = {P (1, 5), Q(5, null1), Q(1, null2))}, and B = {null1 6= 1, null1 6= 5, null2 6=
1, null2 6= 5, null2 6= null1}

Under the presence of order comparisons (i.e., <), the relevant relations are all
the possible orders a labelled null might take. In the previous case, assume that our
set B of current built-in literals of our instance being chased is B = {1 < null1 < 5}.
Then, the chase has to consider the following new chase states (or branches):

• I = {P (1, 5), Q(5, null1), Q(1, 1)}, and B = {1 < null1 < 5}

• I = {P (1, 5), Q(5, null1), Q(1, 5)}, and B = {1 < null1 < 5}

• I = {P (1, 5), Q(5, null1), Q(1, null1)}, and B = {1 < null1 < 5}

• I = {P (1, 5), Q(5, null1), Q(1, null2)}, and B = {null2 < 1 < null1 < 5}

• I = {P (1, 5), Q(5, null1), Q(1, null2)}, and B = {1 < null2 < null1 < 5}

• I = {P (1, 5), Q(5, null1), Q(1, null2)}, and B = {1 < null1 < null2 < 5}

• I = {P (1, 5), Q(5, null1), Q(1, null2)}, and B = {1 < null1 < 5 < null2}

The first three cases corresponds to equate null2 with the current constants and
labelled nulls (i.e., 1, 5, null1). The last four correspond to consider all the possible
orderings for the new labelled null with respect to {1 < null1 < 5}.

It is worth to highlight that this procedure has its roots on the canonical models
defined by Ullman to tackle the problem of query containment [112], but in this case
the canonical models are computed on runtime rather than statically [50].
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Algorithm 10 vips-chase(Σ, I, E, Rc, Bc, Result)
ξ := getViolatedDependency(Σ, I, E, Rc, Bc)
if ξ = null then

Result.add(removeForbidContain(Rc), Bc)
else

for all Structural events conjunction R in (getRHS(ξ)) do
newPairs := getRepairsAndBuiltInLiterals(R, I, E, Rc, Bc)
for all 〈σR, BR〉 in newPairs do

if isMinimal(Σ,I,E,Rc ∪RσR,BC) then
chaseRGDs(Σ, I, E, Rc ∪RσR,Bc ∪BR, Result)

end if
end for

end for
end if

The following Algorithm 10 describes a chase-like procedure incorporating the
VIPs approach we call vips-chase.

Initially, the algorithm is called with Rc = ∅, Bc = ∅ and Result = ∅. The first
two are the variables containing the current set of instances and current set of built-in
literals being built in the chase, and Result is an input/output parameter that will
contain the canonical model set for the given RGDs, I, and E. The getViolatedDe-
pendency function looks for a dependency being violated according to the contents
of I ∪ E ∪ Rc, and the built-in literals stored in Bc, and returns the dependency
after substituting its universal variables for the constants that witness the violation.
We assume the function getViolatedDependency to be fair. That is, for any violated
dependency ξ, ξ is going to be selected at some point of the chase. There are several
ways to define a fair selection of the violated dependency (e.g., a first-in-first-out
queue of violated dependencies).

If no dependency is violated, then 〈Rc, Bc〉 is added in Result, since this means that
any substitution σ for the labelled nulls in Rc satisfying Bc, we have I∪E∪Rcσ |= Σ.
Before adding Rc into Results, we apply the function removeForbidContain. This
function returns the set of structural events Rc but removing those ground atoms
corresponding to the auxiliary structural events ιforbidP and ιcontainP .

For repairing the dependency, we try all the possible conjunctions of events R in
the dependency conclusion. Moreover, for each one of these conjunctions, we try all
the suitable substitutions and relevant built-in literals for their labelled nulls 〈σR, BR〉
according to the VIPs. Then, we add RσR into the repair Rc, BR into Bc, and apply
a recursive call to the same algorithm to continue the chase until no dependency is
violated.

In order to ensure completeness, the vips-chase requires applying a minimality
check at each chase-step. This is done with the isMinimal function invoked just
before the recursive chase call. This function checks whether some proper subset
of the currently built Rc is already a solution, and if so, it discards Rc. Intuitively,
without such minimality check, the vips-chase might hang computing an infinite non-
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canonical model (recall that all canonics must be minimal). This situation is similar
to the core-computation step required for the core-chase: if the core-chase does not
make a core computation at each chase-step, the core-chase might hang computing
an infinite non-core solution [40].

Since applying a minimality check at each chase-step might cause a bottle neck in
the method, we are going to see that, in some cases, we can safely delay such check
to the end of the chase without compromising completeness. For the moment, we
proof that this version of the vips-chase is correct for any set of RGDs Σ, initial data
state I, and structural events E.

Property 22. Vips-chase computes canonical model sets

Given a set of RGDs Σ, a data state I, a set of structural events E,
assume that Result is the result of applying algorithm 11 with parameters
Σ, I, E, ∅, ∅, Result. Then, Result is the canonical model set of I ∪ E
w.r.t. Σ.

Proof. We need to prove that Result is sound, universal and minimal as defined in
Definition 15. The soundness and minimality of Result are directly guaranteed because
of the functions getViolatedDependency and isMinimal. The proper, avoids adding
unsound solutions in the Result, and latter avoids adding non-minimal solutions. We
lack to prove universality.

To do so, we benefit from a close relationship between vips-chase and the CQC
algorithm [50]. Briefly, CQC is an algorithm that builds a tree search space for finding
the models of a set of denials based on the vips-approach.

In particular, we prove universality through the following argument: (1) A CQC-
tree for Σ and goal I ∪E is universal, and (2) The vips-chase with parameters Σ, I,
E is a traversal of a CQC tree for Σ and I ∪E. We prove all these steps separately.

A CQC-tree is universal for Σ and goal I∪E in the sense that every minimal model
containing I ∪ E for Σ is contained in the CQC tree. We proof so by contradiction
benefiting from the fact that the CQC-tree is known to be complete (i.e., if a finite
model containing the goal exists, it appears in the CQC-tree). Suppose that M is
the set of finite models appearing in the tree, and M a minimal model not appearing
in M. Now, consider the CQC-tree with the same goal but with constraints Σ ∪ Σ′,
where Σ′ is a set of denial constraints forbidding any (superset) interpretation from
M. Note that such constraints can be written using denial constraints with only
positive literals (and no negation). Thus, due to the absence of negative literals in
Σ′ we see that the new CQC-tree is a subset of the previous one (since this new
constraints only cuts branches without creating new ones). Moreover, no model is
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present in the new CQC-tree since none of the previously found models M satisfies
Σ′. However, M is finite model of Σ ∪ Σ′ containing I ∪ E. Thus, the CQC-tree
would not be complete, contradiction.

The vips-chase can be seen as a depth traversal of a CQC-tree. In particular, the
getViolatedDependency function is equivalent to apply and traverse all the possible
CQC-expansion B-rules to a given constraint, and then, the different getRepairsAnd-
BuiltInLiterals of such violation corresponds to apply all the possible CQC-expansion
A-rules to maintain it, and traverse them in depth. Assuming that the getViolated-
Dependency function of the chase is fair, then, the CQC-tree generated and traversed
by the chase is fair too according to the fair notion as defined in [50]. Since a fair
CQC-tree guarantees that the unique infinite branches are those corresponding to
infinite models, the depth CQC-tree traversal done by vips-chase finds all the pos-
sible models, unless some model is infinite. In this case, there are two possibilities:
such infinite model is not minimal (and thus, the vips-chase cuts this branch through
the isMinimal check), or such infinite model is minimal (and thus, it is an infinite
canonical model). In the last case, the canonical model set is not finite, and thus,
the vips-chase is infinitely computing such canonical model set.

Similarly to the other chase algorithms, the vips-chase cannot guarantee its termi-
nation. The source of this phenomenon relies on the hight complexity of the problem
the vips-chase can tackle. Indeed, the vips-chase is able to solve the problem of in-
tegrity maintenance, and such problem is undecidable, meaning that no terminating
algorithm can be built to solve it. We show this in the following property and proof:

Property 23. Incremental Integrity Maintenance is undecidable

Given a set of UML/OCLFO constraints C, an initial data state I, and
some set of structural events E, computing whether there exists a single
repair R for C, I and E is undecidable.

Proof. The proof is based on a reduction from the Class liveliness problem, which is
a well-known undecidable problem in UML/OCLFO [106].

The class liveliness problem consists in, given a UML/OCL schema and some class
Cl, assessing whether there is a finite data state ICl of the whole UML/OCL schema
containing one instance of Cl and satisfying all the constraints.

We can reduce the class liveliness problem to the problem of maintenance in
the following way: Consider I = ∅, and E = {ιCl(c)}, where c is any constant.
Now, if there is a repair R for the constraints of the schema, I, and E, we see that
Icl = apply(E ∪ R, I) is a new finite data state satisfying all the constraints of the
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schema, and containing one instance of C. Conversely, if there is a finite data state
ICl satisfying all the constraints and containing one instance of {Cl(c)}, then the set
R = {ιA|A ∈ ICl} is a repair for E, and I. Thus, we can decide if Cl is lively by
checking the existence some repair R for some data state I and structural events E.
Thus, since the problem of class liveliness is undecidable, computing whether there is
some repair R is also undecidable.

Property 24. Termination of vips-chase is not guaranteed

Given a set of RGDs Σ, an initial data state I, and a set of structural
events E, it is undecidable to know if the vips-chase with Σ, I, E termi-
nates.

Proof. Directly from 23 since we can use the output of vips-chase to know if there
exists a single repair R.

Another way to see such undecidability result is that the vips-chase might hang
computing an infinite canonical model of the RGDs Σ, and the undecidability of the
maintenance problem ensures the existence of such infinite canonics. That is, there
exists infinite repairs, and the vips-chase gets stacked computing them.

5.2.4 Improving the vips-chase: the Finite Canonical Property

In the previous section we have defined the vips-chase, an algorithm able to compute
the repairs of some constraint violations using the RGDs.

When defining the vips-chase, we have identified two main issues affecting it:
non-termination, and the costly minimality computation step. That is, the vips-
chase might hang computing a repair in some cases, and it requires applying a costly
minimality check at each chase-step to ensure its completeness.

These two problems have the same flavor as the issues affecting the core-chase
[40]. Indeed, the core-chase cannot ensure its termination either, and requires a core
computation at each chase-step to ensure its completeness.

In the case of the core-chase, both problems (termination, and the costly core-
computation step) can be solved if, for the given set of dependencies Σ, we can ensure
that applying a standard chase to Σ terminates. That is, if the standard chase ensures
its termination with such dependencies, then, not only the termination is ensured, but
the core-computation step can be delayed to the end of the chase to obtain the core
solution. Indeed, the core-chase step was introduced to compute some cores that are
not detected when the standard chase does not terminate [40].
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In a similar way, we show that if a standard chase ensures its termination with a set
of RGDs, then, the vips-chase not only ensures its termination, but it can also delay
the minimality check to the end of the chase without compromising completeness.

For our purposes, we define such concept as Finite Canonical Property (FCP).
Intuitively, we say that a set of deds Σ satisfies the FCP if, for any possible data state
I, we have that the canonical model set of Σ and I is finite. As we are going to see,
this property is, roughly speaking, equivalent to chase-termination.

In the following, we first give the formal definition of FCP, and show that FCP
entails vips-chase termination and the possibility to delay the minimality checking
step. Next, we show some ways to identify when some schema enjoys FCP.

The Finite Canonical Property

Now we formally define the finite canonical property. Similarly as the canonical model
set concept, we define this notion for general dependencies (rather than RGDs for
augmented schemas), and then, we show its application to RGDs.

Definition 16. Finite Canonical Property

Given a set of dependencies Σ, we say that Σ has the finite canonical
property (FCP), iff:

For any data state I, there is a finite canonical model set of I and Σ.

where a canonical model set is finite if it is a finite set of finite models.

Intuitively, the FCP captures the notion of chase-termination. Certainly, consider
a chase dealing with disjunctions in the RHS of the dependencies, and thus, whose
execution has the form of a tree rather than a sequence. In this situation, each branch
of the chase builds a model of the dependencies, and thus, a branch might be infinite
if it builds an infinite model. However, roughly speaking, the FCP ensures that for
each initial data state to start the chase I, the chase-tree built has a finite number
of branches of finite depth. Thus, the chase terminates.

For our purposes, we bring an alternative definition of FCP and prove that it is
equivalent to the previous one:
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Definition 17. Finite Canonical Property (alternative definition)

Given a set of dependencies Σ, we say that Σ has the finite canonical
property (FCP), iff for any data state I:

Given any infinite data state I ′ s.t. I ⊂ I ′ and I ′ |= Σ, then,

there is a finite data state M s.t. I ⊂M ⊂ I ′ and M |= Σ

Continuing with our previous analogy with the chase-tree, this alternative defini-
tion is saying that, for any data state I, any branch that might built an infinite model
for Σ and I (such as I ′), terminates building a finite model (M).

In the following, we formally proof that both definitions are equivalent:

Proof. It is easy to see from the definition of canonical model set that the first
definition of FCP implies the second one. So, we concentrate on proving the converse.
We do so by contradiction. Assume that we have a set of dependencies Σ satisfying
Definition 17, but not satisfying Definition 16. That is, assume that there is some I
s.t. Σ and I has an infinite canonical model set U, but for which for any I ′ ⊃ I s.t.
I ′ |= Σ, there is a finite M s.t. M |= Σ and I ⊆M ⊆ I ′.

First, we are going to see that each canonical model in U is finite. We prove so
by contradiction. Assume that there is an infinite canonical model in U ∈ U. Then,
by Definition 17, we know that there is another finite model M that is a subset of
U and that satisfies Σ. By universality of U, such M is also captured in U. Assume
M ′ to be the canonical model in U capturing M . Then, clearly, M ′ also captures U .
Since M ′ and U are both in U, U is no longer minimal, contradiction.

Now, we are going to build a contradiction from the fact that every canonical
model in U is finite. In particular, we are going to see that, if U is an infinite
collection of finite canonical models, then, we contradict the compactness theorem
of 1st order logics [113]. To do so, we build a first order logic theory Σ′ in the
following way: for each canonical model U ∈ U, add a new axiom forbidding the
model U , and any captured model of U (broadly speaking, we can obtain such axiom
by writing ΣC ∧¬UC , where ΣC is the conjunction of all the dependencies in Σ, and
UC is the conjunction of all atoms in U replacing the labelled nulls for existentially
quantified variables). Then, Σ′ is an infinite inconsistent 1st order theory (it has no
model since we forbid all its models), but any finite subset of it is consistent (indeed,
if we remove the constraint ΣC ∧¬UC , U becomes a model of the theory). Since the
compactness theorem says that any infinite inconsistent first-order logic theory has a
finite inconsistent subset, we reach a contradiction.
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Once we have established these two definitions of FCP, we find necessary to stop
in them to make a comparison with the Finite Model Property (FMP). Roughly
speaking, a set of dependencies Σ has the finite model property if, for any data state
I, if there is some infinite data state I ′ s.t. I ⊂ I ′ and I ′ |= Σ, then, there is a finite
M s.t. I ⊆ M and M |= Σ. Thus, the unique difference between FCP and FMP is
that FCP requires such M to be also a subset of I ′. Thus, FCP implies FMP. However,
the converse is not true. Indeed, consider the typical set of dependencies saying that
each person has a father, and each father is a person. Such set of dependencies
has the finite model property. Intuitively, from any possibly finite data state I, we
can always build a finite model M by making some people be their own fathers. In
contrast, note that for the infinite model I ′ in which everyone has a different father,
and where the father relationship has no cycles, every finite subset of I ′ containing I
is not consistent, thus, such set of dependencies does not enjoy FCP.

Now, we establish the two results we were pursuing: (1) FCP ensures vips-chase
termination, and (2) FCP permits delaying the minimality check to the end of the
chase.

Property 25. Vips-chase terminates for RGDs enjoying FCP

Given a set of RGDs Σ satisfying FCP, for any given initial data state I
and set of structural events E, vips-chase with input Σ, I, E, terminates.

Proof. In the proof of vips-chase correctness, we have seen that vips-chase with input
Σ, I, E terminates if the canonical model set is finite. So, if Σ enjoys FCP, then, by
definition Σ, I ∪E has a finite canonical model set. Thus, the vips-chase terminates
with input Σ, I, E.

Property 26. Vips-chase can delay the minimality check for RGDs
enjoying FCP

Given a set of RGDs Σ satisfying FCP, for any given initial data state I
and set of structural events E, vips-chase with input Σ, I, E delaying
the minimality check to the end of the chase terminates and correctly
computes its canonical model set.

Proof. In the proof of vips-chase correctness, we have seen that the minimality check
step was only necessary to deal with the non-minimal infinite chase branches. How-
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ever, FCP ensures that all the branches are finite. This is because any infinite model
I ′ that might be computed from a chase-branch eventually stops with a finite model
M . Thus, we can remove such checking from the middle of the chase without com-
promising termination. However, in order to ensure that the result is a true canonical
model set, we need to apply a postprocessing to check that each instance in the
canonical model set is, indeed, minimal.

Identifying conditions ensuring FCP

Identifying if a set of dependencies Σ enjoys FCP is clearly undecidable. This is
because it is undecidable to know if the chase is going to terminate for a given set of
dependencies Σ.

However, we can identify some sufficient conditions ensuring FCP (although such
sets of conditions will never be complete).

In particular, we can see that the dependency acyclicity conditions stated in [103,
107] ensures FCP. Roughly speaking, their conditions are sufficient to state when
chasing a set of dependencies Σ terminates for any initial data state I. Thus, since
a set of dependencies can only ensure its chase termination if it enjoys FCP, these
conditions ensure FCP. We briefly review such method for the self-containment of the
thesis:

Intuitively, this approach builds a dependency graph from Σ. In this graph, nodes
represents dependencies, and arcs represents the violations of some dependency that
might occur when chasing another dependency. Then, a set of dependencies enjoys
FCP if all its cycles of the dependency graph are finite. Roughly speaking, a cycle is
said to be finite if chasing the cycle is ensured to terminate, which is ensured if one
of the following conditions holds:

1. For each arc between dependencies, the existential variable of the first depen-
dency are not propagated to the LHS of second dependency. Intuitively, this
means that, during the chase, the newly generated objects to maintain the first
constraint do not cause new extra dependency violations. Thus, the number of
violated dependencies cannot increase during the chase, which means that the
chase eventually terminates.

2. There is some predicate in the LHS of some dependency not present in the RHS
of any dependency of the cycle. Intuitively, this means that, during the chase,
the newly generated objects cannot cause the violation of one of the dependen-
cies present in the cycle, which, eventually, breaks the maintenance/violation
cycle that cause the non-termination of the chase.

3. Maintaining the dependencies using new fresh labelled nulls reaches a fixed-
point in one iteration. Intuitively, this condition tries to emulate the worst
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case of the chase in which new fresh values have to be generated to repair all
the dependencies of the cycle. However, if during such process a fixed-point
is reached (that is, no dependency is violated in the first cycle iteration), this
guarantees that any chasing execution of such cycle always find such fixed-point,
and thus, terminate too.

We encourage the interested reader to check [103, 107] to read a formal description
of the conditions. In the following, we formally state that they are sufficient to entail
FCP.

Property 27. Aciclicity conditions ensuring FCP

Consider a set of dependencies Σ satisfying the acyclicity conditions
stated in [103, 107]. Then, Σ satisfies FCP.

Proof. The proof is based on the fact that such conditions are proved to be sufficient
to ensure the CQC algorithm termination. In particular, we show that if they did not
entail also FCP, then, the CQC algorithm would not ensure its termination, which
would be a contradiction.

Assume that Σ does not enjoy FCP, thus, for some data state I there is some
infinite canonical model M ⊃ I. Then, consider that we run the CQC method with
input Σ and I. Because of the completeness of the CQC method, CQC is going to
compute the canonical model M , thus, making CQC not to terminate. Nevertheless,
such conditions have been proved to ensure CQC termination [107].

In Table 1 we summarize the most notable results we have stated so far w.r.t.
integrity maintenance. In particular, we state, for each OCL subset we have considered
(OCLUNIV and OCLFO) which logic rules do we create to maintain its constraints, which
kind of model set do we compute as a solution, which algorithm do we use to compute
such model set, and whether the termination of the algorithm is ensured or not.

Table 1. Integrity maintenance summary for OCL

Lang. Logic Rules Solution Algorithm Termination

OCLUNIV RGDs no exists. Univ. Model Set chase ensured
OCLFO RGDs with exists. Can. Model Set vips-chase if FCP
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Note that, so far, our method is intended to compute all the possible repairs of
the constraints. However, since it might be the case that a domain expert can decide
that some of these repairs are not desired, we aim at customizing these RGDs so that
they only compute desired repairs.

5.2.5 Customizing RGDs

Now, the idea is to customize the RGDs in order to avoid undesired repairs. Indeed,
since we are focused on computing all the repairs R, we might find a repair R that
repairs a constraint violation in an inappropriate way according to the domain. This
is, for instance, the case in which we repair the SeenIsBought constraint by deleting
the fact that some user u has seen some content c. In this domain, it is impossible
to unsee some content once it has been watched.

As we have previously pointed, the basic idea to customize the RGDs is to move
the undesired structural event literals from the RHS to the LHS of the RGDs, and
adding a negation symbol to them. Recall that if we move all the repairs from the
RHS to the LHS, we obtain again the original EDC. This is the case of the previous
mentioned example, in which if we take out the structural event for deleting the seen
fact from the RHS in RGD 5.3 and place it again in the LHS we obtain the original
EDC 4.5. Another possibility is to move some of the structural events to the LHS,
but leave some other in the RHS as we have seen in RGD 5.18.

Intuitively, a chase-like algorithm can deal with these customized RGDs. Indeed,
it is just a matter of ignoring a possible repair of a violation (the one placed in the
LHS) if several repairs are present in the RHS, or reporting that no solution is found
in such branch if no other repairs are present in the RHS or the rule.

To prove so, we first require modifying the semantics of the concept of RGD repair
to coincide with our intended semantics. Indeed, consider the following simplified
singleton set of RGDs1:

ιs ∧ ¬ιu→ ιr

Assume that E = {ιs}. Then, according to the RGD repair definition given in
Definition 14, R = {ιr} and U = {ιu} are both repairs since E ∪ R and E ∪ U
satisfies the RGDs and are minimal. However, intuitively, only R is a true repair.
This is because ιr is supported by ιs, whereas ιu is unsupported, that is, there is no
RGD justifying its insertion since it does not appear in the RHS of any RGD whose
LHS evaluates to true.

Moreover, in order to find all the possible repairs, we need to apply the chase in

1For the sake of simplicity, we have taken out from these RGDs all the non-structural literals,
and consider literals with 0-arity.
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a particular order. Indeed, consider the following set of RGDs:

ιs ∧ ¬ιu→ ιr (5.19)

ιp ∧ ¬ιr ∧ ¬ιu→ ιv (5.20)

ιq ∧ ιv → ⊥ (5.21)

Assume that E = {ιp, ιq, ιs}. If we chase such RGDs starting from RGD 5.20,
we are not going to find any solution. Indeed, after instantiating ιv to repair such
RGD, we violate the RGD 5.21, which cannot be repaired. In contrast, if we start
chasing from RGD 5.19, we are going to find the solution R = {ιq}.

In the following, we first change the semantics of an RGD repair to a new one
based on the well-supported semantics notion of logic programs [46]. Afterwards, we
show that his new kind of repair can be computed using a chase-like procedure that
chases the RGDs in a prefixed order.

Well-supported definition of RGD repair

Intuitively, we want a set of structural events and auxiliary literals R ∪ A to be
considered well-supported if they can be produced by means of chasing some RGDs
Σ with an initial data state I and structural events E. That is, if any of the literals
in R∪A appears in the RHS of some RGD whose LHS evaluates to true using those
literals in R ∪ A created in previous chase steps. This is the case if and only if
there can be a strict total order < among the literals in R ∪ A recording the time
precedence they have in the chase. This leads to the following definition (adapted
from the well-supported model definition from logic programs [46] to RGDs):

Definition 18. Well-supported instances of RGDs

Given a set of customized RGDs Σ, a data state I, and a set of structural
events E, a set of structural events and auxiliary predicates R∪A is well-
supported with respect to I ∪E and Σ iff there is a strict total order <
in R ∪ A s.t.:
For each r ∈ R ∪ A there is some RGD ξ ∈ Σ s.t. for some ground
substitutions σ, we have I ∪ E ∪ R<r ∪ A<r |= LHS(ξ)σ and for some
ground substitution ρ, r appears in RHS(ξ)σρ, where R<r ∪A<r is the
set of instances from r′ ∈ R ∪ A s.t. r′ < r.

Now, we define a customized RGD repair to be a minimal set of well-supported
structural events that makes all the RGDs evaluate to true.
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Definition 19. Customized RGDs repair

Given a set of customized RGDs Σ, a data state I, and a set of structural
events E, a set of structural events R is a repair for I ∪ E and Σ iff:

• There exists some set of instances A for the auxiliary predicates
ιcontainX and ιforbidX s.t. the instances in R ∪ A are well-
supported and I ∪ E ∪R ∪ A |= Σ

• There is no such set of instances A for a subset R′ ⊂ R.

Computing repairs for customized RGDs: the stratified-chase

Similarly as before, because of the existential variables in RGDs, the number of RGD
repairs might be infinite. Thus, it is better to capture them using some kind of
universal model set, rather than trying to enumerate all the possibilities.

In the previous subsection, we have used the notion of canonical model sets for
that purpose. However, the canonical model sets do not take in account the well-
supported notions we have previously defined. That is, a canonical model set captures
unsupported solutions, which we are not interested in.

Thus, we now define the concept of well-supported canonical model set. The
definition only extends the previous definition of canonical model set to make every
element in the set to be well-supported.
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Definition 20. Well-Supported Canonic Model set

Given an initial set of instances I and some set of dependencies Σ, a
well-supported canonical model set U is a set of pairs 〈U , B〉, where U
is a set of instances and B is a set of built-in literals about its labeled
nulls, satisfying the following properties:

– (soundness and well-supportedness) For any 〈U , B〉 ∈ U, and
ground substitution σ s.t. Bσ is true, we have I ∪ Uσ |= Σ
and U is well-supported w.r.t. Σ and I.

– (universality) For any M s.t. I∪M |= Σ, and M is well-supported,
there is some pair 〈U , B〉 ∈ U, and some ground substitution σ
for the labelled nulls in U s.t. Uσ ⊆M and Bσ is true.

– (minimality) For every 〈U1, B1〉 ∈ U and substitution σ1 for the
labelled nulls in U1 s.t. B1σ1 is true, we have that for any other
〈U2, B2〉 ∈ U and substitution σ2 s.t. B2σ2 is true, U2σ2 6⊆ U1σ1.

Similarly as before, we relate the notion of well-supported canonical model set to
the notion of customized repairs.

Property 28. The Well-Supported Canonic Model Set of some
RGDs captures its customized Repairs

Consider a set of customized RGDs Σ. Then, for any data state I, and
structural events E we have that:

R is a customized repair for Σ,I,E iff
there is some 〈U , B〉∈ U∗ and substitution σ s.t. R = Uσ, and Bσ

evaluates to true.

where U∗ is the well-supported canonical model set of Σ, I, E after
removing, for each U ∈ U, the auxiliary literals ιcontainX and ιforbidX ,
and removing any U∗2 from U∗ if U∗ contains some U∗1 ∈ U∗ s.t. U∗1 ⊆ U∗2 .

Proof. The proof is obtained by extending the proof for Property 21 carrying the
concept of well-supported in all the steps.
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With this concept at hand, we only lack to compute the well-supported canonical
model set of some customized RGDs to characterize their repairs. We are going to
do so with a chase like procedure.

As we have seen before, when we have negated structural events in the LHS of
some RGDs, the order in which the chase treats the RGDs matters. That is, starting
the chase from some RGD might bring to one solution, whereas starting from another
might bring to no solution. A possible way to deal with this phenomenon would be
to inspect all the possible orders, but, clearly, this approach might become prohibitive
due to its hight complexity.

So, the idea is to establish, at compilation time, which is the order in which the
chase should treat the RGDs. We do so assuming a stratification of the RGDs. In
the following, we continue by bringing the definition of RGD stratification, and then,
give an algorithm that chases such stratified RGDs in a prefixed order:

Definition 21. Customized RGD Stratification

Given a set of RGDs Σ, we say that Σ1, ..., Σn is a stratification of Σ if
and only if:

• Σ =
⋃
i=1..n Σi

• For each ξi ∈ Σi, no predicate in the RHS of ξi appears positively
in the LHS of any ξj ∈ Σj with j < i, neither negatively in the
LHS of any ξj ∈ Σj with j ≤ i.

In Algorithm 11 we show how to chase a stratified set of RGDs Σ = Σ1∪ ...
∪Σn to compute the well-supported canonical model set, and thus, the customized
repairs of Σ. Such algorithm uses the algorithm vips-chase to compute the canonical
model set for each Σi. After this function, another function, minimize, removes those
solutions that are not minimal according to Σ1, ... Σn.

Algorithm 11 stratified-chase(Σ1 ∪ ... ∪ Σn, I, E)
Result := {〈∅, ∅〉}
for all i in 1..n do

newResult := ∅
for all 〈R, B〉 in Result do

vips-chase(Σi, I, E, R, B, newResult)
minimize(Σ1∪ ... ∪Σi,newResult)

end for
Result := newResult

end for

Now, we show that such algorithm is correct.
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Property 29. Stratified-chase computes well-supported canonical
model sets

Given a stratified set of RGDs Σ1, ..., Σn, a data state I, a set of
structural events E, assume that Result is the result of applying algorithm
11 to Σ1, ..., Σn, I, E. Then, Result is the well-supported canonical
model set of I ∪ E w.r.t. Σ.

Proof. The proof is based on induction on the number of strata n. For the base
case n = 0 (that is, the empty set of RGDs), we have that Result is the empty set.
Indeed, the empty set is the well-supported canonical model set of the empty set of
RGDs (i.e., it is sound, well-supported, universal and minimal). This concludes the
proof for the base case.

For the inductive case, we first show that for any 〈R, B〉 in Result, we have that
〈R, B〉 is indeed sound, well-supported and minimal w.r.t. Σ1, ..., Σn+1. Next, we
show that Result satisfies universality (i.e., any other model M is captured by some
〈R, B〉 in Result). In the following we assume that 〈R, B〉 an arbitrary solution in
Result.

(Soundness) By construction, 〈R, B〉 is a superset of some well supported canoni-
cal model of Σ1, ..., Σn. Because of the stratification, the newly added ground atoms
in 〈R, B〉 cannot violate any RGD from Σ1, ..., Σn (otherwise, there would be a
predicate in the RHS of some ξ ∈ Σn+1 appearing in the LHS of some ξ ∈ ∪1..nΣi),
moreover, by construction, 〈R, B〉 satisfies every RGD in Σn+1, thus, 〈R, B〉 is sound
w.r.t Σ1, ..., Σn+1.

(Well-supportedness) By construction, 〈R, B〉 is a superset of some well supported
canonical model of Σ1, ..., Σn. Thus, all the instances in 〈R, B〉 that were already
present in this well supported canonical model is still well supported. Now, pick
any instance in l from 〈R, B〉 that is new. We show that it is well-supported by
contradiction. If it is not well-supported, this means that by removing such literal l
from 〈R, B〉, together all the literals supported by l, 〈R, B〉 would be sound, which
makes 〈R, B〉 not minimal w.r.t Σn+1, but vips-chase only outputs minimal models,
contradiction.

(Minimality) Minimality is ensured by virtue of the minimize postprocessing.
Now, we lack to show universality, that is, we need to proof that every well-

supported canonical model of Σ1, ..., Σn+1 is captured by Result.
(Universality) Pick any well-supported canonical model 〈R, B〉 of Σ1, ..., Σn+1

and remove all the literals that are supported by Σn+1 RGDs. In this manner, we
obtain a new 〈R′, B′〉 that is, by construction, a model of Σ1, ..., Σn. By definition,
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such new model should be captured by the well-supported canonical model set of
Σ1, ..., Σn, which is computed, by induction hypothesis, in the n iteration of the
algorithm. Assume that 〈RU , BU〉 is the well-supported canonical model of Σ1, ...,
Σn that captures 〈R′, B′〉. Now, we conclude the proof by showing that 〈R, B〉 is
a canonical model for the RGDs Σn+1 and initial instance 〈RU , BU〉. Indeed, 〈R, B〉
is a superset of 〈RU , BU〉 and satisfies all the dependencies in Σn+1, moreover, it is
minimal (otherwise, it would not be a well-supported minimal model of Σ1, ..., Σn+1).
Thus, 〈R, B〉 is captured by Result, since Result contains the canonical model set of
Σn+1 with 〈RU , BU〉 due to the vips-chase.

Now, we show that such stratification requirement for the customized RGDs is
feasible. That is, there are useful customizations of RGDs satisfying the stratification
property. In particular, given any set of RGDs, we see that: (1) customizing the RGDs
by moving to the LHS all the structural events of the same predicate is stratified and
(2) customizing such RGDs by changing some of them to its EDC form is stratified.
The first case, corresponds to assume that it is impossible to create/delete instances
from some UML class/association (i.e., considering it frozen, or permanent [84]).
The second case, corresponds to combine checking and maintenance policies.

Property 30. Moving all the structural events of the same predi-
cates from the RHS to the LHS of the RGDs leads to a stratified
set of RGDs

Given any set of RGDs Σ, and set of structural event predicates P we
want to forbid, customizing the RGDs by moving to the LHS all the
structural events of the predicates in P leads to a stratified set of RGDs
of only 1 strata.

Proof. By construction, for each ξ ∈ Σ, all the predicates in its RHS only appears
positively in the other RGDs, and no one appears negatively in any other RGD.
Moreover, considering that there is only one strata, it is impossible to have some
predicate in the RHS of ξ appearing positively in the LHS of dependency from a
previous strata.

This implies, for instance, that in our running example we could customize the
repairs to avoid deleting Visualizes instances since, conceptually, the association vi-
sualizes is permanent (e.g. once some user has seen, for instance, Suicide Squad, it
is impossible for such user to unsee Suicide Squad, no matter what he/she does).
We can achieve such customization by moving from the RHS of the RGDs all the
structural events of the predicate δsee to its LHS.
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Moreover, since there is only one strata, we can compute the repairs of such RGDs
directly computing its canonical model set, directly. This is because the stratified-
chase is only going to do a single invocation to the vips-chase to compute the canon-
ical model set.

We now move to the next useful stratified RGD customization:

Property 31. Changing some RGDs for its EDCs leads to a strat-
ified set of customized RGDs

Given any set of RGDs Σ, any customization consisting in changing some
RGDs for their original EDCs leads into a stratified customization of
RGDs.

Proof. We proof so by constructing the stratification. In particular, consider the
stratification consisting of 2 strata: the first strata is for the remaining RGDs, and
the second strata is for the EDCs. It is easy to see that this is a correct stratification
since the EDCs, by definition, do not have any literal in its RHS.

Thus, we finally rich the following result:

Property 32. Checking and Maintenance Policies can be Com-
bined

We can combine incremental integrity checking and maintenance policies
using a single method.

Proof. Directly from Properties 31 and 29.

In Table 2 we complete the previous summary Table 1 including the customization
possibilities of our method. It is important to highlight here that the algorithm used to
compute the solution for a set of customized RGDs depends on the kind of language
used. That is, if the customized RGDs comes from a set of OCLUNIV constraints, then,
the stratified chase applies a stratified version of the normal chase, however, it applies
a stratified version of the vips-chase if the RGDs comes from OCLFO.
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Table 2. Integrity maintenance summary for OCL with customization

Lang. Logic Rules Solution Algorithm

OCLUNIV RGDs no exists. Univ. Model Set chase
OCLFO RGDs with exists. Can. Model Set vips-chase
OCLUNIV/OCLFO Custom. RGDs W.S. Model Set stratified-chase

5.3 C# Implementation Experiments

To prove the feasibility of our approach and to analyze its efficiency, we have de-
veloped a prototype tool of our method and applied it to compute repairs in several
situations related to a particular case study: the well-known EU-Car Rental UML/OCL
schema [31]. We have considered two different scenarios to perform our experiments:
the original version of the schema and also a simplified one, limited to constraints
encodable in OCLUNIV (that is, without existential variables). We refer to the former
as EU-Car Rental schema and the latter as EU-Car Rental OCLUNIV schema.

In particular, the goal of our experiments is to analyze the efficiency and the
scalability of our approach, according to the following criteria:

- Size of the initial data state. We want to analyze to what extent our method
scales up with the size of the data state.

- Whether the applied structural events do or do not cause any violation. We
want to measure the time required for computing a repair when some constraint
is violated, but also the time consumed when there is no constraint violation.

- Whether the applied structural events are insertions or deletions.

- Whether the constraints considered have existential variables or not.

In the following, we first explain the UML/OCL schema used and its initial data
state, then, we discuss the experiment design, and finally, we discuss the results.

5.3.1 Experimenting UML/OCL Schema

The EU-Car Rental system is aimed at specifying a fictional car rental company with
the purpose of managing the rentals agreed, its customers, the rented cars and the
different branches of the company, among other concepts.
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We have used the EU-Car Rental schema that appears in [31] as the first schema
for our case study. This schema has 21 classes/associations, 17 attributes and 74
explicit constraints (15 OCL constraints, 2 subtyping constraints and 57 min/max
cardinalities).

In addition, we have considered the EU-Car Rental OCLUNIV schema. This schema
is the same EU-Car Rental schema but removing those constraints that cannot be
encoded in OCLUNIV. This restriction only implied the deletion of all the minimum
cardinality constraints, since all the rest were perfectly encodable in OCLUNIV. Thus,
we came up with a total of 47 explicit constraints (15 OCL constraints, 2 subtyping
constraints and 30 max. cardinalities).

5.3.2 Experiment Design

To perform these experiments, we have implemented a vips-chase procedure by mod-
ifying a previously existing C# tool: SVTe [49]. Roughly speaking, SVTe is a first
order logic satisfiability checker based on constructing a model of the logic constraints
using the VIPs approach. For our purposes, we have adapted SVTe to receive as in-
put EDCs, and interpret them as RGDs. In this manner, SVTe tries to build a model
chasing the RGD version of each EDC1. Moreover, to avoid such chase to compute
undesirable repairs, we have modified the tool to create new instances from a re-
stricted set of desirable structural events. In this manner, we emulated the RGD
customization capabilities seen in Section 5.2.5.

To create the input for such tool, we translated all the constraints of the EU-Car
Rental and the EU-Car Rental OCLUNIV schemas into EDCs using a self-made Java
translator component. From this translation we obtained 437 EDCs and 393 EDCs
in 2.58s and 2.71s respectively.

Then, we randomly built data states of increasing size together two sets of struc-
tural events: one to create a new rental in that state and another to delete a rental.
Just to begin with, we ensured that both structural events sets included all the mini-
mum necessary additional structural events to avoid the violation of any constraint.

Afterwards, we iteratively computed the repairs of applying such structural events
set to its corresponding initial data state into both schemas: the original EU-Car
Rental, and the OCLUNIV version of it. At each iteration, we randomly removed some
of the structural events, and computed the time it took for the chase to compute
these missing events. In this way, we ensured that all the violations were repairable,
and controlled the size of the required repair.

Moreover, we also restricted the structural events that the chase could use for
computing such repairs. In particular, for the case of inserting a new rental, we

1Other approaches for building chase-like algorithms from scratch for computing repairs were
considered [104], but a SVTe customization is the one that gave us the best results due to its already
built-in optimizations.
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limited the chase to repair the RGDs just by creating new rental instances, instances
for its attributes and associations, and possibly new customers. For deletions, we
allowed the chase to compute new rental deletions together with their corresponding
associations/attributes.

All the experiments were performed in an Intel Core i7-4710HQ up to 3.5Ghz,
8GB of RAM, running Windows 8.

5.3.3 Experiment Results

The results of these experiments are shown in Tables 5.1 and 5.2. The first column
in each table indicates the number of instances in the initial data state used. The
following columns state the chase execution time in seconds for finding the first repair
when the set of events lacks M structural events to be consistent. That is, for the
M=0 column, we used a set of structural events which ensured that no constraint was
violated. The other columns represents the cases that required computing repairs of
size M = {2, 4, 6, 8} instances.

Table 5.1 shows that our method scales well in the EU-Car Rental schema when in-
serting new rentals that do not cause any constraint violation (M = 0). As expected,
the execution time increases when some violation occurs and additional structural
events need to be computed (cases M > 0). In this situation, the execution time
increases with the size of the repair to be computed.

For deletions, our method takes about 2–3 min to compute repairs for data states
of 24,000 instances. Intuitively, these higher execution times are explained because,
when some instance of an association is deleted, we need to check in the data state
whether some minimum cardinality is violated. This encompasses looking through all
the instances of that association in the data state. This phenomenon turns out to be
the bottleneck of the chase rather than the size of the repair to be computed. As it
can be seen in Table 5.2, the execution times remain almost constant among the size
of the repair needed, that is, such execution times are dominated by the size of the
data state rather than the number of missing structural events.

On the other side, our method scales nicely when dealing with the version of the
schema limited to OCLUNIV for both cases, insertions and deletions. This might be
explained because the OCLUNIV version of the EU-Car rental schema have no minimum
cardinality constraints, and thus, removing structural events from the initial set of
structural events cannot induce their violation, which we suspect is the bottleneck of
the technique.

For this reason, we decided to perform a new experiment with the EU-Car Rental
OCLUNIV schema with a different strategy for generating the structural events. In
particular, we generated totally random structural events sets of N instances, com-
bining both insertions and deletions. We argue that this is the worst case since, when
the structural events of an operation are randomly generated, the number of missing
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events to make it consistent (i.e., the number of structural events of the repair) may
grow with each new structural event considered. Note that this case is just theoretical
since operations should be cohesive [70], and thus, the events they encompass are
not random.

The results of this new experiment are shown in Table 5.3. For each size N
of structural events set considered, we show the size of the repair created and its
execution time in seconds. In this table, NR stands for no repair found, meaning that
the set of structural events set considered was inherently contradicting the constraints
of the schema.

As it can be seen, most executions took less than one second, or just a few
seconds. Execution times over 10s occurred with the largest data state of 24,000
instances (i.e., last row) and also with the largest number of structural events (i.e.,
last column values). Nevertheless, the maximum execution time was up to 1 min.

It is worth saying that we used a tool originally developed for satisfiability checking
where only few instances needed to be taken in account. Thus, better results might
be expected if considering a dedicated application with big data structure support.

Table 5.1: Execution time in seconds for new rental insertion
EU-Car Rental EU-Car Rental OCLUNIV

IB size M=0 M=2 M=4 M=6 M=8 M=0 M=2 M=4 M=6 M=8

1,168 0.11 0.11 0.14 0.78 0.58 0.11 0.10 0.12 0.90 0.09

1,804 0.12 0.14 0.11 0.15 0.68 0.12 0.11 0.10 0.13 0.09

3,525 0.14 0.12 0.36 0.60 1.96 0.14 0.10 0.13 0.11 0.10

6,016 0.16 9.75 10.7 1.35 2.50 0.15 0.12 0.10 0.11 0.10

12,567 0.21 0.27 0.24 14.6 8.29 0.20 0.21 0.18 0.14 0.12

24,834 0.38 31.0 24.3 147 19.0 0.42 0.28 0.22 0.17 0.16

Table 5.2: Execution time in seconds for deleting a rental

EU-Car Rental EU-Car Rental OCLUNIV

I size M=0 M=2 M=4 M=6 M=8 M=0 M=2 M=4 M=6 M=8

1,168 0.24 0.28 0.29 0.27 0.26 0.06 0.06 0.06 0.06 0.06

1,804 0.61 0.56 0.51 0.57 0.56 0.06 0.06 0.06 0.06 0.06

3,525 2.32 2.30 2.04 2.21 2.03 0.07 0.07 0.06 0.07 0.06

6,016 7.10 5.98 7.10 7.49 5.73 0.15 0.07 0.07 0.07 0.07

12,567 35.8 33.2 32.6 35.1 34.3 0.09 0.09 0.08 0.10 0.08

24,834 161 141 187 146 147 0.12 0.10 0.12 0.11 0.11
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Table 5.3: EU-Car Rental OCLUNIV results for random insertions/deletions

N=2 N=4 N=6 N=8

I size Rep. Time Rep. Time Rep. Time Rep. Time

1,052 11 0.70 4 0.07 NR 0.09 NR 0.11

1,877 5 0.14 2 0.15 NR 0.07 NR 0.10

3,292 11 1.30 NR 0.09 NR 0.07 15 0.55

6,539 3 0.12 NR 0.08 18 2.99 28 59.7

11,739 3 0.61 6 6.51 NR 2.51 22 55.5

24,272 3 14.1 0 0.04 11 19.2 NR 12.6

5.4 IDEFIX: A Tool for IDEntifying missing struc-
tural events to FIXing-up operation contracts

Up to here, we have developed and tested a method for incrementally maintaining
constraints when updating data. However, as we have already discussed in the thesis
Introduction, the reasoning ability to maintain constraints is a powerful tool that
enables solving other reasoning tasks. In particular, as we are going to see, we can
use such technique to help domain experts on fixing-up non-executable operation
contracts. We explain the problem and contribution through an example.

Consider the UML class diagram in Fig. 5.2. This class diagram states infor-
mation about medical teams, their expertise, and membership/management relations
with medical teams. The OCL constraints provide additional semantics. Special-
istOfTeamsExpertise ensures that a physician is not a member of a team if he does
not have the speciality of the team. ManagerIsMember states that all managers of
a medical team must also be members of the team. Finally, ExclusiveMembership
states that members of a critical team may not be members of other medical teams.

Consider now the following UML/OCL operation contracts aimed at inserting and
at deleting an instance of a Critical Team, respectively:

Operation: newCriticalTeam(p: Physician, s: MedicalSpeciality, cd: String)
pre: MedicalTeam.allInstances()->forAll(m|m.code<>cd) and
p.specialization->includes(s) and p.managedTeam->isEmpty()
post: CriticalTeam.allInstances()->exists(c|c.oclIsNew() and c.code = cd and
c.expertise = s and c.manager->includes(p))

Operation: deleteCriticalTeam(criticalTeam: CriticalTeam)

post: CriticalTeam.allInstances()->excludes(criticalTeam)

–we assume that deleting an instance of a class also deletes its links to other instances.
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Figure 5.2: A UML/OCL schema for the domain of medical teams

Both operations are non-executable since their execution always violate some con-
straint. Indeed, trying to execute newCriticalTeam violates the ManagerIsMember
constraint, and executing deleteCriticalTeam violates the minimum cardinality 1 of
the team role. This last violation occurs because ExclusiveMembership forces all em-
ployees of a critical team to be members only of that team. So, those physicians will
have no team when a critical team is deleted through this operation.

Several approaches have been proposed to identify non-executable operations
[15, 17, 58, 102, 105], either by automatic reasoning or manual testing, and most
of them should be able to determine the non-executability of the previous opera-
tions. However, to our knowledge, none of them is able to provide the designer
with additional information on how to modify the operation contracts to make them
executable.

This has lead us to the development of IDEFIX, a tool that uses our method for
incremental integrity maintenance to identify non-executable operations and provide
information about how to fix up the problem. This information is given in terms of
the missing structural events on the operation postcondition that allow ensuring that
all constraints are satisfied after executing the operation. For instance, IDEFIX can
tell us that the newCriticalTeam operation lacks to specify that the manager of the
new created team should also be inserted as a member of such team and, moreover,
due to the ExclusiveMembership constraint, the operation should also specify the
deletion of its previous team membership relations.

In the following, we first formalize the problem, then, we briefly describe the
IDEFIX tool under the perspective of a user (that is, its input and output), and
finally, we present the tool architecture.
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5.4.1 The Problem: Fixing-up Operation Contracts

Pursuing the correctness of a conceptual schema is a key activity in software devel-
opment since mistakes made during conceptual modeling are propagated throughout
the whole development cycle, thus affecting the quality of the final product. The
high expressiveness of conceptual schemas requires to adopt automated reasoning
techniques to support the designer in this important task.

The conceptual schema includes structural as well as behavioral knowledge. The
structural part of the conceptual schema consists of a taxonomy of classes with their
attributes; associations among classes; and integrity constraints, which define condi-
tions that the instances of the schema must satisfy [84]. In UML [86], we represent
structural schemas by means of class diagrams, with its graphical constraints, and
by a set of user-defined constraints, usually specified in OCL [87]. The data state
(aka information base) contains the instances of the structural schema. We say that
a data state is consistent if it does not violate any integrity constraint.

The behavioral part of a conceptual schema contains all operations required by the
system. Each operation is defined by means of a contract, which states the changes
that occur on the data state when the operation is executed. In UML, an operation
contract is specified by a set of pre/postconditions, which states conditions that must
hold in the data state before/after the execution of the operation. Such pre/postcon-
ditions are usually specified in OCL too, but using an heuristic interpretation of their
postcondition we can obtain an imperative specification based on structural events
[16].

An operation is executable if there is at least one consistent data state I such
that: I satisfies its preconditions, and applying in I the structural events specified
in the postcondition leads to a new consistent state. A non-executable operation is
useless since it can never be applied, and the designer should avoid them by modifying
its contract.

5.4.2 IDEFIX: A User’s Perspective

With IDEFIX, users can fix-up the operation contracts of some conceptual schema
by means of the following steps: (1) loading a conceptual schema, (2) selecting an
operation to analyze (3) optionally modifying the automatically generated initial data
state in which to apply the operation, (4) inspecting the repairs proposed.

In the first step, a user loads into IDEFIX a conceptual schema written in the XMI
format. In the current version, IDEFIX can read UML/OCLFO conceptual schemas
written in the ArgoUML modelling tool1.

1ArgoUML is an open source modelling tool available for free at http://argouml.tigris.

org/
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IDEFIX

Figure 5.3: Snapshot of IDEFIX after computing the missing structural events of the
operation deleteCriticalTeam

In the second step, a user chooses which operation does he/she wants to fix.
When selecting one operation, IDEFIX automatically builds a data state satisfying
the precondition of such operation and all the constraints of the schema. This is the
initial data state I we are going to use for computing the missing structural events.

Next, in the optional third step, a user can modify the initial data state I. The
idea is to allow the user choose the data state I that witnesses the executability of
the operation.

In the last step, the tool returns the user the different minimum sets of missing
structural events that, if applied together the structural events specified in the post-
condition in I, would lead to a new consistent data state. This steps corresponds to
the snapshot shown in Figure 5.3.

Then, the user is expected to modify the operation postcondition to include, at
least, one of the minimum sets of missing structural events returned by IDEFIX. When
doing so, the user guarantees that the operation is executable and that I is a data
state that witnesses so.

5.4.3 IDEFIX: Tool Architecture

IDEFIX has been implemented as a standalone Java program. As it can be seen in
the architecture shown in Figure 5.4, IDEFIX follows a layered structure in the sense
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that all user interactions are managed by a Graphical User Interface who delegates all
the logic application to a Domain controller. In the following, we explain the behavior
of all the relevant components of the domain layer of IDEFIX step by step.

When the user loads the UML/OCLUNIV schema through an XMI file, IDEFIX loads
this schema in its domain controller using the EinaGMC library 1. Briefly, EinaGMC
is a Java library implementing the UML/OCL metamodels, thus, bringing support to
inspect the different elements composing a UML/OCL model. In this way, IDEFIX
can retrieve all the classes/associations/attributes and constraints of a schema, and
traverse them for its translation purposes.

Then, the UML/OCL to denials component translates the constraints of the
loaded schema into logic denials. The result of such translation is then stored in
the domain controller. Afterwards, when the user has selected the operation to fix,
the domain controller asks the Reasoner Controller to return an initial data state sat-
isfying the previous denials and the precondition posted in the operation selected by
the user. For obtaining such data state, IDEFIX follows the process already described
and successfully implemented in [96, 102]. Briefly, we translate the negation of the
precondition as a new denial and ask a satisfiability checker to create a model for the
whole set of denials. For this purpose, we use a customized version of SVTe [49] as
our satisfiability checker tool.

Next, the Denials to EDCs component translates the denials into EDCs. These
EDCs are then loaded into our adapted version of SVTe which interprets them as
RGDs. In addition, the domain controller brings to SVTe the initial data state and
the set of structural events specified in the operation postcondition. To obtain such
structural events from the operation postcondition, IDEFIX uses the patterns de-
scribed in [102].

Finally, the adapted version of SVTe chases the given constraints, with the pro-
vided data state and initial structural events, and computes the repairs. Such repairs
are then shown to the user through the GUI.

5.5 Related Work

We review the related work found in the literature in three main blocks:

- OCL approaches: approaches based on maintaining the data consistent with
regards to some OCL constraints.

- Model Change Propagation Techniques: approaches based on maintaining a
UML/OCL specification consistent (with regards to its metamodel) after some
change is applied in the model.

1http://guifre.lsi.upc.edu/eina_GMC/
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Figure 5.4: IDEFIX architecture

- Integrity Enforcement Techniques: approaches based on changing the opera-
tions of the behavioral model to ensure that the user cannot execute an oper-
ation that might cause a constraint violation.

As we are going to see, there are very few OCL approaches, and none of them
is incremental and complete. That is, either they do not focus on repairing the data
that might violate some constraint because of the last update, or they are unable to
repair all the possible violations.

In contrast, there are some techniques developed for the problem of propagating
the changes applied in some model. That is, given a model, some (metamodel)
constraint it must fulfill, and some change applied in the model, these techniques are
able to compute additional changes that must be applied in the model to satisfy the
constraint. The drawbacks that we have seen in these techniques are that (1) they
might not be incremental, (2) they might not consider repairs consisting of more than
one event, or even (3) they might not take into account that a repair might violate
another constraint, thus, bringing results which are not valid.

Then, there are some proposals based on changing the behavioral model rather
than the data. The idea of these techniques is to ensure that the operations that the
user might apply to modify the data never causes a constraint violation, and thus, no
runtime integrity checking/maintenance policy is required. However, as we are going
to see, these proposal consists in, in fact, compiling our integrity checking/mainte-
nance policy in the pre/postcondition of the operations.

Moreover, although almost all the previous refereed work agrees on the importance
of automatic mechanisms to ensure the satisfaction of the constraints, only a few
make the effort of proving the correctness of their automatic approaches. With this
related work, we aim at convincing the reader that, to the best of our knowledge, our
proposed technique is the unique one that is fully incremental, complete, and with a
formal proof of their correctness.

In the following, we review all these approaches by blocks.
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5.5.1 OCL Approaches

The work in [68] consists in a OCL simulation tool called OCLexec. This tool is able
to execute an operation specified by means of an OCL pre/postcondition contract
without violating any constraint. The method is based on considering the OCL post-
condition and the constraints of the schema as a Constraint Satisfaction Problem
(CSP), which is then solved by means of a SAT solver. In order to increase the
efficiency of the method, their proposal performs a syntactic analysis to find which
constraints might be affected by some operation, thus, reducing the number of con-
straints of the CSP problem. However, they do not perform such analysis with regards
to the data. That is, their proposal might check that previously existing data not
affected by the operation conforms to the previous constraints. Thus, this approach
is not fully incremental.

In contrast, the OCL2Trigger tool relies on triggers [6]. That is, given a set of
OCL integrity constraints, they automatically build a set of relational database triggers
which detects constraint violations and applies some repairs to maintain them. Clearly,
this approach is fully incremental due to the trigger mechanisms. However, in this
case, the work presented is only able to repair very simple constraints (essentially,
constraints equivalent to disjoint/complete hierarchies), thus, the expressiveness they
deal with is quite far from the full OCLFO expressiveness we have tackled in this thesis.

Additionally, it is worth to mention that none of the previous methods offers a
mathematical base for its correctness.

5.5.2 Model Change Propagation Techniques

In [81] the authors depart from a technique able to return which model elements
violate some (metamodel) constraint, and extend it to return how should the user
modify such conflicting elements to repair the constraint violation (i.e., which ele-
ments should be created/deleted/modified). To do so, the authors performs a static
analysis of the constraints to determine which actions can repair them. However, this
approach does not take into account that repairing some constraint might cause the
violation of another constraint, neither the case that two repairs might contradict each
other (e.g., some element might be proposed for deletion to repair one constraint,
whereas it is proposed for modification for repairing another one). Essentially, this
problem arises because they treat constraints individually.

In a different way, the Badger tool deals with all the metamodel constraints at
the same time to repair some model [100]. Their method is based on the literature
of automated planning. Intuitively, a plan is a sequence of repairs leading the model
to satisfy all the constraints. Interestingly, the method is implemented using some
heuristics to perform a guided search for the plan instead of a blind search. However,
the method is not incremental since it takes as input the whole model, without
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considering which are the last modifications applied in it. A similar approach is also
followed by [33], again without being incremental.

The work in [42] is incremental and deals with all the constraints at the same time.
Briefly, it integrates the incremental integrity checking in [60] to detect constraint
violations after some model change. Then, it tries to change 1 other model element
to find some additional change that might make this violation disappear. Clearly,
this approach do not consider those repairs composed of more than one event (i.e.,
changing more than 1 element in the model to repair the violation), and requires
manually expressing which parts of the model can change to repair the constraints.
Moreover, it cannot identify repairs based on creating new elements.

In contrast, our method is automatic, incremental, and considers all the possible
repairs (including those consisting of more than one repair). Similarly as [33, 81],
it also permits forbidding some particular ways to repair a constraint that might be
undesired according to the domain.

5.5.3 Integrity Enforcement Techniques

In [98], the authors brings a method for, given the specification of some operation,
return the missing effects to make it executable (i.e, not to violate any constraint).
The method is lightweight in the sense that it is based on a syntactic analysis of the
operation definition and constraints involved. On one hand, this makes the method
for computing the missing effects efficient, on the other, the kind of constraints they
can deal with is very limited in comparison to ours (mainly, they only deal with UML
structural constraints such as min. cardinality or hierarchy completeness).

The work presented in [30] describes a method for, given one operation, add the
minimal necessary preconditions that ensures that the execution of the operation will
not rise any integrity violation. Note that the focus now is on changing the operation
precondition, rather than its effects. Their method, however, is limited to deal with
the constraint that were defined as constraint patterns in [31] rather than dealing
with general constraints that can be written in languages such as OCL.

At this point, it is worth to realize that the previous approaches are essentially
compiling an integrity maintenance policy (in the case of [98]) or a checking policy
(in the case of [30]) directly in the operation definition. That is, they compile the
maintenance policy in the operation effects, or compile the checking policy as precon-
ditions. We argue that compiling the policies directly in the operation definition does
not bring any benefit in comparison to our approach. Indeed, although it might be
thought that having these policies compiled we might gain execution time efficiency,
we deny such possibility since our proposal is incremental, and thus, only applies
the necessary checks (and no more). Moreover, we have seen that these approaches
cannot deal with the hight expressiveness of OCL.
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Mixing both approaches, the work in [115] modifies preconditions and opera-
tion effects together to ensure that no operation execution violates any constraint.
However, such work is only able to deal with schemas written in the Booster lan-
guage, which is a much more restricted language for writing constraints compared
to UML/OCL. In particular, this work only focuses on association related constraints
(e,g., referential integrity constraints and association cardinalities).

Finally, it is worth to mention that there is also some work dealing with the oppo-
site problem. That is, instead of accommodating the operations to the constraints,
evolving the constraints to accommodate the operations. An example of this approach
is followed in [77] in which they evolve functional dependencies.

5.6 Conclusions

In this chapter we have seen a method for incremental integrity maintenance based on
RGDs. RGDs (repair-generating dependencies) are some rules that detects when some
structural events cause a constraint violation, and which are the necessary additional
structural events that repair it. The RGDs are obtained by modifying the previously
seen EDCs by moving the negated event literals from the LHS of the rule to the RHS.

Then, a chase-like algorithm can be applied to compute all the possible repairs
of a given set of initial structural events. The kind of chase depends on the kind of
RGDs involved. When, dealing with RGDs without existential variables, the notion of
RGD repair coincide with the notion of Universal Model Set [40], and thus, a classic
chase dealing with disjunctions in the RHS can be applied. Moreover, such chase
ensures its termination. Using this method we can deal with OCLUNIV constraints, a
subset of OCLFO.

When dealing with RGDs with existential variables, the notion of RGD repair do
not exactly coincide anymore with the Universal Model Set. Thus, we have defined
the notion of Canonical Model Set, which, essentially, completes the Universal Model
Sets by adding to each model a set of built-in literals restricting the values that the
labelled nulls might take. To obtain such Canonical Model Sets we have defined
a new chase-like algorithm we call vips-chase which is closely related to the VIPs
method defined in [50], and permits creating this additional set of built-in literals for
the labelled nulls. Using this method we can deal with OCLFO constraints.

Since repairing OCLFO constraints is not decidable, we have specified a property,
Finite Canonical Property (FCP), that ensures chase-termination. Moreover, we have
shown that the decidability conditions stated in [103, 107] are, in fact, conditions
ensuring FCP.

Since the number of repairs for a given set of constraints and structural events
might increase exponentially, we have defined a way to customize the way that the
RGDs can be repaired. In particular, we permit customizing the RGD repairs by
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moving some structural events from the RHS of the rule to the LHS. In this manner,
such structural events are not considered for repairing the RGD by the chase. In this
case, the repairs of the RGDs are the Well-Supported Canonical Model Sets of them,
which, roughly speaking, extends the notion of Canonic Model Set with the notion of
well-supportedness taken from the logic programming literature. In order to obtain
such well-supported canonical model sets, we have to apply a stratified version of the
chase.

We summarize all the previous statements in the following Table 3. It is worth
to say that the RGD customization can be applied to both, OCLUNIV constraints
and OCLFO constraints, and thus, its termination depends on the kind of constraints
involved (customizing OCLUNIV RGDs ensures termination, but customizing OCLFO

RGDs only ensures termination if the original OCLFO RGDs satisfy FCP).

Table 3. Integrity maintenance summary for OCL

Lang. Logic Rules Solution Algorithm Termination

OCLUNIV RGDs no exists. Univ. Model Set chase ensured

OCLFO RGDs with exists. Can. Model Set vips-chase if FCP

* Customized RGDs W.S. Model Set strat-chase *

The method has been mathematically proved and experimentally evaluated. In
the experiments we have seen that the method is able to complete user transactions
(i.e., sets of structural events), when the user forgets some of these events. Because
of these results, we have implemented IDEFIX, a tool that helps a user to complete
OCL operation contracts not to forget any necessary structural event according to
the constraints.

As future work, we would like to improve the way to create the built-in literals
of the Canonical Model Sets. Indeed, we consider that the vips-chase approach we
currently apply cause a bottle neck due to the number of new chase-branches it might
create. Additionally, more work on identifying decidable subsets of OCL (with respect
to the problem of integrity maintenance) could be done, and new conditions ensuring
FCP could be established.
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Part III

Application in Description Logics
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Chapter 6

Application To DL-Lite

Until now, we have worked in the problems of integrity checking/maintenance under
the so called closed-world assumption. That is, we assumed that we always departed
from a finite, complete and consistent initial data state I. Such assumption is typical
in the world of databases, or in the UML conceptual modeling community.

However, in the other contexts such as Description Logics, the usual assumption
is the so called open-world assumption. That is, we assume that we only have a finite
but incomplete initial data state I. This incomplete data state I stands for several
possible states of the domain I1, ..., In (aka models), where the real state of the
domain is unknown.

The open-world assumption carries immediately several difficulties and differences
with respect to the closed-world. To begin with, the notion of consistency with
regards to constraints completely varies. Whereas in the closed world assumption it
is sufficient to evaluate each constraint on I to know whether I is consistent (which
is straightforward, since we have the data state I and the constraints), in the open
world assumption, following the traditional notion of logic consistency, we have to
check whether there exists some model Ij satisfying all the constraints. Note that we
are not given such model Ij, but only a subset of it: I.

The immediate idea to deal with the open world assumption might seem to try
to first compute all these possible represented instances I1, ..., In, however, this is,
by no means, a good option. Indeed, the number of represented instances might be
infinite. Moreover, some data states Ij might be infinite by itself. It is worth to
mention here that, in the closed world assumption, all data states should be finite to
be considered a correct data states (as we need them to be finite to be represented
in some database), however, in the open world, the represented data states Ij might
be infinite (as we might represent it finitely through I in some database).

Fortunately, when restricting the language of Description Logics to DL-Lite, we
find a beautiful connection from the open world to the closed world that permits
getting rid of all these problems. Essentially, it is known that we can reduce the
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problem of integrity checking from DL-Lite (under the open-world assumption), to
integrity checking in a relational database (under the closed-world assumption) [20].
This connection permits immediately using all our previous machinery to deal with
incremental integrity checking and maintenance of DL-Lite ontologies.

In the following, we focus on the problem of incremental integrity maintenance of
DL-Lite ontologies. As we are going to see, maintaining a DL-Lite ontology satisfies
some nice properties. In particular, the problem of maintaining a DL-Lite ontology
is decidable, and, moreover, its repairs can be computed by means of SQL queries
(thus, no chase algorithm is involved).

For doing so, we adopt the terminology of DL-Lite ontologies and thus, refer to
our problem as DL-Lite consistent updating.

This also permits us to stress the following fact about of DL-Lite ontologies:
the notion of ontology update has no standard yet, and thus, several proposals for
such notion exists. For instance, when a user asks for the deletion of some fact
Man(John), it is still being discussed if the system should only remove Man(John),
or it should also remove anything implying that fact (such as Husband(John)), or
facts implied by it (such as Person(John)).

We are going to see that, using our method of augmenting an schema through
event predicates, we can compute consistent updates in DL-Lite under different update
semantics. In particular, we are going to show how to build a non-recursive datalog
program to compute the repairs of some data update under different semantics. Since
these programs are non recursive, they can be immediately implemented through
SQL queries. A careful reader should note that the datalog translation we propose
consists in, essentially, the closed-world constraints stated in [20] augmented by event
predicates and rewritten as repair-generating dependencies.

In the following, we first motivate our problem. Then, we bring some preliminaries
about DL-Lite and datalog. We continue with a discussion on different update seman-
tics for DL-Lite. Afterwards, we bring two different datalog programs to compute two
different kind of updates in DL-Lite ontologies. Finally, we bring some experiments
we did with an SQL implementation of such method, and discuss some conclusions.

6.1 Motivation and Main Results

Our goal here is to study effective techniques to perform (consistent) updates over
DL-Lite ontologies. In particular, we focus on DL-LiteA, which is the most expressive
member of the DL-Lite family of Description Logics (DLs) [20, 21]. DL-LiteA includes
virtually all constructs of the owl 2 ql profile of the W3C owl 2 standard. In
addition, it includes the most typical cardinality restrictions on the participation in
roles of UML class diagrams, i.e., any combination of mandatory participation and
functional participation.
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The crucial characteristic of DL-LiteA ontologies is that they enable the so-called
ontology-based data access by virtue of first-order rewritability of query answering,
that is, every (union of) conjunctive query over a DL-LiteA ontology can be rewritten
into a first-order query to be evaluated over the ABox only (i.e., the individual data)
considered as a database. This property, on the one hand, gives us a very low worst-
case computational complexity bound w.r.t. data, namely AC0 data complexity. On
the other hand, it gives us a very effective practical technique to deal with ontologies
that include very large ABoxes (i.e., a lot of individual data): perform the rewriting;
transform the first-order query into sql, or Sparql, depending on how data are
stored; and perform the resulting query exploiting a data management engine to take
advantage of all optimizations available for these standard languages.

When we come to updates over ontologies, several approaches are available in
the literature [35, 51, 67, 73]. In particular, we focus our attention to the so-called
instance-level update: we add and delete (or erase) facts about individuals only.
Namely, we change the ABox, while we keep the TBox unchanged. This is the most
common form of update in practice, since it is essentially concerned with keeping
the intensional part of the ontology fixed, while changing freely the individual data
(indeed, the ABox changes are typically frequent whereas the TBox typically evolves
slowly). Even in this specific kind of updates, there are sophisticated semantic issues
to consider in general. One crucial issue is that, in practice, we need the result of the
update to be still in the same language as the original ontology, in order to keep using
the same system [73]. The most promising approaches that enjoy this property are
the so-called formula-based approaches [47, 56, 57, 116], in which the update is seen
as a change of the ontology axioms. Again, several forms of formula-based instance-
level updates have been considered [23, 71, 72, 108]. Interestingly, however, for the
DLs in the DL-Lite family, virtually all proposals in the literature reduce to two main
approaches: the one in which we simply act on the ABox assertions explicitly stated
in the ontology, and another one in which we act also on the ABox assertions that
are not present but logically entailed through the use of the TBox. Notice that, while
the first approach is syntax-dependent (i.e., updating logically equivalent ontologies
that are stated through different assertions may give rise to logically different resulting
ABoxes), the second one is not. In both cases, the semantics have been clarified, their
computational tractability established, and ad-hoc algorithms are available. Though,
for both approaches, there are essentially no implemented tools yet.

In this chapter we look again at the problem of instance-level formula-based update
in DL-LiteA, and we establish a result that may turn out to be crucial to generate
efficient implementations: like query answering, updating an ontology is first-order
rewritable. That is, given an update specification, we can rewrite it into a set of
addition and deletion instructions over the ABox which can be characterized as the
result of a first-order query. This means that (i) updating a DL-LiteA ontology is
AC0 in data complexity, and, (ii) updates can be processed by widely used data
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management engines, e.g., based on sql or Sparql. We proof this by showing that
every update can be reformulated into a datalog program that generates the set of
insertion and deletion instructions to change the ABox while preserving its consistency
w.r.t. the TBox. Since the obtained datalog program is non-recursive, it can be further
translated as first-order queries over the ABox considered as a database. Exploiting
this result, we implement an update component for DL-LiteA-based systems and
perform some experiments over (a DL-LiteA version of) the LUBM ontology [62]
with increasing ABox sizes, showing that the approach works in practice.

As far as we know, this is the first time that the first-order rewritability property
for DL-LiteA ontology updating is defined, proved, and empirically evaluated. It is
important to mention here that some previous work has been done in the context
of RDF triplestores [4, 5], but only for the more restricted case of RDFS (with class
disjunctions), which is a proper subset of the expressiveness of DL-LiteA, the language
we deal with in this paper.

6.2 Preliminaries

In this section, we first present the notion of Description Logic (DL) ontology, then
we provide the definition of the specific DL considered in this work, and finally we
summarize some datalog basic concepts and notation.

6.2.1 Description Logic Ontologies

Let S be a signature of symbols for individual (object and value) constants, and
atomic elements, i.e., concepts, value-domains, attributes, and roles. If L is a DL,
then an L-ontology O over S is a pair 〈T,A〉, where T, called TBox, is a finite set
of intensional assertions over S expressed in L, and A, called ABox, is a finite set of
instance assertions, i.e., assertions on individuals, over S expressed in L. Different
DLs allow for different kinds of concept, attribute, and role expressions, and different
kinds of TBox and ABox assertions over such expressions. In this paper we assume
that ABox assertions are always atomic, i.e., they correspond to ground atoms, and
therefore we omit to refer to L when we talk about ABox assertions.

The semantics of a DL ontology is given in terms of interpretations. An interpre-
tation is a model of an ontology O = 〈T,A〉 if it satisfies all assertions in T ∪ A,
where the notion of satisfaction depends on the constructs allowed by the specific DL
in which O is expressed. We denote the set of models of O with Mod(O).

Let T be a TBox in L, and let A be an ABox. We say that A is T-consistent
if 〈T,A〉 is satisfiable, i.e., if Mod(〈T,A〉) 6= ∅, T-inconsistent otherwise. The T-
closure of A with respect to T, denoted clT(A), is the set of all atomic ABox assertions
that are formed with individuals in A, and are logically implied by 〈T,A〉. Note that
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if 〈T,A〉 is an L-ontology, then 〈T, clT(A)〉 is an L-ontology as well, and is logically
equivalent to 〈T,A〉, i.e., Mod(〈T,A〉) = Mod(〈T, clT(A)〉). A is said to be T-closed
if clT(A) = A.

6.2.2 The Description Logic DL-LiteA

The DL-Lite family [20] is a family of low-complexity DLs particularly suited for
dealing with ontologies with very large ABoxes. It constitutes the basis of owl 2 ql,
a tractable profile of OWL 2, the official ontology specification language of the World
Wide Web Consortium (W3C)1.

We now present the DL DL-LiteA, which is one of the most expressive logics in
the family. DL-LiteA distinguishes concepts from value-domains, which denote sets
of (data) values, and roles from attributes, which denote binary relations between
objects and values. Concepts, roles, attributes, and value-domains in this DL are
formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)

C −→ B | ¬B T −→ >D | T1 | · · · | Tn
Q −→ P | P− R −→ Q | ¬Q
V −→ U | ¬U

where A, P , and U are symbols in S denoting respectively an atomic concept name, an
atomic role name and an attribute name, T1, . . . , Tn are n pairwise disjoint unbounded
value-domains, >D denotes the union of all domain values. Furthermore, P− denotes
the inverse of P , ∃Q denotes the objects related to by the role Q, ¬ denotes negation,
δ(U) denotes the domain of U , i.e., the set of objects that U relates to values, and
ρ(U) denotes the range of U , i.e., the set of values related to objects by U .

A DL-LiteA TBox T contains intensional assertions of the form:

B v C (concept inclusion) E v T (value-domain inclusion)

Q v R (role inclusion) U v V (attribute inclusion)

(funct Q) (role functionality) (funct U) (attribute functionality)

A concept inclusion assertion expresses that a (basic) concept B is subsumed by
a (general) concept C. Analogously for the other types of inclusion assertions. Inclu-
sion assertions that do not contain (resp. contain) the symbols ’¬’ in the right-hand
side are called positive inclusions (resp. negative inclusions). Role and attribute func-
tionality assertions are used to impose that roles and attributes are actually functions
respectively from objects to objects and from objects to domain values.

1http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/
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Finally, a DL-Lite TBox T satisfies the following condition: each role (resp.,
attribute) that occurs (in either direct or inverse direction) in a functional assertion,
is not specialized in T, i.e., it does not appear in the right-hand side of assertions of
the form Q v Q′ (resp., U v U ′).

A DL-LiteA ABox A is a finite set of assertions of the form A(a), P (a, b), and
U(a, v), where A, P , and U are as above, a and b are object constants in S, and v
is a value constant in S.

We refer to [99] for the semantics of a DL-LiteA ontology. Here, we present an
example of one such ontology.

Example 1. We consider a slightly modified version of the LUBM ontology [62]
about the university domain. We know that a Person can be either a Professor or
a Student, where every Student takes (takesCourse role) at least one Course, and
every Professor can be either a FullProfessor or an AssociateProfessor. Finally, we
know that john is a FullProfessor and that bob is a Student. The corresponding
ontology O is:

T = { Student v Person Professor v Person

FullProfessor v Professor AssociateProfessor v Professor

Student v ¬Professor FullProfessor v ¬AssociateProfessor

Student v ∃takesCourse ∃takesCourse− v Course }

A = { FullProfessor(john), Student(bob) }

A notable characteristic of DL-LiteA is that both satisfiability checking and con-
junctive query answering are First-Order (FO) rewritable. Intuitively, FO-rewritability
of satisfiability (resp., query answering) captures the property that we can reduce sat-
isfiability checking (resp., query answering) to evaluating a FO query over the ABox
A considered as a relational database. We remark that FO-rewritability of a reason-
ing problem that involves the ABox of an ontology (such as satisfiability or query
answering) is tightly related to low data complexity of the problem. Indeed, since the
evaluation of a First-Order Logic query (i.e., an SQL query without aggregation) over
an ABox is in AC0 in data complexity [2], the FO-rewritability of a problem has as
the immediate consequence that the problem is in AC0 in data complexity.

6.2.3 Datalog Concepts and Notation

A term T is either a variable or a constant. An atom is formed by a n-ary predicate
p together with n terms, i.e., p(T1, ..., Tn). We may write p(T ) for short. If all the
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terms T of an atom are constants, we call the atom to be ground. A literal is either
an atom p(T ), a negated atom ¬p(T ), or an inequality Ti 6= Tj.

A predicate p is said to be derived (or intensional) if the evaluation of an atom
p(T ) depends on some derivation rules, otherwise, it is said to be base (or exten-
sional). A derivation rule is a rule of the form p(Tp)← φ(T ), where p(Tp) is an atom

called the head of the rule, and φ(T ) is a conjunction of literals called the body.
All derivation rules must be safe, i.e., every variable appearing in the head or in a
negated or inequality literal of the body should also appear in a positive literal of the
body. Additionally, all the predicates must be stratified, i.e., it should be possible to
partition the set of predicates P into several pairwise disjoint strata P1 ∪ ...∪Pm s.t.
for each predicate p ∈ Pi, each predicate appearing in the derivation rules of p should
belong to a stratum Pj with j < i, if it appears in a negated literal, or, j ≤ i, if it
only appears in positive literals.

Finally, a datalog program is a set of derivation rules together with a set of facts,
where a fact is a ground atom of a non-derived predicate.

6.3 Formula-Based Approach for Updating DL On-
tologies

In the following, we first present the intuitions on ontology update, then we define two
distinct formula-based update semantics, and we argue that, for the case of DL-LiteA,
these two semantics capture virtually all other formula-based update semantics pro-
posed so far. Then, we show that the careful semantics, a different formula-based
update semantics proposed in the literature, is not uniquely defined in the case of
DL-LiteA, contradicting a result stated in [23], which makes this update semantics
inappropriate in our approach due to its inherent nondeterminism.

6.3.1 Update Semantics for DL-LiteA

In the formula-based approaches to the update, the objects of change are sets of
formulae. That is, the result of the change is explicitly defined in terms of a formula,
by resorting to some minimality criterion with respect to the formula expressing the
original ontology.

Thus, an update is a set U of operations of two types: insertion operations,
denoted by i(α), and deletion operations denoted by d(α), where α is an ABox
assertion. Intuitively, updating a consistent ontology with an insertion operation
i(A(o)), where A(o) is a concept ABox assertion, means changing the extensional
level of the ontology in such a way that the ontology resulting from the update is still
consistent and entails the fact A(o). Conversely, updating a consistent ontology with
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a deletion operation d(A(o)), means changing the extensional level of the ontology
in such a way that the ontology resulting from the update is still consistent and does
not entail the fact A(o).

After adding new facts into an ontology, one may find that the revised ontology
becomes inconsistent. A strategy to overcome such a situation is to remove part of
the original ABox to the aim of preserving consistency. Similarly, if the goal is to
update the ontology by deleting a fact, we might need to retract several facts from
the original ABox that entailed it. When applying these modifications to the original
ABox, one should respect the minimal change principle, a widely accepted principle
of the knowledge base evolution literature [43, 52, 66]. This principle states that the
ontology resulting from the update should be as close as possible to the original one.
In updating an ontology at the instance level following the formula-based approach,
the goal becomes the preservation of the facts contained in the original ABox. In
what follows we formalize this idea.

Given an ontology O = 〈T,A〉, an update U, and an ABox A′, we say that A′

accomplishes the update of O with U if it satisfies all the insertions/deletions in U

minimally. To formalize this notion, we first need to introduce the set A+
U , which

denotes the set of ABox assertions appearing in U in insertion operations, and the set
A−U , which denotes the set of ABox assertions appearing in U in deletion operations.

Definition 22. ABox Update

Let O = 〈T,A〉 be an ontology, U an update, and A′ be an ABox. A′

accomplishes the update of O with U if A′ = A′′∪A+
U for some maximal

subset A′′ of A s.t. A′′ ∪ A+
U is T-consistent and 〈T,A′〉 6|= β for each

β ∈ A−U .

It easy to see that, by definition, if such ABox A′ exists, it also satisfies 〈T,A′〉 |=
α for each α ∈ A+

U since A+
U ⊆ A′. In order to ensure its existence, note that U has

to respect both of the following conditions:

i) Mod(〈T,A+
U〉) 6= ∅, which means that the set of facts we are adding is consis-

tent with the TBox of the ontology.

ii) A−U ∩ clT(A+
U ) = ∅, which means that the update is not asking for deleting and

inserting the same knowledge at the same time.

Given a TBox T and an update U, we say that U is coherent with T if U respects
both the above conditions with respect to a TBox T.

Given a consistent ontology O = 〈T,A〉 and an update U coherent with T, there
might be more than one ABox accomplishing the update of O with U. This fact
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leads to different update semantics, each one addressing this issue by means of a
different criterium, like the Cross Product Approach [47], the When In Doubt Throw
It Out principle [56, 71, 72, 116], allowing the user to choose the update [108], or
even nondeterminism [23]. Fortunately, when the TBox of the ontology is expressed
in DL-LiteA, the ABox accomplishing the update is uniquely defined [23]. Hence, the
application of all the above approaches leads to the same result, which can be defined
as follows:

Definition 23. DL ABox (foundational) Update

Let O = 〈T,A〉 be a consistent DL-LiteA ontology and U be an update
coherent with T. The result of updating O with U, denoted by O ◦U, is
the ontology 〈T,A′〉, where A′ is the ABox accomplishing the update of
O with U.

When dealing with ontology updating, there is a fundamental philosophical aspect
that has to be considered: one has to decide if the formulae explicitly given in our
ontology provide a justification for our knowledge (foundational semantics) or if they
are just used as a finite representation of our knowledge (coherence semantics) [52,
55]. Depending on this point of view, one may or may not need to preserve a fact
that is entailed in the ontology despite not being explicitly asserted. The choice
depends on the particular application and personal preferences (we refer to [55] for
more details).

Clearly, the update semantics given in Definition 23 embraces the foundational
theory. Depending on the specific scenario, and the particular application at hand,
this semantics might be considered inappropriate. This motivates the definition of the
following update semantics [23, 71] for DL-LiteA ontologies based on the coherence
theory, in which the objects of the update is not the original ABox, but its deductive
closure with respect to the TBox.

Definition 24. DL ABox (coherent) Update

Let O = 〈T,A〉 be a consistent DL-LiteA ontology and let U be an
update coherent with T. The result of updating O with U according to
the coherence semantics, denoted by O•U, is the ontology 〈T,A′〉, where
A′ is the ABox accomplishing the update of 〈T, clT(A)〉 with U.
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6.3.2 Careful Semantics in DL-LiteA

An alternative formula-based update semantics based on the coherence theory is the
Careful semantics [23] which was proposed with the aim of preventing unexpected
information. Formally, an ontology updated according to the careful semantics should
not entail a role constraint φ (i.e., a rule of the form ∃x(R(o, x))∧(x 6= c1)∧· · ·∧(x 6=
cn)), unless φ is entailed by the original ABox, or the update itself. In practice, the
careful update semantics encompasses deleting more ABox assertions so that the final
ontology does not entail any new role constraint φ. However, although the careful
update semantics was thought to be uniquely defined [23, Theorem 16], it can bring
to several solutions as we show in the following example.

Example 2. Consider the DL-LiteA ontology O = 〈T,A〉 where:

T = { A v ∃RA, RA v R, ∃R−A v ¬∃R
−
B,

B v ∃RB, RB v R, ∃R−A v ¬∃R
−
C ,

C v ∃RC , RC v R, ∃R−B v ¬∃R
−
C ,

D v ∃RD, RD v R, ∃R−C v ¬∃R
−
D}

A = { A(o), B(o) }

and the update U = {i(C(o)), i(D(o))}. It is easy to see that the ABox A′ =
A∪A+

U is T-consistent and that it accomplishes the update of O with U. Moreover,
〈T,A′〉 |= ϕ, where ϕ = ∃x(R(o, x)) ∧ (x 6= c1 ∧ (x 6= c2))) (since the negative
inclusions in T imply that in every model I of 〈T,A′〉 there are three distinct
individuals da, db, dc such that 〈o, da〉 ∈ RI

A, 〈o, db〉 ∈ RI
B, 〈o, dc〉 ∈ RI

C). However,
since neither 〈T,A〉 |= ϕ nor 〈T,A+

U〉 |= ϕ, we have that A′ does not accomplish
the update of O with U carefully. Conversely, both the ABoxes {A(o)} ∪A+

U and
{B(o)} ∪ A+

U accomplish the update of O with U carefully. This is because the
only role-constraining formula ∃x(R(o, x))∧ (x 6= c1)) that both entail with T, is
also entailed by 〈T,A+

U〉. Hence, we have more than one ABox that accomplishes
the update of O with U carefully.

6.4 Foundational-Semantic Updates through Data-
log

Now, our intention is, given a DL-LiteA ontology 〈T,A〉, and some update U, to
define a datalog program D that permits querying whether U is coherent with T and,
in such a case, allows for generating a set of insertion/deletion instructions that should
be applied to A to accomplish U according to Definition 23 (foundational-semantic
updates).
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For ease of presentation, from now on we assume that the TBox T does not
contain inclusions involving attributes and value-domains. However, all the results
presented in the next two sections can be easily extended to TBoxes containing such
kinds of axioms.

Formally, the datalog program D contains a derived predicate incoherent update,
together with a pair of derived predicates ins a/del a for each concept/role A such
that:

− incoherent update() is true iff U is not coherent with T.

and, in case incoherent update() is false,

− ins a(o) is true iff the assertion A(o) was not in A, but A(o) ∈ 〈T,A〉 ◦ U.
That is, ins a captures the assertions of A that should be inserted into A to
accomplish the (foundational-semantic) update U.

− del a(o) is true iff the assertion A(o) was in A, but A(o) 6∈ 〈T,A〉◦U. That is,
del a captures the assertions of A that should be deleted from A to accomplish
the (foundational-semantic) update U.

Briefly, the main idea of the translation is to map each ABox assertion in A, and
each operation in U into different datalog facts. Then, we map each assertion in the
closure of T into several datalog derivation rules that define the incoherent update,
ins a(X), del a(X) predicates. In the following, we formally describe how to obtain
such a datalog program D. Then, we prove that the set of instructions generated in
D are sound and complete to obtain 〈T,A〉 ◦ U.

6.4.1 Translation Rules

Translation of A and U

All the assertions in A and operations in U are translated as different facts in D. In
particular:

Each assertion A(o) ∈ A is translated as the fact a(o).
Each operation i(A(o)) ∈ U is translated as the fact ins a request(o).
Each operation d(A(o)) ∈ U is translated as the fact del a request(o).

Intuitively, ins a request(o)/del a request(o) means that the ontology has received
the request to insert/delete the ABox assertion A(o). Since according to the Defini-
tion 23 all the insertions/deletions requested should be applied, we define the datalog
rules:

ins_a(X) :- ins_a_request(X), not a(X).

del_a(X) :- del_a_request(X), a(X).

incoherent_update () :- ins_a_request(X), del_a_request(X).
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for each atomic concept A. Note that incoherent update becomes true in case we
request for the insertion and deletion of the same axiom. Similarly, we define the
rules ins p(X, Y)/del p(X,Y) for each atomic role P .

Translation of cl(T)

We translate positive and negative/functional axioms in the closure of T differently.
In particular, for each positive inclusion axiom B v A in the closure of T, where A is
an atomic concept, we define the rules:

del_b(X) :- b(X), del_a_request(X).

incoherent_update () :- ins_b_request(X), del_a_request(X).

Intuitively, when we request for deleting A(o), we have to delete any other ABox
assertion B(o) that entails A(o). Note that it cannot be accomplished if there is a
request for inserting B(o), so, this case makes incoherent update true. We define
similar rules when the left-hand side of the axiom is of the form ∃P , and also for role
inclusion axioms.

Note that we translate the closure of T, instead of T itself, to be able to cap-
ture deletions that are propagated along the concept/role hierarchy. E.g. if in our
example we have U = d(Person(john)), the translated datalog program D gener-
ates the deletion of FullProfessor(john) because of the translation of the assertion
FullProfessor v Person appearing in cl(T):

del_fullprof(X) :- fullprof(X), del_person_request(X).

Differently, for each negative inclusion axiom B v ¬A in cl(T), we define the
rules:

del_b(X) :- b(X), ins_a_request(X).

del_a(X) :- ins_b_request(X), a(X).

incoherent_update () :- ins_a_request(X), ins_b_request(X).

Intuitively, if we insert A(o) when we have B(o) in the ABox, we have to delete
B(o). In the case where the requested update tries to insert both things, we reach a
contradiction and thus, incoherent update becomes true. We define similar rules for
role negative inclusions, negative inclusions involving the ∃ constructor, and functional
axioms. In this last case, we require using the inequality built-in predicate to check
whether the requested role assertion insertion is going to violate the functional axiom.
E.g., given a functional axiom defined over R, we define:

del_r(X,Y) :- r(X,Y), ins_r_request(X,Z), Y<>Z.

incoherent_update () :- ins_r_request(X,Y),ins_r_request(X,Z),Y<>Z

.

Again, note that since we translate the closure of T, the rules are able to capture
deletions due to inconsistencies generated by propagation. E.g. if in our previous
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example we have the update U = i(AssociateProfessor(bob)), D generates the dele-
tion of Student(bob) because of the first rule obtained when translating the assertion
Student v ¬AssociateProfessor appearing in cl(T):

del_student(X) :- student(X), ins_assocprof_request(X).

del_assocprof(X) :- assocprof(X), ins_student_request(X).

6.4.2 Datalog Program Soundness and Completeness

The update generated by the datalog program D is sound in the sense that, for every
axiom A(o) that should be inserted/deleted according to D, A(o) should be truly
inserted/deleted according to the foundational-semantic update. Formally:

Property 33. Datalog program soundness (foundational seman-
tics)

Given a consistent ontology 〈T,A〉, and an update U, the datalog pro-
gram D obtained through the translation defined in Section 6.4.1, sat-
isfies that: if incoherent update() is true in D, U is incoherent with T,
otherwise, for each concept/role A, if ins a(o) is true in D, then, A(o) ∈
〈T,A〉 ◦U \A, and if del a(o) is true in D, then, A(o) ∈ A \ 〈T,A〉 ◦U.

Proof. (Sketch) If incoherent update() is true, it can only be because of a rule gen-
erated when translating the update U, the positive axioms of cl(T), or the negative/-
functional axioms of cl(T). The rules generated in the first two cases are true only if
A−U ∩ A+

U 6= ∅ and A−U ∩ clT(A+
U ) 6= ∅, respectively. The rules of the third case are

true only if Mod(〈T,A+
U〉) = ∅. Thus, if incoherent update() is true, U is incoherent

with T.
If ins a(o) is true, it is because of a rule generated when translating U, which can

only be true if A(o) 6∈ A, and A(o) ∈ A+
U , thus A(o) ∈ 〈T,A〉 ◦ U \A.

If del a(o) is true, it can only be because of (1) a rule generated when translating
U, where in such case we have A(o) ∈ A, and A(o) ∈ A−U , thus A(o) ∈ A\〈T,A〉◦U;
or (2) a rule generated when translating a positive axiom in T, where in such case
we have that A(o) ∈ A and that for some B(o) ∈ A−U , A(o) |=T B(o), thus,
A(o) ∈ A\ 〈T,A〉 ◦U; or (3) a rule generated when translating a negative/functional
axiom in cl(T) where in such case we have A(o) ∈ A and Mod(〈T,A+

U∪{A(o)}〉) = ∅,
and thus, A(o) ∈ A \ 〈T,A〉 ◦ U.

Conversely, D is also complete in the sense that any axiom insertion/deletion of
A(o) that should be applied according to the foundational-semantic update is also
generated in D. Formally:
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Property 34. Datalog program completeness (foundational se-
mantics)

Given a consistent ontology 〈T,A〉, and an update U, the datalog pro-
gram D obtained through the translation defined in Section 6.4.1, satis-
fies that: if U is incoherent with T, then, incoherent update() is true in
D, otherwise, for each concept/role A, if A(o) ∈ 〈T,A〉 ◦ U \ A, then,
ins a(o) is true in D, and if A(o) ∈ A \ 〈T,A〉 ◦U, then, del a(o) is true
in D.

Proof. (Sketch) First, if U is incoherent with T, it is immediate to verify that then,
incoherent update() is true in D. So, from now on we assume that U is coherent
with T. Moreover, since U is coherent with T, 〈T,A〉 ◦ U \ A = A+

U \ A, and by
definition of D, it easily follows that, for each concept/role A, if A(o) ∈ A+

U \ A,
ins a(o) is true in D. Finally, we prove that for every assertion deleted from A there
is a corresponding deletion instruction in D. To this aim, we define the following
algorithm:

Algorithm ComputeDeletedAssertions(T,A,U)
Input: DL-LiteA TBox T, ABox A, update U coherent with T

Output: ABox Ad = A \ 〈T,A〉 ◦ U
begin
Ad = ∅;
for each C(a) ∈ A+

U do begin
for each D(a) ∈ A such that T |= C v ¬D do Ad = Ad ∪ {D(a)};
for each R(a, x) ∈ A such that T |= C v ¬∃R do Ad = Ad ∪ {R(a, x)};
for each R(x, a) ∈ A such that T |= C v ¬∃R− do Ad = Ad ∪ {R(x, a)}

end;
for each R(a, b) ∈ A+

U do begin
for each S(a, b) ∈ A such that T |= R v ¬S do Ad = Ad ∪ {S(a, b)};
for each S(b, a) ∈ A such that T |= R v ¬S− do Ad = Ad ∪ {S(b, a)};
for each C(a) ∈ A such that T |= ∃R v ¬C do Ad = Ad ∪ {C(a)};
for each C(b) ∈ A such that T |= ∃R− v ¬C do Ad = Ad ∪ {C(b)};
for each S(a, x) ∈ A such that T |= ∃R v ¬∃S do Ad = Ad ∪ {S(a, x)};
for each S(x, a) ∈ A such that T |= ∃R v ¬∃S− do Ad = Ad ∪ {S(x, a)};
for each S(b, x) ∈ A such that T |= ∃R− v ¬∃S do Ad = Ad ∪ {S(b, x)};
for each S(x, b) ∈ A such that T |= ∃R− v ¬∃S− do Ad = Ad ∪ {S(x, b)}

end;
for each C(a) ∈ A−U do begin

for each D(a) ∈ A such that T |= D v C do Ad = Ad ∪ {D(a)};
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for each R(a, x) ∈ A such that T |= ∃R v C do Ad = Ad ∪ {R(a, x)};
for each R(x, a) ∈ A such that T |= ∃R− v C do Ad = Ad ∪ {R(x, a)}

end;
for each R(a, b) ∈ A−U do begin

for each S(a, b) ∈ A such that T |= S v R do Ad = Ad ∪ {S(a, b)};
for each S(b, a) ∈ A such that T |= S v R− do Ad = Ad ∪ {S(b, a)}

end;
return Ad

end

It can easily be shown that the ABox returned by such an algorithm is equal to
A \ 〈T,A〉 ◦ U. Moreover, it is easy to see that, for each concept/role A, if A(o)
belongs to the ABox returned by ComputeDeletedAssertions(T,A,U), then del a(o)
is true in D.

6.5 Coherent-Semantic Updates through Datalog

The previous datalog program D generates the set of insertions/deletions that should
be applied to an ABox A to accomplish an update U according to the foundational-
semantics. Now, our purpose is to modify this datalog program to deal with the
coherent-semantics as described in Definition 24.

Briefly, to accomplish the coherent-semantics, we need to generate more inser-
tion instructions in D. This is because in the coherent-semantics we need to keep
the updated ABox as close as possible to the T-closure of the original ABox, in-
stead of the ABox itself. For instance, if in our previous example we apply the
update U = {d(Student(bob))} with coherent-semantics, besides deleting the asser-
tion Student(bob), we also need to apply the insertion Person(bob) since Person(bob)
appears in clT(A).

Thus, in practice, we only need to extend our datalog program D to (1) addi-
tionally capture those assertions A(o) entailed by assertions B(o) that are requested
for deletion, and (2) derive their insertion in case they do not get in conflict with the
assertions in A+

U . Intuitively, we do (1) by considering an additional derived predicate
ins a closure for each concept/role A; then, we use this new predicate to define new
derivation rules for ins a in case they do not get in conflict with any axiom in A+

U ,
thus accomplishing (2).

In the following, we first define how we obtain these new derivation rules, and then
we prove that the insertion/deletion instructions generated by this extended datalog
program D are sound and complete with respect to the coherent-semantics.
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6.5.1 Translation Rules

Capturing Closure Insertions due to Deletions

For each positive inclusion axiom B v A in the closure of T, where A is an atomic
concept, let A1, ..., Am be all the atomic concepts having a positive inclusion axiom
of the form A v Ai in the TBox closure of T, then we define the rules:

ins_a_closure(X) :- del_b(X), not a(X), not ins_a_request(X), not

del_a_request(X), not del_a1_request(X), ..., not

del_am_request(X).

For example, for the assertion FullProfessor v Professor, we define the rules:

ins_prof_closure(X) :- del_fullprof(X), not prof(X), not

ins_prof_request(X), not del_prof_request(X), not

del_person_request(X).

Intuitively, when we delete a FullProfessor(o), we might need to insert Professor(o)
because of the closure of the semantics. However, such closure insertion is not
necessary if Professor(o) is already in the ABox, or if there is a request for its insertion,
or if it is requested for deletion (either Professor(o) itself or its parent concepts
Person(o)). We define similar rules for role positive inclusion axioms and positive
inclusion axioms in which the left-hand side uses the ∃ constructor.

Defining New Insertions due to Closure Insertions

Once we have defined the predicates ins a closure, we use them for defining new
insertions in case they do not get in conflict with the assertions in A+

U . To do so, for
each atomic concept A, let B1, . . . , Bn be all the concepts having a negative inclusion
axiom with A in the TBox closure of T, then we define the rules:

ins_a(X) :- ins_a_closure(X), not ins_b1_request(X) ... not

ins_bn_request(X).

Following the previous example, we would define:

ins_prof(X):-ins_prof_closure(X), not ins_student_request(X).

Intuitively, any derived closure insertion of Professor(o) should be applied only if
it does not get in conflict with any negative inclusion axiom. Such a conflict might
arise if there is a request to insert some Student(o) because of the negative inclusion
assertion Student v ¬Professor. Similarly, we define the rules for roles.

6.5.2 Datalog Program Soundness and Completeness

We finally state that the generated insertion/deletions instructions generated by the
datalog program D is sound and complete with respect to the coherent-semantics

165



(the proof of the following theorem can be obtained by easily extending the proofs of
Theorem 33 and Theorem 34).

Property 35. Datalog program correctness (coherent semantics)

Given a consistent ontology 〈T,A〉, and an update U, the datalog pro-
gram D obtained through the translation defined in Sections 6.4.1 and
6.5.1, satisfies that: (i) incoherent update() is true in D iff U is incoher-
ent with T; (ii) if U is coherent with T, then for each concept/role A,
ins a(o) is true in D iff A(o) ∈ 〈T,A〉 •U \A, and del a(o) is true in D

iff A(o) ∈ A \ 〈T,A〉 • U.

6.6 Implementation and Experiments

To show the feasibility and scalability of our technique, we have developed a Java
program that, given a closed DL-LiteA TBox, builds the datalog program that gen-
erates the insertion/deletion instructions for applying a coherent-semantic update.
Furthermore, the program translates this datalog into standard SQL queries. Since
these queries depend only on the TBox, but not on the ABox nor the requested up-
date, all of them are created in compilation time and stored in the database as SQL
views. Thus, on runtime, the user can generate the instructions by means of inserting
the operations s/he wants to perform in the ins a request/del a request tables of the
database and querying these views.

We have run the experiments using a DL-LiteA approximation of the LUBM bench-
mark, an ontology describing university concepts (e.g., teachers, departments, etc)
with 75 basic concept/roles and 243 assertions. For our purposes, we have removed
those axioms not expressible in DL-LiteA, and added 20 disjointness/functional asser-
tions to increase the complexity of the updates. Thus, our final ontology consisted
of 195 axioms.

Regarding the data, we have created different ABoxes of increasing size (from 105

to 3.5 ∗ 107 assertions). To do so, we have modified the UBA Data Generator to
create a single university, but with an increasing number of connected departments,
teachers, etc. Due to this increasing number of connected objects, the updates
became more complex when increasing the data size. Then, we have defined an
update request by means of selecting 3 tuples to delete, and 3 tuples to insert. Such
tuples were selected in a way to ensure several interactions with the TBox assertions,
thus, generating several insertions/deletions.
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Figure 6.1: Experimental Results

In Figure 6.1 we summarize the results we have obtained using the MySQL 5.7
DBMS, running on a Windows 8.1 over an Intel Core i7-4710HQ, with 8GB of RAM
1. In particular, we show the times to generate the instructions (x points in the first
diagram), the time to generate and execute the instructions (+ points in the first
diagram), and the number of instructions generated (x points in the second diagram).
We also depict the different trend lines in the diagrams.

As it can be seen, our method has generated from 139 insertion/deletion instruc-
tions in 12s for the smallest ABox, to 479 instructions in 16s for the largest. Thus,
although there is a constant time penalty of about 12s to generate the instructions,
the time increment in function of the ABox size is small. Adding this time to the time
to execute the instructions, we got a total cost near to 20s. We argue that this low
time increment behavior is due to the fact that, in DL-LiteA, an update request only
causes updates locally, i.e., the unique tuples to insert/delete are a subset of those
that are connected to the requested insertions/deletions. Thus, since ABoxes tends
to increase its size by considering more objects, rather than infinitely augmenting
the connectivity between them, increasing the ABox size barely increases the gener-
ated instructions, as can be seen in the second diagram. Hence, we argue that our
approach can be effectively used in practice with large ABoxes.

6.7 Conclusions

In this chapter we have shown that the DL-Lite family, in particular DL-LiteA, enjoys
the first-order rewritability of instance level updates. Apart from the theoretical
interest, this result gives us a practical and effective technique to perform updates
over DL-Lite ontologies.

Although we have not considered any specific syntax to express the update, what

1More experiment details and results at www.essi.upc.edu/~xoriol/dllitea/
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we proposed here is fully compatible with Sparql update operators studied in [4].
There, the set of insertions and deletions are defined through unions of conjunctive
queries over the current ontology. We can immediately extend our approach in the
same way, producing update operators that are equivalent to the ones defined in [4]
in the case of RDFS, but that deal with the more expressive DL-LiteA and owl 2 ql
languages.

There are several directions for future work, but maybe the most compelling one,
encouraged by the practical applicability of our results, is to extend our datalog-based
approach blurring the distinction between TBox and ABox assertions, in line with the
use of Sparql over owl 2 ql ontologies.
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Chapter 7

Conclusions And Further Research

The basic goal of this thesis was to provide a method for performing incremental in-
tegrity checking/maintenance of UML/OCL conceptual schemas. That is, we wanted
to develop some technique that, given a set of UML/OCL constraints, a consistent
data state, and some updates on it, we wanted to be able to (1) assess whether such
updates are going to cause the violation of some constraint, and (2) which additional
updates could be considered to repair such violation.

Bearing this in mind, we have started by studying the difficulty of checking general
OCL constraints. In this study, exploiting the OCL recursion and its string operators,
we have been able to reduce the problems of 0-type grammar word acceptance/non-
acceptance to OCL constraint satisfaction. Thus, since such problems are known
to be non decidable, it turns out that checking whether some data state satisfies a
general OCL constraint is undecidable too.

To solve such situation, we have identified OCLFO, the subset of OCL equivalent to
relational algebra (aka domain independent first-order logics). OCLFO is equivalent to
RA in the sense that any OCLFO constraint can be checked through a RA query, and
any constraint checkable in RA can be written in OCLFO. The syntax and semantics
of OCLFO are precisely defined through a formal grammar and basic set theory, thus,
avoiding the ambiguities that are currently found in the OCL standard. Moreover, to
make OCLFO an easy object of study, we have shown that the full expressive power
of OCLFO can be achieved by 5 OCL basic operators: allInstances, forAll, implies, <,
and =. We call such minimal set of operators as OCLCORE.

Then, we have moved to the problem of incremental integrity checking of OCL
constraints. Our proposed solution is based on materializing the updates as ground
facts, and define some logic rules (the Event Dependency Constraints), that are able
to assess whether such updates in the current data state cause a constraint violation or
not. This proposal is based on a previously existing technique for constraint checking
in deductive databases (the events method [82]) but extended in several directions.
First, we have extended this technique to deal with aggregation operations, thus, our
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technique is able to deal with all OCLFO constraints extended with size, sum, and
count OCL operators. Second, we have used this extension to better treat existential
variables. Briefly, we aggregate the existential variables to count the number of
witnesses do they have in the current data state, thus, we can spot the violation of a
constraint involving existential variables when such counts get to 0 (without requiring
to check the data state again). Third, we have reduced the number of rules generated
to check the constraints to a linear number (whereas the original proposal generated
an exponential number of EDCs w.r.t. the size of the constraints).

Afterwards, we have modified the EDCs proposal for integrity checking to be able
to perform integrity maintenance. The basic idea is to move the negated events from
the EDCs to the RHS of the logic rule. We call such new rules Repair-Generating
Dependencies. Then, we can compute the additional events required to repair the
constraint violations by means of chasing such RGDs. The concrete chase algorithm
to apply depends on the kind of RGDs involved. In the particular case of RGDs
without existential variables, we have proved that we can apply the usual (disjunctive)
chase; in contrast, for dealing with existential variables, the output of the traditional
chase does not suit our purposes anymore since the generated labelled nulls might
be replaced for incorrect values. To fix this problem, we have proposed to include
built-in literals constraining the incorrect values of the generated labelled nulls, and
shown that we can compute such labelled nulls incorporating the VIPs approach into
the chase [50].

In order to exploit this distinction between RGDs with/without existential vari-
ables, we have identified an expressive subset of OCLFO whose generated RGDs have
no existential variables: OCLUNIV. Intuitively, OCLUNIV is obtained by removing the
OCL exists operator in OCLFO, and limiting all those other operators that might be
used to emulate it.

We have also seen that the problem of maintaining OCL constraints is decidable
for the case of OCLUNIV (due to the absence of existential variables in its RGDs),
but undecidable in the OCLFO language. To deal with this issue, we have connected
some decidability results appearing in [103, 107] to our RGDs. To do so, we have
defined the Finite Canonical Property (FCP), showed that the previous results stated
in [103, 107] ensured FCP, and that FCP ensures termination on the chase we use to
repair the constraints.

Since the number of solutions obtained for repairing a set of constraints can grow
exponentially, we have also studied how to prune some of them. Thus, we propose
to customize the available repairs in our RGDs by moving some of their events from
the RHS to the LHS. When doing so, we have seen that the negated events might
cause semantic problems on our rules, in a similar way that the negated literals might
cause problems in the context of logic programming. To solve such problems, we
have borrowed the concepts of well-supportedness from the logic programming field
together with the notion of stratified negation.
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Finally, we have seen that we can apply the previous techniques in the context of
DL-Lite and the open-world assumption. In virtue of the DL-Lite first-order rewritabil-
ity property for the problem of integrity checking, we can pick the first-order queries
that checks the consistency of a DL-Lite ontology, and use them for building our
RGDs. Moreover, we have seen that such RGDs can be seen as a non-stratified dat-
alog program, which means that they can be translated as SQL queries. Therefor,
DL-Lite repairs can be computed using SQL queries, with no need of chase procedures.
In other words, computing DL-Lite updates itself is first-order rewritable, which is a
novel result proved in this thesis.

Further Research

There are several ways to extend this work we have done.
First of all, taking in account that it is known that the constraints that can be

checked in polynomial time (w.r.t. data complexity) are those expressible in first-
order logics with least fixed-points, it would be interesting to try to figure out which
subset of OCL corresponds to it. Such subset would be able to deal with all OCLFO

but extending it with more powerful OCL operations (such as closure). Then, it
would be interesting to extend our techniques for performing incremental integrity
checking/maintenance under this new language. Essentially, it seems that the first
step would be to extend the new/old mappings for the case of recursive derived
literals.

We would also like to improve the performance of the vips-chase to incrementally
maintain OCLFO constraints. In this case, we should probably change our definition of
Canonical Model Set to avoid an exponential growth of its cardinality. A preliminary
idea we have is to replace the set of built-in literals restricting the values for the
labelled nulls with richer constraints (e.g. combining built-in literals with disjunctions
would permit us to collapse several canonical models into one).

With regarding to the open-world assumption and the ontology field, we are
currently working on how to apply these techniques to build an Ontology Based
Data Update framework in collaboration with researchers from Università di Roma La
Sapienza. Other possibilities would be to try to export the current DL-Lite update
approach to linear Datalog± [19].
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