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Summary

Mathematical modeling has been used for more than 100 years in theoretical
biology, but now has become a fundamental part of biological research. The
improvement of omics technologies is making it possible to systematically
profile DNA, RNA, proteins and metabolites in living organisms. This data
opens the door for a paradigm shift towards a systemic biology approach.

Despite the sequentiation of the genome and a wide coverage of the
proteome, one fundamental question remains open: How many different
metabolites are in a given organisms or in a biological sample? Metabolomics
could offer us an answer, but with the current best technique for detecting
the maximum number of metabolites, a liquid chromatography coupled to
mass spectrometry (LC/MS), oftenly only 20-30 metabolites are annotated
among the thousands of signals in the data. One of the main causes of
this partial annotation of metabolomics experiments is the lack of a proper
method to correctly group the multiple signals produced per metabolite.
To fill this gap our first goal is the following:

- To develop a new method to group and annotate the multiple adducts
and isotopes produced by metabolites in LC/MS experiments.

For this purpose we have developed CliqueMS, a novel method which
groups signals belonging to the same metabolite, based on similarity prop-
erty that can be applied when we transform our metabolomics experiment
into a newtork. Then we annotate metabolites within each group. Our
method outperforms current annotating methods and may contribute to
overcome one of the main bottlenecks for a better annotation of metabolomic
experiments.
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While part of the research is focused on developing new algorithms and
devices to overcome the current limitations of omics technologies, there is
already a massive use of omics devices which is producing a steady growth
in the recorded biological data. The way we obtain and analyze this data
is one of the main challenges of biology, sometimes refered as “big data
to knowledge”. The use of large amounts of data is a necessary but not
sufficient condition to a paradigm shift in biology. We need a combination
of the multiple sources of biological data to achieve a better comprehension
of systems as a whole. This combination won’t be straightforward, as we
do not see simple associations, for example there is no general correlation
between mRNA and proteins abundance. Integration of data demands new
mathematical models, to unveil the complex relations between the different
biomolecules.

Regarding the combination of multiple omics data, we study the effects
of Hibbiscus sabdariffa extracts in humans by analyzing the metabolomic
and transcriptomic response after its ingestion. Our goal in this investiga-
tion is the following:

- To elucidate the role of the polyphenols present on Hibbiscus extracts,
associated to a positive impact in human metabolism.

From the metabolomic profile we report for the first time the molecular
composition of Hibbiscus sabdariffa extracts. By combining transcriptomic
and metabolomic patterns we observe an alteration of the immune response,
the mitochondrial function and the energy homeostasis. These results show
an example of data integration. However, there is another important prob-
lem of omics data: how to cope with the different interpretations provided
by different matemathical models?

Omics data is complex, oftenly highly variable and findings might be
hard to reproduce, or even contradictory. Results are obtained through
mathematical models, and they are validated by its capacity for prediction.
Nevertheless, are good predicting models also good for interpretation? This
issue is not only restricted to omics data, but is a general problem for bio-
logical data. We analyze the interplay between prediction and interpretabil-
ity by evaluating the role of different computational models for predicting
platelet deposition. In this research our goal is:
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- To develop three complementary approaches to predict platelet depo-
sition, as a first step towards a multiscale model for thrombosis.

Platelet deposition is the trigger of thrombus formation, a very impor-
tant pathology leading to hearth stroke and embolia. In this study, we
demonstrate that by measuring platelet concentration, vessel tissue and
other variables our models can predict the platelet deposition in a new
sample.
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Resum (Català)

Els models matemàtics porten usant-se en biologia desde fa més de 100
anys, a l’àmbit de la biologia teòrica. Avui en dia, però, són ja una part
fonamental del conjunt de la recerca biològica.

Les tecnologies òmiques han millorat tant que ja és possible la caracter-
ització massiva molecular de ADN, ARN, protëınes i metabòlits. Aquestes
noves dades obren la possibilitat d’un canvi de paradigma, cap a una biolo-
gia més sistémica. S’ha aconseguit la sequenciació del genoma, una bona
estimació del nombre total de protëınes en molts éssers vius però una pre-
gunta resta a l’aire: Quants metabòlits trobem en un organisme? I en una
mostra biológica?

La millor técnica per a detetectar el màxim nombre de metabòlits,
una cromatografia ĺıquida acoplada a espectroscopia de masses, (LC/MS)
malauradament només permet anotar entre 20 i 30 metabòlits, d’un total
de senyals que habitualment ronden els milers.

Per a millorar l’anotació d’aquests experiments, hem desenvolupat el
CliqueMS, un nou algorisme per a agrupar i anotar les múltiples senyals
que un mateix metabolit produeix en els experiments de LC/MS. Aquestes
senyals són variants isotòpiques, ionitzacions amb diferents ions, anome-
nades aductes, i fragments. El nostre métode millora els actuals mètodes
d’anotació. Amb aquest métode volem contribuir a superar un dels princi-
pals colls d’ampolla per a l’anotació completa dels experiments en metabo-
lòmica.

Una aplicació directa que esperem per al nostre nou métode es calcu-
lar la distribució d’aductes als experiments de metabolòmica no dirigida.
L’estimació d’aquesta distribució serà una informació molt útil per als algo-
rismes d’anotació, i en general per a millorar la metabolómica no dirigida.

És necessari, per tant, seguir millorant les tècniques i els mètodes per
a una major qualitat i precisió de les dades òmiques. Com hem vist en
el cas de la metabolòmica, totes les tecnologies òmiques tenen alguns in-
convenients o mancances, però el seu ús no para d’augmentar i hi ha una
creixement en el total de dades biologiques emmagatzemades. Aquestes
dades són necessàries, però no suficients, per al canvi de paradigma en la
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biologia. Necessitem combinar les diverses fonts d’informació per a com-
prendre els sistemes desde la seva totalitat. Sabem que aquesta combinació
no serà directa, ja que no es veuen simples associacions matemàtiques entre
les diferents biomolècules, per exemple no hi ha una correlació general en-
tre els nivells de protëına i ARN. La integració d’aquestes dades requereix
nous models matemàtiques, per a descobrir les complicades relacions i de-
pendències entre les biomolècules.

Com a exemple de combinar diverses dades òmiques, estudiem els ef-
fectes terapèutics d’una infusió de Hibisscus sabdariffa. Per coneixer aque-
sts efectes analitzem la resposta metabolòmica i transcriptòmica després de
la ingestió d’una infusió a partir d’un extracte de la planta. Observem una
alteració a la funció mitocondrial, i al metabolisme energètic encarregat de
l’homeostasi. Aquestes alteracions es veuen tant a la resposta metabòlica
com als canvis als patrons d’expressió génica. A més del repte de l’integració
de dades metabolòmiques, hi ha un altre problema fonamental de les dades
òmiques: com avaluar les diferents interpretacions provinents de diferents
models matemàtics?

Al món de les dades òmiques, trobem que aquestes són complexes,
que poden ser altament variables i que els resultats són dif́ıcils de re-
prodüır, quan no contradictoris. Els resultats s’obtenen mitjançant model
matemàtics, i la validesa d’aquests es determina per la seva capacitat de
predicció. Aixi doncs, és incompatible la predicció amb la interpretació?
Aquest problema no es restringeix només a les dades òmiques, sinó que és
un problema general de les dades biològiques. En aquesta tesi incloem un es-
tudi on avaluem com diferents models computacionals prediuen l’acumulació
de plaquetes, el procés que desencadena la trombosis. Analitzem com la
capacitat de predicció i la interpretació no són incompatibles, mitjançant
tres models molt diferents, un basat en equacions mecanistiques, un model
d’aprenentatge de màquina i un model fenomenològic derivat de la infor-
mació del model d’aprenentatge de màquina.

En quan al procés d’acumulació de plaquetes, podem predir aquesta
acumulació en una mostra desconeguda a partir de les variables del nos-
tre model, que són molt més fàcils de mesurar que la mateixa acumulació.
Veiem que la influència del teixit de la vena on hi ha la lesió és molt impor-

9

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL TOOLS FOR CLASSIFICATION, INTERPRETATION AND PREDICTION OF BIOLOGICAL DATA 
Oriol Senan Campos 
 



tant per a desencadenar la resposta de les plaquetes. Esperem en una futura
aproximació a la trombosi usar també informació espacial, per a tenir en
compte la localització de les plaquetes acumulades i incloure també l’efecte
del fibrinògen.
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Chapter 1

Introduction

1.1 Biology: Once upon an experimental science

Biology is the science that studies living organisms. Our notion of biology
has changed with time together with the still much debated definition of
life. These changes have occurred in parallel to the establishment of new
forms of acquiring knowledge on biological systems, including mathematical
modeling, a fundamental tool in many areas of biology.

Contemporary biological theories are based on three complementary
paradigms: experimentation, observation and inference. A brief walk through
the history of biology is useful to illustrate how the use of mathematical
models has become a cornerstone of many areas in biology.

The study of living organisms and our environment has been a constant
necessary factor for the development of human civilization. To obtain food,
to find shelter, to have clothes or to avoid danger, humans always needed
to comprehend natural phenomena. This has generated many forms of
practical knowledge, particularly regarding living organisms. This sort of
practical knowledge is still necessary in many present day human activities,
like fishing, plant and animal breeding, forest exploitation, etc ... Over time,
and for certain civilizations, there was a privileged group of people that
could dedicate their life to observe and study nature. Liberated from the
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CHAPTER 1. INTRODUCTION

burden of “practicality”, they could make much deeper analysis of observed
natural phenomena and extract generalities from the particular cases; a
paradigmatic example being the works of Aristotle, who set the basis of
biology for a very long period.

The start of the Renaissance triggered a scientific-technical revolution,
which launched biology far beyond the knowledge gained during Middle
Ages. The establishment of the scientific method, together with new tech-
nological innovations, like the microscope, brought great advances, includ-
ing the study of microorganisms by Antonie van Leeuwenhoek, or the first
observation of the cell by Robert Hook.

More importantly, there was a paradigm shift; biology turned into an
experimental science, and hypotheses had to be proven or rejected in con-
trolled experiments. This change in paradigm lead to the rejection of old
principles that were not based on empirical evidence, such as spontaneous
generation.

Despite being an empirical science, biology also relies on direct observa-
tion of nature. There are a series of branches of biology (and other related
sciences) which require field work, since a lab experiment cannot always
replicate the conditions we find in nature. In this regard, what we can do
is to systematically classify and to study the habits and the distribution of
species of plants, animals and microorganisms on the biosphere.

During the XVIII and XIX centuries, the growing number of expeditions
obtained new records of plants, animals and fossils. The organization of
this data by Carl von Linné created the modern taxonomy system. All this
ordered data provided a more complete picture of nature, and was a source
for many new discoveries, among of them the most important was Darwin’s
theory of evolution.

So far, we have seen that the progress of biology has come from exper-
imental evidence, and also from direct observation and systematic descrip-
tion of nature. What if, there is a biological process that we want to study,
but it is impossible to reproduce it in the lab neither observe it in nature?

The alternative is to measure an indirect variable, either in a controlled
experiment or in field work, that is related with the unobservable one. In
addition, we might use probability theory to confirm the relation between
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1.2. MORE THAN 100 YEARS OF MATHEMATICAL BIOLOGY

the observed and the unobserved variable, which is known as inference.

This was the rather the case in another of the findings that changed
biology forever: The discovery of Mendelian inheritance and the beginning
of genetics.

1.2 More than 100 years of mathematical biology

Ernest Rutherford, Nobel Price in chemistry in 1908, famously and provoca-
tively stated: “All science is either physics or stamp collecting”, (although
the attribution to him is disputed). Biology has been criticized for being
too descriptive, “stamp collecting”, rather than formulating general laws
that can be expressed in mathematical terms. It is true that there is a
certain resistance in biology to the incorporation of mathematics, and to
focus more on exceptions than on generalities.

That being said, despite the fact that biology is not as quantitative
as chemistry or physics, the use of mathematical modeling in biology is
older than it might seem. A great example of this is the first modern
evolutionary theory, which with the help of mathematical models combined
two of the most fundamental theories in biology: genetics and Darwin’s
evolution theory.

Going back to the origin of genetics, Gregor Mendel studied how an ob-
servable trait, the colour of pea seeds, was inherited. He observed that when
crossing a pure green line with a pure yellow line, the resulting offspring was
only yellow. Nevertheless, if these offspring were crossed between them, the
green seeds were observed again in the second generation. The yellow was
“dominant” approximately at a frequency of 3:1 versus the green, which
was “recessive”.

With this and other experiments Mendel formulated general inheritance
laws, later called laws of Mendelian inheritance. This laws were “rediscov-
ered” by new experimental evidence almost 30 years after Mendel’s publi-
cation in 1865. It is worth noting that no molecular details of DNA were
known at the time, actually it would take fifty years more for Watson, Crick
and Franklin to elucidate the structure of DNA.

15

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL TOOLS FOR CLASSIFICATION, INTERPRETATION AND PREDICTION OF BIOLOGICAL DATA 
Oriol Senan Campos 
 



CHAPTER 1. INTRODUCTION

In the early twentieth century, more and more experimental evidence
for Mendelian inheritance and for its corresponding cellular mechanisms
was found. A group of geneticists, spearheaded by William Bateson, were
trying to match the results with the theory of evolution of Darwin. They
were known as the Mendelians. Mendelian inheritance stated that an ob-
served trait depends on the genetic dotation, which consists on a maternal
and a paternal allele (genotype). Depending on the alleles and their hi-
erarchy (dominant, recessive ...) we will observe a certain phenotype. As
a result Mendelians expected evolution to be discontinuous. To ilustrate
this concept, let’s us assume one pea seed has this genotype for the color:
green(paternal)/
green(maternal). The pea is green. Then we mate this plant with another
green/green plant. In sexual reproduction only one allele per individual is
transmitted. In the absence of mutation for pea1 = green and pea2 will be
green and the offspring will have a green/green phenotype. However, if the
allele from pea2 has a mutation such that pea2 = yellow, the genotype of
the offspring will be green/yellow and we will observe a sudden change of
green into yellow, because if we remember Mendel’s example, yellow is the
dominant allele.

Darwin proposed that natural selection would lead to a gradual change
of traits, instead of the discontinuous one proposed by the Mendelians. The
scientists who supported Darwin’s continuous evolution of traits were called
the Biometricians. Biometricians were working with the growing amount
of biological data to obtain useful knowledge. The work of Francis Galton,
Karl Pearson and others developed a core of ideas and tools that trans-
formed probability theory and statistics. Some of these are the standard
deviation, the variance, the Pearson Correlation, the Chi-Square test or the
p-value, which are still used today.

For instance, these scientist observed that certain variables, such as hu-
man height, follow the pattern of gradual or continuous evolution. In their
data, taller parents typically have taller offspring, so Biometricians observed
correlation between father and son height, and a continuous distribution of
heights.

The agreement between the statements of the Biometricians and those

16

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL TOOLS FOR CLASSIFICATION, INTERPRETATION AND PREDICTION OF BIOLOGICAL DATA 
Oriol Senan Campos 
 



1.2. MORE THAN 100 YEARS OF MATHEMATICAL BIOLOGY

of the Mendelian geneticists seemed impossible. However, the first modern
evolutionary synthesis was able to reconcile both arguments.

Modern evolutionary synthesis, credited mainly to R. A. Fisher, J.B.S
Haldane, and S. Wright could unite ideas from different disciplines and
created a new paradigm: Evolution through genetic changes. Remarkably,
this theory used mathematical models to provide evidences and to formalize
concepts.

For example, R. Fisher demonstrated that, for a Mendelian trait control-
ling height, father and son would have deviations from perfect correlation,
due to changes from dominant/recessive to recessive/recessive [1]. Then
correlation would be different depending on familiar relationship (sibling,
cousin, father ...) and generation. Therefore Mendelian genetics could give
(imperfect) correlation as reported previously by the Biometricians.

Broadly, the modern evolutionary synthesis opened the new field of pop-
ulation genetics, and through mathematical demonstrations created many
concepts that nowadays are a very important body of genetics.

This example illustrates the importance of mathematical modeling for
the advance of biology, and the feasibility to formulate general laws of
biology. Getting closer to the investigations carried out in this thesis, today
the use of modeling and statistics is not only limited to theoretical research,
but is equally important for the interpretation of experiments and for the
description of nature.

If exploration journeys during the eighteenth and the nineteenth cen-
turies were characterized by the discovery new species on remote lands,
today we are witnessing to a great effort for the characterization of living
organisms at the molecular scale.

The rise of omics has allowed a very fine profiling of biomolecules: DNA,
RNA, proteins and metabolites. Many other types of biological data are
being recorded as well. Thus we see a fast growth in the accumulation and
in the complexity of stored data. We also refer to this as “big data”.

What are the main features of each of this omics technologies? Which
are the limitations, and the challenges that we face by using this kind of
data? In the following section we will try to answer to these and other
questions related to the rise of omics in biology.
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CHAPTER 1. INTRODUCTION

1.3 Omics: Big data in biology

Omics technologies are a collection of devices and tools that can perform
high-throughput, automated, analysis of DNA, RNA, proteins and metabo-
lites. They are an interesting source of data for understanding global and
emerging properties of living organisms, and to elucidate the multiple in-
terdependencies between the different biomolecules.

In addition, great promises have been put in omics technologies for
applied biomedical research. One of the goals of omics technologies is to
find biomarkers: patterns of genes, transcripts, proteins or metabolites
which can be used for disease subtype classification, disease progression,
selection of treatment, early diagnosis and many other applications.

Now let’s see the particularities each type of omics technology.

Genomics and transcriptomics

Sequentiation of DNA is the most developed omics technology. DNA is a
polymer whose monomers are four different nucleotides, which can be easily
identified. Genome databases have the whole sequence of many species [2],
and equipment is constantly improving. The goal of genomics is to study
the structure, function and evolution of genomes.

In the first sequenciation of the human genome ([3]) the reported num-
ber of genes was approximately 20.000 genes, much fewer than expected.
Therefore, and given the complexity of human body, the role of genes was
not completely described using the traditional axiom: “one gene, one pro-
tein, one function”.

Much of the applied research in genomics consists on finding disease-
causing genetic variants. Genetic linkage analysis was developed for this
specific purpose. This methodology has been successful for the identifica-
tion of genes responsible of Mendelian diseases (single gene disease), but
not for complex multifactorial diseases [4]. Another statistical method to
identify disease-causing genes are genetic wide association studies (GWAS).
This method has found many variants associated to disease, but it has a
limited reproducibility and biological relevance [5].
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DNA’s relative simplicity has allowed the complete sequentiation of the
genome in many organisms and a straightforward application of mathemat-
ical formalism. However, and because of its function, it does not provide
enough information for the study of many processes. Therefore, the product
of DNA, RNA, could be a much better alternative.

Contrary to DNA, RNA changes with time and location. The com-
plete profiling of mRNA and other types of RNAs to understand biological
processes and to find biomarkers is called transcriptomics.

The transcriptome is more complex than the genome because one gen
may have multiple transcripts, a process known as alternative splicing. Mi-
croarrays [6] were the first high-throughput devices to monitor RNA. They
can measure thousands of transcripts, but have a limited threshold regard-
ing RNA abundance. The newer RNA-Seq technology [7] can detect, in
principle, many more transcripts including alternative splicing events, and
has a bigger range of detection.

Given this inner complexity of the transcriptome, there is a wide variety
of experimental designs, depending on what we need to study, it might be
the change in expression during time (time series), comparing conditions
(treatment vs control, ...), different tissues or cell types, etc... Generally we
want to report differentially expressed genes (DEG) in the different groups
or conditions. Another commonly reported result is sets of genes, some-
times associated to a function or process, which have a different pattern of
expression in one of the particular groups. Both DEG or sets of genes can
potentially be a biomarker, for example a sign of an early diagnosis.

In this regard the massive use of transcriptomics has described RNA
expression for many biological processes, like cancer, and has been used to
discover many RNA biomarkers, [8]. Unfortunately, many of this findings
are hard to reproduce [9]. There are multiple causes for this, firstly the
difficulty to control all the variables affecting RNA expression, which can
be solved by better experimental designs. Spurious results tend to appear
when statistical methods to find out DEG or sets of genes are not used
properly [9]. Finally, it is challenging to associate RNA expression to a
particular function or biological process, given the layers of regulation be-
tween the gene expression and the final process, and that is why it is very
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CHAPTER 1. INTRODUCTION

important to measure other biomolecules, like proteins.

Proteomics: Uncovering the proteome

Proteins are the main product of the translation of mRNA. They perform
a wide variety of cellular functions: catalyzers of biochemical reactions,
main elements of cell structures like the cell wall, cellular machines like ion
transport channels, electron transport chain, microtubules... Thus, proteins
perform more functions and play a direct role at processes compared to
RNA, which is more in the regulatory domain.

Due to its perceived importance, the proteomics domains quickly re-
ceived a lot of attention. In relation to proteomic relevance, one of the
early proteomics paper [10] stated: “By the turn of the millennium if not
sooner, we will see a dramatic shift of emphasis from DNA sequencing and
mRNA profiling to proteomics”. Is this the current situation?

The fact is, although proteomics has advanced a lot in the recent years,
the specific nature of proteins makes its measurement much more challeng-
ing than profiling DNA or RNA. Firstly, extraction of all proteins from a
sample is very difficult. The proteome is dynamic in space and time, and
is more complex than the transciptome. This is because proteins might be
in different states, which really affects their function. They can be altered
by post-translational modifications (PTMs), by conformational changes or
by interaction with other proteins.

There is a rich variety of analytical techniques to profile the proteome,
or the different subproteomes coming from different tissues, body fluids,
etc... There are qualitative approaches, more focused on identifying the
maximum number of putative proteins. Others are more quantitative, they
seek for precise measurements of the levels of protein abundance, to detect
differences between groups of samples. (See [11] for a review on the multiple
proteomics strategies).

Identification of proteins in proteomics is more complicated than in the
case of RNA or DNA. Sequence information of gene or transcripts is a prior
knowledge used this identification of proteins. The functional role of pro-
teins is difficult to infer from the RNA or DNA data. For instance, mRNA
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1.3. OMICS: BIG DATA IN BIOLOGY

abundance might be useful to predict protein concentration, but there is
not a general correlation between the level of mRNA and protein [12]. So,
the transcriptome and the genome are not enough to comprehend the pro-
teome. We cannot understand many biological processes without a good
quantification of the proteins, because there are many processes that are
direct interactions between proteins, such as protein complexes, PTMs or
signalling. On the other hand, proteins are very large molecules, susceptible
to many changes and modifications. That complicates the interpretation of
proteomics data, and might increase the factors that we have to take into
account for a protein or a group of proteins to become a biomarker.

Name Measured Molecules Identification Coverage

Genomics DNA Sequence 4 Nucleotides Complete for
many organisms

Transcriptomics RNA sequence, RNA abun-
dance, variable in location
and time

4 Nucleotides Still ongoing,
very complete for
mRNA in some
species

Proteomics Protein identification, protein
abundance, variable in loca-
tion and time

20 Aminoacids,
modifications

Not complete,
great advances in
some organisms

Metabolomics Metabolite identification,
metabolite abundance, vari-
able in location and time

Different
molecules

Incomplete

Table 1.1: Summary of different omics techniques

Metabolomics: An ensemble of small molecules

Metabolomics is the last of the omics to become a high throughput tech-
nology. We call metabolites to all the small molecules transformed in bio-
chemical reactions. The goal of metabolomics is to measure, as precisely
as possible, the maximum number of metabolites from a biological sample.
Unfortunately, the metabolome is such and ensemble of different chemical
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structures. Their chemical properties are so different that purification and
extraction processes are very challenging. In addition, the large hetero-
geneity of chemical structures, even more than in proteins, makes it very
hard to annotate all metabolites from a sample.

Metabolites are the reactives and products of many cellular reactions.
That makes them as the best signature for measuring biochemical activity.
[13]. Moreover, data might be easier to interpret because, unlike proteins,
metabolites do not have modifications such as denaturalizations, different
structural conformations, PTMs, etc...

The two main technologies for metabolomics are based in Nuclear Mag-
netic Resonance and Mass Spectometry (MS). As in proteomics, the metabolome
is variable in location and time. Therefore, there are many strategies for
measuring the metabolome. Some are centered in high-precise measuring of
a selected group of metabolites (targeted metabolomics). Other strategies
are suited for a particular subtype of metabolites (like lipidomics for lipids)
and some are more general, called untargeted metabolomics, which try to
identify the maximum number of metabolites from a sample.

The total putative number of proteins has been estimated, in several
organisms, due to bioinformatic tools and proteomic experiments [14]. That
is not the case for the metabolome. First, we cannot use the genomic and
transcriptomic information to make predictions of putative metabolites, or
not as equally as in proteins. Second, even in the most broad technique
for detecting the major number of metabolites: a liquid chromatography
coupled to mass spectrometry (LC/MS), we do not know exactly how many
metabolites are present in the samples.

A recent review [15] noted that the thousands of signals detected in an
LC/MS experiment (those signals are called features and have time, mass
to charge (m/z) and abundance values) may belong to a reduced number
of metabolites. The reasons are mainly two.

Firstly each metabolite produces multiple features. Natural isotopic
variants are detected as different features. Also, metabolites can ionize
with different ion species, producing multiple features, called adducts of
the same metabolite. Finally, metabolites can be fragmented and have
covalent interactions with other metabolites, detected as well as different
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features.

Secondly, there are many other features which appear due to contami-
nation, chemical noise and errors in the signal processing. Given the com-
plexity of the spectral data resultant from untargeted metabolomics exper-
iments, it is necessary to correctly group the multiple features belonging to
the same metabolite.

The next step after reducing the thousands of observed features to hun-
dreds of putative metabolites is its annotation. The number of features
whose m/z match with an entry on a metabolomics database is small. This
happens because the putative number of metabolites is much larger (mil-
lions) than the number of entries in the spectral databases (thousands)
[16]. To solve this gap many algorithms have been developed to annotate
metabolites not present in spectral databases. See [17] for the state of the
art of current methods. The whole process of metabolite annotation is not
fully automated, still depending in manual work. So often the total number
of annotated metabolites is roughly 20-30 [15]. This is the main bottleneck
for reporting new metabolites and for the goal of a more complete picture
of the metabolome.

Multiomics and other biodata, communication breakdown?

Monitoring biomolecules is giving us new perspectives about the molecular
composition and organization of living organisms. Massive omics data has
to combine with other sources of data: databases for disease, drugs or
toxics, medical records, molecular biology studies, etc ...

How can we connect information from multiple sources, involving dif-
ferent data types and often corresponding to different scales? This is one
of the main challenges in providing comprehensive systems descriptions of
biological processes.

Some attempts [18] have tried to reorganize data, to find hidden rela-
tions between phenomena at different levels of description (microscopic and
macroscopic). This is the case of the diseasome and the toxome, two initia-
tives that connect diseases or toxics, by their similarities at the molecular
level (genes, proteins, etc ...) and also at the macroscopic level (treatment,
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symptoms, etc...). This and other projects exhaustively use bibliographical
resources, like the genomic-scale metabolic models. They will help to cope
with distants sources of information of things that we already known and
they will be a better data source for new investigations.

One example that systemic desciption is challenging is mRNA and pro-
tein. Even though they are two related biomolecules they are not generally
correlated. While simple association between some data may be straightfor-
ward [12], others will require the development of new mathematical models
that can offer insights to the intrincated dependencies between biomolecules
and from single cells to tissues, organs and organisms.

1.4 Modeling perspectives

The more we know about the fundamentals of the cell, the more complicated
it seems. We are discovering new elements that influence cell function, at
all levels. The world of epigenomics is changing our vision of DNA, we
see new functions for different types of RNA that makes gene expression
more complex, promiscuous enzymes that perform side reactions... It seems
difficult to manage all these levels of detail. We need to focus on the key
elements that provide more information about the process we want to study.

A very good approach to find out the most relevant variables of a bio-
logical process is the use of mathematical models. We can use all this new
biological data to build models, and then use this models to understand
the data. Finally, the validity of a model is tested for its capacity to make
predictions.

Each modeling approach entails a certain degree of simplification and
some assumptions, necessary to fit the model to the data. A very usual
process is to evaluate the output produced by the model, and correct the
model depending on the outcome, or correct the model based on an accuracy
measure.

Using this procedure, we may obtain some results that may generate
hypothesis, such as a new interpretation of a phenomena, a pattern which
is a signature for a disease... It is important, then, to modify the approach.
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When we are in a confirmatory study, we should, if possible, establish our
model, our accuracy measure and the design of the experiment previously to
the data. This may prevent the so called human in the loop overfitting [19],
which is the selection and reselection of data, model and accuracy measure
until the reported model performance shows some spurious accuracy.

If we readapt the model on and on to obtain the maximum performance,
the final model might not provide an explanatory answer to the hypoth-
esis we wanted to test, and the accuracy measure may not be the most
appropiate for the data that we are reporting. The perils of this practique
are erroneous interpretations of the results and low reproducibility.

Models for classification

Classificators use categorical, ordinal and quantitative variables to predict
a qualitative outcome. Classificator models are very integrated in the gen-
eration of omics data. In genomics and transcriptomics identification of
nucleotides is fully automated and even the reconstruction of the genome,
while in proteomics and metabolomics we still need better models to iden-
tify proteins and specially metabolites.

We called supervised learning when we know the categories of the clas-
sification, and we train our model to predict these categories with the input
variables. This is the already mentioned case of protein or metabolite iden-
tification, but also one of the most important applications of omics data:
the discovery of biomarkers to diagnose a disease, select a treatment...

Another approach for classification is the unsupervised learning. In this
methods we group our samples, by clustering or other means, based on a
distance measure computed by our classificator. The difference with super-
vised learning is that the we do not set previously the groups or categories
of our classificator. Unsupervised learning my be used to discover some
hiden groups in our samples, unobserved patterns, unknown effects of some
variables...

When we build a model, we want our model to be very predictive and
accurate. That is a clear case, for example, in the design of a classificator
for diagnosing cancer. Nevertheless, we also want our model to be inter-
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pretable. In the same example, we would like to understand why a sample
is classified as cancer, to elucidate a possible mechanisms of the disease.
Given that, it is compatible prediction with interpretation?

Is there a tradeoff between prediction and interpretation?

Prediction and interpretation may indeed be seen as two opposite poles,
but the truth is that they are two complementary aspects of modeling.
It is more likely for a highly predictive variable to be as well the causal
explanation of a phenomena.

We wanted the best predictive models, but we also want to understand
biological processes. Certainly a more complex model, which can be better
at predicting, is also harder to interpret. A solution for this is to derive
simplified models from the complex models that give the best performance.

A method for simplification is the selection of the most important vari-
ables of a model, or in machine learning terminology, feature selection. The
ongoing principle is that once we fit a model that has the desired degree of
accuracy, there might be some input variables that are irrelevant or redun-
dant. We can imagine this situation, for example, in transcriptomics data
when thousands of transcipts can be used as a signature for a disease, or in a
complex model with many quantitative and categorical variables. Selection
of the most important variables can also avoid overfitting, because fitting
the model with non relevant variables can adjust to some values which are
specific of the training sample and not of the general phenomena that we
want to predict.

Simplification, however should not compromise prediction. An appar-
ently simple system can produce complex outcomes depending on the rela-
tion between its components. From an experimental and applied point of
view, there are some variables which are more difficult or costly to measure,
so reducing to the most important variables can, apart from aiding in the
interpretation of a model, guide upcoming experimentations.
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Works presented in this thesis

Senan O, Sales-Pardo M, Guimerà R et al. CliqueMS: A tool for adduct
annotation for LC/MS spectral data. In preparation. 2017

Senan O, Pallarés J, Cito S et al. A comprehensive study on dif-
ferent modeling approaches to predict platelet deposition rates
in a perfusion chamber. Sci Rep. 5 (13606). 2015

Beltran-Debon R, Senan O, Joven J et al. The acute impact of polyphe-
nols from Hibiscus sabdariffa in metabolic homeostasis: an ap-
proach combining metabolomics and gene-expression analyses..
Food Funct 6, 2957 – 66. 2015

Article Classification Interpretation Prediction

CliqueMS X

Platelets X X

Hibiscus X

Table 1.2: Scope of of the models developed in the articles
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CHAPTER 2. CLIQUEMS: A TOOL FOR ADDUCT ANNOTATION

2.1 Introduction

A powerful technique for untargeted metabolomic studies is the use of liquid
chromatography tandem mass spectroscopy (LC/MS). However, the need
to substantially process raw data from LC/MS samples in order to obtain
reliable annotations that later can be used for metabolite identification
using tandem MS, poses a serious obstacle for the real throughput analysis
of complex samples.

There has been a huge progress for a complete automatization of metabo-
lite identification, see [1] for a review on Computational Metabolomics.
Despite all this new software and tools, there are two limiting steps that
still make the whole process low throughput: the multiple signals produced
per metabolite and the small number of metabolites in spectral databases
compared with the large number of putative metabolites.

Each metabolite produces multiple signals: natural isotopic variants,
ionizations with different ion species (called adducts), fragmentations and
covalent interactions with other metabolites. Grouping correctly the signals
of the same metabolite is crucial for a posterior identification.

However, despite the availability of computational solutions, the truth
is that many steps of the annotation process are still done manually.

In here, we will focus in the annotation of molecule adducts from LC/MS
data. The lack of reliability of available methodologies for this task lies on
the complexity of the spectral data from complex samples in which we
have millions of signals for different m/z values localized in a continuum of
retention times.

To aid in the automatization of this process we have developed CliqueMS,
a computational tool that produces reliable annotations for molecule adducts
from signal picking XCMS data (see Fig. 2.1).

CliqueMS annotates adducts in complex LC/MS samples based on the
following assumptions: 1) Adducts of the same metabolite exit the column
at the same retention time; 2) The plausibility of a specific adduct annota-
tion is proportional to the frequency with which such adducts are observed
in real samples.

Based on these assumptions, we have developed a tool that unlike other
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CHAPTER 2. CLIQUEMS: A TOOL FOR ADDUCT ANNOTATION

approaches uses a mathematically principled approach to obtain the most
plausible groupings of signals according to the similarities between them.
Then we use existing data on the observed occurrence of potential adducts
in real samples in order to annotate the signals in each one of the groups.

We find that CliqueMS is to consistently correctly annotate more metabo-
lites and identifies a larger number of signals than existing widely-used
approaches such as CAMERA [2], for both pure and complex samples.

2.2 Materials and Methods

2.2.1 Description of CliqueMS

Formally the problem that CliqueMS faces is the following. Our spectral
data is comprised of a set of signals characterized by an m/z value and
intensity vector {[(m/z)i,fi]}. For each signal i, we obtain the intensity
vector discretizing the signal into K equal bins so that fi = (fi(tk); k =
1, . . . ,K) , where fi(tk) is the measured intensity at retention time tk,
where tk = tk−1 + ∆t and t0 = 0 (in our analysis, ∆t depends on the
the mass detector operational parameters and the spectral data processing
program). Given this data CliqueMS aims at providing a set of plausible
annotations for complex samples that reflect the two previously mentioned
assumptions.

To achieve this goal, we have identified three main steps (see Fig. 2.1):
1) the construction of a similarity network, where each node represents a
signal and edges are weighted according to the similarity between signals;
2) the identification of the most plausible division of the similarity network
into cliques (fully connected groups); 3) the annotation of the adducts
corresponding to the same neutral mass for the signals within each clique.

Step 1: Construction of a similarity network between signals In
order to provide meaningful annotations, first we need to group signals that
are similar, so that signals corresponding to adducts of the same metabolite
belong to the same group.
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2.2. MATERIALS AND METHODS

As previously mentioned, CliqueMS is based on the expectation that
all adducts of the same metabolite have a similar retention pattern. Or in
other words, we expect that signals corresponding to adducts of the same
metabolite have non-zero intensities for the same retention time values. A
critical step is thus select an appropriate measure of similarity between
signals that reflects our expectations and allows the construction of a sim-
ilarity network to obtain reliable groups of signals.

A possible choice of similarity function is the Pearson correlation be-
tween intensity vectors as considered in [2] within the context of spectral
signal similarity. The caveat of the Pearson correlation coefficient is that
it is suited to detect similarity of signals that are monotonously grow-
ing/decreasing and therefore it is a priori not an optimal option when
signals are non-monotonous such as the spectral data we consider.

To overcome this caveat, we propose to use the cosine similarity, a simple
measure that assesses the proportionality between intensity vectors:

cosij =

∑
k fi(tk)fj(tk)

‖fi‖‖fj‖
(2.1)

where ‖fi‖ =
√∑

k fi(tk)
2.

To assess the ability of Pearson and cosine similarities to discriminate
between adducts of the same metabolite from adducts of different metabo-
lites that are coeluting, we performed the following validation experiment.

In our lab (see Sec. 2.2.2) we obtained spectra for a mix of standards. We
then selected 43 signals belonging to 9 different molecules which were easy
to manually identify due to the differences in retention times and the m/z
values. To simulate coelution we manually aligned signals corresponding
to adducts of different metabolites, using as a reference the retention time
at the maximum intensity of the signal. (See Fig. 2.2). We then computed
Pearson and cosine similarities between all pairs of signals and obtained
the Receiver Operating Characteristic (ROC) curve [3] and its area under
the curve (AUC) for both methods. The AUC value is the probability
that a pair of signals corresponding to adducts of the same metabolite has
a larger similarity than a pair of signals corresponding to adducts from
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CHAPTER 2. CLIQUEMS: A TOOL FOR ADDUCT ANNOTATION

different metabolites. Therefore, the larger the AUC value the larger the
discriminatory power. We obtained AUC values equal to 0.887 for the
cosine similarity and to 0.760 for the Pearson correlation, which show that
the cosine similarity has a superior discriminatory power than the Pearson
correlation. This high discriminatory power of the cosine similarity comes
from the fact that the proportion of signal pairs corresponding to adducts
of the same molecule decays rapidly as the value of the similarity decreases.

Therefore, as a first step we construct a weighted undirected similarity
network CO in which each node corresponds to a signal and the weight of
each edge between nodes (i, j) corresponds to cij = cosij . Note that this is
not a fully connected network, because signals that have non-overlapping
intensity vectors are not connected.

Step 2: Principled identification of groups of signals (cliques) in
the similarity network Our next step is to identify groups of signals
that are similar. Specifically, since our hypothesis is that signals with cij =
0 are for sure not adducts of the same metabolite, we aim at identifying
cliques of signals in the network, that is groups of signals that are fully
connected so that cij 6= 0 for any pair of signals within a clique.

Formally, the task of finding these groups is equivalent to a label as-
signment problem in which we want to assign a label to each signal σi so
that signals corresponding to adducts of the same metabolite have the same
label.

In order to produce a generative model for node label assignments we
note that the cosine similarity between two signals is a good proxy for how
likely two signals are to be adducts of the same metabolite. Therefore, a
plausible assumption is that the probability of two signals (i, j) having the
same label (i.e. belonging to the same clique) given a certain similarity cij
between intensity vectors is precisely a function of that similarity:

p(σi = σj |cij) = g(cij) (2.2)

Conversely, the probability that two nodes (i, k) have different labels
given their similarity cik is p(σi 6= σk|cik) = 1− p(σi = σk|cik).
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Figure 2.2: We compare the power of Pearson correlation and cosine simi-
larity to distinguish pairs of peaks that are adducts of the same metabolite
(true positives) from pairs of peaks belonging to different metabolites (false
positives) in simulated coelution. For this purpose we use receiving operat-
ing characteristic curves (ROC), where we classify pairs of peaks as “same
metabolite” or “different metabolite” if their correlation value is higher
than a certain threshold. The threshold spans from 0 (cosine similarity)
and -1 (Pearson corrrelation) to 1. Cosine similarity (black, area under the
curve (AUC) = 0.887) is a better classifier than Pearson correlation (grey,
AUC = 0.760). Total number of random correlations: 180 Total number of
real correlations: 126
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CHAPTER 2. CLIQUEMS: A TOOL FOR ADDUCT ANNOTATION

To specify the precise dependency of p(σi = σj |cij) on cij , we note that
p(σi = σj |cij) needs to fulfill the following conditions: i) it has to be equal
to zero if cij = 0 (that is two nodes whose intensity vectors do not overlap
cannot belong to the same group) ; and ii) it has to be equal to one if
cij = 1 (that is, signals with proportional intensity vectors have to belong
to the same group). Because in our sample cosij ∈ [0, 1], any power of the
similarity will satisfy these two conditions. Hence, we assume that

p(σi = σj |cij) = cαij (2.3)

Under these assumptions, we can express the probability of an assign-
ment of labels σ conditioned on the observed network of similarities CO

as

P (σ|CO) =
∏
σ∈σ

∏
i<j

p(σi = σj |cij)δσσiδσσj

× [1− p(σi = σj |cij)](1−δσσiδσσj ) (2.4)

where δσσj is the Kronecker delta function. This probability is the so-called
likelihood of the model given the data.

Within this probabilistic framework, the most plausible label assign-
ment σ? is the one that maximizes Equation (2.4). In practice, instead
of maximizing the likelihood in Equation (2.4), we find the σ? that maxi-
mizes the log-likelihood L = logP (σ|CO). To do so, we use the following
algorithm:

1. Start from a configuration in which each node has a different label.

2. Propose a new label assignment.

3. Accept the new label assignment if L increases.

4. Return to step 2 and iterate until no more changes are accepted.

In step 2, in order to propose a new label assignment we use a combined
strategy that alternates between: 1) merging existing cliques; 2) moving
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2.2. MATERIALS AND METHODS

nodes from one clique to another clique. To merge existing cliques, we follow
the heuristic approach in [4] which is computationally fast. Specifically, we
compute the mean-similarity between nodes within each pair of cliques. We
then propose to merge the pair of cliques with the largest mean similarity.
To move a node (i.e. to change the label of that node to that of a different
clique), we select the label assignment that produces the largest increase in
L. In our implementation, we propose a node move after ten consecutive
attempts at merging pairs of cliques. When L cannot be increased by
merging any pair of cliques in the network, we try to move all nodes of the
network from its clique to a different one. At the point where we cannot
further increase the log-likelihood with single-node changes, the algorithm
stops. For time performance reasons, specially in large samples, we include
a parameter lmin, that impose a minimum relative change in L to consider
an increase in the log-likelihood.

In order to estimate the best value for the parameter α in Eq. (2.3), we
measure the accuracy of our algorithm to correctly assign the same label to
signals that have similar retention patterns. Specifically, starting from the
spectral data for the mixture of standards (see Sec. 2.2.2), we simulated
differences in the coelution of metabolites by manually displacing all the
signals of the same metabolite along the retention time axis. We quantify
the overlap between signals belonging to different metabolites displaced in
this way in terms of the distance between their peaks with the highest
intensity, which we call time shifts. We used time shifts raging from 0s
(complete coelution) to 4s (little overlap between intensity vectors). As
in the previous validation, we consider the spectra of 9 pure compounds
within the mixture.

We then simulate the coelution of 2, 3 and 4 compounds at different
time shifts, and evaluate the accuracy of our algorithm at correctly labeling
signals using the adjusted mutual information [5]. This measures the ac-
curacy of the labeling by comparing the real and the proposed assignment
while taking into account the number of signals associated to each metabo-
lite. This value is scaled, so the adjusted mutual information is 0 for any
value below the mutual information of a random assignation, which in this
case is grouping each signal as a different group.
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Figure 2.3: Identification of groups of signals with similar coelution pat-
terns. Grouping with CliqueMS is more similar to real assignment than
CAMERA grouping algorithm, and it is better when molecules are more
separated. CliqueMS was tested with different cosine similarity exponents
in Equation (2.3), and overall the best assignment corresponds to α = 2.

In Fig. 2.3 we show the accuracy of our algorithm for different values of
α : 1, 1.5 and 2. For reference, we also show the results obtained with the
signal grouping algorithm in CAMERA. We find that for any choice of α
our algorithm outperforms the signal grouping algorithm in CAMERA, the
main reason being that the algorithm in CAMERA tends to produce too
many groups of signals. We also find that higher values of the exponent lead
to more groups of adducts, which improves performance when the time shift
decreases. Conversely, when coelution is not as accentuated larger values of
α result into too many cliques, slightly decreasing the algorithm’s accuracy.
Therefore, we use a value of α = 2 in our analysis.
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2.2. MATERIALS AND METHODS

Step 3: Annotation of adducts by isotope and neutral mass iden-
tification After obtaining the maximum likelihood configuration σ?, we
use the differences in (m/z) values for all the signals within a clique to
identify isotopes and putative adducts associated to the neutral mass of
the metabolite.

An exception to this are signals corresponding to isotopic variations of
the same metabolite, as they can be determined by the exact mass difference
between signals and their relative intensities. Whenever this mass difference
between two signals corresponds to 1.003355 ±εI , the relative error of the
isotope search, the two signals are candidates for being isotopes. If their
intensity ratios also correspond to the relative abundance of such isotopes,
then these two signals are considered to belong to two isotopic variants of
the same metabolite.

Specifically, consider we have a clique γ comprising Γ signals γ =
{[(m/z)i,fi]; i = 1, . . . , Γ}. Once all possible isotopes have been identified
(NI) we are left to provide possible adduct annotations for the remaining
Γ ′ = Γ − NI signals within clique γ. The annotation of the isotopes will
then follow from the annotation of the precursor ion. In order to do that,
CliqueMS considers a list of possible adducts {Ai}◦ and their associated
mass difference {∆Mi}◦ taken from the NIST database [6] for samples with
positive and negative annotation (see Supplementary Tables S1 and S2).

First, we determine the possible adduct annotations for each signal that
are compatible with the observed mass differences. Specifically, for signal
(m/z)i, we obtain all the possible neutral masses Mk that are compatible
with signal i being adduct Ak (Ak ∈ {Ai}◦), that is, those that fulfill:

mi − (Mk +∆Mk)

Mk
≤ tol. (2.5)

In our analysis we set tol = 10ppm, but this parameter can be tuned by
the user. For the remaining signals (m/z)j ∈ γ; j 6= i, we establish that
(m/z)j is compatible with being adduct Al with neutral mass Mk if:

mj − (Mk +∆Ml)

Mk
≤ tol. (2.6)
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Following this procedure for all the signals i ∈ γ, we obtain for clique
γ all possible neutral masses {Mk}γ that are compatible with at least two
signals being adducts. For each such neutral mass Mk, we construct an
adduct vector ak in which each component aki corresponds to the adduct
annotation of signal i compatible with neutral mass Mk. If there is no
compatible adduct for signal i then aki = NULL.

The second step is to assess the plausibility of each one of these annota-
tions. In order to do this, we note two facts. First, we note that in manual
annotation the observation of some adducts such as [M+H]+ or [M+Na]+

is typically considered as a more reliable neutral mass identification than
finding adducts [M-H+2Na]+ and [2M+Na]+. The reason for this is that
the former couple of adducts are more common than the latter couple of
adducts. To formalize this intuition and quantify the plausibility of a spe-
cific annotation, CliqueMS uses observed frequencies of adducts in available
LC/MS spectra for pure components available in the NIST database (see
Supplementary Tables S1 and S2). Specifically, for each Mk the plausibility
sk of annotation ak is then:

sk =
Γ ′∏
i=1

p(aki ) (2.7)

where p(x) is the frequency of observation of adduct x and p(NULL) = ε.
In our analysis, we set ε = 10−6, so that the frequency of a non-annotated
adduct is lower than that of the least common adduct in our database. Note
that since available LC/MS spectra are likely to increase in the future, these
parameters can be changed by the user as needed.

Second, we note that CliqueMS is based on the expectation that adducts
of the same metabolite have similar retention patterns. However, we cannot
avoid the fact that in the clique identification procedure we can be group-
ing together adducts of different metabolites that coelute. Taking this into
consideration, CliqueMS allows for the annotation of adducts compatible
with more than one neutral mass for signals in the same clique. Therefore,
given the set of neutral masses {Mk}γ and their associated annotations
{ak}γ we can in principle obtain complex annotations {ϕ}γ with multiple

44

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL TOOLS FOR CLASSIFICATION, INTERPRETATION AND PREDICTION OF BIOLOGICAL DATA 
Oriol Senan Campos 
 



2.2. MATERIALS AND METHODS

compatible neutral masses, so that ϕi = aki and ϕj = ak
′
i with k not neces-

sarily equal to k′. These annotations are also subject to the constraint that
we have at least two adducts for each neutral mass. Nonetheless, because
we expect the number of metabolites in coelution to be low, we assume the
plausibility of annotations with a large number of neutral masses NM to be
low. To formalize this idea, the plausibility of such complex annotations sc
is then:

sc =

Γ ′∏
i=1

p(ϕi)× exp [−a(NM − 1)] (2.8)

where we have introduced an exponential penalty if the number of neutral
masses is larger than one and a = 10 in our analysis. While this may
seem a rather large penalty, we note that the most common adducts have
p(x) ∼ O(10−3) and rarest adducts have p(x) ∼ O(10−5). Therefore, in
order to prioritize annotations of a large amount of adducts associated
to the same neutral mass over splitting of the annotation into that of two
molecules with more common adducts, one needs to introduce exponentially
large penalties. On the other hand, the penalty has to be low enough to
enable the use of more than one neutral mass when no other annotations
are possible. Using a value of a = 10 strikes the balance between both
undesirable situations.

Unfortunately, the number of potential annotations can grow very fast
and it is unfeasible to produce and score all possible annotations. Since
we are actually interested in producing a few annotations with the largest
plausibilities, we follow a greedy procedure to produce complex annotations.
Specifically, we limit the list of neutral masses {Mk}γ to include: i) those
masses that have the largest overall plausibilities sk; and ii) consider the
top scoring masses for annotating each signal i ∈ γ. In our analysis we
use Mks with the 15 top overall sks and the most plausible Mk for each
signal; these parameter choices show a good compromise between speed
of the calculations for large cliques and the retrieval of the most plausible
annotations obtained from exhaustive annotation searches.

Finally, we rank annotations {ϕ}γ according to their plausibility {sc}γ
and produce for each clique the five most plausible annotations.
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2.2.2 Spectral data acquisition

We have tested our algorithm with two sets of complex biological samples
and a mixture of pure standards. The first set of the complex biological
samples come from an immortalized human cell line of a retinal pigment
epithelial cell called ARPE-19. These samples were cultured at normoxic
and hippoxic conditions and so we called this set “NormHippo”. After
removing the cell medium, metabolites were extracted into a extraction
solvent by adding 2 mL of a cold mixture of chloroform/methanol (2:1 v/v).
The resulting suspension was bath-sonicated for 3 minutes, and 2 mL of
cold water was added. Then, 1 mL of chloroform/methanol (2:1 v/v) was
added to the samples and bath-sonicated for 3 minutes. Cell lysates were
centrifuged (5000g, 15 min at 4 C) and the aqueous phase was carefully
transferred into a new tube. The sample was frozen, lyophilized and stored
at -80 ◦C until further analysis. LC/MS analyses were performed using an
UHPLC system (1290 series, Agilent Technologies) coupled to a 6550 ESI-
QTOF MS (Agilent Technologies) operated in positive (ESI+) electrospray
ionization mode. Vials containing extracted metabolites were kept at -20
◦C prior to LC/MS analysis. Metabolites were separated using an Acquity
UPLC (HSS T3) C18 reverse phase (RP) column (2.1 x 150mm, 1.8 µ) and
the solvent system was A1 = 0.1% formic acid in water and B1 = 0.1%
formic acid in acetonitrile. The linear gradient elution started at 100% A
(time 0–2 min) and finished at 100% B (10-15 min). The injection volume
was 5 µL. ESI conditions: gas temperature, 150 ◦C; drying gas, 13 L min-1;
nebulizer, 35 psig; fragmentor, 400 V; and skimmer, 65 V. The instrument
was set to acquire over the m/z range 100-1500 in full-scan mode with an
acquisition rate of 4 spectra/sec.

The other complex set comes aswell from retina cells, but in this case
from transgenic mice retina cells, and has been called “Retina”. The extrac-
tion of metabolites begun first with the lyophilization of mouse’s retinas.
Metabolites were extracted adding 190 µL of MeOH and 120 muL of H2O,
then vortex during 30 seconds. Afterwards, samples were frozen during 1
min in N2 liq. and thawed by cold sonication during 30 seconds. This
step was applied three times. Then 380 µL of chloroform were added and
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vortexed during 30 seconds. Finally, samples were centrifuged (15000 rpm,
15 min a 4◦C). The supernatant was extracted and dried. The sample
was suspended in 100 µL of H2O:MeOH (1:1) and stored at -80 ◦C until
further analysis. LC/MS analyses were performed in the same equipment
than NormHippo samples, but in positive and negative ionization mode
(ESI+ and ESI-). Metabolites were separated using the same column and
conditions in the positive mode, when the instrument was operated in neg-
ative ionization mode, metabolites were separated using an Acquity UPLC
(BEH) C18 RP column (2.1 x 150 mm, 1.7 µm) and the solvent system
was A2 = 1 mM ammonium fluoride in water and B2 = acetonitrile. ESI
conditions and acquisition of the spectra was the same than in NormHippo
samples.

In the mix of standards samples, all standards were pulled to a final
concentration of 1ppm in H2O:ACN (5:95) with 0.1% formic acid. LC/MS
analysis was performed using the same equipment than in the complex
biological samples. Metabolites were separated using an Acquity UPLC
BEH HILIC column (2.1 x 150 mm, 1.8 µm) and the solvent system was
A1 = 20mM ammonium acetate and 15 mM NH4OH in water and B1 =
95% ACN and 5% H2O. Samples were operated in positive electrosprai
(ESI+) ionization mode. The linear gradient elution started at 100% B
(time 0–2 min) and finished at 75% A (10-15 min). Electrosprai conditions
and acquisition of spectra was similar to the complex biological samples.

2.3 Results and discussion

2.3.1 Mixture of standards

To validate CliqueMS we performed the algorithm in two sets. First we use
a mixture of 9 pure known standard metabolites, which allows us to easily
analyze the results. We compared the results with CAMERA.

In Fig. 2.5 we can see in colours the peaks belonging to the 9 different
metabolites. We correctly annotate all 9 metabolites with CliqueMS. The
total number of annotated peaks is 42. This results are better than with
CAMERA, that annotates correctly 5 molecules and a total of 30 peaks.
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CliqueMS correctly groups peaks belonging to the same metabolite,
while CAMERA separates peaks that belong to the same metabolite, like
in the case of Uracil or Fructose. Isotope annotation function does not
set as isotopes the “wrong” peaks, while CAMERA does. Altough both
algorithms are set wit the same error, CliqueMS computes it differently
than CAMERA.

2.3.2 Biological samples

We shrunked the thousands signals of the spectra to hundreds of cliques.
Some correctly annotated metabolites appear inside the same clique. This
shows both the analytical limit, because many signals from different origin
coelute in spite of the chromatography and the clique grouping, which can-
not completely separate when many compounds appear together, as we saw
in Fig. 2.3 for small differences in retention times. Samples in Retina set
have significantly less signals than in NormHippo set, for example Retina1
has 8489 signals and NormHippo1 has 22367, but the number of cliques is
not that much different, having Retina1 606 and NormHippo1 707. Both
sets of experiments have a similar duration of the cromatography, but for a
selected time interval NormHippo samples have, generally, a larger number
of signals. As a result cliques in NormHippo have a larger number of signals
than in Retina.

Sample Retina1 Retina2 NormHippo1 NormHippo2
Metabolites 15 6 6 5 16 14 13 12

Adducts 49 21 16 14 55 59 49 64
Features 95 33 36 23 107 87 89 96
Method CliqueMS CAMERA CliqueMS CAMERA CliqueMS CAMERA CliqueMS CAMERA

Table 2.1: Table summarizing results of CliqueMS and CAMERA with
complex biological samples.

We have compared highly confident manual annotations with CliqueMS
and CAMERA methods, a summary is in Table 2.1. We see that with
Clique MS we annotate more metabolites in all samples and sets, compared
with CAMERA. The number of total annotated signals is also bigger in
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(M+K)+ (2) (M+K)+ (2) (M+K)+ (2)
(M+H)+ (1) (M+H)+ (1)

(M-H+2Na)+ (1) (M-H+2Na)+ (1) (M-H+2Na)+ (1)
2M+Na(1) (2M+Na)+ (1)

Dysteraoyl (M+Na)+ (2) (M+Na)+ (2) M+Na (2)
(M+K)+ (1) (M+K)+ (1)
(M+H)+ (2) (M+H)+ (2) (M+H)+ (2)

Biotin (M+Na)+ (3) (M+Na)+ (2) (M2+Na)+ (1) (M+Na) (3)
(M+K)+ (3) (M+K)+ (2) (M2+K)+ (1) (M+K)+ (3)
2M + Na(3) 2M + Na(3) 2M + Na(3)

(M-H+2Na)+ (1) (M-H+2Na)+ (1) (M-H+2Na)+ (1)
(2M + K)+ 1 (2M + K)+ 1 (2M + K)+ 1

Cholic acid (M+Na)+ (1) (M+Na)+ (1) (M+Na)+ (1)

(M+K)+ (1) (M+K)+ (1) (M+K)+ (1)
(M-H+2Na)+ (1) (M-H+2Na)+ (1) (M-H+2Na)+ (1)

Deoxycholic acid (M+Na)+ (2) (M+Na)+ (2) (M+Na)+ (2)
(M+K)+ (1) (M+K)+ (1) (M+K)+ (1)

(M-H+2Na)+ (2) (M-H+2Na)+ (2) (M-H+2Na)+ (2)
(2M+Na)+ (2) (2M+Na)+ (2) (2M+Na)+ (2)

L-Methionine sulfoxide (M+Na)+ (1) (M+Na)+ (1)
(M+K)+ (1) (M+K)+ (1)

Thymine (M+H-NH3)+ (1) (M+H-NH3)+ (1) (M2+H)+ (1)
(M+NH4)+ (1) (M+NH4)+ (1) (M3 -H +NH3)+ (1)

(M+H)+ (2) (M+H)+ (2) (M2+NH4)+ (2)
Uracil (M+H)+ (1) (M+H)+ (1)

(M+NH4)+ (1) (M+NH4)+ (1)
Fructose (2M+Na)+ (1) (2M+Na)+ (1)

(M+K)+ (1) (M+K)+ (1)

Figure 2.4: a) Extracted Ion Chromatogram (EIC) of standards experi-
ment. The nine ionized molecules were annotated with CliqueMS, in colors
we show signals that are adducts of that molecule. b) Network of the same
experiment after computing cosine correlation. The intensity of the link
increases with the correlation, the size of the nodes increases according to
signal intensity. The corresponding colors are the same than the molecules
and their respective adducts in the EIC. c) Results of CliqueMS and CAM-
ERA. For each molecule different adducts are annotated, in parenthesis is
the total number of isotopic variants of this particular adduct. Correctly
annotated adducts are in green, non-annotated signals are in white and
wrong annotation in red.

CliqueMS than in CAMERA in all samples except in one NormHippo2.
There are some metabolites that were correctly annotated but the correct
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CHAPTER 2. CLIQUEMS: A TOOL FOR ADDUCT ANNOTATION

annotation is not among the top-five scores. This is more likely to happen
when cliques are larger in the number of signals, which are the cases that
many metabolites are coeluting.

2.4 Conclusions

We have showed that CliqueMS is capable of grouping the multiple sig-
nals of a metabolite and then annotate its neutral mass. We have seen
that grouping based on a network principle gives better results than other
methods, but also it has a limit when metabolites are strongly coeluting,
and if that case it tends to group together more than one metabolite.

In all our data, simple and complex experiments, CliqueMS is generally
annotating more molecules and more adducts than the most used current
method, CAMERA.

Grouping based on cliques reduces the complex spectra to hundreds of
groups whose peaks are of great similarity. If more than one metabolite
is among those peaks CliqueMS annotation algorithm can annotate both
metabolites.

Tolerance is an important parameter for the reported adduct list. More
restrictive values will not annotate some correct adducts, but can also im-
prove overall annotation, because wrong annotated adducts appear less, so
when scoring correct annotations are more likely to be placed first.

Final anotation outcome depends also on the list of possible adducts.
We have used NIST annotated adduct to build our list. We think that
altough this list is good for an starting point, it should be combined when-
ever possible with the observed annotated adducts of previous experiments,
to include adducts not observed in NIST, or to change the frequencies of
adducts more ocurrent in some equipments.

We think that the increase on the use of CliqueMS and other annotating
methods will provide more data on adduct frequencies, which in turn will
be a source for improve CliqueMS.
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Figure 2.5: Results comparing CliqueMS and CAMERA methods. a) Num-
ber of correctly annotated metabolites. b) Number of correctly annotated
adducts. c) Number of correctly annotated features (isotopes and adducts).
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CHAPTER 3. THE ROLE OF HIBISCUS POLYPHHENOLS IN
METABOLIC HOMEOSTASIS

3.1 Introduction

The notion that nutrition is associated with the preservation of health sup-
ports the challenging search for bioactive food components [1, 2, 3]. Epi-
demiological and intervention studies suggest that plant-derived polyphe-
nols are correlated with beneficial health outcomes, which is probably due
to their potential action as regulators of the expression of metabolically
important genes and/or their intrinsic antioxidant and anti-inflammatory
activities [4, 5, 6, 7, 8]. The emergence of unmet global clinical needs (e.g.,
obesity and the associated conditions) may present an opportunity for the
designers of functional foods to provide beneficial products, but some bioac-
tive compounds may be incompatible with consumer acceptance (e.g., due
to bitterness or astringency) [9, 10]. The lack of a clear theoretical basis or
accepted mechanisms of action also complicates the acceptance of the ther-
apeutic potential of polyphenols. This study is based on the perspective
that data obtained from different types of “omics” may be instrumental in
tackling the complexity of the mechanisms of action of polyphenols from Hi-
biscus sabdariffa by integrating the outcomes of multiple effects that occur
simultaneously.

It has been argued that polyphenols may act as moderate toxins (i.e.,
hormesis), which is counterintuitive and contradictory with the fact that
polyphenols are apparently nontoxic. The idea of xenohormesis was con-
ceived to indicate that mammals are beneficiaries of phytochemicals because
they may respond to “the same chemical cues” developed in plants. [11]
To prove or discard this hypothesis is arduous. In addition, because the
bioavailability of polyphenols is low, it is difficult to understand how food-
stuffs provided in normal amounts could elicit significant effects [12, 13]
. We assume that polyphenols are extremely bioactive in humans and/or
that the observed effects are the result of multiple beneficial and syner-
gistic interactions. Two strategies can be used to study this aspect and
both are under debate: (1) to provide polyphenol-rich extracts, usually in
higher doses than those provided in current diets, as products that influence
multiple molecular targets, [14, 15] or (2) to manipulate the endogenous
antioxidant levels by supplying weak pro-oxidants.[16]. The present study
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3.2. MATERIALS AND METHODS

was performed under the rationale that the chemical composition and con-
formational changes of dietary polyphenols are responsible for binding to
different metabolically active enzymes and/or receptors, and consequently
may have the inherent potential to exert multiple effects. [17, 18, 19].
This may sound “heretical” to the pharmaceutical industries, which ignore
the fact that supposedly selective drugs that are already in the market si-
multaneously modulate dozens of proteins and receptors [20]. To reduce
the complexity found in the composition of plant foods in common diets,
which include hundreds of polyphenols, [21] we studied the acute effects of
a polyphenol-rich, fully characterized aqueous extract from the calyces of
Hibiscus sabdariffa Linnaeus (Malvaceae) (HS) [15]. Our aim was to assess
the influence of these polyphenols on the overall metabolic host response
using a combination of metabolomics and gene-expression analyses. The
result is a useful tool with potential application for monitoring phytochem-
ical exposure in humans, which may be complementary to previous efforts
in the quest for nutrition biomarkers, and it may provide support to the
more comprehensive concept of foodomics [22, 23, 24].

3.2 Materials and methods

3.2.1 Experimental design

All the experimental procedures were performed in accordance with pro-
tocols approved by our Ethics Committee and Institutional Review Board
(EPINOLS, 12-03-29/3proj6 and OBESPAD 14-07-31/7proj3). Written in-
formed consent was obtained from the participants prior to their entry into
the study. Based on previous results [25, 26], we calculated the sample size
using formulas for the 1-sample Z test with a default power of 0.90. Accord-
ingly, to avoid possible gender and age biases, the participants comprised
ten healthy male non-obese individuals, non-smokers, free of medication
and any metabolic derangements, and with ages ranging from 23 to 35
years. While designing the study, we found that a case-control or case-
referent design for liquid ingestion (i.e., using water as a comparator) is
unnecessary and is likely to provide confounders. Moreover, the basal or
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CHAPTER 3. THE ROLE OF HIBISCUS POLYPHHENOLS IN
METABOLIC HOMEOSTASIS

normal metabolic response in a control group could not be matched with
the participants, and the previous exposure to different nutrients (diets)
was difficult to assess. The use of the same participants on different days
might also be a source of confounders, assuming that marked metabolic
and hormonal differential changes can occur during the wash-up period.
We thus adopted a repeated-group design (before–after study) with data
collected in a short (3-hour) period, assuming that a moderate amount of
water is metabolically inert and that the fasting state was clearly described
and established [27]. The unit of analysis was the pair; another advantage
of this design is that each pair serves as its own control, thus reducing
the error and increasing the statistical power. The time of the study was
limited to a few hours because the assessment of long-term effects would
require chronic ingestion and a control group. Time-points for the mea-
surements were also inferred as described in previous studies [13, 14, 15].
The importance of adhering to the fasting recommendations was repeat-
edly reinforced since the recruitment stage. Participants were asked to
avoid strenuous physical activity the day before the experiment and were
instructed to avoid ingestion of alcohol and polyphenol-rich foods or bev-
erages (i.e., coffee, tea, juice, oil, chocolate, fruits, and vegetables) during
the previous 7 days. Participants remained in the fasting state during the
experiment, water was not allowed, and their activity was supervised and
restricted. Strict fasting was indicated 12 hours prior to experiment fol-
lowing standardized policies. Clinical measurements or manipulations were
avoided to prevent a placebo-like effect [15]. The extract from HS calyces
containing 560 mg of polyphenols per 5 g of dried material was prepared
by Monteloeder S.L (Elche, Spain) dissolved in water (200 mL) and was
immediately ingested to ensure that each participant received 8 mg kg1
of organic acids and phenolic compounds. Details on the composition of
these compounds are provided in Table S1.† Participants were asked to re-
main recumbent for 10 min prior to the drawing of blood samples, which
took place immediately before (08:00 AM) and 3 hours after the ingestion.
Serum and plasma were obtained, frozen in aliquots at -80◦C within 2 h of
collection, and were then stored until batch analysis.
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3.2.2 Laboratory measurements

In vitro antioxidant activity of HS extract was measured as previously de-
scribed [12, 13, 14, 15]. The analytical methods for the separation and
identification of phenolic fraction and other soluble compounds of the HS
extract have been already described [28, 29]. Total and HDL-cholesterol,
glucose, uric acid, bilirubin, triglycerides, cortisol and insulin were mea-
sured with standard methods (Boehringer, Mannheim, Germany). Serum
aldosterone and renin activity were measured as described [30] . The home-
ostatic model assessment index (HOMA-IR) was calculated as an estimate
of insulin resistance [31]. The ferric reducing ability of serum (FRAP) [32]
and measurements of the concentrations of total polyphenols and malon-
dialdehyde (MDA) [33] from the serum were performed essentially as de-
scribed [34]. Chemokine (C–C motif) ligand 2 (CCL2), interleukin-6 (IL6),
interleukin-8 (IL8) and tumor necrosis factor-alpha (TNFα) were measured
with ELISA (Invitrogen, Carlsbad, USA). High sensitivity C-reactive pro-
tein (CRP) was measured using reagents from Biokit (Barcelona, Spain).
None of these measured molecules was found in the extract.

3.2.3 Metabolomic platform

Selected samples were outsourced to Metabolon (Research Triangle Park,
Durham, NC, USA), extracted upon arrival and divided into fractions for
analysis. The instrument and overall process variability were 5% and 10%,
respectively. The chromatographic conditions have been previously de-
scribed [35, 36]. In brief, the liquid chromatography-mass spectrometry
(LC-MS, LC-MS2; separately under positive mode and negative mode)
platform was based on a Waters ACQUITY UPLC and a Thermo-Finnigan
LTQ mass spectrometer, which consisted of an electrospray ionization source
and a linear ion-trap mass analyzer. The samples for the gas chromatogra-
phy/mass spectrometry (GC/MS) analysis were derivatized and analyzed
on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass
spectrometer using electron impact ionization. Metabolites were identified
by comparing the ion data, retention time, mass (m/z), and MS or MS/MS
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spectra with a reference library of chemical standards.

3.2.4 Transcriptomic profiling

Peripheral blood mononuclear cells (PBMCs) were isolated at two time
points using BD Vacutainer Cell Preparation Tubes as tentative surrogate
cells for the markers of gene expression in other tissues [37]. Cells were lysed
and stored at −80oC until RNA isolation using a QIAamp RNA Blood mini
kit (QIAgen, Izasa, Barcelona, Spain). The quality was checked by capil-
lary electrophoresis and further purified using sequential DNase digestion
and QIAgen RNeasy microcolumns prior to the microarray analysis. RNA
samples were sent to the Center of Excellence for Fluorescent Bioanalytics
(KFB, Regensburg, Germany). The RNA expression profile was analyzed
using a GeneChip R© High-Throughput HG-U133, which measured the gene
expression of 47[thin space (1/6-em)]000 transcripts and variants, combined
with the Perfect Match array to remove possible mismatches (HT HG-
U133+ PM 24-array plate, Affymetrix, Santa Clara, CA, USA). Numerical
data were obtained using Affymetrix Expression Console 1.1.1 software.
Gene expression was first measured using the robust multi-array average
methodology, followed by quintile normalization. The quality of the data
and sources of the batch effect were assessed using the affyPLM package
version 1.34.0 version 2.11 and principal component analysis (PCA). Probe
set annotation was downloaded from Affymetrix’s website and mapped to
20[thin space (1/6-em)]741 genes. We also measured the expression of
selected genes using real-time PCR amplifications with TaqMan primers
and probes obtained from validated Assays-on-Demand products (Applied
Biosystems, Foster City, CA) on the 7900HT Fast Real-Time PCR system
(Applied Biosystems) [13]. When there were redundancies, the greatest
average expression across all the samples was chosen to represent each gene
[38].
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3.2.5 Statistical and functional association analyses

We used the sample size and power calculator from Statistical Solutions
(Clearwater, FL, USA) using known µ and θ values for control variables in
the population and study sample. The power was set at 0.90 to minimize
Type II errors. The before-after design required the analysis of aggregated
data and use of the Tukey test to decrease the probability of Type I errors.
We subsequently assumed that the variation among experimental data may
not be fully captured in pre-treatment predictors but would manifest itself
in the outcomes [26].

For the metabolomic analysis, we performed comparisons in the metabolomic
profile with Welch’s t-tests and/or Wilcoxon’s rank sum tests as well as
ANOVA for repeated measures. To correct for multiple testing, we used
the False Discovery Rate estimated using the q-value as described earlier
[39, 40, 41]. To obtain a full reconstruction of human metabolism, we con-
sidered all the biochemical reactions in the KEGG database in which hu-
mans are known to synthesize the required enzymes (or that happen spon-
taneously), but only main reactant pairs were considered for reconstruction
[42, 43, 44, 45]. Then, we mapped onto the reconstruction of all metabo-
lites in the metabolomic essays with a known KEGG identifier, and then we
analyzed the microarray data using different “R” packages (http://cran.r-
project.org) from Bioconductor (http://www.bioconductor.org/). After
controlling the quality and batch effect of the samples, we assessed the
differentially expressed genes using the Limma package 3.14.4 with a lin-
ear model to test the effect of HS ingestion on gene expression. Gene-Set
Enrichment Analysis (GSEA) was performed using GSEA software version
2.0.10, employing Gene Ontology (GO) as a gene-set database and gene
annotation for the GO terms based on the Bioconductor package version
2.8. For GSEA calculation, we used the p-value as the statistic for rank-
ing the gene list or the median p-value for genes with multiple probe sets.
We used the GSEA Pre-Ranked tool with the classic scoring scheme, a
minimum gene-set size of 15, a maximum gene-set size of 1000 and 1000
permutations. Our significant gene-set list had an FDR of 30%. We fur-
ther validated the metabolomic and transcriptomic analyses using Ingenuity
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METABOLIC HOMEOSTASIS

Pathway Analysis (IPA; Ingenuity Systems Inc., Redwood City, CA, USA;
http://www.Ingenuity.com) to interpret the network functions, canonical
signaling pathways and toxicity functions.

3.3 Results and discussion

3.3.1 The composition of the polyphenolic extract

The extract was a complex mixture of bioactive compounds prepared from
the calyces of HS harvested in Senegal; the resulting beverage was acidic
(pH = 2.8), sweet and resembled the cranberry in flavor. Small amounts of
similar extracts are currently used in Western countries to market highly
consumed herbal teas (“red or sour teas”) [46]. The beverage prepared
as described, however, was considered to be of low acceptability by 40 of
the participants with bitterness as a common concern. Despite polyphe-
nols being generally accepted as the relevant molecules in the quest for
pharmacological action (Table S1†), we also measured the contribution of
other compounds, including unknown proteins and/or peptides (2 mg kg1),
soluble fiber (5 mg kg1), and minute quantities (¡100 µg) of citric, malic,
ascorbic and protocatechuic acids. We also found mucilage (not measured)
and carbohydrates (3.9 mg kg1), including arabinose, galactose and glucose.
According to the in vitro antioxidant activity of the extract, each partici-
pant received the equivalent in Trolox of 140 mg kg1, measured as FRAP
[47]. Utilizing comparisons and values for bioavailability in a rat model,
[13] the highest concentration of an individual polyphenol, using our design,
should be 0.2 µg mL1. Employing the above-mentioned methods, polyphe-
nols and/or their metabolites were not detectable. Nevertheless, several
compounds (namely, hibiscus acid, quercetin-glucuronide and quercetin-
diglucuronide) were detected using a triple quadrupole mass spectrometer,
but the values remained under the limit of quantification. Bioavailability
or pharmacokinetic experiments were out of the scope of this report, but
these preliminary results suggest that a simple optimization of sample con-
centration and extraction should be used in the design of further studies.
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3.3.2 Effects in selected laboratory variables

At the 3-hour time-point, we did not observe any changes in glucose metabolism,
but lipid metabolism was affected. We also observed a significant decrease
in serum cortisol and aldosterone concentration as well as a trend towards
higher values in serum renin activity (Table 3.1) .The antioxidant activity
of serum measured as FRAP and MDA concentration remained unchanged.
This finding probably reflects the fact that the contribution of polyphenols
to serum antioxidants is relatively low (< 2%). The serum concentration of
other contributors to the antioxidant activity, such as proteins, ascorbate
and tocopherols, did not change significantly (data not shown), which is
in concordance with the lack of variation in the major contributor serum
uric acid (> 40%) [48]. In contrast, we observed a significant increase in
the serum concentration of bilirubin, another relatively minor contributor
(3%–4%) of serum antioxidant activity under normal circumstances. Chro-
matographic values confirmed these data and provided results, which indi-
cated the activation of the heme oxygenase-biliverdin reductase axis (i.e.,
a simultaneous increase in the concentration of heme and bilirubin and a
decrease in biliverdin concentration; Fig. 3.1). We also measured selected
variables to check the anti-inflammatory activity, but these variables, with
the exception of serum CCL2 concentration, remained unchanged.

3.3.3 Metabolomic changes

It is important to note that metabolic changes were qualitatively similar
in all participants (i.e., they followed the same trend—either a decrease or
increase), suggesting that the observed results refer to the actions of the
compounds in the HS extract. We detected 471 metabolites in untargeted
metabolomic analyses, but we found uncertainties in the interpretation of
176 metabolites. The remaining 295 metabolites were positively identified,
and a significant number (n = 107; 36%) were significantly different between
groups. The final assessment was limited to 77 metabolites (25 metabolites
increased and 52 metabolites decreased after the ingestion of the HS ex-
tract) after discarding marginally significant changes, which were scattered
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METABOLIC HOMEOSTASIS

Figure 3.1: The effect of polyphenols in bilirubin metabolism. The ingestion
of the HS extract increased the plasma concentration of heme and bilirubin
with a significant decrease in biliverdin levels, suggesting activation of the
heme-oxygenase-biliverdin reductase axis; *P ¡ 0.05 with respect to the
0-hour time-point.
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0-hour 3-hour P
5.1 (4.3-6.1) 5.2 (4.6-5.8) n.s.

61.2 (56.3-66.8) 63.5 (57.0-65.4) n.s.
HOMA2-IR 1.69 (1.33-1.72) 1.65 (1.20-1.80) n.s.

4.93 (4.59-5.24) 4.28 (4.05-4.87) < 0.001
1.13 (0.84-1.45) 0.93 (0.79-1.25) < 0.001
1.07 (0.95-1.21) 1.08 (0.95-1.32) n.s.
13.4 (5.7-17.8) 16.3 (8.4-19.0) 0.056

75.4 (61.2-121.5) 66.2 (59.4-103.6) <0.05
1.29 (0.98-1.49) 1.42 (1.09-1.53) n.s.
0.15 (0.10-0.18) 0.17 (0.11-0.19) n.s.
1.38 (1.10-1.59) 1.46 (1.31-1.52) n.s.
375 (240-575) 258 (193-460) < 0.001
6.2 (5.1-8.9) 11.1 (7.2-13.3) < 0.001

308 (265-350) 325 (290-357) n.s.
0.38 (0.12-0.56) 0.45 (0.10-0.64) n.s.
1.56 (1.35-1.75) 1.64 (1.32-1.79) n.s.
5.61 (4.25-7.41) 5.49 (4.01-7.36) n.s.
435 (400-550) 360 (280-440) < 0.001

0.63 (0.42-0.85) 0.72 (0.51-0.97) n.s.

 
Glucose, mmol. L-1

Insulin, pmol. L-1

Total cholesterol, mmol. L-1

Triglycerides, mmol. L-1

HDL-cholesterol, mmol. L-1

Renin activity, mIU. L-1

Aldosterone, pmol. L-1

FRAP, μmol TE. L-1

Malonildialdehyde, μmol. L-1

Polyphenols, mmol GAE. L-1

Cortisol, nmol-L-1

Bilirubin, mmol. L-1

Uric acid, μmol. L-1

Interleukin 6, pg. mL-1

Interleukin 8, pg. mL-1

TNF-α, pg. mL-1

CCL2, pg. mL-1

Hs-CRP, μg. L-1

Table 3.1: Selected laboratory variables in plasma from fasting participants
used to explore metabolic changes and anti-oxidative or anti-inflammatory
effects prior to (0-hour) and 3 hours (3-hour) following consumption of the
Hibiscus sabdariffa extract
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CHAPTER 3. THE ROLE OF HIBISCUS POLYPHHENOLS IN
METABOLIC HOMEOSTASIS

Figure 3.2: Overall representation of metabolic disturbances. The af-
fected pathways are highlighted in the metabolic network connecting al-
tered metabolites (red nodes increased, green nodes decreased, and black
nodes remain unchanged) through the shortest possible metabolic routes.
The color and width of each reaction (link) represent the number of short-
est paths connecting the altered metabolites (A). We inferred centrality
in CoA and acetate, most likely acetyl-CoA, but this metabolite was not
identified experimentally (B).

across the human metabolic network (Fig. S1†). The perturbed metabolic
routes were inferred using the “network parsimony principle”, [49], and
acetyl-CoA was the most central metabolite in the propagation of the per-
turbation (Fig. 3.2). The HS extract significantly decreased the concentra-
tion of branched-chain amino acids (i.e., isoleucine, leucine and valine) and
long-chain fatty acids. The combined effect was a differential production
of circulating carnitine conjugates, which suggests that cells take up these
compounds to provide energy. Further analyses confirmed significant effects
in the canonical pathways of amino acid metabolism (P = 0.00002) and the
citric acid cycle (P = 0.000001). In addition, we found a decreased capacity
to form triglycerides and an increased capacity for mitochondrial oxidation,
indicating an improvement in metabolism and mitochondrial function (Fig.
S2 and S3†).
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3.3. RESULTS AND DISCUSSION

The most representative metabolites that differentiate samples after the
ingestion of HS extract were obtained by a random forest analysis (predic-
tive accuracy > 80%) and ranked in order of their importance in the classi-
fication scheme (Fig. 3.3 A). The application of LDA, PCA and heat-map
graphic representations yielded similar results for group clustering, pattern
recognition and the most perturbed pathways and sub-pathways (Fig. 3.3
B and S4†). The HS extract acutely decreased the serum cortisone/cortisol
levels (Fig. S5†) associated with changes in the expression of the SGK1
(serum/glucocorticoid regulated kinase 1) gene (Table 3.2). Seemingly,
these changes might have multiple beneficial effects on metabolism. The
increase in serum arabinose also appears as an important differentiator
(Fig. 3.3 A). This is an intriguing finding that illustrates the possible influ-
ence of other soluble compounds present in plant-derived extracts. We also
found that the HS extract significantly increased the serum concentrations
of known products of gut microbiome metabolism such as catechol sulfate,
3-indoxyl sulfates, 3-phenylpropionate and 4-hydroxyphenylacetate. We
also noticed a uniform and significant increase in serum concentrations of
des-Arg(9)-bradykinin—the active metabolite of bradykinin. This metabo-
lite causes blood vessels to dilate and is one of the substrates of angiotensin
I-converting enzyme (ACE). Thus, this observation strongly suggests that
HS extracts may act as an ACE inhibitor [15, 50, 51, 52].

3.3.4 Transcriptomic changes

The primary changes in the differentially expressed genes that may demon-
strate an overall effect of the HS extract (some are depicted in Table 3.2)
illustrate that PBMCs are a source of biological samples that could detect
global changes with metabolic, oxidative and inflammatory implications.
The GSEA p-value based on a ranked list of genes revealed the relative
importance of the biological processes associated with the cellular response
to organic substances, the immune system process, the maintenance of pro-
tein localization in organelles and the biological regulation of lipid and
glucose metabolism (Fig. S6†). Similar studies on molecular functions
showed an over-representation of genes related to the activity of cytokine
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CHAPTER 3. THE ROLE OF HIBISCUS POLYPHHENOLS IN
METABOLIC HOMEOSTASIS

Figure 3.3: Altered metabolites differ in their relative importance. Random
forest analysis (A), a supervised classification technique, distinguishes be-
tween groups based on their metabolic profiles with a predictive accuracy
of > 80% and produces a list of primary differentiators. Heat map as a
graphical representation of data (B), where the individual values contained
in the metabolic profiles matrix are represented as colors. The red or green
colors indicate increased or decreased plasma concentration, respectively.
The represented metabolites were selected according to their relative im-
portance to depict the fact that the actions of the HS extract are scattered
across a significant number of metabolic pathways.
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Symbol FDR
CCL3L3 0.001 0.24
CEP152 0.016 0.14
CX3CR1 0.2
CXCL10 0.21
CXCL8 0.22
CYP2R1 0.23

EIF1 0.23
EIF5 0.2
ERN1 0.2
FKBP5 0.21

HNRNPDL 0.001 0.06
IFRD1 0.2

MGAT4A 0.064 0.19
MIB2 0.07
NID1 0.19

PCMTD1 0.001 0.24
PMAIP1 0.2

PPP1R15A 0.001 0.25

PTGS2 0.2
SCAF4 0.2
SGK1 0.2
TAGAP 0.005 0.08
WDR20 0.065 0.19
ZBTB16 0.21
ZBTB24 0.2

p value

1.76x10-4

2.33x10-4

3.73x10-4

4.67x10-4

4.52x10-4

1.28x10-4

1.22x10-4

2.42x10-4

1.16x10-4

2.64x10-6

6.82x10-5

1.06x10-4

1.67x10-4

1.10x10-4

1.91x10-4

2.58x10-4

1.89x10-4

Table 3.2: List in alphabetical order of the top 25 differentially expressed
genes that best describe transcriptomic changes after the ingestion of Hi-
biscus sabdariffa extract
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METABOLIC HOMEOSTASIS

and chemokine receptors and ligands. There was a clear and significant
association between functions related to the ligand binding to vitamin D
and G-protein coupled receptors (Fig. 3.4). The gene ontology numbers
and term names, gene size and false discovery rates, as well as the list of
common genes significantly involved, may be found in Table S2.† Curiously,
the response to biotic stimulus (GO# 0009607) is clearly overexpressed (n
= 558 genes) and the major contribution was provided by CXCL8 (inter-
leukin 8), CCL3, CCL2, IL-6 and TNF-α, indicating the anti-inflammatory
component of HS.

3.3.5 Inferring the routes of interacting biological macro-
molecules

PA analysis further confirmed these findings, and the top associated net-
work functions (score ¿40) were gene expression, post-translational modifi-
cation, cell cycle, molecular transport, RNA trafficking and cellular function
and maintenance. The top canonical pathway was glucocorticoid receptor
signaling (P ¡ 0.000001). The examination of gene expression, summariz-
ing the differences between the 0-hour and 3-hour time-points, indicated a
down-regulation in the genes involved in cholesterol and triglyceride synthe-
sis, lipid transport, gluconeogenesis and glycolysis. Notably, the differential
changes in the expression of several genes suggest a possible effect of the HS
extract in energy homeostasis via regulatory pathways involving the mech-
anistic targeting of rapamycin (MTOR) and/or the AMP-activated protein
kinase (AMPK) (i.e., the regulation of nutrients and energy sensors [53]).
Further confirmation was obtained by analyses of the metabolites and the
genetic expression of acetyl-CoA carboxylases (ACC1 and ACC2), CERB-
regulated transcriptional coactivator-2 (CRTC2), PPARγ coactivator-1α
(Ppargc1α), ribosomal protein S6 kinase (S6K), and eukaryotic initiation
factor 4E binding protein 1 (4EBP1). The genes and metabolites with
known gene symbols were combined and the results on the main associated
network functions and top canonical pathways did not change, except for a
higher representation of the incorporation of bile acid-related functions. In
this regard, the top up-regulated molecules were des-Arg-(9) bradykinin,
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3.3. RESULTS AND DISCUSSION

Figure 3.4: Gene-Set Enrichment Analysis (GSEA) performed using Gene
Ontology (GO) as the gene-set database for gene annotation. The figure
depicts the significant overrepresentation of molecular function GO terms.
Each node corresponds to a distinct molecular function, including gene sets
with a low false discovery rate. The color scheme is at the bottom of the
figure and the grey nodes correspond to terms without gene representation
in the array. Dashed lines indicate missing intermediate terms between
the nodes. The expression of genes with functional chemokine activity was
significantly associated with the expression of genes, which indicate binding
to both G-protein coupled receptors and vitamin D receptors.
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METABOLIC HOMEOSTASIS

bilirubin and CX3CR1, and the top down-regulated molecules were cholic
acid, cortisone/cortisol and EGR3. Finally, we found an association be-
tween the ingestion of HS extract and a decrease in the depolarization of
the mitochondrial membrane (P = 0.0015), mechanisms of gene regulation
by peroxisome proliferators (P = 0.009) and p53 signaling (P = 0.002).

3.3.6 Overall discussion

The combination of metabolomic and transcriptomic analyses uncovers
complex and multiple metabolic transformations following the ingestion
of polyphenols and may help to predict the multiple interactions of food
components on metabolic health. Inferring the routes of interacting biolog-
ical macromolecules may be considered as a promising and complementary
tool for capturing the metabolic complexity of phytochemical exposure[7,
15, 22, 23, 24, 54, 55, 56, 57]. Tissue-specific transcriptomic information re-
quires invasive procedures, and whether changes in PBMCs are indicative
of the metabolism in other tissues, although suggestive, needs confirma-
tion. We found high serum arabinose concentrations, which may represent
a cautionary note because the obvious source was the HS extract. Although
human arabinose metabolism is unknown, our data may explain the effects
observed in lipid metabolism because, at least in rats, arabinose reduces
hepatic lipogenesis and the serum concentration of both cholesterol and
triglycerides [50].

Polyphenols are potential antioxidants in vitro, but it has not been
unequivocally established that the consumption of polyphenols in humans
evokes in vivo antioxidant effects [48]. Although unexpected in a short-term
experiment, our data confirm that the antioxidant activity of polyphenols
may be partially derived from actions in the digestive tract via the up-
regulation of the heme-oxygenase (HO)-biliverdin reductase axis. The in-
duction of HO expression explains the antioxidant action of serum bilirubin,
contributes to the synergism with PPAR-agonists, and improves insulin sen-
sitivity. Moreover, HO expression may suppress key steps associated with
the activation of inflammatory and oxidative pathways [58, 59, 60, 61, 62,
63].
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The metabolic effects of the HS extract converge on acetyl-CoA and
may improve mitochondrial function via the transport of carbon atoms to
the citric acid cycle (i.e., to be oxidized for energy production). In addi-
tion, these polyphenols regulate energy sensors (the AMPK/MTOR path-
way) and increase the capacity for the oxidation of conjugates derived from
branched-chain amino acids and long-chain fatty acids. The metabolism
of protein, fat and carbohydrates may be also affected by the HS extract
as it reduces the serum concentration of cortisol. This may be a signifi-
cant finding because we have previously found that the HS extract lowers
blood pressure and improves endothelial function in humans, [15] which is
in line with the increasingly recognized association between excess cortisol
and metabolic syndrome. In particular, the link between HS polyphenols
and decreased cortisol may sustain findings that indicate that the combina-
tion of oxidation, inflammation and endothelial dysfunction are interrelated
mechanisms with a role in the pathogenesis of hypertension [64, 65]. Excess
cortisol induces hypertension, [64] and the rapid modifications induced by
HS in blood pressure and serum cortisol levels confirm that the expression
of the SGK1 gene may be crucial in the transport of sodium [65]. Similarly,
we found significant associations between the HS extract and the expres-
sion of cytochrome P450, family 2, subfamily R, polypeptide 1 (CYP2R1),
which were connected with the expression of genes affecting vitamin D
receptor binding. Clinically, high serum levels of vitamin D seem to accom-
pany a reduced risk of high blood pressure but the causality of the asso-
ciation remains to be ascertained [66]. Moreover, evidence presented here
are concordant with our previous findings, indicating that the HS extract
decreases the activity of the renin-angiotensin (RAS) system in patients
with metabolic syndrome and hypertension [15]. The possible action of the
HS extract as an ACE inhibitor in vivo might be sustained by the finding
of elevated serum concentrations of the vasodilator, des-Arg(9)-bradykinin,
and the interrelated effects that result in a decrease of the RAS activity
may help to understand the beneficial actions of polyphenols and/or as-
sociated compounds from the HS extract. Hypertension, diabetes, obesity
and cortisol stimulate RAS activity, and activated RAS is closely related to
metabolic syndrome [67, 68, 69, 70, 71]. Conversely, the inhibition of RAS
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activity improves these disturbances [72, 73]. We also describe that genes
acting on the molecular action of G-protein-coupled receptors are differen-
tially expressed by the HS extract. This is important because cytokines,
hormones and other active components that cause the deleterious metabolic
effects induced by high tissue RAS activity act through G-protein-coupled
receptors [74, 75].

3.4 Conclusion

Herein, we propose that polyphenols from HS are a potential source of
bioactive compounds that may provide protection for the cardiovascular
system. The effects described and those provided by other authors might
be used for modeling combinations that are capable of optimizing the view
that polyphenols play a pivotal regulatory role in metabolic reprogramming
[76, 77, 78, 79, 80]. In addition, investigating multiple metabolic effects and
affected pathways should be considered in the assessment of therapeutic
strategies.
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Anton Vernet

Antoni Aguilar-Mogas
Gemma Villahur
Lina Badimon

Marta Sales Pardo
Salvatore Cito

85

UNIVERSITAT ROVIRA I VIRGILI 
STATISTICAL TOOLS FOR CLASSIFICATION, INTERPRETATION AND PREDICTION OF BIOLOGICAL DATA 
Oriol Senan Campos 
 



CHAPTER 4. DIFFERENT MODELLING APPROACHES TO
PREDICT PLATELET DEPOSITION

4.1 Introduction

Thrombosis is the main responsible for the leading causes of mortality and
morbidity worldwide: heart attack and ischemic stroke ([1]). Thrombus
formation is an extremely complex pathological process that starts upon
platelet interaction with the exposed vascular thrombogenic surface upon
atherosclerotic plaque rupture. Concomitantly, tissue factor exposure trig-
gers the activation of the coagulation cascade and thrombin formation fur-
ther promoting platelet activation and aggregation. Thrombin, in turn,
also leads to fibrin formation and thrombus stabilization

Experimental evidence shows that platelet activation and deposition de-
pends on hemodynamic and rheological variables such as shear rate, shear
stress ([2]), red blood cell margination ([3, 4]), exposed substrate (suben-
dothelium, collagen, tendon, etc.) and local concentration of activated
platelets and pro-thrombotic factors ([5, 6]). Despite the development of
several theoretical models that describe the many contributors to thrombus
formation and growth ([7]), with special emphasis on the platelet aggrega-
tion process ([3, 8, 9, 10, 11, 12]) as well as the spatial and temporal aspects
of early stage thrombus dynamics ([13]), the role of each of the aforemen-
tioned variables on thrombus formation is still not clear thus hindering the
development of comprehensive and computationally fast multiscale models
([14, 15, 16]).

In view of this challenge, and as a first step towards the understanding
of the role and limitations of different modelling approaches for thrombus
formation, our goal is to compare distinct computationally fast approaches
to predict platelet deposition levels. While platelet deposition has been
extensively studied, especially within the hemodynamics literature ([17,
18, 19, 20]), very little emphasis has been placed on the assessment of the
predictive power of such models. Specifically on the evaluation of whether
models adjusted to a set of empirical data (training data set) provide a
good description of a different empirical data set (test data set). To a large
extent, this is due to the lack of extensive, systematic empirical data on
platelet deposition for a wide range of experimental conditions.

To cover this gap, we analyze the ability of different computational ap-
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4.1. INTRODUCTION

proaches to predict platelet deposition values for a large variety of empirical
conditions. Note that as a first step, we focus on total platelet deposition
counts and do not take into account the spatial dimension of thrombus
formation [13]. Specifically, we consider the following approaches: a) a
mechanistic modeling approach, b) a machine learning approach; and c)
a phenomenological approach. We find that a phenomenological approach
built upon empirical facts of the platelet deposition process has the largest
predictive power thus offering novel insights into what are the effective roles
of different blood factors in platelet deposition.

4.1.1 Approach and rationale

Figure 4.1 illustrates the approach we followed in our study. Specifically,
we first collected the platelet deposition data. Then, in order to asses the
predictive power of the different computational approaches, we performed
a cross-validation analysis. In this type of analysis, we divide the collected
data into a training dataset and a test dataset. We use the training dataset
to train our model or algorithm (that is to obtain model parameters ) so
that we obtain a good agreement between model/algorithm outputs and
the known empirical platelet deposition value. Then, for each experimental
condition in the test dataset, we use the trained model/algorithm to make
a prediction of the platelet deposition value. We compare the predicted
value with the real value obtained from the experiments to assess the error
of the prediction of each approach.

Experimental data collection In our analysis, we consider platelet de-
position data of pig blood obtained using a validated ex vivo perfusion
chamber (Badimon chamber, [5, 21]), (see Methods). The Badimon cham-
ber provides an excellent proxy for the patho-physiological environment
that affects platelet deposition because: i) it is a bio-reactor that retains
the cylindrical shape of vascular conduits in which one can simulate a broad
range of flow conditions [22, 21]; ii) it is flexible enough to test the throm-
bogenicity associated with different vascular surfaces or atherosclerotic le-
sions [23]; and, iii) it allows to analyze different blood conditions and blood
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CHAPTER 4. DIFFERENT MODELLING APPROACHES TO
PREDICT PLATELET DEPOSITION

Figure 4.1: Flowchart and summary of our approach. a) Flowchart of the
analysis. Our study is divided in three steps: i) experimental setup and data
collection; ii) training of models/algorithms; iii) prediction. Experimental
setup and data collection: In the experiments, pig blood circulates from the
animal to a perfusion chamber (Badimon Chamber) containing one of the
three different vascular tissues considered triggering thrombi (tunica me-
dia, pig tendon, subendothelium). We collected platelet deposition counts
for different experimental conditions such as perfusion time or shear rate
(see Table 4.1 and Methods). We performed experiments with four differ-
ent animals. Training: We consider all the collected input (experimental
conditions) and corresponding platelet deposition data for three pigs. With
this information we train the models/algorithms to get a good agreement
between model/algorithm outputs and known platelet deposition values.
Prediction: We now consider the data collected for the remaining pig. We
use the experimental conditions in that dataset as inputs to the trained
model/algorithm to obtain predictions of platelet deposition values for each
set of conditions. We test the prediction power of each model/algorithm by
comparing predicted platelet deposition values to measured platelet deposi-
tion values. We carry out steps ii) and iii) for the four different combinations
of training (3 pigs) and test (1 pig) datasets. b) Advantages and limitations
of each of the computational approaches for platelet deposition prediction
that we consider in our study: a mass-transfer boundary layer model, the
Random Forest algorithm and a phenomenological model (see text).
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4.1. INTRODUCTION

treatments [24, 25]. Specifically, we obtain platelet deposition data for four
different pigs under a number of different experimental conditions includ-
ing variation in shear rate, perfusion time, vascular tissue, hematocrit and
platelet concentration levels (see Table 4.1 for a summary of the collected
data).

Table 4.1: Experimental data.

Variable Values (Mean, range)

Shear rate (s−1) 212, 1390 and 1690
Perfusion time (min) 3, 5, 10, 20 and 30
Hematocrit (%) mean: 26.46 (PCV), [22.0, 31.30]
Platelet concentration
(platelets/µl) × 10−3

mean: 341.096, [182.0 , 449.0 ]

Blood native blood and heparinized blood
Vascular tissue PT - pig tendon; TM - tunica media;

SE - subendothelium
Platelet deposition
(platelets/cm2× 10−6)

Mean: 130.68 [0.63, 2013.5]

Computational approaches We consider three complementary compu-
tationally fast approaches to model platelet deposition (see Figure 4.1 for
a summary of the main advantages and limitations of each approach ):

(a) A novel mechanistic model based on the mass-transfer boundary layer
theory (MBL) ([27]). This is an approach that has been extensively
used to investigate hemodynamics and platelet deposition in partic-
ular ([8, 10, 28, 29, 30, 31, 32]). This type of models assume that
the platelet deposition rate is proportional to a reaction kinetics con-
stant and to the platelet concentration at the wall ([8, 10]). We con-
sider a generalization of a simple model of platelet deposition that
includes implicitly the effect of the convective force using boundary-
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CHAPTER 4. DIFFERENT MODELLING APPROACHES TO
PREDICT PLATELET DEPOSITION

layer theory and as a novelty differentiates between the first mono-
layer of platelet deposition [platelets in contact with the substrate
(e.g. endothelial layer)] and the following multi-layer platelet aggre-
gates [platelet-platelet interaction and thrombus growth] (see Meth-
ods and Supplementary Material). As a result, the number of de-
posited platelets depends on the platelet and hematocrit levels in
blood, the vascular lesion dimensions and two kinetic reaction con-
stants that need to be determined: k1 for the formation of the first
monolayer and k2 for the formation of subsequent layers (see Meth-
ods). Note that within our approach deposited platelets cannot de-
tach.

The MBL approach has the advantage that it provides a mechanistic
description of the platelet deposition process in which parameters
have a clear physical meaning. However, due to MBL assumptions its
application is limited to experiments with no stenosis (since the flat
plate boundary layer assumptions would be violated) and for short
perfusion times (see Methods).

(b) A machine-learning approach using the Random Forest algorithm
(RF) ([33]). Methods such as the RF ([33]) are especially suited to
predict the outcome (for instance, number of deposited platelets) of
an event given the observation of certain features (such as the hema-
tocrit level, shear rate and platelet concentration), without a priori
knowledge of the mechanisms governing the specific phenomenon. In-
deed, the RF has been successfully applied in a variety of biological
contexts such as protein interaction prediction ([34]), gene classifica-
tion ([35]) and feature selection in biological models ([36]).

Importantly the RF can process both qualitative and quantitative
variables, which make it suitable for our analysis in which we have
both types of variables (e.g. vascular tissue and blood type are qual-
itative, while the remaining variables are quantitative — see Table
4.1). However, the predictive power of the RF is severely affected by
the range of the training dataset, and will produce very bad predic-
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tions for any new input data that falls out of that range.

(c) A phenomenological model (PM) constructed from empirical evidences
collected in platelet deposition experiments. We consider a model
that takes into account the a priori most relevant features, based on
the following observations from the empirical data and from the lit-
erature, and further refined with the analysis of variable importance
using the RF (see Supporting Figure S1-3):

– Platelet deposition counts increase, in general, with perfusion
time and show no apparent signs of saturation in the measured
times (see Supporting Figure S1-4);

– Platelets cannot deposit on a surface if there are no platelets
circulating in blood;

– Tissue type affects the rate of platelet deposition ([2, 32, 37]);
– The shear rate affects the rate at which platelets deposit on a

surface ([8, 21, 38]).

Taking into account these simple facts, we propose the following phe-
nomenological model for the logarithm of the total platelet deposition
P under certain experimental conditions:

log10 P = βC log10C + βt log10 t+ βγ log10 γ + β(T ) (4.1)

where P is the platelet accumulation, C is the platelet concentration
in blood, t is the perfusion time, γ is the shear rate, {βC , βt, βγ} are
constants, and β(T ) is a constant that depends on the vascular tissue
type (therefore it takes 3 different values).

Our cross validation analysis reveals that the PM has a larger predictive
power than MBL and RF approaches: average median errors of 21% (MBL),
20.7% (RF) and 14.2% (PM).
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4.2 Results

4.2.1 Model validation

We first assess the validity of the three approaches we consider by fitting
the models to all available data points. Figure 4.2 shows that the three
approaches we propose - (a) MBL, (b) RF, (c) PM - are, in principle,
suited to obtain accurate platelet deposition values under different empirical
conditions. The fitting parameters for the MBL model are the kinetic
constants of the platelet adhesion process on the substrate (k1) and on
a layer of a previously deposited platelets (k2). The PM has four fitting
parameters: βC , βt, βγ and β(T ), associated, respectively, to the platelet
concentration in blood, the perfusion time, the shear rate and the substrate.
The top rows in tables 4.2 and 4.3 show the model parameters estimated
for MBL and PM approaches, respectively.

In the MBL approach, we find that platelet deposition counts on tunica
media corresponding to a severely damaged vessel wall in which deeper
vascular layers are exposed (i.e., vascular smooth muscle cell), does not
depend on the values of k1 and k2. This suggests that for the experimental
conditions under consideration, the deposition on this substrate was limited
by the advective and diffusive transport of platelets towards the wall. For
the other two substrates (pig tendon and subendothelium), we find that
k1 and k2 are roughly independent of the tissue and that the values of
are k2 about one order of magnitude larger than k1. This is consistent
with the fact that in the PM (Table 4.3) we obtain the same value for the
tissue parameters corresponding to subendothelium and pig tendon and a
different value for tunica media.

This observation agrees with the expectation that platelet deposition
occurs in a similar manner on both substrates because of their similar con-
stituents. Pig tendons are a rich source of collagen fibers which are precisely
one of the main constituents of the basal membrane, the layer that is ex-
posed (but not damaged) in a subendothelial exposure. On the other hand,
tunica media encompasses endothelial denudation with damage to both in-
tima and the vascular media exposing to the blood flow not only collagen
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proteins but vascular smooth muscle cells and their constitutive proteins.
Such proteins are highly thrombogenic ([5]) and therefore affect differently
the platelet deposition process.

Table 4.2: MBL model parameters. The top row shows the values for k1
and k2 obtained considering all the available data for which the model can
produce a prediction (no stenosis). The remaining rows show the values
obtained for the cross-validation analysis. PT- pig tendon; SE - suben-
dothelium

Test
(1 pig)

k1 (PT)
(m/s)×107

k2 (PT)
(m/s)×105

k1 (SE)
(m/s)×107

k2 (SE)
(m/s)×105

- 9.5 (0.3) 5.4 (0.4) 8.7 (0.3) 20.0 (0.4)
CP89 10.0 (0.3) 18.0 (0.4) 12.0 (0.3) 13.0 (0.4)
CP90 6.6 (0.3) 5.9 (0.4) 13.0 (0.3) 1.0 (0.4)
CP92 10.0 (0.3) 16.0 (0.4) 12.0 (0.3) 7.5 (0.4)
CP98 6.6 (0.3) 7.2 (0.4) 7.1 (0.3) 9.8 (0.4)

4.2.2 Predictive power assessment

In order to assess the predictive power of each one of the approaches, we
performed four cross-validation experiments (Figure 4.1). In each one of
these experiments, we consider three pigs as the ’training’ data set, and the
remaining pig as our ’test’ data set. Therefore, we use data from three pigs
to estimate the kinetic constants in the MBL approach (see Table 4.1), to
train the RF and to estimate the parameters in the PM (see Table 4.2).
We then evaluate the error of each of these three approaches in predicting
platelet deposition values for the remaining pig. Figure 4.3 shows, as an
example, the cross-validation plot for pig CP89.

Our analysis shows that the three approaches we propose produce rea-
sonable predictions of the amount of deposited platelets (Figure 4.4). Note
that we can build further confidence in the MBL and PM because model
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Figure 4.2: Platelet deposition predicted by (a) the mass-boundary layer
model (MBL) (b) Random Forest (RF) and (c) the phenomenological model
(PM). We show the predictions as log10(number of platelets/cm2 × 10−6)
versus the corresponding experimental values. Open symbols correspond
to a perfusion time of 3 minutes, light color symbols to 5 minutes and dark
color symbols to 10 minutes. Symbols with a cross represent data of native
blood, symbols with dots and without dots correspond to different concen-
tration of heparin (35+35U/K/H and 120+100U/K/H, respectively).
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Figure 4.3: Cross-validation plot for pig CP89 showing platelet deposi-
tion predicted by (a) the mass-boundary layer model (MBL, red squares),
(b) Random forest (RF, blue triangles) and (c ) the phenomenological
model (PM, green circles). We show model predictions as log10(number
of platelets/cm2 × 10−6) versus the corresponding experimental values for
which MBL can produce a prediction (no stenosis). Open symbols cor-
respond to the training set and filled symbols correspond to the test set.
Parameters for PM: β(T ) = -6.3 (PT), -6.3 (SE), -5.8 (TM), βC = 2.2, βt
= 1.33, βγ = 0.402. 95
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parameters show little variation (that is, are always in the same orders of
magnitude) across the set of cross-validations. We note that in the PM all
parameters in Eq (4.1) are significantly different from zero. In addition, in
the case of pig tendon and subendothelium, the tissue parameters (β(T )
in Eq (4.1)) are very similar, confirming that there is little difference in
platelet deposition on these two substrates as expected.

Table 4.3: PM parameters. The top row shows the values [value (error))]
for βC (platelet concentration), βt (perfusion time), βγ (shear rate) and
β(T ) (tissue) obtained considering all the available data. The remaining
rows show the values obtained for the cross-validation analysis considering
data for the specified pig as the test set and data for the remaining pigs as
the training set. PT- pig tendon; SE - subendothelium, TM - tunica media.

Test βC βt βγ β(T )

- 2.2(0.3) 1.4(0.1) 0.38(0.07) −6.4(0.8) (PT)
−6.7(0.8) (SE)
−5.3(0.8) (TM)

CP89 2.2(0.3) 1.3(0.1) 0.42(0.08) −6.4(0.8) (PT)
−6.3(0.8) (SE)
−5.8(0.8) (TM)

CP90 2.1(0.3) 1.3(0.1) 0.30(0.09) −5.7(0.9) (PT)
−5.8(0.9) (SE)
−5.2(0.9) (TM)

CP92 2.6(0.5) 1.7(0.1) 0.40(0.08) −8.0(1.0) (PT)
−8.0(1.0) (SE)
−7.0(1.0) (TM)

CP98 2.0(0.4) 1.3(0.1) 0.40(0.09) −6.0(1.0) (PT)
−6.0(1.0) (SE)
−5.0(1.0) (TM)

In order to quantify the predictive power of each one of the approaches,
we compute the relative error for each one of the cross-validations performed
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with the three approaches (Figure 4.5 and Supporting Figure S1-5). We
note that the median error is typically low, and that the PM is the model
that performs best. On average the PM shows relative errors typically
about 14.2%, while MBL and RF approaches have median errors of 21%
and 20.7%, respectively. This is also the case if we only consider data
points for which MBL can produce predictions (that is, experiments with
no stenosis), for which the PM has an average median error of 12.9%, while
MBL and RF approaches on average have median errors of 22% and 17.2%,
respectively.

We also note that in one of the cases (when predicting platelet deposi-
tion for pig CP92) we find that the RF and PM approaches have a much
lower predictive power. An inspection of the data reveals that this dataset
has a narrow range of platelet deposition values – CP92 platelet deposition:
(platelets/cm2×10−6) [2.4, 135.3] –, while the rest of data has a wider range
– [0.62, 2013.74] (platelets/cm2×10−6) – and that values are lower for CP92
([182.0, 287.07] (platelets/µl ×10−3) than for the other three pigs (platelet
concentration [289.07, 498.89] (platelets/µl ×10−3). Therefore, the loss of
predictive power is probably due to the fact that the training data set has
’less’ information in the region where CP92 points lie since the training set
covers a broader range. This issue highlights the importance of the training
set in order to obtain accurate predictions.

4.3 Discussion

Our study showcases the validity of computational approaches to predict
platelet deposition in vascular tissues in a number of different conditions.
First, we empirically assessed platelet deposition exposing animal blood
to a thrombus triggering substrate during different time periods and at
different shear rates. Then, we tested the predictive power of three comple-
mentary approaches: i) a principle based approach using a mass-transfer
model; ii) a machine learning approach that has no information about the
physico-chemistry behind the biological process (Random Forest); iii) a
phenomenological model constructed from empirical evidence.
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Figure 4.4: Median relative error in the test sets. For each one of the cross-
validation analysis we show the median relative error: difference between
the predicted and the measured value, relative to the measured value. Error
bars correspond to median absolute deviation divided by the square root
of observations. For each one of the approaches: MBL– Mass Boundary
Layer Model, RF– Random Forest and PM– phenomenological model.
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Our study shows that the three approaches have a consistent predictive
power, the phenomenological model having an overall better performance.
Furthermore, our analysis highlights the main advantages and disadvan-
tages of the different approaches (see Figure. 4.1).

Our analysis also shows that RF and PM approaches would significantly
benefit from the availability of platelet deposition data for a larger variety
of empirical conditions (for instance, different shear rates and perfusion
times). However, this is not necessarily the case for the MBL model. The
assumptions made in such model impose certain limitations on the range
of applicability of the model. In particular, our MBL approach is not
applicable to cases with stenosis or for long times of perfusion when platelet
detachment may occur (see for example Supporting Figure S1-4c, where a
decrease of deposited platelets is observed for perfusion times between 10
and 30 minutes). The extension of the range of applicability of the MBL
model to these cases would require to take into account and parametrize a)
the variation of the wall shear rate along the substrate with stenosis and
b) the mechanisms responsible for the platelet detachment, thus entailing
an increase in the number of fitting parameters.

The availability of a larger variety of empirical conditions would help
improve the prediction power of the PM in two aspects. One the one hand,
it would yield a more robust set of model parameter values that would give
good predictions for a larger range of empirical conditions. On the other
hand, new experimental data could help uncover new empirical facts that
could be used to refine our model.

Finally, our study shows that the parameter based approaches we pro-
pose are biologically sound. Remarkably, our mass-transfer model is a novel
model that built upon common approaches in literature that explicitly dif-
ferentiates between the formation of the first monolayer and that of the
subsequent layers. The fact that the kinetic constants associated to each of
these mechanisms are different by an order of magnitude indicates that this
is an important aspect of the platelet deposition process. In the PM, the
fact that all the model parameters are different from zero all the variables
we selected have a distinct impact in the platelet deposition process. Addi-
tionally, for both approaches we obtain parameter values that are consistent
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with our expectation of the differences of deposition on different substrates.
In particular, in the PM approach tissue dependency is well captured by a
single parameter that is similar for pig tendon and subendothelial tissues
and different for the tunica media. In contrast, the parameters associated
to shear rate, platelet concentration in blood, and perfusion time remain
the same throughout the analysis. In fact, according to Table 4.3 the largest
contribution is that of platelet concentration in blood and perfusion time,
which is also consistent with the assumptions in the MBL model.

All in all, our study opens the door toward further studies that aim to
integrate macroscopic description of the models we propose by coupling it to
more refined models of the microscopic processes behind platelet deposition.

4.4 Methods

4.4.1 Data description and prediction experiments

Experimental animal model Experiments were performed in Large
White x Landrace commercial pigs (n=4, m≈36 kg), individually caged in
a light-, temperature-, and humidity-regulated environment with controlled
feeding and free access to water. The investigation conforms to the Guide
for the Care and Use of Laboratory Animals published by the US National
Institute of Health (NIH Publication No. 85-23, revised 1996).

Radioactive labeling of platelets We performed radioactive labeling
of platelets to monitor their deposition (monolayer and multilayer). To that
purpose, after overnight fasting, 43 ml of pig blood was drawn in 7 ml of
anticoagulant citrate dextrose solution by femoral venipuncture. Platelets
were isolated and labeled with 111In (Amersham Biosciences, UK) as de-
scribed in [25] suspended in a final volume of 4 ml of autologous plasma,
and reinjected into the pig (ear vein) within 2h. Labeling efficiency was
around 90% and the injected activity was around 250mCi. Post-mortem
111In biodistribution indicated a correct platelet distribution with maximal
accumulation in blood.
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Figure 4.5: (a) Prediction and true value of platelet deposition of test
sets. We use the same data points in each test set to directly compare the
three modelling methods. (b) Median error of previous cross-validation,
relative error: difference between the predicted and the measured value,
relative to the measured value. Error bars correspond to median absolute
deviation (MAD) divided by the square root of observations. MBL: Mass
Boundary Layer (squares) Model, RF = Random Forest (Triangles), PM
= Phenomenological Model (circles).
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Extracorporeal perfusion system in the Badimon chamber The
study protocol was approved by the institutional ethics committee (CSIC-
ICCC) and all animal procedures were performed conform the guidelines
from Directive 2010/63/EU of the European Parliament on the protection
of animals used for scientific purposes or the NIH guidelines. In addition,
we have followed the ARRIVE guidelines ([26]). We assessed platelet be-
havior by exposing the animal blood to a thrombus triggering substrate
during different time periods and at different shear rates in the previously
validated and standardized Badimon perfusion chamber ([21]). To that end,
after overnight fasting, animals were tranquilized (8 mg kg−1 Stressnil R©,
Esteve), anesthetized (10 mg kg−1, B. Braum, Spain), and a carotid artery-
jugular vein shunt was established to place the Badimon perfusion chamber
as described in ([25]). All of the animals received low-dose anticoagulation
with heparin (50 IU kg−1) as a continuous infusion to avoid clotting inside
the tubing system. This heparin regime does not affect platelet deposition
([21]).

Blood was perfused through the chamber for different time periods (3,
5, 10, 20 and 30 minutes) at shear rates of 212s−1, 1690s−1 and at an ex-
perimental stenosis of 80%, that corresponds to a shear value of 1390s−1, in
order to mimic the rheological conditions within blood vessels (see the fol-
lowing section for details on the calculation of these values). The thrombo-
genic substrates (platelet-triggering surfaces) included homologous porcine
vessel walls with 2 types of damage [mild (denuded vessel wall or suben-
dothelium SE) and severe (disrupted vessel wall or tunica media TM)] and
pig tendon (PT). Several perfusions with varying time of perfusion, hemo-
dynamic conditions and triggering substrate were performed in each animal.
After the perfusion, vessels were fixed in 4% paraformaldehyde to count la-
belled platelets using a gamma counter (Wizard, Wallac, USA). Values were
normalized by blood 111In activity (counts), platelet counts in blood, and
area exposed surface ([25]). At the end of the experiment, animal’s heart
was arrested with a 10ml potassium chloride 2M intravenous injection.
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4.4. METHODS

Hematological and hemodynamic parameters We determined hema-
tocrit and platelet count throughout the experimental period with as Sys-
tem 9000 Serono cell analyzer.

Overview of the data Table 4.1 provides an overview of the type and
range of data collected from the experiments.

For the perfusions performed with 80% of stenosis, we computed the
shear rate solving numerically the Navier-Stokes equations in the three
dimensional domain that emulate the perfusion chamber with and without
the stenosis (see S3 for details).

An analysis of the empirically measured platelet deposition counts re-
veals that the distribution of the logarithm of the number of deposited
platelets has no gaps and is smoother than the distribution of the num-
ber of deposited platelets (see Figure. S1-1). For this reason, we focus on
predicting the log10 of the number of deposited platelets.

4.4.2 Computational approaches to platelet deposition

Mass-transfer boundary-layer model (MBL) Convection-diffusion-
reaction models assume that the platelet deposition rate is proportional to
a reaction kinetics constant and to the platelet concentration at the wall
([8, 10, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43]). In here, we consider a general-
ization of a simple model of platelet deposition that includes implicitly the
effect of the convective force using boundary-layer theory and differentiates
between the first monolayer of platelet deposition [platelet in contact with
the substrate (e.g. endothelial layer)] and the following multi-layer platelet
aggregates (platelet-platelet interaction and thrombus growth).

Specifically, in our model we assume two different kinetic reaction con-
stants: k1 for the formation of the first monolayer and k2 for the formation
of subsequent layers. Therefore, we consider that as the first layer is being
covered, with a maximum number of platelets P∞ = 4A

πd2p
where A is the

area of the substrate and dp = 2 · 10−6m is the diameter of an adhered
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platelet ([10]), the second layer starts to form. We model the two adhesion
processes with first order kinetics.

In our model, for each one of the layers i we consider, the platelet depo-
sition rate N

′′
i given certain wall flux of platelets depends on the available

deposition area WLi,

dPi
dt

= N
′′
i WLi i = 1, 2 (4.2)

with L1 =
(

1− P1
P∞

)
and L2 = P1

P∞

We assume that the diffusion, advection and reaction processes occur
within a two-dimensional mass transfer boundary layer much thinner than
the diameter of the perfusion chamber; and that there is a defect of con-
centration of platelets in comparison with the bulk concentration in the
blood (see Supporting Material S2 for a full derivation and for a discussion
about the physical interpretation of the equations), the platelet flux on a
substrate of length L can be written as ([27]) (see Supporting Material S2),

N
′′
i =

C0

1
ki

+ 1.238
(

Li
δγD2

)1/3 i = 1, 2 (4.3)

where C0 is the bulk concentration of platelets in the blood flow, γ is
the shear rate, which is assumed to be constant within the mass transfer
boundary layer thickness and D is the diffusion coefficient that depends on
the hematocrit concentration ([44]) (see Supporting Material S2).

To numerically determine the kinetic constants using the MBL model,
we assume that k1 depends only on the type of substrate used in the ex-
periments. For each set of experiments with a given substrate, we then
compute the time evolution of P1 and P2 (see Eqs. S2-10 and S2-11). We
then perform the calculations for several values of k1 and k2 in the ranges
10−3 ≤ k1 ≤ 10−8 m/s and 10−3 ≤ k2 ≤ 10−8 m/s. For each pair of values
(k1 , k2), we then compute the absolute difference between the predicted
value of the total number of platelets deposited and the corresponding ex-
perimental value at a given time. For each different substrate, we select the
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4.4. METHODS

pair of values (k1 , k2) that minimizes the absolute difference between the
measured and predicted values.

Random Forest (RF) We use Random Forest to predict the log10
of the platelet deposition count using four quantitative features and two
qualitative features (see Table 4.1). In our analysis, we used the Random
Forest Package version 4.6-7 ([45]) within R version 3.0.2 ([46]). We set
the algorithm to the following parameters (mtry =

√
6, ntree = 1000). In

order to control for the slight variation of each forest due to the bagging
process, we performed 100 times each RF. For the estimation of the feature
importance, we leaved one feature out of the Random Forest and computed
the error rate. Additionally, we applied a linear correction to initial RF
predictions to improve the error rate (see Supporting Figure S1-2).

Phenomenological model for platelet deposition (PM) We esti-
mate the parameters by performing a least-squares fit of the data using the
R software ([46]).
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Chapter 5

Conclusions

Metabolomics is a great technology to study biology and biomedicine. We
have seen that it is a very interesting source of data, first because it is the
most direct readout of cell activity, and secondly for its relative simplic-
ity compared with proteomics, because metabolites don’t have alterations
like post-translational modifications, denaturalization, etc... that compli-
cate the interpretation of data. The bottleneck for metabolomics is the
lack of automatization in the annotation process. To achieve its full po-
tential we need developments in equipment and in statistical methodology.
With CliqueMS, we contribute towards a more automated high-throughput
metabolomics, improving the annotation of adducts and isotopic variants.
We expect that a better annotation can help us to answer a very funda-
mental question: How many metabolites are in our samples?.

We observe that our method is able to consistently provide better anno-
tations than existing methods, both in the number of annotated metabolites
and in the number of annotated adducts. CliqueMS works sequentially, first
creating a network of similarity between features, then grouping those fea-
tures that belong to the same metabolite, and finally annotating isotopes
and adducts, so we can estimate the neutral mass of many metabolites.
Nevertheless, annotation step also depends on the list of adducts, which
can be provided by the user.
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CHAPTER 5. CONCLUSIONS

A first application of CliqueMS should be annotating a large group of
samples, and study the distribution of adducts across untargeted metabolomics
experiments. A better estimation of this distribution will be very useful for
annotation, so we expect an improvement in the performance of CliqueMS
along its use, as it will have more and more data for the distribution of
adducts. Next steps for CliqueMS would be adapting its algorithm to gas
chromatography metabolomics (GC/MS), and also to annotate fragmenta-
tion adducts, which apart from generation of adducts and isotopes is the
other source of multiplicity of signals per metabolite.

Complex metabolomic samples, have thousands of features. With al-
gorithms like CliqueMS we can reduce this number to hundreds of groups,
but still many metabolites are coeluting. The limit of statistical methods
is the limit of experimental devices. The new single-cell metabolomics, will
simplify the complexity of omics data. Firstly, annotation will be easier
because we will observe less metabolites in the samples. It also opens new
ways to understand the data, as population of cells show an inner variabil-
ity, that may confuse the interpretation of metabolomics and other omics
data.

Reproducibility in reported results using omics data is an important
issue. Better experimental designs, more control of variability, like in the
case of single cell omics, can provide more consistent findings. Another
crucial aspect to get consistent results and to have deeper analysis is the
integration of data. We have studied the effects of Hibiscus sabdariffa by
combining metabolomic and transcriptomic data. We have reported the
first characterization of Hibiscus sabdariffa extracts, that show a therapeu-
tical activity due its polyphenol content. We have seen that it has promising
effects for energy metabolism and immune activation. To explore more this
findings we would need to investigate the role of polyphenols in metabolic
networks. It is of a great importance, for this an other data-driven hypoth-
esis, to preregister confirmatory studies, to avoid spurious interpretations
of the data. To think more about general theories and mathematical mod-
els that capture this general rules. In this way we will be able to connect
distant sources of data and to think in novel experiments.

Finally, what we want is to build theories that connect massive molec-
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ular data, like omics data, with phenomena at different scales, including
macroscopic phenomena. Thrombus formation is an example of a complex
phenomena where we need models to integrate multiple source of data and
processes at different scales. Thrombus formation is mainly triggered by
platelet deposition. We demonstrate that it is possible to predict platelet
deposition from some easily measurable variables, like platelet concentra-
tion and the vessel tissue. We expect that a better approximation to throm-
bus formation will be to integrate the spatial information of platelet depo-
sition, and additionally to include the effect of fibrinogen in our model.
Moreover, we have seen that different models, based on equations, machine
learning or derived from feature selection of machine learning, can be com-
bined to achieve complementary interpretations and predictions.
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