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Abstract 

Condition based maintenance is a program that recommends actions based on the information collected 

and interpreted through condition monitoring of the asset under supervision, and has become accepted since a 

decade ago by the industry as a key factor to avoid expensive unplanned machine stoppages and reach high 

production ratios. Among the condition based maintenance strategies, data-driven fault diagnosis 

methodologies have gained attention because of the high performance and widen range of applicability, mainly, 

due to less restrictive constrains in comparison to other approaches. Currently, an increased effort is been made 

to study reliable methodologies that could diagnose multiple faults on a machine with initial applications in 

controlled environments at laboratory scale.  

However, applying those methods to industry applications still represent an ongoing challenge due to the 

multiple limitations involved and the high reliability and robustness required. One of the most important 

challenges in the industrial sector refers to the management of unexpected events, in respect of how to detect 

new faults or anomalies in the machine. In addition, the information initially available of the monitored industrial 

machine is usually limited to the healthy condition, therefore is not only necessary to detect these new scenarios 

but also incorporate this information to the initial base knowledge. The industrial applicability is also troubled by 

two important factors, the availability of small number of measurements corresponding to unexpected 

conditions, since once a machine fault operation is detected immediate corrective actions are applied and, also, 

the need of accumulate knowledge, since all the characterized fault conditions along time can reappear during 

the remaining machinery useful life. 

In this regard, this thesis presents a series of complementary methodologies that leads to the 

implementation of a fault detection and identification system capable to detect multiple faults and new scenarios 

of industrial electromechanical machines under an incremental learning framework to include the new scenarios 

detected to the initial base knowledge while achieving a high performance and generalization capabilities. 

Initially, a methodology to increase the performance of novelty detection models to detect unexpected events 

applied to electromechanical system is proposed. Next, a methodology to implement an enhanced sequential 

fault detection and identification system composed by a novelty detection and a fault diagnosis stages with high 

accuracy is proposed. Finally, two different methodologies are proposed to provide the sequential fault detection 

and identification system the capacity to include new scenarios to the base knowledge depending on the 

availability of database. The analysis and validation procedures have been carried out by means of experimental 

data from electromechanical systems, at laboratory scale, in order to identify the proposed methodology 

performances and, also, at industrial scale, in order to analyze the competency of the method under significant 

environmental conditions. 

Keywords 

Artificial Intelligence Feature Calculation Feature Extraction 

Condition Monitoring Industrial Machines Novelty Detection 

Fault Diagnosis Machine Learning 
Incremental Learning    

Framework     

   

 



 Contents of the document 

 

   ii 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

Contents of the document 

Abstract ....................................................................................................................................................... i 

Contents of the document ........................................................................................................................ ii 

Index of figures ......................................................................................................................................... iv 

Index of tables ........................................................................................................................................ viii 

Acronyms and their definitions ............................................................................................................... x 

1. Introduction ............................................................................................................................................ 2 

1.1 RESEARCH TOPIC ................................................................................................................................. 2 

1.2 RESEARCH PROBLEM ............................................................................................................................ 5 

1.3 HYPOTHESES ....................................................................................................................................... 8 

1.4 AIM AND OBJECTIVES ............................................................................................................................ 9 

1.5 CHAPTERS’ DESCRIPTION .................................................................................................................... 11 

2. Novelty detection and Fault diagnosis – State of the art ................................................................ 13 

2.1 INTRODUCTION ................................................................................................................................... 13 

2.1.1 Feature calculation .................................................................................................................... 14 

2.1.2 Feature reduction ...................................................................................................................... 15 

2.2 NOVELTY DETECTION .......................................................................................................................... 17 

2.2.1 Probabilistic methods ................................................................................................................ 18 

2.2.1.1 Gaussian mixture models....................................................................................................... 19 

2.2.1.2 Multivariate kernel density estimators .................................................................................... 20 

2.2.2 Domain-based methods ............................................................................................................ 21 

2.2.2.1 Support Vector Data Description ........................................................................................... 21 

2.2.2.2 One-Class Support Vector Machine ...................................................................................... 22 

2.2.3 Distance-based methods .......................................................................................................... 23 

2.2.3.1 Nearest neighbors .................................................................................................................. 24 

2.2.4 Comparison and summary ........................................................................................................ 24 

2.3 FAULT DETECTION AND IDENTIFICATION SYSTEMS ................................................................................. 25 

2.4 INCREMENTAL LEARNING FRAMEWORK ................................................................................................. 27 

2.4.1 Novelty detection under an incremental learning framework .................................................... 28 

2.4.2 Fault diagnosis under an incremental learning framework ....................................................... 28 

2.4.3 Comparison and summary ........................................................................................................ 29 

3. Novelty Detection ................................................................................................................................ 32 

3.1 INTRODUCTION ................................................................................................................................... 32 

3.2 FEATURE CALCULATION AND REDUCTION FOR NOVELTY DETECTION IN ELECTROMECHANICAL SYSTEMS ... 33 

3.2.1 Remaining Useful Life time estimation by means of novelty detection models ......................... 33 

3.2.2 Multi-modal scheme for novelty detection ................................................................................. 42 



 Contents of the document 

 

   iii 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

3.2.3 Reformulation of features for novelty detection each time a new scenario is incorporated ..... 50 

3.3 CONCLUSIONS AND DISCUSSION .......................................................................................................... 60 

4. Fault Detection and Identification Systems ...................................................................................... 63 

4.1 INTRODUCTION ................................................................................................................................... 63 

4.2 SEQUENTIAL FDI SYSTEM WITH SEPARATED STAGES FOR NOVELTY DETECTION AND FAULT DIAGNOSIS ... 64 

4.3 CONCLUSIONS AND DISCUSSION .......................................................................................................... 72 

5. Incremental learning framework ........................................................................................................ 74 

5.1 INTRODUCTION ................................................................................................................................... 74 

5.2 METHODOLOGIES FOR FDI SYSTEMS UNDER AN INCREMENTAL LEARNING FRAMEWORK .......................... 76 

5.2.1 Incremental learning when a repository database is available ................................................. 77 

5.2.2 Incremental learning when a repository database is not available ........................................... 89 

5.3 CONCLUSIONS AND DISCUSSION ........................................................................................................ 101 

6. Conclusions and future work ........................................................................................................... 104 

6.1 CONCLUSIONS.................................................................................................................................. 104 

6.2 FUTURE WORK ................................................................................................................................. 108 

7. Thesis results dissemination ........................................................................................................... 110 

7.1 PUBLICATIONS: THESIS CONTRIBUTIONS ............................................................................................ 110 

7.2 PUBLICATIONS: COLLABORATIONS AND OTHER WORKS ....................................................................... 111 

References ............................................................................................................................................. 113 

A.I Electro-Mechanical Test Bench...................................................................................................... 119 

A.II PRONOSTIA run to failure bearing degradation experiment ..................................................... 121 

A.III Camshaft-Based Machine ............................................................................................................. 123 

A.IV End-of-line test machine for steering systems .......................................................................... 126 



Index of figures 

 

   iv 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

Index of figures  

Fig. 1.1.1 Five main stages in a knowledge-based CBM program to facilitate the maintenance 

decision making. ............................................................................................................................... 3 

Fig. 2.2.1 Classical approach to implement a novelty detection model, including offline stage 

(Training) and Online stage (Continuous monitoring). ..................................................................... 17 

Fig. 2.2.2 Delimitation of a boundary by a novelty detection model. ........................................ 18 

Fig. 2.3.1 Classical approach of a FDI system where the novelty detection and the fault diagnosis 

task are both performed by an ensemble of One-Class classifiers. ................................................. 26 

Fig. 3.2.1 Definition of RUL of electromechanical components. The time axis represent the 

duration of the experiment until the component is no functional. ..................................................... 34 

Fig. 3.2.2 Proposed scheme to estimate the RUL by means of novelty detection models. ...... 34 

Fig. 3.2.3 Proposed methodology for RUL estimation. A bearing degradation profile is used to 

identify the relevant features and training the OC-SVM, then different bearing degradation profiles are 

used to test the methodology. ......................................................................................................... 35 

Fig. 3.2.4 Training set represented by the two features selected, with time variable included in a 

gray scale plot of the acquisitions just for visualization purposes. ................................................... 38 

Fig. 3.2.5 Classification score over the feature space and acquisitions of the training set (half of 

the test is plotter white and the other black for visualization purposes). .......................................... 38 

Fig. 3.2.6 Mapping classification scores into RUL percentages using isotonic regression. ...... 39 

Fig. 3.2.7 Comparison of the estimated RUL versus the real RUL of the validation test. ......... 39 

Fig. 3.2.8 Comparison of the estimated RUL versus the real RUL of set Bearing1_4. ............. 39 

Fig. 3.2.9 Proposed scheme for a multi-modal novelty detection approach. ............................ 42 

Fig. 3.2.10 Proposed methodology for a multi-modal novelty detection approach. OC-SVM 

models are used to identify novel behavior of the machine, then their scores are evaluated to 

determinate if an alarm is activated to assess the process of the machine. .................................... 43 

Fig. 3.2.11. Resulting NTFM segmented in 8 regions. a) F1 b) F2 ............................................ 45 

Fig. 3.2.12. Novelty detection boundary for regions 1 and 5, where* are the measurements of 

each cycle and – is the limit of the novelty threshold. ...................................................................... 46 

Fig. 3.2.13. Novelty detection boundary for a) OC-SVM1 b) OC-SVM2 c) OC-SVM3 d) OC-SVM4

 ....................................................................................................................................................... 46 



Index of figures 

 

   v 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

Fig. 3.2.14. Novelty boundaries of OC-SVM1 after learning F1 ................................................ 47 

Fig. 3.2.15. Novelty scores evaluation over the feature space. Space over the threshold limit is 

considered normal and space above is considered novelty ............................................................ 47 

Fig. 3.2.16. Novelty boundaries after learning F1 scenario and testing the F2 scenario a) OC-

SVM1 b) OC-SVM2 c) OC-SVM3 d) OC-SVM4 ................................................................................. 48 

Fig. 3.2.17. Novelty boundaries of OC-SVM1 after learning F2 ................................................. 49 

Fig. 3.2.18 Proposed scheme for a multi-modal novelty detection approach. .......................... 50 

Fig. 3.2.19 Proposed methodology for the novelty detection approach. The monitoring method is 

composed by an offline stage for initialization and retraining, and an online stage for continuous 

monitoring. ...................................................................................................................................... 51 

Fig. 3.2.20 Proposed retraining approach. First, measurements characterizing the fault are 

stored, and then the feature reduction module and the novelty design module are modified to 

incorporate the new scenario encountered. .................................................................................... 53 

Fig. 3.2.21 Initial novelty model representation. Limit of the novelty threshold, --, and 

measurements used to train the model, *. ....................................................................................... 55 

Fig. 3.2.22 Evaluation of the fault scenario F1. The novelty model is trained employing data from 

healthy operation condition. ............................................................................................................ 55 

Fig. 3.2.23 Contour plot of the novelty model after including F1. .............................................. 56 

Fig. 3.2.24 Evaluation of the fault scenario F2. The novelty model is trained employing data from 

healthy and F1 scenarios. ................................................................................................................ 56 

Fig. 3.2.25 Process of evaluation and retraining employing the methodology proposed. (a) 

Evaluation of the fault scenario F1. (b) Retraining of the novelty model and reformulation of the 

reduced set of features including F1. (c) Evaluation of the fault scenario F2. (d) Retraining of the novelty 

model and reformulation of the reduced set of features including F2. .............................................. 57 

Fig. 4.2.1 Proposed methodology for a sequential FDI system with separated stages for novelty 

detection and fault diagnosis........................................................................................................... 64 

Fig. 4.2.2 Proposed methodology for the EOL test machine. The monitoring method is composed 

by a signal processing stage where statistical features are calculated and analyzed by a novelty 

detection and a multi-fault classification models to assess the operating scenario of the machine. . 65 

Fig. 4.2.3 Torque signal analyzed a) Stationary part of the torque signal b) Segmentation 

proposed for this study .................................................................................................................... 66 



Index of figures 

 

   vi 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

Fig. 5.2.1 Proposed scheme for a FDI system working under an incremental learning framework 

when an repository database is available. ....................................................................................... 77 

Fig. 5.2.2 Proposed methodology for a FDI system under an incremental learning framework 

with a multi-modal scheme. The monitoring process starts with data regarding normal operation of 

the machine and the modules adapt as information of faults are present. The continuous line 

corresponds to the evaluation of new measurements, meanwhile the dotted line corresponds to the 

re-training of the models. ................................................................................................................ 78 

Fig. 5.2.3. Resulting NTFM segmented in 8 regions. a) F1 b) F2 .............................................. 79 

Fig. 5.2.4 Delimitation of degree of novelty according the novelty score. ................................. 80 

Fig. 5.2.5 The pdf1 for regions 1 and 5, where * are the measurements of each cycle, the 

continuous line represents the boundary of known data and the dotted line the boundary of uncertain 

data, the contour plot represents the pdf value. .............................................................................. 83 

Fig. 5.2.6 Evaluation of a fault scenario on the probability densities obtained of the different 

regions a) pdf1 b) pdf2 c) pdf3 d) pdf4 ................................................................................................ 84 

Fig. 5.2.7 Contour plot of the pdf1 after including F1 ................................................................ 85 

Fig. 5.2.8 Probability density function of regions 1 and 5. The feature space is divided in 3 zones 

that delimit the degree of novelty according the novelty score. ....................................................... 85 

Fig. 5.2.9 Novelty models after incorporating F1 and analyzing F2. a) pdf1 b) pdf2 c) pdf3 d) pdf4

 ....................................................................................................................................................... 86 

Fig. 5.2.10 Contour plot of the pdf1 after including F2. ............................................................. 86 

Fig. 5.2.11 Probability density function of regions 1 and 5. The feature space is divided in 3 zones 

that delimit the degree of novelty according the novelty score. ....................................................... 87 

Fig. 5.2.12 Proposed scheme for a FDI system working under an incremental learning framework 

when an repository database is not available. ................................................................................. 90 

Fig. 5.2.13 Proposed methodology for the EOL test machine. The monitoring method is 

composed by a signal processing stage where statistical features are calculated and analyzed by a 

novelty detection and a multi-fault classification models to assess the condition of the machine. ... 91 

Fig. 5.2.14 Resulting Novelty Score of the T1. The red line is the novelty threshold, Th, which is 

set to -0.67. The black lines represent the division among the different classes during the test. ..... 96 

Fig. 5.2.15 Resulting Novelty Score of the T2. The red line is the novelty threshold, Th, which is 

set to -0.67 for the first OC-SVM and -0.77 for second. The black lines represent the division among 

the different classes during the test. a) The novelty results of the OC-SVM trained using 



Index of figures 

 

   vii 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

measurements of the Hc class. b) The novelty results of the OC-SVM trained using measurements of 

the CW1 class. ................................................................................................................................ 97 

  



Index of tables 

 

   viii 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

Index of tables 

Table 2.1.1. Statistical features ............................................................................................... 14 

Table 2.2.1. Summary of main characteristics of novelty detection approaches. ..................... 24 

Table 3.2.1. Characteristics of the dataset and distribution of experiments. ............................ 37 

Table 3.2.2. RMSE Error percentages of the different experiments ......................................... 40 

Table 3.2.3. RMSE Error percentages of the different experiments using three features. ........ 40 

Table 3.2.4. RMSE Error percentages using the PCA ............................................................. 40 

Table 3.2.6. Performance of the novelty detection using only healthy class data to reduce the 

number of features, where D.R. stands for dimensionality reduction. Different scenarios are included 

according the information available to train and test the novelty model. .......................................... 56 

Table 3.2.7. Performance of the novelty detection employing a reduction of features during 

retraining. Different scenarios are included according the information available to train and test the 

novelty model. ................................................................................................................................ 58 

Table 3.2.8. Performance of the novelty detection increasing the number of initial features from 

10 to 15 and varying the number of the reduced set of features. ..................................................... 58 

Table 4.2.2. Performance of classical one-class classifiers based methodology using three 

different dimensionality reduction configurations ............................................................................. 69 

Table 4.2.3. Performance of a simple sequential fault detection and identification methodology 

using the same feature reduction for each task. .............................................................................. 69 

Table 4.2.4. Performance of the proposed novelty detection and multi-fault classification 

methodology using three different novelty detection models ........................................................... 70 

Table 4.2.5. Performance of the proposed novelty detection and multi-fault classification 

methodology using three different novelty detection models ........................................................... 70 

Table 5.2.1. Performance of the Diagnosis Stage using the ANN model. The classification 

accuracy and the standard deviation is presented for each scenario and for the global performance.

 ....................................................................................................................................................... 87 

Table 5.2.3. Contents of the training and testing sets for each scenario .................................. 95 

Table 5.2.4. Performance of the proposed novelty detection scheme ..................................... 97 

Table 5.2.5. Performance of the novelty detection considering 20 features calculated ............ 98 



Index of tables 

 

   ix 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

Table 5.2.6. Results of the T7 scenario for the fault identification stage. The evolving classifiers 

are compared to a classical approach in both feature selection approaches. .................................. 98 

 

 



Acronyms and their definitions 

 

   x 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

Acronyms and their definitions 

 

AI  Artificial Intelligence 

ANN Artificial Neural Networks 

CA Correspondence Analysis  

CBM Condition Based Maintenance 

CPS Cyber-Physical Systems 

FTPC Fault-Tolerant Process Control 

GA Genetic Algorithms 

MoG Mixture of Gaussians 

NN Neural Network 

OEE Overall Equipment Effectiveness 

PDF Probability Density Function 

RUL Remaining Useful Life 

SME Small Medium Enterprises 

SOM Self-Organizing Maps 

STFT Short-Time Fourier Transform 

SVM Support Vector Machine  

TTF Time to Failure  

ZDM Zero-Defect Manufacturing 

NTFM Normalized Time Frequency Maps 

OC-SVM One-Class Support Vector 

Machine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter 1: Introduction 
 

1 
Fault detection and identification methodology under an incremental learning framework 

applied to industrial electromechanical systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. 
Introduction 

 

This chapter outlines the basis on which this thesis research is engaged. It starts from the introduction to 

the research topic and current limitations, to the objectives and the hypotheses of this thesis research. This 

chapter includes also a brief description of the content in the subsequent chapters. 

 

CONTENTS: 

1.1  Research topic 

1.2  Research problem 

1.3  Hypotheses 

1.4  Aim and objectives 

1.5  Chapters Description 
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1. Introduction 

1.1  Research topic 

Over the last five years, pushed by the global industrial competition and market demands, the industrial 

processes, affected by the global economic crisis, have include into their objectives the increase of reliability, 

effectiveness, accuracy and robustness of their manufacturing assets [1]. Indeed, the related industrial 

machinery has undergone a series of updates to increase manufacturing ratios and decrease machinery life 

costs. Hence, a more competitive product. This evolution has been possible due to advances in different 

engineering fields such mechanics and robotics, but also electronics, instrumentation and signal processing 

among others. 

Thus, taking into account the current industrial scenario, unscheduled machinery stoppages represents a 

critical issue, leading to a loss of productive efficiency. Indeed, the increase of manufacturing assets 

efficiency is, currently, a research and technologic trending objective in which a great deal of resources is being 

considered, supported by governmental and private initiatives. In this regard, it is emphasized by the European 

Union small-medium enterprises report 2015/2016 [2], that the SME industries involved in the manufacturing 

sector reach around 60-70% of Overall Equipment Effectiveness (OEE), of all plant equipment, due to poor 

plant performance. The OEE is the standard for measuring manufacturing productivity. Simply put, it identifies 

the percentage of manufacturing time that is truly productive. An OEE score of 100% means that only ”good 

parts” are being manufactured, as fast as expected, with no ”stop time”, which are related to maintenance 

actions. This fact has a direct impact on production and, therefore, in the economic performance. In order to 

address such current industrial sector demands, scientific and technological efforts must be done toward a more 

efficient and more reliable machinery monitoring systems. 

In this regard, the Condition Based Maintenance (CBM), has become accepted since a decade ago by the 

industry as a key factor to avoiding expensive unplanned machine stoppages and reaching high production 

ratios. The CBM is a program that recommends actions based on the information collected and interpreted 

through condition monitoring [3]. Thus, by means of CBM strategies, the maintenance actions can be carried 

out optimally, that is, considering the actual condition of the machine under monitoring.  

Several machinery monitoring approaches for condition based monitoring have been proposed in the 

literature, which can be generally categorized into model-based fault diagnosis, signal-based fault diagnosis 

and knowledge-based fault diagnosis [4], [5]. For model-based approaches, a system model, which explicitly 

describes the relationship among the system physical signals, is available to the expert. Based on the model, 

fault diagnosis schemes can be designed and, then, implemented on-line for monitoring and diagnosing the 

real-time system [6]. A significant study of such approach was presented by Gadsden et al. in 2013 [7], where 

two interacting multiple model strategy is presented to monitor different operating modes of an electro-

hydrostatic actuator. The proposed approach is compared with popular modelling approaches, such as the 

extended Kalman filter, showing significant improvement over classical approaches. For signal-based methods, 

specific signal patterns of a system are characterized, and the fault diagnosis is carried out by checking the 

consistency between the signal patterns and the signal symptom of the real-time process [8]. Ghorbanian and 

Faiz in 2015 [9], propose three different analysis procedures to detect rotor broken bars by means of the time, 
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frequency or time-frequency domain analysis. The capability of the proposed fault indicators and classical 

approaches are studied deeply in order to investigate their applicability at different conditions. Other important 

contributions in this approach are also the studies that include the fusion of specific signal patterns from different 

physical magnitudes. Tran et al. [10], and Li et al. [11] present approaches where information from different 

physical magnitudes (current, vibration and acoustic signals) are analyzed in different domains (time, frequency 

and time-frequency), to extract specific patterns from the monitored machine (gearbox or induction motor) to 

diagnose different faults. Knowledge-based fault diagnosis methods start from where a large volume of historic 

data is available. Applying a variety of artificial intelligent techniques to the available historic data of the industrial 

processes, the underlying knowledge, which implicitly represents the dependence of the system variables, can 

be extracted. The consistency between the observed behavior of the operating system and the knowledge base 

is, then, checked, leading to a fault diagnosis decision with the aid of a classification algorithm, as stated by X. 

Dai and Z. Gao in 2013 [12]. Related with electromechanical condition based monitoring, the work of Widodo 

et al. [13] introduces the main features of such approach by descripting a data-driven methodology based on a 

classifier to diagnose faults in different machine condition monitoring, for example: bearings, induction motors, 

machine tools, pumps, an stamping machine, etc. This work not only enlightens the generalization capability of 

data-driven approaches under different scenarios if enough stored information is available, but also makes 

emphasis on the relatively easy implementation compared to the signal based and model based approaches. 

Among the proposed approaches, knowledge-based fault diagnosis, which is also known as data-driven 

fault diagnosis, has gained increased attention because the high performance and widen range of applicability 

due to less restrictive constrains than the other fault diagnosis approaches. A knowledge-based condition based 

monitoring program consists of five key stages as shown in Fig. 1.1.1, data acquisition, data processing and 

condition assessment. 

 

Fig. 1.1.1 Five main stages in a knowledge-based CBM program to facilitate the maintenance decision making. 

Data acquisition considers collecting and storing digitalized data from different sources of the monitored 

asset, i.e. information of sensors connected to the machine or process to be monitored. Data processing 

consists of a series of procedures to manipulate and transform the data acquired to characterize the physical 

magnitudes acquired. Apart from filtering, formatting, etc., this stage also includes the analysis of the data in 

time-domain, frequency-domain and/or time-frequency-domain. After the data is processed, in the next stage, 

a set of numerical features from the identified relevant domains are calculated, then, in the following stage, the 

set of numerical features are reduced, by means of feature reduction approaches, to highlight specific 

characteristics/patterns from the feature set. 

Condition assessment consist on analyzing the acquired and subsequent processed data to determinate 

the condition of the monitored asset. Techniques for condition assessment in a CBM program consist of fault 
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diagnosis approaches, which are capable of identifying the condition of the machine among several scenarios 

that are known beforehand. 

An early approach implementing a CBM program to detect faults on machinery was applied in 

electromechanical machinery, that is, machinery based on an electric motor, and coupled to screws, external 

bearings and/or gearboxes among others. The initial challenges focused on analyzing and characterizing 

individual faults, which led to the development of strategies to increase the robustness of the machines for 

specific operating scenarios [14]. As the topic has been gaining attention in the research community, an increase 

of effort is been made to develop algorithms, methods and strategies that could diagnose multiple faults on 

a machine [15]. Thus, different CBM schemes are being tested but, mainly, on controlled environments, 

carrying out a complete characterization of the healthy operation modes and different controlled faults [1]. 

Indeed, regarding the industrial applicability of such method, the complete characterization of all possible 

operating scenarios, that is, different operating modes of speed and torque under multiple fault conditions, is 

not feasible. The technical difficulties and, in most situations, the impossibility to modify the machine working 

regime, makes mandatory the management of novel operating scenarios during the CBM strategy. 

Indeed, this challenge leads to the consideration of a specific research framework, the novelty detection. 

Novelty detection focus on the development of algorithmic capable of detecting if the behavior of a monitored 

system differs, in some respect, from the one considered during the initial CBM design [16]. The incorporation 

of novelty detection capabilities to classical CBM strategies represents a highly impacting solution to cope with 

the challenges of current industrial applications. Thus, providing the capability of diagnose the condition of 

the machinery under monitoring among a set of previously known conditions, but including the 

identification capabilities of novel operating scenarios. 

A CBM scheme with such capabilities is known as a Fault Detection and Identification System (FDI). 

The development of fault detection and identification systems widens the applicability of CBM strategies and 

represents one step beyond current diagnosis capabilities, closer to the industry sector demands. Nevertheless, 

even if trough FDI systems additional levels of CBM reliability and robustness can be reached, the novel 

operating scenarios identified must be considered for continuous learning, that is, an adaptive CBM to the 

machinery under monitoring. To cope with this fact a new framework has been recently considered by the 

related research community, the incremental learning framework, in which different improvements and 

adaptions of the classical methods, algorithms and techniques are developed to provide the capability to add 

new operating scenarios to the considered knowledge [17]. 

 

The integration of such trending subjects around industrial electromechanical system diagnosis define the 

research topic in which this thesis is carried out: fault detection and identification methodology under an 

incremental learning framework applied to industrial electromechanical systems. 
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1.2  Research problem 

A high performance demand in industry applications of CBM schemes leads to an intensive research to 

increase the reliability and robustness of current CBM methodologies. Being reliability in this case defined as 

the degree to which the result of the assessment of the machine can be depended on to be accurate, and 

robustness as the ability to withstand or overcome adverse conditions or rigorous testing maintaining the same 

degree of performance. 

Classical CBM methodologies consist on using a classification algorithm to determine the machine 

condition [18]. This algorithm is, previously, trained with representative data of different operating scenarios of 

the machinery (under availability). During the evaluation of a new measurement acquired from the system under 

inspection, the algorithm analyses the signature of the physical magnitudes, and outputs a label as result of the 

association with one of the different operating modes of the machine learned during the training process. This 

approach is known as fault diagnosis or fault identification [1]. Important examples of such approach were 

presented by Seshadrinath et al. in 2013 [19], and Toma et al. in 2014 [20], where the condition assessment of 

an induction machine are performed by neural networks previously trained by a dataset composed by 

measurements of the machine working in healthy and faulty conditions. However, generally, if a new 

measurement, corresponding to a condition not presented during the training is evaluated by the algorithm, the 

label output can only be one of the scenarios presented on the training and, therefore, leading to an incorrect 

diagnosis. 

To provide the CBM scheme the capacity to deal with insufficient information, the detection of novel 

scenarios represents a first step to cope with the demands of high-performing industrial applications. In this 

regard, specific research is been doing towards strategies able to monitor the system and detect new operating 

scenarios, thereby avoiding an incorrect assessment of the condition of the machine. As aforementioned, this 

research topic is called novelty detection, and can be defined as the task of recognizing that the data under 

analysis during the diagnosis procedure differ, in some respect, from the available data during the training, that 

is, the detection of new operating scenarios [21]. Its practical importance and challenging nature have led to 

many approaches being proposed. These methods are typically applied to datasets in which a very large 

number of examples of the “normal”, or nominal, condition are available, and where there are insufficient or 

unavailable data to describe “abnormal”, or new, operating scenarios, due to faults or modifications over the 

operating set points [22]. 

The application of novelty detection to electromechanical system monitoring is not simple, there are many 

conditions that limit the applicability of these algorithms in this application domain. Novelty detection was initially 

applied on image processing, video surveillance, text mining and network intrusion, where a large amount of 

data is available to characterize the monitored asset [23]. However, in industrial applications of 

electromechanical systems, the number of measurements available to characterize the machine is usually 

limited, that is, in front of a fault condition, the maintenance actions are rapidly applied or even the related 

machinery is stopped. This fact implies the capture of, generally, initial fault or operating deviation stages under 

a short period of time. Therefore, novelty detection approaches, capable of deal with reduced number of 

samples per condition, are required. 
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The numerical features calculated from the measured physical signals determinate what can be observed 

in the machine. Most of the features calculated for fault diagnosis are selected to highlight a specific fault, 

nevertheless, for novelty detection there is no information regarding what is necessary to monitor for these 

unknown scenarios. Moreover, the electromechanical operating conditions shown, generally, and non-

connected data distribution. That is, dealing with different sources of faults, the effects into the acquired physical 

magnitudes are different, and, then, scattered in the considered numerical feature set representation. Therefore, 

adequate strategies are required for signal processing and feature calculation to detect anomalies or to 

delimit the boundaries of the available knowledge. 

Taking in consideration that the number of adequate algorithms to perform novelty detection in this 

application domain are limited and that the numerical features and signal processing strategies proposed in the 

literature to characterize an electromechanical system are mainly focused on the fault diagnosis task, the 

reliability and robustness of the novelty detection task is a challenging research problem. Indeed, all of these 

requirements lead to new questions that the state of the art is currently addressing: 

 

- What signal processing and numerical features estimation procedures are most suitable for 

novelty detection?, furthermore, Is the optimum feature set dependent of the available operating 

scenarios? 

 

- How to obtain a reliable performance from the novelty detection?, moreover, Is the resulting 

novelty detection stage robust enough? 

 

- What novelty detection approach is appropriate considering electromechanical systems? 

 

The combination of the novelty detection with the fault diagnosis is not trivial and not properly addressed 

around electromechanical CBM schemes to date. On the literature, systems capable to perform novelty 

detection and fault diagnosis are known as fault detection and identification systems, and the concept have 

been already presented in some applications such as network intrusion detection and industrial plant monitoring 

among others [22]. Nevertheless, their implementation to electromechanical systems in industrial applications 

still present some problems that need to be addressed. Classical approaches propose the execution of both 

tasks in one single stage, performing novelty detection and fault detection with one algorithm or an ensemble 

of the same algorithm, however, this approach, while easy to implement, leads to limitations of detection and 

identification performances [24] . Separating both stages not only opens the opportunity to analyze different 

features on each stage, but also limits the number of algorithms that can be used for each task. As mentioned 

above, the features analyzed for each task could represent a window of improvement to increase the 

applicability of these methodologies, but still some unanswered questions arise from such approach: 

 

- Should the novelty detection assessment be performed simultaneously or independently from 

the fault diagnosis?, even so, Is the same numerical feature set appropriate for both detection 

and identification tasks? 
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- Since the fault diagnosis stage is not reliable under the presence of new scenarios, How does 

the result of the novelty detection stage and the fault diagnosis can be combined if they are 

implemented independently?, Does the novelty detection stage affects the performance of the 

diagnosis stage? 

 

The reliability and robustness of a FDI system to be implemented over an electromechanical system can 

be improved by addressing the previous questions, nevertheless, a static framework is being considered 

currently [25]. That is, the incursion of new operating scenarios once identified, to the novelty detection or the 

fault diagnosis stages is not considered. As mentioned before, in industrial applications the initial information 

available corresponds, generally, only to the nominal operating scenario, therefore, fault detection and 

identification methodologies capable to include new scenarios under automatic or semi-automatic 

methodologies is a required competency. Indeed, to work under an incremental learning framework, the 

algorithms for novelty detection and fault diagnosis in a FDI methodology must be capable to include new 

scenarios, this framework leads to a new series of challenges that represents an undergoing research problem. 

While adaptive or evolving algorithms for fault diagnosis is, recently, being considered in the research topic, 

performing novelty detection under an incremental learning framework is completely a new challenge, especially 

regarding the incorporation to the FDI system. The introduction of an incremental learning framework to the FDI 

systems lead to a new series of questions that the literature have not yet addressed: 

 

- What incremental learning strategies are more appropriate for the considered application 

domain? 

 

- Are the novelty detection algorithms capable of detecting the underlying distribution to 

characterize a new scenario with a limited number of measurements per condition? 

 

- How to manage the algorithms reconfiguration when new scenarios are included? 

 

In summary, although electromechanical condition based monitoring has been classically an active research 

field, currently, critical requirements are being expected from the industrial sector in regard with their application 

capabilities. In this regard, the scientific community is being doing an effort to study and define new 

contributions, where further research should be made in order to propose a coherent and viable fault detection 

and identification methodology under an incremental learning framework for industrial 

electromechanical systems, capable of detect and incorporate new operating scenarios while providing 

a diagnosis about the available conditions. It must be taken into consideration that this topic represents a 

modern research field and highly novel its application into electromechanical condition based monitoring 

framework, which implies the need of addressing all the aforementioned questions. 
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1.3  Hypotheses 

Considering the state of the art in the corresponding topic, collected in the following chapter, and the 

identification of the current limitations and problems, the following hypotheses have been formulated as a 

starting point for this research work: 

 

H1 The performance of the novelty detection task can be increased by including a signal processing 

and a feature calculation stages focused on extracting general information of the monitored 

asset. If several scenarios apart from the nominal condition are available, the consideration of 

features that contribute in the characterization of such conditions would improve the 

performance of the novelty detection task. 

 

H2 In order to improve the reliability and robustness of the novelty detection task, the degree of 

novelty of a measurement can be estimated, providing more information over the novelty 

detection assessment. An uncertainty region in regard with the available data can be defined to 

reduce the false alarm ratio. 

 

H3 Domain-based methods represent the most adequate solution for novelty detection considering 

the limitations presented in the application domain, mainly, the limited number of samples and 

non-connected data distribution clusters. 

 

H4 A separate implementation of the novelty detection and fault diagnosis tasks allows an optimal 

selection of features for each task that will improve their individual performance. Moreover, the 

overall performance can be increased by initially performing a reliable novelty detection task 

that, in consequence, increases the performance of the fault diagnosis task.  

 

H5 If a repository database is available where the monitored measurements are stored, domain-

based and non-parametric statistical-based algorithms for novelty detection represent the most 

adequate choice in terms of flexibility incorporating new scenarios without analyzing the 

underlying distribution of the data corresponding to the new scenarios. 

 

H6 If a repository database of the measurements is not available, an ensemble of domain-based 

algorithms for novelty detection and evolving classifiers for diagnosis represent the most 

adequate choice by providing an optimal trade-off between computational burden and accuracy. 

 

H7 To include a new scenario, the addition of a specific model for that scenario for novelty detection 

and the addition of a representative prototype with a new fuzzy rule of the new scenario for fault 

diagnosis, represent the simplest solution with a competitive performance for the incursion of 

new classes to the base knowledge. 

 

These exposed assumptions represent the basis of the resulting thesis research. The hypotheses are 

investigated by means of the research work reflected in this thesis document. 
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1.4  Aim and objectives 

The aim of this proposed thesis is to progress in the state of the art of CBM applied to electromechanical 

machinery considering industrial requirements. This objective is approached by the development of novel 

methodologies and criteria to construct a fault detection and identification system capable to detect multiple 

known faults, identify novel operating modes and adapt itself according to the identification of the novelty 

scenario detected. 

  

Thus, to successfully accomplish the thesis purpose, the following specific objectives are considered: 

 

 The research, proposal and validation of a suitable feature calculation and reduction scheme 

alongside with the selection of the most adequate algorithms to achieve a high reliability and 

robustness in novelty detection applied to electromechanical systems. 

 

 The research, proposal and validation of an adaptive feature reduction scheme to increase the 

performance of the novelty detection task whenever a new scenario is incorporated. 

 

 The research, proposal and validation of independent suitable feature calculation and feature 

reduction stages to increase the reliability and robustness of the novelty detection and the fault 

diagnosis tasks in a FDI system. 

 

 The research, proposal and validation of a robust and reliable methodology for a FDI system to 

work under an incremental framework when a repository database is available. 

 

 The research, proposal and validation of a robust and reliable methodology for a FDI system to 

work under an incremental framework when a repository database is not available. 

 

The research methodology carried out in this thesis includes the analysis and validation of the proposed 

contributions over electromechanical platforms. In this regard, four different experimental test benches are used 

in this work: two laboratory-scale test benches and two industrial-scale test benches. 

The two laboratory test benches are used to test and validate the performances of the proposed methods 

over electromechanical systems under a controlled environment, which leads to an in-depth study and 

comparison of the proposed contributions with classical approaches presented in the literature. The first one is 

the PRONOSTIA experimental platform [26], which consist on an accelerated bearing degradation experiment 

and accelerometers signals recording. This test bench is open access and is often used by the research 

community, which allows an easy comparison of the methodologies proposed in this work with the 

methodologies proposed by other authors. The second laboratory-scale test bench consist of a regular 

kinematic chain composed by an induction motor coupled to a reduction gearbox, and a DC generator as a 

mechanical load. From this test bench, measurements from different fault conditions can be extracted, including 

a variable load, rotating speed configurations and fault scenarios. Vibrations and stator current signals are 

acquired from the experiments for posterior analysis.  
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The two industrial-scale experimental setups are used to test and validate the robustness and reliability of 

the methods under a relevant and challenging environment. Both test benches correspond to industrial 

electromechanical systems with non-traditional mechanisms for the specific industrial process performed, 

therefore the monitoring of such specialized mechanism in an electromechanical system have not been 

previously studied on the literature, which implies that there is no specific strategy to extract relevant features 

to characterize them. Also, the measurements extracted from those test benched were performed in an 

industrial environment, which means that the data is exposed to a certain risk of noise and uncertainty in the 

measurements. The first one is a complicated system present at numerous industrial machineries as the motor-

gearbox-camshaft chain. The high-speed ratios, the mechanisms time-overlapping and the smoothing inertia 

effect make such systems a challenging application field for classical approaches. The test bench is composed 

by an induction motor connected to a reduction gearbox that rotates a camshaft to activate the mechanisms 

corresponding to the manufacturing process. The current signals from the induction motor are acquired to 

analyze the effects of the cam operations to the current. Different fault scenarios and abnormal conditions are 

available for the analysis.. The second one is an End-of-Line (EoL) test machine that takes part on an industrial 

process of the automotive sector. The machine under study performs a friction test over the manufactured parts 

(steering systems), and is composed by a servomotor, a gearbox, an encoder, a torque transducer and a 

pneumatic clamp to hold the intermediate shaft of the steering system. The torque signal of the friction test 

performed by the machine is acquired to assess the condition of the machine. Several fault conditions have 

been induced in the machine to provoke two common fault conditions, moreover, three severity levels have 

been also considered for each fault. Additionally, a sliding malfunction is also provoked to have a set of tests 

corresponding to an abnormal behavior of the machine.  

The details of these experimental test benches can be found in the Annex I of this thesis document. 
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1.5  Chapters’ description 

This thesis document has been divided into different stages, which are reflected in the chapters described 

below. 

 

A literature review of previous works of novelty detection and fault diagnosis is presented in Chapter 2. In 

this chapter, the progress regarding novelty detection and the different algorithms proposed in the literature are 

analyzed. Then, preliminary works regarding the formulation of a fault detection and identification system are 

presented to identify and clarify the motivation behind this research. After that, initial approaches that work 

under an incremental learning framework in other application domains are presented. As a result, this chapter 

concludes with an explanation of the current limitations of the state of the art of these topics. Such limitations 

are addressed in the following chapters covering all the explained objectives. 

 

In Chapter 3, a study regarding the required adaptation of novelty detection to industrial applications is 

presented. A multi-modal scheme is proposed where several novelty detection models analyze simultaneously 

the machine to increase the accuracy of the novel scenarios. A thorough study of the impact of the features 

used to detect anomalies in electromechanical systems is performed, multimodal and re-formulation 

methodologies are proposed. 

 

The challenges of combining a novelty detection stage and a fault diagnosis stage are addressed in 

Chapter 4, where a methodology that performs both task separately is proposed. The proposed methodology 

presents a separate set of features for each task to increase the performance of the monitoring approach. 

 

In Chapter 5, the challenges of a FDI system working under an incremental learning framework are 

addressed. A methodology capable to perform a CBM scheme when the initial information of the machine 

consist only of the healthy condition is proposed. Then, algorithms for novelty detection and fault diagnosis that 

can include new scenarios with and without needing a repository database for re-training are analyzed to 

formulate a FDI system capable of work under an incremental learning framework. 

 

Although each chapter concludes with a partial conclusion focused on its respective topic, in Chapter 6 

the thesis work is analyzed from a general point of view, and the conclusions and contributions are collected. 

 

Finally, the publications and collaborations resulting from the research work development are presented 

in Chapter 7.    
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2. 
Novelty detection and Fault Diagnosis  

State of the art 

 

The different aspects related to an implementation of a fault detection and identification system in 

electromechanical systems, with special attention to the novelty detection task and the incremental learning 

framework, are reviewed to define the state of the art in the thesis research field. 

 

CONTENTS: 

2.1  Introduction 

2.2  Novelty Detection 

2.3  Fault Detection and Identification Systems 

2.4  Incremental Learning Framework 
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2. Novelty detection and Fault diagnosis – State of the art 

2.1  Introduction 

During the last years, the data-driven approach in CBM program applied to electromechanical machine 

has carried out by means of a standard structure.  

First, the acquisition of at least one physical magnitude to monitor the machine or the component is carried 

out. In this regard, some of the physical magnitudes monitored from an electromechanical system include the 

vibration, the current of the motor, acoustic emissions, temperature, etc. Among them, the vibrations and the  

current of the motor have been widely used and studied in the literature due to their capacity to reflect the 

condition of the machine and highlight certain type of faults [20], [27]–[29].  

Second, a signal processing stage is applied to these physical magnitudes to gain resolution in the 

analysis. The analysis of raw physical magnitudes present some intrinsic limitations that complicate the 

identification of a faults in this application domain, therefore two common stages of data processing are applied, 

a first one to clean the raw signals and the second one to process the information to highlight certain type of 

faults in the machine. While the first one is a standard procedure to verify the consistency of the measurement, 

the second stage is key in order to ensure a high performance of the subsequent stages. Many techniques have 

been proposed in the literature to increase the resolution of what can be observed in a machine, and therefore, 

highlight certain fault patterns that were not evident in the raw signals. The physical magnitude can be 

represented on the time, frequency or time-frequency domains, and each one have their own advantage and 

disadvantages, a discussion among the characteristics of each approach is discussed later on this chapter. 

After that, a set of features are extracted from the processed signals. Depending on the domain of the 

monitored signal, these features could consist of a statistical characterization, specific frequency bands or 

coefficients that characterize the properties of the signal. After a set of features is obtained, a feature reduction 

technique is applied to discard irrelevant features or to obtain a representative reduced set that properly 

represent the behavior of the signal. The feature calculation and reduction stage are critical in regard the 

performance of the whole condition based monitoring system. If the information analyzed from the machine 

doesn’t reflect in a significant manner the faults on the machine the performance of the models would be 

drastically affected. Due to the significance of this stages, some of the most used feature calculation and 

reduction strategies are presented. 

Finally, a classification algorithm is implemented to detect a concrete fault or one kind of fault in the system. 

There is a great deal of classifiers in the literature, and, after years of research, most of them represent a 

valuable option for this task. Among the most popular classifiers, the Artificial Neural Network stands out for its 

non-linear characterization of faults and the high performance presented [19], [20], [30].  

As can be seen, the classical scheme of a CBM program only includes the detection of multiple faults, 

therefore the next step to enhance the monitoring capabilities is to include the capacity to detect anomalies by 

novelty detection models. Therefore, three groups of novelty detection models are presented in this chapter, 

alongside with the most relevant models of each family. Each group presents their own advantages and 

disadvantages, therefore, it is important to analyze them to properly select the most adequate model that 

facilitate the implementation to electromechanical systems. 
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The following step to enhance the CBM program consist on including the novelty detection model to the 

CBM program, which requires an analysis to identify which is the most appropriate strategy of incorporation to 

maximize the performance of both tasks. In this sense, the fault detection and identification systems presented 

on the literature are analyzed to evaluate the possible options among the proposed methodologies.   

Once the fault detection and identification systems proposed in the literature are analyzed, the incremental 

learning framework is studied. The incorporation of new scenarios is just one part of such framework, which is 

the characteristic that is desired to incorporate to the CBM program, therefore, the analysis of the state of the 

art of this stage is limited to only models that are capable to perform such task. 

2.1.1  Feature calculation 

Feature calculation is an essential procedure in order to transform or process the information acquired 

from the physical variables. However, it is also one of the most difficult steps, mainly because the acquired data 

could contain irrelevant information and also be affected by external factors such as electrical noise. Appropriate 

features need to be identified from signals before they can be used for health assessment. 

As mentioned before, features are extracted after the acquired signals of the machine after the data 

processing stage, which delimits the features that can be calculated. The acquired signals can be represented 

on the time, frequency or time-frequency domain.  

Time domain techniques are more effective when the component is analyzed under stationary conditions, 

but are also helpful for some non-stationary conditions. Statistical features are usually calculated from this 

domain, and they provide basic information about the signal acquired such as signal shape, tendencies, 

frequency ranges, etc. It is the easiest way to process the acquired data, in order to have a first approach, due 

to their low computational cost. The time domain techniques include statistical and stochastic methods, data 

filtering techniques, time-synchronous average and others. The most used statistical features are shown in 

Table 2.I.1. 

Table 2.1.1. Statistical features  
 

                                  Root Mean Square (RMS)           𝑅𝑀𝑆 = √
1

𝑛
·  ∑ (𝑥𝑘)2𝑛

𝑘=1  Eq. 2.1.1 

                                           Shape Factor                             𝑆𝐹 =
𝑅𝑀𝑆

1

𝑛
· ∑ |𝑥𝑘|𝑛

𝑘=1

 Eq. 2.1.2 

                                            Crest Factor                                 𝐹 =
max (𝑥)

𝑅𝑀𝑆
 Eq. 2.1.3 

                                             Skewness                             𝑆𝑘 =
∑ (𝑥𝑘−𝑥̅)3𝑛

𝑘=1

𝑛𝜎3  Eq. 2.1.4 

                                               Kurtosis                                𝑘 =
∑ (𝑥𝑘−𝑥̅)4𝑛

𝑘=1

𝑛𝜎4  Eq. 2.1.5 

 

A Frequency-domain analysis is based, first, on the transformation of the acquired temporal array to the 

frequency-domain. The classical spectral analysis (by Fourier transform) allows the analysis of a temporal signal 

in terms of individual frequency components by computing the relative presence of each component. These 

techniques allow discovering spectral information hidden under the temporal form of the signal, but are not able 

to deal with non-stationary conditions. The main techniques are non-parametric methods such as Discrete 
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Fourier Transform, parametric models and high resolution methods. Usually, the features extracted from this 

domain consist on specific frequency bands that highlight a specific fault. 

Time-Frequency domain analysis performs, simultaneously, time and frequency analysis, mainly useful in 

case of transients of speed in the machine, where FFT causes averaging mistakes as it has been shown before. 

The time and frequency resolutions are the main reasons to select a specific time-frequency technique. The 

major drawback is that these methods require a huge computational cost making them unavailable for dealing 

with big datasets. Statistical features can also be calculated in this domain with a proper segmentation of the 

time-frequency maps to obtain enough resolution. The main techniques are Short-Time Fourier Transform, 

Wavelet Transform, Discrete Wavelet Transform, Hilbert Huang Transform, Empirical Mode Decomposition, 

and others. Usually, the features extracted from this domain depend on the technique used, since each one has 

their own characteristics. Statistical features are also a popular choice in this domain. 

Among the three approaches for signal processing, the time domain have been constantly used on recent 

works, since it represents an adequate tradeoff between simplicity of implementation, low computational cost 

and generalization capabilities, nevertheless, if the monitored machine requires a more thorough analysis, for 

example non-stationary process, then the other domains represent a more adequate solution.  

2.1.2  Feature reduction 

Working with high dimensional datasets complicates the learning task of novelty detection and fault 

diagnosis methods, not only because of possible presence of non-significant and redundant information in the 

data, but also because a proper convergence of the algorithms could be compromised. Indeed, the empty space 

phenomenon states that to cover the whole space it is needed a number of samples that grows exponentially 

with the data dimensionality. Thus, the curse of dimensionality implies that in order to carry out a successful 

learning stage, it is needed a number of available training measurements that also grows exponentially with the 

dimensionality. The “concentration of measure” phenomenon seems to render distance measures not relevant 

to whatever concept is to be learnt as the dimension of the data increased. For these reasons, there is a 

necessity to apply dimensionality reduction techniques in condition monitoring applications [31]. 

Dimensionality reduction strategies differ in the question of whether the learning process is supervised or 

unsupervised. The difference between both learning processes is the availability of labels to distinguish the 

different classes. Principal Component Analysis is one of the most commonly used technique for unsupervised 

dimensionality reduction. It aims to find the linear projections that best capture the variability of the data [32]. 

By working on the projections that maximize the variance of the data, it is possible to highlight the anomalies 

that could appear during monitoring, therefore, PCA is used often in novelty detection.  

Linear discriminant analysis is one of the most well-known supervised techniques for linear dimensionality 

reduction in multi-class problems. LDA attempts to maximize the linear separation between data points 

belonging to different classes. In contrast to most other dimensionality reduction techniques, LDA, as a feature 

extraction technique, finds a linear mapping that maximizes the linear class separation in the low-dimensional 

representation of the data. The criteria that are used to formulate linear class separation in LDA are the within-

class scatter and the between-class scatter [33]. Since LDA is a supervised technique, is not often employed in 

novelty detection applications, however, is one of the best options for feature extraction in supervised multi-

class classification applications. A similar reduction approach to the LDA is the Fisher score selection [34], 
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which also attempts to maximize the linear separation between data points belonging to different classes. The 

same criteria is used, with is to obtain the lowest within-class scatter and the largest between-class scatter, 

nevertheless, in comparison to the LDA that extract a linear mapping for a low-dimensional representation, this 

technique ranks the features available and select the most appropriate ones, with the restriction number given 

by the user. 

Another feature reduction technique that could be performed in a  unsupervised or supervised environment 

is the Laplacian Score [35] which is fundamentally based on the Laplacian Eigenmaps and Locality Preserving 

Projection [36]. The basic idea of LS is to evaluate the features according to their locality preserving power. The 

motivation for this technique is that, in many real world classification problems, data from the same class are 

often close to each other, therefore, by preserving the topology of the data a subset of features could be obtained 

to discriminate among the different scenario without overfitting the models. 

The aforementioned linear feature reduction techniques exhibit different objectives (data variance 

preservation, topology preservation or data discrimination), and method of employment (unsupervised or 

supervised), and have been widely used in the literature with successful results [31], [37], [38], [34].  
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2.2  Novelty detection 

Novelty detection can be defined as the task of recognizing that test data differ in some respect from the 

data that are available during training. Its practical importance and challenging nature have led to many 

approaches being proposed [23]. These methods are typically applied to datasets in which a large number of 

examples of the normal condition (operation modes available) is available and where there are insufficient data 

to describe anomalies (new operation modes or faults).  

 

Fig. 2.2.1 Classical approach to implement a novelty detection model, including offline stage (Training) and Online stage (Continuous 

monitoring). 

 

A classical step flow to implement novelty detection, as shown in Fig. 2.2.1Error! Reference source not 

found.,  starts with the processing of the information available (database) of the phenomena analyzed (feature 

calculation, reduction, etc.), then the novelty model is characterized with it, this part depend entirely of the model 

nature (training for classification, extraction of relevant statistical characteristics of the dataset, delimitation of 

boundaries, etc.), consequently the novel model will be able to analyze new acquisitions of the phenomena 

monitored and determinate if new data obtained correspond to the normal operation modes previously learned 

or detect if the new acquisition presents different characteristics and can be considered novel (detection of an 

outlier). The final step of the implementation of a novel model consist on a delimitation of a series of criteria to 

determinate the relevance of the novelty detected, reconfiguration criteria (if supported by the model selected), 

curse of action towards the monitored criteria (alarm activation in case the monitoring is for fault detection), 

label of a novel operation mode (if consequent acquisitions are detected with the same novel properties), etc.  

An example of a novelty detection basic represented by a space delimited by two features is presented 

Fig. 2.2.2. The model is trained with a set of samples which led to a creation of a criteria to identify the normal 

operation modes, in this case a limitation of the space bounding a normal operation region; when new samples 

are acquired the novelty model analyses them and determinates, this time ruled by their position in the feature 

space, if they represent novel acquisitions or the behavior is still considered normal. If a significant amount of 

novel acquisitions with the same characteristics are detected, then a novel operation mode is detected and, 

depending on the application, an evaluation of the phenomena is required. 
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Fig. 2.2.2 Delimitation of a boundary by a novelty detection model. 

 

Detecting novel events is an important ability of any signal classification scheme. Given the fact that we 

can never train a machine learning system on all possible object classes whose data the system is likely to 

encounter, it becomes important that it is able to differentiate between known and unknown object information 

during testing. It has been realized in practice by several studies that the novelty detection is an extremely 

challenging task. It is for this reason that there exist several models of novelty detection that have been shown 

to perform well on different data. It is clearly evident that there is no single best model for novelty detection and 

the success depends not only on the type of method used but also statistical properties of data handled. 

2.2.1  Probabilistic methods 

Probabilistic approaches to novelty detection are based on estimating the generative probability density 

function (PDF) of the data [39]. The resultant distribution may then be thresholded to define the boundaries of 

normality in the data space and test whether a test sample comes from the same distribution or not. Training 

data are assumed to be generated from some underlying probability distribution which can be estimated using 

the training data. This estimate usually represents a model of normality. A novelty threshold can then be set 

using the estimation in some manner, such that it has a probabilistic interpretation. 

The estimation of some underlying data density from multivariate training data is a well-established field. 

Broadly, these techniques fall into parametric and non-parametric approaches, in which the former impose a 

restrictive model on the data, which results in a large bias when the model does not fit the data, while the latter 

set up a very flexible model by making fewer assumptions. The model grows in size to accommodate the 

complexity of the data, but this requires a large sample size for a reliable fit of all free parameters. Opinion in 

the literature is divided as to whether various techniques should be classified as parametric or non-parametric. 

For the purposes of providing a probabilistic estimate, Gaussian mixture models (GMMs) and kernel density 

estimators have proven popular. GMMs are typically classified as a parametric technique, because of the 

assumption that the data are generated from a weighted mixture of Gaussian distributions. Kernel density 

estimators are typically classified as a non-parametric technique as they are closely related to histogram 

methods, one of the earliest forms of non-parametric density estimation. 
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2.2.1.1  Gaussian mixture models 

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted 

sum of Gaussian component densities [40]. GMMs are commonly used as a parametric model of the probability 

distribution of continuous measurements or features in diverse applications. GMM parameters are estimated 

from training data using the iterative Expectation-Maximization (EM) algorithm or Maximum A Posteriori (MAP) 

estimation from a well-trained prior model. 

A Gaussian mixture model is a weighted sum of M component Gaussian densities as given by the equation, 
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Eq. 2.2.1 

Where x is a D-dimensional continuous-valued data vector (i.e. measurement or features), iw are the 

mixture weights, and 
),|(  iixg 

are the component Gaussian densities. Each component density is a D-

variate Gaussian function of the form, 
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Eq. 2.2.2 

with mean vector i  and covariance matrix  i . The mixture weights satisfy the constraint that  11 i

M

i w
. 

The complete Gaussian mixture model is parameterized by the mean vectors, covariance matrices and mixture 

weights from all component densities. These parameters are collectively represented by the notation, 
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Eq. 2.2.3 

There are several variants on the GMM shown in Eq. 2.2.2.3. The covariance matrices, i , can be full 

rank or constrained to be diagonal. Additionally, parameters can be shared, or tied, among the Gaussian 

components, such as having a common covariance matrix for all components, The choice of model configuration 

(number of components, full or diagonal covariance matrices, and parameter tying) is often determined by the 

amount of data available for estimating the GMM parameters and how the GMM is used in a particular 

application.  

In novelty detection applications GMMs estimate the probability density of the target class (here the normal 

class), given by a training set, typically using fewer kernels than the number of patterns in the training set. The 

parameters of the model may be estimated using maximum likelihood methods (via optimization algorithms 

such as conjugate gradients or expectation-maximization, EM) or via Bayesian methods. Mixture models, 

however, can suffer from the requirement of large numbers of training examples to estimate model parameters. 

A further limitation of parametric techniques is that the chosen functional form for the data distribution may not 

be a good model of the distribution that generates the data. However, GMMs have been used and explored in 

many studies for novelty detection. 

One of the major issues in novelty detection is the selection of a suitable novelty threshold. Within a 

probabilistic approach, novelty scores can be defined using the unconditional probability distribution z(x)=p(x), 

and a typical approach to setting a novelty threshold k   is to threshold this value; i.e., p(x)=k. This method has 

been used for novelty detection in several applications. However, because p(x) is a probability density function, 
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a threshold on p(x) has no direct probabilistic interpretation. Some authors have interpreted the model 

output p(x) probabilistically, by considering the cumulative probability P associated with p(x); i.e., determining 

the probability mass obtained by numerically estimating the integral of p(x) over the region R for which the value 

of p(x) is above the novelty threshold k. For unimodal distributions, one can integrate from the mode of the 

probability density function to the probability contour defined by the novelty threshold p(x)=k, which can be 

achieved in closed form for most regular distributions. 

2.2.1.2  Multivariate kernel density estimators 

Multivariate kernel density estimations are flexible approaches to estimate the densities of a given data 

distribution on which no information is available on the type of the underlying distribution [23]. They are also 

referred to as Parzen windows or Parzen-Rosenblatt windows.  

The approach of kernel density estimation has some similarities to histogram building. One of the main 

differences of the construction principles of the kernel density function to those of a histogram is that the density 

calculation is based on an interval placed around the observed value and not on an interval that is placed around 

a predefined bin center. 

For multi-dimensional datasets, multivariate kernel density estimations are applied. Given a d-dimensional 

random vector   𝐗 = (𝑋1, … , 𝑋𝑑)𝑇  where 𝑋1, … , 𝑋𝑑  are one-dimensional random variables, the vector 𝐗𝒊 

represents the i-th observation of the d variables: 𝐗𝒊  = (𝑋𝑖1, … , 𝑋𝑖𝑑), where 𝑖 = 1, … , 𝑛, and n correspond to the 

total number of observations. The variable 𝑋𝑖𝑗 is the i-th observation of the random variable 𝑋𝑗, where 𝑗 = 1, … , 𝑑. 

The probability density function (pdf) of 𝐗 is given by the joint pdf of the random variables (𝑋1, … , 𝑋𝑑)𝑇: 

 

𝑓(𝐗)  = 𝑓(𝑋1, … , 𝑋𝑑) Eq. 2.2.4 

 

The kernel functions are applied to the scaled distances, in a one-dimensional case: 𝑢 = (𝑥 − 𝑋𝑖)/ℎ, 

where ℎ  is the smoothing parameter called bandwidth and 𝑥  is the currently analized observation. In the 

multivariate version, the bandwidth can be set individually for each distance (𝑥 − 𝑋𝑖), obtaining a d-dimensional 

bandwidth: 𝐡 = (ℎ1, … , ℎ𝑑). 

There are different approaches to form a multi-dimensional kernel 𝐾(𝐮) = 𝐾(𝑢1, … , 𝑢𝑑), as an example is 

the multiplicative kernel: 𝐾(𝐮) = 𝐾(𝑢1) ∙ … ∙ 𝐾(𝑢𝑑). 

Using this approach, the density estimator can be given as: 
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Eq. 2.2.5 

The pdf highly depends on the selection of the bandwidth parameter vector. Several approaches have 

been proposed in the literature on setting the bandwidths, such as Silverman’s rule of thumb [23]. Another 

approach is to set the bandwidths through least squares cross-validation: 
 

𝐼𝑀𝑆𝐸(ℎ𝑗) = ∫ {𝑓ℎ𝑗
(𝑥𝑗) − 𝑓(𝑥𝑗)} 𝑑𝑥 Eq. 2.2.6 

By this approach, each bandwidth ℎ𝑗  is selected so to minimize the integrated mean square error between 

the estimated and actual distributions. 
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2.2.2  Domain-based methods 

Domain-based methods require a boundary to be created based on the structure of the training dataset. 

These methods are typically insensitive to the specific sampling and density of the target class, because they 

describe the target class boundary, or the domain, and not the class density [41]. Class membership of unknown 

data is then determined by their location with respect to the boundary. As with two-class SVMs, novelty detection 

SVMs (most commonly termed “one-class SVMs” in the literature) determine the location of the novelty 

boundary using only those data that lie closest to it (in the transformed space); i.e., the support vectors. All other 

data from the training set (those that are not support vectors) are not considered when setting the novelty 

boundary. Hence, the distribution of data in the training set is not considered which is seen as “not solving a 

more general problem than is necessary”. 

SVMs are a popular technique for forming decision boundaries that separate data into different classes. 

The original SVM is a network that is ideally suited for binary pattern classification of data that are linearly 

separable. The SVM uses a hyperplane that maximizes the separating margin between two classes. The 

training points that lie near the boundary defining this separating margin are called support vectors. Since the 

introduction of the original idea, several modifications and improvements have been made. SVMs have been 

used for novelty detection in two related approaches described below. 

2.2.2.1  Support Vector Data Description 

A Data domain description method, inspired by the support vector machine, called the support vector data 

description (SVDD), also called support vector domain description, can be used for novelty or outlier detection 

[41]. A spherically shaped decision boundary around a set of objects is constructed by a set of support vectors 

describing the sphere boundary. It has the possibility of transforming the data to new feature spaces without 

much extra computational cost. By using the transformed data, this SVDD can obtain more flexible and more 

accurate data descriptions. The error of the first kind, the fraction of the training objects which will be rejected, 

can be estimated immediately from the description without the use of an independent test set, which makes this 

method data efficient. 

The minimizing problem to delimitate the radius of the sphere is expressed as the Lagrangian: 
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Eq. 2.2.7 

Under the constraints of 0 ≤ 𝑎𝑖 ≤ 𝐶, ∑ 𝑎𝑖 = 1  Where 𝑎𝑖𝑗  are the Lagrange multipliers, 𝑥𝑖𝑗  are the data 

training points, the variable C gives the trade-off between simplicity (or volume of the sphere) and the number 

of errors (number of target objects rejected). For those objects the coefficients 𝑎𝑖𝑗  will be non-zero and are called 

the support objects. 

The spherically shaped decision boundary is defined in its simpler way by: 

2)()( Razaz T   
Eq. 2.2.8 

To determine whether a test point z is within the sphere, the distance to the center of the sphere has to be 

calculated. A test object z is accepted when this distance is smaller than the radius, where 𝑎 is the center of the 

sphere and R is the radius.  

Expressing the center of the sphere in terms of the support vectors, objects are accepted when: 
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Eq. 2.2.9 

Only these objects are needed in the description of the sphere. The radius R of the sphere can be obtained 

by calculating the distance from the center of the sphere to a support vector with a weight smaller than C. 

Kernels could be applied to soften the margins of the sphere. 

Some extensions to the SVDD approach have recently been proposed to improve the margins of the 

hyperspherically shaped novelty boundary. The first extension is proposed in [42], where the authors present a 

“small sphere and large margin “approach that surrounds the normal data with a hypersphere such that the 

margin from any outliers to the hypersphere is maximized.  

2.2.2.2  One-Class Support Vector Machine 

OC-SVM was proposed by Schölkopf et al. [43], for estimating the support of a high-dimensional 

distribution. The OC-SVM classification objective is to separate one class of target samples from all other class 

samples. In this type of problem one class is characterized properly, called target class; while for the other class, 

usually, no measurements are available.  

Considering 𝑋 = [𝑥𝑖 , … , 𝑥𝑁]𝑇 ∈ 𝑅𝑁𝑥𝑀 , which denotes the normal data set, and 𝑥𝑖 , 𝑖 = 1, … , 𝑁  denotes 

training samples (available measurements) characterized by M numerical features, then, in order to obtain the 

boundary, an optimization model is considered as follows 
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Eq. 2.2.10 

Subject to: 
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where v is a regularization parameter and 𝜉𝑖 is the slack variable for the point 𝑥𝑖. The constants 𝑤 and ρ are the 

normal vector and offset of the hyperplane, respectively. Thus, the decision boundary can be formulated as 

 )()( xwxf  Eq. 2.2.11 

where 𝑥 ∈ 𝑅𝑀, and Φ is a higher dimensional projection vector. For the classification problem of two categories, 

the data sets are not always linearly separable in the original space, then, Φ projects the original data sets into 

a higher dimensional space, the so-called feature space, where the data sets can be linearly separable. 

However, Φ is inexplicit in the practical application, and only the dot product from Φ(𝑥𝑖) ∙ Φ(𝑥𝑗) ∙is necessary to 

be known. K represents the kernel function Φ(𝑥𝑖) ∙ Φ(𝑥𝑗). The most commonly used kernel functions is the 

Gaussian 
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Eq. 2.2.12 

In order to solve the optimization problem, Lagrange multipliers 𝑎𝑖 ≥ 0 and 𝛽𝑖 ≥ 0 are introduced and the 

Lagrange equation is formed as 
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Eq. 2.2.13 
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Eq. 2.2.14 

The partial derivatives of the Lagrangian equation with respect to 𝑤, 𝜉and 𝜌 are set to zero. Then, 𝑤 and 

𝑎𝑖 can be formulated as  
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Eq. 2.2.16 

Substitute (5)-(6) into Lagrangian equation (4) and its dual form is presented as 
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Eq. 2.2.17 

Where 𝒂 = [𝑎𝑖 , … , 𝑎𝑁]𝑇, and 𝐻 is the kernel matrix and the factor of 𝐻, i.e. 𝐻𝑖𝑗, which can be expressed as: 
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Eq. 2.2.18 

Solve the optimization problem to get 𝒂  and then 𝜌 can be given as: 
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Eq. 2.2.19 

where 𝑛𝑠 is the number of support vectors. 

2.2.3  Distance-based methods 

Distance-based methods represents a novelty detection approach similar to that of estimating the PDF of 

data. Distance-based methods such as nearest neighbors or clustering are based on well-defined distance 

metrics to compute the distance, as similarity criteria, among data points. 

Distance-based approaches do not require a priori knowledge of the data distribution and share some 

common assumptions with probabilistic approaches. Nearest neighbour-based techniques, however, rely on 

the existence of suitable distance metrics to establish the similarity between two data points, even in high-

dimensional data spaces. Furthermore, most of them only identify novel data points globally and are not flexible 

enough to detect local novelty in data sets that have diverse densities and arbitrary shapes. Generally, in high-

dimensional data sets it is computationally expensive to calculate the distance between data points and as a 

result these techniques lack scalability. 

Probabilistic and distance-based approaches rely on similar assumptions. They attempt to characterise 

the area of the data space occupied by normal data, with test data being assigned a novelty score based on 

some sort of distance metric. These techniques require a distance measure computation between a pair of data 

points. These techniques, when applied to novelty detection, assume that the distance measure can 

discriminate between novel and normal data points. 
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2.2.3.1  Nearest neighbors 

The main idea rear this technique is that the normal data is projected near their neighborhoods, while 

novelties will be projected far from their neighbors [44]. That is, considering an unknown data point x, this point 

is accepted as normal if the distance to its nearest neighbor y, in the training set is less than or equal to the 

distance from y to the nearest neighbor of y in the training set. Otherwise, x is considered as a novelty. Euclidian 

distance is the most popular choice for univariate and multivariate continuous attributes, 

‖𝑥 − 𝑦‖ = √∑(𝑥𝑖 − 𝑦𝑖)2

𝐷

𝑖=1

 Eq. 2.2.20 

Several well-defined distance metrics to compute the distance (or similarity measure) between two data 

points can be used, which can broadly be divided into distance-based methods, such as the distance to the k-

th nearest neighbor, and local density-based methods in which the distance to the average of the k nearest 

neighbours is considered [11]. 

2.2.4  Comparison and summary 

In summary, novelty detection approaches differ on the assumptions made about the nature of the 

available data.  Each approach exhibits its own advantages and disadvantages, and faces different challenges 

for complex datasets. Table 1 collects the main characteristics of the considered methods. Thus, probabilistic 

methods makes use of the distribution of the training data to determine the location of the novelty boundary. 

Domain-based methods determine the location of the novelty boundary using only those data that lie closest to 

it, and do not make any assumption about the data distribution. Distance-based methods require the definition 

of an appropriate distance measure for the given data. 

Table 2.2.1. Summary of main characteristics of novelty detection approaches. 

Method Advantages Disadvantages 

Domain-Based 

i.e. One-Class 
SVM 

Robust to labeled outliers in training by forcing 
them to lay outside the description. 
Robust to unlabeled outliers in training. 

Several configuration parameters. 
Sensitive to the scaling of the feature values. 
Requires a minimum number of training. 

Probabilistic, 
parametric 
i.e. Gaussian 
mixture models 

Great advantage when a good probability 
distribution is assumed. 
Provides a more flexible density method. 

Requires a large number of training samples to 
overcome the curse of dimensionality. 
The distribution of the data is assumed. 
Unlabeled outliers in training affects the estimation 
of the covariance matrix. 

Probabilistic, 
non-parametric 

i.e. Kernel 
density estimator 

Flexible density model. 
Possible configuration of the kernel width h on 

each feature direction. 
Low computational cost for training. 
The density estimation is only influenced locally. 

Requires a large number of training samples to 
overcome the curse of dimensionality. 
Expensive computational cost for testing. 
Limited applicability of the method when large 
dataset in high dimensional feature spaces. 

Distance Based 
i.e. k-NN 

Rejects parts of the feature space which are 
within the target distribution. 
Lack of configuration parameters, besides k, 
therefore, it relies completely on the training 
samples. 

Scale sensitive due to the use of distances in the 
evaluation of test objects. 
Performance affected when unlabeled outliers are 
presented in training. 
Sensitive to noise. 
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2.3  Fault detection and identification systems 

In highly competitive industrial manufacturing sectors the evolution CBM systems requires the optimization 

of the industrial processes analytics and the interpretation of their operating condition [45], [46]. 

Indeed, in the field of industrial machinery monitoring, a great deal of approaches in regard with health 

monitoring schemes have been proposed during the last decade, where information  of the monitored machine 

working under nominal (healthy), and faulty conditions, are analyzed to train a classifier capable of assess the 

condition of the machine [11], [45], [47], [48], these approaches have demonstrated to be a reliable option as 

fault diagnosis strategies applied to electromechanical systems. However, the practical integration in the 

industry requires dealing with challenging scenarios that classical fault diagnosis methodologies are not able to 

solve by themselves. Unexpected events, in the form of not previously considered fault scenarios, or deviations 

over the nominal operation of the machine, will take place during the useful life of the machinery under 

monitoring. In industry applications, it is not feasible to have data regarding all the possible undesired operating 

conditions of the monitored machine, therefore the maintenance support of classical approaches is limited. 

Novel operating scenarios must be identified in order to avoid diagnosis misclassifications and incorrect 

maintenance scheduling. In this sense, the task of detecting patterns that differs from those available during the 

training of the monitoring scheme, is called novelty detection [23], [49]. 

Nowadays, industry applications demands solutions capable to provide a fast intervention in fault 

situations, and optimal maintenance scheduling. In order to successfully develop and implement systems with 

such capabilities, the methodologies applied must be able to identify novel operating conditions (novelty 

detection), while continue the identification of the known fault scenarios previously available (fault diagnosis). 

In this regard, the integration of novelty detection strategies to fault diagnosis methodologies is the first step to 

develop a condition monitoring system able to answer the demands of the industry. A state of the art of these 

methodologies is discussed in the following subsections. A priori, the knowledge of characteristic fault patterns 

of specific industrial machinery is commonly limited, and highly difficult to estimate trough theoretical 

approaches. Thus, condition monitoring strategies capable of detecting novel operating conditions alongside 

with classification of the several available known conditions, represents the most convenient solution [22], [25], 

[50]–[53] to reach optimal maintenance scheduling and fast interventions in fault situations. 

In pattern recognition and machine learning framework, this kind of scenario is known as open set 

recognition problem [54], where only a set of known classes are contained in the initial dataset during the training 

stage, and, then, novel (unknown) classes may appear during testing stage. 

The classical approach to deal with such open set problems consists on one-class classifiers [55], where 

one one-class classifier is considered for each class [56], [57], [33], [58]. Thus, each new measurement from 

the system under monitoring is analyzed by the one-class classifiers set. If the measurement fits into more than 

one class, post-processing schemes based on similarity analysis are typically used to assign the definitive class. 

If the measure does not fit into any of the available classifiers, the measure is considered novelty. The scheme 

of the classical approach can be seen in Fig. 2.3.1. 
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Fig. 2.3.1 Classical approach of a FDI system where the novelty detection and the fault diagnosis task are both performed by an ensemble 

of One-Class classifiers. 

 

Lazzaretti et al. in [25], follows this approach to perform an automatic classification of voltage waveforms 

in electrical distribution networks. The classification method is based on Support Vector Data Description 

(SVDD), in order to identify the waveforms class from multiple known options and, at the same time, detect 

novel voltage waveforms not previously considered.  
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2.4  Incremental learning framework 

Most of the related works available up to now in fault detection and identification systems, correspond to 

static approaches where the healthy and a set of fault conditions are previously characterized following a 

classical diagnosis approach, and uncorrelated events are detected and set apart [2]. Nevertheless, in most of 

industrial applications, just the nominal operating condition is available (the healthy condition), which, from one 

side, makes unfeasible a previous characterization of fault conditions and, from the other side, requires the 

proposal of adaptive CBM schemes capable of update its available knowledge and, then, its diagnosis 

capabilities. 

Among the available works, stands out the proposed by Costa et al. in [53], where a two-stage methodology 

for real-time novelty detection and fault classification applied to an industrial plant is presented. Specifically, the 

initial novelty detection is supported by density analysis in the data space, and the classification stage is 

designed by the auto-class fuzzy-rule-based classifier. However, the advantage of such algorithms are based 

on their computational efficiency for on-line monitoring and adaptive capabilities to novel scenarios 

incorporation, rather than accuracy and generalization capabilities. Another disadvantage of the method 

presented is the need of sufficient samples to properly calculate the density of the data, such availability of 

measurements is proper from industrial monitoring applications but is not guaranteed to occur in 

electromechanical machines. The work also emphasize the need of an ad hoc signal processing, estimation of 

numerical indicators and feature reduction procedures for the specific plant under test.  

Filev et al. in [50], propose an autonomous equipment monitoring and diagnosis framework, emphasizing 

the need of a generic structure that is relatively independent of the type of physical equipment under 

consideration. The results presented are promising but the algorithms are limited to the detection of two different 

types of faults, incipient or abrupt. Finally, Wang et al., in [59], present a novelty detection scheme in order to 

improve the boundaries resulting from the characterization of a set of initially available data. The novelty 

detection presents increased capabilities to adapt the boundaries when new information is available, but the 

incorporation of new classes is not considered. 

As can be seen most of the proposed approaches focus their contributions on the limitations presented on 

their respective application domain, being the computational complexity of the incremental learning framework 

and the continuous improvement of the training stage of the models their primary focus. 

Indeed, an important limitation of classical approaches is that the possibility of incursion of new classes to 

the base knowledge is not considered. That is, traditional data-driven CBM methodologies face the knowledge 

increase by means of a batch scheme, where a complete retrain of the whole diagnostic model structure is 

carried out with the data combining the initial and new knowledge. However, storing all the measurements is 

not a desired solution and, moreover, the complexity of the retraining process is increased as the data is 

accumulated, which represents an unsustainable approach. As alternative, adaptive strategies for novelty 

detection are being proposed, first, ensemble-based, and second, incremental approaches [60]–[62]. The 

objective of both is to provide a more flexible option capable to work in on-line mode. That is, the advantages 

of these methods focus in lessen the computation efforts of the models, decrease the number of configuration 

parameters, and provide the capability to update the models without necessity of the base knowledge used for 
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the initial training. Dealing with fault diagnosis, a third strategy is being also considered, the evolving approach. 

Indeed, considering the need of data labelling for diagnosis purposes, such evolving strategy offers the 

possibility of model growing while optimizing the global computational complexity. 

Such adaptive approaches for novelty detection and fault diagnosis, however, present important 

restrictions regarding their application domain. The processing of the available signals and estimation of relevant 

features to analyze the machine condition can only be performed with information of the healthy condition. 

Therefore, the characterization process of faults to emphasize specific patterns is not an affordable option. A 

discussion of adaptive approaches for novelty detection and fault diagnosis to perform a FDI system under an 

incremental learning framework is performed in the following subsections. 

2.4.1  Novelty detection under an incremental learning framework 

In regard with the implementation of a novelty detection stage under an incremental learning framework, 

two strategies are considered mainly in the literature: incremental models and ensemble of one-class classifiers. 

Incremental novelty detection models are commonly used in data streaming applications to cope with 

classical problems as the so called concept-drift, by including forgetting and adaptive capabilities to their 

structures [63]. For instance, Krawczyk et al., in [64], proposed an incremental one-class support vector machine 

based on a weighting matrix to adapt the knowledge’ boundary to variations in the incoming data. This weighted 

approach lead to an improvement in classification of different data streams, especially with the presence of an 

incipient data drift. Similarly, Al-Behadili et al., in [17], proposed an incremental parzen window kernel density 

estimator to address also the data drift problem. This approach obtained better results than the standard Support 

Vector Data Description (SVDD), nevertheless, to keep it computational efficient the user needs to define an 

initial number of clusters, in this case applying k-means algorithm, for each class. Indeed, most of the studied 

incremental approaches are developed to adapt models to current conditions of the monitored system, which 

means that past knowledge is considered obsolete and discarded [64].  

The ensemble of one-class classifiers is the other main alternative based on training one novelty detection 

model for each available new data set, combining later the outputs to determinate if the measurement under 

analysis corresponds to known condition or differs in some aspect from the available knowledge. In this sense, 

the work presented by Lazzaretti et al., in [25], presents an ensemble of one-class classifiers to perform an 

automatic classification of voltage waveforms in electrical distribution networks. In such work, there is no clear 

division between the novelty detection and the fault diagnosis stages, therefore, both tasks are performed by 

an ensemble of Support Vector Data Descriptions (SVDD). Like most of the works dealing with novelty detection, 

the incursion of novel information is not faced; nevertheless, the method allows the addition of new SVDD 

models if data regarding a new type of fault is available. 

2.4.2  Fault diagnosis under an incremental learning framework 

Regarding fault diagnosis, the same both discussed strategies are also applicable with their respective 

modifications. Indeed, there is considerable literature on incremental learning and ensemble-based classifiers, 

and most of the characteristics discussed in the novelty detection side applies also for fault diagnosis [65]–[69]. 

Indeed, incremental and ensemble approaches have their variants for multi-class classification problem, mainly, 

the incremental Support Vector Machine (SVM) [70], and the ensemble of SVM classifiers [71], respectively. 

Other proposed models for incremental or ensemble fault diagnosis include an incremental version of 
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probabilistic neural network (PNN) [72], a combination of discriminant analysis (DA) and principal component 

analysis (PCA) [73], decision trees based techniques [74], AdaBoost [75], Bagging [76] or Learn++ [66], among 

others. The differences and characteristics of the aforementioned incremental or ensemble models are focused 

on the classification accuracy improvement by modifying the training procedure, basically, adding robustness 

to outliers and improving the rules regarding the number of classifiers used in the ensemble-based scheme. It 

is important to note that, in general, such methods work under a supervised or semi-supervised environment, 

where the labeling process of a new data set as well as the model tuning is carried out manually and off-line. 

However, as it has been aforementioned, dealing with fault diagnosis purposes, the evolving strategy is 

being considered as a superior adaptive approach in multiple studies [62]. For instance, in [53], an evolving 

approach is used for fault detection and identification. For novelty detection, the Recursive Density Estimation 

(RDE) calculation is used to detect outliers, meanwhile for fault identification an unsupervised evolving classifier 

AutoClass is used. Indeed, the fault diagnosis stage requires the consideration of a more complex data 

boundary structure. Unlike novelty detection problem, where a binary scenario is considered, the fault diagnosis 

applied to electromechanical system requires the consideration of a multi-fault scenario.  

A family of fuzzy-rule based evolving classifiers have been used in recent works, as for example in [77], 

based on eClass algorithms, in [78], based on simpleClass, or in [53], based on AutoClass. All of them provide 

an evolving and online solution for fault diagnosis under low-computational cost requirements.  

eClass0 and eClass1, are two well-known and used evolving classifiers. Both approaches are Fuzzy-Rule-

Based (FRB) and work under an online unsupervised framework. A set of prototypes (focal points) are selected 

from the stream of data with a Gaussian membership function to generate the corresponding fuzzy rules. A set 

of measurements, like the potential and age of the prototypes, are determined to change the fuzzy rules in case 

new measurements are available for re-training. Their architecture is different regarding the actions performed 

when a new measurement is evaluated after the activation of the rules; while eClass0 follows the typical 

construct of an FRB classifier with class labels as direct output, the eClass1 regresses over the feature vector 

using first-order multiple-input-multiple-output evolving Takagi-Sugeno (MIMO-eTS) models (MISO is also 

possible for two-class problems9i) and the normalized outputs per rule can be interpreted as the possibility of 

the data sample belonging to a certain class. It is important to stress that both methods are capable of including 

new classes as new information is presented and automatically tune the dynamically adapting parameters to 

define the classification boundaries for each class. A specific discussion about advantages and disadvantages 

of these methods can be found in [62], [77]. 

2.4.3  Comparison and summary 

Incremental models are mainly applied within big data analytics, where a great deal of continuous data is 

available. The performance of such approach over electromechanical systems may be limited, considering the 

low inertia of multiple wear based faults and the necessity of multi-fault patterns recognition. 

In general terms, the use of an ensemble of one-class classifiers provides more design flexibility in 

comparison of the incremental based models. That is, dealing with an ensemble-based approach, a new model 

can be created when a new data set is detected; therefore, there is no loss of previous knowledge because it 

is retained within the set of models. In this sense, the discard of knowledge is user-dependent, by selecting the 

specific model to remove. Moreover, any novelty detection technique can be used to be part of an ensemble-
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based scheme. In this sense, dealing with electromechanical condition monitoring, where relative small sets of 

training data are usually available, a suitable option are the domain-based approaches One-Class Support 

Vector Machine (OC-SVM) or Support Vector Data Description (SVDD). For example, in [79], a method using 

SVDD is used to deal with an unbalanced and small sampled dataset for rotor severity classification. Dealing 

with ensemble approaches, some disadvantages are present as well, for instance, the necessity of an offline 

training stage for each new model. This fact requires that a representative set of data must be identified and 

temporally stored to train manually the corresponding new model. 

Regarding fault diagnosis approaches, the conclusions of some studies suggest that the computational 

complexity of an ensemble-based approach for diagnosis can lead to unfordable structures after different 

adaptions to new data sets. Evolving strategies, however, allow the possibility of modify the structure of a unique 

model in function of the different boundaries to be considered. Indeed, this evolving strategy avoids the risk of 

a complex ensemble-based fault diagnosis structure, in which the relations among the multiple models must be 

defined manually depending on their labels. 
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3. 
Novelty Detection 

 

The incursion of novelty detection to CBM schemes represents the first step into this thesis research. In 

this regard, this chapter presents three contributions to increase the novelty detection accuracy and robustness 

by specific methodologies based on enhanced selection and reduction of features for this task.  

 

CONTENTS: 

3.1 Introduction 

3.2 Feature calculation and reduction for novelty detection in electromechanical systems 

3.3 Conclusions and discussion 
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3. Novelty Detection 

3.1  Introduction 

In the past chapter, an overview regarding the classical approach to perform novelty detection was 

described. Two key components from the novelty detection task can be improved to increase the reliability and 

robustness of the novelty detection task: the first one is the novelty detection model used and the second one 

is the feature calculation and reduction stage.  

In the literature review, most of the related works focus on the improvement of the novelty detection model 

by proposing different strategies to detect anomalies or proposing improvements over the structure of the 

established models. For example, S. Wang et al. [59] propose a parameter optimization estimation scheme to 

reduce the false alarm rate and increase the detection accuracy for the support vector data description model 

in tapered roller bearings. Also, S. Ma et al. [80] propose a novelty detection approach based on assigning 

threshold in extreme value distributions to reduce the uncertainty in vibration signals from rotating machinery. 

In the same direction, M. Wong et al. [81], propose a modification to the self-organizing map for automated 

novelty detection in vibration signals by adopting multidimensional dissimilarity measure. 

From the state of the art, it can be seen that, by modifying a specific novelty detection model, the novelty 

detection task can be successfully performed in a specific electromechanical system under some circumstances 

that were initially disadvantageous to this model. This is a valuable contribution to the state of the art in novelty 

detection, nevertheless, modifying a novelty detection model to make it viable for a specific task is not an 

approach that would lead to a generalized implementation. Indeed, one of the objectives of this thesis is to 

provide high reliability and robustness to the novelty detection task in electromechanical machines and, to 

accomplish this, a more generalized solution is necessary rather than the formulation of a model for each 

limitation encountered in order to improve novelty detection capabilities in front of unexpected conditions. 

Being aware of the characteristics of the challenges presented in the electromechanical systems, two 

novelty detection models are selected in this thesis to be employed as the basis of the improved solution for 

electromechanical systems in terms of detection capabilities, the One-Class Support vector machine (OC-SVM) 

and the multivariate kernel density estimators (MKDE). As analyzed in the state of the art, these models provide 

advantages that ease the implementation of novelty detection models in this application domain, nevertheless 

the performance obtained from these models alone is not enough to reach the industrial demands. 

It is well known that the performance of the novelty detection models are strictly dependent of the quality 

of the features calculated; if the features analyzed are not representative enough to characterize the machine, 

any novelty detection model won’t be able to detect the new scenarios. In this sense, a study and proposal of a 

suitable feature calculation and reduction stages for the novelty detection task appears to be a more performing 

solution to obtain high reliability and robustness ratios. Therefore, in this chapter, a series of contributions are 

proposed in the feature calculation and reduction stages to increase the robustness and reliability of the novelty 

detection task. 



Chapter 3: Novelty Detection 

Feature calculation and reduction for novelty detection in electromechanical systems 

 

 

   33 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

3.2  Feature calculation and reduction for novelty detection in 

electromechanical systems 

In order to accomplish with the practical requirements of an industrial implementation, some considerations 

must to be taken into account. Unexpected events, in the form of not considered fault scenarios or deviations 

over the normal operation will take place during the useful life of the machinery. These situations must be 

identified in order to avoid misclassifications and allow the learning of new scenarios. Due to its practical 

importance, many approaches have been proposed to detect anomalies. However, taking into consideration the 

unknown characteristics of the unexpected scenarios, a critical stage is the design of the feature space in which 

the measurements are projected. Indeed, the set of features not only have influence over what we see from the 

system, but also over how we see it.  

In the following subsections three different methodologies regarding the selection of the feature space for 

novelty detection in electromechanical systems are proposed.  

The first one correspond to an analysis regarding the limitations of novelty detection in a continuous 

degradation environment, which is performed via the implementation of novelty detection algorithms to a run to 

failure experiment. The ideal characteristics of the features commonly used in this type of experiments involve a 

continuous evolution over time that reflects the degradation of the analyzed component, therefore it is an ideal 

situation to evaluate how sensitive are the novelty detection models in the presence of variations over a set of 

features. 

The second one is a multi-modal scheme to increase the resolution of the novelty detection task by 

monitoring different aspects of the machine simultaneously. This is accomplished by calculating several sets of 

features and incorporating a single novelty model for each one working in parallel instead of overfitting a single 

model with a very high number of features. 

The third one is a methodology to reformulate the features each time a new scenario is incorporated to the 

base knowledge of the model. The appearance of new scenarios during the monitored fault can provide 

information that could improve the characterization of the monitored machine. In this methodology, the 

information provided from these new scenarios is exploited by continuously changing the selection of features 

for a more appropriate set each time new information is available. 

3.2.1  Remaining Useful Life time estimation by means of novelty detection models 

One of the bases of an effective CBM strategy is the accurate assessment of machine component 

condition. A common strategy involves obtaining the condition profile of the component to be monitored by the 

acquisition of some significant physical magnitude and, then the remaining useful life (RUL) time of the 

component could be identified or predicted. In this case, the RUL is defined as a percentage indicating the 

condition of the component according the remaining life-time of the component. The RUL is commonly used to 

estimate the degradation of components used in electromechanical systems. The value of the RUL would be 

100% at the start of the experiment and decrease linearly to 0% at the end of the useful life, which implies the 

component is no longer functional. A graphical explanation of the RUL interpretation is shown in Fig. 3.2.1. 
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Fig. 3.2.1 Definition of RUL of electromechanical components. The time axis represent the duration of the experiment until the component 

is no functional. 

Numerous methods can be used to determinate the RUL’s value with promising results. These methods 

can be classified into two principal approaches: model-based and data-driven. Model-based uses mathematical 

models to represent bearing dynamic behavior and degradation phenomenon. One drawback of these methods 

is that you must have a reliable physical model for the fault degradation. For most real-life signals and systems, 

a reliable physical model for the degradation process is not available. The data-driven approach uses measured 

data extracted from the sensor as source for getting a better understanding of the monitored component.  

In data-driven methods, a set of numerical feature are calculated and a feature reduction technique is often 

used to discard unnecessary features and obtain a better representation of the data, aiming to obtain a data 

distribution where the current state of the monitored component could be clearly identified. Then, a classifier is 

trained with the degradation profile, in order to identify the corresponding percentage of degradation of the 

component at the current moment. As in other data-driven based methodologies, some these methods still lack 

of generalization capabilities to estimate the RUL with test sets that are different from the training set, or rely on 

feature reduction techniques that does not exploit the appropriate characteristics to estimate the RUL.  

Due to the nature of novelty detection to characterize in the feature space with a certain degree of 

tolerance, the applicability of these models represent a viable option to provide the traditional data-driven RUL 

estimation methodologies an alternative with more generalization capabilities, particularly the OC-SVM model. 

The general idea for developing this methodology is to focus on the intrinsic characteristics of the 

phenomenon studied, and select an appropriate set of features to characterize it, then, implement a model with 

significant generalization capabilities to estimate the degradation for different cases and calibrate the output to 

obtain a desired parameter or characteristic, in this case, the remaining useful life. Fig. 3.2.2 shows a scheme 

of the proposed methodology. 

 

Fig. 3.2.2 Proposed scheme to estimate the RUL by means of novelty detection models. 

The proposed scheme begins with the traditional data processing and feature calculation stages to 

characterize the monitored component. The monotonic feature selection stage extract relevant features that 



Chapter 3: Novelty Detection 

Feature calculation and reduction for novelty detection in electromechanical systems 

 

 

   35 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

highlights the component degradation profile. This fact allows a better management of the physical behavior of 

the component under monitoring, from the numerical feature selection point of view. Next, the features selected 

are analyzed by a novelty model to characterize the degradation profile of the monitored component. Finally, 

the outputs of the novelty model are calibrated to directly estimate the RUL. 

Case Study: RUL estimation of Ball Bearings by Means of Monotonic Score calibration and 

Novelty detection 

 

To validate the proposed scheme, the RUL estimation methodology is applied to the PRONOSTIA 

experimental platform, which consist on an accelerated bearing degradation experiment and accelerometers 

signals recording. A more in-depth description of the PRONOSTIA test bench can be found in Annex II. The 

proposed methodology is shown in Fig. 3.2.3. 

 

Fig. 3.2.3 Proposed methodology for RUL estimation. A bearing degradation profile is used to identify the relevant features and training the 

OC-SVM, then different bearing degradation profiles are used to test the methodology. 

The presented methodology is divided in training phase and test phase. On the training phase, only a 

representative set of a bearing degradation profile is used, this will be called training set. The objective of this 

phase is to train a model capable to estimate the RUL of the bearing profile used as training set with enough 

generalization to accurately estimate the RUL on different testing sets. 

Previous to the model training, a feature calculation step is required, which is an essential procedure in 

order to characterize each measurement and highlight the degradation patterns. Numerical features can be 

calculated by using different signal processing methods based on time-domain, frequency-domain and/or time-

frequency-domain. 

Taking into consideration practical industrial applications, usually, the electromechanical system works 

under specific stationary conditions among its useful life, this condition allows the use of time domain features 

as condition indicators for the characterization of the degradation, which is the domain used in this work. Among 

the possible choices, it is possible to distinguish the maximum value, the Root Mean Square (RMS), the variance 

and the kurtosis as general physical magnitude descriptors used in different applications. 

Once the feature calculation stage is done, and a set of features is obtained for each measurement, a 

feature selection stage is introduced. Feature selection is an important step in the fields of pattern recognition 

and data mining technology. It identifies a meaningful feature subset, k-feature set, from the original one q-

feature set, where q>k, by removing redundant or non-significant information. This dimensionality reduction 

allows reducing the training complexity, while simplifying the classification space.  
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An important part of this methodology is the criteria to make the feature selection. Based on the assumption 

that a feature that monotonically increases over time is the ideal degradation signal, Spearman’s rank correlation 

coefficient was used to assess how strong the monotonic relationship was between the set of features calculated 

and the time duration of the experiment.  

Spearman coefficient is a non-parametric measure of statistical dependence between two observational 

stochastic sequences. It assesses the relationship among the sequences in which the coefficient can be 

depicted using a monotonic function as: 
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Eq. 3.2.1 

Where 𝜌𝑖 denotes the Spearman Rank correlation coefficient, 𝑑 is the difference between the sequences, 

and n is the number of the sequences. Basically, a high Spearman coefficient of the feature analyzed will imply 

a strong monotonic relationship of the feature and the time duration of the experiment, which is the ideal case 

for estimating the RUL. Under this criterion the two features with highest coefficient ranking will be selected to 

characterize the degradation profile.  

It must be noticed that the capability of the model to estimate the RUL of the bearing will be directly related 

to the monotonic relationship over time of the features selected, which will be assessed with the Spearman 

coefficient. 

Once the feature set is reduced, a model is trained. In this case OC-SVM with calibrated output is selected. 

OC-SVM is usually used for one class classification problems, but with calibration of the classification score 

(output), the classifier could be employed to characterize an incremental degradation profile on the feature 

space with generalization capacities, which means, it will detect increment in all axis of the feature space. 

It is important to stress that common classification algorithms delimit the feature space for classification 

and can work properly only on the regions in which the training was involved and also their performance is good 

only with tests in which the behavior of the phenomenon is very similar to the training. In this sense, OC-SVM 

with calibration of classifier scores provides a more generalized point of view, assuming the monotonicity of the 

features, the incremental degradation profile will not always follow the same pattern over time, but still, 

regardless of the pattern, an incremental in any feature selected is detectable. 

The classification scores, which are the output of the classifier, are lineally escalated using Eq. 3.2.2: 
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Eq. 3.2.2 

where f(x) is the classification score, s(x) the linear re-scaled score to [0, 1] and [b, a] are the minimum 

and maximum classification score obtained from the training set. This will help the interpretation of results and 

help the future association of the classification score with the RUL, but still an isotonic regression is employed 

to fit the degradation profile in an isotonic function (which is ideal to the application), to directly obtain the RUL 

on future test sets, and to avoid ambiguity on the interpretation of results, that is, same associated RUL to 

several classification scores due to training error. 

At this point, a model trained with the selected features is obtained, and the classification scores are linearly 

scaled and then fitted with an isotopic regression. This model now can be tested with new bearing degradation 

profiles, which is the second phase of the methodology. On this test part, there is no need to calculate all 

features, but only the selected to be monotonically relevant identified in the training part, and posteriorly test the 
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new profiles with the trained and calibrated OC-SVM and obtain the RUL estimation. The performance of the 

OC-SVM is evaluated by means of the Root Mean Squared Error (RMSE). 
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Eq. 3.2.3 

Where N is the size of the dataset, yiyî corresponds to the estimated RUL, and, yî  to the real one. 

 

In order to evaluate the performance of the proposed methodology, experimental data from a laboratory 

test-bench has been used. This data corresponds to a so called run-to-failure experimental approach, where 

the elements are forced to work beyond their nominal values and then, the degradation profiles can be extracted. 

Next, the proposed methodology is applied, the results are discussed and, additionally, some variants of the 

methodology are proposed and analyzed. 

The characteristics of the selected datasets for this experimental validation and the distribution among 

training and test set can be seen in Table 3.2.1: 

Table 3.2.1. Characteristics of the dataset and distribution of experiments. 

Set Experiment Duration Conditions 

Training 
Bearing 1_1 (70% of 

acquisitions) 
28000 sec 

1800 Rpm 
4000 N 

Validation 
Bearing 1_1 (30% of 

acquisitions) 
28000 sec 

Test 

Bearing 1_4 14000 sec 

Bearing 1_5 24000 sec 

Bearing 1_6 24000 sec 

Bearing 1_7 22000 sec 

 
For training, 70% of the acquisitions from the Bearing 1_1 experiment are used, and to validate the model 

trained 30% of the acquisitions from the same experiment are used. For testing the methodology 4 different test 

sets are used, corresponding to test Bearing 1_4 to Bearing 1_7. It’s important to clarify that each acquisition 

of the bearing condition was measured every 10 seconds, so the number of acquisitions available for each set 

correspond to the duration of the experiment divided by 10. 

Each acquisition of the training set is characterized by an array of twelve time-domain statistical features: 

max. value, RMS, variance and kurtosis for both accelerometers (x and y axis) and temperature, then, each 

feature is normalized (standard deviation equals to one, and zero mean). 

At this point, a dataset of 12 features calculated is obtained from every acquisition of the training set. As 

considered in the proposed methodology, a feature selection step is applied. The Spearman’s correlation 

coefficient is calculated from the 12 features and the results are sorted to select the two features with the highest 

ranking. In this bearing degradation experiment, the RMS of the temperature with 𝜌𝑖= 0.91 and the RMS of the 

accelerometer in X axis with 𝜌𝑖= 0.86 are selected due to its monotonic behavior. As can be seen the coefficient 

is high (being 1 the highest value of the coefficient possible), which implies a strong monotonic relationship 

between the features and the time of the experiment. These two selected features will be used to train the 

model, validate it and test it with the different tests sets. Fig. 3.2.4 shows the training set represented by the 

two selected features. To include the time variable on the plot, each acquisition was labeled with a gray scale. 

As it was expected, it can be seen a strong monotonic behavior over the time of the experiment in both axis.  
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Fig. 3.2.4 Training set represented by the two features selected, with time variable included in a gray scale plot of the acquisitions just for 

visualization purposes. 

The OC-SVM is trained with this feature space. The kernel used is the Gaussian and the value of the 

configuration parameter will be tuned to minimize the error in the validation parting from σ=2, which is a value 

used in several applications. The objective is to train the OC-SVM with whole training set but center the 

Gaussian at the start of the acquisitions, so the classifier could be able to have resolution in the feature space 

containing all the degradation profile and have monotonic scores over the degradation. This can be done 

labeling as outliers part of the dataset. 

As it can be seen in Fig. 3.2.5, the classification score is presented in a contour plot, in which the value of 

the score in the feature space is shown in gray-scale.  

 

Fig. 3.2.5 Classification score over the feature space and acquisitions of the training set (half of the test is plotter white and the other black 

for visualization purposes). 

The lowest values correspond to the center of the Gaussian, which is placed at the start of the degradation 

profile (first acquisitions) and the classification score increases as the acquisitions are spreading over the 

feature space. This ensures that, if the test sets have different degradation profile (but still with monotonic 

properties on the features), the classifier will estimate the RUL. Notice that the classification score is scaled 

from 0 to 1 (as can be seen in the gray-scale values). The next step is to fit the classification scores with an 

isotonic regression and associate them with a RUL percentage, the result is shown in Fig. 3.2.6. 
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Fig. 3.2.6 Mapping classification scores into RUL percentages using isotonic regression. 

Training set was evaluated with the OC-SVM and each acquisition was designed a RUL percentage, 

assigning the first one 100% RUL and the last one of the test 0%, which correspond to what was previously 

defined as real RUL. As can be seen in the figure 6 around the score 0.4, the model will have trouble to estimate 

the RUL, because none of the feature selected presented a monotonic behavior on that part of the test, which 

correspond to 80% to 50% of the RUL. Once the fitted function is obtained, the model is validated using 30% of 

the training test. Results are shown in Fig. 3.2.7. 

 

Fig. 3.2.7 Comparison of the estimated RUL versus the real RUL of the validation test. 

As expected, an estimation error is obtained around 80% to 50% of the RUL, but in the other parts of the 

validation set the model had no trouble to estimate the RUL. These percentages are related to the stationary 

part of the test where the features calculated doesn't change, so it's not possible to accurately identify changes 

on this part of the degradation profile. The RMSE value is 5.99%. With the same trained OC-SVM and the fit 

function four different test sets were used. The result of the estimation of set Bearing 1_4 is shown in Fig. 3.2.8. 

 

Fig. 3.2.8 Comparison of the estimated RUL versus the real RUL of set Bearing1_4. 
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As we can see in figure 8, the estimation of the RUL presents some problems again around the same 

percentages of the RUL as in validation but still follows with reasonable approximation the real RUL. The error 

in this test is 8.45%. The error percentages of the validation and all the other sets are presented in Table 3.2.2. 

Table 3.2.2. RMSE Error percentages of the different experiments 

 Bearing 1_1 Bearing 1_4 Bearing 1_5 Bearing 1_6 Bearing 1_7 
RMSE 5.99% 8.45% 24.60% 11.23% 22.69% 

 
Taking into account that each test of bearing degradation is different, the proposed methodology is 

validated by accomplishing a significant generalization performance on the different test with reasonable error 

percentages. An improvement of the results would be achieved if features with higher Spearman's coefficient 

would be used. 

The methodology presented was limited to certain configuration, for example, the feature selection 

associated to the Spearman's coefficient and the features selected are limited to two. In order to enhance the 

validation of the methodology several test were performed with some variants, including using Principal 

Component Analysis (PCA), as a feature reduction technique and testing the methodology proposed but 

selecting three features instead of two. The results of adding a third feature to the methodology presented are 

shown in Table 3.2.3. 

Table 3.2.3. RMSE Error percentages of the different experiments using three features. 

 Bearing 1_1 Bearing 1_4 Bearing 1_5 Bearing 1_6 Bearing 1_7 

RMSE 6.33% 9.19% 22.25% 11.41% 22.42% 

 

The results in table III show that adding a third feature does not significally improve the estimation of the 

RUL. The reason is that the third feature added does not provide resolution in the percentages of the RUL 

estimation where the OC-SVM fails to estimate. 

The results of changing the feature reduction approach to PCA are shown in Table 3.2.4. 

Table 3.2.4. RMSE Error percentages using the PCA 

 

 

 

The results shown in table IV proves that using PCA as a reduction technique does not exploit the 

characteristics of the features that improve the estimation of the RUL for this methodology. 

 

Conclusions 

 

A methodology to estimate the RUL applied to bearing degradation has been presented. The proposed 

method is based on the detection of monotonic properties of features calculated of the bearing degradation 

profiles to make a selection of best features to characterize the phenomenon. Then, a OC-SVM is trained to 

learn the degradation profile and the output of this model is calibrated to directly estimate the RUL.  

Experiments performed with a dataset of bearing degradation indicate that the proposed strategy can 

estimate the RUL of the bearing with a reasonable error and with enough generalization to be applied to different 

 Bearing 1_1 Bearing 1_4 Bearing 1_5 Bearing 1_6 Bearing 1_7 

RMSE 19.03% 19.92% 28.23% 24.13% 19.93% 
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test sets with different degradation profiles. Also a comparison between another feature reduction technique 

and increasing the number of features selected were introduced to give more versatility to the study. It must be 

noticed that the performance of the proposed methodology will be directly related to the monotonic behavior of 

the selected features.  

 

 

 



Chapter 3: Novelty Detection 

Feature calculation and reduction for novelty detection in electromechanical systems 

 

 

   42 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

3.2.2  Multi-modal scheme for novelty detection 

The classical approach to perform novelty detection consist on calculating a set of features from the 

monitored machine and training a single model to assess the condition of the machine. While this approach is 

adequate in most of the cases, it is highly dependent on the quality of the features calculated from the monitored 

machine. The ideal scenario is to obtain a reduced set of features that properly reflect the condition of the 

machine by varying with enough resolution when the machine is working in abnormal conditions. Nevertheless, 

since the objective of novelty detection is to detect new scenarios in which there is no a priori information 

regarding the repercussion of the fault over the monitored signals, the delimitation of a reduced set of features 

that could include all the possible new scenarios results in a difficult task. This problem was initially handled by 

increasing the number of physical magnitudes monitored from the machine and also increasing the number of 

features calculated from them, therefore, different aspects of the machine are monitored and the capability to 

detect anomalies increased. However, a very high dimensional dataset with a reduced number of 

measurements due to the limitations of the application domain not only complicates the selection an appropriate 

configuration parameters of the model, but also could lead to an overfitted model producing a high number of 

false alarms. 

As a solution for this problem, a multi-modal scheme is proposed in order to increase the resolution of the 

novelty detection task without compromising the performance by avoiding overfitting. Fig. 3.2.9 shows a scheme 

of the proposed methodology, which includes the incursion of different set of features with a specialized model 

for each one. The first step is to process the data of the monitored machine to characterize the known operation 

conditions, then, instead of a single set of features, different sets are calculated from the processed data. By 

training a specialized novelty model for a specific set of features, the resolution of what can be monitored from 

the machine would increase without overfitting the models. The number of feature sets and novelty models 

represent a tradeoff between resolution in the analysis and complexity of the approach. 

 

Fig. 3.2.9 Proposed scheme for a multi-modal novelty detection approach. 

By having different sets of features, each model monitors different parts of the machine, therefore the 

detection of anomalies by each model is equally important. To handle the results of the novelty models, a novelty 

evaluation module is also included that provides the final assessment the condition of the machine. Since the 

anomalies are not necessary reflected in all the features, the machine can be considered working under a new 

scenario if at least one novelty model detects it. 

Case Study: Multi-modal scheme for Novelty Detection applied to a camshaft-based machine 

 

To validate the proposed scheme, the multi-modal novelty detection methodology is applied to monitor the 

condition of a camshaft-based machine. The high-speed ratios, the mechanisms time-overlapping and the 

smoothing inertia effect make such systems a challenging application field for classical approaches. The test 
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bench is composed by an induction motor connected to a reduction gearbox that rotates a camshaft to activate 

the mechanisms corresponding to the manufacturing process. The current signals from the induction motor are 

acquired to analyze the effects of the cam operations to the current. A more in-depth description of the camshaft-

based machine can be found in Annex III. The proposed methodology is shown in Fig. 3.2.10. 

 

Fig. 3.2.10 Proposed methodology for a multi-modal novelty detection approach. OC-SVM models are used to identify novel behavior of 

the machine, then their scores are evaluated to determinate if an alarm is activated to assess the process of the machine. 

The data processing step consist of obtaining a NTFM, from the signals measured from the motor current 

of the camshaft-based machine. The calculation of the NTFM is made by using the STFT, of the machine, but 

normalized in regard to the reference STFT (healthy state). Indeed, a NTFM calculated over a healthy condition 

will show values close to 0. Comparatively, a NTFM calculated over a novel condition will exhibit differences 

throughout the t-f representation. A more in-depth explanation regarding the signal data stage and the 

algorithms to calculate the NTFMs can be found in Annex III. 

The resulting frequency map will show an increment or decrement in those points in which the behavior of 

the analyzed signal differs from the reference. In order to improve the resolution of the analysis, the resulting 

NTFM is divided in N different regions considering both time and frequency axes. To facilitate the 

comprehension of the posterior analysis, each region is identified by a number from 1 to N. A large number of 

regions imply the processing of more information which complicates the structure of the approach, so the 

selection of N will be a trade-off between resolution in the analysis and complexity of the approach. After the 

data is processed and the NTFM are calculated and divided in regions, statistical features are calculated. In this 

case of study the RMS is used, due to the fact that the objective is to detect variation of energy in the regions.  

Once the features are calculated from each region, the novelty models, conformed in this case by OC-

SVM’s, are trained and validated with measurements of the normal operation of the machine. The input of the 

novelty models is the information of the features, and the output is a novelty score that determinates how 

different is the new scenario analyzed compared to the one which has been trained (the reference). Hence, a 

high novelty score implies that the new data differs in great scale from the trained one. 

To enhance the information obtained from the models about the behavior of the machine, a visual 

representation of the measurements in the feature space is desirable. Each model will be trained with two 

features, so a two dimensional representation will be obtained. This approach implies that the number of models 
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created will depend of the number of features. If one feature is obtained from each region, N/2 models will be 

trained. 

Once the models are trained, new acquisitions of the machine are obtained and evaluated to detect 

anomalies. In order to manage the resulting novelty scores of all the models an evaluation module is proposed. 

This module will assess if any of the models detects anomalies in their respective analysis of the regions. To 

perform this evaluation a novelty threshold is proposed, which in this case of study a constant value representing 

the boundary between the interpretation of normal and abnormal data is used. Thus, if the threshold is 

surpassed, the analyzed measurement is considered a novel behavior of the system. Initially, each model 

enclosures the trained data to create a description of the distribution, and defines a novelty score with a value 

less or equal than 0 to the data that lies in this description (the know behavior), and a value greater than 0 to 

data that lies outside of the description. This predefined threshold can be modified according to the application 

needs. A closed boundary may generate some false alarms but an open boundary may provide less resolution 

to the detection. In order to avoid false alarms, two premises are taken into account to detect an anomaly. The 

first one is that the novelty scores of any module surpasses the novelty threshold, the second one is that the 

threshold is surpassed in several consequent measurements (depending on the application). If both premises 

are accomplished, an alarm is activated, contrary, the measurement is discarded. 

It is important to mention that, due to the lack of information of the possible faults of the machine, this alarm 

is associated with the aid of an expert to monitor the performance of the machine. Two outcomes are possible 

after an expert assess the machine: first is that a fault is detected, the second is that the machine is operating 

normal and the evaluation is caused by a false alarm. Dealing with a false alarm, the threshold limit could be 

increased to provide more robustness, or the models could be re-trained to incorporate such information. If a 

fault is detected, the models are re-trained incorporating this information, the process of re-training of the models 

implies the use of a database where representative measurements of the operation modes of the machine are 

stored. If no abnormal behavior is detected the process restart with the acquisition of new data from the machine 

until an anomaly is detected. 

In order to validate the proposed methodology, three different experimental cases are considered in this 

study: a healthy or normal condition, and two faulty conditions by inducing effort disturbances. The first fault 

condition, F1, involves the decrease of 25% of the effort pattern related with the first cam, C1, through the 

adjustment of the thumbscrew related to the load grip by means of a dynamometric key. The second fault 

condition, F2, includes a decrease of 25% of the effort pattern related to both of the cams, C1 and C2, also by 

the adjustment of the thumbscrew related to the load grip. It must be taken into account that the induced fault 

scenarios correspond to common degradation patterns due to the continuous machine operation. Thus, 

although the effort disturbances induced by the fault conditions can be considered incipient deviations, it is 

expected to extract by the proposed methodology the corresponding affectation over the motor stator current. 

From each of the considered scenarios, 30 camshaft revolutions were acquired, considering both currents and 

encoder. 

 

Signal processing and feature calculation 

 

As it has been explained, the computation of the NTFM under healthy conditions is performed first, which will 

be further used for the calculation of the NTFM of new samples when monitoring the machine. Since the 
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mechanical failures that are desired to be detected are related with the rotating speed of the shaft, only the low 

frequency band of the spectrum has been analyzed. This band goes for 0 to 60 Hz for the speed of 30 cycles 

per minute. It should be noticed that the temporal axis have been substituted with the associated rotatory 

position in degrees, from 0 to 360º. 

Once the reference maps are obtained, the NTFM is computed over new measurements, and it will be divided 

in N regions. For this application, 8 rectangular uniform regions have been created, fixing with it a temporal 

resolution of 90 º and a spectral resolution equal to half the bandwidth of the signal. As an example, the NTFM 

of the system working with a fault scenario, the vertical sealing cam disconnected, FMC, is shown in Fig. 3.2.11. 

It can be appreciated that there is a generalized loss of spectral energy in regions 2 and 6, but the loss of energy 

in these regions does not ensures that when different faults appear they will be reflected in the same regions. 

Then, the RMS is calculated from each region. This procedure is repeated during the assessment of a new 

measurement. 

 

Fig. 3.2.11. Resulting NTFM segmented in 8 regions. a) F1 b) F2  

Since the NTFM is divided in eight regions, four OC-SVM models are trained, each one is responsible to 

monitor 2 regions. Each pair of regions is associated to 90° of the rotation of the camshaft, this mean that the 

first model, OC-SVM1, will be trained with the features from region 1 and 5, the second model, OC-SVM2, with 

features from region 2 and 6, the third model, OC-SVM3, with features from 3 and 7 and, finally, the fourth 

model, OC-SVM4, with features from region 4 and 8. 

 

Novelty detection results 

 

First, the OC-SVM models will be trained with normal operation data; 20 acquisitions of cycles of 

the machine have been used to train the models, and 10 additional measurements to validate the 

models. The kernel used is the Gaussian with σ=2, which is a value used in several applications. This 

kernel allows a coherent assumption with the physical phenomena, decreasing the novelty score as 

a Gaussian distribution. The novelty threshold (which is classically set to 0), will be heuristically 

selected and configured in the corresponding module according to a percentage providing more 

robustness to the methodology, in this case of study a value of 0.1 has been selected. 

The resulting OC-SVM1 training is shown in Fig. 3.2.12. The points in the figure represent several 

cycles of the camshaft used to train the module. As can be seen in the figure, all the information 
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concerning normal operation is concentrated near zero values, due to the NTFM; the same 

concentration is presented in the rest of OC-SVM models. The dotted line represents the novelty 

threshold value, all data lying inside the boundaries of the line is considered normal. The contour plot 

represent the novelty score evaluation over different regions of the feature map. This evaluation 

showed in the contour has a Gaussian shape due to the kernel selected, and the novelty data lies in 

the center of the Gaussian distribution. 

 

Fig. 3.2.12. Novelty detection boundary for regions 1 and 5, where* are the measurements of each cycle and – is the limit of the novelty 

threshold. 

 

Fig. 3.2.13. Novelty detection boundary for a) OC-SVM1 b) OC-SVM2 c) OC-SVM3 d) OC-SVM4 

In case of a novel scenario, the measurements will be directly reflected in the novelty detection map. The 

F1 scenario has been induced to test the performance of the models. For this case, 30 cycles has been used, 



Chapter 3: Novelty Detection 

Feature calculation and reduction for novelty detection in electromechanical systems 

 

 

   47 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

and the novelty scores were evaluated to determine if all the acquisitions were detected as novelty. The result 

is presented in Fig. 3.2.13 for all four OC-SVM models. 

As can be seen in this case, all acquisitions of the fault case are placed outside the novelty boundary, so 

the abnormal behavior is detected by all models; this means that this fault has impact around all the rotation of 

the camshaft. Following the methodology an alarm is activated and the novelty condition should be analyzed. 

A certain number of measurements (30 cycles), should be stored in order to allow the learning by the novelty 

model. The result of incorporating this fault to the known data distribution is shown in Fig. 3.2.14. Only one 

module is presented since the graphical result is similar in all four OC-SVM models. 

 

Fig. 3.2.14. Novelty boundaries of OC-SVM1 after learning F1 

As can be seen in Fig. 3.2.14, the introduction of new data implies a modification of the novelty scores 

distribution. The Gaussian evaluation formed previously with one lobe, now has two lobes that enclose the 

zones where the new data distribution is concentrated. The novelty threshold is present in the two data 

distributions to delimit the new boundaries. An example of the 3D representation of the space partition of the 

model is shown in Fig. 3.2.15. 

 

Fig. 3.2.15. Novelty scores evaluation over the feature space. Space over the threshold limit is considered normal and space above is 

considered novelty 
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It can be appreciated in Fig. 3.2.15 that the model evaluates the RMS of region 1 and 5 to compute a 

novelty score in which the peaks with values over the novelty threshold delimits the normal distribution and all 

the space under the threshold is represented as novelty.  

A second novel condition has been introduced, this time F2. As can be seen in Fig. 3.2.16, this fault can 

be detected only in models OC-SVM1 and OC-SVM2, this means that the fault has more impact on the regions 

corresponding from 0° to 180° of the rotating cycle of the camshaft. 

This is an example of the restrictions of the framework of novelty detection, when dealing with unknown 

sources of faults in a machine is difficult to limit the information sources, because it will lose resolution to detect 

possible faults. If all the regions are not taken into account, or a lower resolution would be used (i.e. 4 regions 

instead of 8), this novel scenario would not be detected. 

 

Fig. 3.2.16. Novelty boundaries after learning F1 scenario and testing the F2 scenario a) OC-SVM1 b) OC-SVM2 c) OC-SVM3 d) OC-SVM4 

The procedure repeats activating an alarm, storing the data to characterize the fault and calibrating the 

models, Fig. 3.2.17 shows the model OC-SVM1 after the learning of the new scenario; the other modules 

presents similar results. This time the novelty models did not incorporate a new lobe on the feature space, but 

enhanced the lobe that was next to the fault data.  
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Fig. 3.2.17. Novelty boundaries of OC-SVM1 after learning F2 

All the faults have been detected and learned successfully with this approach. Due to the fact that this is 

an expert-aid novelty detection approach, still 2-D representations are needed to have a better understanding 

of the behavior of the machine during abnormal events over all regions. 

 

Conclusions 

 

The proposed methodology in this section introduces a multi-modal novelty detection approach applied to 

an industrial camshaft using phase current information from the main motor. Two fault scenarios have been 

introduced to test the response of the models under abnormal behaviors. 

The normalized time-frequency maps used to calculate the features presented high capabilities in order to 

identify the presence of deviations from the healthy behavior of the system in terms of motor currents and 

improved the performance of the models.  

The novelty detection approach successfully identified both faulty scenarios and the models incorporated 

the information to avoid generating alarms when similar behavior is detected.  
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3.2.3  Reformulation of features for novelty detection each time a new scenario is 

incorporated 

Most of the methodologies for novelty detection are limited to a static analysis and the incorporation of the 

novel information to the novelty detection system is not usually considered. An approach to include adaptability 

to the novelty framework, based on vibrations, is proposed in [59]. The proposed monitoring scheme include 

testing data on the boundary of the novelty model, based on Support Vector Data Description, and retrain the 

model with this information to gain robustness. Nevertheless, this approach does not take into consideration the 

possibility to include novel scenarios during the monitored process.  

Other approaches to develop an adapting condition monitoring scheme were presented by D. Filev et al. 

[50] where a practical framework for autonomous monitoring of industrial equipment based on novelty detection 

is analyzed; and by B. Costa et al. [53], where a two-stage algorithm for real-time fault detection and identification 

is presented. Both approaches provide the opportunity to incorporate novel detected faults to the monitoring 

system, nevertheless, in both methods the incorporation is limited to update the known data base, but an 

adaptation of the numerical features analyzed is not considered.  

The performance of a novelty detection system is highly dependent on the numerical features considered. 

When there is no previous information of the possible faults that can occur, the application of a suitable numerical 

features analysis strategy represents a critical challenge [23]. Considering a continuous monitoring framework 

where the initial information available is the healthy operating condition and, later on, different faults are identified 

progressively when the machine condition deteriorates, all the approaches previously discussed do not modify 

the initial set of features when new information of faults is incorporated. This static approach have the advantage 

of providing a most adequate situation for on-line adaptation, nevertheless, analyzing the information of the faults 

detected during the monitoring process could improve the identification of a most adequate set of features to 

discriminate the possible upcoming or already detected fault scenarios. 

Given that the data initially available is usually related to the healthy condition of the machine under analysis, 

condition-based monitoring schemes must be designed to overcome two main challenges: 

(i) The identification of significant features to deal with the characterization of the known conditions of the 

machine, under the consideration that the occurrence of additional unknown faults must be detected. 

(ii) The adaptation of the condition-based monitoring scheme to update the considered data base of the 

machine, once unknown fault scenarios have been detected. 

Such requirements are addressed in the proposed novelty detection methodology shown in Fig. 3.2.18. 

This methodology represents an important step to the introduction of adaptive novelty detection schemes to the 

development of electromechanical system diagnosis procedures. 

 

Fig. 3.2.18 Proposed scheme for a multi-modal novelty detection approach. 
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The contribution of this study is to provide a methodology for novelty detection where the information of 

identified faults during the monitoring process is exploited to improve the novelty detection task. This is performed 

by a reformulation of features whenever a new scenario is incorporated to the novelty detection model. 

Two new concepts are incorporated in this new methodology in comparison to classical approaches, first, 

the reformulation of the feature reduction module, second, the incorporation of new scenarios to the novelty 

model. Taking in consideration that the information initially available consist only on the healthy condition, the 

feature reduction module, is initially performed by unsupervised approaches; yet, once the information of a fault 

is available, the feature reduction module could improve its performance by employing supervised methods. 

The unsupervised approach is replaced by a supervised approach in this methodology to search for a possible 

discriminative feature space to increase the detection of novel scenarios. 

 

Case Study: Vibration-based adaptive novelty detection method for monitoring faults in a 

kinematic chain 

 

The proposed method is composed by two stages: an offline stage and an online monitoring stage. The 

main objectives of the offline stage are, first, the analysis of the information available of the monitored machine 

to find a reduced set of numerical features to characterize the known machine conditions and, second, the 

design of the novelty model by means of the selection of the configuration parameters and training. The 

proposed novelty detection methodology shown in Fig. 3.2.19. 

 

Fig. 3.2.19 Proposed methodology for the novelty detection approach. The monitoring method is composed by an offline stage for 

initialization and retraining, and an online stage for continuous monitoring. 

Once a reduced set of characteristic features is obtained and the novelty model is designed, the online 

stage is carried out. During the online stage, new measurements are continuously compared with the normality 

threshold, Tn, defined during the novelty model training in the offline stage. Thus, if a novel scenario is detected, 

the supervision of an expert user is proposed in order to confirm and label the new condition of the machine; 

consequently the monitoring system is retrained to include the characteristics of the novel scenario. Detailed 

information of each stage and the retraining process is described in the following subsections. 

Offline Stage Description 

 

During the initialization, it is assumed that only information of the machine operating under healthy 

condition is available in the database. The first step is the calculation of numerical features from the vibration 
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measurements obtained during the machine operation. Since the information of the possible faults of the 

monitored machine is not available yet during this initialization, a generic set of statistical time-based numerical 

features is proposed to be extracted from each available vibration axis measurement. The proposed set of 

potential features are the Root mean square, the crest factor, the shape factor, the kurtosis and skewness. The 

formulas to obtain such features can be consulted in Table 2.1.1 in Chapter 2. These features have been 

successfully employed for fault detection on the last years [1], [5]. 

The resulting number of numerical features is proportional to the number of available vibration axis 

collected during the acquisition. However, in order to allow the compression and visualization of the data, a 

feature reduction module is implemented. During such offline stage initialization, an unsupervised feature 

reduction approach must be used, a Laplacian Score Ranking is proposed in this work as a good trade-off 

between simplicity and performance [35], to rank the features according the topology preservation capabilities. 

The two or three first ranked features in terms of Laplacian score are selected.  

Next, the novelty model is designed. There is a significant number of novelty models proposed on the 

literature [23], each one demonstrated to be a capable option under certain circumstances. An increasing 

amount of works imply that domain based novelty detection models present promising results [25], [53]. In this 

work a standard OC-SVM with Gaussian kernel is used. The design of the novelty model includes the selection 

of the parameters for configuration, and training employing the known scenarios stored at the database. Then, 

the initialization of the offline stage finalizes with the design of the OC-SVM. 

Online Stage Description 

 

This stage continuously monitors the condition of the machine to detect if an anomaly is present. To 

accomplish this, new measurements of the machine are acquired each certain amount of predefined time. Each 

measurement is segmented and a set of features is calculated from each segment. The set of numerical features 

calculated on this stage are reduced in the offline stage by means of Laplacian Score.  

Thus, each new measurement characterized by the numerical features is analyzed by the novelty model. 

In case of no novelty detection, it is assumed that the machine is working under known conditions. However, if 

the analyzed measurement is detected as a novelty, an alarm is triggered in order to consider the user 

assessment. Then, if the occurrence of a new scenario is confirmed the corresponding measurements are 

stored at the database and a retraining procedure is performed. 

Retraining Description 

Once the retraining is trigged, the feature reduction and the novelty model design modules are modified at 

the offline stage. A diagram of the retraining procedure is presented in Fig. 3.2.20.  



Chapter 3: Novelty Detection 

Feature calculation and reduction for novelty detection in electromechanical systems 

 

 

   53 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

 

Fig. 3.2.20 Proposed retraining approach. First, measurements characterizing the fault are stored, and then the feature reduction module 

and the novelty design module are modified to incorporate the new scenario encountered. 

It must be noticed that two important contributive aspects are proposed on this retraining approach, first, 

the reconsideration of the feature reduction module, second, the incorporation of fault scenarios to the novelty 

model. As it has been explained, the feature reduction module, during its initialization, is supported by an 

unsupervised Laplacian score ranking due to the lack of additional scenarios; yet, once the information of a fault 

is available, the feature reduction module could improve its performance by employing supervised methods. 

Then, the Laplacian approach is replaced by a Fisher Score ranking approach in this work, where the 

features are sorted according the Fisher coefficient calculated from each feature. It is important to mention that 

Laplacian Score can be configured to work also under a supervised framework and could obtain similar results 

than employing a Fisher approach, similarities between the two approaches are discussed in [35]. Nevertheless, 

Fisher Score is used on this methodology to search for a possible discriminative scenario to increase the 

detection of novel scenarios. A comparison of results obtained from both features reduction approaches are 

presented in the results of this work.  

The consideration of a faulty scenario in the novelty model may contradict the principle of anomaly 

detection, where the objective is to detect healthy behaviors from the rest. Nevertheless, the aim of an adaptive 

condition monitoring system should be to learn from all the identified conditions to subsequently detect them if 

they are presented again by a fault detection module. Indeed, some works present a parallel structure for fault 

detection and novelty detection modules [50], [53], where the novelty module learn the known faults along with 

the healthy operation because its objective is to detect only new scenarios, while the objective of the fault 

detection is to identify the condition of the machine, including known faults. This work is based on such parallel 

structure approach, where the fault scenarios must be taken into consideration to be included in the novelty 

model, and then they could be identified by a complementary fault detection module with a high confidence level 
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The test bench used for testing consist of a kinematic chain with different faults and the acquisition system 

used to capture the vibration signals. A more in-depth description of the kinematic chain test bench can be 

found in Annex I. 

Three scenarios are considered to verify the performance of the proposed method, the first one, H, is the 

kinematic chain working under healthy condition and the other two, F1 and F2, represent the kinematic chain 

working under faulty conditions. For F1 the motor is working with a half broken bar, and for F2 the motor is 

working with a fully-broken bar. 

The information stored from the kinematic chain consist of an acquisition of 60 seconds of the machine 

working under the three scenarios mentioned; each acquisition is segmented in 30 parts of 2 seconds and a set 

of features is calculated from the 30 segmented measurements. Since two axes are taken into consideration, a 

total of ten features are calculated from each segmented acquisition of the machine working under the different 

scenarios mentioned. The first step of the methodology is the offline stage, where a reduced set of features is 

obtained and the novelty model is designed.   

Regarding the Laplacian Score configuration, a simple approach is followed for parameter tuning, that is, 

a value of k=3 is used for constructing the adjacency graph and a “simple minded” weighting approach is 

followed. Since the proposed approach is be compared to different feature reduction modules, selecting generic 

parameters settings is useful for the purpose of evaluation, but ignores that there may be dependencies between 

the feature reduction model and the novelty model. Regarding the design of the novelty model, the kernel used 

is the Gaussian and the value of the configuration parameter is tuned to minimize the error in the validation. In 

all experiments 80% of the samples are used for training and 20% for validation. To train and adjust the 

parameter the novelty model a five-fold cross-validation is used.  

In order to highlight the contributions and motivation of this work, the outline of the results is presented as 

follows: first, a test is performed by a classical approach, then the proposed methodology is applied and the 

results are compared. The classical static approach imply conserving the reduced features set obtained at the 

offline initialization stage, meanwhile the proposed dynamic approach implies a possible reformulation of the 

reduced features set during the retraining stage. 

During the initialization stage, the reduced set of features selected by means of the Laplacian Score 

ranking is composed by the RMS of the Y axis and the Kurtosis of the Y axis. The OC-SVM model is trained 

employing healthy condition data. The resulting OC-SVM during training is shown in Fig. 3.2.21. The marks, *, 

in the figure, represent measurements of the machine used to train the model, on this case and on the 

subsequence figures only 1 fold of the five-fold cross validation is displayed. The dotted line represents the 

novelty threshold value, all data inside the boundaries of the dotted line is considered normal. The contour plot 

represents the novelty score evaluation over different regions of the feature map. 
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Fig. 3.2.21 Initial novelty model representation. Limit of the novelty threshold, --, and measurements used to train the model, *. 

Once the offline initialization stage is finished, the online stage follows, that is, new measurements are 

obtained to assess the condition of the monitored machine. To give robustness to the novelty detection and 

avoid false alarms, a batch consisting of 30 measurements are evaluated, if 75% of the analyzed measurements 

are evaluated as novelty then the alarm is triggered. Next, the F1 scenario is presented to test the performance 

of the model. The plot of the scenario and the novelty threshold obtained during training is presented in Fig. 

3.2.22.  

 

Fig. 3.2.22 Evaluation of the fault scenario F1. The novelty model is trained employing data from healthy operation condition. 

As can be appreciated, the new scenario lays outside the novelty threshold so it is successfully detected 

as novelty. Once a novel scenario is detected and identified as a fault by the user, it is incorporated to the 

database to consider it as part of the known scenarios and the novelty model is retrained, without changing the 

features, to include this information. Fig.3.2.23 shows the feature space after the novelty model is trained using 

Healthy and F1 data as part of the known scenarios. 
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Fig. 3.2.23 Contour plot of the novelty model after including F1. 

Once the model is re-trained, the third scenario, F2, is introduced. The visual representation of the test is 

presented in Fig. 3.2.24, this scenario is not detected as novel because only 50% of the measurements are 

labeled as novel by the model. 

 

Fig. 3.2.24 Evaluation of the fault scenario F2. The novelty model is trained employing data from healthy and F1 scenarios. 

A similar result is obtained when the novelty model is trained using Healthy and F2 data and is tested with 

data of F1. A summary of the results of novelty detection maintaining the same features obtained during 

initialization is shown in Table 3.2.6. 

 

Table 3.2.5. Performance of the novelty detection using only healthy class data to reduce the number of features, where D.R. stands for 
dimensionality reduction. Different scenarios are included according the information available to train and test the novelty model. 

                  

D. R. Performance Using OC-SVM (%) 

Known Test  Known Test  Known Test 

H F1 + F2  H + F1 F2  H + F2 F1 

LS 95.4 ( ± 1.1)  57.6 ( ± 6.7)  43.5 ( ± 6.4) 
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As it can be seen in Table 3.2.6, using the reduced set obtained during initialization is easy to detect the 

novel scenarios when there is only information of the healthy condition, but when a novel scenario is included 

in the database and the novelty model is retrained, the reduced set of features initially obtained does not 

necessarily provide a good representation to detect a new scenario during test.  

To improve these results, the methodology presented on this work proposes to evaluate again the feature 

reduction module each time a retraining is applied. Following the outline presented for results and parting from 

the first retrain where the scenario F1 is included in the database, the feature reduction module is applied again 

but this time including information from Healthy condition and F1 scenario. Since two scenarios are taken into 

consideration and the labels are known, a supervised approach can be applied, in this case a Fisher Score 

ranking for feature reduction is employed.  The novelty model using the initial set of features and the novelty 

model after retraining with the new reduced set of features are shown in Fig. 3.2.25.  

 

Fig. 3.2.25 Process of evaluation and retraining employing the methodology proposed. (a) Evaluation of the fault scenario F1. (b) Retraining 

of the novelty model and reformulation of the reduced set of features including F1. (c) Evaluation of the fault scenario F2. (d) Retraining of 

the novelty model and reformulation of the reduced set of features including F2. 

The new reduced set of features is composed by the RMS of the Y axis and the Kurtosis of the Z axis, as 

can be appreciated, the new set of features present a more discriminative distribution of the three scenarios 

considered. At the last step, Fig. 3.2.25 (d), when F2 scenario is included, the Fisher Score still ranked the same 

features of the last retraining, Fig. 3.2.25 (b), as the highest; yet, it would be possible that a different set of 

features would be obtained. The results obtained demonstrates the advantages of including the Fisher Score 

reduction module to the retraining procedure, the new distribution of the scenarios avoided an overlapping of 

the new scenario under test, therefore the novelty model successfully detected as novelty all measurements 

corresponding to the F2 scenario. 
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It is worth mentioning that if initially the scenario F2 is used for training and the scenario F1 is used for 

testing, the new set of features obtained could be different than the aforementioned. The results achieved from 

both scenarios are shown in Table 3.2.7, which also includes a comparative of the results obtained employing 

PCA, LDA and Laplacian Score dimensionality reduction techniques on the retraining step instead of the Fisher 

Score proposed. 

Table 3.2.6. Performance of the novelty detection employing a reduction of features during retraining. Different scenarios are included 
according the information available to train and test the novelty model. 

      

 

D. R. 

Performance Using OC-SVM (%) 

Known Test  Known Test 

H + F1 F2  H + F2 F1 

PCA 59.0 ( ± 5.2)  64.2 ( ± 5.1) 

LDA 47.4 ( ± 6.1)  51.2 ( ± 6.1) 

LS 84.3 ( ± 2.4)  100 ( ± 0.0) 

Fisher  S. 100 ( ± 0.0)  100 ( ± 0.0) 

 

Regarding the classical feature extraction techniques, PCA and LDA, the test scenario is not identified as 

novel in both cases. The Fisher Score and the Laplacian Score successfully identified the new scenarios as 

novel since the percentage obtained in both cases is higher than the 75% predefined threshold in the 

methodology to activate the alarm. Both techniques achieved high scores, but still the Fisher Score provided a 

more appropriate selection of features.  

As mentioned in Section II, LDA is a feature extraction technique based on the Fisher discriminant 

coefficient, so similar results between Fisher Score ranking and LDA are expected; however, employing Fisher 

Score ranking score achieved a better result; this can be caused because the test consist of novel scenarios 

and LDA finds the directions on the feature space specialized for the two supervised scenarios employed during 

training, meanwhile Fisher Score ranking provides a more general approach by selecting features.  

To test the robustness of the Laplacian Score and Fisher Score approaches, a comparative test is 

performed where the set of features is increased from 10 to 15 and varying the number of reduced features 

selected. The five features included to the original set are obtained from the axis X of the accelerometer 

monitored, where the features calculated are presented on Table 3.2.8; these features were discarded initially 

because they are not part of the perpendicular plane of the motor and does not contribute significantly to the 

monitoring, in fact it could affect the performance of the feature reduction and novelty detection modules. The 

results are presented in Table 4. 

 

Table 3.2.7. Performance of the novelty detection increasing the number of initial features from 10 to 15 and varying the number of the 
reduced set of features. 

 

 

D.R. 
Performance varying the number of features reduced (%) 

 2 3 4 

LS 59.0 ( ± 4.1) 64.3 ( ± 3.3) 88.6 ( ± 2.5) 

Fisher S. 100 ( ± 0.0) 100 ( ± 0.0) 100 ( ± 0.0) 
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The features obtained from the Fisher Score still present a better distribution to detect the new scenarios. 

The Laplacian Score performance is affected when irrelevant features are included on the feature set but 

increases when more dimensions are taken into consideration. Since the objective of the Fisher Score is not 

topology preservation, contrary to LS, it is capable of discarding all the irrelevant features that were included 

and the performance is not affected. 

 

Conclusions 

 

The methodology is based on the acquisition of vibration signals that are generated in the kinematic chain; 

along with an adequate signal processing to extract features to characterize the components, and an adaptive 

novelty detection model to detect anomalies. The method is composed by two sequential stages, an offline 

stage to initialize and retrain the modules, and an online stage to continuously assess the condition of the 

machine. During initialization the model is trained employing only information from the machine working under 

healthy condition and two additional faulty scenarios are introduced to test the performance of the method under 

unknown operations.  

The adaptive novelty detection approach successfully detected both novel scenarios and the model 

incorporated the information to avoid generating alarms if the same fault is detected. A comparison between 

the proposed method and classical dimensionality reduction approaches highlights the limitations of maintaining 

a static set of features during monitoring, instead of reformulating the feature reduction module once new 

information is available. 

On this particular study, employing features reduced by Laplacian Score and Fisher Score obtained similar 

results; nevertheless, it does not imply that a similar outcome will be present during the analysis of other faults. 

Fisher Score is encouraged to be employed on this methodology rather than maintaining the Laplacian Score 

approach due to the similarity between the method objective and the objective function of Fisher Score, on both 

the ideal case is to find the features to maximize the distance between scenarios while maintaining compact 

clusters. A specific comparative of performance between LS and Fisher Score was also included, in which the 

Fisher Score obtained better results when irrelevant features are included to the original set of features and 

when the dimensionality of the reduced set is increased; this highlights the advantages and robustness of the 

feature selection approach by Fisher Score compared to the LS. 
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3.3  Conclusions and discussion 

In this chapter the limitations regarding the application of novelty detection to electromechanical systems 

are analyzed. A first analysis regarding the limitations of novelty detection in a continuous degradation 

environment, which is performed via the implementation of novelty detection algorithms to a run to failure 

experiment is performed. 

Several RUL estimation methodologies have been presented previously achieving good results, but still 

some drawbacks are detected, some of the methodologies doesn’t make a proper selection of features to ease 

the estimation but just a general reduction, others over fit the method to certain profile and fail to estimate the 

RUL of different sets with different patterns or they depend of complex models that makes them difficult to 

implement on practical applications. The methodology presented in this paper tries to close the gap on these 

drawbacks detected by introducing a proper feature reduction for this case, the use of OC-SVM, which would 

be easy to implement, to generalize the RUL estimation in the feature space and an isotonic fit to improve the 

estimation. An important drawback of this method would be the monotonic properties of the features, if they 

don’t present that property the RUL estimation would tend to fail, but taking into account the phenomenon of 

degradation this property is expected to occur, if it’s difficult to detect, then new features should be calculated 

to identify this property. This method can be applied on other components, other than bearings, but, in case of 

other components degradation, an assessment of the monotonic properties of the features will determinate the 

performance of the methodology. 

Some conclusions can be drawn from the analysis performed. The performance of the novelty detection 

model is heavily influenced by the features used to characterize the monitored component. Improving the feature 

calculation and feature reduction stage the false alarm rate would decrease. Nevertheless, part of the false 

alarms are caused by the intrinsic variability of the physical magnitudes acquired, causing an uncertain zone 

regarding the condition of the monitored component. By identifying and characterizing this uncertain zone the 

false alarm rate would also decrease and the robustness of the novelty detection task would increase. 

These conclusions lead to the development of the subsequent methodologies to improve the reliability and 

robustness of the novelty detection task. Indeed, two methodologies that improve the feature calculation and 

feature reduction stages are proposed in this chapter, but the characterization of the uncertain zone is further 

addressed in chapter 5. 

Regarding the improvement of the feature calculation and reduction stage, the first methodology proposed 

consist of a multi-modal scheme. The objective of this methodology is to improve the resolution of the feature 

calculation and reduction stage without compromising the performance of the novelty detection models. Taking 

into account the number of measurements available to characterize a scenario are limited, the increment of 

features analyzed by the models complicate the training stage and the selection of the configuration parameters. 

However, by dividing the monitoring task in different segments or parts, (in this case study the rotation angle of 

the camshaft) it is possible to increase the resolution and detect new scenarios without compromising the 

performance of the models. 

The second methodology proposed consist on the reformulation of the features analyzed each time a new 

scenario is incorporated to the base knowledge. Taking in consideration that the information initially available 

consist only on the healthy condition and the novelty detection model is selected beforehand, the feature 
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reduction module, is initially performed by unsupervised approaches. Once the information of a fault is available, 

the feature reduction module could improve its performance by employing supervised methods. In this case 

study, a Laplacian Score Ranking is proposed as an initial unsupervised feature reduction approach since it 

provides a good trade-off between simplicity and performance. Then, the Laplacian approach is replaced by a 

Fisher Score ranking approach in this work, where the features are sorted according the Fisher coefficient 

calculated from each feature to search for a possible discriminative feature space to increase the detection of 

novel scenarios.  

It can be concluded that, under the restrictions of a low number of measurements per scenario and a 

selected novelty model, the performance of the novelty could be improved if a reformulation of features is 

performed. It is important to notice the limitation that implies the development of the feature calculation and 

reduction when there is no information of the possible faults that could occur to the monitored asset. This is 

specially critic in electromechanical systems, where the effects of degradation for different faults could not be 

detected with the same accuracy in the initial feature space proposed. Indeed, in the performed analysis, the 

identification of the broken bars faults was performed with higher accuracy by selecting the features that allows 

a better characterization of the monitored fault. 

From an industrial perspective, the proposed method can be extended and improved for further 

development, this improvement could include a diagnosis method to not only detect anomalies on the kinematic 

chain, but to identify the fault causing the abnormal behavior.  
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4. 
Fault Detection and Identification Systems 

 

The incursion of novelty detection to the CBM program represent the first step to reach the industry 

demands. In this regard, this chapter presents the contributions to increase the reliability and robustness of the 

FDI systems by specific methodologies based on an adequate selection and reduction of features for each task.  

 

CONTENTS: 

4.1 Introduction 

4.2 Sequential FDI system with separated stages for novelty detection and fault diagnosis  

4.3 Conclusions and discussion 
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4. Fault Detection and Identification Systems 

4.1  Introduction 

In the last years, the industry applications are demanding solutions capable to provide a fast intervention 

in fault situations, and optimal maintenance scheduling. In order to successfully develop and implement systems 

with such capabilities, the methodologies applied must be able to identify novel operating scenarios (novelty 

detection), while continue the identification of the known fault conditions previously available (fault diagnosis). 

In pattern recognition and machine learning framework, this kind of scenario is known as open set recognition 

problem [54], where only a set of known classes are contained in the initial dataset during the training stage, 

and, then, novel (unknown), classes may appear during testing stage. In this regard, the integration of novelty 

detection strategies to fault diagnosis methodologies is the first step to develop a condition monitoring system 

capable to deal with the open set recognition problem. A great deal of scientific effort is being focused on the 

study of such approaches [25], [53], [82]. 

As mentioned in the presentation of the state of the art, the classical approach to deal with such open set 

problems consists on one-class classifiers [55], where one one-class classifier is considered for each class [56], 

[57], [33], [58]. Thus, each new measurement from the system under monitoring is analyzed by the one-class 

classifiers set. If the measurement fits into more than one class, post-processing schemes based on similarity 

analysis are typically used to assign the definitive class. If the measure does not fit into any of the available 

classifiers, the measure is considered novelty. 

Other studies have approached the open set problem by a separate analysis of fault diagnosis and novelty 

detection [24], [51], [53], [83]. Fault diagnosis and novelty detection algorithms are trained with the same 

available data set; however, the resulting models have different targets. Thus, each new measurement from the 

system under monitoring is analyzed first by the novelty detection algorithm. If the measure fits in the model of 

data knowledge, the measure is then assessed by the classification algorithm.  

As concluded by the analysis on the previous chapter, the performance of the novelty detection models 

are strictly dependent of the quality of the features calculated, if the features analyzed are not representative 

enough to characterize the machine, any novelty detection model will not be able to detect the new scenarios. 

In this sense, the study and proposal of a suitable feature calculation and reduction stages specifically designed 

for the novelty detection task appears to be a coherent solution to obtain high reliability and robustness. 

Therefore, in this chapter, a study of the feature calculation strategies independently for novelty detection and 

fault diagnosis is performed to propose a series of contributions to increase the robustness and reliability of the 

novelty detection and fault diagnosis task separately. 
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4.2  Sequential FDI system with separated stages for novelty detection 

and fault diagnosis 

An initial approach to provide detection capabilities in front of not previously considered faults was proposed 

by Grbovic et al. in 2013 [84], by means of a combination of novelty detection and fault diagnosis models. Indeed, 

the use of novelty detection models, and a classification (or supervised) models, to deal with the lack of 

information during training is being currently used in data stream analysis application field [62]. Nevertheless, 

such methods need a proper adaptation to cope with the challenges presented in an industrial electromechanical 

system, such as the need of a proper signal processing stage to highlight the faults and considerable lower ratios 

of available data.  

As mentioned before, other studies have approached the open set problem by a separate analysis of fault 

diagnosis and novelty detection [24], [51], [53], [83], nevertheless, such FDI methodologies deal with their own 

limitations of their application domain that differ from the ones presented in the electromechanical systems. 

Furthermore, such approaches does not consider a specialized and separated stages of feature calculation and 

feature reduction for the novelty detection and fault diagnosis tasks.  

In this sense, a FDI system with a specialized feature reduction stage for novelty detection and fault 

diagnosis is proposed in this chapter. Fig. 4.2.1 shows a scheme of the proposed methodology. 

 

 

Fig. 4.2.1 Proposed methodology for a sequential FDI system with separated stages for novelty detection and fault diagnosis 

The proposed scheme begins with the traditional data processing and feature calculation stages to 

characterize the monitored machine. As concluded in the previous chapter, increasing the number of features 

observed from the monitored machine could increase the capacity of the models to detect anomalies or 

discriminate between faults, nevertheless, in this application domain, generally, the number of measurements 

available per scenario is limited, therefore, a high number of features per model could compromise the 

performance of the models. In order to exploit the potentiality of a separate fault diagnosis and novelty detection 

stages under this restrictions, two different feature reduction approaches are applied over the features sets. 

As mentioned before, feature reduction approaches that consider the topology preservation (Laplacian 

score, self-organizing maps, etc.), or variance maximization (principal component analysis), of the analyzed 

features are recommended for novelty detection, due to their capacity to consider a more general perspective 

of the characterized machine. Meanwhile for fault diagnosis, discriminative feature reduction approaches 

(Fisher coefficient ranking, linear discriminant analysis, etc.), are recommended to maximize the distance of the 

known scenarios.  

It is important to stress that this methodology works under the premise that the healthy condition and 

several fault conditions are initially available, therefore there is no need to include new scenarios. 
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To analyze a measurement, the corresponding reduced set of features is first examined by a novelty 

detection model. Then, the measurement can be cataloged as novel or known. If the measurement is catalogued 

as novel, the machine is considered to be working under unknown conditions. This can be triggered by different 

scenarios, including outliers, the presence of a new fault or by a new operation condition of the machine. If the 

measurement is catalogued as known, it means that the machine is working under a previously known scenario, 

which can be healthy or faulty. To discern between the known scenarios, the measurement is analyzed by a 

fault diagnosis model. The output of the model is a label that identifies the analyzed measurement as one of 

the considered classes. 

 

Case Study: Sequential FDI system applied to an EOL test machine of the automotive sector 

 

To validate the proposed scheme, the FDI methodology by means of separated stages of feature reduction 

for novelty detection and fault diagnosis is applied to monitor the condition of an EOL friction test machine over 

the manufactured parts, a steering system in this case study. Note that the machine applies its own algorithm 

to determine the condition of the steering system under test but the aim of the methodology is to monitor the 

proper function of the EOL test machine. A more in-depth description of the EOL test machine and the friction 

test can be found in Annex IV. The proposed methodology is shown in Fig. 4.2.2. 

 

 

Fig. 4.2.2 Proposed methodology for the EOL test machine. The monitoring method is composed by a signal processing stage where 

statistical features are calculated and analyzed by a novelty detection and a multi-fault classification models to assess the operating scenario 

of the machine. 

In this case study, the torque signal analysis is carried out during a stationary speed set point, 

corresponding to a 360º clock-wise turn of the steering system. It is expected, a priori, due to the mechanical 

nature of the possible malfunctions and anomalies, that these could be reflected in the torque signal during 

segments of the revolution of the steering system, therefore, the segmentation of such signal is proposed as a 

viable strategy to gain resolution during the characterization. Thus, the available four seconds torque signal is 

segmented in four parts of 1 second. The number of segments chosen represents a tradeoff between resolution 

and total number of features. That is, a larger number of segmentations increases the resolution but also 

increases the number of features, and could lead to overfitted models, meanwhile choosing a lower number of 

segments could not provide enough resolution to detect deviations from the healthy operation. The torque signal 

and the segmentation is presented in Fig. 4.2.3. 
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Fig. 4.2.3 Torque signal analyzed a) Stationary part of the torque signal b) Segmentation proposed for this study 

 

A set of five statistical time-domain features are calculated from each segment of the torque signal which 

consist of the Root mean square, the crest factor, the shape factor, the kurtosis and skewness. The formulas to 

obtain such features can be consulted in Table 2.1.1 in Chapter 2. These features have been successfully 

employed in different studies for electromechanical systems fault detection [18]. Therefore, a total of 20 features 

are calculated from each torque signal measurement.  

Regarding the feature reduction stages, for the novelty detection module, the PCA is proposed to extract 

a reduced set of features that maximize the variance of the dataset. The extracted features could highlight the 

appearance of outliers and novel operating scenarios. Regarding the fault diagnosis module, LDA is proposed 

to extract a reduced set of features that maximize the margin between classes and minimize the scatter within 

classes. That is, the extracted features will lead to a distribution of the data that improves the classification task. 

The number of reduced features selected of each method vary depending on the information retain, in the case 

of PCA, and the discrimination capacities for the LDA. 

After the corresponding feature reduction, the novelty model and the multi-fault classification algorithms 

are trained using the healthy data and the faulty scenarios. That is, both models are trained with the same 

scenarios, however, the labels used for novelty detection and multi-fault fault classification are different. For the 

novelty detection model, the data labels are unique, which means that the dataset is considered to be one single 

class. Meanwhile for the multi-class classification model, the labels correspond to each of the considered faults 

in order to reach the classification among the known scenarios.  

In this case study, a standard OC-SVM with Gaussian kernel is proposed for novelty detection. The 

preparation of the novelty model includes the selection of the parameters for configuration and the training of 

the model. The OC-SVM is trained with information of the known scenarios (healthy and faulty sets), but labeled 

as a unique class. This means that the model finds a boundary that encloses all the known scenarios, if a new 

tested sample is within the boundary, then, it is considered known, on the contrary, if it lies outside, it is 

considered novel.  

For the fault diagnosis stage, a multi-layer neural network (NN) is proposed. Neural networks are data-

driven self-adaptive information processing method inspired in biological systems, and represents the most 

commonly data-driven technique found in the literature [1]. 

To analyze a new torque signal measurement, the corresponding reduced set of features is first examined 

by a novelty detection model. Then, the measurement can be cataloged as novel or known. If the measurement 

is catalogued as novel, the machine is considered to be working under unknown conditions. This can be 
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triggered by different scenarios, including outliers, the presence of a new fault or by a new operation condition 

of the machine. If the measurement is catalogued as known, it means that the machine is working under a 

previously known scenario, which can be healthy or faulty. To discern between the known scenarios, the 

measurement is analyzed by a multi-fault classifier. The output of the model is a label that identifies the analyzed 

measurement as one of the considered classes. 

Eight classes regarding the condition of the machine are considered on this case study:  

 Healthy condition: Hc. 

 Six faulty conditions: MIS5, MIS6, MIS7, CW1, CW2, CW3. 

 Novelty condition: Nc. 

The faulty conditions corresponds to different severities degree of Misalignment (MIS) and coupling wear 

(CW), more details of the EOL test machine and the considered faults can be found in Annex III. There is 80 

measurements for each class, therefore, the dataset consist of a total of 640 measurements. 

A 70% of the available measurements per class are used for training. It is important to emphasize that 

novelties measurements, Nc, are used only in the test stage. From the training set, a five-fold cross-validation 

is used in order to adjust the OC-SVM parameters. The kernel used is the Gaussian and the value of the width 

of the kernel is limited among the following set of discrete values: {1, 2, 3, 5, 10, 15}. Regarding the neural 

network, a configuration of one hidden layer with 10 neurons is used. The neurons are configured with a sigmoid 

activation function and the training procedure corresponds to a classical back propagation algorithm using all 

the training samples. 

Once the classifiers are trained and adjusted, the final test is done using the remaining 30% of the 

measurements. This process was repeated five times with five different training-test set distributions, randomly 

selected and fixed.  

 

Performance metrics 

To describe the performance metrics, the 8 classes are grouped in two nomenclatures: novelty class and 

known class. The novelty class corresponds to measurements of the novelty condition Nc. The known class is 

composed by the 7 remaining classes: Hc, MIS5, MIS6, MIS7, CW1, CW2 and CW3. To analyze the performance 

of the proposed method, three sets of performance metrics are considered, each set is associated to the stage 

on which they are calculated: after the novelty model, after the multi-class classifier and the global result. 

Regarding the results obtained from the novelty detection model, the following metrics are calculated: 

 Novelty model accuracy: This metric refers to the number of correctly classified measurements of the 

novelty class and the known class divided by the total of test examples. This metric is used to obtain a 

novelty model global performance. Nevertheless, it is not the ideal metric to assess the performance of the 

methodology because it does not contemplate the accuracy of discriminating between the different classes 

composing the known class by the multi-fault classifier. 

Regarding the results obtained from the multi-fault classification model, the following metrics are 

calculated: 
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 Training performance: This metric represents the capacity of the multi-fault classification model to classify 

the samples used in the training.  A low training performance indicates that the model is not able to 

discriminate among classes, which can be caused by an overlapping of the data in the feature space. 

 Multi-fault accuracy: As mentioned in the previous section, the measurements analyzed by the multi-fault 

classifier are the ones that the novelty detection module classified as known class. This metric represents 

the measurements analyzed by the multi-fault classifier that are correctly classified divided by the total 

number of measurements that actually belong to the known class. This metric is important to measure the 

capacity of the classifier to classify the test measurements of the known class, but the result can be 

deceiving if the performance metrics of the novelty model are not analyzed. Since the methodology follows 

a sequential execution, the error performed by the novelty model by classifying novelties as part of the 

known class, propagates to the multi-fault classifier.  

 

Regarding the results obtained considering the whole methodology the following metric is calculated: 

 

 Complete Accuracy: This metric represents the measurements of the novelty class correctly classified by 

the novelty detection model and the measurements of the known class correctly classified by the multi-fault 

classification model, divided by the total of test examples. This performance metric combines the results of 

the both models and can be used to compare the methodologies. Nevertheless, the other metrics are 

necessary to have better understanding of the performance, and also, to allow the identification of 

deficiencies in-between the stages of the methodology.  

 

In order to highlight the contribution and motivation of the proposed methodology, the outline of the results 

will be presented as follows: first, a test is performed by a classical methodologies that consist in an ensemble 

of one-class classifiers for fault detection and novelty detection. Then a test is performed with a simple approach 

of a sequential fault detection and identification methodology, where the same feature reduction is used for both 

tasks. Finally, the proposed sequential methodology with separated stages of feature reduction is applied and 

the results are compared. The performance metrics are analyzed on each case to highlight the advantages and 

disadvantage of each methodology. To be able to compare the results obtained between methods, the same 

novelty detection model is used on all the methodologies, on this case, the OC-SVM. 

Different configurations regarding the dimensionality of the features are used to have an insight of the 

advantages of discarding irrelevant features. Three different configurations are selected: using all the features 

(no feature reduction applied), applying PCA and, finally, applying LDA. The number of selected features is 

reduced from an initial 20-dimensional space to a reduced 2-dimensional space, taking into consideration that 

the reduced set of features fulfill the respective restrictions from each dimensionality reduction approach. 

The classical methodology consists on performing the novelty detection and multi-fault classification by 

means of a combination of one-class classifiers. The results are shown in Table 4.2.2, where the best 

performance of each metric is highlighted. 
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Table 4.2.1. Performance of classical one-class classifiers based methodology using three different dimensionality reduction 
configurations 

 

Classical methodology: One-class classifier per class 

Performance Metrics 
OC-SVM 

All 20 Features PCA LDA 

Novelty model accuracy 0.656(±0.013) 0.835(±0.023) 0.773(±0.025) 

Training performance 0.788(±0.035) 0.703(±0.019) 0.846(±0.022) 

Multi-fault accuracy 0.592(±0.021) 0.581(±0.033) 0.723(±0.038) 

Complete accuracy 0.632(±0.014) 0.712(±0.019) 0.719(±0.032) 

 

By comparing the complete accuracy shown in Table 4.2.2, it is possible to observe that both 

dimensionality reduction approaches exhibit better results than using all the available features, being the LDA 

the method with the highest complete accuracy. The characteristics of each dimensionality reduction approach 

are highlighted by the results of the metrics.  

In regard with the novelty detection, by comparing the novelty model accuracy, the PCA approach obtained 

better results on this task than the LDA, 6% higher with the PCA.  

Regarding the multi-fault classification task, an important advantage of the LDA approach can be noticed 

by analyzing the training performance metric for classification, 15% higher. Since in both cases, PCA and LDA, 

the methodology is trained with the same measurements, it can be concluded that the low percentage of training 

performance is caused by an overlapping of the different classes in the feature space, rather than the capacity 

of the method to perform multi-class classification. 

The second classical method analyzed is similar to the proposed methodology, where the novelty detection 

and multi-fault classification tasks are performed by different models. The same structure of an OC-SVM for 

novelty detection and the neural network for classification are used for this test, nevertheless, the same 

dimensionality reduction technique is used for both tasks: novelty detection and multi-fault classification. The 

results are shown in Table 4.2.3. 

 

Table 4.2.2. Performance of a simple sequential fault detection and identification methodology using the same feature reduction for each 
task.  

Second methodology: Same dimensionality reduction for both models 

Performance Metrics 
OC-SVM 

All 20 Features PCA LDA 

Novelty model accuracy 0.606(±0.021) 0.815(±0.007) 0.761(±0.017) 

Training performance  0.851(±0.034) 0.706(±0.019) 0.906(±0.009) 

Multi-fault accuracy 0.606(±0.048) 0.523(±0.026) 0.795(±0.014) 

Complete accuracy 0.597(±0.021) 0.643(±0.016) 0.716(±0.021) 

 

By comparing the complete accuracy shown in Table III, one can observe that, again, the dimensionality 

reduction approaches obtained better results than employing all the features, being the LDA the method with 

the highest complete accuracy. In general, both classical methodologies presents similar results, the PCA 

reduction also obtained better results for the novelty detection task while the LDA reduction obtained better 

results for the classification task. Taking into consideration the low training performance metric of the features 

obtained by the PCA (70%) compared to the training performance obtained by the LDA (90%), the problem 

regarding the overlapping of measurements of different classes is still present. 
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Finally, the proposed methodology is also tested. A comparison between other novelty detection models 

is also performed. Two commonly used models in the literature are chosen [23]: Multivariate Kernel Density 

Estimator (MKDE), and Mixture of Gaussians (MoG). The results are shown in Table 4.2.4, where the best 

performance of each metric is highlighted. 

 

Table 4.2.3. Performance of the proposed novelty detection and multi-fault classification methodology using three different novelty 
detection models 

 

Proposed  methodology: PCA + LDA 

Performance Metrics 
Different novelty detection models 

  MKDE   MoG  OC-SVM 

Novelty model accuracy 0.771(±0.052) 0.802(±0.029) 0.815(±0.007) 

Training performance  0.906(±0.009) 0.906(±0.009) 0.906(±0.009) 

Multi-fault accuracy 0.708(±0.022) 0.710(±0.017) 0.751(±0.021) 

Complete accuracy 0.763(±0.023) 0.774(±0.031) 0.811(±0.021) 

 

As can be seen, the proposed methodology obtained an average of 81% of complete accuracy, which is 

10% more than the other two methodologies. 

As can be expected, the inclusion of the LDA at the multi-fault classification task improves considerably 

the multi-fault accuracy and, therefore, the complete accuracy.  

Regarding the comparison with other novelty detection models, the MKDE obtained the lowest complete 

accuracy, which is 5% less than the proposed methodology. This can be caused by the different variations of 

the torque signal, causing several data distributions with limited measurements to characterize them. It is well 

know that, as a statistical non-parametric model, the MKDE needs a considerable number of samples to adapt 

to the underlying distribution. Similar results are obtained by the other two models, the MoG and the OC-SVM, 

with a difference of 4% regarding the complete accuracy.  

 

Table 4.2.4. Performance of the proposed novelty detection and multi-fault classification methodology using three different novelty 
detection models 

 

True 

Class 

Assigned Class 

Hc CW1 CW2 CW3 MIS5 MIS6 MIS7 Nc 

Hc 20 0 0 1 0 0 0 3 

CW1 0 22 2 0 0 0 0 0 

CW2 0 13 8 0 0 0 0 3 

CW3 0 0 0 20 0 0 0 4 

MIS5 1 0 0 0 16 1 0 6 

MIS6 0 0 0 0 0 21 0 3 

MIS7 0 0 0 0 0 0 20 4 

Nc 1 0 1 12 2 0 0 64 

 

To analyze the performance of each class individually, the confusion matrix of the proposed methodology 

is shown in Table 4.2.5. As can be seen in the confusion matrix the misclassification problems are present in-

between classes of the same fault, especially between CW1 and CW2, which means, the method have difficulties 

to discern between severities of the same fault but not between different faults. A specialized feature calculation 

and reduction approach could improve the classification of the CW severities. 
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Regarding the novelty measurements, most of the misclassifications are assigned to CW3 which means 

the Nc measurements have underlying similarities with the torque signal from this severity of coupling wear. 
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4.3  Conclusions and discussion 

A methodology with separated stages for novelty detection and fault diagnosis is applied to the torque 

signal of an automotive sector end-of-line test machine is proposed. The methodology is capable of assess the 

condition of the machine under monitoring without altering the undergoing operation. 

The methodology proposed is compared with two classical methods. The set of key performance metrics 

are proposed to evaluate the methodologies. By monitoring, globally and partially, the accuracy of the models, 

it is possible to identify the advantages and limitations of each stage of the methodologies.  

The tests performed using the LDA and PCA proved the importance of exploiting the characteristics of the 

proposed methodology, being in this case the LDA capable of improving the fault diagnosis task and the PCA 

capable of improving the novelty detection task.  

Regarding the novelty model accuracy metric, the three methodologies tested exhibit similar results, ±2% 

of accuracy. However, regarding the multi-fault accuracy metric, the classical one-class classifiers based 

methodology presents the lowest performance. The classical novelty detection and multi-fault classification 

based methodology employing the LDA and the proposed methodology exhibit better results, +6% and +4% 

respectively. 

It should be emphasized that in regard with the training performance metric, both classical approaches 

improve their performance, more than 15% by using LDA feature reduction. That is, in classical approaches 

applied to this case study, a high novelty model accuracy and high multi-fault accuracy performances cannot 

be obtained at the same time since the performance of the model is dependent of the feature reduction 

approach. Indeed, the proposed approach allowing different dimensionality reduction techniques for novelty 

detection and multi-fault classification lead to a better overall performance compared to both classical 

methodologies, obtaining an average of 81% of complete accuracy, which is a 10% more than the classical 

approaches.  

The use of the OCSVM as a novelty model approach in front of MoG and MKDE, results in an increase of 

the complete accuracy metric of 5% and 4% respectively.  
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5. 
Incremental learning framework 

 

The incremental learning framework is referred to a structure intended to serve as a procedure to include 

new information to a given system. In a FDI system, working under an incremental learning framework implies 

the incursion of new scenarios to a given initial knowledge which implies a new set of emerging challenges. 

In this regard, this chapter presents the contributions to successfully implement a FDI system under an 

incremental learning framework by specific methodologies to cope with the limitations presented in the CBM 

applied to electromechanical systems.  

 

CONTENTS: 

5.1 Introduction 

5.2 Methodologies for FDI systems under an incremental learning framework  

5.3 Conclusions and discussion 
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5. Incremental learning framework 

5.1  Introduction 

One of the most important challenges towards the implementation of reliable Condition-Based Monitoring 

(CBM) schemes in the industrial sector, refers to the management of unexpected events. As mentioned in the 

previous chapters, a classical CBM is supported by a set of malfunction conditions that, a priori characterized, 

can be recognized later during the diagnosis process. However, the presence of faults not previously 

considered, or even deviations of performance over the nominal behaviour, represent common conditions that 

lead to diagnosis errors. Indeed, classical CBM schemes are being redefined by the incursion of the Fault 

Detection and Identification (FDI) systems. Novelty detection became a critical task since the objective is to 

detect whether the measurement under analysis corresponds to a known or unknown condition. Then a fault 

diagnosis model identify the fault. In the past chapter the methodologies to implement FDI systems were 

discussed and analysed, then, a methodology to improve the accuracy such systems was presented. 

However, the FDI methodology previously presented and most of the related works available up to now 

work under a static framework, where the healthy and a set of fault conditions are initially available and 

previously characterized following a classical diagnosis approach, and uncorrelated or abnormal events are 

detected and set apart [1], [25]. Nevertheless, in most of industrial applications, just the nominal operating 

condition is available (the healthy condition), which, from one side, makes unfeasible a previous characterization 

of fault conditions and, from the other side, requires the proposal of a FDI system capable of update the models 

as new scenarios are present.  

As discussed in the presentation of the state of the art, most of the proposed approaches in the literature 

focus their contributions on the limitations presented on their respective application domain, being their primary 

focus the reduction of the computational complexity of the incremental learning framework. Some of the 

applications assume that the variables that characterize a monitored asset drift over time, therefore the 

contributions of the models focus on providing adaptive capabilities to drift changes, which leads to an intrinsic 

forgetting feature of the systems to discard past information. However, in some application domains it is not 

desired to discard past information but rather keep accumulating fault scenario to further detect them if they are 

presented again. In addition, the application to electromechanical systems present other limitations. 

The computational complexity of the methods to work in real time is not the primary limitation in this 

application domain due to the low number of measurements analysed in a selected period of time during the 

monitoring task and the possibility of an offline re-training, nevertheless, this implies that the models should be 

able to characterize the new operating scenarios with a limited number of measurements. Another limitation 

corresponds to the storage of measurements of each scenario detected. Some of the applications include a 

repository database to store every measurement analysed of the machine under monitoring, therefore scenarios 

to characterize every new scenario detected are available. If a new scenario is intended to be included in the 

base knowledge of a model, almost all models for novelty detection and fault diagnosis require to access this 

repository database to re-train the model and include a new scenario to the already existing ones, therefore, 

the availability of a repository database represents a critical factor to select the appropriates models for each 

task. Nevertheless, in some applications a constant storage of measurements of the monitored machine is not 
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available, therefore the models should be able to include new scenarios without needing the measurements 

previously used to include the previous scenarios. 

Taking in consideration the limitations mentioned the adaptation of the incremental learning framework to 

FDI systems represents a challenging task, which will be further discussed in the subsection of this chapter. 
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5.2  Methodologies for FDI systems under an incremental learning 

framework 

The incremental learning framework in FDI systems is a new topic and only few works have been published 

in different application domains. Among the available works, stands out the proposed by Costa et al. in 2016 

[53], where a two-stage methodology for real-time novelty detection and fault classification applied to an 

industrial plant is presented. Specifically, the initial novelty detection is supported by density analysis in the data 

space, and the classification stage is designed by the auto-class fuzzy-rule-based classifier. However, the 

advantage of such algorithms are based on their computational efficiency for on-line monitoring and adaptive 

capabilities to novel scenarios incorporation, rather than accuracy and generalization capabilities. Another 

disadvantage of the method presented is the need of sufficient samples to properly calculate the density of the 

data, such availability of measurements is proper from industrial monitoring applications but is not guaranteed 

to occur in electromechanical machines. The work also emphasize the need of an ad hoc signal processing, 

estimation of numerical indicators and feature reduction procedures for the specific plant under test. Filev et al. 

in [50], propose an autonomous equipment monitoring and diagnosis framework, emphasizing the need of a 

generic structure that is relatively independent of the type of physical equipment under consideration. The 

results presented are promising but the algorithms are limited to the detection of two different types of faults, 

incipient or abrupt. 

Classical data-driven CBM methodologies for fault detection or novelty detection face the knowledge 

increase by means of a batch scheme, where a complete re-training of the models structure is carried out with 

the data combining the initial and new scenarios. However, storing all the measurements is not always possible 

and, moreover, the complexity of the retraining process is increased as the data is accumulated, which 

represents an unsustainable approach.  

The capacity to continuously store the measurements of the monitored machine represents an important 

factor regarding what novelty detection and fault diagnosis models can be used. If an repository database is 

available, traditional novelty detection and fault diagnosis models can be used since a complete re-training of 

the models structure with the data combining the initial and new scenarios can be performed. Nevertheless, if 

a repository database is not available to continuously store the monitored measurements, models that can 

performed a re-training to include the new scenario without the measurements of the initial scenarios are 

necessary. 

In this sense, the implementation of a FDI system working under an incremental learning framework could 

be defined according the availability of the resources, in this case, when a repository database is available and 

when isn’t available. 

In this chapter both cases are studied, and the previously proposed methodology for a sequential FDI 

system is initially enhanced by including a re-training stage to include new scenario to the novelty detection and 

fault diagnosis model. Then, an alternative methodology is proposed to cope with the absence of a repository 

database to re-train the models, where an ensemble of one-class classifiers and an evolving classifier are used 

for novelty detection and fault diagnosis. Such techniques are capable to include new information without a 

complete re-training of the models and also without forgetting the base knowledge which consist of the other 

known scenarios. 
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5.2.1  Incremental learning when a repository database is available 

As mentioned before, classical data-driven CBM methodologies face the knowledge increase by means of 

a batch scheme, where a complete re-training of the models structure is carried out with the data combining the 

initial and new scenarios. By assuming that a repository database is available, this approach can be applied in 

a FDI system to work under an incremental learning framework. Since an offline re-training is used to include 

new scenarios to the models, this approach allows to use the classical novelty detection and fault diagnosis 

models discussed in previous chapters. Fig. 5.2.1 shows a scheme of the proposed methodology, which 

includes different stages regarding the activity performed, an initial training stage, an online monitoring stage 

and a re-training stage. The methodology proposed also considers separate stages for novelty detection and 

fault diagnosis, therefore the advantages of separated stages for novelty detection and fault diagnosis is 

maintained. 

 

Fig. 5.2.1 Proposed scheme for a FDI system working under an incremental learning framework when an repository database is available. 

Taking into consideration that the initial knowledge consist only on the healthy condition, the models are 

initially trained with this scenario during the training stage. During the online monitoring stage, a batch-type 

analysis is proposed to evaluate the condition of the machine, where a certain number of measurements are 

stored and then evaluated by the novelty detection model to identify the machine is working under known or 

novel conditions. The number of analyzed measurements is empirically selected to provide a robust decision 

regarding the condition of the machine; if only one measurement is analyzed each time then the rate of false 

alarm rate could be increased drastically due to outliers. 

If the condition of the machine is determined to be known, then the measurements are analyzed by the 

fault diagnosis model to determinate the condition of the machine. If the condition of the machine is determined 

to be novel or unknown, a user supervision module is activated. If the user determinates that the novel condition 

corresponds to a new fault condition, the batch with the corresponding measurements of the new fault are stored 

in a repository database and a re-training procedure is performed to include the new scenario to the base 

knowledge of the models. The re-training is performed for both, the novelty detection and the fault diagnosis 

model, in a classical approach combining the initial and new scenarios to the training set. After the models are 

re-trained, the online monitoring stage starts again. 
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It is important to mention that the contributions presented in past chapters, especially the multi modal 

scheme, can complement this methodology to increase the accuracy of the method. 

 

Case Study: FDI system under an incremental learning framework applied to a camshaft-based 

machine 

 

To validate the proposed methodology, a FDI system under an incremental framework with a multi-modal 

scheme for novelty detection is applied to monitor the condition of a camshaft-based machine. The high-speed 

ratios, the mechanisms time-overlapping and the smoothing inertia effect make such systems a challenging 

application field for classical approaches. The test bench is composed by an induction motor connected to a 

reduction gearbox that rotates a camshaft to activate the mechanisms corresponding to the manufacturing 

process. The current signals from the induction motor are acquired to analyze the effects of the cam operations 

to the current. A more in-depth description of the camshaft-based machine can be found in Annex III. The 

proposed methodology is shown in Fig. 5.2.2. 

 

 

Fig. 5.2.2 Proposed methodology for a FDI system under an incremental learning framework with a multi-modal scheme. The monitoring 

process starts with data regarding normal operation of the machine and the modules adapt as information of faults are present. The 

continuous line corresponds to the evaluation of new measurements, meanwhile the dotted line corresponds to the re-training of the models. 

In order to highlight the deviations during the operation of the machine, the calculation of a NTFM is 

proposed as a data processing stage. As aforementioned in previous sections, the NTFM is obtained by means 

of the Short-Time Fourier Transform (STFT) of the acquired signal but normalized in regard to a reference, 

which is a STFT over the healthy condition during the calibration process. Each Normalized Time-Frequency 

Map (NTFM) calculated from the current of the motor has a time window length corresponding to one full shaft 

turn. A more in-depth explanation regarding the data processing stage and the algorithm to calculate the NTFMs 

can be found in Annex III. 

In order to characterize the machine, two sets of statistical time-frequency features are calculated from the 

NTFM. The NTFM is divided in 8 different regions considering both time and frequency axes. Each region is 

identified by a number from 1 to 8. The number of regions proposed is empirically selected and represents an 

adequate tradeoff between resolution and overfitting. A larger number of regions increase the resolution but 

also increase the number of features and could lead to overfitted models; meanwhile, choosing a lower number 
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of segments could not provide enough resolution. As an example, the NTFM of a measurement corresponding 

to the first fault, F1, is shown in Fig. 5.2.3 (a) and the corresponding to a second kind of fault, F2, is shown in 

Fig. 5.2.3 (b), the characteristics of both faults are further explained in Annex III. 

It can be appreciated that there is a predominant change of spectral energy respect to the reference in 

regions 1 to 4, 6 and 8. An analysis of such regions could identify a possible anomaly in the condition of the 

machine; nevertheless, all regions must be analyzed because different anomalies could generate different 

affectation patterns distributed through the NTFM. 

 

Fig. 5.2.3. Resulting NTFM segmented in 8 regions. a) F1 b) F2  

Novelty detection and diagnosis have different objectives: novelty detection is focused only on detecting 

deviations from the known behavior (one-class problem approach), and the diagnosis is focused on identifying 

and discriminating the different previously labeled scenarios (multi-class problem approach). Therefore, the 

features for novelty detection are intended to provide a more general analysis (less overfitted), of the behavior 

of the machine, meanwhile the features for the diagnosis are intended to provide more specific analysis of the 

known faults. 

 

Novelty models 

 

The full shaft turn is segmented in four parts, each one corresponding to 90 degrees. When an unexpected 

anomaly is present, it is not possible to anticipate in which part of the full shaft turn is reflected and extracting 

this information could be important to the operator; therefore, one novelty model is used to monitor each of the 

four parts of the full shaft turn, meaning that a total of 4 novelty models are used in this study, in this case, the 

multivariate kernel density estimators. 

Each novelty model is trained with the features of the corresponding regions of each 90 degrees of the 

turn, for example, the first novelty model monitors the regions 1 and 5, the second novelty model monitors the 

region 2 and 6, and so on. The novelty models detect if a new measurement differs from the known scenarios 

in which such models have been trained. A probabilistic approach is employed based on the calculation of the 

pdf, 𝑓𝐡(𝐗), where X corresponds to the training dataset characterized by an arrays of features. The assessment 

of a new measurement, 𝐱̂, over the resulting pdf’s provides the degree of novelty of the data, 𝑓𝐡(𝐱̂). As an 

interpretation of the test results, a low 𝑓𝐡(𝐱̂) value implies that the new measurement differs from the data used 

in training. To enhance the information obtained from the models about the condition of the machine, a visual 
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representation of the measurements in the feature space is desirable. In this study, since only the rms is 

calculated per region for novelty detection, each novelty model is trained with two features, therefore a two 

dimensional representation is obtained. 

 

Novelty Evaluation 

 

After the 4 models are trained and new measurements of the monitored machine are analyzed, an 

evaluation procedure is employed in order to process the resulting novelty scores of the models. This procedure 

assesses abnormal behaviors detected during the analysis of the regions and results in the degree of novelty 

of the analyzed measurements. A batch-type analysis of 30 NTFMs (which corresponds to 30 full shaft turns) 

of the monitored machine are stored and then evaluated simultaneously by the models, the novelty scores of 

each NTFM is then analyzed to diagnose the behavior of the machine. The number of analyzed shaft turns is 

empirically selected to provide a robust decision regarding the condition of the machine; if only one shaft turn 

is analyzed each time then the rate of false alarms could be increased drastically due to outliers. 

The first step is to label the resulting degree of novelty of the NTFMs as: Known, Uncertain or Novel. The 

assignation of the label depends on the assessment of the novelty score 𝑓𝐡(𝐱̂). The possible range of values 

part from zero to the maximum value determined by the bandwidth, the number of samples used for training 

and the kernel selected, thus 𝑓𝐡(𝐱̂) ∈ [0 … max(𝑓𝐡(𝐗))].The labelling process is determined by the novelty score 

shown in Fig. 5.2.4. 

The label known represents the measurements with a 𝑓𝐡(𝐱̂) score higher or equal than 2/3 of the maximum 

value of 𝑓𝐡(𝐗). The label Uncertain represents all the data with a 𝑓𝐡(𝐱̂) on the interval of 2/3 and 1/3 of the 

maximum value of 𝑓𝐡(𝐗). The label Novel consist of the measurements with a lower or equal 𝑓𝐡(𝐱̂) score than 

1/3 of the maximum value of the 𝑓𝐡(𝐗). 

 

Fig. 5.2.4 Delimitation of degree of novelty according the novelty score. 

 

Those predefined thresholds can be modified according to the application; however, considering that no 

previous information of the novel conditions is available, such proportional thresholds represent an appropriate 

configuration. In fact, a higher value for the boundary between Known and Uncertain may generate some false 

alarms, whereas a lower value for the boundary may provide less resolution to the detection. 

In order to complete the procedure, the labelling process is applied over the 30 NTFMs. Since there are, 

in this work, 4 novelty models the final label is defined by the analysis of the output label of all the models.  

Each NTFM is analyzed by the 4 models obtaining 4 labels, the final label is selected as same as the 

highest degree of novelty among the 4 different labels obtained by the models. That is, for each analyzed full 
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shaft turn, if at least one of the novelty models detects that the measurement under consideration is Novel, then, 

the final label for this analyzed full shaft turn is selected as Novel, even if the 3 other models label the 

measurement as Known or Uncertain.  

The reason to assign the label with the highest degree of novelty of the four models as the final label of 

the measurement is because each novelty model analyze a part of the camshaft rotation, and the machine faults 

are expected to be reflected more significantly in one part of the rotation of the camshaft than another; therefore, 

it is possible that new faults are only detected by one of the models. 

After the 30 full shaft turns are labeled, the current condition of the machine is determined according to the 

majority of the labels. If the Known label represent 50% or more of the measurements, the 30 NTFM are 

processed by the diagnosis stage to identify the condition of the machine. If the machine is diagnosed as healthy 

behavior, then, the process repeats, starting from the acquisition of 30 full shaft turns and processing them into 

NTFMs. 

On the other case, if more than 50% of the labels analyzed correspond to Uncertain and/or Novelty, the 

corresponding result is shown, and the user supervision is required, where further actions are conducted 

regarding the opinion of an expert which analyzes the machine. A more detailed explanation regarding the 

interaction of the user supervision is detailed in further in this subsection. 

 

Fault Diagnosis 

 

The objective is to identify the condition of the machine among the possible scenarios previously 

characterized and labelled, and this is carried out by means of a classification algorithm. This module is 

activated when the majority of the labels are detected as Known in the novelty evaluation stage or when the 

user supervision module is activated by a majority of uncertain labels.  

Although different classifiers can be applied to perform the diagnosis task, the artificial neural network is 

considered as a convenient option for this methodology. ANN are data-driven self-adaptive information 

processing methods inspired in biological systems, and they represent the most commonly data-driven 

technique found in literature [1]. An ANN is composed by a number of interconnected processing elements 

(neurons) working at the same time to solve a specific problem. The ANN represents a no-lineal, multivariate 

and non-parametric algorithm approach applied in this methodology for pattern recognition. The ANN combines 

the information coming from the different parts of the full shaft turn in order to determine the machine condition 

among the known scenarios. 

The ANN is trained with all the features of the 8 regions of the known scenarios and processed in a different 

way that for the novelty evaluation. The output is the condition of the machine, in terms of healthy state or one 

of the considered faults. The capacity of the diagnosis module to discern among the different scenarios will be 

assessed by a validation test of the ANN whenever a new scenario is incorporated. 

 

User Supervision 

 

The user supervision is required previous to the adaptation of the scheme to new data. That is, when novel 

or uncertain data is detected. Novel data imply a behavior complete different from the one presented so far; 
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then, a new operating mode of the machine is taking place. In the case of uncertain data, it is possible that the 

presence of a small deviation from the known scenarios is detected. The 30 full shaft turns can therefore be 

analyzed by the diagnosis algorithm in this case with the aim of providing more information to the supervisor 

user. 

Three possible scenarios can be present after the inspection of the results by the supervisor. First, a new 

fault condition is determined; second, the current scenario is already known by the methodology; and third, false 

positive detection and the data must be discarded. 

If the identified scenario is already known but still the novelty evaluation label the data as novel or 

uncertain, the novelty and diagnosis models are re-trained to incorporate such information to an already existing 

scenario. Otherwise, if a new fault is detected, the novelty models and diagnosis models are re-trained 

incorporating a completely new scenario where the supervisor user will introduce the corresponding label. 

In order to validate the proposed methodology, three different experimental cases are considered in this 

study: a healthy or normal condition, and two faulty conditions by inducing effort disturbances. The first fault 

condition, F1, involves the decrease of 25% of the effort pattern related with the first cam, C1, through the 

adjustment of the thumbscrew related to the load grip by means of a dynamometric key. The second fault 

condition, F2, includes a decrease of 25% of the effort pattern related to both of the cams, C1 and C2, also by 

the adjustment of the thumbscrew related to the load grip. It must be taken into account that the induced fault 

scenarios correspond to common degradation patterns due to the continuous machine operation. Thus, 

although the effort disturbances induced by the fault conditions can be considered incipient deviations, it is 

expected to extract by the proposed methodology the corresponding affectation over the motor stator current. 

From each of the considered scenarios, 30 camshaft revolutions were acquired, considering both currents and 

encoder. 

To highlight the contributions and challenges described at the beginning of this chapter, the experimental 

results are presented in three stages. In the first stage, the novelty models are trained and validated only with 

data corresponding to the healthy condition, Hc, and, then, tested with data corresponding to a novel condition, 

the fault condition F1.  In the second stage, the novelty models are re-trained including information of the fault 

F1, and then the novelty models are tested with information of a novel fault condition, F2. In the third stage, once 

the fault condition previously tested is detected, the novelty models are re-trained including information of the 

fault, F2, and then the diagnosis model is tested with data corresponding to the three scenarios. 

As it can be seen by the description of each stage, for organization purposes, the capability of the novelty 

models to detect and incorporate each novel scenario is tested first and, later the diagnosis performance is 

analyzed. Nevertheless, the methodology is structured to perform a continuous monitoring, therefore, when is 

tested in real time applications, the diagnosis model can be triggered each time the data is labeled as known 

during the novelty detection task. 

 

Novelty assessment, availability of healthy data 

 

Initially, the acquisition of the 30 full shaft turns and the computation of the NTFMs under healthy condition 

are carried out alongside with the calculation of features for each region, then, the novelty models are trained. 



Chapter 5: Incremental learning framework 

Methodologies for FDI systems under an incremental learning framework 

 

   83 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

Four pdfs are calculated (one by each novelty model trained) by pairing the rms estimation of each region. 

Each pdf considers one partition of the rotation axis, that is, 90º. Thus, the pdf1 is obtained with the features 

from region 1, rms1, and 5, rms5, that is, from 0º to 90º, the pdf2 is obtained with features from region 2, rms2, 

and 6, rms6, from 90º to 180º, the pdf3 is obtained with features from 3, rms3, and 7, rms7, from 180º to 270º 

and, finally, the pdf4, is obtained with features from region 4, rms4, and 8, rms8, from 270º to 360º. 

For the training procedure, the MVKDE with multiplicative function and Gaussian kernel function are used. 

The bandwidths are set through least squares cross-validation. The resulting pdf1 is shown in Fig. 5.2.5, where 

the continuous line represents the boundary of the known data and the dotted line represents the boundary of 

the unknown data. Everything that lies outside the dotted line is considered novel.  

 

Fig. 5.2.5 The pdf1 for regions 1 and 5, where * are the measurements of each cycle, the continuous line represents the boundary of known 

data and the dotted line the boundary of uncertain data, the contour plot represents the pdf value.  

 

As it can be seen, all the information regarding to healthy operation is concentrated near the zero value of 

the both RMS axes. Similar behavior is obtained for the rest of pdfs. The contour plot in the same figure 

represents the novelty score distribution, the 𝑓𝐡(𝐱̂)  value. The bandwidths obtained are 0.0653 and 0.0651; 

since the difference between the values of the consequent measurements is low, the resulting bandwidths have 

a low value; therefore, the distribution obtained is over-fitted for values close to zero with small variations; to 

provide more robustness to the initial monitoring phase the bandwidths are increased to a empirically selected 

value of 0.65, this value represent the tradeoff between avoiding false alarms and gaining resolution on 

detection so it can be modified according the necessities of the application.  
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Fig. 5.2.6 Evaluation of a fault scenario on the probability densities obtained of the different regions a) pdf1 b) pdf2 c) pdf3 d) pdf4 

 

The assessment of the 30 measurements of the F1 scenario over the initial pdf is presented in Fig. 5.2.6. 

It should be noted that the corresponding NTFM is shown in Fig. 5.2.3 (a). The novelty scores are obtained to 

determine the corresponding novelty degree. The measurements corresponding to the F1 scenario show a very 

low novelty score for all four novelty map: <0.01 in all models. Such abnormal behavior is detected by all four 

models, which implies a significant impact during all the rotation of the camshaft. The 30 full shaft turns are 

labeled as novel. The user supervision alarm is activated and a re-training is performed to include the new 

scenario detected.  

 

Novelty assessment, availability of healthy data and fault F1 

 

The adaptation of the novelty maps to the new scenario is shown in Fig. 5.2.7, where the resulting pdf1 is 

presented. Similar results are obtained for pdf2, pdf3 and pdf4. As it can be seen in Fig. 5.2.7, the introduction 

of new data implies a modification of the novelty score distribution. The pdf1 obtained previously formed by one 

lobe, now has two lobes that enclose the zones where the known operations are concentrated. In Fig. 5.2.8 the 

resulting pdf1 is represented with the boundaries planes between known, uncertain and novel data. After the 

incorporation of the F1 scenario to the known operation, a second scenario is tested corresponding to the second 

fault F2. The corresponding NTFM is shown in Fig. 5.2.3 (b). 
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Fig. 5.2.7 Contour plot of the pdf1 after including F1 

 

Fig. 5.2.8 Probability density function of regions 1 and 5. The feature space is divided in 3 zones that delimit the degree of novelty according 

the novelty score. 

 

As illustrated in Fig. 5.2.9, this scenario is detected mostly in the novelty models pdf1 and pdf2. The 

resulting novelty scores means that the F2 scenario impact the first half rotating cycle, from 0° to 180°. Most (29 

out of 30) of the full shaft turns are labeled as novel; therefore, the user supervision alarm is activated and a re-

training is performed to include the new scenario detected. 
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Fig. 5.2.9 Novelty models after incorporating F1 and analyzing F2. a) pdf1 b) pdf2 c) pdf3 d) pdf4 

 

Diagnosis assessment 

 

The procedure repeats activating an alarm, and adapting the novelty models to the new knowledge after 

the user labelling. Fig. 5.2.10 shows the pdf1 after incorporating the last scenario. Similar results are obtained 

for the rest of pdfs. In this last case, the novelty models do not incorporate a new lobe on the feature space, but 

extend the lobe next to the previous fault data (F2). This implies that the new scenario incorporated is not very 

different, in terms of rms of the energy deviations, from one of the known scenarios, which is expected, since 

the F2 includes the same cam malfunction analyzed in F1 plus a malfunction in a different cam. 

 

Fig. 5.2.10 Contour plot of the pdf1 after including F2. 

 

To test the diagnosis model, 100 full shaft turns of each scenario (Hc, F1 and F2) are used (300 total), 

where 70% are employed for training and 30% are employed for testing. This process was repeated five times 

with five different training-test set distributions, randomly selected and fixed. Regarding the neural network, the 



Chapter 5: Incremental learning framework 

Methodologies for FDI systems under an incremental learning framework 

 

   87 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

architecture used is shown in Fig. 5.2.11. A configuration of one hidden layer with 10 neurons is selected, the 

neurons are configured with a sigmoid activation function and the training procedure corresponds to a classical 

back propagation algorithm using all the training samples. 

 

Fig. 5.2.11 Probability density function of regions 1 and 5. The feature space is divided in 3 zones that delimit the degree of novelty 

according the novelty score. 

 

The resulting confusion matrix of the test measurements is shown in Table 5.2.1. A global classification 

rate of 99% is achieved. It is important to notice that the misclassifications are mostly present between the two 

faults, which is understandable since F2 is a combination of a fault from both cams, and a different fault.  

 

Table 5.2.1. Performance of the Diagnosis Stage using the ANN model. The classification accuracy and the standard deviation is 
presented for each scenario and for the global performance. 

 Hc F1 F2 Global 

Training Accuracy - - - 0.99(±0.01) 

Test Accuracy 1.00 (±0.00) 0.98(±0.01) 0.96(±0.01) 0.98(±0.01) 

 

Since the methodology is intended to be performed in a continuous monitoring approach where 30 full 

shaft turns are analyzed each batch, the diagnosis module is also tested using less samples for training, in this 

case, only 30 full shaft turns for training and 30 full shaft turns for testing are used five times with five different 

training-test set distributions, randomly selected and fixed, obtaining a global test accuracy of 0.97(±0.01), which 

implies that 30 full shaft turns supply enough robustness to characterize the scenarios under study. 

 

Conclusions 

 

A methodology for a FDI system under an incremental framework with a multi-modal scheme for novelty 

detection applied to monitor the condition of a camshaft-based machine is proposed in this section. The 

proposed approach successfully detected the two novel scenarios considered, F1 and F2. The methodology 

includes a batch type analysis with a repository database which allows the classical incorporation of the novel 

scenarios into the available models for knowledge upgrade. Three different experimental conditions have been 

considered, representing a significant set of scenarios, including the healthy operation, a single fault condition, 

F1, and a combination of two faults condition, F2. Under all these experimental conditions, the proposed 

methodology shows proper diagnosis results. During the novelty analysis of the combination of two faults 

condition, two of the four considered novelty detection models misidentified the scenario as known. This is a 
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clear example of the challenge of the novelty detection framework. When dealing with unknown fault conditions, 

it is critical to use multiple feature analysis approaches, as proposed by the present novelty detection models 

structure, since the less the number of considered features is, the higher the risk of misidentification. It must be 

noted also that the user supervision is necessary after the detection of a novel scenario in order to confirm and 

track the corresponding root-cause. Thus, the proposed methodology is constrained to 2-dimensional 

representations, where the underlying physical phenomena of the machine condition can be visualized. Indeed, 

the role of the supervisor is crucial in industrial machinery monitoring; since novel scenarios detected must be 

properly labeled. 

A characterization of the uncertain zones in the feature space of the novelty detection analysis is also 

included in this methodology to reduce the number of false alarms and to provide more information regarding 

the condition of the machine to the user. The intrinsic variability of the measurements in industrial applications 

often cause an increment of false alarms, by labeling this variations as uncertain and performing a fault 

diagnosis to those uncertain measurements, the user is provided with more information to draw a conclusion 

regarding the anomaly presented. 

The proposed methodology shows almost 99% of diagnosis accuracy, which represents a high 

performance ratio. Note that this is the first time that this methodology and the corresponding analysis are made 

in electromechanical system diagnosis. The results obtained in this work suggest that this methodology may be 

also useful for any other rotating mechanical component faults.  

 

 

 



Chapter 5: Incremental learning framework 

Methodologies for FDI systems under an incremental learning framework 
 

 

   89 
Fault detection and identification methodology under an incremental learning 

framework applied to industrial electromechanical systems 

 

5.2.2  Incremental learning when a repository database is not available 

In comparison to the previous approach that leads to the formulation of a methodology where any classical 

model can be applied due to the availability of a repository database, in this approach, the limitations that 

involves the absence a database in a FDI system are analyzed.  

As mentioned in the presentation of the state of the art, there are several strategies proposed for novelty 

detection and fault diagnosis that can incorporate new information without requiring a complete re-training of 

the models structure, including adaptive or incremental models, ensemble strategies and evolving models.  

Regarding novelty detection, two strategies are considered mainly in the literature: incremental models 

and ensemble of one-class classifiers. Incremental models are mainly applied within big data analytics, where 

a great deal of continuous data is available. The performance of such approach over electromechanical systems 

may be limited, considering the low inertia of multiple wear based faults and the necessity of multi-fault patterns 

recognition. In general terms, the use of an ensemble of one-class classifiers provides more design flexibility in 

comparison of the incremental based models. That is, dealing with an ensemble-based approach, a new model 

can be created when a new data set is detected; therefore, there is no loss of previous knowledge because it 

is retained within the set of models. In this sense, the discard of knowledge is user-dependent, by selecting the 

specific model to remove. Moreover, any novelty detection technique can be used to be part of an ensemble-

based scheme. 

Regarding fault diagnosis, the same both discussed strategies are also applicable with their respective 

modifications. Indeed, there is considerable literature on incremental learning and ensemble-based classifiers, 

and most of the characteristics discussed in the novelty detection side applies also for fault diagnosis. It is 

important to note that, in general, such methods work under a supervised or semi-supervised environment, 

where the labeling process of a new data set as well as the model tuning is carried out manually and off-line. 

However, as it has been aforementioned, dealing with fault diagnosis purposes, the evolving strategy is being 

considered as a superior adaptive approach in multiple studies, as stated by Z. Gao et al. in 2015 [62]. Indeed, 

the fault diagnosis stage requires the consideration of a more complex data boundary structure. Unlike novelty 

detection problem, where a binary scenario is considered, the fault diagnosis applied to electromechanical 

system requires the consideration of a multi-fault scenario. In this sense, the conclusions of some studies 

suggest that the computational complexity of an ensemble-based approach for diagnosis can lead to unfordable 

structures after different adaptions to new data sets. Evolving strategies, however, allow the possibility of modify 

the structure of a unique model in function of the different boundaries to be considered. Indeed, this evolving 

strategy avoids the risk of a complex ensemble-based fault diagnosis structure, in which the relations among 

the multiple models must be defined manually depending on their labels. 

Therefore, dealing with the adaptive CBM implementation applied to an electromechanical system, the 

ensemble-based approach for novelty detection and the evolving approach for fault diagnosis, represent the 

most suitable solutions. Thus, a methodology for a FDI system under an incremental framework by means of 

an ensemble-based approach for novelty detection and an evolving classifier is presented in this section. Fig. 

5.2.12 shows a scheme of the proposed methodology, which includes different stages regarding the activity 

performed: an initial training stage, an online monitoring stage and a re-training stage. The methodology 
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proposed also consider separate stages of feature reduction for novelty detection and fault diagnosis, therefore 

the advantages of separated stages for novelty detection and fault diagnosis is maintained. 

 

 

Fig. 5.2.12 Proposed scheme for a FDI system working under an incremental learning framework when an repository database is not 

available. 

Taking into consideration that the initial knowledge consist only on the healthy condition, the models are 

initially trained with this scenario during the training stage. During the online monitoring stage, a batch-type 

analysis is proposed to evaluate the condition of the machine, where a certain number of measurements are 

temporary stored and then evaluated by the ensemble of one-class classifiers to identify the machine is working 

under known or novel conditions. The number of analyzed shaft turns is empirically selected to provide a robust 

decision regarding the condition of the machine; if only one measurement is analyzed each time then the rate 

of false alarm rate could be increased drastically due to outliers. 

If the condition of the machine is determined to be known, then the measurements are analyzed by the 

evolving classifier to determinate the condition of the machine. If the condition of the machine is determined to 

be novel or unknown, a user supervision module is activated. If the user determinates that the novel condition 

correspond to a new fault condition that needs to be incorporated, the batch with the corresponding 

measurements of the new fault are used to re-train the fault diagnosis and novelty detection models. It is 

important to stress that these methods only need the measurements of the new scenario to include it to the 

base knowledge, but the training procedure varies depending on which model is used for the ensemble structure 

of one-class classifiers and also on which evolving mode is used for fault diagnosis. After the models are re-

trained, the online monitoring stage starts again. 

It is important to mention that the contributions presented in previous chapters, especially the multi modal 

scheme, can complement this methodology to increase the accuracy of the method. 
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Case Study: FDI system under an incremental learning framework applied to an EOL test 

machine 

 

To validate the proposed scheme, the FDI methodology is applied to monitor the condition of an EOL 

friction test machine over the manufactured parts (steering system). Note that the machine applies its own 

algorithm to determine the condition of the steering system under test but the aim of the methodology is to 

monitor the proper function of the EOL test machine. A more in-depth description of the EOL test machine and 

the friction test e can be found in Annex III. The proposed methodology is shown in Fig. 5.2.13. 

 

Fig. 5.2.13 Proposed methodology for the EOL test machine. The monitoring method is composed by a signal processing stage where 

statistical features are calculated and analyzed by a novelty detection and a multi-fault classification models to assess the condition of the 

machine. 

 

The proposed method is composed by two stages: a continuous monitoring stage to assess the condition 

of the machine and a re-training stage to include new information to the novelty detection and fault detection 

models. 

During the continuous monitoring stage, a torque signal analysis is performed, then the novelty detection 

and fault identification stages assess if the measurement analyzed of the machine correspond to a: healthy 

condition,  faulty condition or novel condition. 

If a novel condition is detected a user analyze the machine to find the cause of the anomaly. If the user 

confirms that the novel condition corresponds to a new fault, the re-training stage is triggered to incorporate the 

new fault to the novelty detection model and the fault identification model. 

 

Continuous monitoring stage 

 

First, a torque signal analysis is carried out during the stationary speed set point corresponding to a 360º 

turn of the steering system. It is expected that malfunctions and anomalies could be reflected in the torque 

signal during segments of the revolution of the steering system, therefore, the segmentation represents a viable 

strategy to gain resolution during the characterization. Thus, the four seconds torque signal is segmented in 

four parts of 1 second. The number of segments chosen represents a tradeoff between resolution and total 
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number of features. A larger number of segmentations increase the resolution but also increase the number of 

features, and could lead to overfitted models, meanwhile choosing a lower number of segments could not 

provide enough resolution. 

A set of five statistical time-domain features are calculated from each segment of the torque signal which 

consist of the Root mean square, the crest factor, the shape factor, the kurtosis and skewness. The formulas to 

obtain such features can be consulted in Table 2.1.1 in Chapter 2. These features have been successfully 

employed in different studies for electromechanical systems fault detection [18]. Therefore, a total of 20 features 

are calculated from each torque signal measurement.  

In order to exploit the potentiality of a separate novelty detection and fault identification stages, two different 

dimensionality reduction approaches are applied over the features sets. 

For the novelty detection module, a PCA is used to extract a reduced set of features that maximize the 

variance of the dataset. Indeed, from the novelty detection point of view, the data variance represents one of 

the most convenient characteristics to be considered. Thus, most of the data variance is enhanced and 

preserved by a reduced set of features called principal components.  

The fault identification task is classically approached by previous feature reduction techniques in order to 

maximize the distances among available labeled classes. Unlike PCA, that preserves as much data variance 

as possible in a reduced set of features, the classification task requires supervised approaches. Nevertheless, 

one of the challenges considered in this work is the initial availability of only one class, the healthy condition, 

therefore such supervised approaches are not viable. Thus, in order to deal with such scenario, all the twenty 

estimated features are considered.  

After the corresponding feature reduction, the novelty detection and fault identification models are initially 

trained using healthy measurements of the friction tests. As the monitoring of the machine progresses and new 

faults are identified, the models are eventually re-trained with new classes of detected faults. 

To analyze a single torque signal measurement, the corresponding reduced set of features is first 

examined by the novelty detection model. Then, the measurement can be cataloged as novel or known. If the 

measurement is catalogued as novel, the machine is considered to be working under unknown conditions, 

therefore an alarm is activated to the user for supervision. This can be triggered by different scenarios, including 

outliers, the presence of a new fault or by a new operation condition of the machine. If the user determinates 

that the unknown condition correspond to a new fault in the machine or a new operation point the re-training 

stage is activated, otherwise, the alarm is considered to be a false alarm and the measurements are discarded.  

If the measurement is catalogued as known, it means that the machine is working under a previously 

known scenario, which can be healthy or faulty. To discern between the known scenarios, the measurement is 

analyzed by an evolving classifier. The output of the model is a label that identifies the analyzed measurement 

as one of the considered classes. 

In this application, instead of analyzing each EOL test individually, a batch-type analysis is performed, 

where 20 measurements (which corresponds to 20 EOL tests) are stored and then evaluated simultaneously 

by the methodology. The number of analyzed measurements corresponds, in this case, to the number of EOL 

tests performed for each shaft of the steering system. The number of tests is empirically selected to provide a 

robust decision of the friction test; if only one test is performed then the rate of false alarms could be increased 

drastically due to outliers. The condition of the machine is determined according to the majority of the labels.  
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In this work the OC-SVM with Gaussian kernel is used as a one-class classifier for the ensemble method. 

The preparation of each OC-SVM includes the selection of the parameters for configuration and the training of 

the model.  

The ensemble method consist on training one novelty model for each class known and combine their 

outputs to detect if an analyzed measurements are known or novel. Each OC-SVM is trained with information 

of one known scenario (can be healthy and faulty sets). This means that the model defines a novelty threshold 

that encloses all the known scenarios, if a new measurement evaluated has a novelty score lower than the 

threshold defined, then, it is considered novel, on the contrary, if the novelty score is above the threshold, it is 

considered known. Each measurement is evaluated by all the OC-SVM trained, and if at least one of the model 

labels the measurement as known then the final label for that measurement is known, consequentially if none 

of the models label a measurement as known, then the final label is novel.  

Regarding the fault identification stage, the evolving classifiers eClass0 and eClass1 are used. These 

classifiers are able to adapt dynamically to the new data with no need of any specific threshold to be specified. 

The FRB structure of both classifiers changes according to the data streams. In addition, in the case of eClass1, 

the parameters of the regression models are also constantly updated. The prototypes (existing data samples) 

to create the fuzzy rules are selected via the calculation of the potential, which is a Cauchy function of the sum 

of the distances between a certain data sample and all other data samples in the feature space. It is very 

important to remark that since the formulation of the potential is calculated in a recursive manner, instead of 

using the complete dataset, the current measurement uses only (n + 1) memorized quantities, where n is the 

number of features [77]. This aspect is essential in online applications. 

To evaluate a new measurement, a firing level (degree of confidence) of the fuzzy rules is calculated and 

the output of the rules determinate the class of the evaluated measurements. For eClass0 the output label is 

directly associated to the activated rule, meanwhile, for the eClass1 an eTS model regress the feature vector 

to determinate the confidence value.  

 

Re-training stage 

 

The re-training stage is triggered when a novel scenario is detected and the user determinates that it 

correspond to a new fault or a new operating condition of the machine. The models used in the novelty detection 

stage and the fault identification stage have different re-training procedures to include a new class to their base 

knowledge. 

Regarding the re-training of the novelty detection stage, a new OC-SVM model is trained including only 

information of the new class, this allows the monitoring system to include new information without needing 

access of the measurements initially used for training. Since the proposed approach for novelty detection 

considers a low number of features, three after the PCA, the model can perform an adequate novelty boundary 

for the new class with a limited number of samples and avoid the curse of dimensionality. The training of the 

model consists on selecting the configuration parameters and tuning them according the distribution of the data 

to select an appropriate novelty threshold. 

Regarding the re-training of the evolving classifiers, both eClass0 and eClass1 have the capability of 

including automatically new measurements to their base knowledge to increase the robustness of classification 
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of the known classes or to include new classes. In case a set of measurements with a new class is used for re-

training, for both of the classifiers a new prototype is selected and a new rule is created for the new class; 

additionally, for eClass1, the parameters of the eTS models are updated. This is performed automatically as 

long as the true label of the measurements of the new class is provided. 

Eight classes regarding the condition of the machine are considered on this work:  

 Healthy condition: Hc. 

 Six faulty conditions: MIS5, MIS6, MIS7, CW1, CW2, CW3. 

 Novelty condition: Nc. 

The faulty conditions corresponds to different severities degree of Misalignment (MIS) and coupling wear 

(CW), more details of the EOL test machine and the considered faults can be found in Annex III. There is 80 

measurements for each class, therefore, the dataset consist of a total of 640 measurements. 

 

Performance metrics 

 

Seven different scenarios for test are used to evaluate the capability of the methodology to detect and 

classify novel scenarios and the response of the models to the incorporation of new classes to the initially 

available information. The distribution of the classes for each scenario is presented in Table 5.2.2. 

The 8 classes are grouped in three sets: training set, known set and novelty set. Each of the scenarios 

correspond to a progressing stage of the continuous monitoring approach, from an initial knowledge of only the 

Healty condition, (Hc) to a scenario where information of 7 classes is available.  

These scenarios are intended to test the capabilities of the proposed methodology in the industrial 

framework where initially the healthy condition is initially available, and progressively new classes are detected 

and incorporated, in this case, one class to the training stage in each iteration.  

The dimensionality reduction for novelty detection, the PCA, is performed in all seven scenarios using only 

measurements of the healthy condition (Hc). Since some of the contributions in this work are focused on 

providing an alternative of classical approaches that need storing a repository database of measurements of 

the monitored machine, a selection of more appropriate features whenever a new class is incorporated is out 

of scope in this work. 

The proposed methodology is based on a sequential monitoring scheme, which implies that each sample 

is analyzed by the novelty detection model and then, if is labeled as known, analyzed by the fault identification 

model. If the tests are performed using this sequential monitoring scheme, the results obtained can mislead the 

analysis of the performance of the models due to an integration of error. For example, if all the measurements 

are labeled incorrectly by the novelty detection stage, the performance of the fault identification stage is not 

analyzed. Therefore, to avoid misleading interpretation of results, the tests are performed separately to the 

models. Thus, to analyze the performance of each stage, two sets of performance metrics are considered: one 

for the novelty detection stage and the other for the fault identification stage.  

Regarding the results obtained from the novelty detection model, the following metrics are calculated: 

 Test Set Performance: This metric refers to the number of correctly classified measurements of the novelty 

set and the known set divided by the total of test examples. This metric is used to obtain a novelty model 
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global performance. Nevertheless, it is important to notice that it does not contemplate the accuracy of 

discriminating between the different classes composing the known class in the fault identification stage. 

 Known Set Performance: This metric refers to the number of correctly classified measurements of the known 

set divided by the total of measurements belonging to the same set. This metric can be seen as the true 

negative rate (TNR). 

 Novelty Set Performance: This metric refers to the number of correctly classified measurements of the 

novelty set divided by the total of measurements belonging to the same set. This metric can be seen as the 

true positive rate (TPR). 

Regarding the results obtained from the fault identification stage, the following metrics are calculated: 

 Training set Performance: This metric represents the capacity of the fault identification model to classify the 

samples used in the training.  A low training performance indicates that the model is not able to discriminate 

among classes, which can be caused by an overlapping of the data in the feature space. 

 Test Set Performance: This metric represents the measurements analyzed of the known set by the fault 

identification model that are correctly classified divided by the total number of measurements of the known 

set. It is important to notice that the novelty set is not contemplated in the fault identification stage because 

it is assumed that these samples were previously discarded by the novelty detection model. Including such 

class in the comparison between fault identification models induce an unnecessary constant error in the 

tests. 

Table 5.2.2. Contents of the training and testing sets for each scenario 
 

Scenario 
Name 

Training Set 
Testing Set 

Known Set Novelty Set 

T1  Hc  Hc  CW1, CW2, CW3, MIS5, MIS6, MIS7, Nc 

T2  Hc, CW1 Hc, CW1 CW2, CW3, MIS5, MIS6, MIS7, Nc 

T3  Hc, CW1, CW2 Hc, CW1, CW2 CW3, MIS5, MIS6, MIS7, Nc 

T4  Hc, CW1, CW2, CW3 Hc, CW1, CW2, CW3 MIS5, MIS6, MIS7, Nc 

T5  Hc, CW1, CW2, CW3, MIS5 Hc, CW1, CW2, CW3, MIS5 MIS6, MIS7, Nc 

T6  Hc, CW1, CW2, CW3, MIS5, MIS6 Hc, CW1, CW2, CW3, MIS5, MIS6 MIS7, Nc 

T7  Hc, CW1, CW2, CW3, MIS5, MIS6, MIS7 Hc, CW1, CW2, CW3, MIS5, MIS6, MIS7 Nc 

 

Model estimation and parameter selection 

A 70% of the available measurements per class are used for the training set. From the training set, a five-

fold cross-validation is used in order to adjust each of the OC-SVMs parameters of the ensemble method. The 

kernel used is the Gaussian and the value of the width of the kernel is limited among the following set of discrete 

values: {1, 2, 3, 5, 10, 15}. Regarding the neural network, a configuration of one hidden layer with 10 neurons 

is used. The neurons are configured with a sigmoid activation function and the training procedure corresponds 

to a classical back propagation algorithm using all the training samples. 

Once the models are trained and adjusted in each scenario, the test is performed using the remaining 30% 

of the measurements of each class of the known set and the novelty set. This process was repeated five times 

with five different training-test set distributions, randomly selected and fixed.  
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Results 

 

In order to highlight the contribution and motivation of this work, the outline of the results will be presented 

as follows: first, the seven scenarios are tested by the novelty detection model proposed, then, the seven 

scenarios are tested again but using the 20 calculated features instead of the proposed PCA, after the novelty 

detection is tested, the proposed method for fault identification is tested and compared with a classical 

approach. The performance metrics are analyzed on each case to highlight the advantages and disadvantage 

of each model and each dimensionality reduction approach.  

Different configurations regarding the dimensionality of the features are used to have an insight of the 

advantages of discarding irrelevant features. The number of selected features is reduced from an initial 20-

dimensional space to a reduced 3-dimensional space, taking into consideration that the reduced set of features 

fulfill the respective restrictions from each dimensionality reduction approach. 

The ensemble of novelty models are first tested with the seven scenarios proposed, the number of OC-

SVM models trained correspond to the number of classes included on the training set of each scenario. It is 

important to mention that the scenarios tested are performed in consecutive order, therefore, the OC-SVM 

model trained with the Healthy class, Hc, is used on all the scenarios and not modified in a re-training. A re-

training is performed when a new class is included, for example, from the scenario T1 to the scenario T2 to 

include a new class in a new OC-SVM, in this case the fault CW1. 

For a better understanding of the test, the novelty score of the testing set of the scenario T1 is presented 

in Fig. 5.2.14. The horizontal line represents the novelty threshold, the samples on the upper side of the novelty 

threshold are labeled as known and the samples on the lower side are labeled as novel. Varying the novelty 

threshold, for example lowering the threshold value, can lead to a better detection of the known class, Hc, 

increasing the known set performance, but that variation also leads to labeling samples of the novelty class, Nc, 

as known, which lead to a lower outlier set performance. The vertical lines represent the division of classes 

among the measurements used of the testing set.  

 

Fig. 5.2.14 Resulting Novelty Score of the T1. The red line is the novelty threshold, Th, which is set to -0.67. The black lines represent the 

division among the different classes during the test. 

 

n this scenario only one class is included in the training set, therefore only one novelty score per 

measurement is obtained in the novelty detection stage, which implies that the labeling of measurements 

depends only of one model. To perform the test of the scenario T2, where two classes are included in the training 
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set, a new OC-SVM is trained for the CW1 class and two novelty scores are obtained. The novelty scores of 

both OC-SVM is shown in Fig. 5.2.15. 

As can be seen, all measurements from the test set are evaluated by the ensemble of models, therefore, 

all samples are labeled as novel or known by both OC-SVMs. As mentioned before, if at least one of the models 

label a measurement as known, then the final label of that measurement is known, consequentially if none of 

the models label a measurement as known, then the final label is novel. Since each of the OC-SVMs is trained 

to identify similar measurements of different classes, both output labels are equally important, therefore the only 

case when a sample is considered novel is when it does not belong to any distribution learned by the method. 

In this case, in a continuous monitoring approach, if a measurement is labeled as known the fault identification 

stage analyze such measurement to identify if the measurement belongs to a healthy case, Hc, or the fault 

case, CW1. 

 

Fig. 5.2.15 Resulting Novelty Score of the T2. The red line is the novelty threshold, Th, which is set to -0.67 for the first OC-SVM and -0.77 

for second. The black lines represent the division among the different classes during the test. a) The novelty results of the OC-SVM trained 

using measurements of the Hc class. b) The novelty results of the OC-SVM trained using measurements of the CW1 class. 

 

Some authors propose to use the output of the ensemble of the OC-SVMs to perform the fault identification 

of the measurement; nevertheless, while in this scenario, T2, such approach seems like a viable option, 

problems appear when classes with similar distributions are included. A solution for this problem is addressed 

in the methodology proposed in this work and discussed further ahead in this section. 

The results of the proposed novelty detection approach in the seven scenarios are shown in Table 5.2.3. 

 

Table 5.2.3. Performance of the proposed novelty detection scheme  
 

Novelty Detection 
PCA - 3 Features  

 T1 T2 T3 T4 T5 T6 T7 

Test Set 

Performance 
0.959(±0.004) 0.955(±0.008) 0.894(±0.002) 0.890(±0.014) 0.876(±0.019) 0.836(±0.027)  0.810(±0.031) 

Known Set 

Performance 
0.969(±0.005) 0.962(±0.002) 0.917(±0.007) 0.916(±0.009) 0.928(±0.017) 0.903(±0.028)  0.840(±0.068) 

 Outlier Set 

Performance 
0.842(±0.046) 0.842(±0.064) 0.767(±0.053) 0.804(±0.044) 0.772(±0.029) 0.763(±0.033) 0.765(±0.023) 
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A high test set performance, around 96%, is obtained on the T1 and T2 scenarios, nevertheless, the 

performance gradually decrease to a final 81% as new classes are incorporated to the base knowledge. This 

decrease of performance is expected, in each scenario new information is incorporated to the model, therefore 

more variability and cases are considered normal to the model and this limits the capacity of the model to detect 

anomalies. 

To verify if the dimensionality reduction stage improves the performance of the model, the seven scenarios 

are also tested using the 20 calculated features, the results are shown in Table 5.2.4. 

As can be seen that, regarding the T1 to T3 scenarios, a performance around 96% is obtained in both 

approaches, nevertheless starting from the T4 scenario, the performance of the model using the 20 features 

start decreasing at a higher rate in comparison to the PCA proposed approach. The decrease of performance 

is caused by the misclassification of the known set, labeling them as novel, which implies that reducing the 

features allows a more adequate tuning of the novelty detection boundary to achieve a more robust detection 

of the known classes. 

 

Table 5.2.4. Performance of the novelty detection considering 20 features calculated 
 

Novelty Detection  
20 Features 

 T1 T2 T3 T4 T5 T6 T7 

Test Set 

Performance 
0.971(±0.004) 0.949(±0.014) 0.908(±0.014) 0.834(±0.011) 0.813(± 0.01) 0.748(±0.006) 0.656(±0.006) 

Known Set 

Performance 
0.981(±0.003) 0.957(± 0.01)  0.920(±0.015) 0.815(±0.012) 0.793(±0.012) 0.691(±0.015) 0.395(±0.029) 

Outlier Set 

Performance 
 0.850(±0.054) 0.863(±0.047) 0.861(±0.034) 0.896(±0.024) 0.855(±0.029) 0.811(±0.013)  0.780(±0.008) 

 

To test the fault identification stage a separate analysis is performed where only the scenario T7 is used. 

Testing the fault identification method in a scenario where the class discrimination is evident would lead to an 

excellent performance of every model and does not contribute in highlighting the limitations and advantages of 

each model and features used for comparison. Therefore, the scenario which presents a more adequate 

challenge regarding number of classes for discrimination is used. The result of the fault identification stage using 

evolving classifiers and a supervised classical approach used in many condition monitoring systems, the multi-

layer Neural Network (NN), is shown in Table 5.2.5. Regarding the Neural Network, a configuration of one 

hidden layer with 10 neurons is used. The neurons are configured with a sigmoid activation function and the 

training procedure corresponds to a classical back propagation algorithm. 

 

Table 5.2.5. Results of the T7 scenario for the fault identification stage. The evolving classifiers are compared to a classical approach in 
both feature selection approaches. 

 

 Fault Identification  

 20 Features  PCA 

 eClass0 eClass1 NN  eClass0 eClass1 NN 

Training Set Performance 0.872(±0.024) 0.736(±0.024) 0.942(±0.015)  0.586(±0.052) 0.364(±0.038) 0.636(±0.022) 

Test Set Performance 0.839(±0.016) 0.726(±0.032) 0.874(±0.014)  0.547(±0.044) 0.369(±0.035) 0.601(±0.023) 
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A comparison between using the 20 calculated features and a dimensionality reduction by PCA is also 

performed. Better results are obtained with all three models using the 20 features than the PCA approach. 

Meanwhile the PCA represents a better option to detect outliers in the novelty detection stage, for the fault 

identification stage the use of 20 features represent a better option to discern between classes. The 

misclassification is caused by an overlapping of classes in the feature space, this can be highlighted by the 

training set performance and the consistent low performance in all three models. If the novelty detection task 

and the fault identification task are performed in the same stage, the selection of a different feature selection 

for each stage would lower the performance of the methodology. 

Regarding the test set performance of the three models using the 20 calculated features as input, the 

Neural Network approach present a slightly better performance, around 3%, than the evolving classifier eClass0 

and a 15% increased performance than the eClass1, nevertheless, the advantage of the evolving methods in 

terms of incursion of different classes and low computational cost of training and testing, represent a better 

option for the fault identification stage for online applications. 

 

Conclusions 

 

A methodology for continuous learning of condition monitoring applied to an end-of-line test machine of 

the automotive sector by analyzing the torque signal has been proposed and validated. The methodology 

assess the condition of the machine under monitoring without altering the undergoing operation. 

Taking into consideration that the methodology presented work under the assumption that only the healthy 

condition is initially available, the main contributions presented are focused on the proposition of an ensemble 

of novelty detection models and an evolving classifier to perform incremental learning when a database storing 

the measurements of the machine is not available. 

The methodology proposed is compared in each stage with different feature reduction approaches to 

perform a proper selection of features for each model taking in consideration the challenges of an industrial 

framework. A set of several tests with the corresponding performance metrics are proposed for the evaluation 

of both stages, novelty detection and fault identification. By monitoring separately the accuracy of the models, 

it is possible to identify the advantages and limitations of the methodology and compare different models for 

each stage.  

Regarding the novelty detection stage, the ensemble method of OC-SVMs successfully discerned among 

the known set and the outlier set of the seven performed tests. Using the PCA to select a reduced number of 

features in comparison of using the 20 features lead to a better performance, especially at the last test, where 

an increment of 44% of accuracy on the known set is achieved.  

Regarding the fault identification stage, among the evolving classifiers, the eClass0 obtained better results 

than the eClass1, where an increment of 11% of accuracy on the test set is achieved using the 20 features and 

an increment of 17% on the test set is achieved using the PCA. Since each class is composed by four different 

models of steering systems, four different distributions are expected among the data; therefore the eClass0 is 

more suitable in this case to enclosure a multi-modal distribution of the data with the Gaussian enclosure of the 

prototypes than the regression performed by the eClass1. Regarding the Neural Network classifier comparison, 

the eClass0 obtained a slightly lower accuracy; nevertheless Neural Network the intensive offline training of the 
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Neural Network is not suitable for online applications where a repository database of measurements is not 

available.  

In general, the results obtained in this work suggest that this methodology may be also useful for any other 

industrial machines, with a corresponding signal processing stage to identify a suitable set of features of the 

monitored machine.  
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5.3  Conclusions and discussion 

In this chapter, the limitations and challenges regarding the incorporation of an incremental learning 

framework to FDI systems are analyzed. 

The capacity to continuously store the measurements of the monitored machine represents an important 

factor regarding what novelty detection and fault diagnosis models can be used. If a repository database is 

available, traditional novelty detection and fault diagnosis models can be used since a complete re-training of 

the models structure with the data combining the initial and new scenarios can be performed. In this sense 

methodology to implement a FDI system under an incremental learning framework when a repository database 

is available is presented and applied to a camshaft-based machine. 

Taking into consideration that the initial knowledge consist only on the healthy condition, the models are 

initially trained with this scenario during the training stage and follows a sequential approach to determinate the 

condition of the machine. First, the analyzed measurement is examined by a novelty detection model. Then, the 

measurement can be cataloged as novel or known. If the measurement is catalogued as known, it means that 

the machine is working under a previously known scenario, which can be healthy or faulty. To discern between 

the known scenarios, the measurement is analyzed by a fault diagnosis model. The output of the model is a 

label that identifies the analyzed measurement as one of the considered classes. If the measurement is 

catalogued as novel, the machine is considered to be working under unknown conditions. This can be triggered 

by different cases, including outliers, the presence of a new fault or by a new operation condition of the machine. 

If a new fault is detected and confirmed by the user, a complete re-training is performed in a classical approach 

combining the initial and new scenarios to the training set. After the models are re-trained, the online monitoring 

stage starts again. 

Beside the considerations included to the methodology to work under an incremental framework, some 

key aspects were also included in this case study to improve the robustness of the method.  

The first one consist on the incursion of a batch-type analysis to evaluate the condition of the machine. 

This implies that a certain number of measurements are stored and then evaluated by the novelty detection 

model to identify the machine is working under known or novel conditions. The number of measurements is 

empirically selected to provide a robust decision regarding the condition of the machine; if only one 

measurement is analyzed each time then the rate of false alarm rate could be increased drastically due to 

outliers. 

The second one is the characterization of the uncertain zones in the feature space of the novelty detection 

analysis to reduce the number of false alarms and to provide more information regarding the condition of the 

machine to the user. The intrinsic variability of the measurements in industrial applications often cause an 

increment of false alarms, by labeling this variations as uncertain and performing a fault diagnosis to those 

uncertain measurements, the user is provided with more information to draw a conclusion regarding the anomaly 

presented. 

On the other hand, if a repository database is not available to continuously store the monitored 

measurements, models that can performed a re-training to include the new scenario without the measurements 

of the initial scenarios are necessary. This lead to a study and analysis for the selection of the most adequate 

strategies for novelty detection and fault diagnosis that could cope with this limitation, and it was concluded that 
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the ensemble-based approach for novelty detection and the evolving approach for fault diagnosis, represent the 

most suitable solutions. In this sense a methodology to implement a FDI system under an incremental learning 

framework when a repository database is available isn’t presented and applied to an EOL test machine. 

The main difference of this methodology, besides the models used, resides on the re-training stage. The 

ensemble of one-class classifiers and the evolving classifiers can incorporate new scenarios to their base 

knowledge using only measurements corresponding to the new scenario.   

Some conclusions can be drawn from the case study presented of both methodologies. The main 

advantage of the first methodology consist on the possibility to use classical models for novelty detection and 

fault diagnosis. This permit the use of specialized models depending on the limitations presented in the 

application domain, meanwhile the second methodology restrict the number of models that can be applied. It is 

important to mention that the contributions presented in past chapters, for example the multi modal scheme, 

can complement the methodologies presented to increase the accuracy of the method, as seen in the first case 

study. 
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6. 
General conclusions and future work 

 

The main contributions of this thesis research, as well as the conclusions and future work are presented 

in this chapter. 

 

CONTENTS: 

6.1 General conclusions 

6.2 Future work  
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6. Conclusions and future work 

6.1  Conclusions 

This chapter presents the conclusions in relation with the stated hypothesis, and the obtained results during 

the development of the thesis work. In this regard, the exposed conclusions of this thesis are divided in the 

sequential research stages: Novelty detection, Fault detection and identification systems, and Incremental 

learning framework. In order to complete the conclusions, the global impact in regard with the analysis off all 

the contributions of the thesis is also considered. 

 

In regard with novelty detection, the application to electromechanical systems represented a challenging 

task in terms of the complexity involved in the data processing and the feature calculation and reduction stages. 

In other application domains, the selection of variables employed to characterize a process are evident and in 

most cases the limitations to apply novelty detection resides mostly in the capacity of the model to characterize 

a given signal. This fact leads the state of the art to be focused on improving the performance of the model 

without taking into account the previous processing stages. In electromechanical systems, the faults in a 

machine are not that evident reflected in changes of the monitored variables, there is an enormous effort in the 

signal processing, feature calculation and reduction topics focused solely in highlighting faults on a monitored 

machine, therefore, a direct implementation of a novelty detection methodology is not viable in this application 

domain. Indeed, the performance of the novelty detection models is heavily influenced by the signal processing 

and features calculated used to characterize the monitored component. Thus, as presented in the hypothesis, 

by improving the feature calculation and feature reduction stages the performance of the novelty models would 

increase. In this sense, two schemes were proposed to increase the robustness and reliability of the novelty 

detection models in electromechanical systems, a multi-modal scheme and the reformulation of features each 

time a new scenario is incorporated to the base knowledge.  

The proposed muti-modal scheme and the reformulation scheme of features intend to increase the 

resolution of what the novelty models need to characterize, therefore, a more detailed novelty detection 

boundary can be performed by the models, which lead to an increased performance of the novelty detection 

models.  

Regarding the multi-modal scheme, it is important to mention that it can be successfully applied to a 

monitored machine if each novelty model trained monitors a different part of the machine or a different signal 

or segment of the signal. A multi-modal scheme over a set of features that are not complementary in the 

characterization of the machine could overfit the models instead of providing resolution. 

Regarding the reformulation of features, the consideration of a faulty scenario in the novelty model may 

contradict the principle of anomaly detection, where the objective is to detect healthy behaviors from the rest. 

Nevertheless, the aim of an adaptive condition monitoring system should be to learn from all the identified 

conditions to subsequently detect them if they are presented again by a fault detection module. 

Both proposed schemes can be complementary since both increase the novelty detection accuracy by 

different approaches. Each scheme was proposed by considering certain limitations. The multi-modal scheme 

was proposed to cope with applications that have a limited number of measurements available and a high 
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number of calculated features to characterize a complex distribution. By dividing the distribution onto different 

models, the resolution provided by the high number of features is maintained without overfitting a single model, 

leading to an increased accuracy. The feature reformulation scheme was proposed to cope with applications 

that have an increasingly complex distribution, in this case the number of samples are not considered as a 

limitation. When new information is constantly included to the novelty detection model, it is expected that the 

complexity of the characterization of the monitored machine would increase, therefore the capacity of the 

models to characterize the machine would decrease. By constantly searching for a more appropriate set of 

features each time a new scenario is incorporated, it is possible to reduce the complexity of the characterization 

of the machine by gaining resolution of the recently incorporated scenario, therefore, increasing the performance 

of the novelty models.  

In this thesis, a limited number of measurements to characterize a certain scenario is assumed as a 

premise in the development of each methodology, nevertheless, if the number of measurements is not a 

limitation, it could be possible to use other novelty detection models with enhances capabilities to converge in 

a solution even with a high number of analyzed features without compromising the performance of the model. 

Nevertheless, the increased performance achieved by this models would not be greater than the performance 

than can be obtained by the multi-modal scheme. 

 

In regard with the fault detection and identification system, a sequential scheme with separate feature 

reduction stages for novelty detection and fault diagnosis has been proposed. The limitations and advantages 

of such approach are analyzed and compared to a classical approach and a simple sequential approach with 

only one feature reduction stage in a case study where proposed methodologies showed significant 

improvement over the other methodologies. The proposed FDI system with separated stages for novelty 

detection and fault diagnosis has a sequential approach to determinate the condition of the machine. First, the 

analyzed measurement is examined by a novelty detection model. Then, the measurement can be cataloged 

as novel or known. If the measurement is catalogued as novel, the machine is considered to be working under 

unknown conditions. This can be triggered by different scenarios, including outliers, the presence of a new fault 

or by a new operation condition of the machine. If the measurement is catalogued as known, it means that the 

machine is working under a previously known scenario, which can be healthy or faulty. To discern between the 

known scenarios, the measurement is analyzed by a fault diagnosis model. The output of the model is a label 

that identifies the analyzed measurement as one of the considered classes. 

The experimental study has been performed using the linear discriminant analysis for fault diagnosis and 

the principal component analysis for novelty detection proved the importance of including separated feature 

reduction stages of the proposed methodology, improving the overall accuracy in comparison to the other two 

methodologies. 

The novelty detection stage exhibits similar results by the three methodologies using the PCA, however, 

the fault diagnosis stage exhibits increased performance by using the LDA. Both classical approaches limit the 

selection of these techniques to one, conditioning the performance of each stage by the selection of the feature 

reduction algorithm. In this regard, the proposed approach allowing different dimensionality reduction 

techniques for novelty detection and fault diagnosis, leads to a better overall performance compared to both 

classical methodologies, 
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It is important to notice that the methodologies were also tested without a feature reduction stage, which 

implies that the models are trained with all the calculated features leading to a very poor performance in 

comparison to any methodology with a feature reduction stage. This proves not only the initial hypothesis of this 

thesis regarding the importance of the feature reduction stage, but also proves that the challenges of each 

application domain requires different solutions in comparison to other methodologies where the number of 

features introduced to the models were not a limitation or were not considered as a possible problem. 

As proposed, a separate implementation of the novelty detection and fault diagnosis tasks allows an 

optimal selection of features for each task that will improve the performance of both tasks. In addition, in a 

methodology that considers a separate implementation of the novelty detection task and the fault diagnosis 

task, the overall performance can be increased by initially performing a reliable novelty detection task that 

subsequently increase the performance of the fault diagnosis stage in a sequential implementation. This has 

been proved by the methodology proposed and validated in the case study. Moreover, the study performed 

leads to an additional conclusion, the use of incoherent feature reduction approaches for each of the tasks could 

decrease the performance of the novelty detection model and the fault classifier. This has been observed by 

using the PCA for fault diagnosis, that lead to a lower results than a coherent technique like the LDA which is 

aligned with the objective of the fault diagnosis task, which is to discriminate among the known scenarios. This 

alignment of objectives is the key factor to implement a reliable and robust fault detection and identification 

system, a simple separation of tasks doesn’t imply a high performance. 

 

In regard with the incremental learning framework, two methodologies are proposed to include new 

scenarios to the sequential fault detection and identification system previously presented. As a premise, in an 

incremental learning framework applied to electromechanical systems it is desired to keep the information 

previously incorporated instead of discard it. This is a key factor to determinate the appropriate models to work 

under an incremental learning framework if a repository database is available or not. 

If the measurements during the monitoring of the machine are being constantly stored and are accessible 

for re-training, domain-based and non-parametric statistical-based algorithms for novelty detection represent 

the most adequate choice in terms of flexibility to incorporate new scenarios without analyzing the underlying 

distribution of the data corresponding to the new scenario. Indeed, the incorporation of new scenarios to the 

base knowledge during the monitoring in a semi-automatic approach, implies that the distribution of the data is 

not thoroughly analyzed, therefore, the models used for novelty detection and fault diagnosis should be able to 

adapt to any distribution given, which limits the selection to those models that can cope with complex 

distributions.  

If the measurements during the monitoring of the machine are not being constantly stored and only a small 

amount of measurements representative of the new scenario are accessible for re-training, an ensemble of 

domain-based algorithms for novelty detection and evolving classifiers for diagnosis represent the most 

adequate choice by providing an optimal trade-off between computational burden and accuracy. Even if a 

methodology is proposed to work under these circumstances, the absence of a repository database limits not 

only the models that can be used for both task, but also the characterization of the data to the initial formulation 

and prevents the reformulation of the features. 
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To include a new scenario, the addition of a specific model for that scenario for novelty detection and the 

addition of a representative prototype with a new fuzzy rule of the new scenario for fault diagnosis, represents 

the simplest solution with a competitive performance for the incursion of new classes to the base knowledge. 

 

As a step beyond the analysis of the different proposals, most of the contributions on this thesis have been 

integrated in a specific study: the multi-modal scheme and the characterization of the uncertain zones are 

incorporated to a sequential fault detection and identification system under an incremental learning framework 

to monitor faults over an industrial camshaft-based machine. 

Regarding the uncertain zones, on the initial studies performed on this thesis about novelty detection in 

electromechanical systems, an uncertain zone was identified, which was caused by the intrinsic variability of 

the measurements analyzed. This variability is higher in an industrial environment than on controlled 

environments, which leads to a higher rate of false alarms in comparison to applications in laboratory test 

benches. The characterization of this uncertain zone, is complementary to the both schemes for novelty 

detection presented, leading to a robust implementation by reducing the low alarm rate caused by the variability 

of the monitored signals. Indeed, the uncertain characterization performed on the multi-modal scheme FDI 

system under an incremental learning framework, lead to a reduction of the false alarm, therefore, increasing 

the performance of the novelty detection task. Nevertheless, the optimal delimitation of the limits of the uncertain 

zone represent a challenge, while widening the uncertain zone leads to a poor assessment of the machine 

condition, a relatively small uncertain zone would not have the sufficient impact on the performance of the 

machine. In this sense, in the proposed work the uncertainty of the measurements is obtained in base of the 

probability density function. Measurements with a low value are considered novel, while measurements among 

one third and two thirds of the maximum probability are considered uncertain, everything above two thirds of 

probability are considered normal. This characterization, while simple, presented good results on the case study.   

 

In respect to the reformulation approach, it could be applied in addition to the multi-modal scheme if the 

computational complexity is not a limitation, since it would require a re-training of each novelty model employed 

in the multi-modal a scheme each time a reformulation is performed. It is important to notice, that the FDI system 

with separated stages allows that these two schemes could be applied toward the novelty detection task. 

It is important to stress that the application of all of these contributions could present some limitations if a 

repository database is not available. In this sense, the reformulation of features cannot be performed. Also, if 

the multi-modal scheme is applied under an ensemble of one-class classifiers for novelty detection, the storage 

of information increase in great scale due to the elevated number of models used and the information each one 

requires to store. Therefore, to achieve the high reliable and robustness degrees that the methodologies of this 

thesis aim to achieve, it is highly recommended to dispose of a repository database to store the monitored 

measurements. 
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6.2  Future work 

Certain improvements over the proposed methodologies can be considered, especially under the 

incremental learning framework. Incorporating new cases to the novelty detection and fault diagnosis models in 

a semi-supervised approach could lead to a saturation of overlapping information in the feature space. For 

example, if two scenarios with similar characteristics are incorporated to the models, it is possible that the fault 

diagnosis would not be able to discern among them, even if there both represent complete different behaviors 

of the machine. Certain metrics should be constantly monitored when a scenario is incorporated, this could 

include the training performance of the fault diagnosis model, since it provides information of how capable is 

the model to discern among the known scenarios. Establishing certain restrictions in the semi-automatic 

incursion of new scenarios leads to a more efficient condition based monitoring system. Regarding the condition 

based monitoring scheme, it can still be expanded to provide more useful information the user. In addition of 

detecting multiple faults or unexpected events, the degradation of the monitored component could represent 

viable information that leads to proper maintenance strategies. 

Future work in relation with the proposed thesis consist on facilitating the implementation of the proposed 

methodologies in a digital platform for their practical integration in the industry. This implies optimizing the 

digitalization of the methodologies proposed for their implementation to digital platforms. On this thesis, the 

methodologies were tested in Matlab platform, therefore, the limitations usually presented in a digital 

implementation were not considered. This could lead to a series of improvements to the methodologies that 

could facilitate the implementation of the algorithms without compromising the performance. 

Also, over the past years, the estimation of the remaining useful life of a component or a machine surged 

as a trending research field in the community, due to the benefits that provide to the maintenance sector of the 

industry the determination of how long a component, system or machine would work under a healthy condition. 

A reliable remaining useful life estimation represents a difficult task due to the variability in which a component 

can deteriorate or break. In this sense, novelty detection strategies could be incorporated to these studies to 

estimate the reliability associated to the RUL estimation by other models. 
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7. 
Thesis results dissemination 

 

The direct contributions resulting from this Thesis work, in international journals as wells as in specialized 

conferences, are collected in this chapter. Additionally, the contributions in research projects related with the 

thesis topics are also briefly exposed. 

 

CONTENTS: 

6.1  Publications: Thesis contributions. 

6.2  Publications: Collaborations and other works. 
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The annexes of this thesis are related with the definition of the experimental test benches used for the 

development of the proposed thesis.  

 

CONTENTS: 

A.I  Electromechanical laboratory test bench 

A.II PRONOSTIA run to failure bearing degradation experiment 

A.III Camshaft-based Machine 

A.IV .End-of-line test machine for steering systems 
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A.I Electro-Mechanical Test Bench 

In order to test the methodologies presented in this thesis in a controlled environment, an 

electromechanical test bench is used. The laboratory test bench is shown in Fig. AI. 1. This test bench consists 

on a kinematic chain composed by a three phase 1492 W induction motor, WEG 00236ET3E145T-W22, which 

speed is controlled by a variable frequency drive-VFD, WEG CFW08, the operating speed is fixed to 60 Hz for 

all experiments. A 4:1 ratio gearbox, BALDOR GCF4X01AA, is used to couple the drive motor to a DC generator, 

BALDOR CDP3604. The DC motor is used as a non-controlled mechanical load that comprises around 20% of 

the nominal torque of the driving motor. The DAS is a proprietary low-cost design based on field programmable 

gate array technology. The output rotational speed is obtained by using a digital encoder; the motor start-up is 

controlled by a relay in order to automatize the test run. A 12-bit 4-channel serial-output sampling analog-to-

digital converter, ADS7841, is used in the on-board data acquisition system (DAS). 

Vibration signal from the perpendicular plane of the motor axis is acquired using a tri-axial accelerometer, 

LIS3L02AS4, mounted on a board with the signal conditioning and anti-aliasing filtering. Sampling frequency is 

set to 3 kHz for vibration acquisition. The data retrieved by the DAS is stored in a regular computer (PC). 

 

 

Fig. AI.1. Electromechanical test bench used for experimental validation of the methodologies. 

Measurements from three scenarios are acquired from the test bench, the first one, H, is the kinematic 

chain working under healthy condition and the other two, F1 and F2, represent the kinematic chain working under 

faulty conditions. For F1 the motor is working with a half broken bar, and for F2 the motor is working with a fully-

broken bar. The detail of the failures is shown in Fig. AI.2. The half broken bar failure is artificially produced by 

drilling a 6 mm hole with a depth of 3 mm that corresponds mostly to the 22% of the section of the rotor bar, 

and the full broken bar is produced by a through-hole with a diameter of 6 mm and a depth of 14 mm, which 

corresponds to the complete section of the rotor bar.  
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Fig. AI.2. Detail of the faults produced in the test bench. (a) Corresponds to the ½ broken rotor bar, and (b) to one broken rotor bar 
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A.II PRONOSTIA run to failure bearing degradation experiment 

The PRONOSTIA test bench consist of accelerated bearings degradation tests. The test bench, as shown 

in Fig. AII.1, is composed by the speed variation, torque transmission and the load profile generation stages. 

 

Fig. AII.1. Overview of PRONOSTIA experimental platform based on accelerated bearing degradation. 

A cyclic radial load is applied on the external bearing under test in order to simulate its mechanical stress 

conditions. The experiment starts at a fixed speed condition, and stops when the measured vibration at the 

bearing under test is higher than 20g (1g=9.81 m/s2). It should be noticed that, in order to speed up the 

degradation, the applied radial load exceeds the maximal load supported by the bearing. During the experiments 

any kind of failure (inner race, outer race, ball or cage) could occur. This fact allows better representation of a 

real industrial scenario. 

Regarding the test bench instrumentation, two high frequency accelerometers (DYTRAN 3035B), are 

mounted on the bearing external race in order to measure the horizontal and the vertical accelerations. In 

addition, the monitoring system includes one PT100 to measure the bearing temperature, which is placed near 

the external ring of the bearing under test. 

The signals are acquired by means of a NI DAQ card; the acceleration signals are acquired in successive 

windows with duration of 1/10 seconds, repeated every 10 seconds, with a sampling frequency of 25.6Hz. 

Similarly, the temperature signal is acquired every minute with a sampling frequency of 10Hz. One dataset from 

PRONOSTIA experiments under the same operating conditions have been selected. The characteristics of the 

selected datasets for this experimental validation can be seen in table I: 
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Characteristics of the dataset. 

Seven experiments were extracted from the PRONOSTIA test bench. The duration of each experiment 

varies depending on the time that each tested bearing reached the predefined vibration threshold. The 

characteristics of the experiments performed on the test bench are show in Table AII.1. 

Table AII. 1. Characteristics of the experiments perfomed in the PRONOSTIA test bench 

Experiment Duration Conditions 

Bearing 1_1 28000 sec 

1800 rpm 

4000 N 

Bearing 1_1 28000 sec 

Bearing 1_4 14000 sec 

Bearing 1_5 24000 sec 

Bearing 1_6 24000 sec 

Bearing 1_7 22000 sec 

 

It’s important to clarify that each acquisition of the bearing condition was measured every 10 seconds, so 

the number of acquisitions available for each set correspond to the duration of the experiment divided by 10. 
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A.III Camshaft-Based Machine 

The industrial scale test bench used in this work tries to replicate some of the non-stationary behaviour 

present in the camshaft-based industrial machines such as a blister packaging machine [85]. The experimental 

platform is composed by a 1.5 kW induction machine, acting as a drive connected to a 20:1 rated gearbox. The 

motor, controlled from an inverter by means of a speed-loop based vector control scheme, has the following 

technical characteristics: 6 pair of poles at 1500 rpm of rated speed and a rated torque of 20 Nm, 230 VAC. The 

gearbox is in turn, coupled to a 120 cm camshaft containing two cycloidal cams commanding different 

mechanisms. 

The measurement equipment is focused on the acquisition of the stator current and shaft rotation position. 

One stator-phase current is measured by means of a Tektronix current probe model A622. It provides 100 mV/A 

output and it can measure ac/dc currents from 50 mA to 100 A-peak over a frequency range from dc to 100 

kHz. The current probe was placed just on the power converter stator phase output. The shaft rotation position 

is measured by a XCC1510P Schneider encoder, 360 points of resolution, attached to the camshaft. Data 

acquisition is done with DAQ NI 6143, a multifunction board with 16 input channels, 16 bits of resolution, and 

4000 samples of internal memory. Stator motor current is sampled at a rate of 20 kHz. The encoder channel 

signals are digitally acquired at the same sampling rate as the current. The experimental setup is shown in Fig. 

AIII.1. Regarding the features estimation, novelty detection and diagnosis calculation, the algorithms are carried 

out in a computer under Matlab. 

 

Fig. AIII.1. Scheme of the experimental setup formed by a drive motor, a gearbox, a two-cam camshaft, a stator current probe, an encoder 

and an acquisition card. C1 and C2 correspond to the disturbed cams in terms of required effort pattern. 

Fault Scenarios Available 

 

Three different experimental cases are available from the test bench: the healthy condition, H, and two faulty 

conditions by inducing effort disturbances. The first fault condition, F1, involves the decrease of 25% of the effort 

pattern related with the first cam, C1, through the adjustment of the thumbscrew related to the load grip by 

means of a dynamometric key. The second fault condition, F2, includes a decrease of 25% of the effort pattern 

related to both of the cams, C1 and C2, also by the adjustment of the thumbscrew related to the load grip. 

It must be taken into account that the induced fault scenarios correspond to common degradation patterns 

due to the continuous machine operation. Thus, although the effort disturbances induced by the fault conditions 

can be considered incipient deviations, it is expected to extract by the proposed methodology the corresponding 

affectation over the motor stator current 
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Signal Processing 

 

It is well known that malfunctions caused by a misadjusted cam in a camshaft-based machine can be 

reflected in any part of the full shaft turn and, sometimes, the misadjusted cam can be tracked by analyzing the 

theoretical cam effort pattern [85]. Nevertheless, the information regarding the theoretical cam effort pattern is 

not always available or the association of the effort pattern to the corresponding part of the shaft turn is not 

always possible or accurate. 

Due to these reasons, a signal processing approach capable of monitoring the changes of efforts in the full 

shaft turn and keep track of the position of the shaft is needed. Since the misadjusted cams cause an instant 

amplitude change in the current of the motor and in the spectral distribution, a time-frequency method is 

proposed to monitor the changes in the whole turn of the shaft and highlight the changes in the spectral 

distribution.In order to highlight the deviations during the operation of the machine, the calculation of a NTFM 

is employed.  

The Short-Time Fourier Transform (STFT) is a local Fast Fourier transform applied on a sliding window. This 

way, it is possible to observe the evolution of the frequency content over time. The STFT of a signal y is noted 

Y(m,f), being m the temporal index and f the spectral index. The magnitude squared of the STFT |Y(m,f)|², is 

called spectrogram and is expressed in dB as 20log(|Y(m,f)|). 

The STFT analysis might be difficult since the modeling of the system is a complex task. Nevertheless, 

dealing with the presence of undesired patterns of operation in the machine, the objective is to be able to detect 

changes between the STFT corresponding to the healthy condition of the machine, and the STFT corresponding 

to the faulty one. In this regard, the normalization of the STFT is a suitable approach, this technique is a 2D 

extension of the statistic-based method. The main idea is to compute a statistical reference of the healthy STFT 

by computing the average spectrogram M(m,f) and the standard deviation S(m,f) of each time-frequency point. 

These are computed on a reference spectrogram, considering that the system is in a healthy state at the 

beginning. The normalized spectrogram, YCR(m,f), called normalized time frequency map, is computed 

according to Eq. AIII.1. 

𝑌𝐶𝑅(𝑚, 𝑓) =
|𝑌(𝑚, 𝑓) − 𝑀(𝑚, 𝑓)|

𝑆(𝑚, 𝑓)
 Eq. AIII.1 

 

The normalized spectrogram YCR(m,f) is considered to follow a standard normal distribution, No(0,1), and 

the normalization process can thus be assimilated to a student t-test. So, for each new STFT, the associated 

NTFM will have a value close to zero in case of similarity with the healthy STFT used as a reference, and a 

higher value in case of dissimilarities. The value is then proportional to the difference from the reference. Thus, 

the differences from the healthy condition are emphasized. Then, it is possible to estimate the quantity of such 

difference of a complete STFT or a specific region by adding the values of the complete NTFM or the considered 

region, respectively. More details can be found in [86]. 

As aforementioned, the NTFM is obtained by means of the STFT of the acquired signal but normalized in 

regard to a reference, which is a STFT over the healthy condition during the calibration process. Each NTFM 

calculated from the current of the motor has a time window length corresponding to one full shaft turn. 
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The resulting frequency map presents an increment or decrement in those time-frequency regions in which 

the behavior of the analyzed signal differs from the reference; therefore, a NTFM calculated over a healthy 

condition presents values close to 0 and a NTFM calculated over a deviated operating condition exhibits values 

distant from 0 throughout the time-frequency representation. Fig. AIII.2(a) and Fig. AIII.2(b) show an example 

of the current of the motor working under a healthy condition and a faulty condition, respectively. The 

corresponding STFT of the currents are shown in Fig. AIII.2(c) and Fig. AIII.2(d). The NTFM calculated over 

the STFTs are shown in Fig. AIII.2(e) and Fig. AIII.2(f), where the healthy and faulty conditions show clear 

differences. It can be noted that, if both STFT are compared (Fig. AI.2c and AI.2d), the differences between the 

healthy and faulty condition are not obvious. Nevertheless, when the NTFM are computed, the difference is 

highlighted in different parts of the spectrum. 

 

Fig. AIII.2. Calculation of the NTFMs parting from the STFTs of the stator current. a) Example of time-based stator current under healthy 

condition. b) Example of time-based stator current under faulty condition. c) Corresponding stator current STFT under healthy condition. d) 

Corresponding stator current STFT under faulty condition. e) Resulting stator current NTFM under healthy condition. e) Resulting stator 

current NTFM under faulty condition. 
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A.IV End-of-line test machine for steering systems 

In order to test the methodologies presented on this thesis in an industrial environment, an EOL test 

machine that performs a friction test to steering systems is used. The machine under study performs a friction 

test over the manufactured parts (steering system). Note that the machine applies its own algorithm to determine 

the healthy state of the part but the aim of this work is to monitor the proper function of the machine.  

A picture of the end-of-line machine under monitoring is shown in Fig. AIV. 1, where a 1.48kW synchronous 

servomotor with 4 pair of poles, 3000 rpm of rated speed and a rated torque of 4.7Nm is connected to a 60:1 

reduction gearbox. 

 

Fig. AIV.1. Machine that performs the end-of-line test composed by a servomotor, a gearbox, an encoder, a torque transducer and a 

pneumatic clamp to hold the intermediate shaft of the steering system. 

An encoder of 9000 points of resolution follows the gearbox and is coupled to a 10Nm torque transducer 

by a torque limiter coupling. The other side of the torque transducer is coupled to the steering system. A scheme 

of the parts composing the friction test machine is shown in Fig. AIV.2. The measurement equipment, in order 

to monitor the machine, is focused on the acquisition of the torque signal of the transducer and the rotatory 

shaft position from the encoder. Data acquisition is done at 1 kHz of sampling frequency by a NI cDAQ-9188 

composed by the modules NI 9411 and NI 9215. 

 

Description of the friction test 

 

The purpose of friction test is to quantify the DC value of the torque to rotate the steering system. The EOL 

machine forces the steering system column to follow a predefined speed profile which consist of a complete 

clockwise turn (CW) and a complete counter clockwise turn (CCW). The speed profile performed by the test 

machine is shown in Fig. AIV.3. 
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Fig. AIV.2. Schematic of the end-of-line machine under monitoring and the acquisition system. 

 

Fig. AIV.3. Speed profile applied by the EOL test machine. 

The test starts smoothly in a clockwise direction for the first 45º until a speed set point is reached. The 

acceleration time depends on the drive capability. During the next 455º the speed is fixed at the set point, in this 

case 15 rpm. Then, the same procedure is employed to return to the original start point in the opposite direction. 

This speed profile shown in Fig. AIV.3, provokes a torque in the shaft that it is measured by the torque 

transducer. An example of the torque measurement of a complete test under machine healthy conditions and 

the analyzed segment of three different conditions are shown in Fig. AIV.4. 
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Fig. AIV.4. Torque signal measured during a test a) Complete torque measurement under machine healthy conditions b) Analyzed segment 

of a healthy machine measurement c)Analyzed segment of a machine misalignment fault d) Analyzed segment of a machine coupling wear 

fault 

Scenarios available of the EOL test machine 

 

Several fault conditions have been induced in the machine to provoke two common fault conditions, 

moreover, three severity levels have been also considered for each fault. Thus, three severity degrees of 

misalignment, MIS5, MIS6 and MIS7, and three severity degrees of coupling wear, CW1, CW2, and CW3. 

The misalignment fault of the shaft has been provoked by the controlled displacement of the base of the 

fixture holding the steering system. This induces a misalignment of the steering system respect to the shaft 

holder. Three degrees of severities are considered regarding the distance that the fixture is displaced 

horizontally: 5mm (MIS5), 6mm (MIS6) and 7mm (MIS7). 

The coupling wear fault is emulated by employing three different intermediate elastomers in the torque 

limiter coupling, each one with different dynamic torsional stiffness (DTS). The values of the DTS of the used 

elastomers are all lower than the standard used in the healthy machine in order to emulate classical wear. 

The DTS values of the three elastomers corresponds to a low degradation degree, 2580Nm/rad (CW1), 

intermediate degradation degree, 2540 Nm/rad (CW2), and high degradation degree, 876 Nm/rad (CW3). 

Additionally, a sliding malfunction is caused by varying the tightening torque of the screws of the coupling 

between the torque transducer and the pneumatic clamp. The screws are loosened 0.5 Nm from the nominal 

tightening measured by a torque wrench. To test the capacity of the proposed methodology to detect novel 

scenarios, the measurements corresponding to this fault are going to be considered as an emerging novelty 

condition (Nc). 
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Characteristics of the dataset. 

 

Eight classes regarding the condition of the machine are available:  

 Healthy condition: Hc. 

 Six faulty conditions: MIS5, MIS6, MIS7, CW1, CW2, CW3. 

 Novelty condition: Nc. 

For each class, four different models of steering systems have been tested. The four models possess the 

same structure described previously, but with different brands of components. It is important to note that all the 

steering systems used were in healthy state, in order to focus the analysis on the state of the test machine. 

The expected torque response is slightly different for each steering system model. The four steering 

system models have a different reference pattern, therefore it is expected that the performance of the 

methodologies tested are affected by the variability of the torque response of the models. Nevertheless, it is 

desired to assess the capability of the methodologies to generalize between different models of steering system 

and correctly identify the machine condition. 

For each one of the 4 models, 20 friction tests are performed, that leads to a total of 80 measurements for 

each class. Then, the dataset consist of a total of 640 measurements. 

 


