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Chapter 1
Introduction

1.1 Quantum Fluids

The term quantum fluid refers to a liquid or a gas at a sufficiently low tem-

perature so that the interaction between its constituent particles is governed

by quantum mechanics effects. Superfluids, superconductors and Bose-Einstein

condensates are some of the most significant quantum fluids discovered until

date.

In mid 17th century, Robert Boyle performed a series of experiments on cold,

a subject left untouched since the ancient Greeks, who believed in the existence

of a source of all cold. With his experiments, Boyle truly began studying cold

and opened the door to further studies. At the beginning of the 18th century,

Guillaume Amontons predicted an absolute zero of approximately −240 ºC by

extrapolating to zero pressure the relation between air pressure and temperature.

This triggered the start of liquefaction of natural gases, which became the staging

point for low temperature physics. During the 19th century, chlorine, oxygen,

nitrogen were liquefied at T = 239 K, T = 90 K and T = 77 K respectively.

In 1898 James Dewar finally liquefied hydrogen at T = 23K by using a

vacuum flask. Previously, in 1895, helium was first isolated on earth by William

Ramsay, but it was not until 1908 that Heike Kamerlingh Onnes liquefied it

at T = 4 K, achievement that led to Onnes being awarded the Nobel Prize in

Physics on 1913. Years later, on 1926, Willem Hendrik Keesom was able to

solidify helium by applying external pressures.

All these advances allowed to study the behaviour of different materials at

very low temperatures. Regarding conductivity, some scientists expected that

upon reaching values near absolute zero the electricity current will halt. However,
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Onnes instead observed, when using liquid helium to cool mercury, the resistance

simply vanishing below T = 4K, effect that was termed superconductivity.

Around 1930, Keesom [1] observed that the specific heat of liquefied helium

displayed a maximum at T = 2.17 K, named λ-point. Since such behaviour is

expected of a phase transition, the idea developed that liquid helium existed in

two phases: helium I for T > Tλ and helium II for T < Tλ, being Tλ = 2.17 K

the critical temperature. Finally, in 1938, experiments performed by Allen and

Misener [2], and Kapitza [3] showed that helium II flow without viscosity. This

lead Kapitza to coin the term superfluid for helium II.

Previously, in 1924, the Bose-Einstein condensate (BEC) was predicted by

Satyendra Nath Bose and Albert Einstein. At low enough temperature, a large

portion of the quantum particles of a system would condensate into the same

quantum state, called the condensate, while the remainder would behave con-

ventionally. First thought to be a pathology of the ideal gas, that will disappear

as soon as interactions were taken into account, was recovered by Fritz London

in 1938 to explain superfluidity in helium II. He pointed out that 4He atoms

obey Bose statistics and associated the lambda transition to the formation of a

Bose-Einstein condensate, suggesting that superfluid helium II is constituted by

atoms occupying the lowest energy single-particle state.

Also, Laszlo Tisza proposed a two-fluid model in order to explain the super-

fluidity in helium. In his model, the flow of helium II acts as a mixture of two

fluids: One, called the superfluid, has neither viscosity nor entropy and can flow

without dissipation. The other, called normal fluid, does have a finite viscosity

η and carries all the entropy S. The total density ρ is given by the sum of the

superfluid density ρs and normal-fluid density ρn. Is expected that ρs = 0 at

lambda transition, and ρn = 0 at T = 0 K.

In opposition to London, Lev Landau explained the superfluidity phenomenon

by introducing the notion of quasiparticle, that is the excitation of the system

from ground state with particular values of energy and momentum. Using this

concept and without referring explicitly the idea of a Bose-Einstein condensate,

Landau postulated that in the two-fluid model proposed by Tisza, the superfluid

component is the liquid that remains at ground state. Meanwhile, the normal

component is the sum of quasiparticles, excited from the superfluid in increasing

numbers as the temperature is increased from absolute zero. If the velocity of

the system is not high enough to excite a quasiparticle, the system remains in

the ground state and is able to flow without dissipation.

In 1947, Nikolay Bogoliubov studied a Bose gas with weak repulsive inter-

action, assuming that it would form a Bose-Einstein condensate. The results
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showed that the low energy excitations for this system are collective modes with

non-zero velocity. This means that the excited states in a Bose system with

weak interaction presenting BEC can be described in terms of the quasiparticles

conjectured by Landau.

The London conjecture that the BEC fraction is equal to the superfluid

fraction was thus proved wrong. In liquid 4He, the superfluid fraction is almost

1 at zero temperature, while the BEC fraction is much lower. However, the

general consensus is that superfluidity has to be seen as a consequence of Bose-

Einstein condensate, or at least quasi-condensate, as many superfluid effects in

liquid 4He are accompanied by a non-zero BEC fraction.

The present understanding of superfluidity comes from the study of liquid

helium, since no other condensed Bose system is known to become superfluid

below a certain temperature. To gain a deeper insight, it is necessary to study

other systems in search of superfluidity. The most plausible candidate is molecu-

lar para-hydrogen (pH2), as first proposed by Ginzburg and Sobyanin in 1972 [4].

However, the main problem is that bulk hydrogen crystallizes at a temperature

T = 13.8 K, while the temperature in which BEC is expected to appear is ∼ 1

K. Despite this, experiments in small clusters of pH2 at low temperature point

out to a superfluid behaviour [5], keeping the interest in this matter alive. Also,

non crystalline states of pH2 can be accessed through numerical simulations.

On the other hand, the development of laser cooling in the 1980s provided

a way to experimentally obtain gases at very low temperatures, by applying

laser beams to the atoms in multiple directions thus slowing them down. In

addition, magnetic fields allowed for the creation of traps that, acting as external

potentials, confine the atoms. This advancements put BEC within sight again.

In 1995, Cornell and Wieman cooled a 87Rb gas down to 0.2µK, achieving the

first gaseous BEC [6]. Later in the same year, Ketterle and his group produced a

BEC of 23Na atoms using the same technique [7]. From this point forward, more

BEC experiments using ultracold gases have been performed, more commonly

using rubidium and sodium. These gases typically exist in a temperature range

between 100 and 1 nK, and 99% of the atoms lie in the condensed state. Cornell,

Wieman and Ketterle shared the Nobel Prize in 2001 for these achievements.

1.2 Monte Carlo methods

Monte Carlo methods are computational algorithms that rely on stochastic sam-

pling in order to obtain numerical results. They have a huge versatility that

allows its use in different problems of different nature. They can be used, for
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instance, in optimization methods, generating draws from a probability distri-

bution or in numerical integration.

They are widely used in condensed matter physics in order to study systems

with many coupled degrees of freedom. Such high number of degrees of freedom

makes necessary to describe the system within a statistical approach. Being

µ a state of the system, a statistical weight ωµ is defined that indicates the

probability of the system being in that state µ. These weights must satisfy
∑

µ ωµ = 1. The average of any observable O can then be calculated as

〈O〉 =
∑

µ

Oµωµ . (1.1)

Of course, this sum is performed over an infinite number of states and can be

solved analytically only in a few special cases. Using Monte Carlo methods,

instead of requiring all the states in order to integrate equation 1.1, we sample

the states that the system can occupy and compute the observable over this

sampled states.

For a classical system with temperature T , the probability distribution of its

states is given by the Boltzmann distribution

ωµ =
1
Z
e−βEµ , (1.2)

where Z =
∑

µ e
−βEµ is the partition function, β = 1/kBT and Eµ is the energy

of the state µ. With this, we obtain an approximation for the observable O,

〈O〉M,pµ =
∑M

i=1 Oµi
p−1

µi
e−βEµi

∑M
i=1 p

−1
µi
e−βEµi

, (1.3)

where we have sampled the system over M states µi according to a probability pµ,

which is a probability distribution similar to the one of the simulated system.

This is called importance sampling, and is a fundamental part of the Monte

Carlo methods. This approximation 〈O〉M,pµ is a gaussian variable with mean

value 〈O〉 and with standard deviation ∝ 1/
√
M . By increasing the number of

sampled states M , the approximation of 〈O〉 becomes better. The choice of a

good probability distribution for the importance sampling greatly improves the

accuracy of the approximation.

Taking into account all that, we now need a way to sample an arbitrary

probability distribution pµ, as the pseudo-random number generators commonly

used in computer applications are able to sample uniformly the real numbers

in the interval [0, 1). We need to use this as a basis for the sample of any
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probability distribution p(x). The Metropolis algorithm [8] provides an effective

method to solve this despite the analytical complexity or the dimensionality of

the problem.

Based on the theory of the Markov chains, the Metropolis algorithm makes

use of the evolution of a stochastic process Π(x|y) that satisfies the detailed

balance condition with p(x):

Π(x|y)p(y) = Π(y|x)p(x) . (1.4)

The choice of Π(x|y) needs only to satisfy this condition, and is convenient

to write it as

Π(x|y) = T (x|y)A(x|y) , (1.5)

where T (x|y) is a stochastic process that we can sample, and A(x|y) indicates the

probability of accepting the change from configuration y to x sampled according

to T (x|y).

Commonly, T (x|y) is chosen symmetric, T (x|y) = T (y|x), and the Metropolis

algorithm fixes A(x|y) according to

A(x|y) = min

(

1;
T (y|x)p(x)
T (x|y)p(y)

)

= min

(

1;
p(x)
p(y)

)

(1.6)

In the end, following this implementation yields a number of steps one must

perform in order to accept a change in a state. Being xi the i-th state in a

sequence of random states, we generate a new state x′ using the stochastic

process T (x′|xi). We evaluate A(x′|xi) = α ≤ 1, according to equation 1.6.

The change from xi to the new state x′ is accepted with a probability α. This

means, drawing a random number r ∈ [0, 1), and verifying if r < α. If accepted,

xi+1 = x′, and if refused xi+1 = xi. The same procedure is repeated for further

states.

Despite is ability to sample any probability distribution, the Metropolis al-

gorithm present two weak points. First, is only correct asymptotically. Second,

two following variables in the sampled sequence are strongly correlated between

each other.

The first problem can be avoided by thermalizing the system before comput-

ing any observable, thus discarding a certain number of steps that belong to

transient regimes. The correlation between sampled variables can be relieved

by performing data blocking, that consist in diving a sequence of M variables

among N blocks, each composed by K = M/N variables. By estimating the
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desired observables on each of these blocks, we obtain a set of N values that, for

a large enough K are to be considered statistically independent.

In this thesis we will use Monte Carlo methods in order to solve the many-

body nature of quantum systems. These Monte Carlo methods applied to quan-

tum systems are referred as Quantum Monte Carlo (QMC) methods, and will

be explained in more detail in further chapters.

1.3 Thesis objectives and outline

The main objective of this thesis is to study static and/or dynamic properties of

a set of quantum fluids by means of quantum Monte Carlo (QMC) techniques,

mainly using the path integral formalism to obtain results both at zero and finite

temperature.

The outline of the thesis is the following:

2. In Chapter 2 we present all the details regarding the Path Integral Monte

Carlo method used in the other chapters, as well as its extension at ground

state known as Path Integral Ground State. After introducing the basic

formalism, we comment on the action we have used, as well as its compar-

ison with other existent approximations which aim is to see if our action

can be improved. We also comment on how to construct a parallelization

scheme for the Path Integral Monte Carlo method, as well as the advanced

sampling techniques we have used in our calculations. Finally, we comment

on the physical observables whose implementation we have added in our

code.

3. In Chapter 3 we show the results obtained for the phase diagram of a

one-dimensional Coulomb gas, obtained using the Path Integral Monte

Carlo method. The phase diagram has been constructed mainly by calcu-

lating energetic and structural properties of the one-dimensional Coulomb

gas. This results extend previous knowledge of different phases in the one-

dimensional Coulomb gas at zero temperature.

This work has been published in:

G. Ferré, G. E. Astrakharchik, and J. Boronat. “Phase diagram of a

quantum Coulomb wire”. Phys. Rev. B 92, 245305, (2015).

4. In Chapter 4 we study different proposals for quasi-one-dimensional para-

H2 and how starting from pure one-dimensional systems affects the Lut-

tinger parameter. This is done at zero temperature using Path Integral

http://dx.doi.org/10.1103/PhysRevB.92.245305
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Ground State. As para-hydrogen is an important candidate to superflu-

idity, the main idea behind study a quasi-one-dimensional system is to

reduce dimensionality in order to soften intermolecular attraction.

The main results from this work has been published in:

G. Ferré, M. C. Gordillo, and J. Boronat. “Luttinger parameter of

quasi-one-dimensional para−H2”. Phys. Rev. B 95, 064502, (2017).

5. In Chapter 5 we show the results of our extensive study of the dynamic

structure factor for the 4He. Using Path Integral Monte Carlo, we com-

pute the intermediate scattering function at different temperatures and

perform an inversion in order to gain access at the dynamics of the system.

Despite the ill-posed problem of this inversion, we obtain results in quali-

tative agreement with the experiments and prove that our method, despite

having to yield with inversion problems, obtained better numerical results

for 4He at finite temperature than the ones previously in the bibliography.

The main results from this work have been published in:

G. Ferré and J. Boronat. “Dynamic structure factor of liquid 4He across

the normal-superfluid transition”. Phys. Rev. B 93, 104510, (2016).

G. Ferré, R. Rota, and J. Boronat. “Momentum Distribution of Liquid 4He

Across the Normal-Superfluid Phase Transition”. Journal of Low Temper-

ature Physics 187, 390–397, (2017). issn: 1573-7357.

W. Dmowski et al. “Observation of dynamic atom-atom correlation in liq-

uid helium in real space”. Nature Communications 8, 15294, (2017).

6. Finally, in Chapter 6 we work on a method to sample complex-time cor-

relation functions whose aim is to obtain better dynamic structure factor

functions than the ones obtained via pure imaginary-time correlation func-

tions. This model has already been tested for single particle in an external

potential. Our aim is to test it for multi-particle systems, and to see if

we can still recover good results at a reasonable high complex-time when

the number of particles is closer to the typical simulation values of real

systems.

http://dx.doi.org/10.1103/PhysRevB.95.064502
http://dx.doi.org/10.1103/PhysRevB.93.104510
http://dx.doi.org/10.1007/s10909-016-1679-5
http://dx.doi.org/10.1038/ncomms15294




Chapter 2
Path Integral Monte Carlo

method

In this chapter we introduce the Path Integral Monte Carlo method, the main

Quantum Monte Carlo method used during the development of this thesis. We

begin with a brief introduction on the various Quantum Monte Carlo methods

that are used in order to solve quantum many-body problems. After that, we

discuss the theoretical basis for the Path Integral Monte Carlo (PIMC) method.

We comment on the various approximations that can be used to optimize the

calculations, as well as explain how the sampling is performed. After that, we

discuss how different properties are computed. Finally, we focus on the main

differences between the Path Integral at Ground State (PIGS) and PIMC.

2.1 Quantum Monte Carlo methods

The term Quantum Monte Carlo (QMC) encompasses all the Monte Carlo meth-

ods aimed at the study of quantum systems, by determining the quantum expec-

tation values of observable properties. In QMC, the multi-dimensional integrals

that arise from the many-body problem formulation are handled via the Monte

Carlo method. In fact, QMC methods are the most accurate tool to deal with

ground-state properties. In the case of bosonic systems, these methods are able

to produce essentially exact results for its equation of state and structural prop-

erties, that are in both cases in close agreement with experimental data [9]. On

the other hand, they provide an approximate but very accurate description for

fermionic systems. This approximation for the fermionic systems is due to the

sign problem: the wave function is not positive defined as it must be antisym-

metric under particle permutations. As it is not positive, it fails to be used
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as a probability distribution that could be sampled via Monte Carlo methods.

Importantly, QMC methods are not restricted to the limit of zero temperature

and are equally powerful to deal with finite temperatures through the sampling

of the statistical density matrix, as it is the case of Path Integral Monte Carlo

(PIMC) method.

The evolution of QMC methods is strongly connected with the increasing

interest in the study of 4He condensed phases. Variational Monte Carlo (VMC)

method was presented by McMillan [10], where he uses the expectation values of

the many-body wave functions introduced by Jastrow [11] in conjunction with

the Metropolis algorithm [8] (see Section 1.2) in order to sample distribution

functions. This method provides an upperbound for the ground-state energy of

liquid 4He, which is in close agreement with experimental results. In essence,

VMC is not different from any variational method except in the use of Monte

Carlo techniques in order to evaluate the multi-dimensional integrals.

An improvement over the previous method is the Diffusion Monte Carlo

(DMC) method [12], which provides exact results for the ground state of bosonic

systems. It works solving the imaginary-time Schrödinger equation introducing

importance sampling through a trial wave function. DMC is numerically exact

for bosons since it could find the exact ground state energy for any quantum

system, within given errors. The algorithm scales polynomically with the system

size for bosons, making it one of the most efficient methods when dealing with

bosonic systems at zero temperature [9].

The issues involving DMC simulations with fermions arise from the sign prob-

lem. As explained previously, the antisymmetry in the fermionic wave function

make it unable to be used as a probability distribution that can be sampled via

Monte Carlo. In order to solve that, one can use Fixed Node Diffusion Monte

Carlo, that is done by performing a DMC simulation while imposing the nodes

of a model trial wave function [12].

All the previous methods tackle the simulation of many-body quantum sys-

tems at zero temperature. On the other hand, the Path Integral Monte Carlo

(PIMC) method [13, 14] provides a fundamental approach to the study of inter-

acting many-body systems at low temperature [15, 16]. As commented before,

PIMC relies in the sampling of the thermal density matrix. By using its convolu-

tion property, one can estimate the density matrix at low temperature from their

knowledge at a higher temperature where the system is well described by classi-

cal statistical mechanics [17–19]. As suggested by Feynman [18], an isomorphism

exists between the canonical partition function of quantum particles to that of

classical polymers. PIMC exploits this idea by mapping a finite-temperature
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quantum system to a classic system of polymers [20, 21]. Up to recently the

implementation of this method by Ceperley [14] was the conventional one, but

it meets important problems when trying to determine superfluid properties. In

this sense, the worm algorithm [22] presents a different approach to the standard

PIMC method that successfully samples the permutation space. More extensive

information about the Path Integral Monte Carlo method theory and implemen-

tation will be introduced in the following sections.

As it was the case at zero-temperature QMC calculations, the PIMC method

must also undergo some changes in order to deal with simulations of fermionic

systems. In this case, the changes are computationally more expensive since

the model deals with the nodes of the density matrix instead of the ones of the

wave function. A generalization of the Fixed Node approximation done at zero

temperature for the DMC method can be done in the PIMC method framework,

called Restricted Path Integral Monte Carlo [23]. However, this method loses

consistency near the critical point.

One can extend the path integral formalism from finite temperature to the

ground state, in what is known as Path Integral Ground State (PIGS) [24–

26]. By noticing an equivalence between the Green’s function used in DMC-

like methods and the thermal density matrix, one can use the path integral

formalism from PIMC in order to achieve the ground state starting from an

initial trial wave function. This is done by systematically improving the initial

wave function used in the simulation. More detailed information about the PIGS

method can be found at section 2.6.

2.2 The Path Integral Monte Carlo method

As introduced in the previous section, the PIMC method relies on the sampling

of the thermal density matrix, as the properties of a quantum system in thermal

equilibrium can be obtained from it [18]. The thermal density matrix operator

of a quantum system with Hamiltonian Ĥ at a temperature T is given by

ρ̂ =
e−βĤ

Z
, (2.1)

where β = 1/(kBT ), kB is the Boltzmann constant, and Z = Tr(e−βĤ) is the

partition function. The Hamiltonian can be descomposed as Ĥ = K̂ + V̂ , being

K̂ and V̂ the kinetic and potential operators respectively. In a bulk system of
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N interacting particles, this operators can be written as

K̂ = − ~
2

2m

N∑

i=1

∇2
i (2.2)

V̂ =
N∑

i<j

V (rij) (2.3)

The knowledge of ρ̂ allows for the calculation of the expected value of any oper-

ator Ô,

〈Ô〉 = Tr(ρ̂ Ô) , (2.4)

which in coordinate representation turns to

〈Ô〉 =
∫

dR ρ(R,R; β)O(R) , (2.5)

with R = {r1, . . . , rN} for an N -particle system and ρ(R1,R2; β) = 〈R2|ρ̂|R1〉.
One can also write the partition function as

Z =
∫

dR ρ(R,R; β) (2.6)

As for the product property, the product of two density matrices, e−(β1+β2)Ĥ =

e−β1Ĥe−β2Ĥ is a density matrix. One can write this property in coordinate

representation, which gives rise to the convolution property:

ρ(R1,R3; β1 + β2) =
∫

dR2 ρ(R1,R2; β1)ρ(R2,R3; β2) , (2.7)

The noncommutativity of the quantum operators K̂ and V̂ makes impractical

direct calculations of the partition function 2.6. In PIMC, this can be solved by

applying some approximations to the term e−βĤ , beginning by making use of

the convolution property.

By applying the product property M times we obtain the density matrix at a

temperature β = 1/T as the product of M density matrices at the temperature

τ = β/M = 1/MT :

e−βĤ = (e−τĤ)M = (e−τ(K̂+V̂ ))M , (2.8)

Deep in the quantum regime, i.e., at very low temperature, the estimation of the

density matrix for a many-body system is obviously a hard problem. However,
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the convolution property of ρ̂, expressed as Eq. 2.8 in coordinate representation,

ρ(R1,RM+1; β) =
∫

dR2 . . . dRM

M∏

α=1

ρ(Rα,Rα+1; τ) , (2.9)

with M an integer and τ = β/M , shows how to build the density matrix at the

desired temperature T from a product of density matrices at a higher tempera-

ture MT . Is important to notice that the thermal density matrix operator ρ̂ (Eq.

2.1) is formally equivalent to an evolution operator in imaginary time t = iβ.

From this feature, we may understand Eq. 2.9 as an evolution in imaginary time

from an initial configuration R1 to a final configuration RM+1, rewritten with a

series of intermediate steps R2 . . . dRM , that define a discrete path in the space

of configurations. As the time increment approaches zero, the path becomes

continuous.

As commented previously, one key aspect of the PIMC method is its ability to

map a quantum N -particle system into a classical system of N x M particles [18].

These M classical particles are termed beads, and each one of them corresponds

to a configuration Rα ∈ (R1 . . .RM) that arises from Eq. 2.9. From this, one

can reinterpret the Eq. 2.5 as a classical configuration integral, where

S (Rα+1,Rα; τ) = − ln [ρ (Rα+1,Rα; τ)] (2.10)

is an analogous to a classical potential energy divided by a fictitious temperature.

In Eq. 2.10, the function S is called action and specifies the interaction between

the beads in the classical polymer mapping of the quantum system. We can

rewrite the thermal density matrix from Eq. 2.9 using the action as

ρ(R1,RM+1; β) =
∫

dR2 . . . dRM

M∏

α=1

e−S(R1,RM+1;β) . (2.11)

The action used on the PIMC algorithm depends on the thermal density matrix

approximation chosen, but in the end one can usually split it into kinetic and

potential contributions. It is important to note that the density matrix shown in

equation 2.11 is for particles without symmetry. If we want to take into account

symmetry, we have to use the general form

ρB/F (R1,RM+1; β) =
1
N !

∑

P
(±1)Pρ(R1,PRM+1; β) . (2.12)

The sampling of permutations is explained in detail in section 2.4.2.
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2.3 Approximations for the action

As explained in the previous section, the noncommutativity of the quantum

operators K̂ and V̂ force us to make some kind of approximation on Eq. 2.8.

For a large enough temperature, the number of convolution terms M will be

large so that the convergence to the exact value will be warranted by the Trotter

formula [27]

e−β(K̂+V̂ ) = lim
M→∞

(

e−τK̂e−τV̂
)M

. (2.13)

Knowing that by making M large enough we will recover the exact result,

our objective is to work with a good approximation that yields converged results

while maintaining the number of convolution terms as low as possible. Aiming

at this, we can estimate all the commutators between K̂ and V̂ , following the

Baker-Campbell-Hausdorff formula

e−τ(K̂+V̂ ) = e−τK̂e−τV̂ e− τ2

2 [K̂,V̂ ]e− τ3

6 (2[V̂ ,[K̂,V̂ ]]+[K̂,[K̂,V̂ ]]) . . . . (2.14)

The first approximation one can think of when looking at Eq. 2.14 is the

called primitive action or primitive approximation (PA). In the limit of high

temperatures, small imaginary time τ , we can neglect the terms of higher order

on the Baker-Campbell-Hausdorff to obtain

e−β(K̂+V̂ ) ≃ e−βK̂e−βV̂ . (2.15)

Taking that into account that ρ(R1,R2; β) = 〈R2|ρ̂|R1〉, we can work with the

operators separately. For the kinetic operator we get

〈Rα|e−τK̂ |Rα+1〉 =
( 1

4πλτ

)dN/2

e− (Rα+1−Rα)2

4λτ , (2.16)

with d as the dimensionality of the system, λ = ~
2/2m and defining (Rα+1 −

Rα)2 =
∑N

i=1(ri,α+1 − ri,α)2. For the potential operator we obtain

〈Rα|e−τV̂ |Rα+1〉 = e−τV (Rα)δ (Rα,Rα+1) (2.17)

with V (Rα) =
∑

i<j V (rij,α), where i and j refer to the indices of the particles.
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Finally, using equations 2.15, 2.16, 2.17 on 2.9 one gets the thermal density

matrix for the primitive action

ρ(R1,RM+1; β) ≃
∫

dR2 . . . dRM

M∏

α=1

( 1
4πλτ

)dN/2

e− (Rα+1−Rα)2

4λτ e−τV (Rα) ,

(2.18)

which is a dN(M − 1)-dimensional integral. The expectation value of any ob-

servable (Eq. 2.5) is then written as

〈Ô〉 ≃
∫ M∏

α=1

dRαO(Rα)ρ(Rα,Rα+1; τ) , (2.19)

We can take advantage from the classical mapping of the PIMC method,

commented in the previous section, to write Eq. 2.18 using the positions of the

N x M particles that compose the classical system analogy.

ρP A(R1,RM+1; β) =
( 1

4πλτ

)dNM/2 ∫

dR2 . . . dRM (2.20)

exp



− 1
4λτ

M∑

α=1

N∑

i=1

(ri,α+1 − ri,α)2 − τ
M∑

α=1

N∑

i<j

V (rij,α)



 ,

with rij,α = ri,α − rj,α, and the i,j identifying the particle index and α the

index of the bead . Looking at the previous expression, we can see how the

thermal density matrix for the primitive action defines an harmonic interaction

between neighbouring beads within the same particle, as corresponds to a clas-

sical polymer formed by a necklace of beads connected by ideal springs. For

the potential density matrix, one can see an inter-particle potential interaction

V between beads, thus having the same imaginary time with the same index,

between different particles i [18, 28–30].

As one can see, the final result for the thermal density matrix using this

approximation (Eq. 2.20) is definite positive, thus it can be thought as a proba-

bility distribution that can be computed by Monte Carlo methods by sampling

all degrees of freedom using Metropolis algorithm [8]. Furthermore, one can

compute observable properties (Eq. 2.19) by averaging over sampled configura-

tions [20].

The exactness of equation 2.20 is linked to the number of convolution terms

or beads M . At a finite number it is indeed an approximation, but atM → ∞ the

result becomes exact as warranted by the Trotter formula 2.13. By increasing

M , we can decrease the systematic error that arises from the approximated

density matrix. By large enough values of M , this systematic error will be
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lower than the unavoidable statistical error present in Monte Carlo calculations

due to its stochastic essence, meaning that we could recover the exact value of

the expectation value 2.19. This is the reason why the PIMC method is often

referred as an exact method.

Despite all this, in practice the primitive approximation ρP A(R1,RM+1; β)

is not good enough in the study of certain systems. As shown in equation 2.14,

the primitive approximation is only accurate up to order τ 2, meaning that its

convergence to the exact value of the density matrix is slow as the number of

beads increases. For certain high temperature systems, with reduced quantum

effects, the primitive approximation performs fine. On the other hand, in the

study of highly degenerate systems or computations at low temperature, the

slow convergence of the primitive action requires an unaffordable large number

of beads in the simulation. In the end, the solution goes through developing

more complex forms for the action that are accurate at larger τ .

The primitive action approximation, as well as the approximations we ex-

plain in the next sections, are obtained directly from the exponential exp(−βĤ).

Another approach that also provides very accurate actions for low temperature

is the pair-product approximation [31], where the basic block of the PIMC chain

is the exact action for two isolated particles. This approximation has been

extensively used in the study of superfluidity and it is specially accurate for

hard-sphere-like systems such as 4He [14]. Its main flaw is the high complexity

of the two-body density matrix when taking into account non-radial interactions.

2.3.1 The Chin action

One way to increase the convergence speed of the primitive approximation

is taking into account more terms of the Baker-Campbell-Hausdorff formula

(Eq. 2.14). This was done by Takahashi-Imada [32] and, later on, by Li and

Broughton [33] in independent works, and approximates the imaginary-time op-

erator as

e−τĤ ≃ e−τK̂e−τV̂ e− τ3

24 [[V̂ ,K̂],V̂ ] . (2.21)

Compared with the primitive action (Eq. 2.15), it presents a double commutator

term which improves the accuracy of the approximation up to order τ 4, but only

for the trace (instead of the order τ 2 offered by the primitive approximation).

This double-commutator term can be calculated as

[[

V̂ , K̂
]

, V̂
]

=
~

2

m
|∇V |2 . (2.22)
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Since its dependency is only with the potential, one can write the Takahashi-

Imada (TIA) action (Eq. 2.21) as

e−τĤ ≃ e−τK̂e−τŴ , (2.23)

with

Ŵ = V̂ +
τ 2

24

[[

V̂ , K̂
]

, V̂
]

. (2.24)

This improvement over the primitive action has been proved in simulations of liq-

uid 4He [34]. The overall number of beads needed to reach convergence decreases

in a significant number. Despite the global computational effort of computing

this action increases due to the need to compute a double-commutator term, the

overall improvement of performance is significant.

Another way to improve the performance of the primitive action is through

a symplectic expansion as

e−τĤ =
n∏

i=1

e−tiτK̂e−viτV̂ , (2.25)

where {ti, vi} are parameters to be determined (according to the required ac-

curacy of the approximation). A good choice of these parameters can reduce

the error term in the right hand side of the equation, providing thus a better

approximation than the primitive action. It is important to note that, since the

final multidimensional integral must be defined positive in order to be sampled

via Monte Carlo method, all of these coefficients must be positive. However,

as proved by the Sheng-Suzuki theorem [35, 36], it is impossible to go beyond

second order of τ in 2.25 with the use of only positive coefficients.

In order to overcome this limitation, it is necessary to include terms with

the double commutator, as shown in equation 2.21. In its work with symplectic

expansions, Chin [37] recovers the result obtained in the Takahashi-Imada ap-

proximation if this term is included in the primitive approximation. Later on,

Chin and Chen [38] introduced a continuous family of gradient symplectic algo-

rithms, accurate up to the fourth order in the time step. This approach proved

its efficiency in solving the Schödinger equation [39], problems in classical me-

chanics [40], in the implementation of evolution operators in density functional

theory [41], and in some PIMC calculations [34]. In further work, Chin per-

formed a complete analytical characterization of these fourth-order propagators,

showing that they are fully fourth-order, not only in the trace, and thus improv-

ing Takahashi-Imada approximation [42].
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Using a symplectic expansion with the double-commutator term yields the

expression

e−τĤ =
n∏

i=1

e−tiτK̂e−viτV̂ e−wiτ[[V̂ ,K̂],V̂ ] , (2.26)

where the set of coefficients is now {ti, vi, wi}. An optimal choice of these coef-

ficients makes the expression 2.26 an effective sixth-order approximation.

From this basis arises the termed Chin action (CA) [34]:

e−τĤ ≃ e−v1τŴa1e−t1τK̂e−v2τŴ1−2a1e−t1τK̂e−v1τŴa1e−2t0τK̂ , (2.27)

where

Ŵa1 = V̂ +
u0

v1
a1τ

2
[[

V̂ , K̂
]

, V̂
]

(2.28)

contains the potential operator and double-commutator term, in a similar fash-

ion than in the Takahashi-Imada approximation (Eq. 2.24). As we can see, the

Chin propagator 2.27 splits the propagator into three smaller time ones.

The double-commutator term has been written previously with a dependency

only on the potential (Eq. 2.22). We can further develop this expression as

[[

V̂ , K̂
]

, V̂
]

= 2λ
N∑

i=1

|Fi|2 , (2.29)

where we can write

Fi =
N∑

j 6=i

∇iV (rij) (2.30)

as the force acting on a particle i, that will of course take into account only the

contributions of beads of the same index.

Thus, we can write the thermal density matrix approximation for the Chin

action as

ρCA(R1,RM+1; β) =
∫

dR2 . . . dRM

M∏

α=1

ρCA(Rα,Rα+1; τ) , (2.31)
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where ρCA(Rα,Rα+1; τ) is an elementary block of the propagator with width τ ,

and that is split into three as follows:

ρCA(Rα,Rα+1; τ) =
(

m

2π~2τ

)3dN/2
(

1
2t21t0

)dN/2 ∫

RαARαB exp

[

(2.32)

− 1
4λτ

N∑

i=1

( 1
t1

(ri,α − ri,αA)2 +
1
t1

(ri,αA − ri,αB)2 +
1

2t0
(ri,αB − ri,α+1)2

)

−τ
N∑

i<j

(
v1

2
V (rij,α) + v2V (rij,αA) + v1V (rij,αB) +

v1

2
V (rij,α+1)

)

−2τ 3u0λ
N∑

i=1

(
a1

2
|Fi,α|2 + (1 − 2a1) |Fi,αA|2 + a1 |Fi,αB|2 +

a1

2
|Fi,α+1|2

)]

.

In this expression, we have written the Chin action in a symmetrized way.

This result can be achieved by substituting the potential density matrix 2.17 for

a symmetrized effective potential. In closed polymers, like in the conventional

PIMC method, this symmetrized form is not needed, but it becomes necessary

when performing the Worm algorithm (section 2.4.2).

To improve the efficiency of the method, one needs to find optimal values

for the coefficients that appear in expression 2.27. It is important to note that

not all these parameters are independent: imposing that the right side of the

factorization is accurate up to τ 4, it is shown [38] that the coefficients must

follow

t1 =
1
2

− t0

v1 =
1

6(1 − 2t0)2
, v2 = 1 − 2v1 (2.33)

u0 =
1
12

(

1 − 1
1 − 2t0

+
1

6(1 − 2t0)2

)

,

where only t0 and a1 are free parameters, and must fulfill

0 ≤ a1 ≤ 1 (2.34)

0 ≤ t0 ≤ 1
2

(

1 − 1√
3

)

Chin has already proved to behave like an effective sixth-order approximation

in a large variety of systems [34], ranging from simple model systems like one-

dimensional harmonic oscillator to more complex quantum systems like 4He. All
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the results in this thesis have been obtained by using the this approximation, as

shown in equation 2.32.

2.3.2 Other approximations

One of the preliminary objectives of this thesis was to find an action that could

surpass the effectiveness of Chin Action in a PIMC calculation. One way to

try this goal is to follow the fourth-order expansions proposed by Chin [42, 43].

There, he defines a general (n− 1)-bead propagator of the form

T
(4)
(n−1)B (τ) =

n∏

i=1

etiτK̂eviτV̂ (2.35)

= ev1τV̂ et2τK̂ev2τV̂ et3τK̂ev3τV̂ . . . etnτK̂evnτV̂ .

We refer to (n−1) as the number of stages, or the number of time slices in which

the elementary block of the propagator, of width τ , is split. In this expression,

Chin defines t1 = 0, and the rest of coefficients are left-right symmetric (tn = t2,

tn−1 = t3, etc...). The number of free parameters will depend on the number of

stages chosen in the approximation (Eq. 2.35). They should satisfy

N∑

i=1

ti = 1 (2.36)

v1 =
1
2

+ λ2(1 − t2), vi = −λ2(ti + ti+1), vN =
1
2

+ λ2(1 − tN) = v1

λ2 = − 1
2φ
, φ = 1 −

N∑

i=1

t3i .

To the general expansion in equation 2.35, Chin adds the double-commutator

term τ 3
[[

V̂ , K̂
]

V̂
]

. Contrary to what was done in the Chin Action (Eq. 2.27),

in this expansion the double-commutator term is equally divided among the

time slices created from the elementary block τ . Thus, it shall be accompanied

with a coefficient

eV T V =
1
24

(

1
φ

− 1

)

. (2.37)

It is also important to note the order in which the operators appear in this

new expansion (Eq. 2.35) when compared to the Chin Action (Eq. 2.27). One

can rewrite the Chin Action factorization as

e−τĤ ≃ e−t0τK̂e−v1τŴa1e−t1τK̂e−v2τŴ1−2a1e−t1τK̂e−v1τŴa1e−t0τK̂ , (2.38)
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where, in order to write the propagator in a symmetric form, we have separated

the 2t0τK̂ term into two. We can identify this propagator as one of type KVK,

meaning that the kinetic operator appears in the extremities of the expansion.

The general expansion proposed above in equation 2.35 falls into the VKV prop-

agator type category. In the end, for n = 4, one can easily write a propagator of

one category in a different order because of the closed paths in PIMC. Thus, in

our case, these differences do not introduce important changes in the algorithm.

This allows us to write a propagator of one type to take the form of a propagator

of the other type. However, at a higher values of n this may not be possible

since the order of appearance of the parameters is different from one type to

another.

Going back at expression 2.35, for n = 4, we recover an approximation with

3 stages that resembles the Chin Approximation in 2.27,

T
(4)
3B (τ) = ev1τV̂ et2τK̂ev2τV̂ et3τK̂ev2τV̂ et2τK̂ev1τV̂ , (2.39)

with the main difference being that the double-commutator term in this expan-

sion is equally distributed. The free parameter in this expansion is t2 that must

obey 0 < t2 < 1/2. The rest of the parameters must follow

t3 = 1 − 2t2

v1 =
1
2

− v2, v2 =
1

12t2(1 − t2)
(2.40)

φ = 6t2(1 − t2)2, eV T V =
1
24

(

1
6t2(1 − t2)2

− 1

)

(2.41)

As can be seen, the range of accepted values for the free parameter is greater

in this approximation than in the Chin Action. The cause of this is that the

accepted range for t2 is not excluding some values that may yield negative coeffi-

cients: some values of t2 may cause the v1 coefficient to be negative. In such case,

we have a negative imaginary time-step in one term of the propagator, breaking

with the global positive imaginary time-step evolution. Also, such positive value

on a exponential may cause a singularity.

One can do a similar expansion for n = 5 and n = 6, obtaining 4 and 5-stages

propagators respectively. The propagator with 5 stages has two free parameters,

t2 and t3 that must obey 0 < (t2 + t3) < 1/2. In order to test the performance

of these propagators, we have carried out computations similar to the ones done
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Fig. 2.1 Performance comparison between Chin Action (Eq. 2.27) of type KVK
and a general symplectic expansion of type VKV with different number of stages
(Eq. 2.35) in a computation of liquid 4He at T = 1 K.

for the Chin Action in the past [34]: First, we perform various calculations at

high temperature when we check the convergence of each possible free parameter

value in the range with the number of beads. We then choose these values that

present less variance with the number of beads. Also, we prioritize the choosing

of values that present small differences with surrounding values. After that, we

perform a most exhaustive analysis at low temperature with the chosen values

with larger number of beads to see how they behave at demanding computations.

In Figure 2.1 we show the results obtained using different types of action in

a simulation of liquid 4He at T = 1 K. Chin KVK stands for the Chin Action

presented in the previous section, and we have perform computations using two

different t0 coefficients, while maintaining a1 = 0.33 for both, which makes the

contribution from the double commutator term to be splitted equally between

the time slies. For Chin VKV we have carried out calculations with differents

number of stages, ranging from 3 to 5. The general behaviour observed when
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the number of stages increases is a faster convergence, thus needing less beads.

Despite this gain, the computational cost also increases since each elemental

block τ is split into larger number of propagators. In the end, balancing this

two factors gives the edge to the Chin Action as showed in the previous section,

that yields good results despite being only a 3-stages method.

A recent work of Casas also present new families of propagators [44] with

coefficients optimized in order to achieve as high order of accuracy as possible.

From them, we have tried out a 3-stages VKV-type propagator

eτĤ = eτŴb1,c1ea1τK̂eτŴb2,c2ea2τK̂eτŴb2,c2ea1τK̂eτŴb1,c1 , (2.42)

with

Ŵb1,c1 = b1V̂ + c1τ
2[[V̂ , K̂], V̂ ] . (2.43)

This is also a symmetric propagator with coefficients {ai, bi, ci}, being a1 the

free parameter. In general, this value can range 0 < a1 < 1/2, as with the

generalization made by Chin (Eq. 2.35). However, as we have commented

before, some values can yield negative values on other coefficients. If we take
3−

√
3

6
< a1 <

1
2
, all coefficients are always positive except for c1. To also have c1

as positive, the range is reduced to 3−
√

3
6

< a1 < 0.350226.

The values of the other coefficients are computed from a1

a2 = 1 − 2a1

b1 =
1 − 6a1 + 6a2

1

12a1(a1 − 1)

b2 =
1

12a1(1 − a1)
(2.44)

c1 =
−5 + 78a1 − 474a2

1 + 1404a3
1 − 2088a4

1 + 1440a5
1 − 360a6

1

2880(a1 − 1)2a1(−1 + 6a1 − 12a2
1 + 6a3

1)

c2 =
−5 + 42a1 − 126a2

1 + 156a3
1 − 72a4

1

2880(a1 − 1)2a1(−1 + 6a1 − 12a2
1 + 6a3

1)
.

(2.45)

The work by Casas also presents some propagators without a double-commutator

term, supposed to work better in systems with strong short-distance potentials.

In the figure 2.2 we can see the comparison between this propagator and the

Chin Action presented in the previous section. We have performed this compar-

ison for one particle trapped in a one-dimensional Poschl-like well. Firstly, we

can compare the results between two 2-stages propagators, with and without the
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Fig. 2.2 Performance comparison between Chin Action (Eq. 2.27) of type KVK
and different types of propagators proposed by Casas [44] in a computation of
one particle trapped in a Poschl-type wall potential at T = 0.5 K.

double-commutator term. As shown in the figure, despite the difficulties we can

find in computing the double-commutator in such strong wall, the propagator

with double-commutator converges faster to the exact result. Of course, these

2-stages propagators converge slower than the 3-stages case. Both Chin KVK

(Eq. 2.27) and Chin VKV (Eq. 2.42) with a1 = 0.31 converge at the same speed.

Using a1 = 0.31 assures us that all the coefficients will have a positive value.

We have performed the same calculation with an optimized value that falls out

of this range, yielding some negative coefficients. Despite that, as shown in the

figure, using a1 = 0.06 yields a much faster convergence of this propagator when

comparing to the other 3-stages utilized.

Despite finding this noticeable result, using the same propagator in liquid 4He

computations and choosing a a1 parameter that yields some negative coefficients

does not yield such a faster convergence. Instead, the observed results are quite
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similar to the ones obtained using Chin general symplectic expansion 2.35 shown

in Fig. 2.1.

2.4 Implementing PIMC

In order to implement the PIMC method we take advantage of the classical

isomorphism, that allows us to describe the quantum N -body system as a clas-

sical system of N closed polymers formed by M particles or beads. By propos-

ing movements of these polymers we are able to obtain different configurations

{R1 . . .RM}, from which we will be able to sample observables (Eq. 2.19), as

will be explained in section 2.5.

As introduced in 1.2, the Metropolis algorithm [8] provides a simple and effi-

cient method to sample a probability distribution function despite its analytical

complexity or high dimensionality. Mainly, the implementation of this algorithm

in our PIMC method calculation consist of a few steps. First, given a configu-

ration Xi of our quantum system described by a classical system of polymers,

we generate a new configuration Xi+1 using a stochastic process. After that, we

evaluate if this new configuration is accepted or not. In the case the change is

accepted, we propose a new configuration Xi+2 and repeat the procedure.

It is important to note that if the sampled variables are computed every time

we generate a new configuration, the results will be strongly correlated. This is

usually solved by using data blocking, this is collecting a sequence of M estimated

values in N blocks, each made up of K = M/N elements. Then, we compute

the average inside each one of these blocks to obtain a set of N estimated values

for our observable that, with a large enough K, will be independent from each

other.

Also, the choice of the stochastic process to generate a new configuration

will affect the convergence of our method. If the proposed changes are small,

the acceptance rate of the updates will be high but the number of steps needed

to explore a large enough region of the configuration space, and probably the

region of low probability density, will not be sampled. This is usually the case

when one uses bead-per-bead sampling, which moves only one bead of a particle

i at each update. On the other hand, if the proposed changes are too big, it is

easy that the new configuration lands in a region of low probability density and

will be rejected frequently. In the end, we aim for an average acceptance rate in

the range of 40% - 60%.

Our PIMC method uses two main movements in the sampling of the coordi-

nate space. We will deal with the permutation sampling in later sections (2.4.2).
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The acceptance of these movements is computed as the difference between the

new action S ′ after the change and the old one S, as eS(Rα,Rα+m;β)−S′(R′

α,R′

α+m;β)

in a standard Metropolis criteria. One of them moves the center of mass of a

single particle, displacing all the beads of the particle the same random quan-

tity, maintaining the kinetic part of the action (the harmonic potential between

neighbouring beads of a particle) intact. The second type of movement is one

that only changes the position of a few beads of a polymer. This can be done

using bead-per-bead movement, but as explained before this yields a slow con-

vergence of the method. Instead, we will use the staging algorithm that will be

explained in the next section.

The computational cost of computing the new action S ′ when we propose a

movement of the center of mass of a polymer is computationally expensive since

we need to recalculate all the potential interactions between all the beads, while

the kinetic part of the action remains the same. However, it is not necessary to

perform this movement at each step. Usually it is enough to propose a movement

of the center of mass once per block per particle.

2.4.1 Staging algorithm

As said before, proposing the displacement of one bead at a time causes the

method to converge really slow. For long enough chains, critical slowing down

can appear. In order to speed up this convergence, we can propose the displace-

ment of a finite number of neighbouring beads of the same particle. However,

moving a large enough number of beads to have a reasonable acceptance value

is costly. For each independent moving bead we will have to recalculate the

interactions with the same-index beads from other particles and to compute the

kinetic part. Being this type of movement the core movement, as is performed

at each step of the simulation, creates a rather important slowing down.

The staging algorithm proposes a collective smart displacement of the beads.

It takes a segment of the polymer and moves it in a way that beads within

the segment can be considered independent and not coupled. This is done by

redefining the position coordinate and the mass of the beads in terms of new

positions and masses denoted by starred variables.

Let us consider a segment of length l of the polymer chain and consider only

the free part of the action. We can write the thermal density matrix on this
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segment as

ρ(Rj ,Rj+l; β) =
∫

dRj+1 . . . dRj+l−1

j+l−1
∏

k=j

ρ(Rk,Rk+1; τ) . (2.46)

We are interested in rewritting the consecutive thermal density matrices at tem-

perature MT = 1
τ
,
∏j+l−1

k=j ρ(Rk,Rk+1; τ), in a decoupled way in order to be able

to sample them. In order to do so, the following identity can be stated:

ρ(rj, rj+1; τ) . . . ρ(rj+(l−1), rj+l; τ) = ρ(rj, rj+l; lτ) ×
[

ρ(rj , rj+1; τ)ρ(rj+1, rj+l; (l − 1)τ)
ρ(rj , rj+l; lτ)

]

×
[

ρ(rj+1, rj+2; τ)ρ(rj+2, rj+l; (l − 2)τ)
ρ(rj+1, rj+l; (l − 1)τ)

]

× . . .

[

ρ(rj+(l−2), rj+(l−1); τ)ρ(rj+(l−1), rj+l; τ)
ρ(rj+(l−2), rj+l; 2τ)

]

where rk stands for the position of the bead k in the polymer where we are

performing the staging. By expanding each of these terms separately, we are

able to rewrite the previous expression as

ρ(rj , rj+1; τ) . . . ρ(rj+(l−1), rj+l; τ) =
(

m

2π~2lτ

) 1
2

exp
[

− m

2~2lτ
(rj − rj+l)

2
]

× (2.47)

l−2∏

k=0

(
mk

2π~2τ

) 1
2

exp
[

− mk

2~2τ

(

rj+k+1 − r∗
j+k+1

)2
]

,

where we define a reduced mass for each bead,

mk = m

(

l − k

l − (k + 1)

)

, (2.48)

and staging coordinates defined as

r∗
j+k+1 =

rj+l + rj+k(l − (k + 1))
l − k

. (2.49)

A more detailed explanation on how to achieve the staging identity can be found

in the thesis by Brualla [45]. As one can see, the density matrix for a bead j+k+1

depends only in the position of previous bead j + k and the staging extremity

j + l, which is fixed. Thanks to that, we can sample exactly the free density

matrix as a set of free gaussians, beginning with the first bead j + 1, since the
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extremity j is also fixed. These new positions r′
j+k can be obtained by

r′
j+k+1 = r∗

j+k+1 + η

√

~2τ

mk

, (2.50)

where η is a uniform random number η ∈ (0, 1). As the sampling of the free

density matrix is exact, we only need to run the Metropolis test on the potential

part of the action.

The above expressions for the staging movement can be used directly with

an action such as the Primitive Approximation, but need some changes when we

want to use it with the Chin Action, since each term of the symplectic expansion

has differents constants factors in the kinetic part of the action. An exhaustive

explanation on the staging algorithm for the Chin Action can be found in the

Appendix A.

2.4.2 Permutation sampling: Worm algorithm

Up to now, the PIMC scheme discussed in the previous chapters holds for sys-

tems made up of distinguishable particles. As we want to deal with quantum

many-body systems at low temperature, we must take into account the quan-

tum statistics governing the particles. All states, and in extension the thermal

density matrix, are either symmetric or antisymmetric with respect to a given

permutation. In Bose or Fermi statistics with N particles we can write the ther-

mal density matrix as a sum over all possible permutations of particle labels in

one of its two arguments

ρB/F (Rα,Rα+1; β) =
1
N !

∑

P
(±1)Pρ(Rα,PRα+1; β) , (2.51)

with P is a permutation of the particle labels, N ! is the number of permutations

and P is the number of transpositions of these permutations. The term (±1)

depends of the kind of statistics we choose for our systems: + stands for bosons

and − for fermions. The expectation value of any observable (Eq. 2.19) can be

rewritten as

〈Ô〉B/F ≃ 1
N !

∑

P

∫ M∏

α=1

dRαO(Rα)(±1)Pρ(Rα,Rα+1; τ) . (2.52)

Despite the complexity of equation 2.52 due to the high number of permuta-

tions to tackle with a large number of particles, equation 2.52. expression can

still be understood as a probability distribution that can be sampled via Monte
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Carlo. For fermions, an additional sign will appear in front of each term, creat-

ing contributions to 〈Ô〉 of opposing signs. This will create a constant noise in

our expected results that will make unfeasible the calculations at low tempera-

ture or high N . This is what is known as the sign problem for fermions, and

requires of the introduction of some systematic approximations as, for instance,

in the Restricted Path Integral Monte Carlo method [46]. For bosons, Ceperley

proposed a scheme to include permutations in PIMC simulations [14], but it was

proved to have some performance problems [47] and was not able to provide a

good sampling of bosonic permutations, especially when the number of particles

increases.

A different approach in the sampling of bosonic permutations can be done

by using the worm algorithm. Developed first by Prokof’ev et al. for interact-

ing bosons in a lattice [48], it was latter extended to continuous-space calcula-

tions [22, 49–51].

The worm algorithm works in a extended configurational space given by the

union of the ensemble Z, formed by the usual closed polymer configurations,

and the ensemble G, where all polymers are closed except for one, which is left

open and is referred as the worm.

This extension of the configurational space creates the necessity to implement

new update methods in order to change from Z to G and vice versa. These

updates are referred as open and close. In the open update, we choose a random

particle i to become the worm, and propose a movement of a segment of it.

The worm then remains open while in the ensemble G, i. e., it does not have

a kinetic density matrix between two unique consecutive beads. In our case,

we perform the open update for the last or first numbered beads, moving from

a configuration Xi = {r1 . . . rM , rM+1 = r1} to X ′
i = {r1 . . . r

′
M , r

′
M+1 6= r1}.

Similarly, for the close update, we propose a movement that moves the system

back to the ensemble Z by closing the worm and imposing rM+1 = r1.

In order to implement permutations using the worm algorithm, we use the

swap update. The main idea of this movement is to rebuild a free particle path

between an open extremity of the worm and a bead belonging to a different

polymer. In this way we are able to modify both the permutations p(i) and

the configuration of the system Rα by means of following updates which do not

suffer of low acceptance probability, as was the case of other methods. In the

end, performing permutations between only two particles at a time yields a larger

chains, while in the algorithm presented by Ceperley [14, 47] a single permutation

becomes less probable since the permutations are proposed in groups of three or

four particles at a time.
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It is important to notice that the probability distribution used to sample

configurations while in the ensemble G is different from the one introduced

before for the ensemble Z. Therefore, the configurations in the subset G cannot

be used to compute diagonal observables (Eq. 2.19), as will be explained in

section 2.5. However, they can be used to compute off-diagonal observables,

such as the one body density matrix (see section 2.5.6 and 2.5.7).

Summarizing, the worm algorithm is able to sample the exchanges between

bosons by means of single particle updates with an acceptance probability com-

parable to that of other updates in the sampling of polymers. Also, it allows for

an efficient description of thermodynamic properties connected to the bosonic

statistics of the quantum systems such as superfluidity effects or off-diagonal

correlations. More details on the worm algorithm can be found in the PhD.

Thesis by Rota [51].

2.4.3 Parallelization

Despite the use of a fourth-order approximation for the action (as is the Chin

Action, section 2.3.1), some Path Integral Monte Carlo simulations requires the

sampling of quantum systems at very low temperature and/or the use of a

large number of particles. Achieving good results for a simulation with a large

number of particles or a large number of beads when working at low temperature

requires an important amount of computational time. Naturally, one can think

on parallelization as a way to gain computational efficiency.

As we have commented in previous sections, our PIMC scheme proposes a

movement of a single particle at a time, being it either a global translation or a

partial segment movement following staging algorithm. The same applies to the

movements introduced by the worm algorithm, with the difference that these

movements are performed only for the worm, while the movement of the center

of mass and segment movements are performed once per particle. The costly

part of each of these movements arise when computing the probability for the

Metropolis algorithm. The kinetic part of the density matrix is not computed,

since we are either performing a global translation or moving a segment of the

polymer via staging algorithm in all the cases. In this sense, we need to compute

only the potential and double-commutator part of the density matrix, that arises

from interactions between particles. The computational time of this calculation

goes as mN2, being N the number of particles and m the number of moved

beads.
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One could think in parallelizing this N2 loop in order to gain speed, but

in fact this is not even needed. For performing the Metropolis algorithm we

are only interested in the change in the action, so by saving in memory the

contribution on each bead we can gain speed. Doing it that way reduces mN2

to mN , since we only need to compute the potential interaction change on the

moved beads. On the other hand, MN2 loops will appear in the estimations

of certain observables, like the energy per particle. In this cases, paralellizing

will indeed yield faster calculations. However, in the end the calculation of the

energy per particle is not performed at every step and a significant improvement

in this estimation is not a big gain in the global computation time. The same

could be said about the movement of the center of mass. This movement is

performed once per block for each particle, but always one particle at a time.

This means that the only choice for parallelization is to distribute the M beads

into a k number of threads. This, for a large enough number of beads, could

provide some speed gain. On the other hand, the more repeated movement is a

segment movement, that can be performed more than once per step per particle.

The quickness of this update depends on the length of the segment moved, that

usually decreases at low temperature in order to achieve the aimed acceptance

rate. Despite being a fast update, it is performed so many times that the total

time spend in this update is important.

In the end, the time spent computing the movement of the center of mass,

estimators with a MN2 loop, and segment movement will depend on the number

of steps per block K and the number of beads M . For a large K and small M ,

most of the computational time will be spent in the segment movement update.

For large M and small K, most of the time will be spent on the movement of

the center of mass and computation of some observables. The parallelization

for these two last methods has already been commented, as it simply consist in

parallelize MN loops.

The parallelization of the staging algorithm is more complex. One easy

solution is to parallelize the mN loop, as commented before, but the gain is

only substantial if the number of moving beads m is large, which is usually not

the case. A more interesting approach is to propose more than one segment

movement at a time. Since the kinetic part of the density matrix is sampled

via the staging algorithm, the only part we need to evaluate is the potential

and double-commutator part, and these contributions only depend on the same-

indexed beads of all the other particles. So, in order to perform more than one

movement at once, we can divide the total length M of a polymer in a number

j = M/m of segments, where m is the number of beads moved using staging
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algorithm. Each of these segments is updated in a parallelized way following

the staging algorithm. Usually, we take each of these segments from different

polymers. Of course, the number of parallelized segments must fulfill j < N ,

since otherwise we will probably move a particle more times than the desired

each step.

This parallelization of the staging algorithm fastens our segment updates

proportional to the number j of parallelized threds. This number is high for a

large number of beads M and a small segment update length. Usually, this is

the case of lower temperature systems.

For instance, we can look at a PIMC simulation of solid 4He crystal hcp at

T = 0.2 K, with N = 180 particles and M = 480 beads. In order to have a good

acceptance rate, the number of moving beads per staging is m = 10. In this case,

we can perform a parallelization in j = 48 different processors. Even only using

8 different processors give us a ∼ 50% time reduction of the staging update.

Also, as we have a large number of beads, the parallelization on the center of

mass movement will also be effective. In the same case as before, we observe a

time reduction of ∼ 60%. Which one of the two parallelization schemes is more

effective depends on the number of steps per block, as commented before.

2.5 Computing properties

Once we have defined which approximation for the action we are using and the

chosen strategy for the sampling, it is important to tackle how we can compute

properties in our PIMC scheme.

Before explaining the properties one by one, it is interesting to rewrite some

of the expressions introduced in previous sections explicitly showing the Chin

Action approximation. We can write the partition function (Eq. 2.6) as

Z =
1
N !

∑

P

( 1
4πλτ

) 3dNM
2

(

1
2t21t0

) dNM
2

(2.53)

∫

d~R1d~R1Ad~R1B...d ~RMB

M∏

α=1

exp [−S(Rα,Rα+1; τ)] ,
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using the condition PR1 = RM+1, and with S(Rα,Rα+1; τ) being the action

for an elementary imaginary time block τ ,

S(Rα,Rα+1; τ) =
1

4λτ

N∑

i=1

( 1
t1

(ri,α − ri,αA)2 +
1
t1

(ri,αA − ri,αB)2 +
1

2t0
(ri,αB − ri,α+1)2

)

+τ
N∑

i<j

(
v1

2
V (rij,α) + v2V (rij,αA) + v1V (rij,αB) +

v1

2
V (rij,α+1)

)

(2.54)

+2τ 3u0λ
N∑

i=1

(
a1

2
|Fi,α|2 + (1 − 2a1) |Fi,αA|2 + a1 |Fi,αB|2 +

a1

2
|Fi,α+1|2

)

.

In order to write equation 2.54 in a more compact way, one can define the terms

T t
N =

N∑

i=1

( 1
t1

(ri,α − ri,αA)2 +
1
t1

(ri,αA − ri,αB)2 +
1

2t0
(ri,αB − ri,α+1)2

)

,

(2.55)

VN =
N∑

i<j

(
v1

2
V (rij,α) + v2V (rij,αA) + v1V (rij,αB) +

v1

2
V (rij,α+1)

)

, (2.56)

WN =
N∑

i=1

(
a1

2
|Fi,α|2 + (1 − 2a1) |Fi,αA|2 + a1 |Fi,αB|2 +

a1

2
|Fi,α+1|2

)

, (2.57)

that allows us to write the total action as

S(Rα,Rα+1; τ) =
1

4λτ

N∑

i=1

T t
N + τ

N∑

i<j

VN + 2τ 3u0λ
N∑

i=1

WN . (2.58)

In the next subsection we will write the different estimators of the properties

directly specifically for the Chin Action.

2.5.1 Energy per particle

The energy per particle E/N is one of the most important quantities obtainable

from our PIMC simulations. At a finite temperature, one can obtain a estimation

of the energy by deriving it from the partition function with the formula

E

N
= − 1

NZ

∂Z

∂β
= − 1

NMZ

∂Z

∂τ
(2.59)

By applying this formula to the definition of the partition function Z (Eq.

2.53) we find the expression:

ET

N
=

〈

3d
2τ

− 1
MN

( 1
4λτ 2

T t
MN − VMN − 6τ 2u0λWMN

)〉

, (2.60)
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where the brackets indicate an average over all the configurations R sampled in

the PIMC simulation. The terms T t
MN , VMN and WMN stands as the same as

the ones appearing previously (Eq. 2.55, 2.56 and 2.57), but with a summation

over all the beads, i.e. T t
MN =

∑M
α=1 T

t
N . The first term 3d/(2τ) in the formula

remembers the energy of a classical ideal gas, d/(2β), where d stands as the

dimension of the system. However, in equation 2.60 the classic term appears

with a dependence with the number of beads, and the factor 3 arises from the

total number of beads when using the Chin Action.

This is the so called thermodynamic estimator for the energy per particle.

One can use a formula similar 2.59 to obtain the thermodynamic estimator for

the kinetic energy

K

N
=

m

NβZ

∂Z

∂m
= − λ

NβZ

∂Z

∂λ
= − λ

NMτZ

∂Z

∂λ
, (2.61)

and then one can obtain the potential energy by subtracting V/N = E/N−K/N .

One then obtains

KT

N
=

〈

3d
2τ

− 1
NM

( 1
4λτ 2

T t
MN − 2τ 2u0λWMN

)〉

(2.62)

and
VT

N
=
〈 1
NM

(

VMN + 4τ 2u0λWMN

)〉

. (2.63)

The thermodynamic estimators can be easly implemented in a PIMC scheme

but, as we can see in equation 2.60, some of its terms have an important depen-

dence with the number of beads M , causing them to become large at small τ .

This causes this estimator to have a large variance due to the balancing of two

large terms. In order to overcome this problem, is better to use an estimator

without any such cancellations. One way to do this is to use the so called virial

estimator [14, 52]:

EV

N
=

〈

d

2β
+

1
12λNM2τ 2

M∑

α=1

N∑

i=1

(ri,M+α − ri,α) (ri,M+α−1 − ri,M+α)

+
1

2Nβ

M∑

α=1

N∑

i=1

(

ri,α − rC
i,α

) ∂

∂ri,α
(U(Rα)) (2.64)

+
1

NM

M∑

α=1

∂U(Rα)
∂τ

〉
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where d/(2β) is the classical energy and U(Rα) stands for the potential part of

the action, which in the Chin Action case is

U(Rα) = τ
N∑

i<j

VN + 2τ 3u0λ
N∑

i=1

WN , (2.65)

and

rC
i,α =

1
2M

M−1∑

l=0

(ri,α+l + ri,α−l) . (2.66)

A full derivation of this formula can be found in the PhD. Thesis by Rota [51].

It mainly consist in defining a quantity that can be solved in two ways, by

integrating by parts or by computing directly a derivative appearing inside the

integral, in a way similar to what is done in this thesis with the virial estimator

for the pressure (Appendix C). The last term of the equation 2.64 yields the

same results as the equation 2.59 for the thermodynamic estimator, but without

the neighbouring beads harmonic interaction. Thus, for the Chin Action, the

new terms will arise from the third term of equation 2.64.

A full calculation of the virial estimator for the Chin Action can be found

in the Appendix B. From the terms that arise from equation 2.64, the final

expression for the virial estimator is:

EV

N
=

〈

d

2β
+

1
NM

( 1
12λMτ 2

T off
MN +

1
2
T V

MN + 2τ 2u0λYMN

+VMN + 6τ 2u0λWMN

)
〉

. (2.67)

The potential energy using this estimator is the same as in the thermodynamic

estimator (Eq. 2.63), while the kinetic energy is

KV

N
=

〈

d

2β
+

1
NM

( 1
12λMτ 2

T off
MN +

1
2
T V

MN

+2τ 2u0λ(WMN + YMN)
)
〉

. (2.68)
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For both cases we have defined some terms to ease the reading, as in the case

for the thermodynamic estimator and partition function:

T off
MN =

M∑

α=1

N∑

i=1

( 1
t1

(ri,M+α − ri,α) (ri,α − ri,αA) (2.69)

+
1
t1

(ri,M+αA − ri,αA) (ri,αA − ri,αB)

+
1

2t0
(ri,M+αB − ri,αB) (ri,αB − ri,α+1)

)

,

T V
MN =

M∑

α=1

N∑

i=1

(
v1

2
(ri,α − rC

i,α)Fi,α + v2(ri,αA − rC
i,αA)Fi,αA (2.70)

+ v1(ri,αB − rC
i,αB)Fi,αB +

v1

2
(ri,α+1 − rC

i,α+1)Fi,α+1

)

,

YMN =
M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

d∑

a=1

d∑

b=1

(
a1

2
(ri,α − rC

i,α)aT (i, j, α)b
a(Fi,α − Fj,α)b (2.71)

+(1 − 2a1)(ri,αA − rC
i,αA)aT (i, j, αA)b

a(Fi,αA − Fj,αA)b

+a1(ri,αB − rC
i,αB)aT (i, j, αB)b

a(Fi,αB − Fj,αB)b

+
a1

2
(ri,α+1 − rC

i,α+1)
aT (i, j, α + 1)b

a(Fi,α+1 − Fj,α+1)b

)

,

with T (i, j, α)b
a being a tensor defined by

T (i, j, α)b
a =

[

δb
a

rij,α
− (rij,α)b(rij,α)a

r3
ij,α

]

dV (rij,α)
drij,α

+
(rij,α)b(rij,α)a

r2
ij,α

d2V (rij,α)
dr2

ij,α

(2.72)

The term T off
MN from equation 2.69 arises from the permutations in the system.

If there are no permutations, this term would drop to zero since Rα+M = Rα.

2.5.2 Pressure

For computing the pressure of the system, we can follow the same pattern as

with the energy per particle. We can compute the thermodynamic estimator by

using the definition

P =
1
βZ

∂Z

∂V
, (2.73)
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with the partition function for the Chin action defined at equation 2.53. In order

to evaluate this expression, it is convenient to introduce the rescaled coordinates

R∗
α = Rα/V

1/d. By using this coordinates, we obtain

PT =

〈

3N
τV

− 1
2dλMτ 2V

T t
NM − 1

2dVM
T pT

MN − 4τ 2u0λ

dVM
Y pT

MN

〉

, (2.74)

where the term T t
NM =

∑M
α=1 T

t
N (Eq. 2.55) already appears in the thermody-

namic estimator of the energy, while the others are similar to the ones appearing

in the virial estimator of the energy:

T pT
MN =

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

(
v1

2
(ri,α − rj,α)∇i,αV (rij,α)

+ v2(ri,αA − rj,αA)∇i,αAV (rij,αA) (2.75)

+ v1(ri,αB − rj,αB)∇i,αBV (rij,αB) +
v1

2
(ri,α+1 − rj,α+1)∇i,α+1V (rij,α+1)

)

,

Y pT
MN =

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

d∑

a=1

d∑

b=1

(
a1

2
(ri,α − rj,α)aT (i, j, α)b

a(Fi,α)b (2.76)

+(1 − 2a1)(ri,αA − rj,αA)aT (i, j, αA)b
a(Fi,αA)b

+a1(ri,αB − rj,αB)aT (i, j, αB)b
a(Fi,αB)b

+
a1

2
(ri,α+1 − rj,α+1)aT (i, j, α+ 1)b

a(Fi,α+1)b

)

,

where the tensor T (i, j, α)b
a is the same as for the energy (Eq. 2.72). As can be

seen, similar to the expression for the energy some of the terms in 2.74 appear

with a dependence with τ that may cause problems at a large number of beads.

Therefore, we can use the virial estimator in order to avoid this pathology. A

full derivation for both pressure estimators can be found in Appendix C.

PV =

〈

N

V β
+

1
6dλβ2V

T off
MN − 1

2dVM
T pV

MN − 4τ 2u0λ

dVM
Y pV

MN

〉

, (2.77)

where T off
MN is the same term that appears in the formula of the virial estimator

for the energy (Eq. 2.69), and the other terms are similar to the ones obtained
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before,

T pV
MN =

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

(
v1

2
(rC

i,α − rC
j,α)∇i,αV (rij,α)

+ v2(rC
i,αA − rC

j,αA)∇i,αAV (rij,αA) (2.78)

+ v1(rC
i,αB − rC

j,αB)∇i,αBV (rij,αB) +
v1

2
(rC

i,α+1 − rC
j,α+1)∇i,α+1V (rij,α+1)

)

,

Y pT
MN =

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

d∑

a=1

d∑

b=1

(
a1

2
(rC

i,α − rC
j,α)aT (i, j, α)b

a(Fi,α)b (2.79)

+(1 − 2a1)(rC
i,αA − rC

j,αA)aT (i, j, αA)b
a(Fi,αA)b

+a1(rC
i,αB − rC

j,αB)aT (i, j, αB)b
a(Fi,αB)b

+
a1

2
(rC

i,α+1 − rC
j,α+1)

aT (i, j, α + 1)b
a(Fi,α+1)b

)

,

and as before, the tensor T (i, j, α)b
a appears in equation 2.72 and rC

i,α is defined

by equation 2.66.

2.5.3 Pair-correlation function

The pair correlation function g(r1, r2) is proportional to the probability of find-

ing a particle in r2 while another particle is placed in r1, and can be defined

as

g(r1, r2) =
V 2

Z

∫

ρ(R,R; β)dr3 . . .drN (2.80)

using Feynman’s density matrix formalism. For uniform systems, that is our

case in this thesis, the pair correlation function depends only in the norm of the

relative distance r = r2 − r1. This allows us to define our estimator as

g(r) =
V 2

Z

〈

1
M

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

δ (r − (ri,α − rj,α))

〉

. (2.81)

In practice, the appearance of a delta function in the estimator means we can

calculate the pair correlation function by constructing an histogram of the fre-

quencies of the relative distances between all pair of particles. Also, as the

estimator has a symmetry over the imaginary time, we can take into account

all the time slices M when constructing the histogram, which provides us with

larger statistics. Each column of the histogram, of width ∆/2, has to be nor-
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malized dividing by the volume associated to the shell of radius r − ∆/2 and

r + ∆/2.

One can notice that the estimator in equation 2.81 only works in the as-

sumption of knowing the exact thermal density matrix. In order to obtain an

estimator that holds at any imaginary time step instead of only at τ → 0, we can

compute it as a functional derivative of the free energy [53]. For the primitive

action, the estimator presented above works properly since the estimator of the

distance between to atoms is simply the distance between its beads in periodic

boundary conditions. However, for the Chin action the presence of the double

commutator term in the expression of the potential action inserts a term that

depends on the temperature in the evaluation of the distance between particles.

This term may affect the construction of the histogram and should be taken into

account when performing the estimation [54]. In the end, the effect of this term

is shown to be really small [51] and it is an irrelevant quantity when compared

to the statistical error.

2.5.4 Static structure factor

We can access the spatial order of the atoms in the reciprocal space by computing

the static structure factor:

S(q) =
1
NZ

∫

dRρ(R,R; β)

(
N∑

i=1

exp (−iqri)

)(
N∑

i=1

exp (iqri)

)

. (2.82)

One can obtain this property by performing the Fourier transform of the pair-

correlation function, but we can compute it directly along the PIMC simulation.

We perform simulations by choosing a box with a finite size and periodic bound-

ary conditions, which discretize the values the vector q can take. For a three

dimensional box with size Lx, Ly and Lz, the vector q is then

q = 2π

(

nx

Lx

,
ny

Ly

,
nz

Lz

)

, (2.83)

where nx, ny and nz are integer numbers. As we have explained for the pair-

correlation function, we take advantage on the symmetry over imaginary time

to use all bead configurations to evaluate the static structure factor with more

statistics. The static structure factor is then computed as

S(q) =
1

NM

〈
M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

cos(qri,α) cos(qrj,α) + sin(qri,α) sin(qrj,α)

〉

. (2.84)
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2.5.5 Intermediate scattering function in imaginary time

In a similar way to the static structure factor, we can compute the intermediate

scattering function in imaginary time F (q, t)

F (q, t) =
1
NZ

∫

dRρ(R,R; β)ρ̂q(τ)ρ̂†
q(0) . (2.85)

with

ρ̂q(t) =
N∑

i=1

eiqri(t) . (2.86)

Our PIMC scheme works with discrete imaginary time, so the values t in

which we are able to compute the intermediate scattering function will depend

on the value τ = β/M . On the other hand, the intermediate scattering function

is a periodic function, so we only need to sample it up to t = β/2.

In a similar fashion to the static structure factor, we can rewrite equation

2.85 as

F (q, t) =
1

NM

〈
M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

cos(qri,α(t)) cos(qrj,α(0))

+ sin(qri,α(t)) sin(qrj,α(0))

〉

. (2.87)

Also, the symmetry of these property over imaginary time allows us to use all

the beads for a single imaginary time t calculations, as long as the time difference

between the density fluctuation operators (Eq. 2.86) is t,
〈

ρ̂q(τ0 + t)ρ̂†
q(τ0)

〉

.

2.5.6 One-body density matrix

The one-body density matrix ρ1(r, r′) is the inverse Fourier transform of the mo-

mentum distribution, and can provide insight on the Bose-Einstein condensation

(BEC) properties of a quantum system.

The one-body density matrix can be written as

ρ1(r1, r
′

1) =
V

Z

∫

dr2 . . . drMρ(R,R′; β) , (2.88)

where ρ(R,R′; β) is the thermal density matrix computed for two configurations

R = {r1, r2 . . . , rN} and R′ = {r′

1, r2 . . . , rN} which differs for the position of

only one particle.
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In a strongly interacting system, a macroscopic occupation of the ground

state shows a delta-peak in the momentum distribution for q = 0. This is

shown in the one-body density matrix as a non-zero asymptotic value in the

limit of large distances r = r1 − r′
1. This can be related with the condensate

fraction n0 as

lim
|r|→∞

ρ1(r, r′) = n0 (2.89)

Observing the equation 2.90 one can see that ρ1 is an off-diagonal observable.

In our PIMC scheme, this means that the worm (see Section 2.4.2) needs to be

open. The one-body density matrix is then computed in the same classical

mapping as the other estimators, but when the worm polymer is open.

As for equation 2.90, only the position of one atom needs to be different.

Thus, we can compute the one-body density matrix with the positions of the

worm,

ρ1(r) =
V

NZ
〈δ (r − (rworm,1 − rworm,M+1))〉 , (2.90)

where rworm,1 stands for the position of the bead which is the tail of the worm,

and rworm,M+1 as the head of the worm, taking into account that since there will

be permutations the index of the polymer which contains the head and tail may

not be the same.

Contrary to previous properties, we cannot take advantage from the symme-

try over imaginary time, thus the calculation of this property is less efficient.

A easy way to improve this efficiency is to perform various calculations of this

property, proposing small movements of the head and tail of the worm whereas

the worm is open.

2.5.7 Superfluid density

One can think of the superfluid density of a quantum liquid as the fraction of

the system that does not respond to movements of the walls of its vessel. It can

be defined as

I =
d2F

dω2
|ω=0 =

d〈L̂z〉
dω

|ω=0 , (2.91)

where I is the momentum of inertia, F the free energy and L̂z the total angular

momentum operator in the rotation axis.

By defining the classical momentum of inertia

Ic =

〈
N∑

i=1

mi(r
∗
i )2

〉

, (2.92)
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with r∗
i being the distance of the i-th atom from the rotation axis, one can write

the superfluid density as
ρs

ρ
= 1 − I

Ic
, (2.93)

i.e., it is the fraction of the system which does not respond classically to the

rotation.

The attainment of an estimator for ρs/ρ for the PIMC scheme is not trivial,

since equation 2.93 considers a rotation. Switching the reference frame to the

rotating bucket, Pollock and Ceperley proposed a path integral expression for

the effective momentum of inertia [55] that yields

ρs

ρ
=

2m〈A2
z〉

βλIc
, (2.94)

where Az is the component along the z-axis of the projected area

A =
1
2

N∑

i=1

M∑

α=1

ri,α × ri,α+1 . (2.95)

The previous estimator works in cylindrical geometry, but is more common

to have periodic boundary conditions (PBC) in a PIMC simulation. In this

sense, we define the winding number W as the flux of paths winding through

the PBC,

W =
N∑

i=1

M∑

α=1

ri,α+1 − ri,α . (2.96)

With this term, the estimator of the superfluid fraction is

ρs

ρ
=

〈W 2〉
βλIc

, (2.97)

that needs to be averaged over all the closed polymer configurations in our PIMC

simulation.

2.6 Path Integral Ground State method (PIGS)

As commented at the beginning of this section, the path integral formalism can

be extended to the ground state in what is known as the Path Integral Ground

State method. The ground state average of an observable of a quantum system,

〈Ψ0|Ô|Ψ0〉 =
∫

dRO(R)Ψ2
0(R)

∫

dRΨ2
0(R)

, (2.98)
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can be calculated by sampling the coordinates of a quantum system according

to the probability distribution Ψ2
0/
∫

dRΨ2
0(R). As generally the exact ground

state wave function is unknown, we can approximate Ψ0(R) with a trial wave

function ΨT (R).

It is important that the trial wave function has the correct symmetry un-

der particle permutations: It must be symmetric for bosons and antisymmetric

for fermions. From the variational principle of quantum mechanics, E(Ψ) =

〈Ψ|Ĥ|Ψ〉 ≥ E0, with E0 being the ground-state energy of the system. Thus, a

good approximation ΨT for Ψ0 will lower the value of

ET =
∫

dREL(R)Ψ2
T (R)

∫

dRΨ2
T (R)

(2.99)

where the local energy EL is defined as

EL =
ĤΨT (R)
ΨT (R)

. (2.100)

The Variational Monte Carlo method uses this scheme to construct a trial wave

function with some free parameters, and then optimize them by minimizing ET .

However, ET is an upper bound of the energy, thus it is desirable to make some

improvements in this method.

For this end, we introduce the Schrödinger equation in imaginary time τ = it,

− ∂

∂τ
Ψ(R; τ) = ĤΨ(R; τ) , (2.101)

where we can use the presented trial wave function as a description at τ = 0,

Ψ(R, τ = 0) = ΨT (R). The solution for the wave function is then

Ψ(R, τ) = e−τĤΨT (R) =
∞∑

n=0

〈Ψn|ΨT 〉Ψn(R)e−τEn , (2.102)

where En is the eigenstate of Ψn. For large enough τ we can write

Ψ0(R) = lim
τ→∞

Ψ(R; τ) = lim
τ→∞

∫

dR′G(R,R′; τ)ΨT (R′) , (2.103)

with G(R,R′; τ) = 〈R|e−τĤ |R′〉 being the imaginary time propagator, which

is equivalent to a thermal density matrix for a quantum system at temperature

T = 1/(kBτ). This allows us to write an accurate approximation for the ground

state wave function by means of the Path Integral formalism previously used at

finite temperature in what is known as the Path Integral Ground State scheme.
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Using the convolution property (Eq. 2.7) we obtain

ΨPIGS(RM) =
∫ M−1∑

α=0

dRαG(Rα+1,Rα; τ)ΨT (R0) . (2.104)

The main advantage of PIGS in front of other methods such as VMC is that

we can control the systematic error by means of the number of time slices M .

By increasing this value, we provide a better approximation for Ψ0 until the

estimated energy ET will become independent of M , indicating that the system-

atic error that arises from the choice of ΨT has been lowered below statistical

uncertainties, in a way similar to what happens for PIMC. This is way PIGS

method is regarded as an exact method, as with PIMC.

With the basis of the method explained, all the relevant observables can be

calculated as shown in equation 2.98,

〈Ψ0|Ô|Ψ0〉 =
∫ ∏2M

α=1 dRαO(RM)ΨT (R2M)G(Rα,Rα−1; τ)ΨT (R0)
∫ ∏2M

α=1 dRαΨT (R2M )G(Rα,Rα−1; τ)ΨT (R0)
. (2.105)

As for the probability distribution to be sampled via Monte Carlo procedure,

p(R0 . . .R2M) =
∏2M

α=1 ΨT (R2M)G(Rα,Rα−1; τ)ΨT (R0)
∫ ∏2M

α=1 dRαΨT (R2M)G(Rα,Rα−1; τ)ΨT (R0)
, (2.106)

can be interpreted as a classical system of interacting polymers, similarly to

PIMC analogy, but each with 2M+1 beads. Thus, the same mapping we applied

to the PIMC method can be used with the Path Integral Ground State. The

main difference is that we do not need to impose periodic boundary conditions in

imaginary time in the trace of the propagator, so the the classical isomorphism

will not be polymer rings but open polymers. Also, the parameter τ is related to

the temperature in the PIMC method while it does not have a physical meaning

for PIGS and must be considered only as a variational parameter.

In the end, our PIGS chains impose the trial wave function ΨT in its ex-

tremities, while propagating it along a high enough number of beads towards

the center of chain provides a better approximation of Ψ0 near its center. In

this sense, the estimation of observables (Eq. 2.105) is only exact in the center

point of the chain.



Chapter 3
Phase diagram of a

one-dimensional Coulomb gas

In this chapter, we present the quantum phase diagram of a one-dimensional

Coulomb wire obtained using the PIMC method. The exact knowledge of the

nodal points of this system permits us to find the energy in an exact way, solving

the sign problem which spoils fermionic calculations at higher dimensions. The

results obtained allow for the determination of the stability domain, in terms of

density and temperature, of the one-dimensional Wigner crystal. At low temper-

atures, the quantum wire reaches the quantum-degenerate regime, which is also

described by the diffusion Monte Carlo method. By increasing the temperature

the system transforms to a classical Boltzmann gas, which we simulate using

classical Monte Carlo. At large enough density, we identify a one-dimensional

ideal Fermi gas which remains quantum up to higher temperatures than in two-

and three-dimensional electron gases. The obtained phase diagram as well as

the energetic and structural properties of this system are relevant to experi-

ments with electrons in quantum wires and to Coulomb ions in one-dimensional

confinement.

3.1 Introduction

Few systems are more universal than electron gases. Their study started long-

time ago and the compilation of knowledge that we have now at hand is very

wide, with impressive quantitative and qualitative results [56]. Phase diagrams

for the electron gas in two and three dimensions appear now quite well un-

derstood thanks to progressively more accurate many-body calculations using

mainly quantum Monte Carlo methods [57]. However, the theoretical knowl-
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edge of the electron gas in the one-dimensional (1D) geometry is more scarce

and a full determination of the density-temperature phase diagram is still lack-

ing. The present results are intended as a contribution towards filling this gap

by means of a microscopic approach based on the path integral Monte Carlo

(PIMC) method.

The quasiparticle concept introduced by Landau in his Fermi liquid theory

is able to account for the excitations of the electron gas in two and three di-

mensions. This is not the case in one dimension where the enhancement of

correlations makes all excitations, even at low energy, to be collective. The ap-

propriate theoretical framework is an effective low-energy Tomonaga-Luttinger

(TL) theory [58–60], properly modified by Schulz [61] to account for the long-

range nature of the Coulomb interaction. Probably, the most noticeable pre-

diction of the TL theory is the separation between spin and charge degrees of

freedom, whose excitations are predicted to travel at different velocities. At the

same time, a Coulomb wire is fundamentally different from other TL systems in

that at low densities it forms a Wigner crystal, as manifested by the emergence

of quasi-Bragg peaks [61]. Also the strongly repulsive nature of interactions

might lead to a formation of a Coulomb Tonks-Girardeau gas[62, 63]. In spite of

the experimental difficulties in getting real 1D environments, strong evidences

of having reached the TL liquid and the 1D Wigner crystal have been reported

in the last years [64–72]. Therefore, the continued theoretical interest on this 1D

system is completely justified and can help to understand future experimental

findings.

3.2 Quantum Monte Carlo methods for fermionic

systems

The ground-state properties of the 1D Coulomb gas have been studied in the

past using several methods, the most accurate results being obtained using the

diffusion Monte Carlo (DMC) method [73–76]. One of the main goals of these

calculations was the estimation of the interaction energy of the gas with as

higher precision as possible to generate accurate density functionals to be used

within density functional theory of quasi-one-dimensional systems. All these

calculations have been carried out assuming a quasi-1D geometry imposed by

a tight transverse confinement, normally of harmonic type. In the latter case,

one assumes that electrons occupy the ground-state of the transverse harmonic

potential and so in the resulting effective Coulomb interaction the divergence
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at x = 0 is eliminated. Proceeding in this way, the effective one-dimensional

interatomic potential can be Fourier transformed. However, a recent DMC cal-

culation [77] has shown that the use of the bare Coulomb interaction is not a

problem for the estimation of the energy and structural properties because the

wave function becomes zero when |x| → 0. More importantly, the presence of a

node at x = 0 makes Girardeau’s mapping applicable [78] which means that the

many-particle bosonic wave function is the absolute value of the fermionic one,

with the same Hamiltonian. In other words, the non-integrable divergence of

the interaction at small distances acts effectively as a Pauli principle for bosons.

From the computational point of view, this is highly relevant because knowing

the exact position of the nodes allows us to perform an exact simulation with-

out the usual upper-bound restriction imposed by the fixed-node approximation

when the nodal surfaces are unknown.

For our calculations at finite temperature, we consider a system composed

of N particles with charge e and mass m in a 1D box of length L with periodic

boundary conditions, that interact by means of a pure Coulomb potential. We

work in atomic units, the Bohr radius a0 = ~
2/(me2) for the length and the

Hartree Ha = e2/a0 for the energy. In these reduced units, the Hamiltonian is

given by

H = −1
2

N∑

i=1

∂2

∂x2
i

+
N∑

i<j

1
|xi − xj |

. (3.1)

With this knowledge we can estimate the properties of the system using a

PIMC scheme (see section 2.2) by means of the Chin action (see section 2.3.1).

The number of beads M is adjusted for any temperature and density to ensure

unbiased results; it is rather large at the lowest temperatures and high densi-

ties, M = 500, and it becomes smaller when the temperature increases and the

density is low, M = 20. The fourth-order dependence of the energy on 1/M is

recovered at larger M values than in 4He due to the pathological behavior of

the Coulomb potential for the lowest approximation for the action (primitive

approximation) [33]. Nevertheless, the high-order PIMC method is able to ex-

plore the major part of the density-temperature phase diagram with accuracy

and without any bias coming from the fixed-node constraint.

Our main goal is the calculation of the phase diagram of the 1D Coulomb

quantum wire. To this end, we mainly determine the energetic and structure

properties of this system. For the energy we use the virial estimator from section

2.5.1, which relies on the invariance of the partition function under a scaling

of the coordinate variables, thus providing good results at large values of M ,

where the thermodynamic estimator fails to provide converged results [34]. The
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structure properties of the system are obtained from the behavior of the static

structure factor (see section 2.5.4).

3.3 Energy per particle at finite temperature

Fig. 3.1 Energy per particle as a function of the density for N = 10. Symbols,
PIMC results at different temperatures; dashed line, energy of a Wigner crystal
at T = 0; dash-dotted line, IFG energy at T = 0. Solid lines, classical limit
E/N = T/2.

The energies obtained at different temperatures and densities are shown in

Fig. 3.1. When both the temperature and density are low, the potential en-

ergy dominates and the total energy can be estimated by summing up all pair

Coulomb potential energies for a set of particles at the fixed positions of a Wigner

crystal. For a given number of particles N , the leading term in the energy is

linear with the density n [79],

EW

N
= e2n lnN . (3.2)
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If one fixes the density and changes the number of particles, Eq. (3.2) predicts

an energy per particle which diverges logarithmically with N . This is, in fact, a

well known effect of the long-range behavior of the Coulomb potential in strictly

1D problems [77]. When the density increases, the kinetic energy increases faster

than the potential energy due to its quadratic dependence with n. Then, the

system reaches a regime where the energy is well approximated by the ground-

state energy of an ideal Fermi gas (IFG),

E IFG

N
=

~
2k2

F

6m
, (3.3)

with kF = πn being the 1D one-component Fermi momentum. Both limiting

behaviors, EW/N (Eq. 3.2) and E IFG/N (Eq. 3.3) are shown as straight lines

which cross at n ≃ 1 in the log-log plot of Fig. 3.1. The ground-state energy

obtained with the DMC method for T = 0 is recovered in our PIMC simula-

tion when the temperature drops below some critical temperature, which value

depends on the density. Increasing the density in the ground state, the system

evolves from a Wigner crystal to a zero-temperature ideal Fermi gas [77]. For

a fixed finite temperature, T . 1 Ha, the dilute regime of low density corre-

sponds to a classical gas with the energy per particle given by the classical value

EC = T/2 (solid horizontal lines) , the Wigner crystal is realized at larger densi-

ties and, finally, the quantum wire behaves as an ideal Fermi gas for n & 1. For

temperatures T & 1 Ha, the Wigner crystal behavior is no more observed and

the system evolves directly from a classical gas to a Fermi one.

3.4 Properties of Quantum Wigner crystal

In order to get an insight on the properties of a quantum Wigner crystal it is

important to derive the equation of states as a perturbative series in terms of

powers of na0. The leading term is provided by the potential energy of a classical

crystal and is pathologic in the sense that it diverges in the thermodynamical

limit. On the other hand this divergency is caused by the long-range part of the

Coulomb energy and effectively does not change the short-range physics which is

important, for example, for understanding the applicability of the bare Coulomb

potential to quantum wires of a finite width. Thus, it is of importance to derive

the subleading term in the equation of state, which will behave properly in the

thermodynamic limit and will be relevant for the short-range physics. This is

done by means of the harmonic crystal theory.
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The leading term E(0) in the equation of state of a Wigner crystal, na0 →
0, is given by the potential energy of a crystal with perfect packing, E(0) =

1/2
∑N

i6=j e
2n/|i−j|. For N electrons in a box with periodic boundary conditions

the Wigner crystal energy is

E(0)

N
= (na0) Ha ×







HN
2

−1 + 1
N
, for even N

HN−1
2
, for odd N

(3.4)

where Hn =
∑n

i=1
1
i

is the n-th harmonic number. That is, the leading term

grows linearly with the density na0 and it suffers from a logarithmic divergency.

caused long-range Coulomb interaction, E(0)/N = Ha(na0) ln(γ′N/2) +O(N−2)

where γ′ = 1.781 is the Euler’s constant.

In the physical description of the subleading term, the electrons oscillate

close to the minima in the potential energy, generating excitations ω(k) with

plasmonic dispersion relation, as can be obtained from the harmonic theory [77,

80, 81]

[

~ω(k)
Ha/2

]2

=(na0)3[4ζ(3)−2Li3(e
ik
n )−2Li3(e− ik

n )] , (3.5)

where Lin(z) =
∑∞

k=1 z
k/kn is the polylogarithm function.

The quantum correction to the energy of a Wigner crystal (3.4) comes from

the zero-point motion of plasmons in the first Brillouin zone (BZ) [82, 83]

E(1)

N
=
∫

BZ

~ω(k)
2

dk

VBZ
, (3.6)

where VBZ = 2kBZ = 2πn is the volume of the first Brilloin zone. Finally, we

obtain the subleading term in the form of

E(1)

N
= C(na0)3/2Ha (3.7)

with the constant equal to

C =
∫ π

0

1
2

√

4ζ(3) − 2Li3(eix) − 2Li3(e−ix)
dx

π
= 0.50 .

In particular this means that the kinetic energy scales as (na0)3/2 with the

density.



3.5 Static structure factor | 51

3.5 Static structure factor

Fig. 3.2 Static structure factor for N = 20 and T = 10−2 Ha for different
densities. At the lowest density, we compare the PIMC result with a classical
Monte Carlo simulation (CLS). For densities n ≥ 0.1 a−1

0 , we make a comparison
with the ground-state properties obtained by the DMC method (T = 0). For
densities n ≥ 1 a−1

0 , we compare the PIMC results with the Ideal Fermi Gas.

In spite of the absence of real phase transitions in this 1D system one can

identify different regimes with well-known limiting cases. As we have shown in

Fig. 3.1, the energy shows a rich variety of behaviors as both the density and

temperature are changed. However, it is the study of the structural properties

which provides us a deeper understanding on the difference between regimes.

To this end, we use the PIMC method to calculate the density and tempera-

ture dependence of the static structure factor S(k). Its behavior at a constant

temperature (T = 10−2 Ha) and different densities is shown in Fig. 3.2. At

the lowest density n = 0.01 a−1
0 , the quantum PIMC results are nearly indistin-

guishable of the classical S(k) obtained by the classical Monte Carlo method

(Boltzmann distribution) at the same density and temperature. Increasing more
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the density, the static structure factor shows clearly the emergence of a Bragg

peak at k/kF = 2 signaling the formation of a Wigner crystal in 1D [61]. At low

temperatures, the quantum degeneracy is reached and S(k) agrees with that of

a DMC estimation at T = 0 at the same density. Similarly to what happens at

zero temperature [77], increasing even more the density the system evolves to

an ideal Fermi gas. In Fig. 3.2, we also compare the PIMC result for S(k) at

n = 1 a−1
0 with the IFG S(k) at the same density and T = 0: the agreement

between both curves is excellent.

Fig. 3.3 A semilogarithmic plot of the static structure factor for N = 20 and
n = 10−3 for different temperatures. At the lowest temperature we compare the
PIMC result with the DMC result of T = 0. At high temperature, we compare
the PIMC result with a classical Monte Carlo simulation (CLS).

It is important to understand how the temperature affects the structural

properties, when the density is fixed and the temperature is progressively in-

creased. Figure 3.3 reports PIMC results obtained at low density, n = 10−3 a−1
0 .

At low temperatures, one identifies the characteristic Bragg peaks at k/kF = 2l

with integer l. At the lowest considered temperature, T = 10−5 Ha, we observe a

quantum crystal and S(k) is in nice agreement with the T = 0 result obtained by
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the DMC method. Increasing the temperature by a factor of ten, the presence

of Bragg peaks confirms the formation of a Wigner crystal while its structure

is very different from the quantum one, observed at T = 0. Importantly, we

find out that the correlations at T = 10−4 Ha are the same as in a crystal with

electrons obeying Boltzmann statistics.

Once in the classical regime, by increasing the temperature the crystal melts

and becomes a gas. In Fig. 3.3, one can observe that PIMC and classical simu-

lations predict the same S(k) in a gas at temperature T = 10−3 Ha. It becomes

clear from Figs. 3.2 and 3.3 that the transition between different regimes can be

induced by changing the density or the temperature.

3.6 Phase diagram

From the PIMC results for both energy and structure we establish the temperature-

density phase diagram of the 1D Coulomb wire. The phase diagram is reported

in Fig. 3.4 and constitutes the main result of this chapter. We identify three

different regimes: classical Coulomb gas, Wigner crystal and ideal Fermi gas,

where the last two regimes show a crossover from quantum to classical behavior.

The Wigner crystal is identified by calculating the ratio of the peak’s height of

S(k) at k/kF = 2 for two values of the number of particles (N = 20, 10). When

the height of the peak increases with N , the system behaves as a Wigner crystal.

In Fig. 3.4, we use a contour plot to show that ratio in a grey scale, where black

color stands for large ratio and white for ratio equal to one. In the T -n plane,

the Wigner crystal phase shows a triangular shape, with the strongest signal

localized in the vertex of lowest density and temperature, delimited by transi-

tions to a Coulomb or an ideal Fermi gas. This quantum Wigner crystal is well

described by the zero-temperature theory, as we have shown in Figs. 3.2 and 3.3.

Increasing the temperature, one can see how the quantum crystal transforms into

a classical Wigner lattice. In both regimes, particles move around the lattice

points but these fluctuations are of quantum and thermal nature in quantum

and classic crystals, respectively. Starting from a high-temperature crystal and

by decreasing the temperature we see that the system becomes more ordered

and the height of the peaks increases. Indeed, at zero temperature the classical

system would always form a perfect crystal with no fluctuations. Instead, we see

that the height of the peaks stops growing when we decrease the temperature

down to the quantum-degeneracy regime. By lowering the temperature further

the system remains in the ground state. In fact, the classical crystal regime

is realized when the temperature is large compared to the height of the first



54 | Phase diagram of a one-dimensional Coulomb gas

Fig. 3.4 Temperature – density phase diagram. Long-dashed line, gas-Wigner
crystal crossover; dash-dotted line, locates the crossover between a quantum
Fermi gas and a classical thermal gas (TF ∝ n2); short-dashed line separates
the classical (CLS) and quantum (QNT) regimes within the Wigner crystal,
T ∝ n3/2; symbols connected with a thin line (guide to an eye), position of the
classical-quantum crossover estimated as Ekin = T . Ideal Fermi gas and Wigner
crystal regimes for the considered number of particles are separated by n ≈ 1.
Within the Wigner phase, the ratio of the peak value in S(k) for N = 20 and
N = 10 is shown with a contour plot (white color, no difference; black, large
difference).

Brillouin zone (EBZ), EBZ ≪ T . That can be estimated from the phonon spec-

trum (Eq. 3.5) at the border of the Brillouin zone, EBZ = Eph(kBZ) ≈ ~c|kBZ|,
with kBZ = kF = πn. The speed of sound c is related to the chemical poten-

tial through the compressibility relation mc2 = n∂µ/∂N . As µ in the Wigner

crystal is linear in n, one can locate the transition from the quantum to the

classical Wigner crystal as T ∼ n3/2 (short-dashed line in Fig. 3.4). When the

temperature is high enough, thermal fluctuations become large compared to the

potential energy of the Coulomb crystal and thus the Wigner crystal melts to

a classical Coulomb gas. As the energy of the Wigner crystal is linear with the

density (for a fixed number of particles N) (Eq. 3.2) this melting transition line

follows approximately the law T ∼ n (dashed line in Fig. 3.4).
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Fig. 3.5 (Color online) Ratio of main peak height of S(k) at N = 10 and 20 as
a function of the density and for three different temperatures. At the lowest T ,
the behavior is monotonously decreasing, from a Wigner crystal to a Fermi gas.
At the two higher temperatures, a double crossing gas-crystal-gas is observed.

By changing the density while keeping the temperature fixed to a very low

value, the system evolves from a Wigner crystal towards an ideal Fermi gas.

This evolution is driven by the different dependence of the potential and kinetic

energies on the density. The kinetic energy grows quadratically, Ekin/N ∝ n2,

instead of the linear dependence of the potential energy, EW ∝ n lnN . At

n ≈ 1, we observe this transition both in energy and in the shape of the static

structure factor S(k). For temperatures smaller than T . 10−2 Ha, we observe

two different transitions: at low densities an evolution from a thermal classical

gas to a Wigner crystal, and at n ≈ 1 the melting of the crystal towards the

Fermi gas. This is clearly shown in Fig. 3.5, where we plot the ratio of peak

heights at three different temperatures and as a function of the density. When

T > 10−2 Ha, the Wigner crystal is no more stable and the evolution with the

density is from a classical gas to an IFG for densities n > 1. On the other

hand, the finite-size dependence is very weak as it can be appreciated from the

logarithmic dependence of the Wigner crystal energy on N , (Eq. 3.2). Still, it

becomes important when the number of electrons is large. It is expected that the
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stability region of the Wigner crystal will increase with N both in density [77]

and in temperature.

The transition from the zero-temperature ideal Fermi gas to a classical gas

is governed by a single parameter, namely the ratio of the temperature and the

Fermi temperature, T/TF = T/[π2n2/2m]. When this ratio is much smaller than

one, the system stays in the ground-state of a quantum degenerate gas. When

this ratio is much larger than one, the energy approaches that of a Boltzmann

classical gas. In between, the system properties are that of a finite-temperature

quantum ideal Fermi gas. A special feature of the one-dimensional world is that

the stability of the quantum degenerate regime is greatly increased. Indeed, the

stability regime grows rapidly as the density is increased since T/TF ∝ n2. This

should be contrasted with T/TF ∝ n in two dimensions and even weaker n2/3

dependence in three dimensions.

In a quantum wire of a finite width b, the effective one-dimensional interac-

tion still has a Coulomb long-range tail while the short-range part is no longer

divergent and is limited by the width of the wire, Vmax ∝ e2/b [73, 74]. The

strictly one-dimensional model (Eq. 3.1) still remains applicable if the kinetic

energy is small compared to the maximum of the interaction potential Vmax. The

system properties are the same if the temperature is not too high and the density

is not too large. Specifically, the restriction on the temperature is kBT ≪ e2/b.

In a Wigner crystal, the kinetic energy is proportional to the energy of the zero-

point motion of plasmons Eplasmon = C(na)3/2 (Eq. 3.7), posing the restriction

on the density, na0 ≪ (a0/b)2/3. In an ideal Fermi gas, the Fermi energy EF

should be small compared to Vmax, leading to n ≪ 1/
√
a0b . In typical experi-

ments with semiconductor quantum wires the thickness is b/a0 = (0.1 − 1), so

that the major part of the phase diagram presented in Fig. 3.1 remains valid.

The situation is even better for experiments with carbon nanotubes placed on

SrTiO3 substrates[84], for which values of b/a0 = 0.0001 can be reached.

Experimental results to compare with are mainly located in the Wigner crys-

tal domain. This phase has been observed at the following points: T = 10−9Ha

, n = 3.5 · 10−8 a−1
0 ; [64] T = 10−6 Ha, n = 0.001 a−1

0 [65]; T = 5 · 10−6 Ha,

n = 0.002 a−1
0 [68]; and T = 10−5 Ha, n = 0.001 a−1

0 [69]. Only the latter one fits

inside our studied regime and agrees with the prediction of a crystal; the other

are deeper inside the Wigner crystal phase and presumably will be in agreement

with theory.
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3.7 Summary

Summarizing, in this chapter we have carried out a complete PIMC study of

the density-temperature phase diagram of a 1D quantum Coulomb wire. The

singularity of the Coulomb interaction at x = 0 allows us to solve the sign

problem and makes it possible to carry out an exact calculation of the electron

gas problem since we know a priori the exact position of the Fermi nodes. This

is clearly a special feature of the 1D environment which cannot be translated to

higher dimensions. There, in 2D and 3D, one can only access to approximate

solutions to the many-body problem which worsen when the the temperature is

not zero. Focusing our analysis on energetic and structural properties we have

been able to characterize the different regimes of the electron wire. In spite of the

lack of real phase transitions due to the strictly 1D character of the system, we

have been able to define different physical regimes, including the Wigner crystal

(classical and quantum), the classical Coulomb gas, and the universal ideal Fermi

gas. Two relevant features make this phase diagram specially interesting: the

large stability domain of the ideal Fermi gas and the double crossing gas-crystal-

gas with increasing density within a quite wide temperature window. Our results

are relevant to current and future experiments with electrons in a quantum wire

and to Coulomb ions in one-dimensional confinement.





Chapter 4
Luttinger parameter of

quasi-one-dimensional para-H2

In this chapter, we present the results of the ground-state properties of para-

hydrogen in one dimension and in quasi-one-dimensional configurations using

the path integral ground state Monte Carlo method. This method produces

zero-temperature exact results for a given interaction and geometry. The quasi-

one-dimensional setup has been implemented in two forms: the inner channel

inside a carbon nanotube preplated with H2 and a harmonic confinement of

variable strength. Our main result is the dependence of the Luttinger parameter

on the density within the stable regime. Going from one dimension to quasi-one

dimension, keeping the linear density constant, produces a systematic increase

of the Luttinger parameter. This increase is however not enough to reach the

superfluid regime and the system always remain in the quasi-crystal regime,

according to Luttinger liquid theory.

4.1 Introduction

The search for a superfluid phase in molecular para-hydrogen (p-H2) started from

the theoretical proposal by Ginzburg and Sobyanin in 1972 [4]. They suggested

that p-H2, with spin 1, should be superfluid under a transition temperature Tλ

that they estimated to be Tλ ∼ 6 K using ideal Bose gas theory. This rela-

tively high temperature, compared with the well-known transition temperature

in 4He (Tλ(4He) = 2.17 K), was the result of the smaller mass of p-H2. How-

ever, this estimation is too crude because the strong interactions between the

p-H2 molecules are simply ignored. Moreover, the transition temperature for

the ideal Bose gas increases with the density ρ as ρ2/3 whereas it is known that
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in superfluid 4He it slightly decreases with ρ. Later on, Apenko [85] proposed a

phenomenological theory similar to the Lindemann criterion for classical crystal

melting. He concluded that in p-H2 Tλ should vary between 1.1 and 1.2 K, de-

pending on the density. A recent PIMC simulation of p-H2 at low temperatures,

in which it was possible to frustrate the formation of the stable crystal, showed

that superfluidity appears at temperatures around 1 K [86].

Superfluidity in bulk hydrogen is not observed because it crystallizes in an

hcp phase at a temperature T = 13.8 K which is much higher than the estimated

transition temperature Tλ. The mean reason is that the intermolecular interac-

tion is around three times more attractive and the one between He atoms. This

enhanced attraction dominates over the positive effect produced by the smaller

mass of H2 respect to the 4He one. There have been a number of supercooling

attempts to create a metastable liquid phase but even at T ∼ 9 K the liquid

phase freezes quickly into a crystal [87]. One of the a priori more interesting

options was to confine hydrogen in a porous media, like a vykor glass, with

pores in the nanometer scale. However, the lowest temperature at which the

system was detected to be liquid was T ∼ 8 K and so still far from the pursued

superfluid [88].

At present, the only experimental signatures of superfluid p-H2 come from

experiments with small doped clusters [5]. By measuring the rotational spectra

of the embedded molecule it was possible to determine the effective moment of

inertia of the cluster and thus the superfluid fraction. These experiments show

significant evidence of superfluidity in clusters made up of N ≤ 18 molecules.

Larger clusters of up to N ∼ 104 molecules down to a temperature T = 2 K

have recently been produced but with no signature of superfluidity due to this

still too high temperature [89]. Another way of frustrating the formation of

the crystal was the generation of continuous hydrogen filaments of macroscopic

dimensions, but again without signature of superfluidity [90].

On the theoretical side, the search for superfluidity in p-H2 has been intense

in the last decades. The well-known radial interaction between the molecules

and the progress achieved in quantum Monte Carlo methods have allowed for

accurate results in different geometries. To frustrate the crystal formation and

reduce the strength of the interactions it was proposed to work with a two-

dimensional geometry with some impurities arranged in a periodic lattice [91,

92]. First results obtained within this scheme found finite superfluid densities but

posterior simulations were not able to reproduce these signatures [93–95]. The

greatest effort was devoted to the study of small clusters, both pure [96–105]

and doped with impurities [106–108]. There is an overall consensus that p-H2
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becomes superfluid at temperatures smaller than 1-2 K and that the superfluid

fraction decreases fast with the number of molecules of the cluster. For N >

18 − 25 the superfluidity vanishes and solid-like structures are observed.

Recently, there has been interest in the study of p-H2 in quasi-one-dimensional

environments [109–111]. Again, the idea is to reduce dimensionality to soften

the intermolecular attraction. Quantum Monte Carlo calculations of hydrogen

adsorbed inside narrow pores of different size and nature have been performed

showing, in some cases, the existence of inner channels which behave as ef-

fectively one-dimensional systems. Interestingly, a recent ground-state quantum

Monte Carlo calculation [110] has shown that the inner channel of p-H2 adsorbed

inside a (10,10) armchair carbon nanotube is superfluid.

In this chapter, we study the one-dimensional character of narrow channels of

p-H2 and determine the Luttinger parameter [112–115] as a function of the linear

density. We have studied three different cases: a purely 1D array of molecules,

p-H2 inside a (10,10) carbon nanotube preplated with an incommensurate layer

of hydrogen, and p-H2 confined harmonically to move in a channel of different

widths. Our results show that moving from 1D to quasi-1D reduces effectively

the interaction producing an increase of the Luttinger parameter. However, this

slight increment is not enough to arrive to the superfluid-like behavior within

Luttinger theory. The system breaks its homogeneity when crossing the spinodal

point and this is clearly before of getting superfluity, in contradiction with the

recent findings of Ref. [110].

4.2 Confinement potentials

We use the PIGS method, as explained in section 2.6, in order to study the

ground-state energy and structural properties of quasi-one-dimensional p-H2.

We have used a Jastrow model with McMillan correlation factors, ψm(R) =
∏

i<j exp(−0.5(b/rij)5), with b = 3.71 Å. The Hamiltonian of the system is

H =
~

2

2m

N∑

i=1

∇
2
i +

N∑

i<j

V (rij) +
N∑

i=1

U(ri) , (4.1)

with V (r) the intermolecular interaction and U(r) the confining potential in the

quasi-1D simulations.
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Upon the condition of moderate pressures, it is justified to use a radial in-

teraction between p-H2 molecules because in the para state the H2 molecule is

spherically symmetric with a total angular momentum zero. We use the semi-

empirical Silvera-Goldman potential [116] which has been extensively used in

the past. When the system is not strictly 1D, we include an external poten-

tial U(r) which confines in the radial direction. In particular, for the quasi-1D

calculations we have worked on two cases. In a first one, we study the inner

channel inside a (10,10) carbon nanotube (NT) of radius R = 6.80 Å preplated

with an incommensurate lattice of p-H2 of density σ = 0.112 Å
−2

. This configu-

ration coincides with the one obtained in Ref. [110] for the same nanotube. In

our case, we obtain the potential U(r) as a sum of the interaction that an H2

molecule located at an r distance to the center would feel due to the C atoms of

the nanotube and the H2 molecules of the inert layer. At difference with other

approaches which used the potential inside the nanotube by direct integration

of the Lennard-Jones potential [117, 118], we include here explicitly the real

positions of the atoms and then summed up all to give the total interaction.

The C-H2 potential is of Lennard-Jones type, with the same parameters than in

Ref. [109].

The second model to study the effects of departing from a strictly 1D geom-

etry is a harmonic potential U(r) = ~
2/(2mr4

0)(x2 + y2), with r0 a parameter

which controls the strength of the harmonic confinement (HC). A similar har-

monic model was used recently in a PIMC simulation [111]. Both potential

profiles are shown in Fig. 4.1. We adjusted the parameter r0 in the HC case to

be close to the particle density profile of the NT case. By taking r0 = 0.51Å we

obtain in fact very similar density profiles, as shown in Fig. 4.2.

We used N = 30 in the major part of our simulations; partial runs with larger

number of particles were also performed but the results were not significantly

different, almost for the quantities of our interest. The time step was ∆τ =

10−3 K−1 and convergence was achieved at imaginary times τ ≃ 0.25 K−1.

4.3 Equation of state

The energy per particle as a function of the linear density ρ is shown in Fig. 4.3

for the three studied systems: 1D, (10,10) carbon nanotube (NT), and harmonic

confinement (HC). Coming back to the energy results, one can see that near

the equilibrium point the equations of state are rather similar (in the NT and

HC cases we have subtracted to the energy per particle the energy of a single

molecule in the same environment). The equilibrium densities ρ0 for 1D, NT,
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and HC are 0.218(2), 0.224(2), and 0.221(2) Å
−1

, respectively (numbers within

parenthesis are the statistical errors). The possibility of movement in the radial

direction makes that the quasi-1D configuration equilibrates at a slightly larger

density with respect to the 1D limit. On the other hand, the spinodal point ρs,

defined as the point where the speed of sound becomes zero, appears in quasi-

1D at densities statistically indistinguishable of the 1D limit, ρs = 0.208 Å
−1

.

However, the most significant effect of opening the radial direction is produced

at large densities in which the growth of the energy with the density is clearly

steeper in 1D than in the NT and HC cases.

The results for equilibrium energy and spinodal point have been obtained by

fitting a polynomical function with the energy per particle data. The spinodal

point can be reached by searching the point when the speed of sound goes to

zero. The Luttinger parameter could theoretically be accessed in the same way,
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but it seems that the proximity of the spinodal point hinders its calculation at

densities below the equilibrium. We can recover better results for the Luttinger

parameter by extracting them from structural properties, such as the static

structure factor or the pair distribution function.

4.4 Static structure factor for different confine-

ments

In this section we present the results of the static structure factor obtained as

explained in section 2.5.4 for the three studied cases. For the quasi-1D cases,

the static structure factor is calculated along the z-direction of the system.
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In 1D systems with gapless excitation spectrum, ε(k) = ~kc when k →
0, one can make use of the Luttinger liquid theory. This phenomenological
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theory predicts the large-distance (small momenta) of the distribution functions.

Within this model, the results are universal in terms of the Luttinger parameter

K. In a homogeneous system, like the one we are studying here, K is determined

by the Fermi velocity vF = ~kF/m and the speed of sound through the relation

K = vF/c. In 1D, the Fermi momentum is kF = πρ. The estimation of K for

different densities requires of a full many-body calculation since the speed of

sound depends strongly on the intermolecular interaction.

According to Luttinger theory [112–115], the pair distribution function in

one dimension behaves at large distances as

g(z) = 1 − K

2(kFz)2
+

∞∑

l=1

Al
cos(2lkFz)
|kFz|2l2K

, (4.2)

that is a sum of oscillating terms modulated by a power-law decaying amplitude.

The exponents of the attenuation are only dependent on the Luttinger parameter

K, whereas the amplitudes Al of each term of the sum are determined within

the Luttinger theory. The oscillations in g(z) (4.2) can produce divergences at

momentum values k = 2lkF. This can be observed in the static structure factor

S(k) = 〈ρ̂(k)ρ̂( − k)〉, with ρ̂(k) =
∑

i exp(−ikz). In fact, the height of the l

peak in S(k) is given by

S(k = 2lkF) = AlN
1−2l2K , (4.3)

which diverges with the number of particles N for values K < 1/(2l2). In

particular, the first peak diverges when K < 1/2. In Luttinger theory this

regime is termed quasicrystal for the resemblance to Bragg peaks in two and

three dimensions. However, a true crystal in 2D and 3D shows real Bragg peaks

in which the height of the peak increases linearly with N whereas in 1D this

only happens when asymptotically K → 0.

In Fig. 4.4, we report results for the static structure factor S(k) at different

densities. The limit of stability of the homogeneous phase, signaled by the

spinodal point ρs = 0.208 Å
−1

, is clearly shown in the results. As one can

see, below the spinodal, and when k → 0, the static structure factor shows an

anomalous behavior, the linear behavior is lost, and the signal of a divergence is

observed. Snapshots of configurations generated along the PIGS runs also show

this break of homogeneity.
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Fig. 4.5 Static structure factor for quasi-1D H2 in the NT case at different
densities (in Å−1).
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Results for S(k) along the z-direction in the quasi-1D NT case are shown in

Fig. 4.5. Above the spinodal point, the behavior of S(k) is very similar to the

purely 1D case shown in Fig. 4.4, with a clear linear phononic behavior when

k → 0. From this behavior we estimate the speed of sound and the Luttinger

parameter K.

A similar analysis has been carried out in the case of a quasi-1D system with

harmonic confinement HC. The PIGS results for S(k) are shown in Fig. 4.6 at

several densities. The observed behavior is quite close to the NT case since the

density profiles in both cases are very similar (Fig. 4.2), and one observes the

break of homogeneity at the spinodal point too.

4.5 Luttinger parameter as a function of den-

sity

From the low-k linear behavior of S(k) we can obtain the speed of sound c,

S(k → 0) =
~k

2mc
, (4.4)

and, from it, the Luttinger parameter K. The dependence of K with the density

is shown in Fig. 4.7. For the 1D case it has a value ∼ 0.3 at the equilibrium

density and decreases monotonically with ρ. The spinodal point is quite close

to ρ0 and thus 1D p-H2 remains always in the quasicrystal regime.

The same can be done for the quasi-1D cases. Results of K as a function of

the density for the NT case are also shown in Fig. 4.7. At equal linear density,

the K values in the NT configuration are systematically larger than in purely

1D due to the effective reduction of the intermolecular interaction produced by

the opening of radial movements. However, it still remains K < 1/2, i.e., in

the quasicrystal regime. When the density is lowered below the spinodal point

the system breaks its homogeneity. As in the previous analyzed 1D case, this

instability is clearly shown in the results of S(k) (Fig. 4.5). In spite of having

larger statistical noise than in 1D, due to the radial degree of freedom, one can

see as the linear k dependence at low k is lost and a tendency to divergence is

observed. For the HC case, there is a break of homogeneity at the spinodal point

and the results for K in this case are also very similar to the NT case. These

are also shown in Fig. 4.7; close to the equilibrium density K in HC is slightly

smaller than in NT but then both results converge to common values when the

density grows.
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Fig. 4.7 Luttinger parameter K for the three systems under study as a function
of the density.

One can check that the Luttinger liquid theory applies to this quasi-1D

system by checking if the asymptotic behavior of the computed g(z) is well

reproduced by Eq. (4.2) using the K value obtained from the low k linear

behavior of S(k). As one can see in Fig. 4.8, the agreement with Luttinger

theory is excellent confirming our premises.

The quasi-1D results for the Luttinger parameter show an enhancement of its

value with respect the purely 1D geometry. An interesting question is to know if

this increase could be even larger if one releases slightly the radial confinement,

producing setups that depart more from the 1D constraint. We have explored

this possibility by tunning the strentgh r0 of the harmonic confinement HC.

In Fig. 4.9, we show results for S(k) for the HC model at a fixed density

ρ = 0.22 Å
−1

and varying the parameter r=0 in the range 0.1-1.5 Å. When the

Gaussian potential is narrow enough, r0 ≤ 0.5 Å, the static structure factor is

very similar to the 1D case, with a linear slope at low k and with a strength
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of the peak decreasing slightly with r0. However, when r0 ≥ 0.8Å S(k) shows

an anomalous behavior, with a main peak located at very small k. This reflects

that the system breaks its homogeneity. In fact, we observe in snapshots of the

simulations as the system aggregates in clusters of larger density.

In Fig. 4.10, we show results for K within the HC model as a function of the

strength of the confinement r0. They are obtained at the same linear density

ρ = 0.22 Å−1 and within the r0 range in which the system is stable. We observe

a linear increase of K with r0 up to r0 ≃ 1Å and then it tends to decrease slowly.

At 1.3 ÅK = 0.35, a value which is significantly larger than in 1D at the same

density K = 0.25, but still below the threshold for reaching the quasi-superfluid

regime.
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4.6 Summary

By means of the path integral ground state Monte Carlo method we have studied

the ground-state (zero temperature) properties of 1D and quasi-1D p-H2. For

the quasi-1D case we have used two models: the inner channel inside a (10,10)

carbon nanotube preplated with H2 and a radial harmonic confinement with

variable strength. The calculation of the equations of state in the three cases has

allowed for an accurate determination of the equilibrium densities of the three

systems. As expected, ρ0 increases slightly when radial direction opens because

the strong H2-H2 interaction is effectively reduced. The effect is however quite

small. The spinodal point of the three problems is indistinguishable within our

numerical resolution and remains very close to ρ0.

From the low-k behavior of the static structure factor we estimate the speed

of sound, and from it, the Luttinger parameter K. In this way, we report results

for the evolution of K with the density. K decreases monotonically with ρ in all

cases. In all the density regime in which the system is stable, K < 1/2 and thus,

according to Luttinger theory p-H2 is a quasi-crystal. For a particular density,

we observe as K increases going from strictly 1D to quasi-1D but the effect is

not large enough to surpass the quasi-crystal threshold.



Chapter 5
Dynamic structure factor of 4He

across the normal-superfluid

transition

In this chapter we have carried out a microscopic study of the dynamic structure

factor of liquid 4He across the normal-superfluid transition temperature using

the path integral Monte Carlo method. The ill-posed problem of the inverse

Laplace transform, from the imaginary-time intermediate scattering function to

the dynamic response, is tackled by stochastic optimization. Our results show

a quasi-particle peak and a small and broad multiphonon contribution. In spite

of the lack of strength in the collective peaks, we clearly identify the rapid drop-

ping of the roton peak amplitude when crossing the transition temperature Tλ.

Other properties such as the static structure factor, static response, momentum

distribution, and one-phonon contribution to the response are also calculated

at different temperatures. The changes of the phonon-roton spectrum with the

temperature are also studied. An overall agreement with available experimental

data is achieved.

We have also carried out a study of the momentum distribution across the

normal-superfluid transition temperature. Our results in the superfluid regime

show that a kink is present in the range of momenta corresponding to the roton

excitation. This effect disappears when crossing the transition temperature to

the normal fluid, in a behavior currently unexplained by theory.
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5.1 Introduction

The most relevant information on the dynamics of a quantum liquid is contained

in the dynamic structure factor S(q, ω), which is experimentally measured by

means of inelastic neutron scattering [119]. Probably, superfluid 4He has been

the most deeply studied system from both theory and experiment and a great

deal of information about it is nowadays accessible [120]. For many years, liquid
4He was the only quantum fluid showing Bose-Einstein condensation and super-

fluidity until the discovery of the fully Bose-Einstein condensate in 1995 [6, 7].

Therefore, the number of measures of S(q, ω) at different temperatures and mo-

mentum transfer has been continuously growing, with more refined data along

the years [121–126]. The emergence of strong quasi-particle peaks going down

the normal-superfluid transition ( Tλ = 2.17 K) has been associated with the

superfluidity of the system by application of the Landau criterium. Much of the

interest on the dynamics of strongly-correlated liquid 4He is then related to the

effects on the dynamics of this second-order λ-transition.

In the limit of zero temperature, the richest and most accurate microscopic

description of the dynamic response of liquid 4He has been achieved by pro-

gressively more sophisticated correlated basis function (CBF) theory [127]. The

development of this theory has been stimulated by the continuous improvement

of the experimental resolution in inelastic neutron scattering. Recently, Camp-

bell et al. [128] have incorporated three-body fluctuations in an extended CBF

approach and proved a remarkable improvement of both the excitation spectrum

and full S(q, ω), with features not so clearly seen before and that are in nice

agreement with the most recent experimental data [129].

As we already know, the most accurate tools to deal with ground-state prop-

erties are the quantum Monte Carlo (QMC) methods (see section 2.1), which sim-

ulate quantum systems using imaginary-time dynamics since they are intended

for achieving the lowest-energy state. Therefore, having no access to real-time

evolution one looses the possibility of getting the dynamic structure factor by a

Fourier transform of the intermediate scattering function F (q, t), as it happens

in simulations of classical systems using Molecular Dynamics. Quantum simu-

lations are able to sample this time-dependent function but in imaginary time

τ , F (q, τ), and from it to get the dynamic response through an inverse Laplace

transform. But it is well known that this inverse transform is an ill-posed prob-

lem. This means, at the practical level, that the always finite statistical error of

QMC data makes impossible to find a unique solution for the dynamic structure

factor.
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Inverse problems in mathematical physics are a long-standing topic in which

elaborated regularization techniques have been specifically developed [130]. Fo-

cusing on the inversion of QMC data, to extract the dynamic response, sev-

eral methods have been proposed in the last years. Probably, the most used

approach is the Maximum Entropy (ME) method which incorporates some a

priori expected behavior through an entropic term [131]. This method works

quite well if the response is smooth but it is not able to reproduce responses

with well-defined peaks. In this respect, other methods have recently proved

to be more efficient than ME. For instance, the average spectrum method

(ASM) [132], the stochastic optimization method (SOM) [133], the method of

consistent constraints (MCC) [134], and the genetic inversion via falsification

of theories (GIFT) method [135] have been able to recover sharp features in

S(q, ω) which ME smoothed out. All those methods are essentially stochastic

optimization methods using different strategies and constraints. It is also possi-

ble to work out the inverse problem without stochastic grounds [136] by using

the Moore-Penrose pseudoinverse and a Tikhonov regularization [137]. Other

approaches try to reduce the ill-conditioned character of this inverse problem by

changing the kernel from the Laplace transform to a Lorentz one [138]. Finally,

the computation of complex-time correlation functions has been recently real-

ized in simple problems and proved to be able to severely reduce the ill-nature

of the Laplace transform [136].

In our work, we use the PIMC method to estimate the dynamic response

of liquid 4He in a range of temperatures covering the normal-superfluid transi-

tion at Tλ = 2.17 K. The inversion method from imaginary time to energy is

carried out via the simulated annealing method, which is a well-known stochas-

tic multidimensional optimization method widely used in physics and engineer-

ing [139]. Our method is rather similar to the GIFT one [135] but changing

the genetic algorithm by simulated annealing. The GIFT method was applied

to the study of the dynamic response of liquid 4He at zero temperature and

proved to work much better than ME, producing a rather sharp quasi-particle

peak and also some structure at large energies, corresponding to multiparticle

excitations [135]. The temperature dependence of S(q, ω) has been much less

studied. Apart from a quantum-semiclassical estimation of the response at high

q [140], the only reported results where obtained by combining PIMC and the

ME method which worked well in the normal phase but not in the superfluid

part [141]. Therefore, the significant effect of the temperature on the dynamics

of the liquid through the λ transition was lost. We show that the improvement

on the inversion method leads to a significantly better description of S(q, ω) in
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all the temperature range studied, with reasonable agreement with experimental

data.

Apart from the effects on the dynamic structure factor, it is also interesting

the behavior of the momentum distribution of the 4He atoms n(k), that is no-

tably different in the two sides of the transition with the change being mainly

in the limit of low momenta. First of all, in the superfluid regime, the presence

of a condensate gives rise to a sharp delta contribution at k = 0. Furthermore,

n(k) shows a singular 1/k behavior which can be explained in terms of a cou-

pling between the condensate and the long-wavelength excitations (phonons)

[142, 143]. On the other hand, the width of n(k) increases slightly with T by

a merely thermal effect. However, some theoretical calculations in the limit of

zero temperature point out that the shape of n(k) presents a change in the slope,

or a kink, at k ≃ 2 Å−1 [144–146], i.e. in the regime of momenta in which the

dynamic structure factor displays a strong quasiparticle peak corresponding to

the roton. This tiny effect was not studied in previous calculations at finite

temperature [13]. It is therefore plausible to think that the kink in n(k) can

be related to the roton mode, in a similar way as the 1/k divergence at low

momenta is ascribed to phonons.

In this sense, a second aim of the work contained in this chapter is to in-

vestigate the relation between the presence of the kink in n(k) and that of

the roton-mode in S(k, ω). Our results do show that, as the liquid enters the

normal phase, the kink is slowly smoothed out and the strength of the roton

mode vanishes, supporting thus the hypothesis that the kink in the momentum

distribution is a signal of the presence of the roton mode.

5.2 Simmulated annealing as a stochastic opti-

mization

We use the path integral Monte Carlo method, as explained in chapter 2, in order

to obtain results about static properties of 4He at different temperatures crossing

the normal-superfluid transition. We are mainly interested in calculating the

intermediate scattering function F (q, τ) (section 2.5.5), from which we recover

the dynamic properties of the system.

The function F (q, τ) is the Laplace transform of the dynamic structure factor

S(q, ω) which satisfies the detailed balance condition,

S(q,−ω) = e−βωS(q, ω) , (5.1)
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relating the response for negative and positive energy transfers ω. Taking into

account Eq. (5.1), one gets

F (q, τ) =
∫ ∞

0
dω S(q, ω)(e−ωτ + e−ω(β−τ)) . (5.2)
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Fig. 5.1 Intermediate scattering function computed for 4He at saturated vapor
pressure (ρ = 0.021858 Å

−3
) and T = 1.2 K, for different values of q.

The intermediate scattering function is periodic with τ , as it can be imme-

diately seen from Eq. (5.2): F (q, β − τ) = F (q, τ). Therefore, it is necessary

to sample this function only up to β/2 (half of the polymer representing each

particle in PIMC terminology). From the PIMC simulation, one samples F (q, τ)

at the discrete points in which the action at temperature T is decomposed.

In Fig. 5.1, we show the characteristic behavior of F (q, τ) for three different

q values at T = 1.2 K. These are monotonously decreasing functions ending at

a finite value at T/2 which approaches zero when T → 0. The initial point at

τ = 0 corresponds to the zero energy-weighted sum rule of the dynamic response,
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which in turn is the static structure factor at that specific q value,

m0 = S(q) =
∫ ∞

−∞
dω S(q, ω) . (5.3)

With the PIMC results for F (q, τ), the next step is to find a reasonable model

for S(q, ω) having always in mind the ill-conditioned nature of this goal. In our

scheme, we assume a step-wise function,

Sm(q, ω) =
Ns∑

i=1

ξi Θ(ω − ωi) Θ(ωi+1 − ω) , (5.4)

with Θ(x) the Heaviside step function, and ξi and Ns parameters of the model.

As our interest relies on the study of homogeneous translationally invariant

systems, the response functions depend only of the modulus q. Introducing

Sm(q, ω) in Eq. (5.2), one obtains the corresponding model for the intermediate

scattering function,

Fm(q, τ) =
Ns∑

i=1

ξi

[1
τ

(

e−τωi − e−τωi+1

)

(5.5)

+
1

β − τ

(

e−(β−τ)ωi − e−(β−τ)ωi+1

)
]

Written in this way, the inverse problem is converted into a multivariate op-

timization problem which tries to reproduce the PIMC data with the proposed

model, Eq. 5.5. To this end, we use the simulated annealing method which

relies on a thermodynamic equilibration procedure from high to low tempera-

ture according to a predefined template schedule. [139] The cost function to be

minimized is the quadratic dispersion,

χ2(q) =
Np
∑

i=1

[F (q, τi) − Fm(q, τi)]
2 , (5.6)

with Np the number of points in which the PIMC estimation of the intermediate

scattering function is sampled. Eventually, one can also introduce as a denom-

inator of Eq. (5.6) the statistical errors coming from the PIMC simulations.

However, we have checked that this is not affecting so much the final result

since the size of the errors is rather independent of τ .

The optimization leading to S(q, ω) is carried out over a number Nt of in-

dependent PIMC calculations of F (q, τ). Typically, we work with a population

Nt = 24 and for each one we perform a number Na = 100 of independent sim-
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ulated annealing searches. The mean average of these Na optimizations is our

prediction for the dynamic response for a given F (q, τ). We also register the

mean value of χ2 (Eq. 5.6) of the Na optimizations. As an example, the mean

value of χ2 in a simulation with data at T = 1.2 K and q = 1.91 Å−1 is 2.19·10−5,

with minimum and maximum values of 2.37 · 10−6 and 3.80 · 10−4, respectively.

At this same temperature, Np = 41 and the number of points of the model

S(q, ω) (Eq. 5.5) is Ns = 150.

With the outcome for the Nt series we have tried different alternatives to

get the final prediction. We can take just the statistical mean of the series

or a weighted mean, in which the weight of each function is the inverse of its

corresponding χ2, to give more relevance to the best-fitted models. Additionally,

we have also tried to make both of these estimations but selecting the 20%

best functions according to its χ2. In Fig. 5.2, we plot the results obtained

following these different possibilities. All the results are quite similar, with
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minor differences; only at large energies we can observe that the weighted mean

gives slightly more structure (see inset in Fig. 5.2). Also, the effect of selecting

the best χ2 models seems to be not much relevant

5.3 Comparisons with the Maximum Entropy

method

Is interesting to compare our results obtained for the dynamic structure factor

at T = 1.2 K and saturated vapor pressure (SVP) with previous results obtained

using the Maximum Entropy (ME) method [141]. This is done in Fig. 5.3. The

ME results are significantly broader, mainly at the lowest q value, and with only

smooth features. This broadening is probably a result of the entropic prior used

in those estimations, which seems to favor smooth solutions. In the figure, we

can observe that the position of the ME peak is coincident with ours but the ME

solution lacks of any structure beyond the quasi-particle peak. In our estimation,

we do not use any prior information in the search of optimal reconstructions and

thus it is free from any a priori information except that the function is positive

definite for any energy. Moreover, the simulated annealing optimization leads

to dynamic responses that fulfil the energy-weighted sum rules m0 and m1,

m1 =
∫ ∞

−∞
dω ωS(q, ω) =

~
2q2

2m
, (5.7)

without imposing them as constraints in the cost function (Eq. 5.6). Also, the

m−1 sum-rule, related to the static response, is in agreement with experiment

(section 5.4).

As the intermediate scattering function F (q, τ) used in both estimations

is different and used by different authors it could happen that the differences

observed in Fig. 5.3 were due more to the differences between the calculated

imaginary-time response than to the inversion method itself. To clarify this

point, we can perform two additional comparisons.
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In Fig. 5.4, we report results for S(q, ω) at q = 0.62 Å−1 using our imaginary-

time data and stochastic optimization. In the figure, we also show the dy-

namic response that we have obtained by applying our inversion method to the

imaginary-time data reported in Ref. [141]. Finally, the figure also shows the

ME results reported in Ref. [141] but for a slightly different q value since results

for q = 0.62 Å−1 are not given in that paper. As one can see, starting from their

published data and applying our method the results compare favorably with our

response S(q, ω). Therefore, the different quality of the input data is so small

that no effect is observed.

In order to make a more clear comparison between both inversion methods we

show in Fig. 5.5 results for the dynamic response using our data for F (q, τ). At

the same q value than in Fig. 5.4, we report results obtainded with stochastic

optimization and using the ME method. The results are similar to the ones

shown in Fig. 5.4 and lead to the same conclusion, that is, the ME method
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generates smoother functions than our method. This conclusion is in agreement

with a similar analysis reported by Vitali et al. [135].
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Fig. 5.5 Comparison between the dynamic response obtained with ME and our
stochastic optimization method using our intermediate scattering data.

5.4 Comparisons with experiments

We have performed PIMC calculations of liquid 4He following the SVP densities,

from T = 0.8 to 4 K. The interatomic potential is of Aziz type [147] and the

number of particles in the simulation box, under periodic boundary conditions,

is N = 64. In some cases we have used a larger number of particles (N = 128)

without observing any significant change in F (q, τ). The number of convolution

terms M is large enough to eliminate any bias coming from the path discretiza-

tion; we used τ = 0.0104 K−1.

We compare our result for the dynamic response in the superfluid phase

with experimental data from Ref. [121] in Fig. 5.6. The theoretical peak is

located around an energy which is very close to the experimental one but it is

still broader than in the experiment. However, the strength (area) of this peak
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is in good agreement with the experimental one, as we will comment later. The

quasi-particle peak disappears in the normal phase, above Tλ, as we can see in

Fig. 5.7. In this figure, we compare our results at T = 4 K with experimental

outcomes at the same T . In this case, we see that both the position of the peak

and its shape is in an overall agreement with the experiment.

5.5 Dynamic structure factor in the momentum-

energy plane
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at different
temperatures.

One of the main goals of our study has been the study of the effect of the

temperature on the dynamics of liquid 4He. In Fig. 5.8, we report results of

S(q, ω) in a range of temperatures from T = 0.8 to 4 K in the phonon region of

the spectrum, with q = 0.88 Å−1. At this low q value, the behavior with T is

not much different for the superfluid and normal phases, a feature which is also
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observed in neutron scattering data [120]. We observe a progressive broadening

of the peak with T which appears already below Tλ and continues above it. Even

at the highest temperature T = 4 K, we identify a collective peak corresponding

to a sound excitation [120]. The main difference between both regimes is that

the quasi-particle energy below Tλ is nearly independent of T whereas, in the

normal phase, this energy decreases in a monotonous way.
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Fig. 5.9 Dynamic structure factor of liquid 4He for q = 1.91 Å
−1

at different
temperatures.

Near the roton, the dependence of the dynamic response with T is signifi-

cantly different. In Fig. 5.9, we report results of S(q, ω) at q = 1.91 Å−1 at

different temperatures across Tλ. The most relevant feature is the drop of the

quasi-particle peak for T > Tλ. In the superfluid phase, the peak remains sharp

with a nearly constant energy. Just crossing the transition (in our data for

T ≥ 2.3 K), the peak disappears and only a broad response is observed, with

an energy that moves slightly down. According to the Landau criterium the

existence of a roton gap implies a critical velocity larger than zero and thus a
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superfluid phase. Our PIMC data is consistent with this picture since we observe

as the resulting superfluid density, derived from the winding number estimator,

goes to zero at Tλ, in agreement with the disappearance of the roton excitation

in S(q, ω).
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Our results for the temperature dependence of the roton energy ∆(T ) are

shown in Fig. 5.10. For temperatures T < 1.5 K, ∆(T ) is practically constant

around a value 8.60 K, in agreement with experiment [148]. For larger temper-

atures, still in the superfluid part, this energy gap starts to decrease with the

largest change around the transition temperature. For temperatures T > 2.5 K,

the peak vanishes and ∆(T ) flattens but then one really can not continue speak-

ing about the roton mode. In the same figure we report experimental results

for the roton energy in the superfluid phase. At same temperature, our results

agree well with the experimental ones which show some erratic behavior around
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T ≃ 2 K but compatible with a decrease of the roton gap with T . Still in the

same figure, we report the fit used in Ref. [148], that is based on the roton-

roton interaction derived from Landau and Khalatnikov theory [149]. This law

seems to be right only at the qualitative level, with significant deviation with

our results and still larger discrepancies with the experimental values.
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Fig. 5.11 Color map of the dynamic response in the momentum-energy plane at
different temperatures, below and upper Tλ.

The results obtained for S(q, ω) in the present calculation are summarized

in Fig. 5.11 as a color map in the momentum-energy plane. In the superfluid

phase, the phonon-roton curve is clearly observed, with the highest strength

of the quasi-particle peak located in the roton minimum, in agreement with

experiment. The multiparticle part above the single-mode peak is also observed

but without any particular structure. At T = 2 K the roton peak is still observed
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but some intensity starts to appear below it, At T = 2.5 and 3 K, we still obtain

intensity in the roton but the peak, and in general, all the spectrum appears

much more diffuse.

5.6 Phonon-roton spectrum
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Fig. 5.12 Phonon-roton spectrum of liquid 4He at different temperatures. The
line corresponds to experimental data at T = 1.2 K [150, 151]. Straight lines
at small q stand for the low q behavior, ω = cq with c the speed of sound, at
temperatures T = 0.8, 1.2, and 3.0 K (from larger to smaller slope).

The excitation energy of the collective mode is shown in Fig. 5.12 at different

temperatures. Our results at the lowest temperatures, T = 0.8 and 1.2 K, are

indistinguishable within the statistical errors and are in close agreement with

the inelastic neutron scattering data at T = 1.2 K from Refs. [150, 151], except

at the end of the spectrum (Pitaevskii plateau). In fact, for q > 2.5 Å−1 the
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dynamic response that we obtain from the reconstruction of the imaginary-time

intermediate scattering function is rather broad and one can not distinguish the

double peak structure observed in experiments. Also, notice that the energies

corresponding to q . 0.5 Å−1 are not accessible in our simulations since our

minimum qmin value is restricted to be 2π/L, with L the length of the simulation

box. At T = 2 K, very close to the superfluid transition temperature, we observe

as the energies of the maxon and roton modes significantly decrease whereas the

phonon part is less changed. When the temperature is above the transition, we

can observe that the maximum of the peaks, now much broader, seem to collapse

again in a common curve around the maxon. Instead, in the roton it seems that

the energy could increase again at the largest temperature. This latter feature

is quite unexpected and could be a result of our difficulty in the localization of
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the maximum in a rather broad dynamic response. The overall description on

the evolution of the phonon-roton spectrum with T is in close agreement with

experimental data [120].

The static structure factor S(q) is the zero energy-weighted sum rule of the

dynamic response (Eq. 5.3). This function can be exactly calculated using the

PIMC method as it is the value of the imaginary-time intermediate scattering

function at τ = 0. In Fig. 5.13, we show results of S(q) for the range of analyzed

temperatures. The effect of the temperature on the position and height of the

main peak is quite small, in agreement with the x-ray experimental data from

Ref. [152]. We observe a small displacement of the peak to larger q values and

a simultaneous decrease of the height when T increases. These effects can be

mainly associated to the decrease of the density along SVP when the temperature

grows. For values q . 0.5 Å−1 we do not have available data due to the finite

size of our simulation box. Therefore, we can not reach the zero momentum

value which is related to the isothermal compressibility χT through the exact

relation

S(q = 0) = ρkBTχT , (5.8)

with kB the Boltzmann constant and ρ the density. The requirement of this

condition produces that S(q) starts to develop a minimum around q ≃ 0.5 Å−1

when T increases. Our results also show this feature but for larger T (∼ 3.6 K)

than in experiments (∼ 3 K) due to our lack of data at low q.

5.7 Static response function and area below quasi-

particle peak

From the dynamic structure factor, we can calculate the static response function

χ(q) since this is directly related to the 1/ω sum rule through the relation

χ(q) = −2ρ
∫ ∞

−∞
dω

S(q, ω)
ω

= −2ρm−1 . (5.9)

The dominant contribution to the m−1 sum rule is the quasi-particle peak and

thus it is less sensitive to the multi-phonon part [153]. In Fig. 5.14, we report

the results obtained for χ(q) at temperatures 1.2, 2.0, and 2.5 K. We observe

that at low q the effect of T is negligible but around the peak, q ≃ 2 Å−1, is really

large. In the superfluid regime, the height of the peak clearly increases with T ,

a feature that has not been reported previously neither from theory nor from

experiment. At T = 2.5 K, in the normal phase, the main peak decreases again
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in agreement with the absence of the roton. In the figure, we plot experimental

data [150, 151] at T = 1.2 K which is close to our result at low q but with less

strength in the peak. Results from QMC at zero temperature from Ref. [135]

are in an overall agreement with ours at the lowest T , but somehow ours have a

slightly higher peak.

The dynamic response of liquid 4He is usually written as the sum of two

terms,

S(q, ω) = S1(q, ω) + Sm(q, ω) , (5.10)

where S1(q, ω) stands for the sharp quasi-particle peak and Sm(q, ω) includes

the contributions from scattering of more than one phonon (multiphonon part).

The intensity (area) below the sharp peak is the function Z(q) which we report

in Fig. 5.15. Our results are compared with experimental data at T = 1.2 K

from Refs. [150, 151]. As we commented previously, our quasi-particle peaks are
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less sharp than the experimental ones due to the uncertainties in the inversion

problem from imaginary time to energy. However, the area below the peak

is not so far from the experimental outcomes. Up to the maximum of the

peak, our results are compatible with the experimental function. However, our

data lead to a peak with less strength and after that, for larger momenta, our

results scatter significantly due to the difficulties in the determination of the

area below the peak. The uncertainties in the area estimation do not allow for

the observation of an enhancement of the peak’s height when T increases, as

reported in experiments [153].

5.8 Momentum distribution across λ transition

In order to study the effects of the λ transition on the momentum distribution,

we need first to compute the one-body density matrix as explained in section
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2.5.6. The results are shown in Fig. 5.16, sampled from non-diagonal configura-

tions along the simulation. As it is well known, there are significant differences

between results for ρ1(r) obtained below and above the critical temperature Tλ.

In the superfluid regime, T < Tλ, the one-body density matrix shows a plateau

at large distances corresponding to the presence of a finite occupation of the

zero-momentum state. Instead, in the normal phase, T > Tλ, the one-body den-

sity matrix decays exponentially to zero pointing to the absence of off-diagonal

long range order in the system.
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Fig. 5.16 One-body density matrix of liquid 4He at different temperatures at
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The momentum distribution n(k) can be obtained from the Fourier transform

of the one-body density matrix ρ1(r) as

n(k) = n0δ(k) + ρ
∫

d3r eik·r (ρ1(r) − n0) , (5.11)

where ρ stands for the density of our system and n0 = limr→∞ ρ1(r) is the

condensate fraction. Results of n(k) for a range of temperatures across Tλ are

reported in Fig. 5.17, plotted as kn(k). Our data start at a k value compatible
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with the finite size of the system, kmin = 2π/L, with L the length of any side of

the cubic simulation box. Therefore, we are not able to show the k → 0 behavior

of the momentum distribution.

When T increases we see a progressive broadening of the distribution due to

a classical thermal effect. However, in this evolution with T we can observe a

non-trivial effect that appears at intermediate k values, 1.5 < k < 2.5 Å−1. As

we show in Fig. 5.17, and in particular in the inset, there is a kink of n(k) within

this k range for temperatures smaller than Tλ, i.e., in the superfluid regime. As

the temperature increases, and goes near the transition point, the kink becomes

smoother, and it completely disappears for T > Tλ. We also notice that the

kink is a bit more pronounced at SVP, when the intensity of the roton peak

in the dynamic structure factor is larger (see Fig 5.18a). The location of this

kink around k ≃ 2 Å−1 leads us to think that the kink can be related to the

characteristic momentum of the roton excitation. It is known that the roton

quasi-particle excitation is associated to the superfluidity of the system through

the Landau criterium. In the normal phase, the roton disappears (Fig. 5.9) as a

quasi-particle peak in the dynamic response S(k, ω). Therefore, the connection

between this kink in n(k) and the roton excitation seems rather plausible.

In Fig. 5.18 (top panel), we show how the maximum height of the dynamic

structure factor slowly decreases in the superfluid phase as we increase the tem-

perature, until it experiences an abrupt drop once we enter the normal phase

and then it remains constant. This is an expected result since the quasi-particle

peak of the roton excitation disappears once we cross Tλ. Our data, reported

in the figure, also show that the strength of the roton peak is slightly reduced

when the pressure increases.

We can also look for the energy of the roton excitation, as well as the phonon

and maxon excitations, and see how they evolve with temperature (see Fig. 5.18,

bottom panel). In the superfluid phase, for the roton, the energy decreases as

we increase the temperature. At higher temperatures, in the normal phase, it

seems that the energy raises again, but one can not really speak about roton

mode anymore due to the substantial broadening of its peak. As a matter of

comparison, we report in Fig. 5.18 data obtained for the maxon and phonon

energies. For the maxon excitation, the behavior is similar to the one of the

roton, but in this case the strength of the peak when crossing Tλ is not so

drastically reduced (Fig. 5.8). In the case of the phonon, the influence of the

temperature is much smaller than in the previous cases.
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5.9 Summary

We have carried out PIMC calculations of liquid 4He in a wide range of tempera-

tures across the normal-superfluid transition Tλ to calculate the imaginary-time

intermediate scattering function F (q, τ). From these functions one can in prin-

ciple access to the dynamic response S(q, ω) through an inverse Laplace trans-

form. But this is an ill-conditioned problem that can not be solved to deal with a

unique solution. In recent works [135], it has been shown that the use of stochas-

tic optimization tools can produce results with a richer structure than previous

attempts relying on the maximum entropy method [131]. We have adopted here

the well-known simulated annealing technique to extract the dynamic response,

without any a priori bias in the search in order to get a result as unbiased as

possible. In spite of the lack of any constraint in the cost function, we have ver-

ified that the three lowest energy-weighted sum rules are satisfactorily satisfied

giving us some confidence on the reliability of our algorithm.

The results of the dynamic response are still not enough sharp in the quasi-

particle peaks of the superfluid phase but the position of the peaks and the

area below them are in nice agreement with experimental data. Interestingly,

our results show clearly the signature of the transition in the roton peak, whose

amplitude drops rapidly for T > Tλ. The effect of the temperature on the

phonon-roton spectrum, static structure factor, and static response has been

also studied.

The difficulties of extending correlated perturbative approaches to finite T

have lead to a really unexplored dynamics of superfluid liquid 4He, at least from

a microscopic approach. With the present work, which can be considered an

extension and improvement of a previous work based on the maximum entropy

method [141], we have shown that the combination of PIMC and stochastic

reconstruction is able to produce a satisfactory description of the quantum dy-

namics at finite temperature. We are also convinced that in the near future

we can improve even more the present results. In this respect, one of the more

promising avenues could be the estimation of complex-time correlation functions,

instead of the merely imaginary ones, which can reduce the ill-posed character

of the inversion problem due to its non-monotonic structure [136] (see chapter

6).

As for the study of the momentum distribution, our aim has been to deter-

mine the possible origin of the kink that n(k) shows at k values around the

roton momentum. This is not the first observation of this kink in theoretical

calculations since it was already obtained more that twenty years ago [144]. The
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location of the kink around the roton momentum led the idea of its relation with

the roton but without further analysis. Now, we have shown that this scenario

is more plausible because the kink vanishes when Tλ is crossed, mimicking the

behavior of the roton quasi-particle peak.





Chapter 6
Sampling of complex-time

correlation functions

In this chapter we present results of the sampling of complex-time correlation

functions in multi-particle systems. The used method relies on the Path Integral

Ground State (PIGS) formalism, but taking into consideration the time as a

complex variable instead of as an imaginary one with a phase δ that acts as an

adjustable parameter. This method already proved to produce good results for

one-dimensional systems composed of only one particle [136]. The main goal of

this approach is to be able to obtain better results for the dynamic structure

factor S(q, ω) in multi-particle systems by reducing the ill-posed character of

the inversion problem.

6.1 Introduction

As explained in the previous chapter, quantum Monte Carlo (QMC) methods

simulate systems using imaginary-time dynamics. Therefore, we have no direct

access to real-time evolution and thus we are not able to get the dynamic struc-

ture factor directly by a Fourier transform. Usually, this problem is solved by

computing the intermediate scattering factor in imaginary time F (q, τ) and per-

forming a numerical inversion of the Laplace transform, which gives us access

to the dynamic structure factor. However, the ill-posed nature of this inversion

makes difficult to recover a unique and well-defined solution. As we have shown

in the previous chapter, the results obtained by these inversions provide a satis-

factory description of the quantum dynamics at finite temperature, but fail to

obtain a good description of high-energy contributions. In order to get more

accurate results from quantum Monte Carlo data, it is necessary to develop new
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estimators for the quantum correlation functions. This can be done by changing

the kernel from the Laplace transform to a Lorentz one [138].

Recently, a work by Rota et al. [136] proposed the the estimation of complex-

time correlation functions for the ground state using QMC methods in order to

obtain a description of the dynamic structure factor. At finite temperature, the

term exp(−βĤ) with β = 1/T can be considered as an evolution operator in

imaginary time, as explained in previous chapters (2.1). Thus, by rewriting

imaginary-time correlation functions in complex time we can access to real-time

correlation functions [154, 155]. These correlation functions in complex time

can be calculated using the path-integral formalism [18] and estimated via QMC

calculations [156]. Using this approach one can obtain significant improvements

in the spectral functions over results obtained from imaginary-time correlation

functions [157–164].

Despite the notion of complex time does not have a direct physical meaning

at zero temperature, we can extend this formalism to the calculation of ground-

state correlation functions. An adjustable parameter δ is introduced, which acts

as a phase of a the complex time, tc = |tc|e−iδ. For δ = π/2 our complex

time will be fully imaginary, while for δ = 0 it will be fully real. However,

as one goes from δ = π/2 to δ = 0, the statistical errors become large, thus

forcing us to use an optimal value of δ from which the estimated correlation

functions present relevant information on the real dynamics of the system while

maintaining moderate statistical errors. Also, the statistical error becomes larger

by increasing |tc|, thus the calculations are also only reliable up to a certain

value of the complex time. This makes using high-order approximations for the

quantum propagator extremely important [38]. However, Rota et al. proved

that the Chin action (section 2.3.1) presents some problems in the estimation

of complex-time correlation functions [136] due the chance of a positive term

inside an exponential becoming exceedingly large. In their case, they used the

propagator introduced by Zillich et al. [165], that proved to be suitable for this

complex-time evolution.

Following the work of Rota et al. [136], we extend the calculation of complex-

time correlation functions for the ground state to systems with more than one

particle and with interparticle interactions. We want to analyze if the same

methodology can be used in interacting systems, and if the statistical errors are

controllable, within a value of δ, when the number of particles in the system

increases.
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6.2 Formalism

The general expression for a complex-time tc = tme
−iδ correlation function at

zero temperature is

CAB(tc) =
〈

Ψ0|eitcĤ/~Âe−itcĤ/~B̂|Ψ0

〉

, (6.1)

where Ĥ is the Hamiltonian, Ψ0 is the ground state wave-function and Â and B̂

are time-independent quantum operators corresponding to measurable observ-

ables. As we are mainly interested in the recovery of the dynamic structure

factor, our complex-time correlation function of interest is the density-density

correlation function.

S(q, tc) =
〈

Ψ0|eitcĤ/~ρ̂qe
−itcĤ/~ρ̂−q|Ψ0

〉

, (6.2)

where ρ̂q =
∑N

i=1 e
iqri is the density-fluctuation operator as appears in equation

2.86. We can improve equation 6.2 in order to make it suitable for computer

simulations:

S(q, tc) =
∫

dR0dRMe
itcE0 〈Ψ0|RM〉

〈

RM |ρ̂qe
−itcĤ ρ̂−q|R0

〉

〈R0|Ψ0〉 (6.3)

= N
∫

dR0dRM Ψ⋆
0(RM)ρq(RM)G(R0,RM ; tc)ρ−q(R0)Ψ0(R0) ,

where N is a normalization constant, and G(R0,RM ; tc) =
〈

RM |e−itcĤ |R0

〉

is the propagator from a configuration R0 to RM in a complex time tc. In the

general case, G(R0,RM ; tc) only becomes real and positive when δ = π/2, mean-

ing tc is purely imaginary-time. This means that we can not use G(R0,RM ; tc)

as a probability distribution for the sampling of our PIGS coordinates as it is

usually done. However, we can sample the configurations R0 and RM normally

using standard imaginary-time PIGS method, and then calculate S(q, tc) by

estimating the quantity ρq(RM)G(R0,RM ; tc)ρ−q(R0).

In general, the exact form for the Green’s function G(R0,RM ; tc) is unknown.

Being able to construct accurate approximations in the limit of small time tm =

|tc|, we can estimate it for larger values of tm using path-integral formalism

and rewriting G(R0,RM ; tc) as a convolution of M propagators of shorter time

τc = tc/M ,

G(R0,RM ; tc) =
∫

dR1 . . .dRM−1

M∏

α=1

G(Rα,Rα−1; τc) . (6.4)
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Following this approach, we need to sample all the configurations R1,R2, . . .RM−1,

meaning that we need to build paths between the configurations R0 and RM

obtained via standard PIGS method. In order to sample these paths, we can

use importance sampling using a certain probability ppath(R0,R1, . . .RM). The

simplest option for this implementation is to make use of M free propagators

with time-step τs, resulting in

ppath(R0,R1, . . .RM) =
M∏

α=1

Gfree(Rα,Rα−1; τs) , (6.5)

where

Gfree(Rα,Rα−1; τs) = (4πλτs)
dN/2 exp

(

−(Rα − Rα−1)2

4λτs

)

, (6.6)

is the Green’s function of the free propagator, with N is the number of particles,

d is the dimensionality of the system, and λ = ~
2/2m.

In general, this method for sampling the configurations R1,R2, . . .RM−1

works well for quantum systems interacting with a smooth potential. In these

cases, the variance for the complex-time estimators (Eq. 6.1) is reduced when

the imaginary time of the free propagator τs is similar to the modulus of the

kinetic propagator in complex time |τc| = τm. Another option for the sampling

of the paths is to use the staging algorithm (section 2.4.1), whose probability

distribution follows

ppath(R0,R1, . . .RM) =
(

m

2π~2Mτs

)dN/2

exp
(

− m

2~2Mτs

(RM − R0)2
)

×

×
M−2∏

α=1

(
mα

2π~2τs

)dN/2

exp
(

− mα

2~2τs
(Rα+1 − R∗

α+1)2
)

, (6.7)

with mα = m M−α
M−α−1

and R∗
α+1 = RM +Rα(M−α−1)

M−α
.

With ppath(R0,R1, . . .RM), the expression for the estimator of the density-

density correlation becomes

S(q, tc) = N ∗
∫

dR0 . . .dRMρq(RM)
∏M

α=1 G(Rα,Rα−1; τc)
ppath(R0,R1, . . .RM)

ρ−q(R0)×

× Ψ0(RM)ppath(R0,R1, . . .RM)Ψ0(R0) . (6.8)

The normalization factor N ∗ can be estimated considering that, for q = 0, the

density-density correlation is S(0, tc) = 〈Ψ0|Ψ0〉 = 1. Therefore, we can define



6.2 Formalism | 105

the value

OA(R0 . . .RM) =
∏M

α=1 GA(Rα,Rα−1; τc)
ppath(R0,R1, . . .RM)

, (6.9)

where GA(Rα,Rα−1; τc) is an approximation for the complex-time propagator.

Using this, we can write equation 6.8 as

S(q, tc) =
〈ρ̂qOA(R0 . . .RM)ρ̂−q〉

〈OA(R0 . . .RM)〉 . (6.10)

In order to further simplify this equation to get an expression suited to be im-

plemented in a simulation, we need to choose an approximation forG(Rα,Rα+1; τc).

As happens for a standard PIMC scheme, the exact correlation function will be

obtainable by increasing the number of convolution terms M . However, every

propagator introduces an oscillating phase term, meaning that with a large value

of M the increase in statistical noise is significant. As was commented in previ-

ous sections (2.3), it is important to use good approximations in order to keep

the number of convolution terms M at minimum and yet recover the converged

correlation function.

The simplest approximation applicable is the primitive approximation, as

appeared in section 2.3, that in this case is factorized as eitcĤ ≃ eitcK̂eitcV̂ . With

this approximation, the complex-time propagator is written as

GP A(Rα,Rα−1; τc) = exp

(

−(Rα − Rα−1)2

4λiτc

)

× (6.11)

× exp

(

−iV (Rα) + V (Rα−1)
2~

τc

)

.

As commented before, in this case the variance of the complex-time estima-

tors will be reduced when τm = tm/M ≃ τs sin(δ). As happens in the standard

PIMC scheme, the Primitive Approximation is easy to implement but requires a

large number of convolution terms in order to converge to the exact result. How-

ever, using high-order approximations with double commutator terms could not

be convenient in this case, as explained by Rota [136], since for a certain value

of δ, the double commutator term could appear with a positive sign, producing

largely increasing amplitudes and making the results unreliable.

Still, we could use high-order approximations without the double commuta-

tor term. In this sense, we can use linear combinations of different symplectic

expansions, as presented by Zillich et al. [165]. Some of the coefficients of such

linear combination are negative, which present a drawback when used in a con-

ventional PIMC scheme, since the approximation of the imaginary-time propa-
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gator will not be positive definite. However, this does not represent a problem

here, since the complex propagator is used as an estimator instead of a probabil-

ity distribution. These combinations are constructed from a basis second-order

propagator

GP A(Rα,Rα−1; τc) = e−τcV̂ /2e−τcT̂ e−τcV̂ /2 (6.12)

from which are derived combinations of higher-order propagators. In our case,

we will use fourth-order

G4(Rα,Rα−1; τc) = −1
3
GP A(Rα,Rα−1; τc) +

4
3
G2

P A

(

Rα,Rα−1;
τc

2

)

(6.13)

and sixth-order propagators,

G6(Rα,Rα−1; τc) =
1
45
GP A(Rα,Rα−1; τc) − 4

9
G2

P A

(

Rα,Rα−1;
τc

2

)

+
64
45
G4

P A

(

Rα,Rα−1;
τc

4

)

. (6.14)

Once we have obtained data for the density-density correlation function, we

can recover the dynamic structure factor S(q, ω) by inverting the integral trans-

form

S(q, tc) =
∫

dω e−itcωS(q, ω) , (6.15)

as done by Rota et al. [136] for one-particle systems. Both S(q, tc) and S(q, ω)

are evaluated over a finite set of complex times (tc)i and frequencies ωj respec-

tively. We can equation 6.15 as a linear equation

y = Ax , (6.16)

where y represents the data from the density-density correlation function S(q, tc),

x is the data for the dynamic structure factor S(q, ω) that we aim to obtain, and

A is a matrix defined from the kernel of the integral transform from equation

6.15. The best least-squares solution to equation 6.16 is

x = AT (AAT )−1y , (6.17)

that works well for well-posed problems. As happened in chapter 5, we are facing

an ill-posed problem due to the statistical noise of the S(q, tc), unavoidable for

any QMC calculation, being uncontrollably magnified in the inversion process,

and thus not recovering acceptable results for S(q, ω).
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In order to solve that, we introduce a well-conditioned linear operator Ca

depending on a regularization parameter a > 0 that approaches AT (AAT )−1

in the limit of a → 0. The solution of the original problem will then be x =

lima→0 Cay. In this case, we have chose the Tikhonov regularization [137], with

the form

Ca = AT (AAT + Ia2)−1 , (6.18)

where I is the identity matrix. Also, since the physical solution must verify

xi ≥ 0 since S(q, ω) ≥ 0, we introduce this requirement explicitly as a diagonal

matrix Q = Diag(q1, . . . , qN), where each qi is a factor restricted to 0 or 1.

Finally, the solution can be written as

x = QAT (AQAT + Ia2)−1y , (6.19)

and satisfies xi = 0 if qi = 0 and y = Ax, irrespective of Q.

6.3 Results for a model one-particle system

We applied the formalism introduced in the previous section to the simple case

of a single particle in a one-dimensional harmonic potential. For this case, the

exact result for the density-density correlation function is known [166],

S (q, tc) = exp[
q2

2

(

e−itc − 1
)

] (6.20)

In order to apply the formalism explained in the previous section, we proceed

as follows: we perform a standard PIGS simulation and we make sure to reach

the ground state through thermalization. Then, we abilitate the sampling move-

ments of the worm algorithm, choosing the only particle of the system as the

worm, to move the system to the ensamble G. Once the system is in off-diagonal

configurations, we forbid the movements to return to the ensamble Z. While

in off-diagonal configurations, we construct the paths following equation 6.7 by

using the chosen complex time propagator. These paths are only reconstructed

to compute the density-density correlation function (Eq. 6.8), and are not taken

into account in the movement proposals of the PIGS algorithm. That means

that we need to reconstruct the paths each time we perform a calculation, and

differents paths need to be constructed for different number of beads M and

values of tm.

By having the exact result we can test the correctness of our results, as well

as the maximum time tm we can reach. This calculation was also done by Rota



108 | Sampling of complex-time correlation functions

et al. [136], and it showed that the Primitive Approximation is only accurate at

short times. They also performed a calculation using the Chin Approximation

that, despite behaving better than the Primitive Approximation, still falls short

in recovering high time correlations when compared with the Zillich sixth-order

expansion (Eq. 6.14).
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In figure 6.1 we show the results obtained for q = 1.5 and δ = π/9, as well

as the exact value obtained via equation 6.20. The results are computed using

different numbers of beads M . A higher value of M means a longer path to be

sampled following equation 6.7, so this will yield an increased variance over all
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the time range when compared with results with less beads. However, increasing

the value of M is necessary in order to achieve results closer to the exact values.

This can be seen clearly at tm > 4 in the figure 6.20, where the results with

M = 1 clearly diverge from the exact result despite having less variance. In

the end, this increased variance can be reduced by running a longer simulation.

However, as can be seen, reaching the exact result at high times tm > 6 its

difficult, and will require a higher number of beads.

In equation 6.2 we have put all the results together in order to obtain a

single result for the density-density correlation function to be able to perform

the inversion. At lower time tm we choose the results for small number of beads,

since they have lower variance. As can be seen, at tm ≃ 2 the results for M = 1

diverge from the results at higher M . From this value of tm up we choose the

results for M = 2, and so on.

6.4 Results for a model multi-particle interact-

ing system

In the previous section we have shown the results obtained for a single particle in

a one-dimensional potential. The goal of this section is to extrapolate the same

formalism to many-particle interacting systems, and to see if the maximum time

tm we can reach with a reasonable number of beads M decreases significantly

when increasing the number of particles. In this sense, we have chosen a one-

dimensional system of particles interacting via a harmonic potential.

We need to apply some changes in the PIGS algorithm in order to work with

more than one particle. As the reconstruction needs to be made at the ground

state Ψ0, we need to open all the polymers as if all of them are the worm. We

proceed as for one-particle system, by first reaching the ground state and then

opening all the polymers. Then, we proceed to the sampling of the system and

performing estimations after a certain number of steps.

However, a problem arises in this system when opening all the polymers.

Since we are not under periodic boundary conditions, both halfs of the opened

polymers can drift away from each other since, when proposing a staging move-

ment, they only feel the presence of the beads of the same index from other

particles. This can result in having two drops far away from each other, each

composed by the same-numbered halfs of the particles. In order to avoid this, we

introduce an external harmonic potential applied to each bead as γ/2(
∑N

i=1 xα,i)2,

with γ being a parameter. For γ = 1/N we can perform a change of variable
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in order to uncouple the oscillators, allowing us to recover the exact energy and

density-density correlation function.
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It is important to note that the path constructions can be done between any

pair of particles, and in fact one must take into account all the possible pairs

when computing equation 6.10. The number of pairs increases with the number

of particles N as N !, making it unpractical with systems with a high number

of particles. To solve this, we perform calculations with N = 3 and N = 4

taking into account all the pairs, and by choosing only N pairs randomly. The

results are strictly the same, despite taking into account all the pairs yields less

variance for the sole fact that we accumulate more statistics.

Another important fact of the path construction is that equation 6.7 does

not take into account the other paths, meaning that some paths may fall pretty

close or far from each other. Taking all that into account, we performed calcula-

tions using sixth-order Zillich action for the density-density correlation function.

However, we found some unexpected behaviour in the function obtained, as for

a certain phase δ and number of beads M we found a divergence in a certain

time tm. As this divergence dissappears when increasing M , we supect it could

arise from the term GP A(Rα,Rα−1; τc) in equation 6.14 being too inaccurate.

To avoid this divergence, we switch the used propagator to equation 6.13, which

is a fourth-order approximation.

In figure 6.3 we show the result with different number of beads for a system

composed by N = 3 particles. We can see clearly how the variance has increased

when comparing this results with the ones obtained at the same angle δ = π/9

for one particle (Figure 6.1). For low number of beads we recover the expected

theoretical result at low time scale. On the other hand, results with the highest

value of M show large variance at low time-scales while it decreases at high

tm. We can expect to recover the exact value, given a higher number of beads

and long enough simulation time. In the figure 6.4 we can see the results for

the different number of beads put together, as with the one-dimensional case.

Despite having a large degree of variance overall the time range, the obtained

results become acceptable by running longer simulations.
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We do the same for N = 4 particles. In figure 6.5 we show the results for

different number of beads. Both results for N = 3 and N = 4 are obtained

with the same number of sampling steps, but when comparing figure 6.4 and 6.5

we can see how the results obtained for N = 4 are in less accordance with the
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theoretical ones than the results for N = 3. Also, we can see how we have more

difficulties recovering the imaginary part of the complex time density-density

correlation function. Despite the results being improved by longer simulation

times or a higher number of beads, the cost of the simulation step increases with

the number of particles and beads, meaning that with a number of particles

closer to the typical PIMC simulation (i.e. N = 64) it could become extremely

demanding to recover results good enough to perform the inversion.
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In figure 6.6 we show the exact results for the dynamic structure factor S(q, ω)

for N = 3 particles with the ones obtained using the inversion method explained

in section 6.2 for different values of δ. The exact results are plotted with vertical

lines as the exact value is defined by a set of delta functions.
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For one-particle systems, the work by Rota et al. [136] proved that reducing

the value of the phase δ provided with results closer to the exact values. In our

case, the same seems to apply since for low values of δ we recover results for high

transition lines that are not recovered at higher values. However, the precision

of such results is not as good as for the one-particle systems, probably because

the density-density correlation function has higher variance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5

S(
q=

1.
5,

ω
)

ω

Theoric
δ = 20°
δ = 30°
δ = 45°
δ = 90°

Fig. 6.7 Dynamic structure factor S(q, ω) for a system with N = 4 interacting
particles at q = 1.5. The impulse red lines correspond to the exact value, while
the others correspond to the results derived from QMC via the inversion method
explained above, for different values of δ

.

The same can be done by N = 4, as shown in figure 6.7. In this case we see

more clearly how the results at a high value of δ, mainly δ = 90° and δ = 45°

provide a poor approximation to the exact value, since the inversion for these

phases only recovers the initial delta at ω = 0, and then a value with high

variance between 1 and 2. For δ = 30° and δ = 20° we obtain the value at

ω = 1 with good enough precision. We may fail to recover some of the high-
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transition deltas, but we achieved some results at high values of ω that go with

good accordance with the exact values of S(q = 1.5, ω).
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It is clear that using the information provided by the complex-time correla-

tion function improves the dynamic structure function obtained via inversion,

despite the ill-posed nature of the problem. With this concluded, as our final

objective is to extend this formalism to real systems such as 4He, we need to

check if by increasing the number of particles by a great number the noise of

the density-density correlation function still holds acceptable values. He have

performed calculations of the density-density correlation function for a system

with N = 10 particles, as shown in the figure 6.8. The time window has been

reduced tu tm = 2, since for higher times the variance of the results increases

drastically. For the time window chosen, the results behave with an acceptable

variance. Apart for the computational cost increasing intrinsically with the num-

ber of particles, for N = 10 we needed to perform a longer simulation run in

order to reduce the variance of the chosen time interval.

In the end, applying this method for obtaining the dynamic structure factor

to real systems with a larger number of particles seems feasible, despite the

computation time needed to be large in order to reduce the variance to a values

acceptable enough in order to perform the inversion.

6.5 Summary

We have extended the calculation of complex-time correlation functions, specifi-

cally the density-density correlation function, previously studied in the work of

Rota et al. [136] to multi-particle systems interacting with an harmonic potential.

The results obtained for the density-density correlation function in complex time

show a higher variance that the ones obtained for one-particle systems, but still

are in a good enough accordance with the exact values. By solving the inversion

problem, we obtain the dynamic structure factor for such systems, that clearly

benefits for the parameter δ, thus obtaining better results for a low value of δ,

near the pure real time, as happens for the one-particle system. The results for

the density-density correlation function for a higher number of particles show

that, despite the cost of the sampling rising, it is possible to obtain good results

within a certain time window.

In further works we intend to apply the used method to real systems such as
4He, in order to improve the currently obtained results for the dynamic structure

factor using pure imaginary-time correlation functions.



Chapter 7
Conclusions

Along this Thesis, we have performed numerical simulations on relevant quantum

fluids using the Path Integral Monte Carlo method (PIMC) at finite temperature,

as well as Path Integral Ground State method (PIGS) when dealing with systems

at zero temperature. The exact results provided by the PIMC method are

of great relevance, as well as its adaptability that allows us to use the same

code within different systems by only performing some minor changes in the

Hamiltonian.

All the results obtained in the calculations where obtained using the Chin

action as our approximation for the thermal density matrix. We have studied

other possible actions that, in principle, could provide us with faster convergence

to the exact result. However, in the end, the Chin action proved to be superior

in almost all the cases. We also presented a parallelization scheme for the PIMC

method. Despite the PIMC proposals of movement not having any N2 loop,

where N is the number of particles, we established a procedure to obtain some

speed gain in the calculation. This gain is strongly tied to the number of particles

and length of the polymer chains, thus being important when dealing with low

temperature systems since the number of beads needed in a PIMC scheme greatly

increases when lowering the temperature. However, as the PIGS method usually

requires a reasonable number of beads, it cannot obtain any substantial gain from

this parallelization scheme.

Finally, as an outlook, we report the main conclusions of each chapter.
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Phase diagram of a one-dimensional Coulomb

gas

In Chapter 3 we have carried out a complete PIMC study of the density-temperature

phase diagram of a 1D quantum Coulomb wire. The singularity of the Coulomb

interaction at x = 0 allows us to solve the sign problem and makes it possible to

carry out an exact calculation of the electron gas problem since we know a priori

the exact position of the Fermi nodes. This is clearly a special feature of the

1D environment which cannot be translated to higher dimensions. There, in 2D

and 3D, one can only access to approximate solutions to the many-body problem

which worsen when the the temperature is not zero. Focusing our analysis on

energetic and structural properties we have been able to characterize the differ-

ent regimes of the electron wire. In spite of the lack of real phase transitions

due to the strictly 1D character of the system, we have been able to define differ-

ent physical regimes, including the Wigner crystal (classical and quantum), the

classical Coulomb gas, and the universal ideal Fermi gas. Two relevant features

make this phase diagram specially interesting: the large stability domain of the

ideal Fermi gas and the double crossing gas-crystal-gas with increasing density

within a quite wide temperature window. Our results are relevant to current

and future experiments with electrons in a quantum wire and to Coulomb ions

in one-dimensional confinement.

Luttinger parameter of quasi-one-dimensional para-

H2

In Chapter 4, we have studied the ground-state (zero temperature) properties

of 1D and quasi-1D p-H2 by means of the path integral ground state Monte

Carlo method. For the quasi-1D case we have used two models: the inner chan-

nel inside a (10,10) carbon nanotube preplated with H2 and a radial harmonic

confinement with variable strength. The calculation of the equations of state

in the three cases has allowed for an accurate determination of the equilibrium

densities of the three systems. As expected, ρ0 increases slightly when radial

direction opens because the strong H2-H2 interaction is effectively reduced. The

effect is however quite small. The spinodal point of the three problems is indis-

tinguishable within our numerical resolution and remains very close to ρ0.

From the low-k behavior of the static structure factor we estimate the speed

of sound, and from it, the Luttinger parameter K. In this way, we report results
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for the evolution of K with the density. K decreases monotonically with ρ in all

cases. In all the density regime in which the system is stable, K < 1/2 and thus,

according to Luttinger theory p-H2 is a quasi-crystal. For a particular density,

we observe as K increases going from strictly 1D to quasi-1D but the effect is

not large enough to surpass the quasi-crystal threshold.

Dynamic structure factor of 4He across the normal-

superfluid transition

In Chapter 5, we have carried out PIMC calculations of liquid 4He in a wide

range of temperatures across the normal-superfluid transition Tλ to calculate the

imaginary-time intermediate scattering function F (q, τ). From these functions

one can in principle access to the dynamic response S(q, ω) through an inverse

Laplace transform. But this is an ill-conditioned problem that can not be solved

to deal with a unique solution. In recent works [135], it has been shown that the

use of stochastic optimization tools can produce results with a richer structure

than previous attempts relying on the maximum entropy method [131]. We

have adopted here the well-known simulated annealing technique to extract the

dynamic response, without any a priori bias in the search in order to get a result

as unbiased as possible. In spite of the lack of any constraint in the cost function,

we have verified that the three lowest energy-weighted sum rules are satisfactorily

satisfied giving us some confidence on the reliability of our algorithm.

The results of the dynamic response are still not enough sharp in the quasi-

particle peaks of the superfluid phase but the position of the peaks and the

area below them are in nice agreement with experimental data. Interestingly,

our results show clearly the signature of the transition in the roton peak, whose

amplitude drops rapidly for T > Tλ. The effect of the temperature on the

phonon-roton spectrum, static structure factor, and static response has been

also studied.

The difficulties of extending correlated perturbative approaches to finite T

have lead to a really unexplored dynamics of superfluid liquid 4He, at least from

a microscopic approach. With the present work, which can be considered an

extension and improvement of a previous work based on the maximum entropy

method [141], we have shown that the combination of PIMC and stochastic

reconstruction is able to produce a satisfactory description of the quantum dy-

namics at finite temperature. We are also convinced that in the near future

we can improve even more the present results. In this respect, one of the more
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promising avenues could be the estimation of complex-time correlation functions,

instead of the merely imaginary ones, which can reduce the ill-posed character

of the inversion problem due to its non-monotonic structure [136] (see chapter

6).

As for the study of the momentum distribution, our aim has been to deter-

mine the possible origin of the kink that n(k) shows at k values around the

roton momentum. This is not the first observation of this kink in theoretical

calculations since it was already obtained more that twenty years ago [144]. The

location of the kink around the roton momentum led the idea of its relation with

the roton but without further analysis. Now, we have shown that this scenario

is more plausible because the kink vanishes when Tλ is crossed, mimicking the

behavior of the roton quasi-particle peak.

Sampling of complex-time correlation functions

In Chapter 6 we have extended the calculation of complex-time correlation func-

tions, specifically the density-density correlation function, previously studied

in the work of Rota et al. [136] to multi-particle systems interacting with an

harmonic potential. The results obtained for the density-density correlation

function in complex time show a higher variance that the ones obtained for

one-particle systems, but still are in a good enough accordance with the exact

values. By solving the inversion problem, we obtain the dynamic structure fac-

tor for such systems, that clearly benefits for the parameter δ, thus obtaining

better results for a low value of δ, near the pure real time, as happens for the

one-particle system. The results for the density-density correlation function for

a higher number of particles show that, despite the cost of the sampling rising,

it is possible to obtain good results within a certain time window.

In further works we intend to apply the used method to real systems such as
4He, in order to improve the currently obtained results for the dynamic structure

factor using pure imaginary-time correlation functions.



Appendix A
Staging algorithm for the Chin

action

In this appendix, we provide a detailed description of the staging algorithm (sec-

tion 2.4.1) for its implementation with the Chin action (section 2.3.1). Actually,

this description works for every propagator with different time steps, as is the

case of symplectic expansions.

We want to construct a path corresponding to free action between two fixed

points ri,0 and ri,m, with i being the particle where we are performing the staging.

We will refer to m + 1 as the length of the staging, and the number of beads

moved will be m− 1.

The free action for this segment ri,0 . . . ri,m is given by

pfree = exp



−
m∑

j=1

cj (ri,j − ri,j−1)
2



 , (A.1)

where cj will be different for each Chin Action stage, as

cj =
1

4λτtj
, (A.2)

with tj being t1 or 2t0 as can be seen in equation 2.32.

We want the staging transformation to yield a formula for our reconstruction

path as

pstaging = C(ri,0, ri,m) exp



−
m−1∑

j=1

qj [ri,j − (ajri,j−1 + bjri,m)]2


 , (A.3)
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where C(ri,0, ri,m) is a constant factor which only depends on the initial and

final coordinates. This constant is not important in our implementation of the

staging algorithm for Chin, since the boundaries of the staging ri,0 and ri,m are

constants.

The problem now is to know the relations between the new parameters

{qj, aj , bj} and the original ones {cj}. The first ones only have a finite value

for values of j = {1 . . .m − 1}, so qm = am = bm = 0. Knowing this, we can

begin computing the unknown coefficients of j = m− 1:

cm−1(ri,m−1 − ri,m−2)
2 + cm(ri,m − ri,m−1)

2 =

r2
i,m−1(cm−1 + cm) − 2cm−1ri,m−1ri,m−2

−2cmri,mri,m−1 + cm−1r2
i,m−2 + cmr2

i,m

and

qm−1 [ri,m−1 − (am−1ri,m−2 + bm−1ri,m)]2 =

qm−1

[

r2
i,m−1 − 2am−1ri,m−1ri,m−2 + 2am−1bm−1ri,m−2ri,m

−2bm−1ri,m−1ri,m + a2
m−1r2

i,m−2 + b2
m−1r2

i,m

]

By equaling the terms with ri,m−1, we obtain:

ri,m−1(cm + cm−1) − 2cmri,m − 2cm−1ri,m−2 =

ri,m−1qm−1 − 2qm−1bb−1ri,m − 2qm−1am−1ri,m−2 ,

that yields an expression for our staging coefficients:

qm−1 = cm−1 + cm

am−1 =
cm−1

qm−1
(A.4)

bm−1 =
cm

qm−1

As can be observed, the terms without ri,m−1 appear in the previous expres-

sions, being

cm−1r2
i,m−2 + cmr2

i,m
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and

qm−1

[

2am−1bm−1ri,m−2ri,m + a2
m−1r2

i,m−2 + b2
m−1r2

i,m

]

.

We must carry over this terms when we repeat this procedure at a lower value of

j. Is not needed to carry over the terms with only r2
i,m dependence, since they

only lead to a final constant value at j = 1.

We do the same for j = m− 2:

cm−2(ri,m−2 − ri,m−3)2 = cm−2(r2
i,m−2 + r2

i,m−3 − 2ri,m−2ri,m−3) .

When adding the remaining terms of the first term, this results in:

(cm−2 + cm−1)r2
i,m−2 + cm−2(r2

i,m−3 − 2ri,m−2ri,m−3)

For the staging expression:

qm−2 [ri,m−2 − (am−2ri,m−3 + bm−2ri,m)]2 =

qm−2

[

r2
i,m−2 − 2am−2ri,m−2ri,m−3 + 2am−2bm−2ri,m−3ri,m

−2bm−2ri,m−2ri,m + a2
m−2r

2
i,m−3 + b2

m−2r2
i,m

]

,

and we must add the remaining terms of the first part, that are:

2qm−1am−1bm−1ri,m−2ri,m + qm−1a
2
m−1r2

i,m−2 + qm−1b
2
m−1r2

i,m .

Therefore:

qm−2 = cm−2 + cm−1 − qm−1a
2
m−1

am−2 =
cm−2

qm−2

(A.5)

bm−2 =
qm−1am−1bm−1

qm−2

Iterating, one arrives to the general recursive relations:

qj = cj + cj+1 − qj+1a
2
j+1

aj =
cj

qj
(A.6)

bj =
qj+1aj+1bj+1 + cmδj,m−1

qj
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with starting conditions as before

qm = am = bm = 0 (A.7)

and the recursive relations go from j = m− 1 to j = 1.



Appendix B
Virial estimator for the energy

using the Chin action

The virial estimator can be computed from

EV

N
=

〈

d

2β
+

1
12λNM2τ 2

M∑

α=1

N∑

i=1

(rM+α,i − rα,i) (~rM+α−1,i − rM+α,i)

+
1

2Nβ

M∑

α=1

N∑

i=1

(

rα,i − rC
α,i

) ∂

∂rα,i
(U(Rα)) (B.1)

+
1

NM

M∑

α=1

∂U(Rα)
∂τ

〉

where

U(Rα) = τ
N∑

i<j

(
v1

2
V (rα,ij) + v2V (rαA,ij) + v1V (rαB,ij) +

v1

2
V (rα+1,ij)

)

(B.2)

+ 2τ 3u0λ
N∑

i=1

(
a1

2
|Fα,i|2 + (1 − 2a1) |FαA,i|2 + a1 |FαB,i|2 +

a1

2
|Fα+1,i|2

)

is the potential part of the action and

rC
α,i =

1
2M

M−1∑

l=0

(rα+l,i + rα−l,i)

The 4th term is the same that arises from the potential computed via ther-

modynamic estimator.

1
NM

M∑

α=1

∂U(Rα)
∂τ

=
1

NM

(

VMN + 6τ 2u0λWMN

)
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From the 3rd term two terms arises, one from the potential and another from

the gradient (or double commutator).

E
(3)
V

N
=

1
2Nβ

M∑

α=1

N∑

k=1

(

rα,k − rC
α,k

) ∂

∂rα,k


τ
N∑

i<j

(
v1

2
V (rα,ij) + v2V (rαA,ij) + v1V (rαB,ij) +

v1

2
V (rα+1,ij)

)

+ 2τ 3u0λ
N∑

i=1

(
a1

2
|Fα,i|2 + (1 − 2a1) |FαA,i|2 + a1 |FαB,i|2 +

a1

2
|Fα+1,i|2

))

We will solve this derivatives ignoring the bead index α, so a simplified

expression will look like

E
(3)
V

N
=

1
2Nβ

N∑

k=1

(

rk − rC
k

) ∂

∂rk



τ
N∑

i<j

V (rij) + 2τ 3u0λ
N∑

i=1

|Fi|2




For the fist of these terms:

E
(3,1)
V

N
=

τ

2Nβ

N∑

k=1

(

rk − rC
k

) ∂

∂rk

N∑

i<j

V (rij) =
1

2NM
1
2

N∑

k=1

N∑

i=1

N∑

j=1
j 6=i

(

rk − rC
k

)

∇kV (rij)

=
1

2NM
1
2

N∑

i=1

N∑

j=1
j 6=i







(

ri − rC
i

)

∇iV (rij) +
(

rj − rC
j

)

∇j V (rij)
︸ ︷︷ ︸

V (rji)







=
1

2NM
1
2

N∑

i=1

N∑

j=1
j 6=i

[(

ri − rC
i

)

∇iV (rij) +
(

rj − rC
j

)

∇jV (rji)
]

(B.3)

=
1

2NM

N∑

i=1

N∑

j=1
j 6=i

(

ri − rC
i

)

∇iV (rij) =
1

2NM

N∑

i=1

(

ri − rC
i

)

Fi

For the second term:

E
(3,2)
V

N
=

2τ 3u0λ

2Nβ

N∑

k=1

(

rk − rC
k

) ∂

∂rk

N∑

i=1

|Fi|2 =
τ 2u0λ

NM

N∑

k=1

N∑

i=1

(

rk − rC
k

) ∂

∂rk
|Fi|2
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We decompose this expression for d coordinates of the system, knowing that

|Fi|2 =
∑d

b=1(Fi)2
b :

E
(3,2)
V

N
=
τ 2u0λ

NM

d∑

a=1

d∑

b=1

N∑

k=1

N∑

i=1

(

rk − rC
k

)a ∂(Fi)2
b

∂(rk)a

=
2τ 2u0λ

NM

d∑

a=1

d∑

b=1

N∑

k=1

N∑

i=1

(

rk − rC
k

)a ∂(Fi)b

∂(rk)a
(Fi)b

The term ∂(Fi)b/∂(rk)a will be expanded separately:

∂(Fi)b

∂(rk)a
=

∂

∂(rk)a







N∑

j=1
j 6=i

∂

∂(ri)b

V (rij)







=
N∑

j=1
j 6=i

∂

∂(rk)a

(

∂rij

∂(ri)b

∂V (rij)
∂rij

)

=
N∑

j=1
j 6=i

∂

∂(rk)a

(

(rij)b

rij

∂V (rij)
∂rij

)

where we used rij =
√
∑d

a=1(rij)2
a to simplify. Further computations lead to:

∂(Fi)b

∂(rk)a
=

N∑

j=1
j 6=i











∂V (rij)
∂rij

(

∂

∂(rk)a

(rij)b

rij

)

+
(rij)b

rij











∂

∂(rk)a

︸ ︷︷ ︸

∂rij

∂(rij )a
∂

∂rij

∂V (rij)
∂rij





















(B.4)

=
N∑

j=1
j 6=i




∂V (rij)
∂rij





∂(rij)b

∂(rk)a rij − ∂rij

∂(rk)a (rij)b

r2
ij



+
∂2V (rij)
∂r2

ij

(rij)b

rij

∂rij

∂(rk)a





︸ ︷︷ ︸

Υ(i, j, k)b
a

with

∂rij

∂(rk)a
=







(rij)a

rij
i = k

− (rij)a

rij
j = k

0 i 6= k 6= j

∂(rij)b

∂(rk)a
=







δb
a i = k

−δb
a j = k

0 i 6= k 6= j
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Since k can only take values equal to i or j, the tensor Υ falls to tensor T :

Υ(i, j, i)b
a = T (i, j)b

a

Υ(i, j, j)b
a = −T (i, j)b

a

T (i, j)b
a = T (j, i)b

a

Where T (i, j)b
a is

T (i, j)b
a =

[

δb
a

rij
− (rij)b(rij)a

r3
ij

]

dV (rij)
drij

+
(rij)b(rij)a

r2
ij

d2V (rij)
dr2

ij

(B.5)

Thus, the expression for this term ends as:

E
(3,2)
V

N
=

2τ 2u0λ

NM

d∑

a=1

d∑

b=1

N∑

i=1

N∑

j=1
j 6=i







(

ri − rC
i

)a
T (i, j)b

a(Fi)b −
(

rj − rC
j

)a
T (i, j)b

a
︸ ︷︷ ︸

T (j, i)b
a

(Fi)b







=
2τ 2u0λ

NM

d∑

a=1

d∑

b=1

N∑

i=1

N∑

j=1
j 6=i

(

ri − rC
i

)a
T (i, j)b

a (Fi − Fj)b (B.6)

In order to ease the resulting equation, one can write some terms similar to

the equations 2.55 and 2.57.

T off
MN =

M∑

α=1

N∑

i=1

( 1
t1

(rM+α,i − rα,i) (rα,i − rαA,i)

+
1
t1

(rM+αA,i − rαA,i) (rαA,i − rαB,i) (B.7)

+
1

2t0
(rM+αB,i − rαB,i) (rαB,i − rα+1,i)

)

T V
MN =

M∑

α=1

N∑

i=1

(
v1

2
(rα,i − ro,i)Fα,i + v2(rαA,i − ro,i)FαA,i (B.8)

+ v1(rαB,i − ro,i)FαB,i +
v1

2
(rα+1,i − ro,i)Fα+1,i

)
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YMN =
M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

d∑

a=1

d∑

b=1

(
a1

2
(rα,i − ro,i)aT (α, i, j)b

a(Fα,i − Fα,j)b

+(1 − 2a1)(rαA,i − ro,i)aT (αA, i, j)b
a(FαA,i − FαA,j)b

(B.9)

+a1(rαB,i − ro,i)aT (αB, i, j)b
a(FαB,i − FαB,j)b

+
a1

2
(rα+1,i − ro,i)aT (α + 1, i, j)b

a(Fα+1,i − Fα+1,j)b

)

So, we can write the virial estimator as:

EV

N
=

d

2β
+

1
NM

( 1
12λMτ 2

T off
MN +

1
2
T V

MN

+2τ 2u0λYMN + VMN + 6τ 2u0λWMN

)

(B.10)

KV

N
=

d

2β
+

1
NM

( 1
12λMτ 2

T off
MN +

1
2
T V

MN + 2τ 2u0λ(WMN + YMN)
)

(B.11)

The potential part of the energy is the same as the one computed via the ther-

modynamic estimator 2.63.

V

N
=

1
NM

(

VMN + 4τ 2u0λWMN

)

(B.12)





Appendix C
Derivation of estimators for the

pressure using the Chin action

Thermodynamic estimator

The pressure can be derived from the partition function.

P =
1
βZ

∂Z

∂V
(C.1)

In order to do so, we need to introduce the rescaled coordinates R∗
m =

Rm/V
1/d, where d is the dimension of the system. The partition function follows

the equation 2.53, while the action follows 2.54.

In order to the calculate the partial derivative of the volume, we need to

introduce the rescaled coordinates.

∂

∂V
=

N∑

k=1

∂rα,k

∂V

∂

∂rα,k

=
1
dV

N∑

k=1

rα,k
∂

∂rα,k

(C.2)

So, calculating the equation C.1, we find:

∂Z

∂V
= 3NMV 3NM−1

( 1
4πλτ

) 3dMN
2

(

1
2t21t0

) dNM
2 ∫

(...) − Z
∂S0

∂V

=
3NM
V

Z − ∂S0

∂V
Z (C.3)

Now, we derive the three terms of the action S0.
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∂S
(1)
0

∂V
=

∂

∂V

(

1
4λτ

N∑

i=1

M∑

α=1

( 1
t1

(

r ∗
α,i − r ∗

αA,i

)2
V 2/d + ...

))

=
2

4λτd
V 2/d−1

N∑

i=1

M∑

α=1

( 1
t1

(

r ∗
α,i − r ∗

αA,i

)2
+ ...

)

(C.4)

=
1

2dλτV

N∑

i=1

M∑

α=1

( 1
t1

(rα,i − rαA,i)
2 + ...

)

The second term is quite similar from the one obtained for the virial estimator

of the energy B.3.

∂S
(2)
0

∂V
=

∂

∂V



τ
N∑

i<j

M∑

α=1

(
v1

2
V (rα,ij) + ...

)


 =
τ

2dV

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

N∑

k=1

(

v1

2
rα,k

∂V (rα,ij)
∂rα,k

+ ...

)

=
τ

2dV

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i










v1

2










rα,i
∂

∂rα,i
V (rα,ij) + rα,j

∂

∂rα,j
V (rα,ij)

︸ ︷︷ ︸

−∂rα,i
V (rα,ij)










+ ...










=
τ

2dV

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

(

v1

2
(rα,i − rα,j)

∂

∂rα,i
V (rα,ij) + ...

)

(C.5)

=
τ

2dV

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

(
v1

2
rα,ijfα,ij + v2rαA,ijfαA,ij + v1rαB,ijfαB,ij +

v1

2
rα+1,ijfα+1,ij

)

with fα,ij = ∂rα,i
V (rα,ij). In this case we make use of (ri∇iV (rij) + rj∇jV (rij)) =

(ri − rj) ∇iV (rij) in order to avoid using absolute coordinates ri since they are

ill-defined. Remember that in the virial estimator of the energy (Appendix B)

we use (ri∇iV (rij) + rj∇jV (rij)) = 2ri∇iV (rij) since the position in that case

is corrected by the center of mass.

The last term is the harder one.

∂S
(3)
0

∂V
=

∂

∂V

(

2τ 3u0λ
M∑

α=1

N∑

i=1

(
a1

2
|Fα,i|2 + ...

))

(C.6)

=
2τ 3u0λ

dV

M∑

α=1

N∑

i=1

N∑

k=1

(

rα,k
∂ |Fα,i|2
∂rα,k

+ ...

)

We decompose the module of the force in the coordinates |Fα,i|2 =
∑d

a=1 F
2
α,i,a
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rα,k
∂

∂rα,k
|Fα,i|2 =

d∑

a=1

d∑

b=1

(rα,k)a∂(Fα,i)2
b

∂(rα,k)a
= 2

d∑

a=1

d∑

b=1

(rα,k)a ∂(Fα,i)b

∂(rα,k)a
(Fα,i)b

In this expression, the value of ∂(Fα,i)b

∂(rα,k)a
= Υ(α, i, j, k)b

a is the same that ap-

pears for the virial estimator in expression B.4.

Again, k can only take values of i and j since the others combinations are

equal to zero.

∂S
(3)
0

∂V
=

2τ 3u0λ

dV

d∑

a=1

d∑

b=1

M∑

α=1

N∑

i=1

N∑

k=1

N∑

j=1
j 6=i

(

2(rα,k)aΥ(α, i, j, k)b
a(Fα,i)b + ...

)

(C.7)

=
2τ 3u0λ

dV

d∑

a=1

d∑

b=1

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

2
(

(rα,i)aΥ(α, i, j, i)b
a(Fα,i)b + (rα,j)aΥ(α, i, j, j)b

a(Fα,i)b + ...
)

=
2τ 3u0λ

dV

d∑

a=1

d∑

b=1

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

2
(

(rα,i)aT (α, i, j)b
a(Fα,i)b − (rα,j)aT (α, i, j)b

a(Fα,i)b + ...
)

=
4τ 3u0λ

dV

d∑

a=1

d∑

b=1

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

(

(rα,i − rα,j)aT (α, i, j)b
a(Fα,i)b + ...

)

Again, knowing that T (i, j) = T (j, i), we arrange the expression as riT (i, j)Fi−
rjT (i, j)Fi = rijT (i, j)Fi in order to express it in terms of relative distances. It’s,

again, different from the virial estimator of energy in equation B.6, where we

arrange them as riT (i, j)Fi − rjT (i, j)Fi = riT (i, j)(Fi − Fj).

So finally, the final expression for the thermodynamic estimator of the pres-

sure using Chin action is.

P =
3N
τV

− 1
2dλMτ 2V

M∑

α=1

N∑

i=1

[ 1
t1

(rα,i − rαA,i)2 +
1
t1

(rαA,i − rαB,i)2 +
1

2t0
(rαB,i − rα+1,i)2

]

− 1
2dVM

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

[
v1

2
rα,ijfα,ij + v2rαA,ijfαA,ij + v1rαB,ijfαB,ij +

v1

2
rα+1,ijfα+1,ij

]

− 4τ 2u0λ

dVM

d∑

a=1

d∑

b=1

M∑

α=1

N∑

i=1

N∑

j=1
j 6=i

[
a1

2
(rα,ij)aT (α, i, j)b

a(Fα,i)b (C.8)

+(1 − 2a1)(rαA,ij)aT (αA, i, j)b
a(FαA,i)b

+a1(rαB,ij)aT (αB, i, j)b
a(FαB,i)b +

a1

2
(rα+1,ij)aT (α + 1, i, j)b

a(Fα+1,i)b

]
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with T (α, i, j)b
a as shown at equation B.5 and (Fα,i)b =

∑N
j 6=i ∂(rα,i)bV (rα,ij).

Virial estimator

For the virial estimator for the pressure we follow the same procedure as with

the energy. First, we define P1,L+1, which is the pressure corresponding to the

time-slices R1, ...,RL+1 (with 1 ≤ L ≤ 3M , since we have three times more

beads than with other estimators).

P1,L+1 = 〈NL
V β

− M

2dλβ2V

L∑

α=1

(Rα − Rα+1)2 − 1
β

∂

∂V

L∑

α=1

U(Rα)〉 (C.9)

where Rα are the positions of the α-bead of the N particles, and U(Rα) =

τ
∑N

i<j V (rα,ij) + 2τ 3u0λ
∑N

i=1 |Fα,i|2
We can simplify equation C.9 by writing

P1,L+1 = 〈NL
V β

− 2
dV

α − 1
β

∂

∂V
u〉 (C.10)

with

α =
L∑

m=1

1
4λτ 2M

(Rm − Rm+1)2

u =
L∑

m=1

U(Rm)

We now can recover the expression for this α derived for the virial estimator

of energy.

α =
dN(L− 1)

2β
− 1

4λτ 2M
(RL − RL+1) (RL+1 − R1)

− 1
2β

L∑

m=2

(Rm − R1)
∂u

∂Rm
(C.11)

Now we substitute the expression above in C.10.
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P1,L+1 =

〈

NL

V β
− N(L− 1)

V β
+

M

2dλβ2V
(RL − RL+1) (RL+1 − R1)

+
1

dV β

L∑

α=2

(Rα − R1)
∂u

∂Rα
− 1
β

∂u

∂V

〉

=

〈

N

V β
+

M

2dλβ2V
(RL − RL+1) (RL+1 − R1)

+
1

dV β

L∑

α=2

(Rα − R1)
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∂Rα
− 1
dV β

L∑

α=1

Rα
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∂Rα

〉

=

〈

N

V β
+

M

2dλβ2V
(RL − RL+1) (RL+1 − R1)

︸ ︷︷ ︸

P
(1)
1,L+1

− 1
dV β

L∑

α=1

R1
∂u

∂Rα
︸ ︷︷ ︸

P
(2)
1,L+1

〉

Now we have to arrange the two last terms. We will begin with P
(2)
1,L+1:

P
(2)
1,L+1 =

1
dV β

L∑

α=1

R1
∂u

∂Rα

=
1

dV β

L∑

α=1

R1
∂U(Rα)
∂Rα

=
1
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L∑

α=1

R1
∂
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
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V (rα,ij) + 2τ 3u0λ
N∑

i=1

|Fα,i|2




We solve separately
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N∑

i<j

τr1,k
∂
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V (rα,ij) =
1
2
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∂V (rα,ij)
∂rα,i
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)

=
1
2
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r1,ijfα,ij

and

N∑

k=1

N∑

i=1

r1,k
∂

∂rα,k
|Fα,i|2 =

d∑

a=1
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(r1,k)a ∂(Fα,i)b

∂(rα,k)a
2(Fα,i)b

= 2
d∑

a=1
b=1

N∑

i=1
j=1

(r1,ij)aT (α, i, j)b
a(Fα,i)b

so we find

P
(2)
1,L+1 =

τ

2

L∑

α=1

N∑

i,j=1

r1,ijfα,ij + 4τ 3u0λ
L∑

α=1
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a=1
b=1

N∑

i=1
j=1

(r1,ij)aT (α, i, j)b
a(Fα,i)b (C.12)
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For P (1)
1,L+1 we simply average over the L slices so we find:

P
(1)
1,L+1 =

M

2dλβ2V L

L∑

α=1

(RM+α−1 − RM+α) (RM+α − Rα) (C.13)

Finally, as with the virial estimator for the energy, we set L = 3M (since

we are using Chin action) and change the reference slice from R1 to RC
m =

1
2L

[
∑L−1

j=0 Rm+j +
∑−L+1

j=0 Rm+j

]

to find the virial estimator for pressure.

Pvir =
N

V β
+

1
6dλβ2V
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j 6=i
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(rC

α,ij)
aT (α, i, j)b

a(Fα,i)b (C.14)

+(1 − 2a1)(rC
αA,ij)

aT (αA, i, j)b
a(FαA,i)b

+a1(rC
αB,ij)

aT (αB, i, j)b
a(FαB,i)b +

a1

2
(rC

α+1,ij)
aT (α + 1, i, j)b

a(Fα+1,i)b

]
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