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A mis chicas y a mi padre





Contents

Agradecimientos iii

Introduction 1

1 Chiral unitary approach 10

1.1 Chiral symmetry in QCD . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Chiral Effective Field Theory . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Chiral Perturbation Theory for Mesons . . . . . . . . . . . . . . 21

1.2.2 Chiral Perturbation Theory for Baryons . . . . . . . . . . . . . 30

1.2.3 Low energy meson-baryon interaction up to NLO . . . . . . . . 35

1.3 Unitary extension of ChPT: the Bethe-Salpeter equation . . . . . . . . 44

2 Meson-Baryon interaction in the S = −1 sector 49

2.1 The crucial role of the K−p→ KΞ reactions . . . . . . . . . . . . . . . 53

2.1.1 Fitting procedure and Data treatment I . . . . . . . . . . . . . 54

2.1.2 Results and discussion I . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Influence of the Born terms . . . . . . . . . . . . . . . . . . . . . . . . 65

2.2.1 Fitting procedure and Data treatment II . . . . . . . . . . . . . 66

2.2.2 Results and discussion II . . . . . . . . . . . . . . . . . . . . . . 69

2.3 Isospin filtering processes I: K−p→ ηΛ, ηΣ0 reactions . . . . . . . . . . 77

2.4 Isospin filtering processes II: K0
Lp→ K+Ξ0 reaction . . . . . . . . . . . 81

3 The inclusion of resonances 86

3.1 Σ(2030) and Σ(2250) resonances . . . . . . . . . . . . . . . . . . . . . . 87

3.1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.1.2 Fitting procedure and Data treatment III . . . . . . . . . . . . . 95

i



ii CONTENTS

3.1.3 Results and discussion III . . . . . . . . . . . . . . . . . . . . . 97

3.2 Full s-wave chiral model up to NLO with resonances . . . . . . . . . . . 106

3.2.1 Fitting procedure and Data treatment IV . . . . . . . . . . . . . 109

3.2.2 Results and discussion IV . . . . . . . . . . . . . . . . . . . . . 111

4 The Λb decay 117

4.1 The Λb → J/ψ KΞ, J/ψ ηΛ decay processes . . . . . . . . . . . . . . 119

4.1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 127

4.2 The hidden-charm S = −1 pentaquark in the Λb → J/ψ ηΛ decay . . . 136

4.2.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 149

Conclusions 159

Appendix A: Coupling coefficients 167

Publications 170

Resumen 173

Bibliography 182



Agradecimientos
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Me gustaŕıa que fuese un imperativo con un doctorado de retraso. Escribir estas ĺıneas
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Introduction

The increasing amount of hadrons which were discovered in the middle of the past

century as well as their finite sizes, together with their anomalous magnetic moments,

were the first hints that made the community of particle and nuclear physicists sug-

gest the existence of a substructure by means of which hadrons break down into more

fundamental degrees of freedom. These building blocks are called quarks for which

six flavours can be distinguished, namely, u (up), d (down), s (strange), c (charm), b

(bottom), and t (top). Hadrons are basically divided into two groups: mesons which

have an antiquark-quark pair (q̄q), while baryons consist of three quarks (qqq). How-

ever, other exotic configurations, such as pentaquarks, tetraquarks, glueballs or hadron

molecules, depending on the number of their constituents can also exist.

The existence of spin-3
2

baryons, such as the ∆++(uuu), ∆−(ddd) or Ω−(sss) seems

to be in contradiction with the Pauli Exclusion Principle. Since quarks are spin-1
2

fields,

two quarks being in the same state cannot have identical quantum numbers. For this

reason only two quarks with opposite third spin component (1
2
,−1

2
) could share the

1



2 Introduction

same orbital quantum numbers. Hence, the introduction of a new quantum number,

namely the colour, was mandatory.

Quantum Chromodynamics (QCD) is a gauge theory that describes the strong

interaction with colour SU(3) as the underlying gauge group. Such a theory must

include a proper mathematical formalism to deal with the complex composition of

hadrons as well as incorporating all the symmetries satisfied by the interaction. The

SU(3) gauge invariance of the lagrangian in question requires the presence of vector

fields, namely gluons, coupling to the fermions via the covariant derivative. But the

constraint by means of which the vector fields should transform under SU(3) carries

consequences for the gauge field part of the lagrangian. The field strength tensor needs

to be redefined by including an extra term in order to get rid of terms which appear

in the transformed gauge field part of the lagrangian. This extra term introduces self-

interactions of the gauge fields, specifically vertices involving three and four vector

fields. In fact, this effect is general in all gauge theories based on Non-Abelian gauge

symmetries. Consequently, it is straightforward to see that the eight gluon fields, as

many as there are generators of the colour SU(3) group, not only act as mediators of

the interaction but they also interact between themselves.

Apart from the local colour symmetry, QCD exhibits further global symmetries.

One of these concerns the fact that the difference in the number of quarks and anti-

quarks for each flavour is a constant of motion. This is an exact symmetry of QCD

which is independent of the quark mass, which is the reason why its origin is a global

invariance under a direct product of U(1) for each quark flavour. Other symmetries

can be considered. The SU(3) flavour symmetry is more or less satisfied by consider-

ing the u-,d- and s- masses as being almost equal and by neglecting electromagnetic
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effects, since the hadron spectrum might be organized in terms of degenerate states of

the same basis. The extension to SU(6) is barely satisfied. From now on, we will only

pay atention to the three light quarks.

In the limit in which the masses of the light quark tend to zero, QCD has an extra

symmetry by means of which the unitary flavour transformations are separately applied

to right- and left-handed quark fields. The group associated with these transformations

is called SU(3)R × SU(3)L, implying 16 conserved Noether currents in contrast to the

8 currents which appear in the simple SU(3) flavour symmetry group. This symmetry

is referred to as Chiral symmetry. As it is expected, if we restore the mass term into

the QCD Lagrangian this symmetry is explicitly broken.

It is a remarkable fact that when the pseudoscalar mesons are compared with the

vector mesons, a large mass gap arises between the isospin triplet of pions (150 MeV)

and the isospin triplet of ρ mesons (770 MeV). This gap remains, although to a lesser

extent, between the multiplets involving strange mesons. This could be understood as a

signal of the special role played by the pseudoscalar mesons as Nambu-Goldstone bosons

which point out towards a spontaneous breaking of the chiral symmetry. In general,

Goldstone’s theorem states that for any broken global symmetry of a given Lagragian

a massless boson must exist. The pseudoscalar mesons (π±, π0, K0, K̄0, K±, η) are not

massless, but this is solely a consequence of the nonzero light quark masses. The first

chapter of this thesis presents details about these issues.

The running coupling strength αs = g2
s/4π, which characterizes the strong interac-

tion in QCD, has the following dependence on the energy scale µ

αs(µ) =
4π

β0 ln( µ
2

Λ2 )
(1)
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where β0 = 11− 2Nf/3, Λ ≈ 0.2 GeV and Nf is the number of possible flavours. QCD

behaves in a simple way at high momentum transfers above several GeV, where it

accepts a perturbative treatment in terms of powers of the running coupling constant.

This is feasible due to the sufficiently weak quark-gluon coupling. In opposition to this,

at low energies and momenta (µ < 1 GeV) where most of the hadronic and nuclear

processes take place, αs becomes larger than 1 and, consequently, an expansion in

powers of the running coupling strength diverges making this procedure impossible.

In order to overcome the previous difficulty, one has to turn to effective lagrangians

which are based on the same symmetries and symmetry breaking patterns of QCD.

In such an energy region, under this reformulated QCD, composite hadronic quasi-

particles become the fundamental degrees of freedom instead of the elementary quarks

and gluons.

Chiral Perturbation Theory (ChPT) is an effective theory which has proved to be

appropriate to describe the interaction of hadrons at low energies. Specifically, up

to the characteristic energy scale ΛChPT ∼ 1 GeV , the pseudoscalar mesons, which

can be considered the softest exitations of the QCD ground state, should govern the

physics therein. As we have mentioned before, this fact can be understood by the

invariance under chiral symmetry for the light quark sector which spontaneously breaks

down giving rise to these Goldstone bosons. The very nature of the chiral Goldstone

bosons strongly constrains the symmetry conditions to be imposed on the Effective

Lagrangian [1–6]. In ChPT, the dynamics is described by arranging the Effective

Lagrangian as an expansion on the powers of the external momenta of the Goldstone

bosons over ΛChPT . Although the strong constraints imposed by chiral-symmetry-

breaking allow one to take into consideration processes which are restricted to the

energy limit given by ΛChPT , ChPT has only proved to be valid up to energies around
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500 MeV. Moreover, Effective Chiral theories have drawbacks when a resonance appears

in the region of interest, unless we have included it as an explicit degree of freedom in

the corresponding field, since it is associated to a pole in the scattering amplitude which

cannot be reproduced by means of a perturbative expansion. Due to the previous facts,

nonperturbative schemes need to be developed in order to get around this difficulty

while maintaining the predictive power of the theory. In addition, the energy region

where such an approach can be applied becomes larger compared to the validity region

of ChPT.

The meson-baryon interaction in the S = −1 sector is one of those scenarios which

require a nonperturbative resummation of ChPT, since the K̄N interaction is strong

enough to produce a ”quasi-bound” state, associated with the Λ(1405) resonance, which

is located only 27 MeV below the K̄N threshold. Since the late nineties, numerous

studies [7–17] have been devoted to this topic, but the latest more precise measurements

of the energy shift and width of the 1s state in kaonic hydrogen by the SIDDHARTA

collaboration [18] at DAΦNE have renewed the interest in these last years. As a

response to the need to extend the approach to higher orders aiming for a greater

accuracy in describing these new experimental data, the theoretical models have been

revisited [19–26].

In Chapter 2 of the present work we address this issue taking into account the de-

scriptive power of the Unitarized Chiral Perturbation Theory (UChPT) approach. We

study the meson-baryon interaction in s-wave for different two body channels present

in the S = −1 sector by means of a chiral lagrangian up to next-to-leading order (NLO)

and implementing unitarization in coupled channels. This necessarily passes through

the determination of the low energy constants, particularly those which are not well



6 Introduction

established yet, namely the NLO coefficients. One should bear in mind that these

parameters, which appear in the expansion of ChPT, are not fixed by the symmetries

which the theory is based on, but the values come from fits to the experimental data.

This could be a very hard and tedious task, almost intractable if we go to higher orders

than NLO, due to the appearance of a rapidly increasing number of free parameters as

one increases the order of the calculation.

The novelty of our work lies in the fact that we pay a special attention to the

K−p → KΞ reactions, which offer us good complementary information to determine

the low energy constants. Actually, as far as we know, our study is the first to consider

the reproduction of KΞ production cross section employing chiral models in [27].

The reason for the special role of the KΞ production channels stems from the fact

that theK−p→ KΞ reactions receive a null contribution from the Weinberg-Tomozawa

(WT) term, which is the dominant one at leading order (LO), and the rescattering terms

due to the coupled channels are not sufficient to reproduce the experimental scattering

data. This fact confers an interesting role to the K−p→ KΞ reactions as a privileged

framework in the S = −1 sector to get information about the next terms in the hierachy

beyond the WT one, namely the direct and cross Born terms present at LO and the

NLO term. From studies which were based on lagrangians extended to NLO [15,19,23],

one finds that the contribution of the cross and direct Born terms is very moderate.

Assuming this and for simplicity, the Born contributions are disregarded in the first

stage of our study leaving only the NLO term as the significant one in order to reach

good agreement between the theoretical predictions and the experimental data in the

KΞ channels. The possible relevance acquired by NLO contributions is the seed from

which this thesis arises, since we are interested in obtaining more reliable values for



Introduction 7

the NLO constants at low energy.

We fit our model to the branching ratios atK−p threshold, the precise SIDDHARTA

values of the shift and width of the 1s state of the kaonic hydrogen and the cross-sections

for the different two body channels (πΣ, πΛ, K̄N,KΞ) by means of the minimization

techniques embedded in the MINUIT package. After comparing different fitting pro-

cedures, the sensitivity of the K−p → KΞ reactions to the NLO term of the chiral

Lagrangian is demonstrated and, therefore, more reliable values of the low energy con-

stants are obtained.

The natural next stage of our work was to determine whether the assumption of

a non significant contribution of the Born diagrams in the interaction kernel is still

realistic, once the KΞ channels are included in the fits. This is the aim of our study

of Ref. [28] which is also presented in Chapter 2. We will see that, merely employing

a chiral model which takes into account the Born terms, the particular importance

of these diagrams in the KΞ channels are revealed by significant modifications of the

NLO parameters. In fact, we find an equally shared role of the NLO and the Born

terms. The relevance of the Born terms becomes even more visible in the isospin

projected amplitudes of the K−p → KΞ reactions, which differ substantially from

what was found for the models that ignored these contributions. This fact points

towards the idea that processes that filter a single isospin component are an essential

requirement to get much more reliable values for the NLO coefficients. Consequently,

we finish this chapter by developing a new model that includes experimental data from

the K−p → ηΛ, ηΣ0 reactions in the fitting procedure which are the most natural

filtering processes that might be provided. These two reactions are very useful to

discriminate possible ambiguities in the isospin distributions since they are pure I = 0
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and I = 1 processes, respectively. In addition, motivated by the recent proposal [29]

of creating a secondary K0
L beam at Jlab that offers a great opportunity for measuring

the K0
Lp→ K+Ξ0 reaction, we also present a prediction for this I = 1 filtering process.

In order to study the accuracy and stability of our parameters, we include high spin

and high mass resonances applying the Rarita-Schwinger method [30–32]. This method

permits building resonant amplitudes that we add explicitly to our chiral scattering

amplitude, aiming for studying their effects on the NLO coefficients. Based on the

phenomenological study of [32] and in our previous work [27], we choose as candidates

the Σ(2030), Σ(2250) and Λ(1890) resonances and, as we will see in Chapter 3, we

achieve very good agreement with the experimental data. As expected, we obtain a

more precise and trustable determination of the corresponding NLO parameters.

In order to provide new isospin filtering scenarios from which we can extract ad-

ditional information to constrain even more the NLO coefficients, we study the weak

decay of the Λb into J/ψ K Ξ and J/ψ η Λ states based on our work of Ref. [33].

These processes involve an elementary weak transition at the quark level, which pro-

ceeds via the creation of a cc̄(J/ψ) meson and an excited sud system with I = 0 that

hadronizes into a final I = 0 meson-baryon pair. Thus, an experimental determination

of these decays would contribute to a better understanding of the chiral dynamics at

higher energies. The results of this study are shown and discussed in Chapter 4, where

we also present the results of our exploratory study about the possibility of finding a

hidden-charm strange pentaquark in the decay of the Λb into the J/ψ η Λ from the

invariant mass spectrum of J/ψ Λ pairs. This study is analogous to the one carried out

in [34], but implementing the new developed models in final meson-baryon interaction.

Hidden charm pentaquark states of molecular nature are advocated by some unitary
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approaches [35–39] that also predict pentaquark partners in the strangeness S = −1

sector. Our study is motivated by the fact that the recent observation of the hidden

charm pentaquark state Pc(4450) at LHCb via the Λb → J/ψ K− p decay [40,41] is well

reproduced by the molecular state implemented in the analysis of Ref. [42]. We study

the dependence of our results on reasonable changes in the parameters of the models as

well as on the unknown properties of the speculated hidden charm strange pentaquark.

We observe that, while there appear changes in the position of the peak and in the

shapes of the distributions, a resonance signal in the J/ψΛ invariant mass spectrum is

clearly seen in all the cases. This gives us confidence that such an experimental study

could result into a successful proof of the existence of this new state.



Chapter 1

Chiral unitary approach

The non-abelian character of QCD is reflected in the twofold very nature of gluons.

They do not act only as colour carriers but they also, joinly with quarks, are the

fundamental elements sensitive to the strong force. Thus, it is easy to see why the

strength of the interaction between these elements depends on the transferred energy

of the gluons involved in such an interaction process. The strong interaction between

quarks behaves in such a way that it reaches large values for the coupling strength

for small momentum transfers, while in the limit of large momentum transfers the

coupling strength tends to zero. This double behaviour demonstrated by QCD is not an

abnormal situation in physics, and is generally handled by studying the behaviour of the

same physical system on separate scales by means of different approaches. Therefore,

the application of a particular physical mechanism rather than another to describe

a process is completely subordinated to the scale at which the process takes place.

The validity of each mechanism is determined by certain control parameter which

characterizes the system. An example of this fact would be the negligible relativistic

10
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effects in our everyday experience where the velocities are far less than the speed of

light, v � c. There is no conceptual difference on extrapolating this idea to QCD, a

theory which fails in describing low-energy phenomena pertubatively while this method

is completely valid at a higher energy scale. Such an idea is the foundation of the

Effective Field Theories (EFTs) whose domain of validity is limited below some scale.

In order to address our low-energy hadron physics phenomena by means of an EFT,

it is crucial to identify a clear scale-spacing. In connection with this, we pointed out

in the introduction that the hadronic spectrum is distributed in a peculiar fashion on

both sides of a gap along the energy range as can be seen form Fig. 1.1. Indeed, there

are a large number of meson resonances and baryons above 1 GeV while only a few

pseudoscalar states are present in a lighter mass region. This is explicitly seen from the

values of the masses of these pseudoscalar mesons Mπ ≈ 140 MeV, MK ≈ 495 MeV and

Mη ≈ 550 MeV in comparison with the masses of the rest of mesons and baryons. In

fact, this energy scale of (ΛChPT ≈ 1 GeV) allows us to define a small parameter as the

mass and momentum of the interacting particles, denoted by p here, over this factor(
p

ΛChPT

)
. The systematic expansion in powers of this parameter basically constitutes

the effective lagrangian which describes the system at the given energy scale. This

procedure is nothing but the way to carry out the approximation known as EFT. Let

us comment in addition that there need not be any matching between the degrees of

freedom present in the EFT with the ones from the fundamental theory. For instance,

Chiral Perturbation Theory (ChPT) [1,43] is formulated in terms of hadrons as degrees

of freedom instead of quarks and gluons, which are the corresponding degrees of freedom

for QCD. Regardless of the approach used to describe a physical phenomenon, the

system which is intended to be studied should maintain the nature of the interaction

that governs this process. This nature is encoded in the symmetries, which reveal
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Figure 1.1: Spectrum of the mesons containing u(ū), d(d̄), s(s̄) quarks up to
1400 MeV. The corresponding masses are taken from [44], but excluding the con-
troversial mesons. The pseudoscalar octet is represented in red, from left to right: π0,
π±, K±, (K̄0, K0), η. While the rest of mesons are represented by the black segments
in increasing order of mass, namely: (ρ0, ρ±), ω, K∗±, (K̄∗0, K∗0), η′, φ, h1(1170),
b1(1235), a1(1260), f2(1270), K1(1270), f1(1285), η(1295), π1(1400), K1(1400).

the invariance of the system under certain transformations. Therefore, the inherent

symmetry principles must be present, whether we employ a fundamental theory or an

effective one to describe, in this case, the strong interaction. Apart from the local

SU(3) colour gauge symmetry which constitutes the basis of the formulation of QCD,

and besides the obvious symmetries like Lorentz-invariance and the discrete symmetries

of parity (P), charge conjugation (C) and time reversal (T), the strong interaction of

hadrons is governed by another global unitary symmetry: the chiral symmetry. We are

going to pay special attention to this last symmetry due to the relevant role played in
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the strong-interaction processes at low energies.

1.1 Chiral symmetry in QCD

The global SU(3)L × SU(3)R × U(1)V symmetry of the QCD Lagrangian in the limit

of massless light quarks is the basis of ChPT. This limit is hoped to be not too far

of the real world since the masses of the three light quarks are small on the typical

hadronic scale (mu = 0.005 GeV, md = 0.009 GeV, ms = 0.175 GeV � ΛChPT ). With

this assumption, the three-flavour massless QCD Lagrangian is given by

L0
QCD = q̄iγµDµq −

1

4
Ga
µνG

µν
a (1.1)

which comes in terms of the covariant derivative that is independent of the flavour and

which is defined as

Dµ = ∂µ − ig
8∑

a=1

λa
2
Aaµ (1.2)

and where the gluonic field tensor reads

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
νA

c
µ (1.3)

being qT = (u d s) the quark field, Aaµ the eight gluon fields, each of which identifiable

by the a label (a = 1− 8), and λa the so-called Gell-Mann matrices, which satisfy the

commutation relation

[
λa
2
,
λb
2

]
= ifabc

λc
2

with the corresponding structure constant

fabc.

At this point, we need to take into account some definitions and concepts to a better
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comprehension of the chiral symmetry which is exhibited by the QCD Lagrangian (1.1).

To this end, we introduce the right-handed (R index) and left-handed (L index) pro-

jection operators

PR =
1

2
(1 + γ5) =

1

2

 12×2 12×2

12×2 12×2

 = P †R, (1.4)

PL =
1

2
(1− γ5) =

1

2

 12×2 −12×2

−12×2 12×2

 = P †L, (1.5)

with the chirality matrix γ5 defined as γ5 = iγ0γ1γ2γ3, and satisfying {γµ, γ5} = 0 and

γ2
5 = 1.

The completeness, idempotence and orthogonality relations can be proved from

eq. (1.4) and eq. (1.5):

PR + PL = 1, P 2
R = PR, P 2

L = PL, PRPL = PLPR = 0. (1.6)

Given the nature of PR and PL as projection operators, one can obtain new states

projecting PR and PL onto the Dirac field q:

qR = PRq qL = PLq . (1.7)

These states are eigen-states of the chirality matrix.

γ5qR = qR γ5qL = −qL . (1.8)



1.1 Chiral symmetry in QCD 15

Although chiral fields have been defined above, chirality seems to be a non intuitive

concept. In order to shed some light on this, one might focus on the helicity of a

particle that is defined as the projection of the spin onto the direction of momentum.

For massless particles or ultrarelativistic particles, particles for which the mass can

be neglected with respect to energy, chirality and helicity become the same concept.

Therefore, Chirality could be understood as the extension of the helicity. If we consider

the positive-energy solution of the Dirac equation with three-momentum ~p and take

the ultrarelativistic case, the terminology right- and left-handed fields can be easily

illustrated, namely

u(~p,±) =
√
E +M

 χ±

~σ·~p
E+M

χ±

 E �M

−→
u±(~p) =

√
E

 χ±

±χ±

 , (1.9)

where it is assumed that the spin is parallel or anti-parallel to the direction of the

momentum in the rest frame ~σ · p̂χ± = ±χ±.

When we apply the operators the PR and PL to the positive and negative helicity

eigenstates u±, we obtain

PRu+ =

√
E

2

 12×2 12×2

12×2 12×2


 χ+

χ+

 = u+, (1.10)

and PRu− = 0, PLu+ = 0, PLu− = u−. Therefore, the concept of chirality becomes

the same as helicity in the ultrarelativistic or massless limit.

Before analysing the symmetry of the QCD Lagrangian with respect to independent

global transformations of the left- and right-handed fields, it is convenient to express
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the field q in terms of its qR and qL components as:

q = (PR + PL)q = PRq + PLq = qR + qL (1.11)

Introducing this decomposition into eq. (1.1) the QCD Lagrangian is decoupled into

two terms which are independent from each other. Thus, the QCD Lagrangian in the

chiral limit can be written as

L0
QCD = q̄Riγ

µDµqR + q̄Liγ
µDµqL −

1

4
Ga
µνG

µν
a (1.12)

As we have said, the covariant derivative is flavour independent, a fact that turns the

L0
QCD into an invariant under chiral U(3)L × U(3)R flavour transformations, that is

to say a chiral SU(3) symmetry in addition to the invariance under a global phase

transformation (U(3)L,R = U(1)L,R × SU(3)L,R):

qR,L −→ UR,LqR,L = exp

(
−i

8∑
a=1

αR,La

λa
2

)
· exp

(
−iαR,L

)
qR,L (1.13)

where αR,La are real transformation parameters.

By virtue of Noether’s theorem, there will be one conserved current for each satisfied

symmetry. Because of the double U(3) = SU(3) × U(1) symmetry, one for the right-

handed and another for the left-handed, we expect a total of 18 = 2× (8+1) conserved

currents: 8 due to the fact that we are dealing with 3 possible flavours and, hence, we

have 32 − 1 generators and 1 associated to the phase transformation. These currents
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are:

Lµ,a = q̄Lγ
µλ

a

2
qL, ∂µL

µ,a = 0, (1.14)

Rµ,a = q̄Rγ
µλ

a

2
qR, ∂µR

µ,a = 0. (1.15)

where we have extended the possible values of ”a” in such a way that the values from 1

to 8 account for the generators of the unitary group acting on q while the extra a = 0

value accounts for the identity in order to include the phase transformation in this

general formulation. For each conserved current, there is a time independent charge

that is written by

Qa
L =

∫
d3xL0,a(x), Q̇a

L = −i [Qa
L, H] = 0,

Qa
R =

∫
d3xR0,a(x), Q̇a

R = −i [Qa
R, H] = 0. (1.16)

Alternatively, it is common to talk about vector (V µ,a) and axial (Aµ,a) currents instead

of the left- and right-handed currents. These currents are defined as linear combinations

of the previous ones and they have their own associated charge.

V µ,a = Rµ,a + Lµ,a = q̄γµ
λa

2
q, Qa

V =
∫
d3xV 0,a(x),

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
λa

2
q, Qa

A =
∫
d3xA0,a(x). (1.17)

If we particularize for the singlet vector current (V µ,0 = q̄γµq) , namely a = 0, we find

that it is a conserved current in the standard model (∂µV
µ,0 = 0) and the corresponding

charge Q0
V is the baryon number (properly normalized to 1/3). But this is not the case

when we look at the singlet axial current (Aµ,0 = q̄γµγ5q), where ∂µA
µ,0 6= 0 due to
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quantum effects [45]. Consequently, the singlet axial current is not a conserved one.

For the rest of the sixteen currents (V µ,a, Aµ,a, a = 1 − 8), the expressions (1.17)

are also convenient for introducing the concept of the spontaneous chiral symmetry

breaking (SSB) established by the phenomenology of the hadron spectrum [44], and also

corroborated by lattice QCD calculations [46–49]. The key fact is that the QCD ground

state or vacuum does not preserve the chiral symmetry of the underlying Lagrangian.

There follows an explanation of this issue. If we want to conclude whether a symmetry

is realized, one should check whether the ground state is necessarily invariant under

the charges associated to the conserved currents of the symmetry. And conversely, a

non-vanishing vacuum expectation value of some hermitian operator coming from the

dynamics of the underlying theory tells us that there is SSB. Ultimately one has to

study what happens to these operators acting over the vacuum: Qa
A|0〉 and Qa

V |0〉.

One should bear in mind that (Qa
A|0〉, Qa

V |0〉) are the variations with respect to the

vacuum state when the chiral symmetry transformation is applied to this state. There

is no doubt that in the non-degenerate state, with a single ground state, one finds

Qa
A|0〉 = Qa

V |0〉 = 0, because there are no other states which are accessible, with

the same energy, via the vector and the axial charges. Consequently, if this were

the case, the symmetry would be satisfied leaving the unique vacuum state invariant.

This way of realizing the symmetry is known as Wigner-Weyl mode. Otherwise, the

ground state can consist of a finite number of distinct degenerate states. The |φaA〉

(|φaA〉 = Qa
A|0〉) and the |φaV 〉 (|φaV 〉 = Qa

V |0〉) states together with the ground state |0〉

are the constituents of this degenerate set of states which have associated the same

energy whose value can be obtained from H|0〉 = E0|0〉 = 0|0〉 = 0. To check that

this energy requirement is also fulfilled by the rest of the degenerate members of the

set, one can make use of the conservation of the currents (∂µA
µ,a = 0, ∂µV

µ,a = 0) and
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their subsequent commutation of charges with the QCD Hamiltonian
[
Qa
A,V , H

]
= 0.

H|φaA〉 = HQa
A|0〉 = Qa

AH|0〉 = Qa
AE0|0〉 = 0

H|φaV 〉 = HQa
V |0〉 = Qa

VH|0〉 = Qa
VE0|0〉 = 0 (1.18)

Actually, if this last possibility, which considers a degenerate ground state, is realized,

then the hadron spectrum should reflect the existence of positive and negative parity

degenerate excited states. The reason to this is justified because of the different parity

assignments for the charges Qa
A and Qa

V that can be appreciated just by

P : |φaA〉 = Qa
A|0〉 → PQa

AP
−1P |0〉 = −Qa

Apgs|0〉 = −pgs|φaA〉

P : |φaV 〉 = Qa
V |0〉 → PQa

V P
−1P |0〉 = Qa

V pgs|0〉 = pgs|φaV 〉 (1.19)

where P is the parity operator, pgs is the intrinsic parity of the |0〉 state and where the

negative sign obtained from the parity transformation of the axial charge operator is

because it contains a γ5 operator while the vector charge does not. But, as it is widely

known, there are no such parity doublets in the hadron spectrum. For instance, the

light pseudoscalar Jπ = 0− mesons have no Jπ = 0+ partners, as the scalar mesons with

these associated quantum numbers have much higher masses. Then we can conclude

that this symmetry is spontaneously broken.

Apart from this heuristic argument, in 1984 Vafa and Witten, via their theorem [50],

state that the flavour vector subgroup remains unbroken (SU(3)R×SU(3)L → SU(3)V )

which is corroborated by the observation of hadronic multiplets and implies Qa
V |0〉 =

0. This is not the case for the axial charge, whose value must be Qa
A|0〉 6= 0 just

for compatibility with the observed spectra. The Goldstone’s theorem ensures the
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existence of as many massless bosons (H|φaA〉 = 0), the so-called Nambu-Goldstone

(NG) bosons, as generators of the symmetry group which does not annihilate the

vacuum. Therefore, resulting from the SSB, eight NG massless bosons are expected.

This is in conflict with what is mentioned in the introduction, where these bosons

were identified with the pseudoscalar mesons, which are massive particles as is widely

known. This feature is one of the implications of the non zero masses of the three light

quarks.

At the beginning of this section, we ignored the masses of the u-, d- and s-quarks

because they are much smaller than the renormalization scale ΛChPT . This fact leads

us to neglect the quark mass term in the QCD Lagrangian (1.1). But when this

contribution is restored, the charge operators are in general no longer time independent

which is the consequence of having an explicitly broken symmetry. To see this, we can

rewrite the total QCD Lagrangian as

LQCD = L0
QCD + LMQCD = q̄iγµDµq −

1

4
Ga
µνG

µν
a − q̄Mq (1.20)

where M is defined as a diagonal matrix containing the different light quark masses

M =


mu 0 0

0 md 0

0 0 ms

 . (1.21)

If we focus on this quark mass term, after expressing it in terms of the chiral fields,

we clearly realize that the quark mass term breaks down into two pieces, each of which
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mixes the left- and right-hand fields, thereby breaking chiral symmetry explicitly.

LMQCD = −q̄Mq = −q̄RMqL + q̄LMqR (1.22)

1.2 Chiral Effective Field Theory

As it is mentioned in the introduction, QCD cannot be treated perturbatively at low

energies due to the colour confinement where hadrons take the place of the asymptotic

degrees of freedom instead of quarks and gluons. Our goal is to construct an effec-

tive field theory with hadronic degrees of freedom, preserving the symmetries of the

underlying theory. The way to proceed in order to construct an EFT was established

by S. Weinberg [43] which literally reads: ” . . . if one writes down the most general

possible lagrangian, including all terms consistent with the assumed symmetry prin-

ciples, and then calculates matrix elements with this lagrangian to any given order

of perturbation theory, the result will simply be the most general possible S-matrix

consistent with the analyticity, perturbative unitarity, cluster decomposition and the

assumed principles...”.

1.2.1 Chiral Perturbation Theory for Mesons

In the absence of baryons, this theory must be the most general one that describes

the dynamics of the Goldstone bosons associated with the spontaneous breakdown in

QCD. This means that our lagrangian should be invariant under a compact group

G = SU(3)L × SU(3)R = {(L,R)|L εSU(3)L, R ε SU(3)R} as well as under U(1)V .

But, by virtue of the spontaneous symmetry breaking which give rise to the Goldstone
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bosons, the degenerated ground state should only be invariant to the subgroup H of

G, H = {(V, V )|V ε SU(3)}, and U(1)V . Therefore, for the sake of the the invariance

of the lagrangian under the g εG transformations, an isomorphic mapping between the

quotient group G/H and the NG bosons fields is needed. The Goldstone bosons octet

can be collected in the matrix form as

φ =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 , (1.23)

which consists of independent fields that are continuous functions on a four-dimensional

Minkowski space.

The chiral fields which guarantee the chiral symmetry of the lagrangian, coming

from the isomorphic mapping, are defined as

U(φ) = u2(φ) = exp

(√
2i
φ

f

)
, (1.24)

where f is the normalization constant of the NG boson and corresponds to the pseu-

doscalar decay constant in the chiral limit at tree level. This matrix transforms under

the chiral right and left-handed rotations in the following way:

U → RUL†. (1.25)

Since we want to construct a low-energy effective theory, firstly only for mesons, an

expansion in terms of powers of momentum should be developed. The chiral counting

rule is introduced by considering the momentum of the meson, which appears after
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every derivative of the chiral field, as a small quantity in comparison with the chiral

symmetry breaking scale 4πf ≈ 1 GeV. Such a theory is valid in a region where the

only relevant degrees of freedom are the NG bosons. Consequently, our main building

blocks in order to write our lagrangian density must be the U matrix and its successive

derivatives (U,U †, ∂µU, ∂µU
†, . . . ) which are invariant under SU(3)L × SU(3)R as we

have said above. But this is not the only symmetry requirement, for instance, the

lagrangian must satisfy the Lorentz invariance which constrains the structure of the

terms in a way that only even powers of derivatives can be present. Thus, our lagrangian

can be expressed as:

L = L(0) + L(2) + L(4) + . . . (1.26)

here, the number in brackets points to the number of powers in each term.

Given that U is a quantity of order O(p0), the first term of this lagrangian (L(0))

is of the form UU † which preserves the requested symmetries. This term due to the

unitarity of the chiral field gives as a result a constant. Therefore, the leading term

is L(2) which involves derivatives of U . In this way one can express the most general

effective lagrangian density with the minimal number of derivatives as

L(2) =
f 2

4
〈∂µU∂µU †〉 (1.27)

and the symbol 〈. . . 〉 stands for the trace. At this point, one should prove that this

leading term of the lagrangian is invariant under the global SU(3)L×SU(3)R transfor-
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mation. Aiming for this, let us first see how the derivative of the chiral field transforms

U → RUL†

∂µU → ∂µ(RUL†) = ∂µRUL
† +R∂µUL

† +RU∂µL
† = R∂µUL

† (1.28)

where we have taken into account that ∂µR = ∂µL
† = 0 because of the global nature

of these transformations. In a similar manner, one finds that

U † → LU †R†

∂µU † → L∂µU †R†. (1.29)

With the previous considerations, we can see whether the leading term of the la-

grangian remains invariant under these global transformations. Before proceeding to

the demonstration, we should bear in mind the properties of the trace, in particular

〈AB〉 = 〈BA〉, and the unitarity of R and L.

L(2) =
f 2

4
〈∂µU∂µU †〉 → L′(2) =

f 2

4
〈R∂µUL†L∂µU †R†〉 = L(2) (1.30)

This is a good example to illustrate the way to proceed in order to ensure that this term

satisfies the rest of the symmetries imposed by QCD. We are going to avoid involving

ourselves in this matter, suffice to say that this piece of lagrangian preserves the other

symmetries.

Regarding the physical meaning of L(2), one can expand the exponential U = 1 +

iφ/f + . . . , then ∂µU = i∂µφ/f + . . . , and rewriting the lagrangian in these terms the
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standard form of the kinetic term is recovered.

L(2) =
f 2

4
〈i∂µφ/f(−i∂µφ/f)〉+· · · = 1

4
∂µφa∂

µφb〈λaλb〉+· · · =
1

2
∂µφa∂

µφa+. . . (1.31)

To reach the shown result one makes use of the fact that 〈λaλb〉 = 2δab where the

indexes a, b account for the eight massless particles. The dots represent the rest of the

terms which consist of four or more Goldston fields. Furthermore, we now clearly see

the purpose of the multiplicative f 2/4 constant.

It seems logical to consider any other possible arrangement, compatible with the

symmetries of QCD, or combinations of fields which introduce two derivatives such

as the product of two invariant traces 〈∂µUU †〉 or terms of the type 〈∂µ∂µUU †〉. But

all possibilities are excluded because they are either zero or they are proportional to

eq. (1.27).

So far, we have seen that L(2) is invariant under SU(3)L×SU(3)R transformations

and, obviously then by Noether’s theorem, we can associate one current to each accom-

plished symmetry. See [6] for a detailed calculation of the left and the right currents

which read

Jµ,aL = i
f 2

4
〈λa∂µU †U〉

Jµ,aR = −if
2

4
〈λaU∂µU †〉. (1.32)

For convenience, as it was done in eq. (1.17), we can define the vector and the axial
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current

V µ
a = −if

2

4
〈λa[U, ∂µU †]〉

Aµa = −if
2

4
〈λa{U, ∂µU †}〉. (1.33)

Given the previous expressions, the axial current can be expanded in powers of φ

(Aµa = −f∂µφa + O(φ3)) to calculate the matrix element between the vacuum and

one-boson state (in the chiral limit).

〈0|Aµa |φb(p)〉 ≈ 〈0| − f∂µφa(x)|φb(p)〉 = −f∂µexp(−ipx)δab

= ipµfexp(−ipx)δab. (1.34)

The connection of the vacuum with the pion via the axial current is indeed their decay

process with decay constant f , in the chiral limit, which is measured by π+ → l+ + νl

decay process giving f ≈ fπ = 92.4 MeV. This is the value we gave in advance when

introducing the chiral fields in eq. (1.24).

Returning to the discussion of the lagrangian at order O(p2), we have neglected

the contribution of any mass term assuming a perfect chiral symmetry. The inclusion

of such a term, apart from introducing the explicit chiral symmetry breaking (see the

discussion at the end of Sec. (1.1)), leads to the finite mass of the NG bosons. If we want

to take into account this fact, we can focus on the mass term in the QCD lagrangian

eq. (1.22). The only way to preserve the invariance under chiral transformations is to

constrain the transformation of the constant M matrix according to

M →M ′ = LMR†. (1.35)
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By analogy, for the effective chiral lagrangian, the most general mass contribution at

this order (L(2)
M (U,M)) compatible with (1.25) and (1.35) transformations reads

L(2)
M =

f 2B0

2
〈MU † + UM †〉, (1.36)

from which, expanding once more in powers of φ and paying attention only to the

second order in the fields, we recover the Gell-Mann-Oakes-Renner (GOR) relation.

Considering the isospin-symmetric limit mu = md = m, the GOR relations are explic-

itly given by

M2
π = 2B0m

M2
K = B0(m+ms)

M2
η =

2

3
B0(m+ 2ms), (1.37)

which properly combined with one another give the Gell-Mann-Oakes relation (4M2
K =

3M2
η +M2

π). The most obvious effect of the presence of the real B0 factor in the GOR

relations is the impossibility of the direct determination of the quark masses from the

pseudoscalar meson masses. Concerning this factor, see [6] for a detailed explanation,

we can find a relation between this and the chiral quark condensate at lowest order via

the expression

3f 2B0 = −〈q̄q〉. (1.38)

Before continuing with the inclusion of higher order terms in the effective lagrangian,

one can first consider the incorporation of external fields. As in the case of gauge the-

ories, the way to couple them to the lagrangian is rather straightforward, the ordinary

derivative has to be replaced by the covariant one. Being vµ and aµ, the external vector
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and and the axial vector currents, the covariant derivative is given by

∂µU → DµU = ∂µU − i [vµ, U ]− i{aµ, U}. (1.39)

In principle, since the effective lagrangian consist of an expansion in powers of momen-

tum and mass terms, it could contain an infinite number of them. Nevertheless, one

should wonder if the effort of including higher orders in the lagrangian is worth. Since

we are performing an expansion where the higher orders introduce small corrections

to the leading term, it seems logical to believe that they would be determining only

for calculations which require a high precision level. Furthermore, we should never

lose sight of the fact that we are developing a calculation in the quantum mechanics

framework where the loop contributions are expected. These reasons are encouraging

enough to go beyond the O(p2) order.

First of all we need to provide a mechanism through which the higher order contri-

butions should be systematically added to the lagrangian by order of relevance. The

corresponding Feynnman diagrams are built from terms which come from an even

number of derivatives as well as from quark mass terms which are counted as O(p2)

as it was justified by the GOR relations (1.37) in addition with the on-shell condition

p2 = M2. Thus, one might extract information in order to stablish a hierarchy for

the different contributions by analysing the behaviour of each diagram under a linear

rescaling of the external momenta, pi → tpi, and a quadratic one of the light quark

masses, mq → t2mq (or equivalently M2 → t2M2). That is to say, one studies the

degree of homogeneity, known as chiral dimension, of the amplitude M(pi,mq) tied to
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the corresponding diagram,

M(tpi, t
2mq) = tDM(pi,mq),

with D being the chiral dimension , which was formulated for the first time by Weinberg

[43], and is given by the expression

D = 2 +
∞∑
n=1

2(n− 1)N2n + 2NL, (1.40)

where N2n is the number of vertices originating from the lagrangian L2n whose n-index

accounts for the 2n order of the expansion and NL denotes the number of independent

loops of the diagram under study. One should take the Weinberg’s power counting

scheme based on a rescaling study as an overall mathematical tool.

Another interesting aspect of the inclusion of higher order contributions is the

increasing number of low energy constants related to each term. This issue might be

illustrated by taking as example the case of chiral SU(3), if we examine L(2) one finds 2

constants, 10 constants for L(4), 90 for L(6), . . . For completeness, L(4) is displayed below

[51]. In order to construct such a term, one should consider all those building blocks

which are consistent with the symmetries cited throughout the text that contribute as
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O(p4) order terms.

L(4) = L1〈DµU
†DµU〉2 + L2〈DµU

†DνU〉〈DµU †DνU〉

+ L3〈DµU
†DµUDνU

†DνU〉+ L4〈DµU
†DµU〉〈χ†U + χU †〉

+ L5〈DµU
†DµU(χ†U + χU †)〉+ L6〈χ†U + χU †〉2 + L7〈χ†U − χU †〉2

+ L8〈χ†Uχ†U + χU †χU †〉 − iL9〈F µν
R DµUDνU

† + F µν
L DµU

†DνU〉

+ L10〈U †F µν
R UFLµν〉, (1.41)

where χ = 2B0(s + ip) collects (pseudo)scalar source terms, s contains the quark

mass matrix (s = M + . . . ); vector and axial currents are combined as rµ = vµ + aµ,

lµ = vµ−aµ, from which the strength tensors are formed: F µν
R = ∂µrν−∂νrµ− [rµ, rν ],

F µν
L = ∂µlν − ∂νlµ − [lµ, lν ]. From the expression, it can be noticed that the low

energy constants L1−3 multiply structures containing four derivatives, L4,5 go with

two derivatives and one quark mass terms; the L6−8 are assigned to the quark masses

squared and, finally, L9,10 only contribute to observables with external vector and axial

vector sources.

1.2.2 Chiral Perturbation Theory for Baryons

So far, for simplicity, only a pure mesonic effective field theory has been considered in

order to exemplify, in the easiest possible way, how to construct a chiral lagrangian con-

sistent with the symmetries of the strong interaction among the Goldstone bosons and

with the external fields. Since our study is within the framework of the meson-baryon

interaction phenomenology in the S = −1 sector, we need to extend ChPT to also de-

scribe the dynamics of baryons at low energies. In particular, we will focus on processes
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which involve a meson-baryon pair in the initial and final states, meaning that the num-

ber of baryons is conserved and there is no baryon-antibaryon creation/annihilation.

The most restrictive consideration with the processes which can be described by means

of this theory is that the three-momenta of the baryons ought to remain small, being of

the order of Mπ. This new lagrangian is presented as an expansion arranged in powers

of momentum, exactly as one proceeds for the pure mesonic case.

To address the incorporation of baryons, we should view them as matter fields

coupled to mesons and to external sources. These matter fields require a representation

with a transformation law under SU(3)L×SU(3)R such that leaves the new lagrangian

invariant. As a matter of fact, the Goldstone boson fields and their transformation

laws also should be conveniently redefined. Previously these fields were specified by

the chiral field U , eq. (1.24), now it is convenient to introduce the field u instead. These

two fields are directly related, being u the square root of U (u2 = U). Thus, bearing

in mind that U transforms as was shown in eq. (1.25), u does it in the following way

u 7−→
√
LUR† = LuK†(L,R, U) = K(L,R, U)uR†, (1.42)

where K(L,R, U) ε SU(3) depends on L, R and U non trivially. Therefore this trans-

formation is local since U is defined as an exponential of a matrix which collects contin-

uous functions in a Minkowski space (U = U(x)). This is in contrast to what happens

to U where its transformation under SU(3)L × SU(3)R is global. This local charac-

ter of the transformation makes mandatory the introduction of a covariant derivative,

Dµ = ∂µ + Γµ, which transforms in the same way as the baryon fields. Hence, firstly,

we introduce the baryon field and then we can see its transformation law which is a

shared feature with the covariant derivative. The 1
2

+
baryon octet is collected in a
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traceless 3 × 3 matrix B where each member of the octet is represented by a Dirac

spinor field:

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 , (1.43)

transforming under SU(3)L×SU(3)R as B 7−→ KBK†. Hence, turning to the covariant

derivative, Dµ acting on B, DµB = ∂µB + [Γµ, B], should transform as DµB 7−→

KDµB. Indeed, this is a usual property that could not take place unless the chiral

connection (Γµ) were defined as

Γµ =
1

2

(
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

)
(1.44)

which transforms as Γµ 7−→ KΓµK†−(∂µK)K†. A part from Γµ, there is another O(p)

building block, known as chiral vielbein which can be written as

uµ = i
(
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

)
(1.45)

and that, also, it fulfils the transformation law uµ 7−→ KuµK†. As last ingredient, it

remains to be seen how the (pseudo)scalar source term (χ = 2B0(s+ip) = 2B0M+. . . )

is rewritten. Finally, this quark mass term is expressed by

χ+ = u†χu† + uχ†u, (1.46)

with the expected transformation χ+ 7−→ Kχ+K
†. Once the fundamental building

blocks of the meson-baryon effective chiral lagrangian are available, one should study
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the power counting of momenta of each piece or block in order to arrange them in the

expansion by order of relevance. This could be summarized as:

B̄, B : O(1), uµ,Γµ, (iγµD
µ −M0)B : O(p), χ+ : O(p2),

being M0 the common baryon octet mass in the chiral limit. Now, we are able to

proceed to introduce the most general effective lagrangian for meson-baryon system

Leff (B,U) =
∞∑
n=1

L(n)
φB = L(1)

φB + L(2)
φB + L(3)

φB + L(4)
φB + . . . , (1.47)

from this expression one appreciates that this lagrangian comes not only in even powers

of momenta, such as in meson ChPT, but also odd powers are possible due to Dirac

structures. Each L(n)
φB term consist of bilinears of the B field with the chiral order

O(pn). At LO (O(p)), one finds

L(1)
φB = 〈B̄(iγµD

µ −M0)B〉+
1

2
D〈B̄γµγ5{uµ, B}〉+

1

2
F 〈B̄γµγ5[uµ, B]〉 , (1.48)

where the low energy constants D and F are the SU(3) axial vector constants subject

to the constraint gA = D + F = 1.26.

The contributions which are considered to be relevant for the present study are the

s-wave ones, at NLO, these are :

L(2)
φB = bD〈B̄{χ+, B}〉+ bF 〈B̄[χ+, B]〉+ b0〈B̄B〉〈χ+〉+ d1〈B̄{uµ, [uµ, B]}〉

+d2〈B̄[uµ, [u
µ, B]]〉+ d3〈B̄uµ〉〈uµB〉+ d4〈B̄B〉〈uµuµ〉 . (1.49)

The parameters preceding each term are the corresponding low energy constants at
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NLO, they are the main characters of this study. As it has been said, in general, these

constants are not fixed by the symmetries of the underlying theory, but need to be

determined from experiment. A clear example of this are the low energy constants

present at LO (f , D, F ) which are subject to rather strong constraints coming from

the semileptonic pion and hyperon decays. Actually, the parameters accompanying the

first three terms of the eq. (1.49), which are chiral symmetry breaking terms and linear

in the quark masses, can be determined. Specifically, bD and bF can be extracted from

the mass splitting in the baryon octet

MΣ −MΛ =
16

3
bD(m2

K −m2
π)

MΞ −MN = 8bF (m2
π −m2

K)

MΣ −MN = 4(bD − bF )(m2
K −m2

π). (1.50)

This overdefined system can be solved because is a compatible system, then performing

the calculation for an isospin averaged baryon and meson masses one obtains bD =

0.066 GeV−1 and bF = −0.213 GeV−1. The b0-term shifts the whole baryon octet by the

same amount, hence further information is needed to fix the b0 parameter. This could

well be the pion-nucleon sigma term, which empirical value is σπN = 45± 8 MeV [52],

σπN = 〈N |mu +md

2
(ūu+ d̄d)|N〉 = −2m2

π(2b0 + bD + bF ). (1.51)

Another source of information in order to constraint b0 is the strangeness content of the

proton. In principle, the simplest quark model pictures of the nucleon would suggest

that it has no strange quark content. Therefore the expectation value of the scalar

density s̄s in the proton would be zero. But this is not the case in SU(3) chiral
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dynamics. Taking suitable combinations of the b0, bD and bF one gets

y =
2〈p|s̄s|p〉
〈p|ūu+ d̄d|p〉 =

2(b0 + bD − bF )

2b0 + bD + bF
, (1.52)

whose empirical value is taken from [52] (y = 0.2 ± 0.2). If one remains at linear

order in the quark masses and tries to satisfy these two pieces of information (y and

σπN), then one realizes that there is not a unique value of b0 capable of achieving this

simultaneously. Instead of a unique value, a region of validity can be established for b0

ranging between [−0.52,−0.28] GeV−1 where the bounds are set by the experimental

values of y and σπN . But the bi coefficients are not the only ones which appear in

eq. (1.49). The rest of the low energy constants, namely di, i = 1−4, can be constrained

using data coming from the meson-baryon octet such as the isospin even πN s-wave

scattering length and the isospin zero kaon-nucleon s-wave scattering length which

experimental values are a+
πN = (−0.012± 0.06)fm [53] and a0

KN = (−0.1± 0.1)fm [54]

respectively. The reader can find more details on this issue in [55] and the references

therein.

It is important to mention that if one considers further corrections in the lagrangian,

new contributions should be absorbed by the NLO coefficients making these constraints

on them barely applicable. We will return to this issue later on.

1.2.3 Low energy meson-baryon interaction up to NLO

At this point, at low energy, the s-wave meson-baryon interaction kernel up to the order

O(p2) in momentum space can be derived from eqs.(1.48) and (1.49). The elements

of the interaction matrix, here written as V̂ij = 〈i|V̂ |j〉, couple several meson-baryon
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channels arranged in sectors with given quantum numbers among those included within

the wider SU(3) flavour sector. The indices (i, j) cover all the initial and final channels,

which, in the case of strangeness S = −1 and charge Q = 0 explored here, amount to

ten: K−p, K̄0n, π0Λ, π0Σ0, π−Σ+, π+Σ−, ηΛ, ηΣ0, K+Ξ− and K0Ξ0. The interaction

V̂ij depends on the total energy of the meson-baryon system in the center-of-mass frame

√
s, on the solid angle of the scattering Ω, and on the σi,j spin degrees of freedom of the

baryons in channels (i, j). Since the interaction with which we are dealing consist of the

scattering of a NG boson with a spin 1
2

baryon target, the projection of V̂ij(
√
s,Ω, σi, σj)

onto s-wave gives a contribution which depends only on
√
s:

Vij(
√
s) =

1

8π

∑
σ

∫
dΩ V̂ij(

√
s,Ω, σi, σj). (1.53)

(i) (ii) (iii) (iv)

Figure 1.2: Feynman diagrams for the meson-baryon interaction: Weinberg-
Tomozawa term (i), direct and crossed Born terms (ii) and (iii), and NLO terms (iv).
Dashed (solid) lines represent the pseudoscalar octet mesons (octet baryons).

The relevant contributions to the interaction kernel are diagrammatically repre-

sented in Fig. 1.2. The first three contributions appearing in the figure, namely (i), (ii)

and (iii), are calculated using the Lagrangian at lowest order, while the NLO contri-

bution to the meson-baryon scattering are shown by diagram (iv).

The so-called Weinberg-Tomozawa (WT) contribution corresponds to the contact

diagram (i) in Fig. 1.2; this comes from the term with the covariant derivative [Dµ, B]
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in eq. (1.48):

LWT
φB = i〈B̄γµ[Dµ, B]〉,

where the symbol 〈. . . 〉 stands for the trace in flavour space.

To contextualize the reader and to avoid a constant look back to past expressions,

we recall the main expressions to develop the necessary calculations in order to obtain

the interaction kernels. First, we defined the covariant derivative as

[Dµ, B] = ∂µB + [Γµ, B] ,

where the chiral connection Γµ is given by (alternatively to eq. (1.44))

Γµ = 1
2
[u†, ∂µu].

Here one should remember that u is related to the chiral meson field by

U(φ) = u2(φ) = exp

(√
2i
φ

f

)
, (1.54)

with φ defined in eq. (1.23). The quantity U enters the Lagrangian in the combina-

tions uµ = iu†∂µUu
†. In addition, the octet baryon fields are collected in the 3 × 3

matrix (1.43) where each entry corresponds to a Dirac spinor field.

Once all inputs are well define, we can expand u in terms of φ getting

u = 1 +
iφ√
2f
− φ2

4f 2
+ . . . ; (1.55)
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this way we can stablish the structure of the chiral connection as

Γµ ≈
1

4f 2
(φ∂µφ− ∂µφφ) (1.56)

and, consequently, this WT piece of the meson-baryon lagrangian reads

LWT
φB = 〈B̄iγµ 1

4f 2
[(φ∂µφ− ∂µφφ)B −B(φ∂µφ− ∂µφφ)]〉. (1.57)

At this point, only the meson and baryon fields needs to be included; but one should be

careful when introducing the degrees of freedom, whether the mesonic or the barionic

ones. In the particular case of the barionic degrees of freedom for a given process,

the incoming ones should be incorporated in B, while the outgoing baryons should

be collected by B̄ (B̄ = B†γ0). The way to proceed for mesons is trickier, the initial

mesons as well as the resulting ones after the interaction should be taken into account

in φ. To this end, the outgoing degrees of freedom are introduced in the φ matrix as

antiparticles in the initial state thanks to the equivalence between the destruction of a

particle and the creation of its antiparticle. Furthermore, there is no special difficulty

in calculating ∂µφ; since this derivative becomes the derivative of the mesonic degrees of

freedom present in the initial and final state which are expressed as free-particle plane

waves (∼ e−q
µxµ or ∼ eq′

µxµ) respectively. The change of sign in the exponential is due

to the fact that the antiparticle moves in the temporal opposite sense. Hence, given

the nature of particle/antiparticle of the degrees of freedom present in φ depending on

the role played in the process, one should pay attention to the sign accompanying the

corresponding component of the four-momentum after the corresponding derivative ∂µ.

Finally, from the Lagrangian LWT
φB , and keeping in mind the previous remarks, one
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can derive the meson-baryon interation kernel at lowest order corresponding to the

Weinberg-Tomozawa (WT) term, which reads:

V WT

ij = −Cij
1

4f 2
ūs
′

Bj
(pj)γ

µusBi(pi)(qiµ + qjµ) , (1.58)

and depends only on one parameter, the pion decay constant f . The indices (i, j) cover

all the initial and final channels of the explored sector. The matrix of coefficients Cij

are displayed in Table 4.1, Appendix A. The four-momenta qiµ and qjµ are those of

the incoming and outgoing mesons, respectively, while usBi(pi) denotes the incoming

baryon spinor with spin s and momentum pi, and analogously for the spinor ūs
′
Bj

(pj) of

the outgoing baryon. And at the end of the day, applying the s-wave projection (1.53),

it reads:

V WT

ij = −Cij
1

4f 2
NiNj

(√
s−Mi −Mj

)
, (1.59)

The normalization factor N is defined as N =
√

(M + E)/(2M), with M and E

being, respectively, the mass and energy of the baryon whose sub-indexes denote their

incoming and outgoing character. Here
√
s is the total energy of the meson-baryon

system in the center-of-mass frame.

We next consider the contributions of the Born diagrams whose vertices are calcu-

lated from lagrangian (1.48), specially, from the pieces:

LBornφB =
1

2
D〈B̄γµγ5{uµ, B}〉+

1

2
F 〈B̄γµγ5[uµ, B]〉 .

Developing each element in the former expression, in a similar fashion as before, one
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gets:

uµ = iu†∂µUu
† = i(1− iφ√

2f
− φ2

4f 2
+ . . . )∂µ(1 +

i
√

2φ

f
− φ2

f 2
+ . . . )(1− iφ√

2f
− φ2

4f 2
+ . . . )

≈ −
√

2

f
∂µφ,

hence, the commutator and anticommutator can be written as

{uµ, B} = −
√

2

f
(∂µφB +B∂µφ)

[uµ, B] = −
√

2

f
(∂µφB −B∂µφ)

to finally express the corresponding terms of the lagrangian in the following way

LBornφB =
1√
2f

(
D〈B̄γ5γ

µ(∂µφB +B∂µφ)〉+ F 〈B̄γ5γ
µ(∂µφB −B∂µφ)〉

)
.

Now only, following the Feynman rules, the diagrams should be built in order to get the

interaction kernel; since the vertices can be obtain just by performing the calculation

including degrees of freedom involved in the process we want to study in the meson-

and baryon-fields. The interaction kernel corresponding to the direct Born diagram,

which corresponds to diagram (ii) in Fig. 1.2, reads

V D

ij = C
(Born)

īi,k
C

(Born)

j̄j,k
ūs
′

Bj
(pj)γ5γ

νqjν
γαpkα +mk

p2
k −m2

k

γ5γ
µqiµu

s
Bi

(pi) (1.60)

where the k label refers to the intermediate baryon involved in the process whose four-

momentum pkα = (pk0,~0) in the center-of-mass frame corresponds to an on shell baryon

satisfying the conservation relation p2
k = (pi+qi)

2 = s. The couplings between different
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baryon-meson channels to the intermediate baryon are the coefficients C
(Born)

īi,k
which

are compiled in Appendix A, relations A.1, and which depend on the axial vector

constants. After applying the s-wave projection in the way given by eq. (1.53), we

obtain

V D

ij = −
8∑

k=1

C
(Born)

īi,k
C

(Born)

j̄j,k

12f 2
NiNj

(
√
s−Mi)(

√
s−Mk)(

√
s−Mj)

s−M2
k

, (1.61)

the sum over k extends to all possible baryons of the octet. However, in this particular

sector (S = −1, Q = 0) and for this process, only Λ and Σ0 can act as intermediate

baryons compatible with these quantum numbers.

The crossed Born diagram can be formally expressed as in eq. (1.60). But, from

diagram (iii) in Fig. 1.2, one realizes that the four-momentum conservation now implies

the conservation relation: p2
k = (pi− qj)2 = (pj − qi)2 = u. Here u is the corresponding

Mandelstam variable. Then, once projecting onto s-wave, this diagram gives rise to

interaction kernel:

V C
ij =

8∑
k=1

C
(Born)

j̄k,i
C

(Born)

īk,j

12f 2
NiNj

×
[√

s+Mk −
(Mi +Mk)(Mj +Mk)

2 (Mi + Ei) (Mj + Ej)
(
√
s−Mk +Mi +Mj)

+
(Mi +Mk)(Mj +Mk)

4qiqj

{√
s+Mk −Mi −Mj

− s+M2
k −m2

i −m2
j − 2EiEj

2 (Mi + Ei) (Mj + Ej)
(
√
s−Mk +Mi +Mj)

}
× ln

s+M2
k −m2

i −m2
j − 2EiEj − 2qiqj

s+M2
k −m2

i −m2
j − 2EiEj + 2qiqj

]
, (1.62)

where, just to recall the reader, ~qi and ~qj are the center-of-mass (CM) three-momenta
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in the corresponding i, j channels, and mi,mj denote the corresponding meson masses.

Finally, from the lagrangian L(2)
φB, one can derive the meson-baryon interaction

kernel at NLO. If we focus on this lagrangian we can appreciate seven terms, these

pieces are the structures from which we depart in order to exemplify how the final

expression can be obtained.

First, it would be preferable to introduce χ+ which is the term responsible of explicit

breaking of chiral symmetry:

χ+ = − 1

4f 2
{φ, {φ, χ}} , χ =


m2
π 0 0

0 m2
π 0

0 0 m2
K −m2

π

 . (1.63)

The seven main constituents of the lagrangian are displayed as follows:

• bD〈B̄{χ+, B}〉 term:

χ+ = − 1

4f 2

(
φ2χ+ 2φχφ+ χφ2

)
bD〈B̄{χ+, B}〉 = − bD

4f 2
〈B̄
(
φ2χ+ 2φχφ+ χφ2

)
B + B̄B

(
φ2χ+ 2φχφ+ χφ2

)
〉.

• bF 〈B̄[χ+, B]〉 term:

bF 〈B̄[χ+, B]〉 = − bF
4f 2
〈B̄
(
φ2χ+ 2φχφ+ χφ2

)
B − B̄B

(
φ2χ+ 2φχφ+ χφ2

)
〉.
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• b0〈B̄B〉〈χ+〉 term:

b0〈B̄B〉〈χ+〉 = − b0

4f 2
〈B̄B〉〈φ2χ+ 2φχφ+ χφ2〉.

• d1〈B̄{uµ, [uµ, B]}〉 term:

d1〈B̄{uµ, [uµ, B]}〉 =
2d1

f 2
〈B̄ (∂µφ∂

µφB − ∂µφB∂µφ+ ∂µφB∂µφ−B∂µφ∂µφ)〉.

• d2〈B̄[uµ, [u
µ, B]]〉 term:

d2〈B̄[uµ, [u
µ, B]]〉 =

2d2

f 2
〈B̄ (∂µφ∂

µφB − ∂µφB∂µφ− ∂µφB∂µφ+B∂µφ∂µφ)〉.

• d3〈B̄uµ〉〈uµB〉 term:

d3〈B̄uµ〉〈uµB〉 =
2d3

f 2
〈B̄∂µφ〉〈∂µφB〉.

• d4〈B̄B〉〈uµuµ〉 term:

d4〈B̄B〉〈uµuµ〉 =
2d3

f 2
〈B̄B〉〈∂µφ∂µφ〉.

Now all the ingredients needed to get the corresponding interaction kernel are available,

one should proceed with the introduction of the fields and the development of some

algebra. The resulting expression for the potential can be written as:

V NLO

ij =
1

f 2
ūs
′

Bj
(pj)

(
Dij − 2(qiµq

jµ)Lij
)
usBi(pi), (1.64)
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which after employing eq. (1.53), in order to exclude other contributions than s-wave,

becomes:

V NLO

ij =
1

f 2
NiNj

[
Dij − 2

(
ωiωj +

q2
i q

2
j

3 (Mi + Ei) (Mj + Ej)

)
Lij

]
, (1.65)

where ωi, ωj are the meson energies involved in the transition amplitude. The Dij and

Lij coefficients depend on the NLO parameters b0, bD, bF , d1, d2, d3 and d4 and are

given in Table 4.2, Appendix A .

To conclude, the total interaction kernel up to NLO is expressed as the sum:

Vij = V WT

ij + V D
ij + V C

ij + V NLO

ij (1.66)

1.3 Unitary extension of ChPT: the Bethe-Salpeter

equation

The probability conservation during the time evolution of a system leads to the fact that

physical scattering amplitude should satisfy the unitarity condition of the S-matrix. A

nonperturbative calculation of the amplitude can ruin the unitarity condition. We can

find such a case in ChPT where the amplitude is expanded in energy powers of the NG

bosons. Since the amplitude monotonically increases as one goes to higher energies,

the unitarity bond can be violated at a certain kinematical scale. This does not present

a problem for the behaviour of the amplitude if one remains at low energy. But this

way of proceeding can not be maintained, even at low energies, when the interaction

between hadrons is strong enough to produce a resonance that can be interpreted as



1.3 Unitary extension of ChPT: the Bethe-Salpeter equation 45

a bound state below the thresholds of the hadrons involved. Such a situation makes a

perturbative calculation of the amplitude not applicable in the vicinity of resonances.

Instead, we need to construct the scattering amplitude in a nonperturbative fashion.

In this work, we solve the Bethe-Salpetter (BS) equations in coupled-channels. Other

techniques can also be applied such as the N/D Method [9, 56]. As a comment, we

should make it clear that both methods reach the same final expression for the scatter-

ing amplitude. The philosophy behind the unitarization method employed here consists

of solving the BS equations for the scattering amplitudes Tij once we get a well-defined

potential, i.e. eq. (1.66), as is schematically displayed in Fig. 1.3, which corresponds

to the infinite sum

Tij = Vij + VilGlVlj + VilGlVlkGkVkj + ... , (1.67)

where the subscripts i, j, l, . . . run over all possible channels and the loop function Gi

stands for the propagator of the meson-baryon state of channel i. The former equation

can also be cast as:

Tij = Vij + VilGlTlj . (1.68)

In spite of the simplicity of eq. (1.68), obtaining the amplitude Tij is not so straight-

...

Figure 1.3: Diagrammatic solution of the Bethe-Salpeter equation, where the inter-
action kernel V is represented by the empty blobs, the scattering matrix T - by the
solid blobs, and the loop function G is represented by the intermediate baryon-meson
propagators.
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forward, because the former is an integral equation which involves an integral over the

four-momentum of the intermediate meson-baryon system. Fortunately, it has been

shown [20] that the interaction kernel can be conveniently splitted into its on-shell

contribution and the corresponding off-shell one. The off-shell part of the interaction

kernel gives rise to a tadpole-type diagram, which can be reabsorbed into renormaliza-

tion of couplings and masses and could, hence, be omitted from the calculation. This

procedure permits factorizing Vil and Tlj out of the integral equation, leaving a simple

system of algebraic equations to be solved, which, in matrix form reads:

T = (1− V G)−1V, (1.69)

where the loop function G stands for a diagonal matrix with elements:

Gl = i

∫
d4ql

(2π)4

2Ml

(P − ql)2 −M2
l + iε

1

q2
l −m2

l + iε
, (1.70)

where Ml and ml are the baryon and meson masses of the “l” channel. The loop

function diverges logarithmically and needs to be regularized. We apply dimensional

regularization, which gives:

Gl =
2Ml

(4π)2

{
al(µ) + ln

M2
l

µ2
+
m2
l −M2

l + s

2s
ln
m2
l

M2
l

+

qcm√
s

ln

[
(s+ 2

√
sqcm)2 − (M2

l −m2
l )

2

(s− 2
√
sqcm)2 − (M2

l −m2
l )

2

]}
. (1.71)

The loop functions Gl depend, for a given dimensional regularization scale µ which is

taken to be 1 GeV in our particular case, on the subtraction constants al. These are

unknown parameters that will be fitted to the experimental data. However, isospin
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symmetry arguments are commonly used to reduce the number of independent sub-

traction constants. The lack of knowledge about the values of the al constants does

not rule out the possibility of establishing a natural size to these parameters. Indeed,

as discussed in [9], a direct comparison between the dimensional regularization method

and an approximation to calculate the loop function using a cut off, which was carried

out in [8], allow us to establish the following relation:

al(µ) =
1

16π2

[
1− 2 ln

1 +

√
1 +

M̄2
l

µ2

+ . . .
]
, (1.72)

where M̄l is the average mass of the octet of JP = 1
2

+
(M̄l = 1.15 GeV), and the

ellipses indicates higher order terms in the non-relativistic expansion and also take

into account powers of ml/Ml. Since in our work we take µ = 1 GeV, one should

expect values for the subtraction constants around al(µ = 1 GeV ) ≈ −5.38 · 10−3.

But we have to emphasize that the authors of [9] used a different remapping for the

subtraction constants. In fact, our definition of al constants was chosen to compare

with the most recent papers on this topic. In order to recover the original expression

for eq. (1.72) in [9], and for a later comparison of the obtained values once the model is

fitted to the experimental data, we need the relation between our subtraction constants

and the ones from [9]

aOMl (µ) = 16π2al(µ)− 1, (1.73)

where the OM superscript identifies the set of subtraction constants related to [9].

Then only by introducing the value obtain by means of eq. (1.72) as al(µ) in eq. (1.73),

one gets aOMl (µ) = −1.85 as the natural size with which we can compare our values.

In the presence of the Born terms the above on-shell scheme should be treated
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with care since these may lead to conceptual and/or practical difficulties, as described

in Ref. [57]. In particular, the u-channel Born graph, Fig. 1(iii), introduces non-

physical sub-threshold cuts, generated by the propagator of the intermediate baryon.

In principle, it is possible that the subthreshold cuts of some heavy meson-baryon

pairs can contribute to physical processes of light meson-baryon channels. This is an

artefact of the on-shell scheme and a simple way to deal with it, consisting in matching

the u-channel Born term to a constant value below a certain invariant energy, was

proposed in Ref. [15]. Fortunately, these non-physical cuts are not encountered in the

kinematical regions explored in the present work.



Chapter 2

Meson-Baryon interaction in the

S = −1 sector

In the previous chapter Unitaritzed Chiral Perturbation Theory (UChPT), which com-

bines chiral dynamics with unitarization techniques in coupled channels, has been in-

troduced as a proper framework to treat the low-energy meson-baryon interaction.

This scheme is based on two guiding principles: the inherited symmetries from QCD,

particularly the (spontaneously broken) chiral symmetry, and general properties of the

scattering amplitude such as unitarity and analiticity. The descriptive power of this

tool has been shown not only in reproducing the scattering data but also in generating

bound-states and resonances dynamically (see [58] and references therein). Besides

the previous advantages, UChPT permits extending the validity of ChPT to higher

energies.

A clear example of the success of UChPT is the description of the Λ(1405) resonance,

located only 27 MeV below the K̄N threshold, that emerges from coupled-channel

49
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meson-baryon re-scattering in the S = −1 sector. In [59], the dynamical generation

of Λ(1405) was formulated, for the first time, in terms of the unitarized chiral meson-

baryon interaction in coupled channels almost 40 years after its dynamical origin was

pointed out [60]. A lot of activity was awaken by this success in the community,

which analysed the effects of including a complete basis of meson-baryon channels,

differences in the regularization of the equations, s- and u-channel Born terms in the

Lagrangian, next-to-leading (NLO) contributions, etc . . . [7–12, 14, 15, 17, 61]. The

various developed models could reproduce the K̄N scattering data very satisfactorily

and all these efforts culminated in establishing the Λ(1405) as a superposition of two

poles of the scattering amplitude, generated dynamically from the unitarized meson-

baryon interaction in coupled channels [9, 13,16].

This topic has experienced a renewed interest in the last few years, after the avail-

ability of a more precise measurement of the energy shift and width of the 1s state in

kaonic hydrogen by the SIDDHARTA collaboration [18] at DAΦNE. The CLAS col-

laboration at JLAB has also recently provided mass distributions of Σ+π−, Σ−π+, and

Σ0π0 states in the region of the Λ(1405) [62], as well as differential cross sections [63]

and a direct determination of the expected spin-parity Jπ = 1/2− of the Λ(1405) [64].

Invariant πΣ mass distributions from pp scattering experiments have recently been

measured by the COSY collaboration at Jülich [65] and by the HADES collaboration

at GSI [66]. In parallel with the increased experimental activity, the theoretical models

have been revisited [19–23] and analyses of the new reactions, aiming at better pinning

down the properties of the Λ(1405), have been performed [24–26]. Aiming for testing

models based on UChPT trying to reproduce all these new data, several studies of the

meson-baryon interaction in s-wave approximation were performed [19, 21–23] . Once

again, UChPT showed to be an appropriate tool to describe this sector.
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From [8–15,17,19,22,23], it can be concluded that the significant term that allows

one to get a good agreement with the experimental data is the Weinberg-Tomozawa

(WT) one, which is of order O(p), and the addition of other terms such as the direct and

crossed Born terms (O(p)) as well as the NLO terms (O(p2)) only play a fine-tuning

role. At this point, it is important to highlight that the fits carried out to develop

these models were accommodated to the two-body cross sections of K−p scattering

into πΣ, K̄N, πΛ states, from now on we will refer to them as the classical channels.

This was not the case for [21], whose authors performed a fit which included, apart

from the classical channels, scattering data from K−p → ηΛ, π0π0Σ0 and data from

two event distribution (K−p→ Σ+(1660)π− → Σ+π−π+π− and K−p→ π0π0Σ0). The

difference lies on the fact that they obtained a notably improvement of the accuracy

when including the NLO contribution.

In this context, given the potential of UChPT, the S = −1 sector offers us a good

chance to extract information about those parameters which are not well constrained

and are present in the model from the expansion of ChPT. Fortunately, all the works we

have cited devoted to this topic did not explore beyond the NLO and their authors did

not take any other contribution than the s-wave one. Consequently, the number of low-

energy constants could amount to a maximum of sixteen: the meson decay constant f ,

the axial vector couplings D and F , the NLO coefficients b0, bD, bF , d1, d2, d3, d4 and six

subtraction constants aπΣ, aK̄N , aπΛ, aηΣ, aηΛ, aKΞ (or one cut off instead). In summary,

in reference to the low-energy constants in UχPT calculations, we can remark that the

f parameter is usually taken to be larger than the experimental value, ranging from

f = 1.15fπ to f = 1.36fπ, meaning to be a sort of average over the decay constants of

the mesons involved in the various coupled channels. Actually, some of the previous

authors assigned fixed values to this parameter depending on the meson involved in
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the incoming and outgoing channels (fπ = 92.4 MeV [67], fK = 110.0 MeV [67],

fη = 120.1 MeV estimated from the result in [68]) for each given meson-baryon process

in the S = −1 sector. Moreover, the axial vector couplings were normally taken as fixed

values (D = 0.8., F = 0.46), hence fulfilling the constraint gA = F +D = 1.26. For the

rest of the parameters, namely the NLO coefficients, the situation is more diverse. Most

of the performed fits have endorsed the fact that the constraint over these parameters

(see eqs. (1.50), (1.51) and (1.52) in Sect. 1.2.2) should be relaxed, since their studies

went beyond tree level and incorporated higher order terms via the coupled-channel

scattering equations. There were exceptions, as for instance in Refs. [7, 21, 61], where

the authors did take into account the mentioned constraints on the NLO coefficients

while carrying out the fits.

The dissimilarity in the values of the NLO coefficients found by different studies

is the seed from which the present study arises. In the next section we disclose how

the inclusion of additional processes, specially those which are very sensitive to the

NLO contribution, can provide crucial information in order to get more reliable values

for these parameters. A clear example of these kind of processes are the K−p → KΞ

reactions. Before entering into the subject, it is convenient to point out that the

validity of the theoretical framework when going to an energy range above the KΞ

threshold is supported by UChPT. Let me recall the reader that one of the effects of

the unitarization is to widen the range of applicability of ChPT, as we have mentioned

in the first paragraph of this chapter. In addition, the available kinetic energy is not

too large when exploring a region close to the KΞ threshold.
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2.1 The crucial role of the K−p→ KΞ reactions

The reproduction of the K−p → KΞ cross section has not been traditionally studied

employing models derived from chiral lagrangians. But there is a feature, related

to the resulting structure of the WT kernel (see eq. (1.59)), that made us turn our

attention to these reactions. In particular, we observe that the Clebsch-Gordan-type

coefficients for KΞ production from K−p scattering in the WT interaction kernel are

CK−p→K+Ξ− = CK−p→K0Ξ0 = 0 (see Table 4.1 in Appendix A), meaning that there

is no direct contribution of this term to the scattering amplitude for these reactions.

Further, the strength coming from the rescattering terms due to the coupled channels

is not sufficient to reproduce properly the experimental scattering data as we will show

latter. This fact led us to believe that these reactions could be very sensitive to the next

corrections in the hierarchy, this is to say, the direct and cross Born terms and the NLO

term. Hence, a new study that includes such an experimental data set would provide

more reliable values of low-energy constants. Before proceeding with the calculations

and the fitting procedure, we should take into account some considerations.

The Born terms contribute mainly to p-wave, but their s-wave contribution begins

to take relevance as the energy increases. Evidence of this can be found in the leading

order calculation performed in [9] where the authors pointed out that the contribution

of the s and u Born diagrams are almost negligible at energies around 1.3 GeV while

their magnitude increases with energy reaching ≈ 20% of the dominant WT contri-

bution at 1.5 GeV. Despite the previous analysis, one finds that the contribution of

the cross and direct Born terms is very moderate for studies which were based on la-

grangians extended to NLO [15, 23]. In these articles, among other approaches, the

authors present two models based on chiral Lagrangians which contain WT and NLO
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terms and where the difference between the models was in the inclusion or not of the

Born terms. Concretely, ”Model c” and ”Model s” from [23], and fits ”c” and ”u”

from [15]. Specifically, these works showed therein that the inclusion of the Born terms

led to rather small changes in the fitting parameters and did not influence significantly

the quality of the fits; although in some cases it helped in producing more natural

values of the subtraction constants. A similar behaviour when the Born diagrams are

included is observed in [19]. Taking this into consideration and for simplicity, in a

first stage of our study, which culminates with [27], the Born contributions were disre-

garded, leaving the NLO term as the significant correction to the WT term in order to

reach good agreement between the theoretical predictions and the experimental data

in the KΞ channels.

In summary, since the null direct contribution of the WT term to the scattering

amplitude for K−p → KΞ reactions and the assumed non significant contribution of

the Born terms confer a relevant role to the NLO terms, the inclusion of experimental

data coming from these reactions in a fitting procedure might allow us to get more

reliable values of the NLO coefficients.

2.1.1 Fitting procedure and Data treatment I

With the aim of learning about the importance of the different terms of the chiral

Lagrangian and, as a main goal, obtaining a reliable set of low-energy constants we

performed four different fits. The first fit corresponds to a unitarized calculation em-

ploying the chiral Lagrangian up to the lowest order WT term. This involves the fitting

of seven parameters: the pion decay constant f and the six subtraction constants aK̄N ,

aπΛ, aπΣ, aηΛ, aηΣ, and aKΞ. In principle, given that there are ten channels in this



2.1 The crucial role of the K−p→ KΞ reactions 55

sector, there should be the corresponding ten subtraction constants, but due to the

isospin symmetry they become six. The second fit improves upon the first one by

using up to the NLO terms of the interaction kernel, thus involving seven additional

parameters: the NLO low energy constants b0, bD, bF , d1, d2, d3 and d4. Similar to

previous works, and to compare our results with them, these first and second fits ignore

the experimental data corresponding to the KΞ channels and their results will be de-

noted by WT (no KΞ) and WT+NLO (no KΞ), respectively. From the prediction

of the KΞ cross sections given by these fits, we will demonstrate clearly the important

role that the NLO terms have on the K−p→ KΞ reactions. This brings up, naturally,

the study of the third and fourth fits, denoted by WT and WT+NLO, respectively,

which correspond to the same fitting procedures than the first and second ones but

including the KΞ production cross section data.

The observables employed in the fits need to be defined, all of them requiring the

knowledge of the T matrix. As was shown in Sect 1.3, when one has decided which

are the contributions to the interaction kernel, the scattering amplitudes is obtained

by means of eq. (1.68). Once it is known, one can obtain the unpolarized differential

and total cross-section, according to the normalization we use, for the i→ j reaction:

σij =
1

4π

MiMj

s

kj
ki
Sij , (2.1)

where s is the square of the center-of-mass (CM) energy, and we have averaged over the

initial baryon spin projections and resummed over the final baryon spin projections:

Sij =
1

2

∑
s′,s

|Tij(s′, s)|2 . (2.2)
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The K−p scattering length is obtained from the K−p scattering amplitude at threshold

as:

aK−p = − 1

4π

Mp√
Mp +MK̄

TK−p→K−p , (2.3)

where we have used the following notation

Tij =
1

2

∑
s′,s

Tij(s
′, s) . (2.4)

The scattering length is related to the energy shift and width of the 1s state of kaonic

hydrogen via the second order corrected Deser-type formula [69] :

∆E − iΓ
2

= −2α3µ2
raK−p

[
1 + 2aK−p αµr (1− lnα)

]
, (2.5)

where α is the fine-structure constant and µr the reduced mass of the K−p system.

From the elastic and inelastic K−p cross sections evaluated at threshold, one can

also obtain the following measured branching ratios of cross section yields:

γ =
Γ(K−p→ π+Σ−)

Γ(K−p→ π−Σ+)
, (2.6)

Rn =
Γ(K−p→ π0Λ)

Γ(K−p→ neutral states)
, (2.7)

Rc =
Γ(K−p→ π+Σ−, π−Σ+)

Γ(K−p→ inelastic channels)
. (2.8)

We considered a large amount of cross section data for K−p scattering and related

channels [70–80]. Some points of these data sets have inconsistencies with the trend of

the neighbouring points and have not been employed in the fitting procedure, leaving

us with a total of 161 experimental points coming from K−p scattering. There are three
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Observable Points Observable Points

σK−p→K−p 23 σK−p→K̄0n 9

σK−p→π0Λ 3 σK−p→π0Σ0 3

σK−p→π−Σ+ 20 σK−p→π+Σ− 28

σK−p→K+Ξ− 46 σK−p→K0Ξ0 29

γ 1 ∆E1s 1

Rn 1 Γ1s 1

Rc 1

Table 2.1: Number of experimental points used in our fits, distributed per observable.

excluded points and, therefore, we cannot give systematic criteria to exclude a point

from the the fit. We have excluded the points which produced a much higher χ2 than

the neighbouring ones. The points eliminated will be displayed in red in the figures.

We also fit the parameters of our model to the measured branching ratios [81, 82]

γ = 2.36± 0.04 ,

Rn = 0.664± 0.011 ,

Rc = 0.189± 0.015 ,

and to the recent energy shift and width of the 1s state of kaonic hydrogen obtained

by the SIDDHARTA Collaboration [18], namely ∆E1s = 283± 36 and Γ1s = 541± 92.

The distribution of points per observable is summarized in Table 2.1.

The standard fitting procedure consists of minimizing χ2
d.o.f., defined as:

χ2
d.o.f. =

1∑K
k=1 nk − p

K,nk∑
k=1,i=1

(
yth
i,k − yexp

i,k

)2

σ2
i,k

(2.9)

where yexp
i,k , yth

i,k and σi,k represent, respectively, the experimental value, theoretical pre-
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diction and error of the ith point of the kth observable, which has a total of nk points, K

is the total number of observables, and p denotes the number of free fitting parameters.

This previous definition could suppress the relevance in the fit of observables which have

a small number of associated experimental points, in favour of those with a larger set.

To circumvent this problem, we adopt the method already used in [12,19,21,22], which

takes a normalized χ2 that assigns equal weight to the different measurements. This is

achieved by averaging over the different experiments the corresponding χ2 per degree

of freedom, which is obtained by dividing the contribution of the experiment, χ2
k, by its

own number of experimental points, nk. More explicitly, the redefined χ2 per degree

of freedom, which we will use in this work, is given by the expression

χ2
d.o.f =

∑K
k=1 nk(∑K

k=1 nk − p
) 1

K

K∑
k=1

χ2
k

nk
(2.10)

with

χ2
k =

nk∑
i=1

(
yth
i,k − yexp

i,k

)2

σ2
i,k

.

The analysis for the χ2 function was carried out by means of the minimization

techniques embedded in the MINUIT package. MINUIT is a very powerful tool for

minimizing a function and for special error analysis. In principle it was thought, more

than 25 years ago, as a code to process experimental data recorded at CERN, but

its great success in other fields have made MINUIT one of the most popular packages

dedicated to these purposes.
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γ Rn Rc ap(K
−p→ K−p) ∆E1s Γ1s

WT (no KΞ) 2.37 0.191 0.665 −0.76 + i 0.79 316 511

NLO (no KΞ) 2.36 0.188 0.662 −0.67 + i 0.84 290 559

WT 2.36 0.192 0.667 −0.76 + i 0.84 318 543

NLO 2.36 0.189 0.664 −0.73 + i 0.85 310 557

Exp. 2.36 0.189 0.664 −0.66 + i 0.81 283 541

±0.04 ±0.015 ±0.011 (±0.07) + i (±0.15) ±36 ±92

Table 2.2: Threshold observables obtained from the WT (no KΞ), WT+NLO (no
KΞ), WT and WT+NLO fits explained in the text. Experimental data is taken
from [18,81,82].

2.1.2 Results and discussion I

The results obtained with the four previously discussed fits are shown in this section.

These fits consist of models whose interaction kernels are based on a WT contribution

with or without the NLO corrections and whether or not we consider the experimental

data of the KΞ channels.

The values for the threshold observables are collected in Table 2.2. A similar degree

of accuracy is reached by all the fits in order to reproduce the branching ratios, the

K−p scattering length and the related energy shift and width of the 1s state of kaonic

hydrogen, which is also shown in the table for completeness. Actually, only the first

and third fits, obtained with the lowest order WT kernel, seem to produce a worse

value of the real part of aK−p, past the upper limit of its error band.

At the beginning of this chapter, based on the evidence provided by previous works

in the literature, the dominant role of the WT contribution was stressed in order to

reproduce the total cross sections of the classical channels (K−p→ K−p, K̄0n, π−Σ+,
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Figure 2.1: Total cross sections for the K−p → K−p, K̄0n, π−Σ+, π+Σ−, π0Σ0, π0Λ
reactions obtained from the WT (no KΞ) fit (dotted line), the WT+NLO (no KΞ)
fit (dashed line), the WT fit (dot-dashed line) and the WT+NLO fit (solid line),
where the last two cases take into account the experimental data of the KΞ channels,
see text for more details. Experimental data are from [70–73]. The points in red have
not been included in the fitting procedure.

π+Σ−, π0Σ0, π0Λ). Since the WT term depends on a single parameter f , one should

expect similar values for the four values of f corresponding to the four fitting schemes.



2.1 The crucial role of the K−p→ KΞ reactions 61

In principle, they look very similar (see Table 2.3) but we should not be misled by

these values because there is a high sensitivity of the WT terms to little variations of

f . Regarding these variations of f and depending on the fitting scheme, we should not

lose sight either of the fact that f should absorb higher order effects, if it corresponds

to one of the WT fits, or that f should be some sort of average value between fπ and

fK , weighted by the number of observables involving each meson, in this first stage

where only K and π mesons are present in the processes for which we have included

experimental data. On the other hand, we must bear in mind that because of the

unitarization, each fit/model makes f acquire different values in order to modulate

the contribution of the kernel according to the associated set of subtraction constants

coming from the dimensional regularization of the loops. In spite of the above facts,

we observe a certain stability of the values of f for our different models, which is not

present in other recent works [19, 21, 23]. This feature is going to remain, as we will

show, for all our future models. The variations of f work in a very characteristic way

in our case: when we add corrections to a WT model, the value of f tends to decrease

at most by 1.3%, taking values between 110.30 and 111.79 MeV. Even so, as we will

also see, when we include data coming from processes with η mesons in the fits, where

one could expect higher values for f , this parameter remains within the previous range.

The f value combined with the rest of the parameters appearing in the different

models (Table 2.3) produces, for all of them, a satisfactory reproduction of the total

cross sections for the classical reactions as can be seen in Fig. 2.1. However, substantial

differences appear in the description of theK0Ξ0, K+Ξ− production channels, displayed

in Fig. 2.2. The results of the WT (no KΞ) fit, represented by dotted lines, do not

agree with size of the cross section in any of these reactions. The predicted cross sections

amount to less than 0.015 mb, i.e. one order of magnitude smaller than the measured
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ones. This is not a surprising result, because there is no direct contribution from the

reactionsK−p→ K0Ξ0, K+Ξ− at lowest order, since the coefficient Cij in Eq. (1.59) is 0

in both cases (see Table 4.1 in Appendix A). Consequently, the only contribution to the

scattering amplitude of these channels comes from the effect of the rescattering terms

generated by the coupled channels unitarization, which is not sufficient to reproduce the

strength of these cross sections. The inclusion of the NLO correction in the interaction

kernel (WT+NLO (no KΞ) fit) confirms their determining role in acquiring enough

strength to describe the scattering data of the K−p → K0Ξ0, K+Ξ− reactions. Even

if the experimental data for these reactions has not been employed in this fit, the

WT+NLO (no KΞ) result gives a larger amount of strength for these channels,

especially in the case of the K+Ξ− production reaction, where the prediction even

overshoots the data considerably as can be appreciated from the dashed lines in Fig. 2.2.

We observe that, contrary to what happens to the contributions from the reactions

K−p→ K0Ξ0, K+Ξ− at lowest order, the non vanishing contribution of NLO terms is

guaranteed since the LK−p→KΞ coefficients of the potential of Eq. (1.65) have non-zero

values (see Table 4.2 in Appendix A). The obvious next step is to include the KΞ data

in the fitting procedure and, naturally, the WT+NLO results, represented by the

solid lines, reproduce quite satisfactorily the K−p → K0Ξ0, K+Ξ− cross sections. For

completeness, we also attempted to reproduce these reactions employing only the lowest

order Lagrangian. The corresponding WT results, represented by the dot-dashed lines,

improve considerably over those of the WT (no KΞ) fit, but the fact that the lowest

order Lagrangian can only affect these channels through unitarization, gives rise to

quite unphysical values for the fitted subtraction constants, as commented below.

One can find the values of the parameters of the four fits discussed in this section

displayed in Table 2.3, together with the obtained value of χ2
d.o.f.. We should com-
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Figure 2.2: The total cross sections of the K−p → K0Ξ0, K+Ξ− reactions obtained
from the WT (no KΞ) fit (dotted line), the WT+NLO (no KΞ) fit (dashed line),
the WT fit (dot-dashed line) and the WT+NLO fit (solid line). Experimental data
are from [74–80].

ment that the larger value of χ2
d.o.f. in the WT+NLO fit with respect to that of the

WT+NLO (no KΞ) one is precisely due to the contribution of the set of KΞ data,

with more disperse experimental points, rather than to a loss of accuracy in repro-

ducing the measurements. The reduction of the χ2
d.o.f. values when including the NLO
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WT (no KΞ) NLO (no KΞ) WT NLO

aK̄N (10−3) −1.681± 0.738 5.151± 0.736 −1.986± 2.153 6.550± 0.625

aπΛ (10−3) 33.63± 11.11 21.61± 10.00 −248.6± 122.0 54.84± 7.51

aπΣ (10−3) 0.048± 1.925 3.078± 2.101 0.382± 2.711 −2.291± 1.894

aηΛ (10−3) 1.589± 1.160 −10.460± 0.432 1.696± 2.451 −14.16± 12.69

aηΣ (10−3) −45.87± 14.06 −8.577± 0.353 277.8± 139.1 −5.166± 0.068

aKΞ (10−3) −78.49± 47.92 4.10± 12.67 30.85± 10.58 27.03± 7.83

f/fπ 1.202± 0.053 1.186± 0.012 1.202± 0.119 1.197± 0.008

b0 (GeV −1) - −0.861± 0.014 - −1.214± 0.014

bD (GeV −1) - 0.202± 0.011 - 0.052± 0.040

bF (GeV −1) - 0.020± 0.057 - 0.264± 0.146

d1 (GeV −1) - 0.089± 0.096 - −0.105± 0.056

d2 (GeV −1) - 0.598± 0.062 - 0.647± 0.019

d3 (GeV −1) - 0.473± 0.026 - 2.847± 0.042

d4 (GeV −1) - −0.913± 0.031 - −2.096± 0.024

χ2
d.o.f. 0.62 0.39 2.57 0.65

Table 2.3: Values of the parameters and the corresponding χ2
d.o.f., defined as in

eq. (2.10), for the different fits described in the text. The value of the pion decay
constant is fπ = 93 MeV and the subtraction constants are taken at a regularization
scale µ = 1 GeV.

terms in the Lagrangian is clearly observed by comparing with the corresponding WT

fits at lowest order, especially when the KΞ data has been included.

Another interesting feature reflected in Table 2.3 that also demonstrates the need

of taking into account the NLO terms when the additional KΞ data is included are

the large values assigned to the subtraction constants by the WT fits. Particularly,

these fits, forced to accommodate the reproduction of the KΞ scattering data, produce

subtraction constants in the isospin I = 1 channel, aπΛ and aηΣ, which are one order

of magnitude larger than what qualifies as being of ”natural” size (see the detailed

discussion at the end of Chapter 1). Conversely, the parameters obtained in the other
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fits presented in Table 2.3 are of reasonable size. It is found that, within about 2σ of

their errors, the values of the subtraction constants obtained in the NLO (no KΞ)

and NLO fits are quite similar. However, the values of the low energy constants

of the NLO Lagrangian (b0, bD, bF and di) obtained by the two fits show stronger

differences. This means that these parameters are really sensitive to the data of the

KΞ production reactions which should then be used to constrain their values, as was

done in our work. This is supported, not only by the results presented in Table 2.2 and

Fig. 2.1, where we find a slight improvement in reproducing the threshold observables

and the K−p→ K−p, K̄0n, π−Σ+, π+Σ−, π0Σ0, π0Λ cross sections, but also, and more

especially, in the total cross section of the KΞ channels, which cannot be reproduced if

the NLO terms are omitted. Hence, based on the previous evidence, we can conclude

that the K−p → KΞ cross sections are crucial to constrain more precisely the low

energy constants of the NLO Lagrangian.

2.2 Influence of the Born terms

Until this point, we studied the meson-baryon interaction in the S = −1, Q = 0 sector,

by means of a chiral SU(3) Lagrangian up to next-to-leading order and implementing

unitarization in coupled channels, aiming for a better comprehension of the relevance

and the role played by the terms next in hierarchy after the WT one. The parameters

of the Lagrangian were fitted to a large set of experimental scattering data in different

two-body channels, to γ, Rn and Rc branching ratios, and to the precise SIDDHARTA

value of the energy shift and width of kaonic hydrogen. In contrast to all previous

works, a special attention was paid to the KΞ production reactions because they do not
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receive direct lowest order contributions from the WT term and the rescattering terms

are insufficient to reproduce the experimental data properly. By comparing different

fitting procedures, it was indeed found that the NLO terms were crucial to obtain a

good reproduction of the K̄N → K+Ξ−, K0Ξ0 cross sections. Once the sensitivity of

the NLO Lagrangian to the K−p→ KΞ reactions was established, the values of the low

energy constants of the NLO chiral Lagrangian obtained, by implementing the cross

section data for KΞ production in the fitting procedure, not only were accurate but

they were more reliable.

The previous study was carried out under the assumption that, at lowest order,

the contribution of the s and u-channel diagrams involving the coupling of the meson-

baryon channel to an intermediate baryon state would be very moderate. But one

should wonder whether the inclusion of the Born terms in the interaction kernel when

theKΞ production reactions are taken into account in the fits is, as we supposed, a mere

correction or, on the contrary, it reveals as a significant contribution. And, whatever

the case, what effects they might have on the values of the NLO coefficients. To

check this, we performed a new study [28] whose interaction kernel took into account

the Born diagrams. The results and implications of this study are explained in the

following subsections.

2.2.1 Fitting procedure and Data treatment II

A fit was performed in an attempt to clarify the importance of the different terms of

the chiral Lagrangian. This fit, called WT+NLO+Born, corresponds to a unitarized

calculation employing the chiral Lagrangian at NLO, that is, an interaction kernel

which incorporates the contribution of the WT, the Born and the NLO terms. Tech-
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nically speaking, it involves the fitting of sixteen parameters: the pion decay constant

f , the six subtraction constants aK̄N , aπΛ, aπΣ, aηΛ, aηΣ, and aKΞ, the axial vector

couplings of the baryons to the mesons D, F and the NLO low energy constants b0, bD,

bF , d1, d2, d3 and d4. In principle, the axial vector couplings undergo the constraint

gA = D+F = 1.26, but we decided to relax their values by allowing them to be within

12.5% of their canonical value, D = 0.8 And F = 0.46 [83], in order to accomodate the

dispersion of the values seen in the literature.

Regarding the observables to which the model was fitted by means of the minimiza-

tion of the same χ2
d.o.f employed in Sect. 2.1.1, these are the same ones displayed in

Table 2.1 in Sect. 2.1.1. For consistency, the same three points, which are represented

in red in the figures, were disregarded. As we will appreciate there these points fell

completely outside of our error bands. In summary, 166 points are included in the fit.

The error bands were also estimated for the K−p scattering cross sections into

different final meson-baryon channels for the previous fit. We followed the method

employed in Ref. [21] for our definition of χ2, eq. (2.10), which is proposed in an

earlier study [84]. First of all, we calculated the correlated error bars for our model

parameters, by generating new parameter configurations by randomly varying all the

free parameters around their central values through a Monte Carlo generator, and

rejecting those configurations for which the corresponding value of χ2 (total) satisfies

χ2 > χ2
0 + χ2(p, 1σ) , (2.11)

where χ2
0 corresponds to the minimum found by MINUIT and χ2(p, 1σ) is the value

of a chi-squared distribution with a number p of d.o.f. at a confidence level of one
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sigma. In the next step, we generated 16.000 of new parameter configurations by

randomly varying all the free parameters within the obtained correlated error bars,

and the K−p scattering cross sections obtained for these configurations determine their

corresponding error bands. Similarly, we can also associate error bars to the threshold

observables from the values obtained with these new configurations.
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Figure 2.3: Left column: Total cross sections for the K−p→ K0Ξ0, K+Ξ− reactions
obtained from the WT+NLO+Born fit (solid line), and the similar result neglecting
the contributions from the Born terms (dashed line), see text for more details. Exper-
imental data are from [74–80]. Right column: The same as the left column, but the
solid line corresponds to WT+Born fit, where the presented K−p→ K0Ξ0, K+Ξ− were
not taken into account, see text for more details. The dashed line shows the similar
result neglecting the contributions from the Born terms.
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2.2.2 Results and discussion II

In our first approach, we disregarded the Born terms from the interaction kernel as-

suming that they contribute marginally in the reproduction of the experimental data.

As we have mentioned, this idea was reinforced by the authors of [15,19,23] where these

terms have little influence in the goodness of the fits. As pointed out in the beginning

of this chapter, the only significant difference of our model with respect to the previous

studies is the inclusion of the K̄N → KΞ data. Thus, to settle how important the

Born terms are, an analysis of their effects on these reactions should be enough.

For this purpose, we display in Fig. 2.3 (left column) our results of the fit called

WT+NLO+Born (solid line), together with the results of the same fit but setting

the contributions from the Born diagrams in Eq. (1.66) to zero (dashed line). As

one can see, accounting or not for the Born terms leads to substantial changes in the

KΞ production cross sections, meaning that these terms contribute at the same order

of the other terms in the Lagrangian with which they can interfere strongly. The

above statement is reconfirmed by the right column in Fig. 2.3, where we presented the

WT+Born(no Ξ) fit (solid line), together with the results of the same fit but omitting

the contributions from the Born diagrams. This fit, which is based on an interaction

kernel that takes into account the WT and the Born terms, has only been performed

here to help in the understanding of this point. A further study of this model makes no

sense since, as can be observed from this same figure, it is far from accommodating to

the experimental data and, what is even more important, the NLO contribution, which

is the crucial ingredient, is not taken into account in the interaction kernel. These plots

clearly show that the importance of the Born terms for the KΞ production reactions

is not related to the inclusion of the NLO terms. In other words, for these particular
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channels the strength coming from WT term, Born terms and NLO terms are of the

same order, and should all be taken into account.

The relevance of the Born diagrams of the chiral model in the K̄N → K+Ξ−, K0Ξ0

cross sections may not come as a surprise if one considers that a recent work, studying

these reactions from a phenomenological resonance model [85], also finds substantial

contributions coming from the exchange of the ground state 1/2+ hyperons in s- and

u-channel exchange configurations.

We next present all the results of our fit when the Born terms are included as

described in the previous section. The model parameters obtained in this fit and the

final χ2
d.o.f are summarized in Table 2.4, where the same outputs from other mod-

els have been included for comparison. The results for the observables are shown in

Table 2.5 and Fig. 2.4, and, as in the previous case, results from other models are in-

cluded. In particular, these additional results come from the WT+NLO fit described

in Sect. 2.1.1 and WT+NLO+Born (η chan) which is going to be introduced in the

next section. In Fig. 2.4, we also present our estimation of the error bands of the K−p

scattering cross sections into different final channels for WT+NLO+Born fit that

gives χ2
0 = 0.73

(∑K
k=1 nk − p

)
. In our particular case we have

∑K
k=1 nk = 166, p = 16,

χ2(16, 1σ) = 18.07, and thus the rejection condition, Eq. (2.11), leads to χ2
d.o.f > 0.85.

As one can appreciate, the overall agreement with the experimental data is very good.

From the results of the threshold observables in Table 2.5, comparing the WT+NLO

and WT+NLO+Born fits, we note that the inclusion of the Born terms favours very

slightly the agreement with the corresponding experimental data. This is not the case

if we turn to Table 2.4 where the goodness of our WT+NLO+Born fit, signalled

by the χ2
d.o.f. value, is almost the same as that of the corresponding WT+NLO fit,
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WT+NLO WT+NLO+Born WT+NLO+Born (η chan)

Results I Results II Results III

aK̄N (10−3) 6.55± 0.63 1.77± 2.38 1.27± 0.12

aπΛ (10−3) 54.8± 7.5 55.2± 13.5 −6.1± 12.9

aπΣ (10−3) −2.29± 1.89 2.33± 3.17 0.68± 1.43

aηΛ (10−3) −14.2± 12.7 8.00± 5.04 −0.67± 1.06

aηΣ (10−3) −5.17± 0.07 6.5± 20.6 8.00± 3.26

aKΞ (10−3) 27.0± 7.8 −9.04± 3.63 −2.51± 0.99

f/fπ 1.20± 0.01 1.21± 0.03 1.20± 0.03

b0 (GeV −1) −1.21± 0.01 −0.70± 0.23 0.13± 0.04

bD (GeV −1) 0.05± 0.04 0.31± 0.20 0.12± 0.01

bF (GeV −1) 0.26± 0.15 0.65± 0.41 0.21± 0.02

d1 (GeV −1) −0.11± 0.06 0.17± 0.26 0.15± 0.03

d2 (GeV −1) 0.65± 0.02 0.17± 0.11 0.13± 0.03

d3 (GeV −1) 2.85± 0.04 0.37± 0.16 0.30± 0.02

d4 (GeV −1) −2.10± 0.02 0.01± 0.09 0.25± 0.03

D - 0.90± 0.10 0.70± 0.16

F - 0.40± 0.08 0.51± 0.11

χ2
d.o.f. 0.65 0.73 1.14*

Table 2.4: Values of the parameters and the corresponding χ2
d.o.f., defined in eq. (2.10),

for the different fits described in the text. The subtraction constants are taken at a
regularization scale µ = 1 GeV. The error bars of the parameters are those given by
the MINUIT minimization procedure. * The higher value of the χ2

d.o.f. could mislead
the reader, but one should keep in mind that 58 additional experimental points from
the η channels had been included in the fitting procedure.

even a little bit worse. The fact that the Born terms do not help obtaining smaller

values of the χ2 is not a novelty, as we mentioned it was one of the effects induced by

the Born terms that had been seen in [15, 19, 23]. In those studies, as in the present

one, the values of the subtraction constants corresponding to WT+NLO+Born are

much closer to the ’natural size’ compared to the ones in WT+NLO, in spite of the

substantial associated errors. As a comment with respect to the axial vector couplings,
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γ Rn Rc ap(K
−p→ K−p) ∆E1s Γ1s

WT+NLO 2.36 0.189 0.664 −0.73 + i 0.85 310 557

WT+NLO+Born 2.36 0.191 0.664 −0.67 + i 0.84 291 558

WT+NLO+Born 2.36 0.188 0.659 −0.65 + i 0.88 288 588

(η chan)

Exp. 2.36 0.189 0.664 −0.66 + i 0.81 283 541

±0.04 ±0.015 ±0.011 (±0.07) + i (±0.15) ±36 ±92

Table 2.5: Threshold observables obtained from the fits explained in the text. Ex-
perimental data is taken from [18,81,82].

one can appreciate that the D and F parameters of the Born contributions reached

the edges of their allowed range, but in a way that their sum stays rather close to its

nominal value gA = D + F = 1.26 [83].

The most striking feature revealed in Table 2.4 is the very different sets of NLO

parameters acquired by means of the WT+NLO+Born and WT+NLO fits. In

principle, we expected a similar behaviour for the NLO coefficents to the one exhibited

by the models studied in [15,23]. In these works, after obtaining a parametrization for a

model consisting of an interaction kernel which considers WT and NLO contributions,

the further impact of the systematic inclusion of the Born terms was discussed. In [23],

the authors obtained, apart from the bD parameter, very similar parametrizations for

”Model c” and ”Model s”, and the same occurred with models ”Model c”, ”Model s”

and ”Model u” in [15] differing notably only in bF . Again, since [15,23] only employed

the classical channels in the fitting procedure, the different parameters we obtain when

the Born terms are considered is a clear signal of the significant role played by the

Born contributions once the KΞ channels are included in the fits.

The K−p → K−p, K̄0n, π−Σ+, π+Σ−, π0Σ0, π0Λ, K0Ξ0, K+Ξ− total cross sec-
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Figure 2.4: Total cross sections for the K−p → K−p, K̄0n, π−Σ+, π+Σ−,
π0Σ0, π0Λ, K0Ξ0, K+Ξ− reactions obtained for WT+NLO fit (green line) and
WT+NLO+Born fit (red line), with our estimation of the corresponding error bars
(grey area), see text for more details. Experimental data are from [70–80]. The points
in red have not been included in the fitting procedure.
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tions obtained from the WT+NLO fit (green line) and WT+NLO+Born fit (red

line) are compiled in Fig. 2.4. As can be appreciated from the six upper panels,

there are not any substantial differences between the models when reproducing the

classical channels, although both models present notable differences, such as the cor-

responding parametrizations for the NLO constants and the inclusion or not of the

Born terms. These results can be explained by considering the similar f values for

the two models combined with the well-known dominant role played by the WT term

for the classical channels. Concerning the K−p → K0Ξ0 cross section, one could say

that the experimental data on the lower and higher energy tails are best described

by the WT+NLO+Born fit; while one observes that the WT+NLO one is able to

better describe the details of the structure shown by the experimental points of the

K−p→ K+Ξ− cross section. The interesting point here, despite both models peaking

at the same energy for the two cross sections probably forced by the fitting procedure,

is the opposite behaviour in the size of their maxima. In the case of the K−p→ K0Ξ0

reaction, the WT+NLO+Born model gives more strength than the WT+NLO one

and, conversely, for the K−p → K+Ξ− reaction the total WT+NLO cross section

is slightly larger than the WT+NLO+Born one. This is clear evidence that these

models have a different distribution for their isospin components which, obviously, is

tied to the different parametrization and the nature of both models.

The scattering amplitude related to the K−p→ KΞ processes can be expressed in

terms of their isospin components according to:

〈K−p | T | K+Ξ−〉 =
1

2

[
〈K̄N | T I=1 | KΞ〉 − 〈K̄N | T I=0 | KΞ〉

]
〈K−p | T | K0Ξ0〉 = −1

2

[
〈K̄N | T I=1 | KΞ〉+ 〈K̄N | T I=0 | KΞ〉

]
. (2.12)
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Figure 2.5: The total cross section data of the K−p→ K0Ξ0 reaction is represented
in the top panels, where the left figure corresponds to the WT+NLO model and the
right one corresponds to the WT+NLO+Born model. The same distribution for the
bottom panels where the K−p → K+Ξ− cross section data is represented. The figure
shows the complete results by means of solid lines, the results where only isospin I = 1
component (green dashed lines) or I = 0 one (red dot-dashed line) have been retained.

A better understanding of the physics embedded in each of these two parametriza-

tions emerges when splitting the K−p→ KΞ cross-section into the isospin basis (I = 0

and I = 1 components). This fact is illustrated in Fig. 2.5, where it is shown that the

I = 0 components of these two models (red dot-dashed lines) are in opposition with

each other. Being more precise, the I = 0 component of the WT+NLO model is

concentrated at higher energies reaching its maximum at around 2300 MeV, while the

corresponding I = 0 component for the WT+NLO+Born model presents a much

lower strength and is located towards substantially smaller energies, peaking at around

1900 MeV. Regarding the I = 1 components (green dashed line), one can see that the
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components for both models are almost coincident, peaking at around 2050 MeV, al-

though the strength corresponding to WT+NLO+Born is a little larger in the whole

range, being specially prominent at higher energies.

Such differences in the isospin components points towards the need to identify re-

actions that proceed through either I = 0 or I = 1, thereby acting as isospin selectors

from which one can extract valuable information to constrain the parameters of the

meson-baryon lagrangian better. Actually, since we have been studying the meson-

baryon interaction in the S = −1 sector, the most natural filtering processes are the

K−p→ ηΛ, ηΣ0 reactions, which are of pure isospin 0 and 1 respectively. Since the ex-

perimental data is already available [86–89], we could address these new incorporations

in our approach. Actually, this is the topic discussed in the next section.

Another example of these filtering processes that we would also like to mention is

the weak Λb decay into a J/Ψ and a meson-baryon pair, a reaction that filters the

I = 0 component in the final meson-baryon state, as it was shown in [33, 90]. These

decays are presently analysed by the CDF [91] and LHCb [40, 92, 93] collaborations.

In particular, the Λb → J/Ψ K− p decay has been employed very recently in [40] to

claim the presence of an exotic pentaquark charmonium state in the J/Ψ p channel.

We devote the fourth chapter to this topic.
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2.3 Isospin filtering processes I: K−p → ηΛ, ηΣ0 re-

actions

In the previous section we concluded by appealing to processes which are able to

filter isospin components to provide deeper constraints on our fitting parameters. In

the present chapter, we study the effects of the inclusion of scattering data from the

K−p→ ηΛ, ηΣ0 reactions, which are processes with single-isospin outgoing channels (0

and 1 respectively), in our most complete fit. Therefore, the new performed fit consists

of an interaction kernel which takes into account the WT, the Born and NLO terms

and considers scattering data from these new reactions [86–89] in addition to the data

displayed in Table 2.1.

The parameters of this last fit, which is called WT+NLO+Born (η chan), are

displayed in the third column of Table 2.4. One can appreciate an overall improvement

of the fitting parameters in terms of accuracy. Another remarkable result is that we

obtained more natural sized values for all the subtraction constants compared with

those of the other models shown in the same Table. But the most significant feature

is the homogeneity achieved by the NLO coefficients. This leads us to believe that the

inclusion of more experimental data from isospin filtering processes could favour the

collection of more reliable values for the low energy constants.

Even though the models of Table 2.4 can not be compared directly in terms of

χ2
d.o.f., because we have included 58 additional experimental points, one can check the

goodness of the new fit by looking at the agreement between experimental scattering

data and the theoretical results present in Fig. 2.6, Fig. 2.7 and Table 2.5.
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Figure 2.6: Total cross sections for the K−p → K−p, K̄0n, π−Σ+, π+Σ−, π0Σ0, π0Λ
reactions obtained from the WT+NLO fit (green line), the WT+NLO+Born fit
(red line) and the WT+NLO+Born (η chan) fit (black line), see text for more
details. Experimental data are from [70–73]. The points in red have not been included
in the fitting procedure.

The total cross sections of the classical processes obtained by the WT+NLO,

WT+NLO+Born and WT+NLO+Born (η chan) fits are represented in Fig. 2.6,

all of them showing a rather good reproduction of the experimental data. This agree-

ment is consequently reflected on the threshold observables, Table 2.5, which take

values very close to the experimental data within the error range. The similarity of the

three models, in the reproduction of these scattering data can be attributed to their
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Figure 2.7: Total cross sections for the K−p → ηΛ, ηΣ0, K0Ξ0, K+Ξ− reactions ob-
tained from the WT+NLO fit (green line), the WT+NLO+Born fit (red line) and
the WT+NLO+Born (η chan) fit (black line), see text for more details. Experi-
mental data are from [74–80,86–89].

similar values of f parameter, since the dominant term for these channels is the WT

one.

The novelty comes when inspecting the K−p → ηΛ, ηΣ0, K0Ξ0, K+Ξ− total cross

sections, see Fig. 2.7. We observe that the cross sections of the η channels (top

pannels in Fig. 2.7) can only be properly reproduced with the new fit performed

WT+NLO+Born (η chan), which dynamically generates the Λ(1670) resonant

structure seen in the K−p → ηΛ reaction. Concerning the KΞ channels (bottom

pannels in Fig. 2.7), the three models give a similar good reproduction for the K−p→

K+Ξ− cross section, although the peak corresponding to the WT+NLO+Born (η

chan) fit is shifted 50 MeV towards higher energy with respect to the other two coinci-

dent peaks. We also see that the older models (WT+NLO and WT+NLO+Born)
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clearly offer a better agreement with the experiment than the new one for the K−p→

K0Ξ0 cross section. In this last case, the inclusion of resonant terms similarly to what

is done in [27] (and discussed in the third chapter of this thesis) could be very helpful

to accommodate the theoretical cross section to the experimental data. An explicit

inclusion of the Λ(1890) could be a good strategy since it is located in this energy

region and it is an isospin 0 resonance.

Let us note that the dynamical generation of the Λ(1670) resonance, by means of

an unitarized coupled-channels method using the lowest order (WT) chiral lagrangian

with the N/D method, was studied in [94]. It was found that this resonance couples

strongly to KΞ, with the squared value of the corresponding coupling |gΛ∗KΞ|2 = 11,

being one or two orders of magnitude larger than the ones to other isospin 0 channels in

the S = −1 sector. Despite higher order terms in the lagrangian, where not taken, the

authors examined the role of this resonance, and hence of the rescattering terms that

generate it, on theK−p→ KΞ reactions. Actually, they checked the contribution of the

tail of the Λ(1670) resonance on the K−p→ KΞ cross sections for a single laboratory

K− momentum of 1.6 GeV/c which corresponds to an energy more than 230 MeV above

the KΞ threshold. The total cross section for this momentum calculated by their model

reproduced the experimental value for the K−p→ K+Ξ− reaction, and they obtained

three times the experimental value of the K−p → K0Ξ0 cross section. Note that our

equivalent WT (no Ξ) model, presented in Sect. 2.1.1 gave much smaller results than

the experimental cross sections (see Fig. 2.2). One can therefore think that there is a

correlation between the ability of a model in reproducing the Λ(1670) resonance and

the simultaneous accommodation of the KΞ production cross sections.

Another interesting point of the study of Refs. [94] is the fact that the position
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of the pole related to the Λ(1670) is quite sensitive to the aKΞ subtraction constant.

Consequently, in order to better reproduce the position of the resonance found by

experiment, while maintaining the agreement of the model with the low energy ex-

perimental data, they varied the value of this subtraction constant until fixing it to

aKΞ = −2.52 which, in our mapping, is translated as aKΞ = −3.77 ·10−3. Interestingly,

this last value differs by less than the associated error from the value given by the

WT+NLO+Born (η chan) fit in Table 2.4.

2.4 Isospin filtering processes II: K0
Lp→ K+Ξ0 reac-

tion

As we have seen in the previous section, processes which filter isospin can be helpful

in order to constrain our models and, hence, allow one to get more realistic values

of the corresponding low energy constants. The recent proposal [29] of creating a

secondary K0
L beam at Jlab offers a great opportunity for measuring the K0

Lp→ K+Ξ0

reaction. Since K0
L = (K0 − K̄0)/

√
2, the former reaction would proceed through the

K̄0 component of the K0
L, and, thus, would be of pure I = 1 character. Indeed, this

is a reaction that involves channels of the S = −1 and Q = +1 sector, but taking

advantage of the symmetry under the third component of isospin we can rewrite the

amplitude of the previous reaction in terms of the I = 1 amplitudes built from the

channels of our sector. To see this, we can start by writing the following isospin states
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(|I I3〉):

|K̄0〉 = |1
2

1

2
〉, |p〉 = |1

2

1

2
〉 → |K̄0p〉 = |1 1〉

|K+〉 = |1
2

1

2
〉, |Ξ0〉 = |1

2

1

2
〉 → |K+Ξ0〉 = |1 1〉. (2.13)

Next, knowing that |K0
Lp〉 initial state is expressed as |K0

Lp〉 = 1√
2

[
|K0p〉 − |K̄0p〉

]
,

we can obtain the scattering amplitude for the K0
Lp→ K+Ξ0 reaction:

〈K+Ξ0|T |K0
Lp〉 =

1√
2

[
〈K+Ξ0|T |K0p〉 − 〈K+Ξ0|T |K̄0p〉

]
= − 1√

2
〈K+Ξ0|T |K̄0p〉. (2.14)

In the last step, we have used that 〈K+Ξ0|T |K0p〉 = 0. This is due to the fact that

|K+Ξ0〉 is a S = −1 state and |K0p〉 is a S = +1 state and the strong interaction

cannot couple states with different strangeness because it would violate the flavour

symmetry. Note that the 〈K+Ξ0|T |K̄0p〉 amplitude is of pure isospin I = 1 as can be

seen from eqs. (2.13).

Involving the invariance of the strong interaction under I3 rotations, this amplitude

can be expressed in terms of states with I3 = 0, which are the ones employed in our

studies. Therefore, knowing that

|K̄N〉I=1,I3=0 =
1√
2

[
|K̄0n〉 − |K−p〉

]
|KΞ〉I=1,I3=0 =

1√
2

[
|K0Ξ0〉 − |K+Ξ−〉

]
, (2.15)
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we can write:

〈K+Ξ0|T |K0
Lp〉 = − 1

2
√

2

[
〈K0Ξ0|T |K̄0n〉 − 〈K0Ξ0|T |K−p〉

−〈K+Ξ−|T |K̄0n〉+ 〈K+Ξ−|T |K−p〉
]
. (2.16)

Since there are no experimental data for this reaction, we can only make predictions

employing our different models with the aim of comparing with the results of the future

JLab experiment, when they become available. However, one already has information

on the K̄N → KΞ reactions in I = 1. There are two data points for the K−n→ K0Ξ−

cross section, obtained indirectly from the K− deuteron reactions on bubble chamber

experiments [95, 96]. Again, we can establish the relationship between the K−n →

K0Ξ− and K0
Lp → K+Ξ0 reactions. Departing from the isospin states (|I I3〉) of the

hadrons involved in this reaction:

|K−〉 = −|1
2
− 1

2
〉, |n〉 = |1

2
− 1

2
〉 → |K−n〉 = −|1 − 1〉

|K0〉 = |1
2
− 1

2
〉, |Ξ−〉 = |1

2
− 1

2
〉 → |K0Ξ−〉 = |1 − 1〉, (2.17)

and, considering the invariance of the strong interaction under I3 rotations, the K−n→

K0Ξ− scattering amplitude can be related to those in the |I = 1, I3 = 0〉 sector (see

eqs. (2.15)), as

〈K0Ξ−|T |K−n〉 = −1

2

[
〈K0Ξ0|T |K̄0n〉 − 〈K0Ξ0|T |K−p〉

−〈K+Ξ−|T |K̄0n〉+ 〈K+Ξ−|T |K−p〉
]

=
√

2〈K+Ξ0|T |K0
Lp〉, (2.18)

we have used eq. (2.16) in the last step to finally stablish the relationship between the
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total cross sections:

σK−n→K0Ξ− ∝ |〈K0Ξ−|T |K−n〉|2 = 2|〈K+Ξ0|T |K0
Lp〉|2

σK0
Lp→K+Ξ0 =

1

2
σK−n→K0Ξ− . (2.19)

Our predictions of this reaction for the WT+NLO, WT+NLO+Born (η chan)

and WT+NLO+Born models are shown in Fig. 2.8, together with the experimental

points of the pure I = 1 K−n → K0Ξ− reaction, which have been divided by 2 to

properly account for the size of the strangeness S = −1 component of the K0
L (see

eq. (2.19)). We would like to remind the reader that these two data points have not

been used in none of the performed fitting procedure.
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Figure 2.8: Total cross sections of the K0
Lp → K+Ξ0 reactions for the for

the WT+NLO fit (green line), the WT+NLO+Born fit (red line) and the
WT+NLO+Born (η chan) fit (black line), and the experimental points of the
I = 1 K−n → K0Ξ− reaction, taken from [95, 96] and divided by two, see text for
more details.
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As one can see from Fig. 2.8, the WT+NLO+Born (η chan) fit (black line)

and the WT+NLO+Born one (red line) do a good job at higher energy, while

WT+NLO fit (green line) takes less than half the value of the experimental point

located there. This is not the case for the point around 2 GeV where the models

WT+NLO and WT+NLO+Born overshoot the corresponding value of the cross

section by a factor of 2. But, on the other hand, WT+NLO+Born (η chan) reaches

its maximum 50 MeV above the energy where the other two models do and, hence,

favouring the agreement with the experimental point located at 2 GeV.

The general interpretation we can give to these predictions is that as more contri-

butions in its interaction kernel are taken into account and more data is included in

the fit, especially data from isospin filtering processes, the results from the theoretical

models get closer and closer to the two available experimental points. Given these re-

sults, everything seems to indicate that having more data from the proposed secondary

K0
L beam at Jlab would be very helpful to constrain the theoretical models.



Chapter 3

The inclusion of resonances

In Sect 2.3, we suggest the possibility to improve the description of data by imple-

menting, in the KΞ channels, the contribution of the Λ(1890) resonance, since the

WT+NLO+Born (η chan) model does not properly reproduce the scattering data

at low energies for the K−p → K0Ξ0 reaction (see Fig. 2.7). This could also be ex-

tended to the K−p→ ηΛ process and, therefore, we could gain the strength needed to

accommodate the theoretical cross section to the experimental data at energies close

to this resonance. But, apart from this phenomenological reason, another important

motivation to incorporate resonances, particularly into the KΞ channels, is that they

allow us to study the accuracy and stability of the NLO coefficients. It is worthwhile

to remind the reader that the sensitivity of the K−p → KΞ to the NLO terms has

been proved along the present study, as well as that the authors of [21] also observed

a sensibility to the NLO terms in the K−p → ηΛ process. Moreover, the inclusion

of these resonant terms implicitly simulates higher angular momentum contributions

involving low lying meson-baryon states of the coupled channel problem. In princi-

86
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ple, it is expected that the more relevant the higher-angular-momenta terms are, the

further the low energy constants will be from their ”effective nominal values”1 in the

absence of such contributions. This is due to the fact that the low energy constants

absorb these contributions in order to reproduce the experimental data at the expense

of taking realistic values. Thus, the resonant contributions permit the parameters of

the model to get relaxed, avoiding a possible overestimation of their values.

3.1 Σ(2030) and Σ(2250) resonances

Before proceeding to the incorporation of resonances to a model which is based on an

interaction kernel that takes into account the WT, Born and NLO terms , we would

like to discuss first the insights we found in our pioneering work on this issue [27],

from which we gained expertise and from which the positive effects of the inclusion of

resonances were seen. In this work we studied the phenomenological inclusion of high

spin and high mass resonances into a model whose interaction kernel consist of WT

and NLO contributions.

To put the reader in context, we should focus on the cross sections of Fig. 2.2

from which we observe that the discrepancies between the WT+NLO model (solid

line) and the data are larger in the vicinity of 2 GeV and around 2.2 GeV. Therefore,

an extra contribution to the cross section would be very welcome. The inclusion of

the resonant terms was motivated by previous phenomenological models studying Ξ

production [30–32,97,98], which indicate the need to take into consideration the K̄N →

Y → KΞ transition amplitudes, where Y stands for some high spin resonance coupling

1We employ the terminology ”effective nominal values” because we should bear in mind that we
are unitarizing the amplitudes. For more details, see discussion at the end of Sect. 1.2.2.
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Resonance I (JP ) Mass (MeV) Γ (MeV) ΓKΞ/Γ

Λ(1890) 0
(

3
2

+
)

1850 - 1910 60 - 200

Λ(2100) 0
(

7
2

−
)

2090 - 2110 100 - 250 < 3%

Λ(2110) 0
(

5
2

+
)

2090 - 2140 150 - 250

Λ(2350) 0
(

9
2

+
)

2340 - 2370 100 - 250

Σ(1915) 1
(

5
2

+
)

1900 - 1935 80 - 160

Σ(1940) 1
(

3
2

−
)

1900 - 1950 150 - 300

Σ(2030) 1
(

7
2

+
)

2025 - 2040 150 - 200 < 2%

Σ(2250) 1
(
??
)

2210 - 2280 60 - 150

Table 3.1: Properties of the three- and four-star hyperon resonances in the mass range
1.89 < M < 2.35 GeV taken from the results of the PDG review [99].

significantly to the K̄N , KΞ channels.

In the energy range of interest, the PDG compilation [99] gives eight resonances

with three- and four-star status with masses lying in the range 1.89 < M < 2.35 GeV,

see Table 3.1. Unfortunately, explicit branching ratios to KΞ decay have not been

determined and only upper limits are given for two of these resonances: < 3% for the

Λ(2100) and < 2% for Σ(2030). Thus, it is interesting to investigate the role of these

above-threshold resonances. Note that most of these resonances have high spins, and

therefore require a special treatment, analogous to that performed in [30–32].

Inspecting the resonance properties shown in Table 3.1 and the results of the NLO fit

presented in Fig. 2.2, the Σ(2030) and Σ(2250) resonances seem to be good candidates

to be implemented in our model. The two selected candidates also coincide with the

findings of Ref [32], where it was concluded that these two resonances gave the best

account of data, after various combinations of several resonances from the eight known
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ones that were examined. The spin and parity Jπ = 7/2+ of the Σ(2030) are well

established. Those of the Σ(2250) are not known, but the most probable assignments

are 5/2− or 9/2− [99]. We choose Jπ = 5/2− to simplify the calculations, noting also

that the 9/2− choice does not change the results drastically as has been shown in [32].

In this first stage, we also explored the possibility of including the Λ(1890) resonance

in our model which did not offer a better data reproduction and we gained nothing in

terms of the NLO-coefficients accuracy. This is in contrast with the study performed

in [85] where this last resonance came out to be relevant for the description of the

existing Ξ production data.

Before continuing, I would like to give a brief explanation of the models employed in

the two works, [32,85] , which I shall quote from now on during the chapter. In [32], the

authors use a phenomenological model of s- and u-channel diagrams exchanging, below

the KΞ threshold, Λ and Σ ground states, Σ(1385) and Λ(1520) resonances. Above the

KΞ threshold, only the s-channel diagram was considered, exchanging the high-spin

and high-mass Σ(2030) and Σ(2250) hyperonic resonances. There was demonstrated

that the feasibility of such a model for describing the K̄N → KΞ reactions considering

just the subthreshold exchanged particles is limited, and a good quantitative agreement

with experimental data needs the mentioned extension to hyperonic resonances above

threshold.

On the other hand, the authors of [85] studied the same reactions through an

effective lagrangian approach that includes, in a similar fashion as [32], the hyper-

onic s- and u-channels as well as a phenomenological amplitude which accounts for

the rescattering term in the scattering equation, and the possible short-range dy-

namics was not included explicitly in the model. We stress the point that the u-
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channel is employed above and below threshold and that a slightly different resonance

set was found as the relevant one to reproduce the experimental data, consisting of:

Λ,Σ,Σ(1385),Λ(1890),Σ(2030),Σ(2250)(Jπ = 5/2−). Another relevant difference be-

tween [32] and [85] is the employed form factors, an exponential form in [32] and a

lorentzian form in [85], which leave the corresponding cutoff parameters differing by a

factor 2, namely 440 MeV and 900 MeV respectively.

3.1.1 Formalism

The K̄N → K+Ξ−, K0Ξ0 reaction cross sections are obtained adding to the corre-

sponding chiral unitary model amplitude T (s′, s) described in the previous chapter,

the contributions from the K̄N → Σ(2030)→ KΞ and K̄N → Σ(2250)→ KΞ transi-

tions, denoted by T 7/2+

(s′, s) and T 5/2−(s′, s) respectively, which are built as described

below.

Adopting the Rarita-Schwinger method, as in [31], the spin-5/2 and 7/2 baryon

fields are described by a rank-2 tensor Y µν
5/2 and a rank-3 tensor Y µνα

7/2 , respectively. For

future convenience we also include the corresponding method for the spin-3/2 which

comes as a rank-1 tensor, and which allows one to implement the K̄N → Λ(1890) →

KΞ transition with a related T 3/2−(s′, s) resonant amplitude. The lagrangians are

L3/2±

BYK(q) = i
gBY3/2K

mK

B̄Γ(±)Y µ
3/2∂µK +H.c. , (3.1)

for the spin-3/2 resonance,

L5/2±

BYK(q) = i
gBY5/2K

m2
K

B̄Γ(±)Y µν
5/2∂µ∂νK +H.c. , (3.2)
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for the spin-5/2 resonance and

L7/2±

BYK(q) = −
gBY7/2K

m3
K

B̄Γ(∓)Y µνα
7/2 ∂µ∂ν∂αK +H.c. , (3.3)

for the spin-7/2 one, where Γ(±) =

(
γ5

1

)
depending on the parity of the resonance being

studied, and gBYJK stands for the baryon-kaon-YJ coupling. Then the corresponding

propagators are given by [31]:

S3/2(q) =
i

/q −MY3/2
+ iΓ3/2/2

∆β1β2 , (3.4)

S5/2(q) =
i

/q −MY5/2
+ iΓ5/2/2

∆β1β2
α1α2

, (3.5)

S7/2(q) =
i

/q −MY7/2
+ iΓ7/2/2

∆β1β2β3
α1α2α3

, (3.6)

where we have included the mass MJ and the decay width, ΓJ , of the corresponding

resonance. The tensors ∆ are defined as:

∆β1β2

(
3

2

)
= −gβ1β2 +

1

3
γβ2γβ2 +

2pβ1pβ2

3M2
3
2

+
γβ1pβ2 − pβ1γβ2

3M 3
2

, (3.7)

∆β1β2
α1α2

(
5

2

)
=

1

2

(
θβ1
α1
θβ2
α2

+ θβ2
α1
θβ1
α2

)
− 1

5
θα1α2θ

β1β2

+
1

10

(
γ̄α1 γ̄

β1θβ2
α2

+ γ̄α1 γ̄
β2θβ1

α2

+ γ̄α2 γ̄
β1θβ2

α1
+ γ̄α2 γ̄

β2θβ1
α1

)
, (3.8)
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∆β1β2β3
α1α2α3

(
7

2

)
=

1

36

∑
P (α)P (β)

(
θβ1
α1
θβ2
α2
θβ3
α3

− 3

7
θβ1
α1
θα2α3θ

β2β3

− 3

7
γ̄α1 γ̄

β1θβ2
α2
θβ3
α3

+
3

35
γ̄α1 γ̄

β1θα2α3θ
β2β3

)
, (3.9)

being θνµ = gνµ − qµq
ν/M2

Y and γ̄µ = γµ − qµ/q/M
2
Y . The tensor ∆ for the spin-7/2

field, given in Eq. (3.9), contains a summation over all possible permutations of Dirac

indexes {α1α2α3} and {β1β2β3}.

From the Lagrangians of Eqs. (3.1), (3.2) and (3.3) one derives the baryon-kaon-YJ

vertices:

v
3/2±

BYK = −i
gBY3/2K

mK

kµΓ(±), (3.10)

v
5/2±

BYK = i
gBY5/2K

m2
K

kµkνΓ
(±), (3.11)

v
7/2±

BYK = −
gBY7/2K

m3
K

kµkνkσΓ(∓). (3.12)

The resonant contributions to the K̄N → KΞ scattering amplitudes can then be

obtained straightforwardly as:

T
3/2+

K̄N→KΞ
(s′, s) = F3/2(k, k′) ūs

′

Ξ (p′)γ5k
′
β1
S3/2(q)kβ2γ5u

s
N(p) , (3.13)

T
5/2−

K̄N→KΞ
(s′, s) = F5/2(k, k′) ūs

′

Ξ (p′)k′β1
k′β2

S5/2(q)kα1kα2usN(p) , (3.14)

and

T
7/2+

K̄N→KΞ
(s′, s) = F7/2(k, k′) ūs

′

Ξ (p′)k′β1
k′β2

k′β2
S7/2(q)kα1kα2kα3usN(p) , (3.15)
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here usX stands for the spinor structure of a baryon with spin s and where we have

included a form factor:

FJ(k, k′) =
gΞYJK gNYJK̄

m2J−1
K

exp
(
−~k2/Λ2

J

)
exp

(
−~k′2/Λ2

J

)
, (3.16)

which inserts a phenomenological exponential function, exp
(
−~q 2/Λ2

J

)
, in each vertex

to suppress high powers of the meson momentum from the vertex contributions, as

it was done in [32]. Strictly speaking the exponential factors in Eq. (3.16) are not

genuine form factors, since these should depend on the off-shell momentum of the off-

shell particle and should be normalized to 1 at the on-shell point. The ”form factor”

in eq. (3.16) is just an ad-hoc function introduced to modify the energy dependence

of the resonance contribution. This prescription, however, is used in the resonance

based model of [32], which inspired us to complement our study with the inclusion of

resonances. So, we have decided to employ it for a more direct comparison with the

above cited paper. Furthermore, in Ref. [32] the authors have studied different forms

of form factor, and they claim that the exp
(
−~q 2/Λ2

J

)
form gives the best χ2

d.o.f. result.

In order to verify this statement we have also tried form factors depending on the four

momentum squared of the off-shell resonance, either in the form exp{−(k2−M2
YJ

)/Λ2
J},

which has the same asymptotic behaviour at high values of the meson tri-momentum

~q, or via the function Λ4
J/[Λ

4
J + (k2−M2

YJ
)2], employed in the more recent work of [85].

In the results sections we will discuss the consequences of the choice of form factor on

the data fitting.

Finally, for the initial K−p, K̄0n channels and final K+Ξ−, K0Ξ0 ones we use the
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following prescription

√
4MpMΞT

tot
ij (s′, s) =

√
4MpMΞTij(s

′, s)

+T
5/2−

ij (s′, s) + T
7/2+

ij (s′, s) , (3.17)

where the amplitudes TRij (s′, s) contain the appropiate Clebsh-Gordan coefficients pro-

jecting the states i and j states into the isospin 1 of the 5/2− and 7/2+ resonances

included here. One can then proceed to derive the observables, following eqs. (2.2)-

(2.8). We should remind the reader that at this stage we disregard the contribution

of Λ(1890) resonance since it barely contributes to a better data description for this

model which is based on a WT+NLO interaction kernel, as we will see latter.

The chiral unitary model of the previous chapter is limited to s-wave interactions

and, therefore, gives rise to flat differential cross sections. On the contrary, the high

spin resonance mechanisms described in this section introduce an angular dependence

in the amplitudes of the KΞ production channels, permitting a study of the differential

cross sections for these channels, which are given by

dσij
dΩ

=
1

64π2

4MiMj

s

kj
ki
Sij, (3.18)

where Sij is obtained from eq. (2.2), but employing the T tot
ij instead of Tij amplitude

of eq. (3.17).
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3.1.2 Fitting procedure and Data treatment III

Since the new high spin resonant terms produce angular dependent scattering ampli-

tudes, we will consider, in addition to the total cross sections and threshold observables

listed in Table 2.1, the differential cross sections of the K−p → KΞ reactions taken

from the same sources [74–80]. More specifically, the fits in this section will include 2

new observables: the 235 differential cross section points from the K+Ξ− production

reaction and 76 differential cross section points from the K0Ξ0 one. Thus, we increase

the total number of experimental points to 477 instead of the 166 employed in the

fits of Sect. 2.1.2. With the aim of preserving the same weight for each observable,

the same definition of the χ2
d.o.f., eq. (2.10), is employed. However, in the new fit the

overall weight of the KΞ channels is larger, since there are two new observables related

to these.

It must be also mentioned that large amount of new points, more dispersed, could

rise the contribution to χ2
d.o.f., but, as we will see, we gain in having a better overall

description of the K−p→ KΞ reactions while fully respecting an acceptable accuracy

for the other observables.

We will present results for three different fits:

i) A fit denoted by NLO*, which employs the NLO interaction kernel without

any additional resonance contribution. Thus, this fit is completely analogous to the

WT+NLO fit from the previous chapter, and correspondingly the resulting curves for

the NLO* differential cross sections of the K−p→ KΞ reactions will be flat, without

any angular dependence. However taking into account the new experimental points of

the differential cross sections we give a larger weight to the KΞ channels, as discussed
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above, therefore we expect a slight modification of the model parameters with respect

to the WT+NLO fit from the previous section. We would like to remind that there

are 14 free parameters involved in the NLO* fit: the pion decay constant f , the six

subtraction constants, and the seven low energy constants of the NLO Lagrangian.

ii) Another fit, denoted by WT+RES, which employs the lowest order kernel of the

chiral Lagrangian and adds the resonant terms described in this section. This fit has

15 free parameters: the same seven parameters as those for the lowest order fits of the

previous chapter (f and the 6 subtraction constants) plus eight new parameters associ-

ated to the resonant terms, namely masses and widths of the resonances (MY5/2
, MY7/2

,

Γ5/2 and Γ7/2), the product of couplings (gΞY5/2K
· gNY5/2K̄

and gΞY7/2K
· gNY7/2K̄

) and

the cut-off in the form factors (Λ5/2 and Λ7/2). This fit aims at exploring whether the

background terms could be accounted only through the lowest order chiral Lagrangian,

while the KΞ channels can be covered by the resonant terms.

iii) Finally, a fit denoted by NLO+RES, which incorporates the NLO interaction

kernel together with the high spin resonance contributions in the K−p → K+Ξ−,

K0Ξ0 channels. This fit determines 22 free parameters: the same fourteen as in the

NLO* fit and the new eight parameters associated to the resonant terms. This is

the most complete calculation that, upon comparison with the results of the previous

WT+RES fit, will assess the actual role of the NLO terms in the chiral Lagrangian

and will determine the value of their low energy constants.

We note that not all parameters are fully free. We constrain masses and widths of

the resonances to lie within the ranges given in the PDG compilation [99] (see table

3.1) and the form-factor cut-off values are constrained in the range 500 MeV< ΛJ <

1000 MeV.
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3.1.3 Results and discussion III

γ Rn Rc ap(K
−p→ K−p) ∆E1s Γ1s

NLO* 2.37 0.189 0.664 −0.69 + i 0.86 300 570

WT+RES 2.37 0.193 0.667 −0.73 + i 0.81 307 528

NLO+RES 2.39 0.187 0.668 −0.66 + i 0.84 286 562

Exp. 2.36 0.189 0.664 −0.66 + i 0.81 283 541

±0.04 ±0.015 ±0.011 (±0.07) + i (±0.15) ±36 ±92

Table 3.2: Threshold observables obtained from the NLO*, WT+RES and NLO+RES
fits explained in the text. Experimental data is taken from [18,81,82].

In this section we discuss the results of the fits described above which have also

included the differential K−p→ KΞ cross sections in the fitting procedure. The results

for the threshold observables shown in Table 3.2 indicate that, even if the fits now adjust

new data at higher energies and may contain the additional effect of resonant terms,

as in the case of WT+RES and NLO+RES, the low energy data keeps being very

well described. A similar situation is found when inspecting the cross sections obtained

from the three fits for the K−p→ K−p, K̄0n, π−Σ+, π+Σ−, π0Σ0, π0Λ reactions shown

in Fig. 3.1.

Obviously, the differences between these fits are more evident in the total and

differential cross sections of the KΞ production channels shown in Figs. 3.2, 3.4 and

3.3. First we note that the total cross sections for KΞ production obtained from

the NLO* fit (dashed lines in Fig. 3.2) are in reasonable agreement with the data,

even if the resonant terms are not included. As it was discussed above, this NLO*

fit is very similar to the WT+NLO one of the previous section, but it also tries to

accommodate the differential KΞ production cross section data, which can only be
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Figure 3.1: Total cross sections of the K−p → K−p, K̄0n, π−Σ+, π+Σ−, π0Σ0, π0Λ
reactions for the NLO* fit (dashed line), the WT+RES fit (dotted line) and the
NLO+RES fit (solid line). Experimental data are from [70–73]. The points in red
have not been included in the fitting procedure.

adjusted on average, as shown by the dashed lines in Figs. 3.3 and 3.4, because of the

flat distribution characteristic of s-wave models.

In order to account for some structure in the differential KΞ production cross sec-

tions we need to implement the resonant terms. When they are added to the unitarized
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Figure 3.2: Total cross sections of the K−p→ K0Ξ0, K+Ξ− reactions for the NLO*
fit (dashed line), the WT+RES fit (dotted line) and the NLO+RES fit (solid line),
see the text for more details. Experimental data are from [74–80].

amplitudes obtained from the lowest order chiral Lagrangian (only WT term), one finds

the results denoted by the dotted lines, i. e. WT+RES fit, in Figs. 3.2, 3.3 and 3.4.

It is clear that, although some structure is gained in the differential cross sections

and, hence, their description improves substantially than in the absence of resonances,

the total KΞ production cross sections are poorly reproduced by the WT+RES fit.

In other words, the background terms encoded in the lowest order chiral Lagrangian,

which only contribute via unitarization, are insufficient to account for the whole set

of KΞ production data satisfactorily. This situation is remedied when the chiral La-

grangian is taken at NLO. In this case, one finds a clear overall improvement in the

description of the data. The solid lines in Figs. 3.2, 3.3 and 3.4 clearly demonstrate
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that the NLO+RES fit reproduces satisfactorily the KΞ total cross sections, while

accounting quite reasonably for the differential ones. Our model fails especially at

backward angles for the higher K− energies. Obviously, including additional hyperon

resonances in s- and u-channel configurations could improve these deficiencies.

It is also worth mentioning that the inclusion of the high-spin resonances in the

fit is very time consuming: the calculations are prolonged by factor 100, from several

hours to several weeks.
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Figure 3.3: Differential cross section of the K−p→ K+Ξ− reaction for the NLO* fit
(dashed line), the WT+RES fit (dotted line) and the NLO+RES fit (solid line), see
the text for more details. Experimental data are from [74–80].
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Figure 3.4: Differential cross section of the K−p → K0Ξ0 reaction for the NLO* fit
(dashed line), the WT+RES fit (dotted line) and the NLO+RES fit (solid line), see
the text for more details. Experimental data are from [74–80].

One can judge the goodness of the fits discussed in this section by inspecting the

obtained χ2
d.o.f., shown in Table 3.3 together with the values of the fitted parameters.

The first observation that we can make is that, even if the NLO* fit shows a similar

quality as the WT+NLO fit of the previous chapter in reproducing the cross section

data, it has twice its χ2
d.o.f. value. This is due to the additional differential cross section

data employed in the NLO* fit, which can only be reproduced on average, leaving the

predictions quite far away from the experimental points in some cases. Also we can

see that the parameters of these two fits are rather similar.

It is interesting to point out that, although the resonant terms naturally improve

the description of the KΞ differential cross section data, when the chiral Lagrangian is

kept up to the lowest order, then the corresponding WT+RES χ2
d.o.f. value increases
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NLO* WT+RES NLO+RES

aK̄N (10−3) 6.799± 0.701 −1.965± 2.219 6.157± 0.090

aπΛ (10−3) 50.93± 9.18 −188.2± 131.7 59.10± 3.01

aπΣ (10−3) −3.167± 1.978 0.228± 2.949 −1.172± 0.296

aηΛ (10−3) −15.16± 12.32 1.608± 2.603 −6.987± 0.381

aηΣ (10−3) −5.325± 0.111 208.9± 151.1 −5.791± 0.034

aKΞ (10−3) 31.00± 9.441 43.04± 25.84 32.60± 11.65

f/fπ 1.197± 0.011 1.203± 0.023 1.193± 0.003

b0 (GeV−1) −1.158± 0.021 - −0.907± 0.004

bD (GeV−1) 0.082± 0.050 - −0.151± 0.008

bF (GeV−1) 0.294± 0.149 - 0.535± 0.047

d1 (GeV−1) −0.071± 0.069 - −0.055± 0.055

d2 (GeV−1) 0.634± 0.023 - 0.383± 0.014

d3 (GeV−1) 2.819± 0.058 - 2.180± 0.011

d4 (GeV−1) −2.036± 0.035 - −1.429± 0.006

gΞY5/2K
· gNY5/2K̄

- −5.42± 15.96 8.82± 5.72

gΞY7/2K
· gNY7/2K̄

- −0.61± 14.12 0.06± 0.20

Λ5/2 (MeV) - 576.7± 275.2 522.7± 43.8

Λ7/2 (MeV) - 623.7± 287.5 999.0± 288.0

MY5/2
(MeV) - 2210.0± 39.8 2278.8± 67.4

MY7/2
(MeV) - 2025.0± 9.4 2040.0± 9.4

Γ5/2 (MeV) - 150.0± 71.3 150.0± 54.4

Γ7/2 (MeV) - 200.0± 44.6 200.0± 32.3

χ2
d.o.f. 1.48 2.26 1.05

Table 3.3: Values of the parameters and the corresponding χ2
d.o.f., defined as in

eq. (2.10), for the different fits described in the text. The value of the pion decay
constant is fπ = 93 MeV and the subtraction constants are taken at a regularization
scale µ = 1 GeV.

in about one unit with respect to the non-resonant NLO* fit. This just reflects the

inability of the lowest order Lagrangian of producing enough strength, which we recall

comes from unitarization, to interfere efficiently with that of the resonant terms. This
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gives rise to a poor description of the KΞ total cross section data and, consequently,

to an unreasonably large χ2
d.o.f. value. As in the previous chapter, the size of some of

the subtraction constants of this fit turns out to be unphysically large. We then find

again that the NLO terms of the chiral Lagrangian are essential to account for the KΞ

data. This is reflected in a reduction of the corresponding NLO+RES χ2
d.o.f. value,

which turns out to be of around one.

We have also performed fits with the two choices of form factor that depend on

the off-shell four-momentum of the resonance and are normalized to 1 at the on-shell

point, namely exp{−(k2 −M2
YJ

)/Λ2
J} and Λ4

J/[Λ
4
J + (k2 −M2

YJ
)2] (see discussion after

Eq. (3.16)). We have found that the χ2
d.o.f. worsens, giving in both cases a value of 1.25

versus the 1.05 value obtained for the ad-hoc prescription, in complete agreement to the

claims made in Ref. [32]. Interestingly, we find the corresponding NLO parameters not

to change significantly and they remain quite similar to the NLO+RES ones shown

in Table 3.3.

The important role of the KΞ channels in constraining the NLO terms of the chiral

Lagrangian has already been shown in the previous chapter, where the corresponding

low energy constants, obtained including the KΞ production total cross section data

in the WT+NLO fit, changed appreciably with respect to those of the WT+NLO

(no KΞ) fit. In this section, we have seen how the description of data, which now

includes the additional KΞ differential cross sections, is further improved when we

supplement the NLO Lagrangian with the resonant terms. We observe that, although

there is a slight readjustment of the parameters of the NLO+RES fit with respect to

those of the NLO* fit, they have gained in precision significantly. This is due to the

stabilizing role of the resonant terms, which implement an important part of the energy
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dependencies, hence relegating the role of the NLO Lagrangian contribution to be a

smooth background. This is in line with the contribution of the contact term introduced

ad hoc in the resonant model of Ref. [85] to account for the strong Ξ production data.

We would like to mention the (unexpected) stability of the pion decay width parameter

f which stays around 1.195 in all the fits.

We also comment on the resonance parameters obtained by our NLO+RES fit.

First of all, we would like to remind the reader that the masses and widths are con-

strained to lie within the experimentally measured bounds [99]. As we can see in

Table 3.3 the product of couplings and the form factors are not very well constrained

by the fit.

As mentioned already, we complemented our study with the inclusion of high spin

hyperonic resonances being inspired by the work of [32], but we would like to point out

that a direct comparion of the resonance parameters of our model with the those of [32]

is not straightforward. This is also the case when comparing similar resonance based

models. For instance, the resonance parameters obtained in [32] are quite different than

those in [85]2, and the high-spin resonance contributions may differ by more than a

factor of two in both resonance models. The reason is that the effect of these resonances

depends very much on the interference with the background terms. Clearly, different

backgrounds will result in rather different coupling sizes and even signs, as it was shown

in [85]. However, the big advantage of our approach is that our ”background terms”

are completely determined by a theoretically supported chiral model.

Still, trying to compare our results with those of [32], where ”form factors” of the

2For a proper comparison, note that the dimensionless couplings given in [85], as well as those of
the present work, are given in units of the kaon mass, while those of [32] use the pion mass.
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same type have been used, we observe that, while our value of gΞY5/2K
· gNY5/2K̄

turns

to be comparable, although having an opposite sign, to that obtained in the resonant

model of Ref. [32], the product gΞY7/2K
· gNY7/2K̄

is almost three orders of magnitude

smaller. Note, however, that this has also to be viewed together with the effect of the

form-factor, which in the present work is more moderate, since the cut-off values turn

out to be larger, especially for the 7/2+ resonance, than the 440 MeV value employed

in [32].

We have also tried to make a fit with 3 resonances, implementing an additional

P-wave state in our model, lying close to the KΞ threshold. This could be for example

the Λ(1890) 3/2+ resonance, also included in [85]. However, we find that a resonance

of this type does not improve substantially the quality of the fit, as can be seen from

Fig. 3.5. The change of χ2
d.o.f. from 1.05 to 1.04, while keeping the NLO parameters

rather stable and similar to those quoted in Table 3.3, does not compensate, in our

opinion, the increase of complexity of the problem and of the necessary computing

time.

This fact can be understood by studying the isospin decomposition of the K−p→

K0Ξ0, K+Ξ− total cross section (see eqs. 2.12 in the second chapter) for the NLO*

model which is represented in the left panels3 of Fig. 3.6. If one pays attention on

the left panels of this figure, which correspond to the isospin decomposition of the

total cross section corresponding to K−p → K0Ξ0, K+Ξ− reactions for the NLO*

model, one observes that the I = 0 contribution peaks around 2.3 GeV taking a

comparable strength to the I = 1 contribution at that energy while at lower energies

the I = 0 contribution is practically negligible in front of the values taken by the I = 1

3The right panels will be discussed in the next section.
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Figure 3.5: Total cross sections of the K−p → K0Ξ0, K+Ξ− reactions for the
NLO+RES fit (solid black line) and for the same model with the additional inclu-
sion of a resonant Λ(1890) contribution (solid red line), see the text for more details.
Experimental data are from [74–80].

contribution, which accommodates rather well to the experimental data in this energy

regime.

3.2 Full s-wave chiral model up to NLO with reso-

nances

In this section, encouraged by our precedents in incorporating resonant contributions to

a pure chiral model, we can address the inclusion of such contributions in our best chiral
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Figure 3.6: The total cross section data of the K−p→ K0Ξ0 reaction is represented
in the top panels, where the left figure corresponds to the NLO* model and the right
one corresponds to the WT+NLO+Born (η chan) model. The same distribution
for the bottom panels where the K−p→ K+Ξ− cross section data are represented. The
figure shows the complete results by means of solid lines, the results where only isospin
I = 1 component (dashed lines) or I = 0 one (dot-dashed line) have been retained.

model, namely the WT+NLO+Born (η chan) one. This model offers a reasonably

good reproduction of the available experimental observables in the S = −1 sector,

particularly, it is the first model based on a chiral lagrangian (in coupled channels)

capable of reproducing the scattering data of K−p to all possible channels. At the

same time, it also provides a more realistic and accurate set of parameters. As it has

been mentioned at the beginning of the chapter, the inclusion of the Λ(1890) resonance

could help in improving the K−p → ηΛ and the K−p → KΞ cross sections around

1900 MeV.
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The effects of such incorporation for the K−p → KΞ case are expected to be

appreciable since the I = 0 distribution of the K−p → KΞ cross section for the

WT+NLO+Born (η chan) model, see right panels of Fig. 3.6, is concentrated very

close to KΞ threshold which is in contrast to what we have seen for the models without

the Born term. This distribution shows a plateau around 1900 MeV with a cross section

about one third part of the maximum value to decrease later from 2000 MeV.

On the other hand, from right panels of Fig. 3.6, we observe that the distribution

of the I = 1 component of the K−p → KΞ cross section produces a wide smooth

bump which peaks around 2150 MeV. The inclusion of Σ(2030) and Σ(2250) resonant

terms into the amplitude seem quite straightforward given the prominent cross section

of the I = 1 component at such energies and the successful role of the inclusion of

these resonances in our study of [27].

In summary, we are going to implement our chiral model by means of the inclusion

of the K−p→ Y → KΞ and K−p→ X → ηΛ transition amplitudes where Y stands for

the Λ(1890), Σ(2030) and Σ(2250) resonances and X stands for the Λ(1890) resonance.

To carry out this, we use the same formalism described above, although we should first

rewrite the scattering amplitudes with the suggested resonant contributions. Regarding

K−p→ K0Ξ0, K+Ξ− processes, we need to replace eq. (3.17) with

√
4MpMΞT

tot
ij (s′, s) =

√
4MpMΞTij(s

′, s) + T
3/2+

ij (s′, s)

+T
5/2−

ij (s′, s) + T
7/2+

ij (s′, s) . (3.19)
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Analogously, for K−p→ ηΛ, we have

√
4MpMΞT

tot
K−p→ηΛ(s′, s) =

√
4MpMΞTK−p→ηΛ(s′, s) + T

3/2+

K−p→ηΛ(s′, s) (3.20)

where the resonant amplitude is defined as

T
3/2+

K−p→ηΛ(s′, s) = F3/2(k, k′) ūs
′

Λ(p′)γ5k
′
β1
S3/2(q)kβ2γ5u

s
N(p) . (3.21)

3.2.1 Fitting procedure and Data treatment IV

Since we want to compare our new fit directly with WT+NLO+Born (η chan)

model in order to study the effects of the resonant terms on the low energy constants,

we consider the same amount of data that was used to perform this last one. One

can find all these data displayed in Table 3.4. One notices that the K−p → KΞ

differential cross section data are not taken into account, contrary to the case explored

in Sect. 2.1.1. The main reason comes from the fact that, if one compares WT+NLO

(Sect. 2.1.1) and NLO* (Sect. 3.1.2) models whose only difference is the inclusion or

not of such points, they essentially give the same parametrization for the minimum.

Moreover, the inclusion of these additional 349 points from the K−p→ KΞ differential

cross section increases considerably the calculation time.

In this section we will present results for the WT+NLO+Born+RES fit based

on an unitarized calculation employing the chiral Lagrangian at NLO, that is, an

interaction kernel which incorporates the contribution of the WT, the Born and the

NLO terms, together with the high spin resonance contributions in the K−p→ K+Ξ−,

K0Ξ0, ηΛ channels in the way specified in the previous section. Technically speaking,
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Observable Points Observable Points

σK−p→K−p 23 σK−p→K̄0n 9

σK−p→π0Λ 3 σK−p→π0Σ0 3

σK−p→π−Σ+ 20 σK−p→π+Σ− 28

σK−p→ηΣ0 9 σK−p→ηΛ 49

σK−p→K+Ξ− 46 σK−p→K0Ξ0 29

γ 1 ∆E1s 1

Rn 1 Γ1s 1

Rc 1

Table 3.4: Number of experimental points used in our fits, which are extracted from
[18,70–82,86–89], distributed per observable.

the part coming from the chiral model involves the fitting of sixteen parameters: the

pion decay constant f , the six subtraction constants aK̄N , aπΛ, aπΣ, aηΛ, aηΣ, and aKΞ,

the axial vector couplings of the baryons to the mesons D, F and the NLO low energy

constants b0, bD, bF , d1, d2, d3 and d4. As in our previous models, which incorporate

the Born diagrams, we decided to relax the axial vector couplings allowing them to

lie in 12.5% of their canonical value, as was already explained in Sect. 2.2.1. With

respect to the resonant part, we add 13 new parameters, namely: masses and widths

of the resonances (MY3/2
, MY5/2

, MY7/2
, Γ3/2, Γ5/2 and Γ7/2), the product of couplings

(gΛY3/2η · gNY3/2K̄
, gΞY3/2K · gNY3/2K̄

, gΞY5/2K · gNY5/2K̄
and gΞY7/2K · gNY7/2K̄

) and the

cut-off in the form factors (Λ3/2, Λ5/2 and Λ7/2). The fitting parameters amounts to

a total of 29, but we would like to remark that not all parameters are fully free. We

constrain masses and widths of the resonances to lie within the ranges given in the

PDG compilation [99] (see table 3.1) and the form-factor cut-off values are constrained

in the range 500 MeV< ΛJ < 1000 MeV.
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3.2.2 Results and discussion IV

One of the motivations for carrying out this last fit was to study the implications of

including resonant terms on the low energy constants. In order to establish a fair

comparison, as we have mentioned, we constrained the WT+NLO+Born+RES fit

to the same amount of experimental data as in the case of the WT+NLO+Born

(η chan) fit. As has been happening in all our fits, the inclusion of data at higher

energies has not affected the quality of the low energy observables. A clear proof of this

is the good description of the low energy data which, here, is compiled in Table 3.5 and

Fig. 3.7. The inclusion of resonances in the WT+NLO+Born+RES model improves

slightly the overall agreement of the threshold observables, as we see in Table 3.5.

γ Rn Rc ap(K
−p→ K−p) ∆E1s Γ1s

WT+NLO+Born 2.36 0.188 0.659 −0.65 + i 0.88 288 588

(η chan)

WT+NLO+Born+RES 2.36 0.189 0.661 −0.64 + i 0.87 283 587

Exp. 2.36 0.189 0.664 −0.66 + i 0.81 283 541

±0.04 ±0.015 ±0.011 (±0.07) + i (±0.15) ±36 ±92

Table 3.5: Threshold observables obtained from the fits explained in the text. Ex-
perimental data is taken from [18,81,82].

In Fig. 3.7 the total K−p → K−p, K̄0n, π−Σ+, π+Σ−, π0Σ0, π0Λ cross sections ob-

tained by WT+NLO+Born (η chan) and WT+NLO+Born+RES fits are rep-

resented. Both models give a very similar description, almost indistinguishable to the

naked eye, of these cross sections which accommodate the experimental data very well.

The contribution of resonances provides additional structures to the cross section

(obviously much more pronounced in the reactions whose amplitudes contain explic-
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Figure 3.7: Total cross sections for the K−p → K−p, K̄0n, π−Σ+, π+Σ−, π0Σ0, π0Λ
reactions obtained from the WT+NLO+Born+RES fit (magenta line) and the
WT+NLO+Born (η chan) fit (black line), see text for more details. Experimental
data is from [70–73]. The points in red have not been included in the fitting procedure.

itly such terms, namely K−p → ηΛ, K0Ξ0, K+Ξ− ones). Partly, the choice of these

proceses was motivated by the fact related to the loss of agreement between the

WT+NLO+Born (η chan) model (black line in Fig. 3.8) and the scattering data

corresponding to the K−p → K0Ξ0 reaction at low energy and to the K−p → ηΛ

reaction around 1950 MeV. From them, one appreciates a clear improvement in repro-

ducing the experimental K−p→ ηΛ cross section in the energies ranging from 1850 to

2200 MeV, and, at the same time, the WT+NLO+Born+RES fit (magenta line)
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respects the resonant structure from the Λ(1670). But, probably, the most notable

effect is the one observed in K−p → K0Ξ0 cross section, which reproduces better the

experimental data located just above threshold due to the Λ(1890) resonance. More-

over, the combined contribution of the Σ(2030) and Σ(2250) resonances provides a

clear bump structure reaching its maximum at around 2100 MeV. A similar behav-

ior for low energies can be noticed in the K−p → K+Ξ− cross section, while, in the

vicinity of the energy where the experimental data shows a maximum, the Σ(2030)

and Σ(2250) resonant contributions produce some structure, together with a slight re-

duction of strength. With respect to the K−p → ηΣ0 cross section, we do not notice

any difference in the reproduction of the experimental data, but for energies around

1800 MeV the WT+NLO+Born+RES presents a more pronounced slope.
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Figure 3.8: Total cross sections for the K−p → ηΛ, ηΣ0, K0Ξ0, K+Ξ− reac-
tions obtained from the WT+NLO+Born+RES fit (magenta line) and the
WT+NLO+Born (η chan) fit (black line), see text for more details. Experimental
data is from [74–80,86–89].

The most remarkable fact in Table 3.6 is the 16% of improvement in the goodness
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of the fit, as is clearly reflected in χ2
d.o.f. values. The results of the fitting parameters

of both models are also shown in this table. It can be appreciated that the fitting

parameters are quite stable, this stability being more marked for the NLO coefficients.

The reason stems in the fact that we have employed more observables sensitive to the

NLO term, namely the scattering data from the K−p → ηΛ, K0Ξ0, K+Ξ− reactions.

We would like to stress the particular case of the d2 and d3 coefficients which have been

specially stable since we used the full interaction kernel (WT+NLO+Born+RES,

WT+NLO+Born (η chan) and WT+NLO+Born models). This is tied to the

dependence of Clebsch-Gordan-type coefficients on d2 and d3 for the NLO contributions

(eq. (1.65)) of the K−p → K0Ξ0, K+Ξ− reactions. As can be seen from Table 4.2 in

Appendix A, the NLO terms for these two processes can only proceed via the contri-

bution related to the Lij coefficients which depends on the d2 and d3 coefficients since

Dij are zero in all cases.

On the other hand, as a consequence of this stability, we still obtain natural sized

subtraction constants. Another interesting result shown in Table 3.6 is that the f

parameter has decreased after the inclusion of the resonances, which is in contrast to

what happens when comparing the f values for the NLO* and NLO+RES models

in Table 3.3 where this parameter remains almost invariable.

Regarding the accuracy, we obtain similar errors associated to the fitting parameters

for both models (WT+NLO+Born (η chan) and WT+NLO+Born+RES) . We

can stress the slight improvement for b0, d2 while, even with the slight improvement of

the absolute error of d4, the relative error has increased notably.

Finally, for completeness, in Fig. 3.9 we present the prediction of the total cross

section of the K0
Lp → K+Ξ0 reaction given by WT+NLO+Born+RES model (see
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Sect. 2.4 for more details). We have also included the predictions of other previous

models, already shown in Fig. 2.8 of Sect. 2.4, to see their evolution in describing this

observable when more ingredients are taken into acount.

1,8 2 2,2 2,4 2,6

w [GeV]

0

0,05

0,1

0,15

0,2

0,25

σ
 (

K
0 L
p
 -

--
>

 K
+
Ξ

0
) 

[m
b
]

WT+NLO

WT+NLO+Born

WT+NLO+Born (η chan)

WT+NLO+Born+RES

Figure 3.9: Total cross sections of the K0
Lp → K+Ξ0 reactions for the for

the WT+NLO fit (green line), the WT+NLO+Born fit (red dashed line), the
WT+NLO+Born (η chan) fit (black line) and the WT+NLO+Born+RES fit
(magenta line), and the experimental points of the I = 1 K−n→ K0Ξ− reaction, taken
from [95,96] and divided by two, see Sect. 2.4 for more details.

The WT+NLO+Born+RES model gives a similar reproduction of the experi-

mental points to that provided by the WT+NLO+Born (η chan) model, but the

energy dependence of the cross section shows some structures associated to the in-

cluded resonances. In view of these results, new experimental data would be crucial to

determine which model might offer a more realistic description of this observable.
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WT+NLO+Born (η chan) WT+NLO+Born+RES

aK̄N (10−3) 1.27± 0.12 1.52± 0.21

aπΛ (10−3) −6.1± 12.9 −2.6± 13.9

aπΣ (10−3) 0.68± 1.43 2.1± 1.2

aηΛ (10−3) −0.67± 1.06 0.76± 1.21

aηΣ (10−3) 8.00± 3.26 10.1± 3.7

aKΞ (10−3) −2.51± 0.99 −2.01± 0.74

f/fπ 1.20± 0.03 1.18± 0.03

b0 (GeV −1) 0.13± 0.04 −0.07± 0.01

bD (GeV −1) 0.12± 0.01 0.13± 0.01

bF (GeV −1) 0.21± 0.02 0.27± 0.02

d1 (GeV −1) 0.15± 0.03 0.14± 0.03

d2 (GeV −1) 0.13± 0.03 0.13± 0.01

d3 (GeV −1) 0.30± 0.02 0.40± 0.02

d4 (GeV −1) 0.25± 0.03 0.02± 0.02

D 0.70± 0.16 0.70± 0.15

F 0.51± 0.11 0.40± 0.11

gΛY3/2η · gNY3/2K̄
- 8.9± 11.8

gΞY3/2K · gNY3/2K̄
- 6.20± 8.21

gΞY5/2K · gNY5/2K̄
- −3.88± 9.58

gΞY7/2K · gNY7/2K̄
- −14.3± 14.4

Λ3/2 (MeV) - 839.7± 406.7

Λ5/2 (MeV) - 541.3± 290.0

Λ7/2 (MeV) - 500.0± 426.8

MY3/2
(MeV) - 1910.0± 44.7

MY5/2
(MeV) - 2210.0± 39.1

MY7/2
(MeV) - 2040.0± 14.88

Γ3/2 (MeV) - 200.0± 120.3

Γ5/2 (MeV) - 150.0± 52.4

Γ7/2 (MeV) - 150.0± 43.1

χ2
d.o.f. 1.14 0.96

Table 3.6: Values of the parameters and the corresponding χ2
d.o.f., defined in eq. (2.10),

for the different fits described in the text. The subtraction constants are taken at a
regularization scale µ = 1 GeV. The error bars of the parameters are those given by
the MINUIT minimization procedure.



Chapter 4

The Λb decay

Along this work, we have been studying the introduction of higher order terms of the

chiral lagrangians in the kernel of the meson-baryon interaction in the strangeness

S = −1 sector as a response to the need to extend the approach to higher orders

and energies aiming for greater accuracy in data description. This necessarily passes

through the determination of the low energy constants, particularly those which are not

well established yet, namely the NLO coefficients. With this motivation, we focused on

the K−p→ K+Ξ−, K0Ξ0 reactions, since they do not proceed from the WT term of the

chiral lagrangian and, hence, they are especially sensitive to the higher order terms.

We devoted the second chapter to check which were the effects on the low energy

constants of the systematic inclusion of new contributions to the interaction kernel

(NLO and Born terms) and more experimental data in the fitting procedures. Most of

the data employed in all fits are coming from antikaon proton scattering and therefore

contain contributions from both isospin I = 0 and I = 1 components, exceptions being

the π0Σ0, ηΛ and ηΣ0 production channels, which select I = 0, I = 0 and I = 1

117
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respectively. As we have seen, the incorporation of data coming from these two last

channels gave rise to a successful model (WT+NLO+Born (η chan)) with a suitable

parametrization in terms of accuracy and homogeneity as well as in fixing reasonable

subtraction constants.

These results point out that since the main differences among the models lie on the

fact that they present very different distributions of their isospin components for the

total cross sections, we could have more reliable values for all the fitting parameters

and, therefore, more reliable values for the NLO constants by including additional

data coming from isospin filtering processes. One such opportunity arises from the

weak decay of the Λb into states containing a J/Ψ and meson-baryon pairs, measured

by the CDF [91] and LHCb [40, 92, 93] collaborations which, as we will see, filters the

I = 0 components of the meson-baryon interaction. In this respect, the experimental

data of the invariant masses of the Λb decay into J/ψ KΞ and J/ψ ηΛ would provide

valuable information, novel so far, that would enrich our knowledge of the meson-baryon

interaction and help us to make progress in our understanding of hadron dynamics.

Moreover, the Λb → J/ψ ηΛ decay not only can provide such a new information but it

can be an interesting process to observe a possible strange partner of the hidden charm

pentaquark state Pc(4450). Indeed, the measurement of the Λb → J/Ψ K−p decay

has been employed very recently in [40] to claim the presence of an exotic pentaquark

charmonium state in the J/Ψ p channel.
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4.1 The Λb → J/ψ KΞ, J/ψ ηΛ decay processes

The authors of [90], which is the pioneering theoretical study of processes through which

the Λb decays into a J/ψ and a S = −1 meson-baryon pair, found that this type of

reactions do filter the final meson-baryon components in I = 0. They particularize this

study for the Λb → J/ψ K−p(πΣ) decay predicting the contribution of the tail of the

Λ(1405) in the K−p invariant mass distribution before the experimental confirmation

[40].

In the present chapter we focus on the study of the Λb → J/ψ KΞ and the Λb →

J/ψ ηΛ decay processes, since they are very sensitive to the details of the meson-baryon

interaction at high energies, in particular to the higher order terms. The weak decay

mechanism in these reactions is the same as that producing J/ψ and K−p or πΣ, except

that different channels are chosen in the final state interaction of the very few meson-

baryon states which are allowed to be produced in a primary step by the selection rules.

More specifically, the Λb decays weakly into J/ψ and three quarks that hadronize to

produce the primary meson-baryon components, which turn out to be K̄N and ηΛ, as

we will see. The final state interaction of these states in coupled channels allows the

production of KΞ in the case of the Λb → J/ψ KΞ decay. Thus, not having the KΞ

pair produced in the first step, it comes from rescattering of meson-baryon components

and hence this decay process depends strongly on the behaviour of the meson-baryon

interaction.
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4.1.1 Formalism

In the decay of the Λb into J/ψ at the elementary quark level we must bear in mind

that the q → q′ transitions at the Wqq′ vertices are determined by the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements [100]. The u → d and c → s transitions

are given by the cosine of the Cabibbo angle, cos θC , thus being Cabibbo favored, the

b→ c transition proceeds via A sin2 θC and is Cabibbo suppressed, while the transition

b → u would be doubly Cabibbo suppressed [101]. At the quark level, the Cabibbo

favoured mechanism for J/ψ production is depicted by the first part of the diagram of

Fig. 4.1, where we can see the W -exchange weak process transforming the b quark into

cc̄s. This corresponds to internal emission in the classification of topologies of [100],

and is also the dominant mechanism in the related B̄0 → J/ψ π π decay [102–104].

From the process depicted in the figure, after the weak decay, we obtain a sud state

whose u and d quarks has remained as spectators. The reason being that one expects

one-body operators in a microscopical evaluation to have larger strength than two- or

multi-body operators. According to this assumption, since the Λb has isospin I = 0,

so does the spectator ud pair, which, combined with the s quark after the weak decay,

can only form I = 0 Λ states. The findings of the experimental analysis of Ref. [40]

clearly support this hypothesis.

The next step consists in the hadronization of this final three quark state by in-

troducing a q̄q pair with the quantum numbers of the vacuum, ūu + d̄d + s̄s. The

dominant contribution of the hadronization preserves the spectator role of the ud pair,

which ends up into the final baryon, and requires the involvement of the s quark, which

ends up into the final meson. Any other topology that would bring the u or d quark

into the final meson requires a large momentum transfer that suppresses the mecha-
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b

u

d

c c̄

W

s

ūu + d̄d + s̄s

u

d

Weak decay Hadronization

Figure 4.1: Diagram describing the weak decay of the Λb into the J/ψ and a meson-
baryon pair formed through a hadronization mechanism.

nism. Another observation concerning the hadronization is that, since the sud quark

state after the weak decay has JP = 1/2− and the ud quarks have the same quantum

numbers as in the original Λb state (JP = 1/2+ each) in an independent quark model

used for the argumentation, it is the s quark the one that must carry the minus parity,

which would correspond to an L = 1 orbit of a potential well. Since in the final K−

or η mesons the s quark is in its ground state with L = 0, this also implies that the

s quark produced immediately after the weak process must participate actively in the

process of hadronization, which proceeds as shown in Fig. 4.1. A further discussion on

the reduced size of other alternative mechanisms can be found in [105].

The technical way to implement the hadronization and produce meson-baryon pairs

in the final state follows the same steps as in [103, 106, 107] for meson decays and

in [33,90] for the Λb decay. The flavour decomposition of the Λb state is:

|Λb〉 =
1√
2
|b(ud− du)〉 , (4.1)
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which becomes, after the weak process

|H〉 =
1√
2
|s(ud− du)〉 , (4.2)

or, upon hadronization,

|H〉 =
1√
2
|s(ūu+ d̄d+ s̄s)(ud− du)〉 , (4.3)

which can be written in terms of the qq̄ matrix P , as

|H〉 =
1√
2

3∑
i=1

|P3iqi(ud− du)〉 , (4.4)

where

P =


uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄

 and q =


u

d

s

 . (4.5)

Writing the matrix P in terms of the meson states, P → φ, where the η, η′ mixing [?]

has been assumed,

φ =


π0
√

2
+ η√

3
+ η′√

6
π+ K+

π− − π0
√

2
+ η√

3
+ η′√

6
K0

K− K̄0 − η√
3

+ 2η′√
6

 , (4.6)

the hadronized state becomes:

|H〉 =
1√
2

(
K−u(ud− du) + K̄0d(ud− du) +

1√
3

(
−η +

√
2η′
)
s(ud− du)

)
. (4.7)
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By the former equation one obtains the mixed antisymmetric representation of the

octet of baryons and taking the results of [108] one finds the final meson-baryon compo-

nents of |H〉. As was pointed out in [109], this point requires a careful comparison of the

phase conventions of Ref. [108] with those inherent in the baryon matrix (eq. (1.43))

used in the chiral lagrangians. It is found that a change in the phases of Σ+,Λ,Ξ0

from [108] is needed to be in agreement with these fields within the chiral lagrangians.

Thus, we have

|H〉 = |K−p〉+ |K̄0n〉+

√
2

3
|ηΛ〉 (4.8)

where we have omitted the |η′Λ〉 contribution because of the large mass of the η′

meson [90]. Thus, the K−p, K0n or ηΛ pairs are the primary productions. From this,

we can see that a KΞ pair is not produced in the first step. The ηΣ configurations

cannot appear because it has I = 1.

Λb

J/ψ

(a) (b)(a)(a)(a)(a)(a)

BjBjBj

φi

Bi

Bj

Λb

J/ψ

φj

φj

Figure 4.2: Diagrammatic representation of the decay amplitude for Λb → J/ψ φjBj:
(a) tree level and (b) the φjMj = ηΛ, KΞ production through the coupled channel
interaction of the initially produced φiMi = ηΛ, K̄N meson-baryon pairs.

The final step consists in taking into account the final state interaction of the meson-

baryon pairs. The amplitudes for the Λb → J/ψ ηΛ, J/ψKΞ decays will then be built

from the diagrams of Fig. 4.2, where we can see the direct tree-level process, depicted

by diagram (a), and the final-state interaction contribution of the meson-baryon pair
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into ηΛ, KΞ production (b). The corresponding amplitude can be written as:

M(MφB,MJ/ψB) = Vp

[
hφB +

∑
i

hiGi(MφB)ti,φB(MφB)
]
, (4.9)

where the weights hi, obtained from Eq. (4.8), are:

hπ0Σ0 = hπ+Σ− = hπ−Σ+ = 0 , hηΛ =
√

2
3
, (4.10)

hK−p = hK̄0n = 1 , hK+Ξ− = hK0Ξ0 = 0 , (4.11)

and where Gi, with i = K−p, K̄0n, ηΛ, denotes the one-meson-one-baryon loop function

(eq. (1.71)) and the amplitude ti,φB is chosen in accordance with the models employed

in this study. Here, φB are ηΛ or KΞ. The MφB,MJ/ψB stand for the invariant masses

of the corresponding meson-baryon pairs.

The factor Vp, which includes the common dynamics of the production of the dif-

ferent pairs, is unknown and we take it as constant. This may in principle look like

a very strong assumption since it is well known that the quantitative description of

weak decay processes involving hadrons is a very arduous and challenging task. Indeed,

semileptonic decay amplitudes are written in terms of the CKM quark-mixing param-

eter for the q → q′ transition and a hadron matrix element which is parameterized in

terms of form factors. These have been obtained from a variety of approaches, such as

the non-relativistic constituent quark model [110], the covariant light front model [111],

the relativistic quark model [112], or employing light cone sum rules [113]; see a recent

comparison of these approaches in Ref. [114]. The situation is even more complicated

in the case of non-leptonic decay modes, as the one addressed here, or semileptonic

processes with two or more hadrons in the final state. One must first deal with the
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hard process that involves the weak transition and the hadronization. This requires

the evaluation of transition matrix elements, into two or more hadrons, of an effective

Hamiltonian built up from four-quark operators. There is a vast amount of literature

on this subject and, typically, one employs the factorization approach at various de-

grees of sophistication [115–117]. This permits replacing the matrix elements of the

four-quark operators by two independent hadronic currents, which are then related to

their respective form-factors that can be evaluated e.g. from light-front distribution

amplitudes, as done in [118,119]. In addition to the hard process, one must also account

for the hadron final state interaction, which has been done using the Omnès representa-

tion [120–122], implementing Breit-Wigner or Flatté structures [123] or applying chiral

unitary theory [119, 124]. Unlike many of these approaches, our aim is limited: we

only deal with the meson-baryon system in s-wave and we are only concerned about

a narrow window of invariant masses. All we need to apply our formalism is that the

form factors for the primary production of hadrons prior to its final state interactions

behave smoothly compared to the changes induced by these interactions. Including all

the information of the hard transition part into a constant factor Vp we obtain, up to an

arbitrary normalization, invariant mass distributions which carry information on the

characteristics of the meson baryon interaction. Our assumption finds support from

the work of Ref. [122]. Although calculations of the hard-scale matrix element are

difficult, as commented above, there are cases that can be kept under control, like the

semileptonic decays with two pseudoscalar mesons in the final state with small recoil,

which can be treated in heavy meson chiral perturbative theory. The form factors for

these processes have been evaluated explicitly in Ref. [122] and, for large invariant

masses of the lepton system, the s-wave one behaves smoothly as a function of the

invariant mass of the meson pair. If we now extrapolate these results to the present
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problem, replacing the energetic lepton system by the massive J/Ψ particle, we can also

assume a moderate dependence of the s-wave hard matrix elements on the invariant

mass of the meson-baryon pair. There is also empirical evidence on the smoothness of

these primary form factors. In [125] form factors for the decay of B mesons into J/Ψ

and a light scalar meson are evaluated, finding F σ
B0
s
(m2

J/ψ)/F f0

B0
s
(m2

J/ψ) = 1, where σ, f0

stand for the f0(500), f0(980) mesons. In addition, using current data for B meson

decays, Ref. [102] finds a ratio F f0

B0
s
(m2

J/ψ)/F σ
B0(m2

J/ψ) which is also compatible with

unity.

In summary, the studies quoted above tell us that, in the processes studied here,

there is a broad range of energies, of a few hundreds of MeV, where we can consider

the primary form factors associated to the hard process to behave smoothly, so that

the energy dependence ofM(MφB,MJ/ψB) in eq. (4.9) can be associated essentially to

the changes of the final state interaction.

The double differential cross-section for the Λb → J/ψ φB decay process reads:

d2Γ

dMφBdMJ/ψB

=
1

(2π)3

4MΛbMB

32M3
Λb

∑
|M(MφB,MJ/ψB)|22MφB2MJ/ψB , (4.12)

where, after performing the sum over final spins and polarizations and the average over

initial spins (see appendix in [126]), one has:

∑
|M(MφB,MJ/ψB)|2 = 3|M(MφB,MJ/ψB)|2 , (4.13)

with M being that of eq. (4.9).

In this section we are interested in presenting the results in terms of the invariant
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masses MηΛ and MK+Ξ− . We choose the later rather than MK0Ξ0 because charged

particles can be easily measured by detectors. Except the minor effects of the differences

associated to the physical masses of the particles, the invariant mass distributions for

KΞ final states are expected to be identical since this decay process involve only the

I = 0 part of the strong meson-baryon amplitude.

Aiming for this, we fix the invariant mass MφB and integrate expression (4.12) over

MJ/ψΛ in order to obtain dΓ/dMφB. In this case, the integration limits are given by:

(
M2

J/ψB

)
max

=
(
E∗B + E∗J/ψ

)2 −
(√

E∗B
2 −M2

B −
√
E∗J/ψ

2 −m2
J/ψ

)2

, (4.14)

(
M2

J/ψB

)
min

=
(
E∗B + E∗J/ψ

)2 −
(√

E∗B
2 −M2

B +
√
E∗J/ψ

2 −m2
J/ψ

)2

, (4.15)

where

E∗B =
M2

φB −m2
φ +M2

B

2MφB

, (4.16)

E∗J/ψ =
M2

Λb
−M2

φB −m2
J/ψ

2MφB

. (4.17)

4.1.2 Results and discussion

We start this section by presenting in Fig. 4.3 the cross section data of theK−p→ K0Ξ0

reaction (top panels) and of the K−p→ K−Ξ+ reaction (bottom panels), obtained em-

ploying WT+NLO model (left panels) or WT+NLO+Born (η chan) model (right

panels). The figure shows the complete results (solid lines), as well as the results where

only the isospin I = 1 component (dashed lines) or the I = 0 one (dash-dotted lines)

have been retained. It is interesting to see that, in both models, the I = 1 component
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is dominant. The I = 1 distribution for WT+NLO is a little bit more enhanced along

the energy range than the corresponding to WT+NLO+Born (η chan) reaching its

maximum at around 2050 MeV, while the analogous maximum for WT+NLO+Born

(η chan) is shifted 100 MeV towards higher energies. The contribution of I = 0 in

the K−p → KΞ cross section for WT+NLO is mainly significant around 2300 MeV

which is in contrast to what happens to the I = 0 component for WT+NLO+Born

(η chan) model. The I = 0 distribution corresponding to this last model is more

evident near the threshold, it grows rapidly reaching a plateau, with strength similar

to the previous maximum, to finally decrease with a smooth fall.
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Figure 4.3: The total cross section data of the K−p→ K0Ξ0 reaction is represented in
the top panels, where the left figure corresponds to the WT+NLO model and the right
one corresponds to the WT+NLO+Born (η chan) model. The same distribution
for the bottom panels where the K−p→ K+Ξ− cross section data is represented. The
figure shows the complete results by means of solid lines, the results where only isospin
I = 1 component (dashed lines) or I = 0 one (dot-dashed line) have been retained.

Let us remind the reader that the WT+NLO model employs the dynamics of the
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chiral lagrangian up to NLO, specifically the contributions of the WT term and the

NLO ones. The WT+NLO+Born (η chan) differs, dynamically speaking, from the

first one in the additional inclusion of the Born terms in the lagrangian. Regarding

the experimental data to which they are fitted, the second model takes into account,

apart from the same amount of experimental data as WT+NLO model, scattering

data from the K−p→ ηΛ, ηΣ processes. This fact and the very different distributions

of the isospin 0 component of the total K−p → KΞ cross sections given by these two

models make them interesting candidates for a comparison. From now on, in order

to simplify the notation, the WT+NLO and WT+NLO+Born (η chan) models

will be referred to as Model 1 and Model 2, respectivelly. In [33] we perform an

analogous study but employing the models of [27] instead.

In Fig. 4.4, we show the invariant mass distributions of πΣ and K̄N states, as

averaged distributions over the possible different charged states, for the decay reactions

Λb → J/ψ K̄N and Λb → J/ψ πΣ employing Model 1 and Model 2. In this way we

can compare with the findings in [90].

We can see that the results of both models are very different from each other.

On the one hand, the results from Model 2 are very similar to those found in [90],

with the shape of the πΣ and K̄N distributions lying somewhat in between those

of the Bonn and Murcia-Valencia models studied there (a different normalization is

used in that work). We note that the πΣ distribution corresponding to Model 2

shown in Fig. 4.4 stays below the K̄N one just above the threshold for K̄N states, in

agreement with what one observes in the models discussed in [90]. On the other hand,

the invariant mass distribution of πΣ for Model 1 shows a minimum located essentially

where Model 2 has its maximum. Furthermore, the πΣ distribution corresponding
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Figure 4.4: Invariant mass distributions of πΣ and K̄N states in the decay modes
Λb → J/ψ π Σ (solid line) and Λb → J/ψ K̄ N (dot-dashed line), for the two models
discussed in the text: Model 1 (blue lines) and Model 2 (black lines). The units in the
y axis are obtained taking Vp = 1.

to Model 1, in contrast to Model 2 and the models in [90], stays over the K̄N one.

These two dissimilar results, which are obviously the consequence of different patterns

of interferences, reflect the sensitivity of these processes to the models. Actually, as

seen from eq. (4.9), the rescattering term of the invariant mass distribution, which is

dominant around the energy region of the Λ(1405) resonance, depends not only on the

strong scattering amplitudes, tij, but also on the loop functions, Gi. The effect of the

rescattering term is more marked in the process leading to a final J/ψ πΣ state because

it lacks a tree-level term. Since the fitting procedures consider the parameters of the

meson-baryon interaction simultaneously with those of the loop functions, there is some

freedom on the values of these loop functions obtained by different strong interaction

models that produce equivalent scattering amplitudes. In any case, since the global

parameter Vp is unknown to us, the relevant information from this figure is the ratio

of the πΣ to K̄N distributions, at their respective maximum values for instance. The
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ratios for Model 1 and Model 2 can be established in 2.3 and 5.7, respectively, the

former being similar to those found in [90].

1800 1950 2100 2250 2400 2550
M

KΞ
  [MeV]

0

1

2

3

4

5

6

7

8

d
Γ

/d
M

K
Ξ
  

 [
ar

b
. 

u
n

it
s]

K
+
Ξ

-
 Model 1

K
+
Ξ

-
 Model 2 ( x10 )

phase space Model 1

phase space Model 2 ( x10 ) 

1650 1800 1950 2100 2250 2400 2550
M

ηΛ
  [MeV]

0

5

10

15

20

25

30

35

d
Γ

/d
M

η
Λ
  

 [
ar

b
. 

u
n

it
s]

ηΛ Model 1

phase space Model 1

ηΛ Model 2

phase space Model 2

Figure 4.5: Invariant mass distributions of K+Ξ− states (upper panel) and ηΛ states
(lower panel) obtained for the two models discussed in the text: Model 1 (blue solid
lines) and Model 2 (black solid lines). The pure phase-space distributions (dashed
lines) are normalized to the corresponding invariant mass distribution, more details in
the text. The invariant mass distribution of K+Ξ− state and the corresponding phase-
space distribution for Model 2 are multiplied by a factor 10 to aid its visualization.
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Although we have given the invariant mass distributions in arbitrary units, one

should bear in mind that all the figures, from Fig. 4.4 to Fig. 4.5 have the same nor-

malization. Since measurements for the Λb → J/ψ K−p reaction are already available

from the CDF [91] and LHCb [40,92,93] collaborations, the measurements of the reac-

tions proposed here could be referred to those of the Λb → J/ψ K−p reaction and this

would allow a direct comparison with our predictions. In this spirit, we note that the

recent resonance analysis of [40] shows a Λ(1405) contribution which lies in between the

distribution found by the Bonn model in [90] and that of the Murcia-Valencia model

in [90] or the models presented here.

In the upper panel of Fig. 4.5 we present the invariant mass distributions of K+Ξ−

pairs from the decay process Λb → J/ψ K+Ξ−. Firstly, we would like to make clear

that the invariant mass distribution of K+Ξ− state and the corresponding phase-space

distribution for Model 2 are multiplied by a factor 10 to aid its visualization. The fact

that this decay filters the I = 0 components makes the differences between Model 1

(blue solid line) and Model 2 (black solid line) more evident, not only in the strength

but also in the shape of the invariant mass distribution. In principle, from Fig. 4.3,

one could expect that both models might give similar strength for these invariant mass

distributions, but arranged almost in opposition to each other. As we clearly see from

Fig. 4.5, the invariant mass distribution for both models is in accordance with Fig. 4.3

only in shape. The resulting strength from Model 1 exceeds by more than 24 times

the one from Model 2. The reason for such a difference stems from the fact that the

selectivity of the Λb decay processes producing the J/ψ does not allow the formation of

a KΞ pair in a primary step. This is only produced through rescattering of the K̄N and

ηΛ primary components. Thus, the Λb → J/ψ KΞ reaction is directly proportional to

the meson-baryon scattering amplitude, concretely to the ηΛ → KΞ and K̄N → KΞ
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components in I = 0, which can lead to a marked pattern of interferences. The invariant

mass distribution of the K+Ξ− state for Model 2 is a clear example of a destructive

interference among the K̄N contributions and the ηΛ component as is illustrated in

Fig. 4.6. There, we plot the KΞ invariant mass distribution when we exclude the

ηΛ → KΞ amplitude by setting hηΛ to 0 (black dot-dashed line), or excluding the

K̄N → KΞ contributions by setting hK−p and hK̄0n to 0 (black solid line). Comparing

these two black lines in Fig. 4.6, it is directly seen that the only way to obtain the

complete invariant mass (red solid line) is by means of a destructive interference.
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Figure 4.6: The effects on the invariant mass distributions of K+Ξ− state for Model 2
obtained: switching off the K̄N contributions to MKΞ (black solid line,hK−p = hK̄0n =
0 ) and switching off the ηΛ contribution to MKΞ (black dot-dashed line,hηΛ = 0 ).
The full invariant mass distributions of K+Ξ− state for Model 2 is represented by the
red solid line.

If, in order to eliminate the dependence on undetermined loop functions and on

the unknown weak parameter Vp, we represented each Λb → J/ψ K+Ξ− distribution

relative to its corresponding Λb → J/ψ K̄N one shown in Fig. 4.4, the difference would



134 The Λb decay

be somewhat enhanced. Therefore, measuring the decay of the Λb into J/ψ K+Ξ− and

into J/ψ K̄N could help us discriminate between models that give a similar account

of the scattering K−p→ K0Ξ0, K+Ξ− processes.
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Figure 4.7: Total cross section for the K−p→ ηΛ reaction obtained from the Model
1 fit (blue line) and the Model 2 fit (black line), see text for more details.

The Λb → J/ψ ηΛ decay can proceed at tree level making the possible interference

effects of the loop diagrams acquire a secondary role. This is clearly reflected when

comparing Λb → J/ψ ηΛ, J/ψ K+Ξ− distributions for Model 2 (black solid lines)

shown in Fig. 4.5, which differ by a factor of 65. This difference is enhanced due to the

destructive interference of the rescattering terms for the Λb → J/ψ K+Ξ− decay, as we

have seen in the previous paragraph. Conversely, the magnitude of the Λb → J/ψ ηΛ

distribution for Model 1(blue solid lines in the bottom panel of Fig. 4.5) is of the

same order as the Λb → J/ψ K+Ξ− one (blue solid lines in the top panel of Fig. 4.5),

even if the latter does not receive the contribution of the tree level term. This can

be explained by means of a strong constructive interference of the reescattering terms,

just the opposite of what happens for Model 2. The ηΛ invariant mass distributions
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in the bottom panel of Fig. 4.5 corresponding to Model 1 (blue solid line) and Model

2 (black solid line), show a shape and relative strength between models similar to the

K−p→ ηΛ cross section (see Fig. 4.7).

In addition, the invariant mass distributions from the Λb → J/ψ K+Ξ− and Λb →

J/ψ ηΛ decays obtained in Model 1 and Model 2 are compared with phase space

in Fig. 4.5. The phase-space distributions (dashed lines) are obtained by taking the

amplitude M as constant in eq. (4.12) and normalizing to the area of the invariant

mass distribution of the corresponding model. The comparison allows one to see that

there are dynamical features in the meson-baryon amplitudes leading to a distinct

shape of the mass distributions. In the case of Model 1 (blue solid line), we observe

a peaked structure around 2350 MeV in the K+Ξ− distribution. This peak resembles

a resonance, but we should take into account that the limitation of the phase space

at about 2500 MeV produces a narrower structure than that of the cross sections of

the K−p → KΞ reactions, as we can see from the I = 0 contribution in Fig. 4.3

(left panels), which is much broader. Actually, the very different shape that this model

predicts for Λb → J/ψ ηΛ (see blue solid lines in the bottom panel of Fig. 4.5), showing

no peaked structure, which essentially implies the absence of a resonance since it would

necessarily appear in both final states at the same energy. In our models, it is the energy

dependence in the parametrization of the next-to-leading order contribution and the

interference of terms that creates this shape. On the other hand, from the ηΛ invariant

mass distribution corresponding to Model 2, we can still appreciate the dynamically

generated Λ(1670) resonance. In any case, what is clear is that the experimental

implementation of this reaction will provide valuable information concerning the meson-

baryon interaction at higher energies, beyond what is offered to us by present scattering

data.
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4.2 The hidden-charm S = −1 pentaquark in the

Λb → J/ψ ηΛ decay

The LHCb collaboration reported recently two exotic structures in the invariant J/ψp

mass spectrum of the Λb → J/ψ K−p process. These pentaquark states were named

Pc(4380), with a mass of 4380 ± 8 ± 29 MeV and a width of 205 ± 18 ± 86 MeV,

and Pc(4450), with a mass of 4449.8 ± 1.7 ± 2.5 MeV and a width of 39 ± 5 ± 19

MeV [40, 41]. Hidden charm baryon states with similar characteristics of the states

reported had already been predicted, employing a molecular picture [35–39] or a quark

model approach [127, 128]. A list of early references on pentaquark states can be

seen in Ref. [129]. The CERN discovery triggered a large number of theoretical works

trying to give an explanation for the two reported states. The molecular picture was

invoked in [42, 130–132], the diquark picture in [133–137], QCD sum rules were

used in [138, 139], and the soliton model was employed in [140]. It has also been

argued that the observed enhancement could be due to kinematical effects or triangular

singularities [141–143]. Suggestions of different reactions to observe the pentaquarks

have been reported [144–148], while explicit decay modes to elucidate their structure

have also been studied in [149,150]. Further discussions on the issue and the nature of

the two Pc states can be seen in Refs. [151,152] and particularly in the recent detailed

review of Ref. [153].

Concerning the present section, we recall that a theoretical study of the Λb →

J/ψ K−p reaction was done in [90], prior to the experimental study of Ref. [40], pre-

dicting the contribution of the tail of the Λ(1405) in the K−p invariant mass distri-

bution. The analysis of [40] contains such a contribution in agreement in shape with
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the predictions, where the absolute normalization is unknown. Moreover, it was shown

in [42] that the distributions in the pentaquark channel, i.e. in the invariant J/ψp

mass spectrum of [40], could be explained via the incorporation of the hidden charm

N∗ states predicted in [35–38], which are molecular states mostly made from D̄∗Σc

or D̄∗Σ∗c components and having a small coupling to J/ψp, one of their open decay

channels. It is unlikely that there are no partners of the states found in [40], and in-

deed, in [35,36] states of spin-parity 3/2− with hidden charm but strangeness S = −1

were predicted, mostly made of D̄∗Ξc or D̄∗Ξ′c, decaying into J/ψΛ. In view of this,

the decay of Ξ−b into J/ψK−Λ was suggested in [154] as a suitable reaction to find a

hidden charm strange state. Predictions for the K̄Λ and J/ψΛ mass distributions were

done, and, playing with uncertainties, it was shown that a clear peak in the J/ψΛ mass

distribution should show up. This reaction is presently being considered by the LHCb

collaboration. However, since there is a much smaller statistics in the production of

Ξ−b than that of Λb, it is interesting to explore alternative reactions to observe this

strangeness S = −1 hidden-charm pentaquark. In the present section we suggest to

employ the J/ψ ηΛ decay mode of the Λb. Since the ηΛ pair is populated with a weight
√

2/3 relative to the K−p pair in the primary Λb → J/ψ MB reaction (see eq. (4.9)),

the Λb → J/ψ ηΛ decay rate should be similar as that found for J/ψ K−p final states

in the study of the non-strange pentaquark, and the new strange state should be looked

for in the J/ψΛ mass distribution instead of the J/ψp one.

We note that the possible existence of an strange S = −1 pentaquark partner was

also studied in [126] from the non-strange decay mode Λb → J/ψ K0Λ, which is one of

the coupled channels of the decay Λb → J/ψ π−p from which, even if it is more Cabbibo

suppressed than the Λb → J/ψ K−p process, a possible signal of the Pc(4450) may also

have been seen [41,155]. The study of [126] explored the effect of different weak decay



138 The Λb decay

amplitudes to produce either a JP = 1/2− or a JP = 3/2− strange pentaquark. In this

work, we will also take these possibilities into account.

4.2.1 Formalism

In Sect.4.1.1, we discussed how the Λb → J/ψ ηΛ decay is described by means of weak

transition followed by a hadronization process whose topology is depicted in Fig. 4.1.

The main motivation there was the study of the invariant mass distribution of the

final S = −1 pseudoscalar meson-baryon pair in order to extract valuable information

about its dynamics at higher energies by means of comparing with experimental data

once available. Now we turn our attention to the J/ψΛ invariant mass distribution

Λb
Λb

J/ψ J/ψ

Λ

η(a)
(b)

(c)

Λb

J/ψ

Λ

η

η

Λ

J/ψ

Λ

Figure 4.8: Diagrammatic representation of the decay amplitude for Λb → J/ψ ηΛ: a)
tree level, b) the ηΛ production through the coupled channel interaction of the initially
produced ηΛ and K̄N meson-baryon pairs, c) J/ψΛ→ J/ψΛ interaction.

because, as we have mentioned, a strange partner of the Pc(4450) could be associated

to the molecular states D̄∗Ξc or D̄∗Ξ′c, which decay into J/ψΛ, as was predicted by

the authors of [35, 36]. To this end, we need to introduce some modifications in the

final state interactions by new diagrams contributing to the Λb → J/ψ ηΛ amplitude.
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We first introduce the final-state J/ψΛ → J/ψΛ interaction which is schematically

represented in diagram (c) of Fig. 4.8. Note that this figure also contains the other

diagrammatic contributions which appeared originally in Fig. 4.2: the direct tree-

level process, depicted by diagram (a) and the final-state interaction contribution of

the meson-baryon pair into ηΛ production (b). Thus, the corresponding amplitude is

obtained by adding the new contribution to eq. (4.9), namely:

M(MηΛ,MJ/ψΛ) = Vp

[
hηΛ +

∑
i

hiGi(MηΛ)ti,ηΛ(MηΛ)

+ hηΛGJ/ψΛ(MJ/ψΛ) tJ/ψΛ,J/ψΛ(MJ/ψΛ)
]
, (4.18)

where we take the loop function GJ/ψΛ employed in the model of [35, 36] on which, as

we will show below, we base our prescription for the tJ/ψΛ,J/ψΛ amplitude.

At this point it is worth mentioning that the model for the final state interaction

in the ηΛ channel generates some resonances dynamically, like the Λ(1405) or the

Λ(1670), that are either below or at the edge of the threshold of ηΛ invariant masses

MηΛ accessible from the decay of the Λb. We therefore would like to explore the

possibility of adding to the amplitude the explicit contribution of some Λ∗ which lies

in the relevant MηΛ region, essentially between 1700 MeV and 2500 MeV, and might

couple sensibly to ηΛ states, as represented diagrammatically in Fig. 4.9. One state

with these characteristics is listed in the PDG compilation [99], the one star Λ(2000),

having a width Γ ∼ 100 − 300 MeV and a branching ratio to the decay into ηΛ of

(16±7)%. The recent unitary multichannel model for K̄N scattering, with parameters

fitted to partial waves up to J = 7/2 and up to 2.15 GeV of energy, also gives an

s-wave JP = 1/2− Λ state with similar mass and width properties [156]. We also note
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Figure 4.9: Diagrammatic representation of an s-wave resonance contribution to the
Λb → J/ψ ηΛ decay amplitude.

u

c̄

s

s̄

s

c

d

u

b

d

W

Figure 4.10: Diagram describing the weak decay Λb into the D̄∗ and a ηΞ′c pair.

that, since our model will rely on the strange pentaquark predicted in Refs. [35, 36]

at an energy around 4550 MeV, which couples strongly to D̄∗0Ξ′c states, one should

consider the possibility that the influence of this resonance in the final J/ψΛ mass

distribution could also be due to the creation of a virtual D̄∗ηΞ′c state in a first step

of the Λb decay, through the mechanism of Fig. 4.10, followed by multiple interactions

to generate the resonance, which would eventually decay into a J/ψΛ pair in the final

state, represented by the diagrams of Fig. 4.11. However, this configuration requires

a different topology, as seen in Fig. 4.10, in which the ud quarks of the Λb do not act

as a coupled spectator pair. Although it is hard to quantify the size of the amplitude
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of Fig. 4.1 with respect to that of Fig. 4.10, the fact that in this later case one of the

spectator quarks ends up in the charmed meson and the other one goes to the baryon

makes us believe that the corresponding amplitude will be reduced. We will therefore

assume the dominance of the mechanism of Fig. 4.1 over that of Fig. 4.10 by a factor

of two or more and will give predictions for different relative signs of the two processes.

We note that the lowest order contribution to the Λb → J/ψ ηΛ decay induced by

virtual D̄∗ηΞ′c states is the amplitude of Fig. 4.11 (a). We have checked, by explicit

numerical evaluation, that the next-order contribution of Fig. 4.11 (b), involving the

additional final state interaction of the ηΛ pair, gives a negligible correction, hence it

will be ignored in the results presented in Sect. 4.2.2.

Λb

J/ψ

Λ

η

D̄∗0

Ξ′
c

(a)

Λb

J/ψ

Λ

η

D̄∗0

Ξ′
c

η

Λ

(b)

Figure 4.11: Diagrammatic representation of the decay of the Λb into a virtual ηD̄∗0Ξ′c
intermediate state, followed by the D̄∗0Ξ′c → J/ψΛ conversion process, (a), and imple-
menting also the final state interaction of the final ηΛ pair, (b).

Adding the s-wave resonant contribution of Fig. 4.9 and the process initiated by an

intermediate D̄∗ηΞ′c state followed by final state interactions leading to a J/ψΛ pair

and an η meson represented by the diagram of Fig. 4.11 (a), the final amplitude for
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Λb → J/ψ ηΛ decay, producing a strange pentaquark with JP = 1/2− becomes:

M(MηΛ,MJ/ψΛ) = Vp

[
hηΛ +

∑
i

hiGi(MηΛ)ti,ηΛ(MηΛ)

+hηΛGJ/ψΛ(MJ/ψΛ) tJ/ψΛ,J/ψΛ(MJ/ψΛ)

+ β GD̄∗Ξ′c
(MD̄∗Ξ′c

) tD̄∗Ξ′c,J/ψΛ(MJ/ψΛ)

+α
MΛ∗(2000)

MηΛ −MΛ∗(2000) + i
ΓΛ∗(2000)

2

]
, (4.19)

where α is a dimensionless parameter that determines the strength of the s-wave res-

onant mechanism, while β controls the strength of Λb decaying virtually into D̄∗ηΞ′c,

relative to its decay into J/ψ ηΛ.

The amplitudes of eqs. (4.18) and (4.19) come with the matrix element 〈mΛ | ~σ~ε |

mΛb〉, tied to the s-wave character assumed for the weak decay vertex and accounting

for the spin 1/2 of the decaying Λb, and the spins 1/2 and 1 of the emitted Λ and

J/ψ meson, respectively. Moreover, as will be recalled in the following paragraphs, the

J/ψΛ (and ηΛ) interaction models are also taken in s-wave, hence the spin values of

the J/ψΛ pair could in principle be J = 1/2 or J = 3/2. However, the ~σ~ε operator

projects the J/ψΛ system into J = 1/2 as shown in [157] and in this case only the

J = 1/2 spin would be allowed for the strange pentaquark.

Our general strategy is to assume that the decay process proceeds involving the

smallest possible angular momentum at the vertices. Therefore, in order to produce

the strange pentaquark with J = 3/2 it is necessary to implement at least a p-wave

contribution in the weak decay mechanism. A p-wave operator of the form

T p−wave
tree = iBεijkσkqiεj (4.20)
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was considered in [126], where it was also shown that, if the peak seen in [40] corre-

sponds to the molecular states with JP = 3/2− generated in [35, 36] from the scalar-

vector meson interaction in s-wave, the momentum ~q in the former equation must be

that of the η-meson, which is taken in the rest frame of the ηΛ system. A decomposition

of the p-wave vertex in terms of two operators,

Ŝ3/2 = 〈mΛ | qjεj +
i

2
εijkσkqiεj | mΛb〉

Ŝ1/2 = 〈mΛ | qjεj − iεijkσkqiεj | mΛb〉 , (4.21)

that project, respectively, over the spin J = 3/2 and J = 1/2 of the two-body J/ψΛ

system, was also given in [126]:

T p−wave
tree = iBεijkσkqiεj =

2

3
B Ŝ3/2 −

2

3
B Ŝ1/2 . (4.22)

The J = 3/2 pentaquark will then be generated by the final state interaction of the

J/ψΛ pair initiated by the p-wave decay vertex of eq. (4.20), in a process of the

type represented by the diagram of Fig. 4.8(c), or also from the virtual excitation of

intermediate D̄∗ηΞ′c states followed by multiple interactions leading to J/ψΛ pairs in

the final state, as seen in Fig. 4.11(a). Note that in this later case the p-wave decay

vertex will have the same structure as that of eq. (4.20), but with a different strength

constant, B′, and will not act at tree-level.

Considering the s-wave and p-wave contributions, the amplitude that allows for the
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appearance of a pentaquark with J = 3/2 is then given by:

M(MηΛ,MJ/ψΛ) =

Vp

[
hηΛ +

∑
i

hiGi(MηΛ)ti,ηΛ(MηΛ)

]
〈mΛ | ~σ~ε | mΛb〉

+
2

3
B Ŝ3/2 −

2

3
B Ŝ1/2

+
2

3
BGJ/ψΛ(MJ/ψΛ) tJ/ψΛ,J/ψΛ(MJ/ψΛ) Ŝ3/2

+
2

3
B′GD̄∗Ξ′c

(MD̄∗Ξ′c
) tD̄∗Ξ′c,J/ψΛ(MJ/ψΛ) Ŝ3/2 , (4.23)

where the term proportional to Vp stands for the contribution of the s-wave weak decay

amplitude1, the next row contains the contribution of the p-wave tree level term and

the last two rows correspond to the final state interaction contributions that generate

the J = 3/2 pentaquark initiated by J/ψΛ states (proportional to B) or by D̄∗Ξ′c states

(proportional to B′). The former equation can be cast schematically as:

M = C1 〈mΛ | ~σ~ε | mΛb〉+ C2 Ŝ3/2 + C3Ŝ1/2 . (4.24)

Finally, the double differential cross-section for the Λb → J/ψ ηΛ decay process

reads [90]:

d2Γ

dMηΛdMJ/ψΛ

=

1

(2π)3

4MΛbMΛ

32M3
Λb

∑
|M(MηΛ,MJ/ψΛ)|22MηΛ2MJ/ψΛ ,

(4.25)

1Note that we have omitted here the contribution of an explicit Λ(2000) resonance, since its effect
does not bring any qualitative changes in the J/ψΛ pair spectrum, as will be shown in the Results
section.
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where, after performing the sum over final spins and polarizations and the average over

initial spins (see appendix in [126]), one has:

∑
|M(MηΛ,MJ/ψΛ)|2 = 3|M(MηΛ,MJ/ψΛ)|2 , (4.26)

with M being that of eqs. (4.18) or (4.19), corresponding to an s-wave weak vertex

and, hence, producing a pentaquark with J = 1/2, or

∑
|M(MηΛ,MJ/ψΛ)|2 = 3|C1|2 +

3

2
~q 2|C2|2 + 3~q 2|C3|2 , (4.27)

withM being that of eq. (4.23), corresponding to a weak vertex that also has a p-wave

term and, hence, making the production of a pentaquark with J = 3/2 possible.

Fixing the invariant mass MJ/ψΛ, one can integrate over MηΛ in order to obtain

dΓ/dMJ/ψΛ. In this case, the limits are given by:

(
M2

ηΛ

)
max

=
(
E∗Λ + E∗η

)2

−
(√

E∗Λ
2 −M2

Λ −
√
E∗η

2 −m2
η

)2

(4.28)

and

(
M2

ηΛ

)
min

=
(
E∗Λ + E∗η

)2

−
(√

E∗Λ
2 −M2

Λ +
√
E∗η

2 −m2
η

)2

, (4.29)

where

E∗Λ =
M2

J/ψΛ −m2
J/ψ +M2

Λ

2MJ/ψΛ

, (4.30)
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E∗η =
M2

Λb
−M2

J/ψΛ −m2
η

2MJ/ψΛ

. (4.31)
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Figure 4.12: Dalitz plot showing the locus of allowed MJ/ΨΛ, MJ/Ψ η invariant masses
in the decay Λb → J/ψ ηΛ. The gray band covers the uncertainties assumed in the
present work for the molecular S = −1 pentaquark predicted in Refs. [35,36], while the
vertical line signals the position of the J/Ψ η bound state found in the model Ref. [158].

The Dalitz plot showing the allowed final invariant masses covered in the Λb →

J/ψ ηΛ decay is presented in Fig. 4.12. The plot is displayed in terms of the MJ/ΨΛ

and MJ/Ψ η invariant masses. The value of MηΛ can straightforwardly be derived from

the relation: M2
J/ψΛ + M2

ηΛ + M2
J/ψ η = M2

Λb
+ M2

Λ + m2
J/ψ + m2

η, which shows that

there are only two independent invariant masses. The grey band in the figure covers

the uncertainties assumed in the present work for the molecular S = −1 pentaquark

predicted in Refs. [35,36], while the vertical line signals the position of the J/Ψ η bound
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state found in the model Ref. [158], with quantum numbers 0−(1+−), mostly formed

from D∗D̄ + c.c.. We note that such a state, which would be a partner state of the

X(3872) with negative C parity and is predicted in some tetra-quark models [159],

has not been found experimentally so far. Furthermore, according to Ref. [158], the

coupling of this state to J/ψ η is ten times smaller than that to D∗D̄+c.c.. This is more

than twice the reduction of a factor four found for the coupling of our pentaquark state

to J/ψΛ with respect to D̄∗Ξ′c. However, the main reason for neglecting the J/ψ η final

state interaction, as we do here, is that, even if a resonance which coupled to J/ψ η

existed, there would be no reflection of it in the J/ψΛ mass distribution in our case

because the Dalitz plot is not narrow enough. Indeed, we recall that the J/ψΛ mass

distribution is obtained by integrating the double differential cross section of eq. (4.25)

over MηΛ, which is equivalent to integrating over MJ/ψ η according to what we have

mentioned at the begining of this paragraph. Therefore, on inspecting Fig. 4.12, we

conclude that the narrow structure in the MJ/ψ η distribution, signaled by the vertical

dashed line, will not affect the MJ/ψΛ spectrum in the region of the S = −1 pentaquark,

signaled by the horizontal grey area that accounts for the uncertainties assumed in this

work for the S = −1 molecular state. The J/ψ η state would enhance the MJ/ψΛ

spectrum over a relatively wide range of energies, from 4.7 GeV to 5 GeV, not leaving

any clear peaked structure.

Next, we briefly describe the theoretical models employed to obtain the amplitudes

ti,ηΛ, tJ/ψΛ,J/ψΛ and tD̄∗Ξ′c,J/ψΛ, which account for the final state interaction effects.

The S = −1 meson-baryon amplitude with ηΛ in the final state appearing in

diagram (b) of Fig. 4.8 is determined from the coupled-channel unitary Model 1 and

Model 2 of Sect. 4.1.1 which are referred to WT+NLO and WT+NLO+Born (η
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chan) models widely explained in the second chapter.

With respect to the final state interaction in the J/ψΛ sector, represented by the

diagrams of Fig. 4.8(c) and Fig. 4.11(a), we recall that two states with strangeness and

hidden charm with JP = 3/2− and I = 0 were found in Refs. [35,36] as meson-baryon

molecules, having pole positions
√
s = 4368− 2.8i and

√
s = 4547− 6.4i and coupling

to J/ψΛ states with strength | gJ/ψΛ |= 0.47 and 0.61, respectively. The magnitude

of each of these couplings is relatively small compared to the coupling of the pole to

the main meson-baryon component, which for the lower energy pole is D̄∗Ξc, with

| gD̄∗Ξc |= 3.6, while for the higher energy one is D̄∗Ξ′c, with | gD̄∗Ξ′c |= 2.6. In either

case, | gJ/ψΛ | is large enough to create a peak in the mass distribution, as we shall see.

As candidate for the strangeness −1 pentaquark, we will consider the state at higher

energy since its mass is close to the non-strange pentaquark found in [40]. One must

however accept that the mass obtained for these states has uncertainties since, unlike in

other sectors, one does not have any experimental data to constrain the parameters of

the theory. We therefore take the nominal value of about MR = 4550 MeV for the mass

of the strange pentaquark and will explore the stability of our results to variations of

this mass. We shall take ΓR = 10 MeV in agreement with the findings of [35,36]. Our

explorations are implemented employing the following Breit-Wigner representation for

the tJ/ψΛ,J/ψΛ and tD̄∗Ξ′c,J/ψΛ amplitudes

tJ/ψΛ,J/ψΛ =
g2
J/ψΛ

MJ/ψΛ −MR + i ΓR
2

, (4.32)

tD̄∗Ξ′c,J/ψΛ =
gD̄∗Ξ′c gJ/ψΛ

MJ/ψΛ −MR + i ΓR
2

. (4.33)

Then the production of the resonance is done through the J/ψΛ → J/ψΛ and
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D̄∗Ξ′c → J/ψΛ amplitudes, parametrized through the expressions given in Eqs. (4.32)

and (4.33), as seen in diagrams of Fig. 4.8(c) and Fig. 4.11(a), respectively, as well as

in eqs. (4.18), (4.19) or (4.23). The values of the couplings are gJ/ψΛ = −0.61 − 0.06i

and gD̄∗Ξ′c = 2.61 − 0.13i. The loop functions GJ/ψΛ and GD̄∗Ξ′c
appearing in these

equations are taken from [35, 36], where a dimensional regularization method with a

scale µ = 1000 MeV was employed, using subtraction constants aJ/ψΛ = aD̄∗Ξ′c = −2.3

(using our convention, −8.2 · 10−3).

4.2.2 Results and discussion

We start this section by presenting, in Fig. 4.13, the invariant mass distributions of

J/ψΛ and ηΛ states produced in the decay Λb → J/ψ ηΛ, obtained from the simplest

s-wave weak decay approach of eq. (4.18) (only the 3 diagrams of Fig. 4.8) and em-

ploying Model 1 (dashed blue line) and Model 2 (solid black line) for the S = −1 ηΛ

interaction. For both models, the peak of the pentaquark is clearly seen at 4550 MeV

(top panel), the value of the mass MR employed in the parametrization of eq. (4.32).

We can also conclude that this J/ψΛ Breit-Wigner term has a dominant contribution

to the scattering amplitude in the resonance region. The invariant mass distribution of

ηΛ pairs is shown in the bottom panel of Fig. 4.13, where the J/ψΛ resonant structure

has disappeared since the invariant MJ/ψΛ masses have been integrated out. The ηΛ

invariant mass distributions have essentially the same shape as those already shown in

the lower panel of Fig. 4.5, but they are enhanced notably due to the effects of the ad-

ditional contribution associated with the hidden charm strange pentaquark whose am-

plitude is significant at 10 MeV above and below the resonance mass MR = 4550 MeV

(see the orange band in Fig. 4.14). Note that the enhancement of ηΛ invariant mass
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Figure 4.13: Invariant mass distributions of J/ψΛ (top panel) and ηΛ (bottom panel)
states produced in the decay Λb → J/ψ ηΛ, obtained for Model 1 (dashed blue line)
and Model 2 (solid black line).

distributions in Fig. 4.13 is produced just above 1800 MeV which is in accordance with

the fact that this orange band overlaps the accessible area for the possible values of

the MηΛ and MJ/ψΛ invariant masses, as can be seen in Fig. 4.14.

In the following, results will be presented for only one model of the strong ηΛ inter-

action, chosen to be Model 2 as it provides a better overall account of the scattering

observables. The J/ψΛ invariant mass distributions displayed in Figs. 4.15 and 4.16,
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Figure 4.14: Dalitz plot showing the locus of allowed MJ/ΨΛ, MηΛ invariant masses
in the decay Λb → J/ψ ηΛ. The orange band covers the uncertainties assumed in
eq. (4.32) for the molecular S = −1 pentaquark, namely MR = 4550 MeV and ΓR =
10 MeV.

for different values of the pentaquark coupling to J/ψΛ and for different values of the

pentaquark mass, respectively, show obvious trends. From Fig. 4.15 we can conclude

that the pentaquark could be seen over the background even if its coupling to J/ψΛ

states were as low as | gJ/ψΛ |= 0.48. The unitary approaches of Refs. [35–38] predict

values for this coupling in between 0.5 − 1.0, which make us believe that the strange

pentaquark could leave a clear signature in the J/ψΛ mass spectrum.

The invariant mass distribution of ηΛ states is not sensitive to the characteristics of

the pentaquark, as already noted in the discussion of Fig 4.13. We have checked that

changes in either the coupling | gJ/ψΛ | or in the mass MR do not practically change

the aspect of the ηΛ invariant mass spectrum.

In Fig. 4.17 we explore the effect of including the additional effect of a Λ(2000) s-

wave resonance coupling to ηΛ states. The unknown coupling strength α of eq. (4.19)

is varied such that it produces a clearly visible change in the spectrum of ηΛ invariant
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Figure 4.15: Invariant mass distributions of J/ψΛ states produced in the decay Λb →
J/ψ ηΛ, obtained for Model 2 and for different values of the coupling of the pentaquark
to J/ψΛ.
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Figure 4.16: Invariant mass distributions of J/ψΛ states produced in the decay Λb →
J/ψ ηΛ, obtained for Model 2 and for different values of the pentaquark mass states.

masses with respect to what we obtain in the absence of this contribution, as seen

in the bottom panel of Fig. 4.17. In the top panel we observe that the inclusion of

the Λ(2000) on the J/ψΛ pair distribution, where the ηΛ invariant masses have been

integrated out, essentially enhances the strength while keeping the same shape for the
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different values of α.
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Figure 4.17: Invariant mass distributions of J/ψΛ (top panel) and ηΛ (bottom panel)
states produced in the decay Λb → J/ψ ηΛ, obtained from Model 2, assuming a
pentaquark of JP = 1/2− and different strengths of the Λ(2000) resonant contribution.

We next explored the influence of the strange pentaquark being initiated by the

excitation of a virtual D̄∗0ηΞ′c state, followed by the multiple scattering of D̄∗0Ξ′c leading

to a final J/ψΛ pair and an η meson. As discussed in the previous section, the topology

for this decay should lead to a reduced amplitude with respect to that of the J/ψ ηΛ

case. We implement this phenomenologically through the parameter β, as seen in
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eq. (4.19), which is given the values −0.5,−0.25, 0.0, 0.25, and 0.5 accounting also for

different relative sign cases. The results obtained with the negative values are displayed

in Fig. 4.18 and those with the positive values in Fig. 4.19. In all the cases, the
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Figure 4.18: Invariant mass distributions of J/ψΛ (top panel) and ηΛ (bottom panel)
states produced in the decay Λb → J/ψ ηΛ, obtained from Model 2, assuming a
pentaquark of JP = 1/2− and different strengths of the D̄∗0Ξ′c intermediate state
contribution.

pentaquark signal, seen in the J/ψΛ invariant mass distribution (top panels), clearly

dominates over the background; for the negative values of β the signal is enhanced more

strongly due to a constructive interference between both mechanisms of the pentaquark
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production, since gJ/ψΛ and gD̄∗Ξ′c have opposite signs. Conversely, for the positive

values of β, we have destructive interference between these two mechanisms responsible

for the pentaquark production. It can also be concluded from Figs. 4.18 and 4.19 that

the D̄∗Ξ′c mechanism dominates over the J/ψΛ one. This fact is reflected on the ηΛ

invariant mass distributions of the bottom panels in Figs. 4.18 and 4.19 which show

a tremendous enhancement accounting for the new contributions to the pentaquark

production.

Up to here, we have been discussing the results assuming the pentaquark to have

JP = 1/2−, which can then be produced by an s-wave mechanism for the Λb decay.

In the case of a JP = 3/2− pentaquark, which is another of the possibilities for the

states predicted in [35, 36], it is necessary to implement at least an additional p-wave

contribution, as in eq. (4.20). Our results for this case are displayed in Fig. 4.20. The

dotted line represents the case in which only the s-wave contribution is kept, producing

a J/ψΛ pair in 1/2−. Since the pentaquark is now assumed to have JP = 3/2−, it

does not show in that J/ψΛ invariant mass spectrum, which reduces to a structureless

background. We could have included, as in the study of the J = 1/2 pentaquark

case, the Λ(2000) s-wave resonance contribution, but we have omitted this effect in

the present J = 3/2 discussion because, although it would be seen as an additional

structure in the ηΛ invariant mass distribution, it would simply contribute a practically

constant strength to the spectrum of J/ψΛ pairs, similarly to what we have found in

Fig. 4.17.

When we add the p-wave vertex of eq. (4.20), we obtain the distributions displayed

by the dashed curves in Fig. 4.20. The size of the coupling constant, B = 0.001

MeV−1, has been chosen so that the p-wave contribution has a visible effect over the
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Figure 4.19: Invariant mass distributions of J/ψΛ (top panel) and ηΛ (bottom panel)
states produced in the decay Λb → J/ψ ηΛ, obtained from Model 2, assuming a
pentaquark of JP = 1/2− and different strengths of the D̄∗0Ξ′c intermediate state
contribution.

s-wave J/ψΛ and ηΛ invariant mass distributions. The J/ψΛ spectrum, shown in

the top panel of Fig. 4.20, presents a dip at the pentaquak mass, which comes from

the interference between the tree level and the J/ψΛ final state interaction terms,

displayed by Figs. 4.8(a) and (c), respectively, as can also be seen in eq. (4.23). This is

the same behaviour as that observed in the study of the strange pentaquark from the

Λb → J/ψK0Λ decay in [126]. In the present work, we also incorporate the excitation
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of the pentaquark from the multiple scattering of D̄∗0Ξ′c pairs produced in the virtual

Λb → D̄∗0ηΞ′c decay, which proceeds also in p-wave with a strength B′. This is a

necessary consideration if one wants to interpret the pentaquark as the state emerging

from the interaction of D̄∗0Ξ′c and its related coupled states. If we now assume a ratio

between the Λb → D̄∗0ηΞ′c and Λb → J/ψ ηΛ amplitudes of B′/B = 0.5, we obtain

the solid curve, where the dip has turned into a wiggly shape. When the sign of B′

is opposed to that of B, we find a similar behaviour, although in a reflected way,

as depicted by the dot-dashed curve. In either case, a visible pentaquark signal is

obtained.

With all the options and uncertainties considered, we see that the existence of the

molecular state predicted in Refs. [35,36] leads to a clear signal in the J/ψΛ invariant

mass spectrum in the range of about 4450-4650 MeV. If a signal was seen outside this

range its explanation within the molecular picture would be highly questionable. On

the other hand, the non observation of a signal would indicate that the pentaquark

state does not exist, or that its coupling to J/ψΛ is significantly smaller than what

was determined in the model of [35, 36], in either case questioning the validity of this

model.
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Figure 4.20: Invariant mass distributions of J/ψΛ (top panel) and ηΛ (bottom panel)
states produced in the decay Λb → J/ψ ηΛ, obtained from Model 2, assuming a
pentaquark of JP = 3/2−. The dotted line is obtained with only an s-wave weak decay
vertex, the dashed line also contains a p-wave contribution with B = 0.001 MeV−1,
and the solid and dot-dashed line implement the additional contribution of the D̄∗0Ξ′c
intermediate state with B′/B = 0.5 and B′/B = −0.5 respectively.



Conclusions

The purpose of this thesis has been to study the S = −1 meson-baryon interaction in

s-wave employing an effective chiral SU(3) lagrangian up to NLO and implementing

unitarization in coupled channels. Such a study requires fixing the NLO coefficients of

the lagrangian which are not well established yet.

In general, the low energy constants of an effective lagrangian are obtained from

fitting procedures to the experimental available data. These parameters have been

constrained to a large set of experimental K−p scattering data into πΣ, K̄N, πΛ chan-

nels, to γ, Rn and Rc branching ratios, and to the precise SIDDHARTA value of the

energy shift and width of kaonic hydrogen. The novelty of our work is the inclusion

of the scattering data from K−p → K+Ξ−, K0Ξ0 reactions in the fitting procedure,

since these reactions become especially sensitive to higher order terms, as they cannot

proceed with the WT term of the lagrangian, except indirectly via unitarization contri-

butions. We have paid special attention to the effects that a systematic inclusion in the

lagrangian of the NLO and Born terms has on the low energy constants, particularly

159
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on the NLO coefficients.

The main difference among the models we get from the fits is reflected in the isospin

components of the total cross sections of the reactions we study. To check the reliability

of these models, we have performed new fits which take into account data from isospin

filtering reactions. The stability and accuracy of the parameters have been tested by

including phenomenological resonant contributions to the scattering amplitudes of the

reactions that are especially sensitive to the NLO corrections. These resonant terms

have been useful to reach better agreement with the experimental data.

In order to explore other processes that take place at higher energies and which

can provide more information of the NLO parameters, we have studied the Λb decay

into states containing a J/Ψ and meson-baryon pairs. Furthermore, the Λb → J/ψηΛ

process has allowed us to study the implications of observing a possible strange partner

of the hidden charm pentaquark state Pc(4450). The conclusions and analysis of each

chapter are summarized below.

Chapter 2 is devoted to studying the role played by NLO and Born terms, as well

as the relevance of certain reactions in obtaining a more reliable parametrization for

the NLO coefficients.

We started by comparing different fitting procedures consisting of unitarized calcu-

lations employing a kernel in which we include or not the NLO term and which take

into account or not the scattering data of the K−p→ KΞ reactions. From the results

of all these combinations, and particularly from the successful reproduction of the ex-

perimental data reached by the WT+NLO model, we have shown for the first time

that the NLO order terms of the chiral Lagrangian are absolutely necessary to repro-
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duce the K−p→ KΞ reaction data. In this way, the sensitivity of the NLO lagrangian

to the K−p → KΞ reactions has been clearly established. Given this sensitivity and

the fact that the existing K−p→ KΞ scattering data is limited and suffers from large

uncertainties, more accurate data is required before giving a more definitive answer

about the values of the NLO coefficients.

Next, contrary to the assumption we made about the little effect of the Born terms

in the earlier stage which was supported by studies of other groups, we have proved

that they become non-negligible in the K−p → KΞ reactions. The parametrization

of the new fit (WT+NLO+Born) led to significant changes in the NLO coefficients

compared to those of the WT+NLO model. Despite this, we do not get any im-

provement either in accuracy of the parameters nor in the χ2
d.o.f.. This fact has led us

to an interesting finding that allows us to understand how such different parametriza-

tions could give such a similar agreement with the experimental data: the inclusion

or non inclusion of the Born terms can seriously modify the isospin decomposition of

the K−p→ KΞ cross sections due to their sensitivity to the higher order terms. Such

differences in the isospin components point to the need for constraining the models

with experimental data from reactions that proceed through I = 0 or I = 1, thus

providing more reliable parameters of the meson-baryon lagrangian.

Most of the data employed in our fits is coming from antikaon proton scattering

and therefore contain contributions from both isospin I = 0 and I = 1 components;

the only exception is the π0Σ0 channel, which selects I = 0. We then widened the

number of experimental observables used in the fits including scattering data from

K−p→ ηΛ, ηΣ0 reactions, which are of pure isospin 0 and 1 respectively. These efforts

culminated in the WT+NLO+Born (η chan) model that, as far as we know, is
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the only chiral model in the literature which reproduces K−p scattering data into

all possible S = −1 channels with good agreement. Regarding the parametrization

related to this model, the inclusion of this new experimental data has been crucial for

obtaining a very homogeneous and accurate set of NLO coefficients, as well as natural

sized values for all the subtraction constants. This leads us to think that the inclusion

of more experimental data from isospin filtering processes could favour more reliable

values for the low energy constants.

The proposed measurement of the K0
Lp → K+Ξ0 reactions in I = 1 with a sec-

ondary K0
L beam at Jlab would complement the information one can obtain from K−p

scattering data to constrain the theoretical models. We have presented our prediction

for this reaction employing some of our models, concluding that, as more contributions

are taken into account in the interaction kernel and more data is included in the fit,

the predicted values are closer to the only two available experimental points of this

reaction. Neither of these two data points have been used in any fitting procedure.

This prediction seems to confirm the reliability of our parametrizations, particularly

the WT+NLO+Born (η chan) one, which we consider our best pure chiral model.

In order to improve the description of the experimental K−p→ KΞ and K−p→ ηΛ

scattering data, it is also possible to consider the inclusion of high-spin resonaces in

such processes. Since they are the most sensitive reactions to the NLO terms, this

could also lead to modifications of the NLO parameters. In this way, we can study the

stability and accuracy of the parameters present in the models. This is performed in

the third chapter of this thesis.

We first allowed for the explicit contribution of the high spin hyperon resonances

Σ(2030) and Σ(2250) to the K−p → KΞ amplitudes, aiming at establishing an ap-
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propriate amount for the background, which in this work is associated to the chiral

contributions, and, hence, obtaining more reliable values of the associated low en-

ergy constants. The resonant amplitude has been calculated by applying the Rarita-

Schwinger method while the chiral amplitude has been obtained employing a lagrangian

with a WT and NLO contribution giving rise to the NLO+RES model. Since the

resonant terms introduce an angular dependence in the amplitudes, we also attempted

the description of the KΞ differential cross sections. We find the resonant terms to

have a double benefit. On the one hand, they allow for a reasonable overall description

of the scattering data, including the total and the differential cross sections of the KΞ

production reactions. On the other hand, by absorbing certain structures of the cross

section, the inclusion of resonant contributions permits finding a more stable solution

and therefore more precise values of the low energy constants of the chiral unitary

model.

Then, we performed a similar study for WT+NLO+Born (η chan) model, which

we consider our best chiral model. In contrast to the study carried out previously, this

model has been constrained with additional data (K−p → ηΛ cross section data),

meaning that, since the K−p → ηΛ reaction is also very senstive to the NLO terms,

the corresponding NLO coefficients are more reliable. This makes the analysis of sta-

bility acquire a more decisive character. Aiming for this, we extended the resonant

contributions to the K−p → ηΛ process, particularly we have taken into account

the contribution of the Λ(1890) resonance which has also been incorporated into the

K−p → KΞ amplitudes, in addition to the Σ(2030) and Σ(2250) resonances. The

results obtained confirm the previous findings: there is a notable improvement of the

agreement with the experimental data and the parameters take similar values to the

ones corresponding to the model without resonances. This stability is specially marked
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for most of the NLO coefficients.

Having proved the effects of the isospin filtering processes on the NLO coefficients,

in Chapter 4 we have shown that the Λb → J/ψ ηΛ decay and, particularly, the

Λb → J/ψ KΞ one provide very valuable information concerning the meson-baryon

interaction in the S = −1 and isospin I = 0 sector. The dynamics of the reaction,

where the light quarks of the Λb play a spectator role, is such that it filters I = 0 in

the final state. This is so because the ud quarks in the Λb baryon necessarily couple to

I = 0 and the weak decay favours the b→ cc̄s transition, so there is an s-quark at the

end of the weak process, which together with the ud pair in I = 0 gives a total isospin

I = 0. Thus, these decays may offer complementary information to that obtained from

K−p → KΞ scattering data, where both I = 0 and I = 1 contributions combine to

give the final results.

Our study is based on the models WT+NLO (Model 1) and WT+NLO+Born

(η chan) (Model 2) developed in this thesis to describe the K−p scattering. Both

models produce quite different invariant mass distributions for the decay of the Λb into

KΞ and ηΛ states, which are also in turn quite different from phase space, indicating

the sensitivity of these processes to the strong internal dynamics. The differences

between models are more visible in the Λb → J/ψ KΞ decay process. The reason stems

from the fact that the decay into ηΛ can proceed at tree level, while the selectivity

of the Λb decay processes producing the J/ψ does not allow the formation of a KΞ

pair in a primary step. This is only produced through rescattering of the K̄N and

ηΛ primary components. Thus the Λb → J/ψ KΞ reaction is directly proportional to

the meson-baryon scattering amplitude, concretely to the ηΛ → KΞ and K̄N → KΞ

components in I = 0, which can lead to a marked pattern of interferences. These
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models also predict sizable differences for the Λb decay in the energy region of KΞ and

ηΛ production, reflecting that the I = 0 component of the meson-baryon interaction,

which is the one playing a role in the Λb decay processes studied here, is not very well

constrained by the fitting to K−p→ KΞ data.

The recent finding of two structures in the J/ψp invariant mass distribution of the

Λb → J/ψK−p decay, associated to two pentaquark states, together with its plausible

explanation in terms of a previously predicted hidden charm baryon molecular state,

prompted us to study the decay of the Λb into J/ψ ηΛ final states. The Λb → J/ψ ηΛ

decay will occur with similar strength as the Λb → J/ψK−p one, and one could observe,

in the J/ψΛ invariant mass spectrum, possible strange partners of the two non-strange

pentaquark states reported by the LHCb collaboration. We recall that when the hidden

charm N∗ resonances were theoretically predicted as molecular states in several unitary

approaches, some partner hidden charm strange Λ∗ states were also found. We have

taken advantage of this finding and have predicted what signal one of these state should

leave in the ηΛ and J/ψΛ invariant mass distributions of the Λb → J/ψ ηΛ reaction.

We have found that, taking the values of the couplings of the hidden charm Λ∗ state to

the D̄∗0Ξ′c and J/ψΛ channels obtained in the unitary approaches, one should observe

clear and sizable peaks in the J/ψΛ mass distribution of the Λb → J/ψ ηΛ decay. We

have studied the dependence of our results on reasonable changes in the parameters

of the models involved in our description of the process, as well as on the unknown

properties of the speculated hidden charm strange pentaquark. We have observed that,

while changes appear in the position of the peak and in the shapes of the distributions,

a resonance signal in the J/ψΛ invariant mass spectrum is clearly seen in all the cases.

This gives us confidence that such an experiment should result in successful proof of

the existence of this new state and we encourage the experimental analysis of this
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decay channel, for which our theoretical study predicts a similar strength than for the

Λb → J/ψK−p reaction already analyzed by LHCb.

The present work is our first step toward building a more complete chiral model in

S = −1 sector to help analyze the forthcoming more precise data in the KΞ produc-

tion. In addition, the findings and the features observed in this study indicate that the

actual measure of the complementary observables analyzed here would provide valu-

able information, novel so far, that would enrich our knowledge of the meson-baryon

interaction and help us make progress in our understanding of hadron dynamics.



Appendix A: Coupling coefficients

Table 4.1 presents the Cij coefficients of eq. (1.59), while Table 4.2 presents the Dij,

Lij coefficients of eq. (1.65). These three sets of Clebsch-Gordan-type coefficients are

symmetric under the interchange of initial and final meson-baryon pairs.

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 2 1
√

3/2 1/2 3/2
√

3/2 0 1 0 0

K̄0n 2 −
√

3/2 1/2 3/2 −
√

3/2 1 0 0 0

π0Λ 0 0 0 0 0 0
√

3/2 −
√

3/2

π0Σ0 0 0 0 2 2 1/2 1/2

ηΛ 0 0 0 0 3/2 3/2

ηΣ0 0 0 0
√

3/2 −
√

3/2

π+Σ− 2 0 1 0

π−Σ+ 2 0 1

K+Ξ− 2 1

K0Ξ0 2

Table 4.1: Cij coefficients of Eq. (1.59).
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In addition, the fourth set of Clebsch-Gordan coefficients present in the direct and

cross Born contributions to the interaction kernel, eqs. (1.61) and (1.62 ), are given

by the following relations extracted from [15], but we should keep in mind a remark

concerning their symmetry under the combined transformation B1 ↔ B2 and φ ↔ φ̄.

In other words, C
(Born)

φ̄B1,B2
= C

(Born)
φB2,B1

, for instance, C
(Born)

K̄0n,Λ
= C

(Born)

K0Λ,n.

C
(Born)

K−p,Λ = C
(Born)

K̄0n,Λ
= C

(Born)

ηΞ−,Ξ− = C
(Born)

ηΞ0,Ξ0 = −D − 3F,

√
2C

(Born)

K−p,Σ0 = −
√

2C
(Born)

K̄0n,Σ0 = C
(Born)

K̄0p,Σ+ = C
(Born)

K−n,Σ− = C
(Born)

π+Ξ−,Ξ0

=
√

2C
(Born)

π0Ξ−,Ξ− = −
√

2C
(Born)

π0Ξ0,Ξ0 =
√

6(D − F ),

C
(Born)

π0Σ0,Λ = C
(Born)

π+Σ−,Λ = C
(Born)

π−Σ+,Λ = C
(Born)

ηΣ+,Σ+ = C
(Born)

ηΣ−,Σ−

= C
(Born)

ηΣ0,Σ0 = −C(Born)
ηΛ,Λ = 2D,

C
(Born)

π+Σ−,Σ0 = −C(Born)

π−Σ+,Σ0 = −C(Born)

π0Σ−,Σ− = C
(Born)

π0Σ+,Σ+ = 2
√

3F,

C
(Born)

K+Ξ−,Λ = C
(Born)

K0Ξ0,Λ = C(Born)
ηp,p = C(Born)

ηn,n = −D + 3F,

√
2C

(Born)

K+Ξ−,Σ0 = −
√

2C
(Born)

K0Ξ0,Σ0 = C
(Born)

π−p,n =
√

2C
(Born)

π0p,p = −
√

2C
(Born)

π0n,n

= C
(Born)

K̄0Σ−,Ξ−
= C
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K−Σ+,Ξ0 =
√

6(D + F ). (A.1)
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Table 4.2: Dij and Lij coefficients of Eq. (1.65).
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Resumen

En esta tesis se ha estudiado la interacción mesón-barión en onda S en el sector

S = −1 empleando un lagrangiano de SU(3) hasta segundo orden, implementando la

unitarización en canales acoplados. La condición indispensable para llevar a cabo un

estudio de este tipo, forzosamente, pasa por fijar el valor de los coeficientes presentes

en los términos de segundo orden, los cuales no poseen un valor bien determinado.

Generalmente, las constantes de baja enerǵıa de los lagrangianos efectivos se ob-

tienen mediante procesos de ajuste a los datos experimentales disponibles. Tradi-

cionalmente, en este sector de extrañeza, dichos parámetros se ajustaban a los datos

experimentales de la dispersión K−p a los canales πΣ, K̄N, πΛ, aśı como a las razones

entre secciones eficaces en el umbral de producción de K−p: γ, Rn y Rc; y a los precisos

valores del corrimiento y la anchura parcial del estado 1s del hidrógeno kaónico obtenido

por la colaboración SIDDHARTA. Lo novedoso en nuestra tesis es la inclusión de datos

experimentales procedentes de la reacción de dispersión K−p → K+Ξ−, K0Ξ0 en los
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procesos de ajuste. La motivación para ello se debe a la especial sensibilidad de estas

reacciones a los términos de órdenes superiores, ya que estas reacciones no proceden de

manera directa mediante el término WT que es el dominante a primer orden. A esto se

le suma el hecho que las contribuciones provenientes de la redispersión de los canales

acoplados no es capaz de reproducir adecuadamente los datos experimentales. Dado lo

anterior, nos centramos en estudiar los efectos producidos por la inclusión sistemática

en el lagrangiano de los términos de segundo orden (”NLO”) y los de Born sobre las

constantes de baja enerǵıa, particularmente sobre coeficientes de ”NLO”.

La principal diferencia entre los modelos que se obtienen de los ajustes se refleja

en las componentes de isospin de la sección eficaz total de las reacciones que aqúı se

estudian. Aśı pues, para comprobar la fiabilidad de estos modelos, se llevaron a cabo

nuevos ajustes teniendo en cuenta datos experimentales procedentes de reacciones de

filtrado de isospin.

Adicionalmente, se han estudiado la estabilidad y la precisión de los parámetros

obtenidos de los ajustes añadiendo contribuciones resonantes de manera fenomenológica

a aquellas amplitudes de dispersión asociadas a las reacciones que son especialmente

sensibles a las correcciones de segundo orden. Debe destacarse que las contribuciones

resonantes han proporcionado una mejora del acuerdo entre los modelos teóricos y los

datos experimentales.

La desintegración de Λb dando lugar a estados que contienen una part́ıcula J/Ψ

junto con un par mesón-barión resulta ser un proceso muy interesante para extraer

información sobre los parámetros de ”NLO” a enerǵıas más altas. Además, el proceso

Λb → J/ψ ηΛ nos ha permitido estudiar las implicaciones que tendŕıa la posible exis-

tencia de un homólogo extraño del pentaquark con encanto escondido Pc(4450). Las
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conclusiones y el análisis de cada caṕıtulo están descritos en los párrafos siguientes.

El Caṕıtulo 2 está dedicado al estudio del papel que juegan los términos de ”NLO” y

los de Born, aśı como la relevancia de ciertas reacciones para obtener parametrizaciones

más fiables de los coeficientes de ”NLO”.

Al principio, comparamos diferentes ajustes que se basaban en cálculos unitarizados

empleando núcleos de interacción que inclúıan o no los términos de ”NLO” y para los

cuales se teńıan en cuenta o no los datos experimentales de la reacción de dispersión

K−p→ KΞ. Fruto de los resultados obtenidos de todas estas posibles combinaciones,

y más particularmente de la excelente reproducción de los datos experimentales lograda

por el modelo WT+NLO, se mostró por vez primera que los términos de ”NLO” del

lagrangiano quiral son absolutamente necesarios para reproducir los datos experimen-

tales de las reacciones K−p → KΞ. De este modo, se evidenció la sensibilidad del

segundo orden del lagrangiano a las reacciones K−p → KΞ. Dada esta sensibilidad

junto con el hecho que los datos existentes de la reacción de dispersión K−p → KΞ

son limitados y que tienen asociada una gran incertidumbre, para poder dar una re-

spuesta definitiva sobre los valores de los parámetros de ”NLO” se requeriŕıan datos

experimentales más precisos.

Después, contrariamente a lo que se asumió a cerca del negligible efecto de los

términos de Born, demostramos que estas contribuciones no pueden menospreciarse en

las reacciones K−p→ KΞ. Las significativas diferencias en los coeficientes de ”NLO”

entre la nueva parametrización obtenida para el modelo WT+NLO+Born y la que

se obtuvo para el modelo WT+NLO confirmaron el hecho anterior. A pesar de esto,

no se apreció ninguna mejora en la precisión de los parámetros ni en el χ2
d.o.f.. Este

resultado nos condujo a un interesante hallazgo que nos permitió entender cómo dos
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parametrizaciones tan diferentes pueden tener una bondad del ajuste tan similar: la

inclusión o no de los términos de Born puede modificar notablemente la descomposición

en componentes de isospin de la sección eficaz total de la reacción K−p→ KΞ debido a

su sensibilidad a los términos de orden superior. Tales diferencias entre las componentes

de isospin nos llevan a pensar que si nuestros modelos se ajustan a datos experimentales

procedentes de reacciones que actúan como selectores de isospin podremos extraer

valores más realistas para los parámetros presentes en el lagrangiano.

La mayoŕıa de los datos experimentales empleados en nuestros ajustes vienen de

la dispersión protón-antikaón y, consecuentemente, contienen contribuciones tanto de

componentes de isospin I = 0 como de I = 1; siendo la única excepción el canal

π0Σ0, que filtra isospin 0. Aśı pues, se decidió ampliar el numero de observables

empleados en los ajustes añadiendo datos experimentales de las reacciones de dispersión

K−p→ ηΛ, ηΣ0, las cuales tienen solamente una única componente de isospin para sus

secciones eficaces, i. e., isospin 0 y 1 respectivamente. Todos estos esfuerzos culminaron

con la obtención del modelo WT+NLO+Born (η chan) que, hasta donde sabemos,

es el único capaz de reproducir razonablemente bien los datos de la dispersión K−p

a todos los posibles canales del sector S = −1. Respecto a los parámetros de este

modelo, se puede destacar el papel relevante de estos nuevos datos experimentales a la

hora de obtener unos valores muy homogéneos y precisos para las constantes de ”NLO”

junto con unas constantes de substracción cuyos valores se acercan más a los valores

naturales. A la vista de estos resultados, la inclusión en los ajustes de nuevas reacciones

donde se filtre el isospin podŕıa favorecer la obtención de valores más realistas para las

constantes de baja enerǵıa.

La propuesta para medir la reacción K0
Lp → K+Ξ0 en I = 1 empleando el haz
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secundario de K0
L en Jlab podŕıa suponer una fuente de información complementaria

a la dispersión K−p. Se ha presentado una predicción para esta reacción empleando

algunos de nuestros modelos de la cual se concluye que, cuantas más contribuciones se

tienen en cuenta en el núcleo de interacción y más datos experimentales se incluyen

en los ajustes, más cerca estamos de reproducir los dos únicos puntos disponibles para

esta reacción. Hay que remarcar que ninguno de estos puntos se ha utilizado en los

ajustes. A la luz de estos resultados, parece que nuestros parámetros toman cada vez

valores más confiables, particularmente los del modelo WT+NLO+Born (η chan),

al cual consideramos nuestro mejor modelo quiral puro.

Con la intención de mejorar la descripción de los datos experimentales de las reac-

ciones K−p → KΞ y K−p → ηΛ, se incluyeron resonancias de spin alto en estos

procesos. Como estas reacciones son las más sensibles a los términos de ”NLO”, este

hecho podŕıa inducir modificaciones en los valores de los coeficientes de ”NLO”. De

este modo, podemos estudiar la estabilidad y presición de los parámetros presentes en

los modelos. Este estudio se llevó a cabo en el Caṕıtulo 3.

La primera parte de este estudio consistió en la inclusión expĺıcita de los hyper-

ones de spin alto Σ(2030) y Σ(2250) en la amplitud de dispersión K−p→ KΞ, con la

intención de fijar una contribución quiral con la cual los términos resonantes puedan

interferir para reproducir adecuadamente las estructuras mostradas por los datos ex-

perimentales sin tener que forzar a los parámetros de ”NLO” a tomar valores sobres-

timados. Para calcular la amplitud resonante, hemos utilizado el método de Rarita-

Schwinger, mientras que la amplitud quiral se ha calculado empleando un lagrangiano

con los términos WT y NLO dando lugar a un nuevo modelo, NLO+RES. Como

los términos resonantes introducen una dependencia angular en las amplitudes, se de-
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cidió aprovechar este hecho para reproducir los datos experimentales de la sección

eficaz diferencial con un acuerdo razonable dadas las limitaciones del modelo para ello.

De aqúı se puede concluir que la inclusión de términos resonantes cumple una doble

función. Por un lado, nos permite obtener una mejora global en la descripción de los

datos de dispersión, tanto los de las secciones eficaces totales com los de las diferenciales

en las reacciones de producción KΞ. Por otro lado, absorbiendo ciertas estructuras de

las secciones eficaces, la inclusión de términos resonantes permite encontrar mı́nimos

más estables y, por consiguiente, valores más precisos de las constantes de baja enerǵıa

del modelo quiral unitario.

Seguidamente, realizamos un estudio similar para el modelo WT+NLO+Born

(η chan). Comparado con el anterior, este modelo ha sido ajustado a datos exper-

imentales adicionales (datos de la sección eficaz K−p → ηΛ). Como esta reacción

también es sensible a las contribuciones de ”NLO”, sus correspondientes coeficientes

serán más confiables. Esto hace que el estudio de la estabilidad adquiera un carácter

más decisivo. Con esta motivación, se han extendido las contribuciones resonantes a los

procesos K−p→ ηΛ, teniendo en cuenta para este caso particular solo la contribución

de la resonancia Λ(1890). Esta última resonancia ha sido también incorporada, junto

con las ya empleadas Σ(2030) y Σ(2250), a las amplitudes de dispersión K−p → KΞ.

Los resultados obtenidos confirman lo que ya se hab́ıa observado con anterioridad: hay

una notable mejora en la reproducción de los datos experimentales y los parámetros

adquieren valores similares a los del correspondiente modelo sin resonancias. Esta

estabilidad es especialmente remarcable para la mayoŕıa de los coeficientes de ”NLO”.

Habiendo demostrado los efectos de los procesos que filtran isospin sobre los coefi-

cientes de ”NLO”, en el Caṕıtulo 4 se muestra que la desintegración Λb → J/ψ ηΛ y,
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particularmente, la Λb → J/ψ KΞ proporcionan una información interesante relativa a

la interacción mesón-barión en el sector S = −1 y I = 0. La dinámica de esta reacción,

en la cual los quarks ligeros que conforman la Λb actúan como espectadores, es tal que

filtra I = 0 en los estados finales. Esto es aśı, ya que los quarks ud en el barión Λb

se acoplan necesariamente a isospin 0 y la desintegración débil favorece la transición

b → cc̄s; quedando, por lo tanto, un quark s al final del proceso débil, el cual tiene

isospin 0 que junto al anterior par ud darán un isospin total I = 0. Aśı pues, estas

desintegraciones podŕıan ofrecer información complementaria a la que se obtiene de los

datos de la reacción de dispersión K−p→ KΞ cuyas componentes de isospin (I = 0 y

I = 1) se combinan para dar los resultados finales.

Basamos nuestro estudio en los modelos WT+NLO (Model 1) y WT+NLO+Born

(η chan) (Model 2) que han sido desarrollados en esta tesis para describir la dispersión

K−p. Las distribuciones de masa invariante producidas por ambos modelos son difer-

entes para las desintegraciones de Λb a los estados KΞ y ηΛ, siendo a su vez bastante

diferentes respecto al espacio fásico, indicando la sensibilidad de estos procesos a la

dinámica interna de la interacción fuerte en los estados finales. La diferencia entre

modelos es mucho más apreciable en el proceso de desintegración Λb → J/ψ KΞ. La

razón se deriva del hecho que la desintegración en ηΛ puede proceder de manera di-

recta (”tree level”), mientras que para la desintegración de Λb que da lugar a una J/ψ

no permite una formación del par KΞ directamente, a no ser que este se produzca

via la redispersión de los componentes primarios K̄N y ηΛ. Por tanto, la reacción

Λb → J/ψ KΞ es directamente proporcional a la amplitud de dispersión mesón-barión,

concretamente a las componentes de I = 0 correspondientes a ηΛ→ KΞ y K̄N → KΞ

cuya interferencia puede dar lugar a patrones muy marcados. Estos modelos también

predicen diferencias notables para las desintegración Λb en las regiones de energéticas
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donde se producen los pares KΞ y ηΛ, poniendo de manifiesto que la componente

de I = 0 de la interacción mesón-barión, que es la única posible por provenir de la

desintegración Λb, no está bien fijada por los ajustes a los datos experimentales de las

reacciones K−p→ KΞ.

Las dos estructuras halladas recientemente en la distribución de masa invariante

J/ψp de la desintegración Λb → J/ψK−p que han sido asociadas a dos estados de

pentaquark, con su plausible explicación en términos de un estado molecular con un

barión y un par c̄c, nos llevaron a estudiar la desintegración de la Λb en los estados

finales J/ψ ηΛ. La desintegración Λb → J/ψ ηΛ, que puede conectarse en canales

acoplados a la desintegración Λb → J/ψK−p, podŕıa tener lugar con la misma in-

tensidad y seŕıa posible observar, en su distribución de masa invariante J/ψΛ, un

posible compañero extraño de los dos estados de pentaquarks no (extraños) observa-

dos por la colaboración LHCb. Conviene tener presente que cuando las resonancias

N∗ de encanto escondido fueron teóricamente predichas como estados moleculares uti-

lizando varios métodos basados en la unitarización, algunos compañeros extraños como

los estados Λ∗ fueron encontrados. Aprovechando esta información, hemos predecido

qué tipo de señal dejaŕıan estos estados en las distribuciones de masa invariante ηΛ

y J/ψΛ de la reacción Λb → J/ψ ηΛ. Hemos visto que tomando los valores de las

constantes de acoplamiento del estado Λ∗ de encanto escondido a los canales D̄∗0Ξ′c y

J/ψΛ obtenidos por los métodos basados en la unitarización, uno observaŕıa una señal

clara y con un apreciable pico en la distribución de masa invariante J/ψΛ de la desin-

tegración Λb → J/ψ ηΛ. También se estudió la dependencia de nuestros resultados a

cambios razonables en los parámetros que caracterizaban los modelos involucrados en

nuestra descripción del proceso, aśı como la dependencia en las posibles propiedades

de dicho pentaquark. En todas los tests que se realizaron, la señal resonante segúıa
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siendo claramente visible en la distribución de masa invariante J/ψΛ. Esto nos hace

pensar que en el caso que se llevara a cabo tal experimento podŕıa dar prueba de la

existencia de este nuevo estado.

Este trabajo ha sido un primer paso hacia la construcción de un modelo quiral más

completo en el sector S = −1 que nos será útil para analizar los venideros datos más

precisos de la producción KΞ. Además, los hallazgos y caracteŕısticas observados en

este estudio indican que la medida de observables analizados aqúı proporcionaŕıa una

información valiosa, hasta ahora novedosa, que enriqueceŕıa nuestro conocimiento de la

interacción mesón-barión y nos ayudaŕıa a progresar en la comprensión de la dinámica

de los hadrones.



Bibliography

[1] J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984).

[2] U. G. Meissner, Rept. Prog. Phys. 56, 903 (1993).

[3] G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).

[4] V. Bernard, N. Kaiser and U. G. Meissner, Int. J. Mod. Phys. E 4, 193

(1995).

[5] A. Pich, Rept. Prog. Phys. 58, 563 (1995).

[6] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003).

[7] N. Kaiser, T. Waas, W. Weise, Nucl. Phys. A 612, 297 (1997).

[8] E. Oset, A. Ramos, Nucl. Phys. A 636, 99 (1998).

[9] J. A. Oller, U. -G. Meissner, Phys. Lett. B 500, 263 (2001).

[10] M. F. M. Lutz, E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002).

182



Bibliography 183

[11] B. Borasoy, E. Marco, S. Wetzel, Phys. Rev. C 66, 055208 (2002).

[12] C. Garcia-Recio, J. Nieves, E. Ruiz Arriola and M. J. Vicente Vacas, Phys.

Rev. D 67, 076009 (2003).

[13] D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meissner, Nucl. Phys. A

725, 181 (2003).

[14] A. Bahaoui, C. Fayard, T. Mizutani, B. Saghai, Phys. Rev. C 68, 064001

(2003).

[15] B. Borasoy, R. Nissler, W. Wiese, Eur. Phys. J. A 25, 79 (2005).

[16] V.K. Magas, E. Oset, A. Ramos, Phys. Rev. Lett. 95, 052301 (2005).

[17] B. Borasoy, U. -G. Meissner and R. Nissler, Phys. Rev. C 74, 055201 (2006).

[18] M. Bazzi, G. Beer, L. Bombelli, A. M. Bragadireanu, M. Cargnelli, G. Cor-

radi, C. Curceanu (Petrascu) and A. d’Uffizi et al., Phys. Lett. B 704, 113

(2011).

[19] Y. Ikeda, T. Hyodo, W. Wiese, Nucl. Phys. A 881, 98 (2012).

[20] T. Hyodo, D. Jido, Progress in Particle and Nuclear Physics 67, 55 (2012).

[21] Zhi-Hui Guo, J. A. Oller, Phys. Rev. C 87, 035202 (2013).

[22] M. Mai and U. G. Meissner, Nucl. Phys. A 900, 51 (2013).

[23] T. Mizutani, C. Fayard, B. Saghai and K. Tsushima, Phys. Rev. C 87,

035201 (2013).

[24] L. Roca and E. Oset, Phys. Rev. C 87, 055201 (2013).



184 Bibliography

[25] L. Roca and E. Oset, Phys. Rev. C 88, 055206 (2013).

[26] M. Mai and U. G. Meissner, Eur. Phys. J. A 51, 30 (2015).

[27] A. Feijoo, V. K. Magas and A. Ramos, Phys. Rev. C 92, 015206 (2015).

[28] A. Ramos, A. Feijoo and V. K. Magas, Nucl. Phys. A 954, 58 (2016).

[29] Letter of intent, Physics Opportunities with Secondary KL beam at JLAB,

LOI-12-15-001.

[30] K. Nakayama, Y. Oh and H. Haberzettl, Phys. Rev. C 74, 035205 (2006).

[31] J. K. S. Man, Y. Oh and K. Nakayama, Phys. Rev. C 83, 055201 (2011).

[32] D. A. Sharov, V. L. Korotkikh and D. E. Lanskoy, Eur. Phys. J. A 47, 109

(2011).

[33] A. Feijoo, V. K. Magas, A. Ramos and E. Oset, Phys. Rev. D 92, no. 7,

076015 (2015); Erratum: [Phys. Rev. D 95, no. 3, 039905 (2017)].

[34] A. Feijoo, V. K. Magas, A. Ramos and E. Oset, Eur. Phys. J. C 76, no. 8,

446 (2016).

[35] J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. 105, 232001

(2010).

[36] J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. C 84, 015202 (2011).

[37] Z. C. Yang, Z. F. Sun, J. He, X. Liu and S. L. Zhu, Chin. Phys. C 36, 6

(2012).

[38] C. W. Xiao, J. Nieves and E. Oset, Phys. Rev. D 88, 056012 (2013).



Bibliography 185

[39] M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115, no. 12, 122001 (2015).

[40] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115, 072001 (2015).

[41] R. Aaij et al. [LHCb Collaboration], Chin. Phys. C 40, no. 1, 011001 (2016).

[42] L. Roca, J. Nieves and E. Oset, Phys. Rev. D 92, no. 9, 094003 (2015).

[43] S. Weinberg, Physica A 96, 327 (1979).

[44] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, no. 10, 100001

(2016).

[45] G. ’t Hooft, Phys. Rept. 142, 357 (1986).

[46] S. Durr et al., Science 322, 1224 (2008).

[47] S. R. Beane et al., Phys. Rev. D 84, 014507 (2011).

[48] W. Bietenholz et al., Phys. Rev. D 84, 054509 (2011).

[49] S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009).

[50] C. Vafa and E. Witten, Nucl. Phys. B 234, 173 (1984).

[51] B. Kubis, hep-ph/0703274 [HEP-PH].

[52] J. Gasser, H. Leutwyler and M. E. Sainio, Phys. Lett. B 253, 252 (1991).

[53] R. Koch, Nucl. Phys. A 448, 707 (1986).

[54] C. B. Dover and G. E. Walker, Phys. Rept. 89, 1 (1982).

[55] N. Kaiser, T. Waas and W. Weise, Nucl. Phys. A 612, 297 (1997).



186 Bibliography

[56] J. A. Oller and E. Oset, Phys. Rev. D 60, 074023 (1999).

[57] P. C. Bruns, M. Mai and U. G. Meissner, Phys. Lett. B 697, 254 (2011).

[58] J. A. Oller, E. Oset and A. Ramos, Prog. Part. Nucl. Phys. 45, 157 (2000).

[59] N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995).

[60] R. H. Dalitz and S. F. Tuan, Annals Phys. 8, 100 (1959); R. H. Dalitz and

S. F. Tuan, Phys. Rev. Lett. 2, 425 (1959); M. Jones, R. H. Dalitz and R.

R. Horgan, Nucl. Phys. B 129, 45 (1977).

[61] N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A 594, 325 (1995).

[62] K. Moriya et al. [CLAS Collaboration], Phys. Rev. C 87, no. 3, 035206

(2013).

[63] K. Moriya et al. [CLAS Collaboration], Phys. Rev. C 88, 045201 (2013).

[64] K. Moriya et al. [CLAS Collaboration], Phys. Rev. Lett. 112, no. 8, 082004

(2014).

[65] I. Zychor, M. Buscher, M. Hartmann, A. Kacharava, I. Keshelashvili,

A. Khoukaz, V. Kleber and V. Koptev et al., Phys. Lett. B 660, 167 (2008).

[66] G. Agakishiev et al. [HADES Collaboration], Phys. Rev. C 87, 025201

(2013).

[67] J. Beringer et al. [Particle Data Group], Phys. Rev. D 86, 010001 (2012).

[68] R. Kaiser and H. Leutwyler, In *Adelaide 1998, Nonperturbative methods

in quantum field theory* 15-29 [hep-ph/9806336].



Bibliography 187

[69] U. G. Meissner, U. Raha and A. Rusetsky, Eur. Phys. J. C 35, 349 (2004).

[70] J. K. Kim, Phys. Rev. Lett. 14, 89 (1965).

[71] T. S. Mast, et al., Phys. Rev. D 14, 13 (1976).

[72] R. O. Bangerter, et al., Phys. Rev. D 23, 1484 (1981).

[73] J. Ciborowski, et al., J. Phys. G 8, 13 (1982).

[74] G. Burgun et al., Nucl. Phys. B 8, 447 (1968).

[75] J. R. Carlson, et al., Phys. Rev. D 7, 2533 (1973).

[76] P. M. Dauber, et al., Phys. Rev. 179, 1262 (1969).

[77] M. Haque et al., Phys. Rev. 152, 1148 (1966).

[78] G. W. London, et al., Phys. Rev. 143, 1034 (1966).

[79] T. G. Trippe, P. E. Schlein, Phys. Rev. 158, 1334 (1967).

[80] W. P. Trower, et al., Phys. Rev. 170, 1207 (1968).

[81] R. J. Nowak et al., Nucl. Phys. B 139, 61 (1978).

[82] D. N. Tovee et al., Nucl. Phys. B 33, 493 (1971).

[83] P. G. Ratcliffe, Phys. Rev. D 59, 014038 (1999).

[84] M. Lampton, B. Margon and S. Bowyer, Astrophys. J. 208, 177 (1976).

[85] B. C. Jackson, Y. Oh, H. Haberzettl and K. Nakayama, Phys. Rev. C 91,

no. 6, 065208 (2015).



188 Bibliography

[86] A. Starostin et al. (Crystal Ball Collaboration), Phys. Rev. C64, 055205

(2001).

[87] D. F. Baxter et al., Nucl. Phys. B 67, 125 (1973).

[88] M. Jones et al., Nucl. Phys. B 90, 349 (1975).

[89] A. Berthon et al., Nuovo Cim. A 21, 146 (1974).

[90] L. Roca, M. Mai, E. Oset and U. G. Meissner, Eur. Phys. J. C 75, no. 5,

218 (2015).

[91] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 106, 121804 (2011).

[92] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 111, 102003 (2013).

[93] R. Aaij et al. [LHCb Collaboration], JHEP 1407, 103 (2014).

[94] E. Oset, A. Ramos and C. Bennhold, Phys. Lett. B 527, 99 (2002); Erratum:

[Phys. Lett. B 530, 260 (2002)].

[95] J.P. Berge et al., Phys. Rev. 147, 945 (1966).

[96] S.A.B.R.E. Collaboration, J.C. Scheuer et al., Nucl. Phys. B 33, 61 (1971).

[97] B. C. Jackson, H. Haberzettl, Y. Oh and K. Nakayama, EPJ Web Conf. 81,

05015 (2014).

[98] R. Shyam, O. Scholten and A. W. Thomas, Phys. Rev. C 84, 042201 (2011).

[99] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38,

090001 (2014).

[100] L. L. Chau, Phys. Rept. 95, 1 (1983).



Bibliography 189

[101] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

[102] S. Stone and L. Zhang, Phys. Rev. Lett. 111, no. 6, 062001 (2013).

[103] W. H. Liang and E. Oset, Phys. Lett. B 737, 70 (2014).

[104] M. Bayar, W. H. Liang and E. Oset, Phys. Rev. D 90, no. 11, 114004 (2014).

[105] K. Miyahara, T. Hyodo and E. Oset, Phys. Rev. C 92, no. 5, 055204 (2015).

[106] J. J. Xie, L. R. Dai and E. Oset, Phys. Lett. B 742, 363 (2015).

[107] W. H. Liang, J. J. Xie and E. Oset, Phys. Rev. D 92, no. 3, 034008 (2015).

[108] F. E. Close, “An Introduction to Quarks and Partons”, Academic Press,

London 1979, p 48.

[109] R. P. Pavao, W. H. Liang, J. Nieves and E. Oset, arXiv:1701.06914 [hep-ph].

[110] C. Albertus, E. Hernndez, C. Hidalgo-Duque and J. Nieves, Phys. Lett. B

738, 144 (2014).

[111] H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69, 074025

(2004).

[112] R. N. Faustov and V. O. Galkin, Phys. Rev. D 87, no. 9, 094028 (2013).

[113] A. Khodjamirian, T. Mannel, N. Offen and Y.-M. Wang, Phys. Rev. D 83,

094031 (2011).

[114] U. G. Meissner and W. Wang, JHEP 1401, 107 (2014).

[115] C. W. Bauer, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Phys. Rev. D 70,

054015 (2004).



190 Bibliography

[116] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Phys. Rev. Lett.

83, 1914 (1999).

[117] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B

606, 245 (2001).

[118] P. Colangelo, F. De Fazio and W. Wang, Phys. Rev. D 81, 074001 (2010).

[119] U. G. Meissner and W. Wang, Phys. Lett. B 730, 336 (2014).

[120] B. El-Bennich, A. Furman, R. Kaminski, L. Lesniak, B. Loiseau and

B. Moussallam, Phys. Rev. D 79, 094005 (2009); Erratum: [Phys. Rev.

D 83, 039903 (2011)].

[121] J. T. Daub, C. Hanhart and B. Kubis, JHEP 1602, 009 (2016).

[122] X. W. Kang, B. Kubis, C. Hanhart and U. G. Meissner, Phys. Rev. D 89,

053015 (2014).

[123] Y. J. Shi and W. Wang, Phys. Rev. D 92, no. 7, 074038 (2015).
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