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Networks-on-Chip (NoC) is an emerging on-chip interconnection centric platform that influ-
ences the modern high speed communication infrastructure to improve on-chip communica-
tion challenges in the recent many core System-on-Chip (SoC) designs. Continuing shrink-
age of feature dimensions of Nano-scale semiconductor devices has been raised serious con-
cerns of the reliability, signal integrity, and quality of services (QoS) of traditional bus based
on-chip interconnect infrastructure. NoC represents a major standard move to address these
concerns by incorporating state-of-the-art of high-speed data network components (such as
routers and switches) and packet-based routing protocols in novel on-chip network infras-
tructure. A NoC’s aim is to provide a reliable on-chip communication platform to facilitate
scalable gigascale SoC design.
A multi-synchronous bi-directional NoC’s router architecture is proposed in this thesis to en-
hance the performance of available on-chip communication platform. Using parameterized
RTL implementation, we first divide microarchitecture into six blocks as multi-synchronous
FIFO, Arbiters, Route Computation, Switch Allocator, Virtual channel Allocator, and Net-
work Interface. Overall architecture of the proposed NoC router consists of five bi-directional
ports which supports data transfer between two clock domain of completely arbitrary phase
and frequency; and best suited for the Distributed Scalable Predictable Interconnect Net-
works (DSPIN). In this router, each communication channel allows itself to be dynamically
reconfigured to transmit flits in either direction. This added flexibility promises better band-
width utilization, lower packet delivery latency, and higher packet consumption rate.
We first evaluated performances of each blocks in terms of power, area, and delay with opti-
mizes these blocks to satisfy network key parameters, as well as the impact of allocation on
overall network performance. Using structural modeling style and parametric Verilog HDL,
all blocks are individually implemented, tested and verified. Finally, all individual blocks
are combined to implement bi-directional router’s architecture as a whole. Here, we vary the
number of nodes for performance evaluation.
A multi-synchronous bi-directional router microarchitecture have been implemented in this
thesis, is sufficient to provide throughput challenges, interconnect issues, low latency and
high bandwidth in the future Globally Asynchronous Locally Synchronous Systems (GALS)
system.
In concise, to enhance the performance of on-chip communications of GALS Systems, a dy-
namic reconfigurable multi-synchronous router architecture is proposed and implemented to
increase the NoC efficiency with changing the path of the communication link in the runtime
traffic situation. In order to address GALS issues and bandwidth requirements, the proposed
multi-synchronous bidirectional NoC’s router is developed and it gives reliable higher packet
consumption rate, better bandwidth utilization with lower packet delivery latency. All the
input/output ports of the proposed router behave as a bi-directional ports and communicate
through a novel multi-synchronous first-in first-out (FIFO) buffer. The bidirectional port is
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controlled by a dynamic channel control module which provides a dynamic reconfigurable
channel to the router itself and associated with sub-modules.
This proposed multi-synchronous bidirectional router architecture is synthesized using Xilinx
ISE 14.7 and FPGA Virtex 6 family device XC6VLX760 is considered as target technology.
The performance of the proposed architecture is evaluated in terms of power, area, and delay.
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Resumen

Las redes en chip (NoC) constituyen una plataforma de interconexión en chip emergente
que influye en la moderna infraestructura de comunicación de alta velocidad para mejorar los
desafíos de comunicación en chip de los recientes diseños de sistemas en chip (SoC). La con-
tinua reducción de las dimensiones de los dispositivos semiconductores a escala nanométrica
ha planteado serias preocupaciones en cuanto a la fiabilidad, la integridad de la señal y la
calidad de los servicios (QoS) de la infraestructura de interconexión en chip basada en canal
tradicional. NoC representa un paso estándar importante para abordar estas cuestiones in-
corporando tecnología moderna de componentes de red de datos de alta velocidad (como
enrutadores y conmutadores) y protocolos de enrutamiento basados en paquetes en la nueva
infraestructura de red en chip. El objetivo de NoC es proporcionar una plataforma de comu-
nicación en chip fiable para facilitar el diseño escalable de SoC.
En esta tesis se propone una arquitectura de enrutador NoC bidireccional multi-síncrono
para mejorar el rendimiento de la plataforma de comunicación en chip disponible. Uti-
lizando una implementación RTL parametrizada, primero dividimos la microarquitectura en
seis bloques como FIFO multi-síncrono, arbitradores, Cálculo de Rutas, Asignador de Con-
mutadores, Asignador de canales virtuales e Interfaz de Red. La arquitectura general del
enrutador NoC propuesto consta de cinco puertos bidireccionales que soportan la transfer-
encia de datos entre dos dominios de reloj de fase y frecuencia completamente arbitrarias;
además, se muestra más adecuada para las Redes de Interconexión Predecibles Escalables y
Distribuidas (DSPIN). En este enrutador, cada canal de comunicación permite ser reconfig-
urado dinámicamente para transmitir las unidades de control de flujo en cualquier dirección.
Esta flexibilidad añadida promete una mejor utilización del ancho de banda, una menor la-
tencia de entrega de paquetes y una mayor tasa de consumo de paquetes.
Primero evaluamos las prestaciones de cada bloque en términos de potencia, área y retraso,
optimizando estos bloques para satisfacer los parámetros clave de la red, así como el impacto
de la asignación en el rendimiento general de la red. Utilizando el estilo de modelado estruc-
tural y el Verilog HDL paramétrico, todos los bloques se implementan, prueban y verifican
individualmente. Finalmente, todos los bloques individuales se combinan para implementar
la arquitectura de enrutador bidireccional como un todo. Aquí, variamos el número de nodos
para la evaluación del rendimiento.
En esta tesis se ha implementado una microarquitectura de enrutador bidireccional multi-
síncrono, suficiente para atacar retos de rendimiento, problemas de interconexión, baja la-
tencia y un gran ancho de banda en el futuro sistema de Sistemas Síncronos Locales Global-
mente Asíncronos (GALS).
En forma concisa, para mejorar el rendimiento de las comunicaciones en chip de los sis-
temas GALS, se propone e implementa una arquitectura de enrutador multi-síncrono recon-
figurable dinámico para aumentar la eficiencia de NoC con el cambio de la ruta del enlace
de comunicación en la situación de tráfico en tiempo de ejecución. Con el fin de abordar los
problemas de GALS y los requisitos de la banda ancha, el enrutador de NoC bidireccional
multi-síncrono propuesto se desarrolla y proporciona una mayor tasa de consumo de paque-
tes, una mejor utilización de la banda ancha con menor latencia de entrega de paquetes. Todos
los puertos de entrada / salida del enrutador propuesto se comportan como puertos bidirec-
cionales y se comunican a través de un nuevo búfer multi-síncrono de tipo FIFO (primera



x

entrada primera salida). El puerto bidireccional es controlado por un módulo de control de
canal dinámico que proporciona un canal reconfigurable dinámico al propio enrutador y aso-
ciado con sub-módulos.
Esta propuesta arquitectura de enrutador bidireccional multi-síncrono se sintetiza utilizando
Xilinx ISE 14.7 y el dispositivo FPGA Virtex 6 XC6VLX760 se considera como la tecnología
objetivo. El rendimiento de la arquitectura propuesta se evalúa en términos de potencia, área
y retraso.
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Chapter 1

Introduction

Network-on-Chip (NoC) is a general-purpose on-chip interconnection network that offers
great promises to moderate the ever increasing communication complexity of modern many-
core system-on-chip (SoC) designs. Specifically, a city-block style tiled NoC architecture
proposed in [1–3] has gained high popularity due to its simplicity and flexibility. NoC is an
emerging on-chip interconnection centric platform that influences modern high speed com-
munication infrastructure to improve ever increasing on-chip communication challenges of
recent many-core SoC designs. Continuing shrinkage of feature dimensions of nano-scale
semiconductor devices has raised serious concerns of the reliability, signal integrity, and qual-
ity of services (QoS) of traditional bus-based on-chip interconnect network. NoC represents
a major standard move to address these concerns by incorporating state-of-art high-speed
data network components (such as routers and switches) and packet-based routing proto-
cols in novel on-chip network structure. A NoC provides a reliable on-chip communication
platform to facilitate scalable giga-scale SoC design.

1.1 Motivation and context

Traditionally, a SoC or an MPSoC system interconnects intellectual property (IP) compo-
nents by using a bus-based interconnect system. When the number of participating com-
ponents is more than ten, then the bus system will have a performance bottleneck problem
[3]. In order to solve the performance bottleneck problem, a fully crossbar interconnect can
be used. However, this approach will imply a wiring complexity in the circuit, in which
wires could be more dominant than the logic parts, especially when the number of the inter-
connected components is very high. Another problem in the fully crossbar interconnect is
the effect of electromagnetic interference that can disturb the interconnect functionality. A
Point-to-point interconnects (dedicated wires) is also another alternative solution to the per-
formance bottleneck problem and to the wiring complexity problem. However, this approach
is not flexible. Instead of connecting the top-level components by routing the dedicated
wires, an on-chip interconnection network can be implemented and interconnect the interact-
ing components by routing packets through the network [4].
Since interconnect technology affects more profoundly on chip performance and power us-
age, improving on-chip communication technology has become increasingly important to re-
searchers and processor manufacturers [5]. A high-throughput communication infrastructure
is required to meet the bandwidth requirement of each data communication flows generated
due to interacting processors in the MPSoC systems. This issue can be potentially handled
by a communication infrastructure based on the network-on-chip (NoC), which has better
scalability to provide sufficient communication bandwidth.
On-chip network infrastructure also enables advanced intellectual property (IP) communica-
tion concepts for MPSoC. In embedded MPSoC systems, NoCs can provide a flexible com-
munication infrastructure, in which several components such as microprocessor cores, MCU,
DSP, GPU, memories and other intellectual property (IP) components can be interconnected
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by using reusable NoC routers via general modular interfaces. The MPSoC systems can
also be reconfigured for a certain embedded computing application and can be customized
to improve the communication performance in the application. Hence, the NoC-based sys-
tems combine performance with design modularity [6]. The innovation of a flexible NoC
communication infrastructure will enable accordingly the IP vendors to sell not only their IP
components but also a system architecture [7].
IP blocks communicate over the NoC using a three layered communication scheme, referred
to as the Transaction, Transport, and Physical layers as shown in figure 1.1.
The Transaction layer defines the communication primitives available to interconnected IP

FIGURE 1.1: Three layer communication scheme

blocks. The transaction layer defines how information is exchanged between NoC Interface
Units (NIUs) to implement a particular transaction. For example, a NoC transaction is typi-
cally made of a request from a master NIU to a slave NIU, and a response from the slave to
the master.
The Transport layer defines rules that apply as packets are routed through the switch fabric.
Very little of the information contained within the packet is needed to actually transport the
packet. The packet format is very flexible and easily accommodates changes at transaction
level without impacting transport level.
The Physical layer defines how packets are physically transmitted over an interface, much
like Ethernet defines 10Mb/s, 1Gb/s, etc. NoC links between switches can be optimized with
respect to bandwidth, cost, data integrity, and even off-chip capabilities, without impacting
the transport and transaction layers.
A NoC channel could be either unidirectional or bidirectional. A bidirectional channel NoC
architecture enhances the performance of on-chip communication. In this, each communica-
tion channel allows to be dynamically self-reconfigured to transmit flits in either direction.
This added flexibility promises better bandwidth utilization, lower packet delivery latency,
and higher packet consumption rate. Novel on-chip router architecture is developed to sup-
port dynamic self-reconfiguration of the bidirectional traffic flow. The area-efficient NoC
router delivers better performance and requires smaller buffer size than that of a conventional
NoC. This thesis is motivated to provide an architecture and implementation of bidirectional
NoC’s router for multi-synchronous GALS (Globally Asynchronous Locally Synchronous)
infrastructure.
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1.2 State of the art

Networks-on-Chip (NoCs) are widely accepted as a promising approach for addressing the
communication challenges associated with future Multi-Processors System-on-Chip (MP-
SoCs) in the face of further increases in integration density [7-8]. In the recent multi-core
systems, e.g. Google Brain project, NoC routers require to transfer a large amount of commu-
nication data among processors [9-11]. Networks-on-Chips (NoCs) [12] represent a widely
accepted solution to connect multiple cores, due to its scalability, flexibility and high band-
width properties. Several regular patterns for NoC architectures have been proposed and
implemented in [13]. These NoC architectures have gained popularity due to their scalabil-
ity, simplicity and flexibility. In such NoC architectures, main switching component (router)
behaves like a synchronous island. These routers are connected via two unidirectional links
with the neighboring router. A typical 2-D mesh 5-stage pipelined virtual-channel based NoC
router is shown in figure 1.2.

A NoC router is responsible for forwarding the incoming flits (large network packets are

FIGURE 1.2: A typical 2-D mesh 5-stage pipelined virtual-channel based
NoC router

broken into small pieces called flits) from the input buffers, with its proper arbitration and
routing algorithms towards outputs ports [1-3]. The router makes a decision based on infor-
mation collected from the network and the decision may be centralized or distributed [14].
Router can implement various functionality from simple switching to smart routing. From
the switching point of view, in a circuit-switching network, routers may be designed without
buffers but in a packet-switching network, buffering is needed to support heavy data transfer
[13].

1.2.1 Network-on-Chip

In the recent years, researchers have proposed various router designs on the basis of arbitra-
tion strategy, switching techniques, flow control, buffer management, power consideration,
etc. Dally and Towles proposed a packet based switching router [2], whereas Wolkotte et.
al. circuit-switching based router architecture[15]. Wormhole based packet forwarding de-
sign is proposed by Albenes [16]. Switching techniques are again a parameter for designing
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the NoC router. After initial classification, it can be classified upon network characteristics,
packet switching are further classified as Wormhole, Store and Forward (S & F) and Virtual
Cut Through (VCT). After combination of different switching techniques adhoc switching
techniques can be developed. MANGO and ETHEREAL uses such techniques [17 - 20].
The flow control mechanism determines network parameter e.g. channel bandwidth, buffer
capacity and control state are allocated to a flit traversing the network. It may be buffer
less or buffered. The buffered flow control is further classified as credit based, handshaking,
ACK/NACK etc. In SoCIN NOC implementation, handshaking flow control is used [22],
Whereas credit based flow control is used in QNOC[21 - 22] and ACK/NACK protocol is
used in the implementation of XPIPES[23].
Another important aspect of NoC is virtual channels, which split single channel into many
channels that provides path for the packet to be routed [24]. This concept removes the prob-
lem of HOL [25] and provides the low latency path for high priority data flits [26]. Bjerre-
gaard and Sparsø have proposed the design and architecture of a virtual channel router [19 -
20]. A large number of virtual channels required higher buffer capacity but that will reduce
network contention thereby reducing latency. Saastamoinen, Zimmer, and Bolotin proposed
the buffer architecture and their implementation has been described [27 - 29]. In the recent
years shared buffer architecture has been also described [30].
International Technology Roadmap for Semiconductor (ITRS) [31] states that "Relaxing the
requirement of 100% correctness for devices and interconnects may dramatically reduce costs
of manufacturing, verification and test[32]". Faults in a NoC architecture can be categorized
as hard fault and soft fault NoC [32 - 33]. Fault tolerant routing protocol with their imple-
mentation and error detection and correction schemes in data for NoC link has been proposed
in [34 - 37].
The Network interface (NI), implements the interface to the IP module and is responsible
for the packetization/depacketization of data traffic. Radulescu et. al. provides an efficient
on network interface that offers guaranteed services, shared-memory abstraction and flexible
network configuration [38]. Bhojwani and Mahapatra compared software and hardware NI
implementation [39].
A NoC is capable of supporting different classes of service level such as Guaranteed Through-
put (GT) and Best-Effort (BE) [40]. A guaranteed-throughput (GT) router guarantees uncor-
rupted, loss-less, and ordered data transfer, and both latency and throughput over a finite
time interval. Best-effort delivery describes a network service in which the network does not
provide any guarantees that data is delivered or that a user is given a guaranteed quality of
service level or a certain priority. In a best-effort network all users obtain best-effort service,
meaning that they obtain unspecified variable bit rate and delivery time, depending on the
current traffic load. The GT and BE need to support an arbitration technique. NoCs have
implemented various different techniques e.g. Round Robin, First Come First Serve, Priority
Based, and Priority Based Round Robin. The Round Robin technique is implemented in the
SPIN and RASoC [41], whereas QNOC, XPIPES and Philips NoC adopted Priority Based
Round Robin.
A NoC system architecture is further categorized as homogeneous and heterogeneous ar-
chitecture, most of NoCs support homogeneous whereas XPIPES support heterogeneous ar-
chitecture. In the recent years research article, authors adopt Globally Asynchronous and
Locally Synchronous (GALS) clocking scheme to reduce power and energy consumption in
CMPs (Chip Multiprocessors) or SoCs [42]. Asynchronous circuit can reduce power dissi-
pation by eliminating a global clock signal on a single chip entirely [43 - 44]. In the asyn-
chronous NoC, multiple communications are simultaneously done over asynchronous routers
and link between processing elements [45 - 53]. Qnizawa et. al. proposed a high-throughput
and compact delay-intensive asynchronous router [54].
According to Sheibanyard et. al. [55], the GALS system is further categorized into DSPIN
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(Distributed Scalable Predictable Interconnect Network), which has a multiple synchronous
network and ASPIN (Asynchronous Scalable Predictable Interconnect Network) is fully
asynchronous. CHAIN, ANOC, MANGO, QNOC, and QOS are examples of ASPIN. Whereas
Tushar et. al. and Ivan et. al. [56] proposed DSPIN Network-on Chip. The Difficulty of
synchronization in DSPIN is resolved by bi-synchronous router whereas in ASPIN by Syn-
chronous↔ Asynchronous converter.
After analyzing DSPIN and ASPIN, researchers found both networks are scalable, but the
asynchronous approach shows a better saturation threshold than the synchronous one. Re-
garding the silicon area, both implementations have similar foot-prints, if long wire buffers
are taken into account. In systems containing large clusters, the energy dissipated to transmit
a packet is higher in the asynchronous approach than in the synchronous approach, which is
a major drawback of the ASPIN. Of course packet latency is better in ASPIN with respect to
DSPIN but this problem is overcome by shared buffered architecture.
Classification of NoC architecture on the basis of clock is shown in figure 1.3. The choice of
NoC architecture is determined by one or more design criteria, such as requirements for per-
formance (latency and throughput), power consumption, QoS, reliability, scalability, and im-
plementation cost.A large number of NoC architectures have been published such as Dally’s
NoC , AETHEREAL, XPIPES and NOSTRUM which have synchronous architecture. some
proposed asynchronous NoCs are CHAIN, MANGO, QNOC, ANOC and QoS. We describe
a few of these NoC architectures below.

FIGURE 1.3: Classification of NoC architecture on the basis of clock

• Synchronous Architectures

– AEthereal [18]

* Developed by Philips.

* Synchronous indirect network (but also supports irregular topologies).

* Wormhole switching.

* Contention-free source routing based on TDM.

* GT as well as BE QoS.
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* GT slots can be allocated statically at initialization phase, or dynamically at
runtime.

* BE traffic makes use of non-reserved slots, and any unused reserved slots.

* Link-to-link credit-based flow control scheme between BE buffers.

– Xpipes [23]

* Developed by the University of Bologna and Stanford University.

* Source-based routing, WH switching.

* Supports OCP standard for interfacing nodes with NoC.

* Supports design of heterogeneous, customized (possibly irregular) network
topologies.

* Go-back-N retransmission strategy for link level error control.

* Errors detected by a CRC (cycle redundancy check) block running concur-
rently with the switch operation.

* XpipesCompiler and NetChip compilers.

* Tools to tune parameters such as flit size, address space of cores, max. num-
ber of hops between any two network nodes, etc..

* Generate various topologies such as mesh, torus, hypercube, Clos, and but-
terfly.

– Nostrum [57]

* Developed at KTH in Stockholm.

* Direct network with a 2-D mesh topology.

* Store and Forward switching with hot potato (or deflective) routing.

* Support for switch/router load distribution, guaranteed bandwidth (GB), and
Multicasting.

* GB is realized using looped containers.

* implemented by VCs using a TDM mechanism.

* container is a special type of packet which loops around VC.

* Multicast: simply have container loop around on VC having recipients.

* Switch load distribution requires each switch to indicate its current load by
sending a stress value to its neighbors.

• Asynchronous Architectures

– MANGO [20]

* Message-passing Asynchronous Network-on-chip providing GS over open
core protocol (OCP) interfaces.

* Developed at the Technical University of Denmark.

* Clockless NoC that provides BE as well as GS services.

* NIs (or adapters) convert between the synchronous OCP domain and asyn-
chronous domain.

* Routers allocate separate physical buffers for VCs for simplicity, when en-
suring GS.

* BE connections are source routed.

* BE router uses credit-based buffers to handle flow control.

* Length of a BE path is limited to five hops.
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* Static scheduler gives link access to higher priority channels.

* Admission controller ensures low priority channels do not starve.

– QNoC [21]

* Developed at Technion in Israel.

* Direct network with an irregular mesh topology.

* WH switching with an XY minimal routing scheme.

* Link-to-link credit-based flow control.

* Traffic is divided into four different service classes.
· signaling, real-time, read/write, and block-transfer.
· signaling has highest priority and block transfers lowest priority.
· every service level has its own small buffer (few flits) at switch input.

* Packet forwarding is interleaved according to QoS rules. High priority pack-
ets able to preempt low priority packets.

* Hard guarantees not possible due to absence of circuit switching. Instead
statistical guarantees are provided.

• Other Popular NoC’s Architectures

– HERMES [58]

* Developed at the Faculdade de Informática PUCRS,Brazil.

* Direct network.

* 2-D mesh topology.

* WH switching with minimal XY routing algorithm.

* 8 bit flit size; first 2 flits of packet contain header.

* Header has target address and number of flits in the packet.

* Parameterizable input queuing to reduce the number of switches affected by
a blocked packet.

* Connectionless: cannot provide any form of bandwidth or latency GS.

– Octagon [59]

* Developed by STMicroelectronics.

* Direct network with an octagonal topology.

* 8 nodes and 12 bidirectional links.

* Any node can reach any other node with a max of 2 hops.

* Can operate in packet switched or circuit switched mode.

* Nodes route a packet in packet switched mode according to its destination
field. Node calculates a relative address and then packet is routed either left,
right, across, or into the node

* Can be scaled if more than 8 nodes are required i.e. Spidergon.

– SOCBUS [60]

* Developed at Linköping University.

* Mesochronous clocking with signal retiming is used.

* Circuit switched, direct network with 2-D mesh topology.

* Minimum path length routing scheme is used.

* Circuit switched scheme:



8 Chapter 1. Introduction

· deadlock free.
· requires simple routing hardware.
· very little buffering (only for the request phase).
· results in low latency.

* Hard guarantees are difficult to give because it takes a long time to set up a
connection.

– SPIN [61]

* Scalable programmable integrated network (SPIN).

* Fat-tree topology, with two one-way 32-bit link data paths.

* WH switching, and deflection routing.

* Virtual socket interface alliance (VSIA) virtual component interface (VCI)
protocol to interface between PEs.

* Flits of size 4 bytes.

* First flit of packet is header
· first byte has destination address (max. 256 nodes)
· last byte has checksum

* Link level flow control. GS is not supported.

1.2.2 Bi-NoC Router Architecture

In above discussed NoC infrastructure, adjacent routers are connected with two unidirectional
communication links and these communication links are hardwired to handle communication
data into only one direction at a time. It’s frequently seen in the simulation result that one
channel can be collapsed by a huge number of packets in one route direction while the reverse
route direction remains unused. This would tend to reduce throughput and therefore result in
an unproductive use of communication channel. A straight forward approach to ease such an
issue is to have an opposite passageway. An opposite passageway supports dynamic opposite
path transfer. By means of electronic signals, an opposite passageway can be reversed to
support additional capability to the passage having high volume of traffic.
Foruque et. al. [62] presented a unique configurable data channel called 2X-link. This can
change its maintained bandwidth at runtime on demand. 2X-Links use tri-state logic to sup-
port bidirectional transmission for an adaptive on-chip communication infrastructure. In a
BiNoC [63], a dynamic reconfigurable architecture has been suggested to change of the path
of the links in the runtime traffic situation. To accommodate uneven distributed traffic in
the core of the network, BiNoC architecture was initially introduced and further optimized
in FSNoC [64] and BiLink [65]. Main difference between these architectures and 2X-Link
is how the link direction control is implemented. In BiNoC, FSNoC and BiLink channel
direction decision is made using a distributed channel direction control protocol, whereas in
2X-Link, the proposed direction decision mechanism is centralized and each link is config-
ured in advance based on application bandwidth requirements. Cho et. al. [66] proposed
a pressure based channel direction control protocol. This is different from the acquisition
based channel control protocol used in BiNoC. In this thesis, we implement an acquisition
based dynamic channel control protocol that supports multi-synchronous GALS infrastruc-
ture. Table 1 shows the comparison of different bi-direction NoC on the basis of channel
direction control.

Dynamic reconfigurable router architectures have been suggested to enhance NoC profi-
ciency by changing the path of the links in the runtime traffic situation, since normal traffic
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TABLE 1.1: Comparison of different bi-direction NoC

Name Channel Direction Control (CDC)

2X –Link Centralized CDC
BiNoC Distributive CDC
BiLink Aggressive bidirectional Link
FSNoC Acquisition based CDC
Cho et. al. Pressure based CDC

pattern is commonly unevenly distributed in the core of the network. To accommodate for
such kind of traffic pattern, a bi-directional NoC ((BiNoC) [63] architecture was presented
and further optimized as FSNoC [64] and BiLink [65]. However, the greater part of the
accentuation on the current reconfigurable NoC architecture has been concentrating on up-
grading the design of the switch itself. The optimization of the interconnection between two
adjacent routers is hardly satisfied. On the other side, network coding was introduced in com-
munication domain to maximize channel bandwidth to accomplish noteworthy improvement
in the system throughput. Over a single physical channel, an extra coding unit was inserted
between each pair of routers to enable the data transmission from both ends at a time. BiLink
[65] uses an additional link stage amongst routers and transmits two flits in one link for ev-
ery clock cycle using stage pipelining if both routers require utilizing the current link. To
increase additional effective bandwidth, each link path can be arranged in every clock cycle
to supply different traffic loads from both sides.

1.3 Objective

Above discussed bidirectional NoCs are not suitable for the globally asynchronous, locally
synchronous (GALS) architecture and it is believed that GALS approach is best suited for the
MPSoC(Multi-Processor SoC) and packet based NoC. Initially Dally and Towles [2] intro-
duced the concept of packet switching within the on-chip networks communication structure
and same concept followed by the Benini and Micheli in [3]. In the research articles [67],
different types of NoC and GALS based SoC are explained.
In this thesis, we will contribute to the architecture and implemented a bidirectional NoC
router for the multi-synchronous GALS infrastructure. A better approach to design a bidirec-
tional NoC for the multi-synchronous GALS system is shown in figure 1.3. Its consists of five
bidirectional ports which support data transfer across two clock domains of arbitrary phase
and frequency and it is best suited for Distributed Scalable Predictable Interconnect Net-
works (DSPIN) . We know that clock cross domain (CCD) and synchronization are the main
requirements for the GALS infrastructure and these concepts greatly influence the design of
NoC architectures. The main issue in GALS architectures is the possibility of synchroniza-
tion failure (metastability) between two adjacent routers within a mutli-synchronous NoC.
The proposed NoC architecture uses a novel multi-synchronous FIFO that implements the
necessary functionality to remove clock cross domain issues.

In order to address GALS synchronization issue and bandwidth requirement, the pro-
posed multi-synchronous bi-directional NoC’s router is developed as shown in figure 1.4. It
consists of five modules which are situated at the east, west, north, south and northwest direc-
tions. The communication between local module and processing element (PE) is performed
using the network interface controller (NIC). All the input/output ports of different modules
behave as a bi-directional port and communicate through a novel multi-synchronous FIFO.



10 Chapter 1. Introduction

FIGURE 1.4: Top/Block level diagram of proposed multi-synchronous bi-
directional NoC

The bi-directional port is controlled by a dynamic channel control module which provides dy-
namic reconfigurable channel to the router itself and associated sub-module. A synchronous
cluster is composed by local subsystem and the associated router. The intra-cluster wire is
the longest wire in this method, e.g. we can consider wire length from 1 in-out port on the
one side to 1 in-out port on the other side, and this wire length may not be stretched be-
yond cluster size. This multi-synchronous bi-directional NoC architecture is well-matched
with the GALS style, where synchronous islands communicate to each other asynchronously.
Here every router is synchronized with the same network clock frequency, but due to differ-
ent path delay, phase skew can occur amongst two adjacent routers. Hence, each subsystem
can be considered as an individual synchronous island or can be independent of network
clock frequency. Hence two types of interface will be considered, i.e. router-PE interface
and router-router interface. The router-PE interface will be completely asynchronous and
router-router interface will be mesochronous (same frequency but different phase). In order
to address such two types of interface, a novel multi-synchronous FIFO will be required to
resolve mesochronous and asynchronous problem.
Here we proposed microarchitectural modification of available bi-directional NoC’s router
that improve delay, area and power consumption. We contributed to the architecture and
implemented a bi-directional NoC’s router for the multi-synchronous GALS systems using
parameterized RTL code. The contributions of this thesis are summarized as follows.



1.4. Document Organization 11

1. A novel multi-synchronous FIFO buffer architecture that supports valid/ready flow
control mechanism at all the different input/output ports of the routers.

2. A new channel directional control protocol, called Dynamic Channel Control, is pro-
posed for the bi-directional channels. This is based on handshaking protocol.

3. Implementation of the proposed NoC’s router and detailed analysis in term of area,
delay, and power dissipation.

1.4 Document Organization

The remaining chapters are divided into three chapter groups, i.e. the contributions to the
thesis are represented by Chap. 2 and Chap. 3, the implementation chapters describing the
implementation of this thesis (Chap. 4 – Chap. 8), and the concluding chapter represented
by Chap. 9. A brief descriptions of each chapter is provided in the following paragraphs..

• Chap. 2 describes contribution to the architecture and investigates implementation
aspects for high performance traditional BiNoC routers. After contributing to the tra-
ditional architecture, the proposed architecture is called as Multi-synchronous BiNoC
(MBiNoC) architecture. It mainly consists of three parts: multi-synchronous FIFO
module at the interface of the router, dynamic channel control module and router in-
ternal architecture.

• Chap. 3 discusses elementary FIFO designs. We investigate different asynchronous
FIFO types, discuss approaches for providing, scalability and robustness for multiple
clock domains, and evaluate power, area and delay using commercial FPGA Virtex 6
family device XC6VLX760.

• Chap. 4 discusses elementary arbiter designs. We investigate different arbiter types,
discuss approaches for providing fairness, scalability and support for multiple priority
levels, and evaluate power, area and delay using commercial FPGA Virtex 6 family
device XC6VLX760.

• Chap. 5 discusses a routing computation module that allows routers to be embedded
in arbitrary network topologies. This chapter also describes how routing modules are
responsible for keeping the network connected and resolving contention for the same
resource while allowing multiple packets to flow in the network concurrently.

• Chap. 6 discusses the relative work in the field of Network Interface (NI) design and
implementation. This chapter also deals with complete RTL model of NI and its sub-
module.

• Chap. 7 similarly investigates allocators. In this chapter we discussed different types
of available allocators and their implementations. We develop a scheme to alleviate
inherent fairness issues in wavefront allocation. this chapter also discusses, how the
basic allocator designs can be used to implement VC allocation. We give an overview
of practical implementation variants; describe VC allocation and Switch allocation,
and present detailed evaluation results for power, area and delay.

• Chap. 8 Discusses new contributions of this thesis. The directions for future works are
also briefly described in this chapter.
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Chapter 2

Contributions To The Architecture

2.1 Summary

To enhance the performance of on-chip communications of Globally Asynchronous Locally
Synchronous Systems (GALS), a dynamic reconfigurable multi-synchronous router archi-
tecture is proposed to increase network on chip (NoC) efficiency by changing the path of
the communication link in runtime traffic situation. In order to address GALS issues and
bandwidth requirements, the proposed multi-synchronous bi-directional NoC’s router is de-
veloped and it guarantees higher packet consumption rate and better bandwidth utilization
with lower packet delivery latency. All the input/output ports of the proposed router be-
have as a bidirectional ports and communicate through a novel multi-synchronous first-in
first-out (FIFO) buffer. The bi-directional port is controlled by a dynamic channel control
module which provides a dynamic reconfigurable channel to the router itself and associated
sub-modules. The flow direction at each channel is controlled by a dynamic channel con-
trol algorithm. Implemented with a pair of algorithmic finite state machines, this dynamic
channel control algorithm is shown to provide high performance, be free of deadlocks, and
starvation-free.

2.2 Introduction

Network-on-Chip (NoC) is a general-purpose on-chip interconnection network that offers
great promises to mitigate the ever increasing communication complexity of modern many-
core system-on-chip (SoC) designs. Specifically, a city-block style tiled NoC architecture
proposed in [68-70] has gained high popularity due to its simplicity and flexibility.
Network-on-Chip(NoC) has become a promising approach to solve the communication bot-
tleneck in the modern many-core system-on-chip. With the potential deployment of many-
core systems on new applications such as big data, artificial intelligence and deep machine
learning, the NoC router requires to transfer a larger amount of communication data among
processors. For example,the Google Brain project [71-72] uses 1000 machines to train a deep
neural network. Each machine contains 16 cores on it and a subset of neural network will
be mapped on each of them [71]. The requirement of the data bandwidth is high and uneven
due to the interleaving of the feed-forward and back propagation training phases. To address
the intensive bandwidth requirement of these applications, a higher throughput NoC router
architecture is essential and crucial for the next generation of many-core systems.
Networks-on-Chips (NoCs) [73] represent a widely accepted solution to connect multiple
cores, due to its scalability, flexibility and high bandwidth properties. Several regular patterns
for NoC architectures have been proposed and implemented in [33]. These NoC architectures
have gained popularity due to their scalability, simplicity and flexibility. In such NoC archi-
tectures, main switching component (router) behaves like a synchronous island. In such NoC
architecture, neighboring routers are connected via a pair of unidirectional communication
channels. Each channel is hard-wired to handle either outgoing or incoming traffic. From
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simulation results, it is observed that quite often one channel may be overflowed with heavy
traffic in one direction, while the channel in the opposite direction remains idle. This leads to
performance loss and inefficient resource utilization. A typical 2-D mesh 4-stage pipelined
virtual-channel based NoC router is shown in figure 2.1.

In a typical virtual-channel flow-control based router, the flits are routed via a four-stage

FIGURE 2.1: A typical 2-D mesh 4-stage pipelined virtual-channel based
NoC router [68]

pipeline: routing computation (RC), virtual-channel allocation (VA), switch allocator (SA),
and switch traversal (ST).
One incoming flit that arrives at a router is first written to an appropriate input virtual-channel
queue and waits to be processed. When a head flit reaches the top of its virtual-channel buffer
queue and enters the RC stage, it is decoded by the RC module and generates an associated
direction request. The direction request of this flit is then sent to the VA module to attain
virtual-channel at the downstream router. There might be some contentions among packets
that request for the same virtual-channel at the downstream router. The loser packets will be
stalled at the VA stage and the following flit in the previous stage will also be blocked due
to this contention failure. Note that the processes of RC and VA actually take place only on
the head flit. The subsequent body flits and tail flit of a packet simply accede to the routing
decision acquired by the head flit and require no further processing at the RC and VA stages.
Once a decision on the output virtual-channel selection is made at the VA stage, the SA mod-
ule will assign physical channels to intra-router flits. Flits granted with a physical channel
will traverse through the crossbar switch to the input buffer of the down-stream router during
the ST stage, and the process repeats until the packet arrives at its destination.

In above discussed NoC infrastructure, adjacent routers are connected with two unidirec-
tional communication links and these communication links are hardwired to handle commu-
nication data into only one direction at a time. It’s frequently seen in the simulation result that
one channel can be collapsed by a huge number of packets in one route direction while the
reverse route direction remains unused. This would tend to reduce throughput and therefore
result in an unproductive use of communication channel.
This uneven NoC traffic pattern is very similar to the uneven traffic flow pattern during rush
hours on a city highway in a metropolis. A common solution to alleviate such a problem is to
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implement reversible lanes (counter-flow lanes). A reversible lane is a highway driving lane
with dynamically reversible driving direction assignment. Using electronic signs, the driving
direction on a counter-flow lane can be reversed to provide more capacity to the direction
with heavier traffic volume.
Dynamic reconfigurable router architectures have been suggested to enhance NoC efficiency
by changing the path of the links in runtime traffic situation, since normal traffic pattern is
commonly unevenly distributed in the core of the network. To accommodate for such kind
of traffic pattern, a bi-directional NoC ((BiNoC) [63] architecture was presented and further
optimized as FSNoC [64] and BiLink [65]. However, the greater part of the accentuation on
the current reconfigurable NoC architecture has been concentrating on upgrading the design
of the switch itself. The optimization of the interconnection between two adjacent routers
is hardly satisfied. On the other side, network coding was introduced in communication do-
main to maximize channel bandwidth to accomplish noteworthy improvement in the system
throughput. Over a single physical channel, an extra coding unit was inserted between each
pair of routers to enable the data transmission from both ends at a time. BiLink [65] uses an
additional link stage amongst routers and transmits two flits in one link for every clock cycle
using stage pipelining if both routers require utilizing the current link. To increase additional
effective bandwidth, each link path can be arranged in every clock cycle to supply different
traffic loads from both sides.
Above discussed bidirectional NoCs are not suitable for the globally asynchronous, locally
synchronous (GALS) architecture and it is believed that GALS approach is best suited for
the MPSoC and packet based network-on-chip. Initially Dally and Towles [2] introduced
the concept of packet switching within the on-chip networks communication structure and
same concept followed by the Benini and Micheli in [3]. In the research articles [74-75],
different types of NoC and GALS based SoC are explained. In this thesis, we contribute to
the architecture and implement a bidirectional NoC router for the multi-synchronous GALS
infrastructure.

Key technical contributions of this thesis include the following:

1. A novel multi-synchronous bi-directional router architecture featuring dynamically
self reconfigured bidirectional channels. It promises to enhance performance through
better resource utilization.

2. A novel multi-synchronous FIFO buffer architecture that supports valid/ready flow
control mechanism at all the different input/output ports of the routers.

3. A new channel directional control protocol, called Dynamic Channel Control, that
intelligently and automatically determines the channel transmission direction using
local information. This is based on handshaking protocol.

4. Implementation of the proposed NoC’s router and detailed analysis in terms of area,
delay, and power dissipation of each individual module.

2.3 Architectural Overview of Proposed NoC’s Router

To enhance the performance of on-chip communication within the GALS infrastructure, we
propose a Multi-Synchronous Bi-directional NoC architecture as shown in figure 2.2. This
architecture is the extended version of an available BiNoC [63] architecture that is suitable
for the GALS infrastructure. In this paper, we contribute a novel multi-synchronous FIFO
buffer at all the interface (input/output ports) of the router and a dynamic channel controller
that is based on the handshaking protocol. This dynamic channel controller controls the data
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flow direction at each link and is implemented using a pair of ASM (Algorithmic State ma-
chine) charts namely Talker and Listener. It provides higher performance, deadlock-free,
and starvation-free communications. Based on the motivational examples in BiNoC [63] and
FSNoC [64], our proposed MBiNoC improves performance by providing more flexibility in
using bandwidth. Here bi-directional channels are used to dynamically increase the band-
width at runtime and new input buffer architecture is introduced to support intra-router data
path within the GALS infrastructure. Normally in conventional NoC architecture, two adja-
cent routers use two unidirectional links in opposite directions for communication of data,
but in our multi-synchronous bi-directional NoC, the data link between adjacent routers is
able to transmit data in any direction dynamically.

FIGURE 2.2: Detailed Architecture of proposed NoC Router

After contributing to the traditional architecture, the proposed architecture is called as
Multi-synchronous BiNoC (MBiNoC) architecture. It mainly consists of three parts: multi-
synchronous FIFO module at the interface of the router, dynamic channel control module
and router internal architecture. Like a traditional architecture, MBiNoC router with virtual
channel flow control has five pipeline stages: Route Computation, Virtual Channel Alloca-
tion, Switch Allocation, Switch Traversal, and Link Traversal.

2.3.1 Reconfigurable Inputs/outputs

Figure 2.3 shows the details of the proposed communication scheme between two neigh-
boring routers. In order to support different clock frequencies for GALS infrastructure, we
replace the synchronous FIFO of all the input ports by a novel multi-synchronous FIFO.

Details about the multi-synchronous FIFO and its implementation will be discussed in
the chapter 3.
The detailed schematic of the bidirectional ports implementation of our proposed router is
shown in figure 2.3. The direction_control signal is generated from the dynamic channel
control and assigned properly to avoid conflict. Each port within the proposed architecture
can be used as either an input port or an output port.
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FIGURE 2.3: Bi-directional ports implementation

2.3.2 Dynamic Channel Control

Dynamic channel control is shown in figure 2.4 and is based on handshaking protocol. Here
two data channels are available called data channel #1 and data channel #2. This controller
performs mainly two tasks, first it decides the link direction dynamically and second it gen-
erates the arbitration request signal to the switch allocator.
Figure 2.4 shows the operation of dynamic channel control module. Here we consider that
Talker ASM (algorithmic state machine) and Listener ASM work with different frequencies.
So, signal op_req_T is generated from router #1 and reaches router #2 as ip_req_syncL. Sig-
nals clk_T and clk_L are the talker clock and listener clock respectively, and communication
between two neighboring routers is performed using a two flip-flop synchronizer.
The detailed operation of dynamic channel control will be discussed in next section.

FIGURE 2.4: Dynamic channel control module
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2.3.3 Virtual Channel (VC) and VC flow-Control

The Wormhole flow-control based conventional bidirectional router requires two input buffers
to receive two packets from different directions at the same time. In the proposed router ar-
chitecture, we provide the link utilization flexibility by sharing the access authority of two
input multi-synchronous FIFOs for the two in-out ports at the same direction, where two in-
put FIFOs can be multiplexed on two physical channels in each direction as shown in figure
2.3. Actually, virtual channels behave like an architecture which has numerous wormhole
links existing in parallel. Therefore, this approach can possibly improve performance by de-
creasing the Head-of-Line Blocking effect of the channels. Since in the proposed router, two
physical channels shared the virtual channels in each direction at a time, then total number
of virtual channels is equivalent to the conventional bidirectional virtual channel router.
In Virtual Channel (VC) flow control [24], when the head flit of a packet arrives at a router,
it must acquire one of the VCs associated with the physical channel that connects to its des-
tination output before it can proceed. To achieve this, the head flit sends a request to the VC
allocator once it reaches the front of its input VC. The VC allocator generates a matching
between any such requests from the input VCs on the one hand and those output VCs that are
not currently in use by another packet on the other hand.
In the general case, a router with P ports and V VCs per port therefore requires a VC allocator
that can match PxV agents (all input VCs at all input ports) to PxV resources (all output VCs
at all output ports) as shown in figure 2.5. The VC allocator architecture in our proposed
router is the same as the available VC flow control based router except there is no overhead
associated with this stage (VA stage), since in our router design, there are two bi-directional
links in each direction among VC buffer and here we used multi-synchronous FIFOs for each
virtual channel.

FIGURE 2.5: VC allocator in proposed router.

2.3.4 Switch Allocators

Once a packet has completed Virtual Channel (VC) allocation, its flits can be forwarded to
the selected destination port subject to buffer space availability. In a conventional router
architecture, for each flit to be transferred, a crossbar connection between the corresponding
input and output ports must be established for one cycle. The switch allocator (shown in
figure 2.6) is responsible for scheduling such crossbar connections; in particular, it generates
matching between requests from active VCs at each of the router’s P input ports on the one
hand and crossbar connections to its P output ports on the other hand. In the proposed router
architecture, since the channels are bidirectional links bandwidth is doubled from P to 2P in
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each output direction. The grant signals generated by the switch allocator are used to set up
the registers that control crossbar connectivity. In addition, the switch allocator notifies the
winning VC at each input port, causing the latter to prepare its front most flit for crossbar
traversal.

FIGURE 2.6: Switch allocator in proposed router.

2.4 Dynamic Channel Control Protocol

Our proposed dynamic channel control protocol is similar to channel direction control (CDC)
protocol used in BiNOC [63], FSNoC [64], and double data rate protocol used in BiLink [65]
except that all previously implemented protocols support only synchronous design whereas
our proposed protocols support GALS infrastructure. Figure 2.4 shows the inter-router ar-
rangement of dynamic channel control where a pair of ASMs namely Talker ASM and Lis-
tener ASM is supporting two unrelated clock domains and communicated on the principle of
handshaking protocol.

2.4.1 Inter-router Transmission

The basic operation sequence of four-phase handshaking protocol is illustrated in figure 2.7.
Initially The Talker ASM activates the op_req_T signal and this signal is passed through
a register for unwanted glitches and then passed through two flip-flop synchronizer. In the
L_request1 state, Listener ASM senses activation of op_req_T, and ip_req_sycT signals, then
it sends ack asop_req_L signal towards Talker. In the T_request1 Talker detects activation of
op_req_L as ip_req_synL, it sets the value op_req_T signal as zero.
Now listener deactivates the op_req_L signal after it notices deactivation of the op_req_T

signal. Finally Talker comes back to the idle state once it detects deactivation of the op_req_L
signal. Initially in idle state, the op_req_T signal is not activated and it moves to the T_request1
state at the edge of clk_T, in this state, the op_req_T signal is set to be active. The finite
state machine (FSM) then stays in the T_request1 state until activation of Listener signal,
in_req_syncL. Then it transfers to the T_request0 state and op_req_T signal becomes zero.
The FSM returns to the idle state after it senses deactivation of the in_req_syncL signal. The
Talker FSM is similar to the Listener FSM except that it has one more idle state, thus can
only respond to the Talker FSM. The op_req_T and in_req_syncL signals must be glitch-free
because both signals are synchronized by a different clock domain.
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FIGURE 2.7: ASM chart for the Inter-router transmission.

2.4.2 Intra-router Transmission

FIGURE 2.8: Mode Controller of ASM.

In our proposed router architecture, each bi-directional channel request to be achieved wisely
to confirm that each transmission is valid unalike transmission channel used in conventional
routers. To make sure that on each bi-directional link, only one direction is effective at one
time, an inter-router communication channel control scheme is implemented for each chan-
nel in an algorithmic state machine as shown in figure 2.9. Within the Dynamic channel
control module, algorithmic state machine dynamically reconfigures the route of each link.
As shown in figure 2.9, our ASM design is quite simple but very efficient and it contains
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mainly three states: initial, free, and delay. Here communication between two routers as
from router1 to router2 (R1→R2) and from router2 to router1 (R2→R1) is shown in figure
2.9.
Here we developed a mode controller, which can set the mode of operation of ASM as prior-
ity mode or normal mode as shown in figure 2.8.
To impose symmetry of data transmission, the ASMs on the other end between the same
couple of routers will be selected by opposite mode. The processes of neighboring ASMs are
asynchronous to each other since they operate on different unrelated clock domains.

2.4.2.1 Priority Mode ASM

FIGURE 2.9: Dynamic channel control ASM in priority mode.

Dynamic channel control ASM in priority mode is originated at the free state as shown in
figure 2.9. In this state if control signal direction_control = 1 or input signal in_req_sync =
0, it will continue in this state. In other words, the link path will remain outward path as long
as there are data flits within the current router to be sent via this link. The channel path should
still remain unaffected even when there is no data to transmit, and if there is no request to send
data from the neighboring router. When there are data to be sent from the neighboring router
and if there are no data to transfer from the current router, on this condition the priority ASM
will move from free state to initial state. The output signal was op_reg = direction_control
in free state, subsequently, the output may get to be 0, permitting the neighboring router to
ask for the channel. After entering in initial state, priority ASM will remain in this state as
long as there are no data to transmit outward path, i.e. direction_control = 0. Meanwhile,
in initial state, op_req = 0 and also ASM initializes the counter as counter = 0. Whenever
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the value of signal direction_control changes from 0 to 1 the priority ASM will move into
delay state waiting to regain the channel control to transmit data. Within the delay state, the
counter will increment its value during each clock cycle and op_req = 1. Whenever the value
to counter = 4, the priority ASM returns to the free state and starts data transmission. Within
delay state the output signal is op_reg = 1 and has to reach the neighboring router in such a
manner that the normal ASM will capture the link by initializing the initial state. This is the
main reason for the delay state.

2.4.2.2 Normal Mode ASM

Dynamic channel control ASM in normal mode is originated at the initial state with op_req
= 0 as shown in figure 2.10. If a local route compute module requests to use the link
(direction_control = 1) and the priority ASM of neighboring routers yields the channel
(ip_req_sync = 0), normal ASM will move from the initial state to the delay state. For eight
clock cycles, the normal ASM continues in the delay state and it will return to an initial state
whenever priority ASM requests the channel as in_req_sync = 0. Whenever in_req_sync =
0 and after eight consecutive clock cycles, the normal ASM will move into the free state.
If priority ASM does not have any data to communicate, i.e. in_req_sync = 0, the normal
ASM could continue in the free state. Normal ASM stops immediately data transmission
after in_req_sync = 1 and returns back to the initial state.

FIGURE 2.10: Dynamic channel control ASM in normal mode.
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2.5 Conclusion

A Multi-clock Bi-directional channel Network-on-Chip (MBiNoC) architecture was pro-
posed in this chapter to enhance the performance of on-chip communication for the GALS
infrastructure. In a MBiNoC, each communication channel allows itself to be dynamically
reconfigured to transmit flits in either direction. This added flexibility promises better band-
width utilization, lower packet delivery latency, and higher packet consumption rate. Novel
on-chip router architecture is developed to support dynamic self-reconfiguration of the bidi-
rectional traffic flow. The flow direction at each channel was controlled by a new dynamic
channel control protocol. Implemented with a pair of algorithmic state machines, this dy-
namic channel control protocol is shown to be high performance, free of deadlock, and free
of starvation. A novel multi-synchronous first-in first-out (FIFO) buffer is implemented at
the input/output ports to resolve GALS issue.
This chapter has described in detail the bidirectional channel control scheme and its design
mechanism. An inter-router transmission scheme was provided first to achieve bidirectional
data transmission. To avoid deadlock and starvation, a priority-based design of ASM was
introduced.
This chapter mainly focused on contributions to the existing architecture and explained dy-
namic channel control protocol in detail.
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Chapter 3

Multi-Synchronous FIFO

3.1 Summary

Microarchitectural structures of FIFO in Multi-Synchronous Bi-Directional NoC’s routers
have a noteworthy impact on the overall performance of an on-chip network for Globally
Asynchronous Globally Synchronous (GALS) infrastructures. This buffering can be at the
input or the output interface of a router to accommodate incoming flits and outgoing flits
which cannot be directly forwarded due to traffic situations. In GALS infrastructure multi-
synchronous FIFO is used at the interface of the routers, which supports dynamic, extendable
and power efficient multi-clock architectures. This projected architecture of buffer allows the
allocation of data amongst entirely separated clock domain modules with minimum cycles of
latency between sender and receiver. The ready/valid handshake permits the sender and the
receiver to prevent their operation for an arbitrary quantity of time. An abstract FIFO may
be tailored to the ready/valid protocol both inside the upstream and the downstream connec-
tions.In this thesis we developed a novel multi-synchronous buffer architecture that supports
valid/ready flow control mechanism at all the different interfaces of the routers. This pro-
posed multi-synchronous buffer architecture is implemented using parametric Verilog HDL
and synthesized using Xilinx ISE 14.7 and FPGA Virtex 6 family device XC6VLX760 is
considered as target technology and its performance is evaluated in terms of power, area and
delay.

3.2 Introduction

It is becoming more difficult and expensive to distribute a global clock without skew within
a System-on-Chips (SoCs) and Chip-Multiprocessors (CMPs) due to shrinking technolo-
gies and design sizes. GALS systems provide a better alternative for the CMPs and SoCs
[3]. NoC architectures are becoming the effective material for both general purpose chip-
multiprocessors (CMPs) and application specific SoCs. The router microarchitecture plays a
crucial function in accomplishing performance goals in the design of NoCs, i.e. low latency
and high throughput. High throughput routers permit a NoC to fulfill the communication
needs of multi-core SoC (MPSoC) applications.
An Multi-Synchronous FIFO Design refers to a FIFO Design where in the data values are
written to the FIFO memory from one clock domain and the data values are read from a dif-
ferent clock domain, and the two clock domains are not related (in terms of frequency and
phase) to each other. Multi-Synchronous FIFO’s are widely used to safely pass the data from
one clock domain to another clock domain
Buffering can be used at the input interface or the output interface of a router to accommodate
incoming flits and outgoing flits, which cannot be directly forwarded due to traffic situations.
In GALS infrastructure multi-synchronous FIFO is used at the interface of the routers to sup-
port multi-clock architectures. The presented architecture facilitates passing data between
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different cores which are in a totally isolated clock island. It is particularly useful in appli-
cations where size of FIFO is important rather than latency which is critical such as in many
NoC applications [76-78]. As it has been already discussed, Multi-Synchronous FIFO is used
at the interface of the proposed router architecture, which supports dynamic, extendable and
power efficient multi-clock architectures. It is very useful to transfer data between different
clock domain modules. This projected architecture of buffer allows the allocation of data
amongst entirely separated clock domain modules with minimum cycles of latency between
sender and receiver.
An abstract form of Valid/Ready protocol can be built around a multi-synchronous buffer
queue as shown in figure 3.1. This multi-synchronous buffer model has two interfaces called
Push and Pop, which indicate to its connecting module when the buffer is empty or full. The
AND gate outside the buffer queue controls the push and pop operation, i.e. push cannot be
performed when signal full is asserted and pop cannot be performed when signal empty is
asserted. The write (push) and read (pop) operations are performed on the write clock and
read clock domain respectively. In both cases (write and read), it can be observed that a data
transfer is occurring when the corresponding handshaking signal valid or ready is asserted.

Many bi-synchronous and asynchronous buffers are implemented by different authors in

FIGURE 3.1: Valid/Ready protocol can be built around a multi-synchronous
FIFO

literature for specific applications. Dally, Poulten, and Balch present top-level view of bi-
synchronous FIFO architecture [79], but detail microarchitecture is not available in the liter-
ature. Ebergen [80] and Molnar et al. [81] often discuss fully asynchronous FIFO into the
literature, but these designs do not utilize the clocks, that’s why it is difficult to apply syn-
chronization between different clock domains. Table 3.1 provide information about different
bi-synchronous FIFO design. The FIFO designed by Greenstreet, which supports mesosyn-
chronous system only (individual islands clock derived from global clock, which have same
frequency but different phase like) [82]. Chakraborty et al. presented a buffer design; it first
calculates time to develop a frequency difference estimate, before transferring the data [83].
A linear FIFO architecture is presented by Seizovic for data synchronization; it has some
limitation in terms of initial latency [84]. Apperson et al. represented a scalable and robust
bi-synchronous FIFO architecture but its memory size is fixed, that’s why it does not provide
high throughput and is not cost effective [85]. Similarly Panades and Greinear proposed a
buffer architecture that is well-suited for GALS system but is not appropriate for mesosyn-
chronous systems [86]. Chelcea and Nowick proposed an alternative FIFO architecture for
the application of GALS infrastructure [87]. This design is based on a Register File and each
register has its own full and empty flags. This style is suitable for small buffer only.

The contributions of this paper chapter summarized as follows:
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TABLE 3.1: Comparison of various bisynchronous FIFOs

Bisynchronous FIFO Designs Buffer Types Synchronization Types

Greenstreet Fixed size Mesochronous
Chakraborty Fixed size —
Siezovic Linear fixed size Bisynchronous
Apperson Fixed size SRAM Bisynchronous & Pausable
Panades Fixed memory array Bisynchronous
Chelcea Fixed Register file Bisynchronous
Cummings Fixed size SRAM Bisynchronous
Implemented work Register file Multi-Synchronous

• A novel multi-synchronous buffer architecture that supports valid/ready flow control
mechanism at all the different input/output interfaces of the Multi-synchronous bi-
directional NoC’s routers.

• We have implemented this router for different depth configuration i.e. 64, 128, 256,
and 512.

• Detailed analysis in terms of area, delay, and power dissipation.

3.3 Synchronous FIFOs

A Synchronous FIFO describes the FIFO design where the data and information is stored in
the memory and transition a data in a appropriate fashion using clock pulse. Both read and
write operation handle by control circuit. In computer programming, FIFO (first-in, first-out)
is an approach to handling program work requests from queues or stacks so that the oldest
request is handled first. In hardware it is either an array of flops or Read/Write memory
that store data given from one clock domain and on request supplies with the same data to
other clock domain following the first in first out logic. Basically, FIFOs are divided in two
categories, Synchronous and Asynchronous. Synchronous FIFOs have quickly become the
FIFOs of choice for new designs. This movement to synchronous FIFOs from their asyn-
chronous predecessors is due mainly to speed and ease of operation. However, there are also
many other advantages which these devices bring such as synchronous flags, programmable
almost empty and almost full flags, depth expansion, and retransmit. Synchronous FIFOs are
easier to use at high speeds since they can be operated by free running clocks. Asynchronous
FIFOs required read and write pulses to be generated as data is moved through the part, and
generating these pulses is difficult to do at high speed. Synchronous FIFOs can be used just
as their asynchronous counterparts by tying the read and write strobes to the read clock and
write clock lines respectively. This makes migration to synchronous FIFOs very easy, even
for designers who are mostly familiar with asynchronous FIFOs [88].
The basic building blocks of a synchronous FIFO are the memory array, flag logic, and ex-
pansion logic. The memory array is built from dual ported memory cells. These cells allow
simultaneous access between both ports of the memory, the write port and the read port. This
simultaneous access gives the FIFO its inherent synchronization property. There are no re-
strictions regarding timing or phase between accesses of the two ports. This means simply,
that while one port is writing to the memory at one rate, the other port can be reading at
another rate totally independent of one another.
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3.3.1 Linear FIFO

This section discusses the fundamental principle and practices of basic synchronous FIFO
structure called linear FIFO. The simplest form of FIFO consists of flip-flops which are con-
nected like a serial input serial output shift register as shown in figure 3.2. Data is serially
enters at the one end and propagates through every flip-flop until it reaches at the end of
the register. Since all the movements of the data are controlled by a single clock it is called
synchronous buffer.

FIGURE 3.2: Linear FIFO block diagram

3.3.2 Elastic Bufffer FIFO

The ready/valid handshake allows the sender and the receiver to stop their operation for an
arbitrary amount of time. Therefore, some form of buffering should be implemented in both
sides to keep the available data that cannot be consumed during a stall in either side of the
link.
The elastic buffer is the most primitive form of a register (or buffer) that implements the
ready/valid handshake protocol. Elastic buffers can be attached to the sender and the receiver
as shown in Figure 3.3. The EB at the sender implements a dual interface; it accepts (en-
queues) new data from its internal logic and transfers (dequeues) the available data to the
link, when the valid and ready signal are both equal to 1. The same holds for the EB at the
receiver that enqueues new valid data when it is ready and drains the stored words to its in-
ternal logic [89]. The EB at the sender implements a dual interface; it accepts new data from

FIGURE 3.3: An elastic buffer attached at the sender and the receiver’s in-
terfaces [89]

its internal logic and transfers the available data to the link as shown in figure 3.4, when the
valid and ready signals are both equal to logic high, so an EB can be built around a memory
queue. An abstract memory queue provides a push and a pop interface and informs its con-
necting modules when it is full or empty [89]. The abstract memory model does not provide
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any guarantees on how a push to a full queue or a pop from an empty queue is handled. The
AND gates outside the buffer provide such protection. A push (write) is done when valid
data are present at the input of the buffer and the buffer is not full.
At the read side, a pop (read) occurs when the upstream channel is ready to receive new data
and the buffer is not empty, i.e., it has valid data to send. In both sides of the EB we can
observe that a transfer to/from the buffer occurs, when the corresponding ready/valid signals
are both asserted (as implemented by the AND gates in front of the push and pop interfaces).

FIGURE 3.4: An elastic buffer built around an abstract memory queue model

3.3.3 Circular FIFO

A circular buffer or FIFO is a memory allocation scheme where memory is reused (reclaimed)
when an index, incremented modulo the buffer size, writes over a previously used location.
A circular buffer makes a bounded queue when separate indices are used for inserting and
removing data. The queue can be safely shared between threads (or processors) without fur-
ther synchronization so long as one processor enqueues data and the other dequeues it. (Also,
modifications to the read/write pointers must be atomic, and this is a non-blocking queue–an
error is returned when trying to write to a full queue or read from an empty queue)[90].
Note that a circular buffer with n elements is usually used to implement a queue with n-1
elements–there is always one empty element in the buffer. Otherwise, it becomes difficult to
distinguish between a full and empty queue–the read and write pointers would be identical in
both cases.

FIGURE 3.5: Block Diagram of Circular Buffer
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As shown in figure 3.5, circular FIFO uses an array of arbitrary addressable memory el-
ements supporting high throughput and low latency, and its scalability is radically improved
due to the fact that data and clock signals are not affected by buffer size.It generates two con-
trol flags called full and empty flag for the valid data read and write into the buffer memory.
Using read and write pointer alone to define the full and empty condition, always compari-
son of pointer must be taking place. For the empty condition the value of read pointer must
be equal to the value of the write pointer. For the full condition, firstly increases the size
of address pointers by one bit then equivalence tests of lower bits and Ex-or of MSB of ad-
dress pointers. Following inequalities must be satisfied for the correct operation of the buffer.

rptr ≤ wptr ≤ rptr +N (3.1)

Where rptr is read pointer, wptr is write pointer and N is the number of words.

3.4 Metastability and Synchronization

Metastability events are common in digital circuits, and synchronizers are a necessity to
protect us from their fatal effects.Originally, synchronizers were required when reading an
asynchronous input (that is, an input not synchronized with the clock so that it might change
exactly when sampled). Now, with multiple clock domains on the same chip, synchronizers
are required when on-chip data crosses the clock domain boundaries [91].
Understanding metastability and the correct design of synchronizers to prevent it is some-
times an art. Stories of malfunction and bad synchronizers are legion. Synchronizers cannot
always be synthesized, they are hard to verify, and often what has been good in the past may
be bad in the future. Consider the crosscut through a vicious miniature-golf trap in Figure
3.6. Hit the ball too lightly, and it remains where ball 1 is. Hit it too hard, and it reaches
position 2. Can you make it stop and stay at the middle position? It is metastable, because
even if your ball has landed and stopped there, the slightest disturbance (such as the wind)
will make it fall to either side. And we cannot really tell to which side it will eventually fall.

FIGURE 3.6: Mechanical metastability: the ball in the center position
is metastable because the slightest disturbance will make it fall to either

side.[17]

In flip-flops, metastability means indecision as to whether the output should be 0 or 1.
Whenever flip-flop not receiving a stable input value near the positive or negative edge of the
system clock, metastability is generated within the system. After resolution time Trol (time
required to reach a stable time) [90], metastability is resolved itself within the flip-flop and
characterized by the probability distribution function (PDF) as

p(Tr) = e
−Tr
τ (3.2)
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Where τ is the time decay constant and depend upon the electrical property of flip-flop.
The average time interval between two synchronization failures is known as mean time

TABLE 3.2: Sample of MTBF(Tr) computation

Tr in ns MTBF

00.00 3.99 × 10−05 sec (0.039msec)
20.50 5.91 × 10−03 sec (5.93msec)
50.00 8.82 × 10−01 sec (0.84 sec)
70.50 1.33 × 10+02 sec (133 sec)
10.00 1.95 × 10+04 sec (5.41 hours)
12.50 2.85 × 10+06 sec (3.35 days)
15.00 4.25 × 10+08 sec (1.33 years)
20.00 9.42 × 10+012 sec (2.99 × 105 years)
25.00 2.07 × 10+017 sec (6.58 × 109 years)
30.00 4.57 × 10+021 sec (1.45 × 1014 years)
35.00 1.01 × 10+026 sec (3.19 × 1018 years)

between synchronization failures (MTBR) and it is expressed as a function of Trol.

MTBR(Tr) =
e

−Tr
τ

ω × fclock × fdata
(3.3)

where ω is the susceptible time window, fclock is the system clock frequency, and fdata is the
rate of change of input data.
Synchronization is a method through which we can remove or reduce the probability of
metastability. From table 3.2 it can be seen that increasing the value of Trol, it increases
the value of MTBR. Here consider fclock is 50 MHz, data rate is 0.1fclock, ω is 0.1ns and τ
is 0.5ns.
There are three types of synchronizer available called single-FF, Double-FFs and Triple-FFs
synchronizer as shown in figure 3.7. They can remove metastability within a digital sys-
tems. In the diagram, synchronizer flip-flops provide the sufficient resolution time to move
metatstable state to one of the stable state of input signal.

3.5 Multi-Synchronous FIFO Architecture

Let us have a small recap of bi-synchronous FIFO working and then we will go to proposed
multi-synchronous FIFO design.
The general block diagram of bi-synchronous FIFO is shown in Figure 3.8. Functionality
wise We can distinguish four functional blocks in this diagram. They are: dual port RAM,
read pointer logic, write pointer logic and synchronizer. Dual port RAM has two ports-one
is for reading and the other one is for writing operation. These two accesses of the FIFO
are independent of each other and are completely controlled by read pointer logic and write
pointer logic. Number of memory locations of the FIFO varies from 8 locations to some
kilobytes. The data width of each location is also varying from one to 256 bits depending on
the applications and technology. Modern day FIFOs provide options to program both of the
above parameters as per requirements.
Data is written sequentially into the FIFO and read sequentially such that the first data written
is the first data read out and so on with the remaining sequential data. Thus architecture of
FIFO is completely characterized by these two independent operations. Dual port RAM and
read-write logic circuits with synchronizers accomplish this task. Read port has its associated
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FIGURE 3.7: All type of available synchronizer [90]

memory addressing logic called as ‘read pointer’ logic and write port has ‘write pointer’
logic. When FIFO is reset both read and write pointers point to first memory location of the
FIFO. As and when data is written to FIFO write pointer gets incremented and points to next
memory location. Similarly when read operation takes place read pointer gets incremented
for every read. Both pointer works in circular fashion i.e. after reaching the last position it
will jump to first location of the FIFO.
‘Full flag’ and ‘empty flag’ are used to detect the status of the FIFO. These two flags are
generated depending on the comparison result of FIFO pointers. Full flag is asserted when
FIFO is completely full. Empty flag is asserted when FIFO is empty. Assertion of full flag
indicates that no data can be written further unless at least one data is read out of the FIFO.
Assertion of empty flag indicates the condition that no more data can be read from the FIFO
unless until at least one data is written to the FIFO.
Even after the assertion of full flag, if data is written to FIFO ‘overflow’ condition occurs.
Similarly after the assertion of empty flag if read operation is performed then ‘underflow’
occurs. Either overflow or underflow condition causes the data corruption or data loss. Safe
and reliable FIFO designs always avoid both extreme conditions.

3.5.1 Proposed Architecture

Figure 3.9 describes the proposed architecture of Multi-Synchronous FIFO buffer architec-
ture model, which supports data transfer between two different arbitrary clock domains as
well as ready/valid protocol. The sender clock (wclk) and receiver clock (rclk) are not re-
lated to each other in terms of their phase and frequency. This block diagram consists of
mainly five sub modules: Register File, Ready/Full generation block, Valid/Empty genera-
tion block, and two flip-flop synchronizer. On the left hand side of figure 3.9 write logic is
presented and similarly in the right hand side of figure 3.9 read logic is presented.
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FIGURE 3.8: General approach of bi-synchronous FIFO design

FIGURE 3.9: Proposed architecture of Multi-Synchronous FIFO buffer

3.5.1.1 Address Pointers and Gray Coding

The suggested architecture uses two pointers called read and write address pointers to track
utilization of the buffer memory. In order to understand FIFO design, one needs to under-
stand how the FIFO pointers work. The write pointer always points to the next word to be
written; therefore, on reset, both pointers are set to zero, which also happens to be the next
FIFO word location to be written. On a FIFO-write operation, the memory location that is
pointed to by the write pointer is written, and then the write pointer is incremented to point
to the next location to be written.
Similarly, the read pointer always points to the current FIFO word to be read. Again on reset,
both pointers are reset to zero, the FIFO is empty and the read pointer is pointing to invalid
data (because the FIFO is empty and the empty flag is asserted). As soon as the first data
word is written to the FIFO, the write pointer increments, the empty flag is cleared, and the
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read pointer that is still addressing the contents of the first FIFO memory word, immediately
drives that first valid word onto the FIFO data output port, to be read by the receiver logic.
The fact that the read pointer is always pointing to the next FIFO word to be read means that
the receiver logic does not have to use two clock periods to read the data word. If the receiver
first had to increment the read pointer before reading a FIFO data word, the receiver would
clock once to output the data word from the FIFO, and clock a second time to capture the
data word into the receiver. That would be needlessly inefficient.
The FIFO is empty when the read and write pointers are both equal. This condition happens
when both pointers are reset to zero during a reset operation, or when the read pointer catches
up to the write pointer, having read the last word from the FIFO.
A FIFO is full when the pointers are again equal, that is, when the write pointer has wrapped
around and caught up to the read pointer. This is a problem. The FIFO is either empty or full
when the pointers are equal, but which?
One design technique used to distinguish between full and empty is to add an extra bit to each
pointer. When the write pointer increments past the final FIFO address, the write pointer will
increment the unused MSB while setting the rest of the bits back to zero as shown in Figure
3.10 (the FIFO has wrapped and toggled the pointer MSB). The same is done with the read
pointer. If the MSBs of the two pointers are different, it means that the write pointer has
wrapped one more time that the read pointer. If the MSBs of the two pointers are the same,
it means that both pointers have wrapped the same number of times.

FIGURE 3.10: Proposed architecture’s full and empty conditions

Using n-bit pointers where (n-1) is the number of address bits required to access the entire
FIFO memory buffer, the FIFO is empty when both pointers, including the MSBs are equal.
And the FIFO is full when both pointers, except the MSBs are equal.
Due to the metastability issues, the pointers are transferred to a Gray code format before the
clock domain crossing as shown in figure 3.11.In the case of Binary pointers, trying to syn-
chronize binary count value from one clock domain to another clock domain is challenging.
Consider an example, when pointer value changes from 0111 to 1000, then all bits changed
and increase the probability of metastability. In figure 3.11, Gray code counter assumes that
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the outputs of the register bits are the Gray code value itself (ptr, either wptr or rptr). The
Gray code outputs are then passed to a Gray-to-binary converter (bin), which is passed to a
conditional binary-value incrementer to generate the next-binary-count-value (bnext), which
is passed to a binary-to-Gray converter that generates the next-Gray-count-value (gnext),
which is passed to the register inputs.
The implementation of Binary-to-Gray conversion and Gray-to-Binary conversion requires
special circuit that is based on xoring operations. In the case of Binary-to-Gray, an n-bit
binary vector (Bn−1, Bn−2. . . B2, B1, B0) can be used to convert to n-bit gray coded vector
(Gn−1, Gn−2. . . G2, G1, G0) as shown in given equation 3.4, where ⊕ indicates the XOR
function.

gn−1 = bn−1, gn−2 = bn−1 ⊕ bn−2, gn−3 = bn−2 ⊕ bn−3

... ; g1 = b2 ⊕ b1, g0 = b1 ⊕ b0 (3.4)

Similarly in the case of Binary-to-Gray, an n-bit gray coded vector (Gn−1, Gn−2. . . G2, G1,
G0) can be used to convert to n-bit binary coded vector (Bn−1, Bn−2. . . B2, B1, B0) as
shown in given equation 3.5, where ⊕ indicates the same xor function.

bn−1 = gn−1, bn−2 = bn−1 ⊕ gn−2, bn−3 = bn−2 ⊕ gn−3,

... ; b1 = b2 ⊕ g1, b0 = b1 ⊕ g0 (3.5)

FIGURE 3.11: Dual n-bit Gray code counter block diagram

To better understand the problem of converting an n-bit Gray code to an (n-1)-bit Gray
code, consider the example of creating a dual 4-bit and 3-bit Gray code counter as shown in
Figure 3.12.
The most common Gray code, as shown in Figure 3.12, is a reflected code where the bits in
any column except the MSB are symmetrical about the sequence mid-point[6]. This means
that the second half of the 4-bit Gray code is a mirror image of the first half with the MSB
inverted.
To convert a 4-bit to a 3-bit Gray code, we do not want the LSBs of the second half of the
4-bit sequence to be a mirror image of the LSBs of the first half, instead we want the LSBs
of the second half to repeat the 4-bit LSBsequence of the first half.
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Upon closer examination, it is obvious that inverting the second MSB of the second half of
the 4-bit Gray code will produce the desired 3-bit Gray code sequence in the three LSBs of
the 4-bit sequence. The only other problem is that the 3-bit Gray code with extra MSB is no
longer a true Gray code because when the sequence changes from 7 (Gray 0100) to 8 ( Gray
1000) and again from 15 ( Gray 1100) to 0 (Gray 0000), two bits are changing instead of just
one bit. A true Gray code only changes one bit between counts
Therefor we change the gray-to-binary counter sequences for comparison of their values.

FIGURE 3.12: n-bit Gray code converted to an (n-1)-bit Gray code

3.5.1.2 Full generation block

Since the full flag is generated in the write-clock domain by running a comparison between
the write and read pointers, one safe technique for doing FIFO design requires that the read
pointer be synchronized into the write clock domain before doing pointer comparison.
Pointers that are one bit larger than needed to address the FIFO memory buffer are still
used for the comparison, but simply using binary code counters with an extra bit to do the
comparison is valid to determine the full condition.
Figure 3.13 shows the details about the left hand side of the main architecture of the multi-
synchronous FIFO. On the write side, the FIFO indicates whether it is full or not. The sender
should only send data when the FIFO is not full and asserting in_valid signal. From figure
3.9, when synchronized read pointer is equal to the write pointer except MSBs, the FIFO is
full. The condition for the full flag generation in the write clock domain is shown in algorithm
1.

if (wprt[n] == ¬ rptr_sync[n]) and (wptr[n-1]== rptr_sync[n-1]) then
full = 1 and out_ready = 0;

else
full = 0 and out_ready = 1;

end
Algorithm 1: Condition for full flag generation

3.5.1.3 Valid/Empty generation block

The empty comparison is simple to do. Pointers that are one bit larger than needed to address
the FIFO memory buffer are used. If the extra bits of both pointers (the MSBs of the point-
ers) are equal, the pointers have wrapped the same number of times and if the rest of the read
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FIGURE 3.13: Detailed Architecture of Full/Ready generation module

pointer equals the synchronized write pointer, the FIFO is empty.
Similarly In this proposed multi-synchronous buffer architecture the empty flag will be pro-
duced in the right side or read clock domain. Whenever Register File is unoccupied, imme-
diately the empty flag is generated. Figure 3.14 shows the details about the right hand side of
the main architecture of the multi-synchronous FIFO. On the read side, the FIFO indicates
whether it is empty or not, on the basis of in_ready signal, the receiver can consume all the
data available within the FIFO memory. The condition for the valid/empty flag generation in
the read clock domain is shown in algorithm 2.

FIGURE 3.14: Internal Architecture of Valid/Empty generation module

if (rprt == wptr_sync) then
empty = 1 and out_valid = 0;

else
empty = 0 and out_valid = 1;

end
Algorithm 2: Condition for empty flag generation

3.6 Power, Area, and Delay Calculations

We have developed a parameterized RTL model using Verilog HDL and synthesized it in a
commercial FPGA design flow. Synthesis is performed using Xilinx ISE 14.7 and FPGA Vir-
tex 6 family device XC6VLX760 is considered as target technology. Our proposed Buffer for
Multi-synchronous bi-directional NoC’s router is implemented for 4 different depth configu-
ration i.e. 64, 128, 256, and 512. Here we present synthesis reports of each individual depth
configuration which include macro statistics, power report and delay information. Power
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analysis is performed by the Xpower analyzer and graphs are plotted by the Xpower estima-
tor.
The throughput of the Multi-Synchronous FIFO is analyzed in function of the FIFO depth. As
the synchronizers add latency, the flow control of the FIFO is penalized and its performances
are influenced. In case of deep FIFO, those latencies do not decrease the FIFO throughput
since the buffered data compensate the latency of the flow control.
Tables 3.3-3.6 show synthesis reports in term of power, area, and delay of implemented
Multi-Synchronous FIFO RTL module for different depths i.e. 64, 128, 256, and 512.
Figures 3.15-3.18 show power analysis report of implemented Multi-Synchronous FIFO RTL
module for different depths i.e. 64, 128, 256, and 512.

TABLE 3.3: Synthesis report of Multi-Synchronous FIFO (64 depth)

Device Macro Statistics Timing Parameter Power Dissipation
# RAMs : 1 2.298ns 3.692 W
64x8-bit dual-port distributed RAM : 1 (0.561ns logic, 1.737ns route)
# Adders/Subtractors : 2 (24.4% logic, 75.6% route)
7-bit adder : 2
# Accumulators : 2
7-bit up accumulator : 2
# Registers : 44
Flip-Flops : 44
# Comparators : 2
7-bit comparator equal : 2
# Xors : 2
7-bit xor2 : 2

TABLE 3.4: Synthesis report of Multi-Synchronous FIFO (128 depth)

Device Macro Statistics Timing Parameter Power Dissipation
# RAMs : 1 2.211ns 3.703 W
128x8-bit dual-port distributed RAM : 1 (0.561ns logic, 1.650ns route)
# Adders/Subtractors : 2 (25.4% logic, 74.6% route)
8-bit adder : 2
# Accumulators : 2
8-bit up accumulator : 2
# Registers : 50
Flip-Flops : 50
# Comparators : 2
8-bit comparator equal : 2
# Xors : 2
8-bit xor2 : 2

TABLE 3.5: Synthesis report of Multi-Synchronous FIFO (256 depth)

Device Macro Statistics Timing Parameter Power Dissipation
# RAMs : 1 2.40ns 3.732 W
256x8-bit dual-port distributed RAM : 1 (0.561ns logic, 1.839ns route)
# Adders/Subtractors : 2 (23.4% logic, 76.6% route)

Continued on next page
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Table 3.5 – Continued from previous page
Device Macro Statistics Timing Parameter Power Dissipation
9-bit adder : 2
# Accumulators : 2
9-bit up accumulator : 2
# Registers : 56
Flip-Flops : 56
# Comparators : 2
9-bit comparator equal : 2
# Xors : 2
9-bit xor2 : 2

TABLE 3.6: Synthesis report of Multi-Synchronous FIFO (512 depth)

Device Macro Statistics Timing Parameter Power Dissipation
# RAMs : 1 2.549ns 3.761 W
512x8-bit dual-port distributed RAM : 1 (1.644ns logic, 0.905ns route)
# Adders/Subtractors : 2 (64.5% logic, 35.5% route)
10-bit adder : 2
# Accumulators : 2
10-bit up accumulator : 2
# Registers : 62
Flip-Flops : 62
# Comparators : 2
10-bit comparator equal : 2
# Xors : 2
10-bit xor2 : 2

Synthesis reports include device macro statistics, timing parameters and total power dis-
sipation. It can be seen that, all three parameters have a linear relation with the depth size
of implemented multi-synchronous FIFO. Area (device macro statistics) is directly propor-
tional to the depth of FIFO. Similarly, delay (timing parameters) and power dissipation are
also directly proportional to the depth of implemented FIFO. Here it can be seen that if we
doubled the depth size there are slightly increment in power, area and delay of the device.

To determine device power supply requirements and estimate thermal dissipation through-
out the design process data exchange mechanisms are available between the different power
estimation tools, Xilinx Power Estimator (XPE) and XPower Analyzer (XPA), which is in
the ISE Design Suite (IDS).

In our design development process we first performed power estimation in XPE to size
the voltage supply sources, evaluated thermal power dissipation paths, and allocated the total
power budget to the different blocks in the FPGA system. Later in the development cycle we
performed post implementation power analysis in XPower Analyzer to validate against our
power and thermal goals.
Here power calculation is performed by Xpower analyzer and graph is plotted using Xpower
estimator.
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FIGURE 3.15: Power analysis report of Multi-Synchronous FIFO (depth 64)

FIGURE 3.16: Power analysis report of Multi-Synchronous FIFO (depth
128)

3.7 Conclusion

This proposed multi-synchronous buffer architecture is implemented using parametric Ver-
ilog HDL and synthesized using Xilinx ISE 14.7 and FPGA Virtex 6 family device XC6VLX760
is considered as target technology.
The projected Multi-Synchronous FIFO design is well-matched for the many applications es-
pecially at the interface of two different clock domains. It can be utilized as a drop-in module
at the router interface of the multi-synchronous network-on- chip. This design provides high
sturdiness, fixed size register files, good energy proficiency, high frequency clock support
and good scalability.

Multi-Synchronous FIFO design requires careful attention to details from pointer gener-
ation techniques to full and empty generation. Ignorance of important details will generally
result in a design that is easily verified but is also wrong. Finding FIFO design errors typ-
ically requires simulation of a gate-level FIFO design with backannotation of actual delays
and a whole lot of luck!
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FIGURE 3.17: Power analysis report of Multi-Synchronous FIFO (depth
256)

FIGURE 3.18: Power analysis report of Multi-Synchronous FIFO (depth
512)

Synchronization of FIFO pointers into the opposite clock domain is safely accomplished us-
ing Gray code pointers.
Generating the FIFO-full status is perhaps the hardest part of a FIFO design. Dual n-bit Gray
code counters are valuable to synchronize and n-bit pointer into the opposite clock domain
and to use an (n-1)-bit pointer to do “full” comparison.
Generating the FIFO-empty status is easily accomplished by comparing-equal the n-bit read
pointer to the synchronized n-bit write pointer.
Careful partitioning of the FIFO modules along clock boundaries with all outputs registered
can facilitate synthesis and static timing analysis within the two asynchronous clock domains.
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Chapter 4

Arbiter Designs

4.1 Summary

Large systems-on-chip (SoCs) and chip multiprocessors (CMPs), incorporating tens to hun-
dreds of cores, create a significant integration challenge. Interconnecting a huge amount
of architectural modules in an efficient manner, calls for scalable solutions that would offer
both high throughput and low-latency communication. The switches are the basic building
blocks of such interconnection networks and their design critically affects the performance
of the whole system. So far, innovation in switch design relied mostly in architecture-level
solutions that took for granted the characteristics of the main building blocks of the switch,
such as the buffers, the routing logic, the arbiters, the crossbar’s multiplexers, and without
any further modifications, tried to reorganize them in a more efficient way.
The need for efficient implementation of simple crossbar schedulers has increased in the re-
cent years due to the advent of on-chip interconnection networks that require low latency
message delivery. The core function of any crossbar scheduler is arbitration that resolves
conflicting requests for the same output. Since, the delay of the arbiters directly determine
the operation speed of the scheduler, the design of faster arbiters is of paramount importance.
The core of each NoCs router involves arbiter and multiplier pairs that need to be carefully
co-optimized in order to achieve an overall efficient implementation. Low transmission la-
tency design is one of the most important parameters of NoC design.
In this chapter, we use parametric Verilog HDL to implement designs and compares per-
formance in terms of power, area, and delay of different types of arbiters using for NoCs
routers.The RTL implementation is performed used parametric Verilog HDL and analysis in
terms of power, area and delay is performed using Xilinx ISE 14.7 and Xpower Analyzer
(XPA) with Xpower Estimator (XPE).

4.2 Introduction

Arbitration is needed in any case that multiple contenders request access to a shared resource.
This scenario appears in many forms in almost every computer system. The most common
cases, where conflicting requests are resolved by arbiters, are the widely used bus-based sys-
tems where multiple masters and slave modules compete for gaining exclusive access to the
bus, and the memory systems, where the small number of supported memory ports do not
suffice to serve the read or write requests. Additionally, arbitration is the core function of
network switching fabrics where packet flows arriving from different inputs need to be di-
rected to the appropriate output.
The Network-on-Chip architecture is a data packet based communication system on a single
chip [92]. Due to packet switching, NoC provides wider bandwidth and higher performance
as compared with traditional bus structure[93]. Conventional interconnections like shared
bus architectures provide lack of flexibility and extensibility in dealing with lager number of
IP cores in a SoC.
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Network-on-Chip are widely used in many complex System-on-Chips specifically in embed-
ded system domain. Normally centralized switching techniques is preferred when number of
cores are less in a SoC [3]. In the case of 2D Mesh, switches at each node contains routers
and some of I/O ports where packet need to travel using different router and hops to reaching
its final target on the network [93-95]. The most generic architecture of routers is shown in
figure 4.1, for either using a centralized switching or a distributed switching. The NoC router
is responsible for forwarding the incoming packets from the input buffers to output ports with
proper arbitration and switch allocation techniques.

FIGURE 4.1: Generic Architecture of the NoC’s Router

As shown in figure 4.1, Incoming packets are stored in input buffers and possibly in out-
put buffers (not show in Figure) after crossing the crossbar. Which inputs are allowed to send
their data over the crossbar are determined by the crossbar scheduler (or switch allocator)
that resolves all conflicting requests for the same outputs. In many cases, in order to allow
the sharing of the network’s channels, to differentiate between separate traffic classes, i.e.,
request/reply packets, and to offer deadlock-free adaptive routing, virtual channels (VCs - or
virtual lanes) are used [24]. The VC allocator similar to the crossbar scheduler is responsible
for distributing the outputs’ VCs to the requesting inputs. The complexity of the VC allo-
cator increases with the number of available VCs per output link and the versatility of the
routing logic [96]. The time needed to complete, either switch or VC allocation is critical
to the performance of the switch and it determines the critical path of the design [95], [96-97].

Whenever incoming packets first arrive and are stored in the input FIFO after crossing
the switch fabrics, the Switch allocator decides which inputs are allocated to send their data
towards the switch fabrics by using chain of arbiters as shown in figure 4.2. This chain
of arbiters also resolves all conflicting requests for the same output. Here virtual-channels
(VCs) are used, since they offer deadlock free adaptive routing and are very useful in case of
conflicting requests. Similar to the switch allocator, virtual channel allocator is responsible
for distributive VCs, i.e. the output virtual lanes to the requesting inputs. Virtual-channel
flow control, which associates several virtual channels (channel state and flit buffers) with a
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single physical channel, and overcomes the blocking problems or confliction [98]. When a
packet blocks virtual channel allow other packets to use the channel bandwidth that would
otherwise be left idle . Virtual channel is a less expensive approach that gives almost the
same performance as dividing the channels across multiple single-port buffers, and all even
virtual channels are stored in one buffer and all odd channels in another one. This approach
provides multiple buffers ports per physical channel and also switch input speed up is en-
abled without the expense of a per-virtual-channel buffer by providing multiple ports on a
per-physical-channel buffers.

An efficient, fast, and scalable arbiter is one of most dominant factor for the high perfor-

FIGURE 4.2: Chain of Arbiters

mance Network-on-Chips routers. Due to above explanation, it is very useful to analyze the
different arbiters on the basis of area, speed, and power for the design of NoCs routers.

The core function of the scheduling operation is performed by the arbiter which grants
only one of the incoming requests, serving first the request with the highest priority. To allow
a fair allocation of resources and to achieve high performance switch operation, we should be
able to change the priority of the arbiters. The way the priority changes is part of the policy
employed by the crossbar scheduling algorithm. For example, the round-robin policy which
is one of the most widely used priority update schemes, dictates that the request served in the
current cycle gets the lowest priority for the next arbitration cycle.
Arbitration is access to a shared resource between multiple agents and it is one of the funda-

FIGURE 4.3: Block Diagram of Arbiters
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mental operations performed by the control paths in a router of Network-on-Chips. Formally
an arbiter accepts n request lines, r0, r1, r3,...,rn arbitrates among the asserted request lines,
selecting one, ri, for service, and asserting the corresponding grant line, gi as shown in fig-
ure 4.3. The arbiter, not only resolves the conflict of the different contender for the same
resource, but it also confirms that, resource is allocated to the contenders or not and grants it
to the input which have highest priority[99].

4.3 Dynamic Priority Arbiter (DPA)

The organization of a generic Dynamic Priority Arbiter (DPA) is shown in Fig. 4.4 [100].
The DPA consists of two parts; the arbitration logic that decides which request to grant based
on the current state of the priorities, and the priority update logic that decides, according to
the current grant vector, which inputs to promote. The priority state associated with each
input may be one or more bits, depending on the complexity of the priority selection policy.
For example, a single priority bit per input suffices for round-robin policy, while for more
complex weight-based policies such as first come first served (FCFS), multibit priority quan-
tities are needed.

FIGURE 4.4: Block Diagram of Dynamic Priority Arbiter

DPA scans the input requests in a cyclic manner beginning from the position that has the
highest priority. For example, if the ith request has the highest priority then the priority is
diminishing in a cyclic manner to positions i + 1, i + 2, . . . ,n - 1,0,1, . . . i - 1, giving to the
request i - 1 the lowest priority to win a grant.

4.4 Fixed Priority Arbiters

Priority encoder is the simplest form of the switch allocator also known as Fixed Priority
Arbiters (FPA). We can express this logic in equation form as:

gi = ri ∧ ci (4.1)

ci+1 = ¬ri ∧ ci (4.2)

Where,
gi = ith generated grant output of FPA,

ri = ith requested input of FPA,

ci = ith carry input of FPA,

and
ri+1 = (i+ 1)th carry output of FPA.
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This simplest form of arbiters grants access to a shared resource based on a predetermined
priority order. If the request inputs are sorted in descending priority order, solving this prob-
lem is equivalent to finding the first set bit in a bit vector. If we assign priority in a linear
order, we can construct an arbiter as an iterative circuit, as illustrated for the fixed-priority
arbiter as a linear array of bit cells. Each bit cell i, as shown in Figure 4.5, accepts one request
input, ri , and one carry input, ci , and generates a grant output, gi , and a carry output, ci+1.
The carry input ci indicates that the resource has not been granted to a higher priority request
and, hence, is available for this bit cell. If the current request is true and the carry is true, the
grant line is asserted and the carry output is deasserted, signaling that the resource has been
granted and is no longer available. We expressed this logic in equations 4.1 and 4.2.

FIGURE 4.5: A bit cell for fixed priority arbiter

Figure 4.6 shows a four-bit fixed priority arbiter constructed in this manner. The arbiter
consists of four of the bit cells of Figure 4.5. The first and last bit cells, however, have been
simplified. The first bit cell takes advantage of the fact that c0 is always 1. While the last bit
cell takes advantage of the fact that there is no need to generate c4.
Figure 4.6 shows a straightforward implementation using a linear array of basic bit cells, each
of which generates a grant gi if both its request input ri and the incoming priority signal ci
are asserted. In addition, the incoming priority signal is propagated to the next cell only if ri
is not asserted. This design minimizes hardware complexity; however, its critical path delay
scales linearly with the number of inputs.
If a large number of inputs must be supported, we can improve delay by taking advantage
of the fact that the logic equations for the gi and ci+1 outputs are structurally similar to
those for a binary half adder’s sum and carry outputs, respectively. As such, it is possible to
transform the design shown in Figure 4.6 into an equivalent prefix network that hierarchically
computes propagation conditions for the initial priority signal, causing the delay to scale
logarithmically with the number of inputs.
Although useful for illustrating iterative construction, the arbiter of Figure 4.6 is not useful
in practice because it is completely unfair. It is not even fair in the weak sense. If request r0
is continuously asserted, none of the other requests will ever be served.

We can make a fair iterative arbiter by changing the priority from cycle to cycle, as
illustrated in Figure 4.7. A one-hot priority signal p is used to select the highest priority
request. One bit of p is set. The corresponding bit of r has high priority and priority decreases
from that point cyclically around the circular carry chain.2 The logic equations for this arbiter
are:

gi = ri ∧ (ci ∨ pi) (4.3)

ci+1 = ¬ri ∧ (ci ∨ pi) (4.4)
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FIGURE 4.6: A four-bit fixed priority arbiter

c0 = cn (4.5)

Both the rotating arbiter and the random arbiter have weak fairness. Eventually, each request

FIGURE 4.7: A four bit slice of a variable priority arbiter [12]

will become high priority and get service. These arbiters, however, do not provide strong
fairness. Consider the case where two adjacent inputs ri and ri+1 repeatedly request service
from an n-input arbiter, while all other request inputs remain low. Request ri+1 wins the
arbitration only when pi+1 is true while ri wins the arbitration for the other n-1 possible
priority inputs. Thus, ri will win the arbitration n-1 times as often as ri+1. This unfairness
can be overcome by using a Round Robin arbiter.
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4.5 Round Robin Arbiter

A round-robin arbiter operates on the principle that a request that was just served should
have the lowest priority on the next round of arbitration [101]. This can be accomplished by
generating the next priority vector p from the current grant vector g. In Verilog HDL, this
logic is given by:

assign next_p = | g ? g[n-2]:0, g[n-1] : p;

The strong fairness is provided by the round-robin arbiters. Suppose any ith request is
served, its priority becomes the lowest and it will be served again after all other pending re-
quests. There are several types of round robin arbiters (RRAs) proposed by different authors
in the literature. Some of them are Baseline arbiters, Time speculative arbiters, Parallel prefix
arbiters, Acyclic arbiters, Priority based arbiter, Weighted round robin etc. There are several
methods available in the literature for designing fast round robin arbiter e.g. one of the meth-
ods is presented in McKeown et al. (1999)[102] and Dimitrakopoulos et al. (2008)[103].
Round robin arbiter operates on the principle that highest priority request becomes the lowest
priority request on the next round of arbitration[101]. The Gate level architecture of round
robin arbiter is shown in figure 4.8. In this arbiter, the priority select input is controlled by
state register, which contains the most recent grant.We can design n-bit round-robin arbiter
using bit cell 1 and bit cell 2, which are shown in figure 4.5 and figure 4.8.The bit cell 1
generates the grant signal and the bit cell 2 generates the priority signal. The round robin
arbiters provide strong fairness.

FIGURE 4.8: An n-bit round-robin arbiter
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4.6 Matrix Arbiters

For the strong fairness, Matrix arbiters are one of the other alternatives. They work on the
principle of the least-recently-served policy. A matrix arbiter wants to implements least-
recently-served policy, it must maintain a triangular array of state bits Pmn for all m <n.
The state bit Pmn, where m denotes the row position and n denotes the column position,
indicates that request m takes priority over n. As we know that the diagonal elements are not
needed and Pmn is not equal to Pnm, only upper triangular portion of the matrix need to be
maintained.The matrix arbiter is also known as Hybrid First-Come First-Served and Least-
recently used arbiters, proposed in [101]. It provides the benefits of both least-recently-used-
priority and First-come First-served arbiters.

Figure 4.9 shows a matrix arbiter which has four inputs. In the upper triangular portion

FIGURE 4.9: A 4-bit Matrix arbiter[12]

of matrix, solid boxes denoted the six flip flops which maintained the state and in the lower
triangular portion of matrix, each of the shaded boxes represents the inverted output of the
diagonally symmetric solid boxes.
A matrix arbiter maintains a triangular array of state bits Pmn that implement a least recently
served order of priority. If Pmn is true, then request m will take priority over request n. When
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a request z wins an arbitration, it clears bits Pz and sets bits Pz to make itself lowest priority.
For better understanding, we can consider an example, suppose request r0 is asserted and bit
P02 is set then for disable the lower priority request 2, the signal 2 will be asserted as shown
in Figure 4.9. Similarly a request travel to the corresponding grant output through a single
AND gate if it is not disable[89].

4.7 Implementation and Analysis

This section we develop parameterized RTL implementations and synthesize them in a FPGA
Virtex 6 family device XC6VLX760 using Xilinx ISE 14.7. We varied number of requesters
in the design and analyze their performance on the basis of area, power, and delay.
Power analysis is performed by the Xilinx Xpower analyzer and graphs are plotted by the
Xilinx Xpower estimator.

4.7.1 FPA Implementation and Analysis

In this subsection we analyze power, area, and delay of fixed priority arbiter for the 4 re-
questers. Table 1 shows all the statics of devices used , delays in term of nano second and
power in term of watts. The implementation is performed using Verilog HDL and synthesis
is performed using Xilinx 14.7.The functional simulation and Verification is performed by
the Modelsim ISE 6.0d. For the 4 requesters FPA required only 2 1-bit register and the 2 2-bit
2-to-1 multiplexers with maximum delays of 2.782ns and total power dissipation is around
1.164 Watts.
Figure 4.10 shows the variation of power dissipation in all the terms. The power calculation
is performed by Xpower analyzer and graph is plotted using Xpower estimator.

FIGURE 4.10: Power analysis of Fixed Priority Arbiter for n requester

TABLE 4.1: Synthesis report of FPA for 4 Requester

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :2 2.782ns 1.164 W

Continued on next page
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Table 4.1 – Continued from previous page
Device Macro Statistics Timing Parameter Power Dissipation
2-bit 2-to-1 multiplexer : 2 (1.127ns logic, 1.655ns route)

(22.68% logic, 77.31% route)

4.7.2 RRA Implementation and Analysis

In this paper round-robin arbiters are implemented using bcd coding and one-hot coding for
different number of requester. Here number of requester are 2, 3, and 4. In this chapter it is
also implemented using finite state machine and using fixed priority arbiters.

TABLE 4.2: Synthesis report of RRA using BCD encoding for 2 Requester

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :1 3.782ns 1.164 W
1-bit 2-to-1 multiplexer : 2 (1.088ns logic, 2.694ns route)

(28.6% logic, 71.23% route)

TABLE 4.3: Synthesis report of RRA using BCD encoding for 3 Requester

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :2 4.14ns 1.166 W
2-bit 2-to-1 multiplexer : 4 (0.89ns logic, 3.25ns route)
2-bit 4-to-1 multiplexer : 1 (21.5% logic, 78.5% route)

FIGURE 4.11: Power analysis of Round Robin Arbiter for n requester

TABLE 4.4: Synthesis report of RRA using BCD encoding for 4 Requester

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :2 4.16ns 1.167 W

Continued on next page
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Table 4.4 – Continued from previous page
Device Macro Statistics Timing Parameter Power Dissipation
2-bit 2-to-1 multiplexer : 9 (0.83ns logic, 3.33ns route)
2-bit 4-to-1 multiplexer : 1 (19.95% logic, 80.5% route)

TABLE 4.5: Synthesis report of RRA using ONE-HOT encoding for 2 Re-
quester

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :2 2.782ns 1.164 W
2-bit 2-to-1 multiplexer : 2 (1.127ns logic, 1.655ns route)

(40.51% logic, 59.48% route)

TABLE 4.6: Synthesis report of RRA using ONE-HOT encoding for 3 Re-
quester

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :4 2.982ns 1.164 W
3-bit 4-to-1 multiplexer : 1 (1.127ns logic, 1.255ns route)
3-bit 2-to-1 multiplexer : 7 (35.51% logic, 64.48% route)

TABLE 4.7: Synthesis report of RRA using ONE-HOT encoding for 4 Re-
quester

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :4 6.527ns 1.167 W
4-bit 2-to-1 multiplexer : 13 (1.135ns logic, 5.392ns route)
4-bit 4-to-1 multiplexer : 1 (17.3% logic, 82.7% route)

TABLE 4.8: Synthesis report of RRA using Finite State Machine

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :3 6.034ns 1.165 W
4-bit 2-to-1 multiplexer :12 (1.497ns logic, 4.537ns route)
4-bit 4-to-1 multiplexer :1 (24.80% logic, 75.19% route)

TABLE 4.9: Synthesis report of RRA using FPA

Device Macro Statistics Timing Parameter Power Dissipation
1-bit registers :4 6.45ns 1.167 W
2-bit comparator greater : 3 (1.076ns logic, 5.374ns route)
2-bit 2-to-1 multiplexer : 7 (16.68% logic, 83.317% route)

Tables 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 4.8, and 4.9 shows the analysis report of round robin
arbiter. According to different table data round robin is preferable than the fixed priority
arbiter and its also provides the strong fairness. Like FPA, RRA is also implemented using
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Verilog HDL and synthesis is performed using Xilinx 14.7. The verification and simulation
is performed with Modelsim 6.0d.
Figure 4.11 shows the variation of power dissipation for RRA in all the terms. The power
calculation is performed by Xpower analyzer and graph is plotted using Xpower estimator.

4.7.3 Matrix Arbiter Implementation and Analysis

In matrix arbitration when all input packets have the same priority request for same output
port then matrix arbiter generates the matrix depending upon input and output port. In that
matrix arbiter set the corresponding bit which is requested for same output port. Now matrix
arbiter checks the priority if input a has highest priority and input e has lowest priority then
matrix arbiter gives priority to input a and input e will get lowest priority. Matrix Arbiter
generates a control signal so particular select line is selected and source packet is transmitted
to destination.

FIGURE 4.12: Power analysis of Matrix Arbiter for n requester

Matrix arbiter in one of most useful arbiter for the network on chips because it emulates
the LULS (Last Used Last Served) notion of fairness. The reason it is able to do that and
RRA is not is because we are now keeping additional state information and hence know how
much in the past a particular input was served. Also another interesting thing to note is that
we only need to maintain the triangular portion of the Matrix, which effectively means that
we need to store only half the bits. This is a good improvement when we consider large
switches with a large number of inputs.

TABLE 4.10: Synthesis report of Matrix Arbiter

Device Macro Statistics Timing Parameter Power Dissipation
4-bit 2-to-1 multiplexer : 12 6.15ns 1.167 W
2-bit comparator greater : 3 (1.076ns logic, 5.249ns route)

Continued on next page
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Table 4.10 – Continued from previous page
Device Macro Statistics Timing Parameter Power Dissipation
4-bit 7-to-1 multiplexer : 1 (20.68% logic, 79.317% route)
FSM : 1

Table 4.10 shows the analysis of Matrix arbiter in terms of power area and delays. The
area and delays calculation is performed using Xilinx 14.7 ISE and the power calculation is
performed using Xpower Analyzer and Xpower Estimator as shown in figure 4.12.

4.8 Conclusion

In this paper, we presented a detailed overview of arbitration and description of FPA, RRA
and Matrix Arbiters implementation and analysis on the basis of power, area and delay.
A comparison of above discussed arbiter design shows that Fixed priority arbiter and matrix
arbiter are slower and less efficient than the round robin arbiter. In this chapter, we have
presented a brief overview of arbitration and provided detailed descriptions of representative
arbiter implementations, which will used as building blocks for more complex structures
in subsequent chapters. A comparison of arbiter implementations in terms of delay, area
and power efficiency shows that contrary to popular wisdom matrix arbiters are both less
efficient and slower than round-robin arbiters at sizes commonly encountered in NoC routers.
Throughout the remainder of this dissertation, we will therefore consider the Round Robin
arbiter exclusively.
As we know that VC allocation and crossbar scheduling determine the dynamic speed of the
complete router, then we say that router designer may be truly profit by the use of the above
discussed arbiters and their analysis.
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Chapter 5

Routing Computation Module

5.1 Summary

Network-on-Chip (NoCs) provide a robust and scalable communication method for multi-
processors system-on-chip (MPSoCs) architectures with increasing number of cores. Their
performance is highly dependent on the throughput and latency properties of the micro-
architecture of routers and its routing algorithms. Routing algorithm is one of the most
important design choices for NoC implementation, as it controls the path decision that a flit
has to follow while traveling along the network. In the case of look-ahead routing compu-
tation, each router pre-computes the preferred output ports based on its local blockage and
transfers the preferred output ports to the adjacent routers.
Just like a computer network, a NoC network consists of devices that use the network, routers
that direct the traffic between devices and wires that connect devices to routers and routers
to other routers. In the network design of the NoC the most essential things are a network
topology and a routing algorithm. Routers route the packets based on the algorithm that they
use. There are many kinds of different algorithms for different systems to choose. Every
system has its own requirements for the routing algorithm.
In this chapter we present RTL Implementation and analysis of Synchronous Look Ahead
Routing Computation using XY, Adaptive XY, and Dimension-Order algorithms dedicated
to 2D-Mesh Topology for a Distributed Scalable Predictable Interconnect Network (DSPIN).
The RTL implementation is performed using Verilog HDL and analyzed in terms of power,
area and delay using Xilinx ISE 14.7 and Xpower Analyzer (XPA) with Xpower Estimator
(XPE). Here FPGA Virtex 6 family device XC6VLX760 is considered as target technology.

5.2 Introduction

Networks-on-Chip (NoC) is an emerging on-chip interconnection-centric platform that influ-
ences modern high speed communication infrastructure to improve the ever increasing on-
chip communication challenges of recent many-core System-on-Chip (SoC) designs [103].
Continuing shrinkage of feature dimensions of nano-scale semiconductor devices has raised
serious concerns of the reliability, signal integrity, and quality of services (QoS) of tradi-
tional bus-based on-chip interconnect infrastructure [104]. NoC represents a major standard
move to address these concerns by incorporating state-of-the-art high-speed data network
components (such as routers and switches) and packet-based routing protocols in novel on-
chip network infrastructure [105]. A NoCs aim is to provide a reliable on-chip communica-
tion platform to facilitate scalable giga-scale SoC design [7]. Conventional interconnections
based on shared bus lack flexibility and extensibility in dealing with large number of IP cores
in a SoC. NoC is an on-chip communication network to addresses the challenges of designing
SoC interconnections [13].
A NoC router is responsible for forwarding the incoming flits (large network packets are
broken into small pieces called flits) from the input buffers, with its proper arbitration and
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routing algorithms towards outputs ports [67]. The router makes a decision based on routing
algorithm and topology of network and the decision may be centralized or distributed [68].
For designing of an efficient NoC micro-architecture, selection of an appropriate routing
algorithm should be one of the important criteria [33]. Nowadays, popular routing algo-
rithms are XY, Adaptive routing and balance dimension order routing due to the simplicity
of implementation in hardware as well as its natural deadlock freedom. Balance dimension
order routing can only provide high performance under random traffic due to the uniformly
distributed traffic at all links. Actually network traffic is bursty and dynamic in nature [7].
Therefore, dimension order routing gives poor performance for unbalanced distributed of
traffic on all links. Therefore, adaptive routing is a more preferred routing algorithm for the
recent NoC based systems.
Routers of the NoC are responsible for keeping the network connected and resolving con-
tention for the same resource while allowing multiple packets to flow in the network con-
currently. Each router should respect the properties of the routing algorithm and forward the
incoming packets to the appropriate output following the path decided by the routing algo-
rithm [106]. Depending on the routing algorithm, each router should translate the destination
address to a local output request allowing each packet to move closer to its destination. This
translation is an obligation of the routing computation logic. The routing computation logic
can be implemented using a simple lookup table or with simple turn-prohibiting logic [107].
Routing computation reads the destination address of the head flit of a packet and translates
it to a local request following the rules of the network-wise routing algorithm and the address
of the current router. In this way, request generation, arbitration and multiplexing should wait
first routing to complete before being executed. This serial dependency can be removed if
the head flit carries the output port request for the current router in parallel to the destination
address. Allowing such behavior requires the head flit to compute the output port request
before arriving at the current router using lookahead routing computation. Lookahead rout-
ing computation (LRC) was first employed in the SGI Spider switch [108], and extended to
adaptive routing algorithms in Vaidya et al. (1999) [109].

5.2.1 Routing Algorithm Classifications

Routing algorithms can be classified in various ways, as shown in Figure 5.1. In unicast rout-
ing, the packets have a single destination, while in the case of multicast routing, the packets
have multiple destinations. For on-chip communication, unicast routing strategies seem to
be a practical approach due to the presence of point-to-point communication links among
various components inside a chip. Based on the routing decision, unicast routing can be fur-
ther classified into four classes: centralized routing, source routing, distributed routing and
multiphase routing.
In centralized routing, a centralized controller controls the data flow in a system. In case
of source routing, the routing decisions are taken at the point of data generation, while in
distributed routing, the routing decisions are determined as the packets/flits flow through the
network. The hybrid of the two schemes, source and destination routing, is called multiphase
routing.
Routing algorithms can also be defined based on their implementation: lookup table and
Finite State Machine (FSM). Lookup table routing algorithms are more popular in imple-
mentation. They are implemented in software, where a lookup table is stored in every node.
We can change the routing algorithm by replacing the entries of the lookup table. FSM based
routing algorithms may be implemented either in software or in hardware.
These routing algorithms may further be classified based on their adaptability. Deterministic
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routing always follows a deterministic path on the network. Examples of such routing algo-
rithms are XY routing, North first, South first, East first, and West first. Adaptive routing
algorithms need more information about the network to avoid congested paths in the net-
work. These routing algorithms are obviously more complex to implement, thus, are more
expensive in area, cost and power consumption. Therefore, we must consider a right QoS
(Quality-of-Service) metric before employing these algorithms.
Routing algorithms can be fault-tolerant algorithms such as backtracking. In case of progres-
sive algorithms, a channel is reserved before a flit is forwarded. Some routing algorithms
send packets/flits only in the direction that is nearer to the destination. These routing algo-
rithms are referred as profitable algorithms. A misrouting algorithm may forward a packet/flit
away from the destination as well. Based on the number of available routing paths, routing
algorithms can be finally classified as complete and partial routing algorithms.
Various routing algorithms have been proposed for NoCs. Most researchers suggested static
routing algorithms and performed communication analysis based on the static behavior of
NOC processes, thus, determining the static routing for NOC. Siebenborn et al. and Hu et al.
used a CDG (Communication Dependency Graph) to analyze inter-process communications
[110] [111].
Most NOC implementations used either XY routing or street sign routing algorithms. In
[112], a comparison of deterministic (dimension-order) and adaptive routing algorithms for
mesh, torus, and cube networks was presented. Mello et al. researched the performance of
minimal routing protocol in NOC [113]. They concluded that the minimal routing provided
better results than adaptive routing for on-chip-communications, as the adaptive routing con-
centrates on the traffic in the center of the NOC.

FIGURE 5.1: Classification of routing algorithms [24]
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5.2.2 Previous Related Work

Routing algorithms and their implementation for the NoC have been extensively studied in
previous related research literature. Jingcao Hu et. al. proposed a special routing algorithm
namely DyAD, which is combination of deterministic XY and Adaptive routing [111]. In
this routing algorithm, whenever routers are under light traffic, the XY routing is selected,
otherwise if congestion exceeds a predefined threshold, routers switch to adaptive routing. A
fully adaptive lookahead routing for two clock-cycle NoC router architecture was proposed
by Kim et. al. [115]. In this design, the preferred output direction is pre-computed one clock
cycle in advance using a congestion aware flow control. Nadera Najib et. al. proposed a
partially adaptive look ahead routing algorithms for a low latency, virtual channel wormhole
NoC router. In this each router pre computes the preferred output ports based on its local
traffic congestion and transfers output ports to the neighboring routers [115]. R. Manevich
et. al. proposed a centralized adaptive routing which adaptively select XY or YX determin-
istic routing for each source-destination pair based on monitoring global NoC traffic [116].
Binzhang Fu et.al. proposed the abacus-turn-model (AbTM) for designing time or space
efficient reconfigurable wormhole routing algorithm. AbTM exploits dynamics communi-
cation pattern in application to reduce the routing latency and chip area [117]. Su Hu et.
al. proposed a probabilistic odd-even (POE) routing algorithm that addresses both deadlock
and network performance issues jointly achieves the minimum packet delivery delay [118].
Probabilistic odd-even (POE) determines the deadlock probability for each turn based on the
current network status. Sheng Ma et. al. proposed whole packet forwarding (WPF) algo-
rithm for fully adaptive routing that allows non-atomic virtual-channels reallocation on the
virtual-channels which has empty place for receiving a whole new packet packet [119].

5.3 Comparison of three popular routing algorithms

5.3.1 Deterministic Routing

The Dimension Order Routing is one kind of deterministic routing algorithms, such as XY
routing algorithm [120] for 2D-mesh. In this algorithm, the data packet is routed firstly along
the X-dimension and then along the Y-dimension until the packet reaches its final destination.
The path between the source and destination used by this algorithm is one of the shortest ones
but always the same. XY routing has low latency at low network traffic due to its static, but
the performance decreases quickly when the network becomes congested for lacking path
diversity. XY routing algorithm performs better than other routing algorithms under uniform
traffic pattern, but under nonuniform traffic pattern, XY routing blindly maintains the un-
evenness of the nonuniform traffic, just as it maintains the evenness for the uniform traffic.
The load in the center of a network is much higher rather than total average and this leads
to hot spot in the center of network [121]. Another disadvantage of XY algorithm is that it
can not handle faulty nodes and regions. If a faulty node or regions (area in the networks
having a size larger than a tile) is placed on the path between the source and destination,
the packet will remain blocked in one of the switches [122]. However, XY routing has its
own advantages,the routing algorithm is simple and can be implemented easily,and its router
architecture is very simple and has lower hardware overhead than adaptive router. Then, XY
routing easily supports in-order end-to-end packet delivery. Moreover XY routing can easily
avoid deadlock and livelock. Therefore, it is not surprising that designers would like to use
deterministic routing algorithms in the NoCs which suffer from limited silicon resources.
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5.3.2 Partially Adaptive Routing

Examples of the partially-adaptive routing algorithms are the turn model types[123]. In the
algorithms based on the turn model, three partially adaptive routing algorithms, namely west-
first, north-last, and negative-first, were presented for two-dimensional meshes. The basic
idea of turn model is to prohibit the minimum number of turns that break all of the cycles
so that deadlock can be avoided. Unfortunately, the degree of adaptiveness provided by the
turn model is highly uneven, at least half of the source destination pairs are restricted to
having only one minimal path, while full adaptiveness is provided for the rest of the pairs.
Such uneven adaptiveness not only causes unfairness but also curtails the ability of the model
in alleviating traffic congestion problems. Performance of the network communication may
be affected as a result. An improved routing algorithm called Odd-Even(OE) based on turn
model is proposed in[124], OE routing algorithm is a sort of distributed partially adaptive
routing algorithms, which provides more even routing adaptiveness. Explaining some def-
initions are necessary in order to represent this algorithm.In this model, a column is called
even if its x dimension element is even numerical column. Also, a column is called odd if
its x dimension element is an odd number. A turn involves a 90-degree change of traveling
direction. There are two main theorems in odd-even algorithm:

1. No packet is permitted to do EN turn in each node which is located on an even column.
Also, No packet is permitted to do NW turn in each node that is located on an odd
column.

2. No packet is permitted to do ES turn in each node that is in an even column. Also, no
packet is permitted to do SW turn in each node which is in an odd column.

In comparison with other turn-model based routing mentioned above, the degree of routing
adaptability provided by the OE routing is more even for different source destination pairs.
By experiments, it is shows that, under nonuniform traffic pattern, by comparing with XY
routing, OE routing has a lower average latency and has a higher throughout, also, when
the networks have relatively high injection rates, OE routing can balance load better due to
its path diversity. However, as well as other adaptive routing, packets may be delivered by
different paths, this may cause packets to arrive out-of-order at receiver. Thus, some control
logic should be added to guarantee that packets can be received in order at destination.

5.3.3 Fully Adaptive Routing

A example of fully adaptive routing algorithm was proposed by Duato in[106]. In this al-
gorithm, each physical channel of the network is shared between k virtual channels (k > 1).
Virtual channels in turn are divided into two classes, namely deterministic class and adaptive
class. Consequently, the network is divided into deterministic and adaptive virtual networks.
Packets in the adaptive virtual network are routed without any restriction i.e., packets can
choose every virtual channel which makes them closer to destination nodes. In the deter-
ministic virtual network, on the other hand, packets are routed according to a deterministic
routing algorithm. In the case of a deadlock occurrence between packets traversing in the
adaptive virtual network, the deadlock handling mechanism selects one of the engaged pack-
ets and releases to break the group dependency. The selected packet then will be routed
in the deterministic virtual network until the deadlock is completely resolved. Fully adap-
tive routing algorithms have lower average packet latency and higher throughout. It has the
same problems as partially routing and needs more energy dissipation as compared to the
deterministic routing algorithms.
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5.4 Route Computation Module

5.4.1 Route Computation (RC)

Route Computation is an integral part of any Network-on-Chip router architecture. It im-
plements the routing algorithm that is a network wide operation, and manages the paths that
the packets should follow when traveling in the network. Consequently, each router should
respect the properties of the routing algorithm and forward the incoming packets to the ap-
propriate output following the path decided by the routing algorithm. In the case of source
routing, the packet knows the exact path to its destination beforehand. On the opposite case,
when distributed routing is employed the packet carries at its head flit only the address of the
destination node. In the case of distributed routing the head flit carries only the address of the
destination node. Depending on the routing algorithm, each router should translate the desti-
nation address to a local output request allowing each packet to move closer to its destination.
This translation is an obligation of the routing computation logic. The routing computation
logic can be implemented using a simple lookup table or with simple turn-prohibiting logic.
Routing computation is driven by the destination address of each packet and returns the id

FIGURE 5.2: Baseline RC placement

of the output port that the packet should use for leaving the current router.
In the case of adaptive routing where each packet is allowed to follow more than one paths to
reach its final destination the routing computation logic delivers a set of eligible output ports
instead of a single output. Selecting the output port to which the packet can leave the router
needs an extra selection step that may take other network-level metrics into account such as
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the available credits of the eligible outputs or additional congestion notification signals that
will be provided outside the routers (Ascia et al. 2008) [125].
The implementation of Route Computation (RC) can take many forms. In the traditional case
RC, as shown in figure 5.2, each input port first executes RC and then continues with the re-
maining operations of the router. In this case, the RC unit of input X selects to which outputs,
A, B, or C, the arriving packets should move. Then, once the packet has arrived to the input
of the next router it would repeat RC computation for moving closer to its destination.

5.4.2 Look-ahead Routing Computation

Routing computation reads the destination address of the head flit of a packet and translates
it to a local output port request following the rules of the network-wide routing algorithm
and the ID of the current router. In this way, request generation, arbitration and multiplexing
should wait first for RC to complete before being executed. This serial dependency can be
removed if the head flit carries the output port request for the current router in parallel to
the destination address. Allowing such behavior requires the head flit to compute the output
port request before arriving at the current router using look ahead routing computation. As
discussed previously, Lookahead routing computation (LRC) was first employed in the SGI
Spider switch and extended to adaptive routing algorithms in Vaidya et al. (1999) [109].

In the case of LRC, instead of implementing RC after a head flit has arrived at the input

FIGURE 5.3: Look-ahead RC in parallel to Link traversal

buffer, it changes the order of execution and implements RC in parallel to link traversal.
Therefore, at input X the head flit of the packet has already computed RCx at the link, and
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present to the router the pre-computed output port requests. The same happens also for input
A, B, and C. Look-ahead routing computation can move one step forward and the let RCA,
RCB and RCC modules exist at input X instead of the links. When a packet arrives at input
X, it has already computed beforehand the output port that should select for arbitration and
multiplexing. The output port request vector of a head flit at input X would point to one of
the links connecting to the next inputs A, B or C.
Therefore, depending on which output the packet of input X is heading to, it should select
the result of the appropriate routing computation logic RCA, RCB or RCC The organization
of the LRC unit at input X is illustrated in figure 5.4. All RC units receive the destination
address of the packet and based one the output port request of the packet arriving at input X
selects the output port request for the next router. For example, if the incoming packet moves
to input A of the next router, the output port requests of RCC should be selected and attached
to the header.

FIGURE 5.4: Look-ahead RC at each input port that runs in parallel

5.5 Routing Algorithms Analysis and Implementation

In this section we describe the three different routing algorithms namely Classic XY, Adap-
tive XY, and Balanced dimension-order routing with their implementation and analysis on
the basis of Area, delay and power.//
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5.5.1 XY Routing

XY routing is the most popular deterministic class of algorithms as well as a design method-
ology. In the case of 2D-MESH, it is straightforward to compute the distance between source
and destination node co-ordinate (X-coordinate, Y-coordinate) as the sum of the offsets in
all the dimensions. XY routing works on the principle of progressing routing algorithms,
consists of reducing an offset to zero before considering offset in the next dimension.
The classic xy routing algorithm is shown in Algorithm 3. The packet is first forwarded to
the x dimension until reaching to the same destination column then forwarded to the y di-
rection to reach the destination. As described in Algorithm 1, this routing routes the packets
by crossing dimension in increasing or decreasing order, reducing to zero the offset in one
dimension before routing in the another dimension.

Input:
Current node co-ordinates (Xc,Yc),
Destination node co-ordinates (Xd,Yd);

Output:
Next Port Number

Begin
Direction of Next Port :
EAST, WEST, NORTH, SOUTH, and LOCAL;
Xdiff := Xd - Xc;
Ydiff := Yd - Yc;

if (Xdiff = 0) and (Xdiff = 0) then
Next Port Number = LOCAL;

else
if ( Xdiff > 0 ) then

Next Port Number = EAST;
else if ( Xdiff < 0 ) then

Next Port Number = WEST;
else

if ( Ydiff > 0 ) then
Next Port Number = SOUTH;

else if ( Ydiff < 0 ) then
Next Port Number = NORTH;

end if
end if

end if
Algorithm 3: XY Routing Algorithm for 2D-MESH Topology

XY routing has several advantages such as simplicity of implementation in hardware as
well as preventing out of order packet delivery in destination core. However, in dealing with
real-life application, it has low performance since it ignores of network status.

Synchronous Look-ahead routing computation module based on the XY algorithm is
implemented in Verilog HDL. The Verilog code is synthesized using Xilinx ISE 14.7 and
verified or evaluated using Modelsim Questa 10.2b. Table 5.1 shows the Synthesis report
which consists of device count, delays in ns and power dissipation in watts.
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Figure 5.5 shows power analysis through four types of graphs. Power analysis of the
module is performed by Xpower analyzer and graphs are plotted by Xpower estimator.

FIGURE 5.5: Power analysis of XY using XPower Analyzer

TABLE 5.1: Synchronous Look-ahead NoC routing computation module us-
ing XY

Device Macro Statistics Timing Parameter Power Dissipation
8x4-bit single-port RAM :1 3.142 ns 1.146 W
3-bit subtractor : 2 (0.142ns logic, 2.009ns route)
2-bit register : 2 (6.6% logic, 93.4% route)
3-bit register : 1
32-bit comparator greater : 4
3-bit 2-to-1 multiplexer : 3

5.5.2 Adaptive XY Routing

It is an adaptive version of classic xy algorithm. First one dimension in x and another in y
with less number of nodes is selected then the packet is forwarded to the dimension with less
congestion.
An Adaptive XY routing algorithm is the extended version of the classic XY routing algo-
rithm which can improve performance and give support to congestion control and its routing
decision to reflect traffic changes. This algorithm gets routing information from adjacent
node or from all nodes. Adaptive XY algorithm works on the principle that, when the net-
work is not or slightly congested, it behaves as deterministic and on the other hand it works
on adaptive mode when network becomes blocked. While a traditional XY routing causes
network loads more in the middle of the network than to lateral areas, the adaptive XY al-
gorithm divides the traffic more equally over the whole network. The algorithm is shown in
Algorithm 4.
From an implementation point of view Adaptive XY requires more resources than XY algo-
rithm and of course its takes more power.
As discussed above Synchronous Look-ahead routing computation module based on Adap-
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Input:
Current node co-ordinates (Xc,Yc); Destination node co-ordinates (Xd,Yd);
Congestion_Control: West_Vs_South, West_Vs_North, East_Vs_North, East_Vs_South;
Output:
Next Port Number
Begin
Direction of Next Port : EAST, WEST, NORTH, SOUTH, and LOCAL;
Xdiff := Xd - Xc; Ydiff := Yd - Yc;
if (Xdiff = 0) and (Xdiff = 0) then

Next Port Number = LOCAL;
else

if (Xdiff > 0) then
if (Ydiff > 0) then

if (Congestion_Control[East_Vs_South]) then
Next Port Number = EAST;

else
Next Port Number = SOUTH;

end if
else if (Ydiff < 0) then

if (Congestion_Control[East_Vs_North]) then
Next Port Number = EAST;

else
Next Port Number = NORTH;

end if
else

Next Port Number = EAST;
end if

else if (Xdiff < 0) then
if (Ydiff > 0) then

if (Congestion_Control[West_Vs_South]) then
Next Port Number = WEST;

else
Next Port Number = SOUTH;

end if
else if (Ydiff < 0) then

if (Congestion_Control[West_Vs_North]) then
Next Port Number = WEST;

else
Next Port Number = NORTH;

end if
else

Next Port Number = EAST;
end if

else
if (Ydiff < 0) then

Next Port Number = SOUTH;
else if (Ydiff > 0) then

Next Port Number = NORTH;
else

Next Port Number = LOCAL;
end if

end if
end if

Algorithm 4: Adaptive XY Routing Algorithm for 2D-MESH Topology
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tive XY algorithm is also implemented using parametric Verilog HDL.This parametric Ver-
ilog RTL code is synthesized using Xilinx ISE 14.7 and synthesis report is shown in Table
5.2. As compared to Table 5.1 (synthesis report of XY algorithm), Adaptive XY requires
more produces area.
Adaptive XY produces more delay when compared to classic XY algorithms but Power dis-
sipation is almost the same in both cases. By using Xpower analyzer, power analysis of
synchronous look-ahead routing module is performed. Figure 5.6 shows the graphs plotted
by Xpower estimator.

FIGURE 5.6: Power analysis of Adaptive XY using XPower Analyzer

TABLE 5.2: Synchronous Look-ahead NoC routing computation module us-
ing Adaptive XY

Device Macro Statistics Timing Parameter Power Dissipation
8x4-bit single-port RAM :1 3.85 ns 1.15 W
3-bit subtractor : 2 (1.019ns logic, 2.831ns route)
2-bit register : 2 (26.46% logic, 73.532% route)
3-bit register : 1
32-bit comparator greater : 4
3-bit 2-to-1 multiplexer : 3
4-bit 7-to-1 multiplexer : 1

5.5.3 Balanced Dimension-order Routing

In the case of Balanced dimension-order routing, packet always move to the dimension with
higher difference value. It is also considered as a dead-lock free routing algorithm. It provides
the balanced minimal path to each destination based on the simple routing regulations.
Balanced Dimension-order routing used by many NoC designers benefits from its simplicity
in router design. Dimension-order routing is commonly used deterministic routing algorithm.
It provides features of shortest path, deadlock free, simple realization, and applicable to 2D-
MESH topology. The algorithms is shown in Algorithm 5.
To evaluate the synthesis report of Synchronous Look-ahead routing module based on the
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Input:
Current node co-ordinates (Xc,Yc),
Destination node co-ordinates (Xd,Yd);

Output:
Next Port Number

Begin
Direction of Next Port :
EAST, WEST, NORTH, SOUTH, and LOCAL;
Xdiff := Xd - Xc;
Ydiff := Yd - Yc;

if (Xd > Xc) then
Xaddrlow = Xc;
Xaddrhigh = Xd;

else
Xaddrlow = Xd;
Xaddrhigh = Xc;

end if
Xdiff := Xadderhigh - Xaddrlow ;

if (Yd > Yc) then
Yaddrlow = Yc;
Yaddrhigh = Yd;

else
Yaddrlow = Yd;
Yaddrhigh = Yc;

end if
Ydiff := Yadderhigh - Yaddrlow ;

if (Xdiff = 0) and (Xdiff = 0) then
Next Port Number = LOCAL;

else if (Xdiff > Ydiff ) then
if (Xd > Xc) then

Next Port Number = EAST;
else

Next Port Number = WEST;
end if

else if (Xdiff <= Ydiff ) then
if (Yd ≤ Yc) then

Next Port Number = SOUTH;
else

Next Port Number = NORTH;
end if

end if
Algorithm 5: Balanced Dimension-order Routing Algorithm for 2D-MESH Topology
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balanced dimension-order routing model, we develop a RTL-level module using Verilog-
HDL in Xilinx ISE 14.7. As per synthesis report statistics shown in table 5.3, Balanced
dimension-order routing algorithm based on synchronous look-ahead routing computation
module requires more device macros with respect to Adaptive XY and XY algorithms.
Balanced dimension-order algorithm results in more delay when compared to classic XY
but less than Adaptive XY. But power dissipation is almost the same in all the three cases.
Power analysis is again performed by the Xpower Analyzer and graphs are plotted by Xpower
estimator of the synchronous look-ahead routing module as shown in figure 5.7.

FIGURE 5.7: Power analysis of Balanced dimension-order using XPower
Analyzer

TABLE 5.3: Synchronous Look-ahead NoC routing computation module us-
ing Balanced dimension-order

Device Macro Statistics Timing Parameter Power Dissipation
8x4-bit single-port RAM :1 3.399 ns 1.149 W
2-bit subtractor : 2 (0.951ns logic, 2.448ns route)
2-bit register : 2 (27.97% logic, 72.03% route)
3-bit register : 1
2-bit comparator greater : 3
2-bit 2-to-1 multiplexer : 4
3-bit 2-to-1 multiplexer : 3

5.6 Conclusion

In this section we summarize routing algorithms used for NoC by simply comparison and
analysis,and give the merits and demerits of some routing algorithms.
In this chapter, we presented RTL implementation comparatively analysis of classic XY,
Adaptive XY, and Balanced dimension-order algorithms based Synchronous Look-ahead
routing module using Verilog-HDL for the low latency NoC router.
Synthesis report shows implementation of Adaptive XY routing requires more device macros
than Classic XY and Balanced direction-order routing algorithms but performance-wise, spe-
cially in the case of traffic congestion, Adaptive routing is better than others two algorithms.
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From a delay point of view again performance of Adaptive XY routing is worse than classic
XY and Balanced dimension-order but in case of power dissipation, performance of all the
discussed algorithms is almost the same.
The addition of a routing computation module transforms a switch to a network router that
can participate in an arbitrary network topology allowing incoming packets to find their path
towards their destination.
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Chapter 6

Network Interface (NI)

6.1 Summary

The multi-core revolution pushes to the limit the need for a fresh interconnect and memory
design to deliver architectures that can match current and future application requirements.
Moreover, the current trend towards multi-node multi-core architectures to further improve
the system performance imposes the use of hierarchical and eventually heterogeneous inter-
connection subsystems.
Increasing design complexities and time-to-market pressures have made modular SoC devel-
opment inevitable. Obviously, the most fundamental requirement for a modular SoC devel-
opment is the ability to interconnect the cores with the minimum effort. Point-to-point com-
munication standards such as OCP (Open Core Protocol) [128], VCI (Virtual Component
Interface) [129] and AMBA AXI [130] were introduced to address this issue in bus-based
SoC development. The communication interfaces have been successfully adopted to offer
communication between an IP core and the bus, as well as between two IP cores. The ex-
isting communication protocols adopted in bus-based development can be used in the NoC
realm to connect the IP cores to a NoC. However, the hop-by-hop and (possibly) packet-
based nature of interconnection in NoC requires a specifically customised interface between
the core and the interconnection network. In the NoC paradigm such an interface is referred
to as network interface (NI).
In this scenario the Network Interface (NI) controller represents a critical component to allow
an easy efficient and effective link between the cores and the memory blocks to the intercon-
nect. Moreover, the buffers and the pipeline stages of the NI must be carefully evaluated not
to waste valuable on-chip resources.
The rapid introduction of NoC for the multi-core GALS architecture requires proper Network
Interface (NI) design to interface two different IP blocks via network routers within the same
chip. This chapter proposes a DMA based NI for connecting the NoC router to a processor
element (PE). This proposed NI has three memory mapped registers, Read packet register,
Write packet register, and Status packet register. This chapter focuses on proposed NI de-
sign and analyses its performance in terms of power, area, and delay using RTL NI model.
The RTL coding is performed using Verilog HDL and synthesized using Xilinx ISE 14.7 and
FPGA Virtex 6 family device XC6VLX760 is considered as target technology.

6.2 Introduction

Network-on-Chip (NoC) has been proposed to support integration of multiple IP cores on a
single chip in the new SoC design paradigm [2] . The NoC architectures have been recom-
mended as a capable solution for highly scalable, reliable, and modular on-chip communi-
cation infrastructure platform [127]. The rapid growth of the multi-core GALS architecture
requires proper NI design to interface two different interconnects in the same chip, rather
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than a single IP block to the interconnect as shown in figure 6.1. For reducing the design
time, the reuse of IP blocks can be achieved by using a flexible network interface and plug
and play manner[75].
The NI functions as a glue between computation and communication by implementing the

FIGURE 6.1: NoC’s architecture for 2D-MESH topology

interfaces to both the IP core and interconnection network. The IP core interface imple-
ments a standard point-to-point protocol allowing core reuse across several platforms. The
most widely used core interface protocols include OCP [128], VCI [129], AMBA AXI [130].
These interfaces assume the attributes of a socket, which captures all signaling between the
core and the system. This can offer a transaction-based model [38] of communication which
is backward compatible with bus-based SoCs. Message passing and shared memory abstrac-
tion are two transaction-based programming models employed in the NoC domain. Shared
memory is easier to implement, while message passing is more scalable.
The NI core interface can be viewed as an implementation of the session layer in OSI ref-
erence model. Traditionally, the session layer represents the user’s interface to the network.
It determines when the transaction session is opened, how long it will be used and when to
close it. Moreover, it controls the transmission of data during the session, supports security
and name lookup, enabling computers to locate each other. Flow control strategies and QoS
negotiations can be also implemented at this layer.
The communication services made available at the session layer must be implemented by the
transport layer, in order to make the communication behavior fit to the interconnect. The
transport layer provides reliable, sequenced, and QoS-oriented data transfer. This layer pro-
vides the basic end-to-end connection.
The transport layer provides transparent transfer of data between end nodes using the services
of the network layer. These services, together with those offered by the link and physical
layer are implemented in the network interface part of the NI. Data packetization and routing
related functions are considered as essential tasks performed by the network layer; offering a
reliable links is considered as a service of the data-link layer.
Network interface design has been extensively researched for parallel computers [131-133],
and computer networks [134-135]. The designs of the interface for such networks are to
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optimize for performance (high throughput, low latency), and often consist of a dedicated
processor, and large amount of buffering, hence prohibitively costly for the NoC paradigm.
On-chip network interfaces must provide a low area overhead, because the size of the IP
modules attached to NoC is relatively small.
This chapter will focus on a 2D-MESH topology NoC architecture and will propose a DMA
based Network-Interface (NI) for connecting the NoC router to a processor. This Network
Interface contains three type of memory mapped registers, which are Read Packet Register,
Write Packet Register, and Status Register. The first one, Read packet register, contains the
pointer and maximum size of the pointer which has been dedicated by IP block to store the
received packet. The second register contains the pointer and maximum size of the pointer
of the packet which must be sent. The destination address must be updated by IP block in
the first word of the packet and the last register provide information about the current status
of the router [79].

6.2.1 Related Work

Network Interface design is important in the communication-centric system of Multi-processor
SoCs. In [136], a TV companion chip was redesigned with a NoC as interconnect, and 78%
of increase in chip area was proved to come from the NIs. In a similar case, in the xpipes
based system in [137], more than half of the NoC area is due to NIs. Despite this NI design
doesn’t receive a lot of attention in the literature, since the support for processing cores with
advanced communication capabilities (e.g., multiple outstanding transactions, out-of-order
completion, quality of service guarantees) requires complex architectures with a restricted
margin for optimization. There are several literature available for standardization of Network
Interface fabrics, their throughput and speed. Most of the Interface are based on Advance Mi-
crocontroller Bus architecture (AMBA), AXI, GALS and open core protocol. S.P.Singh et al.
implemented a generalized Network Interface structure for fast plug-and-play with minimum
overhead [138], whereas Daneshtalab et al. implemented efficient Network Interface archi-
tecture that is based on transaction based protocol and suitable for Network-on-Chips [139].
W. Chouchene et al. [140] implements a low power Network Interface for Network-on-Chip,
based on the OCP interface with multi-clock. Seung Eun Lee et. al. [141] present a generic
architecture for network interface (NI) and associated wrappers for a networked processor
array (NoC based multiprocessor SoC) in order to allow systematic design flow for acceler-
ating the design cycle. Paul Wielage and Kees Goossens [142] proposed to investigate hybrid
architecture with first-level communication over a shared-medium, and the higher levels us-
ing a packet-switched network. The usefulness of resource sharing has been proved in [143],
where sharing an NI between several nodes significantly reduced the area overhead of the
NoC with low performance overhead in terms of execution cycles. The architecture consists
in an arbiter placed between the processing elements and the Network Interface. In [144], an
existing NoC has been extended to support WISHBONE interconnection architecture, so it
can be used in many SoC designs based on the WISHBONE interface. Radulescu et al [38]
design a modular NI that interfaces a NoC with several protocols to allow reusability and
flexibility of the attached IPs. In [145] a clock gating technique is implemented to reduce the
NI power consumption. The NI is designed as a bridge between an OCP interface and the
NoC switching fabric. Bolotin et al [21] implement an irregular mesh NoC where NI offers
a bus-like protocol for the connected IP with conventional read and write semantics, and a
QoS with four service priority levels. However, they use a functional NI description and do
not analyze the area and power overhead introduced by the NI.
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6.3 NI Fundamentals

This chapter will focus on a two stages, wormhole virtual channel Bi-NoC router. In NoC
IP cores communicate by sending network packets. An NoC packet consists of several fixed
size flow control digit (flits). There are three type of flits: header flit, buddy flit and tail flit.
The minimum packet size is 2 flits,(one header and one tail).

6.3.1 NoC Flit Format

Figure 6.2 illustrates the format of NoC flit. A flit is made two parts of header and payload.
The header part is assigned automatically by NoC and indicate the flit type and the assigned
virtual channel number to the packet. The payload is 32 bit wide and will be assigned by
software. The payload in buddy and tail flits contains the data which is going to be transferred
to the destination core. The payload of header flit contains information for forwarding the
packet between cores which has been described in Table 6.1.

FIGURE 6.2: The NoC packet format

TABLE 6.1: The header flit fields description

Filed name Description
Output port The result of look ahead routing algorithm.It will be

updated by NI at source and NoC routers along the
path.

Destination x & y The destination IP x & y address
Source x & y The source IP address, it will be used by the shared

memory IP core to send the requested data or ack to
the source core.

Continued on next page
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Table 6.1 – Continued from previous page
Filed name Description
RAM_ack_req This field is for communicating with shared RAM.

By setting this field the processor asks for receiving
an acknowledge packet from shared ram core after
the write process on ram is finished.

RAM_WR_req This field is for communicating with shared RAM. If
its set the packet contains data which must be written
on shared RAM otherwise it contain a read request.

6.3.2 The NI Registers

The NI works as a bridge between the wishbone bus and the NoC router. The NI trans-
fers data between the NoC and the program RAM in a DMA-like way. The NI has only
three memory mapped registers: read, write and status register. Figure 6.3 illustrates the NI
internal registers. The Read register is used for capturing received packet from NI to the
programming memory. The capturing process is started by writing the address pointer of the
buffer and its size on the read register.

FIGURE 6.3: The NI registers

By writing the buffer pointer address and the size of data to be sent in word on write
register the NI starts sending the packet to NoC.
The status registers hold some information about the status of NI. This information are shown
in table 6.2.
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TABLE 6.2: The NI Status fields descriptions

Filed name Description
Write done A flag which has been asserted when the packet is

sent out from the NI. This flag remains zero during
sending process.

Read done A flag which has been asserted when the process of
transferring a packet from NI to the programming
RAM is finished. This flag remains zero during
transferring of packet.

Read_over_size An error flag which indicates that the length of re-
ceived packet was larger than the dedicated buffer
size.

read_no_pck An error flag which indicates an store (read) com-
mand has been received by NI while there was no
received packet in NI.

All Write VCs full This flag is asserted when all write VC are full,
Hence, until this flag is asserted no packet can be
sent out to the NoC.

6.3.3 The NI Architectural View

Figure 6.4 shows the NI architecture that is composed of two loosely coupled modules. The
first module handles packets coming from the NoC, and sends them to the node over the bus.
The second module receives messages from the bus and injects them into the network.

FIGURE 6.4: The proposed NI design : Block Diagram

In particular, input Port receives its inputs from the NoC. When a tail it arrives and an
entire packet is received, the message is extracted and moved in the Message Queue. Thus,
the message waits until it can be transmitted over the bus through the WISHBONE Master
Wrapper. On the other hand, a message is received from the bus thanks to the WISHBONE
Slave Wrapper, while it remains packaged and stored in the Packet Buffer. After that, like
for NoC, a virtual channel must be assigned at the packet and a link arbiter manages the
transmission of various inputs in the buffer on the single link available.
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6.4 Complete RTL Model

Figure 6.5 shows the Network Interface RTL model written in Verilog HDL. It has a modu-
lar implementation that follows the architecture discussed above. Timing information about
the pipeline stages has been obtained from this model. Furthermore, the pipeline changes
allowed the extraction of conservative timing latency of three and two stages pipeline archi-
tectures as well as of a single cycle NI architecture.

FIGURE 6.5: Verilog HDL modules inclusion

FIGURE 6.6: Finite state machine NI controller
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Figure 6.5 shows the Verilog HDL modules inclusions. In sub-module noc2wb all the
NoC-to-Node pipeline is implemented and in sub-module wb2noc all the Node-to-NoC pipeline
is implemented. The decoupling of the two pipelines makes them easy to extend and opti-
mize. The model can be adapted for other bus interfaces simply changing the wrapper mod-
ules.
Figure 6.6 show the finite state machine of the NI controller, which show how the data packet
travels through out the network interface.

6.4.1 The Packet Buffer

The Packet Buffer represents a temporary storage for incoming packets from the bus that
are waiting to be injected into the NoC. It is composed of several buffers, each of them can
store the longest packet of the network. When a message is received by the WISHBONE
Slave Wrapper, it is packaged and stored in a free buffer. If no free buffer is available, the
WISHBONE Wrapper stops the communication and will restart it only when space is freed.
In this buffer the packet waits for virtual channel allocation and transmission of flits. Figure
6.7 show the block diagram of packet buffer generated by Xilinx.

FIGURE 6.7: Symbol of Packet Buffer Module

6.4.2 The Virtual Channel Allocator

Traditionally, the Virtual Channel Allocator stage contains the critical path of the router
pipeline. In the Network Interface this module is considerably less complex since a sin-
gle output port is available.
An N : 1 arbiter is used for each virtual network. Each arbiter receives N requests, where
N is the maximum number of packets that can be stored in the Packet Buffer, and allocates
an available virtual channel only for one of them, if any. Note that this architecture does not
underutilized the link bandwidth, since even if only one it per cycle wins the VA stage, this it
will be transmitted on the only link available. Figure 6.8 show the block diagram of Virtual
Channel Allocator.
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FIGURE 6.8: Symbol of Virtual Channel Allocator Module

6.4.3 The Link Allocator

The Link Allocator is an arbiter N : 1, where N is the maximum number of packets that can
be stored in the Packet Buffer. It receives the request transmission from the its that have
already won the VA stage. Only one of them can win and use the link to the router in the next
cycle. The Link Allocator architecture is same as the architecture of the Arbiters as shown in
figure 6.9.

FIGURE 6.9: Symbol of the Link Allocator of Module

6.4.4 The WISHBONE Wrapper

The implemented NI exposes the standard interface of a WISHBONE master and a WISH-
BONE slave IP, since it must act as a slave and a master from both the bus and the NoC
perspective. Internally, to keep logically separated the reception and transmission of a mes-
sage, the Slave Wrapper always receives messages, and the Master Wrapper always sends
messages. This implies that the Slave Wrapper must receive the reply of a slave node to
a read transaction started by the NI MasterWrapper, and the MasterWrapper must transmit
the reply of a read transaction for the NI Slave Wrapper. Figure 6.10 shows in details the
wrapper interactions. The rest of the section discusses every possible transaction to clarify
the implementation. When a packet is received, if it is a write transaction, it is simply sent
by the Master Wrapper on the bus, since no reply must be sent back. If the packet contains a
read transaction, the MasterWrapper starts the transaction and the reply is stored in the Slave
Wrapper. The Slave Wrapper does not allow the Master to start a read transaction if no space
is available in the Packet Buffer.
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FIGURE 6.10: Wrappers architecture

FIGURE 6.11: Wrappers module generated by Xilinx

When the NI acts as a slave two cases are possible. If it serves a write transaction, the
Slave Wrapper receives the message and injects it in the NoC. If it serves a read transaction,
the Slave injects the request in the NoC and saves an entry in the On-the-Fly table, with the
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information of the waited message. When the Master receives a packet that contains the reply
for the transaction, it replies for the Slave and closes the transaction. This kind of architec-
ture is required to overcome the absence of split transaction in the WISHBONE bus. If this
feature had been available it would not be need of the table, since in this case a master always
sends and a slave always receives messages. Figure 6.11 shows the Block Diagram generated
by the software itself.

6.5 Results and Conclusion

In this chapter, we have proposed and implemented a DMA based Network-Interface for
connecting the NoC router to a processor element. The NI is implemented using Verlog
HDL code with the help of Xilinx 14.7 and the synthesis report is shown in table 6.3.

TABLE 6.3: The NI Status fields descriptions

Device Macro Statistics Timing Parameter Power Dissipation
32x34-bit dual-port RAM = 1 11.804 ns 4.418 W
12-bit adder = 1 (32.361% logic, 67.638% route)
13-bit adder = 2 (3.82 ns logic,7.984 ns route )
4-bit adder = 4
5-bit adder = 4
5-bit substractor = 4
1-bit register = 36
12-bit register = 1
13-bit register = 1
17-bit register = 1
2-bit register = 4
13-bit register = 1
3-bit register = 1
34-bit register = 1
5-bit register = 2
12-bit comparator equal = 1
5-bit comparator greater = 4
5-bit comparator lessequal = 2
1-bit 2-to-1 multiplexer = 69
12-bit 2-to-1 multiplexer = 1
17-bit 2-to-1 multiplexer = 1
2-bit 2-to-1 multiplexer = 11
3-bit 2-to-1 multiplexer = 1
Finite State Machine = 1

Figure 6.12 allows a categorization of the applications based on the injected traffic. The
remaining benchmarks any one could be identified as medium traffic applications. Figure
6.12 shows Average packet latency with data packet size of one flit. Different synthetic traffic
pattern are used: uniform random, tornado and bit complement. Figure 6.12 also shows the
results with synthetic traffic where only single flit packets are used.
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(A) Uniform Random

(B) Tornado

(C) Bit Complement

FIGURE 6.12: Average packet Latency analysis with data packet size of
three flits

The 1 stage NI architecture provides almost the same latency of the baseline for low
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traffic. This is due to the single pipeline stage and the single it message that are not impacting
both the contention metric of the node bus. Moreover, the 2 stages introduces 2 more latency
cycles with respect to the 1 stage, due to an additional pipeline stage in each traversed NI.
Similarly, the 3 stages adds 4 more latency cycles, and the 4 stages architecture adds 6 cycles,
with respect to the 1 stage, due to their additional pipeline stages in each traversed NI.
Power analysis is again performed by the Xpower Analyzer and graphs are plotted by Xpower
estimator of the Network Interface module as shown in figure 6.13.
Considering the current trend towards multi-node multi-core architectures,where each node
is composed of a multi-core and multiple nodes and glued into a single system towards a
dedicated intra-node interconnect, the thesis explores different trades-issues and solutions
for the implementation of the Network Interface (NI) controller for such systems. The NI
represents the junction point between the inter-node and intra-node interconnect, thus playing
a crucial rule in the performance of the whole system. Moreover, the resource allocation and
the NI design represent a critical decision point for the power-performance-area optimization.

FIGURE 6.13: Power analysis report of NI module

A design exploration of the architecture is required to dimension the shared resources of
the Network Interface, like the number of message buffers or the bus data width. Most of
these design decisions in influence the area and latency trade-off.
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Chapter 7

Virtual Channel Allocators and
Switch Allocators

7.1 Summary

Network throughput can be increased by dividing the buffer storage associated with each net-
work channel into several virtual channels (VCs). Each physical channel is associated with
several small queues, virtual channels, rather than a single deep queue. The virtual chan-
nels associated with one physical channel are allocated independently but compete with each
other for physical bandwidth. Virtual channels decouple buffer resources from transmission
resources. This decoupling allows active messages to pass blocked messages using network
bandwidth that would otherwise be left idle.
The Wormhole flow-control based conventional bidirectional router requires two input buffers
to receive two packets from different directions at the same time. In the proposed router ar-
chitecture, we provide the link utilization flexibility by sharing the access authority of two
inputs multi-synchronous FIFOs for the two in-out ports at the same direction, where two
input FIFOs can be multiplexed on two physical channels in each direction. Actually, virtual
channels behave like an architecture which has numerous wormhole links existing in parallel.
Therefore, this approach can possibly improve performance by decreasing the Head-of-Line
Blocking effect of the channels. Since in the proposed router, two physical channels shared
the virtual channels in each direction at a time, then total number of virtual channels is equiv-
alent to the conventional bidirectional virtual channel router.
Once a packet has completed Virtual Channel (VC) allocation, its flits can be forwarded to
the selected destination port subject to buffer space availability. In conventional router archi-
tecture, for each flit to be transferred, a crossbar connection between the corresponding input
and output ports must be established for one cycle. The switch allocator is responsible for
scheduling such crossbar connections; in particular, it generates matching between requests
from active VCs at each of the router’s P input ports on the one hand and crossbar connec-
tions to its P output ports on the other hand. In the proposed router architecture, since the
channels are bidirectional links bandwidth is doubled from P to 2P in each output direction.
The grant signals generated by the switch allocator are used to set up the registers that control
crossbar connectivity. In addition, the switch allocator notifies the winning VC at each input
port, causing the latter to prepare its front most flit for crossbar traversal.
In this chapter we have implemented VC allocation using separable allocators as Separa-
ble input-first VC allocator, Separable output-first VC allocator, and Wavefront-based VC
allocator. We have also implemented switch allocation using separable allocators as Separa-
ble input-first switch allocator, Separable output-first switch allocator, and Wavefront-based
switch allocator. The RTL model is implemented using Verilog HDL and synthesized using
Xilinx ISE 14.7 and FPGA Virtex 6 family device XC6VLX760 is considered as target tech-
nology. Their performance are evaluated in terms of power, area and delay.
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7.2 Introduction

In Virtual Channel (VC) flow control, when the head flit of a packet arrives at a router, it must
acquire one of the VCs associated with the physical channel that connects to its destination
output before it can proceed. To achieve this, the head flit sends a request to the VC allocator
once it reaches the front of its input VC. The VC allocator generates a matching between any
such requests from the input VCs on the one hand and those output VCs that are not currently
in use by another packet on the other hand.
In the general case, a router with P ports and V VCs per port therefore requires a VC allocator
that can match P×V agents (all input VCs at all input ports) to P×V resources (all output
VCs at all output ports). The VC allocator architecture in our proposed router is the same as
the available VC flow control based router except there is no overhead associated with this
stage (VA stage), since in our router design, there are two bi-directional links in each direc-
tion among VC buffer and here we used multi-synchronous FIFOs for each virtual channel.
Virtual channels is analogous to adding lanes in a street allowing cars(packets) to flow in
parallel without interfering with each other. The added lanes/channels are virtualized since
they do not physically exist but appear on the one physical channel in a time-multiplexed
manner [89] as shown in figure 7.1.
Allowing for flow separation and isolation needs the dedication of multiple resources either

FIGURE 7.1: Illustration of Virtual Channel use [89]

in space (more physical lanes by adding extra wires on the links) or in time (more virtual
resources interleaved on the same physical resources in a well defined manner). This chapter
deals with virtual channel allocation that represent an efficient flow control mechanism for
adding lanes to a street network in an efficient and versatile manner, as illustrated in figure
7.1. Adding virtual channels to the network removes the constraints that appear in single-
lane streets and allow otherwise blocked packets to continue moving by just turning to an
empty (less congested) lane of the same street [24, 146]. Since the additional lanes are virtu-
ally existent their implementation involves the time multiplexing of the packets that belong
to different lanes (virtual channels) on the same physical channel. Briefly, virtual channels
behave similar to having multiple wormhole channels present in parallel. However, adding
extra lanes (virtual channel) to each link does not add bandwidth to the physical channel. It
just enables better sharing of the physical channel by different flows [147-148].
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Architectures supporting the use of VCs may reduce also on-chip physical routing conges-
tion, by trading off physical channel width with the number of VCs, thereby creating a more
layout-flexible SoC architecture. Instead of connecting two nodes with many parallel links
that are rarely used at the same time, one link can be used instead that supports virtual chan-
nels, which allows the interleaving in time of the initial parallel traffic, thus saving wires and
increasing their utilization.
The switch allocator is responsible for determining in each cycle the connections between
the input and the output ports of the switch. Since now the input buffers are organized in
multiple-independent queues, each input can send multiple requests per clock cycle.
The grant signals generated by the switch allocator are used to set up the registers that control
crossbar connectivity. In addition, the switch allocator notifies the winning VC at each input
port, causing the latter to prepare its frontmost flit for crossbar traversal.

7.2.1 Related Work

VC allocation in interconnection networks has been addressed in a number of prior research
contributions: Peh and Dally [149-150] present an analytical delay model for separable VC
allocators. Their model is derived from gate-level schematics using the logical effort method
[151]; as such, it is primarily geared towards full-custom implementations that optimize for
minimum critical path delay regardless of the implications for area and power. Furthermore,
the models do not account for wire delay, which has become a critical factor in modern sub-
micron semiconductor processes. Mullins et al. [97] propose a technique for reducing the
delay of separable input-first VC allocators by precomputing arbitration decisions and by
using a free VC queue at each output port, the front-most element of which is assigned to
incoming requests. Kumar et al. [152] describe a scheme that combines VC and switch allo-
cation into a single step. Finally, Zhang and Choy [153] investigate approaches for reducing
the complexity of separable VC allocators based on utilization statistics for their individual
constituent arbiters and present detailed delay, area and power results.
Switch allocation as a means of improving network performance was originally proposed by
Peh and Dally [149-150]. The authors present an analytical delay model for a separable im-
plementation, but do not investigate area or power; since the model does not account for wire
delay, its results are overly optimistic for modern process technologies. Mukherjee et al [154]
compare the performance of several switch allocator implementations in the context of a
system-level interconnection network. Their study assumes that routers are deeply pipelined,
and two of the allocators considered require multiple cycles to produce each matching; both
factors would be undesirable in latency-sensitive NoCs. Furthermore, the different allocators
are compared purely in terms of network performance; in particular, the analysis does not
consider area or power, both of which represent first-class design considerations in NoCs.
Mullins et al. [97] reduce the pipeline latency of a VC router by precomputing arbitration
decisions in a separable allocator one cycle in advance. While this scheme effectively re-
moves the switch allocation stage from the router’s critical path for buffered flits, it is less
effective in the absence of congestion, as conflicts between newly arriving flits can result in
unused crossbar time slots. The row/column decoupled router introduced by Kim et al. [155]
features an efficient mirror allocation scheme; however, this scheme is not directly applicable
to generic router designs. Kumar et al. [152] describe a scheme for combined VC and switch
allocation that dynamically transitions between input- and output-first operation based on
network load. Their design explicitly prioritizes subsequent flits from the same packet, and
uses FIFO queues to implement both input-side arbitration and VC selection.
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7.3 Fundamentals of Implemented Allocators

While an arbiter assigns a single resource to one of a group of requesters, an allocator per-
forms a matching between a group of resources and a group of requesters, each of which may
request one or more of the resources.

(A) Symbol for an allocator
with individual request and

grant lines shown

(B) Symbol with bundled requests and grants

FIGURE 7.2: An n × m allocator accepts n m-bit request vectors and gener-
ates n m-bit grant vectors [7].
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An n × m allocator is a unit that accepts n m-bit vectors as inputs and generates n m-bit
vectors as outputs, as shown in figure 7.2 for an n = 4 by m = 3 allocator. When request
input rij is asserted, requester i wants access to resource j. Each requester can request any
subset of the resources at the same time. For allocators used in router designs, the requesters
often correspond to switch inputs and the resources correspond to switch outputs. So, we
will usually refer to the requesters and resources as inputs and outputs, respectively.
The allocator considers the requests and generates the grant vectors subject to three rules:

1. gij ⇒ rij , a grant can be asserted only if the corresponding request is asserted.

2. gij ⇒¬ gik ∀ k 6= j, at most, one grant for each input (requester) may be asserted.

3. gij ⇒¬ gik ∀ k 6= i, at most, one grant for each output (resource) can be asserted.

The allocator can be thought of as accepting an n × m request matrix R containing the
individual requests, rij and generating a grant matrix G containing the individual grants, gij .
R is an arbitrary binary-valued matrix. G is also a binary valued matrix that only contains
ones in entries corresponding to non-zero entries in R, has at most one one in each row, and
at most one one in each column.

7.3.1 Separable Allocators

Most investigative allocators are based on a basic separable allocator. In a separable alloca-
tor, we perform allocation as two sets of arbitration: one across the inputs and one across
the outputs. This arbitration can be performed in either order. In an input-first separable
allocator, an arbitration is first performed to select a single request at each input port. Then,
the outputs of these input arbiters are input to a set of output arbiters to select a single request
for each output port. The result is a legal matching, since there is at most one grant asserted
for each input and for each output. However, the result may not even be maximal, let alone
maximum. It is possible for an input request to win the input arbitration, locking out the only
request for a different output, and then lose the output arbitration. This leaves an input and
an output, which could have been trivially connected, both idle.

7.3.1.1 Input-first Separable Allocator

A 4 × 3 input-first separable allocator is shown in figure 7.3. Each input port has separate
request lines for each output. For example, for a flit at input 2 to request output 1, request line
r21 is asserted. The first rank of four three-input arbiters selects the winning request for each
input port. Only one of the signals xij will be asserted for each input port i. The results of
this input arbitration, the signals xij , are forwarded to a rank of three 4-input output arbiters,
one for each output. The output arbiters select the winning request for each output port and
assert the grant signals gij . The output arbiters ensure that only one grant is asserted for each
output, and the input arbiters ensure that only one grant is asserted for each input. Thus, the
result is a legal matching.

7.3.1.2 Output-first Separable Allocator

A separable allocator can also be realized by performing the output arbitration first and then
the input arbitration. A 4 × 3 output-first separable allocator is shown in figures 7.4. In this
case, the first rank of three 4-input arbiters selects the winning request for each output port.
Only one of the resulting signals yij will be asserted for each output port j . The four 3-input
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input arbiters then take yij as input, pick the winning request for each input, and output this
result on grant signals, gij ensuring that at most one of gij is asserted for each input i.

FIGURE 7.3: A 4 × 3 input-first separable allocator [7]

FIGURE 7.4: A 4 × 3 output-first separable allocator [7]
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7.3.2 Wavefront Allocator

The wavefront allocator, unlike the separable allocators described above, arbitrates among
requests for inputs and outputs simultaneously. The structure of the wavefront allocator is
shown in Figure 7.5 and the logic of each allocator cell is show in Figure 7.6.

FIGURE 7.5: A wavefront allocator

FIGURE 7.6: Logic diagram of a wavefront allocator cell

The wavefront allocator works by granting row and column tokens to a diagonal group
of cells, in effect giving this group priority. A cell with a row (column) token that is unable
to use the token passes the token to the right (down), wrapping around at the end of the array.
These tokens propagate in a wavefront from the priority diagonal group, hence the name of
the allocator. If a cell with a request receives both a row and a column token, either because
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it was part of the original priority group or because the tokens were passed around the array,
it grants the request and stops the propagation of tokens. To improve fairness, the diagonal
group receiving tokens is rotated each cycle. However, this only ensures weak fairness.
In an n × n arbiter, diagonal group k contains cells xij such that (i+j) mod n = k. Thus, for
example, in the 3 × 3 allocator of figure 7.5, priority group 0, selected by signal p0, consists
of cells x00, x21, and x12. Because each diagonal group must contain exactly one cell from
each row and from each column, all wavefront allocators must be square. A non-square
wavefront allocator can be realized, however, by adding dummy rows or columns to square
off the array. For example, the 4 × 3 allocator of our examples above can be realized using
a 4 × 4 array. The priority groups in an allocator need not be diagonals as long as they each
contain one element of each row and column.
The details of the allocator cell are shown in figure 7.6. When the cell is a member of the
priority group, signal pri is asserted, which generates both a row token xpri and a column
token ypri via a set of OR gates. If the cell is not a member of the priority group, row tokens
are received via signal xin and column tokens via yin. If a cell has a row token xpri, a column
token ypri and a request reqij , it generates a grant grantij via a 3-input AND gate. If a grant
is asserted, it disables further propagation of the row and column tokens via a pair of AND
gates. Otherwise, if a grant is not asserted, row (column) tokens are passed to the next cell to
the right (down) via xout (yout).

7.4 Implementations and Results

7.4.1 Virtual Channel Allocator

In the most general case, during virtual-channel allocation, the head flits that are buffered at
any input VC must compete for an available downstream VC, which belongs to the output
port that is selected by the routing function. Thus, the VC allocator performs a matching
between N×V requestors and N×V resources, subject to the constraint that any output VC
is requested only by input VCs that need to be forwarded to the same output port. This al-
location problem can be solved either by using a centralized approach, or by adopting a VC
separable allocator with separate per-input and per-output arbiters.

7.4.1.1 Separable Virtual-channel Allocator

In this case, the organization of a virtual-channel allocator follows roughly the same structure
as the separable switch allocator. Each VC of each input port tries to get access to a specific
output port. Since more than one VC is associated with each output port, each input VC
should decide whether it should request all of them at once or if it should select only a subset
of the available output VCs. Its decision is guided solely by the routing function. In any case,
the design of the virtual-channel allocator requires one arbiter per VC per output port. Thus,
N×V arbiters are required in total at the outputs, with each one accepting N×V requests.
Depending on how many output VCs each input VC is allowed to request two alternatives are
possible. In the case of input first allocation, each input VC selects only one of the available
VCs returned by the routing function for the selected output, as shown in figure 7.7. Then, it
is up to the output arbiters to grant one of the requesting input VCs. In the symmetric case
of output-first allocation, shown in figure 7.8, each input VC requests all available VCs that
belong to the output selected by the routing function. Since each input VC asks for more than
one output VC it is possible that it receives a grant from more than one output arbiter. Thus,
an additional stage of arbitration is needed to decide which grant to accept.
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FIGURE 7.7: Input-first separable virtual channel allocator [156]

FIGURE 7.8: Output-first separable virtual channel allocator [156]

We have developed a parameterized RTL model using Verilog HDL and synthesized it in
a commercial FPGA design flow. Synthesis is performed using Xilinx ISE 14.7 and FPGA
Virtex 6 family device XC6VLX760 is considered as target technology. In this sub-section
we have implemented virtual channel controller in two ways as using separable input-first
allocation and using separable output-first allocation . A series of figures (figure 7.9 - 7.10)
and tables (table 7.1-7.2 ) show the synthesis report as well as power analysis report.
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FIGURE 7.9: Power report of virtual channel allocator using separable input-
first allocation

FIGURE 7.10: Power report of virtual channel allocator using separable
output-first allocation

Input-first allocation provides slightly better matching than output-first allocation, as it
performs the narrower V : 1 arbitration at the input side before the wider P×V : 1 ar-
bitration at the output side; because an n-input arbiter grants only one of up to n requests,
eliminating up to n-1 others, this allows more requests to be propagated from the first arbi-
tration stage to the second one than in the output-first case.
When separable VC allocation returns poor matchings, we could choose to perform multiple
iterations as in the case of switch allocation. Nevertheless, as shown in [157], this option is
not needed since the matching quality of the VC allocator does not determine the network
performance of the switch.
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TABLE 7.1: Synthesis report of virtual channel allocator using separable
input-first allocation.

Device Macro Statistics Timing Parameter Power Dissipation
8x5 bit single-port RAM : 20 6.894 ns 6.182 W
1-bit register : 100 0.555 ns logic, 6.339 ns route
3-bit register : 20 8.1% logic, 91.9% route
1-bit 2-to-1 mux : 100
2-bit 2-to-1 mux : 100
3-bit 2-to-1 mux : 20
5-bit 2-to-1 mux : 20
Finite State Machine = 1

TABLE 7.2: Synthesis report of virtual channel allocator using separable
output-first allocation.

Device Macro Statistics Timing Parameter Power Dissipation
8x5 bit single-port RAM : 20 5.063 ns 7.73 W
1-bit register : 160 0.494 ns logic, 4.569 ns route
3-bit register : 20 9.8% logic, 90.2% route
2-bit 2-to-1 mux : 100
3-bit 2-to-1 mux : 20
5-bit 2-to-1 mux : 20

7.4.1.2 Wavefront Virtual-channel Allocator

FIGURE 7.11: Wavefront virtual-channel allocator
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In a Wavefront virtual-channel allocator the requests of each input VC are expanded to a N
× V-wide request vector depending on the output port selected by the packet and the choices
enforced by the routing logic, as shown in figure 7.11. The wide request vector cannot have
more than V active requests, while all requests concern VCs of the same output. After a
matching between input and output VCs is developed, the × grant signals coming from all
output VCs are gathered per-input VC. The OR function at each input VC just detects whether
at least one of the V returning lines corresponds to a grant.
As shown in figure 7.11, a wavefront-based VC allocator consists of a canonical P×V -input
wavefront allocator, with additional logic for generating the P×V -wide request vector for
each input VC as in the separable output-first case, and for reducing the P×V -wide grant
vectors to V -wide vectors as in the input-first case. Availability masking can be performed
at the inputs to the wavefront allocator, while output-side grants are generated by combining
the grant signals for all P×V input VCs for each individual output VC.
We have developed a RTL model using Verilog HDL and synthesized it in a commercial
FPGA design flow. Synthesis is performed using Xilinx ISE 14.7 and FPGA Virtex 6 family
device XC6VLX760 is considered as target technology. In this sub-section we have imple-
mented wavefront virtual channel controller and figure 7.12 shows the power analysis report
and tables 7.3 shows synthesis report.

FIGURE 7.12: Power report of virtual channel allocator using wavefront
allocation.

TABLE 7.3: Synthesis report of virtual channel allocator using wavefront
allocation.

Device Macro Statistics Timing Parameter Power Dissipation
16x10 bit single-port RAM : 20 10.814 ns 9.49 W
1-bit register : 160 1.131 ns logic, 9.683 ns route
4x4-bit multiplier : 2 10.5% logic, 89.5% route
8x4-bit multiplier: 2
4-bit register : 2
4-bit 2-to-1 mux : 2

Continued on next page
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Table 7.3 – Continued from previous page
Device Macro Statistics Timing Parameter Power Dissipation
1000-bit shifter logical left : 2

For all design points considered, results show that the separable input-first implementa-
tion achieves better delay, area and power dissipation than the other implementations under
investigation. As the choice of VC allocator does not significantly affect network perfor-
mance, it thus represents the preferable overall design choice for this use case.

7.4.2 Switch Allocator

The switch allocator is responsible for determining in each cycle the connections between
the input and the output ports of the switch. Since now the input buffers are organized in
multiple-independent queues, each input can send multiple requests per clock cycle.
Once a packet has completed Virtual Channel (VC) allocation, its flits can be forwarded to
the selected destination port subject to buffer space availability. For each flit to be transferred,
a crossbar connection between the corresponding input and output ports must be established
for one cycle. The switch allocator is responsible for scheduling such crossbar connections;
in particular, it generates matching between requests from active VCs at each of the router’s
P input ports on the one hand and crossbar connections to its P output ports on the other hand.
The quality of the generated matchings directly affects the router’s latency and throughput
under load.
With VC flow control, flits may only be sent downstream if sufficient buffer space is available
at the receiving router. To this end, routers maintain a set of credit counters at each output
port that track the number of available buffer entries for each downstream VC. A given input
VC can only request access to the crossbar if its destination VC has at least one credit avail-
able.
The grant signals generated by the switch allocator are used to set up the registers that control
crossbar connectivity. In addition, the switch allocator notifies the winning VC at each input
port, causing the latter to prepare its front-most flit for crossbar traversal e.g., by initiating a
read access to the input buffer and to decrements its credit count proxy. Finally, the output
side credit counter for each winning flit’s destination VC is updated to reflect the fact that a
credit has been consumed.

7.4.2.1 Separable Switch Allocators

Separable switch allocation is organized in two phases since both a per-output and a per-input
arbitration step is needed [158]. An example organization is shown in figures 7.13 and 7.14.
In the first case, each input is eligible to send to the outputs only one request (figure 7.13).
In order to decide which request to send, each input arbitrates locally among the requests of
each VC to forward their requests to the output arbiters (figure 7.14).
In this way, it is possible that two or more VCs of the same input will receive a grant from
different outputs. However, only one of them is allowed to pass its data to the crossbar.
Therefore, a local arbitration needs to take place again that will resolve the conflict.
In either form of separable switch allocation, in order to ensure fairness and deterministic ser-
vice the priority vector of any arbiter should be updated only if the grant that it produced is
also accepted in the second arbitration stage. Appropriate priority selection can also increase
switch allocator’s throughput by biasing the input/output pairs that correspond to heavily
backlogged flows. In this way, flits of the same packet (or flows in general) are kept together
as much as possible. Low-latency approaches that follow this principle, that are also easy to
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implement in the context of NoCs, have been presented in [152] and [159].

FIGURE 7.13: Input-first separable switch allocator

FIGURE 7.14: Output-first separable switch allocator
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Even though the arbiters operate independently, their eventual outcomes in switch allo-
cation are very much dependent. For example, when two or more input arbiters request the
same output simultaneously, a conflict occurs. Only one input will be matched, while others
will be left idle. There is nothing better these idle inputs could have done if they had HOL
(Head of Line blocking) flits only for the requested output. However, it would have been
much better for them and for the collective throughput of the switch if they had tried to bind
to some other output. Such conflicts are unavoidable, when every port has an opportunity of
only one request in every clock cycle. In order to improve their efficiency, separable switch
allocators have two generic options. They can either try to “desynchronize” their bindings,
so that each input (output) requests a different output (input) on every new scheduling cycle,
or they can attempt multiple requests per port, per scheduling operation.
Similarly as virtual channel, we have developed a RTL model using Verilog HDL and syn-
thesized it in a commercial FPGA design flow. Synthesis is performed using Xilinx ISE 14.7
and FPGA Virtex 6 family device XC6VLX760 is considered as target technology. In this
sub-section we have implemented virtual channel controller in two ways as using separable
input-first allocation and using separable output-first allocation . A series of figures (figure
7.15 - 7.16) and tables (table 7.4 - 7.5 ) show the synthesis report as well as power analysis
report.

FIGURE 7.15: Power report of switch allocator using separable input-first
allocation.

TABLE 7.4: Synthesis report of switch allocator using separable input-first
allocation.

Device Macro Statistics Timing Parameter Power Dissipation
4x4 bit single-port RAM : 10 6.393 ns 6.60 W
8x5 bit single-port RAM : 10 0.555 ns logic, 5.838 ns route
Flip-Flop : 50 8.7% logic, 91.3% route
4-bit register : 2
4-bit 2-to-1 mux : 2

Continued on next page
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Table 7.4 – Continued from previous page
Device Macro Statistics Timing Parameter Power Dissipation
1000-bit shifter logical left : 2

FIGURE 7.16: Power report of switch allocator using separable output-first
allocation.

TABLE 7.5: Synthesis report of switch allocator using separable output-first
allocation.

Device Macro Statistics Timing Parameter Power Dissipation
4x4 bit single-port RAM : 10 7.921 ns 6.87 W
8x5 bit single-port RAM : 10 0.799 ns logic, 7.122 ns route
2-bit register : 10 10.1% logic, 89.9% route
3-bit register : 10
2-bit 2-to-1 mux : 10
3-bit 2-to-1 mux : 10
4-bit 2-to-1 mux : 15
5-bit 2-to-1 mux : 10

7.4.2.2 Wavefront Switch Allocators

A centralized switch allocator, such as the wavefront arbiter or the 2-D round-robin, handles
all input requests at the same time and produces a global schedule for the whole crossbar. The
schedule is maximal when it is not possible to insert a new input/output connection, without
altering some of the connections that already exist in it. In general, centralized switch alloca-
tors produce maximal schedules and do not leave any outputs unoccupied if there is a request
for them. The main drawback of the commonly used centralized schedulers is their delay.
The simplest form of a centralized switch allocator with N input/output ports receives di-
rectly the requests of all input VCs, that is N× V in total, and grants only N of them; one for
each output. The scheduler in this case is asymmetric since it shares N outputs among N ×
V requests. In this way, we may end up granting two or more VCs from the same input that
share a common crossbar port but have flits for different outputs. To avoid this conflict the
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granted VCs of the same input pass from an additional V : 1 arbiter that selects only one of
them.

FIGURE 7.17: Wavefront switch allocator.

Of course, this per-input local arbitration stage (local V : 1 arbiter) could have been
done at the beginning of switch allocation. Then, each input would transmit only one request
to a N × N centralized allocator that again would produce one grant for each output. This
grant can be consumed directly by the input port since the eligible VC is preselected.
Following this analysis, it is evident that both techniques besides the centralized allocator
need an additional local arbiter for resolving output contention. In the baseline implemen-
tation this arbiter lies in the critical path of the switch allocator. However, based on the
observation of [157] such a constraint can be removed, if we rely on a centralized allocator
that gives to each input at most one grant. No grants are given to the same input for two
distinct outputs; this constraint is already satisfied by the wavefront allocator. This faster
alternative is depicted in figure 7.17.
At first, each input requests all outputs for which it has HOL flits irrespective of the input
VCs that they belong to. The requests are received by a N × N centralized allocator that
grants N requests, one for each output. Therefore, at this point we know the output to which
each input will be connected to. The only thing that remains to be selected is the appropri-
ate VC from each input. The good news is that this choice can be performed in parallel to
the centralized allocator, using N V : 1 arbiters. Each arbiter corresponds to an output and
selects one candidate VC for this output. At the end, from all derived (output, VC) pairs at
each input, only one would be chosen according to the schedule of the wavefront allocator.
We have developed a RTL model using Verilog HDL and synthesized it in a commercial
FPGA design flow. Synthesis is performed using Xilinx ISE 14.7 and FPGA Virtex 6 family
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device XC6VLX760 is considered as target technology. In this sub-section we have imple-
mented wavefront switch allocator and figure 7.18 shows the power analysis report and tables
7.6 shows synthesis report.

FIGURE 7.18: Power report of Switch allocator using wavefront allocation.

TABLE 7.6: Synthesis report of switch allocator using wavefront allocation.

Device Macro Statistics Timing Parameter Power Dissipation
4x4 bit single-port RAM : 10 10.598 ns 7.03 W
8x5 bit single-port RAM : 02 0.982 ns logic, 9.616 ns route
3x3-bit multiplier : 2 9.3% logic, 90.7% route
6x3-bit multiplier : 2
Flip-Flops : 26
2-bit 2-to-1 mux : 10
3-bit 2-to-1 mux : 02
4-bit 2-to-1 mux : 15
125-bit shifter logical left : 2

7.5 Conclusion

In the present chapter, we have discussed the key aspects of allocation and provided detailed
descriptions of representative hardware implementations.

Additionally, we have explored the design space for VC allocators in the context of NoC
routers. In particular, we have presented practical hardware implementations for three ex-
emplary VC allocator architectures based on the elementary designs. Overall, our results
suggest that the separable input-first implementation provides the optimal delay, area and
energy efficiency among the three designs considered in the present chapter.
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we have also evaluated three exemplary switch allocator implementations and investigated
several approaches for reducing the router’s pipeline delay.
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Chapter 8

Conclusion and Future Work

The Multi-Synchrnous Bi-directional NoC (MBiNoC) architecture, as presented in this the-
sis, can dynamically self-reconfigure its channel direction based on real-time traffic needs.
The basic concept is to utilize the waste idle bandwidth by temporarily reversing the channel
direction in MBiNoC to relieve the congestion in the opposite traffic direction.
In this thesis, we clearly described the bandwidth utilization problem of conventional NoC
design and proposed a novel concept of using bidirectional channel which can be adjusted
based on real-time traffic requirement. A novel router architecture named MBiNoC is pro-
vided with virtual-channel flow-control based mechanism. Then, an inter-router transmission
scheme is provided first to achieve bidirectional data transmission. To avoid deadlock and
starvation, a priority-based design of ASM is introduced.

In this thesis we considered the analysis and implementation of Multi-Synchronous Bi-
Directional NoC Architecture with Dynamic Self Reconfigurable Channel for the GALS
Infrastructure. To enhance the performance of on-chip communications of Globally Asyn-
chronous Locally Synchronous Systems (GALS), a dynamic re-configurable multi-synchronous
router architecture is proposed to increase network on chip (NoC) efficiency by changing the
path of the communication link in the runtime traffic situation. In order to address GALS
issues and bandwidth requirements, the proposed multi-synchronous bi-directional NoC’s
router is developed and it guarantees higher packet consumption rate, better bandwidth uti-
lization with lower packet delivery latency. All the input/output ports of the proposed router
behave as a bidirectional ports and communicate through a novel multi-synchronous first-in
first-out (FIFO) buffer. The bi-directional port is controlled by a dynamic channel control
module which provides a dynamic reconfigurable channel to the router itself and associated
sub-modules. This proposed multi-synchronous bi-directional router architecture is synthe-
sized using Xilinx ISE 14.7 and FPGA Virtex 6 family device XC6VLX760 is considered as
target technology and its performance is evaluated in terms of power, area and delay.

In Chapter 1 we introduced the Networks on Chip main characteristics and explained mo-
tivations making NoC a promising solution for future System on Chip interconnects. In this
chapter we also discussed State-of-Art of traditional NoC’s architectures and Bi-directional
NoC’s architectures with objectives of thesis.

In Chapter 2 we discussed architectural design of proposed router and contributions to
the available bi-directional router’s architecture. All input/output ports of the proposed router
behave as a bidirectional ports and communicated through a novel multi-synchronous first-in
first-out (FIFO) buffer. The bi-directional port is controlled by a dynamic channel control
module which provides a dynamic reconfigurable channel to the router itself and associated
sub-modules. The flow direction at each channel is controlled by a dynamic channel con-
trol algorithm. Implemented with a pair of algorithmic finite state machines, this dynamic
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channel control algorithm provides high performance, is free of deadlocks, and is starvation-
free. This chapter describes in detail the bidirectional channel control scheme and its design
mechanism. An inter-router transmission scheme is provided first to achieve bidirectional
data transmission. To avoid deadlock and starvation, a priority-based design of ASM is
introduced. This chapter mainly focused on contributions to the existing architecture and
explained dynamic channel control protocol in detail.

In Chapter 3 we have discussed microarchitectural structures of FIFO in Multi-Synchronous
Bi-Directional NoC’s routers. This is placed at the input or the output interface of a router
to accommodated incoming flits and outgoing flits which cannot be directly forwarded due
to traffic situations. In GALS infrastructure multi-synchronous FIFO is used at the interface
of the routers, which supports dynamic, extendable and power efficient multi-clock architec-
tures. This projected architecture of buffer allowed the allocation of data amongst entirely
separated clock domain modules with minimum cycles of latency between sender and re-
ceiver. The ready/valid handshake permits the sender and the receiver to prevent their oper-
ation for an arbitrary amount of time. An abstract FIFO may be tailored to the ready/valid
protocol both inside the upstream and the downstream connections. In this chapter we de-
veloped a novel multi-synchronous buffer architecture that supports valid/ready flow control
mechanism at all the different interfaces of the routers.

In Chapter 4 we have discussed different types of available arbiter architectures. The
routers are the basic building blocks of interconnection networks and their design critically
affects the performance of the whole system. The core function of any crossbar scheduler
is arbitration that resolves conflicting requests for the output. Since the delay of the ar-
biters directly determine the operation speed of the scheduler, the design of faster arbiters is
of paramount importance. The core of each NoC router involves arbiter and multiplier pairs
that need to be carefully co-optimized in order to achieve an overall efficient implementation.
Low transmission latency design is one of the most important parameters of NoC design.
In this chapter, we have used parametric Verilog HDL to implement designs and compared
performance in terms of power, area, and delay of different types of arbiters used for NoC
routers. The RTL implementation is performed using parametric Verilog HDL and analysis
in term of power, area and delay is performed using Xilinx ISE 14.7 and Xpower Analyzer
(XPA) with Xpower Estimator (XPE).

In Chapter 5 we have discussed and implemented routing computation modules using
different popular routing algorithms. Routing algorithm is one of the most important design
choices for NoC implementation, as it controls the path decision that a flit has to follow while
traveling along the network.
In this chapter we have presented RTL Implementation and analysis of Synchronous Look
Ahead Routing Computation using XY, Adaptive XY, and Dimension-Order algorithms ded-
icated to 2D-Mesh Topology for a Distributed Scalable Predictable Interconnect Network
(DSPIN).
In this chapter we have summarized routing algorithms used for NoC by simply comparison
and analysis,and give the merits and demerits of implemented routing algorithms.

In chapter 6 we have discussed and implemented a DMA-based Network Interface (NI).
This implemented NI has three memory mapped registers, Read packet register, Write packet
register, and Status packet register. This chapter has focused on implementation of proposed
NI design and analyzed its performance in terms of power, area, and delay using RTL NI
model. The RTL coding is performed using Verilog HDL and synthesized using Xilinx ISE
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14.7 and FPGA Virtex 6 family device XC6VLX760 is considered as target technology.

In chapter 7 we have discussed and implemented Virtual Channel Allocators and Switch
Allocators in three different ways. In this chapter we have implemented VC allocation using
separable allocators as Separable input-first VC allocator, Separable output-first VC alloca-
tor, and Wavefront-based VC allocator. We have also implemented switch allocation using
separable allocators as Separable input-first switch allocator, Separable output-first switch al-
locator, and Wavefront-based switch allocator. The RTL model is implemented using Verilog
HDL and synthesized using Xilinx ISE 14.7 and FPGA Virtex 6 family device XC6VLX760
is considered as target technology. Their performance were evaluated in terms of power, area
and delay.
In this thesis, a MBiNoC architecture using dynamic self-reconfigurable bidirectional chan-
nels is proposed and implemented. A new Dynamic Channel Control protocol that supports
real-time traffic direction arbitration while avoiding deadlock and starvation has been pre-
sented. MBiNoC architecture can significantly reduce the packet delivery latency at all levels
of packet injection rates. Compared to the conventional NoCs, the bandwidth utilization and
traffic consumption rate of our MBiNoC also exhibited higher efficiency.

On-chip networks are communication infrastructure dedicated for on-chip multiprocessor
systems. The performance of an on-chip interconnection networks affects the performance
of the networked multiprocessor systems because communication overheads due to task-
level parallelism affecting the total computational time of a complex parallel computing.
Therefore, a high performance network-on-chip should be a general requirement to develop
a networked multiprocessor system in the future.
In accordance with the current status of the research results presented in this thesis, further
investigations to improve the flexibility, to increase performance, to reduce power dissipation
and to optimize the logic area of the proposed NoC router microarchitecture will be still
open as consider IP-router interface is completely asynchronous and router-router interface
is synchronous.
As the bi-directional routers introduced in this thesis may increase the critical path length
and power overhead, a more accurate hardware overhead evaluation of MBiNoC should also
consider the physical VLSI implementation and optimization of the routers.
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modern embedded applications. Due to scalability, flexibility, and high bandwidth prop-
erties, Network-on-chip (NoC) technique has been proposed as a promising solution for the
communication-centric platform. The rapid introduction of NoC for the multi-core GALS ar-
chitecture requires proper Network-Interface (NI) design to interface two different IP blocks
via network routers within the same chip. This paper proposed a DMA based Network-
Interface for connecting the NoC router to a processor element. This proposed NI has three
memory mapped registers, Read packet register, Write packet register, and Status packet reg-
ister. Considering the current trend towards multi-core GALS architectures and the critical
role, the interconnect plays in the whole system, this paper focuses on proposed NI design
with its performance analysis in term of power, area, and delay using RTL NI model. The
RTL coding is performed using Verilog HDL and simulation with implementation is per-
formed by the Xilinx 14.7 and FPGA Vertex 6 as the target technology.

URL: http://ieeexplore.ieee.org/document/7808019/
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for the NoC’s routers.
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Publication: IEEE International Conference on Computing, Communication and Automa-
tion (ICCCA), April 29-30, 2016.

Abstract: Networks-on-Chip (NoC) is an emerging on-chip interconnection centric plat-
form that influences modern high speed communication infrastructure to improve the perfor-
mance of many-core System-on-Chip (SoCs) designs. The core of each NoCs router involves
arbiter and multiplier pairs that need to be carefully co-optimized in order to achieve an over-
all efficient implementation. Low transmission latency design is one of the most important
parameters of NoC design. This paper uses parametric Verilog HDL to implement the de-
signs and compares the performance in terms of power, area, and delay of different types
of arbiters using for NoCs routers. The RTL implementation is performed using parametric
Verilog HDL and analysis in term of power, area and delay is performed using Xilinx ISE
14.7 and Xpower Analyzer (XPA) with Xpower Estimator (XPE). The target device uses for
these implementation is Vertex 6.
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Publication: 3rd IEEE International Conference on Electronics and Communication Sys-
tems (ICECS), February 25-26, 2016.

Abstract:Network-on-Chip (NoCs) provide a robust and scalable communication method for
multi-processors system-on-chip (MP-SoCs) architecture with increasing number of cores
and their performance is highly dependent on the throughput and latency properties of the
micro-architecture of routers and its routing algorithms. Routing algorithm is one of the
most important design choices for NoC implementation, as it controls the path decision that
a flit has to follow while traveling along the network. In the case of look-ahead routing
computation, each router pre-compute the preferred output ports based on its local blockage
and transfer the preferred output ports to the adjacent routers. In this paper we represent
RTL Implementation and analysis of Synchronous Look Ahead Routing Computation using
XY, Adaptive XY, and Dimension-Order algorithms dedicated to 2D-Mesh Topology for a
Distributed Scalable Predictable Interconnect Network (DSPIN). The RTL implementation
is performed using parametric Verilog HDL and analysis in term of power, area and delay
is performed using Xilinx ISE 14.7 and Xpower Analyzer (XPA) with Xpower Estimator
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4. International Conference - NGCT 2015

Title: Design of a dynamic depth high-throughput multi-clock FIFO for the DSPIN
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Publication: IEEE International Conference on Next Generation Computing Technologies
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Abstract: The clock distribution within Chip-Multiprocessors(CPMs) and System-on-chips
(SoCs) come to be difficult as the number of processing elements increasing and the com-
munication between those components are becoming even more critical. In recent years,
researchers proposed Globally Synchronous Locally Synchronous (GALS) clocking scheme
to reduce clock skew, power, and energy consumption in CPMs and SoCs. In this paper we
have demonstrated dynamic depth multi-synchronous first-in first-out (FIFO) buffer which is
useful for transferring data between two processing elements within a Distributed Scalable
Predictable Interconnect Network(DSPIN).It also demonstrates dynamic calculation of FIFO
depth using two clock frequency and packet size of in coming data.
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