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Abstract

Abstract

Monitoring and regular performance analysis of Grid-Connected Photovoltaic (GCPV)
systems are of primal importance in order to ensure an optimal energy harvesting and reliable
power production at competitive costs. Main faults in GCPV systems are caused by short-
circuits or open-circuits in PV modules, inverter disconnections, PV module degradation and
the presence of shadows on the PV array plane. Detecting these faults can minimize generated
losses by reducing the time in which the PV system is working below its optimum point of
power generation. In addition, the degradation of Tin Film PV (TFPV) modules under outdoor
exposure is still not fully understood and is currently object of research. A better understanding
on this topic would be important for selecting the best PV technology for the appropriate

climatic condition and for improving the reliability and performance of PV systems.

Simulations play a crucial role in both outdoor behaviour forecasting and automatic fault
detection of GCPV systems. Two PV module/array models have been used in the present thesis
in order to simulate the outputs of GCPV systems of different topologies and solar cell
technologies, as well as in the fault detection procedure. Moreover, five different algorithms
were used for estimating the unknown parameters of both PV models in order to see how these
estimated parameters affect their accuracy in reproducing the outdoor behaviour of three GCPV
systems. The obtained results show that the metaheuristic algorithms are more efficient than
the Levenberg-Marquardt algorithm (LMA) especially in bad weather conditions and both PV

models perform well when used in the automatic fault detection procedure.

A new approach for automatic supervision and remote fault detection of GCPV systems
by means of OPC technology-based monitoring is presented in this thesis. The fault detection
procedure used for the diagnosis of GCPV systems is based on the analysis of the current and

voltage indicators evaluated also from monitored data and expected values of current and
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voltage obtained from the model of the PV generator. Three GCPV systems having different
sizes, topologies and cell technologies have been used for the experimental validation of the
proposed fault detection method. The analysis of current and voltage indicators has
demonstrated effectiveness in the detection of most probable faults occurred in the PV arrays
in real time. Furthermore, obtained results show that the combination of OPC monitoring along
with the proposed fault detection procedure is a robust tool which can be very useful in the field

of remote supervision and diagnosis of GCPV systems.

Finally, the study of degradation issues of TFPV modules corresponding to four
technologies: a-Si:H, a-Si:H/uc-Si:H, CIS and CdTe, deployed under outdoor conditions for
long term exposure is also addressed in the present thesis. The impact of the degradation on the
output power of the PV modules is analysed, in order to determine their annual degradation rate
and their stabilization period. The degradation rate is obtained through a procedure based on
the evolution of the module effective peak power over time. The stabilization period is
evaluated by means of two methods: the evolution of DC-output power of the PV module, and
the power-irradiance technique. The obtained results show that the CIS PV module is the most
stable compared to the other technologies, when deployed under Continental-Mediterranean
Climate. The a-Si:H and a-Si:H/pc-Si:H PV modules also perform quite well, showing
degradation rates and stabilization periods similar to the expectations. The CdTe module shows
poor performances, with the highest degradation rate, and long stabilization period of 32
months. Lastly, the parameter extraction technique has been also applied to analyse the
evolution of model parameters for a-Si:H and a-Si:H/pc-Si:H arrays working in outdoor

conditions for long term exposure.
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Resumen

Resumem

La monitorizacion y el seguimiento regular del comportamiento de los sistemas
fotovoltaicos conectados a la red (SFCR) son de primordial importancia para asegurar una
generacion de energia Optima a costes competitivos. Los fallos principales en los SFCR son
causados por cortocircuitos o circuitos abiertos en mddulos fotovoltaicos, desconexiones de
inversores, degradacion de moddulos fotovoltaicos y presencia de sombras en el plano del
generador fotovoltaico. La deteccion de estos fallos puede minimizar las pérdidas generadas al
reducir el tiempo en que el sistema fotovoltaico esta funcionando por debajo de su punto 6ptimo
de generacion de energia. Por otro lado, la degradacion de los modulos fotovoltaicos de capa
delgada (TFPV) en condiciones reales de trabajo sigue siendo actualmente objeto de
investigacion. Una mejor comprension de este tema es importante para seleccionar la tecnologia
fotovoltaica mas adecuada para cada condicion climética especifica y mejorar asi tanto la

fiabilidad como el rendimiento de los sistemas fotovoltaicos.

Las simulaciones desempefian un papel crucial tanto en el prondstico del comportamiento
real como en la deteccion automatica de fallos en los SFCR. En la presente tesis se han utilizado
dos modelos de modulos fotovoltaicos para simular las salidas de los sistemas de diferentes
topologias y tecnologias de células solares, asi como en el procedimiento de deteccion de fallos.
Se han utilizado cinco algoritmos diferentes para estimar los pardmetros de ambos modelos con
el fin de ver como estos pardmetros estimados afectan su precision en la reproduccion del
comportamiento real de tres SFCR. Los resultados obtenidos muestran que los algoritmos meta-
heuristicos son mas eficientes que el algoritmo de Levenberg-Marquardt (LMA) especialmente
en malas condiciones climaticas, aunque ambos modelos pueden ser utilizados para la

supervision y la deteccion automatica de fallos.



Resumen

En esta tesis se presenta un nuevo enfoque para la supervision automatica y la deteccion
remota de fallos en SFCR mediante la monitorizacién basada en la tecnologia OPC. El
procedimiento de deteccion de fallos utilizado para el diagndstico de SFCR se basa en el analisis
de los indicadores de corriente y tension evaluados también a partir de datos monitorizados y
valores esperados de corriente y tension obtenidos a partir del modelo del generador
fotovoltaico. Se han utilizado tres SFCR de diferentes tamafios, topologias y tecnologias
fotovoltaicas para la validacion experimental del método de deteccion de fallos propuesto. El
analisis de los indicadores de corriente y tension ha demostrado efectividad en la deteccion de
los fallos mas probables en generadores fotovoltaicos en tiempo real. Ademas, los resultados
obtenidos muestran que la combinacién de monitorizacién OPC junto con el procedimiento de
deteccion de fallos propuesto es una herramienta robusta que puede ser muy util en el campo

de la supervision remota y el diagndstico de SFCR.

Finalmente, en la presente tesis se aborda el estudio de los problemas de degradacion de
moédulos fotovoltaicos de capa delgada correspondientes a cuatro tecnologias: a-Si:H, a-
Si:H/pc-Si:H, CIS y CdTe, en condiciones de trabajo a la intemperie durante periodos
prolongados de exposicion. Se analiza el impacto de la degradacion en la potencia de salida de
los médulos fotovoltaicos para determinar su tasa de degradacion anual y su periodo de
estabilizacion. La tasa de degradacion se obtiene a través de un procedimiento basado en la
evolucion de la potencia méxima efectiva del médulo a lo largo del periodo de exposicion. El
periodo de estabilizacion se evaliia mediante dos métodos: El estudio de la evolucion de la
potencia de salida del modulo fotovoltaico y la técnica de Potencia-Irradiancia. Los resultados
obtenidos muestran que el mdédulo fotovoltaico CIS es el mas estable comparado con las otras
tecnologias, cuando trabajan en condiciones de clima continental mediterraneo. Los modulos
fotovoltaicos a-Si:H y a-Si:H/pc-Si:H también presentan un buen comportamiento, mostrando
tasas de degradacion y periodos de estabilizacion similares a los esperados. El modulo de CdTe
muestra las peores prestaciones, con una mayor tasa de degradacion y un largo periodo de
estabilizacion de 32 meses. Por ultimo, se ha aplicado también la técnica de extraccion de
pardmetros para analizar la evolucion de los pardmetros del modelo para generadores
fotovoltaicos de médulos de a-Si: H y a-Si:H/uc-Si:H en condiciones reales de trabajo durante

largos periodos de tiempo.
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Resum

El monitoratge i el seguiment regular del comportament dels sistemes fotovoltaics
connectats a la xarxa (SFCX) son de cabdal importancia per assegurar una generacio Optima
d'energia a costos competitius. Les fallades principals en els SFCX sén causats per curtcircuits
o circuits oberts en moduls fotovoltaics, desconnexions d'inversors, degradaci6 de moduls
fotovoltaics 1 preséncia d'ombres en el pla del generador fotovoltaic. La deteccié d'aquests
errors pot minimitzar les perdues generades en reduir el temps en que el sistema fotovoltaic esta
funcionant per sota del seu punt optim de generacid d'energia. D'altra banda, la degradacio dels
moduls fotovoltaics de capa prima (TFPV) en condicions reals de treball segueix sent
actualment objecte d'investigacid. Una millor comprensié d'aquest tema és important per
seleccionar la tecnologia fotovoltaica més adequada per a cada condici6 climatica especifica i

millorar aixi tant la fiabilitat com el rendiment dels sistemes fotovoltaics.

Les simulacions tenen un paper crucial tant en el pronostic del comportament real com en
la deteccid automatica de fallades en els SFCX. En la present tesi s'han utilitzat dos models de
moduls fotovoltaics per simular les sortides dels sistemes de diferents tipologies i tecnologies
de cél-lules solars, aixi com en el procediment de deteccié de fallades. S'han utilitzat 5
algoritmes diferents per estimar els parametres de tots dos models per tal de veure com aquests
parametres estimats afecten la seva precisio en la reproduccié del comportament real de tres
SFCX. Els resultats obtinguts mostren que els algoritmes meta-heuristics son més eficients que
l'algorisme de Levenberg-Marquardt (LMA) especialment en males condicions climatiques,

encara que tots dos models poden ser utilitzats per a la supervisié i la deteccié automatica de

fallades.

En aquesta tesi es presenta un nou enfocament per a la supervisioé automatica i la deteccio

remota de fallades en SFCX mitjancant el monitoratge basat en la tecnologia OPC. El
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procediment de deteccid de fallades utilitzat per al diagnostic de SFCX es basa en 1'analisi dels
indicadors de corrent 1 tensié avaluats també a partir de dades monitoritzades i valors esperats
de corrent i tensio obtinguts a partir del model del generador fotovoltaic. S'han utilitzat tres
SFCR de diferents potencies, topologies i tecnologies fotovoltaiques per a la validacio
experimental del métode de deteccio6 de fallades proposat. L'analisi dels indicadors de corrent i
tensié ha demostrat efectivitat en la deteccidé de les fallades més probables en generadors
fotovoltaics en temps real. A més, els resultats obtinguts mostren que la combinacié de
monitoritzacié OPC juntament amb el procediment de deteccio6 de fallades proposat és una eina

robusta que pot ser molt util en el camp de la supervisi6 remota i el diagnostic de SFCX.

Finalment, en la present tesi s'aborda l'estudi dels problemes de degradacié de moduls
fotovoltaics de capa prima corresponents a quatre tecnologies: a-Si:H, a-Si:H / pc-Si:H, CIS 1
CdTe, en condicions de treball a la intemperie durant periodes prolongats d'exposicio. S'analitza
l'impacte de la degradacio en la poténcia de sortida dels moduls fotovoltaics per determinar la
seva taxa de degradaci6 anual i el seu periode d'estabilitzaci6. La taxa de degradaci6 s'obté a
través d'un procediment basat en I'evolucié de la poténcia maxima efectiva del modul al Ilarg
del periode d'exposicid. El periode d'estabilitzaci6 s'avalua mitjangcant dos metodes: L'estudi de
l'evoluci6 de la poténcia de sortida del modul fotovoltaic i la técnica de Poténcia-Irradiancia.
Els resultats obtinguts mostren que el modul fotovoltaic CIS és el més estable comparat amb
les altres tecnologies, quan treballen en condicions de clima continental mediterrani. Els moduls
fotovoltaics a-Si:H 1 a-Si:H/uc-Si:H també presenten un bon comportament, mostrant taxes de
degradacio i periodes d'estabilitzacio similars als esperats. El modul de CdTe mostra les pitjors
prestacions, amb una major taxa de degradacié i un llarg periode d'estabilitzacié de 32 mesos.
Finalment, s'ha aplicat tamb¢ la técnica d'extraccidé de parametres per analitzar I'evolucié dels
parametres del model per a generadors fotovoltaics de moduls de a-Si:H 1 a-Si:H/pc-Si:H en

condicions reals de treball durant llargs periodes de temps.
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Introduction

1. Introduction

The share of renewable energy technologies has been steadily increasing worldwide,
particularly with regards to the energy sector. Renewable energy provided an estimated 19.2%
of global final energy consumption in 2014, and the growth of their capacity and power
generation continued in 2015 [1]. This growth is driven by several developments that all have
a bearing on renewable energy, including a dramatic decline in global fossil fuel prices recorded
in 2015; a series of announcements regarding the lowest-ever prices for renewable power long-
term contracts; a significant increase in attention to energy storage; and a historic climate

agreement in Paris that brought together the global community [1,2].

Among all the renewable energy sources, solar energy is one of the most promising sources
for the generation of clean energy. Solar photovoltaic (PV) technology is one from the
technologies that can harvest this abundant energy source [1]. PV technology converts sunlight
directly into electricity, and its market share has steadily increased in the last years [3]. The
large diffusion of PV technology is mainly due to its cost trend, which experienced a decrease
of 75% in less than ten years. This makes PV a cost competitive source of electricity in a

growing number of countries, with prices often below 1 €/W; in European markets [4].

The performance of PV systems is influenced by several factors such as soiling, PV module
degradation, shading, bypassed PV modules, faulty strings, mismatch, spectral distribution and
operating temperature. However, the development of methods for regular performance
supervision and fault detection is crucial to ensure an optimal energy harvesting and reliable
power production PV systems. In addition, cost-effective procedures for faults detection in PV

systems make the PV technology even more attractive for customers and investors.
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PV modules are a key element of PV systems, which are based on different cell
technologies for the conversion of sunlight into electrical energy. PV modules can be divided
into two main categories: crystalline silicon and thin film technologies. Although crystalline
silicon technologies are currently more efficient and dominate the market, Thin Film
Photovoltaic (TFPV) modules have become an important technology. In 2015, TFPV modules
covered the 7% of the market, with an annual production of 4.2 GW, [3].

The main advantages of TFPV modules are their lower production costs and lower
temperature coefficients compared to crystalline PV modules [5,6]. However, the main
problems that this technology has to deal with are, the degradation phenomena after outdoor

exposure [7—-10] and the lower efficiencies compared to crystalline silicon PV modules.

The degradation and the behaviour of TFPV modules under outdoor exposure are still not
fully understood and are currently object of research. A better understanding on this topic would
be important for selecting the best PV technology for the appropriate climatic condition and for

improving the reliability and performance of TFPV modules.

The outlined goals and objectives of the present work, as well as the thematic and the

contributions of the thesis are described in sections below.

1.1. Aim and objectives

The present thesis is conducted in order to progress the state of the art of the supervision
and diagnosis of photovoltaic systems, as well as modelling and the study of degradation of

thin film PV modules.

On one hand, the aim of the thesis is to develop a cost effective technique for the diagnosis
and automatic detection of the most probable faults which can occur during the functioning of
a grid-connected PV system. On the other hand, the evaluation of performance and the
estimation of degradation rates and the stabilization period of TFPV modules based on different

cell technologies are the others goals to achieve in this thesis.

To successfully accomplish the thesis goals, the following specific objectives shall be

achieved:
1- Modelling and simulation of the individual system components:

v" Modelling of PV cell/ PV module/ PV generator.
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v Modelling of the inverter.
2- Identification and validation of the system components models with experimental data:

v' Using different algorithms for the model parameter extraction (LMA, DE, GA,
PSO and ABC algorithm).

v" Model parameter extraction from I-V curves and from dynamic behaviour: From

monitoring data of the PV system working in real conditions.

3- Development of an automatic supervision procedure for PV systems:
v" Identification of most probably source of faults present in the PV system.
v" Fault detection method through OPC.

4- Characterization of PV systems in real operation conditions and degradation analysis

of different PV cell technologies:

v" Estimation of yields and performance ratios (comparison with expected energy

production).
v Study of degradation rates of PV modules of different technologies: Amorphous
silicon (a-Si:H), micromorph tandem silicon (a-Si:H/uc-Si:H), cadmium telluride (CdTe)

and copper indium diselenide (CIS).
v Analysis of the stabilization period of the different technologies.

v' Study of the PV module model parameters evolution along the degradation

process.

1.2. Thematic

The thematic of the present thesis covers three important fields that are crucial in

conceiving reliable grid-connected photovoltaic systems.

1.2.1. Parameter extraction of the PV module model
The PV cell/module models include several parameters that used to be unknown and are
not provided by the PV module manufacturers. To adequately simulate the real behaviour of a

PV module, an accurate parameter identification procedure is highly significant.
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Several methods for parameters estimation of PV cell/module model have been proposed
in the literature and they are categorized into: analytical methods [11], numerical methods

[12,13] and bio-inspired methods [14-20].

The analytical methods for parameters estimation of PV cell/module model require some
key points from the I-V characteristic curve, such as the maximum power point, the short-circuit
current, the open-circuit voltage, and the slopes at the axis intersections [21]. These methods
allow a relatively simple and fast calculation of the unknown parameter values. However, the
accuracy of the extracted parameters heavily depends on the accuracy of these key points.
Unfortunately, these methods provide high uncertainties because measured data usually

contains noise due to device inaccuracy and other electrical disturbances.

To overcome the uncertainties in the analytical methods, many researchers have explored
numerical methods, such Newton-Raphson (NR) and Levenberg-Marquardt (LM) based
methods [12,13]. In general, these numerical methods provide good predictions however, they
fail under certain conditions, such as fast varying of weather or presence of shadows in the

plane of the PV array.

The bio-inspired methods based on the Genetic Algorithm (GA) [14], Particle Swarm
Optimization (PSO) [15], Simulated Annealing (SA) [16], Harmony Search (HS) [17], Pattern
Search (PS) [18], Differential Evolution (DE) [19] and Artificial Bee Colony (ABC) [20], are

becoming the best solution in the modelling of PV systems because of their good accuracy.

In most works available in the literature, the extraction of the model parameters of the PV
module model is carried out from measured I-V characteristics; this means using constant
values of solar cell temperature and solar irradiance. Nevertheless, in the present research, the
parameters are extracted directly from the monitored outputs of the PV module/array taking

into account the variation of solar irradiance and cell temperature, in real working conditions.

1.2.2. Fault detection in PV systems

A grid-connected PV system can be divided in three main parts; AC-side, DC-side and the
inverter in between. The three parts are susceptible to failures with different degree of
complexity. The AC-side and the inverter failures can be easily identified due to advanced point
reached by the researchers in developing robust devices. Compared to AC-side, the failures

present in the DC-side of a grid-connected PV system are difficult to analyse, and their causes
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are difficult to identify, because different faults have similar effects on the outputs of the PV

array.

The faults in the DC-side of grid-connected PV systems can be classified into two main
categories considering that energy losses result of faults may be temporary or permanent. Table

1.2.1 lists the possible origins of faults that may occur in the DC-side of a grid-connected PV

system.
Table 1.2. 1 List of possible faults and their origins which affect the DC side of PV system.
Failure  Failure name Affected Possible origins
type components
Degradation Cell, module - Deterioration of cells, crack, hot spots.
[22,23] - Penetration of humidity, degradation of
interconnections, corrosion of cell’s connections.
S,? - Mismatch.
= - Shorted Modules, reversed modules.
E Soiling [24] Cell, module, string, - Waste, pollution, sand.
=
;; array, ref-cell
'_;T' Breakdown Cell, module, ref- - Torn or broken module.
2 [23] cell, pyranometer, - Short-circuit in electrical circuit.
junction box, - Current surges due to lightning storms.
Protection diodes. - Absence or non-operation of diodes.
- Reverse diode’s polarity, faulty connection.
Shading Cell, module, string, - Obstacles: clouds, buildings, trees...
[25,26]
- array, ref-cell
[«]
5 Grid outage Cables, inverter - Faulty wiring
E [27] - Corrosion of connections and contacts.
3 - Destruction of wires.
oy MPP-Tracking Inverter (DC-DC - Internal error, ageing of the component
= [25] converter)
g
& Total blackout  String, array - Disconnection of wiring, activation of DC-
[28] protection (fuses Blocking diode...)

With a view to the high implementation degree of grid-connected PV systems, the
necessity to develop efficient diagnosis methods is particularly important in order to minimize

outage periods and optimize their reliability and performance.

Several researches [29-31] have been carried out, using climate data from satellites
observation to generate the necessary data at the desired location. This is a cost-effective
approach, since no climate sensors are needed on the plant, although it provides low accuracy

in estimating expected energy yields in some specific climatic conditions [31].

Other studies combined the computing techniques with local sensors which collected the

meteorological data in order to estimate the energy production. An example can be found in
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[32], where a method based on the extended correlation function and the matter-element model
is proposed to detect faults in a small PV plant. Furthermore, in another work [33] the matter-
element model is combined with a neural network to build an intelligent fault diagnosis system.
Both proposals use a PV system simulator to collect power generation data of PV modules

during normal and faulty operations.

Even more, some works were carried out using artificial intelligent techniques [34—36] and
statistical data analysis for the supervision of PV systems [37]. However, these techniques have
not been yet optimized for fault detection analysis and clear identification of the kind of fault

present in the system.

Other interesting techniques were presented in the literature [38—40]. Authors proposed an
automatic monitoring and fault detection system based on power losses analysis and yields
analysis. This diagnostic procedure integrates monitoring, modelling, simulation, and fault
diagnosis in a complete package designed in LabVIEW software. In this way the method allows
at the same time PV model module parameters extraction, dynamic system simulation,

monitoring of electrical and weather variables, and finally the detection of faults.

A new procedure for automatic fault detection in grid-connected PV systems defining new
current and voltage indicators has been reported in the literature [41]. This method is based on
previous works [42,43], that reduced both, computational analysis and the number of
monitoring sensors. In concrete, irradiance and a temperature sensors are the only needed to
supervise each sub-array connected to each inverter present in the PV system. The measurement
of output current and voltage of the PV array is carried out by the inverter. The main idea is
that this method of fault detection can be integrated into the inverter without using simulation

software or additional external hardware.

Recently Hariharan et al. [44] presented a method for detecting permanent fault and partial
shading in PV arrays. The method relies in defining two variables, and uses just the measured
values of irradiance, voltage and current of the PV array. The use of this method allows
distinguishing between permanent faults and temporary shading effects on the PV array.
However, the nature of the permanent fault cannot be defined. Furthermore, neglecting the

temperature effect leads to less significant results.

In this thesis the method proposed in [41] has been improved. Apart from the detection of

several permanent faults, the method has been applied for detecting temporal faults like partial
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shadows and inverter disconnections. Furthermore, now the procedure is able to give an

equivalent number of faulty strings or bypassed modules in the PV array.

1.2.3. Degradation of PV modules

Several factors such as soiling, spectral distribution, mismatch and temperature strongly
affect the performance of PV modules after a period of exposure under outdoor conditions. The
degradation is mainly associated to the PV module technology. Several studies have reported

that the TFPV modules degrade more sternly than the crystalline ones [45,46].

Previous studies present in the literature [7-9] were carried out in order to estimate the
degradation rate of different TFPV modules technologies deployed outdoor for long term
exposure in different climate conditions. The studies presented in references [8,47,48]
demonstrate that the Staebler-Wronski Effect (SWE) [49] is the main cause of degradation in

thin film hydrogenated single-junction amorphous silicon (a-Si:H) PV modules.

The characterization and the study of the degradation of four different TFPV modules is
one of the goals of the present thesis. Moreover, parameter extraction techniques are used in
order to study the degradation effects on the model parameters to understand the physical

mechanisms associated to the degradation.

1.3. Contributions of the present thesis

The analysis of degradation of TFPV modules of different technologies in different
climatic conditions can help selecting the best PV technology for each specific site. Thus,
understanding the origin of the degradation modes and how they affect the performance of PV

modules is important to improve their reliability.

The relevant contributions achieved along the present thesis rely mainly on the acquired
information from the evolution of the extracted parameters of the PV cell model in order to
achieve a better understanding of the performance changes of TFPV modules. The five
parameters of the one-diode model have been extracted from dynamic response of the two PV
generators based on a-Si:H and micromorph PV modules respectively, and evaluated along the

monitoring campaign.

Moreover, the contributions of this thesis can also be found in the works published along

the investigation period, related to:
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e PV module/array modelling and parameter extraction techniques,
e Supervision and fault detection methods,

e (Characterization and degradation study of TFPV modules.

Furthermore, as the field of PV is still progressing, the results and the methods given in

the present thesis may open doors to further investigations.
A brief description of each publication is given bellow:

— The first paper [50] is related to PV module modelling and parameters extraction
techniques. Two PV module models based on five different parameter identification
methods were compared.

— The second paper [51] presents a cost effective method for the detection of the
overall faults that may occur in the DC-side of a PV system.

— The third one [52] is an application of the fault detection method in an OPC
platform used for remote supervision of PV systems.

— The characterization and the study of degradation of two PV systems of different
TFPV modules technologies under outdoor long term exposure are done in [53,54].
Moreover, the evolution of the extracted parameters of the PV array model along the
outdoor monitoring period reflects the degradation of the PV modules.

— Finally, the results of the analysis of degradation of four thin film photovoltaic
modules deployed under outdoor long term exposure in continental climate conditions

are given in [55].

The full-text of each publication and the discussions of the obtained results are detailed in

the following chapters.
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2. Methodology

An important aspect to consider during the development of this research work is the
methodology to be employed during the investigation period in order to reach the main

objectives stated previously in section 1.1. In Fig. 2.1 it is depicted the flowchart of the

methodology followed:
Modelling PV components
Cell/Module/Inverter
v
PV System
Model
Measured
< Data (G,
v T,V,LP)
Simulation, Supervision and
Diagnosis of PV systems
v
. P Parameter Extraction o Fault Detection
Degradation Study 1 techniques g Methods
\ 4 v
. PV cell
Degradation Rates Characterization \ 4
Identification of
v v different Faults
Stabilization Parameters
period Study

Figure 2. 1 Flowchart of the methodology.
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Both, design tools and PV components models, were selected based on the literature review
of the state of the art and the advancement in the field of PV systems. After selecting the models
of the PV components, the whole PV systems is modelled, and a platform for simulation,
supervision and diagnosis of PV systems is developed on MATLAB/Simulink. By using
measured data of solar irradiance and cell temperature, the outputs of the PV system can be

simulated and compared with monitored ones.

The parameter extraction technique is very important in order to optimize the PV model
parameters which permit the reproduction of the exact behaviour of the PV system with good
accuracy. Moreover, the parameter extraction technique is used in the study of degradation of
TFPV modules, as well as in the development of efficient fault detection procedure which will

be able to detect the most probable faults.

Finally, two procedures for the study of the degradation of TFPV modules and the

assessment of stability period have been employed.

The main elements of the methodology described by the flowchart are detailed in the

following sections.

2.1. Design and analysis tools

A wide variety of software tools now exist for the analysis, simulation and sizing of PV
systems. These tools present different degrees of complexity and accuracy, depending on the

specific tasks for which each tool has been developed.

It is useful to distinguish between sizing tools; which determine the component size and
configuration [1-3], and simulation or modelling tools; which analyse the system output and

performance once its specifications are known [4—8].

The development of the thesis has been carried out by using MATLAB software, which is
a powerful technical computing environment that can be complemented by a wide set of
associated toolboxes offered by Mathworks [8]. It allows the modelling and simulation of
PV systems and components. Moreover, it can also be combined with the Simulink interface
which is a friendly modular graphical environment of simulation, resulting in a very powerful

modelling and simulation platform.
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2.2. PV system modelling

Modelling is the basis for computer simulation of a real system. It is usually based on a
theoretical analysis of several physical processes occurring in the system and the respective
factors that influence these processes. Modelling of PV system components requires a good
understanding of both, the principle operation of each component and the interaction between

the rests of components.

Accurate modelling of PV module and the inverter is an important requirement for

designing efficient PV system simulations since they are the basis elements of the PV system.

2.2.1. PV cell/module/array modelling

A detailed approach to solar cell based on a physical description and the electrical
equivalent circuit of the solar cell is given in [9,10]. Several models with different degree of

complexity and accuracy were elaborated in order to simulate and understand the behaviour of

aPV cell [11-18].

The one diode model and Sandia model described below were used in the simulations of

PV systems and PV modules carried out in the present thesis:

a) One diode model
The one diode model of a solar cell, also known as five-parameter model includes a parallel
combination of a photogenerated controlled current source Ipn, a diode, described by the well-
known single-exponential Shockley equation [10,19], a shunt resistance Rs» and a series

resistance Rs modelling the power losses as shown in Fig. 2.2.1.

Rs I

NN——

Iz L +

I ph

® ¥ e v

o

Figure 2.2. 1 One diode model of PV cell.

The current-voltage (I-V) characteristic of a solar cell could be derived from Kirchoff’s

current law and it is given by the implicit and nonlinear equation as follows:
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(LERst) V + Ryl
I=Lp—I,le ™/ -1 —< - ) (2.2-1)
sh

where I, and n are the reverse saturation current and ideality factor of the diode respectively

and V7 is the thermal voltage.

Eq. (2.2-1) can also be written as follows,

I = Iph - Id - ISh (22-2)
where /s and Iy are the currents across the diode and shunt resistance respectively.

The photogenerated current can be evaluated for any arbitrary value of irradiance, G, and

cell temperature, 7T, by using the following equation:
G
Lp = Flsc + k(T = T¢) (2.2-3)

where G* and 7. * are respectively the irradiance and cell temperature at standard test conditions
(STC): 1000 W/m? (AM1.5) and 25°C, ki (A/°C) is the temperature coefficient of the current

and /e (A) is the solar cell short-circuit current at STC.

Some PV modules are formed by parallel strings of solar cells connected in series.
However, most PV modules include one single string of solar cells. Therefore, the model of the

solar cell can be scaled up to the model of the PV module using the following equations (2.2-

4)—(2.2-8):

Iy = Npl (2.2-4)

lyem = Np Iy, (2.2-5)

Vy =Ng V (2.2-6)

Voem = N Vo (2.2-7)
N

Rsy = N_p R, (2.2-8)

where subscript M stands for ‘Module’, Ns is the number of solar cells connected in series and

Np is the number of parallel branches of solar cells forming the module.

Then, the output current of the PV module, /i, is obtained rewriting Eq. (2.2-2) as follows:
I = Np(Ipn = Lam = Isna) (2.2-19)

The diode current, lam, included in Eq (2.2-9) is given by:
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(VM+1MRsM)
Iy =1l e n NVt -1 (2.2-10)

where Vu (V) and i (A), are the output voltage and current of the PV module respectively.

The saturation current of the diode /i (A) depends strongly on temperature and it is given

by:

(@_E_g)
Vi Vi
_ [seppe\Veo Ve

Loy = — (%)3 (2.2-11)
N (e( )—1> ‘

N NgVio

where Iscum 1s the short-circuit current of the PV module, Vocr is the open-circuit voltage of the
PV module, Vi is the thermal voltage at STC, E; the energy bandgap of the semiconductor and
Ego is the energy bandgap at 7= 0 K.

The value of the energy bandgap of the semiconductor at any cell temperature 7c is given
by:
T2

a
E,=E,,——2%°_ (2.2-12)
g g0 ,Bgap + Tc

where ogqp and Leqp are characteristic parameters of the semiconductor.

Finally, the current L, also included in Eq. (2.2-9) is given by the following equation:
Vu + IyRsy

Ji = -

The same procedure can be applied to scale up the model of the PV module to the model
of a PV array by taking into account the number of PV modules connected in series by string,

Nsg, and the number of parallel strings in the PV array, Npg [9].

b) Sandia model
The Sandia Array Performance Model (SAPM) developed at Sandia National Laboratories
[20], is an empirical model described by the fundamental Egs. (2.2-14) — (2.2-20).

The model contains several coefficients and parameters that are unknown and not provided
by the PV module’s manufacturer. By knowing these model parameters, as well as the solar
radiation and the PV modules operating temperature, the output power of the PV array is
predicted by using the following equations:

Ee = G/G, (2.2-14)
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Iscg = Npg4llsco - Ee - {1+ a5 - (Tc —To)}] (2.2-15)

mpg = Npg[Impo - {C; - Ee + C,-Ee?}-{1 + ajmp - (Tc —To)}] (2.2-16)

6(Tc)=n-k-(Tc+273.15)/q (2.2-17)

Vocg = Nsg[Voco + Ng - 6(Tc) - In(Ee) + By, (Ee) - (Tc —To)] (2.2-18)

Vmpg = Ngy[Vmpo + C, - Ny - 8§(T¢) - In(Ee) + C3 - Ny - {§(Tc) - In(Ee)}? (2.2.19)
+ Bymp(Ee) - (Tc — To)]

Pmpg = Impg-Vmpg (2.2-20)

where; Ee: effective solar irradiance. G: measured irradiance (W/m?). G: reference irradiance
at STC. To: reference cell temperature at STC. Tc: measured cell temperature inside module
(°C). Isco: PV module short-circuit current at STC (A). ausc: normalized temperature coefficient
for Isc, (°C™"). Iscg: PV array short-circuit current (A). Npg: number of modules connected in
parallel. Impo: PV module current at the maximum power point at STC (A). Impg: PV array
current at the maximum power point (A). oump: the normalized temperature coefficient for Imp,
(°C™"). Co and C; are empirically determined coefficients which relate Imp to the effective
irradiance, Co+C;=1, (dimensionless). d(7c): thermal voltage per cell at temperature Tc. g:
elementary charge. k: Boltzmann’s constant. n: diode ideality factor. Voco: PV module open-
circuit voltage at STC (V). Sroc: temperature coefficient for module Voc at standard irradiance,
(V/°C). Ns: number of cells in series per PV module. Ny: number of modules connected in
series. Vocg: PV array open-circuit voltage (V). Vmpo: PV module voltage at the maximum
power point at STC (V). frmp: temperature coefficient for module Vmp at standard irradiance,
(V/°C). Vmpg: PV array voltage at the maximum power point (V). C2 and C; are empirically
determined coefficients which relate Vmp to the effective irradiance (C> is dimensionless, and

the unit of Csz is (V!)). Pmp: PV array power at the maximum power point (W).

In order to solve the system equations formed by the Egs. (2.2-14) — (2.2-20) described
above and reproduce the behaviour of the whole PV system with a good accuracy, it is necessary
to apply specific methods to determine the empirical coefficients included in the model

equations.

2.2.2. Inverter modelling

PV Inverters convert the DC-power from the PV array into an AC-power compatible with

the utility power grid. The inverter’s model can be used in conjunction with a photovoltaic
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array’s model to calculate expected system performance and to verify the compatibility of
inverter and PV array electrical features. In addition, the inverter’s model is used to
continuously monitor inverter performance characteristics that may indicate the need for repair

or maintenance [20,21].

The Sandia Inverter Performance Model (SIPM) for grid-connected systems has been
assumed in the present thesis, because of its efficiencies characterized in the conversion process
from DC-power to AC-power using an empirical method. Moreover, the SIPM is characterized
by taking into account a quadratic function of input power and voltage, and coefficients that

can be used in the model [21].

The following equations define the model used to relate the inverter’s AC-power output to

both the DC-power and the DC-voltage:

Pac = {(Paco/(A—=B)) = C- (A= B)}+ (Pac = B) + C - (Pyc — B)? (2.2-21)
A= Pueo {1 +Cy - (Vae = Vaeo)} (2.2-22)

B = Py {1 + (2 (Vac = Vaco)} (2.2-23)

C=0Co {1 +GC-(Vac = Vaco)} (2.2-24)

where; Pac: AC-power output from inverter based on input power and voltage, (W). Pac: DC-
power input to inverter, assumed to be equal to the PV array maximum power, (W). Va: DC-
voltage input, assumed to be equal to the PV array maximum power voltage, (V). Paco:
Maximum AC-power “rating” for inverter at nominal operating conditions, assumed to be an
upper limit value, (W). Paco: DC-power level at which the AC-power rating is achieved at the
reference operating condition, (W). Vac: DC-voltage level at which the AC-power rating is
achieved at the reference operating conditions, (V). Ps,: DC-power required for starting the
inversion process, or self-consumption by inverter, strongly influences inverter efficiency at
low power levels, (W). Pn: AC-power consumed by inverter at night (night tare) to maintain
circuitry required to sense PV array voltage, (W). Co: parameter defining the curvature
(parabolic) of the relationship between AC-power and DC-power at the reference operating
conditions, default value of zero gives a linear relationship, (1/W). C;: empirical coefficient
allowing Puaco to vary linearly with dc-voltage input, default value is zero, (1/V). C2: empirical
coefficient allowing Pso to vary linearly with DC-voltage input, default value is zero, (1/V). Cs:
empirical coefficient allowing Co to vary linearly with DC-voltage input, default value is zero,

(1/V).
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2.3. Parameters extraction techniques

To adequately predict the real behaviour of the PV module/array, a good estimation of the
model parameters is crucial.

The parameter extraction techniques employed in this thesis are based on five different
optimization algorithms (LMA, GA, DE, PSO, and ABC), which can be applied to linear and
nonlinear systems. Moreover, the extraction of the parameters could be carried out by using
static or dynamic responses of the PV module/array.

The parameter extraction techniques evaluate the model parameters of the two PV
module/array models described before, using as inputs measured data of solar irradiance and
module temperature together with DC-output current and voltage.

For the five-parameter model of the PV module, the model parameters: Ipn, lo, n, Rs, and
Rsh, are evaluated by using Egs. (2.2-9) — (2.2-13). Regarding the SAPM, the same idea is
considered for the estimation of the empirical coefficients of the model parameters: Co, Ci, Co,
C3, n, oump and Pymp using Egs. (2.2-14) — (2.2-20).

The nonlinear regression method based on the Levenberg—Marquardt algorithm uses the
following quadratic objective function given by Eq. (2.3-1) [22]. Where, the objective function
for optimization using metaheuristic algorithms (GA, DE, PSO and ABC) is defined as the root
mean square error (RMSE) of all data points given by Eq. (2.3-2) [23,24], where the N represent

the number of measured data, Vi and /i represent the measured voltage and current of the data

point .
N
s@) =) Ui —I(Vi,0)]? (2.3-1)
2
1 N
s(0) = Nz i — [(Vi, 0)]2 (2.3-2)
i=1

where &= f (Ipn, o, n, Rs, Rs) for the five parameter model and &= f (Co, C1, C2, C3, n, ump,
LSvmp) for the SAPM.

The parameter extraction algorithms implemented in MATLAB/Simulink environment are
executed until function S(8) is minimized. Thus, the result of the parameter extraction
algorithms is a set of PV module model parameters that allow the best approach to the real daily

evolution of DC-output current and voltage of the PV arrays.
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2.3.1. Levenberg—Marquardt (LM) algorithm

The LM algorithm is an iterative technique that locates a local minimum of a multivariate
function that is expressed as the sum of squares of several non-linear, real-valued functions. It
has become a standard technique for nonlinear least-squares problems, widely adopted in
various disciplines for dealing with data-fitting applications. LM can be thought of as a
combination of “steepest descent” and “Gauss-Newton” methods [25,26]. When the current
solution is far from a local minimum, the algorithm behaves like a steepest descent method:
slow, but guaranteed to converge. When the current solution is close to a local minimum, it
becomes a Gauss-Newton method and exhibits fast convergence rate [27]. The automatic
switching between the two methods (steepest descent and Gauss-Newton) is ensured by the
control parameter 4 named damping factor. Therefore, the parameters €= f (Ipn, lo, n, Rs, Rsh)
(case of the one diode model) to be identified are updated at each iteration according to the

following expression:

Brsy = 0 S
k+1 = Uk — m v, (2.3-3)

where, ¢ is the error between the measured current and the calculated one using Eq. (2.2-9), J

AF(0)

5 ) contains the de derivatives of the function F(Iu, V,0)

is the Jacobian matrix (

according to each parameter of the vector #and, [ is the Identity matrix.

In the present thesis, the nonlinear regression method based on the LM algorithm has been

used directly from the provided functions in MATLAB environment.

2.3.2. Genetic algorithm (GA)
The GA algorithm was developed by John Holland in the 1970s for solving constrained

and unconstrained optimization problems inspired from the biological evolution [28]. In GA
each individual represents a solution, considering the one-diode model, each individual i is a
set of parameters (Ipni, loi, ni, Rsi and Rsni). Several researches applied GA to extract the

parameters of the PV model from measured [-V curves [29,30].

The GA starts with the initial population containing a set of individuals created randomly
in the research range. To create the new generation, the algorithm selects some individuals of
the current population as “Parents” to contribute part of their genes (the PV model parameters)

to create “Children”. Those children are the individuals of the new generation.
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The children are divided in three types: Elite, Crossover and Mutation. The Elite children
are the individuals of the present generation with the lowest cost function values. The Crossover
children are those created by combining the genes or vectors of two parents; therefore, each
child has information of the genes of both parents. Finally, the Mutation children are created
by modifying the genes of the parents randomly, in other words a Mutation child is created by

modifying one parent only.

In general, the GA continues creating new generations until a stop condition is fulfilled.
Some typical stopping conditions are: desired fitness function range, maximum number of

generations, time limit or the relative change in the fitness function.

The GA available in the Global Optimization toolbox of MATLAB has been used for
minimizing the objective function given by Eq. (2.3-2) [29].

2.3.3. Differential evolution (DE)
The DE algorithm was proposed by Rainer Storn and Kenneth Price in 1997 [31]. Similar

to other evolutionary algorithms, DE is a population based, derivative-free function optimizer.
An advantage of DE over GA is that DE treats possible solutions as real-number strings, and

thus encoding and decoding are not required.

The target vector x = [x1, x2, ..., xi] where i =1,2,..., NP represents a population of NP
random candidate solutions. The vector of the i-th particle, x; indicates a series of parameters to
be extracted, e.g. xi = [Ipn, lo, n, Rs, Rsi] for the one-diode model and xi = [Co, C1, C2, C3, n, aump,
LPvmp] for the SAPM. For a d dimension optimization problem, a random candidate solution is
given by:

low

X < x ;< xP (2.3-4)

where x/°" and x/” are the lower and the upper limits of the j-th vector component

respectively,i=1,2, ..., NPandj=1,2,...,d.

After the initialization DE enters a loop of evolutionary operations: mutation, crossover

and selection considering the maximum number of generations fmax, where ¢ = 1,2,...,tmax.

In the mutation step, for each x; at generation ¢, three vectors x0, X,/ and x,2 are chosen
randomly from the set {1, 2, ..., NP}\{i} to generate a donor vector by:

vitt = xly + F(xt, — xky) (2.3-5)
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where F is a differential weight, known as scaling parameter, that usually ranges in the interval

[0, 1].

The crossover operation is used to decide whether to exchange the value with donor vector.
By generating a random integer index J- € [1, d] and a randomly distributed number 4; € [0, 1],
the j-th dimension of v;, namely ui,, is updated according to:

1 _ vit', k;<CRori=], (2.3.6)
b xft., k;>CRandi#+ ], '

ij

u

where CR is a crossover probability in the interval [0, 1]. The crossover scheme formulated by

Eq. (2.3-6) used in the present work is called binomial strategy.

The selection operation, selects the best one from the parent vector x/, and the trial vector

#/*1 solution with the minimum objective value, using the following expression:

1 _ { uftt, ) < fh)

X (2.3-7)

! xf, otherwise

where f{x) is the fitness function to be minimized. Therefore, if a particular trial vector is found

to result in lower fitness value, it will replace the existing target vector; otherwise, the target

vector 1s retained.

2.3.4. Particle swarm optimization (PSO)

The PSO is a population based stochastic optimization technique developed by Kennedy
and Eberhart [32] and is inspired by the social behaviour of bird flocking or fish schooling.

The PSO searches a possible solution in a given space by adjusting the trajectories of
particles. The best position encountered of the particle i is designed by pbesti. In a swarm of

particles, there are N local best positions, and the best solution is denoted by gbest.

The velocities and positions of particles, as well as the algorithm parameters, inertia weight
w and learning parameters a, f, are firstly initialized. In an iteration ¢, the fitness of particles is
evaluated individually by the objective function. By attracted toward pbest; and gbest, the
particle moves according to the following expression:

t+1

xt = xb + vt (2.3-8)

where vi'*! is the velocity, expressed as:

vt = wvi + ae, (xf — gbest®) + Pe, (x{ — pbest]) (2.3-9)

23



Methodology

The random vectors ¢; and ¢ are in the range [0, 1]. « = 1.5, f# = 2. The w is the inertia
weight, used to balance global and local search abilities, it is considered constant and set equal

to 0.9.

Finally, lower and upper boundaries are set to ensure that particles are within the
predetermined range. The PSO will continue to search for better solutions until it meets the

stopping criterion.

2.3.5. Artificial bee colony algorithm (ABC)

The ABC algorithm is an optimization algorithm inspired by the natural foraging
behaviour of honey bees. As reported in literature, it was successfully applied in the parameter
extraction of solar cell models [23,24]. In the ABC, there are food sources representing the
solutions of the optimization problems and honey bees (classified into employed bees, onlooker
bees and scout bees) representing the operations to the solutions. The employed bees investigate
potential food sources and share information with onlooker bees. The food sources of higher
quality will have higher possibility to be selected by onlooker bees. If the quality of the
employed bees’ food sources is relatively low, they will change its role to scout bees to
randomly explore new potential food sources. Consequently, the exploitation is promoted by
employed and onlooker bees while the exploration is maintained by scout bees.

The ABC algorithm is an iterative process similar to other swarm-based approaches. The
implementation of the ABC algorithm in MATLAB is carried out by following the same steps
given in the previous works [23,24,33]. It starts with initializing a population of randomly
generated solution (food sources) as follow:

xi'j = l] + Tand(O,l) : (u] — l]) (23_10)

where xi; is a food source (target vector), the index i (i = 1,2,...,NP) corresponds to i-th food
source and j (j=1,2,...,d) is the j-th dimension of the search space. /; and u; are the lower and

upper bound in each dimension.
After the initialization, the following steps are executed until reaching a stopping criterion

-1.e: iteration limit, tolerance value,...-:

a. Send the employed bees
The number of employed bees that are used to generate new solutions is the same as the

number of food sources. The entire number of population is divided by two (NP/2), one half
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corresponds to the employed bees and the second half corresponds to the onlooker bees [34,35].
Then, to generate the new source food using the employed bee operator, in a randomly way is
selected a k food source in the j dimension. If a parameter of an employed bee food source Bi,;

exceeds the boundaries, it should be adjusted in order to fit the appropriate range.

Bij=x1;+ @ ;(xi; — %), VizEk (2.3-11)
where, @;; is a random value selected between [-1, 1], and k € rand {1, NP}.

After this process, it is calculated the fitness value associated with each solution. The
fitness value is used to evaluate the quality of a food source. For minimization purposes it can
be obtained using the following expression:

1 .
fit, =41+, fJi=z0

1+ abs([l-) lf]L <0

(2.3-12)

where J; is the objective function value of the candidate solution x:. In our context, J; represents
the RMSE (Eq. (2.3-2)) value associated to a candidate model x;. The next process consists in
applying a greedy selection between the values of the employed bee food sources contained in
Bi and the initial food sources vector x;. Meaning that if the nectar amount (fitness value) of B;

is better, then the solution x; is replaced by B; otherwise, x; is preserved.

b. Select the food sources using the onlooker bees
The food sources are modified several times depending on the fitness value Eq. (2.3-12).
For a food source selection, it is necessary to obtain a probability factor that is computed based
on the fitness.

fit;

Prob; = -
?’:Pl flti

(2.3-13)

where, fit; corresponds to the fitness value of the i-th food source and is related to the objective
function of the food source i. If the fitness of a food source increases, then the probability of
being selected by an onlooker is bigger. When a food source is selected, a new value is obtained
using Eq. (2.2-9), its fitness is computed and the greedy process is applied to modify (or not)

its position.

c¢. Determinate the scout bees
The final step is the scout bee process. Here the bees are applied if a food source i cannot

be improved through a predetermined trial “limit” number, then the food source is considered
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to be abandoned and instead to be modified by and onlooker bee, is modified by a scout bee
using Eq. (2.3-10). The predefined “limit” is a counter assigned to each food source and is

incremented when the fitness is not improved [23].

2.4. PV system simulation and monitoring

This subsection discusses the solution and the simulation of the I-V characteristic of the
PV cell given by Eq. (2.2-1). Moreover, the effects of solar irradiance and cell temperature, as
well as the variation of the five parameters of the PV cell model on the I-V characteristic are

analysed. Finally, the monitoring method used in the present work based on OPC is described.

2.4.1. Solution and simulation of the PV module characteristic
The Eq. (2.2-1) given by the one diode (five-parameter) PV model is implicit and
nonlinear. The Newton-Raphson algorithm is the most suitable method for solving this kind of

iterative problems [22,36].

For a given value of V, the PV module output current, /, is calculated individually
according to the voltage input point so that the following equation is satisfied:

F(V,I,) =0 (2.4-1)

The main idea of the Newton-Raphson algorithm is to find the PV modules current /; which
is the root of the Eq. (2.2-1) for a given voltage V. Starting from a given initial value /o, the
Newton-Raphson algorithm evaluates the following iterations:

LIS
H1 T 9F(V, ) (2.4-2)
ol

where /i+1 is the actual current values, /; is the previous value of the calculated current.
The iterative process continues till reaching a predefined absolute value € between two

consecutive iterations:

e — Ll < e (2.4-3)

The graphical representation of the solution of the implicit nonlinear equation given by Eq.
(2.2-1), for constant values of solar irradiance (G) and cell temperature (7¢) is shown in Fig.

24.1.
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Figure 2.4. 1 I-V characteristic of a PV module.

Four important parameters represented in the I-V characteristic namely are the short-circuit
current (/sc), open-circuit voltage (Voc) and the current and voltage maximum power points (Zmpp

and Vimpp) respectively. These points are shown in Fig. 2.4.1 and are given in the manufacturer's

PV module data sheet.

The maximum efficiency of PV cell/module is the ratio between the maximum power and
the incident light power, given by:
— Brpp _ Vipp * Tmpyp
nmax Pl A ¢

(2.4-4)

where; @ is the incident irradiance and A4 is the cell/module area.

The Fill factor gives an indication of the quality of a cell's semiconductor junction and
measures of how well a solar cell is able to collect the carriers generated by light. It is

represented by the ratio of the maximum power that can be delivered to the load and the product

of Isc and V. as follow:

|4 -
FF = PP MPP (2.4-5)
Ise " Voc

The performance ratio, PR, is used as an indicator of outdoor modules performance and is

defined as a ratio of the final yield (Yy) and the reference yield (Y7):

PR= 1L (2.4-6)
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The final yield (Y) is defined as the annual, monthly or daily net AC-energy output of the
system Eu (Wh) divided by the installed peak power P* (W) of the PV array at STC. And it is

calculated using Eq. (2.4-7).

Eac

=

(2.4-7)

The reference yield is the total in-plane solar insolation H; (kWh/m?) divided by the array
reference irradiance G* (W/m?), given by Eq. (2.4-8).
H,

Y= (2.4-8)

Another yield known as array yield (Y1) is usually used in the estimation of the power
losses related to PV array. It is defined as the annual, monthly or daily energy output of the PV
array Eqc (Wh) divided by the installed peak power P* (W) of the PV array at STC, and it is
calculated by Eq. (2.4-9).

_ Eac

= (2.4-9)

Y,

2.4.3. Impacts of temperature and irradiance on the I-V characteristic

PV modules rarely operate under standard test conditions. The electrical output and the
shape of the I-V curves of PV modules depend upon temperature and irradiance and some other
external effect like shadows. Thus PV modules are usually operating under variable conditions

of temperature and irradiance, so nominal outputs are rarely reached.

The changes in solar irradiance affect the module’s current most of all since the current is
directly dependent upon the irradiance. When irradiance drops by half, the output power of the
PV module is also reduced by half. By contrast, the MPP voltage value stays relatively constant

with changing irradiance as it is shown in Fig. 2.4.2-(a).

On the other hand, module’s voltage is affected mostly by module temperature, as it is
illustrated in Fig. 2.4.2-(b). The change in voltage of the module determines the system voltage
and therefore the design of the entire PV system.
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Figure 2.4. 2 Effect of varying temperature and irradiance on PV module characteristics.

2.4.4. Impacts of the PV model’s parameters on the I-V characteristic

The five parameters of the one-diode model of a PV cell (n, lo, n, Rs, and Rsx) have a
significant influence on the I-V characteristic. Each parameter influences a specific region of
the I-V curve. Hereafter, the influence of the variation of each parameter (supposing the other

parameters remaining constant) is shown graphically.

— Variation of the photogenerated current, I,
The I,» parameter depends on the solar irradiance and cell temperature (Eq. (2.2-3)). From

Fig. 2.4.3, it can be seen that the variation of the Iy affects the shape of the I-V curve at the

short-circuit current.

N

Current (A)
98]

2.
1t ——Iph
— Iph+
— Iph-
0 T L L L
0 5 10 15 20

Voltage (V)

Figure 2.4. 3 Effects of the photogenerated current, Ipn, on the I-V curve.
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— Variation of the reverse saturation current, 1,
The expression of the reverse saturation current given by Eq. (2.2-11) shows that the I,
depends on temperature, and the bandgap of the semiconductor. In practice, the bandgap energy
of the semiconductors used for manufacturing PV cells varies from 1 to 1.7 eV [37]. The

variation of the magnitude of 1, strongly affects the [-V curve at the open-circuit voltage, as it

is shown in Fig. 2.4.4.
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Figure 2.4. 4 Effects of the reverse saturation current, I,, on the I-V curve.

— Variation of the diode ideality factor, n
From the variation of the values of the ideality factor, #, illustrated in Fig. 2.4.5, it can be
seen that the regions of open-circuit voltage and short-circuit current are not affected. However,

the variation of n affects only the maximum power point (MPP) coordinates (Zmpp and Vinpp).

I

Current (A)
W

2.
I n=1
1 n=1.4
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Voltage (V)

Figure 2.4. 5 Effects of the diode ideality factor, n, on the I-V curve.
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— Variation of the series resistance, R;

Figure 2.4.6 shows that the increase of the series resistance value reduces significantly the

voltage at the MPP, as well as the fill factor. However excessively high values of Rs may also

reduce the short-circuit current.

M~

Current (A)
W

2 L
I Rs
1 Rs*2
Rs*4
0 n 1 1 1
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Figure 2.4. 6 Effects of the series resistance, R, on the I-V curve.

— Variation of the shunt resistance, R
Unlike the series resistance, the ideal value of the shunt resistance is supposed to be infinite
and the decrease of its value affects mainly the coordinates of the MPP, especially the current

at MPP. The fill factor is also influenced by the decrease of the shunt resistance. The effects of

the Rs» on the I-V characteristic are shown below in Fig. 2.4.7.
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Figure 2.4. 7 Effects of the shunt resistance, Rsn, on the I-V curve.
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Reduced values of shunt resistance cause power losses in solar cells by providing an
alternate path for the photogenerated current. As a consequence, the current flowing through

the solar cell junction as well as the solar cell voltage are reduced [36].

2.4.5. Remote monitoring of PV systems based on OPC

The OLE for Process Control (OPC) is a standard and consistent communication system
for exchanging information. It was originally based on OLE (object Linking and Embedding)

for process control [38,39], and now is available on other operation systems.

OPC allows defining the rules of handshaking between different devices using the client-
server paradigm; this system has been used in industry to connect supervisory systems and data
acquisition and man-machine interfaces with the physical control systems [40]. Moreover, it
allows the development of components for interconnecting disperse systems providing
interoperability efficiently. This technology enables software components developed by experts

in one sector to be used by applications in any other sector.

The design of OPC interfaces supports distributed architectures. The Data access OPC and
Historical Data Access specifications are compatible with client-server and publisher-
subscriber communication models. The use of the Distributed Component Object Model
(DCOM) from Microsoft makes possible the access to remote OPC servers. DCOM extends
Microsoft’s object-oriented Component Object Model (COM) to promote interoperation of

software objects in a distributed-heterogeneous environment.

The OPC standard model of the remote monitoring of PV systems used in the present thesis
is the same developed in [41]. The following parameters were monitored: Current, voltage and
power of both sides DC and AC, frequency, irradiance and module temperature. Where, for
data collection it was used OPC Historical Data Access (OPC HDA) specifications which
provide access to information already stored in inverters and allow retrieving this information
in a homogeneous and uniform way. A VPN and IP were used to connect with the facilities.

The data collection interval was 5 min. Data are directly retrieved from the inverter.

Several elements are used in the monitoring process: The client software using OPC HDA
technology for downloading data from the devices, the device and the OPC HDA server that
knows the protocol and the procedure to download data from the device. Data were stored in a

PostgreSQL DBMS compatible with the SQL92 standard [42].
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Finally, for the evaluation of the performance of the PV systems, as well as the detection
of anomalies, the fault detection procedure described in the following section was implemented

by means of remote monitoring and control based on OPC.

2.5. Fault detection procedure

The automatic supervision and fault detection procedure employed in the present thesis

relies on the two indicators of current, NRc, and voltage, NRv, defined in [43] as follows:

I

NRc = = (2.5-1)
ISC
v,

NRv = — (2.5-2)
Voc

where Vi and I are the voltage and current of the maximum power point (MPP) at the DC-
output of the PV array, /sc and Voc are the short-circuit current and the open-circuit voltage of

the PV generator respectively.

The inverter is able to calculate both NRc and NRv indicators through MPP coordinates
available at the inverter input, and the values of sc and Vo, obtained for actual conditions of
irradiance and temperature by the inverter itself internally in real time. For this purpose, the
inverter must have MPP tracking and monitoring capabilities, which is the case of most
inverters used in grid-connected PV systems. Furthermore, the inverter requires a minimum
input voltage, start-up voltage to start working. So, a minimum level of irradiance on the PV
array is necessary to enable the proper operation of the inverter. By taking into account this
fact, a minimum level of G =200 W/m? is considered for starting the fault detection procedure

in the PV system and calculate the corresponding current and voltage indicators.

Two more parameters can be also calculated in real time: /mo and Vo, the current and
voltage at the maximum power point of the output of the PV array in absence of faults [43].
Then, the ratios: NRco and NRvo, representing the expected values of NRc and NRv, in normal

(fault-free) operation of the PV system are given by:

I

NRco = - (2.5-3)
ISC
v,

NRvo = =2 (2.5-4)
Voc
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For an arbitrary value of the irradiance and temperature, the short-circuit current of a PV

module, Lscm, 1s given by Eq. (2.5-5):

I dl
Isem = Sgrfr G+ ( ds;m) (T, = T¢) (2.5-5)
where Isemr is the short-circuit current of the PV module at STC (G = 1000 W/m? and T¢" = 25
°C), G is the actual irradiance on the PV module and 7 is the real operating cell temperature.

The open-circuit voltage of the PV module, Vocm, can be written as [9]:

av, I
Voem = Voemnr + ( ;;m) (Tc - Tc*) + VIn (1 scm) (2.5-6)
scmr

where Voemr 1s the open-circuit voltage of the PV module at STC and V% is the thermal voltage.
The values of Iiem and Voem can be easily estimated for any condition of temperature and
irradiance, by using Egs. (2.5-5) and (2.5-6) taking into account the PV module parameters
given by manufacturers at STC. Considering a PV array composed of Npg parallel strings of PV
modules, including a number of Nsg PV modules in series per string, Eqgs. (2.5-5) and (2.5-6)

can be scaled to calculate the /sc and Voc of the entire PV array as follows:

I dl
lse = Npg < oG o (=) 7. - T:)) (2.5-7)
av, I
Vo = Nog (Voemr + (2 ) (T = T2 + Ven (72 (2.5-8)

scmr

Then the ratios NRc and NRv defined by Eqgs. (2.5-1) and (2.5-2) could be estimated from
Egs. (2.5-7) and (2.5-8) once the coordinates of the MPP of the PV array are known.

The values of Imo and Vo for a PV array of arbitrary series-parallel (Nsg X Npg) connection
of PV modules can be calculated for any condition of G and 7t by using the following equations

that include parameters of the PV modules forming the PV array [9]:

I dl
o =0 (2204 () 00 ) @59
I dl
Lym = ’Z’fr G+ ( ;;’“) (T. = T)) (2.5-10)
Vo = Nyg [ NV, 1 fsom = b (3257
mo = Ngg | NsV¢ 1IN 1+1— eNsVt — 1| = LymRsm (2.5-11)
scm
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where; n is the diode ideality factor, Jumr is the PV module current at the MPP, N; is the number
of solar cells connected in series forming the PV module, Rs» is the series resistance of the PV
module, Zsem and Vocem are the short-circuit current and open-circuit voltage of the PV module
given by Egs. (2.5-5) and (2.5-6), and I is the maximum current of the PV module given by
Eq. (2.5-10).

In normal (fault-free) operation of the PV system, the values of the indicators NRc and
NRv should be very similar to the values of NRco and NRvo given by Egs. (2.5-3) and (2.5-4)

and maintain values over specific thresholds.

The definition of thresholds for current, TNR.s, and voltage, TNRvsm, allows detecting
short-circuits and open-circuits in the PV array as well as partial shading and inverter
disconnection. These thresholds were defined by the following equations [43]:

TNR¢ss = 1.02 @ NRco (2.5-12)
TNRypm = 1.02 B NRvO (2.5-13)

where « and S given by Egs. (2.5-14) and (2.5-15) are the relationship between the ratios of
current in case of one faulty string and fault-free operation, and the ratio between the voltage
ratios in case of one bypassed PV module and fault-free operation respectively [43]. The
constant included in the Egs. (2.5-12) and (2.5-13) was fixed by means of statistical procedures

in order to avoid false fault detections as an offset of a 2% respect the NRco and NRvo values.

1
—1-— 2.5-14
a Np ( )
P (2.5-15)
B= Ns '

As it can be seen from Egs. (2.5-14) and (2.5-15) both parameters « and £ depend only on
the array configuration: Number of PV modules connected in series by string, Nsg, and number

of strings connected in parallel in the PV array, Npg.

When one of the values of the indicators, NRc or NRv, is below the threshold, a fault is
detected in the PV system. Moreover, an internal data logger interface of the inverter can be
used for the transmission of the measured data and the alarm event to a server or a local network

through a standard RS485, an Ethernet connection or optionally with a GSM Modem.

Table 2.5.1 shows the most probable faults present in the PV system based on the values
of the ratios NRc and NRv.
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Table 2.5. 1 Possible faults based on the values of the ratios NRc and NRv.

Possible Faults NRe NRv

No Fault OK OK

String Fault Below Threshold OK

Short-Circuited Modules OK Below Threshold
Short-Circuited Modules & Below Threshold Below Threshold

String Fault.

Partial shadow, Inverter Below threshold for (short  Below threshold for (short
disconnection duration) duration)

In case of permanent faults in the PV array, short-circuits or open-circuits, the
corresponding current or voltage indicators always remains below its threshold depending on

the number of faulty strings and bypassed PV modules of the PV generator.

The presence of partial shadows on the PV array can also be detected by means of current
and voltage indicators when they present values below their respective thresholds for short
periods of time. The output current of the PV generator is reduced by the number of PV modules
affected by shading. The most shaded PV module in a chain limits the total current in that chain.

Moreover, there is also a reduction in the output voltage of the PV array due to shadow.

Both effects, current and voltage reduction, can be observed at the same time or separately
depending on the shadow profile and the configuration of the PV array. Furthermore, in most
cases these effects disappear quickly due to the dynamic behaviour of the irradiance profile on

the PV field unless a PV module has been completely damaged resulting in a permanent fault.

The overall decrease in the output voltage depends on the number of bypass diodes that
are activated in the PV modules that form the PV generator [44]. The following Eqgs. (2.5-17)
and (2.5-19) allow identifying the number of bypassed modules and the equivalent number of

faulty strings in the PV array respectively in the presence of faults.

The total percentage of reduction in output voltage, AV, can be expressed as follows:

Vino — Vm) _ (1 3 NRv)
Vino NRvo

AV = ( (2.5-16)

Considering a number of Nsg PV modules connected in series by string in the array, the

number of PV modules bypassed, BPmod, are given by:
BPmod = AV Ny (2.5-17)

Similarly, the normalized reduction of output current, A/, varies according to the following

expression:

36



Methodology

- NRc
Al = (M> - (1 _ ) 2518
Lo NRco ( )

If the PV array is formed by Npg strings of PV modules connected in parallel, the output
current losses can be translated to number of equivalent strings in open-circuit. The number of
equivalent faulty strings, Efs, is given by:

Efs = Al Ny, (2.5-19)

The proportion of DC-power losses due to the presence of faults, Ploss, can also be
evaluated from Egs. (2.5-16) and (2.5-18) as follows:

NRc NRv)

(2.5-20)
NRco NRvo

Ploss = (1 —

The accuracy of the method depends on the errors in the estimation of main parameters
involved in the equations, mainly: Isc, Voc, Imo, Vo, Im and Vim. The RMSE in (%) between real
measured data and values obtained from equations are in the range of 2—4% for voltages and

currents, depending on the employed parameters extraction procedure.

It is important to apply this method by using inverters with smart maximum power point
tracking (MPPT) techniques, because the accuracy on the evaluation of Vi and I» will depend
of the inverter capability to track the MPP. If the inverter is trapped at a local maximum the
values of NRc and NRv will be lower than the values corresponding to the real MPP, while the
values of NRco, NRvo, TNR.s and TNRysm are independent of the real value of the MPP. So, in
that situation the algorithm will detect power losses due to the differences between the real MPP
and the local MPP tracked by the inverter and then the presence of faults will be indicated.
However, the method will not be able to tell whether the failure is due to incorrect tracking of

the MPP (inverter) or shade in the photovoltaic field.

2.6. Degradation study of TFPV modules

The characterisation of degradation of TFPV modules is one of the aims of the present
thesis. Two different techniques based on the analysis of the evolution of the DC-output power
of the PV module were used. The combination of these two techniques allows a good approach
to understand the degradation effects and helps to identify better the degradation rates,

stabilization periods and seasonal variations.
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2.6.1. Effective peak power technique

The effective peak power technique allows the determination of the degradation rate (Rp)
per year of the PV module under study. The Rp value is obtained from the linear trend line of

the evolution of the effective peak power, Py, along the monitoring campaign.

The effective peak power of a PV module, Py, at STC is given by the following equation
[45,46]:
G*Ppe

S Ty - To) (261

where; Ppc, G and Tc are the DC-output power of the PV module, the irradiance and cell
temperature respectively, y is the power temperature coefficient of the PV modules and G* and

T." are the irradiance and temperature at STC, respectively.

The power coefficient temperature y is normally stated in the PV manufacturer’s datasheet.

Nevertheless, it can be calculated as follows [47]:

1 0Pnax
Prnax OT

y = (2.6-2)

where; Pmax 1s the maximum power of PV module at STC.

Outdoor monitoring is subject to continuously changing operating conditions as
irradiation, temperature and spectrum. The evaluation of Py " requires a preliminary filtering of
irradiance values (G) in order to avoid the influence of operational anomalies, such as shade on
the PV array, inverter saturation, inverter—off, low irradiances, etc [45,46]. Thus, the monitored
data corresponding to irradiance values G < 700 W/m? were disregarded before the calculation

of Pu" values.

The degradation rate, Rp, can be analysed by a linear least square fitting method. This
method is applied to the monthly effective peak power of the PV module, Pu”, calculated by
using Eq. (2.6-3) and monitored data. Using the trend line, the degradation per year can be

calculated by linear regression (LR) equation as follows [48,49]:

Equation of the trend line:

y=mx+c (2.6-3)

where; m is the slope of line and c is the y intercept, thus the degradation per year: Rp (%) can

be calculated as follows [48]:
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12m
Ry = 1007 (2.6-4)

The analysis of the stabilization period of TFPV modules is based on a second monitoring
data filtering process following the procedure used in previous works [50]. The aim of such
data filtering is to keep the external conditions (module temperature, 7¢, and irradiance, G) as
steady as possible, while observing the changes of Pp over the time. Therefore, one point for
each month is extracted from the monitored data, which falls in a very narrow range of

irradiance and temperature.

The restricted ranges of the tilted irradiance and PV module temperature are chosen
according to the PV module technology and the climate of the site where the PV module is
installed. For example, ranges of: 900 W/m? < G < 905 W/m? and 48.6 °C < T < 54 °C, could

be selected.

Finally, the values of Ppc corresponding to the points obtained with this filtering process

are then plotted in a graph, from which the stabilization period can be observed.

2.6.2. Power-Irradiance technique

The power-irradiance (P-G) technique is the second method used in the present thesis to
assess the stabilization period of the TFPV modules. This method was defined in [50], and it is
based on the observation of the variation of the real DC-output power of the PV module as a
function of the solar irradiance in between two boundary indicators; predicted initial and

stabilized data values of PV array DC-output power.

The two boundaries, predicted initial, Pdcii, and stabilized, Pdcsaps, depend on the
measured plane-of-array irradiance (G), module temperature (7¢), and are calculated by using

the following equations:

Pdcinit = ng ) Npg ' Pmim-t n- Geff ) (1 + kv - AT) ' (1 — ki - AT) (26-5)

Pdcgap = Neg * Nyg * Pigeap -1 * Gogp - (1 + kv - AT) - (1 — ki - AT) (2.6-6)
G

Gefr = I (2.6-7)

AT =T, — T} (2.6-8)

where; Nsg and Nyg are the number of PV modules connected in series and parallel respectively,

Pminir 1s the initial measured peak power of PV module, kv and ki are the voltage and current
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temperature coefficients respectively provided in the manufacturer’s data sheet (°C™'), Pdcsab
is the predicted array DC-power referred to stabilized, Pmiswab s the stabilized peak power of the
PV module found in the manufacturer’s data sheet, # is the efficiency referred to all general
system losses which changes between 0.89 in summer and 0.86 in winter months, G* and 7."

are the reference irradiance and cell temperature respectively at STC.

This method also requires a preliminary data filtering process in order to avoid problems
caused by low values of irradiance. As for the evaluation of the R, described in section before,

all data points corresponding to irradiance values G < 700 W/m? are disregarded.

A Linear Correlation Approach (LCA) was used to obtain monthly linear regression
equations from the actual PV modules DC-outputs, Ppc, as a function of the irradiance, G, by
means of the following equation:

Ppe = Agr.G +C (2.6-9)

where; Pdc is the array DC-output power, A 1s the gradient, G is the plan-of-array irradiance

and C is the ordinate value of Pdc at G = 0.

Finally, the monthly gradient values, Acr, of each empirical equation can be plotted to

determine the stabilization period of the TFPV module under study [50].
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30 June 2016 for main components of the PV system, especially for the PV module. The
Accepted 3 July 2016 present paper compares two PV array models, the five-parameter model

(5PM) and the Sandia Array Performance Model (SAPM). Five different
algorithms are used for estimating the unknown parameters of both PV
models in order to see how they affect the accuracy of simulations in
reproducing the outdoor behaviour of three PVGCS. The arrays of the

Keywords: PVGCS are of three different PV module technologies: Crystalline silicon
PV modelling, (c-Si), amorphous silicon (a-Si:H) and micromorph silicon (a-Si:H/pc-
Simulation, Si:H).

Parameter extraction, The accuracy of PV module models based on the five algorithms is
Metaheuristic algorithms. evaluated by means of the Route Mean Square Error (RMSE) and the

Normalized Mean Absolute Error (NMAE), calculated for different
weather conditions (clear sky, semi-cloudy and cloudy days). For both
models considered in this study, the best accuracy is obtained from
simulations using the estimated values of unknown parameters delivered
by the ABC algorithm. Where, the maximum error values of RMSE and
NMAE stay below 6.61% and 2.66% respectively.
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3.1.1. Introduction

The photovoltaic (PV) market has grown rapidly in recent years worldwide, especially in
developed countries, where this growth has been exponential. One of the main reasons for the
high growth of the PV industry is the reduction of the cost of PV generation as well as the
improvement of the quality and performance of the electronics associated with these generation
systems. The monitoring and regular performance supervision on the functioning of grid-
connected PV systems is basic to ensure an optimal energy harvesting and reliable power
production at competitive costs. Detecting faults in PV systems can minimize generation losses
by reducing the time in which the system is working below its point of maximum power
generation. In this context, the development of accurate automatic fault detection procedures is
crucial [1-3]. Main faults in PV systems are caused by short-circuits or open-circuits in PV

modules, inverter disconnections and the presence of shadows on the PV array plane [4-6].

On the other hand, the integration of grid-connected PV systems also requires the
capability of managing the uncertainty related to the fluctuating energy output inherent to these
generation plants. For this purpose, it is very important to develop accurate forecasting models
in order to achieve an easy integration of PV generation plants into traditional power

distribution systems [7,8].

Simulation plays a crucial role in both outdoor behaviour forecasting and automatic fault
detection of grid-connected PV systems. The precision of simulation results depends on the
models used for the main components of the PV system, especially the PV module models
[9,10]. Moreover, the accuracy of the PV module models is strongly affected by the way of
extracting their unknown parameters. Several research works discussed the topic of PV model
parameters estimation, by applying different methods based on analytical [11], numerical

[12,13] and bio-inspired optimization solution [14-20].

Previous works investigated the accuracy of PV module models focusing on the I-V curve
of the PV module [21-24] or on the [-V characteristic of a PV array [25]. The objective of this
study is to compare two PV array models to analyse the simulation of grid-connected PV
systems in real conditions of work. The accuracy of the simulations in reproducing the actual
behaviour of the PV system is evaluated by means of the results obtained from different
parameter extraction techniques based on five algorithms: Levenberg—Marquardt algorithm
(LMA), genetic algorithm (GA), particle swarm optimization (PSO), differential evolution
(DE) and artificial bee colony (ABC) algorithm.
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The two PV array models included in this study are the five-parameter model (5PM)
[26,27] and the Sandia Array Performance Model (SAPM) developed by [28]. Three real grid-
connected PV systems are included in the study to validate the accuracy of the models. Each
one of the PV systems is formed by PV modules of different technologies: Crystalline silicon
(c-Si), amorphous silicon (a-Si:H) and micromorph silicon (a-Si:H/pc-Si:H) in order to outline

differences in the prediction due to solar cell type.

The remainder of the paper is organized as follows: In section 2, the PV systems included
in the study are described. The PV array models and the parameters extraction techniques used
in this study are summarized in sections 3 and 4 respectively. Results obtained are shown in

section 5. Finally, conclusions are detailed in section 6.

3.1.2. Description of the PV systems

Three grid connected PV systems formed by PV modules of different technologies were

used in this study.

The first PV system is located in San Sebastian (Spain). The PV array is formed by 30 c-
Si PV modules with a peak power of 4.8 kWp connected to a single phase inverter.

The other two PV systems are sited in Jaén (Spain). Each PV array is connected to single
phase inverter with AC nominal powers of 1.2kW. One of the PV arrays is formed of 15 a-Si:H
PV modules, rated 60-W peach, and the second PV array consists of 8 micromorph PV modules,
rated 110-Wp each. Main characteristics of the PV systems and PV modules forming the arrays
are given in Table 3.1.1 and Table 3.1.2 respectively.

The following parameters were monitored in the three PV arrays: Current, voltage, power
(DC and AC), cosine (), frequency, irradiance and module temperature with a sampling rate

of 5 min.

In the PV system located in San Sebastian, the irradiance was measured by using a
calibrated solar cell installed in the plane of the modules. The module temperature was
measured using a Pt100 sensor fitted to the back of the module, in the middle of a cell. The

internal data acquisition card of the inverter recorded both parameters.

The monitoring system included in the PV arrays located in Jaén consists of three SMA
Sunny SensorBox devices, installed in the same plane as the PV generators, capable to measure

solar radiation, module and ambient temperatures together with wind speed. Two Pt100 RTD
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were pasted to the rear surface of the modules under test to measure the cell temperature in each
PV array. An anemometer and a temperature probe were also available. All sensors were
supplied by SMA and connected to three Sunny SensorBox devices. An additional irradiance
sensor, aKipp & Zonen CMP11pyranometer, was also installed and connected to one of the
latter devices. The three of them were serially connected to the inverters via a RS-485 bus and

then to a Sunny Webbox, from which environmental and operation could be retrieved.

Table 3.1. 1 PV systems description.

Main Parameters PV system 1 PV system2 PV system 3
PV Module c-Si a-Si:H/pc-Si:H a-Si:H
Location San Sebastian (Spain) Jaén (Spain)
Latitude: 43°17° 9.8" N Latitude: 37°47' 14.35" N
Longitude: 1°59'55.4" W  Longitude: 3°46'39.73 " W
Altitude: 41 m. Altitude: 511 m
Nominal power 4.8 kWp 880 Wp 900 Wp
Modules per inverter 30 8 15
Modules in series (Nsg) 15 4 3
Strings in parallel (Npg) 2 2 5
Tilt - Orientation 20° - 9° East 30°-0° South  35° 0° South
Inverter Ingecon SUN 5 Sunny Boy SB1200
Single-phase inverter Single-phase inverter
SkW 1.2 kW

Table 3.1. 2 Main parameters of PV modules.

PV module Parameters PV system1 PV system2 PV system3
Isc (A) 9.46 2.5 1.19
Voc (V) 22.2 71 92
Current at Maximum Power Point: Impp (A) 8.65 2.04 0.9
Voltage at Maximum Power Point: Vmpp (V) 18.5 54 67
Temperature Coefficient of Voc By, (V/°C) - 0.084 -0.248 -0.280
Temperature Coefficient of Isc ay. (A/°C) 4.60 1073 1.4010°3 0.89 1073
3.1.3. PV array models

As it has been previously mentioned, the two PV array models included in this study are

the 5SPM [26,27,29] and the SAPM developed by [28].

The 5PM, also called one diode model, is one of the most used in simulation of PV modules
and arrays. Moreover, root mean square errors (RMSE) of 4.26% [3], 4.39% [30] and 5.12%
[31] were reported in the estimation of the energy produced by grid-connected PV systems in
simulations of dynamic behaviour of c-Si PV generators by using this model. On the other hand,
simulations of a-Si PV arrays by using the SAPM model have obtained errors below 4.1% on
sunny days [32]. In our approach, the model parameters are calculated by means of parameter
extraction methods having as main input data daily actual profiles of module temperature,

irradiance on the PV array plane and output voltage and current of the PV array.
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3.1.3.1. Five-parameter model

The 5PM of a solar cell includes a parallel combination of a photogenerated controlled
current source /i, a diode, described by the well-known single-exponential Shockley equation

[33], a shunt resistance Ry and a series resistance Ry modelling the power losses.

The I-V characteristic of a solar cell is given by an implicit and nonlinear equation as

follows:

VRl V4R,
1=1ph—10<e( nvt)—1)—( - S) (.1-1)
sh

where I, and n are the reverse saturation current and ideality factor of the diode respectively

and V7 is the thermal voltage.

Eq. (3.1-1) can also be written as follows,

I:Iph_ld_lsh (3]-2)
where Iz and I, are the currents across the diode and shunt resistance respectively.

The photogenerated current can be evaluated for any arbitrary value of irradiance, G, and

cell temperature, 7¢, by using the following equation:

G
Iph = alsc + k(T — T) (3.1-3)

where G* and T * are respectively the irradiance and cell temperature at standard test conditions
(STC): 1000 W/m? (AM1.5) and 25°C, ki (A/°C) is the temperature coefficient of the current

and /¢ (A) 1s the solar cell short-circuit current at STC.

Some PV modules are formed by parallel strings of solar cells connected in series.
However, most PV modules include one single string of solar cells. Therefore, the model of the
solar cell can be scaled up to the model of the PV module using the following equations (3. 7-

4) - (3.1-8):

Iy = Npl (3.1-4)
Isem = Nplse (3.1-5)
Vu = NV (3.1-6)
Voem = NsVoc (3.1-7)
Ry = x—;RS (3.1-8)
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where subscript M stands for ‘Module’, Ns is the number of solar cells connected in series and

Np is the number of parallel branches of solar cells forming the module.

Then, the output current of the PV module, /i, is obtained rewriting Eq. (3./-2) as follows:
I = Np(Ipn = lam = Isnm) (3.1-9)

The diode current, laum, included in Eq (3.7-9) is given by:

VM"'IMRSM)
-1 (3.1-10)

Iam = Iom Ie( nNsVe

where Va (V) and Im (A), are the output voltage and current of the PV module respectively.

The saturation current of the diode Zoam (A) depends strongly on temperature and it is given
by:

Ego E,
go_Eg
Gty

Loy = —saue e % (TC) (3.1-11)
oM — Voc T -
N (e( 7 )— 1) fe

n NgVto

where Iser and Voeu are the short-circuit current and the open-circuit voltage of the PV module
respectively, Vi is the thermal voltage at STC, Eg the energy bandgap of the semiconductor and
Ego 1s the energy bandgap at T=0 K.

The value of the energy bandgap of the semiconductor at any cell temperature 7¢ is given
by:

agap TZ
E =E, ——272°¢_ 3.1-12
g 79 Bgap +T, ( )

where agqp and feap are fitting parameters characteristic of the semiconductor.

Finally, the current L, also included in Eq. (3.1-9) is given by the following equation:
Vu + IyRsy

Ji = -

The same procedure can be applied to scale up the model of the PV module to the model
of a PV array by taking into account the number of PV modules connected in series by string,
Nsg, and the number of parallel strings in the PV array, Npg [27].

3.1.3.2. SAPM Model

The SAPM model is an empirical model defined by the following equations [28]. The PV

array power at the maximum power point (MPP), Pmp (W), is evaluated as follows:
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Pmpg = Impg X Vmpg (3.1-14)
where, Impg (A) and Vmpg (V) are the coordinates of the MPP of the PV array.

The model uses the normalized irradiance, Ee, defined as follows,

G

_u 3.1-15
o ( )

Ee

Then, the current and voltage of the MPP of the PV array can be calculated by using the

following equations:

Impg = Ny, [Impo(COEe + C,Ee?) (1 + apmp (T — TC*))] (3.1-16)
Vmpg = Ngy[Vmpo + C,NsS(T.)In(Ee) + CsNs(8(T,)In(Ee))?
(3.1-17)
+ .BVmpEe(Tc - Tc*)]
8(T,) = nk(T, + 273.15)/q (3.1-18)

where, Impo (A) and Vmpo (V) are the PV module current and voltage of the MPP at STC, Co
and C; are empirically determined coefficients (dimensionless) which relate /mp to the effective
irradiance, Co+Ci=1, amp (°C') is the normalized temperature coefficient for Imp, C:
(dimensionless ) and C3 (V') are empirical coefficients which relate Vmp to the effective
irradiance, 6(7T¢) is the thermal voltage per cell at temperature 7¢, ¢ is the elementary charge,
1.60218 107" (coulomb), k is the Boltzmann’s constant, 1.38066 10°2* (J/K) and Symp (V/°C) is
the temperature coefficient for module Vmp at STC.

The models contain several coefficients and parameters that must be calculated because
are not routinely provided by the PV module’s manufacturer. For this purpose, we used the

parameter extraction technique described in the following section.

3.1.4. Parameter extraction techniques

The parameter extraction techniques employed in this study are based on five optimization
algorithms that evaluate the model parameters of the two PV array models in real conditions of
work, using as inputs daily profiles of solar irradiance and cell temperature together with

monitored DC output current and voltage.

For the five-parameter model of the PV module, the model parameters: i, lo, n, Rs, and

Rsn are evaluated by using Eqs. (3.7-3) — (3.1-13) and actual daily profiles of monitored current
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and voltage at the DC output of the three PV arrays included in the study, together with actual

daily profiles of G and T at the specific locations detailed in section 2.

Regarding the SAPM, the same idea is considered for the estimation of the empirical
coefficients of the model parameters: Co, C1, C2, C3, n, aump and frmp using Eqgs. (3.1-15) —(3.1-
18).

The objective function for optimization using metaheuristic algorithms is defined as the
RMSE of the error of all data points given by Eq. (3.7-19) [19,34], where the N represent the

number of measured data, Vi and /i represent the measured voltage and current of the data point

i.

2|

N
S(0) = [Ii — [(Vi, 0)]? (3.1-19)
=1

l

where 0= f (Ipn,lo,n,Rs,Rsn) for the five parameter model and &= f (Co, C1, C2, C3, n, cump, vmp)
for the SAPM.

The parameter extraction algorithms implemented in MATLAB/Simulink environment are
executed until function S(6), given by Eq. (3.1-19), is minimized. Figs. 3.1.1 and 3.1.2 show
the Simulink block diagram of the SPM and SAPM used in the parameter extraction procedures.
Thus, the result of the parameter extraction algorithms is a set of PV module parameters for the
5PM and a set of empirical parameters for the SAPM that allow the best approach to the real

daily evolution of DC output current and voltage of the PV arrays.

V] ]
(15 Ish ‘ Total cument [A] I | Shunt current - I

Ih =(V + Rs1)Rsh

x
+ ) 1d

I Img
X
Ns N
Fiter
N
Gi
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lo (T)=(Tc/298)3 * lsci{{exp(Voc/mVto}1) * exp(Ego/Vto-Ea/Vt)
Thermal Voltage;
Vto= K Terefig; Vi=kTelg [Are a0*Jscoi(exp(Vocol(n*uj-1
Tcref=208°K | Gap sneray’ EafT) ' (exp(Vocol(n*uj-1)
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273 fu) v m—hl (3gap"u*2)i(ogap+u) - (Ww298y'3 X [le]
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Figure 3.1. 1 Simulink block diagram for the SPM.
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Figure 3.1. 2 Simulink block diagram for the SAPM.

Two parameter extraction methods are used in this study. The first method is a numerical
solution based on Levenberg—Marquardt algorithm (LMA) detailed in a previous work [12].
The second method is based on different metaheuristic algorithms (GA, DE, PSO and ABC)

which are described below.

3.1.4.1. Genetic algorithm

The Genetic Algorithm (GA) developed by John Holland in the 1970s is a technique for
solving constrained and unconstrained optimization problems inspired from the biological

evolution.

The optimization function is encoded as arrays of binary character strings representing the
chromosomes. The fitness of chromosomes in the population is evaluated by the objective
function for each iteration. Fitter chromosomes are stochastically selected in terms of the elitist
strategy, which ensures the progeny chromosomes inherit the best possible combination of the
genes of their parents. Some of the chromosomes in the population are modified via genetic
operators like crossover and mutation, forming new chromosomes for the next generation. The
reason why GA applies crossover and mutation may lie in their capability of avoiding local
optima in the searching process. Several researches applied GA to extract the parameters of a

PV model from measured I-V curves [17,35].

In this paper, the genetic algorithm available in the Global Optimization toolbox of

MATLAB has been used for minimizing the objective function Eq. (3./-19) [17].

3.1.4.2. Differential evolution

Differential evolution (DE) was proposed by Rainer Storn and Kenneth Price in 1997 [36].

Similar to other evolutionary algorithms, DE is a population based, derivative-free function
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optimizer. An advantage of DE over GA is that DE treats possible solutions as real-number

strings, and thus encoding and decoding are not required.

The target vector x = [x1, x2,..., xi| where i =1,2,..., NP represents a population of NP
random candidate solutions. The vector of the ith particle, x; indicates a series of parameters to
be extracted, e.g. xi = [Ipn,lo,n,Rs,Rsn] for the one-diode model and xi = [Co, C1, C2, C3, n, oump,
Pymp]. For a D-dimension optimization problem, a random candidate solution is given by:

X < x5 < % (3.1-20)

where x/°¥ and x/ are the lower and the upper limits of the j™ vector component respectively,

i=1,2,...,NPandj=1,2,...,D.

After the initialization DE enters a loop of evolutionary operations: mutation, crossover

and selection considering the maximum number of generations fmax, where t = 1, 2,..., tmax.

In the mutation step, for each x; at generation ¢, three vectors x»0, xr/ and x»2 are chosen
randomly from the set {1, 2, ...,NP}\{i} to generate a donor vector by:
vitt = xb) + F(xt, — xty) (3.1-21)

where F'is a differential weight, known as scaling parameter, usually ranges in the interval [0,
1].

The crossover operation is used to decide whether to exchange with donor vector. By
generating a random integer index J- € [1, D] and a randomly distributed number %: € [0, 1],

the j dimension of v, namely uj, is updated according to:

vitl k. <CRori=
o ={ C ; (3.1-22)

x{;, ki>CRandi# ],

u

where CR is a crossover probability in the interval [0, 1]. The crossover scheme formulated by

Eq. (3.1-22) used in the present work is called binomial strategy.

The selection operation, selects the best one from the parent vector x//, and the trial vector
/"1 solution with the minimum objective value, using the following expression:

et {uf“, F@i™) < Fed)

¢ xf, othewise

(3.1-23)

where f{x) is the fitness function to be minimized. Therefore, if a particular trial vector is found
to result in lower fitness value, it will replace the existing target vector; otherwise, the target

vector 1s retained.
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3.1.4.3. Particle swarm optimization

Particle swarm optimization (PSO) is a population based stochastic optimization technique
developed by Kennedy and Eberhart [16] and is inspired by the social behavior of bird flocking

or fish schooling.

PSO search possible solution in a search space by adjusting the trajectories of particles.
The best position encountered of the particle i is designed by pbesti. In a swarm of particles,

there are N local best positions, and the best solution is denoted by gbest.

The velocities and positions of particles, as well as the algorithm parameters (inertia weight
w and learning parameters o, ) are firstly initialized. In an iteration ¢, the fitness of particles is
evaluated individually by the objective function. By attracted toward pbest; and gbest, the
particle moves according to the following expression:

xftt=xf + vt (3.1-24)

where vi*! is the velocity, expressed as:

vi*t = wof + ae; (xf — gbest®) + e, (x{ — pbest}) (3.1-25)

a = 1.5, f =2. The random vectors €/ and ¢z are in the range [0, 1]. The w is the inertia
weight, used to balance global and local search abilities, it is considered constant and set equal

t0 0.9.

Finally, lower and upper boundaries are set to ensure that particles are within the
predetermined range. The PSO will continue to search for better solutions until it meets the

stopping criterion.

3.1.4.4. Artificial bee colony algorithm

The artificial bee colony algorithm (ABC) is an optimization algorithm inspired by the
natural foraging behaviour of honey bees. It was successfully applied in the parameter
extraction of solar cell models [19,34]. In the ABC, there are food sources representing the
solutions of optimization problems and honey bees (classified into employed bees, onlooker
bees and scout bees) representing the operations to the solutions. The employed bees investigate
potential food sources and share information with onlooker bees. The food sources of higher
quality will have higher possibility to be selected by onlooker bees. If the quality of the
employed bees’ food sources is relatively low, they will change to scout bees to randomly
explore new potential food sources. Consequently, the exploitation is promoted by employed

and onlooker bees while the exploration is performed by scout bees. The implementation of the
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ABC algorithm in MATLAB is carried out by following the same steps of given in the previous
works [19,34,37].

3.1.5. Results

The results of simulation of grid-connected PV systems in real conditions of work were
obtained under different weather conditions: clear sky, semi-cloudy, and cloudy weather. The
two PV array models described above were used for forecasting the output power of the three

different PV systems using the extracted parameters delivered by the five algorithms.

The adjustable parameters chosen for the GA, DE, PSO and ABC algorithms and the lower
and upper boundaries selected for each parameter are summarized in Table 3.1.3 and Table

3.14.

Table 3.1. 3 Selected parameters of each algorithm.

Algorithm parameters GA PSO DE ABC
Population (colony) size, (NP) 100 100 100 100
Inertia weight, (w) — 0,9 — -
o and f — 1.5 and 2 — —
Crossover probability (CR) — — 0.4 —
Number of onlooker bees — — — 50
Limit of scout bees — — — 420
Maximum number of iteration 1000 1000 1000 1000

Table 3.1. 4 Lower and upper boundaries selected for each PV module model parameter.

G [0-2] L [A] [0-10]

Ci [[1-1] 1, [A] [107—1071]
C: [-10 - 10] n [1-2]

G [-10 - 100] R, [Q] [0—20]
aimp [°C1] [107—107] R [Q] [50 — 10°]
Bymp [VI°C] [-1-0]

The optimization algorithms used in the parameter extraction techniques evaluate the
model parameters of the PV module; Iy, Io, n, Rs, Rsi, in case of the SPM, and Co, Ci, C2, Cs3,

n, Oump, Pvmp, in case of SAPM.

In the case of using the extraction method based on LMA, an average number of 10
iterations are needed in order to find a set of solar cell model parameters for an input data set
corresponding to one day of real operation of the PV array. On the other hand, for the extraction
method relied on the metaheuristic algorithms (GA, PSO, DE and ABC) the average number of

iterations is much higher, by around 500 iterations are needed.
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Moreover, the parameter extraction methods were applied for each sample day separately,
in order to get the optimal set of parameters of the two PV models that allows reproducing the
real behaviour of the PV systems with best accuracy. As the extracted parameters values
obtained by the different algorithms are very close to each other, it is decided to show the mean
value of each extracted parameter. The set of the extracted parameters are listed in Tables 3.1.5

and 3.1.6.

In order to present the best variety of results, and see the performance of the two models
using real conditions of solar irradiance and cell temperature, it was chosen to display the DC-
output current evolution over the course of a clear sky day for PV system 1, a semi-cloudy day

for PV system 2 and a cloudy day for PV system 3.

Table 3.1. 5 Mean values of the main PV module parameters obtained from the parameter extraction

algorithms for the SPM.
syls t‘ém Day cm‘:;‘lg'(f;s R [Q] Ra [Q] L [A] In [A] n
09/12/2013 Clear sky 0.662 660.011 1.0710° 87268 1.191
1 18/12/2013 Semi cloudy 0.701 651.880 1.1410° 87366 1.192
20/12/2013 Cloudy 0.701 651.894 1.1410° 87366 1.192
05/07/2012 Clear sky 5.771 2596 10° 232107 22055 1223
2 12/05/2012 Semi cloudy 7.321 203410° 490107 22462 1.290
12/11/2012 Cloudy 8010  213110° 120107 22462 1.289
07/08/2011 Clear sky 12354 335810°  8.8210°  1.0751  1.343
3 12/05/2012 Semicloudy 17915  236510°  7.9210°  1.0627 _ 1.351
12/11/2012 Cloudy 19.796  2.86510°  13610°  1.0686  1.351

Table 3.1. 6 Average values of main parameters obtained from the parameter extraction algorithms for the
SAPM.

PV Weather Aomp Pmp

System Day conditions Co G ¢ G " [°CT] [V/°C]

09/12/2013 Clear sky 1.0438 -0.2000 2.0686 21.2425 1.1619 4.32103 -0.1067

1 18/12/2013  Semicloudy 0.9138 -0.0552 1.6104 10.9348 1.1613 4.32103 -0.1168

20/12/2013 Cloudy 0.9762 -0.1468 2.0351 127702 1.162 4.32103 -0.0554

05/07/2012 Clearsky  0.8887 0.0662 2.575 31.7208 1.2177 5.810* -0.2819

2 12/05/2012  Semi cloudy 0.9237  0.0500  2.995 43.1182 1.2459 5810* -0.2692

12/11/2012 Cloudy 0.9208 0.0608 2.4241 20.0134 1.2466 5.810* -0.4632

07/08/2011 Clearsky  0.8229 0.0500 2.1346 18.999 1.3162 7.5210° -0.2467

3 12/05/2012  Semi cloudy 0.7973  0.0400 2.7898 27.9781 1.3537 7.52103 -0.3299

12/11/2012 Cloudy 1.0010 -0.1086 1.7077 7.8209 1.2941 7.52103 -0.4998
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Figure 3.1. 1 Evolution of the DC-current of the PV system 1 using SAPM for clear sky day (December 09th,
2013).
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Figure 3.1. 2 Evolution of the DC-current of the PV system 1 using 5SPM for clear sky day (December 09th,
2013).
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Figure 3.1. 3 Evolution of the DC-current of the PV system 2 using SAPM for semi-cloudy day (May 12th,
2012).
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Figure 3.1. 4 Evolution of the DC-current of the PV system 2 using 5PM for semi-cloudy day (May 12th, 2012).
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Figure 3.1. 5 Evolution of the DC-current of the PV system 3 using SAPM for cloudy day.
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Figure 3.1. 6 Evolution of the DC-current of the PV system 3 using 5PM for cloudy day (November 12th, 2012).
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Figs. 3.1.3 — 3.1.8 show the measured DC-output current of the three PV systems,
compared with the simulation results obtained with the two PV array models using the extracted

set of parameters estimated by the five optimization algorithms considered in this study.

As it can be seen in the figures, a good agreement is always found between the measured
data and the SAPM simulation curves, while the curves obtained with the 5SPM are less close to
the real monitored curve. Moreover, it is found that a better agreement between real and
simulated curve is always reached in clear sky days rather than in cloudy days. It is qualitatively
noted that the worse the weather conditions, the more difficult is for the models to approximate

real data as expected.

By comparing the optimization algorithms used for the estimation of the unknown
parameters of the two PV array models, it can be clearly seen that the metaheuristic algorithms

provide good results compared to the LMA in all weather conditions and for both PV models.

These considerations are confirmed by values of errors calculated for the two PV models
given in Table 3.1.7 and 3.1.8. The values quantify discrepancies between measured data (DC-
output current, voltage and power) versus simulated ones predicted by the two PV array models
using the five algorithms (LMA, GA, PSO, DE and ABC). Two metrics were used: The Route
Mean Square Error (RMSE) [32] and the Normalized Mean Absolute Error (NMAE) [10]. For
the error calculation an irradiance filter was applied to the data set. Only the data corresponding
to irradiance values above 200 W/m? were considered, since the inverters start working in these

conditions. Below this irradiance value, the PV systems are in an open-circuit configuration,

and the resulting values are misleading.

Table 3.1. 7 Calculated RMSE (%) and NMAE (%) for the SAPM.

PV Day Weather Error LMA GA PSO DE ABC
system [%] 1 \Y P 1 \ P 1 \ P 1 \Y P 1 \4 P

09/12/2013  clear sky RMSE 0.64 2.09 172 064 126 1.18 0.64 084 1.00 0.65 0.84 0.99 0.65 0.71 063
NMAE 0.27 143 0.77 025 097 0.58 026 062 045 026 062 045 027 048 0.25
1 18/12/2013 semi RMSE 291 409 287 251 298 268 250 298 263 250 290 259 250 2.89 259
cloudy NMAE 129 2.11 1.12 0.86 1.83 097 083 1.84 094 083 170 0.89 0.83 1.69 091
201122013 cloudy RMSE 637 5.06 6.02 641 490 584 636 491 577 635 487 579 637 491 578
NMAE 243 3.51 240 254 334 235 244 334 226 244 332 227 244 335 226
05/07/2012  clear sky RMSE 133 142 155 129 082 1.14 131 081 1.14 129 1.02 1.06 127 0.84 1.03
NMAE 046 148 0.78 0.53 1.23 070 047 129 058 0.51 1.73 055 0.53 147 0.52
2 12/05/2012 semi RMSE 154 1.13 155 152 098 153 152 1.11 141 1.75 149 136 1.53 1.11 1.32
cloudy NMAE 0.62 1.67 0.88 0.59 1.50 0.88 0.59 190 087 0.75 2.68 085 0.61 1.89 0.83
12/112012  cloudy RMSE 275 3.50 3.51 278 332 3.17 276 322 315 276 322 3.15 276 331 3.13
NMAE 0.70 591 1.84 0.68 459 165 0.69 432 162 0.68 431 161 0.69 457 1.6l
07/08/2011  clear sky RMSE 137 092 143 1.04 095 1.17 1.04 0.88 1.10 1.04 0.77 099 1.04 0.76 0.98
NMAE 125 0.56 0.78 090 0.64 0.66 090 0.56 0.59 091 0.64 0.51 0.90 0.61 048
3 12/05/2012 semi RMSE 191 0.89 220 123 0.81 1.10 124 090 093 124 0.82 1.07 123 089 0091
cloudy NMAE 170 0.81 1.07 1.05 0.68 049 1.08 0.82 043 1.07 0.68 048 1.07 0.81 041
12112012 cloudy RMSE 2.67 239 400 240 1.87 216 242 1.62 198 242 1.68 207 225 162 142
NMAE 2.12 327 186 175 234 1.09 1.79 2.04 0.66 1.75 2.08 1.06 1.75 2.04 1.01
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The DC-output power of the PV array is obtained as a product of current and voltage in

both real and simulated results.

As a general trend, the errors obtained in the case of SAPM model were smaller than in
the case of the SPM for all PV systems and weather conditions regardless of the solar cell
technology. Similarly, for each PV system the error decreases with improving weather
conditions: The error for clear sky day was smaller than for semi-cloudy day, while for cloudy
day the largest discrepancy was always found, as anticipated from the inspection of Figs. 3.1.3

-3.1.8.

Table 3.1. 8 Calculated RMSE (%) and NMAE (%) for the 5PM.

PV Day  Weather Error LM GA PSO DE ABC
system /% ~1_ VvV P 1 VvV P 1 V P 1 V P 1 V P
RMSE 178 139 229 176 139 223 175 139 222 175 138 221 175 138 221
09122013 clear sky — %9 098 1.05 088 098 105 088 098 105 087 097 1.04 087 096 104
semi _RMSE 342 393 496 337 384 488 337 3.80 405 2.84 382 3.72 255 484 3.6
1 I822013 i oidy TNMAE 138 248 210 135 248 213 134 245 194 128 246 180 097 3.08 174
RMSE 1034 492 1355 934 580 1123 7.73 487 696 641 629 7.79 560 491 660
200122013 cloudy  — 5 363 530 430 351 412 3.63 332 201 3.17 476 299 2.14 362 267
RMSE 135 207 243 134 207 242 134 206 241 134 206 240 134 138 2.09
05/072012 clear sky — 048 3.03 150 048 3.02 159 048 3.03 159 047 301 157 047 247 145
semi _RMSE 160 298 351 160 292 341 160 228 313 1.60 227 3.13 161 212 3.07
2 12052012 youdy TNMAE 064 540 250 065 524 242 065 371 210 065 370 2.10 064 372 2.08
RMSE 413 324 501 3.16 325 486 244 298 398 370 324 460 350 3.14 3.64
1271172012 cloudy —o) 153 583 387 115 583 3.17 087 500 254 127 583 272 116 529 2.06
RMSE 191 244 332 190 243 331 191 216 157 183 192 2.12 085 231 128
07/082011 clear sky — 0 =61 177 171 160 175 173 161 159 1.69 1.09 089 101 079 188 067
semi _RMSE 166 268 353 172 209 336 167 197 334 165 195 3.17 166 195 3.02
30 ISR012 - oidy TNMAE 151 249 178 152 174 167 152 176 166 151 174 1.60 151 175 1.53
RMSE 536 510 699 344 510 484 253 236 263 212 252 189 209 253 1.8
2112012 cloudy — o 55 322 320 276 321 244 189 218 142 1.60 224 091 151 226 080

The maximum values of RMSE and NMAE obtained for the output power using the SAPM
model were 6.02% and 2.40% respectively. These values were provided by simulations based
on LMA of the PV system 1 with c-Si PV modules in a cloudy day. Nevertheless, for the PV
systems 2 and 3 based on different PV module technologies, the RMSE and NMAE errors
obtained for DC output power were below 4% and 1.86%.

On the other hand, in the simulations based on the SPM the maximum values of RMSE
and NMAE obtained regarding the DC output power were increased up to 13.55% and 5.30%
for PV system 1 based on LMA. However, for the PV systems 2 and 3, even based on the LMA,
the obtained values of RMSE and NMAE were 6.99% and 3.29%.

The accuracy of the PV module models in reproducing the behaviour of the PV array under
outdoor conditions of solar irradiance and cell temperature depends also on the used methods

for parameters estimation. As it can be seen from Tables 3.1.7 and 3.1.8, the metaheuristic
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algorithms provide lower values of RMSE and NMAE than the numerical traditional method
based on the LMA.

Considering the SAPM, the passage from using the LMA to GA as a main algorithm of the
parameter extraction, reduces the maximum values of RMSE and NMAE of the DC-output
power to 5.84% and 2.35% taking into account all the PV systems and weather conditions. This
passage from LMA to GA also affects the accuracy of the 5SPM, where the maximum values of

RMSE and NMAE of the DC-output power were reduced to 11.23% and 4.12% respectively.

The best accuracy of simulations using the SAPM was obtained by using the ABC
algorithm for the estimation of the unknown parameters. The greatest RMSE and NMAE values
obtained regarding the DC-power of the PV system 1 were 5.78% and 2.26%. Otherwise for
PV system 2 the errors values don’t exceed 3.13% and 1.61%, and for PV system 3 the best
accuracy is achieved, whatever the weather condition, the RMSE and NMAE are below 1.43%

and 1.02% respectively.

On the other hand, for the SPM, the best forecasting of the DC output power of the PV
systems is also obtained from simulations using the estimated parameters provided by the ABC
algorithm. Considering the worst weather condition, the RMSE and NMAE values related to
DC-output power obtained for the PV system 1 are 6.6% and 2.67%. However, for the PV

systems 2 and 3 the errors values remain below 3.65% and 2.07%.

Finally, regarding the DC-output current, the highest values of RMSE obtained in clear
sky and semi cloudy day, are below 2.91% in case of SAPM and 3.42% in case of SPM. In
order to make the obtained results more comprehensive, other machines learning used for
modelling the DC-output current of PV arrays were considered. Ameen et al [13] reported
RMSE of 5.67% in a work based on artificial neural networks for forecasting the output current
of'a PV array. Ibrahim et al [38] published a novel machine learning consisting in using random
forests technique for modelling the output current of a PV array, the RMSE provided is of
2.74%.

3.1.6. Conclusions

Two PV array models have been compared in this work for simulation purposes: The 5SPM
and the SAPM. These models were applied to reproduce the behaviour of three grid connected

PV systems with different topologies and solar cell technologies. The models parameters were
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obtained from daily monitored profiles of G, T, and DC-output current and voltage of the PV
arrays using five different optimization algorithms (LMA, GA, PSO, DE and ABC).

The metaheuristic algorithms are more efficient than the traditional LMA algorithm in
estimating the unknown parameters of both PV module models, essentially in bad weather
conditions. The GA provides high values of RMSE compared to the other bio-inspired
algorithms. The ABC algorithm is slightly more accurate than the DE and PSO algorithms.

The 5PM allowed simulating the dynamic behaviour of the PV systems included in this
study with an acceptable accuracy degree for applications of supervision and forecasting of
energy production. The RMSE obtained in the comparison of the daily evolution of main
electrical parameters of the PV systems is below 8% in all cases except the case of using LMA
and GA algorithms to simulate the c-Si PV module working in cloudy conditions. This effect
can be explained taking into account that the values of series, Rs, and shunt, Rsh, resistances
forming part of the model parameter set vary with the irradiance, whereas both parameters have
been assumed constant in the performed simulations. An advantage of the SPM lies in the
physical meaning of the set of model parameters that provides relevant information about the

PV array and allows an easy comparison between different PV modules.

On the other hand, the SAPM model is an empirical model including a set of model
parameters in which some of them have little physical meaning. Nevertheless, the SAPM model
showed a high accuracy degree in the simulation of the PV systems behaviour independently
of the solar cell technology. The RMSE values obtained for the DC output power of the PV
arrays in the simulations stayed below 6.05% for the PV system 1 even in cloudy days. For the
PV system 2 this error dropped below 3.52%. However, for the PV system 3 the RMSE values
are below 4% even in cloudy days and case of using LMA. The SAPM model demonstrated
best potential for the simulation of PV systems in real operating conditions; this holds even

when using thin film technologies of PV modules.
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3.2.1. Introduction

Grid connected PV (photovoltaic) systems are becoming an important part of the electricity
system all around the globe, especially in most developed countries. A vigorous growth of the
global PV market is still expected due to the strong PV technology price decreases and rise of
electricity prices produced by conventional sources together with the clear advantages of green

and renewable energy sources as PV on delivering safe and clean energy.

Monitoring, automatic supervision and fault detection of grid-connected PV systems are
absolutely necessary to ensure an optimal energy harvesting, minimize the cost of the energy

produced by the system and to ensure reliable power production.

The identification of failures in grid connected PV systems can be based on evaluation of
the system yields and comparison with forecasted values of these parameters [1—4] or on the
analysis of power losses present in the PV system in real operation [4-9]. Once a failure in the
PV system operation is observed the source of the fault must be identified by means of a specific
diagnostic procedure. Monitored parameters are the key to develop a successful diagnostic

procedure [10-12].

Most common faults in PV arrays use to be the apparition of short-circuits in PV modules,
mainly due to hot spots, the activation of bypass diodes and earth faults [13-16], overcurrent
and voltage disturbances [17], and open-circuits that disconnect some strings of the array
[15,18,19]. Accurate simulations of the PV system behaviour have demonstrated good results
in fault detection and diagnostic of faults in PV systems [20-23]. However, these techniques

require sophisticated simulation software environments and high computational cost.

In a previous work we have presented a procedure for automatic fault detection in grid
connected (PV) systems based on the evaluation of current and voltage indicators [24]. The
described procedure can be integrated into the inverter without using simulation software or
additional external hardware and minimizing the number of sensors present in the monitoring
system. Moreover, the indicators of current and voltage used as benchmarks can be calculated
by the inverter itself in real time. This approach was experimentally validated and other

researchers have followed this way to identify the kind of fault present in the PV system [25].

In the present work we analyse the effects of partial shading of the PV array on current and
voltage indicators and how this condition of work and power losses associated to it can be

clearly identified by means of these indicators.
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The rest of this paper is organized as follows: First, the methodology and calculations are
introduced in Section 3.2.2. Section 3.2.3 presents the experimental validation carried out in

two different grid connected PV systems. Finally, the conclusions are made in the last section.

3.2.2. Methodology

3.2.2.1. Current and Voltage indicators for fault detection

Silvestre et al. [24] defined two indicators of current, NRc, and voltage, NRv, for automatic

supervision and fault detection of PV systems as follows:

I
NRc = = (3.2-1)
ISC

V,
NRv = =& (3.2-2)
Voc

where Vi and In are the voltage and current of the MPP (maximum power point) at the DC
output of the PV generator respectively and /sc and Voc the short-circuit current and Vec the open-

circuit voltage of the PV array respectively.

The inverter is able to calculate both NRc and NRy indicators through MPP coordinates
available at the inverter input, and the values of Isc and Vo, obtained for actual conditions of
irradiance and temperature by the inverter itself internally in real time. For this purpose, the
inverter must have MPP tracking and monitoring capabilities. Two more parameters can be also
calculated in real time: Imo and Vo, the current and voltage at the maximum power point of the
output of the PV array in absence of faults [24]. Then, the ratios: NRco and NRvo, the expected

values of NRc and NRv, in normal operation of the PV system are given by:

I

NRco = 22 (3.2-3)
ISC
V,

NRvo = =2 (3.2-4)
Voc

The definition of thresholds for current, TNR.s, and voltage, TNRvbm, allows detecting both,
short-circuits and open-circuits in the PV array [24]. These thresholds were defined by the
following equations:

TNRss = 1.02 @ NRco (3.2-5)

TNR,pm = 1.02 8 NRvo (3.2-6)
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where o and £ are the relationship between the ratios of current in case of one faulty string and
fault-free operation and the ratio between the voltage ratios in case of one bypassed PV module
and fault-free operation respectively given by Equations (3.2-7) and (8). On the other hand, the
constant included in Equations (3.2-5) and (3.2-6) was fixed by means of statistical procedures
in order to avoid false fault detections as an offset of a 2% respect theNRco and NRvo values

[24].

_ NRcfs 1 1 327

= NRco ~ Np (3.2-7)
NRvb 1

_ LR (3.2-8)
NRvo Ns

In case of permanent faults in the PV array, short-circuits or open-circuits, the

corresponding current or voltage indicators always remains below its threshold.

3.2.2.2. Partial shading of the PV array

Unavoidably, the partial shading is a condition that affects the operation of PV systems at
some point and leads to reduction of the output power [26-31]. However, most times partial
shading has a dynamic behaviour depending on the cloud evolution and on the position of

surrounding obstacles near the PV array [32].

The output current of the PV generator is reduced by the number of PV modules affected
by shading. The most shaded PV module in a chain limits the total current in that chain.
Moreover, there is also a reduction in the output voltage of the PV array due to shadow. The
overall decrease in the output voltage depends on the number of bypass diodes that are activated

in the PV modules that form the PV generator [33].

Both effects, current and voltage reduction, can be observed at the same time or separately
depending on the shadow profile and the configuration of the PV array. Furthermore, in most
cases these effects disappear quickly due to the dynamic behaviour of the irradiance profile on
the PV field unless a PV module has been completely damaged. So, it is possible to identify

that situation by means of the current and voltage indicators described in the previous section.

The total percentage of reduction in output voltage, AV, can be expressed as follows:

Vino — Vin NRv

—)=(1- ) 3.2-9
) ( NRvo ( )

Vmo
Considering a number of Ns PV modules connected in series by string in the array, the

AV=<

number of PV modules bypassed, BPmod, because of the shadow effects are given by:
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BPmod = AV Ns (3.2-10)

Similarly, the normalized reduction of output current, Al, varies according to the following

expression:

L. —1 NRc
Al = (M> = (1 - ) 3.2-11
Lo NRco ( )

If the PV array is formed by Np strings of PV modules connected in parallel, the output
current losses can be translated to number of equivalent strings in open-circuit. The number of
equivalent faulty strings, Efs, is given by:

Efs = Al Np (3.2-12)

So, the presence of partial shadows on the PV array can be detected by means of current
and voltage indicators when they present values below their respective thresholds for short
periods of time. Moreover, Equations (3.2-10) and (3.2-12) allow identifying the number of
bypassed modules and the equivalent number of faulty strings in the PV array respectively in

case of partial shading.

The proportion of DC power losses due to the shadowing effect, Ploss, can also be
evaluated from Equations (3.2-9) and (3.2-11) as follows:

NRc NRv)

(3.2-13)
NRco NRvo

Ploss = (1 —

The accuracy of the method depends on the errors in the estimation of main parameters
involved in the equations, mainly: Isc, Voc, Imo, Vmo, Im and Vm. The accuracy on the
evaluation of Vm and Im will depend on the inverter capability to track the MPPT (maximum
power point). If the inverter is trapped at a local maximum the values of NRc and NRv will be
lower than the values corresponding to the real MPP, while the values of NRco, NRvo, TNRcfs
and TNRvbm are independent of the real value of the MPP. So, in that situation the algorithm
will detect power losses due to the differences between the real MPP and the local MPP tracked
by the inverter and then the presence of faults will be indicated. However, the method will not
be able to tell whether the failure is due to incorrect MPPT (inverter) or shade in the
photovoltaic field. So, it is important to apply this method by using inverters with smart MPPT
techniques. On the other hand, the equations used to evaluate the rest of parameters were used
in previous works [5,6,12,24] with success. The RMSE (root-mean square error) (%) between
real measured data and values obtained from equations are in the range of 2—4 % for voltages

and currents.
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3.2.3. Experimental Validation

3.2.3.1 Description of the PV systems used in the experimental validation

The analysis of the evolution of current and voltage indicators in case of partial shading in
grid connected PV systems was carried out in two PVGCS (grid connected PV systems) in

Spain and Algeria.

The PV system sited in Jaen was monitored uninterruptedly since July 2011 [34] while the
new monitoring system of the PV system sited in Algiers was installed in 2012 [12]. The
presented procedure was applied in both systems in different periods of the year to analyse
different irradiance, shading and temperature conditions as well as study the behaviour of
different PV technologies. Results obtained have shown the effectiveness of the proposed
method in all cases. We selected the results obtained in one day of operation of each PV system

to show the procedure and methodology.

The first PV system is located in Algiers (Algeria, latitude: 36°43'N, longitude: 3°15'E).
This grid connected PV system of 9 kWp is divided in three sub-arrays of 3 kWp each one,
which are connected to 2.5 kW (IG30 Fronius) single phase inverters. The configuration of each

sub-array consist of 30 c-Si PV modules in a configuration of two parallel strings, Np = 2, of

15 PV modules in series, Ns = 15.

The monitoring system used in this PV system includes an Agilent 34970A for the data
acquisition, a reference solar cell and two pyranometers (Kipp & Zonen CM 11 type) to measure
irradiance at different planes. Temperature measurements were made by using k type

thermocouples. A more detailed description of this monitoring system can be found elsewhere

[12].

The second PV system is located in Jaén (Spain, latitude 37°45'N, longitude 3°47'). The
PV array of 900Wp is formed by 15 a-Si-H thin film PV modules, with 5 parallel-connected
strings of 3 series-connected PV modules each (Np = 5, Ns = 3). This PV array is connected to
the grid using a SMA Sunny Boy SB1200 inverter. Three SMA Sunny SensorBox devices were
also installed in the same platform as the PV systems to measure on-plane irradiance, module
and ambient temperatures together with wind speed. Two Pt 100 resistive thermal detectors
(RTD) were used as module temperature sensors being pasted to the rear surface of the PV
modules. An additional irradiance sensor Kipp & Zonen™ CMP21 pyranometer, was also

installed on a metal plate, coplanar with the PV array.
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Table 3.2.1 describes the two PV arrays included in this study as well as the configuration

of the PV array: Ns x Np.

Table 3.2. 1 Description of the PV arrays included in the study.

Case Study PV module Ns Np P(kW)
Algiers 106-Wp rated c-Si 15 2 3
Jaén 60Wp-rated a-SI:H 3 5 0.9

Table 3.2. 2 Main model parameters of PV modules.

Model Parameter c-Si PV module  a-SI:H Thin film PV module
n 1.14 1.2
Io (A) 31010 2.8 1012
Rs (Q) 0.33 19.5
Rsh (Q) 199 400
Isc (A) 6.54 1.1
Solar cells (Ncs x Ncp) 36x2 115x 1
Voc (V) 21.6 92

P (W) 106 60

V coeff. (mV/K) -144.7 -280.6
I coeff. (mA/K) 2.5 0.89

Table 3.2.2 shows main model parameters of PV modules used in this study at STC: The
ideality factor of the diode (n), the diode saturation current (Io), the series resistance (Rs) and
the shunt resistance (Rsh), the short-circuit current (Isc), the open-circuit voltage (Voc), peak
power (P), the number of solar cells per PV module (Nsc, Npc), and temperature coefficients

for current and voltage.
3.2.3.2 Experiments carried out
a) PV System in Algiers

One day with partial shadows on the PV array was observed in the monitoring of the PV
system and selected for the study. That day, shadows appear in the morning and afternoon. Fig.
3.2.1 shows the irradiance profile monitored where time intervals of shadowing detected by the

sensor are highlighted.
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Figure 3.2. 1 Irradiance profile, Algiers.
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Figure 3.2. 3 DC output power of the PV array.
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Fig. 3.2.3 shows the measured DC output power of the array. As shown in the figure, the
same time slots are clearly identifiable except the small irradiance reduction around 13.00 h
that has no effect on the output power. However, the length of the shadows appears greater than
in Fig. 3.2.1. This fact indicates that the sensor remained less affected by shading than the rest
of the PV array at that time. The same happens between 10.00 a.m. and 11.00 a.m., when the
reduction of power due to shadowing is not detected by the irradiance sensor. On the other
hand, after 2.00 p.m. an inverter disconnection is clearly identified, probably due to a short

disturbance in the grid.

The PV field suffers, in winter season, an irregular shade over both strings because of a
nearby pylon of telecommunications, especially in the morning, from 10h until 12h 30 min,
and another shade at the end of the day due to some trees that also hides the reference cell.
The effect of these shadows on the generated power was well noticed on clear days. Fig. 3.2.2

shows the nearby objects responsible for these shadows.

Fig. 3.2.4 shows the evolution of the voltage indicators, the shadows affecting the PV array
between 11.30 a.m. to 12.30 p.m. and from 4.30 p.m. to 6.00 p.m. are clearly identified. During
these time intervals the voltage indicator; NRv, appears below the voltage threshold TNRvbm.
Nevertheless, power losses in the PV array between 10.00 a.m. to 11.00 a.m. are not due to the
presence of bypassed PV modules, as can be seen in Fig. 3.2.4, where the evolution of voltage

indicators is normal.

The inverter disconnection is also clearly reflected by NRv. The current at the inverter
input is zero, as can be seen in Fig. 3.2.6, because of the islanding prevention and then the

voltage increases.

Inverter

Disconnection
Lot S

Voltage Ratio

Time [h]

Figure 3.2. 4 Voltage indicators.
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Fig. 3.2.5 shows the number of bypassed PV modules, BPmod, due to the shadowing of
the PV array. The number of series connected PV modules by string in the PV generator is Ns
= 15. As can be seen in the figure, the shadow effects in the morning cause the activation of
bypass diodes in 3 modules of the same string near noon, while in the afternoon up to 5 PV

modules are bypassed.

5

Time [h]

Figure 3.2. 5 Number of bypassed modules.

Figs. 3.2.6 and 3.2.7 show the evolution of the indicators of current and the number of
equivalent faulty strings, Efs, reflecting the reduction in output current of the PV array
respectively. As depicted in Figs. 3.2.6 and 3.2.7, the inverter disconnection and the effect of
shadowing in the reduction of output current of the PV array in the afternoon are clear. The PV
array is formed by two parallel strings, Np = 2. Along the inverter disconnection the output
current is zero and the number of equivalent faulty strings is Efs = 2. At the moment when a
grid fault occurs, the current at DC side instantly drops to zero because the inverter switches

off as a safety measure to prevent islanding.

In the afternoon the reduction of current due to shadowing is equivalent to a value of Efs
up to 1.6. This fact indicates that the shadowing on the PV array limits the current of the strings

to a 40% of the expected value.

On the other hand, the current reduction in the morning between 10:00 a.m. to 11:00 a.m.
is observed, and also between 11:30 a.m. to 12:00 p.m. However, the power reduction is smaller
in the morning than in the evening, as shown in Fig. 3.2.8, where the amount of power losses

calculated from Equation (3.2-13) is plotted.
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Figure 3.2. 6 Indicators of current.
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Figure 3.2. 8 Reduction of DC output power.
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b) PV System in Jaén

Fig. 3.2.9 shows the irradiance profile monitored in one day of December in the PV system
sited in Jaén, Spain. The irradiance sensor detects a reduction of irradiance around 12.30 p.m.,

before 4.00 p.m. and at 5.00 p.m.

900 T T T

800

700

Figure 3.2. 9 Irradiance profile, Jaén.

The reduction in output power of the PV array in the same time intervals is observed in the

measured output DC power given by Fig. 3.2.10.

The a-Si:H PV field experiences a minor partial shading from November to January,
inclusive, which takes place by the end of the day. The shade is projected by the surrounding
mountain and buildings shown in the upper left part of Fig. 3.2.11.
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Figure 3.2. 10 Measured PV array DC output power.
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Figure 3.2. 11 PVGCS analysed in the site of Jaén. The upper row of modules comprise the a-Si:H PV field
under scrutiny in this work. The lower row of modules corresponds to a micromorph (heterojunction a-
Si:H/uc-Si) PV field of another PVGCS.

The shadowing of the PV array has very low impact in the evolution of the voltage
indicators in this case, as seen in Fig. 3.2.12. There is a reduction of voltage due to shadowing
effects before 4.00 p.m. that causes also a reduction in output power of the PV array but is not
so important to correspond to the presence of bypassed modules in the strings. The PV array is
formed by five parallel strings, Np = 5, of three PV modules connected in series, Ns = 3. As

can be seen in Fig. 3.2.13, the number of bypassed modules is always lower than one.

1 T T T T

—NRv
—=—TNRbpm
—e—NRvo

Voltage Ratio

Time [h]

Figure 3.2. 12 Voltage indicators.

On the other hand, the evolution of the indicators of current, shown by Fig. 3.2.14, detects
the reduction in current due to partial shading around noon and at 5.00 p.m. These low values

of current are the cause of the output power reduction in these time intervals, being the partial
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shadow on the PV array between 12.00 p.m. and 1.00 p.m. the most important one. Then, the
total output current of the PV array corresponds to the output current of the PV array having
one of the strings in open-circuit. The reduction of output current at 5.00 p.m. is not so

important, as can be seen in Fig. 3.2.15.
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Figure 3.2. 13 Number of bypassed modules.
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Figure 3.2. 14 Indicators of current.

Finally, Fig. 3.2.16 shows the power losses due to partial shading of the PV array. In the
morning the power losses are mainly due to the lowering in voltage, while between 12:00 and

3:30 p.m. power losses are due to the reduction of output current.

On the other hand, the evolution of the indicators of current, shown by Fig. 3.2.12, detects
the reduction in current due to partial shading around noon and at 5.00 p.m. These low values
of current are the cause of the output power reduction in these time intervals, being the partial

shadow on the PV array between 12.00 p.m. and 1.00 p.m. the most important one. Then, the
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total output current of the PV array corresponds to the output current of the PV array having
one of the strings in open-circuit. The reduction of output current at 5.00 p.m. is not so

important, as can be seen in Fig. 3.2.13.

Finally, Fig. 3.2.14 shows the power losses due to partial shading of the PV array. In the
morning the power losses are mainly due to the lowering in voltage, while between 12:00 and

3:30 p.m. power losses are due to the reduction of output current.
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Figure 3.2. 15 Equivalent faulty strings.
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Figure 3.2. 16 Reduction of DC output power.

3.2.4. Conclusions

In this work the effect of partial shading and inverter disconnection on PV arrays based in
the study of indicators of current and voltage is presented. The use of these indicators in
automatic fault detection in grid connected PV systems was experimentally validated in a

previous work. Main faults as short-circuits, permanently bypassed PV modules, and open-

81



Publications

circuits, disconnected strings, can be detected in real time by the inverter himself by using a
method based on the evaluation of the ratios of current and voltage. The effects of these faults

remain in time and their effect on the current and voltage ratios is permanent.

In case of partially shaded PV generators, energy losses associated are not permanent in
the photovoltaic field, but detection of this situation can also be carried out through the study
of the evolution of indicators current and voltage. Moreover, the amount of power losses can

be estimated from the values of both indicators.

An experimental validation of the proposed procedure is shown in two grid connected PV

systems having different sizes, topologies, and different solar cell technologies.
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3.3.1. Introduction

One of the main difficulties involved in monitoring systems is the inability to add new
devices or new ways of evaluating the performance of these systems without significantly
changing the topology of the monitoring system. Firstly, the incorporation of new devices, in
the absence of standard communication protocols, requires the development of software for
acquiring data from these devices and it is also necessary to add the functionality of each of the
data that are acquired. Moreover, in photovoltaic (PV) plants connected to the grid each inverter
has its own communication protocol and issues its own program online or locally to access data
and plant information. These programs do not allow the inclusion of data from other inverters
or for other plants even in the case of inverters from the same manufacturer. Also, it is not
possible to incorporate any functionality to them in order to make a diagnosis and evaluation
of the operation of facilities, beyond including the system supplied by the manufacturer of the
inverter, who usually simply presents the information of the recorded data. Therefore, it is
possible to ensure that one of the most important problems when it comes to monitoring and
supervising solar energy plants is the communication between devices due to the different types
used. It is common to find many devices of different types and manufacturers who use different
ways of communication. In order to obtain a generic system, a general mechanism is needed to

communicate with any devices, irrespective of their characteristics or of the manufacturer.

To address these limitations, it has been proposed to use the OPC standard for monitoring
PV systems [1,2]. OPC was originally based on OLE (Object Linking and Embedding) for
Process Control [3,4]. However, OPC is now available on other operating systems. It is a
standard and consistent communication system for exchanging information and it allows
defining the rules of handshaking between different devices using the client-server paradigm;
this system has been used in industry to connect supervisory systems and data acquisition and
man-machine interfaces with the physical control systems [5]. Moreover, it allows the
development of components for interconnecting disperse systems providing interoperability
efficiently. This technology enables software components developed by experts in one sector
to be used by applications in any other sector. The design of OPC interfaces supports distributed

architectures.

The Data access OPC and Historical Data Access specifications are compatible with client-
server and publisher-subscriber communication models. The use of the Distributed Component

Object Model (DCOM) from Microsoft makes possible the access to remote OPC servers.
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DCOM extends Microsoft’s object-oriented Component Object Model (COM) to promote

interoperation of software objects in a distributed-heterogeneous environment.

Using this OPC standard, an automatic assessment model for solar energy plants was
proposed in [2]. The model for each installation is built using different data sources. Various

daily parameters were proposed to evaluate the performance of a photovoltaic system:

e The daily output energy of the photovoltaic plant, that is, the daily energy supplied by
the installation, Eday.
e The daily yield, Ya day, defined as the daily output energy per kWp installed.
The daily evaluation model is treated as an element of the system. The container used for

the model behaves as an OPC client with access to all data.

The operation of each plant is evaluated using a statistical analysis of the differences
between the measured parameters and the estimated parameters. These differences are checked
using the Jarque-Bera test [6] that informs whether these differences follow a normal
distribution. This proposal allows an initial daily evaluation of the performance of the PV
system. However, for a complete diagnosis of the detected problems generally related to the
DC side of the PV system, it is necessary to use additional methods based on a detailed analysis

of monitored data.

A list of fault detection methods for grid connected PV systems was reported in the past.
Some of these methods are based on power losses analysis [7-9] or on theoretical concepts of
descriptive and inferential statistics [10,11]. Bayesian [12] and neural networks [13] were also
used in fault detection procedures. However, these techniques require sophisticated software
environments and have a high computational cost. In this work a procedure for automatic fault
detection in grid connected PV systems is used. This procedure is based on a technique for the
evaluation of current and voltage indicators recently reported that was experimentally validated
and can work in real time without using sophisticated software tools [14—16]. The integration
of this fault detection procedure along with OPC monitoring, results in a powerful tool for
automatic supervision and fault detection of grid connected PV systems. The present work
shows the results obtained in the remote supervision of a grid connected PV system with a
nominal power of 14.08 kW located in Spain by using diagnosis tools in combination with OPC

monitoring.
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3.3.2. Methodology

3.3.2.1. Description of the OPC-based monitoring

The following parameters were monitored: Current, voltage and power (DC and AC),
cosine (¢), frequency, irradiance, partial energy and module temperature. The irradiance
received was measured using a calibrated solar cell installed in the plane of the modules.
Module temperature was measured using a Pt100 sensor fitted to the back of the module, in the
middle of a cell, near its geometric center. Both parameters are recorded by the data acquisition

of the inverter.

All data were supplied by the inverters. For data collection it was used OPC Historical
Data Access (OPC HDA) specifications which provide access to information already stored in
inverters and allow retrieving this information in a homogeneous and uniform way. A VPN and
IP were used to connect with the facilities. The data collection interval was 5 minutes. Data are
directly retrieved from the inverter. When the inverter is disconnected data are not recorded,

but data previously stored in the inverter will be transmitted when the inverter is connected.

Several elements are used in the monitoring process: The client software using OPC HDA
technology for downloading data from the devices, the device and the OPC HDA server that

knows the protocol and the procedure to download data from the device [17].

Data were stored in a PostgreSQL DBMS compatible with the SQL92 standard.

Daily evaluation and fault detection algorithms were implemented with OPC.

3.3.2.2. PV system modelling

The model of the PV array is mainly based on the Sandia PV array performance model
(SAPM) [18]. This model is an empirical model described by the fundamental Egs. (3.3-1) —
(3.3-7). The model contains several coefficients and parameters that are unknown and not
provided by the PV module’s manufacturer, by knowing these model parameters as well as the
solar radiation and the PV modules operating temperature, the output power of the PV array

can be predicted by using the following equations:

Ee=G/G, (3.3-1)
Iscg = Npgllsco-Ee - {1+ ajsc - (Tc —To)}] (3.3-2)
Impg = Ny4[Impo -{Cy - Ee + C, - Ee?}- {1 + apmp - (Tc — To)}] (3.3-3)
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§(Tc) =n-k-(Tc+273.15)/q (3.3-4)

Vocg = Nyg[Voco + Ny - 8(Tc) - In(Ee) + Byoc(Ee) - (Tc — To)] (3.3-5)

Vmpg = Ngy[Vmpo + C, - Ny - 8(Tc) - In(Ee) + C5 - Ny - {8(Tc) - In(Ee)}? 536
+ Pvmp(Ee) - (Tc —To)]

Pmpg = Impg-Vmpg (3.3-7)

where, Ee is the effective solar irradiance; G is the measured irradiance (W/m?); G is the
reference irradiance (1000 W/m?) at standard conditions (STC); To is the reference cell
temperature (25°C) at STC; Tc is the measured cell temperature inside module (°C); Isco is the
PV module short-circuit current at STC (A); ousc is the normalized temperature coefficient for
Isc, (°C™"); Iscg is the PV array short-circuit current (A); Npg is the number of modules
connected in parallel; /mpo is the PV module current at the maximum power point at STC (A);
Impg is the PV array current at the maximum power point (A); aump is the normalized
temperature coefficient for Imp, (°C™"); Co and C; are empirically determined coefficients which
relate Imp to the effective irradiance, Co+Cr=1, (dimensionless); d(7c) is the thermal voltage
per cell at temperature Tc; g is the elementary charge, 1.60218 107" (coulomb); k is the
Boltzmann’s constant, 1.38066 102* (J/K); n is the diode ideality factor; Voco is the PV module
open-circuit voltage at STC (V); froc is the temperature coefficient for module Voc at standard
irradiance, (V/°C); Ns is the number of cells in series per PV module; Nsg is the number of
modules connected in series; Vocg is the PV array open-circuit voltage (V); Vmpo is the PV
module voltage at the maximum power point at STC (V); fvmp is the temperature coefficient
for module Vmp at standard irradiance, (V/°C); Vmpg is the PV array voltage at the maximum
power point (V); C2 and C3 are empirically determined coefficients which relate Vmp to the
effective irradiance (C: is dimensionless, and the unit of C3 is (V') and finally Pmp is the PV

array power at the maximum power point (W).

In order to solve the system equations formed by the Egs. (3.3-1) — (3.3-7) and reproduce
the behaviour of the whole PV system with a good accuracy, it is necessary to apply specific
methods to determine the empirical coefficients. A method based on the combination of indoor
and outdoor measurements and coefficients estimation and fitting has been recently reported in
the literature [ 19]. The set of coefficients used by the model is obtained by means of a parameter
extraction procedure carried out in MATLAB/Simulink environment by using the Parameter

Estimation toolbox. The monitored current and voltage of the PV array together with in-plane
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irradiance (G) and cell temperature (7c¢) profiles are needed to estimate the set of unknown

parameters of SAPM model implemented in Simulink as illustrated in Fig. 3.3.1.

Figure 3.3. 1 Simulink block diagram of the parameter extraction algorithm.

The parameter extraction algorithm evaluates: Co, C1, C2, C3, aump, Pvmp and n by using Eq.
(3) and Eq. (6). A nonlinear regression method based on the Levenberg—Marquardt algorithm
was applied to both data sets: The daily monitored data from the PV array in real conditions of
work and the simulation results generated by using the described model of Sandia, in order to

minimize the quadratic error between the simulation results and the experimental data.

3.3.2.3. Fault detection procedure

The fault detection procedure is based on the analysis of the current and voltage indicators
for fault detection, NRc and NRv respectively, defined by Silvestre et al. [14] and given by the

following equations:

I

NRc = = (3.3-8)
Iscg
4

NRy = =2 (3.3-9)
Vocg

where Vm and Im are the coordinates of the maximum power point (MPP) at the DC side of the

PV array.

The fault detection algorithm evaluates both NRc and NRv indicators through MPP
coordinates available from the monitoring data set in real time, and the values of g and Vocg,
obtained for actual conditions of irradiance and temperature by using the PV array model

presented in the previous section. Two more parameters can be also obtained from the model
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simulations in real time: Impo and Vmpo, the current and voltage at the maximum power point of
the output of the PV array in absence of faults and normal operation of the PV array [14]. Then,

the expected values of NRc and NRv: NRco and NRvo, are given by:

I

NRco = 22 (3.3-10)
scg
v,

NRvo = mo (33-11)
Vocg

Silvestre et al. defined two thresholds for current, TNRcfs, and voltage indicators, TNRvbm,
that allow detecting most important faults in grid connected PV systems: short-circuits and
open-circuits in the PV array [14] as well as inverter disconnection or partial shading conditions
of work [15]. These thresholds were defined by the following equations:

TNRcfs = 1.02 a NRco (3.3-12)

TNRvbm = 1.02 f NRvo (3.3-13)

where o and £ are the relationship between the ratios of current in case of one faulty string and
fault-free operation and the ratio between the voltage ratios in case of one bypassed PV module

in a string of the PV array and fault-free operation respectively [14,15].

Both parameters depend only on the PV array configuration: Number of PV modules
connected in series by string, Ny, and number of strings connected in parallel, Nyg. In case of
permanent faults in the PV array, short-circuits or open-circuits, the corresponding current or
voltage indicator always remains below its threshold and their effect on the current and voltage
ratios is permanent, while in case of partial shading conditions of work or inverter disconnection
to prevent islanding, these indicators change as quickly as do the shadows in the photovoltaic
field or as soon as the inverter is reconnected to the grid. The islanding refers to the condition
in which the PV generator continues to power a location even though power from the electric
utility is no longer present. This situation can be dangerous to utility workers. So, the inverter
must be disconnected from the grid to avoid islanding when important frequencies of voltage

disturbances are observed.

The fault detection algorithm is able to detect all those faults and generate alarm signals to
indicate the most probably fault present in the system. Moreover, the total amount of power
losses caused by the fault as well as the equivalent number of short-circuited or bypassed PV
modules present in the PV array are also evaluated by the fault detection algorithm. The

equivalent number of faulty strings, Efs, is evaluated by using the following equation [15]:
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NRC) (3.3-14)

Efs=N 1-—
fs pg< NRco

Finally, the number of equivalent bypassed modules, BPmod, present on the PV array is

estimated as follows:

NRv
BPmod = Nsg (1 — )

3.3-15
NRvo ( )

The proportion of DC power losses due to the shadowing effect, Ploss, is also evaluated

by the automatic supervision procedure by using the following equation:

NRc NRU)
NRco NRvo

Ploss = (1 _ (3.3-16)

The efficiency parameters used for the energetic evaluation of the system are the
performance ratio (PR) and the array yield (Yx) given by the following equations:

At
o Pacdt

(3.3-17)
R,

Y

where Puc is the output power of the PV array and P, is the nominal power of the array.
Ya

PR = —
Yr

(3.3-18)

where Y7, is the daily total irradiation H in the array plane divided by the reference daily

irradiance at STC.

3.3.3. Results and discussion

The operation of a PV plant located in San Sebastian (Gipuzkoa, Spain), which is at latitude
of 43° is analysed. Table 3.3.1 shows the details of the PV system and main PV module

parameters used are given in Table 3.3.2.

Table 3.3. 1 PV system description.

Main Parameters PV system
PV Module IS 160
Nominal power 14.08 kWp
Number of inverters 3

Modules per inverter 28/30/30
Modules in series (Nsg) 14/15/15
Strings in parallel (Npg) 2/2/2

Tilt 20°
Orientation 9° East
Inverters Ingecon SUN 5 Single-phase inverter
Inverters nominal power SkWp
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Table 3.3. 2 Main parameters of PV modules.

PV module Parameters PV module IS 160
Isc (A) 9.46

Voc (V) 22.2
Current at Maximum Power Point: Impp (A) 8.65
Voltage at Maximum Power Point: Vmpp (V) 18.5
Temperature Coefficient of Voc: By, (V/°C) - 0.084
Temperature Coefficient of Isc: ay. (A/°C) 46103

This system was remotely supervised and daily evaluated by means of the OPC system.
When discrepancies between expected and actual values are observed, the fault detection

analysis previously described is applied. This analysis was carried out for the month of
December 2014.

The result of the parameters extraction algorithm presented in section 3.3.2.2 is the set of
empirical coefficients of the SAPM: Co, C1, C2 and C3 and PV module parameters: oump, frmp
and n, that allow the best approach to the daily evolution of output current and voltage of the
PV array. The values of main model parameters obtained by using the parameter extraction

algorithm for the PV system under study are given in Table 3.3.3.

Table 3.3. 3 Values obtained for model parameters.

Co C C:(VY) G amp(1°C)  Bimp(VPC) n
090336 0.002202  3.8319 99.94 3.768 10°  -0.10447  1.1003

Figs. 3.3.2 and 3.3.3 illustrate the daily monitored profiles of irradiance and cell

temperature of the PV array used as input data for the parameter extraction algorithm.
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Figure 3.3. 2 Irradiance profile corresponding to 10th of December, 2014.

93



Publications

Cell Temperature [°C]
—_ —_ [}®) [\ W W
(e W [ [ ] ()]

W
T
!

O 1 1 1 1 1 1 1 1
9 10 11 12 13 14 15 16 17 18

Time [h]

Figure 3.3. 3 Cell temperature corresponding to 10th of December, 2014.
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Figure 3.3. 4 Simulated and measured DC output Current corresponding to 10th of December, 2014.
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Figure 3.3. 5 Simulated and measured DC output voltage corresponding to 10th of December, 2014.
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Figs. 3.3.4 and 3.3.5 show the electrical monitored DC output current and voltage,
compared with the predicted results obtained by using the set of the model parameters evaluated
by the parameter extraction algorithm. The DC output power of the PV array is obtained as a
product of current and voltage in both real and simulated results and the obtained result is

illustrated in Fig. 3.3.6.

Power [KW]

9 10 11 12 13 14 15 16 17 18

0 ! ! !
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Figure 3.3. 6 Simulated and measured DC output Power corresponding to 10th of December, 2014.

As it is shown in Figs. 3.3.4 — 3.3.6, a good accordance is obtained between simulation
results and the real measured data. The simulation performance was also evaluated by
calculating the root mean square errors (RMSEs) of current, voltage and power between both

data sets for different days with different climatic conditions.

Table 3.3.4 shows the RMSE values obtained. As it can be seen in the table, there is a good
agreement between predicted and measured outputs. Furthermore, the inverters connected to
the PV array require a minimum input voltage (start-up voltage) to start working. A minimum
level of irradiance on the PV array is necessary to enable the proper operation of the inverters.
For that reason, a minimum level of G = 200 W/m? is considered to start the fault detection
evaluation procedure. The RMSE for current, voltage and power were evaluated after filtering

the data and run the simulations for irradiance values over the selected threshold of 200 W/m?.

Table 3.3. 4 Obtained RMSE (%) for different weather conditions.

Days RMSE Current [%] RMSE Voltage [%] RMSE Power [%]
Clear sky day (G>=200) 0.635 1.229 0.677
Semi cloudy day (G>=200) 0.889 1.284 1.693
Cloudy day (G>=200) 2.573 3.591 3.397
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The PV system included in this study was remotely supervised by means of the OPC
system. The fault detection procedure described previously is used for analysing the present

discrepancies between expected and actual values of the monitored parameters.

From the analysis carried out for the month of December 2014, Fig. 3.3.7 shows the
evolution of the monitored daily yields and the expected daily yields, Ya-exp, obtained from
the modelling of the PV system. As described in section 3.3.2.1, this PV system is formed by
three PV arrays connected to three single-phase inverters with a nominal power of 5 kW each
one. As shown in Table 3.3.1, the subgenerator 1 connected to the inverter 1 has 14 PV modules
per string instead of 15. So, the subgenerator 1 has two PV modules least in the PV field that

the other inverters.

As can be seen in Fig. 3.3.7 the daily yields corresponding to the inverter 3, Ya-3, are very
similar to the expected daily yields, Ya-exp, evaluated by the model in most of the days, while
the yields corresponding to inverters 1 and 2, Ya-1 and Ya-2 respectively, are lower than Ya-3
and Ya-exp. Furthermore, the sub-generator connected to the inverter 2 presents the lowest

yield in all the days of the month.
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Figure 3.3. 7 Daily array yields corresponding to December 2014.

In order to analyse possible faults present in the PV system, data corresponding to
December 11" was selected to show how the process performs analysis of fault detection. Figs.

3.3.2 and 3.3.3 show the irradiance and temperature profiles measured on this day of December.

Table 3.3.5 shows the daily energy generated by each sub-generator of the PV system (DC

and AC) as well as the performance ratio (PR).

As it can be seen in Table 3.3.5, the sub-generator connected to the third inverter presents

the highest value of PR, as it might be expected regarding the values of the yields shown in Fig.
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3.3.7. On the other hand, the PRs corresponding to the sub-generators 1 and 2 are lower,
especially the PR of the second array. This fact, together with low yields values shown in Fig.
3.3.7 for sub-generators 1 and 2, indicates some problems present in the PV arrays in this time
period. It is necessary to study the evolution of current and voltage indicators to identify the

cause of these problems.

Table 3.3. 5 Values of the PR and energy generated by the PV system corresponding to 11th of December,

2014.
Daily PR (%) Daily DC Energy (kWh) Daily AC Energy (kWh)
Sub-generator 1 73.03 13.928 13.026
Sub-generator 2 66.96 13.683 12.797
Sub-generator 3 76.44 16.366 14.609

As mentioned above, the fault detection algorithm is performed to values of irradiance
greater than G = 200 W/m?, corresponding approximately from 10.00 a.m. to 17.00 p.m. As it
can be seen in Fig. 3.3.2, the irradiance sensor did not detect any important shadow along the
day. However, partial shadows on the sub-generators 1 and 2 were identified by the supervision
procedure. The shadow did not cover the sensor irradiance, but a part of the PV generator was

affected.
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Figure 3.3. 8 Sub-generator 1. Evolution of the Voltage ratios and number of bypassed modules.
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Figure 3.3. 9 Sub-generator 1: Evolution of the Current Ratios and equivalent number of faulty strings.
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Figure 3.3. 10 Sub-generator 2: Voltage ratio and number of bypassed modules.

The sub-generator 1 is affected by shadows at the beginning and also at the end of the day.
Fig. 3.3.8 shows that between 10.00 a.m. and 11.00 a.m. as well as from 16.00 p.m. to 17.00
p.m. the voltage indicator, NRv, is below the threshold TNRbpm and up to 2.5 PV modules are
bypassed as effect of a partial shadow on the array. The number of bypassed PV modules is not
an integer because three bypass diodes are included in each of the PV modules present in the
PV array. This effect causes a reduction on the output voltage of the PV generator and also a

reduction of the output current that is clearly identified by the current indicator analysis shown
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in Fig. 3.3.9. Both indicators NRc and NRv demonstrate that the sub-generator 1 is highly
affected by the shadows in the morning period. At the end of the day, the indicator of current,
NRc, goes below the threshold, TNRc¢fs, and the reduction in output current is equivalent to one

faulty string in this sub-generator.

On the other hand, the shadow effects are also the cause of the low PR observed in sub-
generator 2 indicated in table 3.3.5. In this case the effect is more important. The voltage
indicator, NRv, appears below threshold, 7NRbpm, from 10.00 a.m. to 11.00 a.m. and after
15.30 p.m., as it can be seen in Fig. 3.3.10. The analysis shows up to seven bypassed modules

are detected in the morning and four in the afternoon.

The evolution of the indicators of current shown in Fig. 3.3.11 proclaims a clear reduction
in output current in the same periods of time. The effect of shadows on the array of sub-
generator 2 is larger than on sub-generator 1 in both cases: Output voltage and current, as it

might be expected.

Fig. 3.3.12 shows the evolution of voltage indicators. As it can be seen, the sub-generator
3 is working in normal operation without any problem except in the last time of the afternoon,
when the voltage indicator, NRv, appears below the threshold TNRbpm and it seems to be two
bypassed modules in the string. The rest of the day there is no reduction in output voltage due

to shadows on the array.
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Figure 3.3. 11 Sub-generator 2: Current Ratio and equivalent number of faulty strings.
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Figure 3.3. 12 Sub-generator 3: Voltage ratios and number of bypassed modules.

The evolution of the current indicator NRc given in Fig. 3.3.13 is very similar to the

expected value of NRco in free fault operation. The current shows a small reduction at the end

of the afternoon. However, the indicator of current, NRc, remains over the corresponding

threshold, TNRcfs, and no faulty strings are observed throughout the day.
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Figure 3.3. 13 Sub-generator 3: Current ratio and equivalent number of faulty strings.

The evolution of Ploss along the day, evaluated using Eq. 3.3-16, is given in Fig. 3.3.14

for the three sub-generators. It must be noted that, as it might be expected, the sub-generator

that presents the most important reduction in output power is the sub-generator 2, with a total
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reduction of a 32.76% with respect to the expected output power under normal conditions of
operation due to the partial shadows on the array at the beginning and also at the end of the day.
Sub-generator 1 shows also reduction in output power in the same periods of time. However,
the effect due to shadowing is lower and the total reduction in output power is of a 21.41% with
respect to the expected one. Finally, sub-generator 3 is the array showing the lowest power

losses.
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Figure 3.3. 14 Estimated power losses.

The results obtained by using the fault detection analysis by means of OPC monitoring for
the rest of the month are very similar to the ones presented as example for December 11%.
Neither disconnections of inverters to prevent islanding nor permanent faults in the PV system
were detected during the period analysed. The shading effects observed in sub-generator 2, in
the morning and afternoon, appear throughout all the month and are responsible for most losses
of the PV generation system. Sub-generator 1 is also affected by partial shading at the beginning
and at the end of the day, but in this case the duration is shorter and the effect in the total
reduction of output power is minor. The repetition of the pattern of shadows in the sub-
generators 1 and 2 indicates that the effect of nearby obstacles or even the effect of the shadow
of a string of PV modules on another string is its most likely origin. Finally, sub-generator 3

presents the best behaviour and daily yields, being the least affected by shadows.
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3.3.4. Conclusions

In this work a procedure for remote supervision and diagnosis of grid connected PV
systems by means of OPC monitoring is presented. Monitoring, supervision and fault detection

of the PV system are integrated in the same environment.

The supervision is based in the comparison of the monitored data with the expected
evolution of the output current, voltage and power of the PV system. In order to obtain the data
set corresponding to the expected behaviour of the PV system for actual irradiance and
temperature profiles a model of the PV generator is needed. An empirical model is used for this
purpose in combination with parameter extraction techniques. The experimental validation
results indicated that the model can accurately evaluate the values of output current, voltage
and power of the PV system in real conditions of work practically in real time. The RMSE
between real monitored data and results obtained from the modelling of the PV array were

below 3.6% for all parameters even in cloudy days.

The fault detection procedure used for the diagnosis of the PV system is based on the
analysis of the current and voltage indicators evaluated also from monitored data and expected
values of current and voltage obtained from the model of the PV generator. Finally, the remote
supervision and diagnosis procedure were experimentally verified in real conditions of work in
a grid connected PV system formed by three sub-generators connected to inverters with a
nominal power of 5 kW each. Results obtained show that the proposed methodology is effective
and offers a powerful tool in the field of remote supervision and control of PV systems

connected to the grid.
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3.4.1. Introduction

The photovoltaic (PV) market continues to grow steadily worldwide. PV systems are
replacing conventional energy sources becoming a major source of power generation due to

their environment friendly and renewable nature [1].

PV modules are a key element of PV systems and allow conversion of solar energy directly
into electrical energy. Several factors influence their performance such as solar irradiance and
its spectral distribution [2], mismatches, soiling [3] and operating module temperature [4-7].
Moreover, PV modules tend to degrade after long term outdoor exposition. The degradation
rate is mainly associated to the PV module technology and several studies have reported
analysis of outdoor performance and degradation of PV modules of different technologies [8—

11].

Crystalline silicon (c-Si) and polycrystalline PV modules supply most part of the global
photovoltaic energy production with a 90 % of the total annual production in 2013, while thin-
film (TF) PV modules are in third position with a 10 % of market share [12]. TF PV modules
use materials such as amorphous silicon (a-Si), CdTe, copper indium gallium selenide sulfide
(CIGS) and copper indium diselenide (CIS) among others. The main advantages of TF PV
modules are their lower production costs and lower temperature coefficients relative to the c-Si
and polycrystalline PV modules. However, TF PV modules present higher degradation rates
than polycrystalline and c-Si [9,13]. Recently, the TF a-Si PV modules market share noted a
regression probably due to this fact and to their lower module conversion efficiency [12].

Additionally, problems related to the bankability of these technologies still persist.

The a-Si PV modules present light-induced degradation (LID) due to the Staebler-Wronski
effect (SWE) [14-17]. The electrical performance degradation of these modules is very
important during the initial exposure to outdoor light due to changes in photoconductivity and
dark conductivity. This effect gradually tends to stabilize at power rates ranging from 10% to
30 % of the nominal power of the PV module. However, thermal annealing of the a-Si for
several hours at 150°C reverses these effects [17]. Moreover, a lower temperature annealing

also allows recovering the initial performance but takes a longer amount of time [19,20].

Several works have been conducted in attempt to explain the real performance
characterization of the a-Si PV modules when deployed outdoors. The degradation rate can be

based on the comparison of the monitoring outdoor performance with the initial indoor
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measurements taken as references [21-24], or by applying Linear Regression (LR) and

Classical Seasonal Decomposition (CSD) methods with temperature correction [25,26].

The studies presented in references [22—-24] demonstrate that TF hydrogenated single-
junction amorphous silicon (a-Si-H) PV modules are degraded mainly by the SWE effect, when
compared to other TF technologies. This degradation affects especially the internal parameters
of the solar cell as the short-circuit current, ideality factor, saturation current and series and

shunt resistances [18,27].

Understanding the origin of these degradation modes and how they affect the performance
of PV modules is essential to improve the reliability of PV modules, and selecting the best
technology for each specific climatic condition. In this paper we analyse the behaviour of TF
a-Si PV modules under outdoor long term exposure in Jaén (Spain, Latitude: 37° 47' 14.35" N,
Longitude: 3° 46' 39.73" W, Altitude: 511 m), a relatively dry and sunny inland site with a
Continental-Mediterranean climate. The period under scrutiny ranges from late July 2011 to

October 2014.

On the other hand, the variation of main solar cell model parameters is also evaluated by
means of parameter extraction techniques. We present a new parameter extraction procedure to
obtain main model parameters of the solar cells forming the PV system. The parameter
extraction has as input the daily monitored data of the PV system in real operation of work and

calculates the temporal evolution of main solar cell model parameters.

The paper is organized as follows: An overview of the degradation analysis methodology
and parameter extraction technique followed in the study is given in Section 3.4.2. Section 3.4.3
describes the PV array used in this study and details of the monitoring system. The results and
discussion are presented in Section 3.4.4. Finally, the conclusions of the study are given in

Section 3.4.5.

3.4.2. Methodology

3.4.2.1. PV Array model
The PV array output is based in the well-known *‘five parameter” model of the solar cell
in which the relationship between output current and voltage is given by the following nonlinear

implicit equation [28-30]:
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V4RI V4RI
)—1{— (3.4-1)

I=1y,—1
o =o[exw (57 %

where the five solar cell model parameters are: Photocurrent /,»; diode reverse saturation current
Io; ideality factor n; Rs and Rs» the series and shunt resistances respectively. I and V are the

output current and voltage and V7 is the thermal voltage.

Eq. (3.4-1) can also be written as follows,

I = Iph - Id - ISh (34-2)
where /s and Iy are the currents across the diode and shunt resistance respectively.

Generally, PV modules are formed by parallel strings of solar cells connected in series.
However, at present most PV modules include one single string of solar cells. Therefore, the
model of the solar cell can be scaled up to the model of the PV array taking into account the
configuration of the PV array: Number of PV modules connected in series by string and the
number of parallel strings forming part of the PV array as well as the internal configuration of

the PV module.

Several studies based on the simulation of PV systems applying this model were reported
in the literature. The simulations were carried out in software environments as: Pspice [30-33],
Matlab [34-36], or LabView [37,38] and results obtained were experimentally validated with
success. In this study we have used Matlab/Simulink for the simulations and the parameter

extraction.

3.4.2.2. Parameter extraction technique

One of the objectives of this work is the investigation of the variation of the solar cell
model parameters for single junction a-Si PV modules in real conditions of work. Therefore,
this study includes parameter extraction techniques in order to find the set of solar cell model
parameters able to reproduce the actual behaviour of the whole photovoltaic system with a good

accuracy degree.

Monitored electrical parameters: Current, voltage and power at the DC output of the PV
array together with in-plane irradiance (G) and cell temperature (7¢) profiles are needed in order

to estimate the set of model parameters of the solar cells forming the PV array.

Considering the number of parallel strings of solar cells present in the PV array, Np, Eq.

(3.4-2) becomes:
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I = Np (Iph - Id - ISh) (34-3)
where / is the DC output current of the PV array.

For any arbitrary value of G and T¢, the photocurrent, /,», is given by:

G
Iph = Flscc + ki(Tc - Tc*) (3'4_4)

where G* and T*. are respectively the irradiance and cell temperature at standard test conditions
(STC): 1000 W/m? (AM1.5) and 25°C, ki is the temperature coefficient of the current and I is

the solar cell short-circuit current at STC.

Each one of the strings of the PV array is formed by Ns solar cells connected in series. The

shunt current, I, included in Eq. (3.4-2) can be calculated from:
VIR
Ny = Ny (3.4-5)

l, =— 2
sh Rsh
where V' is the Therefore DC output voltage of the PV array.

The diode current, /4, included in Eq (3.4-2) is given by:

V IR
N TN,
A (3.4-6)
Iyj=1,[e —1]

where [, is the saturation current of the diode.

The saturation current of the diode presents a strong dependence on temperature and it is

usually given by:

Ego_Eg) /T .\3
I, = Iorefe(Vto vt)<_0) (3.4-7)

Ty
where lorer and Vi are the saturation current and thermal voltage at STC, respectively, Eg the

energy bandgap of the semiconductor and Eg. is the energy bandgap at T=0 K.

Eq. (3.4-7) can also be written, substituting lorer as a function of the short-circuit current:

Lsc and open-circuit voltage: Voc of the solar cell, as follows:

Ego Eg
Voo 7 /T3
= s <_C) (3.4-8)
e(n Vto) -1 Ie

The value of the energy bandgap of the semiconductor at any cell temperature 7¢ is given

by:
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agap TZ
E =E, ——272°¢ (3.4-9)
g 79° Bgap +T,

where ogqp and Leqp are fitting parameters characteristic of the semiconductor.

The parameter extraction algorithm evaluates: Ipn, Rs, Rsh, Io and n by using Egs. (3.4-4) —
(3.4-9). Daily profiles of monitored electrical parameters—namely, current and voltage at the
DC output of the PV array, together with G and Tt - are used as inputs of the parameter

extraction algorithm.

A nonlinear regression algorithm based on the Levenberg—Marquardt method was applied
to both data sets: The daily monitored data from the PV array in real conditions of work and
simulation results generated by using the described model, in order to minimize the following

quadratic function [39,40]:

N

S) = Z[li —I(Vi, )2 (3.4-10)

i=1

where 0 =f(Ipn, Lo, Rs, Rsi,n).

The toolbox has been interfaced with Simulink as illustrated in Fig. 3.4.1.

[Ish] > - Total current [A] ‘ Ish =(V + Rs")}Rsh I

] [
Gi] [re] L

Diode reverse saturation cument;
lo (T) ={Tc/298)3 * Isc/((exp(Voc/mVto)-1)*
exp(Ego/VtoEg/Vt)

Thermal voltage: 1l

g T
Vto= KTorefig: Vi=kTolg: Tcref\:ga K | o .
el 213 e} Ege
e B L =
@ [Te] (agap™u*2)/fbgap+u)
pep——{ ] wfwol) Pz
:

Figure 3.4. 1 Simulink block diagram of the parameter extraction algorithm.

The result of the parameter extraction algorithm is a set of solar cell model parameters that

allow the best approach to the daily evolution of output current and voltage of the PV array.

3.4.2.3. Output power of the PV array
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The effective peak power of a PV array, P*y, at STC is given by the following equation
[41,42]:
G*Ppc

P = T+ T — 1o G4

where Ppc, G and Tc are the DC output power of the PV array, the irradiance and cell
temperature respectively, y is the power temperature coefficient of the PV modules and G* and

Tc* are the irradiance and temperature at STC, respectively.

The power coefficient temperature, y, is normally stated in the PV manufacturer’s

datasheet. Nevertheless, it can be calculated as follows [6]:

1 0Pnax
Prnax OT

Y= (3.4-12)

where Pmax 1s the maximum power of PV modules at STC and the reference temperature is 25
°C.

Outdoor monitoring is subject to continuously changing operating conditions as
irradiation, temperature and spectrum. The evaluation of P*y requires a previous filtering of
irradiance values: G < 800 W/m?, in order to avoid the influence of operational anomalies, such
as shade on the PV array, inverter saturation, inverter—off, low irradiances, etc [41,42]. So, we
eliminated the data where irradiance is too low in our monitoring profiles before the calculation

of P*yrvalues.

As detailed in the next section, measurements of G are taken by using a pyranometer.
However, no spectral effects have been included in Eq. (3.4-11) as the solar spectrum
distribution at in-plane irradiance levels above 800 W/m? closely matches that of the AM 1.5G

standard reference spectrum in the city of Jaén [44].

3.4.3. Experimental

3.4.3.1. Climate characterization of the site and PV system description

As commented in section 3.4.1, Jaén is a dry and sunny inland site, with a Continental-
Mediterranean climate. In this sense, Table 3.4.1 may help provide a succinct climate
characterization. The PV system which has provided the necessary experimental support to this

work is located in Jaén and it is shortly described below.

110



Publications

Table 3.4. 1 Annual average values of some relevant meteorological parameters recorded in Jaén over 30

years [45]
Horizontal Ambient Minimum Maximum Relative Rainfall Barometric
irradiation temperature ambient ambient humidity (mm) pressure
(kWh-m™) (°O) temperature temperature (%) (hPa)
U©) )]
2038 16.9 11.4 22.4 63 558 954.1

The 900-Wp PV field comprises 15 a-Si:H TF PV modules, with 5 parallel-connected
strings of 3 series-connected PV modules each (Np = 5, Ns = 3). The main electrical
characteristics at STC of this PV field are gathered in Table 3.4.2. It is worth noting that the PV
modules are fixed to an equator-facing open rack with a tilt angle of 35°. This tilt angle was
intended to maximize the collection of annual on-plane irradiation. This criterion is widely
followed when planning PV grid-connected systems, unless constraints such as those imposed
by architectural integration may deter the PV project developer from following it. Bearing this
in mind, the optimal tilt angle for Madrid (Spain, latitude 40°24'N, longitude 3°42'W) lies
precisely at 35° [46]. This figure may be assumed for Jaén (Spain, latitude 37°47'N, longitude

3°46'W) with no significant error.

The PV field is connected to a single-phase grid-tied SMA™ Sunny Boy SB1200 inverter.
Two SMA™ Sunny SensorBox devices were installed on a metal plate in the same plane as the
PV field to measure cell and ambient temperatures together with wind speed. Two Pt 100
resistive thermal detectors (RTD) are used as module temperature sensors being glued to the
rear surface of the PV modules. The in-plane irradiance comes from a Kipp & Zonen™ CMP21
pyranometer, which is also installed on a metal plate, coplanar with the PV field. Onsite
measurements of DC voltage and current are recorded at the inverter input. Data were taken at

5-minute intervals.

Table 3.4. 2 Main electrical characteristics at STC of the analysed PV field. Values derived from the PV
module manufacturers' data sheet.

Maximum Open-circuit Short-circuit Voltage at maximum Current at maximum
power (W) voltage (V) current (A) power point (V) power point (A)
900 276 5.95 201 4.50

3.4.4. Results and discussion

3.4.4.1. Evolution of the effective peak power of the PV array

The effective peak power of the PV array, P*u, and the monthly radiation, H, along the

monitoring campaign are shown in Fig. 3.4.2. An important initial decrease of P*u can be
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observed due to the LID phenomenon and then the decrease occurred more slowly. On the other
hand, a seasonal variation of P*u is clearly shown in Fig. 3.4.2. This seasonal variation in a-Si
PV modules behaviour has been described by a number of authors [14,20,24,25]. The initial
decrease in output power of the array is followed by an increase over the summer months, a
decrease over winter months and once again an increase over summer months. The regeneration
on summer months can be attributed to spectral effects [47], to thermal regeneration[17,20,48]

and light-induced annealing [22].

P* mean value at G>700 (W) —— H monthly value (kWh/m2.Month)
--------- y=-1,6315x + 851,12
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Figure 3.4. 2 The effective peak power of the PV array P*y (for G > 700 W/m?), and the monthly radiation, H
along exposure period.

The sun’s elevation angle (ys, in degrees) at solar noon in Jaén varies from 90° - @ —23°27°
=28°46’ in winter solstices to 90° - @ + 23°45° = 75°40’ in summer solstices, where @ [°] is the
latitude. At solar noon, ys, = 52°13” in autumnal and vernal equinoxes. Regarding the angle of
incidence between the rays of the sun and the normal to the surface (s, in °) it should be kept
in mind that the tested PV array was deployed in the Northern Hemisphere on an equator-facing
surface with an inclination (35°) angle very close to the latitude (37°47°N). Hence, it may be
assumed that [49]:

cos B; = cos d Ccos w (3.4-13)

where o [°] is the solar declination and w [°] is the true solar time. Given that @ = 0° at noon, 6s
varied very approximately from 0 (equinoxes) to 23° (solstices) in our experimental campaign

at this time of the day.
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The degradation rate, Rp, can be analysed by a linear least square fitting method. This
method is applied to the monthly effective peak power of the PV array, P*u, calculated by using
Eq. (3.4-14) and monitored data. Using the trend line, the degradation per year can be calculated
by linear regression (LR) as follows [3,25]:

Equation of the trend line:

y=mx+c (3.4-14)

where m is the slope of line and c is the y intercept, thus the degradation per year: Rp(%) can
be calculated as follows [3]:
12m
Rp = 1OOT (3.4-15)

The degradation rate calculated from the trend line is found to be: -2.30 + 0.15 %/year.
The analytical uncertainty reported along with the degradation rate was determined from the
standard errors of the linear fit. The value obtained for Rp is in the range of previous results
presented in the literature for a-Si PV modules [9,25]. The highest degradation rates have been

reported in Korea and the Mediterranean region [25].

The stabilized power in a-Si PV modules is achieved when the power does not decrease
more than 1% in a month [13]. However, the amount of LID phenomenon depends on the

distribution of light and temperature at the specific location of the PV array.

In order to analyse the stabilization period of the PV array, a second monitoring data
filtering process was carried out following the procedure used in previous reported studies [14].
One point for each month of the monitored data for the tilted irradiance and working PV module

temperature in the range of 900 W/m? < G <905 W/m? and 48.6 °C < T < 54 °C was selected.

From the data obtained in the filtering process shown by Fig. 3.4.3, the stabilization period
was observed to start after 16 months of operation in Jaen. Stabilization periods around 16
months have been also reported for single junction a-Si PV modules under Malaysia’s outdoor

exposure [14].

The trend line in Fig. 3.4.3 is obtained by sixth polynomial correlation with R? equal to
0.9575. In the first month, it is observed a strong initial degradation respect to the other
monitored months. The DC power was degraded by about 11.2% in the first 70 days. In
November 2012 the DC power exhibited a decline by the relative percentage of 18.8% and then

is stabilized.
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As commented in section 3.4.3.1, the in-plane irradiance was recorded by means of a
pyranometer coplanar with the PV field. Values of G ranging from 900 to 905 W/m? correspond
to a true solar time interval comprised between @ = -30° and w = 30°, when the sun elevation is

then higher than that of the rest of the day. Consequently, the impact of the solar elevation on

the measurements and the angle of incidence dependence may be neglected.
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Figure 3.4. 3 Monthly trend line outdoor stabilization process obtained with the selected data of irradiance
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Figure 3.4. 4 Trend line outdoor stabilization process after 16 months using the selected data of irradiance

and cell temperature in the range of Wm’> < G < 905 W/m? and 48.6 °C < T < 54 °C.
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Fig. 3.4.4 shows the set of data after the first 16 months of operation and the trend line for
the DC output power of the array obtained by fifth polynomial correlation with R? equal to 0.88.
The stabilized level of DC output power of the array is around 682 W in the range of G and Tc
considered in data filtering process. In the following months, it demonstrates as a sinusoidal
form attributable to the annealing effects. The effect of seasonal oscillation remains after the

stabilization period for about 5 % variation from the stabilized level of DC power.

3.4.4.2. Parameter extraction procedure validation

The parameter extraction algorithm calculates the five model parameters of the solar cell:
Iph, Rs, Rsh, lo and n by using Eqgs. (3.4-4) — (3.4-9) described in section 3.4.2.2. The daily
monitored data: Output DC current and voltage, irradiance and temperature of the PV array in
real conditions of work are used as input data of the algorithm and it is executed until function
S(0), given by Eq. (3.4-10), is minimized. An average number of 10 iterations are needed to
find the set of solar cell model parameters for an input data set corresponding to one day of real

operation of the PV array, the extracted parameters are given in the table below.

Table 3.4. 3 Extracted solar cell model parameters

Day n R, [9Q] R [Q] Li[A] L [A]
23/12/2011  1.1286 0.0307 7.482 0.999 1.09 1015

Fig. 3.4.5 and 3.4.6 depict the electrical monitored data recorded during December 23,
2011: DC output current and voltage, compared with the simulation results obtained by using
the set of solar cell model parameters evaluated by the parameter extraction algorithm. The DC
output power of the array is obtained as a product of current and voltage in both real and
simulated results and the obtained result is illustrated in Fig. 3.4.7. It should be remembered

that the PV array located in Jaén (Latitude 37° 45°) is inclined at 35° from the horizontal plane.

As it can be seen a good agreement is found between simulation results and monitored
data. The coefficient of variation of the root mean square errors, CV(RMSE) between both data

sets are given in Table 3.4.4 for the current, voltage and power respectively.

Table 3.4. 4 CV(RMSE) obtained for main output electrical parameters of the PV array.

Poc [%] I [%] V [%l]
1.71 1.71 5.21
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Figure 3.4. 5 Monitored and simulated DC output current obtained by using the set of parameters estimated
by the extraction parameter algorithm.
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Figure 3.4. 6 Monitored and simulated DC output voltage obtained by using the set of parameters estimated
by the extraction parameter algorithm.

700
——Pdc_sim
| ——Pdc_meas
600
500
2 400 -
—
s
© 300 +
[oE
200
100
0 T T T T 1
8 10 12 14 16 18

Time [h]

Figure 3.4. 7 Monitored and simulated DC power obtained by using the set of parameters estimated by the
extraction parameter algorithm.
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3.4.4.3. Evolution of solar cell model parameters

The seasonal variation of a-Si PV modules behaviour can be also observed in the evolution
of the solar cell model parameters. The monthly average value of each one of the model

parameters was calculated for the whole monitoring campaign included in this study.

Fig. 3.4.8 shows the evolution of the values obtained for the ideality factor, n, by using the
extraction parameter technique. It can be seen in that the values of #n show an increase over the

winter months, a decrease over the summer months and once again an increase over the winter

months.
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Figure 3.4. 8 Average values of n obtained by using the parameter extraction algorithm.

In summer, a-Si solar cells experience higher temperatures and an improvement occurs in
material characteristics. There is an increase in charge carrier lifetime and a reduction in band
gap [22,24]. The improvement in carrier lifetime due to a reduction of recombination effects in
summer is the main responsible of the evolution of n. As can be seen in Fig. 3.4.9, n is closer
to 1 in summer periods. On the other hand in winter periods there is a deterioration of the p—n
junction quality as can be seen from the increase in # due to an increase in recombination current

[24]. The maximum seasonal variation of n observed is of 3.4 %.
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Figure 3.4. 9 Trend of the ideality factor, n, over December, January, July and August from 2011 to 2014.

The variation obtained for the saturation current, /o, given by Fig. 3.4.10 shows an opposite
trend to the variation of n. Eq. (3.4-9) gives the variation of the bandgap as a function of
temperature. The higher temperatures in summer period decrease the bandgap resulting in a
decrease in open-circuit voltage [24]. Temperature has also a strong effect on the variation of
the saturation current as shown in Eq. (3.4-8). The combination of bandgap reduction and strong
increase of temperature in summer periods along with the increase in short-circuit current due
to LID effect lead to an increase of the saturation current despite the reduction of recombination
effects in summer. As can be seen in Fig. 3.4.10, I, varies from values in the order of 10712 A to

values around 107'® in winter periods.

The continuing decrease in short-circuit current, /s, throughout the first 16 months of the
deployment period can be observed in Fig. 3.4.11. After that it shows a more stable trend.
However, the seasonal effect on /s is also clearly shown in Fig. 3.4.11, being the predominant
factor contributing to the large improvement in output power during summer time. There is an
important decrease in AM from winter to summer and a favourable spectral distribution of the
solar irradiance during summer especially in the ultraviolet region. The improvement in output
current during summer time is due to the effect of solar spectral irradiance and to thermal-
recovery of the LID [24,46]. The reduction of /s in the worst winter months is approximately
83% from the peak value of this parameter in the months of August. The lower temperature in

winter also reduces the thermal recovery rate for the a-Si solar cells.
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Figure 3.4. 10 Evolution of Io: Average values obtained by using the parameter extraction algorithm.
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Figure 3.4. 11 Evolution of Isc: Average values obtained by using the parameter extraction algorithm.
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Figure 3.4. 12 Evolution of Rsw: Mean monthly values obtained.
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Fig. 3.4.12 shows the evolution of the mean monthly value obtained by the parameter
extraction algorithm for the shunt resistance, Rs», along the monitoring period. There is an
average constant decrease of 0.19 %/year in Rs» values that finally reduces to a 50% of its initial
value. The reduction of Ry in TF solar cells under outdoor exposure for long periods of time
has been previously reported [18,24]. On the other hand, the evolution of Rs» shows the same

seasonal trend that the evolution of the output power of the PV array and /sc as expected.

0,06 -

0,05 -

0’°1III|||HI|||IIII| ||||II|‘ “I‘Illl
0_

Exposure Time [Month]

Figure 3.4. 13 Evolution of Rs: Mean monthly values obtained.

A continuing increase in the value of the series resistance, Ry, is found along the monitoring
campaign. The values of Rs go from an initial value of 10 mQ to a final value of 60 mQ. The
seasonal effect is observed again in the trend of Rs that present higher values in winter, with
maximum values in the month of December, and reduced values in summer, with minimum
values in the month of August. The behaviour of Rs shown by Fig. 3.4.13 is in accordance with
precious works reported in the literature for TF solar cells [18,24]. Moreover, the reduction of
Isc observed in winter is partially due to the increase of Rs. Eq. (3.4-1) can be particularized in

short-circuit conditions, V= 0, and rewritten as follows:

I..R
Isc:Iph_ sghs
s

(3.4-16)

As can be seen in Eq. (3.4-16), the combination of higher values of Ry and lower values of
Rsn in winter periods results in a decrease of /.. The effect is the opposite in summer periods,

where Rsn presents higher values while Ry and /sc decrease.
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3.4.5. Conclusion

The degradation modes of TF single junction a-Si PV modules and how they affect the
performance of PV modules in a relatively dry and sunny inland site with a Continental-
Mediterranean climate is addressed in this paper. The data used in this study was obtained under

outdoor long term exposure of the PV system in Jaén from late July 2011 to October 2014.

A reduction of the DC power of the PV array by about 11.2% was observed in the first 70
days of outdoor deployment. The stabilization period was observed to start after 16 months of
operation with a decline of the DC power by the relative percentage of 18.8% and then it is
stabilized. However, the effect of seasonal oscillation remains after the stabilization period for

about 5% variation from the stabilized level of DC power.

Solar cell parameters identification is also addressed in this paper by using a new parameter
extraction technique. The sets of solar cell model parameters obtained by using the parameter
extraction technique are able to reproduce the behaviour of the PV array in real conditions of
work with a good accuracy degree. The parameter extraction technique is able to evaluate the
temporal evolution of main solar cell model parameters and helps to understand the evolution

of the entire system at PV module level.

The seasonal variation of a-Si PV modules behaviour was also observed in the evolution
of the solar cell model parameters. The evolution of each one of the model parameters along
the outdoor long term exposure of the PV system has been analysed and allows achieving a
better understanding of the performance changes of the PV modules and the evolution of the

output power of the PV array.
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5.3.1. Introduction

Thin-film photovoltaic (TFPV) technologies based on cadmium-telluride (CdTe), copper
indium gallium selenide (CIGS) and silicon take around 10% of the global PV market that is
mainly dominated by crystalline silicon (c-Si) PV modules. Thin-film silicon PV modules are
based on either amorphous silicon (a-Si:H) or microcrystalline silicon (uc-Si:H) and have
plenty of advantages such as lower temperature coefficient relative to c-Si and polycrystalline
PV modules, low quantity silicon usage as raw material, low-cost manufacturing process and
flexibility in product design. However, several weaknesses and challenges in TFPV
technologies have been discussed such as low conversion efficiency and long term
technological risks in the field performance in terms of durability when compared with the

crystalline technology [1].

A list of studies reported analysis of outdoor performance and degradation of PV modules
of several technologies under different climatic conditions [2—6]. Likewise, performance
evaluation of specific TFPV modules based on: CIGS [7], CdS/CdTe [8], a-Si:H and pc-Si:H
[9] were also reported. These studies showed that the degradation rate is mainly associated to
the PV module technology and, in addition, TFPV modules present higher degradation rates
than polycrystalline and c-Si PV modules [3,10]. On the other hand, a-Si:H suffers from a
performance degradation called light-induced degradation (LID) due to the Staebler-Wronski
effect (SWE) [11,12]. It was demonstrated that a-Si:H TFPV modules are degraded mainly by
the SWE effect, when compared to other TFPV technologies [13—15]. This degradation

phenomenon is also present but is much less severe in pc-Si:H TFPV.

Micromorph TFPV modules are formed by micromorph tandem (a-Si:H/pc-Si:H) solar
cells that allow a more effective use of the solar spectrum than c-Si solar cells because the band-
gaps of both materials form an ideal combination; a-Si:H has a band-gap in the range of 1.7—
1.8 eV, while pc-Si:H has the same band-gap as a c-Si wafer, i.e. 1.12 eV [16]. In order to
mitigate the degradation of the a-Si:H top cell due to the SWE effect, it needs to be as thin as
possible, typically 0.2-0.3 um. However, a thinner a-Si:H layer limits the short-circuit current
of the solar cell if a good matching with the short-circuit current density of the bottom cell is
not achieved. For this purpose, an intermediate reflecting layer (IRL) is typically implemented
between the top and bottom cells in order to reflect back part of the light that is not absorbed
during its first passage through the top a-Si:H cell. Then, the IRL enables a reduction of the a-
Si:H solar cell thickness, while keeping its short-circuit current density matched with the one

of the bottom cell [1].
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In this work, the behaviour of micromorph TFPV modules under outdoor long term
exposure in Jaén, Spain, is analysed. The period under scrutiny ranges from late July 2011 to

December 2014.

On the other hand, the variation of main solar cell model parameters is also evaluated by
means of parameter extraction techniques. The parameter extraction has as input the daily
monitored data of the PV system in real operation of work and calculates the temporal evolution
of main solar cell model parameters able to reproduce the actual behaviour of the whole PV

system with a good accuracy.

The remainder of this paper is organized as follows: An overview of the PV array under
study and its model is given in section 3.5.2. The parameter extraction technique, as well as
the degradation analysis methodology is also introduced in Section 3.5.2. Section 3.5.3
describes the experimental PV validation of the parameter extraction algorithm array used in
this study. The results and discussion are presented in Section 3.5.4. Finally, the conclusions of

the study are given in Section 3.5.5.

3.5.2. Methodology

3.5.2.1 Description of the PV system

The PV system under study is sited in Jaén. Jaén is a dry and sunny inland Spanish city
with a Continental-Mediterranean climate. Table 3.5.1 summarizes main climate parameters of

that city sited in the south of Spain. Fig. 3.5.1 shows its placement in the Iberian Peninsula.

Table 3.5. 1 Annual average values of main meteorological parameters recorded in Jaén over 30 years[17].

Horizontal Ambient Minimum Maximum Relative Rainfall ~ Barometric

irradiation temperature ambient ambient humidity (mm) pressure

(kWh-m) (°O) temperature (°C)  temperature (°C) (%) (hPa)
1788 16.9 11.4 22.4 63 558 954.1

The PV array comprises 8 micromorph TFPV modules, with 2 parallel-connected strings
of 4 series-connected PV modules each (Npm = 2, Nsm = 4). Main electrical characteristics at

STC of this PV field are given in Table 3.5.2.

Table 3.5. 2 Main electrical characteristics of the PV array at STC.

PV module  Configuration Maximum Open- Short- Voltage at Current at
Nsm X Npm power (W) circuit circuit maximum maximum
voltage (V)  current (A) power point power point
V) (A)
a-Si:H/pc-Si 4x2 880 284 5 216 4.08
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Figure 3.5. 1 City of Jaén: Latitude: 37°47' 14.35"' N Longitude: 3°46' 39.73 "' W, Altitude: 511 m.

The PV system was installed outdoors at the beginning of July 2011 in a south oriented
30° tilted open rack located on the flat roof of the High Technical School building in the
University of Jaen (UJA) in Jaén itself and it is connected to a single-phase grid-tied SMA™
Sunny Boy SB1200 inverter. Two SMA™ Sunny SensorBox devices installed on a metal plate
in the same plane as the PV field were used to measure cell and ambient temperatures together
with wind speed. Moreover, two Pt 100 resistive thermal detectors (RTD) are used as module
temperature sensors. The in-plane irradiance was monitored by means of a Kipp & Zonen™
CMP21 pyranometer, which is also installed on the PV array plane. Onsite measurements of

DC voltage and current are recorded at the inverter input with a sampling rate of 5 minutes.

3.5.2.2 PV Array model and parameter extraction

The well-known one diode five parameter model is considered in this work for modelling
the micromorph solar cell, where the relation between the output current and voltage is defined

as follows:

V + Ryl V + Rl
>_ 1] _ (3.5-1)

I =1, —1
ph o [exp( Rsh

nvy
where: Iyn is the photocurrent (A), I is the diode reverse saturation current (A), n is the diode

ideality factor, Rs and Rs» are the series and shunt resistances respectively (Q), V% is the thermal

voltage (V). I and V are the output current (A) and voltage (V).

The model of the solar cell described by Eq. (3.5-1) can be scaled up to the model of the
PV array taking into account the configuration of the PV array: Number of PV modules

connected in series by string: Nsm, and the number of parallel strings forming part of the PV
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array: Npm, as well as the internal configuration and the number of solar cells contained in the

PV module [18].

Several studies based on the simulation of PV systems on different software environments
have applied this model and results obtained were experimentally validated with success [19—
24]. In this work Matlab/Simulink environment is used for the simulations and the parameter

extraction.

In our study we are interested in the investigation of the variation of the solar cell model
parameters of the micromorph silicon PV modules when exposed outdoors. Therefore, a
parameter extraction technique is included in order to find the set of solar cell model parameters

able to reproduce the actual behaviour of the whole PV system with the best accuracy.

The parameter extraction technique used in this study is the same used in [25], where the
monitored data: Current, Voltage and Power at the DC output of the PV array together with the
in-plane irradiance: G, in W/m? and cell temperature: 7¢, in °C profiles, are used as inputs for
the parameter extraction algorithm in order to estimate the set of model parameters of the solar

cells forming the PV array.

Considering the number of parallel strings of solar cells present in the PV array, Ny, Eq.

(3.5-1) can be written as follows:

I'= Ny = lg = Isn) (3.52)

where / is the DC output current of the PV array (A), /a is the diode current (A) and L is the

shunt current (A).

For any arbitrary value of G and T¢, the photocurrent, /,», is given by:

G ] i
Iyn = Elscc + ki (T, — T¢) (3.5-3)

where G* and T*. are respectively the irradiance and cell temperature at standard test conditions
(STC) respectively, 1000 W/m? (AM1.5) and 25°C, ki (°C™") is the temperature coefficient of

the current and Zscc (A) is the solar cell short-circuit current at STC.

The diode current, /4, included in Eq. (3.5-2) is given by:

V IR
N TN,
v, (3.5-4)
I;j=1,]e —1]

where I, (A) is the saturation current of the diode and N is the number of solar cells connected

in series in each string.
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The saturation current of the diode depends strongly on temperature and it is given by:

(___
= [scc e Vo e (T )3 (3.5-5)

ave) _ 1 I

where Iscc and Voc are the short-circuit current and the open-circuit voltage of the solar cell

respectively, Vi is the thermal voltage at STC, Eg the energy bandgap of the semiconductor and
Ego 1s the energy bandgap at T=0 K.

The value of the energy bandgap of the semiconductor at any cell temperature 7¢ is given
by:

agap TZ
E =E, ——272°¢ (3.5-6)
g 79° Bgap +T,

where agqp and feup are fitting parameters characteristic of the semiconductor.

Finally, the shunt current, /s, included in Eq. (3.5-2) can be calculated from:

Vv IR
_Ns Ny (3.5-7)

I
sh Rsh

where V' is the DC output voltage of the PV array.

The parameter extraction algorithm evaluates: Ipi, Io, Rs, Rsn, and n by using Egs. (3.5-2) —
(3.5-7) and actual daily profiles of monitored electrical parameters—namely, current and voltage
at the DC output of the PV array, together with G and 7¢. Then, a nonlinear regression algorithm
based on the Levenberg—Marquardt method was applied to both data sets: The daily monitored
data from the PV array in real conditions of work and simulation results generated by using the

described model, in order to minimize the following quadratic function [25-27]:
N

S6) = Z[li — Vi, 0)]? (3.5-8)

i=1
where @ = f (Ipn, 1o, Rs,Rsh,n)

More details about the parameter extraction technique can be found elsewhere [25].

3.5.2.3 Effective peak power of the PV array

The degradation analysis is based on the variation of the output power of the PV array
along the monitoring campaign. The effective peak power of a PV array, P*y, at STC may be

measured as follows [28,29]:
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Py = 6 Foc - (3.5-9)
G [1 + V(Tc - Tc )]

where Ppc (W) is the DC output power of the PV array, G* and T.* are the irradiance and
temperature at STC, respectively, and y (°C™!) is the power temperature coefficient of the PV

modules.

The power coefficient temperature, y, can be calculated as follows [30]:

1 0Pnax
Prax OT

y = (3.5-10)

where Pmax 1s the maximum power of PV modules at STC and the reference temperature is 25

°C.

The evaluation of P*u requires a previous filtering of irradiance values in order to avoid
the influence of operational anomalies [28,29]. In this study the data corresponding to low levels
of irradiance (G < 700 W/m?) are discarded before the calculation of P*yvalues. As the solar
spectrum distribution at in-plane irradiance levels above 700 W/m? closely matches that of the
AM 1.5G standard reference spectrum in the city of Jaén [31], Eq. (3.5-9) does not take into

account any spectral effects.

3.5.2.4 Power-Irradiance technique

In this work, the technique presented by Hussin et al [12] was considered. This technique
allows assessing the degradation of PV modules exposed under outdoor conditions, by
observing the transition of the real output power between two boundaries indicators; predicted

initial and stabilized data values of PV array DC power outputs.

The predicted initial, Pdcinir, and stabilized, Pdcsap, data values depend on the measured
plane-of-array irradiance (G), module temperature (7¢), and can be calculated by using the

following equations:

Pdcinit = Nsm Npm Pminit. n. Geff (1 + kv. AT) (1 — ki. AT) (35-1 1)
Pdcgap = Nom- Npm- PMgeap. 1. Gopr. (1 + kv, AT). (1 — ki. AT) (3.5-12)
G
G
AT =T, —T, (3.5-14)

where Nsm and Npm are the number of PV modules connected in series and parallel respectively,

Pminir 1s the initial measured peak power of PV module, kv and ki are the voltage and current
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temperature coefficients respectively provided in the manufacturer’s data sheet (°C™'), Pdcsuab
is the predicted array DC power referred to stabilized, Pmsuab 1s the stabilized peak power of the
PV module found in the manufacturer’s data sheet, # is the efficiency referred to all general
system losses which changes between 0.89 in summer and 0.86 in winter months, G» and T» are

the reference irradiance and cell temperature respectively at STC .

As it has been previously mentioned, a data filtering process was carried out in order to

avoid problems of uncertainties caused by low values of irradiance (G < 700 W/m?).

Linear regression equations are obtained by using a Linear Correlation Approach (LCA)
from the actual PV array DC output power for each month described by the following empirical
equation:

Pdc = Ag.G +C (3.5-15)

where Pdc is the array DC output power, Agr s the gradient, G is the plan-of-array irradiance

and C is the ordinate value of Pdc at G = 0.

Finally, the monthly gradient values of each empirical equation can be plotted to observe
the degradation rate and determine the stabilization period upon this type of micromorph PV

modules [12].

3.5.3. Experimental

3.5.3.1 Parameter extraction procedure validation

The parameter extraction algorithm calculates the set of values for the five model
parameters of the solar cell: In, Rs, Rsn, 1o and n by using Eqgs. (3.5-2) — (3.5-7) described in
section 3.5.2.2 that allow reproducing the actual behaviour of the PV array. For this purpose,
the daily monitored data set: Output DC current and voltage, irradiance and temperature of the
PV array in real conditions of work are used as input data for the algorithm and it is executed
until function S(0), given by Eq. (3.5-8), is minimized. Table 3.5.3 shows the set of solar cell
model parameters obtained corresponding to October 6, 2011.

Table 3.5. 3 Extracted solar cell model parameters.

Day 1, [A] Li [A] Ra [Q] R, [Q] n
06/10/2011 9.15 10 2.1811 9.6602 0.0455 12642
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Figure 3.5. 2 Measured versus estimated DC output power obtained by using the set of the extracted solar cell
model parameters.

Fig. 3.5.2 shows a comparison of the DC output power of the PV array, monitored and
evaluated by using the set of model parameters obtained from the parameter extraction
algorithm for that day. As it can be seen a good agreement is found between simulation results
and monitored data. The coefficient of variation of the root mean square errors, (CVRMSE)
between both data sets, monitored and calculated by using the set of model parameters, are
given in Table 3.5.4 for the DC output current, voltage and power of the PV array respectively.

Table 3.5. 4 (CVRMSE) obtained for main electrical parameters of the PV array.

RMSE_Current [%] RMSE_Voltage [%] RMSE_Power [%]
1.29 2.44 2.60

3.5.4. Results and discussion

3.5.4.1 Evolution of the effective peak power of the PV array

The evolution of the effective peak power of the PV array, P*y, and the monthly radiation,

H, along the monitoring campaign are shown in Fig. 3.5.3.

As it can be seen, an initial important decrease of the effective peak power can be clearly

identified and after that, the variation of the P*u follows the climate seasonal changes.

The initial decrease in output power of the array is followed by an increase over the
summer months, a decrease over winter months and once again an increase over summer

months. As the solar cells contain a thin film amorphous layer, the regeneration on summer
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months can be assigned to light-induced annealing [13], spectral effects [32] and to the thermal

regeneration [33,34].
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Figure 3.5. 3 The effective peak power of the PV array P*M (W) (for G > 700 [W/m?]), and the monthly
radiation, H along exposure period.

A linear least square fitting method was used to estimate de degradation rate, Rp. This
method was applied to the monthly effective peak power, P*u, calculated by using Eq. (3.5-16)
and monitored data. The degradation per year can be calculated by linear regression (LR) as

follows [35,36]:

The equation of the trend line is:

y=mx+c (3.5-16)

where m (W/month) is the slope of the line, x is the month and ¢ (W) is the initial power output,

when time is zero.

Thereby, the degradation per year: Rp (%) can be calculated as follows [36]:

12m
Ry = 1OOT (3.5-17)

The degradation rate calculated from the trend line is found to be: -2.20£15 %/year. The
analytical uncertainty reported along with the degradation rate was determined from the
standard errors of the linear fit. A second monitoring data filtering process was carried out
following the procedure used in previous reported studies in order to analyse the stabilization

period of the PV array [12]. In this second filtering process, one point for each month of the
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monitored data for tilted irradiance in the range of 900 W/m? < G < 920 W/m? and working PV

module temperature in the range 53 °C < T. < 60 °C was selected.
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Figure 3.5. 4 Monthly trend line outdoor stabilization process obtained with the selected data of irradiance
and cell temperature in the range of 900 W/m? < G < 920 W/m? and 53 °C < Tc < 60 °C.
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Figure 3.5. 5 Trend line showing the stabilization after 14 months of outdoor operation obtained from the
selected data of irradiance and cell temperature in the range of 900 W/m? < G < 920 W/m? and 53 °C < Tc < 60 °C.

From results obtained in the filtering process shown by Fig. 3.5.4, the stabilization period
was observed to start after four months of operation under the climatic conditions of Jaén. A

previous work [12] based on the data supplied by the PV modules manufacturer indicated
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stabilization periods up to two months for this kind of TFPV modules. The results obtained
show that under Spanish climate conditions the stabilization period of these PV modules is
greater. A strong initial degradation is observed in the first month of operation, respect to the
other monitored months, where the DC power was degraded by about 12.51%. The trend line
in Fig. 3.5.4 is obtained by sixth polynomial correlation with R? equal to 0.9499.

Fig. 3.5.5 shows the set of data after the first 14 months of operation, when the PV modules
are totally stabilised, after a power loss of 16.66% due to the degradation. The linear trend line
with a very small slope, demonstrates that the stabilization level of the PV array output DC
power is around 635 W in the range of G and 7. considered in data filtering process. In the
following months, it shows a sinusoidal trend attributable to the annealing effects. The effect
of seasonal oscillation remains after the stabilization period with variations about 3.18% from

the stabilized level of DC output power.

5.3.4.2. Power-Irradiance technique results

The Power-Irradiance technique was applied to assess the degradation rate and the
stabilization period of the micromorph TFPV PV modules deployed under outdoor conditions

from July 2011 to December 2014.

The measured DC output power of the PV array (blue points), delimited by the two
boundaries defined as; initial (red circles) and stable (green stars) obtained from equations Egs.
(3.5-11) — (3.5-14), are plotted in function of the plane-of-array measured irradiance (G) values
for each month of the second semester of each year of the experimental period as illustrated in

Fig. 3.5.6 - 3.5.9.

From the Figs. 3.5.6 — 3.5.9 it can be seen that, the measured DC array output power
changes the tendency from the expected initial values to the stabilized ones in the course of

time.
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Figure 3.5. 6 DC output power evolution from July 2011 to December 2011.
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Figure 3.5. 7 DC output power evolution from July 2012 to December 2012.
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Figure 3.5. 9 DC output power evolution from July 2014 to December 2014.

Table 3.5.5 illustrates the empirical equations obtained by the LCA applied to the measured
PV array DC power output allowing the identification of the degradation and stabilization

periods.
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The stabilization period can be estimated by plotting the gradient values obtained from the
empirical equation of each month listed in Table 3.5.5. As it can be seen from Fig. 3.5.10, the
gradient magnitude demonstrates a diminution by 2.54% of the initial value after the first month
of exposure of the PV modules under outdoor conditions. After that, the evolution of the
gradient magnitude shows a continue decrease during the next months until reach a sinusoidal
trend. Due to seasonal variation, the gradient magnitudes oscillate around the value 0.664,

which represents a 6.47% of reduction of the first value.

Table 3.5. 5 Monthly empirical equation based on LCA.

Month  Gradient R? Empirical Equation

Jul-11 0.708 0.9859  Pdc =0.708*G + 31
Aug-11 0.690 0.9714  Pdc = 0.690*G + 48
Sep-11 0.688 0.9788 Pdc =0.688*G + 53.8
Oct-11 0.695 0.9579  Pdc =0.695*G +45.4
Nov-11 0.690 0.9595 Pdc =0.690*G - 1.58
Dec-11 0.686 0.8045 Pdc =0.686*G +22.6
Jan-12 0.680 0.9390  Pdc = 0.680*G - 2.52
Feb-12 0.673 0.9756  Pdc =0.673*G + 27.83
Mar-12 0.669 0.9816 Pdc =0.669*G + 35.3
Apr-12 0.658 0.9786 Pdc =0.658*G +31.1
May-12 0.657 0.9699  Pdc =0.657*G + 34
Jun-12 0.650 0.9632  Pdc = 0.650*G +27.9
Jul-12 0.652 0.9563  Pdc =0.652*G +47.1
Aug-12 0.648 0.9638 Pdc =0.648*G + 21.8
Sep-12 0.652 0.9809  Pdc =0.652*G + 50
Oct-12 0.674 0.9795 Pdc =0.674*G + 44.6
Nov-12 0.657 0.9636 Pdc =0.657*G +17.3
Dec-12 0.675 09352 Pdc =0.675*G + 29
Jan-13 0,674 0.9459  Pdc =0.674*G + 6.61
Feb-13 0,672 0.9768 Pdc =0.672*G +12.3
Mar-13 0,671 0.9738 Pdc =0.671*G + 23
Apr-13 0,658 0.9804 Pdc =0.658*G +44.4
May-13 0,657 0.9799  Pdc = 0.657*G + 30.7
Jun-13 0,653 0.9693  Pdc =0.653*G + 32.1
Jul-13 0,647 0.9668 Pdc =0.647*G + 44
Aug-13 0,649 0.9683  Pdc =0.649*G +45.8
Sep-13 0,647 0.9820 Pdc =0.647*G + 58.2
Oct-13 0,672 0.9776  Pdc =0.672*G + 36
Nov-13 0,678 0.9462  Pdc =0.678*G +17.6
Dec-13 0,676 0.9439  Pdc =0.676*G + 6.71
Jan-14 0,675 09741 Pdc =0.675*G +13.2
Feb-14 0,669 0.9672  Pdc =0.669*G + 19.1
Mar-14 0,665 0.9775 Pdc =0.665*G + 27.5
Apr-14 0,656 0.9756  Pdc = 0.656*G + 24
May-14 0,656 0.9772  Pdc = 0.656*G + 25.1
Jun-14 0,652 0.9820 Pdc =0.652*G + 29
Jul-14 0,653 0.9761 Pdc =0.653*G + 26
Aug-14 0,651 0.9748 Pdc = 0.651*G +25.9
Sep-14 0,649 0.9744 Pdc = 0.649*G + 15.9
Oct-14 0,677 0.9727 Pdc =0.677*G +20.3
Nov-14 0,674 0.9534 Pdc =0.674*G + 11.1
Dec-14 0,678 0.9593  Pdc =0.678*G + 7.07
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Fig. 3.5.11 confirms that, the stabilization period of these TFPV modules requires four
months of exposure under real conditions of solar irradiance and temperature corresponding to
the climate of Jaén. This result agrees with the stabilization period obtained in the study of the

evolution of the effective peak power of the PV array presented in the previous section.
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Figure 3.5. 10 Gradient values obtained along the monitoring campaign.
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Figure 3.5. 11 Gradient values obtained after the stabilization period.

3.5.4.3. Evolution of solar cell model parameters

The evolution of the solar cell parameters reflects the behaviour of the TFPV modules
under seasonal climatic variation. The following figures show the monthly average value of

each one of the solar cell model extracted parameters during the whole monitoring period.

Fig. 3.5.12 illustrates the evolution of the ideality factor n, obtained by the parameter

extraction technique. It can be seen that the variation of the values obtained is very small and
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follows the seasonal changes. The ideality factor shows a small reduction in summer while it
increases in winter periods. However, the value of »n fluctuates around a mean value of n = 1.2
and the seasonal variations are small. This fact indicates that the diode included in the
equivalent circuit of the solar cell corresponding to the five parameter model is dominated by

the pc-Si:H substrate [37].

In summer months, it can be seen that there is an improvement in the material
characteristics especially in the amorphous layer, caused by the higher temperatures reached by
the solar cells. This improvement is due to an increase in charge carrier lifetime and a reduction
in band gap [13,15], that's why the values of n are reduced. On the other hand, in winter months,
the extracted values of the ideality factor n are increased due to the increase of the

recombination current [15].
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Figure 3.5. 12 Average values of n obtained by using the parameter extraction algorithm.

The evolution of the saturation current, /» (blue colour), shown in Fig. 3.5.13 demonstrates
how the variations of the temperature can affect the bandgap of the solar cell material given by
the Eq. (3.5-5). The evolution of /, is opposite to the trend shown by the ideality factor, n, as

expected.

The open-circuit voltage is decreased due to the decrease of the bandgap caused by the
higher temperatures in summer season [15]. The combination of bandgap reduction and strong
increase of temperature in summer periods along with the increase in short-circuit current due
to LID effect lead to an increase of the saturation current despite the reduction of recombination

effects in summer. As can be seen in Fig. 3.5.13, I, varies from values in the order of 10”7 A to
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values around 10® A in winter periods. This variation of about one order of magnitude also

explains the small seasonal changes observed in the value of the ideality factor.
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Figure 3.5. 13 Evolution of 1, (blue colour) and I (red colour); Average values obtained by using the
parameter extraction algorithm.

The continuing decrease in short-circuit current, /s, throughout the first four months of the
deployment period can be observed in Fig. 3.5.13. After that it shows a more stable trend

following the seasonal changes.

The improvement in output current during summer time is due to the effect of solar spectral
irradiance and to thermal-recovery of the LID affecting the thin film amorphous layer [15,32].
The lower temperatures in winter also reduce the thermal recovery rate for the a-Si solar cells.
The minimum value of I in the worst winter months is approximately 12% less than the peak
value of this parameter for the a-Si:H/uc-Si solar cells. This reduction is very small compared

to the observed on a-Si PV modules in outdoor conditions of work at the same location [25].

Fig. 3.5.14 shows the evolution of the mean monthly values obtained by the parameter
extraction algorithm for the shunt and series resistances, R (red colour) and Rs (blue colour),
along the monitoring period. An important decrease of Rs» can be observed after the first four
months of exposure under outdoor conditions, where the value of Rsx is reduced by 56% respect

to its initial value.

The reduction of Ry in TF solar cells under outdoor exposure for long periods of time has
been previously reported [ 15,38]. On the other hand, after the stabilization period, the evolution
of Rs» shows the same seasonal trend that the evolution of the output power of the PV array and

Isc as expected.
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Figure 3.5. 14 Evolution of R (red colour) and R (blue colour): Mean monthly values obtained.

The series resistance, Rs (blue colour), shows a continuing increase along the first months
of the monitoring campaign. The variation of the values of Rs is very small and it goes from an
initial value of 3 mQ to a final value of 6 mQ. After the stabilization period, the seasonal effect
can also be observed in the trend of R that presents higher values in winter, with maximum
values in the month of December, and reduced values in summer, with minimum values in the
month of August. The range of the variation is around 30% between the peak to peak values of
Rs in winter and summer. The behaviour of Rs shown in Fig. 3.5.14 is in accordance with

previous works reported in the literature for TF solar cells [15,38].

3.5.5. Conclusion

The behaviour of a grid connected PV array formed by micromorph TFPV modules
situated in Jaén is reflected by the monitored data obtained under outdoor long term exposure
of the PV system from July 2011 to December 2014. The degradation modes of the micromorph
solar cells and how they affect the performance of the TFPV modules in a relatively dry and

sunny inland site with a Continental-Mediterranean climate are addressed in this paper.

From the analysis of the obtained results, by about 12.51% of reduction of the DC output
power of the PV array was observed after the first month of exposure under outdoor conditions.
On the other hand, the stabilization period was observed to start after four months of operation
with a total reduction of the PV array DC output power of 16.66%. The effect of seasonal

oscillation remains after the stabilization period with variations about 3.18% from the stabilized
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level of DC output power. This seasonal oscillation is lower than typical values observed in the
behaviour of a-Si:H TFPV modules, in the range of 5%, due to the effect of the pc-Si:H

substrate present in the micromorph TFPV modules

The extracted sets of solar cell model parameters obtained by using the parameter
extraction technique are able to reproduce the behaviour of the PV array in real conditions of
work with a good accuracy degree. With the proposed approach it is possible to describe the
time evolution of all model parameters along the outdoor long term exposure period of the PV
system. Moreover, the temporal evolution of each one of the model parameters permits
achieving a better understanding of the performance changes of the PV modules and the
evolution of the output power of the PV array and the degradation rate. Furthermore, the
seasonal variation of micromorph PV modules behaviour was also observed in the evolution of
the solar cell model parameters. It must be noted that the pc-Si:H bottom cell dominates the
evolution of most solar cell parameters, mainly the ideality factor and saturation current, while
the evolution of the short-circuit current seems to be more related to the behaviour of the a-Si:H

top cell.
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3.6.1. Introduction

Nowadays thin film photovoltaic (TFPV) modules cover a 10% of market share with an
annual production of 2.4 GWp in 2014 [1]. The most common PV materials used in the mass
production of TFPV modules are cadmium telluride (CdTe), copper indium gallium selenide
sulphide (Cu(In,Ga)Se2, CIGS) and amorphous silicon (a-Si), presenting an annual production

in 2014 of 1.9 GWp, 1.7 GWp and 0.8 GWp respectively [1].

The main advantages of TFPV modules are their lower production costs and lower
temperature coefficients relative to the crystalline (c-Si) and polycrystalline silicon PV modules
[2,3]. On the other hand, main problems of TFPV modules are the degradation phenomena after
long term outdoor exposure [4—7] and the lower efficiencies in the comparison to ¢-Si PV

modules.

Hydrogenated  amorphous silicon (a-Si:H) and hydrogenated amorphous
silicon/hydrogenated microcrystalline silicon hetero-junction (a-Si:H/pc-Si:H) TFPV modules
have conversion efficiencies in the range of 8-13% and present low production costs and energy
pay-back times. However, these TFPV modules are strongly affected by spectral and
temperature effects when deployed outdoors [8—10]. The so called Staebler-Wronski effect
(SWE) is the cause of light-induced degradation (LID) that strongly affects a_Si:H and also has
effects on (a-Si:H/pc-Si:H) TFPV modules. It determines the amount of dangling bonds created

depending on the operating temperature [11-13].

CdTe TFPV modules are well adapted to the spectrum of solar radiation due to their band
gap of 1.45 eV. The theoretical efficiency limit for CdTe technology is 29% [7]. However, the
average commercial PV module efficiencies are around 10—11% and the highest efficiency to-
date is 17.5% [14]. Main degradation mechanisms identified in these PV modules are related
to Cu diffusion from the back contact of the cells [15] and to the reduction of the fill factor as

a result of shunting effects [16].

Cu (In,Ga)Se2 (CIGS) chalcopyrite semiconductors such as Cu(In)Sez(CIS) are direct-gap
polycrystalline semiconductors, having very high optical absorption coefficients [17]. PV
modules based on CIS and CIGS technologies are generally considered to be quite stable and
TFPV module efficiencies up to 17.5% have been recently reported [1]. However, it is estimated

that the initial power may decrease by up to 3% before stabilization [7].

Reliability and lifetime of PV modules are two crucial issues as they are the key for overall

system performance and warranty to improve the energy generated. For the case of TFPV
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modules, the behaviour under outdoor exposure is still not fully understood and is currently
object of research. A better understanding on this topic would be important for selecting the
best PV technology for each specific climatic condition and for improving the reliability and

performance of TFPV modules.

The objective of this work is the analysis of behaviour of TFPV modules of four
technologies under outdoor long term exposure in a relatively dry and sunny inland site. The

period under scrutiny ranges from January 2011 to December 2015.

This paper is organized as follows. Section 3.6.2 describes the PV modules used in the
study and details the monitoring system. An overview of the degradation analysis
methodologies followed in the study is given in Section 3.6.3. The results and discussion are

presented in Section 3.6.4. The conclusions of the study are given in Section 3.6.5.

3.6.2. PV modules and experimental setup

The Four PV modules considered in this work correspond to the following thin film
technologies: a-Si:H, a-Si:H/pc-Si:H, CIS and CdTe. The modules were deployed in Leganés,
a city 16 km south east of Madrid (Spain, Latitude: 40°19" 42"N, Longitude: 3° 45' 55" W,
Altitude: 666m) which lies within the metropolitan area of the latter. Leganés has a
Mediterranean climate with strong continental influences and experiences pollution episodes
and occasional Saharan dust intrusions as in the case of Madrid. The PV modules were mounted
on an equator-facing open rack with a tilt angle of 30°. The tilt angle selected for the open rack
was meant to maximize the collection of annual on-plane irradiation. The main parameters of
the TMPV modules at standard test conditions (STC): G=1000W/m? AM1.5G, Tc=25°C, used
in this study are given in Table 3.6.1.

An automatic test and measurement system was used to scan both the electrical and
environmental parameters every five minutes over the whole experimental campaign. The
experimental setup was intended to scan the current-voltage (I-V) curves of each of the four
TFPV modules under study together with some environmental parameters that influence their
outdoor performance. A PC-based system controlled by LabVIEW™ managed the acquisition
and storage of data for their subsequent processing. Thus, /-V curves were traced using a PVE
PVPM 2540C capacitive load so that 128 current-voltage data points were retrieved from this

device in each scan. Additionally, the four PV modules could be tested sequentially using this

149



Publications

setup, by means of a switchgear box of solid state relays driven by a multipurpose Agilent

34970A data acquisition/data logger switch unit.

Table 3.6. 1 Main parameters of PV modules derived from the PV module manufacturers' datasheet.

PV module
Sharp Shell Powermax™ First Solar Kaneka

NA-121 Ultra 80C FS-270 GEA 60
Technology a-Si:H/pc-Si:H CIS CdTe a-Si:H
Peak power (W) 121 80 72.5 60
Isc (A) 3.34 2.68 1.19 1.19
Voc(V) 59.2 46.6 90 92
Temperature -0.24 -0.43 -0.25 -0.23
coefficient- power
3 (%/°C)
n(%) 8.5 12.7 10 6.3

Some external environmental parameters such as the horizontal and on-plane incident
irradiance together with its spectral distribution, module temperature, relative humidity,
ambient temperature, wind speed and barometric pressure were registered with the above data
acquisition/data logger switch unit, so that these parameters were recorded simultaneously with
the I-V curve tracing. The in-plane irradiance came from a Kipp&Zonnen CMP 21 pyranometer
with directional response (up to 80° with 1000 W/m? beam) < 10W? while the spectral
irradiance distribution was measured by means of a weatherproof EKO MS700 grating
spectroradiometer whose specifications include a 10-nm spectral resolution. T thermocouples
pasted to the rear side of each PV module were used to measure the module temperature, while
the relative humidity and ambient temperature were measured by a Young 41382VC relative
humidity/temperature probe with an accuracy at 23°C of £1% for relative humidity and +0.3°C
for temperature. Finally, a Young 05305VM anemometer with an accuracy of £0.2 m/s of wind
speed and +3 degrees of wind direction and a Vaisala barometric pressure sensor with an

accuracy at +20 °C of £0.10 hPa completed the experimental setup.

Table 3.6.2 summarizes a brief statistic of the meteorological parameters recorded for the

period of measurements.

Table 3.6. 2 Annual average values of some meteorological parameters along the monitoring campaign.

Accumulated Average ambient ~ Minimum ambient =~ Maximum ambient Relative
horizontal irradiation temperature (°C) temperature (°C) temperature (°C) humidity
(kWh/m?) (%)
1774 15.0 2.7 32.1 57
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3.6.3. Methodology

The two techniques applied in this study to all modules under test, based on the analysis
of the output power of the PV modules, are described in this section. The combination of these
two techniques allows a good approach to understand the degradation effects and helps to

identify better the degradation rates, stabilization periods and seasonal variations.

3.6.3.1. Effective peak power of the PV modules

The effective peak power of a PV module, P*y, at STC is given by the following equation
[18-19] :
. G'Ppc
Mg

TF (3.6-1)

where Ppc, G and G* are the DC output power of the PV module, the irradiance, and irradiance
at STC respectively. TF is the thermal factor defined as follows:
1

TF = L+ 5(T, —T)] (3.6-2)

where Tnis the PV module temperature, 7»* is the module temperature under STC (25°C), and

6 is the power temperature coefficient of the PV modules.

The evaluation of P*u from the monitoring data set was performed after a disregarding
data recorded at low irradiance values. Specifically, only measurements taken at G > 700 W/m?
were used. Thus, the shape of varying solar spectra recorded in Leganés above this irradiance
threshold closely resembles that of the spectral AM1.5G reference spectrum and consequently
no spectral effects are taken into account in Eq. (3.6-1). This agreement between recorded
spectra and AM 1.5G reference spectrum is based on the criteria adopted by the International
Electrotechnical Commission to state the spectral match of a solar simulator [20], defined by
the deviation from the standard spectrum. The experimental assessment of such spectral match
is far from being obvious, Thus, the reader is referred to Annex A at the end of this paper where

this empirical evaluation can be found.

The monthly average value of P*m was evaluated along the five years of the monitoring

campaign.

The degradation rate, DR (%/year), of the TFPV modules is evaluated by means of a linear
least square fitting method of the P*u by using Eq. (3.6-3).
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12m

where m is the slope of line and c is the y intercept of the trend line obtained for P*)/[21]:

y=mx+c (3.6-4)

The analysis of the stabilization period of TFPV modules is based on a second monitoring
data filtering process following the procedure used in previous works [9-10, 22]. The average
monthly value of the monitored Ppc output power of the PV modules was evaluated for

restricted ranges of tilted irradiance and working PV module temperature.

3.6.3.2. Power-Irradiance technique

The power-irradiance (P-G) technique is the second method used in this study to analyse
the behaviour of the TFPV modules. This method proposed by Hussin et al. [22] was applied
with success to study the degradation of a-Si:H [9,24] and a-Si:H/pc-Si:H TFPV modules [10].

A Linear Correlation Approach (LCA) was used to obtain linear regression equations from
the actual PV modules DC outputs, Ppc, as a function of the irradiance, G, by means of the
following equation:

PDC = AGT' G + C (36-5)

where Ppc is the PV module DC output power, Agris the gradient, G is the plan-of-array

irradiance and C is the ordinate value of Ppc at G = 0.

A data filtering process was carried out in order to avoid problems caused by low values
of irradiance (G<700 W/m?) as in the evaluation of the DR presented in previous section. Eq.

(3.6-5) is only valid for values of G>700 W/m?.

Finally, the monthly gradient values, Acr, of each empirical equation can be plotted to

determine the stabilization period [22].

3.6.3.3. Fill Factor and Performance Ratio

The performance ratio, PR(%), is used as an indicator of outdoor modules performance

and is given by [25]:

PG
PR= —™ / — (3.6-6)
PmSTC G

where Pnis the measured maximum output power of the PV module and Pmsrcis the nominal

output power of the PV module.
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On the other hand, the Fill Factor, FF(%), is given by the following equation :

P
FF = 3.6-7
Voc Isc ( )
where Isc and Voc are the short-circuit current and open-circuit voltage of the PV modules

respectively.

The evolution of the monthly values of PR and FF was analysed in all modules under test

along the monitoring campaign.

3.6.4. Results and discussion

3.6.4.1. Evolution of the effective peak power of the PV array

The evolution of the effective peak power of the four PV modules calculated by using the
Eq. (3.6-1) and monitored data is plotted in Fig. 3.6.1. As it can be seen, the decrease rate of
the effective peak power, P*u, along the monitoring campaign strongly depends on the PV

module technology.

Regarding the a-Si:H and micromorph PV modules, an important initial decrease of P*u
can be observed during the first months of exposure under outdoor conditions due to the LID
phenomenon. After a period of time, the decrease is less significant and P*u fluctuates around
a constant value following climatic seasonal changes. A decrease of P*y is observed during
the winter months while an increase is observed over the summer months. This seasonal
variation in the output power of the a-Si:H and micromorph PV modules is mainly attributed to
the effect of temperature on the amorphous material, and has been described previously in
several studies [16-18,21-23]. Thus, the regeneration in summer months can be assigned to the

light-induced annealing [5], spectral effect [26] and thermal regeneration [13,27].

The evolution of P*u of the CdTe PV module presents a continue decrease along the
exposure period. As it is shown in Fig. 3.6.1, the decrease of P*y over the first and second year
is more significant than the decrease of P*y over the last three years of the analysis period. The
effective peak power value is decreased by 22.15% during the five years of the monitoring
campaign. The seasonal variation observed in the trend of P*u of the CdTe PV module is

smaller than the observed in previous works published in the literature [28].

Finally, form Fig. 3.6.1, it can be observed that P*u corresponding to the CIS PV module

exhibits a stable evolution during the exposure period compared to the others technologies.
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Several works presented in literature confirm the stability of the CIS PV modules when exposed
outdoor [29-31]. Moreover, a slight seasonal variation can be observed in the trend of P*u,
where, the output power increases during the winter months and decreases over the summer
months. This can be explained with the relatively high power temperature coefficient of the CIS
PV module given in Table 3.6.1. The obtained values of DR calculated from the trend line of

each PV module are given in Table 3.6.3.

a-Si:H CIS CdTe Micromorph
*®
& 130 4
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Figure 3.6. 1 Evolution of P*y (for G>700 W/m?) of the four PV modules along the monitoring campaign.

Table 3.6. 3 Degradation rates of the PV modules.

PV module a-Si:H CIS CdTe Micromorph
DR [Y%/year] -2.28 - 1.04 -4.55 -2.72

a) a-Si:H PV module
The DR of the a-Si:H PV module presented in Table 3.6.3 is in the range of previous results
presented in the literature [4,9,32]. The value of DR in a work presented by Kichou et al. is
around -2.30%/year [9], while Jordan and Kurtz report DR of a-Si:H PV modules up to -
4.5%/year [4].

In most cases mean values obtained for the DR are in the range of
-1%/year to -2%/year. These values are similar to DR of -1.9%/year reported for mono-
crystalline PV modules in Indian climatic conditions [33]. Moreover, Phinikarides et al. refer
to DR below -2.4%/year for a-Si:H PV modules [32]. The highest degradation rates have been

reported in Korea and the Mediterranean region.

The result obtained by applying the filtering process of restricted interval of solar

irradiance and cell temperature values is shown in Fig. 3.6.2. After one month of exposure
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under outdoor conditions, a strong initial degradation can be observed, where, the DC output
power of the PV module is decreased by around 8.61%. From the second month till April 2012,
the DC output power of the a-Si:H PV module is reduced by 18.26%. During the summer
months of 2012, a regeneration of 5% can be distinguished in the performance of the PV

module, and after that, the output power is decreased by the same percentage in winter months.
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Figure 3.6. 2 Monthly values of the DC output power of the a-Si:H PV module obtained by G and Tc data in
the range of: 890 W/m’< G < 910 W/m? and 40 °C < Tc < 45 °C.

The stabilization of the DC output power of the a-Si:H PV module occurs after a period of
24 months of operation under the climate of Madrid. In previous works, stabilization periods of
16 months were reported for a-Si:H PV modules under a Continental-Mediterranean climate

[9] and Equatorial climate [22].

The stabilized level of DC output power of the PV module is around 45 W taking into
account the range of G and Tc¢ considered in the data filtering process. In the following months,
the DC power demonstrates a sinusoidal trend attributable to the annealing effects. The effect
of seasonal oscillation remains after the stabilization period for about 5.5% variation from the
stabilized level of DC power. A similar result, 4%, was reported in Rome climatic conditions

[34].

b) micromorph PV module
The DR of the micromorph PV module is found to be -2.72%/year. This value of DR is in
the range of results obtained in a previous work where DR values of -2.20%/year were reported

[10].
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The analysis of the stabilization period of the micromorph PV module is carried out by
following the same steps presented above. In the second monitoring data filtering process, the
selected ranges of G and 7c are the same as those selected for the a-Si:H PV module, 890
W/m?<G < 910 W/m? and 40 °C <Tc< 45 °C.
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Figure 3.6. 3. Monthly values of the DC output power of the micromorph PV module obtained by G and Tc
data in the range of: 890 W/m’<G< 910 W/m? and 40 °C <Tc< 45 °C.

The evolution of the filtered DC output power of the micromorph PV module over the time
is shown in Fig. 3.6.3. Similarly, to the case of a-Si:H, a strong initial decrease of the DC output
power is observed after the first months of exposure followed by a smooth variation according
to the seasonal climate changes. After four months of deployment under outdoor conditions,
the DC output power generated by the micromorph PV module was degraded by about 8.83%.
This degradation is mainly associated to the LID that affects the top amorphous layer of the
solar cell. In the following months, the DC output power shows a sinusoidal trend attributable

to the annealing effects.

Previous works based on the study of degradation of micromorph PV modules
commercialized by Kaneka indicate that the stabilization period is from two weeks till a few

months [22], and around four months under a Continental-Mediterranean climate [10].

The Ppc values of January 2011 and January 2012 are equal to 115.06 W and 93.38 W
respectively; this means that the output power of the PV module was degraded by 18.84%. On
the other hand, the Ppc values of August 2011 and August 2012 are equal to 103.93 W and
100.81 W respectively; this leads to degradation of 3%. Therefore, by comparing the difference
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between the values of DR obtained from winter and summer months, the stabilization period is

identified to be equal to four months after a decrease of 17.4% in the Ppc value.

After three years of exposure under outdoor conditions, a reduction of the output power of

around 5.6% from the stabilized value was observed leading to a total degradation of 23%.

The effect of seasonal oscillation remains after the stabilization period with variations
about 3.7% from the stabilized level of DC output power. Compared with the a-Si:H PV
module, the LID phenomenon and the seasonal variation are less significant due to the effect of

the pc-Si:H layer.

¢) CdTe PV module
From Table 3.6.2 it can be seen that the CdTe PV module presents the highest DR
compared to the other technologies. Previous works available in the literature present DR of -

1.5%/year and -3.5%/year using the same linear regression method adopted in this study [4,32].

The analysis of the stabilization period of the CdTe PV module is carried out by following
the same method presented in the previous section, with the same ranges of G and T¢ selected

previously in the second monitoring data filtering process.
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Figure 3.6. 4 Monthly values of the DC output power of the CdTe PV module obtained by G and Tc data in
the range of: 890 W/m?<G< 910 W/m? and 40 °C <Tc < 45 °C.

Fig. 3.6.4 displays the results obtained after the filtering process. As it can be seen, the DC
output power generated by the CdTe PV module presents a strong steady decrease during the
first two years of exposure under outdoor conditions. The output power degraded of around

21.9% in two years and a half. A significant decrease in the performance of CdTe PV modules
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is also reported in the literature by Carlsson and Brinkman [35], where the CdTe PV modules

degraded of around 13% in a period of 18 months.

After a period of 30 months, the degradation of the CdTe PV module is very slight and the

stabilization can be observed in the trend of the output power generated by the PV module.

The stabilization of the DC output power of the CdTe PV module can be estimated to occur
after a period of 32 months of operation under the climate of Madrid. With the selected ranges
of G and Tc¢ chosen in the data filtering process, the DC output power of the CdTe PV module
stabilizes around 41.6 W. However, a slight seasonal variation can be still be observed, but very

small: £2% of the stabilized DC output power.

d) CIS PV module:
The DR obtained for the CIS PV module is -1.04%/year, as it is shown in Table 3.6.3. This
value of DR is in the range of other works previously developed for different locations: -

0.5%/year [4] and -2.72%/year [32].

The analysis of the stabilization period of the CIS PV module is carried out by following
the same steps presented in previous sections. In the second monitoring data filtering process,

the selected ranges of G and Tc are: 890 W/m?<G < 910 W/m? and 50 °C <Tc< 55 °C.
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Figure 3.6. 5 DC output power of the CIS PV module obtained by G and Tc data in the range of: 890

W/m?<G< 910 W/m? and 50 °C <Tc< 55 °C.

The result obtained is depicted in Fig. 3.6.5. The DC output power generated by the CIS
PV module presents a stable trend during the monitoring campaign. No significant degradation

can be observed compared to the other technologies presented above. A slight degradation can
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be noticed after a period of 3 years, where the DC output power value is decreased of 2.66%.
Moreover, a slight seasonal variation can be observed in the trend of the DC output power. The
output power decreases with the increase of temperature and vice versa, and this can be
explained by the relative high value of the temperature coefficient of power of the CIS PV

module.

3.6.4.2. Power-irradiance technique

The Power-Irradiance method was used as a second technique to estimate the stabilization

period of the four TFPV modules used in this work.

Table 3.6. 4 Gradient values and empirical equations obtained for the a-Si:H and micromorph PV modules.

a-Si:H micromorph

Month  Gradient R? Empirical equation Gradient R? Empirical equation

Jan-11  0.0680 0.950  Ppc=0.0680 G +3.701 0.1343 0.969 Ppc =0.1343 G—3.250
May-11  0.0517 0.947 Ppc=0.0517 G +4.938 0.1071 0.967 Ppc=0.1071 G +3.451
Sep-11  0.0573 0.930  Ppc=0.0573 G +6.242 0.1031 0.962  Ppc=0.1031 G+ 5.155
Jan-12  0.0504 0.934  Ppc=0.0504 G +0.901 0.1117 0931 Ppc=01117G—-4.411
May-12  0.0511 0.964 Ppc=0.0511 G + 1.860 0.1045 0.967 Ppc=0.1045 G + 0.474
Sep-12  0.0506 0.963  Ppc=0.0506 G + 2.469 0.1022 0.956  Ppc=0.1022 G +4.779
Jan-13  0.0470 0.934  Ppc=0.0470 G—1.253 0.1152 0.966 Ppc=0.1152G—-2.225
May-13  0.0491 0.970  Ppc=0.0491 G + 1.794 0.1037 0.964 Ppc=0.1037G—-0.284
Sep-13  0.0510 0.958  Ppc=0.0510G + 1.539 0.0981 0.975 Ppc=0.0981 G +4.317
Jan-14  0.0474 0.883  Ppc=0.0474 G + 1.462 0.1064 0.928 Ppc=0.1064 G —3.666
May-14  0.0503 0912 Ppc=0.0503 G + 1.356 0.0946 0.962  Ppc =0.0946 G—3.770
Sep-14  0.0501 0.971 Ppc=0.0501G +2.213  0.0975 0.979  Ppc=0.0975 G — 0.039
Jan-15  0.0476 0.923  Ppc=0.0476 G—1.006  0.1058 0972 Ppc=0.1058 G + 0.556
May-15  0.0473 0.965 Ppc=0.0473 G +2.253 0.0931 0.955 Ppc =0.0931 G +4.055
Sep-15  0.0503 0.949  Ppc=0.0503 G + 3.419 0.0962 0.957  Ppc =0.0962 G +4.226

Table 3.6. 5 Gradient values and empirical equations obtained for the CdTe and CIS PV modules.

CdTe CIS

Month  Gradient R? Empirical equation Gradient R? Empirical equation

Jan-11  0.0578 0.946  Ppc=0.0578 G + 3.297 0.0692 0.930  Ppc =0.0692 G + 5.619
May-11  0.0517 0.947 Ppc=0.0517 G +4.938 0.0637 0911 Ppc=0.0637 G +5.102
Sep-11  0.0453 0.931 Ppc=0.0453G +6.241 0.0592 0914 Ppc =0.0592 G + 8.088
Jan-12  0.0489 0.887 Ppc=0.0489 G + 3.342 0.0708 0.890  Ppc =0.0708 G + 3.887
May-12  0.0485 0.937 Ppc=0.0485 G + 2.500 0.0721 0.920 Ppc=0.0721 G—-2.264
Sep-12  0.0439 0.922  Ppc=0.0439 G +5.804 0.0612 0914 Ppc=0.0612G +7.219
Jan-13  0.0449 0.908 Ppc=0.0449 G +3.132 0.0801 0.866 Ppc =0.0801 G —2.858
May-13  0.0452 0.961 Ppc=0.0452 G +3.867 0.0667 0.943  Ppc=0.0667 G + 3.963
Sep-13  0.0432 0911 Ppc=0.0432G +5.107 0.0598 0.905  Ppc =0.0598 G + 6.058
Jan-14  0.0434 0.822  Ppc=0.0434 G +2.520 0.0752 0.894 Ppc=0.0752G-1.023
May-14  0.0435 0.926 Ppc=0.0435G +0.257 0.0733 0.904 Ppc=0.0733 G—4.826
Sep-14  0.0423 0.903  Ppc=0.0423 G +3.511 0.0600 0.941  Ppc =0.0600G + 7.170
Jan-15  0.0434 0.838 Ppc=0.0434 G—0.567 0.0745 0.879  Ppc=0.0745 G—1.922
May-15  0.0407 0.937  Ppc=0.0407 G + 5.903 0.0583 0911 Ppc=0.0583 G + 6.979
Sep-15  0.0408 0.906  Ppc =0.0408 G + 6.143 0. 0590 0.935 Ppc=0.0590 G + 6.784
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From the plots of the monthly Ppc as a function of irradiance the trend line defined by Eq.
(3.6-5) is extracted with a LCA. The stabilization period can be estimated by plotting the
gradient values obtained from Eq. (3.6-5).

Tables 3.6.4 and 3.6.5 summarise several gradient values and empirical equations obtained

by the LCA for each PV module. One value for each month is given in the tables.

a) a-Si:H PV module.

The evolution of the gradient values along the monitoring campaign obtained for the a-
Si:H PV module is shown in Fig. 3.6.6. The gradient values represent clearly the instability of
the PV module during the first months of deployment under outdoor conditions. A strong initial
decrease can also be observed. The decrease of the gradient values continues during the next

months till reaching a sinusoidal trend caused by the seasonal variation.

After a period of 24 months the stabilization of the a-Si:H PV module occurs. This
stabilization period matches the stabilization period obtained in section 3.6.4.1 by the first

method.
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Figure 3.6. 6 Evolution of the gradient values obtained for a-Si:H PV module.

b) micromorph PV module

Fig. 3.6.7 depicts the evolution of the gradient values obtained for the micromorph PV
module along the exposure period of five years. After the strong initial decrease observed
during the first months, the gradient values keep decreasing following the seasonal variation.
In this case the rise of the gradient values is observed to occur during the winter months due to

the domination of the temperature effects in the pc-Si:H layer.
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Figure 3.6. 7 Evolution of the gradient values obtained for micromorph PV module.

Concerning the stabilization period, the result obtained is four months, identical to the

value obtained in section 3.6.4.1.

¢) CdTe PV module
From the evolution of the gradient values for the CdTe PV module plotted in Fig. 3.6.8, it
can be observed a continue decrease in the trend of the gradient. After a long period of 32
months, the evolution of the gradient values stabilizes around the value 0.0425, reflecting the
stabilization of the output power generated by PV module. The stabilization period obtained by

the P-G technique coincide with the stabilization period obtained by the first method presented

above.
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Figure 3.6. 8 Evolution of the gradient values obtained for CdTe PV module.

161



Publications

d) CIS PV module
Finally, the evolution of the gradient values obtained for the CIS PV module is shown in
Fig. 3.6.9. After a period of five years of deployment, no significant degradation can be
observed, while a sinusoidal trend is present due to the seasonal variation. The results obtained
using both methods confirm the stability of the CIS PV module and it can be observed that the
PV module performs better during winter months. However, the DC output power value is
decreased of 2.66% after a period of 3 years, has it was shown in Fig. 3.6.5. Moreover, a slight

seasonal variation of = 2.1% can be observed in the trend of the DC output power in Fig. 3.6.5.
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Figure 3.6. 9 Evolution of the gradient values obtained for CIS PV module.

3.6.4.3. Fill Factor and Performance Ratio evolution.

The evolution of the monthly fill factor values, FF(%), calculated for each PV module, is
shown in Fig. 3.6.10. It can be seen that the evolution of the monthly FF of each PV module is

in accordance with the results obtained in the previous sections.

Regarding the a-Si:H and the micromorph PV modules, the initial degradation and the
seasonal variation are also present in the evolution of their monthly FF. The stabilized value of
the FF for the a-Si:H PV module is around 57%. For the micromorph PV module, the FF firstly
stabilizes around 62% and, after a period of three years, diminishes to 60%. Comparing these
two PV modules, the effect of the puc-Si:H bottom layer can be clearly seen in the enhanced

performance of the micromorph PV module.
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Figure 3.6. 10 Evolution of the FF along the exposure period.

The trend of the monthly FF obtained for the CdTe PV module demonstrates a continue
degradation in the performance of the PV module. The value of the FF stabilizes around 53%

representing the worst value compared to the other PV module technologies.

Finally, the high values of the monthly FF obtained for the CIS PV module reflect the
stability in the performance of this PV module. It can be seen from Fig. 3.6.10 that the monthly

FF values fluctuate around 64% following the seasonal variation previously observed for the

CIS PV module.

The monthly values of the performance ratio, PR, calculated using Eq (3.6-6) are plotted

in Fig. 3.6.11. As it can be seen, the same trends of degradation are obtained.

For the a-Si:H PV module the initial degradation is also observed in the trend of the PR
shown in Fig. 3.6.11. The PR stabilizes around the 85% following the seasonal variation. These
seasonal PR fluctuations are around the 10%, similar to results reported in the literature in Rome

climatic conditions [36].

From the trend of the PR obtained for the micromorph PV module, it can be seen an initial
degradation, followed by a first stabilization around 89% and a further reduction of 5.61% after
a period of three years. PR of 91% with an important seasonal variation was reported for

micromorph PV modules after one-year operation in temperate climates [37].
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Figure 3.6. 11 Evolution of the PR along the exposure period.

The evolution of the PR calculated for the CIS PV module demonstrates stable fluctuations

around the value of 90% following the seasonal variation.

Finally, for the CdTe PV module, it can be seen from Fig. 3.6.11 that the continue
degradation along a period of 32 months clearly affects the performance of the PV module, with

a PR degrading from 85% to 69%.

3.6.5. Conclusion

The evaluation of performance degradation under 5 years of outdoor exposure of four
TFPV modules corresponding to four different technologies: a-Si:H, a-Si:H/pc-Si:H, CdTe and
CIS, was addressed in this work. The PV modules were deployed in Leganés, a city within the
metropolitan area of Madrid (Spain). This is a dry and sunny inland site with a Continental-
Mediterranean Climate. The results obtained are referred to one PV module for each of the

technologies tested so that these results cannot be considered as general results.

The values of DR were evaluated by linear regression from the evolution of the modules
effective peak power. The stabilization periods were assessed by observing the evolution of the

output Ppc and through the power-irradiance technique.

The values of DR for all the technologies were found to be in the range of previous studies
except for the CdTe PV module. This module presents a higher degradation rate than expected,
as well as a very high loss of effective peak power over the five years. The CIS PV module is

found to be the most stable, presenting the lowest values of DR and power loss.
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Regarding the stabilization period, the a-Si:H and micromorph silicon modules present
results in good agreement with the literature, even if stabilization periods found in previous
studies for a-Si:H TFPV modules are slightly shorter. In both a-Si:H and micromorph
technologies, a strong degradation is observed during the first month of outdoor exposure,
where the DC output power drops of 8.61% and 8.42% respectively. In both technologies the
instability is mainly due to the a-Si:H layer. In the micromorph TFPV module, however, the
layer of a-Si:H is significantly thinner than in the a-Si:H module. This fact, together with the
presence of the more stable pc-Si:H bottom layer, allows the micromorph module to have a
significantly shorter stabilization period than that of the a-Si:H module. The CdTe PV module
degrades steadily for a very long period, during which the output Ppc degrades over 22% before
showing stabilization. This result is in disagreement with previous works reported in the
literature, which state CdTe to be a stable technology. On the other hand, the CIS PV module
shows a very stable trend, with only 2.66% of Ppc loss over the 5 years of experimental

campaign lasted and a DR of -1.04%/year.

As a summary, the CIS PV module was found to be the most stable of the four PV modules,
under long term outdoor exposure in a dry and sunny inland site. The amorphous and
micromorph modules also perform quite well, showing degradation rates and stabilization
periods similar to the expectations. However, their performances appear to be lower than what
stated in the manufacturer datasheets, especially regarding the values of stabilized effective
peak power. The CdTe module shows poor performances, with high degradation rate and power

losses, and the power output is always well below the datasheet value.

Finally, the evolution of the monthly values obtained for the FF and PR is in line with

degradation trends observed for all TFPV modules analysed.
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Appendix A. Experimental assessment on the spectral match of spectra recorded in

Leganés at values of irradiance above 700 W/m?
A. 1. Introduction

This annex is intended to show how spectral measurements corresponding to irradiances
above 700 W/m? recorded in Leganés over the course of the experimental campaign match the
AM 1.5G reference spectrum according to similar criteria to those used by the IEC to evaluate
the spectral mismatch of a solar simulator [20]. The analysed spectral instances were collected
from January 2012 to December 2013 totalizing 40,554 samples, including those scanned below
700 W/m?. This is a number of samples which suffices to assess the spectral matching over the

whole data collection period which ranges from January 2011 to December 2015.
A.2. Methodology

The average photon energy (APE, in eV) was originally proposed by Jardine et al. [38], as
the average energy of all photons from a given solar spectrum distribution. Since then it has
become a popular and widespread index to assess whether blue light or red light is enhanced in
an actual spectrum when compared with the AM1.5G reference spectrum. Thus, APE may be

written as follows:

J’E (A)dA
APE=< — (1

b

q| p(A)dA

where E(A) [W-m2-nm'] is the spectral irradiance, @(A) [m?-nm™-s!] is the spectral photon
flux density, ¢ is a constant that numerically equals the electronic charge [J-eV™'], @ [nm] and
b [nm] are the lower and upper wavelength limits, respectively, of the waveband under study.
The latter two limits are usually determined by the measurement range of the spectro-
radiometer used. Specifically, in our case, a = 350 nm and b = 1050 nm. Thus, APE for the
AM1.5G reference spectrum equals 1.88 eV for this measurement range. Therefore, higher
values of this index imply spectra shifted to shorter wavelengths (‘blue shifted’) whilst lower

ones imply spectra shifted to longer wavelengths (‘red shifted”).

The methodology used by the IEC [20] to classify a solar simulator according to its spectral
match is summarized in what follows. First, the waveband ranging from 400 to 1000 nm in a
spectrum generated by a solar simulator is divided in six 100-nm bands each contributing a

certain percentage to the the integrated irradiance. Then, the percentage values to the total
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irradiance for each spectral band of the spectrum produced by a solar simulator and the AM1.5G
reference spectrum are obtained. If the deviation of the percentages of the spectrum produced
by a solar simulator from those of the AM 1.5 reference spectrum lie within £25%, the simulator
obtains ‘A-Class’ regarding spectral match. This spectral matching requirement has been
adopted in this work to analyse natural sunlight spectrum matching at values of irradiance above

700 w/m2 in Leganés, following the methodology of some other previous contributions [39,40].
A.3. Results and conclusion

Over 97% of all the spectral instances collected from January 2012 to December 2013
corresponding to G > 700 W/m? yield values of APE ranging from 1.84 to 1.90 eV. As it can
be easily derived from above, spectra scanned with APE lying within 1.85 £ 0.01 eV and 1.89
+ 0.01 eV correspond to “reddest” and “bluest” ones, the former are usually recorded in winter
when the sun elevation is low, while the latter are measured during clear days in late spring and

early summer when the sun elevation is high.

The broadband irradiance was integrated for each data binned in the above two sets of
spectral measurements between 350 and 1050 nm using the trapezoidal rule. Then, the
wavelength range was divided into fourteen 50-nm bands so that the percentage contribution
(Rc) of each band to the calculated broadband irradiance was obtained. Mean values of Rc (<R:>)
in each 50-nm band were calculated for both APE intervals. The standard deviation was also
calculated for each of these bands to estimate the dispersion in the values of Rc around its mean

value within these two APE intervals.
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Fig. A. 1 Average Rc values of each 50-nm spectral band for the spectra binned in the APE intervals 1.85 £ 0.01

eV (red line) and 1.89 + 0.01 eV (blue line). The standard deviation related to each value of <Rc> is shown by
means of error bars. Values of Rc of each value of <R.> is shown by means of error bars. Values of R. of each
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50-nm spectral band for the AM1.5G reference spectrum are depicted by a green line while black dots show a
deviation of £25% from the latter.

The blue and red line in Fig. A.1 show the average Rc values for every 50-nm band for the
two APE intervals under consideration while error bars indicate the standard deviation related
to each value of <R->. The green line indicates values of R. for the AM1.5G reference spectrum
—restricted to the 350-1050 nm waveband- across all 50-nm bands. Black dots above and below
the green line indicate the +25% deviation allowed for Class-A simulators according to the
requirements stated by the IEC. Obviously, spectral measurements binned in the APE interval
ranging from 1.88 to 1.90 eV show higher percentage contributions to the integrated irradiance
in 50-nm bands with shorter wavelengths. Conversely, percentage contributions in 50-nm bands
with longer wavelengths are enhanced for spectral data grouped in the APE interval ranging
from 1.84 to 1.86 eV. These results are in close agreement with those obtained by Minemoto et
al. [39] and Norton et al. [40], who carried out a similar analysis —although aimed at a different

goal- to that presented here in Kusatsu city (Japan), Golden, Colorado (USA) and Ispra (Italy).

Fig. A.1 clearly shows how values of <R:> corresponding to the spectra with the most
enhanced short wavelengths —blue line- and the most enhanced long wavelengths —red line- fit
very well the allowable deviation of £25% -black dots- from percentage contributions across
all 50-nm bands to the integrated irradiance of the AM1.5G spectrum. Additionally, such
values of <R:> are in very close agreement with those of the AM1.5G reference spectrum for

Re.

In view of the above results, no spectral correction has been used in Eq. (1). Indeed, spectra
corresponding to irradiance levels exceeding 700 W/m? in Leganés may be considered similar

to the AM1.5G spectrum according to the criteria adopted in this work.
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Results and discussion

4. Results and discussion

This chapter details main results obtained that have been presented in the published works
related to modelling, parameters extraction techniques, fault detection and study of degradation
of several TFPV modules/arrays. The findings obtained through the procedures previously

described in the methodology chapter are exposed and discussed.

4.1. PV modelling

Regarding the PV models used in the present work, the implementation of the PV models
in MATLAB/Simulink presents good results in simulating and forecasting the behaviour of the

PV systems in real conditions of work.

Several PV systems with different PV modules technologies were simulated using the
SAPM and the one-diode (five-parameter) PV models. Both PV models showed good
performance in reproducing the real behaviour of the PV systems in different conditions of

work [1-5].

In despite of the weather conditions, PV system configuration and PV modules technology,
a good agreement between the real measured data and the SAPM predicted data was always
found. Where, DC-output power RMSE values below the 6% were reported in the published
works [1,3]. However, as the SAPM is an empirical model, it allows simulating just the outputs
of the PV cell/module, moreover, the information provided by this model concerning the solar

cell has no physical meaning.

Contrariwise to the SAPM, the one-diode (five-parameter) model simulates not only the
outputs of the solar cell but also permits understanding the physical behaviour of the solar cell

reflected by the values of the five model parameters (s, lo, n, Rs and Rsi). The one-diode model
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presents a good trade-off between complexity and accuracy. The model performed well in
simulating and predicting the outputs of grid-connected PV systems including different types
of PV module technologies [1,4,5]. Depending on the estimation method of its model
parameters, DC-output power RMSE values obtained including the case of worst weather
conditions are below the 13%, otherwise, the RMSE values obtained for clear sky days doesn’t

exceed 3% [1].

4.2. Parameter extraction

The accuracy of the PV cell models in reproducing the real behaviour of the PV systems

strongly depends on the estimation of the model parameter values.

The parameter extraction methods based on the algorithms described in section 2.3 were
used in the simulation of three grid-connected PV systems of different PV cell technologies,

and the obtained results were experimentally validated with real measured data [1].

From the published works [1,4,5], it can be seen that the efficiency and the performance
of the PV cell models changes from an algorithm to another one. Moreover, the metaheuristic
algorithms (GA, PSO, DE and ABC) provide better results than the numerical algorithms based
on LMA especially in worst weather conditions. Moreover, the shortcoming present in the
numerical method based on LMA related to the importance choice of the initial conditions is
avoided in the bio-inspired algorithms. The comparison of the five algorithms used for the
estimation of the PV models parameters published in [1] offers a clear idea about how the
algorithms perform under different weather conditions. Where, from the obtained results it can

be seen that the ABC algorithm provides the best accuracy in the simulation results.

The PV models parameters were extracted from the measured data of the dynamic response
of the PV systems in real conditions of work. However, in order to see how these techniques
perform in static behaviour, Fig. 4.2.1 illustrates a comparison between measured data and
result obtained by applying these algorithms for the extraction of the one-diode PV model
parameters from a measured -V characteristic of an ISOFOTON 106/12 PV modules.
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Figure 4.2. 1 Simulation of the I-V curve using the one-diode PV model based on five different algorithms.

As it can be seen from Fig. 4.2.1, the I-V curves simulated by the one-diode model based
on the five algorithms are in accordance with the real measured data. The five algorithms
perform well in the estimation of the one-diode model parameters. The calculated RMSE
values between measured and simulated I-V curve listed in Table 4.2.1 confirm that the

metaheuristic algorithms are more accurate than the LMA, and once again, the ABC algorithms

is the most accurate.

Table 4.2. 1 RMSE values using one-diode model based on five different algorithms.

LMA GA DE PSO ABC
RMSE (A) 0,0421 0,0336 0,0304 0,0321 0,0271
RMSE (%) 0,84 0,67 0,60 0,64 0,54

4.3. OPC monitoring and fault detection procedure

The fault detection procedure relied on the current and voltage indicators provided good
performance in detecting and identifying main faults present in the DC-side of the PV systems.
From the results obtained in the works [2,3], it can be seen that the procedure is able to detect

several faults related to shadows, inverter disconnection, faulty strings and bypassed PV

modules.
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The enhancement of the method allows it to provide an equivalent number of bypassed PV
modules and faulty strings. Moreover, for each detected fault the equivalent power losses are

quantified.

The procedure was experimentally validated in three grid-connected PV systems having

different sizes, topologies, locations and based on different PV modules technologies [2,3].

As an application, the fault detection method presented in this thesis was successfully
integrated in a platform based on OPC used for remote supervision and diagnosis of a grid-

connected PV system.

From the obtained results [3], it can be seen that, the fault detection method performs well
on OPC platforms for the detection and the identification of failures occurred in the PV system
under study. Moreover, the reliability of the monitored data by means of OPC standard is

confirmed by the accordance between predicted yields and measured ones given in [3].

4.4. Degradation study

The study of the degradation of TFPV modules has been carried out using the two different

techniques described previously in the methodology chapter.

The evolution of the effective peak power along the monitoring period allows calculating
the degradation rate. Moreover, the stabilization period is estimated form the data obtained from

the narrow filters carried out on the solar irradiance and cell temperature.

The power-irradiance technique is added as a second method permitting the estimation of
the stabilization period. The method is based on the plot of the monthly gradients obtained from

the plots of the DC-output power in function of on-plane solar irradiance.

The two techniques were applied for the study of degradation of several types of TFPV
technologies. The degradation of two PV arrays situated in Jaén (Spain) based on a-Si:H and
micromorph PV modules respectively, and four TFPV modules (a-Si:H, micromorph, CdTe
and CIS) situated in Madrid (Spain) were studied in the published works [4—6].

4.4.1. Amorphous PV modules (a-Si:H)
Regarding the a-Si:H PV module/array, the study of degradation carried out in [4,6]

illustrates un important initial decrease of the performance of the module/array after the first
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months of exposure under outdoor conditions. This initial strong decrease of the output power
generated by the PV modules is due to the light induced degradation (LID) phenomenon known
also as Staebler-Wronski Effect (SWE) [7]. The amount of LID phenomenon depends on the

distribution of light and temperature at the specific location of the PV module/array.

After the first initial decrease of the performances, the variation of the DC-output power
follows the climatic seasonal changes. The initial decrease in output power is followed by an
increase over the summer months, a decrease over winter months and once again an increase
over summer months. As the PV modules are based on amorphous solar cells, the regeneration
of the performance in summer months can be assigned to light-induced annealing [8], spectral

effects [9] and to the thermal regeneration [10,11].

The obtained results in the study of degradation of an a-Si:H PV array published in [4] and
the study of degradation of an a-Si:H PV module published in [6] provide degradation rate
values, Rp, in the range of -2.28%/year -2.30%/year. The obtained values for the Rp are in the
range of previous results presented in the literature for a-Si:H PV modules [12,13]. The highest

degradation rates have been reported in Korea and in the Mediterranean region [12].

The stabilization period of PV array was observed to start after 16 months of operation in
Jaen (Spain), after a total degradation of 18.80% of the DC-output power [4]. From the study
of degradation of one amorphous PV module deployed under the climate of Madrid, after a total
reduction of 18.26% of the DC-output power, a stabilization period of 24 months is found [6].
The discrepancy between the two stabilization periods is due to the climate conditions which
are different in Madrid and Jaén. In previous works reported in the literature, a stabilization
period of 16 months was obtained for a-Si:H PV modules working under Equatorial climate

[14].

After the stabilisation period, the effect of the seasonal variations could be observed from
the trend of the generated DC-output power. Indeed, it can be observed that the variations

between summer and winter are around £5% of the stabilisation value [4,6].

4.4.2. Micromorph PV modules (a-Si:H/pc-Si:H)

An initial important decrease in the performance of micromorph PV module/array was also
observed in the published works [5,6]. After that, the trend of the generated DC-output power
of the micromorph PV modules follows the seasonal variations; the generated DC-output power

increases over the summer months and decreases over the winter months.
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As the micromorph solar cell contain an amorphous layer, the important initial decrease of
the performance is attributed to the LID phenomenon, and the regeneration of the performance
over the summer months can be assigned to light-induced annealing [8], spectral effects [9] and

to the thermal regeneration [10,11].

A degradation rate, Rp, of -2.20%/year is found in the published paper [5] related to the
study of degradation of a micromorph PV system sited in Jaén. This Rp value corresponds also

with the result obtained in the degradation analysis of a single micromorph PV module deployed

in Madrid [6].

The stabilisation period of the micromorph PV modules is observed to start after four
months of operation under outdoor conditions. This stabilization period occurs after a total DC-
output power reduction of 16.66% (case of the PV array situated in Jaén) and 17.4% (case of
PV module situated in Madrid).

The effect of seasonal oscillations remains after the stabilization period with variations
about of £3.18% (case of the PV array situated in Jaén) and £3.7% (case of PV module situated
in Madrid) from the stabilized level of DC-output power. Comparing with the a-Si:H PV
module, the LID phenomenon and the seasonal variation are less significant due to the effect of

the pc-Si:H layer.

4.4.3. Cadmium telluride PV module (CdTe)

The study of degradation of CdTe PV module carried out in [6], demonstrates a continue
decrease of the performance of the CdTe PV module along the exposure period under the
climate of Madrid. Moreover, it is found that the CdTe PV module presents the highest
degradation rate value: Rp = -4.55%/year compared to the other TFPV cells technologies.
Previous works available in the literature report Rp values of -1.5%/year and -3.5%/year by

using the same linear regression method adopted in this thesis [12,15].

The evolution of the DC-output power generated by the CdTe PV module shows a strong
steady decrease during the first two years of exposure under outdoor conditions. The output
power degraded of around 21.9% in two years and a half. After a period of 30 months, the
degradation of the CdTe PV module is very slight and the stabilization can be observed in the
trend of the output power generated by the PV module.
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A significant decrease in the performance of CdTe PV modules is also reported in [16],
where the CdTe PV modules degraded of around 13% in a period of 18 months. Several studies
were performed on the degradation of CdTe PV modules, and conclude that the efficiency and
long term stability of CdTe solar cells presents a strong dependence on the materials used for

the back contact [17-21].

The stabilization period of the DC-output power for the CdTe PV module can be estimated
to occur after a 32 months of operation under the climate of Madrid [6]. However, a slight
seasonal variation can still be observed, but it remains below the +2% of the stabilized DC-

output power.

4.4.4. Copper indium diselenide PV module (CIS)

Finally, the evolution of the performance of a CIS PV module under outdoor long term
exposure was reported in [6]. The generated output power experiences a much slighter
degradation in comparison to the TFPV modules presented above. Several works presented in

the literature confirm the stability of CIS PV modules when deployed outdoor [22—24].

The degradation rate, Rp, obtained in [6] for the CIS PV module is of 1.04%/year under
Madrid climate. Previous works carried out in different locations provide Rp values of -

0.5%/year [15] and -2.72%/year [12].

Moreover, a slight seasonal variation can also be observed in the trend of the DC-output
power generated by CIS PV modules [6]. Where, the DC-output power decreases with the
increase of temperature and vice versa, and this can be explained by the relative high value of

the temperature coefficient of power of the CIS PV module.

4.5. Evolution of solar cell model parameters

Furthermore, parameter extraction techniques allow analysing the evolution of the PV
module/solar cell model parameters in real working conditions. Results obtained for a-Si:H PV
modules allow to a better understanding of the physical effects related to the degradation of this

PV modules when exposed outdoor.

The five parameters of the one-diode model have been extracted from the dynamic
response of two PV generators based on a-Si:H and micromorph PV modules respectively, and

evaluated along the monitoring campaign.
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From the results obtained published in [4,5], it can be seen that, the evolution of the
extracted model parameters reflects the degradation of the PV modules under outdoor exposure

period.

The evolutions of the diode ideality factor, n, along the monitoring campaign obtained for
both PV generators show a decrease over the summer months and an increase over the winter
months following the seasonal changes. Where, in summer months, it can be seen that there is
an improvement in the material characteristics especially in the amorphous layer, caused by the
higher temperatures reached by the solar cells. This improvement is due to an increase in charge
carrier lifetime and a reduction in bandgap [8,25], that's why the values of n are reduced. On
the other hand, in winter months, the extracted values of the diode ideality factor » are increased

due to the increase of the recombination current [25].

The variation obtained for the saturation current /o shows an opposite trend to the variation
of n. The higher temperatures in summer period decrease the bandgap resulting in a decrease
in open-circuit voltage [12,25]. Temperature has also a strong effect on the variation of the
saturation current as shown in Eq. (2.2-11). The combination of bandgap reduction and strong
increase of temperature in summer periods along with the increase in short-circuit current due
to LID effect lead to an increase of the saturation current despite the reduction of recombination

effects in summer.

The evolution of the short-circuit current /sc shows a continuing decrease until reach the
stabilization period. After that it shows a more stable trend following the seasonal changes. The
improvement in output current during summer time is due to the effect of solar spectral
irradiance and to the thermal-recovery of the LID affecting the TF amorphous layer [9,13]. The
lower temperatures in winter also reduce the thermal recovery rate for the a-Si:H solar cells and
the amorphous layer of the micromorph cells. The decrease of /s values in the worst winter
months for the micromorph PV modules is very small compared to the reduction observed on
a-Si:H PV modules, and this is thanks to the micro-crystalline (uc-Si:H) layer present in the
micromorph PV cell.

A decrease of the shunt resistance value, Rs», was reported in [4,5]. The reduction of Rs» in
TF solar cells under outdoor exposure for long time was previously reported [25,26]. Moreover,
the evolution of Ry follows the same seasonal trend that the evolution of the output power of

the PV array and /s as expected.
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Finally, the evolution of the series resistance, Rs, shows an increase of its value according
to the degradation of the PV modules [4,5]. The seasonal effect is observed again in the trend
of Rs that presents higher values in winter and reduced values in summer months. The lower
values of Rs obtained in summer months are due to the regeneration of the performance caused

by temperature effects.
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5. Conclusions

The overall objectives of the present thesis planted in the introduction related to
supervision and diagnosis of photovoltaic systems, modelling of the PV system components
and the study of degradation of different thin film PV (TFPV) modules were achieved in the

published works carried out during the investigation period.

Two PV module/array models have been used in the present thesis for simulation purposes:
The one-diode (five-parameter) PV model and the Sandia Array Performance Model (SAPM).
These models were used to reproduce the behaviour of grid-connected PV systems of different

topologies and solar cell technologies.

The SAPM model demonstrated a high accuracy degree in the simulation of the PV
systems behaviour independently of the PV module technology. On the other hand, the SAPM
model is an empirical model including a set of model parameters in which some of them have

little physical meaning.

The one-diode model allowed simulating the dynamic behaviour of several PV systems of
different solar cell technologies with an acceptable accuracy degree for applications of
supervision and forecasting of energy production. In addition, the advantage of the one-diode
model is the physical meaning of the set of model parameters that provides relevant information

about the PV module/array and allows an easy comparison between different PV modules.

The accuracy of the PV cell models in reproducing the real behaviour of the PV systems
depends strongly on the estimation of the model parameter values. From the comparison of
different algorithms, it can be seen that the metaheuristic algorithms are more efficient than the
numerical LMA algorithm in estimating the unknown parameters of both PV module models,

essentially in worst weather conditions. The GA is less accurate compared to the other bio-
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inspired algorithms. The ABC algorithm provides the best results and it is slightly more
accurate than the DE and PSO algorithms.

Both PV models performed well when used in the automatic fault detection procedure and

the prediction of the outputs of grid-connected PV systems.

The fault detection procedure used for the diagnosis of PV systems is based on the analysis
of the current and voltage indicators evaluated also from monitored data and expected values

of current and voltage obtained from the model of the PV generator.

An experimental validation of the proposed procedure is shown in the study of three grid-
connected PV systems having different sizes, topologies, and different solar cell technologies.
From the obtained results it can be seen that, main faults as short-circuited PV modules,
bypassed strings, inverter disconnection and partial shading could be detected in real time by
the evaluation of the current and voltage indicators. Moreover, an equivalent number of faulty
strings and bypassed PV modules as well as the amount of power losses can be estimated from
the values of both indicators. Furthermore, the obtained results show that the integration of the
fault detection procedure in an OPC platform is effective and offers a powerful tool in the field

of remote supervision and control of PV systems connected to the grid.

The study of degradation of TFPV modules/arrays corresponding to four different
technologies (a-Si:H, micromorph, CdTe and CIS) was addressed in this thesis. The degradation
study was carried out on PV modules/arrays deployed outdoor for long term exposure in dry

and sunny inland sites (Jaén and Madrid) with a Continental-Mediterranean Climate.

The values of degradation rates, Rp, were evaluated by linear regression from the evolution
of the modules effective peak power. The stabilization periods were assessed by observing the
evolution of the filtered DC-output power, and through the power-irradiance technique. The
obtained values of degradation rates, Rp, for all the technologies are in the range of previous
studies available in the literature except for the CdTe PV module which presented a higher Rp

value than expected.

In both a-Si:H and micromorph technologies, a strong degradation is observed during the
first months of outdoor exposure under a Continental-Mediterranean Climate, where the DC-
output power of the PV module/array drops by around 10% from the initial value. This strong
initial decrease of the generated power is not observed in the case of CdTe PV module, however,

the trend of its DC-output power presents a steadily decrease for a very long period of 32
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months. The CIS PV module is found to be the most stable, presenting the lowest value of Rp

and power losses.

The instability of a-Si:H and micromorph PV modules is mainly due to the amorphous
layer. In the micromorph TFPV module, the amorphous layer is significantly thinner than in
the a-Si:H module. This fact, together with the presence of the more stable puc-Si:H substrate,
allows the micromorph module to have a significantly shorter stabilization period than that of
the a-Si:H PV module. Moreover, for the micromorph PV module/array, the effect of seasonal
variations remains after the stabilization period with variations about 3% from the stabilized
value of DC-output power. These seasonal oscillations are lower than those observed in the
behaviour of a-Si:H PV module/array (seasonal variation of 5%) thanks to the effect of the pc-

Si:H layer present in the micromorph TFPV modules.

As a summary, the CIS PV module was found to be the most stable compared to the other
technologies, when deployed under long term outdoor exposure in a dry and sunny inland site
with a Continental-Mediterranean Climate. The a-Si:H and micromorph PV modules also
perform quite well, showing degradation rates and stabilization periods similar to the
expectations. However, their performances appear to be lower than what stated in the
manufacturer datasheets, especially regarding the values of stabilized power which are
decreased by 18% from the initial values. Lastly, the CdTe module shows poor performances,
with high degradation rate, long stabilization period of 32 months and the total drop of the

output power is of 25% below the datasheet value.

Finally, the parameter extraction technique based on LMA is also addressed in the study
of degradation of TFPV modules. The parameter extraction technique is able to evaluate the
temporal evolution of main solar cell model parameters and helps to understand the evolution
of the entire system at PV cell/module level. The seasonal variation effect was also observed in
the evolution of the model parameters. The evolution of each one of the model parameters along
the scrutiny period has been analysed and allows achieving a better understanding of the

performance changes of the PV modules and the evolution of the output power of the PV array.
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