
Edge-elements Formulation of 3D
CSEM in Geophysics: A Parallel

Approach

Octavio Castillo Reyes

Department of Computer Architecture
Polytechnic University of Catalonia

This dissertation is submitted for the degree of
Doctor of Philosophy in Computer Architecture

José María Cela Espín
Josep de la Puente September 2017

Abstract

Electromagnetic methods (EM) are an invaluable research tool in geophysics whose
relevance has increased rapidly in recent years due to its wide industrial adoption.
In particular, the forward modelling of three-dimensional marine controlled-source
electromagnetics (3D CSEM FM) has become an important technique for reducing
ambiguities in the interpretation of geophysical datasets through mapping conductivity
variations in the subsurface. As a consequence, the 3D CSEM FM has real application
in many areas such as hydrocarbon and mineral exploration, reservoir monitoring, CO2

storage characterization, geothermal reservoir imaging and many others due to there
quantities often displaying conductivity contrasts with respect to their surrounding
sediments. However, the 3D CSEM FM at real scale implies a numerical challenge
that requires an important computational effort, often too high for modest multicore
computing architectures, especially if it fuels an inversion process. In this regard, the
3D CSEM FM is a key application that can benefit strongly from algorithmic and
computational improvements.

On the other hand, although the High-performance Computing (HPC) code devel-
opment is dominated by compiled languages, the popularity of high-level languages
for scientific computations has increased considerably. Among all of them, Python
is probably the language that has shown more interest, mainly because of flexibility
and its simple and clean syntax. However, its use for HPC geophysical applications
is still limited, which suggests a path for research, development and improvement.
Therefore, this thesis reports the attempts at designing and implementing a method-
ology that has not been systematically applied for solving 3D CSEM FM with an
HPC application baked upon Python. The net contribution of this effort is the devel-
opment and documentation of a new open-source modelling code for 3D CSEM FM
in geophysics, namely, the Parallel Edge-based Tool for Geophysical Electromagnetic
Modelling (PETGEM). The importance of having this modelling tools lies in the fact
that they provide synthetic results that can be compared with real data which has
a practical use both in the industry and academia. Still, available 3D CSEM FM
codes are usually written in low-level languages (Fortran, C-like) whose implemented

http://petgem.bsc

methods are often innaccessible to the scientific community since they are commercial.
PETGEM is written mostly in Python and relies on mpi4py and petsc4py packages

for parallel computations. Other scientific Python packages used include Numpy and
Scipy. This code is designed to cope with the main challenges encountered within
the numerical simulation of the problem under consideration: tackle realistic prob-
lems with accuracy, efficiency and flexibility. It uses the Nédélec Edge Finite Element
Method (EFEM) as discretisation technique because its divergence-free basis is very
well suited for solving Maxwell’s equations. Furthermore, it supports completely un-
structured tetrahedral meshes which allows the representation of complex geometries
and local refinement, positively impacting the accuracy of the solution. The parallel
implementation of the code using shared-memory and distributed-memory architec-
tures is investigated and described throughout this document. In addition, an exten-
sive analysis of the parallel performance factors has proved that PETGEM is highly
scalable (hundreds of CPUs) allowing simulation of large cases for 3D CSEM FM (tens
of millions of degrees of freedom).

In addition, the thesis deals with the numerical and physical challenges of the 3D
CSEM FM problem. Through this work, frequency-domain Maxwell’s equations have
been discretised using EFEM and validated by comparison with analytical solutions
and published data, proving that modelling results are highly accurate. Furthermore,
this work discusses an automatic mesh adaptation strategy for a given frequency and a
specific source position. The results show that adaptive mesh solutions have a factor of
savings of up to four times in runtime solution compared to those computed without
the use of the meshing technique. Moreover, a convergence study of the parallel
Krylov subspace iterative solvers that are widely used in the literature for solving the
EM problem is presented. Test results show that the GMRES method in combination
with SOR is the best choice for the EM problem under consideration since it shows a
better convergence rate and requires less computation time.

In summary, this thesis shows that it is possible to integrate Python with HPC
for the solution of the 3D CSEM FM problem at large scale in an effective way. The
resulting modelling tool is easy to use and extend and the adopted algorithms are
not only accurate and efficient but also have the possibility to easily add or remove
components without having to rewrite large sections of the code.

Keywords: 3D electromagnetic modelling, geophysics, Python, high-performance
computing, edge finite elements.

iii

http://petgem.bsc
http://petgem.bsc

I dedicate this thesis to my parents, Antonia Reyes Banda and Sergio Castillo,
to my sisters, Esmeralda and Atalia, to my beloved wife, Magaly Basurto López,

and in memory of my grandmother. I love you all dearly.

Acknowledgements

I wish to express my sincere appreciation to those who have contributed to this thesis
and supported me in one way or the other during this amazing journey.

I am deeply thankful to my advisor, José María Cela Espín for accepting me
in his research team, the Computer Applications in Science & Engineering depart-
ment (CASE) in the Barcelona Supercomputing Center-Centro Nacional de Supercom-
putación (BSC-CNS). I am very grateful for his support, guidance, encouragements
and for countless time-intensive discussions during my research work; for bringing me
to the project I worked on and giving enough freedom to implement and test my ideas.

My special and sincere gratitude goes out to my co-advisor, Josep de la Puente
from the BSC-Repsol Research Center. He has provided crucial guidance and support
at every moment during my research path. For comments and ideas that helped
me to improve my papers as well as this thesis, and all discussions during which we
were always on the same level and I never felt being rigorously supervised, but rather
constructively guided. Through numerous research meetings with him, I learned not
only geophysical-electromagnetic insights and wisdom but also how to communicate
scientific ideas.

I express my thanks to all the people I had as friends and as colleagues from the
BSC-Repsol Research Center : Mauricio Hanzich, Natalia Gutiérrez, Juan Esteban
Rodríguez, Albert Farres, Otilio Rojas, Samuel Rodríguez and Miguel Ferrer. I express
my special thanks to David Modesto for proofreading my dissertation and papers,
and for his constructive remarks and invaluable discussions in which he genuinely
shared he knowledge, for all questions he patiently answered. In the same way, I am
deeply grateful to Claudia Rosas for her time and advice in the incredible world of
methodologies for scalability prediction and the analysis of fundamental performance
factors for HPC applications.

I am grateful to all of my colleagues from CASE of BSC-CNS. I am deeply thank-
ful to Mariano Vásquez for his invaluable comments and constructive criticism that
absolutely improved this manuscript. A deep thanks to Xevi Roca, Abel Gargallo and
Miguel Zavala for all the fruitful discussions on numerical modelling, finite elements

and mesh generation techniques.

I wish also to thank all members of BSC-CNS. Above all, I want to thank Mateo
Valero for his support and encouragement. His vision for an excellent and relevant
science is reflected in every corridor of the BSC-CNS. For me, it has been an honor
to be part of this research center that is full of interesting people who constitute a
warm and welcoming environment for the development of quality science and research.
Thanks for opening the doors of BSC-CNS and for showing me the extraordinary and
magnificient supercomputing architecture that prides Spain: Marenostrum. I would
also like to express my gratitude to Ulises Cortés for his advice and for the experiences
organizing the Jornadas de Cooperación CONACyT-Catalunya. At the same time, I
am greatly indebted to the Administrative Staff and Support Team of the BSC-CNS
for all their management and technical support to carry out my research.

Beyond the borders of the BSC-CNS, several other people also deserve my thanks
for their help. In November 2015 and March 2017, I visited the Maguique 3D research
group at the National Institute for Computer Science and Applied Mathematics (IN-
RIA) in Pau, France. I am extremely grateful to Hélène Barucq, Julien Diaz and
Victor Péron for many useful discussions about the core of my research work and their
hospitality during my visits. Thank you for your invaluable comments and for sharing
your knowledge of geophysical electromagnetic modelling. In October-December 2016
I visited the Pretroleum and Geosystems Engineering research group at the University
of Texas (UT) in Austin, USA. I am thankful to the Prof. Carlos Torres-Verdin for his
willingness to be my host and for helping me to improve my work by sharing his broad
experience with kindness. During my stay at UT I was able to learn about modelling
tools in industry and some advanced programming practices which are carried out in
one of the most powerful supercomputers in the world: Stampede. Also, I would like
to express deep gratitude to Prof. Yonghyun Chung from Seoul National University
(SNU) in South Korea, for his kindness and hospitality during my visit in July 2016.
Our flash meetings enriched not only my research work but also my knowledge about
the exciting Korean culture.

I would also like to thank colleagues and friends in my beloved Mexico, mainly those
from Universidad Veracruzana. First, none of this would have happened without the
support of Dr. Mario Miguel Ojeda, who believed in me enough to offer me my first
laboral opportunity and, some years after, for give me his recommendation which
opened me a scientific world with endless opportunities. I am very grateful for his
guidance, encouragements and for countless discussions about my PhD project and
my academic carrer. I wish also to thank Dr. Carlos Manuel Welsh Rodríguez for

vi

sharing his scientific vision with me and for provided me a good platform to present
and openly discuss ongoing work. I also thank to MSc. Rubén González Benítez for
his support, advice and friendship that has lasted since he directed my master’s thesis.
My gratitude extends to other academic and research institutes in Mexico for their
kindness and hospitability: Centro de Investigación en Computación-(CIC-IPN) and
Centro de Investigación y de Estudios Avanzados-(CINVESTAV-IPN).

I would like to express my sincere gratitude to the Mexican National Council for
Science and Technology (CONACyT) for the financial support to develop my thesis.
I am convinced of the value of the CONACyT scholarship program and although
investment in science remains a long and difficult route, the progress is irreversible.
I wish also thanks to the European Union’s Horizon 2020 research and innovation
programme for his financial support under Marie Sklodowska-Curie grant agreement
No. 644202 which allowed me to carry out 3 research stays that improved my work
and my scientific background.

I am indebted to all my friends in Barcelona who opened their homes to me during
my time at BSC-CNS and who were always so helpful in numerous ways. Special
thanks to Benítez Domínguez family: Luisa, Fernando, Gemma, Alba, Sira and Leo.
Thank you for your hospitality and for sharing wonderful and unforgettable moments,
as well as for the long and interesting conversations that extended my vision and
knowledge about Spanish culture. Their friendship is one of my greatest non-academic
achievements of which I am proud.

I would like to express my love and gratitude to one of the dearest hopes of my
life, my parents, Sergio Castillo and Antonia Reyes Banda. I will never forget your
gestures of protection, of affection and of indulgence, all of them will remain sculpted
in my heart forever. You have forged my soul with discretion under the magnifying
glass of your example and the little that is good in me, carries your emblem. I always
thank to my sisters Esmeralda and Atalia for his emotional support and for taking
care of my parents during my long absence, as well as for always following me with
your thoughts and for sharing my dreams. I am deeply thankful to my uncle Mauricio
Reyes Banda for his support and for his continuous calls that kept us close despite the
physical distance between us. I also express my deep gratitude to my parents-in-law
for their support and prayer for my wife Magaly Basurto López and me.

Finally, my gratitude goes to Maggie, who has been by my side throughout this
PhD, living every minute of it, and without whom, I would not have had the courage
to carry it to a successful conclusion. She had faith in me and my intellect even
when I felt like digging hole and crawling into one because I did not have faith in

vii

myself. I am grateful to her for so many unforgettable moments and for being an
inexhaustible source of joy and strength, as well as being a compass that helped me to
reorganize my priorities and efforts. I think we have learned a lot about life and this
stage strengthened our commitment and determination to live to the fullest. Thank
you Maggie for sharing with me your happiness for life, thank you for exploring the
city and the world at my side, as well as for our long and interesting conversations on
topics beyond computer architecture and science. I have always felt happy to share
my life with you.

viii

Contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 3D CSEM FM in geophysics . 3
1.2 Present modelling challenges of 3D CSEM FM 5

1.2.1 Discretisation remarks . 6
1.2.2 Computational remarks . 8

1.3 Summary and thesis objectives . 10

2 HPC python code for 3D CSEM FM 12
2.1 EFEM formulation for 3D CSEM FM 14
2.2 Field interpolation with EFEM . 18
2.3 Algorithms for EFEM . 18
2.4 PETGEM . 25

2.4.1 Code workflow . 26
2.4.2 Software stack overview . 27
2.4.3 Programming language . 29
2.4.4 Target architectures . 30
2.4.5 Requeriments . 30
2.4.6 Coding style . 31
2.4.7 Python 3.x compatibility . 31
2.4.8 Code availability . 32

2.5 Parallel strategies . 32
2.5.1 Parallelism on shared-memory platforms 33
2.5.2 Parallelism on distributed-memory platforms 34

2.6 Scalability tests . 38

Contents

2.6.1 Shared-memory tests . 38
2.6.2 Distributed-memory tests . 40

3 Use cases of 3D CSEM FM 44
3.1 Canonical model of an off-shore hydrocarbon reservoir 44
3.2 3D CSEM FM with bathymetry . 48
3.3 Synthetic model with real target . 50
3.4 Automatic mesh adaptation . 58
3.5 Convergence of solvers . 61

4 Conclusions and future work 70
4.1 Conclusions . 70
4.2 Future directions . 73

5 Papers from the thesis 76

References 81

Appendix A Maxwell’s equations theory 91

Appendix B Numerical techniques in electromagnetics 95
B.1 Finite Element Method (FEM) . 96
B.2 Edge Finite Element Method (EFEM) 114
B.3 Test case of EFEM . 125

Appendix C Prototyping and validation with synthetic test 129
C.1 Prototype for 3D CSEM modelling . 129

C.1.1 Synthetic test for mass matrix 130
C.1.2 Synthetic test for stiffness matrix 131

Appendix D PETGEM documentation 140

x

List of figures

1.1 Marine CSEM . 5

2.1 Global/local edge direction . 23
2.2 PETGEM workflow . 28
2.3 PETGEM software stack . 28
2.4 Array population for global system on shared-memory architectures . . 34
2.5 Parallel assembly on shared-memory architectures 35
2.6 Parallel assembly on distributed-memory architectures 36
2.7 Scalability tests on shared-memory architectures 39
2.8 Scalability tests on distributed-memory architectures 40
2.9 Main computational phases in PETGEM 42
2.10 Scalability ratio of main computational phases in PETGEM 42
2.11 Solver scalability analysis using Paraver 43

3.1 Model 1 description . 45
3.2 Amplitude and phase analysis of model 1 46
3.3 Relative errors analysis of model 1 . 47
3.4 Convergence analysis of model 1 . 47
3.5 Model 2 description . 49
3.6 Amplitude and phase analysis of model 2 51
3.7 Relative errors analysis of model 2 . 52
3.8 Model 3 description . 53
3.9 Amplitude analysis of model 3 . 54
3.10 Phase analysis of model 3 . 55
3.11 Relative amplitude errors of model 3 56
3.12 Relative phase errors model 3 . 57
3.13 Amplitude analysis of model 4 . 62
3.14 Phase analysis of model 4 . 63

xi

List of figures

3.15 Relative amplitude errors of model 4 64
3.16 Relative phase errors model 4 . 65
3.17 Times comparison between adapted and oversampled meshes 66
3.18 Convergence rate of GMRES and BiCGSTAB solvers 69

B.1 Discretisation in 2D . 103
B.2 Tetrahedral nodal element . 109
B.3 Triangular edge element . 116
B.4 Vector basis functions for triangular edge element 118
B.5 Tangential/normal components for triangular edge element 119
B.6 Tetrahedral edge element . 121
B.7 Convergence analysis of edge elements for 2D eddy-current problem . . 127
B.8 Solution of eddy-current problem in 2D 128

C.1 Matlab prototype for 3D CSEM FM 130
C.2 Mass matrix analysis . 132
C.3 Mass matrix convergence analysis . 133
C.4 Stiffness matrix analysis . 138
C.5 Stiffness matrix convergence analysis 139

xii

List of tables

2.1 Data structures for nodal elements . 18
2.2 Data structures for edge elements . 19
2.3 Matrix connectivity in 2D . 19
2.4 Edges computation and sorting . 21
2.5 Edge to node/element connectivity - first approach 22
2.6 Element to edges connectivity in 2D - first approach 22
2.7 Node to elements connectivity in 2D - first approach 23
2.8 Element to edges connectivity in 2D - second approach 23
2.9 Edge to node/element connectivity - second approach 24
2.10 Nodal connectivity for local/global edge direction 25
2.11 Elements to edges connectivity for local/global edge direction 25
2.12 Elements to edges connectivity for local/global edge direction 25
2.13 Execution results on shared-memory architectures 39
2.14 Execution results on distributed-memory architectures 41

3.1 Summary of convergence results for model 1 48
3.2 Mesh information based on automatic mesh adaptation 60
3.3 Summary of results for automatic mesh adaptation tests 61
3.4 Mesh information for solver convergence tests 67
3.5 Summary of runtime for solver convergence tests 68

B.1 Element to nodes connectivity in 2D 102
B.2 Edge definition for triangular element 116
B.3 Edge definition for tetrahedral element 122
B.4 Summary results for 2D eddy-current problem 127

C.1 Levels of mesh refinement . 134
C.2 Summary of errors for mass matrix tests 135
C.3 Summary of convergence rate for mass matrix tests 136

xiii

List of tables

C.4 Summary of errors for stifness matrix tests 137
C.5 Summary of convergence rate for stiffness matrix tests 137

xiv

Chapter 1

Introduction

The science of exploration geophysics applies the principles of physics to study the
Earth. Geophysical surveys of the interior of the Earth involve taking measurements at
or near the Earth’s surface that are influenced by the internal distribution of physical
properties. Analysis of these measurements can reveal how the physical properties
of the Earth’s interior vary vertically and laterally. By working at different scales,
geophysical prospecting (GP) methods may be applied to a wide range of investigations
from studies of the entire Earth (Kearey et al., 1996) to exploration of a localized
region of the upper crust for engineering or other purposes of great societal value such
as environmental surveys (e.g. Gibson et al., 1996; Marchetti et al., 2002; Gajewski
et al., 2005), water prospecting (e.g. Perttu and Wikberg, 2005), geothermal energy
applications (e.g. Koon and Ufondu, 2015) and oil & gas sector (e.g. Davydycheva
et al., 2003; Strack and Aziz, 2012; Puzyrev et al., 2013; Chung et al., 2014).

An alternative method of investigating subsurface geology is, of course, by drilling
boreholes, but these techniques are invasive and expensive and provide information
only at discrete locations. GP, although sometimes prone to major ambiguities or
uncertainties of interpretation, provides a relatively rapid and cost-effective means of
deriving a really distributed information on subsurface geology. In the exploration
for subsurface resources the methods are capable of detecting and delineating local
features of potential interest that could not be discovered by any realistic drilling
technique. Geophysical surveying does not dispense with the need for drilling but,
properly applied, it can optimize exploration surveys by maximizing the rate of ground
coverage and minimizing the drilling requirement.

Regardless of the scope or scale of the surveys, exploration geophysics methods are
based on studying the propagation of the different physical fields within the Earth.
In the context of geophysical exploration, the main target of these methods is to

1

Introduction

build a constrained model of geology, lithology and fluid properties based upon which
commercial decisions about reservoir exploration, development and management can
be made (Koldan, 2013). Nowadays, the three main technologies in applied geophysics
are: seismic methods, potential field methods (magnetic and gravity approaches) and
electromagnetic methods. Each of these methods processes a set of data within an
integrated framework, so that the resultant Earth model is coherent with all data used
in its construction.

In the oil & gas sector, the seismic methods have become a standard technique for
obtaining high-resolution images of structure and stratigraphy of the Earth. However,
seismic data have extremely poor sensitivity to changes in the type of fluids, such as
water, brine, oil & gas. It is the main reason why in some scenarios it is difficult,
if not impossible, to determine fluid properties from seismic data. The drawback of
the seismic method of determining the presence of oil in a formation, encouraged the
development of new methods aimed to strengthen the models and reduce uncertainty.
In this sense, the electromagnetic methods (EM) have received special attention from
industry and academia.

On top of that, the last decade has been a period of rapid growth for EM in
geophysics, mostly because of their industrial adoption. In particular, the 3D ma-
rine controlled-source electromagnetic (3D CSEM) method has become an important
technique for reducing ambiguities in data interpretation in hydrocarbon exploration.
Furthermore, in order to be able to predict the EM signature of a given geological
structure, modelling tools provide us with synthetic results which we can then com-
pare to real data. In particular, if the geology is structurally complex, one might need
to use methods able to cope with such complexity in a natural way by means of, e.g.,
an unstructured mesh representing its geometry. Among the modelling methods for
EM based upon 3D unstructured meshes, the Nédélec Edge Finite Element Method
(EFEM) offers a good trade-off between accuracy and number of degrees of freedom
(DOFs), i.e. size of the problem. Furthermore, its divergence-free basis is very well
suited for solving Maxwell’s equations.

This thesis provides the numerical formulation of EFEM 3D CSEM forward mod-
elling (FM) in geophysics and its implementation on massivelly parallel computers
using an interpreted language, namely, Python. It enables the possibility to specify
edge-based variational forms of H(curl) for the simulation of electromagnetic fields in
real 3D CSEM FM surveys with high flexibility accuracy. The new modelling tool is
based on two main contributions controlling the structure of the document: firstly, the
integration of EFEM and cutting-edge High-performance Computing (HPC) technolo-

2

1.1 3D CSEM FM in geophysics

gies for efficient 3D CSEM FM. Secondly, the study of the scopes of the computational
tool through real-scale modelling. Its solution is evaluated by comparison to well-
established 3D CSEM models. The flexibility, accuracy and modularity of the code
makes it a competitive tool to simulate real scenarios of 3D CSEM FM in geophysics.

The purpose of this Chapter is to give a brief review of the 3D CSEM FM in
exploration geophysics. Next, thesis contributions are introduced with emphasis on
state-of-art modelling challenges. Finally, the thesis objectives are presented.

1.1 3D CSEM FM in geophysics

EM are an established tool in geophysics, with application in many areas such as
hydrocarbon and mineral exploration, reservoir monitoring, CO2 storage characteriza-
tion, geothermal reservoir imaging and many others. Presumably the most successful
application for oil prospecting has being well logging which was introduced by the
Schlumberger brothers (Johnson, 1962). Jishan and Lizhi (1999), Tang et al. (2007),
Xue et al. (2008) and Constable (2010) summarized and reviewed the development
of EM survey techniques in terms of instrument, acquisition, processing and interpre-
tation, numerical simulation, and application respectively.

For the diversity of remote sensing techniques that were deployed in the past
century, EM seem to be of less importance compared to seismic techniques in the oil
& gas sector. However, the activity in EM for exploration has not been absent, and
in the 1970’s and 1980’s, improved equipment and increasing data-processing power
led to extensive development. Nowadays, EM is a fundamental tool in the oil & gas
industry because of the hope that the application of such methods would eventually
lead to the direct detection of hydrocarbons through their insulating properties.

The electromagnetic properties of a medium are described by three elements: the
electric permittivity or dielectric constant ϵr (Fm−1), magnetic permeability µ (Hm−1)
and electric conductivity σ (Sm−1) or its reciprocal called electric resistivity 1/σ (Ωm).
Since the Earth is conductive, the attenuation of propagating waves becomes more se-
vere as the signal frequency increases (Løseth, 2007). Hence, the aim of the most EM in
geophysics is to measure the resistivity of the Earth materials. A strong description of
the different methods of resistivity measurement and different possibilities to vary the
source type (e.g. electric or magnetic dipole) and source signal (e.g. time-harmonic,
direct current, or transient) can be found in (Nabighian, 1988).

Since the electric conductivity measure in a region could describe the properties
and distribution of fluids in this area, EM for prospecting have become a standard

3

Introduction

technique in oil & gas industry for mapping variations in the subsurface. In (Ei-
desmo et al., 2002; Edwards, 2005; Sheard et al., 2005; Srnka et al., 2006; Newman
and Commer, 2009; Gray et al., 2012; Chung et al., 2014; Cai et al., 2017) can be
found several examples which establish that the electrical conductivity of petroleum,
gas or hydrate bearing sediments is based on the concept of an increased resistivity
in hydrocarbon-rich zones. Because the ability to map significant contrast between
electric conductivity, EM are very useful for detecting hydrocarbon locations.

3D CSEM FM techniques, also referred as seabed logging or marine 3D CSEM (Ei-
desmo et al., 2002), can be divided into two groups depending on the domain in which
collected data is interpreted: time domain (TDEM) or frequency domain (FDEM).
This thesis focuses in FDEM theory. In 3D CSEM FM, a deep-towed electric dipole
transmitter is used to produce a low frequency electromagnetic signal (primary field)
which interacts with the electrically conductive Earth and induces eddy currents that
become sources of a new electromagnetic signal (secondary field). The two fields, the
primary and the secondary one, add up to a resultant field, which is measured by
remote receivers placed on the seabed. Since the electromagnetic field at low frequen-
cies, for which displacement currents are negligible, depends mainly on the electric
conductivity distribution of the ground, it is possible to detect thin resistive layers
beneath the seabed by studying the received signal (Koldan, 2013). Operating fre-
quencies of transmitters in 3D CSEM FM may range between 0.1 and 10 Hz, and the
choice depends on the dimensions of a model. In most studies, typical frequencies vary
from 0.25 to 3 Hz, which means that for source-receiver offsets of 10-12 km, the pene-
tration depth of the method can extend to several kilometres below the seabed (Hanif
et al., 2011; Koldan, 2013). The main disadvantage of 3D CSEM FM is its relatively
low resolution compared to seismic imaging. Therefore, 3D CSEM FM is often used
in conjunction with seismic surveying as the latter helps to constrain the resistivity
model. Figure 1.1 depicts the marine CSEM. Although 3D CSEM FM is nowadays a
well-known geophysical prospecting tool and his fundamental mathematical theory is
well-established, the state-of-art shows a relative scarsity of robust, flexible, modular
and open-source codes to simulate these problems on HPC platforms, which is crucial
in the future goal of solving inverse problems. In this regard some examples of mod-
elling tools for geophysical prospecting are (Mackie et al., 1994; Alumbaugh et al.,
1996; Xiong et al., 2000; Zyserman and Santos, 2000; Badea et al., 2001; MacGregor
et al., 2001; Fomenko and Mogi, 2002; Newman and Alumbaugh, 2002; Davydycheva
et al., 2003; Key and Weiss, 2006; Franke et al., 2007; Kong et al., 2007; Li and Key,
2007; Li and Constable, 2007; Abubakar et al., 2008; Davydycheva and Rykhlinski,

4

1.2 Present modelling challenges of 3D CSEM FM

Fig. 1.1 Marine CSEM.

2011; Li and Dai, 2011; Puzyrev et al., 2013; Koldan, 2013). However, the tools that
full fit needs for the solution of real models are commercial and often are inaccessi-
ble to the wider scientific community. Furthermore, due to the discretization method
employed, not all codes that are affordable to community are capable of dealing with
complex geometries and non-uniform bathymetries, which reduces or limits his use
in situations which irregular and complicated geology has a significant influence on
measurements. Additionally there are few parallel codes that are efficient, scalable
and can deliver good performance.

This thesis proposes the development and documentation of a new parallel python
code that meet the requirements of 3D CSEM FM at real-scale, namely, Parallel
Edge-based Tool for Geophysical Electromagnetic Modelling (PETGEM). It has been
designed to cope with the various situations encountered within the numerical simu-
lation of the 3D CSEM FM in geophysics. The code is based on the EFEM and pure
Python language that allow users an easy adaptation to various 3D CSEM models and
their fast execution on HPC arquitectures.

1.2 Present modelling challenges of 3D CSEM FM

3D CSEM FM maps resistive bodies such as carbonates, hydrocarbon filled sediments,
volcanic rocks and salt from the seabed. Particularly in offshore hydrocarbon explo-
ration, data regarding resistivity mappings beneath the seafloor is crucial and useful,
namely, high resistivity of hydrocarbon filled rocks (30-500 Ωm) compared to bodies
filled with saline formation water (0.5-2 Ωm) is usually a good indicator for the pres-
ence of oil & gas (Constable and Weiss, 2006; Constable and Srnka, 2007; Key, 2009).
Because its capacity to detect, identify and characterize the target reservoir, the 3D
CSEM modelling is an attractive and convincing method to conduct exploration cam-

5

http://petgem.bsc

Introduction

paigns, thus increasing the drilling success rate as well as reducing associated cost and
hazards.

The numerical properties of 3D CSEM FM algorithms in hydrocarbon exploration
should be particularly sought for:

1. Accuracy. It is always desirable to obtain a numerical solution as accurate as
possible, although the uncertainties associated with the domain discretisation,
numerical operator and the spatial singularity at the source (electric dipole).
This leads to the need for a method that offers a good trade-off between accuracy
and number of degrees of freedom (DOFs), namely, the key issue is to design an
algorithm whose accuracy is determined by the control of those uncertainties.

2. Tackle realistic problems with efficiency. Due to the tremendous progress
of scientific computing geophysical imaging tackles more and more realistic mod-
els. However, not all numerical schemes are well suited for latest computing
architectures or are well adapted to the problem. Furthermore, the actual ex-
ecution of real-life scale models requires the use of HPC resources. For that
reason, an architecture-aware design effort is often beneficial in order to ensure
that a new method has capacity for large scale computations, thus competence
to deal with real models.

3. Adaptability, modularity and flexibility. The adopted algorithms should
cope with a variety of characteristic of the models with the possibility to easily
add or remove components. The method should also run efficiently on a large
variety of computer platforms without having to rewrite large parts of the code.
It is also desirable to let to the user a minimum of parameters to tune. This can
be satisfied with a correct use of third-party libraries which are usually optimized
for the computer architecture being used.

This thesis proposes the use of state-of-art EFEM and cutting-edge HPC technologies
to improve simultaneously the three key requirements already mentioned at real-scales.

1.2.1 Discretisation remarks

As principal discretisation techniques for 3D CSEM FM arises the Finite Difference
Method (FDM), Finite Element Method (FEM) and Edge Finite Element Method
(EFEM). The FDM, despite the disadvantage of not being able to precisely take
into account complex geometries of subsurface structures, which in some cases may

6

1.2 Present modelling challenges of 3D CSEM FM

significantly damage the quality of a solution, is still the most widely employed dis-
cretisation scheme (Koldan, 2013). There are many successful FDM implementations,
but the most practical and highly efficient parallel code was developed by (Alumbaugh
et al., 1996). However, the main disadvantage of FDM is his incapacity to work with
unstructured grids. An example of later issue is an scenario with seabed bathymetry
where an imprecise representation produces artefacts in images that can lead to false
interpretations (Koldan, 2013). On the other hand, FEM supports completely un-
structured meshes as well as mesh refinement, which enables the representation of
complex geometries and thus improve the solution accuracy. Despite, FEM is still
not as widely applied as FDM and a major obstacle for its broader adoption is that
the nodal FEM does not correctly take into account all the physical aspects of the
vector field functions. In fact, there are three main problems when nodal-based fi-
nite elements, obtained by interpolating the nodal values, are employed to represent
vector fields (electric or magnetic). The first one is the occurrence of spurious solu-
tions or non-physical solutions, which is generally attributed to lack of enforcement
of the divergence condition. The second one is the inconvenience of imposing bound-
ary conditions at material interfaces as well as at conducting surfaces. Finally, the
third problem is the difficulty in treating conducting and dielectric edges and corners
due to field singularities associated with these structures. Consequently, most of the
researchers who have employed the FEM for 3D CSEM FM have been primarily fo-
cused on overcoming this problem, as well as on solving other physical and numerical
challenges, in order to obtain a proper and accurate numerical solution, leaving aside
the performance of the codes (Koldan, 2013). These drawbacks have encouraged the
exploration of other approaches, namely, EFEM. This technique uses so-called vector
basis functions that assign DOFs to the edges rather than to the nodes of each element.

This thesis focuses on EFEM as discretisation approach because it is based on
unstructured meshes, which offer more convenient mesh adaptivity (refinement) and
better fit to complex domains. Furthermore, the use of this meshes is more suitable
because they allows place more grid points in areas where the solution error is large,
avoiding the necessity to create a fine mesh over the whole domain. Examples of
geophysical applications with FEM and EFEM can be found in (Ho-Le, 1988; Badea
et al., 2001; Bespalov et al., 2007; Hanif et al., 2011; Koldan, 2013; Puzyrev et al.,
2013; Cai et al., 2014; Chung et al., 2014; Koldan et al., 2014; Cai et al., 2017).

7

Introduction

1.2.2 Computational remarks

The EFEM computational implementation is very similar to that which uses usual
node-based elements. However, the main difference arises in the preparation of the
input data. Since in EFEM the unknowns are associated with the edges of elements,
new data structures are requiered, namely:

1. Elements connectivity matrix defined by their 3/6 in 2D/3D.

2. Edges matrix defined by their 2 nodes in 2D/3D.

3. Numbering strategy to ensure the tangential continuity of edges.

Since most of the FEM codes were developed for node-based finite elements, it is
necessary to develop a small library to build up the previous data structures. Many
strategies have been discussed in depth (Owen, 1998; Said et al., 1999; Chrisochoides,
2006; Zhang et al., 2008; Jamin et al., 2014; Knepley et al., 2015). However these
approaches can be very time-consuming for meshes with a considerable number of
elements, which is a normal requirement in real scenarios of 3D CSEM FM. Therefore,
Chapter 2 of this thesis presents a new set of algorithms for EFEM computations.

Because of the extremely heavy 3D CSEM FM requeriments at real-scale, re-
searchers aim at highly optimized implementations running on HPC architectures.
Normally, this demands a need for developing tailored, hand-tuned codes in compiled
languages: C-like and Fortran. However, there are not openly available and easily
accesible ad-hoc codes to the public and the common geophysics researcher, e.g. the
design is no user-friendly, and it is both challenging and time-consuming for a user to
modify or extend the codes to satisfy their own needs. Latter issue is usually nature
of codes written in low-level programming languages (compiled languages).

Over the last two decades the researchers have tended to move from low-level to
high-level programming languages like Python, Matlab, R and Julia, among others.
The experience is that implementations based on interpreted languages are faster to
develop, easier to test and mantain, hardware-independent, and they can reach a
much wider audience because the codes are readable and compact. The drawback
of interpreted languages has been the decreased computational performance and, in
particular, their lack of an efficient support for HPC architectures. However, a lot of
progress has been made in theory as well as practice in order to reduce the cost of
accessing to parallel environments through interpreted languages. From the long list
of this kind of languages, Python is the option that has gained most popularity in the

8

1.2 Present modelling challenges of 3D CSEM FM

parallel scientific computing context. In fact, there are already several examples of
succesfull use of Python for HPC applications:

1. FEniCS (Alnæs et al., 2015). Computational tool for solving partial differential
equations written mainly in C++, but most application developers are writting
directly in Python. For large scale applications the developed Python solvers are
usually equally fast as their C++ counterparts, because most of the computing
time is spent within the low-level wrapped C++ functions that perform the
costly linear algebra operation (Mortensen and Langtangen, 2016).

2. Petsc4py (Dalcín et al., 2011). Open-source, public-domain software project
that provides access to the Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc (Balay et al., 2016)) libraries within the Python programming
language. Petsc4py is a general-purpose and full-featured package. Its facilities
allow sequential and parallel Python applications to exploit state-of-art algo-
rithms and data structures readily available in PETSc.

3. Mpi4py (Dalcín et al., 2008). Open-source, public-domain software project
that provides bindings of the Message Passing Interface (MPI) standard for the
Python programming language. Its facilities allow parallel Python programs to
easily exploit multiple processors.

4. GPAW (Mortensen et al., 2005). Code devoted to electronic structure calcula-
tions, written as a combination of Python and C.

5. PyClaw (Ketcheson et al., 2012). Python-based interface to the algorithms of
Clawpack and SharpClaw for wave propagation problems. It also contains the
PetClaw package, which adds parallelism through PETSc.

6. SfePy (Cimrman, 2014). Python code for solving systems of coupled partial
differential equations by the FEM in 1D, 2D and 3D. This code is useful for
building custom applications.

7. pyGIMLi (Coscia et al., 2011). Open-source multi-method library for solving
inverse and forward tasks related to geophysical problems. Written in C++
and Python, it allow users build robust inversion applications in the geophysical
context.

Python has potential for providing short and quick implementations to compete with
tailored codes in low-level programming languages up to thousands of processors.

9

Introduction

However, this fact is not well known in the geophysics context and the number of end-
user parallel applications is still limited. Therefore, this thesis reports a novel HPC
python implementation for 3D CSEM FM in geophysics aimed at a wide audience.

1.3 Summary and thesis objectives

The 3D CSEM FM is well established and widely used in industry and academy to
define and characterize bodies by its electric resistivity, which help us to conduct
exploration campaigns with a significant reduction of costs and risks (Osseyran and
Giles, 2015). On the other hand, simulation and modelling tools help us to formalize
and simplify the complexity we observe in nature. This simplification together to HPC
advances allow us to render natural phenomena treatable and testable.

Although some contributions have been made to the development of algorithms
and tools for 3D CSEM FM, such as parallel codes developed by (Alumbaugh et al.,
1996) and (Koldan, 2013), the knowledge on this subject is still limited in the context
of interpreted languages, with plenty of room for improvement. As main example,
most codes that meet the requirements at real-scale modelling are based on compiled
languages, are commercial and often inaccessible to the wider scientific community,
aspects that can all hamper advancements in the field. Furthermore, these codes are
not user-friendly which reduce the potential for a user to modify or extend them to
satisfy their own needs. Therefore, this thesis is focused in the development of an
approach that efficiently deals with this scenario.

The main goal is develop and document a new open-source modelling tool for 3D
CSEM FM in geophysics using HPC architectures and Python as programming lan-
guage, namely, Parallel Edge-based Tool for Geophysical Electromagnetic Modelling
(PETGEM). This thesis considers Python as a glue language for interconnecting differ-
ent modules of codes written in compiled languages. By exploiting this methodology,
complex scientific modelling codes can take advantage of the best attributes of both
worlds: the efficient high-level data structures and a simple but effective approach
to object-oriented programming of Python, and the well-know efficiency of compiled
languages for numerically intensive computations. The code must tackle realistic prob-
lems with accuracy, efficiency and flexibility. For this purpose, the following particular
objectives are considered:

1. Efficient implementation of 3D CSEM FM on HPC. In literature few
related works can be found dealing with codes for the numerical solution of 3D
CSEM FM using EFEM. Most of them are based on FEM or FDM and written

10

http://petgem.bsc

1.3 Summary and thesis objectives

with compiled languages, hence the use of interpreted languages in this context is
a plenty room to investigate and improve. The first part of Chapter 2 is dedicated
to the numerical formulation of EFEM for 3D CSEM FM and its implementation
on state-of-art HPC architectures using Python programming techniques. A
Matlab prototype for the solution of the problem under consideration is described
in Appendix C. The algorithms developed seek to exploit the flexibility of the
numerical method. Here, the HPC code is validated against the quasi analytical
results of canonical models. In all cases the numerical solutions obtained were
found in good agreement with reference models.

2. Performance evaluation of the code. Since some portions of the code are
interpreted and because there is some calling overhead for Python functions,
the performance is traditionally deteriorated. The second part of Chapter 2 is
devoted to the presentation of the code performance analysis. This is based
on strong scalability studies and hardware counters analysis for the models of
previous particular objective.

3. 3D CSEM FM at real-scale. An objetive of this thesis is the 3D CSEM FM at
real-life scale which requires the inclusion of real geometries, such as bathymetry,
as well as a considerable number of DOFs. Since these models requires using
HPC resources, an architecture-aware design effort is desirable in order to ensure
that a new method has capacity for large scale computations. Chapter 3 presents
a set of 3D CSEM FM models at real-scale. According to the results, flexibility,
ease and accuracy of PETGEM makes it a competitive and attractive tool to
simulate real scenarios of 3D CSEM FM in geophysics.

11

http://petgem.bsc

Chapter 2

HPC python code for 3D CSEM
FM

Nowadays, the electromagnetic methods are an established tool in geophysics, with
application in many areas such as hydrocarbon and mineral exploration, reservoir
monitoring, CO2 storage characterization, geothermal reservoir imaging and many
others. In particular, the 3D CSEM FM has become an important technique for
reducing ambiguities in data interpretation for hydrocarbon exploration. In order
to be able to predict the electromagnetic signature of a given geological structure,
modelling tools provide us with synthetic results which we can then compare to real
data. Additionally, in the multi-core and many-core era, parallelization is a crucial
issue. Edge finite element method (EFEM) offer good scalability potential. Its low
degrees of freedom (DOFs) number after primary/secondary field decomposition make
them potentially fast, which is crucial in the future goal of solving inverse problems
which might involve over 100,000 realizations (Osseyran and Giles, 2015).

As consequence, in past 2 decades the modelling tools have become one of the pil-
lars for the simulation of numerical methods which main goal is elucidating the funda-
mental mechanisms behind simplified abstractions of complex phenomena in different
areas. The 3D CSEM FM in geophysics is no exception and the scientific community
has developed important contributions in this field. In this regard some examples of
modelling tools for geophysical prospecting are (Mackie et al., 1994; Alumbaugh et al.,
1996; Xiong et al., 2000; Zyserman and Santos, 2000; Badea et al., 2001; MacGregor
et al., 2001; Dogru et al., 2002; Fomenko and Mogi, 2002; Newman and Alumbaugh,
2002; Collins et al., 2003; Davydycheva et al., 2003; Cao et al., 2005; Key and Weiss,
2006; Weiss and Constable, 2006; Franke et al., 2007; Kong et al., 2007; Li and Key,
2007; Li and Constable, 2007; Operto et al., 2007; Abubakar et al., 2008; Davydycheva

12

and Rykhlinski, 2011; Li and Dai, 2011; Puzyrev et al., 2013; Koldan, 2013; Koldan
et al., 2014). However, the tools that full fit needs for the solution of real models are
commercial and often are inaccessible to the wider scientific community. Due to the
discretization method employed, not all codes that are affordable to community are
capable of dealing with complex geometries such as models including bathymetries.
Additionally there are few parallel codes that are efficient, scalable and can deliver
good performance.

On top of that, this thesis is focused in the development and documentation of
a new open-source modelling code for 3D CSEM FM in geophysics using interpreted
languages and its parallel and vectorized techniques on HPC platforms. An advantage
of interpreted languages over compiled languages lies in the fact that it is much easier to
make changes and test those modifications in a rapid way. On the other hand, the most
mentioned disadvantage of interpreted languages, compared to compiled languages, is
the performance (Dalcín et al., 2011). However, since computer hardware is increasing
in speed rapidly, the language performance factor is less and less critical. Furthermore,
for most scientific computing applications the time-critical portion of the code that
requires the efficiency of a compiled language, is confined to small set of functions.
Implementing the remaining part of the code using an interpreted language has many
advantages without a considerable performance degradation.

Within the variety of interpreted languages, we have decided to use Python 3.x to
develop a Parallel Edge-based Tool for Geophysical Electromagnetic Modelling (PET-
GEM). We chose Python 3.x language not only because is an highly flexible and open
source language but also because is the easiest and natural way to migrate the Matlab
prototype that we developed in Appendix C. In addition, Python 3.x offers numerous
third-party modules that make possible a rapid development.

Among others, PETGEM aims to solve a relative scarcity of robust edge-based
codes to simulate these problems on HPC architectures. PETGEM is implemented
in current state-of-art platforms such as Intel Xeon Platinum, Intel Haswell and In-
tel Xeon Phi processors, which offer high-performance and flexibility. Nevertheless,
PETGEM support older architectures such as SandyBridge, for the sake of usability
and to be able to compare performance.

In this Chapter, the numerical formulation for the modelling of 3D CSEM using
EFEM is presented. In addition, the algorithmic implementation and PETGEM fea-
tures are surveyed. Furthermore, parallel strategies in PETGEM are described in
depth. At the end of the Chapter we presented a PETGEM performance analysis on
a set of bechmarks.

13

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

HPC python code for 3D CSEM FM

2.1 EFEM formulation for 3D CSEM FM

Electromagnetic (EM) problems that arise in geophysics when using 3D CSEM FM
generally deal with a resultant EM field wich appears as response of the electrically
conductive Earth to an impressed (primary) field generated by a source (Koldan, 2013).
The primary field gives rise to a secondary field, and the resultant field is the sum of
both fields.

3D CSEM FM involves the numerical solution of Maxwell’s equations in station-
ary regimes for heterogeneous anisotropic electrically conductive domains in order to
compute the components of the EM field. A broad description of these fundamental
equations is included in Appendix A. 3D CSEM FM generally works with low fre-
quency EM fields (0.1 Hz to 3 Hz) because the electric conductivity of the geological
structures is much larger than their dielectric permittivity (Koldan, 2013). In conse-
quence, Maxwell’s equations are simplify and reduce to their diffusive form (Zhdanov,
2009; Koldan, 2013; Cai et al., 2014)

∇ × E = iωµ0H, (2.1)
∇ × H = Js + σ̃E, (2.2)

where we considered the harmonic time dependence e−iωt, ω is the angular frequency,
µ0 is the free space magnetic permeability, Js is the distribution of source current, σ̃

is the electric conductivity and E is the induced current in the conductive Earth. In
isotropic domains, σ̃ is an scalar value that is function of all three spatial coordinates.
On the other hand, in anisotropic domains, σ̃ is a 3 × 3 tensor defined as

σ̃ =

σx 0 0
0 σy 0
0 0 σz

 , (2.3)

where σx, σy and σz are function of the spatial coordinates.
In 3D CSEM FM, the most used formulations for the field E are those based on

total field or primary/secondary field (electric field decomposition). In a total field
formulation a slightly larger computational domain is required in order to discretize
the source properly. Moreover, the rapid change of the primary current demands a
dense mesh refinement near to the source. To overcome these difficulties, many authors
use the primary/secondary field formulation, where the primary field corresponds to
the solution in a layered earth. This formulation is desirable because the primary

14

2.1 EFEM formulation for 3D CSEM FM

field is much smoother than the source current, avoiding singularities near to the
source and limiting the size of the computational domain. Therefore we have used a
primary/secondary field approach.

Following the formulation by (Zhdanov, 2009; Cai et al., 2014), we decomposed
the total electric field (Et) into primary field (Ep) and secondary field (Es) as

Et = Ep + Es, (2.4)
σ = σs + ∆σ. (2.5)

Based on this decomposition, we derive the following expression for the secondary field

∇ × ∇ × Es + iωµσEs = −iωµ∆σEp, (2.6)

where the source term is Ep. For a general layered earth model, Ep can be computed
semi-analytically by using Hankel transform filters. Therefore, the source term is given
by a dipole able to work in each spatial coordinate (Nabighian, 1988), namely, a x-
directed dipole is defined as

Ex = Υ ·
[

d2
x

r2

]
· Ψ + k2r2 − ikr − 1, (2.7a)

Ey = Υ ·
[

dx · dy

r2

]
· Ψ, (2.7b)

Ez = Υ ·
[

dx · dz

r2

]
· Ψ, (2.7c)

a y-directed dipole is defined as

Ex = Υ ·
[

dx · dy

r2

]
· Ψ, (2.8a)

Ey = Υ ·
[

d2
y

r2

]
· Ψ + k2r2 − ikr − 1, (2.8b)

Ez = Υ ·
[

dy · dz

r2

]
· Ψ, (2.8c)

15

HPC python code for 3D CSEM FM

and finally, a z-directed dipole is determined by

Ex = Υ ·
[

dx · dz

r2

]
· Ψ, (2.9a)

Ey = Υ ·
[

dz · dy

r2

]
· Ψ, (2.9b)

Ez = Υ ·
[

d2
z

r2

]
· Ψ + k2r2 − ikr − 1, (2.9c)

with Υ and Ψ defined as

Υ = I · dS

4πσr3 · e−ikr,

Ψ = −k2 · r2 + 3ikr + 3,

where I is the dipole current, dS is the dipole length, σ is the background conductiv-
ity, k is the propagation parameter (wavenumber), r is the distance between source
position and the evaluation point position, and (dx, dy, dz) are the components of the
vector connecting source position and evaluation point position.

Equation (2.6) can be solved by using integral equation method (Chew et al., 2008;
Kythe and Puri, 2011), FDM (Newman and Alumbaugh, 2002; Newman et al., 2010),
FEM (Key and Weiss, 2006; Key and Ovall, 2011) or EFEM (Cai et al., 2014; Chung
et al., 2014; Cai et al., 2017). As already said, our formulation is based on EFEM
which uses vector basis functions defined on the edges of the corresponding tetrahedral
elements. Therefore, if the tangential components of the electric field E are assigned
to each edge, the components of E inside the tetrahedral elements can be expressed
as

Ee
x =

6∑
i=1

N e
xiE

e
xi, Ee

y =
6∑

i=1
N e

yiE
e
yi, Ee

z =
6∑

i=1
N e

ziE
e
zi, (2.10)

where Ne
i are the vector edge basis functions defined by (Jin, 2002). Despite its

wide use, the literature about the computation of these basis is not easy to perveice.
Therefore, in Appendix B.2 we included a detailed description in order to fill this
relative scarcity. The compact form of these basis functions is defined as

Ee =
6∑

i=1
Ne

i Ee
i . (2.11)

Vector edge basis functions are divergence free but not curl free and continuous at the

16

2.1 EFEM formulation for 3D CSEM FM

element boundaries. Taking into account the EFEM background of Appendix B.2, and
by substituting expression (2.11) into (2.6), and using Galerkin’s method, the weak
form of the original differential equation is given by

Qi =
ˆ

Ω
Ni · [∇ × ∇ × Es − iωµσ̃Es + iωµ∆σ̃Ep]dV. (2.12)

The discretized form of (2.12) for each tetrahedral element in the domain is obtained
after applying the Green’s theorem

Qi =
ˆ

Ω
Ni · [∇ × ∇ × Es − iωµσ̃Es + iωµ∆σ̃Ep]dV, (2.13)

where Ke and M e are the elemental stiffness and mass matrices defined as

Ke
ij =
˚

V e

(∇ × Ne
i S

e
i) · (∇ × Ne

jS
e
j) dV, (2.14)

M e
ij =
˚

V e

(Ne
i S

e
i) · (Ne

jS
e
j) dV, (2.15)

where Se
i are coefficients equal 1 or −1 depending on the local and global direction of

the i-th edge in the element. Expression (2.13) can be written compactly as [A] ·{ϕ} =
{b} where matrix [A] is assembled from elemental matrices Ke and M e, and similarly,
the vector {b} from elemental vectors {be}, namely

[Ke
jk + iωσ̃eM

e
jk] · {Esk} = −iωµ∆σ̃eR

e
k, (2.16)

where Re
k is the right hand side which requires numerical integration.

Proper boundary conditions need to be added in order to obtain a unique solution
for system (2.16). For this purpose, we considered the homogeneous dirichlet bound-
ary conditions in the EFEM formulation because these holds approximately for the
secondary E at a distance from the domain with the anomalous conductivity (Jin,
2002)

e |∂Ω = 0. (2.17)

For the numerical simulation, the distance, where boundary conditions (2.17) hold,
can be determined based on the skin depth of E. Fundamental references about that
are (Plessix et al., 2007; da Silva et al., 2012; Puzyrev et al., 2013).

17

HPC python code for 3D CSEM FM

2.2 Field interpolation with EFEM

To compute the Es in interested points, such as receivers position, is necessary to
perform an interpolation function. Based on the approach by (Jin, 2002; Zhdanov,
2009; Cai et al., 2014) and by using the vector basis functions (2.11), the Es for a
point r contained in element e, can be obtained by

Er
s =
ˆ

Ne
i · Ee

si · Se
i i = 1 . . . 6, (2.18)

where Ee
si is the secondary field assigned to the i-th edge of element e and Se

i are
coefficients equal 1 or −1 depending on the relative local orientation of the i-th edge
in the element e with respect to the global orientation of the i-th edge in the mesh,
fully explained in Subsection 2.3 through expression (2.19).

2.3 Algorithms for EFEM

The implementation of a code based on EFEM is very similar to that which uses
usual FEM. The main difference arises in the preparation of the input data, namely
a nodal-based FEM standard code requires the data structures included in table 2.1,
where N , E and F are the number of nodes, elements and faces respectively. Since

Name Dimensions Description

nodes2coord 2/3 × N Nodes defined by their 2/3 coordinates in 2D/3D
faces2nodes 3 × F Faces defined by their 3 nodes in 3D
elements2nodes 3/4 × E Elements defined by their 3/4 nodes in 2D/3D
elements2faces 4 × E Elements defined by their 4 faces in 3D

Table 2.1 Main FEM data structures for linear triangular/tetrahedral nodal elements.

for the EFEM, the unknowns are associated to element edges, instead of the nodes,
one needs a matrix to represent every element by their edges and another matrix to
describe every edge by their two nodes, as show table 2.2 where E is the number of
edges. Because most of the FEM codes were developed for nodal-based FEM, it is
necessary to develop a set of algorithms to build up the data structures of table 2.2,
namely, convert node numbering into edge numbering. Traditional approach consists
in go through element by element to check if all the edges of the i-th element have
been numbered. If an edge has not been numbered, number it; otherwise, skip it (Jin,

18

2.3 Algorithms for EFEM

Name Dimensions Description

elems2edges 3/6 × E Elements defined by their 3/6 edges in 2D/3D
edges2nodes 2 × E Edges defined by their 2 nodes in 2D/3D

Table 2.2 Main EFEM data structures.

2002). However, former technique can be very time-consuming for meshes with a
considerable number of elements, which is a normal feature in real applications not
just in the geophysics field, but also in others fields.

Many edge numbering strategies have been discussed in depth (Owen, 1998; Said
et al., 1999; Chrisochoides, 2006; Zhang et al., 2008; Jamin et al., 2014; Knepley et al.,
2015). This thesis focuses on the use and improvement of two of the most common
techniques. In sake of simplicity, both algorithms are applied to a FE mesh in 2D which
connectivity is presented in table 2.3. The first strategy start with the computation

e nodes(1,e) nodes(2,e) nodes(3,e)

1 2 4 1
2 2 4 5
3 2 3 5
4 3 5 6
5 4 5 7
6 5 7 8
7 5 6 8
8 6 9 8

Table 2.3 Element to nodes connectivity array in 2D.

of an edge id, which is given by simple operations such as (i1 × i2), (i1/i2 + i2/i1) or
(i1 log i2 + i2 log i1), where i1 and i2 are the end-points of j-th edge. Its operation is
applied to all elements in a nodal-based FE connectivity to list all edges in an array.
Its array, should list the smaller nodal number first and should store the number of
element. The ascending order of the end-points for all edges determines their global
direction in the mesh, which is a critical aspect in the representation of vector fields
such as the electric field (E) and the magnetic field (H). Once the edge id array is
computed, it should be rearrange according to the id. Therefore, for the nodal-based
FE connectivity of table 2.3, the edge id array is given by table 2.4.

Next step is number the edges of table 2.4 from top to bottom in order to produce
the edge to node/element array, it approach works as follows. If id has a new value,

19

HPC python code for 3D CSEM FM

number the associated edge as a new edge. If the id has the same value as preceding
one, compare i1 with i2 to determine whether this is the same edge as the preceding
one. If yes, skip it and set the associated element number behind the preceding edge;
if not, number it as a new edge. The resulting array is shown in table 2.5.

Finally, the element to edge connectivity array can be generated by the use of
information of table 2.3 and table 2.5. Therefore, the edge connectivity array for this
mesh is shown in table 2.6. The efficiency of this approach derives from the efficient
sorting algorithm.

The second strategy does not require the use of a sorting algorithm. In this ap-
proach, the first step consist in generate a node to elements array such as table 2.7.
After that, the element to edge connectivity array is initialized with zeros an set a
counter, to be used to assign the edge id, to 1, and the array is filled as follows. Visit
first element and examine each of its three edges. If the entry is non-zero, this edge
was already numbered, then go to the next edge. If the entry is equal to zero, this is
a new edge whose id is defined by the value of the counter. With information of ta-
bles 2.3 and 2.7, is possible check if this edge is also shared by other elements, namely,
comparing the element numbers for the end-points of the edge. If the edge is also
shared by other elements, set the value of the counter to the corresponding edges of
these elements. After that, increase the counter by one and proceed to the next edge.
Table 2.8 is a new version of element to edge array with edge to node/element array
defined by table 2.9.

An important conclusion is that since the numbering of edges is not unique, their
resultant arrays are different. However, both approaches can be applied to any nodal-
based FE mesh (2D and 3D). Regardless the numbering edges technique, adopting
local and global numbering conventions and then using these consistently is absolutely
essential. Furthermore, since the basis functions of EFEM are vectors, they
have directions in addition to magnitudes. To ensure the tangential continuity and
considering that nodal numbering is assigned by the mesher, a unique global edge
direction should be defined (Jin, 2002; Davidson, 2010; Rylander et al., 2012). This
issue can to some extent be avoided on structured meshes of squares or cubes. For
unstructured meshes, however, it is necessary to have efficient and reliable techniques.
Therefore, the reference direction or global direction is usually based on the global
node numbers at the end-points of the edge under consideration, i.e., the vector basis
function Ne

i of e-th element is directed from the i1 node to i2 node when the coefficient
for the vector basis function is positive. However, one or several of the vector basis
functions on the local elements that share an edge may be defined in the reverse

20

2.3 Algorithms for EFEM

id i1 i2 e

2 1 2 1
4 1 4 1
6 2 3 3
8 2 4 1
8 2 4 2
10 2 5 2
10 2 5 3
15 3 5 3
15 3 5 4
18 3 6 4
20 4 5 2
20 4 5 5
28 4 7 5
30 5 6 4
30 5 6 7
35 5 7 5
35 5 7 6
40 5 8 6
40 5 8 7
48 6 8 7
48 6 8 8
54 6 9 8
56 7 8 6
72 8 9 8

Table 2.4 Edge id computation and sorting.

21

HPC python code for 3D CSEM FM

edge i1 i2 e

1 1 2 1
2 1 4 1
3 2 3 3
4 2 4 1, 2
5 2 5 2, 3
6 3 5 3, 4
7 3 6 4
8 4 5 2, 5
9 4 7 5
10 5 6 4, 7
11 5 7 5, 6
12 5 8 6, 7
13 6 8 7, 8
14 6 9 8
15 7 8 6
16 8 9 8

Table 2.5 Edge to node/element connectivity - first approach.

e edge 1 edge 2 edge 3

1 1 2 4
2 4 5 8
3 3 5 6
4 6 7 10
5 8 9 11
6 11 12 15
7 10 12 13
8 13 14 16

Table 2.6 Element to edges connectivity array in 2D - first approach.

22

2.3 Algorithms for EFEM

node e

1 1
2 1, 2, 3
3 3, 4
4 1, 2, 5
5 2, 3, 4, 5, 6, 7
6 4, 7, 8
7 5, 6
8 6, 7, 8
9 8

Table 2.7 Node to elements connectivity array in 2D - first approach.

e edge 1 edge 2 edge 3

1 1 2 3
2 1 4 5
3 6 7 5
4 7 8 9
5 4 10 11
6 10 12 13
7 8 14 13
8 15 16 14

Table 2.8 Element to edges connectivity array in 2D - second approach.

Fig. 2.1 Global and local edge direction of two elements sharing three edges. Blue arrow
depicts edges whose local direction is inverse to global direction.

23

HPC python code for 3D CSEM FM

edge i1 i2 e

1 2 4 1, 2
2 1 4 1
3 1 2 1
4 4 5 2, 5
5 2 5 2, 3
6 2 3 3
7 3 5 3, 4
8 5 6 4, 7
9 3 6 4
10 5 7 5, 6
11 4 7 5
12 7 8 6
13 5 8 6, 7
14 6 8 7, 8
15 6 9 8
16 8 9 8

Table 2.9 Edge to node/element connectivity - second approach.

direction. One way to deal with this problem is to multiply all local vector basis
functions with reverser direction by −1, i.e., the local vector basis function Ne

i relates
to the global vector basis function as Ne

i = −Ne
i .

Previous strategy can be summarize as follows. If an edge adjoins two nodes ni

and nj, the direction of the edge as going from node ni to node nj if i < j. This simple
algorithm gives a unique orientation of each edge in the mesh. On the other hand, the
local orientation of edges within each element can be determined by his nodes indexes.
For instance, the local edge direction for the elements in figure 2.1 with nodal and edge
connectivity defined by table 2.10 and table 2.11 respectively, is given by the vectorial
function

Se
i = nodee

i2 − nodee
i1

|nodee
i2 − nodee

i1|
i = 1 . . . 6, (2.19)

where i is the edge index within e-th element that adjoins nodee
i1 with nodee

i2. The
main advantage of function (2.19) is that it allow work with node numbering based on
a clockwise or counter-clockwise in order to meet some conditions of FEM formulations
such as element’s volume computation, which must be positive in any case. Therefore,
the relation between the local direction and global direction of edges in figure 2.1
is given by table 2.12, which means that vector basis functions N1

4, N1
5, N2

5 must be

24

2.4 PETGEM

e nodes(1,e) nodes(2,e) nodes(3,e) nodes(4,e)

e1 28 114 861 1344
e2 28 114 29 861

Table 2.10 Nodal connectivity for local/global edge direction.

e edge 1 edge 2 edge 3 edge 4 edge 5 edge 6

e1 158 157 160 165 708 167
e2 158 160 162 708 709 5780

Table 2.11 Elements to edges connectivity for local/global edge direction.

reversed. On the other hand, discretisation with EFEM based on tetrahedrons yields to

e edge 1 edge 2 edge 3 edge 4 edge 5 edge 6

e1 1 1 1 1 -1 1
e2 1 1 1 -1 -1 1

Table 2.12 Elements to edges connectivity for local/global edge direction.

more unknowns (about twice) than when using the nodal-based FEM on tetrahedrons.
However, the higher number of unknowns is balanced by lower connectivity between
edges or a greater sparsity of the nodal-based FEM matrices. As result, the memory
demand for both kind of methods is about the same if only the nonzero entries are
counted (Jin, 2002; Mukherjee and Everett, 2011; Cai et al., 2014).

2.4 PETGEM

The Parallel Edge-based Tool for Geophysical Electromagnetic Modelling (PETGEM)
is a Python code for the scalable solution of 3D CSEM FM on tetrahedral meshes, as
these are the easiest to scale-up to very large domains or arbitrary shape. It is written
mostly in Python 3.5.2 and relies on the scientific Python software stack with heavy use
of mpi4py and petsc4py packages for parallel computations. Other scientific Python
packages used include: H5py for binary data format support, Numpy for efficient
array manipulation and Scipy algorithms. PETGEM allow users the simulation of
electromagnetic fields in real 3D CSEM FM on shared-memory/distributed-memory

25

http://petgem.bsc
http://petgem.bsc

HPC python code for 3D CSEM FM

HPC platforms. Among others, the key drivers for the PETGEM development are
the following:

1. Solve a relative scarcity of robust edge-based codes for 3D CSEM FM to reduce
ambiguities in data interpretation for hydrocarbon exploration.

2. Provide synthetic results which can then compare to real data.

3. Simulate real scenarios, i.e. support for geologies structurally complex with a
good trade-off between accuracy and number of DOFs.

4. The integration of Python, EFEM and geophysical methods such as 3D CSEM
FM is still limited, with pently room for improvement. These concepts has
been systematically applied in PETGEM for running simulations using HPC
resources.

Although there are specialised modelling tools for geophysical prospecting, details of
their implemented methods are generally hidden behind a black box, which could lead
to a situation in which the formulation could be unknown. Furthermore, not all nu-
merical schemes are well suited for latest computing architectures or are well adapted
to the problem. PETGEM is developed as open-source at Computer Applications
in Science & Engineering (CASE) of the Barcelona Supercomputing Center - Cen-
tro Nacional de Supercomputación (BSC-CNS). Many features have gradually been
included, such as modules for EFEM data structures and a set of Python wrappers
for the use of efficient solvers and preconditioners suitable for the resulting matrix
system. PETGEM is now a complete package particularly suited for the 3D CSEM
FM aiming to foster our understanding about EM in geophysics and its coupling with
HPC technologies. Since it was intended tackle realistic problems, its data structures
were designed to cope simultaneously three key requirements: accuracy, flexibility and
efficiency. In addition, the adopted algorithms has the posibility to easily add or re-
move components without having to rewrite large parts of the code. This approach
leads to optimal performance in terms of development and computation time. In other
words, PETGEM was written based on an architecture-aware design effort in order
to ensure a good capacity for large scale computations, thus competence to deal with
real models without losing versatility offered by the programming language.

2.4.1 Code workflow

The 3D CSEM FM is composed of four main tasks: discretisation of the geometry,
elemental matrices computation and global system assembly, solving the resulting

26

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

2.4 PETGEM

system and post-processing the solution (for a general purpose case, these stages are
described in Appendices B and C). In addition, the problem decomposition into
independent modules is important because each region make use of methods that
belong to different branches of mathematics. For instance, the design of algorithms
for 3D meshing and iterative solvers for large scale modelling require knowledge going
beyond the scope of this research. Therefore, this thesis rely on well-known tools for
domain discretisation and solving systems of linear equations and focuses on the kernel
of 3D CSEM FM, namely, the core of PETGEM .

Mesh formats supported are those generated by Gambit, Netgen and Gmsh. It
task runs independently of main PETGEM workflow. The PETGEM kernel is based
on a relatively straightforward high level parallelization, that makes use of the code
capability to integrate the best attributes of compiled and interpreted languages. Sev-
eral processes of the kernel can be spawned, each responsible for its own subdomain,
so that the whole domain is covered. Each process then assembles its local contribu-
tions to the global linear system that is solved. For this purpose, PETGEM use the
PETSc library and its large collection of data structures and parallel iterative solvers
and preconditioners, that can be used in Python through the petsc4py and mpi4py
packages.

The PETGEM modularity policy is preserving because discretisation tools and the
PETSc library are coupled in such a way that they can be replaced easily by other
packages at the cost of minimal changes. An outline of the overall PETGEM workflow
is depicted in figure 2.2.

2.4.2 Software stack overview

PETGEM use a code structure for the EFEM that emphasizes good parallel scalability,
which is crucial in the multi-core era. Furthermore, it’s modularity should simplify
the process of reaching the best possible performance in terms of percentage of the
peak amount of floating point operations provided by the architecture.

An outline of the primary groups of modules in PETGEM design is given in fig-
ure 2.3. A more detailed explanation is the following:

1. Modular and extensible EFEM kernel. PETGEM kernel is extensible in any
direction. Therefore, the possibility of adding new features such as new boundary
conditions, numerical algorithms, analysis modules, among others.

2. Independent of problem formulation, numerical solution, and data storage. PET-
GEM kernel provides the independent abstractions for 3D CSEM FM, numerical

27

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

HPC python code for 3D CSEM FM

Fig. 2.2 Outline of the overall PETGEM workflow. On shared-memory architectures, the
parallel phase is based on the Multiprocessing package. On the other hand, the petsc4py and
mpi4py packages are used to provide parallel support on distributed-memory architectures.

Fig. 2.3 Upper view of PETGEM software stack.

28

http://petgem.bsc
http://petgem.bsc

2.4 PETGEM

methods, data storage and analysis.

3. Parallel processing support. Based on an shared-memory parallelism (Multipro-
cessing package), distributed-memory parallelism (mpi4py and petsc4py) and
static load balancing.

4. Confidence and performance monitoring. Based on an intensive error checking
module and an automatic profiling module.

5. Efficient solvers & preconditioners. Direct as well as iterative solvers and pre-
conditioners are supported through petsc4py package.

6. Interface to mesh generators. Not dependent on a specific mesh generator. Be-
cause most of the FEM codes were developed for nodal-based formulations, it
is necessary to develop a module to compute edge-based data structures. As a
result, different mesh formats are supported (Gambit, Netgen, and Gmsh).

7. EFEM library. Edge-based discretisations, vector basis functions, their geome-
try description, and generalized integration rules provides a generic support for
implementing EFEM solution algorithms.

8. Linear systems library. Support to Compressed Row Storage (CSR) format and
other formats for sparse matrices and their easy and efficient parallel assembly
on shared/distributed-memory platforms.

9. 3D CSEM FM module. Ad-hoc design to meet specific requirements to simu-
late 3D CSEM FM surveys, namely, conductivity model, physical parameters,
transmitter and receiver lists.

10. Test suite. Sample output for many examples are included. Furthermore, a set
of matlab and Python functions to data analysis are included.

11. Post-processing. Export to binary files, HDF5 and VTK format are supported,
allowing the analysis not just in different visualization tools but also on different
platforms. It also gives timing values in order to evaluate the performance.

2.4.3 Programming language

PETGEM is written mostly in Python programming language because:

1. It is open source, cross-platform and functional on a wide number of platforms,
including HPC environments.

29

http://petgem.bsc

HPC python code for 3D CSEM FM

2. It uses a high level and very expressive language.

3. It uses a good body of bindings to common tools needed in scientific computing
such as plotting, numerical libraries, debugging and testing.

The code structure is modular, simple and flexible which allows exploiting not just
PETGEM modules but also third party libraries. Therefore, the software stack in-
cludes interfaces to external suites of data structures and libraries that contain most
of the necessary building blocks needed for programming large scale numerical appli-
cations, i.e. meshing, sparse matrices, vectors, iterative and direct solvers. As result,
the code is compact and eliminates the need to write such libraries and thus speeds
up development time by orders of magnitude.

2.4.4 Target architectures

The HPC goal of PETGEM involves using cutting-edge architectures. To that goal,
the code is implemented in current state-of-the-art platforms such as Intel Xeon Plat-
inum, Intel Haswell and Intel Xeon Phi processors, which offer high-performance,
flexibility and power efficiency. Nevertheless, PETGEM support older architectures
such as SandyBridge, for the sake of usability and to be able to compare performance.

2.4.5 Requeriments

Requirements packages for using PETGEM :

1. Gambit, Netgen or Gmsh for mesh generation.

2. Python3.

3. Scipy for numerical operations.

4. Numpy for arrays manipulation.

5. H5py for HDF5 files manipulation.

6. Python Multiprocessing package for parallel computations on shared-memory
platforms.

7. Sharedmem Python package for arrays manipulation on shared-memory plat-
forms.

30

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

2.4 PETGEM

8. Petsc4py and mpi4py for parallel computations on distributed memory plat-
forms.

9. Paraview or VisIt for visualization of PETGEM output files.

10. Sphinx and LaTeX to (re)generate code documentation.

PETGEM can be used without any installation by running the kernel from the top-
level directory of the distribution.

2.4.6 Coding style

PETGEM coding style is based on PEP-0008 guidelines. Main guidelines are the
following:

1. 79 characteres per line.

2. 4 spaces per indentation level.

3. Variables are lower case meanwhile constants are upper case.

4. Comments convention for functions is as follows:
def function(arg1, arg2):
'''This is a function.

:param int arg1: array of dimensions ...
:param str arg2: string that ...

'''

5. The use of inline comments is sparingly.

6. Use of lowercase to name functions. Furthermore, functions names have following
form: <action>_<subject>(), e.g. compute_matrix().

7. Use of whole words instead abbreviations, examples:
Yes: solve_system(), compute_edges(), compute_matrix().
No: solve(), compedges(), compmatrix().

2.4.7 Python 3.x compatibility

Since first Python release each new version had always been backward compatibility.
This rule had been broken with the advent of Python 3.x. It does it on purpose, so
new set of features can be implemented. In order to ensure forward compatibility, this

31

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

HPC python code for 3D CSEM FM

thesis is based on Python 3.5.2 which is the latest version at the moment of writting.
However, all theoretical concepts apply equally well also to Python 2.x.

On the other hand, and following the studies by (Cuni, 2010), PETGEM has
been developed under an awareness approach in three areas: language programming,
physical-numerical requirements and the computational architecture.

2.4.8 Code availability

The code of PETGEM is available at http://petgem.bsc.es or by requesting the author
(octavio.castillo@bsc.es, ocastilloreyes@gmail.com). The code is supplied in a manner
to ease the immediate execution under Linux platforms. User’s manual and technical
documentation (developer’s guide) are provided in the PETGEM archive as well.

2.5 Parallel strategies

In FEM or EFEM simulations, the most time-consuming tasks are the assembly and
solving. Hence, the need for efficient algorithms may be crucial especially when the
DOFs is considerably large. For the solution of the system of equations there are par-
allel libraries that have shown their stability and flexibility, e.g. PETSc, MUMPS or
PARDISO. In real scenarios of 3D CSEM FM the solution phase, which asymtotically
dominates in large-scale computing, remains a critical portion of the code. Therefore,
the PETGEM kernel is based on the PETSc solvers because these are well integrated
in Python through the petsc4py package. In this way it is possible to take advantage
of the capacity of stable and well-known tools in the field of scientific computing.

On the other hand, the classical assembly in FEM or EFEM programming is based
on a loop over the elements as is described by (Zienkiewicz et al., 1977). Different tech-
niques and algorithms for this purpose are presented by (Duff et al., 1986; Chen, 2008;
Langtangen and Cai, 2008; Chen, 2011; Hannukainen and Juntunen, 2012; Anjam and
Valdman, 2015). This characteristic is quite useful because it allows performing these
computations at the same time, i.e., to compute them in parallel. However, parallel
programming is not a trivial task in most programming languages, and demands a
strong theoretical knowledge about the hardware architecture. Fortunately, Python
presents two friendly solutions for parallel computations, namely, Multiprocessing and
mpi4py. Both schemes are described in the following lines.

32

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

2.5 Parallel strategies

2.5.1 Parallelism on shared-memory platforms

The Multiprocessing package focuses on shared-memory platforms and similarly to
Python threading module it allows the programmer to access the various processors
in the platform using sub-processes instead of threads. This module allows you write
parallelized codes using processes in relatively simple way. By leveraging system pro-
cesses instead of threads, Multiprocessing package lets you avoid issues like the Global
Interpreter Lock (GIL), which is a mutex that prevents multiple native threads from
executing Python bytecodes at once. GIL is necessary mainly because CPython’s
memory management is not thread-safe, therefore CPython extensions must be GIL-
aware in order to avoid defeating threads. As result, Multiprocessing package takes
advantage of multiple cores (CPUs) by using child interruptible processes.

On top of that, parallelism on shared-memory platforms in PETGEM is based
on Multiprocessing package since the assembly phase is a embarrasingly parallel task
which does not require an explicit synchronization or communication between those
related computational processes.

For the parallel assembly of matrix A, PETGEM is based on the CSR function
sparse(Ig, Jg, Kg, m, m) which returns a m×m sparse matrix where vectors Ig, Jg and
Kg have the same length given by m2 × number of elements, where m is the element
order. The zero elements of K are not taken into account and the elements of Kg

having the same indices in Ig and Jg are summed. Therefore, the main idea consist
in the parallel popullation of the three global 1d-arrays Ig, Jg and Kg which store the
position of their elements in the global matrix as well as the local matrices as show in
figure 2.4. Using Ik, Jk and Kk and a parallel loop over elements, one may calculate
the global arrays Ig, Jg and Kg. In order to avoid unnecessary data copies, we build the
global arrays Ig, Jg and Kg using a shared-memory approach through the sharemem
Python package (Feng, 2016). Hence, the global indices in which the computed terms
must be added by each process are given by idDominio × Chunksize + idLocal,
where idDominio is the id process in the parallel pool, Chunksize is the number
of elements to be computed within idDominio and idLocal is the local indice of the
element computed within idDominio. In sake of an adequate workload balancing, the
Chunksize value is obtained by dividing the total number of elements in the mesh by
the number of CPUs in the parallel pool. On top of that, figure 2.5 depicts a global
view of the parallel scheme adopted for assembly in PETGEM on shared-memory
architectures.

Previous strategy is also applied to assembly the right hand side vector. Because
arrays Ig and Jg have already been populated, each process must compute local con-

33

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

HPC python code for 3D CSEM FM

tributions for all elements within his own domain as depict figure 2.4. Once array Qg

have been computed, the final right hand side can be obtained using the CSR sparse
function sparse(Ig, Lg, Qg, m, 1), where Ig store the global row indices associated to
the elements in Qg, Lg is an auxiliar vector with all values equal to 0 (which define a
column matrix) and Qg store the coefficients of the elemental vectors.

After global assembly, the solution is computed in parallel through Scipy solvers
or MKL library by Intel. The post-processing stage is done following the numerical
scheme described in Section 2.2. As main features of this version arises the simplicity,
flexibility and an acceptable efficiency. However, due to memory needs, this version
of the code is limited to the solution of small 3D CSEM FM models.

Fig. 2.4 Popullation of arrays associated with the global matrix assembly in PETGEM
using shared-memory architectures. Here, Ke

k store coefficients of the elemental matrix in
a row-wise format, Ie

k store the global row indices associated to the elements in Ke
k and Je

k

contain the global column indices associated to the elements in Ke
k. On the other hand, Qe

k

store coefficients of the elemental vector to populate the global vector or right hand side.
Here the element order is represented by m.

2.5.2 Parallelism on distributed-memory platforms

The solution of 3D CSEM FM at real-scale requires greater computing resources
than that provided by a shared-memory code whose scalability could limit the po-
tential of the modelling tool. To overcome this situation, PETGEM offers support for
distributed-memory architectures through the Message Passing Interface (MPI).

MPI is a standarized, portable message-passing system that defines a set of library
routines and allows users to write portable codes in the main programming languages
(C-like and Fortran). MPI defines a high-level abstraction for fast and portable process
communication which is especially suited for distributed memory platforms (Dalcín
et al., 2011).

34

http://petgem.bsc
http://petgem.bsc

2.5 Parallel strategies

Fig. 2.5 Parallel scheme for global matrix assembly and solution in PETGEM using a pool
with 4 processes. Here the master process manage a pool of multiple processes which kept
ready to be used depending on the demand of their service. The chunksize (number of
elements) per process is represented by n. At the end, global results are collected from each
process.

The MPICH (MPICH2-Team, 2016) and Open MPI (Gabriel et al., 2004) im-
plementations are available from vendors of high-performance computers. Further-
more, there are many Python implementations: OOMPI (Squyres et al., 2016), Pypar
(Nielsen, 2016), pyMPI (Miller, 2016), Scientific Python (Hinsen, 2014), Numarray
(Greenfield et al., 2016) and Pyfort (Dubois, 2016). However all of them lack from
interface conformance with the MPI standard, in other words, they offers rather min-
imal Python interfaces to MPI because there is no support for communicators or
process topologies, there is no support for direct array communication and they does
not permit interactive parallel runs.

Previous attemps have encouraged the development of the mpi4py package, an open
source software that provides bindings of the MPI standard for the Python program-
ming language, allowing any Python code to exploit multiple processors architectures.
The mpi4py code is constructed on top of the MPI specifications and provides sup-
port to point-to-point (sends, receives) and collective (broadcasts, scatters, gathers)
communications of any picklable Python object, as well as optimized communications
of Python object exposing the single-segment buffer interface (NumPy arrays, builtin
bytes/string/array objects) (Dalcín et al., 2005, 2008, 2011).

Moreover, matrices and vectors are extremely important in parallel scientific com-

35

http://petgem.bsc

HPC python code for 3D CSEM FM

puting. For this reason, this thesis focuses on the maintenance of these data structures
within the PETSc framework through the petsc4py package. As result, PETGEM ex-
ploits the distributed parallel layer of PETSc, with support for data types such as
vectors and sparse matrices, as required by PETGEM and methods for manipulating
them. Furthermore, there is significant support for direct and iterative solvers. Ad-
ditionally, the mesh partitioner Metis and its parallel variant Parmetis can also be
called from petsc4py.

On top of that, the parallel approach on distributed-memory architectures reuse
conceptual basis of the method applied in the shared-memory scheme. Figure 2.6
shows an upper view of the matrix assembly and solution using the mpi4py and
petsc4py packages in PETGEM . Implementation details of petsc4py classes and meth-
ods in PETGEM are documented in Appendix D. Besides, this thesis is based on
PETSc documentation (Balay et al., 2016). The first step is to partition the work-

Fig. 2.6 Parallel scheme for assembly and solution in PETGEM using 4 MPI tasks. Here
the elemental matrices computation is done in parallel. After calculations the global system
is built and solved in parallel using the petsc4py and mpi4py packages.

load into subdomains. This task can be done by Metis library, which makes load over
processes balanced. After domain partition, subdomains are read and assigned to MPI
tasks and the elemental matrices are calculated concurrently. These local contribu-
tions are then accumulated into the global matrix system. To contain global matrix
A and other data such as adjacency matrices, PETGEM use petsc4py calls to create a
parallel matrix object, namely, Mat().createAIJ() class. Because matrix A is a sparse
symmetric matrix, AIJ format (CSR) is used to store it. Since dynamic memory allo-
cation and copying between old and new storage are very expensive in sparse format,
it is critical to preallocate the memory needed for the matrix A. This preallocation of

36

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

2.5 Parallel strategies

memory is very important for achieving good performance during matrix assembly, as
this reduces the number of allocations and copies required. PETGEM pre-processing
can determine the nonzero structure for a given EFEM mesh (see Appendix D for
more details).

After the matrix A has been created, the contributions must be inserted. Follow-
ing the PETSc strategy, in PETGEM each MPI task loops the elements in its local
domain, computes the local contributions and assembles them into global matrix A,
without regard to which process eventually stores them. This task can be done in
two ways with petsc4py, by either inserting a single value or inserting an array of
values. In sake of performance, PETGEM implemented the second approach because
it reduce the number of PETSc calls. This task is done by calling the Mat.setValues()
method. Also, there are similar procedures to create vectors and insert values into
them. Petsc4py currently provides two basic vector types: sequential and parallel
vector. The created vector is distributed over all CPUs. Any CPUs can set any
components of the vector and PETSc insures that they are automatically stored in
the appropriate locations. After the matrix/vector elements have been inserted or
added, they must be processed before the solve can be performed. The petsc4py
methods for matrix/vector processing are Mat.assemblyBegin(), Mat.assemblyEnd(),
Vec.assemblyBegin() andVec.assemblyEnd().

Subsequently, the system is ready to be solved. PETGEM uses the Krylov Sub-
space Package (KSP) from PETSc through the petsc4py package. The object KSP
provides an easy-to-use interface to the combination of a parallel Krylov iterative
method and a preconditioner (PC) or a sequential direct solver. As result, PET-
GEM users can set various solver options and preconditioner options at runtime via
the PETSc options database. Details about KSP and PC context creation and its
tunning are described in the PETGEM documentation (Appendix D).

Since PETGEM kernel knows which portions of the matrix and vectors are locally
owned by each CPUs, the post-processing task is also completed in parallel following
the numerical scheme described in Section 2.2.

All petsc4py classes and methods are called from the PETGEM kernel in a manner
that allows a parallel matrix and parallel vectors to be created automatically when the
code is run on many CPUs. Similarly, if only one CPUs is specified the code will run
in a sequential mode. Although petsc4py allows control the way in which the matrices
and vectors to be split across the CPUs on the architecture, PETGEM simply let
petsc4py decide the local sizes in sake of computational flexibility. However, this can
be modified in an easy way without any extra coding required.

37

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

HPC python code for 3D CSEM FM

2.6 Scalability tests

The scalability of the code has been tested on shared-memory and distributed-memory
architectures by running the same problem for different number of CPUs working
in parallel. In this set of experiments the most time-consuming sections have been
considered, namely, assembly and solving tasks. All simulations have been carried
out on version III of the Marenostrum supercomputer at Barcelona Supercomputing
Center-Centro Nacional de Supercomputación (BSC-CNS).

Marenostrum III (MNIII) is a supercomputer based on Intel SandyBridge proces-
sors, iDataPlex Compute Racks, a Linux Operating System and an Infiniband inter-
connection. Its has 48,896 Intel SandyBridge-EP E5–2670 cores at 2.6 GHz grouped
into 3,056 computing nodes, 103.5 TB of main memory (128 nodes with 128 Gb, 128
nodes 64 Gb and 2880 nodes with 32 Gb) as well as 1.9 PB of GPFS disk storage. Its
peak perfomance is 1.1 Petaflops. Each computing node has two 8-core Intel Xeon
processors E5-2670 with a frequency of 2.6 GHz and 20 MB cache memory.

The following tests are based on the canonical model described in Section 3.1. Its
mesh has been created with Gmsh and has 4, 451, 735 elements, 723, 586 nodes and
5, 223, 449 edges (mesh of first-level). Since real models normally have more DOFs we
applied an uniform refinement to this mesh, namely, we used the refinement functions
included in PETGEM . The second-level of the automatic mesh refinement has created
a big mesh that has 35, 613, 880 elements, 5, 947, 035 nodes and 41, 753, 430 edges. By
exploiting this methodology, the scalability of the code can be evaluated in a way
that is relevant for real-scale modelling. First-level mesh have been simulated using
the shared-memory PETGEM version. Since second-level mesh has huge memory re-
quirements, these tests have been performed using the distributed-memory PETGEM
version on 32, 64, 128, 256, 512 and 1024 CPUs, using all 16 CPUs per node.

2.6.1 Shared-memory tests

First set of tests has been carried out using the shared-memory version of PETGEM
on 1 node with 64 Gb of memory. Its are based on parallel approach described in
Subsection 2.5.1. The performance is measured based on the wall clock times for the
matrix assembly and solving tasks.

Figure 2.7 show the assembly speed-ups obtained for up 16 CPUs of MNIII for
the first-level mesh (4, 451, 735 elements, 723, 586 nodes and 5, 223, 449 DOFs). The
achieved scalability is almost linear for up 8 CPUs. From this number on, the scal-
ability stops its near-linear growth and slowly begins to saturate since the execution

38

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

2.6 Scalability tests

becomes dominated by mainly three events: 1) creating and starting the processes, 2)
passing the function and the arguments over to them and, 3) waiting for process ter-
mination. However, the speed-ups keep growing constantly until achieve ≈ 14x from
the ideal 16x. It is important to emphasise that profiling tools do not offer support for
Multiprocessing Python applications (at least at the time of writing this document),
thus a more insights into what happens when the number of CPUs is increased can-
not be presented in this thesis. Table 2.13 shows the runtime, speed-up and parallel

Number of CPUs
1 2 4 6 8 10 12 14 16

S
c
a
la

b
ili

ty
 r

a
ti
o

1

2

4

6

8

10

12

14

16

Ideal
PETGEM

Fig. 2.7 Scalability tests for the first-level mesh (3, 793, 356 DOFs) on MNIII.

efficiency that processes have spent on performing computations. Analysing these re-
sults, it is easy to see that the computation time has been reduced by increasing the
number of processes (around 14 times when increasing the number of CPUs from 1
to 16. Finally, although Multiprocessing package is efficient for the parallel assembly

CPUs 1 2 4 6 8 10 12 14 16

Runtime (Min) 232.48 116.95 58.61 39.25 29.43 24.32 20.66 18.23 16.63
Speed-up - 1.98 3.96 5.92 7.89 9.55 11.25 12.75 13.98
Efficiency - .99 .99 .98 .98 .95 .93 .91 .87

Table 2.13 Execution results for different number of CPUs on shared-memory architectures

task it does not allow to exploit the parallelism offered by the solution of the system.
Therefore, the solution of the system has been done in parallel using the MKL library
by Intel.

39

HPC python code for 3D CSEM FM

2.6.2 Distributed-memory tests

Second set of tests has been carried out using the distributed-memory version of PET-
GEM on 32, 64, 128, 256, 512 and 1024 CPUs, using all 16 CPUs per node. Its are
based on the parallel approach described in Subsection 2.5.2. These experiments are
relevant because although matrix assembly quickly disappears with the increase of the
number of CPUs on shared-memory architectures, this represents only a portion of
the total execution time and commonly the iterative solver is the most dominant and
expensive region of the code. Furthermore, parallelism on distributed-memory plat-
forms offer greater flexibility and capacity for large-scale computations such as the 3D
CSEM FM.

Figure 2.8 show speed-ups obtained for up 1024 CPUs of MNIII for the second-level
mesh (35, 613, 880 elements, 5, 947, 035 nodes and 41, 753, 430 DOFs). The achieved
scalability is almost linear for up to 256. From this number on, the scalability stops its
near-linear growth and slowly begins to saturate since the execution becomes domi-
nated by exchange of messages between MPI tasks. However, the speed-ups keep grow-
ing constantly and significant reductions in runtime for more than thousand CPUs has
been observed. Table 2.14 shows the runtime, speed-up and parallel efficiency that

Number of CPUs
32 64 128 256 512 1024

S
c
a
la

b
ili

ty
 r

a
ti
o

32
64

128

256

512

1024

Ideal
PETGEM

Fig. 2.8 Scalability tests for the second-level mesh (41, 753, 430 DOFs) on MNIII.

processes have spent on performing the modelling. Analysing these results, it is easy
to see that the computation time has been reduced by increasing the number of pro-
cesses (around 26 times when increasing the number of CPUs from 32 to 1024). In
order to perform a more thorough analysis of the MPI parallelism within PETGEM ,
we have carried out a set of simulations that has been been analyzed using the per-
formance tools developed at BSC-CNS: Paraver and Dimemas. These tools responds
to the basic need to have a qualitative global perception of the application behaviour

40

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

2.6 Scalability tests

CPUs 32 64 128 256 512 1024

Runtime (Min) 945.30 482.14 246.09 122.96 63.08 36.92
Speed-up - 1.96 3.84 7.68 14.98 25.60
Efficiency - .98 .96 .96 .94 .80

Table 2.14 Execution results for different number of CPUs on distributed-memory architec-
tures

by visual inspection and then to be able to focus on the detailed quantitative analysis
of the problems. Performance tools generate information that directly improves the
decisions in whether and where to invert the programming effort to optimize an appli-
cation. The result is a reduction of the development time as well as the minimization
of the hardware resources required for it (Heroux et al., 2006).

The analysis methodology begins with a set of Paraver traces for a number of MPI
tasks, obtained from executing an instrumented version of PETGEM . Then, from a
visual analysis of the traces clean cuts are generated in order to identify the main
computational phases. This allows identify the different environments of the code,
namely, is possible to separate main computational regions from communication in-
tensive stages, e.g. elemental matrix computations or solving phase from MPI calls.
Furthermore, in this step, additional information such as useful computational dura-
tion and number of MPI calls can be measured. The net result of this analysis phase
is depicted in figure 2.9, where the color represents the duration of computation burst
(useful duration). This view gives a good perception of where are the major compu-
tation phases, and their balance across processors. As result, in figure 2.9 is easy to
see that assembly and solver phases are the main computational regions. Once the
code structure has been identified, we analize Paraver traces of PETGEM using 16, 32
and 64 CPUs in order to measure times for the aforementioned main computational
regions. The main advantage of this strategy is that trace sizes are smaller and more
manageable, in addition, all the effects that appear with the increase of the CPUs can
be noticed much earlier.

The scalability ratio for these experiments is show in figure 2.10, where is easy
to observe a quasi-linear ratio for up to 64 CPUs. Furthermore, the assembly task
is slightly more efficient than solving because it is an embarrassingly parallel task,
or task where does not exists dependency (or communication) between those parallel
task. In sake of clarity, we analize the number of solver iterations for each Paraver
trace a partir . Thus, we cut a representative region of the solver phase and we

41

http://petgem.bsc
http://petgem.bsc

HPC python code for 3D CSEM FM

Fig. 2.9 Main computational phases in PETGEM . Here, the useful duration is plotted for
each CPU in function of time.

measured the time (window size) for a number of iterations in the trace with 16 MPI
tasks. Then, we count the number of iterations that fit in the same window size for
remaining Paraver traces (32 and 64 CPUs). In our experiments, we fixed the initial
number of solver iterations to 10, which produced a window size equal to 38,104,404
microseconds (us). Results of this analysis is depicted in figure 2.11, were is easy to see
an acceptable performance in number of iterations when increasing number of CPUs.

Number of CPUs
1 16 32 64

S
c
a

la
b

ili
ty

 r
a

ti
o

1

16

32

64

Ideal
Assembly
Solver

Fig. 2.10 Scalability ratio of main computational phases in PETGEM .

The conclusion is, what has been demonstrated with examples, that PETGEM offers
an acceptable perfomance.

42

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

2.6 Scalability tests

Fig. 2.11 Solver scalability analysis using Paraver.

43

Chapter 3

Use cases of 3D CSEM FM

This chapter is devoted to the numerical simulation of 3D CSEM FM cases using the
parallel python code introduced in the previous chapter. All models that we have
used in the tests demonstrated here can be found in the literature. Futhermore, an
automatic mesh adaptation strategy and the performance of the solvers offered by
PETSc for the solution of the EM problem are studied.

3.1 Canonical model of an off-shore hydrocarbon
reservoir

The first model is a canonical modelling by (Constable and Weiss, 2006) which consists
in four-layers: 1,000 m thick seawater (3.3 Sm−1), 1,000 m thick sediments (1 Sm−1),
100 m thick oil (0.01 Sm−1) and 1,400 m thick sediments (1 Sm−1). The computa-
tional domain is a [0, 3500]3 m cube which was discretized into 4, 984, 767 tetrahedral
elements, resulting in 951, 728 nodes and 6, 106, 217 DOFs. Figure 3.1 shows a 3D
view of the model with its unstructured tetrahedral mesh for the halfspace y>1,750
m, where the color scale represents the electrical conductivity (σ) for each layer.

The electromagnetic field is excited by an horizontal electric dipole, described in
Section 2.1, oriented in the x direction with a moment of 1 Am and located in the
seawater with the coordinates (x = 1750, y = 1750, z = −975) m, which is 25 m

above seafloor. The frequency of the harmonic electric source is 2 Hz. The receivers
are placed in-line to the source position and along its orientation, directly above the
seafloor (z = −990 m).

Figure 3.2a and 3.2a shows a comparison of Ex measurements between PETGEM
solution and those obtained with the WHAM tool (Key, 2009). Figure 3.2a depicts

44

http://petgem.bsc

3.1 Canonical model of an off-shore hydrocarbon reservoir

the amplitude ratio on receivers where it is easy to observe the effect of the imperfect
absorbing boundaries (dirichlet boundary conditions), which can be mitigated by en-
largening the domain with element sizes increasing logarithmically outwards from the
zone of interest. In addition, figure 3.2b reveals only small phase ratio differences on
receivers close to boundaries.

Figures 3.3a and 3.3b shows that amplitude and phase fields components for inline
receivers far to boundaries are below the requested 5% error tolerance. For receivers
close to boundaries, the error exceeds this threshold because low absorption capacity
of the boundary conditions. However, these results demostrated the validity of the
PETGEM solutions for this model. The mean runtime for this model is 74.62 minutes
(11.94 for assembly and 62.68 for solving) using 64 MPI tasks and required less than
78.7 Gb. In order to extends this test and to illustrate the code’s effectiveness, we have

Fig. 3.1 In-line canonical off-shore hydrocarbon model with its unstructured tetrahedral
mesh for y>1,750 m. The color scale represents the electrical conductivity σ for each layer.

prepared a set of hierarchically refined meshes so that we could verify the convergence
of the obtained solution. For all cases the mesh has been locally refined around the
source region. Using WHAM as reference solution and excluding those receivers closest
to the boundaries, we have quantified the errors in PETGEM resulting electric fields
by means of the L1, L2 and Linf for the set of meshes, as plotted in figure 3.4. DOFs,
mesh spacing and errors for each mesh are depicted in table 3.1, which also shows
the expected linear convergence of the numerical scheme for all error norms and mesh
sizes. Finally, table 3.1 also include some information about the algorithmic effort
using a Biconjugate Gradient Stabilized Method (BiCGSTAB) solver for all cases.
In general, the numerically PETGEM results are remarkably similar to those from
quasi-analytical results in canonical models. Furthermore, the numerical results also

45

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

Use cases of 3D CSEM FM

Range (m)
0 500 1000 1500 2000 2500 3000 3500

E
x
(V

/m
)

10 -12

10 -10

10 -8

10 -6

10 -4

PETGEM
Reference

(a) Amplitude field comparison.

Range (m)
0 500 1000 1500 2000 2500 3000 3500

P
h

a
s
e

 (
ra

d
)

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

(b) Phase field comparison.

Fig. 3.2 Amplitude and phase comparison for Ex between PETGEM and the analytical
solution of canonical model in figure 3.1.

46

http://petgem.bsc

3.1 Canonical model of an off-shore hydrocarbon reservoir

Range (m)
0 500 1000 1500 2000 2500 3000 3500

R
e
la

ti
v
e
 e

rr
o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Receiver error
Tolerance (5%)

(a) Amplitude errors on receivers.

Range (m)
0 500 1000 1500 2000 2500 3000 3500

R
e
la

ti
v
e
 e

rr
o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

(b) Phase errors on receivers.

Fig. 3.3 Relative errors for amplitude and phase on Ex shown in figures 3.2a and 3.2b.

1/h
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

L
o

g
1

0
(e

rr
o

r)

10 -2

10 -1

10 0

10 1

L1
L2
Linf

Fig. 3.4 Convergence order in L1, L2 and Linf norm for model in figure 3.1. These norms
were calculated using a mesh with ≈ 12 millions of DOFs.

47

Use cases of 3D CSEM FM

demonstrate convergence to the reference solution.

Mesh DOFs h(m) L1 L2 Linf Iterations ||r||

1 6.17e04 20e01 2.8447e-07 2.5059e-07 2.4939e-07 1776 9.9771e-07
2 4.36e05 10e01 1.6652e-07 1.0365e-07 9.0489e-08 3468 9.9703e-07
3 3.43e06 5e01 1.2859e-07 8.9955e-08 7.3234e-08 5512 9.7994e-07
4 11.9e06 3.3e01 1.5615e-08 8.3129e-08 7.0474e-08 8986 1.8174e-06

Table 3.1 Summary of results for convergence test and BiCGSTAB solver.

3.2 3D CSEM FM with bathymetry

The second test involved a 3D CSEM FM with bathymetry. This model is espe-
cially interesting because a primary advantage of the EFEM over other techniques
like the Finite Difference Method (FDM) is the fact that the EFEM allow precise and
efficient representations of arbitrarily complex geological structures such as seafloor
bathymetry without critically increasing the number of DOFs. Furthermore, if not
taken into account bathymetry effects can produce large anomalies on the measured
electric fields.

The model consists of a 26,600 m thick air layer (1e-6 Sm−1), a 2,400 m thick sea-
water (3.3 Sm−1) and a 25,000 m thick sediments (1.4286 Sm−1). The computational
domain is defined by [30, 32, 54] km as show figure 3.5a. The model was discretized into
3, 879, 007 tetrahedral elements, resulting in 649, 028 nodes and 4, 535, 045 DOFs. The
reference dataset of this model was provided by (Chung et al., 2014). Furthermore, a
nodal FEM solution of this model is described in (Um et al., 2013).

The three transmitters are x-oriented electric dipole sources, with moment of 200
Am and frequency of 0.25 Hz, located at points with the coordinates (x = −5000,
y = 0, z = −2086) m, (x = 0, y = 0, z = −2096) m, (x = 5000, y = 0, z = −2001)
m. The 41 receivers are placed in-line to the source position and alongs its orienta-
tion, directly above the seafloor as show figure 3.5. The bathymetry in the area is
very rough, and adequate spatial sampling can only be achieved by allowing receiver
deployment in slopes or trenches. Several steep trenches go through the area from the
shallow eastern part to the deeper western part. For this model, the resulting system
of equations was solved with a Generalized Minimal Residual (GMRES) solver which
has been preconditioned using a Symmetric succesive over-relaxation method (SOR).

48

3.2 3D CSEM FM with bathymetry

(a) Model overview.

1.51

×10
4

0.50

X

-0.5-1-1.5
-2

-1

0
Y

1
×10

4

-1900

-2000

-2100

-2200

-2300

-2400

-2500

2

Z

Source 1

Source 2

Source 3

Receivers

(b) 3D view of the seabed bathymetry.

Fig. 3.5 Bathymetry model description.

49

Use cases of 3D CSEM FM

Figures 3.6a and 3.6b compares the Ex components and its phase obtained from PET-
GEM to those produced by (Chung et al., 2014). Most of the current successful
applications of 3D CSEM FM are offshore because the water strongly attenuates an-
thropogenic and natural noise. However, one of the most significant problems in this
environment is the air-wave effect when the water layer is shallow. The air-wave is
the secondary EM field refracted from the air-water interface which dominates the
recorded signal at large offsets. Therefore, the hydrocarbon detection ability of the
3D CSEM FM is weakened because the airwave is independent of the subsurface prop-
erties. Solutions to the airwave problem have been offered by (Eidesmo et al., 2002;
Weiss and Constable, 2006; Newman et al., 2010; Everett, 2012). Although this test
is not focused on the solution of this problem, in the figures 3.6a and 3.6b is easy
to see the airwave effect in the receivers near the boundaries which demonstrates the
physically meaningful of the results. Furthermore, the amplitude and phase errors are
show in figures 3.7a and 3.7b, respectively. In general, the PETGEM results show a
good overall agreement with the reference. In terms of performance, in (Chung et al.,
2014) the solution for the model was computed using EFEM over an hexahedral mesh
with 265 x 64 x 73 cells and 3, 796, 596 DOFs. Furthermore, the authors reported that
the computation took 64.53 minutes and required less than 88.5 Gb of memory on one
node equipped with two Intel quad-core Xeon processors (resulting in eight cores) at
2.53 GHz sharing 96 Gb of memory. In our experiments, PETGEM simulations were
executed with 64 MPI tasks. The mean runtime for this model is 86.17 minutes (6.89
for assembly and 79.27 for solving) and required less than 64 Gb.

3.3 Synthetic model with real target

The third model focuses on a synthetic case of 3D CSEM FM with a non-infinite
target (reservoir). The model is composed by three flat-layers: 8,000 m thick air
(1e-08 Sm−1), 2,000 m thick seawater (3.3 Sm−1) and 10,000 m thick sediments (1
Sm−1). A resevoir (2e-02 Sm−1), with the size of [3000, 3000, 50] m, is embedded
in the marine sediment with the center at (x = 0, y = 0, z = −2600) m. The
computational domain is defined by [37, 37, 20] km. Figure 3.8 shows a 3D view of the
model with its unstructured tetrahedral mesh for the halfspace y>18,500 m, where the
color scale represents the electrical conductivity (σ) for each layer. This mesh contains
7, 043, 899 tetrahedral elements, resulting in 1, 207, 452 nodes and 8, 261, 676 DOFs.
The resulting size of the sparse matrix is 8, 261, 676 x 8, 261, 676. From figure 3.8, one
can see that the mesh is refined in the areas of the sources, reservoir domain, and the

50

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

3.3 Synthetic model with real target

E
x
(V

/m
)

10 -15

10 -10

10 -5

PETGEM
Reference

E
x
(V

/m
)

10 -15

10 -10

10 -5

Range (m) ×10 4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
x
(V

/m
)

10 -15

10 -10

10 -5

(a) Amplitude field comparison. The sources are plotted on the top (source 1), middle
(source 2) and bottom (source 3).

R
e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

R
e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

Range (m) ×10 4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

R
e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

(b) Phase field comparison.

Fig. 3.6 Amplitude and phase comparison for Ex between PETGEM and those obtained
by (Chung et al., 2014) for the model in figure 3.5a.

51

http://petgem.bsc

Use cases of 3D CSEM FM
R

e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

Receiver error
Tolerance (5%)

R
e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

Range (m) ×10 4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

R
e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

(a) Amplitude errors on receivers. The sources are plotted on the top (source 1), middle
(source 2) and bottom (source 3).

R
e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

R
e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

Range (m) ×10 4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

R
e
la

ti
v
e
 e

rr
o
r

10 -4

10 -2

10 0

(b) Phase errors on receivers. Considering the intrinsic errors of the numerical method, the
differences are reasonable.

Fig. 3.7 Relative errors for amplitude and phase on Ex solution show in figures 3.6a.
and 3.6b.

52

3.3 Synthetic model with real target

seafloor, where the data are measured by the receivers. In order to investigate the

Fig. 3.8 Synthetic 3D CSEM model with a target with its unstructured tetrahedral mesh
for y>15,500 m. The color scale represents the electrical conductivity σ for each layer.

source position effect, we used four x-oriented electric dipoles located 25 m above the
seafloor at points with the coordinates (x = −1500, y = 0, z = −1975) m, (x = −500,
y = 0, z = −1975) m, (x = 500, y = 0, z = −1975) m and (x = 1500, y = 0,
z = −1975) m. The frequency of excitation current is 3 Hz with a moment of 1 Am.
The 91 receivers are placed in-line to the source positions and along its orientation,
directly above the seafloor (z = −1999 m).

The average runtime for this model is 92.47 minutes (7.39 for assembly and 85.07
for solving) using 128 MPI tasks. The mean memory usage is 76.6 Gb. The numerical
results obtained by PETGEM was compared to those computed with the Barcelona
Subsurface Imaging Tools (BSIT).

For typical 3D CSEM FM survey, the target response is much smaller than the
background field. It is critical for the FM to accurately simulate the target effect.
Therefore, two set of simulations have been executed. First, by setting the conductivity
of the target to that of the sediments, the EM responses were computed. Next, the
conductivity of the reservoir was setted and the EM responses for this model were
calculated.

Figure 3.9 shows an amplitude comparison of Ex component for both models and
for all sources along the profile at y = 0 m. A comparison between left panels and right
panels of figure 3.9 shows that the field is distorted significantly by the target. The
anomaly was observed around x = −1550 to x = 1550 m, which corresponds with the
reservoir location. For the remaining offset, the total electric field is almost the same.
The phase comparison of these responses are plotted in figure 3.10. Again, for this

53

http://petgem.bsc

Use cases of 3D CSEM FM

model the results are practically the same because the normalized misfit in amplitude
and phase is 0.5% as shows figures 3.11 and 3.12. In conclusion, the numerical results

E
x
(V

/m
)

10
-20

10
-10

PETGEM

Reference

E
x
(V

/m
)

10
-20

10
-10

Source 1 Source 1

Source 2 Source 2

E
x
(V

/m
)

10
-20

10
-10

Range(m) ×10
4

-1.5 -1 -0.5 0 0.5 1 1.5

E
x
(V

/m
)

10
-20

10
-10

Range(m) ×10
4

-1.5 -1 -0.5 0 0.5 1 1.5

Source 3 Source 3

Source 4 Source 4

Fig. 3.9 Amplitude comparison for Ex between PETGEM and those obtained by BSIT.
Left panels correspond to the model without target while the right panels correspond to the
model with reservoir.

produced by PETGEM coincide well with the reference solution. Thus, modelling
results confirm ones again the quantitative value of 3D CSEM FM data interpretation
to reliable definition and characterization of bodies electric resistivity.

54

http://petgem.bsc
http://petgem.bsc

3.3 Synthetic model with real target

P
h

a
s
e

 (
ra

d
)

0

10

20

30

40

PETGEM

Reference

P
h

a
s
e

 (
ra

d
)

0

10

20

30

40

Source 1 Source 1

Source 2 Source 2

P
h

a
s
e

 (
ra

d
)

0

10

20

30

40

Range(m) ×10 4

-1.5 -1 -0.5 0 0.5 1 1.5

P
h

a
s
e

 (
ra

d
)

0

10

20

30

40

Range(m) ×10 4

-1.5 -1 -0.5 0 0.5 1 1.5

Source 3 Source 3

Source 4 Source 4

Fig. 3.10 Phase comparison for Ex between PETGEM and those obtained by BSIT. Left
panels correspond to the model without target while the right panels correspond to the
model with reservoir.

55

http://petgem.bsc

Use cases of 3D CSEM FM
R

e
la

ti
v
e

 e
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Receiver error

Tolerance (5%)

R
e

la
ti
v
e

 e
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Source 1 Source 1

Source 2 Source 2

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Range(m) ×10 4

-1.5 -1 -0.5 0 0.5 1 1.5

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Range(m) ×10 4

-1.5 -1 -0.5 0 0.5 1 1.5

Source 3 Source 3

Source 4 Source 4

Fig. 3.11 Relative amplitude errors (left panels for model without target, rigth panels for
model with reservoir) for EM responses shown in figure 3.9.

56

3.3 Synthetic model with real target
R

e
la

ti
v
e

 e
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Receiver error

Tolerance (5%)

R
e

la
ti
v
e

 e
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Source 1 Source 1

Source 2 Source 2

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Range(m) ×10 4

-1.5 -1 -0.5 0 0.5 1 1.5

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Range(m) ×10 4

-1.5 -1 -0.5 0 0.5 1 1.5

Source 3 Source 3

Source 4 Source 4

Fig. 3.12 Relative phase errors (left panels for model without target, rigth panels for model
with reservoir) for electric fields shown in figure 3.14.

57

Use cases of 3D CSEM FM

3.4 Automatic mesh adaptation

Nowadays, in the field of numerical simulations based on FEM and EFEM, automatic
mesh adaptation has largely proved its efficiency for improving the accuracy of the nu-
merical solution and capturing the behavior of physical phenomena by exploiting local
mesh refinement. In principle, this technique allows substantially reducing the number
of DOFs, thus favorably impacting CPU times, and achieving a desired accuracy on
computed solutions. Although the iterative solver is rather efficient even on oversam-
pled grid simulations, memory requirements can be reduced if the computational grid
is adapted to the source location and to the frequency. However, when the source
and receivers depth and the bathymetry are varying, it will be too cumbersome and
impractical to ask the user to define a model per source/receivers and per frequency.

This test is devoted to the analysis of the automatic mesh adaptation approach
developed by (Plessix et al., 2007). This approach ensures, for a given frequency
and a given source position, that the computational domain is consistent with the
discretization of the EM equations. Its core is based on the skin-depth (δ), defined as
the effective depth of penetration of EM energy in a conducting medium, where the
amplitude of a plane wave in a whole space has been attenuated to 1/e or 37% (Sheriff,
2002). Its formal definition is the following

δ =
√

2
µ0ωσ

≈ 503
√

1
fσ

, (3.1)

where µ0 is the free space magnetic permeability (Hm−1), ω is the angular frequency
(2πf), σ is the electric conductivity (Sm−1) and f is the frequency (Hz). According
to formulation by (Plessix et al., 2007), equation 3.1 gives a rule to automatically
determine the spacing dδ(f) at a frequency f

dδ(f) = δmin(f)
rδ

, (3.2)

where δmin is the minimum skin-depth and rδ is a number between two and three.
In 3D CSEM FM surveys, δmin occurs in the water layer where σ ≈ 3.3 Sm−1 and
δmin ≈ 275/

√
f . In order to obtain better approximations around source and receivers,

we define the spacing ds as follows

ds = min
(

Ls

rs

, dδ(f)
)

, (3.3)

58

3.4 Automatic mesh adaptation

where Ls is the source dipole length and rs a number between ten and fifteen. The
value for rs is different to those described in (Plessix et al., 2007) (between two and
four) because the authors used a finite-integration approach. However, in the test
described below, we observe that this difference does not imply a significant increase
in the computational cost.

We estimate the mesh dimensions from the average skin-depth δave, that generally
corresponds to the skin-depth in the sediment areas, i.e., δave ≈ 5 × 103/

√
f for a

conductivity of 0.01 (Sm−1). The computational domain, decomposed into a core
domain and extra boundary layers, was defined as follows

[xs − rxδave, xs + rxδave] × [ys − ryδave, ys + ryδave] × [zair, zs + rzδave], (3.4)

where rx and ry are numbers between four and eight (depending on the location of
the receivers), rz a number around four, zair the depth of the air-water interface, and
xs = [xs, ys, zs] the source position. In order to reduce boundary reflections (as can be
seen in Section 3.1 and Section 3.2), we add extra boundary layers with a thickness of
tb = rbδave, where rb is a number around four. The values for rx, ry, rz and rb where
chosen in the same way as in (Plessix et al., 2007), where reflections of EM fields are
reduced by 98% over four skin-depths, and by 99.9% over eight skin-depths.

For this test, the core of the computational domain is centered at xs and the
number of points is limited by the following power-law stretching

xi = xi−1 + min(si
cds, dδ(f)), (3.5)

where sc is the stretching parameter equal to 1.04. Similarly, the boundary layers were
stretched with a power-law defined as

xi = xi−1 + sb(xi−1 − xi−2), (3.6)

where sb is equal to 1.1. Finally, we have defined a constant conductivity value for
each element of the computational domain.

To evaluate whether the aforementioned approach is satisfactory to model 3D
CSEM FM surveys, we carried out several PETGEM simulations based on the model
described in Section 3.1 for the following frequencies: 0.25 Hz, 0.5 Hz, 0.75 Hz, 1
Hz, 1.25 Hz, 1.5 Hz, 1.75 Hz and 2 Hz. For each frequency, the computational mesh
generation with Gmsh was controlled by rδ = 3, rs = 13, rx = ry = 8, rz = 4 and
rb = 4. A summary of the resulting meshes from this process is described in table 3.2.

59

http://petgem.bsc

Use cases of 3D CSEM FM

All tests have been solved in sequential using the Symmetric Quasi-Minimal Residual
(SQMR) solver with a Successive Over-relaxation (SOR) method as preconditioner.
After executing each test separately (adapted tests) and aiming to investigate the ef-

Id Frequency (Hz) Elements Nodes Edges DOFs

A 0.25 554, 262 92, 397 656, 186 627, 602
B 0.5 982, 094 163, 705 1, 163, 108 1, 111, 178
C 0.75 1, 463, 445 243, 729 1, 733, 203 1, 655, 113
D 1 1, 962, 870 325, 916 2, 322, 275 2, 221, 805
E 1.25 2, 447, 342 405, 880 2, 894, 085 2, 771, 493
F 1.5 2, 960, 034 489, 757 3, 497, 666 3, 354, 038
G 1.75 3, 576, 958 590, 519 4, 222, 968 4, 056, 492
H 2 4, 310, 303 709, 184 5, 082, 432 4, 893, 594

Table 3.2 Summary of resulting meshes based on automatic mesh adaptation

fect of an oversampled mesh, we solved each frequency using the mesh adapted to 2
Hz (oversampled tests).

Figures 3.13 and 3.14 compares the amplitude and phase components of electric
fields between PETGEM and WHAM tool (Key, 2009). Here both results are better
than those presented in Section 3.1, mainly on receivers whose position is close to the
boundaries thanks to the inclusion of extra layers. However simulation results with
the oversampled mesh show higher differences with respect to reference. Since these
discrepancies have greater presence in the boundaries and around to source position,
this negative effect is related to the quality of the elements on such mesh regions.
The relative differences in amplitudes and phases of the responses obtained on both
meshes, adapted and oversampled, are show in figures 3.15 and 3.16, respectively.
The best results are obtained when the automatic mesh adaptation is carried out, e.g.
the errors associated to modelling results at 2 Hz are smaller than their similar ones
show in figures 3.3a and 3.3b. This numerical examples depict the usefulness of this
approach for 3D CSEM FM design and scenario studies.

To illustrate the efficiency of this technique, we have measured the times for the
assembly and solving tasks. Table 3.3 lists the number of iterations, assembly and
solver times. Those results are obtained on a single CPU. The solution of tests based
on oversampled meshes required much more iterations than tests with adapted meshes,
as consequence needed considerably more CPU time. On average, the adapted scheme
was about four times faster in these examples. In figure 3.17, the assembly and solver
times for both set of tests are displayed.

60

http://petgem.bsc

3.5 Convergence of solvers

Previous results show the relevance of mesh adaptation for survey design in the
3D CSEM FM context. The responses are very similar, the amplitude differences are
a few percent, and the phase differences are around 0.4 rad. Notice that the results
shown here are a direct consequence of using unstructured tetrahedral meshes, which
can be generated fully automatically given a proper geometry and spacing rules. This
is different from conforming hexahedral grids that often require manual interaction
to properly honor arbitrary spacings and geometries (Owen, 1998). Furthermore,
the computational time can be significantly reduced with an adapted mesh to the
frequency and to the source position. In summary, this illustrates that a code with a
careful mesh adaptation, included in PETGEM , is a competitive tool for EM modelling
in the geophysics context.

Frequency
(Hz)

Assembly Solver Iterations
A B A B A B

0.25 1.77 11.8 17.52 222.4 5,950 11,382
0.5 2.99 11.9 35.78 222.3 6,630 12,519
0.75 4.49 11.8 45.35 213.7 5,625 9,685

1 5.72 11.6 91.70 206.7 8,245 9,275
1.25 6.95 11.8 95.70 203.4 6,825 8,670
1.5 8.32 11.6 104.71 174.9 6,145 7,540
1.75 10.38 11.8 137.02 161.1 7,290 7,230

2 12.52 11.8 155.76 153.6 6,935 6,935

Table 3.3 Summary of results for mesh adapted tests (A) and oversampled mesh tests (B).
Times are expressed in minutes.

3.5 Convergence of solvers

In this section, we study the iterative solvers that were widely used for solving the
EM problem under consideration (Freund and Nachtigal, 1991; Axelsson, 1996; Badea
et al., 2001; Saad, 2003; Puzyrev et al., 2013; Cai et al., 2014; Koldan et al., 2014).
Although there are other techniques, such as domain decomposition methods or geo-
metric multigrid solvers, the purpose of these experiments focuses on exploiting the
flexibility and simplicity of the solvers commonly used by researchers. Therefore,
in order to determine which one is the best choice, the analysis include the PETSc
implementation of the GMRES and BiCGSTAB methods.

These solvers can compete in terms of computational cost, convergence rate and

61

http://petgem.bsc

Use cases of 3D CSEM FM
E

x
(V

/m
)

10 -12

10 -10

10 -8

10 -6

10 -4
PETGEM (Adapted)
PETGEM (Oversampled)
WHAM

E
x
(V

/m
)

10 -12

10 -10

10 -8

10 -6

10 -4

f: 0.25 Hz
DOFs: 656,186

f: 0.5 Hz
DOFs: 1,163,108

f: 0.75 Hz
DOFs: 1,733,203

f: 1 Hz
DOFs: 2,322,275

E
x
(V

/m
)

10 -12

10 -10

10 -8

10 -6

10 -4

Range(m)
0 500 1000 1500 2000 2500 3000 3500

E
x
(V

/m
)

10 -12

10 -10

10 -8

10 -6

10 -4

Range(m)
0 500 1000 1500 2000 2500 3000 3500

f: 1.25 Hz
DOFs: 2,894,085

f: 1.5 Hz
DOFs: 3,497,666

f: 1.75 Hz
DOFs: 4,222,968

f: 2 Hz
DOFs: 5,082,432

Fig. 3.13 Amplitude comparison for Ex between PETGEM and those obtained by WHAM
tool (Key, 2009)

62

http://petgem.bsc

3.5 Convergence of solvers

P
h

a
s
e

 (
ra

d
)

-4

-3

-2

-1

0

1

PETGEM (Adapted)
PETGEM (Oversampled)
WHAM

P
h

a
s
e

 (
ra

d
)

-4

-3

-2

-1

0

1

f: 0.25 Hz
DOFs: 656,186

f: 0.5 Hz
DOFs: 1,163,108

f: 0.75 Hz
DOFs: 1,733,203

f: 1 Hz
DOFs: 2,322,275

P
h

a
s
e

 (
ra

d
)

-4

-2

0

2

4

6

Range(m)
0 500 1000 1500 2000 2500 3000 3500

P
h

a
s
e

 (
ra

d
)

2

3

4

5

6

7

Range(m)
0 500 1000 1500 2000 2500 3000 3500

f: 1.25 Hz
DOFs: 2,894,085

f: 1.5 Hz
DOFs: 3,497,666

f: 1.75 Hz
DOFs: 4,222,968

f: 2 Hz
DOFs: 5,082,432

Fig. 3.14 Phase comparison for Ex between PETGEM and those obtained by WHAM
tool (Key, 2009)

63

http://petgem.bsc

Use cases of 3D CSEM FM
R

e
la

ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Receiver error (Adapted)
Receiver error (Oversampled)
Tolerance (5%)

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

f: 0.25 Hz f: 0.5 Hz

f: 0.75 Hz f: 1 Hz

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Range(m)
0 500 1000 1500 2000 2500 3000 3500

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Range(m)
0 500 1000 1500 2000 2500 3000 3500

f: 1.25 Hz f: 1.5 Hz

f: 1.75 Hz f: 2 Hz

Fig. 3.15 Relative amplitude errors for EM responses show in figure 3.13

64

3.5 Convergence of solvers
R

e
la

ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Receiver error (Adapted)
Receiver error (Oversampled)
Tolerance (5%)

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

f: 0.25 Hz f: 0.5 Hz

f: 0.75 Hz f: 1 Hz

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Range(m)
0 500 1000 1500 2000 2500 3000 3500

R
e

la
ti
v
e

 e
rr

o
r

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Range(m)
0 500 1000 1500 2000 2500 3000 3500

f: 1.25 Hz f: 1.5 Hz

f: 1.75 Hz f: 2 Hz

Fig. 3.16 Relative phase errors for EM responses show in figure 3.14

65

Use cases of 3D CSEM FM

Frequency
0.25 Hz 0.5 Hz 0.75 Hz 1 Hz 1.25 Hz 1.5 Hz 1.75 Hz 2 Hz

M
in

u
te

s

0

20

40

60

80

100

120

140

160

180

200

220

240

260
Assembly (Adapted)
Solver (Adapted)
Assembly (Oversampled)
Solver (Oversampled)

19.29

38.78
49.84

97.42

186.50

215.22218.40
225.55

236.24234.22

102.20
113.03

172.93

147.41

165.46168.29

Fig. 3.17 Times comparison between adapted and oversampled meshes. Assembly and
solving times are considered.

memory requirements. GMRES is an Arnoldi-based approach which only requires one
matrix-vector multiplication for every iteration. However, the memory demands is
large because it needs all the previously generated Arnoldi vectors to be saved (Puzyrev
et al., 2013). BiCGSTAB is a Lanczos-based method that require two matrix-vector
multiplications in every iteration, but the memory requirements for this approach is
less than GMRES (Puzyrev et al., 2013). Furthermore, the convergence rate of Krylov
subspace based iterative solvers strongly depends on the condition number of the
matrix. A preconditioning technique can reduce the condition number of the matrix,
thus the computation time for solving the linear system of equations can be scaled
down. There are many options of preconditioners but among these, the Jacobian and
SOR are the simplest ones because do not require extra computation (Axelsson, 1996).
More advanced preconditioners such as Multigrid methods or Domain decomposition
methods can be used to speed up the solvers. However, in these experiments we have
adopted the Jacobian and SOR methods as preconditioners for simplicity and because
they provided an adequate result for demonstration of the 3D CSEM FM proposed in
this thesis.

To perform the convergence tests, we have used the 3D CSEM model presented in
Section 3.3 (thick air: 1e-6 Sm−1, thick seawater: 3.3 Sm−1, reservoir: 1e-2 Sm−1,
thick sediments: 1 Sm−1), and the mesh creation tecnique described in Section 3.4.
Four frequencies have been studied, namely 0.5 Hz, 1 Hz, 2 Hz and 3 Hz. Table 3.4
provides quantitative information about the tetrahedal meshes that were generated for
these tests. In all executions, the convergence criterion was a reduction of the relative
residual norm (rtol) to a value in the order of 10−8. The absolute tolerance (atol)

66

3.5 Convergence of solvers

and divergence tolerance (dtol) values have been setted to 10−50 and 105 respectively,
meanwhile the number of iterations (maxits) has been limited by the maximum value
of 104. Also, all tests have been carried out using 128 MPI tasks. Figure 3.18 shows

Frequency (Hz) Elements Nodes Edges DOFs

0.5 982, 094 163, 705 1, 163, 108 1, 111, 178
1 1, 962, 870 325, 916 2, 322, 275 2, 221, 805
2 4, 310, 303 709, 184 5, 082, 432 4, 893, 594
3 6, 871, 137 1, 407, 238 9, 524, 183 9, 193, 021

Table 3.4 Summary of meshes for solver convergence tests

the residual norms generated by GMRES and BiCGSTAB with versus the iteration
number. In order to compare its convergence behaviour, figure 3.18 depicts the norms
of both no-preconditioned and preconditioned iterative solvers. Regarding residual
norms without preconditiong, we can see in figure 3.18 that neither solver was able
to achieve the desired accuracy (both for low and high frecuencies). Also, the overall
convergence of results with preconditioning is faster and it can reach lower residual
norms, however the BiCGSTAB results has more dramatic oscillations that those ob-
tained with GMRES. Furthermore, the obtained convergence rate of both techniques
for tests at 0.25 Hz is quite poor since neither methods can reach given precision of
10−8 within 10, 000 iterations. Namely, due to big sizes of the computational domain,
its discretisation and singular values of resulting system of equations (diagonal values
are quite near to zero at low frequencies and when air-layer is considered), the condi-
tion number of the matrix is huge, which results in bad convergence rate. In addition,
the achieved precision for tests at 1 Hz was 10−8 in after 10, 000 iterations meanwhile
for tests at 2 Hz was 10−10 in less than 10, 000 iterations (GMRES-Jacobi: 9, 685,
GMRES-SOR: 6, 543, BiCGSTAB-Jacobi: 10, 000, BiCGSTAB-SOR: 7, 306). Finally,
tests at 3 Hz showed the best convergence rate with precision of 10−10 after less than
7, 000 iterations (GMRES-Jacobi: 6, 487, GMRES-SOR: 4, 343, BiCGSTAB-Jacobi:
4, 095, BiCGSTAB-SOR: 3, 003). The differences in precision and number of itera-
tions are quite common situation in practice because the 3D CSEM FM is frequency
dependent. Table 3.5 lists solver times (minutes) for each test.

The results have show that BiCGSTAB produces residual norms that oscillate
significantly and its values are practically equal than ones of GMRES. Furthermore,
the SOR preconditioner greatly improves both the convergence and the execution
time for all tested cases. Therefore, we suggest using GMRES in combination with

67

Use cases of 3D CSEM FM

SOR for the solution of the EM problem under consideration. The 3D CSEM model
under consideration includes high conductivity contrasts (thick air: 1e-6 Sm−1, thick
seawater: 3.3 Sm−1, reservoir: 1e-2 Sm−1, thick sediments: 1 Sm−1). In the described
examples, the system of equations that have been solved have between 1 and 9 million
unknowns.

Frequency (Hz) 0.25 1 2 3

GMRES 19.89 24.93 35.94 54.14
GMRES-Jacobi 19.91 21.15 28.70 36.49
GMRES-SOR 20.64 20.05 26.31 41.27
BiCSTAB 16.73 19.23 38.08 27.17
BiCSTAB-Jacobi 14.88 22.21 31.26 40.38
BiCSTAB-SOR 18.77 21.78 29.53 38.27

Table 3.5 Summary of runtime for solver convergence tests. Times are expressed in minutes.

68

3.5 Convergence of solvers

||
r|

|/
||
rh

s
||

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

GMRES
GMRES - Jacobi
GMRES - SOR
BICSTAB
BICSTAB - Jacobi
BICSTAB - SOR

f: 0.5 Hz
Cond A: 2.92e06

||
r|

|/
||
rh

s
||

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

f: 1 Hz

Cond A: 2.47e06

||
r|

|/
||
rh

s
||

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

f: 2 Hz

Cond A: 2.04e06

Number of iterations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

||
r|

|/
||
rh

s
||

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

f: 3 Hz

Cond A: 1.72e06

Fig. 3.18 Convergence rate of GMRES and BiCGSTAB solvers which have been precondi-
tioned with the Jacobi and SOR methods for the meshes of table 3.4.

69

Chapter 4

Conclusions and future work

4.1 Conclusions

In this thesis we have developed a parallel python code for the 3D controlled-source
electromagnetic forward modelling (3D CSEM FM) in geophysics using the edge fi-
nite element method (EFEM), namely, the Parallel Edge-based Tool for Geophysical
Electromagnetic Modelling (PETGEM). The main design intent behind this code is
reliable definition and characterization of bodies electric resistivity in the geophysical
context within an acceptable runtime. This in turn can aid to conduct exploration
campaigns with a significant reduction of costs and risks. There were three main
themes addresed in this thesis.

The first theme is the modelling accuracy of currently used equations for the estima-
tion of the electromagnetic (EM) signature of a given geological structure. Chapter 1
gave reasons why numerical simulation is a neccesary tool, compared to empirical or
semiempirical approaches, for solving this problem. Furthermore, an overview of 3D
CSEM FM (Section 1.1) and its state-of-art challenges were provided (Section 1.2).
The employed EFEM formulation, in terms of primary/secondary field decomposition,
has been developed and validated through numerical tests in Appendices B and C.
Because EFEM divergence-free basis, this approach offers a good trade-off between
accuracy and number of degrees of freedom (DOFs), i.e. size of the problem. Fur-
thermore, EFEM supports unstructured meshes which is relevant if the geology is
structurally complex. Thanks to this, the code has a very broad range of applicability
for real 3D CSEM FM surveys.

Chapter 2 centered on the second theme, the computational implementation and
its details. Nowadays, the role of this modelling tools in industry or academy is critical
since they provide us synthetic results which we can then compare to real data. This

70

http://petgem.bsc

4.1 Conclusions

approach together to High-performance Computing (HPC) advances allow us to render
natural phenomena treatable and testable. However, the tools that full fit needs for
the solution of real models are commercial and often are inaccessible to the wider
scientific community. On top of that, Chapter 2 is devoted to the development and
documentation of PETGEM as a new open-source tool for the scalable solution of 3D
CSEM FM on tetrahedral meshes, as these are the easiest to scale-up to very large
domains or arbitrary shape. It is written mostly in Python 3.5.2 and relies on the
scientific Python software stack with use of mpi4py and petsc4py packages for parallel
computations. Other scientific Python packages used include: H5py for binary data
format support, Numpy for efficient array manipulation and Scipy algorithms.

Although there are specialised modelling tools for geophysical prospecting such
as the parallel codes developed by (Alumbaugh et al., 1996) and (Koldan, 2013),
details of their implemented methods are generally hidden behind a black box, which
could lead to a situation where the formulation could be unknown. Furthermore,
not all numerical schemes are well suited for latest computing architectures or are
well adapted to the problem. Aforementioned ideas are ones of the main drivers for
developing the PETGEM code.

Many features have gradually been included, such as modules for EFEM data struc-
tures and a set of Python wrappers for the use of efficient solvers and preconditioners
suitable for the resulting matrix system. PETGEM is now a complete package par-
ticularly suited for the 3D CSEM FM aiming to foster the understanding about EM
in geophysics and its coupling with HPC technologies. Since it was intended tackle
realistic problems, its data structure was designed to cope simultaneously three key
requirements: accuracy, flexibility and efficiency. In addition, the adopted algorithms
has the posibility to easily add or remove components without having to rewrite large
parts of the code. This approach leads to optimal performance in terms of devel-
opment and computation time without losing versatility offered by the programming
language. In summary, Sections 2.1, 2.3 and 2.4 provided details about algorithms
for EFEM, code workflow, software stack, target architectures, coding style, code
availability and parallel Python strategies (shared-memory and distributed-memory
architectures) within PETGEM . The Section 2.5 is dedicated to the study of the code
scalability. For this purpose, the Paraver and Dimemas tools were used to identify the
main computational phases and to collect the fundamental performance factors. The
results obtained show an acceptable performance on both architectures.

The third theme is the verification stage of code testing to establish the reliability
of the code programming and its numerical implementation. Three different cases of

71

http://petgem.bsc
http://petgem.bsc
http://petgem.bsc
http://petgem.bsc

Conclusions and future work

3D CSEM FM were considered in Chapter 3. The first model, a canonical test of an
off-shore hydrocarbon reservoir (Section 3.1), demonstrated the convergence behaviour
of the numerical method and its good agreement with the reference solution. Here an
effect of the imperfect absorbing boundaries was observed which can be mitigated by
enlargening the domain with element sizes increasing logarithmically outwards from
the zone of interest.

In the second model (Section 3.2), the code’s capability to handle bathymetry
has been tested. This model is especially interesting because it highlights one of the
benefits of using an unstructured tetrahedral mesh, i.e. honoring complex geological
structures without critically increasing the problem size. Furthermore, if not taken
into account bathymetry effects can produce large anomalies on the measured electric
fields. The air-wave effect when the water layer is shallow was also tested with this
problem and shown to work well. For this test, the code was shown to provide solutions
in good agreement with the reference.

The third model (Section 3.3) concerned simulations of a synthetic 3D CSEM
model where the target (reservoir) is contained inside a sediments layer. In order to
study the target effect, two set of simulations have been executed. First, by setting
the conductivity of the target to that of the sediments, the EM responses to were
computed. Next, the conductivity of the reservoir was setted and the EM responses
for this model were calculated. As expected, the electric field is distorsed significant
by reservoir. The main attraction of this complementary data (resistivity) is that,
combined with other geophysical attributes like seismic information, can better de-risk
the presence of high saturation of useful substances. Furthermore, the two solutions
show a good overall agreement with the reference.

Additionally, an automatic mesh adaptation technique was considered (Section 3.4).
This approach ensures, for a given frequency and a given source position, that the com-
putational domain is consistent with the discretization of the EM equations. For this
simulation it was observed that unnecessary and excessive refinement (oversampled)
examples required much more iterations than tests with adapted meshes, as conse-
quence needed considerably more CPU time. The adaptive mesh solutions had a
factor of savings of up to four in time and storage compared to the uniform mesh
result. Furthermore, the responses are very similar, the amplitude differences are a
5% percent, and the phase differences are around 0.4 rad, which showed a better
agreement in comparison with previous numerical test depicted in Section 3.1.

The last experiments in Chapter 3 were focused on the study of parallel Krylov
subspace solvers (Section 3.4) for matrices that arise due to the EFEM discretisation

72

4.2 Future directions

of the EM problem that has been implemented. The tests, carried out to evaluate
their convergence rate and required time, have show that the BiCGSTAB produces
residual norms that oscillate significantly and its values are practically equal than
ones of GMRES method. The experiments have also show that, for the problem
under consideration, the SOR preconditioner greatly improves both the convergence
rate and the execution time for all tested cases.

In summary, the conclusion is, what has been demonstrated with examples, that
PETGEM is a competitive tool for EM modelling in the geophysics context. The
code allow users the simulation of EM responses in real 3D CSEM FM on shared-
memory/distributed-memory HPC platforms. The proposed modelling tool uses an
approach based on the integration of 3D CSEM FM, EFEM, Python and parallel
techniques, which is the first time this kind of methodology has been systematically
applied for running simulations of this type on HPC architectures. As main properties
of this tool are accuracy, modularity, efficiency and flexibility, that allow users an easy
adaptation to real-life 3D CSEM FM cases.

4.2 Future directions

This thesis presents a new modelling tool for the solution of the 3D CSEM FM problem
in geophysics, namely, PETGEM . The relevance of this development lies in its capacity
to maps resistive bodies such as carbonates, hydrocarbon filled sediments, volvanic
rocks and salt from the seabed. Particularly in offshore hydrocarbon exploration,
data regarding resistivity mappings beneath the seafloor is crucial and useful, i.e.
high resistivity of hydrocarbon filled rocks (30-500 Ωm) compared to bodies filled with
saline formation water (0.5-2 Ωm) is usually a good indicator for the presence of oil
and gas. Because its faculty to detect, identify and characterize the target reservoir,
the 3D CSEM FM is an attractive and convincing method to conduct exploration
campaigns, thus increasing the drilling success rate as well as reducing associated cost
and hazards.

As consequence, in past 2 decades the modelling tools have become one of the
pillars for the simulation of numerical methods which main goal is elucidating the
fundamental mechanisms behind simplified abstractions of complex phenomena in
different areas. The 3D CSEM FM in geophysics is no exception and the scientific
community has developed important contributions in this field. Additionally, in the
multi-core era, parallelization is a crucial issue especially if it fuels an inversion process
which might involve over 100,000 realizations.

73

http://petgem.bsc
http://petgem.bsc

Conclusions and future work

On top of that, PETGEM has been designed to cope with the various situations
encountered within the numerical simulation of the 3D CSEM FM. Its was written
based on an architecture-aware design effort in order to ensure a good capacity for
large scale computations, thus competence to deal with real models. Furthermore,
the software stack of this new tool has been composed to maximize simultaneously
the key requirements: accuracy, tackle realistic problems with flexibility, efficiency
and adaptability. In this thesis the code is provided as open-source so that it can be
used, modified and redistributed freely with the aims of fostering reproducibility and
encouraging investigations about 3D CSEM FM in geophysics and the HPC field.

The code validation process has led to a better insight into its accuracy and limi-
tations and has helped identify a number of areas and challenges with the code that
can be improved in the future. Some of them are trivial, i.e. the boundary conditions
behaved as expected. Nevertheless, the following future lines could be addressed:

1. Experiments in this thesis showed that it is necessary the inclusion of more
accurate boundary conditions in order to avoid the reflection effect close to
domain boundaries. For this reason, it was decided to enlarging the domain
with element sizes increasing logarithmically outwards from the zone of interest.
However, adding better boundary conditions like PML, the robustness of the
code can be increased and hence, better solutions can be obtained. Moreover,
the use of high-order edge elements can also be explored. With these ideas in
mind, a modular and flexible implementation have been developed.

2. The algorithms within PETGEM were adapted to work with an automatic mesh
adaptation technique. Its is able to optimally ensures, for a given frequency and
a given source position, that the computational domain is consistent with the
discretization of the EM equations. However, it is important to take into ac-
count that a modification of the model representation may change the responses
because this thesis only considered isotropic modelling. Taking advantage of
this capability for multi-frequency, two related aims have been fixed. Firstly,
study the behavior of the code when simulating anisotropic models. Secondly,
determine the suitable parameter values for the anisotropic mesh generation.

3. The parallel implementation seems to perform well given the inherently serial and
I/O portion of the code, but still could be more efficient. Further work might thus
first focus on reducing the time of EFEM data structures computation without
compromising the basic numerical methodology. It is possible because through
this work has been concluded that there are not any restrictions in employing

74

http://petgem.bsc
http://petgem.bsc

4.2 Future directions

parallel Python techniques for paralellisation of the presented EFEM solver.
Furthermore, an advantage of Python or interpreted languages over compiled
languages lies in the fact that it is much easier to make changes and test those
modifications in a rapid way. These considerations combined with the always
increasing performances of the computers and the mathematical modelling allow
to envisage the simulation of more complex 3D CSEM FM cases.

4. The analysis of the PETGEM possibility to exploit the computing power pro-
vided by GPU cards is an interesting next development step. Currently, the
most efficient distribution for GPU programming is the software library CUDA
which has been developed by NVIDIA. Its provides PyCUDA as Python wrap.
From an algorithmic point of view, this future research line offers a rich path,
i.e. the need to create a scientific methodology for evaluating the algorithms
performance proposed in this thesis in a different computational architecture.

75

http://petgem.bsc

Chapter 5

Papers from the thesis

Journals

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2017). PETGEM v1.0:
Parallel code for 3D CSEM forward modelling in geophysics using edge finite
elements. Computers & Geosciences. Elsevier, Submitted.

• Castillo-Reyes, O., de la Puente, Cela, J. M. (2017). Three-Dimensional CSEM
modelling on unstructured tetrahedral meshes using edge finite elements. In:
Barrios Hernández C., Gitler I., Klapp J. (eds) High Performance Computing.
CARLA 2016. Communications in Computer and Information Science, Vol. 697:
247-256. ISBN 978-3-319-57971-9, Springer, Cham.

• Castillo-Reyes, O., de la Puente, J., Modesto, D., Puzyrev, V., and Cela, J. M.
(2016). Parallel tool for numerical approximation of 3D electromagnetic surveys
in geophysics. In Computación y Sistemas, Thematic issue: Topic Trends in
Computing Research in Catalonia, Vol. 20, No.1, pp. 29-39, ISSN 2007-9737.
National Polytechnic Institute. Mexico, D.F.

Proceedings

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M. (2016). Edge-
based parallel framework for the simulation of 3D CSEM surveys. In ICE -
Barcelona: International Conference & Exhibition 2016. ISSN-ISSN: 2159-6832.
AAPG-SEG. Barcelona, Spain.

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2016). Improving edge

76

finite element assembly for geophysical electromagnetic modelling on shared-
memory architectures. In Proceedings of the 7th Annual Ubiquitous Computing,
Electronics Mobile Communication Conference. ISBN 978-1-5090-1496-5. IEEE.
New York, USA.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M. (2015). Edge-
based electric field formulation in 3D CSEM simulations: a parallel approach.
In Proceedings of the 6th International Conference and Workshop on Computing
and Communication. ISBN 978-1-4799-6908-1. IEEE. Vancouver, Canada.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M. (2015). Par-
allel and numerical issues of the edge finite element method for 3D controlled-
source electromagnetic surveys. In Proceedings of the International Conference
on Computing Systems and Telematics. ISBN 978-1-4799-7639-3. IEEE. Xalapa,
Veracruz, Mexico.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M. (2015). As-
sessment of edge-based finite element technique for geophysical electromagnetic
problems: efficiency, accuracy and reliability. In Proceedings of the 1st Pan-
American Congress on Computational Mechanics and XI Argentine Congress on
Computational Mechanics, Vol. 1, No. 1, pp. 984-995, ISBN 978-84-943928-2-5.
CIMNE, Buenos Aires, Argentine.

Conferences

• Queralt, P., Ledo, J., Marcuello, A., Castillo-Reyes, O., Modesto, D. (2017).
Overview of numerical techniques and applications for CSEM/MT geophysical
surveys. In SIAM Conference on Mathematical and Computational Issues in
the Geosciences. Friedrich-Alexander University Erlangen-Nürnberg. Erlangen,
Germany.

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2017). PETGEM: potential
of 3D CSEM modelling using a new HPC tool for exploration geophysics. In 10th
International Marine Electromagnetics conference - MARELEC. University of
Liverpool. Liverpool, England.

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2017). Python for HPC
geophysical applications. In GeoPython 2017. Institute of Geomatics Engineer-

77

Papers from the thesis

ing at University of Applied Sciences and Arts Northwestern Switzerland. Basel,
Switzerland.

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2017). PETGEM: Par-
allel Edge-based Tool for Geophysical Electromagnetic Modelling. In Congreso
de Métodos Numéricos en Ingeniería - CMN. Technical University of Valencia.
Valencia, Spain.

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2017). Python code for
CSEM modelling in geophysics and HPC architectures: advances and challenges.
In Innovation Match MX 2016-2017. Innovation Match Association. Mexico,
D.F.

• Castillo-Reyes, O. (2017). See underneath. High performance computing, geo-
physics and electromagnetic methods. In Interdisciplinary Meeting of Predoc-
toral Researchers - JIPI 2017. University of Barcelona. Barcelona, Spain.

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2017). Python for HPC geo-
physical electromagnetic applications: experiences and perspectives. In 4th BSC
Doctoral Symposium. Barcelona Supercomputing Center. Barcelona, Spain.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M. (2016). Parallel
and vectorized code for CSEM surveys in geophysics: An edge-based approach.
In European Congress on Computational Methods in Applied Sciences and En-
gineering - ECCOMAS. Crete Island, Greece.

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2016). High performance
computing, geophysics and numerical methods: a symbiotic relation. In In-
novation Match MX 2015-2016. Innovation Match Association. Guadalajara,
Mexico.

• Castillo-Reyes, O., de la Puente, J., Barucq, H., Diaz, J., and Cela, J. M.
(2016). Edge-based parallel code for CSEM surveys in geophysics: performance
and accuracy improvements. In WCCM XII and APCOM VI. Korean Society
for Computational Mechanics and International Association for Computational
Mechanics. Seoul, Republic of Korea.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M. (2015). HPC
and edge elements for geophysical electromagnetic problems: an overview. In

78

2nd BSC Doctoral Symposium. Barcelona Supercomputing Center. Barcelona,
Spain.

• Castillo-Reyes, O. (2014). Soluciones HPC para el sector energético: Desafíos y
oportunidades. In IV Simposio Becarios CONACyT en Europa. Casa Universi-
taria Franco-Mexicana - Consejo Nacional de Ciencia y Tecnología de México.
Strasbourg, France.

Workshops

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2017). High performance
computing using Python: advances in geophysical electromagnetic modelling. In
Computing and Electromagnetics International Workshop - CEM. Polytechnic
University of Catalonia. Barcelona, Spain.

• Castillo-Reyes, O. (2016). Towards an HPC tool for 3D CSEM forward modelling
in geophysics. In Fourth International Congress on Multiphysics, Multiscale, and
Optimization problems. GEAGAM Network. Bilbao, Spain.

• Castillo-Reyes, O. (2016). Supercómputo y geofísica electromagnética: avances
y desafíos. In Seminarios internos de Ciencias de la Tierra y Medio Ambiente.
Centro de Ciencias de la Tierra. University of Veracruz. Xalapa, Veracruz,
Mexico.

• Castillo-Reyes, O. (2016). Scientific computing on massively parallel computers.
In Master in Telematic Engineering. School of Accounting and Management.
University of Veracruz. Xalapa, Veracruz, Mexico.

• Castillo-Reyes, O., de la Puente, J., and Cela, J. M. (2016). Towards an HPC
tool for simulation of 3D CSEM surveys: an edge-based approach. In PRACE-
days16. Partnership for Advanced Computing in Europe. Czech Republic.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M. (2015). Edge-
elements for geophysical electromagnetic problems: a new implementation chal-
lenge. In PRACEdays15. Partnership for Advanced Computing in Europe.
Dublin, Ireland.

• Castillo-Reyes, O. (2014). Soluciones HPC en el campo de la geofísica. In
Seminarios internos de Ciencias de la Tierra y Medio Ambiente. Centro de
Ciencias de la Tierra. University of Veracruz. Xalapa, Veracruz, Mexico.

79

Papers from the thesis

• Castillo-Reyes, O. (2014). High performance computing, science and engineer-
ing. In Master in Telematic Engineering. School of Accounting and Manage-
ment. University of Veracruz. Xalapa, Veracruz, Mexico.

80

References

Abubakar, A., Habashy, T., Druskin, V., Knizhnerman, L., and Alumbaugh, D. (2008).
2.5D forward and inverse modeling for interpreting low-frequency electromagnetic
measurements. Geophysics, 73(4):F165–F177.

Ahrens, J., Geveci, B., and Law, C. (2005). Paraview: An end-user tool for large-data
visualization. The Visualization Handbook, page 717.

Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson,
C., Ring, J., Rognes, M. E., and Wells, G. N. (2015). The fenics project version 1.5.
Archive of Numerical Software, 3(100):9–23.

Alumbaugh, D. L., Newman, G. A., Prevost, L., and Shadid, J. N. (1996). Three-
dimensional wideband electromagnetic modeling on massively parallel computers.
Radio Science, 31(1):1–23.

Anjam, I. and Valdman, J. (2015). Fast MATLAB assembly of fem matrices in 2D
and 3D: Edge elements. Applied Mathematics and Computation.

Axelsson, O. (1996). Iterative solution methods. Cambridge university press.

Badea, E. A., Everett, M. E., Newman, G. A., and Biro, O. (2001). Finite-element
analysis of controlled-source electromagnetic induction using coulomb-gauged po-
tentials. Geophysics, 66(3):786–799.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin,
L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp,
K., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H. (2016). PETSc Web page.
http://www.mcs.anl.gov/petsc.

Barton, M. and Cendes, Z. (1987). New vector finite elements for three-dimensional
magnetic field computation. Journal of Applied Physics, 61(8):3919–3921.

Beck, R. and Hiptmair, R. (1999). Multilevel solution of the time-harmonic maxwell’s
equations based on edge elements. Internat. J. Numer. Methods Engrg., 45(7):901–
920.

Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic
waves. Journal of computational physics, 114(2):185–200.

Bespalov, A. et al. (2007). Simulation of electromagnetic well-logging tools by the
nédélec edge finite elements. In 2007 SEG Annual Meeting. Society of Exploration
Geophysicists.

81

http://www.mcs.anl.gov/petsc

References

Bhogeswara, R. and Killough, J. (1994). Parallel linear solvers for reservoir simula-
tion: A generic approach for existing and emerging computer architectures. SPE
Computer Applications (Society of Petroleum Engineers);(United States).

Biro, O., Preis, K., and Richter, K. R. (1996). On the use of the magnetic vector
potential in the nodal and edge finite element analysis of 3D magnetostatic problems.
IEEE Transactions on Magnetics, 32(3):651–654.

Bossavit, A. and Verite, J.-C. (1982). A mixed fem-biem method to solve 3-D eddy-
current problems. IEEE Transactions on Magnetics, 18(2):431–435.

Burnett, D. (1987). Finite element analysis: from concepts to applications. Addison-
Wesley Pub. Co., Massachusetts.

Cai, H., Hu, X., Li, J., Endo, M., and Xiong, B. (2017). Parallelized 3D CSEM mod-
eling using edge-based finite element with total field formulation and unstructured
mesh. Computers & Geosciences, 99:125–134.

Cai, H., Xiong, B., Han, M., and Zhdanov, M. (2014). 3D controlled-source electro-
magnetic modeling in anisotropic medium using edge-based finite element method.
Computers & Geosciences, 73:164–176.

Cao, H., Tchelepi, H. A., Wallis, J. R., Yardumian, H. E., et al. (2005). Parallel
scalable unstructured cpr-type linear solver for reservoir simulation. In SPE Annual
Technical Conference and Exhibition. Society of Petroleum Engineers.

Chen, L. (2008). iFEM: an innovative finite element methods package in MATLAB.
Preprint, University of Maryland.

Chen, L. (2011). Programming of finite element methods in MATLAB. Preprint,
University of California Irvine.

Chew, W., Tong, M.-S., et al. (2008). Integral equation methods for electromagnetic
and elastic waves. Morgan & Claypool Publishers.

Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M., Whitlock, B., and Max,
N. (2005). A contract based system for large data visualization. In Visualization,
2005. VIS 05. IEEE, pages 191–198. IEEE.

Chrisochoides, N. (2006). Parallel mesh generation. In Numerical solution of partial
differential equations on parallel computers, pages 237–264. Springer.

Chung, Y., Son, J.-S., Lee, T. J., Kim, H. J., and Shin, C. (2014). Three-dimensional
modelling of controlled-source electromagnetic surveys using an edge finite-element
method with a direct solver. Geophysical Prospecting, 62(6):1468–1483.

Cimrman, R. (2014). SfePy - write your own FE application. In Proceedings of the
6th European Conference on python in Science (EuroSciPy 2013), pages 65–70.
http://arxiv.org/abs/1404.6391.

Collins, D. A., Grabenstetter, J. E., Sammon, P. H., et al. (2003). A shared-memory
parallel black-oil simulator with a parallel ilu linear solver. In SPE Reservoir Sim-
ulation Symposium. Society of Petroleum Engineers.

82

References

Constable, S. (2010). Ten years of marine CSEM for hydrocarbon exploration. Geo-
physics, 75(5):75A67–75A81.

Constable, S. and Srnka, L. J. (2007). An introduction to marine controlled-source
electromagnetic methods for hydrocarbon exploration. Geophysics, 72(2):WA3–
WA12.

Constable, S. and Weiss, C. J. (2006). Mapping thin resistors and hydrocarbons with
marine EM methods: Insights from 1D modeling. Geophysics, 71(2):G43–G51.

Coscia, I., Greenhalg, S., Linde, N., Doetsch, J., Marescot, L., Günther, T., and
Green, A. (2011). 3D crosshole apparent resistivity static inversion and monitoring
of a coupled river-aquifer system. Geophysics, 76(2):G49–G59.

Crowley, C., Silvester, P., and Hurwitz Jr, H. (1988). Covariant projection elements
for 3D vector field problems. IEEE Transactions on Magnetics, 24(1):397–400.

Cuni, A. (2010). High performance implementation of python for CLI/.NET with JIT
compiler generation for dynamic languages. PhD thesis, Università di Genova.

da Silva, N. V., Morgan, J. V., MacGregor, L., and Warner, M. (2012). A finite element
multifrontal method for 3D CSEM modeling in the frequency domain. Geophysics,
77(2):E101–E115.

Dalcín, L., Paz, R., Kler, P., and Cosimo, A. (2011). Parallel distributed computing
using python. Advances in Water Resources, 34(9):1124–1139.

Dalcín, L., Paz, R., and Storti, M. (2005). MPI for python. Journal of Parallel and
Distributed Computing, 65(9):1108–1115.

Dalcín, L., Paz, R., Storti, M., and D’Elia, J. (2008). MPI for python: Performance
improvements and MPI-2 extensions. Journal of Parallel and Distributed Comput-
ing, 68(5):655–662.

Davidson, D. (2010). Computational Electromagnetics for RF and Microwave Engi-
neering. Cambridge University Press.

Davydycheva, S., Druskin, V., and Habashy, T. (2003). An efficient finite-difference
scheme for electromagnetic logging in 3D anisotropic inhomogeneous media. Geo-
physics, 68(5):1525–1536.

Davydycheva, S. and Rykhlinski, N. (2011). Focused-source electromagnetic survey
versus standard CSEM: 3D modeling in complex geometries. Geophysics, 76(1):F27–
F41.

Dogru, A., Sunaidi, H., Fung, L., Habiballah, W., Al-Zamel, N., Li, K., et al. (2002).
A parallel reservoir simulator for large-scale reservoir simulation. SPE Reservoir
Evaluation & Engineering, 5(01):11–23.

Dubois, F. (2016). Pyfort: The python-fortran connection tool.

Duff, I. S., Erisman, A. M., and Reid, J. K. (1986). Direct methods for sparse matrices.
Clarendon press Oxford.

83

References

Edwards, N. (2005). Marine controlled source electromagnetics: principles, method-
ologies, future commercial applications. Surveys in Geophysics, 26(6):675–700.

Eidesmo, T., Ellingsrud, S., MacGregor, L., Constable, S., Sinha, M., Johansen, S.,
Kong, F., and Westerdahl, H. (2002). Sea bed logging (SBL), a new method for
remote and direct identification of hydrocarbon filled layers in deepwater areas. First
break, 20(3):144–152.

Epov, M., Shurina, E., and Nechaev, O. (2007). 3D forward modeling of vector field
for induction logging problems. Russian Geology and Geophysics, 48(9):770–774.

Everett, M. E. (2012). Theoretical developments in electromagnetic induction geo-
physics with selected applications in the near surface. Surveys in geophysics,
33(1):29–63.

Feng, X. (1999). Absorbing boundary conditions for electromagnetic wave propagation.
Math. Comp, 68:145–168.

Feng, Y. (2016). Sharedmem: Dispatch your trivially parallizable jobs with python.
https://pypi.python.org/pypi/sharedmem/0.3.

Filippone, S. and Colajanni, M. (2000). PSBLAS: A library for parallel linear alge-
bra computation on sparse matrices. ACM Transactions on Mathematical Software
(TOMS), 26(4):527–550.

Fomenko, E. Y. and Mogi, T. (2002). A new computation method for a staggered grid
of 3D EM field conservative modeling. Earth, planets and space, 54(5):499–509.

Franke, A., Börner, R.-U., and Spitzer, K. (2007). Adaptive unstructured grid finite
element simulation of two-dimensional magnetotelluric fields for arbitrary surface
and seafloor topography. Geophysical Journal International, 171(1):71–86.

Freund, R. W. and Nachtigal, N. M. (1991). QMR: a quasi-minimal residual method
for non-hermitian linear systems. Numerische mathematik, 60(1):315–339.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J.,
Graham, R. L., and Woodall, T. S. (2004). Open MPI: Goals, concept, and design of
a next generation MPI implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97–104.

Gajewski, A., Szczypa, S., and Wójcicki, A. (2005). Geophysical mapping for struc-
tural geology, prospecting and environment protection purposes. Przeglad Geolog-
iczny, 53(10):141–146.

Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator
with built-in pre-and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11):1309–1331.

Gibson, P., Lyle, P., and George, D. M. (1996). Environmental applications of mag-
netometry profiling. Environmental Geology, 27(3):178–183.

84

References

Gill, P., Murray, W., and Wright, M. (1991). Numerical linear algebra and optimiza-
tion. Number v. 1 in Numerical Linear Algebra and Optimization. Addison-Wesley
Pub. Co., Advanced Book Program.

Gray, D. A., Majorowicz, J., and Unsworth, M. (2012). Investigation of the geother-
mal state of sedimentary basins using oil industry thermal data: case study from
northern alberta exhibiting the need to systematically remove biased data. Journal
of Geophysics and Engineering, 9(5):534.

Greenfield, P., Miller, T., White, R., and Hsu, J. (2016). Numarray: a new scientific
array package for python.

Grund, F. (1999). Direct linear solvers for vector and parallel computers. Springer.

Hanif, N. H. H. M., Hussain, N., Yahya, N., Daud, H., Yahya, N., and Noh, M.
(2011). 1D modeling of controlled-source electromagnetic (CSEM) data using finite
element method for hydrocarbon detection in shallow water. In Proceedings of the
International MultiConference of Engineers and Computer Scientists.

Hannukainen, A. and Juntunen, M. (2012). Implementing the finite element assembly
in interpreted languages. Preprint, Aalto University, http://users. tkk. fi/˜ mojun-
tun/preprints/matvecSISC. pdf.

Hano, M. (1984). Finite-element analysis of dielectric-loaded waveguides. IEEE Trans-
actions on Microwave Theory and Techniques, 32(10):1275–1279.

Harrington, R. (1961). Time-harmonic electromagnetic fields. McGraw-Hill.

Heroux, M., Raghavan, P., and Simon, H. (2006). Parallel Processing for Scientific
Computing. SIAM e-books. Society for Industrial and Applied Mathematics (SIAM,
3600 Market Street, Floor 6, Philadelphia, PA 19104).

Hinsen, K. (2014). Scientific python: various python modules for scientific computing.

Hiptmair, R. (2015). Maxwell’s equations: Continuous and discrete. Technical Report
2015-18, Seminar for Applied Mathematics, ETH Zürich. To appear in A. Bermdez
de Castro, A. Valli (eds.), Computational Electromagnetism, Springer Lecture Notes
in Mathematics 2148.

Ho-Le, K. (1988). Finite element mesh generation methods: a review and classification.
Computer-aided design, 20(1):27–38.

Jamin, C., Alliez, P., Yvinec, M., and Boissonnat, J.-D. (2014). CGALmesh: A generic
framework for delaunay mesh generation. ACM Transactions on Mathematical Soft-
ware.

Jin, J. (2002). The Finite Element Method in Electromagnetics. Wiley, New York,
second edition.

Jishan, H. and Lizhi, B. (1999). The situation and progress of marine electromagnetic
method research. Progress in Geophysics, 1:001.

85

References

Johnson, H. M. (1962). A history of well logging. Geophysics, 27(4):507–527.

Kameari, A. (1988). Three dimensional eddy current calculation using edge elements
for magnetic vector potential. Appl. Electromagnetics in Materials, pages 225–236.

Kearey, P., Klepeis, K., and Vine, F. (1996). Global Tectonics. Wiley-Blackwell, New
York, third edition.

Ketcheson, D. I., Mandli, K. T., Ahmadia, A. J., Alghamdi, A., Quezada de Luna, M.,
Parsani, M., Knepley, M. G., and Emmett, M. (2012). PyClaw: Accessible, Exten-
sible, Scalable Tools for Wave Propagation Problems. SIAM Journal on Scientific
Computing, 34(4):C210–C231.

Key, K. (2009). 1D inversion of multicomponent, multifrequency marine CSEM data:
Methodology and synthetic studies for resolving thin resistive layers. Geophysics,
pages F9–F20.

Key, K. and Ovall, J. (2011). A parallel goal-oriented adaptive finite element method
for 2.5-D electromagnetic modelling. Geophysical Journal International, 186(1):137–
154.

Key, K. and Weiss, C. (2006). Adaptive finite-element modeling using unstructured
grids: The 2D magnetotelluric example. Geophysics, 71(6):G291–G299.

Knepley, M. G., Lange, M., and Gorman, G. J. (2015). Unstructured overlapping
mesh distribution in parallel. arXiv preprint arXiv:1506.06194.

Koldan, J. (2013). Numerical solution of 3-D electromagnetic problems in exploration
geophysics and its implementation on massively parallel computers. PhD thesis,
Polytechnic University of Catalonia.

Koldan, J., Puzyrev, V., de la Puente, J., Houzeaux, G., and Cela, J. M. (2014).
Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D
electromagnetic modelling problems in geophysics. Geophysical J. Int., Accepted.

Kong, F. (2007). Hankel transform filters for dipole antenna radiation in a conductive
medium. Geophysical Prospecting, 55(1):83–89.

Kong, F., Johnstad, S., Røsten, T., and Westerdahl, H. (2007). A 2.5D finite-element-
modeling difference method for marine CSEM modeling in stratified anisotropic
media. Geophysics, 73(1):F9–F19.

Koon, R. and Ufondu, L. (2015). Geothermal energy prospecting of the Yeoman and
Winnipeg formations within Estevan, Canada. Geothermal Reservoir Engineering.

Kythe, P. and Puri, P. (2011). Computational methods for linear integral equations.
Springer Science & Business Media.

Langtangen, H. P. and Cai, X. (2008). On the efficiency of python for high-performance
computing: A case study involving stencil updates for partial differential equations.

Li, Y. and Constable, S. (2007). 2D marine controlled-source electromagnetic model-
ing: Part 2—the effect of bathymetry. Geophysics, 72(2):WA63–WA71.

86

References

Li, Y. and Dai, S. (2011). Finite element modelling of marine controlled-source electro-
magnetic responses in two-dimensional dipping anisotropic conductivity structures.
Geophysical Journal International, 185(2):622–636.

Li, Y. and Key, K. (2007). 2D marine controlled-source electromagnetic modeling:
Part 1—an adaptive finite-element algorithm. Geophysics, 72(2):WA51–WA62.

Løseth, L. O. (2007). Modelling of Controlled Source Electromagnetic Data. PhD
thesis, Norwegian University of Science and Technology.

MacGregor, L., Sinha, M., and Constable, S. (2001). Electrical resistivity structure of
the valu fa ridge, lau basin, from marine controlled-source electromagnetic sounding.
Geophysical Journal International, 146(1):217–236.

Mackie, R. L., Smith, J. T., and Madden, T. R. (1994). Three-dimensional electro-
magnetic modeling using finite difference equations: The magnetotelluric example.
Radio Science, 29(4):923–935.

Marchetti, M., Cafarella, L., Di Mauro, D., and Zirizzotti, A. (2002). Ground magneto-
metric surveys and integrated geophysical methods for solid buried waste detection:
a case of study. Annals of Geophysics, 45(3):67–78.

Marchuk, G. I. and Ruzicka, J. (1975). Methods of numerical mathematics. Springer-
Verlag New York.

Miller, P. (2016). pyMPI: Putting the py in MPI. http://pympi.sourceforge.net/.

Monk, P. (2003). Finite element methods for Maxwell’s equations. Clarendon Press
Oxford, first edition.

Mortensen, J. J., Hansen, L. B., and Jacobsen, K. W. (2005). Real-space grid
implementation of the projector augmented wave method. Physical review B,
71(3):035109.

Mortensen, M. and Langtangen, H. P. (2016). High performance python for direct nu-
merical simulations of turbulent flows. Computer Physics Communications, 203:53–
65.

MPICH2-Team (2003–2016). MPICH2: a portable implementation of MPI. In
MPICH2.

Mukherjee, S. and Everett, M. E. (2011). 3D controlled-source electromagnetic edge-
based finite element modeling of conductive and permeable heterogeneities. Geo-
physics, 76(4):F215–F226.

Mur, G. (1981). Absorbing boundary conditions for the finite-difference approxima-
tion of the time-domain electromagnetic-field equations. IEEE Transactions on
Electromagnetic Compatibility, 17(4):377–382.

Mur, G. and De Hoop, A. (1985). A finite-element method for computing three-
dimensional electromagnetic fields in inhomogeneous media. IEEE Transactions on
Magnetics, 21(6):2188–2191.

87

References

Nabighian, M. (1988). Electromagnetic Methods in Applied Geophysics: Theory. So-
ciety of Exploration Geophysics.

Nédélec, J.-C. (1980). Mixed finite elements in R3. Numerische Mathematik,
35(3):315–341.

Newman, G. A. and Alumbaugh, D. L. (2002). Three-dimensional induction logging
problems, part 2: A finite-difference solution. Geophysics, 67(2):484–491.

Newman, G. A. and Commer, M. (2009). Massively parallel electrical conductivity
imaging of the subsurface: Applications to hydrocarbon exploration. In Journal of
Physics: Conference Series.

Newman, G. A., Commer, M., and Carazzone, J. J. (2010). Imaging CSEM data in
the presence of electrical anisotropy. Geophysics, 75(2):F51–F61.

Nguyen, T. (2006). Finite Element Methods: Parallel-Sparse Statics and Eigen-
Solutions. Springer.

Nielsen, O. (2016). Pypar home page. https://github.com/daleroberts/pypar.

Operto, S., Virieux, J., Amestoy, P., L’Excellent, J.-Y., Giraud, L., and Ali, H. B. H.
(2007). 3D finite-difference frequency-domain modeling of visco-acoustic wave prop-
agation using a massively parallel direct solver: A feasibility study. Geophysics,
72(5):SM195–SM211.

Osseyran, A. and Giles, M. (2015). Industrial Applications of High-Performance Com-
puting: Best Global Practices. Chapman & Hall/CRC Computational Science. CRC
Press, first edition.

Owen, S. J. (1998). A survey of unstructured mesh generation technology. In IMR,
pages 239–267.

Perttu, N. and Wikberg, L. (2005). Tools for groundwater prospecting and geophysical
prospecting for water in Ocotal, Nicaragua. Master’s thesis, Luleå University of
Technology.

Plessix, R.-E., Darnet, M., and Mulder, W. (2007). An approach for 3D multisource,
multifrequency CSEM modeling. Geophysics, 72(5):SM177–SM184.

Puzyrev, V., Koldan, J., de la Puente, J., Houzeaux, G., Vázquez, M., and Cela,
J. M. (2013). A parallel finite-element method for three-dimensional controlled-
source electromagnetic forward modelling. Geophysical Journal International, page
ggt027.

Rognes, M. E., Kirby, R. C., and Logg, A. (2009). Efficient assembly of H(div)
and H(curl) conforming finite elements. SIAM Journal on Scientific Computing,
31(6):4130–4151.

Rylander, T., Ingelström, P., and Bondeson, A. (2012). Computational Electromag-
netics. Texts in Applied Mathematics. Springer.

88

References

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems: Second Edition. Engi-
neeringPro collection. Society for Industrial and Applied Mathematics.

Said, R., Weatherill, N., Morgan, K., and Verhoeven, N. (1999). Distributed parallel
delaunay mesh generation. Computer methods in applied mechanics and engineering,
177(1):109–125.

Sarrate Ramos, J., Huerta, A., et al. (2000). Efficient unstructured quadrilateral mesh
generation. International Journal for Numerical Methods in Engineering.

Schwarzbach, C., Börner, R.-U., and Spitzer, K. (2011). Three-dimensional adaptive
higher order finite element simulation for geo-electromagnetics—a marine CSEM
example. Geophysical Journal International, 187(1):63–74.

Sheard, S., Ritchie, T., Christopherson, K. R., and Brand, E. (2005). Mining, en-
vironmental, petroleum, and engineering industry applications of electromagnetic
techniques in geophysics. Surveys in Geophysics, 26(5):653–669.

Sheriff, R. E. (2002). Encyclopedic dictionary of applied geophysics. Society of explo-
ration geophysicists.

Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh genera-
tion. Computational geometry, 22(1):21–74.

Squyres, J., Willcock, J., McCandless, B., Rijks, P., and Lumsdaine, A. (2016).
OOMPI. http://www.osl.iu.edu/research/oompi/.

Srnka, L. J., Carazzone, J. J., Ephron, M. S., and Eriksen, E. A. (2006). Remote
reservoir resistivity mapping. The Leading Edge, 25(8):972–975.

Strack, K. and Aziz, A. (2012). Full field array electromagnetics-advanced EM from
the surface to the borehole, exploration to reservoir monitoring. In 74th EAGE
Conference and Exhibition incorporating EUROPEC 2012.

Tang, J., Ren, Z., and Hua, X. (2007). The forward modeling and inversion in geo-
physical electromagnetic field [j]. Progress in Geophysics, 4:024.

Tomov, S., Nath, R., Ltaief, H., and Dongarra, J. (2010). Dense linear algebra solvers
for multicore with gpu accelerators. In Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–8.
IEEE.

Um, E. S., Commer, M., and Newman, G. A. (2013). Efficient pre-conditioned itera-
tive solution strategies for the electromagnetic diffusion in the earth: finite-element
frequency-domain approach. Geophysical Journal International, page ggt071.

van Welij, J. (1985). Calculation of eddy currents in terms of H on hexahedra. IEEE
Transactions on Magnetics, 21(6):2239–2241.

Webb, J. (1993). Edge elements and what they can do for you. IEEE Transactions
on Magnetics, 29(2):1460–1465.

89

References

Weiss, C. J. and Constable, S. (2006). Mapping thin resistors and hydrocarbons with
marine EM methods, part ii—modeling and analysis in 3D. Geophysics, 71(6):G321–
G332.

Whitney, H. (1957). Geometric integration theory, volume 21. Princeton]University
Press.

Xiong, Z., Raiche, A., and Sugeng, F. (2000). Efficient solution of full domain 3D
electromagnetic modelling problems. Exploration Geophysics, 31(1/2):158–161.

Xue, G., Li, X., and Di, Q. (2008). Research progress in tem forward modeling and
inversion calculation [j]. Progress in Geophysics, 4:023.

Zhang, Y., Hughes, T. J., and Bajaj, C. L. (2008). Automatic 3D mesh generation for
a domain with multiple materials. In Proceedings of the 16th international meshing
roundtable, pages 367–386. Springer.

Zhdanov, M. S. (2009). Geophysical electromagnetic theory and methods, volume 43.
Elsevier.

Zienkiewicz, O. C., Taylor, R. L., Zienkiewicz, O. C., and Taylor, R. L. (1977). The
finite element method, volume 3. McGraw-hill London.

Zyserman, F. I. and Santos, J. E. (2000). Parallel finite element algorithm with domain
decomposition for three-dimensional magnetotelluric modelling. Journal of Applied
Geophysics, 44(4):337–351.

90

Appendix A

Maxwell’s equations theory

Maxwell’s equations are a set of fundamental equations that includes the four differ-
ential equations relating the electric vector field, E, and the magnetic vector field B,
which governs all electromagnetic phenomena. These equations can be written in both
integral forms and differential forms, which are described in the following lines.

Integral form of Maxwell’s equations

For general time varying fields, Maxwell’s equations in the integral form are given by
˛

C

E · dl = − d

dt

¨
S

B · ds Faraday’s law, (A.1)
˛

C

H · dl = d

dt

¨
S

D · ds +
¨

S

J · ds Ampère law, (A.2)
‹

S

D · ds =
˚

V

ρdv Gauss’s law, (A.3)
‹

S

B · ds = 0 Gauss’s law – magnetic, (A.4)
‹

S

J · ds = − d

dt

˚
V

ρdv Equation of continuity, (A.5)

where E is the electric field intensity (V m−1), B is the magnetic flux density Wbm−2,
D is the electric flux density Cm−2, J is the electric current density Am−2, H is the
magnetic field intensity Am−1 and ρ is the electric charge Cm−3.

In equations (A.1) and (A.2), S represents an arbitrary open surface bounded
by contour C, whereas in equations (A.3), (A.4) and (A.5), S is a closed surface
enclosing volume V . Equations (A.1) – (A.5) are valid in all circumstances regardless
of the medium and the shape of the integration volume, surface, and contour (Jin,

91

Maxwell’s equations theory

2002).

Differential form of Maxwell’s equations

Maxwell’s equations in their general differential form can be obtained from (A.1) –
(A.5). To do that, the first step is consider a point in space where the field quantities
and their derivatives are continuous, the second step is the application of Stokes’s and
Gauss’s theorems to (A.1)– (A.5), which yields

∇ × E = −∂B
∂t

Faraday’s law, (A.6)

∇ × H = ∂D
∂t

+ J Ampère law, (A.7)

∇ · D = ρ Gauss’s law, (A.8)
∇ · B = 0 Gauss’s law – magnetic, (A.9)

∇ · J = −∂ρ

∂t
Equation of continuity. (A.10)

Among equations (A.6)– (A.10), only three are independent for the case of time varying
fields. Either the first three equations, (A.6)– (A.8), or the first two, (A.6) and (A.7),
with A.10 can be chosen as independent equations. The other two equations, (A.9)
and (A.10) or (A.8) and (A.9), can be derived from the independent equations.

Time harmonic electromagnetic fields

Time harmonic fields in Maxwell’s equations are harmonically oscillating functions
with a single frequency. Following the process defined by (Harrington, 1961), (A.6),
(A.7) and (A.10) can be written in a simple notation as

∇ × E = −iωB, (A.11)
∇ × H = iωD + J, (A.12)

∇ · J = −iωρ, (A.13)

where the time convention eiωt is used and suppressed and ω is angular frequency.
Furthermore, any time varying field can be expressed in terms of time harmonic com-

92

ponents via the Fourier transforms

E(t) =
ˆ ∞

−∞
E(ω)eiωtdω, (A.14)

E(ω) = 1
2π

ˆ ∞

−∞
E(t)e−iωtdt. (A.15)

Is evident that if a time harmonic field is known for any ω, its counterpart in the time
domain can be obtained by evaluating (A.14). It is noteworthy that equations (A.11)–
(A.13) are complex-valued fields even in lossless media.

Static electromagnetic fields

In the static case, with no time dependency, the Maxwell’s equations decouple into an
electrostatic system

∇ × E = 0, (A.16)
∇ · D = ρ, (A.17)

and a magnetostatic system

∇ × H = J, (A.18)
∇ · B = 0. (A.19)

Equations (A.16) – (A.17) are commonly modeled by introducing a scalar electric
potential which results in a Poisson problem for its potential (Harrington, 1961). On
the other hand, magnetostatic problem (A.18) – (A.19) is not easily treated. It arise as
a special case of the quasi-static applications (low frequency applications) and includes
the complexity of magnetic properties of the medium, resulting in discontinuities and
singularities in the field components. Other common approach is introduce a potential
which becomes a vector potential for the magnetic flux.

Constitutive relations

The three independent equations among (A.6)– (A.10) are indefinite form since the
number of equations is less than the number of unknowns (E, B, H, D, J). However,
Maxwell’s equations become definite when constitutive relations between the field
quantities are specified (Jin, 2002). Therefore, the constitutive relations for a simple

93

Maxwell’s equations theory

medium are given by

D = ϵE, (A.20)
B = µH, (A.21)
J = σE, (A.22)

where ϵ is the permittivity (Fm−1), µ is the permeability (Hm−1) and σ is the conduc-
tivity Sm−1. These constitutive parameters, depending on the medium, are tensors
for anisotropic media and scalars for isotropic media. For inhomogeneous media, they
are functions of position, whereas for homogeneous media they are not.

It is very important to carefully choose the form of the constitutive relations that
is suitable to describe the Earth in the problem that we want to solve. For example,
in problems that arise in 3D CSEM FM, it is normally assumed that the Earth is
heterogeneous, anisotropic and with electromagnetic parameters that are independent
of temperature, time and pressure (Koldan, 2013).

94

Appendix B

Numerical techniques in
electromagnetics

This appendix is based on two premises: the first one is that experiments have showed
that all electromagnetic phenomena are governed by empirical Maxwell’s equations,
which are uncoupled first-order linear Partial Differential Equations (PDE). The sec-
ond one is that in dealing with electromagnetic fields for oil & gas prospecting works,
numerical techniques are considered an important component. Therefore, in order to
obtain a numerical solution to PDE, is necessary to discretize the Maxwell’s equa-
tions, which are, by nature, continuous, using some discretisation method such as
Finite Difference Method (FDM), Finite Element Method (FEM) and Edge Finite
Element Method (EFEM), among others.

FEM has long been used in solid mechanics, heat transfer, fluid mechanics, acous-
tics, and other fields. In geophysics prospecting, however, it has been employed for
only a few decades, examples of FEM implementations for electromagnetic modelling
are (Zyserman and Santos, 2000; Badea et al., 2001; MacGregor et al., 2001; Key and
Weiss, 2006; Kong et al., 2007; Li and Key, 2007; Li and Constable, 2007; Franke et al.,
2007; Li and Dai, 2011; Puzyrev et al., 2013; Koldan, 2013). Examples of FDM in
geophysical prospecting can be found in (Mackie et al., 1994; Alumbaugh et al., 1996;
Xiong et al., 2000; Fomenko and Mogi, 2002; Newman and Alumbaugh, 2002; Davy-
dycheva et al., 2003; Kong, 2007; Abubakar et al., 2008; Davydycheva and Rykhlinski,
2011).

However, FEM is still not as widely applied as FDM and a major obstacle for its
broader adoption is that the standard FEM does not correctly take into account all
the physical aspects of the vector field functions. In fact, there are three main prob-
lems when nodal-based finite elements, obtained by interpolating the nodal values, are

95

Numerical techniques in electromagnetics

employed to represent vector electric or magnetic fields. The first one is the occur-
rence of spurious solutions or non-physical solutions, which is generally attributed to
lack of enforcement of the divergence condition. The second one is the inconvenience
of imposing boundary conditions at material interfaces as well as at conducting sur-
faces. Finally, the third problem is the difficulty in treating conducting and dielectric
edges and corners due to field singularities associated with these structures. These
drawbacks have encouraged the exploration of other possibilities or other approaches.
This approach uses so-called vector basis functions that assign degrees of freedom
(DOFs) to the edges rather than to the nodes of each element, hence these elements
are called edge elements or Nédélec Elements. Since, edge elements are free of all the
previously mentioned shortcomings, they are chosen as discretisation method for this
thesis. Both techniques, nodal-based approach and edge-based approach are described
in this appendix.

B.1 Finite Element Method (FEM)

FEM is a numerical technique for obtaining approximate solutions to boundary value
problems of mathematical physics. The method has a history of about 50 years.
The principle of FEM is to replace an entire continuous domain by a number of
sub-domains in which the unknown function is represented by simple interpolation
functions with unknown coefficients. Thus, the original boundary-value problem with
an infinite number of DOF sis converted into a problem with a finite number of DOFs,
namely, the solution of the entire system is approximated by a finite number of un-
known coefficients. Then a system of algebraic equations is obtained by applying the
Ritz variational or Galerkin procedure (Marchuk and Ruzicka, 1975; Burnett, 1987;
Jin, 2002). The Ritz method formulates the boundary value problem in terms of a
variational expression, called functional. Galerkin’s approach belongs to the family
of weighted residual techniques. Finally, solution of the boundary value problem is
achieved by solving the system of equations. To best introduce the FEM, this sec-
tion defines boundary-value problems and then review two classical methods for their
solution which are the roots of the modern FEM.

Boundary-value problems

Boundary-value problems (BVP) arise in the mathematical modelling of physical sys-
tems and their solution has long been a major topic in mathematical physics (Jin,

96

B.1 Finite Element Method (FEM)

2002). In general, a boundary-value problem can be described by a governing differ-
ential equation in a domain Ω, whose standard form may be

Ψϕ = f, (B.1)

together with the boundary conditions (BC) on the boundary Γ that encloses the
domain. In (B.1) Ψ is a differential operator, f is the forcing term, and ϕ is the un-
known value. In electromagnetic problems, the form of governing differential equation
ranges from simple Poisson equations, to complicated vector wave equations. The BC
also range from the simple Dirichlet (ΩD) and Neumann conditions (ΩN) (Burnett,
1987), to complicate, elegant and efficient BC such as Absorbing Boundary Conditions
(ABC) (Mur, 1981; Burnett, 1987; Berenger, 1994; Feng, 1999). Normally, the entire
boundary Ω is divided into a Dirichlet boundary and a Neumann boundary

Ω = ΩD + ΩN . (B.2)

Analytical solution can be obtained for only a few special problems. Many other prob-
lems of societal and engineering value do not have an analytical solution. To overcome
this difficulty, many approximate techniques have been developed, and among them
the Ritz and Galerkin methods have been used most widely (Burnett, 1987; Jin, 2002).

Ritz method

The Ritz method is a direct method to find an approximate solution for BVP. In Ritz
method, the BVP is formulated in terms of a variational expression or functional. The
minimum of this functional corresponds to the governing differential equation under
the given BC. The approximate solution is then obtained by minimizing the functional
with respect to variables that define a certain approximation to the solution. For
instance, for a inner product defined as

⟨ϕ, φ⟩ =
ˆ

Ω
ϕφ∗dΩ, (B.3)

97

Numerical techniques in electromagnetics

where φ∗ denotes the complex conjugate. If the differential operator Ψ in (B.1) is
self-adjoint and also positive definite, respectively, that is

⟨Ψϕ, φ⟩ = ⟨ϕ, Ψφ⟩, (B.4)

⟨Ψϕ, ϕ⟩ =

> 0 ϕ ̸= 0
= 0 ϕ = 0

, (B.5)

then the solution to (B.1) can be obtained by minimizing the variational expression
with respect to ϕ̃, given by

F (ϕ̃) = 1
2(Ψϕ̃, ϕ̃) − 1

2(ϕ̃, f) − 1
2(f, ϕ̃), (B.6)

where ϕ̃ denotes a trial function (Burnett, 1987). For a real-valued problem, the trial
function can be approximated by the expression (Jin, 2002)

ϕ̃ =
N∑

i=1
cjvj = {c}T {v} = {v}T {c}, (B.7)

where the vj are the chosen expansion functions defined over all domain Ω, cj are
constant coefficients to be determined, {·} denotes a column vector and the superscript
T his transpose. Substituting (B.7) into (B.6)

F = 1
2{c}T

ˆ
Ω
{v}Ψ{v}T dΩ{c} − {c}T

ˆ
Ω
{v}f dΩ. (B.8)

In order to minimize F (ϕ̃), is necessary force its partial derivatives with respect to ci.
This yields a set of linear algebraic equations

∂F

∂ci

= 1
2

ˆ
Ω

viΨ{v}T dΩ{c} + 1
2{c}T

ˆ
Ω
{v}Ψvi dΩ −

ˆ
Ω

vif dΩ

= 1
2

N∑
j=1

cj

ˆ
Ω
(viΨvj + vjΨvi) dΩ −

ˆ
Ω

vif dΩ

= 0, i = 1, 2, 3, . . . , N. (B.9)

The linear algebraic equations (B.9) can be written as the standard matrix equation

[A] · {x} = {b}, (B.10)

98

B.1 Finite Element Method (FEM)

where the elements of the matrix [A] and the vector {b} are given by

Aij = 1
2

ˆ
Ω
(viΨvj + vjΨvi) dΩ, (B.11)

bi =
ˆ

Ω
vif dΩ. (B.12)

In electromagnetic simulations, and particularly in geophysical prospecting through
EM such as 3D CSEM FM, matrix [A] is large, sparse, complex and symmetric. Vec-
tor {x} contains the unknowns coefficients. Then (B.7) is an approximation for (B.1),
where the xi are obtained by solving the matrix system (B.10) through a sequen-
tial or parallel linear equation solver (Gill et al., 1991; Bhogeswara and Killough,
1994; Grund, 1999; Filippone and Colajanni, 2000; Tomov et al., 2010). In addition,
there are ad-hoc implementations of solvers for electromagnetic geophysical prospect-
ing developed by (Dogru et al., 2002; Collins et al., 2003; Cao et al., 2005; Weiss and
Constable, 2006; Li and Key, 2007; Operto et al., 2007; Koldan et al., 2014).

Galerkin method

Galerkin method, belonging to the family of Methods of Weighted Residuals (MWR),
is a class of method for converting a continuous operator problem to a discrete prob-
lem (Burnett, 1987). In principle, is the equivalent of applying the technique of vari-
ation of parameters to a function space, by converting the equation to a weak formu-
lation. Namely, Galerkin method seek the solution by weighting the residual of the
differential equation.

The method assumes that ϕ̃ is an approximate solution to a given BVP, for in-
stance, (B.1). Substitution of ϕ̃ for ϕ in (B.1) would then result in a nonzero residual

r = Ψϕ̃ − f ̸= 0. (B.13)

The aim is obtain an approximation for ϕ̃ that reduces the residual r to the least value
at all points of the domain Ω. Therefore, Galerkin method enforce the condition (Bur-
nett, 1987; Jin, 2002)

Ri =
ˆ

Ω
wir dΩ = 0, (B.14)

where Ri denote the weighted residual integrals and wi are chosen weighting functions.
In order to obtain the most accurate solution, in MWR the weighted functions are

99

Numerical techniques in electromagnetics

selected to be the same as those used for expansion of the approximate solution. Then,
for a solution represented as in (B.7), the weighting functions are selected as

wi = vi, i = 1, 2, 3, . . . , N, (B.15)

therefore (B.14) becomes

Ri =
ˆ

Ω
(viΨ{v}T {c} − vif) dΩ = 0, i = 1, 2, 3, . . . , N. (B.16)

This method again leads to the matrix system (B.10), although the matrix [A] is not
necessarily symmetric unless the operator Ψ is self-adjoint. Since in MWR is possible
choose different expansion functions, there are different formulations such as point col-
location method, subdomain collocation method and least squares method (Burnett,
1987).

General steps of Finite Element Method

FEM is a powerful and versatile numerical technique for geophysicists because it in-
cludes flexibility and a capability to handle complex structures, through unstructured
meshes, that often appear in the real heterogeneous subsurface geology (shapes of ore-
bodies, cylindrical wells, topography, seabed bathymetry, etc.). In addition, since the
complexity of domains in geophysical prospecting simulations varies considerably from
one area of the domain to another, FEM supports local refinement which is an efficient
way to provide higher solution accuracy only at places where is desired (around trans-
mitters, receivers, target locations as well as large conductivity contrasts). This is an
important characteristic since imprecise modelling of complex shapes may result in
misleading artefacts in images (Koldan, 2013). In addition, the systematic generality
of the method makes it possible to construct general-purpose computer programs for
solving a wide range of problems. Consequently, programs developed for a particular
discipline have been applied successfully to solve problems in a different field with
little or no modification.

A FEM analysis of BVP should include the following basic steps:

1. Discretize or subdivide the domain.

2. Select the interpolation functions.

3. Determine the elemental properties or elemental equations.

4. Assemble the system of equations.

100

B.1 Finite Element Method (FEM)

5. Imposition of BC and solve the global equation system.

6. Compute output in an suitable format to visualise results (Post-processing).

Two-dimensional Finite Element Method

In order to explain previous steps, the following 2D BVP is considered

− ∂

∂x

(
αx

∂ϕ

∂x

)
− ∂

∂y

(
αy

∂ϕ

∂y

)
+ βϕ = f x, y ∈ Ω, (B.17)

where ϕ is the unknown function, αx, αy, β are physical known parameters associated
with the domain Ω, and f is a source or excitation function. Special forms of (B.17)
are the ordinary 2D Laplace equation, Poisson equation and Helmholtz equation (Jin,
2002). BC for (B.17) are given by

ϕ = p on Γ1, (B.18)(
αx

∂ϕ

∂x
x̂ + αy

∂ϕ

∂y
ŷ

)
· n̂ + υϕ = q on Γ2, (B.19)

where Γ = Γ1 + Γ2 denotes the boundary enclosing the domain Ω, n̂ is its outward
normal unit vector, and υ, p, and q are physical known parameters associated with Ω.

Domain discretisation. Discretisation of the domain involves dividing the entire
domain into a number of small sub-domains, denoted as Ωe (e = 1, 2, 3, ..., N), where
N denotes the total number of sub-domains or elements. There are different kinds
of elements, each one with their own properties, advantages and disadvantages. A
complete description of that can be found in (Burnett, 1987). For instance, for a
one-dimension (1D) domain the elements commonly are short line segments. For two-
dimension (2D) domains, the elements are often triangles since these are the best
suited for discretizing irregular regions. In three-dimension (3D) cases, the domain is
preferably subdivided into tetrahedrons.

In FEM solutions, the problem is formulated of the unknown function, commonly
called ϕ, at nodes or vertex associated with each element. Therefore, 1D linear line
element has two nodes (one at each endpoint), 2D linear triangular element has three
nodes (one at each vextex), and similarly 3D linear tetrahedron has four nodes (Bur-
nett, 1987). For implementation purposes, a complete description of these nodes is
necessary, namely, the elements and nodes can be labeled with separate sets of inte-
gers for identification. Since each element is related to several nodes, three nodes in

101

Numerical techniques in electromagnetics

2D cases with linear triangular elements as show figure B.1b, a node can be assigned
a local label in the associated element in addition to its global number relative to
the global system. The relation between number of element, local node number and
global node number is stored in a 3 × N array, commonly called connectivity array.
The connectivity array is defined by nodes(i, e), where i = 1, 2, 3, e = 1, 2, 3, . . . , N ,
and N is the total number of elements. The array nodes(i, e) contains the global
node numbers indexed by the local node number i and the element e. Table B.1 is
an example of connectivity array for the 2D domain of the figure B.1a . Connectivity
array numbering is not unique. For instance, is possible number the three nodes of the
first element as 1, 2, 4 or 4, 1, 2 since they are consistent with local numbering show in
figure B.1a. In addition to connectivity array defined by the table B.1, some other

e nodes(1,e) nodes(2,e) nodes(3,e)

1 2 4 1
2 2 4 5
3 2 3 5
4 3 5 6
5 4 5 7
6 5 7 8
7 5 6 8
8 6 9 8

Table B.1 Element to nodes connectivity array in 2D.

data are also necessary in the FEM, which are:

1. A vector coordinates of the nodes (xi, yi) for i = 1, 2, 3, . . . , n, where n is the
total number of nodes.

2. The physical parameters for each element, namely the values of αx, αy, β and
the source f .

3. The values of boundary nodes, in other words the value of p for nodes residing
on Γ1 and the value of υ and q for nodes on Γ2.

The domain discretisation is an important stage in FEM formulations since it has a
direct impact in the computer storage requirements, the computation time and the
accuracy of the numerical results. Therefore, the domain subdivision is treated as a
preprocessing task to the FEM provided by a specific software such as Netgen, Gambit,
Gmsh, Tetgen, among others. Examples of performance assessments of discretisation

102

B.1 Finite Element Method (FEM)

(a) 2D domain (b) Linear triangular element

Fig. B.1 Discretisation in 2D.

methods or meshing techniques and its computational implementation are (Ho-Le,
1988; Sarrate Ramos et al., 2000; Shewchuk, 2002; Geuzaine and Remacle, 2009).

Interpolation functions. After domain discretisation stage, the unknown function
ϕ is approximated within each element. Therefore, the unknown function ϕ within
the linear triangular element of figure B.1b can be approximated by (Jin, 2002)

ϕe(x, y) = ae + bex + cey, (B.20)

where ae, be, and ce are coefficients to be determined and e denotes the number of
element in the entire system. Enforcing B.20 at the three nodes of element e-th yields

ϕe
1 = ae + bexe

1 + ceye
1, (B.21)

ϕe
2 = ae + bexe

2 + ceye
2, (B.22)

ϕe
3 = ae + bexe

3 + ceye
3, (B.23)

where xe
j and ye

j , for j = 1, 2, 3, denote the coordinate values of the j-th node in the
e-th. Solving for the constant coefficients in terms of ϕe

j and substituting them back
into B.20 yields (Jin, 2002)

ϕe(x, y) =
3∑

j=1
N e

j (x, y)ϕe
j , (B.24)

103

Numerical techniques in electromagnetics

where N e
j are the interpolation functions given by

N e
j (x, y) = 1

2∆e
(ae

j + be
jx + ce

jy) j = 1, 2, 3, (B.25)

with coefficients defined by

ae
1 = xe

2y
e
3 − ye

2xe
3, be

1 = ye
2 − ye

3, ce
1 = xe

3 − xe
2,

ae
2 = xe

3y
e
1 − ye

3xe
1, be

2 = ye
3 − ye

1, ce
2 = xe

1 − xe
3,

ae
3 = xe

1y
e
2 − ye

1xe
2, be

3 = ye
1 − ye

2, ce
3 = xe

2 − xe
1,

and the area of element e-th defined by

∆e = 1
2

∣∣∣∣∣∣∣∣
1 xe

1 ye
1

1 xe
2 ye

2

1 xe
3 ye

3

∣∣∣∣∣∣∣∣ = 1
2(be

1c
e
2 − be

2c
e
1). (B.26)

Interpolation functions (B.25) posses the requisite interpolation property given by:

N e
j (xj, yj) = δij =

1 i = j

0 i ̸= j
. (B.27)

Therefore, ϕe in (B.24) reduces to its nodal value ϕe
i at node i. In addition, N e

j (x, y)
vanishes when the observation point (x, y) is on the element side opposite the j-th
node (Burnett, 1987; Jin, 2002).

Elemental equations. As already mentioned, in FEM formulations the elemental
properties or elemental equations can be obtained using the Ritz or Galerkin method.
In sake of simplicity, here is only considering the Ritz method applied to expres-
sion (B.17) with BC defined by expression (B.19). Thus, the functional given by (B.7)
can be written as

H(ϕ) =
N∑

e=1
He(ϕe), (B.28)

where N is the total number of elements and He is the sub-functional for the e-th

104

B.1 Finite Element Method (FEM)

element given by

He(ϕe) = 1
2

¨
Ωe

αx

(
∂ϕe

∂x

)2

+ αy

(
∂ϕe

∂y

)2

− β (ϕe)2

 dΩ −
¨

Ωe

fϕe dΩ, (B.29)

where Ωe is the elemental domain of element e-th. Introducing the Lagrange functional
given by expression (B.24) and differentiating He with respect to ϕe

i yields to a system
equations whose matrix form is[

∂He

∂ϕe

]
= [Ae]{ϕe} − {be}, (B.30)

where [
∂He

∂ϕe

]
=
[

∂He

∂ϕe
1

∂He

∂ϕe
2

∂He

∂ϕe
3

]T

,

{ϕe} = [ϕe
1 ϕe

2 ϕe
3]

T .

The elements of the matrix [Ae] and the elements of the vector {be} from equa-
tion (B.30) obey the general form of expression (B.10) and are respectively given
by

Ae
ij =
¨

Ωe

(
αx

∂N e
i

∂x

∂N e
j

∂x
+ αy

∂N e
i

∂y

∂N e
j

∂y
+ βN e

i N e
j

)
dx dy, (B.31)

be
i =
¨

Ωe

fN e
i dx dy, i, j = 1, 2, 3. (B.32)

For constant values of αx, αy, αz and source f within each element, expressions (B.31)
and (B.32) become

Ae
ij =

αe
xbe

i b
e
j + αe

yce
i c

e
j

4∆e
+ ∆eβe(1 + δij)

12 , (B.33)

be
i = ∆e

3 f e i, j = 1, 2, 3. (B.34)

Assemble of system of equations. In order to find the global equation system for
the whole solution domain Ω, is necessary assemble all the element equations (B.30)
and impose the BC. Therefore, the global equation system can be defined as

[
∂H

∂ϕ

]
=

N∑
e=1

[
∂He

∂ϕe

]
=

N∑
e=1

[Ae]{ϕe} − {be} = 0, (B.35)

105

Numerical techniques in electromagnetics

which can be written compactly as [A] · {ϕ} = {b} where matrix [A] is assembled
from elemental matrices [Ae], and similarly, the vector {b} from elemental vectors
{be} (Burnett, 1987). The dimensions of the matrix [A] (commonly initialized as a
null matrix) are given by the number of nodes in the domain Ω. Therefore, for the
problem of figure B.1a the dimensions of the matrix [A] are 9 × 9.

Since, the final target of assembly process is to adding each element of [Ae] to the
appropriate element of [A], the connectivity array from the discretisation step has a
fundamental role because it contains the relation between local nodes and global nodes.
Then, the assembly process obey the general rule of add Ae

ij to [Anodes(i,e),nodes(j,e)].
A similar assembly procedure for vector {b} is used, namely each {be

i } is added to
{bnodes(i,e)}. Hence, after the addition of all nine elements of A1 to [A] and {b1

i } to
{b}, the following partial matrix system is obtained

A1
33 A1

31 0 A1
32 0 0 0 0 0

A1
13 A1

11 0 A1
12 0 0 0 0 0

0 0 0 0 0 0 0 0 0
A1

23 A1
21 0 A1

22 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

ϕ9

=

b1
3

b1
1

0
b1

2

0
0
0
0
0

.

After the addition of all Ae to A, and all {be} to {b}, the global matrix is is given by

γ1 γ2 0 γ3 0 0 0 0 0
γ4 γ5 γ6 γ7 γ8 0 0 0 0
0 γ9 γ10 0 γ11 γ12 0 0 0

γ13 γ14 0 γ15 γ16 0 γ17 0 0
0 γ18 γ19 γ20 γ21 γ22 γ23 γ24 0
0 0 γ25 0 γ26 γ27 0 γ28 γ29

0 0 0 γ30 γ31 0 γ32 γ33 0
0 0 0 0 γ34 γ35 γ36 γ37 γ38

0 0 0 0 0 γ39 0 γ40 γ41

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

ϕ9

=

b1
3

b1
1 + b2

1 + b3
1

b3
2 + b4

1

b1
2 + b2

2 + b5
1

b2
3 + b3

3 + b4
2 + b5

2 + b6
1 + b7

1

b4
3 + b7

2 + b8
1

b5
3 + b6

2

b6
3 + b7

3 + b8
3

b8
2

,

106

B.1 Finite Element Method (FEM)

where

γ1 = A1
33, γ15 = A1

22 + A2
22 + A5

11, γ29 = A8
12,

γ2 = A1
31, γ16 = A2

23 + A5
12, γ30 = A5

31,

γ3 = A1
32, γ17 = A5

13, γ31 = A5
32 + A6

21,

γ4 = A1
13 + A2

13, γ18 = A2
31 + A3

31, γ32 = A5
33 + A6

22,

γ5 = A1
11 + A2

11 + A3
11, γ19 = A4

21, γ33 = A6
23,

γ6 = A3
12, γ20 = A2

32 + A3
32 + A5

21, γ34 = A6
31 + A7

31,

γ7 = A1
12 + A2

12, γ21 = A2
33 + A3

33 + A4
22 + A5

22 + A6
11 + A7

11, γ35 = A7
32 + A8

31,

γ8 = A3
13, γ22 = A4

23 + A7
12, γ36 = A6

32,

γ9 = A3
21, γ23 = A5

23 + A6
12, γ37 = A6

33 + A7
33 + A8

33,

γ10 = A3
22 + A4

11, γ24 = A6
13 + A7

13, γ38 = A8
32,

γ11 = A3
23 + A4

12, γ25 = A4
31, γ39 = A8

21,

γ12 = A4
13, γ26 = A4

32 + A7
21, γ40 = A8

23,

γ13 = A1
23, γ27 = A4

33 + A7
22 + A8

11, γ41 = A8
22,

γ14 = A1
21 + A2

21, γ28 = A7
23 + A8

13.

Imposition of BC and solve the global equation system. Before the system
of equations is ready to solve, the imposition of BC must be applied on Γ1. Many
approaches has been deployed to impose BC in an efficient way, the most common is
the following. For a general problem having n nodes residing on Γ1, imposition of BC
can be accomplished simply by setting

{bind(i)} = v(i), Aind(i),ind(i) = 1, Aind(i),j = 0, for j ̸= ind(i), (B.36)

and

{bj} = {bj} − Aj,ind(i) · v(i), Aj,ind(i) = 0, for j ̸= ind(i), (B.37)

where ind(i) is a vector that store the global node indexes of nodes residing on Γ1,
and v(i) is a vector that contains the prescribed values of {ϕ}. Different techniques
are described in (Burnett, 1987; Jin, 2002; Nguyen, 2006).

Once the BC conditions are applied, the system can be solve for unknowns {ϕi}. In
real applications, the matrix A is extremely large, complex and normally very sparse
since it is a result of the discretisation of a differential operator. Consequently, solving

107

Numerical techniques in electromagnetics

the large-scale linear system is the most important and expensive part of the overall
numerical method. Normally, it takes up to 90% of the whole execution time (Koldan,
2013). To solve the linear system there are different methods that can be classified
into two groups: direct methods and iterative methods. Both groups have certain
advantages and disadvantages, and the choice of a given method is generally problem
depend. The main advantage of iterative methods is their low storage requirement,
which resolves the memory issue of direct methods. In addition, there is another
very important benefit thanks to which iterative methods can cope with huge com-
putational demands more readily then direct techniques. Namely, iterative methods
are much easier to implement efficiently on high-performance parallel computers than
direct solvers. Currently, the most common group of iterative techniques used in ap-
plications are Krylov subspace methods (Saad, 2003; Koldan, 2013).

Post-processing. This is the last step in a FEM analysis. Results obtained in the
previous step are usually in the form of raw data and difficult to interpret. In the
post-processing stage, a Computer-aided Design (CAD) program is utilized to manip-
ulate and display the solution in tabular, graphical, or pictorial form. A graphical
representation of the results is very useful in understanding behaviour of the solution,
for instance, to estimate the error approximation in terms of the quantities of interest.
Examples of visualisation tools are Paraview (Ahrens et al., 2005) and VisIt (Childs
et al., 2005).

Three-dimensional Finite Element Method

The FE formulation for 3D problems is very similar to the 2D case. To explain that,
the following 3D BVP is considered

− ∂

∂x

(
αx

∂ϕ

∂x

)
− ∂

∂y

(
αy

∂ϕ

∂y

)
− ∂

∂z

(
αz

∂ϕ

∂z

)
+ βϕ = f x, y, z ∈ V, (B.38)

with BC determined by

ϕ = p on S1, (B.39)(
αx

∂ϕ

∂x
x̂ + αy

∂ϕ

∂y
ŷ + αz

∂ϕ

∂z
ẑ

)
· n̂ + υϕ = q on S2, (B.40)

where S = S1 + S2 denotes the boundary enclosing the volume V , n̂ is its outward
normal unit vector, and υ, p, and q are physical known parameters associated with

108

B.1 Finite Element Method (FEM)

volume V .

Domain discretisation. As already mentioned, the first step of the FE analysis is
the domain subdivision. In three-dimension cases, the volume V is preferably subdi-
vided into tetrahedrons. Similarly to the 2D case, all elements and their nodes must
be labeled with a set of integers. The element index, local node index and global
node index are stored in a 4 × N connectivity array denoted by nodes(i, e), where
i = 1, 2, 3, 4, e = 1, 2, 3, . . . , N , and N is the total number of elements. The array
nodes(i, e) contains the global node numbers indexed by the local node number i and
the element e. Just as in the 2D case, other data that are needed include the spatial
coordinates of the nodes (xi, yi, zi), the value of αx, αy, αz and f for each element, the
prescribed value of ϕ for each node residing on S1, and the value of υ and q for each
surface triangular element on S2. Figure B.2 depicts a linear tetrahedral element.

Fig. B.2 Tetrahedral nodal element.

Interpolation functions. Once domain discretisation, the unknown function ϕ can
be approximated within each element as (Jin, 2002)

ϕe(x, y, z) = ae + bex + cey + dez. (B.41)

Denoting the value of ϕ at the i-th node as ϕe
i

ϕe
1 = ae + bexe

1 + ceye
1 + deze

1, (B.42a)
ϕe

2 = ae + bexe
2 + ceye

2 + deze
2, (B.42b)

ϕe
3 = ae + bexe

3 + ceye
3 + deze

3, (B.42c)
ϕe

4 = ae + bexe
4 + ceye

4 + deze
4, (B.42d)

109

Numerical techniques in electromagnetics

and the volume of the element as

V e = 1
6

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
xe

1 xe
2 xe

3 xe
4

ye
1 ye

2 ye
3 ye

4

ze
1 ze

2 ze
3 ze

4

∣∣∣∣∣∣∣∣∣∣∣
, (B.43)

the coefficients ae
i , be

i , ce
i and de

i can be determined by

ae = 1
6V e

∣∣∣∣∣∣∣∣∣∣∣

ϕe
1 ϕe

2 ϕe
3 ϕe

4

xe
1 xe

2 xe
3 xe

4

ye
1 ye

2 ye
3 ye

4

ze
1 ze

2 ze
3 ze

4

∣∣∣∣∣∣∣∣∣∣∣
= 1

6V e
(ae

1ϕ
e
1 + ae

2ϕ
e
2 + ae

3ϕ
e
3 + ae

4ϕ
e
4), (B.44)

be = 1
6V e

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
ϕe

1 ϕe
2 ϕe

3 ϕe
4

ye
1 ye

2 ye
3 ye

4

ze
1 ze

2 ze
3 ze

4

∣∣∣∣∣∣∣∣∣∣∣
= 1

6V e
(be

1ϕ
e
1 + be

2ϕ
e
2 + be

3ϕ
e
3 + be

4ϕ
e
4), (B.45)

ce = 1
6V e

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
xe

1 xe
2 xe

3 xe
4

ϕe
1 ϕe

2 ϕe
3 ϕe

4

ze
1 ze

2 ze
3 ze

4

∣∣∣∣∣∣∣∣∣∣∣
= 1

6V e
(ce

1ϕ
e
1 + ce

2ϕ
e
2 + ce

3ϕ
e
3 + ce

4ϕ
e
4), (B.46)

de = 1
6V e

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
xe

1 xe
2 xe

3 xe
4

ye
1 ye

2 ye
3 ye

4

ϕe
1 ϕe

2 ϕe
3 ϕe

4

∣∣∣∣∣∣∣∣∣∣∣
= 1

6V e
(de

1ϕ
e
1 + de

2ϕ
e
2 + de

3ϕ
e
3 + de

4ϕ
e
4). (B.47)

110

B.1 Finite Element Method (FEM)

If i is running in a cyclic permutation (1, 2, 3, 4), each coefficient can be determined
by

ae
1 =

∣∣∣∣∣∣∣∣
xe

2 xe
3 xe

4

ye
2 ye

3 ye
4

ze
2 ze

3 ze
4

∣∣∣∣∣∣∣∣ , ae
2 = −

∣∣∣∣∣∣∣∣
xe

3 xe
4 xe

1

ye
3 ye

4 ye
1

ze
3 ze

4 ze
1

∣∣∣∣∣∣∣∣ ,

ae
3 =

∣∣∣∣∣∣∣∣
xe

4 xe
1 xe

2

ye
4 ye

1 ye
2

ze
4 ze

1 ze
2

∣∣∣∣∣∣∣∣ , ae
4 = −

∣∣∣∣∣∣∣∣
xe

1 xe
2 xe

3

ye
1 ye

2 ye
3

ze
1 ze

2 ze
3

∣∣∣∣∣∣∣∣ ,

be
1 = −

∣∣∣∣∣∣∣∣
1 1 1
ye

2 ye
3 ye

4

ze
2 ze

3 ze
4

∣∣∣∣∣∣∣∣ , be
2 =

∣∣∣∣∣∣∣∣
1 1 1
ye

3 ye
4 ye

1

ze
3 ze

4 ze
1

∣∣∣∣∣∣∣∣ ,

be
3 = −

∣∣∣∣∣∣∣∣
1 1 1
ye

4 ye
1 ye

2

ze
4 ze

1 ze
2

∣∣∣∣∣∣∣∣ , be
4 =

∣∣∣∣∣∣∣∣
1 1 1
ye

1 ye
2 ye

3

ze
1 ze

2 ze
3

∣∣∣∣∣∣∣∣ ,

ce
1 =

∣∣∣∣∣∣∣∣
1 1 1
xe

2 xe
3 xe

4

ze
2 ze

3 ze
4

∣∣∣∣∣∣∣∣ , ce
2 = −

∣∣∣∣∣∣∣∣
1 1 1
xe

3 xe
4 xe

1

ze
3 ze

4 ze
1

∣∣∣∣∣∣∣∣ ,

ce
3 =

∣∣∣∣∣∣∣∣
1 1 1
xe

4 xe
1 xe

2

ze
4 ze

1 ze
2

∣∣∣∣∣∣∣∣ , ce
4 = −

∣∣∣∣∣∣∣∣
1 1 1
xe

1 xe
2 xe

3

ze
1 ze

2 ze
3

∣∣∣∣∣∣∣∣ ,

de
1 = −

∣∣∣∣∣∣∣∣
1 1 1
xe

2 xe
3 xe

4

ye
2 ye

3 ye
4

∣∣∣∣∣∣∣∣ , de
2 =

∣∣∣∣∣∣∣∣
1 1 1
xe

3 xe
4 xe

1

ye
3 ye

4 ye
1

∣∣∣∣∣∣∣∣ ,

de
3 = −

∣∣∣∣∣∣∣∣
1 1 1
xe

4 xe
1 xe

2

ye
4 ye

1 ye
2

∣∣∣∣∣∣∣∣ , de
4 =

∣∣∣∣∣∣∣∣
1 1 1
xe

1 xe
2 xe

3

ye
1 ye

2 ye
3

∣∣∣∣∣∣∣∣ .

111

Numerical techniques in electromagnetics

These can be written uniformly as

ae
i =

∣∣∣∣∣∣∣∣
xe

i+1 xe
i+2 xe

i+3

ye
i+1 ye

i+2 ye
i+3

ze
i+1 ze

i+2 ze
i+3

∣∣∣∣∣∣∣∣ , (B.48)

be
i =

∣∣∣∣∣∣∣∣
1 1 1

ye
i+1 ye

i+2 ye
i+3

ze
i+1 ze

i+2 ze
i+3

∣∣∣∣∣∣∣∣ , (B.49)

ce
i =

∣∣∣∣∣∣∣∣
1 1 1

xe
i+1 xe

i+2 xe
i+3

ze
i+1 ze

i+2 ze
i+3

∣∣∣∣∣∣∣∣ , (B.50)

de
i =

∣∣∣∣∣∣∣∣
1 1 1

xe
i+1 xe

i+2 xe
i+3

ye
i+1 ye

i+2 ye
i+3

∣∣∣∣∣∣∣∣ . (B.51)

Substituting the expressions (B.42) back into (B.41) the following approximation is
obtained

ϕe(x, y, z) =
4∑

i=1
N e

i (x, y, z)ϕe
i , (B.52)

where the interpolation functions N e
i (x, y, z) are given by

N e
i (x, y, z) = 1

6V e
(ae

i + be
i x + ce

i y + de
i z), (B.53)

Similarly to the 2D case, basis functions (B.53) have the property

N e
j (xj, yj, zj) = δij =

1 i = j

0 i ̸= j
, (B.54)

Elemental equations. Next step is to formulate the problem in terms of the un-
knowns at the nodes. In sake of simplicity, here is only considering the Ritz method
applied to problem of (B.40) with υ = q = 0. Therefore, functional given by (B.7)
can be written as

H(ϕ) =
N∑

e=1
He(ϕe), (B.55)

112

B.1 Finite Element Method (FEM)

where N is the total number of volume elements and He is given by

He(ϕe) = 1
2

˚
Ωe

αx

(
∂ϕe

∂x

)2

+ αy

(
∂ϕe

∂y

)2

+ αz

(
∂ϕe

∂z

)2

− β (ϕe)2

 dV

−
˚

V e

fϕe dV, (B.56)

where V e denotes the volume of the e-th element. Substituting (B.52) into (B.56)
and taking the partial derivative of He with respect to ϕe

i , the following expression is
obtained

∂He

∂ϕe
i

=
4∑

j=1
ϕe

j

˚
V e

(
αx

∂N e
i

∂x

∂N e
j

∂x

+ αy
∂N e

i

∂y

∂N e
j

∂y

+ αz
∂N e

i

∂z

∂N e
j

∂z

+ βN e
i N e

j

)
dV

−
˚

V e

fN e
i dV i = 1, 2, 3, 4. (B.57)

This can be written as expression (B.30) where

Ae
ij =
˚

V e

(
αx

∂N e
i

∂x

∂N e
j

∂x

+ αy
∂N e

i

∂y

∂N e
j

∂y

+ αz
∂N e

i

∂z

∂N e
j

∂z

+ βN e
i N e

j

)
dV, (B.58)

be
i =
˚

V e

fN e
i dV. (B.59)

Similarly to the 2D case, for constant values αx, αy, αz, β and source f within each
element, expressions (B.58) and (B.59) become (Jin, 2002)

Ae
ij = 1

36V e
(αe

xbe
i b

e
j + αe

ybe
i b

e
j + αe

zbe
i b

e
j) + V e

20 βe(1 + δij), (B.60)

be
i = V e

4 f e. (B.61)

Assemble of system of equations. The process of assembly is very similar to
that for the 2D case. Indeed, just as in the 2D case, it amounts to adding each Ae

ij

to [Anodes(i,e),nodes(j,e)] and {be
i } to {bnodes(i,e)}. This process produces a global system

that obeys the expression (B.35).

Imposition of BC and solve the global equation system. The imposition of
BC can be accomplished just as in the 2D case through expressions (B.36) and (B.37).
Like the 2D case, for solving the system of equations there are different methods
with the same properties and challenges. In (Saad, 2003) can be found a deep de-
scription of Krylov subspace methods such as GMRES (Generalized Minimum Resid-

113

Numerical techniques in electromagnetics

ual), BiCGSTAB (Biconjugate Gradient Stabilized), QMR (Quasi Minimal Residual),
TFQMR (Transpose-free QMR), and MINRES (Minimal Residual), among others.

Post-processing. The postprocessing stage is similar to the 2D case, therefore, this
operation displays the solution to the system equations in tabular, graphical, or pic-
torial form. Other physical meaningful quantities might be derived from the solution
and also displayed.

B.2 Edge Finite Element Method (EFEM)

As already said above, nodal-based finite elements can not be used for electromagnetic
problems formulated in terms of the electric field (E) and/or magnetic field (H) func-
tions, which is a natural and physically meaningful problem formulation. This is the
main reason why traditionally, the FEM has not been applied directly to electromag-
netic problems (first order form of Maxwell’s equations (A.6)– (A.10)). Instead the
problem could be rewritten as a second order problem, either by eliminating one of the
fields, or by introducing scalar and vector potentials through gauge conditions. For
the last case, the most common types of these conditions are the Coulomb gauge and
Lorentz gauge. In this sense a coupled vector-scalar potential functions, vH and vE

which represents vector magnetic potential and scalar electric potential respectively,
are continuous across the interfaces between different materials, which solves the prob-
lem of discontinuity. In order to prevent the appearance of spurious solutions, it is
necessary to apply an additional condition or penalty, the Coulomb gauge condition,
∇ · vH = 0, that enforces zero divergence of the vector potential function at element
level. A parallel version of this potential-based formulation for geophysical prospecting
has been applied in (Koldan, 2013).

Other solution are Nédélec Elements, more commonly called edge elements (Jin,
2002), which uses vector basis functions instead scalar basis functions. Namely, the
DOFs are assigned to the edges rather than the nodes of each element. Although this
kind of discretisation were described in (Whitney, 1957), it’s use and importance in the
electromagnetic area was not realized until recently. In (Nédélec, 1980) is discussed
the construction of edge elements on tetrahedrons and rectangular bricks, tetrahedral
edge elements to 3D eddy-current problems were applied in (Bossavit and Verite, 1982;
van Welij, 1985; Kameari, 1988; Barton and Cendes, 1987), rectangular edge elements
for the analysis of dielectric-loaded waveguides (Hano, 1984), electromagnetic fields in
inhomogeneous media (Mur and De Hoop, 1985) and the developed of a more sophisti-

114

B.2 Edge Finite Element Method (EFEM)

cated element type, called covariant projection elements, which permit elements with
curved edges (Crowley et al., 1988). In addition, edge elements on hexahedrons (Be-
spalov et al., 2007; Epov et al., 2007; da Silva et al., 2012; Cai et al., 2014; Chung
et al., 2014) and on tetrahedrons (Mukherjee and Everett, 2011; Schwarzbach et al.,
2011) are used in some recent approaches to 3D CSEM FM.

In all of these works, edge elements have been shown to be free of all the shortcom-
ings of nodal-based finite elements formulations if an appropriate selection of the inter-
polation functions or basis functions is made. Edge Finite Element Method (EFEM)
use the same principle of FEM which consist in replacing an entire continuous do-
main by a number of sub-domains in which the unknown function is represented by
simple interpolation functions with unknown coefficients. Thus, the solution of the
entire system is approximated by a finite number of unknown coefficients. Then a
system of algebraic equations is obtained and finally, solution of the BVP is achieved
by solving the system of equations. Since EFEM has the same general steps of FEM,
this section define the main features of edge elements for implementation purposes
on unstructured tetrahedral meshes. Namely, a strong emphasis is dedicated to the
basis functions, the elemental equations formulation and some computational aspects.
The type of discretisation used in this thesis obeys to the lack of formulations and
codes with tetrahedral elements and because it enables the representation of complex
geological structures and allows local refinement in order to improve the solution’s
accuracy.

Two-dimensional Edge Finite Element Method

As already mentioned, the main disadvantage of rectangular elements is that they are
restricted to a limited kind of geometries, therefore for problems that deal with irreg-
ular geometries is necessary the use of triangular elements. Therefore the formulation
for the triangular edge elements is considered here.

Interpolation functions. For triangular edge elements of lowest order, their DOFs
are associated with edges, which are sub-entities of dimension 1 as show in figure B.3.
Their edge basis functions or interpolation functions are based on the area coordinates
defined by expression (B.25) which here is renamed as λe

i = N e
i , where i = 1, 2, 3.

Namely, the basis functions for a triangular edge Element can be expressed in terms
of first order of node-based Finite Elements (Lagrange Elements) (Jin, 2002). For the
triangular element of figure B.3 with edges defined by table B.2, their basis functions

115

Numerical techniques in electromagnetics

edge i1 i2

1 1 2
2 2 3
3 3 1

Table B.2 Edges definition: triangular element

can be expressed by the following vectorial functions

Ne
1 = W12ℓ

e
1 = (λe

1∇λe
2 − λe

2∇λe
1)ℓe

1, (B.62)
Ne

2 = W23ℓ
e
2 = (λe

2∇λe
3 − λe

3∇λe
2)ℓe

2, (B.63)
Ne

3 = W31ℓ
e
3, = (λe

3∇λe
1 − λe

1∇λe
3)ℓe

3 (B.64)

where ℓe
i denotes the length of the i-th edge and Wij is a vectorial function that

connect i-th node to j-th node. Therefore, the vector field within the element can be
defined as

Ee =
3∑

i=1
Ne

i E
e
i , (B.65)

where Ee
i denotes the tangential scalar field along the i-th edge. The gradients ∇λe

i

Fig. B.3 Triangular edge element.

116

B.2 Edge Finite Element Method (EFEM)

can be expanded as

∇λe
1 = 1

2∆e
(ae

1 + be
1x + ce

1y) = 1
2∆e

be
1 · î

ce
1 · ĵ

 ,

∇λe
2 = 1

2∆e
(ae

2 + be
2x + ce

2y) = 1
2∆e

be
2 · î

ce
2 · ĵ

 ,

∇λe
3 = 1

2∆e
(ae

3 + be
3x + ce

3y) = 1
2∆e

be
3 · î

ce
3 · ĵ

 .

Therefore, the basis functions for triangular edge element are given by

W12ℓ
e
1 = 1

(2∆e)2

be
2(ae

1 + be
1x + ce

1y) − be
1(ae

2 + be
2x + ce

2y) · î

ce
2(ae

1 + be
1x + ce

1y) − ce
1(ae

2 + be
2x + ce

2y) · ĵ

 ℓe
1, (B.66)

W23ℓ
e
2 = 1

(2∆e)2

be
3(ae

2 + be
2x + ce

2y) − be
2(ae

3 + be
3x + ce

3y) · î

ce
3(ae

2 + be
2x + ce

2y) − ce
2(ae

3 + be
3x + ce

3y) · ĵ

 ℓe
2, (B.67)

W31ℓ
e
3 = 1

(2∆e)2

be
1(ae

3 + be
3x + ce

3y) − be
3(ae

1 + be
1x + ce

1y) · î

ce
1(ae

3 + be
3x + ce

3y) − ce
3(ae

1 + be
1x + ce

1y) · ĵ

 ℓe
3. (B.68)

If i = j = 1, 2, 3, expressions (B.66) - (B.68) can be written uniformly as

Wijℓ
e
i = 1

(2∆e)2

be
j(ae

i + be
i x + ce

i y) − be
i (ae

j + be
jx + ce

jy) · î

ce
j(ae

i + be
i x + ce

i y) − ce
i (ae

j + be
jx + ce

jy) · ĵ

 ℓe
i . (B.69)

Following the notation of table B.2, vector basis functions (B.69) are plotted in fig-
ure B.4. From basis functions (B.69) is not difficult to see that they are divergence
free but not curl free

∇ · Wij = ∇ · (λe
1∇λe

2) − ∇ · (λe
2∇λe

1) = 0, (B.70)
∇ × Wij = ∇ × (λe

1∇λe
2) − ∇ × (λe

2∇λe
1) = 2∇λe

1 × λe
2. (B.71)

For instance, basis W12 has a constant tangential component and discontinuous nor-
mal component along the edge 1. Further, since λe

1 vanishes along the edge 2 and λe
2

vanishes along edge 3, W12 has no tangential component along these two edges. Thus,
W12 possesses all the necessary properties for being a vector basis function for the
edge field assoiated with edge 1. Former properties, which are valid for the remaining
edges, are depicted in figure B.5.

117

Numerical techniques in electromagnetics

X

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Evaluation points

X

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) W12

X

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) W23

X

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) W31

Fig. B.4 Vector basis functions for unitary triangular edge element.

118

B.2 Edge Finite Element Method (EFEM)

X

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Tangential W12

X

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) Normal W12

X

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Tangential W23

X

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d) Normal W23

X

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Tangential W31

X

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(f) Normal W31

Fig. B.5 Tangential and normal components for triangular edge basis functions.

119

Numerical techniques in electromagnetics

Elemental equations. When vector basis functions as (B.69) are employed to rep-
resent a vector field or potential in FE formulations of vector wave equations, the
resulting elemental matrices contain analytical integrals of the following two forms

Ke
ij =
¨

Ωe

(∇ × Ne
i) · (∇ × Ne

j) dΩ, (B.72)

M e
ij =
¨

Ωe

Ne
i · Ne

j dΩ. (B.73)

Integral (B.72) can be reduced to the following expression

Ke
ij =

ℓe
i · ℓe

j

∆e
,

where ∆e denotes the area of the e-th element. On the other hand, integral (B.73)
can be defined by

M e
11 = (ℓe

1)2

24∆e
= (m22 − m12 + m11),

M e
21 = M e

12 = ℓe
1 · ℓe

2
48∆e

= (m23 − m22 − 2m13 + m12),

M e
31 = M e

13 = ℓe
1 · ℓe

3
48∆e

= (m21 − 2m23 − m11 + m13),

M e
22 = (ℓe

2)2

24∆e
= (m33 − m23 + m22),

M e
32 = M e

23 = ℓe
2 · ℓe

3
48∆e

= (m31 − m33 − 2m21 + m23),

M e
33 = (ℓe

3)2

24∆e
= (m11 − m13 + m33),

where mij = be
i b

e
j + ce

i c
e
j , with be

i and ce
i defined in the formulation of (B.25).

Three-dimensional Edge Finite Element Method

The formulation of edge elements for 2D cases can be extended to 3D cases in a
straightforward manner. Similarly to nodal FEM in 3D, in the EFEM the volume
V is preferably subdivided into tetrahedrons since this enables the representation of
complex geological structures and also allows local refinement in order to improve the
solution’s accuracy. Therefore, the formulation for the tetrahedral edge elements is
considered here.

Interpolation functions. In concordance with the essence of EFEM, the DOFs

120

B.2 Edge Finite Element Method (EFEM)

for tetrahedral edge elements of lowest order are associated with their edges as show
in figure B.6. Their edge basis functions are based on the barycentric coordinates
defined by expression (B.53) which here is renamed as λe

i = Ne
i , therefore the edge

basis functions for tetrahedral edge elements can be expressed in terms of first order
of node-based Finite Elements (Jin, 2002). For the tetrahedral element of figure B.6

Fig. B.6 Tetrahedral edge element.

with edges defined by table B.3, their basis functions can be expressed by the following
vectorial functions:

Ne
1 = W12ℓ

e
1 = (λe

1∇λe
2 − λe

2∇λe
1)ℓe

1, (B.74)
Ne

2 = W13ℓ
e
2 = (λe

1∇λe
3 − λe

3∇λe
1)ℓe

2, (B.75)
Ne

3 = W14ℓ
e
3 = (λe

1∇λe
4 − λe

4∇λe
1)ℓe

3, , (B.76)
Ne

4 = W23ℓ
e
4 = (λe

2∇λe
3 − λe

3∇λe
2)ℓe

4, (B.77)
Ne

5 = W42ℓ
e
5 = (λe

4∇λe
2 − λe

2∇λe
4)ℓe

5, (B.78)
Ne

6 = W34ℓ
e
6 = (λe

3∇λe
4 − λe

4∇λe
3)ℓe

6. (B.79)

The gradients ∇λe
i can be expanded as

121

Numerical techniques in electromagnetics

edge i1 i2

1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

Table B.3 Edges definition: tetrahedral element

∇λe
1 = 1

6V e

be

1 · î

ce
1 · ĵ

de
1 · k̂

 , ∇λe
2 = 1

6V e

be

2 · î

ce
2 · ĵ

de
2 · k̂

 ,

∇λe
3 = 1

6V e

be

3 · î

ce
3 · ĵ

de
3 · k̂

 , ∇λe
4 = 1

6V e

be

4 · î

ce
4 · ĵ

de
4 · k̂

 ,

∇λe
5 = 1

6V e

be

5 · î

ce
5 · ĵ

de
5 · k̂

 , ∇λe
6 = 1

6V e

be

6 · î

ce
6 · ĵ

de
6 · k̂

 .

122

B.2 Edge Finite Element Method (EFEM)

Therefore, the expanded form of the edge basis functions for tetrahedral edge elements
is the following

W12ℓ
e
1 = 1

(6V e)2

be

2(ae
1 + be

1x + ce
1y + de

1z) − be
1(ae

2 + be
2x + ce

2y + de
2z) · î

ce
2(ae

1 + be
1x + ce

1y + de
1z) − ce

1(ae
2 + be

2x + ce
2y + de

2z) · ĵ

de
2(ae

1 + be
1x + ce

1y + de
1z) − de

1(ae
2 + be

2x + ce
2y + de

2z) · k̂

 ℓ1, (B.80)

W13ℓ
e
2 = 1

(6V e)2

be

3(ae
1 + be

1x + ce
1y + de

1z) − be
1(ae

3 + be
3x + ce

3y + de
3z) · î

ce
3(ae

1 + be
1x + ce

1y + de
1z) − ce

1(ae
3 + be

3x + ce
3y + de

3z) · ĵ

de
3(ae

1 + be
1x + ce

1y + de
1z) − de

1(ae
3 + be

3x + ce
3y + de

3z) · k̂

 ℓ2, (B.81)

W14ℓ
e
3 = 1

(6V e)2

be

4(ae
1 + be

1x + ce
1y + de

1z) − be
1(ae

4 + be
4x + ce

4y + de
4z) · î

ce
4(ae

1 + be
1x + ce

1y + de
1z) − ce

1(ae
4 + be

4x + ce
4y + de

4z) · ĵ

de
4(ae

1 + be
1x + ce

1y + de
1z) − de

1(ae
4 + be

4x + ce
4y + de

4z) · k̂

 ℓ3, (B.82)

W23ℓ
e
4 = 1

(6V e)2

be

3(ae
2 + be

2x + ce
2y + de

2z) − be
2(ae

3 + be
3x + ce

3y + de
3z) · î

ce
3(ae

2 + be
2x + ce

2y + de
2z) − ce

2(ae
3 + be

3x + ce
3y + de

3z) · ĵ

de
3(ae

2 + be
2x + ce

2y + de
2z) − de

2(ae
3 + be

3x + ce
3y + de

3z) · k̂

 ℓ4, (B.83)

W42ℓ
e
5 = 1

(6V e)2

be

2(ae
4 + be

4x + ce
4y + de

4z) − be
4(ae

2 + be
2x + ce

2y + de
2z) · î

ce
2(ae

4 + be
4x + ce

4y + de
4z) − ce

4(ae
2 + be

2x + ce
2y + de

2z) · ĵ

de
2(ae

4 + be
4x + ce

4y + de
4z) − de

4(ae
2 + be

2x + ce
2y + de

2z) · k̂

 ℓ5, (B.84)

W34ℓ
e
6 = 1

(6V e)2

be

4(ae
3 + be

3x + ce
3y + de

3z) − be
3(ae

4 + be
4x + ce

4y + de
4z) · î

ce
4(ae

3 + be
3x + ce

3y + de
3z) − ce

3(ae
4 + be

4x + ce
4y + de

4z) · ĵ

de
4(ae

3 + be
3x + ce

3y + de
3z) − de

3(ae
4 + be

4x + ce
4y + de

4z) · k̂

 ℓ6. (B.85)

Edge basis functions (B.80) - (B.85) are divergence free but not curl free (Jin, 2002).

Elemental equations. When edge basis functions (B.80) - (B.85) are employed to
represent a vector field in FE formulations of vector wave equations, the resulting
elemental matrices contain analytical integrals of the following two forms (Jin, 2002)

Ke
ij =
˚

V e

(∇ × Ne
i) · (∇ × Ne

j) dV, (B.86)

M e
ij =
˚

V e

Ne
i · Ne

j dV. (B.87)

123

Numerical techniques in electromagnetics

According with the numerical formulation by (Jin, 2002), the integral (B.86) can be
reduced to the following expression

Ke
ij =

4ℓe
i ℓ

e
jV

e

(6V e)4 [(ce
i1d

e
i2 − de

i1c
e
i2)(ce

j1d
e
j2 − de

j1c
e
j2)

+ (de
i1b

e
i2 − be

i1d
e
i2)(de

j1b
e
j2 − be

j1d
e
j2)

+ (be
i1c

e
i2 − ce

i1b
e
i2)(be

j1c
e
j2 − ce

j1b
e
j2)], (B.88)

where V e denotes the volume of the element e-th, and the coefficients be
ij, ce

ij and de
ij are

defined in (B.49), (B.50) and (B.51), respectively . On the other hand, integral (B.87)
is given by

M e
11 = (ℓe

1)2

360V e
(m22 − m12 + m11),

M e
21 = M e

12 = ℓe
1ℓ

e
2

720V e
(2m23 − m12 − m13 + m11),

M e
31 = M e

13 = ℓe
1ℓ

e
3

720V e
(2m24 − m12 − m14 + m11),

M e
41 = M e

14 = ℓe
1ℓ

e
4

720V e
(m23 − m22 − 2m13 + m12),

M e
51 = M e

15 = ℓe
1ℓ

e
5

720V e
(m22 − m24 − m12 + 2m14),

M e
61 = M e

16 = ℓe
1ℓ

e
6

720V e
(m24 − m23 − m14 + m13),

M e
22 = (ℓe

2)2

360V e
(m33 − m13 + m11),

M e
32 = M e

23 = ℓe
2ℓ

e
3

720V e
(2m34 − m13 − m14 + m11),

M e
42 = M e

24 = ℓe
2ℓ

e
4

720V e
(m33 − m23 − m13 + 2m12),

M e
52 = M e

25 = ℓe
2ℓ

e
5

720V e
(m23 − m34 − m12 + m14),

M e
62 = M e

26 = ℓe
2ℓ

e
6

720V e
(m13 − m33 − 2m14 + m34),

124

B.3 Test case of EFEM

M e
33 = (ℓe

3)2

360V e
(m44 − m14 + m11),

M e
43 = M e

34 = ℓe
3ℓ

e
4

720V e
(m34 − m24 − m13 + m12),

M e
53 = M e

35 = ℓe
3ℓ

e
5

720V e
(m24 − m44 − 2m12 + m14),

M e
63 = M e

36 = ℓe
3ℓ

e
6

720V e
(m44 − m34 − m14 + 2m13),

M e
44 = (ℓe

4)2

360V e
(m33 − m23 + m22),

M e
54 = M e

45 = ℓe
4ℓ

e
5

720V e
(m23 − 2m34 − m22 + m24),

M e
64 = M e

46 = ℓe
4ℓ

e
6

720V e
(m34 − m33 − 2m24 + m23),

M e
55 = (ℓe

5)2

360V e
(m22 − m24 + m44),

M e
65 = M e

56 = ℓe
5ℓ

e
6

720V e
(m24 − 2m23 − m44 + m34),

M e
66 = (ℓe

6)2

360V e
(m44 − m34 + m33),

where mij = be
i b

e
j + ce

i c
e
j + de

i d
e
j with be

i , ce
i and de

i defined by (B.49), (B.50) and (B.51)
respectively.

B.3 Test case of EFEM

In this section, we study the properties, performance and accuracy of edge elements.
To do that, we implemented a simple, flexible and parallel Fortran prototype for
edge elements applied to simple problems. We focus in assembly time, solving time
and convergence order. The mathematical formulation is based on ideas from (Rognes

125

Numerical techniques in electromagnetics

et al., 2009; Anjam and Valdman, 2015). The experiments were performed on one node
of the Marenostrum supercomputer with two 8-core Intel Xeon processors E5 − 2670
at 2.6 GHz. The BLAS library was compiled and linked with the code in order to use
the SGESV subroutine as solver.

Experiments of edge elements for eddy-current

As already said, in a standard BVP, the domain Ω can be split into two sections
∂Ω = ΩD + ΩN such that ΩD ∩ ΩN = ∅. Therefore, the 2D eddy-current problem can
be expressed as

∇ × µ−1∇ × E + κE = F on Ω, (B.89)
E × n = 0 on ΩD, (B.90)

µ−1∇ × E = 0 on ΩN , (B.91)

for searched function E ∈ HΩD
(∇, Ω) = v ∈ H(∇, Ω)|v×n = 0 on ΩD, where n denotes

the outward unit normal to the boundary ∂Ω. Here the right hand side F ∈ L2(Ω, ℜ2),
and the material parameters µ and κ are given.

According with generalized formulation of expressions (B.89) - (B.91) by (Anjam
and Valdman, 2015), we choose the unit square Ω = [0, 1]2 with material parameters
µ = κ = 1.5. The domain Ω is divided into two sections Ω1 = x ∈ Ω|x1 > x2 and
Ω2 = Ω\Ω̄1 in order to define the following discontinuous exact solution

EΩ1(x) =
 sin(2πx1) + 2π cos(2πx1)(x1 − x2)
sin((x1 − x2)2(x1 − 1)2x2) − sin(2πx1)

 ,

EΩ2(x) = 0.

Because the exact solution has a continuous tangential component at x1 = x2, E ∈
(∇, Ω). Namely, the exact solution satisfies full Neumann BC (Anjam and Valdman,
2015), therefore, ΩD = ∅ and ΩN = ∂Ω.

All tests are based on a regular triangular mesh (figure B.1) with uniform refine-
ment. This strategy produces 4 times more elements in the domain. Table B.4 depicts
the performance of the code with 16 OpenMP threads. First column of table B.4
represents the number of elements, second column represents the number of edges
in the domain Ω, third and fourth column expresses the assembly and solver time
in seconds respectively; fifth column represents the mesh spacing, sixth and seventh
column represents the L2 error and the convergence order OL2 respectively. The L2

126

B.3 Test case of EFEM

e edges Assembly Solver h L2 OL2

128 208 7.66 × 10−3 6.76 × 10−3 3.3 × 10−1 3.9 × 10−1 –
512 800 6.75 × 10−3 7.72 × 10−3 2.0 × 10−1 9.8 × 10−2 2.016

2,048 3,136 2.22 × 10−2 4.47 × 10−2 1.1 × 10−1 2.4 × 10−2 2.017
8,192 12,416 1.82 × 10−1 2.08 × 10−1 5.8 × 10−2 6.0 × 10−3 1.999
32,768 49,408 4.27 × 10−1 6.68 × 10−1 3.0 × 10−2 1.5 × 10−3 2.004
131,072 197,120 0.151 × 101 0.227 × 101 1.5 × 10−2 3.7 × 10−4 2.002
524,288 787,456 0.583 × 101 0.671 × 101 7.8 × 10−3 9.3 × 10−5 2.002

2,097,152 3,147,776 0.213 × 102 0.247 × 102 3.9 × 10−3 2.3 × 10−5 2.001

Table B.4 Summary of results for 2D eddy-current problem

error of table B.4 is plotted versus mesh spacing h in figure B.7. On the other hand,
figure B.8 depicts the discrete solution of eddy-current problem for a mesh with 32,768
triangular elements which produces 49,408 edges. Is not difficult to see that vector

1/h

10 0 10 1 10 2 10 3 10 4

lo
g

1
0

(L
2
 e

rr
o

r)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Fig. B.7 Convergence results of edge elements (lowest order) for eddy current in 2D. The
L2 error is plotted versus the mesh spacing h.

fields in figure B.8 satisfies the divergence condition (B.70) and curl condition (B.71).
Different approaches to solve eddy-current problems with edge elements are described
in (Beck and Hiptmair, 1999; Hiptmair, 2015). Furthermore, in (Webb, 1993; Biro
et al., 1996; Monk, 2003) the authors explain the capacity of edge elements to avoid
spurious solutions in an ample range of applications.

127

Numerical techniques in electromagnetics

(a) x-component (b) y-component

(c) ∇E

Fig. B.8 Discrete solution for eddy-current problem in 2D. Mesh with 32,768 triangular
elements and 49,408 edges.

128

Appendix C

Prototyping and validation with
synthetic test

As we mentioned in Appendix B, nodal-based finite elements can not be used di-
rectly for electromagnetic problems formulated in terms of the electric field (E) and/or
magnetic field (H) functions, which is a natural and physically meaningful problem
formulation. Although there are other schemes to solve the problem, for instance
vector-scalar electromagnetic potential functions by (Koldan, 2013), we decide formu-
late the physical problems in terms of electric field decomposition (Nabighian, 1988;
Zhdanov, 2009; Cai et al., 2014) for a 3D CSEM FM using EFEM scheme. This ap-
proach solves not only the already mentioned problems of FEM, but also the problem
of having singularities introduced by sources. As consequence, it is numerically very
stable.

On top on that, in this appendix we study the key aspects for the numerical solution
of equation systems that arises from the 3D CSEM FM, namely, elemental matrices
computations, vector basis implementation, global system assembly and its solution.

C.1 Prototype for 3D CSEM modelling

Before to design the HPC implementation, we implemented a modular, flexible and
parallel (OpenMP) Matlab prototype for the numerical solutions of electromagnetic
fields in 3D CSEM FM surveys, whose software stack is show in figure C.1. Since
the aim of this part of our research was dedicated to the analysis of the numerical
formulation instead the code performance issues, all experiments were performed on a
modest cluster with 24 Intel Xeon processors E5-2620 at 2.10 GHz. Furthermore, all
results were obtained by using a direct solver.

129

Prototyping and validation with synthetic test

Fig. C.1 Upper view of software stack. Green dashed: Pre-processing stage, Red dashed:
Forward modelling, Blue dashed: Post-processing stage.

C.1.1 Synthetic test for mass matrix

In order to ensure the tangential continuity of the fields and to obtain a consistent
assembly of the system under consideration, stiffness matrix (B.86) and mass ma-
trix (B.87) must be redefined as follows

Ke
ij =
˚

V e

(∇ × Ne
i S

e
i) · (∇ × Ne

jS
e
j) dV, (C.1)

M e
ij =
˚

V e

(Ne
i S

e
i) · (Ne

jS
e
j) dV, (C.2)

where, again, Se
i are coefficients equal 1 or −1 depending on the local and global

direction of the i-th edge in the element e. Latter is an important consideration for the
assembly of elemental matrices, it does not matter if these are evaluated analytically
or numerically.

In order to verify the correct computation of mass matrices (C.2), we solve an
equation system of the form [A] · {ϕ} = {b}, where matrix [A] is assembling through
the sum of elemental matrices [Ae = M e], where M e is the mass matrix from ex-
pression (C.2), and vector {b}, or right hand side (RHS) is populate by the sum of
elemental contributions for all tetrahedral in the mesh (Burnett, 1987; Jin, 2002). The
field to be tested is defined for real and complex polynomial functions as follows

Function 1: Real of 1st order

F =

(ax + b) · î

(cy + d) · ĵ

(ez + f) · k̂

 , (C.3)

130

C.1 Prototype for 3D CSEM modelling

Function 2: Complex of 1st order

F =

(ax + bi) · î

(cy + di) · ĵ

(ez + fi) · k̂

 , (C.4)

Function 3: Real of 2nd order

F =

(ax2 + bx + c + dy2 + ey + fxy) · î

(cx2 + ax + b + ey2 + fy + dxy) · ĵ

(dx2 + ex + a + fy2 + by + cxy) · k̂

 , (C.5)

Function 4: Complex of 2nd order

F =

(ax2 + bx + ci + dy2 + eyi + fxyi) · î

(cx2 + ax + bi + ey2 + fyi + dxyi) · ĵ

(dx2 + ex + ai + fy2 + byi + cxyi) · k̂

 , (C.6)

where coefficient values are determined as a = 2.5, b = 7, c = 1.7, d = −2.1, e = 2
and f = 5. For all tests we used an uniform refinement technique in order to study
the convergence of the solution, the result of this process are five levels of meshes with
detailed information in table C.1. After numerical computation of mass matrices (C.2),
assembling, solving and interpolation process, we obtained a convergence order equal
to 1 for all tests which is consistent with the lowest order of edge elements. Errors
per component in norm L1, L2 and Linf are depicted in table C.2. The convergence
orders associated to each error of table C.2 are show in table C.3.

In sake of clarity, figure C.2 shows the field traces of function (C.6) for each mesh.
Is easy to see the importance of mesh refinement in order to capture the rapid change of
the field. As result, mesh 5 represent the best approximation. Convergence orders per
component associated with figure C.2 are plotted versus mesh spacing h in figure C.3.
Results show that computation of mass matrices and their assembly is correct.

C.1.2 Synthetic test for stiffness matrix

The process to verify the computation and assembly of stiffness matrix is similar to
previous one. Hence we solved an equation system of the form [A] · {ϕ} = {b}, where
matrix [A] is assembling through the sum of elemental matrices [Ae = Ke + M e],
where Ke is the stiffness matrix from expression (C.1) and M e is the mass matrix
from equation (C.2) and vector {b} is assembly by the same way than previous one.

131

Prototyping and validation with synthetic test

x
0 1 2 3 4 5 6

F
(x

)

10 1

10 2

10 3

Analytic
Mesh 1
Mesh 2
Mesh 3
Mesh 4
Mesh 5

(a) x-component

x

0 1 2 3 4 5 6

F
(y

)

10
1

10
2

10
3

(b) y-component

x

0 1 2 3 4 5 6

F
(z

)

110

120

130

140

150

160

170

180

(c) z-component

Fig. C.2 Mass matrix: trace fields for test equation C.6.

132

C.1 Prototype for 3D CSEM modelling

1/h
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L
o
g

1
0

(e
rr

o
r)

10 0

10 1

10 2

10 3

L1
L2
Linf

(a) x-component

1/h
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L
o
g

1
0

(e
rr

o
r)

10 0

10 1

10 2

10 3

(b) y-component

1/h
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L
o
g

1
0

(e
rr

o
r)

10 0

10 1

10 2

10 3

(c) z-component

Fig. C.3 Mass matrix: convergence order for test equation C.6.

133

Prototyping and validation with synthetic test

Mesh level Nodes Elements Edges

1 8 6 19
2 27 48 98
3 125 384 604
4 729 3,072 4,184
5 4,913 24,576 31,024

Table C.1 Levels of meshes

Therefore, the field to be tested is redefined from (C.6) as follows

Function 1: Complex of 2nd order

G = ∇ × ∇ × F + F =

(−2d + di + ax2 + bx + ci + dy2 + eyi + fxyi) · î

(−2c + fi + cx2 + ax + bi + ey2 + fyi + dxyi) · ĵ

(−2d − 2f + dx2 + ex + ai + fy2 + byi + cxyi) · k̂

 ,

(C.7)

where coefficient values are determined as a = 1.7, b = 4, c = −2.8, d = 8.5, e =
−1.6 and f = −2.3. Stiffness matrix test is also based on meshes from table C.1.
Similar to mass matrices tests, we obtained a convergence order equal to 1. Errors
and convergence orders are depicted in table C.4 and table C.5 respectively. Similar
to mass matrices tests, figure C.4 shows the field traces of function (C.7) for each
mesh and again, the mesh refinement plays an important role in the solution accuracy,
hence the best approximation was obtained by using mesh 5. Convergence orders per
component associated with results of figure C.4 are plotted versus mesh spacing h in
figure C.5. Results show that computation of stiffness matrices and their assembly is
correct.

134

C.1 Prototype for 3D CSEM modelling

Fu
nc

tio
n

1

M
es

h
L

1
L

2
L

in
f

x
y

z
x

y
z

x
y

z

1
1.

91
×

10
1

1.
68

×
10

1
1.

44
×

10
1

1.
06

×
10

1
0.

78
×

10
1

0.
72

×
10

1
0.

91
×

10
1

0.
45

×
10

1
0.

53
×

10
1

2
1.

54
×

10
1

1.
83

×
10

1
2.

05
×

10
1

0.
80

×
10

1
0.

83
×

10
1

0.
93

×
10

1
0.

54
×

10
1

0.
43

×
10

1
0.

51
×

10
1

3
0.

80
1

×
10

1
1.

07
×

10
1

1.
12

×
10

1
0.

43
3

×
10

1
0.

48
2

×
10

1
0.

50
2

×
10

1
0.

29
1

×
10

1
0.

23
8

×
10

1
0.

24
9

×
10

1

4
0.

43
8

×
10

1
0.

54
5

×
10

1
0.

61
0

×
10

1
0.

21
6

×
10

1
0.

24
4

×
10

1
0.

27
3

×
10

1
0.

15
5

×
10

1
0.

11
9

×
10

1
0.

12
5

×
10

1

5
0.

18
8

×
10

1
0.

27
4

×
10

1
0.

30
4

×
10

1
0.

09
8

×
10

1
0.

12
2

×
10

1
0.

13
6

×
10

1
0.

07
8

×
10

1
0.

05
8

×
10

1
0.

06
2

Fu
nc

tio
n

2

M
es

h
L

1
L

2
L

in
f

x
y

z
x

y
z

x
y

z

1
1.

91
5

×
10

1
1.

68
3

×
10

1
1.

44
8

×
10

1
1.

06
8

×
10

1
0.

78
6

×
10

1
0.

72
0

×
10

1
0.

91
5

×
10

1
0.

45
8

×
10

1
0.

53
3

×
10

1

2
1.

54
6

×
10

1
1.

83
0

×
10

1
2.

05
1

×
10

1
0.

80
6

×
10

1
0.

83
0

×
10

1
0.

93
6

×
10

1
0.

54
6

×
10

1
0.

43
1

×
10

1
0.

51
9

×
10

1

3
0.

80
5

×
10

1
1.

07
2

×
10

1
1.

12
6

×
10

1
0.

43
1

×
10

1
0.

48
3

×
10

1
0.

50
5

×
10

1
0.

29
9

×
10

1
0.

23
8

×
10

1
0.

24
9

×
10

1

4
0.

43
8

×
10

1
0.

54
5

×
10

1
0.

61
0

×
10

1
0.

21
6

×
10

1
0.

24
4

×
10

1
0.

27
3

×
10

1
0.

15
5

×
10

1
0.

11
9

×
10

1
0.

12
5

×
10

1

5
0.

18
8

×
10

1
0.

27
4

×
10

1
0.

30
4

×
10

1
0.

09
8

×
10

1
0.

12
2

×
10

1
0.

13
6

×
10

1
0.

07
8

×
10

1
0.

05
8

×
10

1
0.

06
2

×
10

1

Fu
nc

tio
n

3

M
es

h
L

1
L

2
L

in
f

x
y

z
x

y
z

x
y

z

1
62

.5
3

×
10

1
24

.4
2

×
10

1
35

.9
7

×
10

1
32

.4
5

×
10

1
13

.2
1

×
10

1
16

.3
8

×
10

1
22

.5
2

×
10

1
9.

61
0

×
10

1
9.

48
8

×
10

1

2
33

.0
5

×
10

1
25

.4
7

×
10

1
43

.8
0

×
10

1
16

.1
3

×
10

1
12

.9
4

×
10

1
27

.7
5

×
10

1
9.

25
8

×
10

1
8.

80
4

×
10

1
20

.7
4

×
10

1

3
14

.3
0

×
10

1
11

.3
3

×
10

1
16

.9
8

×
10

1
8.

07
×

10
1

5.
27

×
10

1
9.

81
×

10
1

6.
12

4
×

10
1

2.
88

4
×

10
1

6.
89

3
×

10
1

4
9.

40
×

10
1

5.
56

×
10

1
15

.6
2

×
10

1
4.

71
×

10
1

2.
86

×
10

1
7.

28
×

10
1

2.
71

9
×

10
1

2.
08

1
×

10
1

3.
79

3
×

10
1

5
3.

65
×

10
1

3.
34

×
10

1
4.

56
×

10
1

1.
79

×
10

1
1.

52
×

10
1

2.
63

×
10

1
1.

25
×

10
1

0.
81

6
×

10
1

1.
86

3
×

10
1

Fu
nc

tio
n

4

M
es

h
L

1
L

2
L

in
f

x
y

z
x

y
z

x
y

z

1
44

.6
7

×
10

1
28

.1
5

×
10

1
30

.8
0

×
10

1
23

.2
0

×
10

1
13

.0
4

×
10

1
14

.5
0

×
10

1
16

.0
2

×
10

1
7.

70
×

10
1

9.
92

5
×

10
1

2
23

.9
0

×
10

1
28

.1
8

×
10

1
39

.1
7

×
10

1
11

.6
5

×
10

1
13

.4
1

×
10

1
22

.6
9

×
10

1
6.

67
×

10
1

7.
52

×
10

1
16

.6
82

×
10

1

3
13

.0
0

×
10

1
10

.4
9

×
10

1
15

.0
1

×
10

1
5.

76
×

10
1

5.
05

×
10

1
7.

95
×

10
1

4.
33

×
10

1
2.

85
×

10
1

5.
46

6
×

10
1

4
6.

82
×

10
1

5.
26

×
10

1
12

.6
7

×
10

1
3.

42
×

10
1

2.
56

×
10

1
5.

74
×

10
1

2.
01

×
10

1
1.

56
×

10
1

2.
90

2
×

10
1

5
2.

65
×

10
1

2.
88

×
10

1
3.

94
×

10
1

1.
28

×
10

1
1.

32
×

10
1

2.
07

×
10

1
0.

88
7

×
10

1
0.

75
1

×
10

1
1.

39
6

×
10

1

Ta
bl

e
C

.2
M

as
s

m
at

rix
:

er
ro

rs
pe

r
fie

ld
co

m
po

ne
nt

135

Prototyping and validation with synthetic test

Function
1

M
esh

O
L

1
O

L
2

O
L

i
n

f

x
y

z
x

y
z

x
y

z

1
—

—
—

—
—

—
—

—
—

2
0.015

×
10

1
−

0.006
×

10
1

−
0.025

×
10

1
0
.020

×
10

1
−

0
.004

×
10

1
−

0.018
×

10
1

0
.037

×
10

1
0.004

×
10

1
0
.001

×
10

1

3
0
.094

×
10

1
0.077

×
10

1
0.086

×
10

1
0
.090

×
10

1
0.078

×
10

1
0.089

×
10

1
0.084

×
10

1
0.085

×
10

1
0
.105

×
10

1

4
0
.087

×
10

1
0.097

×
10

1
0.088

×
10

1
0.099

×
10

1
0
.098

×
10

1
0.088

×
10

1
0.094

×
10

1
0.099

×
10

1
0.099

×
10

1

5
0.121

×
10

1
0
.099

×
10

1
0.100

×
10

1
0.113

×
10

1
0
.099

×
10

1
0
.100

×
10

1
0.099

×
10

1
0.103

×
10

1
0.100

×
10

1

Function
2

M
esh

O
L

1
O

L
2

O
L

i
n

f

x
y

z
x

y
z

x
y

z

1
—

—
—

—
—

—
—

—
—

2
0.015

×
10

1
−

0.006
×

10
1

−
0.025

×
10

1
0
.020

×
10

1
−

0
.004

×
10

1
−

0.018
×

10
1

0
.037

×
10

1
0.004

×
10

1
0
.001

×
10

1

3
0
.094

×
10

1
0.077

×
10

1
0.086

×
10

1
0
.090

×
10

1
0.078

×
10

1
0.089

×
10

1
0.086

×
10

1
0.085

×
10

1
0
.105

×
10

1

4
0
.087

×
10

1
0.097

×
10

1
0.088

×
10

1
0.099

×
10

1
0
.098

×
10

1
0.088

×
10

1
0.094

×
10

1
0.099

×
10

1
0.099

×
10

1

5
0.121

×
10

1
0
.099

×
10

1
0.100

×
10

1
0.113

×
10

1
0
.099

×
10

1
0
.100

×
10

1
0.099

×
10

1
0.103

×
10

1
0.100

×
10

1

Function
3

M
esh

O
L

1
O

L
2

O
L

i
n

f

x
y

z
x

y
z

x
y

z

1
—

—
—

—
—

—
—

—
—

2
0.045

×
10

1
−

0.003
×

10
1

−
0.014

×
10

1
0
.050

×
10

1
0.001

×
10

1
−

0
.038

×
10

1
0
.064

×
10

1
0.006

×
10

1
−

0.056
×

10
1

3
0
.120

×
10

1
0.116

×
10

1
0.136

×
10

1
0
.099

×
10

1
0.129

×
10

1
0.151

×
10

1
0.059

×
10

1
0.160

×
10

1
0
.158

×
10

1

4
0
.060

×
10

1
0.102

×
10

1
0.012

×
10

1
0.077

×
10

1
0
.088

×
10

1
0.042

×
10

1
0.117

×
10

1
0.047

×
10

1
0.086

×
10

1

5
0.136

×
10

1
0
.073

×
10

1
0.177

×
10

1
0.139

×
10

1
0
.091

×
10

1
0
.146

×
10

1
0.111

×
10

1
0.134

×
10

1
0.102

×
10

1

Function
4

M
esh

O
L

1
O

L
2

O
L

i
n

f

x
y

z
x

y
z

x
y

z

1
—

—
—

—
—

—
—

—
—

2
0.045

×
10

1
−

0.001
×

10
1

−
0.017

×
10

1
0
.049

×
10

1
−

0
.002

×
10

1
−

0.032
×

10
1

0
.063

×
10

1
0.001

×
10

1
−

0.037
×

10
1

3
0
.121

×
10

1
0.142

×
10

1
0.138

×
10

1
0
.101

×
10

1
0.140

×
10

1
0.151

×
10

1
0.062

×
10

1
0.139

×
10

1
0
.160

×
10

1

4
0
.059

×
10

1
0.099

×
10

1
0.024

×
10

1
0.075

×
10

1
0
.097

×
10

1
0.046

×
10

1
0.110

×
10

1
0.086

×
10

1
0.091

×
10

1

5
0.136

×
10

1
0
.086

×
10

1
0.168

×
10

1
0.141

×
10

1
0
.095

×
10

1
0
.146

×
10

1
0.118

×
10

1
0.106

×
10

1
0.105

×
10

1

Table
C

.3
M

ass
m

atrix:
convergence

orders
per

field
com

ponent

136

C.1 Prototype for 3D CSEM modelling

Fu
nc

tio
n

1

M
es

h
L

1
L

2
L

in
f

x
y

z
x

y
z

x
y

z

1
15

2.
5

×
10

1
13

5.
3

×
10

1
12

3.
5

×
10

1
72

.3
1

×
10

1
64

.8
2

×
10

1
56

.2
2

×
10

1
47

.0
5

×
10

1
44

.3
8

×
10

1
30

.2
5

×
10

1

2
81

.2
×

10
1

78
.2

6
×

10
1

83
.7

1
×

10
1

38
.7

1
×

10
1

37
.4

9
×

10
1

31
.4

6
×

10
1

27
.8

1
×

10
1

28
.4

3
×

10
1

20
.2

2
×

10
1

3
50

.4
3

×
10

1
32

.7
5

×
10

1
57

.1
9

×
10

1
19

.7
6

×
10

1
16

.2
8

×
10

1
18

.7
5

×
10

1
18

.0
6

×
10

1
16

.5
5

×
10

1
12

.1
1

×
10

1

4
31

.3
4

14
.7

3
28

.4
6

×
10

1
10

.1
7

×
10

1
9.

43
×

10
1

10
.2

9
×

10
1

9.
85

×
10

1
9.

24
×

10
1

7.
72

×
10

1

5
15

.4
7

×
10

1
6.

47
×

10
1

18
.4

2
×

10
1

5.
90

×
10

1
5.

83
×

10
1

6.
40

×
10

1
5.

78
×

10
1

5.
51

×
10

1
4.

83
×

10
1

Ta
bl

e
C

.4
St

iff
ne

ss
m

at
rix

:
er

ro
rs

pe
r

fie
ld

an
al

ys
is

Fu
nc

tio
n

1

M
es

h
O

L
1

O
L

2
O

L
i
n

f

x
y

z
x

y
z

x
y

z

1
—

—
—

—
—

—
—

—
—

2
0.

04
5

×
10

1
0.

03
9

×
10

1
0.

02
8

×
10

1
0.

04
5

×
10

1
0.

03
9

×
10

1
0.

04
1

×
10

1
0.

03
7

×
10

1
0.

03
2

×
10

1
0.

02
9

×
10

1

3
0.

06
8

×
10

1
0.

12
5

×
10

1
0.

05
4

×
10

1
0.

09
6

×
10

1
0.

12
0

×
10

1
0.

07
4

×
10

1
0.

06
2

×
10

1
0.

07
8

×
10

1
0.

07
4

×
10

1

4
0.

06
8

×
10

1
0.

11
5

×
10

1
0.

10
0

×
10

1
0.

09
5

×
10

1
0.

07
8

×
10

1
0.

08
7

×
10

1
0.

08
8

×
10

1
0.

08
4

×
10

1
0.

06
4

×
10

1

5
0.

10
1

×
10

1
0.

11
8

×
10

1
0.

06
2

×
10

1
0.

07
6

×
10

1
0.

06
9

×
10

1
0.

06
8

×
10

1
0.

07
6

×
10

1
0.

07
4

×
10

1
0.

06
7

×
10

1

Ta
bl

e
C

.5
St

iff
ne

ss
m

at
rix

:
co

nv
er

ge
nc

e
or

de
rs

pe
r

fie
ld

co
m

po
ne

nt

137

Prototyping and validation with synthetic test

x
0 1 2 3 4 5 6

F
(x

)

220

240

260

280

300

320

340

360

380

400

Analytic
Mesh 1
Mesh 2
Mesh 3
Mesh 4
Mesh 5

(a) x-component

x

0 1 2 3 4 5 6

F
(y

)

10
1

10
2

10
3

(b) y-component

x

0 1 2 3 4 5 6

F
(z

)

10
1

10
2

10
3

(c) z-component

Fig. C.4 Stiffness matrix: trace fields for test equation C.7.

138

C.1 Prototype for 3D CSEM modelling

1/h
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L
o
g

1
0

(e
rr

o
r)

10 0

10 1

10 2

10 3

L1
L2
Linf

(a) x-component

1/h
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L
o
g

1
0

(e
rr

o
r)

10 1

10 2

10 3

(b) y-component

1/h
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L
o
g

1
0

(e
rr

o
r)

10 1

10 2

10 3

(c) z-component

Fig. C.5 Stiffness matrix: convergence order for test equation C.7.

139

Appendix D

PETGEM documentation

140

PETGEM Documentation
Release 1.0

Octavio Castillo Reyes

September 14, 2017

CONTENTS

1 What is PETGEM? 1

2 Features 3
2.1 Software stack . 3
2.2 Programming language . 4
2.3 Target architecture . 4

3 CSEM forward modelling & Edge elements formulation 7
3.1 CSEM problem . 7
3.2 Edge finite element formulation . 8

4 Installation 11
4.1 Platforms . 11
4.2 Requirements . 11
4.3 Install PETGEM . 11
4.4 Install documentation . 12

5 Tutorial 13
5.1 Basic notions . 13
5.2 Pre-processing . 13
5.3 Running a simulation . 14
5.4 Parameters file template . 14
5.5 Visualization of results . 16

6 Manual 17
6.1 How generate documentation . 18
6.2 Coding style . 18
6.3 PETGEM design . 19

6.3.1 Component diagram . 19
6.3.2 Class diagram . 19
6.3.3 Sequence diagram . 19
6.3.4 PETGEM directory structure . 21

6.4 Running a simulation . 21
6.5 Parameters file description . 22
6.6 Mesh formats . 23
6.7 Available solvers . 24
6.8 Simulations in parallel . 24
6.9 Visualization of results . 25
6.10 Utilities . 25
6.11 Examples . 26

6.11.1 Problem statement: Isotropic model . 26

i

6.11.2 Meshing . 26
6.11.3 PETGEM preprocessing . 27
6.11.4 Parameters file for PETGEM . 27
6.11.5 Running PETGEM . 29
6.11.6 PETGEM postprocessing . 29

6.12 Code documentation . 29
6.12.1 Setup & install scripts . 29
6.12.2 kernel . 33
6.12.3 Basis scripts . 33
6.12.4 Mesh scripts . 36
6.12.5 EFEM scripts . 37
6.12.6 Solver . 40
6.12.7 Parallel . 42
6.12.8 Postprocessing . 44
6.12.9 Monitoring . 46
6.12.10 Examples . 46

7 Publications 47

8 Support 51

9 Download 53

10 Contact 55

11 Indices and tables 57

Python Module Index 59

Index 61

ii

CHAPTER

ONE

WHAT IS PETGEM?

Electromagnetic methods (EM) are an established tool in geophysics, with application in many areas such as hydro-
carbon and mineral exploration, reservoir monitoring, CO2 storage characterization, geothermal reservoir imaging and
many others. In particular, the marine Controlled-Source ElectroMagnetic method (CSEM) has become an important
technique for reducing ambiguities in data interpretation for hydrocarbon exploration. In order to be able to predict
the EM signature of a given geological structure, modelling tools provide us with synthetic results which we can then
compare to real data. In particular, if the geology is structurally complex, one might need to use methods able to cope
with such complexity in a natural way by means of, e.g., an unstructured mesh representing its geometry. Among the
modelling methods for EM based upon 3D unstructured meshes, the Nédélec Finite Elements (FE), a type of Edge
Elements, offer a good trade-off between accuracy and number of degrees of freedom, i.e. size of the problem.

In the multi-core and many-core era, parallelization is a crucial issue. Nédélec FE offer good scalability potential.
Its low DOF number after primary/secondary field decomposition make them potentially fast, which is crucial in the
future goal of solving inverse problems which might involve over 100,000 realizations. However, the state of the art
shows a relative scarcity of robust edge-based codes to simulate these problems.

On top of that, Parallel Edge-based Tool for Geophysical Electromagnetic Modelling (PETGEM) is a Python tool
for the scalable solution of EM on tetrahedral meshes, as these are the easiest to scale-up to very large domains or
arbitrary shape. It supports distributed-memory paralelism through mpi4py and petsc4py packages.

As a result, PETGEM tool allow users the simulation of electromagnetic fields in real CSEM surveys with high
accuracy, reliability and efficiency.

PETGEM code is developed as open-source GPLv3 at Computer Applications in Science & Engineering (CASE)
of the Barcelona Supercomputing Center (BSC). Requests and contributions are welcome.

1

PETGEM Documentation, Release 1.0

2 Chapter 1. What is PETGEM?

CHAPTER

TWO

FEATURES

PETGEM use a code structure for the Nédélec FE algorithm that emphasizes good parallel scalability, which is crucial
in the multi-core era. Furthermore, it’s modularity should simplify the process of reaching the best possible perfor-
mance in terms of percentage of the peak amount of floating point operations provided by the architecture.

Software stack

An outline of the primary groups of modules in PETGEM design is given in Figure 3.1.

Fig. 2.1: Figure 3.1. Upper view of PETGEM software stack.

A more detailed explanation is the following:

• Modular and extensible EFEM kernel – The kernel is extensible in any direction. Therefore, the possibility of
adding new features such as new boundary conditions, numerical algorithms, analysis modules, among others.

• Independent of problem formulation, numerical solution, and data storage – The kernel provides the independent
abstractions for modeling, numerical methods, data storage and analysis.

• Parallel processing support – Based on an shared-memory parallelism (Multiprocessing package), distributed-
memory parallelism (mpi4py and petsc4py) and static load balancing.

• Confidence and performance monitoring – Based on an intensive error checking module and an automatic pro-
filing module.

• Efficient solvers & preconditioners – Direct as well as iterative solvers and preconditioners are supported through
petsc4py package.

Direct as well as iterative solvers and preconditioners are supported through an interface to third party libraries (PETSc,
MUMPs, PARDISO).

3

PETGEM Documentation, Release 1.0

• Interface to mesh generators – Not dependent on a specific mesh generator. Because most of the FEM codes
were developed for node-based formulations, it is necessary to develop a module to compute edge-based data
structures. As a result, different mesh formats are supported (Gambit, Netgen, Gmsh).

• Edge FEM library – Edge-based discretisations, vector basis functions, their geometry description, and general-
ized integration rules provides a generic support for implementing edge-based solution algorithms.

• Linear systems library – Support to Compressed Row Storage (CSR) format for sparse matrices and their easy
and efficient parallel assembly on shared/distributed-memory platforms.

• CSEM module – Ad-hoc design to meet specific requirements to simulate 3D CSEM surveys, namely, conduc-
tivity model, physical parameters, transmitter and receiver lists.

• Tests suite – Sample output for many examples are included. Furthermore, a set of matlab functions to data
analysis are included.

• Post-processing – Export to binary files, HDF5 and VTK format are supported, allowing the analysis not just in
different visualization tools but also on different platforms. It also gives timing values in order to evaluate the
performance.

Programming language

PETGEM is based on Python language programming because:

• It is open source, cross-platform and functional on a wide number of platforms, including HPC environments.

• It uses a high level and very expressive language.

• It is based on a sophisticated array manipulation in a Fortran-like manner.

• It uses a good body of bindings to common tools needed in scientific computing: plotting, numerical libraries,
debugging and testing.

The code structure is modular, simple and flexible which allows exploiting not just our own modules but also third
party libraries. Therefore, the software stack includes interfaces to external suites of data structures and libraries that
contain most of the necessary building blocks needed for programming large scale numerical applications, i.e. sparse
matrices, vectors, iterative and direct solvers or domain decomposition. As a result, the code is compact and eliminates
the need to write such libraries and thus speeds up development time by orders of magnitude 1, 2, 3 and 5.

In order to meet the high computational cost of the modeling, two parallel approaches are supported: shared-memory
parallelism (Python Multiprocessing package) and distributed-memory parallelism (Petsc4py and mpi4py packages)
1, 2, 3 and 4.

Target architecture

The HPC goal of the PETGEM involves using cutting-edge architectures. To that goal, the code is implemented in
current state-of-the-art platforms such as Intel Haswell and Intel Xeon Phi processors, which offer high performance,

1 Bangerth, W., Burstedde, C., Heister, T., and Kronbichler, M. (2011). Algorithms and data structures for massively parallel generic adaptive
finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.

2 Heister, T., Kronbichler, M., and Bangerth, W. (2010). Massively parallel finite element programming. Recent Advances in the Message
Passing Interface, pages 122–131.

3 Key, K. and Ovall, J. (2011). A parallel goal-oriented adaptive finite element method for 2.5-d electromagnetic modelling. Geophysical Journal
International, 186(1):137– 154.

5 Osseyran, A. and Giles, M. (2015). Industrial Applications of High-Performance Computing: Best Global Practices. Chapman & Hall/CRC
Computational Science. CRC Press, first edition.

4 Logg, A. (2007). Automating the finite element method. Archives of Computational Methods in Engineering, 14(2):93–138.

4 Chapter 2. Features

PETGEM Documentation, Release 1.0

flexibility and power efficiency. Nevertheless, PETGEM support older architectures such as SandyBridge, for the sake
of usability and to be able to compare performance.

2.3. Target architecture 5

PETGEM Documentation, Release 1.0

6 Chapter 2. Features

CHAPTER

THREE

CSEM FORWARD MODELLING & EDGE ELEMENTS FORMULATION

The last decade has been a period of rapid growth for electromagnetic methods (EM) in geophysics, mostly because
of their industrial adoption. In particular, the marine controlled-source electromagnetic (CSEM) method has become
an important technique for reducing ambiguities in data interpretation in hydrocarbon exploration. In order to be
able to predict the EM signature of a given geological structure, modelling tools provide us with synthetic results
which we can then compare to real data. In particular, if the geology is structurally complex, one might need to use
methods able to cope with such complexity in a natural way by means of, e.g., an unstructured mesh representing
its geometry. Among the modelling methods for EM based upon 3D unstructured meshes, the Nédélec Edge Finite
Element Method (EFEM) offers a good trade-off between accuracy and number of degrees of freedom, i.e. size of the
problem. Furthermore, its divergence-free basis is very well suited for solving Maxwell’s equation. On top of that,
we choose to support tetrahedral meshes, as these are the easiest to use for very large domains or complex geometries.
We present the numerical formulation and results of 3D CSEM forward modelling (FM) using tetrahedral EFEM on
unstructured meshes.

CSEM problem

3D CSEM FM is typically solved in frequency domain, which involves the numerical solution of Maxwell’s equations
in stationary regimes for heterogeneous anisotropic electrically conductive domains. Furthermore, CSEM surveys
generally work with low frequency electromagnetic fields (∼ 1 Hz) because the electric conductivity of the geological
structures is much larger than their dielectric permittivity. As a consequence, in an unbound domain Γ, the electric
field can be obtained by solving Maxwell’s equations in their diffusive form:

∇×E = 𝑖𝜔𝜇0H

∇×H = J𝑠 + �̃�E
(3.1)

where the harmonic time dependence 𝑒−𝑖𝜔𝑡 is omitted, with 𝜔 is the angular frequency, 𝜇0 the free space magnetic
permeability, J𝑠 the distribution of source current, �̃�E the induced current in the conductive Earth and �̃� the electrical
conductivity which is assumed isotropic for simplicity.

In numerical approximations of EM fields there are two main drawbacks. The first one is the inevitable spatial singu-
larity at the source. The second is the grid refinement requirements in order to capture the rapid change of the primary
field 1. In order to mitigate these issues, PETGEM used a secondary field approach where the total electric field E is
obtained as:

E = E𝑝 + E𝑠

�̃� = 𝜎𝑠 + ∆�̃�
(3.2)

where subscripts 𝑝 and 𝑠 represent a primary field and secondary field respectively. For a general layered Earth model,
E𝑝 can be computed semi-analytically by using Hankel transform filters. Based on this decomposition and following

1 Cai, H., Xiong, B., Han, M. and Zhdanov, M. (2014). 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based
finite element method. Computers & Geosciences, 73, 164–176.

7

PETGEM Documentation, Release 1.0

the work by 6 the equation system to solve E𝑠 is:

∇×∇×E𝑠 + 𝑖𝜔𝜇�̃�E𝑠 = −𝑖𝜔𝜇∆𝜎E𝑝 (3.3)

where the electrical conductivity 𝜎 is a function of position that is allowed to vary in 3D, whereas the vacuum perme-
ability 𝜇 is set to the free space value 𝜇0. Homogeneous Dirichlet boundary conditions, E𝑠 = 0 on 𝜕Γ, are applied.
The range of applicability of this conditions can be determined based on the skin depth of the electric field 7.

Edge finite element formulation

For the computation of E𝑠, PETGEM implemented the Nédélec EFEM which uses vector basis functions defined on
the edges of the corresponding elements. Its basis functions are divergence-free but not curl-free 4. Thus, EFEM
naturally ensures tangential continuity and allows normal discontinuity of E𝑠 at material interfaces. PETGEM used
unstructured tetrahedral meshes because of their ability to represent complex geological structures such as bathymetry
or reservoirs as well as the local refinement capability in order to improve the solution accuracy. Figure 4.1 shows the
tetrahedral Nédélec elements (lowest order) together with their node and edge indexing.

Fig. 3.1: Figure 4.1. Tetrahedral Nédélec edge element with node/edge indexing.

In PETGEM workflow, the tangential component of the secondary electric field is assigned to the edges in the mesh.
Therefore, all components of the electric field at a point x located inside a tetrahedral element 𝑒 can be obtained as
follows:

E𝑒(x) =

6∑︁

𝑖=1

N𝑒
𝑖 (x)𝐸𝑒

𝑖 (3.4)

where N𝑒
𝑖 are the vector basis functions associated to each edge 𝑖 and 𝐸𝑒

𝑖 their degrees of freedom. Considering the
node and edge indexing in Figure 4.1, the vector basis functions can be expressed as follows:

N𝑒
𝑖 = (𝜆𝑒

𝑖1∇𝜆𝑒
𝑖2 − 𝜆𝑒

𝑖2∇𝜆𝑒
𝑖1)ℓ𝑒𝑖 (3.5)

where subscripts 𝑖1 and 𝑖2 are the first and second nodes linked to the 𝑖-th edge, 𝜆𝑒
𝑖 are the linear nodal basis functions,

and ℓ𝑒𝑖 is the length of the 𝑖-th edge of the element 𝑒.

By substituting equation (3.4) into (3.3), and using Galerkin’s approach, the weak form of the original differential
equation becomes:

𝑄𝑖 =

∫︁

Ω

N𝑖 · [∇×∇×E𝑠 − 𝑖𝜔𝜇�̃�E𝑠 + 𝑖𝜔𝜇∆�̃�E𝑝]𝑑𝑉 (3.6)

6 Newman, G.A. and Alumbaugh, D.L. (2002). Three-dimensional induction logging problems, Part 2: A finite difference solution. Geophysics,
67(2), 484–491.

7 Puzyrev, V., Koldan, J., de la Puente, J., Houzeaux, G., Vázquez, M. and Cela, J.M. (2013). A parallel finite-element method for three-
dimensional controlled-source electromagnetic forward modelling. Geophysical Journal International, ggt027.

4 Jin, J. (2002). The Finite Element Method in Electromagnetics. Wiley, New York, second edn.

8 Chapter 3. CSEM forward modelling & Edge elements formulation

PETGEM Documentation, Release 1.0

The compact discretized form of (3.6) is obtained after applying the Green’s theorem:

[𝐾𝑒
𝑗𝑘 + 𝑖𝜔�̃�𝑒𝑀

𝑒
𝑗𝑘] · {𝐸𝑠𝑘} = −𝑖𝜔𝜇∆�̃�𝑒𝑅

𝑒
𝑘 (3.7)

where 𝐾𝑒 and 𝑀𝑒 are the elemental stiffness and mass matrices which can be calculated analytically or numerically
4, and 𝑅𝑒

𝑘 is the right hand side which requires numerical integration.

3.2. Edge finite element formulation 9

PETGEM Documentation, Release 1.0

10 Chapter 3. CSEM forward modelling & Edge elements formulation

CHAPTER

FOUR

INSTALLATION

This section describe the platforms supported by PETGEM and the requirements to install it.

Platforms

PETGEM is known to run on various flavors of Linux clusters.

Requirements

Requirements packages for using PETGEM:

• Python3.

• Scipy for numerical operations.

• Numpy for arrays manipulation.

• H5py for HDF5 files manipulation.

• Python Multiprocessing package for parallel computations on shared-memory platforms.

• Sharedmem Python package for arrays manipulation on shared memory platforms.

• Petsc4py and mpi4py for parallel computations on distributed-memory platforms. It allows the use of parallel
direct/iterative solvers from PETSc.

• Paraview for visualization of PETGEM output files.

• Sphinx and LaTeX to (re)generate documentation.

On Linux, consult the package manager of your preference. PETGEM can be used without any installation by running
the kernel from the top-level directory of the distribution.

Install PETGEM

Please, look at config_site_template.py and follow the instructions therein.

There are 3 ways to install PETGEM:

• In-place use:

$ python3 setup.py build_ext --inplace

11

PETGEM Documentation, Release 1.0

• For installation (system-wide):

$ python3 setup.py build

or

$ python3 setup.py install

This option may require root privileges.

• Local installation:

$ python3 setup.py install --root=<install_prefix>

This option requires write privileges to --root=<install_prefix>. Finally, the command to clean a
PETGEM installation is:

$ python3 setup.py clean

Install documentation

PETGEM is documented using Sphinx and LaTeX. The documentation source are in the doc directory.

The following steps summarize how to generate PETGEM documentation.

1. Install Sphinx and LaTeX.

2. If is necessary, edit the rst files in doc/ directory using your favorite text editor. Nothing fancy is needed since
ReST format is really simple.

3. (Re) generate the PETGEM documentation as follows:

• By using setup.py script:

$ python3 setup.py output_format

since PETGEM actually support html and pdf formats, valid options for output_format = [pdfdocs,
htmldocs].

• By using Sphinx commands directly:

$ cd doc
$ make output_format

where output_format = [html, latexpdf].

12 Chapter 4. Installation

CHAPTER

FIVE

TUTORIAL

The PETGEM tutorial contains a collection of programs which demonstrate various aspects of the PETGEM work-
flow. Each such example has the following structure:

1. Introduction. What the program does, including the mathematical model.

2. The commented program. An extensively documented of the source code.

3. Results. The output of the program, with comments and interpretation.

The programs are in the examples/ directory of local PETGEM folder. This tutorial focuses on the distributed-memory
PETGEM version. Please refer to the Download section for details about the shared-memory version.

Basic notions

The start point of using PETGEM to solve a CSEM forward modelling is through its definition in a param-
eters file description, also referred to as input file. In such file, the modelling is described using several
keywords that allow one to define physical parameters, mesh format, solvers, parallel specifications, and
so on. See Parameters file description in Manual section for a full explanation of those keywords.

The syntax of the input file is very simple yet powerful. For a general CSEM forward modelling, the
PETGEM work-flow can be summarize as follows:

1. The kernel (kernel.py) reads an input file.

2. Following the contents of the input file, a problem instance is created.

3. The problem sets up its domain, sub-domains, source, solver. This stage include the data structures
computation related with the edges in the mesh.

4. Parallel assemblig of 𝐴𝑥 = 𝑏. See CSEM problem and Edge finite element formulation sections for
a detail mathematical background of this equation system.

5. The solution is obtained in parallel by calling ksp() PETSc object.

6. Interpolation & post-processing parallel stage.

7. Finally the solution can be stored by calling save_solution() function. Current version support
binary files, HDF5 and VTK format.

Pre-processing

The petgem_preprocessing.m Matlab script provides functions to change input file formats into a represen-
tation that is more suitable for PETGEM. It transforms the mesh files into a PETSc binary format, which allow

13

PETGEM Documentation, Release 1.0

parallel computations in a simple way. This step is hence mandatory for any modelling. This script is included in
utils/Preprocessing/petgem_preprocessing.m of the PETGEM source tree.

From a Matlab terminal, petgem_preprocessing.m is invoked has follows:

$ petgem_preprocessing('mesh_file', 'mesh_format', sigma_domain_per_subdomain, 'receivers_file')

See Utilities section for more details about petgem_preprocessing.m.

Running a simulation

This section introduces the basics of running PETGEM on the command line. The $ represents the command prompt
of the terminal. The following commands should be run in the top-level directory of the PETGEM source tree.

PETGEM kernel is invoked as follows:

$ mpirun -n <# of MPI processes> python3 kernel.py -options_file path/petsc.opts path/input_file.py

where petsc.opts is the PETSc options file and input_file.py is the PETGEM parameters file, which describes the
modelling to be solved in terms PETGEM can understand.

Parameters file template

By definition, any model should include: physical parameters, a mesh file, source and receivers files, computational
issues (solver type, domain decomposition) and an output file format.

In sake of simplicity and in order to avoid a specific parser, the PETGEM parameters file is defined as a Pyhton
dictionary. As consequence, the dictionary name and his key names MUST NOT BE changed.

A template of this file is included in examples/params_file_template.py of the PETGEM source tree. A
glance of this file is the following:

modelling = {

----------- General -----------

----- Pyshical parameters -----

Source
Source frequency. Type: float
Optional: NO
'freq': 1.0,

Source position(x, y, z). Type: float
Optional: NO
'src_pos': [1750.0, 1750.0, -975.0],

Source orientation. Type: int
1 = X-directed source
2 = Y-directed source
3 = Z-directed source
Optional: NO
'src_direc': 1,

14 Chapter 5. Tutorial

PETGEM Documentation, Release 1.0

Source current. Type: float
Optional: NO
'src_current': 1.0,

Source length. Type: float
Optional: NO
'src_length': 1.0,

Conductivity model. Type: str
Optional: NO
'sigma_file': 'examples/WHAM/elemsSigma.dat',

Background conductivity. Type: float
Optional: NO
'sigma_background': 3.33,

------- Mesh information ------

Mesh files

Nodes spatial coordinates. Type: str
Optional: NO
'nodes_file': 'examples/WHAM/nodes.dat',

Elements-nodes connectivity. Type: str
Optional: NO
'elemsN_file': 'examples/WHAM/elemsN.dat',

Elements-edges connectivity. Type: str
Optional: NO
'elemsE_file': 'examples/WHAM/elemsE.dat',

Edges-nodes connectivity. Type: str
Optional: NO
'edgesN_file': 'examples/WHAM/edgesN.dat',

nnz for matrix allocation (PETSc)
'nnz_file': 'examples/WHAM/nnz.dat',

Boundary-edges. Type: str
Optional: NO
'bEdges_file': 'examples/WHAM/bEdges.dat',

------------ Solver -----------

Solver options must be set in
petsc_solver.opts file

------------ Output -----------

Name of the file that contains the receivers position. Type: str
Optional: NO
'receivers_file': 'examples/WHAM/receivers.dat',

}

5.4. Parameters file template 15

PETGEM Documentation, Release 1.0

In section Parameters file description is included a deep explanation about this file is included.

Visualization of results

Once a solution of CSEM forward modelling has been obtained, it should be post-processed by using a visualization
program. PETGEM does not do the visualization by itself, but it generates output files (binary format) with the final
results which can be exported to other format by using the Post-processing PETGEM scripts. It also gives timing
values in order to evaluate the performance. It requires task Paraview.

16 Chapter 5. Tutorial

CHAPTER

SIX

MANUAL

Table of contents

• How generate documentation
• Coding style
• PETGEM design

– Component diagram
– Class diagram
– Sequence diagram
– PETGEM directory structure

• Running a simulation
• Parameters file description
• Mesh formats
• Available solvers
• Simulations in parallel
• Visualization of results
• Utilities
• Examples

– Problem statement: Isotropic model
– Meshing
– PETGEM preprocessing
– Parameters file for PETGEM
– Running PETGEM
– PETGEM postprocessing

• Code documentation
– Setup & install scripts
– kernel
– Basis scripts
– Mesh scripts
– EFEM scripts
– Solver
– Parallel
– Postprocessing
– Monitoring
– Examples

This manual provides reference documentation to PETGEM from a user’s and developer’s perspective.

17

PETGEM Documentation, Release 1.0

How generate documentation

PETGEM is documented using Sphinx and LaTeX. The documentation source are in the doc directory.

The following steps summarize how generate PETGEM documentation.

1. Install Sphinx and LaTeX.

2. If is necessary, edit the rst files in doc/ directory using your favorite text editor. Nothing fancy is needed since
ReST format is really simple.

3. (Re) generate the PETGEM documentation as follows:

• By using setup.py script:

$ python3 setup.py output_format

since PETGEM actually support html and pdf formats, valid options for output_format = [pdfdocs,
htmldocs].

• By using Sphinx commands directly:

$ cd doc
$ make output_format

where output_format = [html, latexpdf].

Coding style

PETGEM’s coding style is based on PEP-0008 guidelines. Main guidelines are the following:

• 79 characteres per line.

• 4 spaces per indentation level.

• Variables are lower case meanwhile constants are upper case.

• Comments convention for functions is as follows:

def function(arg1, arg2):
''' This is a function.

:param int arg1: array of dimensions ...
:param str arg2: string that ...

'''

• The use of inline comments is sparingly.

• Use of lowercase to name functions. Furthermore, functions names have following form:
<action>_<subject>(), e.g. compute_matrix().

• Use of whole words instead abbreviations, examples:

– Yes: solve_system(), compute_edges(), compute_matrix().

– No: solve(), compedges(), compmatrix().

18 Chapter 6. Manual

PETGEM Documentation, Release 1.0

PETGEM design

PETGEM use a code structure for the Nédelec FE algorithm that emphasizes good parallel scalability, which is crucial
in the multi-core era. Furthermore, it’s modularity should simplify the process of reaching the best possible perfor-
mance in terms of percentage of the peak amount of floating point operations provided by the architecture. The code
structure is modular, simple and flexible which allows exploiting not just our own modules but also third party li-
braries. Therefore, the software stack includes interfaces to external suites of data structures and libraries that contain
most of the necessary building blocks needed for programming large scale numerical applications, i.e. sparse matrices,
vectors, iterative and direct solvers or domain decomposition. As a result, the code is compact and flexible whose main
UML diagrams are described as follows.

Component diagram

Main components of PETGEM are described in Figure 7.1. Pre-processing, processing and post-processing phases
are included in Figure 7.1.

Fig. 6.1: Figure 7.1. PETGEM: class diagram.

Class diagram

Main classes for PETGEM are described in Figure 7.2. Among all, the kernel class is the most important since it
manage and control the others classes, as consequence, kernel class is the start point for any modelling.

Sequence diagram

Figure 7.3 describe the sequence for a standard CSEM forward modelling.

6.3. PETGEM design 19

PETGEM Documentation, Release 1.0

Fig. 6.2: PETGEM: class diagram.

Fig. 6.3: PETGEM: sequence diagram.

20 Chapter 6. Manual

PETGEM Documentation, Release 1.0

PETGEM directory structure

This subsection is dedicated to list and describe the PETGEM directory structure.

Table 6.1: Top directory structure

Name Description
doc/ Source files for PETGEM documentation
examples/ CSEM FM examples directory
petgem/ Source code
tests/ PETGEM tests directory
utils/ Set of Python/Matlab scripts for pre-processing and post-processing
AUTHORS Authors file
builder.py Build helper for PETGEM setup script. The original version of this script was adapted from NiPy

project
con-
fig_site.py

PETGEM configuration file

INSTALL Installation and configuration instructions
kernel.py Heart of the code. This file contains the entire work-flow for a CSEM FM
LICENSE License file
Makefile Makefile with main PETGEM setup commands
MANI-
FEST.in

File with exact list of files to include in PETGEM distribution

README Readme file
setup.py Main PETGEM setup script, it is based on Python setup-module
VERSION File with PETGEM version

The PETGEM source code is petgem/, which has the following contents:

Table 6.2: petgem/ directory structure

Name Description
base/ Common classes and functions for init process.
decomposi-
tion/

Modules for domain decomposition (required for parallel execution of PETGEM)

efem/ General modules and classes for describing a CSEM FM by using EFEM of lowest order in
tetrahedral meshes

mesh/ Interface to import mesh files
monitoring/ Modules for PETGEM performance monitoring
parallel/ Modules for supporting parallel assembling and solution of CSEM FM
postprocess-
ing/

Modules for postprocessing stage

solver/ Interface to various internal/external solvers

Running a simulation

The following command should be run in the top-level directory of the PETGEM source tree. PETGEM kernel is
invoked as follows:

$ mpirun -n <# of MPI processes> python3 kernel.py -options_file path/petsc.opts path/input_file.py

where petsc.opts is the PETSc options file and input_file.py is the PETGEM parameters file, whose main structure is
explained in the following section.

6.4. Running a simulation 21

PETGEM Documentation, Release 1.0

Parameters file description

By definition, any model should include: physical parameters, a mesh file, source and receivers files, computational
issues (solver type, solver tolerance, preconditioner) and an output file format.

In sake of simplicity and in order to avoid a specific parser, the PETGEM parameters file is defined as a Pyhton
dictionary. As consequence, the dictionary name and his key names MUST NOT BE changed. The content of this file
is the following:

modelling = {

----------- General -----------

----- Pyshical parameters -----

Source
Source frequency. Type: float
Optional: NO
'freq': 1.0,

Source position(x, y, z). Type: float
Optional: NO
'src_pos': [1750.0, 1750.0, -975.0],

Source orientation. Type: int
1 = X-directed source
2 = Y-directed source
3 = Z-directed source
Optional: NO
'src_direc': 1,

Source current. Type: float
Optional: NO
'src_current': 1.0,

Source length. Type: float
Optional: NO
'src_length': 1.0,

Conductivity model. Type: str
Optional: NO
'sigma_file': 'examples/WHAM/elemsSigma.dat',

Background conductivity. Type: float
Optional: NO
'sigma_background': 3.33,

------- Mesh information ------

Mesh files

Nodes spatial coordinates. Type: str
Optional: NO
'nodes_file': 'examples/WHAM/nodes.dat',

22 Chapter 6. Manual

PETGEM Documentation, Release 1.0

Elements-nodes connectivity. Type: str
Optional: NO
'elemsN_file': 'examples/WHAM/elemsN.dat',

Elements-edges connectivity. Type: str
Optional: NO
'elemsE_file': 'examples/WHAM/elemsE.dat',

Edges-nodes connectivity. Type: str
Optional: NO
'edgesN_file': 'examples/WHAM/edgesN.dat',

nnz for matrix allocation (PETSc)
'nnz_file': 'examples/WHAM/nnz.dat',

Boundary-edges. Type: str
Optional: NO
'bEdges_file': 'examples/WHAM/bEdges.dat',

------------ Solver -----------

Solver options must be set in
examples/WHAM/petsc_solver.opts

------------ Output -----------

Name of the file that contains the receivers position. Type: str
Optional: NO
'receivers_file': 'examples/WHAM/receivers.dat',

}

The PETGEM parameters file is divided into 4 sections, namely, physical parameters (frequency, source position,
source current, source length, conductivity model, background conductivity), mesh information (file path of nodal
spatial coordinates, nodal element connectivity, edge element connectivity, edges nodes connectivity, and sparsity
structure for PETSc matrix allocation), solver parameters (solver type, tolerance, maximum number of iterations),
results information (receivers position file path).

Mesh formats

PETGEM support following mesh formats:

• STL format from NETGEN.

• STL format from Gambit.

• Msh format from Gmsh.

• Matlab format: matrix of nodal coordinates and element connectivity.

• Files in Alya format (dom.dat and geo.dat).

Aforementioned formats must be pre-processed using the petgem_preprocessing.m Matlab script. This script
is included in utils/Preprocessing/petgem_preprocessing.m of the PETGEM source tree. From a
Matlab terminal, petgem_preprocessing.m is invoked has follows:

6.6. Mesh formats 23

PETGEM Documentation, Release 1.0

$ petgem_preprocessing('mesh_file', 'mesh_format', sigma_domain_per_subdomain, 'receivers_file')

See Utilities section for more details about petgem_preprocessing.m.

Available solvers

This section describes solvers available in PETGEM from user’s perspective. Direct as well as iterative solvers and
preconditioners are supported through an interface to third party libraries (PETSc, MUMPs).

PETGEM uses petsc4py package in order to support the Krylov Subspace Package (KSP) from PETSc. The object
KSP provides an easy-to-use interface to the combination of a parallel Krylov iterative method and a preconditioner
(PC) or a sequential direct solver. As result, PETGEM users can set various solver options and preconditioner options
at runtime via the PETSc options database.

Simulations in parallel

In FEM or EFEM simulations, the need for efficient algorithms for assembling the matrices may be crucial, especially
when the DOF is considerably large. This is the case for real scenarios of 3D CSEM forward modelling because
the required accuracy. In such situation, assembly process remains a critical portion of the code optimization since
solution of linear systems which asymptotically dominates in large-scale computing, could be done with linear solvers
such as PETSc, MUMPs, PARDISO). In fact, in PETGEM V1.0, the system assembly takes around $40%$ of the total
time.

The classical assembly in FEM or EFEM programming is based on a loop over the elements. Different techniques
and algorithms have been proposed and nowadays is possible performing these computations at the same time, i.e., to
compute them in parallel. However, parallel programming is not a trivial task in most programming languages, and
demands a strong theoretical knowledge about the hardware architecture. Fortunately, Python presents user friendly
solutions for parallel computations, namely, mpi4py. The mpi4py package is an open source software that provides
bindings of the MPI standard for the Python programming language, allowing any Python code to exploit multiple
processors architectures.

On top of that, Figure 7.4 depicts shows an upper view of the matrix assembly and solution using the mpi4py and
petsc4py package in PETGEM. The first step is to partition the work-load into subdomains. This task can be done by
Metis library, which makes load over processes balanced. After domain partition, subdomains are read and assigned
to MPI tasks and the elemental matrices are calculated concurrently. These local contributions are then accumulated
into the global matrix system. The process for global vector assembly is similar.

Subsequently, the system is ready to be solved. PETGEM uses the Krylov Subspace Package (KSP) from PETSc
through the petsc4py package. The object KSP provides an easy-to-use interface to the combination of a parallel
Krylov iterative method and a preconditioner (PC) or a sequential direct solver. As result, PETGEM users can set var-
ious solver options and preconditioner options at runtime via the PETSc options database. Since PETSc knows which
portions of the matrix and vectors are locally owned by each processor, the post-processing task is also completed in
parallel following the numerical scheme described in CSEM problem section.

All petsc4py classes and methods are called from the PETGEM kernel in a manner that allows a parallel matrix and
parallel vectors to be created automatically when the code is run on many processors. Similarly, if only one processor
is specified the code will run in a sequential mode. Although petsc4py allows control the way in which the matrices
and vectors to be split across the processors on the architecture, PETGEM simply let petsc4py decide the local sizes
in sake of computational flexibility. However, this can be modified in an easy way without any extra coding required.

24 Chapter 6. Manual

PETGEM Documentation, Release 1.0

Fig. 6.4: Parallel scheme for assembly and solution in PETGEM using 4 MPI tasks. Here the elemental matrices
computation is done in parallel. After calculations the global system is built and solved in parallel using the petsc4py
and mpi4py packages.

Visualization of results

Once a solution of CSEM forward modelling has been obtained, it should be post-processed by using a visualization
program. PETGEM does not do the visualization by itself, but it generates output files (vtk format) with the final
results. Figure 7.5 shows an example of PETGEM output for the modelling described in Examples section. Figure 7.5
was obtained using Paraview.

Fig. 6.5: PETGEM vtk output.

Utilities

A set of Matlab functions to preprocessing and postprocessing included. These scripts are located in
utils/Preprocessing/ and utils/Postprocessing/ respectively. A more detailed explanation for Pre-
processing is the following:

6.9. Visualization of results 25

PETGEM Documentation, Release 1.0

Table 6.3: Preprocessing

Name Description Parameters
ex-
port_matrix_hdf5.m

Export a matrix to a hdf5 file Matrix to be exported and out file name

pet-
gem_preprocessing.m

Build input files for PETGEM
(PETSc format)

File mesh to be loaded, mesh format, conductivity model
(layer model), receivers file name

On the other hand, the Postprocessing utils are the following:

Table 6.4: Postprocessing

Name Description Parameters
pet-
gem_import.m

Import PETGEM
output to Matlab

PETGEM output file name. This file contains 3 arrays: Primary field (𝐸𝑝),
Secondary field (𝐸𝑠) and Total field (𝐸𝑡) for each receiver.

Examples

This section includes a step-by-step walk-through of the process to solve a simple CSEM forward modelling. The
typical process to solve a problem using PETGEM is followed: a model is meshed, PETGEM input files are created, a
parameters file is drafted, PETGEM is run to solve the modelling and finally the results of the analysis are visualised.

Problem statement: Isotropic model

In order to explain the CSEM forward modelling using PETGEM, here is considered the canonical model by
Weiss2006 which consists in four-layers: 1000 m thick seawater (3.3 𝑆/𝑚), 1000 m thick sediments (1 𝑆/𝑚), 100 m
thick oil (0.01 𝑆/𝑚) and 1400 m thick sediments (1 𝑆/𝑚). The computational domain is a [0, 3500]3 m cube. For this
model, a 1 Hz x-directed dipole source is located at 𝑧 = 975, 𝑥 = 1750, 𝑦 = 1750. The receivers are placed in-line to
the source position and along its orientation, directly above the seafloor (𝑧 = 990).

Meshing

PETGEM V1.0 is based on tetrahedral meshes of lowest order. Therefore, Figure 7.6 shows a 3D view of the model
with its unstructured tetrahedral mesh for the halfspace 𝑦 > 1750, with the color scale representing the electrical
conductivity 𝜎 for each layer. Mesh in Figure 7.6 have been obtained using Gambit.

Fig. 6.6: In-line canonical off-shore hydrocarbon model with its unstructured tetrahedral mesh for 𝑦 > 1750. The
color scale represents the electrical conductivity 𝜎 for each layer.

26 Chapter 6. Manual

PETGEM Documentation, Release 1.0

PETGEM preprocessing

The next step in the process is the PETGEM input files construction. These files can be created
using the utils/Preprocessing/petgem_preprocessing.m Matlab script. For this modelling,
petgem_preprocessing.m should be invoked has follows:

$ petgem_preprocessing('examples/WHAM/Mesh_WHAM.neu', 'Gambit', [1/.3 1 1/100 1], 'Receivers_WHAM')

petgem_preprocessing.m will create 8 files in binary PETSc format: nodes.dat (nodal spatial coordinates),
elemsN.dat (nodal elements connectivity), elemsE.dat (edges elements connectivity), edgesN.dat (edges nodes con-
nectivity), bEdges.dat (edges boundary array), nnz.dat (sparsity pattern for matrix allocation), receivers.dat (receivers
position).

Parameters file for PETGEM

The parameters file structure for PETGEM is well documented in Parameters file description section. The parameters
file used for this example follows:

modelling = {

----------- General -----------

----- Pyshical parameters -----

Source
Source frequency. Type: float
Optional: NO
'freq': 1.0,

Source position(x, y, z). Type: float
Optional: NO
'src_pos': [1750.0, 1750.0, -975.0],

Source orientation. Type: int
1 = X-directed source
2 = Y-directed source
3 = Z-directed source
Optional: NO
'src_direc': 1,

Source current. Type: float
Optional: NO
'src_current': 1.0,

Source length. Type: float
Optional: NO
'src_length': 1.0,

Conductivity model. Type: str
Optional: NO
'sigma_file': 'examples/WHAM/elemsSigma.dat',

Background conductivity. Type: float
Optional: NO
'sigma_background': 3.33,

6.11. Examples 27

PETGEM Documentation, Release 1.0

------- Mesh information ------

Mesh files

Nodes spatial coordinates. Type: str
Optional: NO
'nodes_file': 'examples/WHAM/nodes.dat',

Elements-nodes connectivity. Type: str
Optional: NO
'elemsN_file': 'examples/WHAM/elemsN.dat',

Elements-edges connectivity. Type: str
Optional: NO
'elemsE_file': 'examples/WHAM/elemsE.dat',

Edges-nodes connectivity. Type: str
Optional: NO
'edgesN_file': 'examples/WHAM/edgesN.dat',

nnz for matrix allocation (PETSc)
'nnz_file': 'examples/WHAM/nnz.dat',

Boundary-edges. Type: str
Optional: NO
'bEdges_file': 'examples/WHAM/bEdges.dat',

------------ Solver -----------

Solver options must be set in
examples/WHAM/petsc_solver.opts

------------ Output -----------

Name of the file that contains the receivers position. Type: str
Optional: NO
'receivers_file': 'examples/WHAM/receivers.dat',

}

Note that you may wish to change the location of the input files to somewhere on your drive. By default PETGEM
will create the output directory at same level where the parameters file is located. For this example and following the
PETSc documentation, the solver options have been configured in the file as petsc.opts follows:

Solver options for PETSc
-ksp_type gmres
-pc_type sor
-ksp_rtol 1e-8
-ksp_converged_reason
-log_summary

That’s it, we are now ready to solve the modelling.

28 Chapter 6. Manual

PETGEM Documentation, Release 1.0

Running PETGEM

To run the simulation, the following command should be run in the top-level directory of the PETGEM source tree:

$ mpirun -n 16 python3 kernel.py -options_file examples/WHAM/petsc.opts examples/WHAM/params_file.py

PETGEM solves the problem and outputs the solution to the output path (examples/WHAM/Output/). The output
files will be PETSc binary format. By default PETGEM save the electric field components in different files:

• EpX.dat, EpY.dat, EpZ.dat: primary electric field components.

• EsX.dat, EsY.dat, EsZ.dat: secondary electric field components.

• EtX.dat, EtY.dat, EtZ.dat: total electric field components.

PETGEM postprocessing

Once the simulation has ended, PETGEM output can be imported to Matlab by using the script
utils/Postprocessing/petgem_import.m. Hence, in order to import the x-component of the total electric
field for this modelling, petgem_preprocessing.m should be invoked has follows:

$ [EtX] = petgem_import('examples/WHAM/Output/EtX.dat')

The dimension of arrays of 𝐸𝑡𝑋 is determined by the number of receivers. Once the arrays are imported, feel free
to handling and ploting. Figure 7.7 shows a comparison of the x-component of total electric field between PETGEM
results and the quasi-analytical solution obtained with the WHAM tool. In Figure 7.7 it is easy to see the effect of
the imperfect absorbing boundaries which can be mitigated by enlargening the domain with element sizes increasing
logarithmically outwards from the zone of interest. The total electric field in Figure 7.7 was calculated using a mesh
with ≈ 12 millions of edges (degrees of freedom).

Fig. 6.7: Total electric field comparative for x-component between PETGEM V1.0 and WHAM. The effect of
our imperfect absorbing boundaries can be mitigated by enlargening the computational domain with element sizes
increasing logarithmically outwards from the zone of interest.

Code documentation

Following sub-sections are dedicated to code documentation of PETGEM.

Setup & install scripts

6.12. Code documentation 29

PETGEM Documentation, Release 1.0

setup.py

setup.py is the main PETGEM setup script, it is based on python setup-module.

setup.check_versions(show_only=False)
Check all requires packages for PETGEM installation.

setup.configuration(parent_package=’‘, top_path=None)
Configure a local environment.

Parameters

• parent_package (str) – initial parent package of PETGEM

• top_path (str) – top path of PETGEM directory

Returns config structure

Return type list

setup.setup_package()
Setup a package for a specific installation.

builder.py

Build helper for setup script. It includes dependency checks and monkey-patch in order to extend or modify supporting
system software locally (affecting only the running instance of the program).

Note: The original version of this script was adapted from NiPy project.

class builder.Clean(dist)
Distutils command class to clean. Enhanced to clean also files generated during python setup.py build_ext
–inplace process.

run()
Run clean process recursively for directories: petgem, examples, utils, tests, doc and root directory.

class builder.NoOptionsDocs(dist)
Handler class for no options docs

finalize_options()
Finalize options for NoOptionsDocs class.

initialize_options()
Init options for NoOptionsDocs class.

user_options = [(‘None’, None, ‘this command has no options’)]

class builder.SphinxHTMLDocs(dist)
Generate html docs by Sphinx.

run()
Run SphinxHTMLDocs class.

class builder.SphinxPDFDocs(dist)
Generate pdf docs by Sphinx

run()
Run SphinxPDFDocs class.

30 Chapter 6. Manual

PETGEM Documentation, Release 1.0

builder.get_sphinx_make_command()
Get make command for Sphinx documentation.

builder.package_check(pkg_name, version=None, optional=False, checker=<class ‘distu-
tils.version.LooseVersion’>, version_getter=None, messages=None,
show_only=False)

Check if package pkg_name is present, and in correct version.

Parameters

• pkg_name (str,list) – the name of the package as imported into python. Alternative
names (e.g. for different versions) may be given in a list.

• version (str) – the minimum version of the package that is required. If not given, the
version is not checked.

• optional (bool) – if False, raise error for absent package or wrong version, otherwise
warning.

• checker (callalble) – if given, the callable with which to return a comparable thing
from a version string. The default is distutils.version.LooseVersion.

• version_getter (callable) – if given, the callable that takes pkg_name as argument,
and returns the package version string as in:

version = version_getter(pkg_name)

The default is equivalent to:

mod = __import__(pkg_name); version = mod.__version__

• messages (dict) – if given, the dictionary providing (some of) output messages.

• show_only (bool) – if True, do not raise exceptions, only show the package name and
version information.

builder.recursive_glob(top_dir, pattern)
Finds all the pathnames matching a specific pattern according to the rules used by Unix shell.
recursive_glob works like glob.glob(), but in working recursively.

Parameters

• top_dir (str) – the top-level directory

• pattern (str,list) – the pattern or list of patterns to match

builder.unitary_test()
Unitary test for builder.py script. Check if version, top_dir and in_source are present in INFO PETGEM object.

config.py

Setup config object for PETGEM, namely: python version, system, flags and links for C extension (if C dependencies
exist).

class petgem.config.Config
Setup config object for PETGEM

compile_flags()
Setup flags for C compilation (is C code exist).

debug_flags()
Setup debug flags.

6.12. Code documentation 31

PETGEM Documentation, Release 1.0

is_release()
Setup a release version of PETGEM.

link_flags()
Setup links for flags.

numpydoc_path()
Setup numpydoc path

python_include()
Setup python include.

python_version()
Setup python version.

system()
Setup system.

petgem.config.has_attr(obj, attr)

setup.py (petgem)

Setup main path directories for PETGEM.

petgem.setup.configuration(parent_package=’‘, top_path=None)
Setup parent package and child packages.

version.py

Setup package versions require for PETGEM.

petgem.version.get_basic_info(version=‘2016.1’)
Return PETGEM installation directory information. Append current git commit hash to version.

setup.py (base directory)

Setup path for base directory into petgem parent directory.

petgem.base.setup.configuration(parent_package=’‘, top_path=None)
Config base directory.

setup.py (decomposition directory)

Setup path for decomposition directory into petgem parent directory.

petgem.decomposition.setup.configuration(parent_package=’‘, top_path=None)
Config decomposition directory.

setup.py (efem directory)

Setup path for efem directory into petgem parent directory.

petgem.efem.setup.configuration(parent_package=’‘, top_path=None)
Config efem directory.

32 Chapter 6. Manual

PETGEM Documentation, Release 1.0

setup.py (mesh directory)

Setup path for mesh directory into petgem parent directory.

petgem.mesh.setup.configuration(parent_package=’‘, top_path=None)
Config mesh directory.

setup.py (monitoring directory)

Setup path for monitoring directory into petgem parent directory.

petgem.monitoring.setup.configuration(parent_package=’‘, top_path=None)
Config monitor directory.

setup.py (parallel directory)

Setup path for parallel directory into petgem parent directory.

petgem.parallel.setup.configuration(parent_package=’‘, top_path=None)
Config parallel directory.

setup.py (postprocessing directory)

Setup path for postprocessing directory into petgem parent directory.

petgem.postprocessing.setup.configuration(parent_package=’‘, top_path=None)
Config postprocessing directory.

setup.py (solver directory)

Setup path for solver directory into petgem parent directory.

petgem.solver.setup.configuration(parent_package=’‘, top_path=None)
Config solver directory.

kernel

kernel.py

PETGEM kernel. It solve a CSEM forward modelling according to parameters into a PETGEM parameters file
format.

Basis scripts

base.py

Define base operations for PETGEM such as: check init params, data types, import files and timers.

petgem.base.base.checkDictionaryConsistencyMaster(rank, in_dict, file_name, dir_name)
Check if dictionary consistency match with PETGEM requirements. (master task)

Params int rank MPI rank.

6.12. Code documentation 33

PETGEM Documentation, Release 1.0

Params dict in_dict input dictionary to be tested.

Params str file_name parameters file name.

Params str dir_name parent directory of file_name

Returns csem modelling dictionary after test.

Return type csem_modelling dictionary.

petgem.base.base.checkDictionaryConsistencySlave(rank, in_dict, file_name, dir_name)
Check if dictionary consistency match with PETGEM requirements. (slave task)

Params int rank MPI rank.

Params dict in_dict input dictionary to be tested.

Params str file_name parameters file name.

Params str dir_name parent directory of file_name

Returns csem modelling dictionary after test.

Return type csem_modelling dictionary.

petgem.base.base.checkDirectoryPath(in_directory_path)
Determine if exists a directory.

Params str in_directory_path directory name to be checked.

Returns success.

Return type bool

petgem.base.base.checkFilePath(in_file_path)
Determine if exists a file.

Params str in_file_path file name to be checked.

Returns success.

Return type bool

petgem.base.base.checkNumberParams(init_params)
Check number of initial kernel parameters.

Parameters init_params (list) – list of initial kernel parameters.

Returns a parameters file name.

Return type str.

Note: if the number of init_params is different to 2, PETGEM kernel will stop.

petgem.base.base.readUserParams(input_params, rank)
Read a kernel input, namely a parameters file name.

Params list input_params user input parameters.

Parameters rank (int) – MPI rank.

Returns a modelling dictionary.

Return type dict of type modelling.

petgem.base.base.unitary_test()
Unitary test for base.py script.

34 Chapter 6. Manual

PETGEM Documentation, Release 1.0

styles.py

Define styles for PETGEM screen-output such as: string formats, headers, and footers.

petgem.base.styles.petgemFooter()
Setup the PETGEM footer to be printed in screen.

petgem.base.styles.petgemHeader()
Setup the PETGEM header to be printed in screen.

petgem.base.styles.set_str_format(in_string, FORMAT=None)
Setup a string with a specific format

Parameters

• in_string (str) – string to be formated.

• format (str) – format to be applied.

Returns formated string.

Return type str.

Note: valid formats are: Warning, Error, OkGreen and OkBlue

petgem.base.styles.test_footer(pass_test)
Print the footer of a unitary test.

Parameters pass_test (bool) – boolean that express if a test is, or not, passed.

petgem.base.styles.test_header(caller)
Print the header of a unitary test.

Parameters caller (str) – name of caller (test owner).

petgem.base.styles.unitary_test()
Unitary test for styles.py script.

modelling.py

Define the csem_modelling dictionary. csem_modelling dictionary contain the main initial parameters for a CSEM
FM modelling such as: frequency, source position, conductivity model and mesh information.

petgem.base.modelling.CSEM_MODELLING(rank, freq, src_pos, src_direc, src_current, src_length,
sigma_background, sigma_file, nodes_file, elemsN_file,
elemsE_file, edgesN_file, nnz_file, bEdges_file, re-
ceivers_file, dir_name)

csem_modelling dictionary with main parameters for CSEM FM.

Parameters

• rank (int) – MPI rank.

• freq (int,float) – frequency.

• src_pos (list) – source position.

• src_dir (int,float) – source orientation.

• src_current (int,float) – source current.

• src_length (int,float) – source length.

6.12. Code documentation 35

PETGEM Documentation, Release 1.0

• sigma_background (int,float) – background conductivity.

• sigma_file (str) – file name of conductivity model.

• nodes_file (str) – file name of node spatial coordinates.

• elemsN_file (str) – file name of elements-nodes connectivity.

• elemsE_file (str) – file name of elements-edges connectivity.

• edgesN_file (str) – file name of edges-nodes connectivity.

• nnz_file (str) – file name of nnz for matrix allocation.

• bEdges_file (str) – file name of boundary edges.

• receivers_file (str) – file name or receivers position.

• dir_name (str) – parent directory of sigma_file, nodes_file

and elemsN_file.

petgem.base.modelling.printModellingData(input_modelling)
Print the content of a csem_modelling dictionary. :param dictionary: input_modelling.

petgem.base.modelling.unitary_test()
Unitary test for modelling.py script.

Mesh scripts

mesh.py

Define functions for mesh handling.

petgem.mesh.mesh.get_nNodes_nElems(matrixNodal, matrixElems)
Compute the number of elements and the number of nodes of a given mesh.

Params list matrixNodal nodal coordinates.

Params list matrixElems elemsN connectivity.

petgem.mesh.mesh.printMeshInfo(nElems, nEdges, dofs, bEdges)
Print data mesh.

Parameters

• nElems (int) – number of elements.

• nEdges (int) – number of edges.

• dofs (int) – number of degrees of freedom.

• bEdges (int) – number of boundary edges.

Returns none

petgem.mesh.mesh.readHdf5(file_name, DATA=None)
Read an hdf5 file.

Parameters

• file_name (str) – file name to be readed.

• DATA (str) – type of DATA to be readed: nodes, elemsN or elemsS.

Returns nodes, elemsN or elemsSigma.

36 Chapter 6. Manual

PETGEM Documentation, Release 1.0

Return type ndarray.

petgem.mesh.mesh.readMesh(input_modelling)
Read a tetrahedral mesh defined by two HDF5 files: nodes description and elements connectivity description.

Parameters input_modelling (dictionay) – csem_modelling dictionary.

Returns arrays with nodes and elements connectivity.

Return type ndarray.

petgem.mesh.mesh.unitary_test()
Unitary test for mesh.py script.

EFEM scripts

efem.py

Define the classes, methods and functions for Edge Finite Element Method (EFEM) of lowest order in tetrahedral
meshes, namely, Nedelec elements.

petgem.efem.efem.compute_boundary_edges(edgesN, bfacesN)
Compute boundary edges of a tetrahedral mesh.

Parameters

• elemsN (ndarray) – edges-nodes connectivity.

• bfacesN (ndarray) – boundary-faces-nodes connectivity.

Returns boundary-edges connectivity.

Return type ndarray

petgem.efem.efem.compute_boundary_faces(elemsF, facesN)
Compute boundary faces of a tetrahedral mesh.

Parameters

• elemsF (ndarray) – elements-face connectivity.

• facesN (ndarray) – faces-nodes connectivity.

Returns boundary-faces connectivity.

Return type ndarray

petgem.efem.efem.compute_edges(elemsN)
Compute edges of a 3D tetrahedral mesh.

Parameters elemsN (ndarray) – elements-nodes connectivity.

Returns element/edges connectivity and edges/nodes connectivity.

Return type ndarray

petgem.efem.efem.compute_faces(elemsN)
Compute the element’s faces of a 3D tetrahedral mesh.

Parameters matrix (ndarray) – elements-nodes connectivity.

Returns element/faces connectivity.

Return type ndarray

6.12. Code documentation 37

PETGEM Documentation, Release 1.0

Note: References:

Rognes, Marie E., Robert Cndarray. Kirby, and Anders Logg. “Efficient assembly of H(div) and H(curl)
conforming finite elements.” SIAM Journal on Scientific Computing 31.6 (2009): 4130-4151.

petgem.efem.efem.unitary_test()
Unitary test for efem.py script.

fem.py

Define the classes, methods and functions for Finite Element Method (FEM) of lowest order in tetrahedral meshes.

petgem.efem.fem.gauss_points_tetrahedron(polyOrder)
Compute the quadrature points X and the weights W for the integration over the unit tetrahedra whose nodes are
(0,0,0), (1,0,0), (0,1,0) and (0,0,1).

Parameters polyOrder (int) – degree of polynominal

Returns quadrature Gauss points and Gauss weights.

Return type ndarray.

Note: References:

P Keast, Moderate degree tetrahedral quadrature formulas, CMAME 55: 339-348 (1986).

O.C. Zienkiewicz, The Finite Element Method, Sixth Edition.

petgem.efem.fem.tetraXiEtaZeta2XYZ(eleNodes, XiEtaZetaPoints)
Map a set of points in XiEtaZeta coordinates to XYZ coordinates.

Parameters

• eleNodes (ndarray) – nodal spatial coordinates of the tetrahedral element.

• XiEtaZetaPoints (ndarray) – set of points in XiEtaZeta coordinates.

Returns new spatial coordinates of XiEtaZetaPoints.

Return type ndarray.

petgem.efem.fem.unitary_test()
Unitary test for fem.py script.

general_functions.py

Define general and common functions for edge finite element method (EFEM) of lowest order in tetrahedral meshes,
namely, Nedele elements.

petgem.efem.general_functions.compute_items(elemsE, elemsF, bEdges, nodes)
Compute the number of elements, number of nodes, number of edges and number of boundary edges of a
tetrahedral mesh in the Edge Finite Element Method.

Parameters

• elemsE (ndarray) – element/edges connectivity.

• elemsF (ndarray) – element/faces connectivity.

38 Chapter 6. Manual

PETGEM Documentation, Release 1.0

• bEdges (ndarray) – boundary-edges connectivity.

• nodes (ndarray) – nodal coordinates.

Returns None.

petgem.efem.general_functions.unitary_test()
Unitary test for general.py script.

nedelec_elements.py

Define functions for Nedelec elements of lowest order.

petgem.efem.nedelec_elements.compute_analytic_element_matrix(eleNodes, eleVol,
lengthE, signs)

Compute tetrahedral elemental matrices in an analytic manner.

Parameters

• eleNodes (ndarray) – nodal spatial coordinates of the element.

• eleVol (float) – element’s volume.

• lengthE (ndarray) – element’s edges defined by their length.

• signs (ndarray) – local edge signs.

Returns stiffness matrix and mass matrix.

Return type ndarray.

petgem.efem.nedelec_elements.compute_signs_edges(indx_nodes)
Compute the local direction of element’s-th edges with respect to global direction of edges within the mesh.
This data is needed in order to use linear Nedelec elements in 3D. The edge signs can be easily deduced from
the mesh data itself by directly using the data structure which represents the elements (tetrahedrons) by their
node indexes. As consequence, the signs are obtained with minimal matrix operations in a vectorized manner.

signs(i) is the sign related to i’th edge of the element-th.

edge1 = [1 2] edge2 = [1 3] edge3 = [1 4] edge4 = [2 3] edge5 = [4 2] edge6 = [3 4]

Parameters indx_nodes (ndarray) – nodal indexes of the element.

Note: References:

Jin, Jian-Ming. The finite element method in electromagnetics. John Wiley & Sons, 2002.

petgem.efem.nedelec_elements.nedelec_basis_iterative(eleNodes, points, eleVol,
lengthEdges)

Compute the basis Nedelec functions in an iterative way for a set of points in a given element.

Parameters

• eleNodes (ndarray) – nodal spatial coordinates of the element.

• points (ndarray) – spatial coordinates of the evaluation points.

• eleVol (float) – element’s volume.

• lengthEdges (ndarray) – element’s edges defined by their length.

Returns values of Nedelec functions.

Return type ndarray.

6.12. Code documentation 39

PETGEM Documentation, Release 1.0

petgem.efem.nedelec_elements.nedelec_basis_vectorized(eleNodes, points, eleVol,
lengthEdges)

Compute the basis Nedelec functions in a vectorized way for a set of points in a given element.

Parameters

• eleNodes (ndarray) – nodal spatial coordinates of the element.

• points (ndarray) – spatial coordinates of the evaluation points.

• eleVol (float) – element’s volume.

• lengthEdges (ndarray) – element’s edges defined by their length.

Returns values of Nedelec functions.

Return type ndarray.

petgem.efem.nedelec_elements.unitary_test()
Unitary test for nedelec_elements.py script.

vector_matrix_functions.py

Define standard vector and matrix functions.

petgem.efem.vector_matrix_functions.delete_duplicate_rows(matrix)
Delete duplicate rows in a matrix.

Parameters matrix (ndarray) – input matrix to be processed.

Returns matrix without duplicate rows

Return type ndarray

petgem.efem.vector_matrix_functions.find_unique_rows(array, return_index=False, re-
turn_inverse=False)

Find unique rows of a two-dimensional numpy array.

Parameters

• ndarray – array to be processed.

• return_index (bool) – the indices of array that result in the unique array.

• return_inverse (bool) – indices of the unique array that can be used to reconstruct
array.

petgem.efem.vector_matrix_functions.unitary_test()
Unitary test for vector_matrix_functions.py script.

Solver

assembler.py

Define functions for assembly of sparse linear systems in Edge Finite Element Method (EFEM) of lowest order in
tetrahedral meshes.

petgem.solver.assembler.computeElementalContributionsMPI(modelling, coordEle,
nodesEle, sigmaEle)

Compute the elemental contributions of matrix A (LHS) and right hand side (RHS) in a parallel-vectorized
manner for CSEM surveys by EFEM. Here, all necessary arrays are populated (Distributed-memory approach).

Parameters

40 Chapter 6. Manual

PETGEM Documentation, Release 1.0

• modelling (int) – CSEM modelling with physical parameters.

• coordEle (ndarray) – array with nodal coordinates of element.

• nodesEle (ndarray) – array with nodal indexes of element.

• sigmaEle (int) – element conductiviy.

Returns Ae, be.

Return type complex.

petgem.solver.assembler.unitary_test()
Unitary test for assembler.py script.

solver.py

Define functions to find the solution of a sparse linear system of the format Ax = b, in Edge Finite Element Method
(EFEM) of lowest order in tetrahedral meshes.

petgem.solver.solver.direct_scipy(A, b)
Interface to direct sparse scipy solver.

Parameters

• A (ndarray) – sparse and complex coefficients matrix in a CSR format.

• b (ndarray) – rigth hand side.

Returns solution to the system.

Return type ndarray of complex coefficients.

petgem.solver.solver.iterative_scipy(A, b, type_solver, tol, maxiter)
Interface to iterative sparse scipy solver.

Parameters

• A (ndarray) – sparse and complex coefficients matrix in a CSR format.

• b (ndarray) – rigth hand side.

• type_solver (str) – solver type. Available solvers are: bicgstab.

• tol (float) – solver tolerance.

• maxiter (int) – maximum number of solver iterations.

Returns solution to the system.

Return type ndarray of complex coefficients.

petgem.solver.solver.set_dirichlet_boundaries(A, b, in_boundaries)
Compute the list of degrees of freedom.

Parameters

• A (ndarray) – sparse and complex coefficients matrix in a CSR format.

• b (ndarray) – rigth hand side.

• in_boundaries (ndarray) – boundary-edges array.

Returns equation system after applied Dirichlet BC.

Return type ndarray.

6.12. Code documentation 41

PETGEM Documentation, Release 1.0

petgem.solver.solver.solver(A, b, boundaries, model)
Solve a matrix system of the form Ax = b.

Parameters

• A (ndarray) – sparse and complex coefficients matrix in a CSR format.

• b (ndarray) – rigth hand side.

• boundaries (ndarray) – boundary-edges array.

• model (object_modelling) – CSEM modelling with physical parameters.

Returns solution to the system.

Return type ndarray of complex coefficients.

petgem.solver.solver.unitary_test()
Unitary test for solver.py script.

Parallel

parallel.py

Define parallel functions for Edge Finite Element Method (EFEM) of lowest order in tetrahedral meshes, namely,
Nedelec elements.

petgem.parallel.parallel.func_start_as_many(func_items_args)
Compute function as many arguments.

Parameters func_item_args (str) – function arguments.

Returns arguments.

Return type arguments.

Note: Equivalent to:

func = func_item_args[0]

items = func_item_args[1]

args = func_item_args[2:]

return func(items[0],items[1],...,args[0],args[1],...)

petgem.parallel.parallel.func_start_as_single(func_item_args)
Compute function as single argument.

Parameters func_item_args (str) – function arguments.

Returns arguments.

Return type arguments.

Note: Equivalent to:

func = func_item_args[0]

item = func_item_args[1]

args = func_item_args[2:]

42 Chapter 6. Manual

PETGEM Documentation, Release 1.0

return func(item,args[0],args[1],...)

petgem.parallel.parallel.get_num_processors(num_proc)
Compute the number of processors that had been insert by the user against available processors in the platform.

Params int num_proc number of processors to set parallel environment.

Returns number of processors to set parallel environment.

Return type int

Note: if num_proc > available_processors then nProcesses=available_processors

petgem.parallel.parallel.parallel_map(func, iterable, *args, **kwargs)
Parallel mapping of a function. Equivalent to:

return [function(x, args[0], args[1],...) for x in iterable]

Parameters

• func (str) – function name.

• iterable (int) – iterable variable.

• args (argument) – function arguments.

• kwargs (argument) – keyword arguments.

Keyword arguments are defined as follows:

•parallel = True/False: Force parallelization on/off

•chunksize = see multiprocessing.Pool().map

•pool = multiprocessing.Pool() Pass an existing pool.

•processes = see multiprocessing.Pool() processes argument

Note: The original version of this function was adapted from J.F. Sebastian and from parmap python module.

petgem.parallel.parallel.parallel_map_async(func, iterable, *args, **kwargs)
This function is the multiprocessing.Pool.map_async version that supports multiple arguments.

>>> [function(x, args[0], args[1],...) for x in iterable]

Parameters

• parallel (bool) – Force parallelization on/off.

• chunksize (int) – see multiprocessing.pool.Pool.

• callback (function) – see multiprocessing.pool.Pool.

• error_callback (function) – see multiprocessing.pool.Pool.

• pool (multiprocessing.pool.Pool) – Pass an existing pool.

• processes (int) – Number of processes to use in the pool.

6.12. Code documentation 43

PETGEM Documentation, Release 1.0

petgem.parallel.parallel.parallel_starmap(func, iterables, *args, **kwargs)
Parallel start_mapping of a function. Equivalent to:

return [function(x1,x2,x3,..., args[0], args[1],...) for (x1,x2,x3...) in iterable].

Parameters

• func (str) – function name.

• iterables (int) – iterable variables.

• args (argument) – function arguments.

• kwargs (argument) – keyword arguments.

Keyword arguments are defined as follows:

•parallel = True/False: Force parallelization on/off

•chunksize = see multiprocessing.Pool().map

•pool = multiprocessing.Pool() Pass an existing pool.

•processes = see multiprocessing.Pool() processes argument

Note: The original version of this function was adapted from J.F. Sebastian and from parmap python module.

petgem.parallel.parallel.unitary_test()
Unitary test for parallel.py script.

Postprocessing

postprocessing.py

Define the functions for post-processing stage.

petgem.postprocessing.postprocessing.EpReceiverComputation(model, point)
Compute the primary electric field for an array of point (receivers).

Parameters

• model (object_modelling) – CSEM modelling with physical parameters.

• point (ndarray) – receiver spatial coordinates.

Returns primary electric field on receivers.

Return type ndarray.

petgem.postprocessing.postprocessing.EsReceiverComputation(field, coordEle, coor-
dReceiver, nodesEle)

Compute the secondary electric field on receivers.

Parameters

• field (ndarray) – secondary field to be interpolated.

• coordElement (ndarray) – element spatial coordinates.

• coordReceiver (ndarray) – receiver spatial coordinates.

• nodesEle (ndarray) – nodal indices of element (element container).

Returns secondary electric field on receivers.

44 Chapter 6. Manual

PETGEM Documentation, Release 1.0

Return type ndarray.

petgem.postprocessing.postprocessing.EtReceiverComputation(primary_field, sec-
ondary_field)

Compute the total electric field on receivers.

Parameters

• primary_field (ndarray) – primary electric field on receiver.

• secondary_field (ndarray) – secondary electric field on receiver.

Returns total electric field on receivers.

Return type ndarray.

petgem.postprocessing.postprocessing.computeFieldsReceiver(modelling, coor-
dReceiver, coordEle-
ment, nodesElement,
x_field)

Compute the CSEM modelling output: primary electric field, secondary electric field and total electric field on
receivers position.

Parameters

• model (object_modelling) – CSEM modelling with physical parameters.

• coordReceiver (ndarray) – receiver spatial coordinates.

• coordElement (ndarray) – element spatial coordinates.

• nodesElement (ndarray) – nodal indices of element (element container).

• x_field (ndarray) – vector solution for receiver.

Returns primary, secondary and total electric field

Return type ndarray

petgem.postprocessing.postprocessing.create_directory_output(out_dir)

petgem.postprocessing.postprocessing.export_output(primary_field, secondary_field, to-
tal_field, out_prefix, out_dir)

Export the results of CSEM FM modelling by using EFEM in a HDF5 format, namely, this function export the
primary field (Ep), secondary field (Es) and total field (Et).

Parameters

• primary_field (ndarray) – primary electric field on receivers.

• secondary_field (ndarray) – secondary electric field on receivers.

• total_field (ndarray) – total electric field on receivers.

Returns None

petgem.postprocessing.postprocessing.postprocessing(model, field, mesh, edgesN, el-
emsE)

Compute the CSEM modelling output: primary electric field, secondary electric field and total electric field on
receivers position.

Parameters

• model (object_modelling) – CSEM modelling with physical parameters.

• field (ndarray) – secondary field to be interpolated.

6.12. Code documentation 45

PETGEM Documentation, Release 1.0

• mesh (mesh_object) – mesh object with element/nodes connectivity, element/nodes
connectivity, nodal coordinates and element/sigma values.

• edgesN (ndarray) – edges/nodes connectivity.

• elemsE (ndarray) – element/edges connectivity.

petgem.postprocessing.postprocessing.read_receivers_file(file_name)
Read a receivers file in a hdf5 format. It file contain receivers spatial coordinates.

Parameters receivers_file (str) – file name to be readed.

Returns receivers spatial coordinates.

Return type ndarray.

petgem.postprocessing.postprocessing.unitary_test()
Unitary test for post_processing.py script.

Monitoring

monitoring.py

Define functions for performance monitoring such as timers and HW counters.

petgem.monitoring.monitoring.printTimes(times_array)
Print, in a pretty manner, a times array.

Parameters times_array (list) – array of times for each PETGEM phase.

petgem.monitoring.monitoring.timing(name_function)
Measure spent time in a given function.

Parameters name_function (str) – name function to be measured.

petgem.monitoring.monitoring.unitary_test()
Unitary test for mesh.py script.

Examples

params_file_template.py

Parameters file template for CSEM forward modelling (FM).

By definition, any model should include: physical parameters, mesh file, source and receivers files, computational
issues (solver type, domain decomposition) and output file format.

In order to avoid a specific parser, this file is imported by PETGEM as a Python dictionary. As consequence, the
dictionary name and his key names MUST NOT BE changed.

All file paths should consider as absolute.

Next, each key is described.

46 Chapter 6. Manual

CHAPTER

SEVEN

PUBLICATIONS

Papers:

• Castillo-Reyes, O., de la Puente, Cela, J. M. Three-Dimensional CSEM modelling on unstructured tetrahe-
dral meshes using edge finite elements. In: Barrios Hernández C., Gitler I., Klapp J. (eds) High Performance
Computing. CARLA 2016. Communications in Computer and Information Science, vol 697: 247-256. ISBN
978-3-319-57971-9 Springer, Cham

• Castillo-Reyes, O., de la Puente, Cela, J. M. Improving edge finite element assembly for geophysical electro-
magnetic modelling on shared-memory architectures. 7th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference – UEMCON. 2016.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M., Edge-based parallel framework for the simula-
tion of 3D CSEM surveys. ICE Barcelona-AAPG/SEG International Conference & Exhibition. 2016.

• Castillo-Reyes, O., de la Puente, J., Barucq, H., Diaz, J., and Cela, J. M., Parallel and vectorized code for CSEM
surveys in geophysics: An edge-based approach. ECCOMAS. 2016.

• Castillo-Reyes, O., de la Puente, J., Modesto, D., Puzyrev, V., and Cela, J. M., A parallel tool for numerical ap-
proximation of 3D electromagnetic surveys in geophysics. Computación y Sistemas: Topic trends in computing
research, vol. 20, no. 1, pp 29-39. 2016.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M., Towards an HPC tool for simulation of 3D
CSEM surveys: an edge-based approach. PRACEdays16 Conference. 2016.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M., Assessment of edge-based finite element tech-
nique for geophysical electromagnetic problems: efficiency, accuracy and reliability. Proceedings of the 1st
Pan-American Congress on Computational Mechanics and XI Argentine Congress on Computational Mechan-
ics. CIMNE, pp. 984-995, 2015.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M., Edge-based electric field formulation in 3D
CSEM simulations: a parallel approach. Proceedings of the 6th International Conference and Workshop on
Computing and Communication. IEEE, 2015.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M., Edge-elements for geophysical electromagnetic
problems: a new implementation challenge. PRACEdays15 Conference. 2015.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M., HPC and edge elements for geophysical
electromagnetic problems: an overview. BSC Doctoral Symposium (2nd: 2015: Barcelona). 2015.

• Castillo-Reyes, O., de la Puente, J., Puzyrev, V., and Cela, J. M., Parallel and numerical issues of the edge finite
element method for 3D controlled-source electromagnetic surveys. Proceedings of the International Conference
on Computing Systems and Telematics. IEEE, 2015.

Conferences:

• Castillo-Reyes, O., de la Puente, Cela, J. M. PETGEM: potential of 3D CSEM modelling using a new HPC tool
for exploration geophysics. Marelec 2017. University of Liverpool. Liverpool, United Kingdom.

47

PETGEM Documentation, Release 1.0

• Castillo-Reyes, O., de la Puente, Cela, J. M. High performance computing using python: advances in geo-
physical electromagnetic modelling. Computing and Electromagnetics International Workshop. Polytechnic
University of Catalonia. Barcelona, Spain.

• Castillo-Reyes, O. Python code for CSEM modelling in geophysics and HPC architectures: advances and chal-
lenges. 2do Foro Internacional de Talento Mexicano – Innovation Match MX 2016-2017. Mexico, D.F.

• Castillo-Reyes, O., de la Puente, Cela, J. M. Python for HPC geophysical applications. GeoPython 2017.
University of Applied Sciences and Arts Northwestern Switzerland. Basel, Switzerland.

• Castillo-Reyes, O. Python for HPC geophysical electromagnetic applications: experiences and perspectives. 4th
BSC International Doctoral Symposium. Barcelona, Spain.

• Castillo-Reyes, O. See underneath. High Performance Computing, geophysics and electromagnetic methods.
Interdisciplinary Meeting of Predoctoral Researchers – JIPI 2017. University of Barcelona. Barcelona, Spain.
February 2017.

• Castillo-Reyes, O. Supercomputing and electromagnetic modelling in geophysics: advances and challenges.
Centro de Ciencias de la tierra. University of Veracruz. Xalapa, Veracruz, Mexico. December 2016.

• Castillo-Reyes, O. Improving edge finite element assembly for geophysical electromagnetic modelling on
shared-memory architectures. 7th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communica-
tion Conference – UEMCON 2016. New York, USA. October 2016.

• Castillo-Reyes, O. Three-dimensional CSEM modelling on unstructured tetrahedral meshes using edge finite
elements. Latin American High Performance Computing Conference – CARLA 2016. Mexico, D.F. August
2016.

• Castillo-Reyes, O. Edge-based parallel code for CSEM surveys in geophysics: performance and accuracy im-
provements. 12th World Congress on Computational Mechanics – WCCM XII. Seúl, Corea. July 2016.

• Castillo-Reyes, O. Towards an HPC tool for 3D CSEM forward modelling in geophysics. Fourth International
Congress on Multiphysics, Multiscale, and Optimization problems. Bilbao, España. May 2016

• Castillo-Reyes, O. High performance computing, geophysics and numerical methods: a symbiotic relation. 1er
Foro Internacional de Talento Mexicano – Innovation Match MX 2015-2016. Guadalajara, Jalisco, México.
April 2016.

• Castillo-Reyes, O. Edge-based electric field formulation in 3D CSEM simulations: a parallel approach. 6th
International Conference and Workshop on Computing and Communication – IEMCON – 2015. University of
British Columbia. Vancouver, Canada. October 2015.

• Castillo-Reyes, O. High Performance Computing and electromagnetic modeling in geophysics: from concepts
to application. Research Center in Computing. National Polytechnic Institute. Mexico, D.F. October 2015.

• Castillo-Reyes, O. Parallel and numerical issues of the edge finite element method for 3D controlled-source
electromagnetic surveys. IEEE International Conference on Computing Systems and Telematics. University of
Veracruz. Xalapa, Veracruz, Mexico. October 2015.

• Castillo-Reyes, O. “Your Thesis in 3 Minutes” (3TM) with the topic: Edge-elements formulation of CSEM in
geophysics: a parallel approach. Jornadas de Cooperación CONACyT – Cataluña 2015. Polytechnic University
of Catalonia – National Council of Science and Technology of Mexico. Barcelona, Spain. June 2015.

• Castillo-Reyes, O. Edge-elements for geophysical electromagnetic problems: A new implementation challenge.
PRACE Scientific and Industrial Conference 2015 – PRACEDays15. Dublin, Ireland. April 2015.

• Castillo-Reyes, O. HPC and edge elements for geophysical electromagnetic problems: an overview. 2nd BSC
International Doctoral Symposium. Barcelona, Spain. April 2015.

• Castillo-Reyes, O. Assessment of edge-based finite element technique for geophysical electromagnetic prob-
lems: efficiency, accuracy and reliability. 1st. Pan-American Congress on Computational Mechanics –
PANACM 2015. IACM. Buenos Aires, Argentina. April 2015.

48 Chapter 7. Publications

PETGEM Documentation, Release 1.0

• Castillo-Reyes, O. HPC solutions for oil industry: trends and challenges. Centro de Ciencias de la Tierra.
University of Veracruz. Xalapa, Veracruz, Mexico. December 2014.

• Castillo-Reyes, O. High Performance Computing, Science and Engineering. Master in Telematic. School of
Accounting and Management. University of Veracruz. Xalapa, Veracruz, Mexico. December 2014.

• Castillo-Reyes, O. HPC solutions for oil industry: trends and challenges. IV Simposio de Becarios CONACyT
en Europa. Strasbourg, France. November 2014.

49

PETGEM Documentation, Release 1.0

50 Chapter 7. Publications

CHAPTER

EIGHT

SUPPORT

Work on PETGEM has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No. 644202. The research leading to these results has received
funding from the European Union’s Horizon 2020 Programme (2014-2020) and from Brazilian Ministry of Science,
Technology and Innovation through Rede Nacional de Pesquisa (RNP) under the HPC4E Project , grant agreement
No. 689772.

Castillo-Reyes expresses his gratitude to the Mexican National Council for Science and Technology (CONACyT) for
his support.

51

PETGEM Documentation, Release 1.0

52 Chapter 8. Support

CHAPTER

NINE

DOWNLOAD

PETGEM is developed as open-source GPLv3.

PETGEM distributed-memory release version 1.0

• PETGEM_distributed_memory.zip

• PETGEM_distributed_memory.tar.gz

PETGEM release version 1.0

• PETGEM_shared_memory.zip

• PETGEM_shared_memory.tar.gz

All files includes current patches, documentation and examples.

53

PETGEM Documentation, Release 1.0

54 Chapter 9. Download

CHAPTER

TEN

CONTACT

Octavio Castillo Reyes
Nexus II - Planta 3
C/ Jordi Girona, 29
Barcelona
08034
+34 934137992
email: octavio.castillo@bsc.es

55

PETGEM Documentation, Release 1.0

56 Chapter 10. Contact

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

57

PETGEM Documentation, Release 1.0

58 Chapter 11. Indices and tables

PYTHON MODULE INDEX

b
builder, 30

e
examples.params_file_template, 46

p
petgem.base.base, 33
petgem.base.modelling, 35
petgem.base.setup, 32
petgem.base.styles, 35
petgem.config, 31
petgem.decomposition.setup, 32
petgem.efem.efem, 37
petgem.efem.fem, 38
petgem.efem.general_functions, 38
petgem.efem.nedelec_elements, 39
petgem.efem.setup, 32
petgem.efem.vector_matrix_functions, 40
petgem.mesh.mesh, 36
petgem.mesh.setup, 33
petgem.monitoring.monitoring, 46
petgem.monitoring.setup, 33
petgem.parallel.parallel, 42
petgem.parallel.setup, 33
petgem.postprocessing.postprocessing,

44
petgem.postprocessing.setup, 33
petgem.setup, 32
petgem.solver.setup, 33
petgem.solver.solver, 41
petgem.version, 32

s
setup, 30

59

PETGEM Documentation, Release 1.0

60 Python Module Index

INDEX

A
assembler_parallel() (in module pet-

gem.solver.assembler), 40

B
builder (module), 30

C
check_versions() (in module setup), 30
checkDictionaryConsistencyMaster() (in module pet-

gem.base.base), 33
checkDictionaryConsistencySlave() (in module pet-

gem.base.base), 34
checkDirectoryPath() (in module petgem.base.base), 34
checkFilePath() (in module petgem.base.base), 34
checkNumberParams() (in module petgem.base.base), 34
Clean (class in builder), 30
compile_flags() (petgem.config.Config method), 31
compute_analytic_element_matrix() (in module pet-

gem.efem.nedelec_elements), 39
compute_boundary_edges() (in module pet-

gem.efem.efem), 37
compute_boundary_faces() (in module pet-

gem.efem.efem), 37
compute_edges() (in module petgem.efem.efem), 37
compute_faces() (in module petgem.efem.efem), 37
compute_items() (in module pet-

gem.efem.general_functions), 38
compute_signs_edges() (in module pet-

gem.efem.nedelec_elements), 39
computeFieldsReceiver() (in module pet-

gem.postprocessing.postprocessing), 45
Config (class in petgem.config), 31
configuration() (in module petgem.base.setup), 32
configuration() (in module petgem.decomposition.setup),

32
configuration() (in module petgem.efem.setup), 32
configuration() (in module petgem.mesh.setup), 33
configuration() (in module petgem.monitoring.setup), 33
configuration() (in module petgem.parallel.setup), 33
configuration() (in module petgem.postprocessing.setup),

33

configuration() (in module petgem.setup), 32
configuration() (in module petgem.solver.setup), 33
configuration() (in module setup), 30
create_directory_output() (in module pet-

gem.postprocessing.postprocessing), 45
CSEM_MODELLING() (in module pet-

gem.base.modelling), 35

D
debug_flags() (petgem.config.Config method), 31
delete_duplicate_rows() (in module pet-

gem.efem.vector_matrix_functions), 40
direct_scipy() (in module petgem.solver.solver), 41

E
EpReceiverComputation() (in module pet-

gem.postprocessing.postprocessing), 44
EsReceiverComputation() (in module pet-

gem.postprocessing.postprocessing), 44
EtReceiverComputation() (in module pet-

gem.postprocessing.postprocessing), 45
examples.params_file_template (module), 46
export_output() (in module pet-

gem.postprocessing.postprocessing), 45

F
finalize_options() (builder.NoOptionsDocs method), 30
find_unique_rows() (in module pet-

gem.efem.vector_matrix_functions), 40
func_start_as_many() (in module pet-

gem.parallel.parallel), 42
func_start_as_single() (in module pet-

gem.parallel.parallel), 42

G
gauss_points_tetrahedron() (in module pet-

gem.efem.fem), 38
get_basic_info() (in module petgem.version), 32
get_nNodes_nElems() (in module petgem.mesh.mesh),

36
get_num_processors() (in module pet-

gem.parallel.parallel), 43

61

PETGEM Documentation, Release 1.0

get_sphinx_make_command() (in module builder), 30

H
has_attr() (in module petgem.config), 32

I
initialize_options() (builder.NoOptionsDocs method), 30
is_release() (petgem.config.Config method), 31
iterative_scipy() (in module petgem.solver.solver), 41

K
kernel (module), 33

L
link_flags() (petgem.config.Config method), 32

N
nedelec_basis_iterative() (in module pet-

gem.efem.nedelec_elements), 39
nedelec_basis_vectorized() (in module pet-

gem.efem.nedelec_elements), 39
NoOptionsDocs (class in builder), 30
numpydoc_path() (petgem.config.Config method), 32

P
package_check() (in module builder), 31
parallel_map() (in module petgem.parallel.parallel), 43
parallel_map_async() (in module pet-

gem.parallel.parallel), 43
parallel_starmap() (in module petgem.parallel.parallel),

43
petgem.base.base (module), 33
petgem.base.modelling (module), 35
petgem.base.setup (module), 32
petgem.base.styles (module), 35
petgem.config (module), 31
petgem.decomposition.setup (module), 32
petgem.efem.efem (module), 37
petgem.efem.fem (module), 38
petgem.efem.general_functions (module), 38
petgem.efem.nedelec_elements (module), 39
petgem.efem.setup (module), 32
petgem.efem.vector_matrix_functions (module), 40
petgem.mesh.mesh (module), 36
petgem.mesh.setup (module), 33
petgem.monitoring.monitoring (module), 46
petgem.monitoring.setup (module), 33
petgem.parallel.parallel (module), 42
petgem.parallel.setup (module), 33
petgem.postprocessing.postprocessing (module), 44
petgem.postprocessing.setup (module), 33
petgem.setup (module), 32
petgem.solver.assembler (module), 40

petgem.solver.setup (module), 33
petgem.solver.solver (module), 41
petgem.version (module), 32
petgemFooter() (in module petgem.base.styles), 35
petgemHeader() (in module petgem.base.styles), 35
postprocessing() (in module pet-

gem.postprocessing.postprocessing), 45
printMeshInfo() (in module petgem.mesh.mesh), 36
printModellingData() (in module pet-

gem.base.modelling), 36
printTimes() (in module petgem.monitoring.monitoring),

46
python_include() (petgem.config.Config method), 32
python_version() (petgem.config.Config method), 32

R
read_receivers_file() (in module pet-

gem.postprocessing.postprocessing), 46
readHdf5() (in module petgem.mesh.mesh), 36
readMesh() (in module petgem.mesh.mesh), 37
readUserParams() (in module petgem.base.base), 34
recursive_glob() (in module builder), 31
run() (builder.Clean method), 30
run() (builder.SphinxHTMLDocs method), 30
run() (builder.SphinxPDFDocs method), 30

S
set_dirichlet_boundaries() (in module pet-

gem.solver.solver), 41
set_str_format() (in module petgem.base.styles), 35
setup (module), 30
setup_package() (in module setup), 30
solver() (in module petgem.solver.solver), 41
SphinxHTMLDocs (class in builder), 30
SphinxPDFDocs (class in builder), 30
system() (petgem.config.Config method), 32

T
test_footer() (in module petgem.base.styles), 35
test_header() (in module petgem.base.styles), 35
tetraXiEtaZeta2XYZ() (in module petgem.efem.fem), 38
timing() (in module petgem.monitoring.monitoring), 46

U
unitary_test() (in module builder), 31
unitary_test() (in module petgem.base.base), 34
unitary_test() (in module petgem.base.modelling), 36
unitary_test() (in module petgem.base.styles), 35
unitary_test() (in module petgem.efem.efem), 38
unitary_test() (in module petgem.efem.fem), 38
unitary_test() (in module pet-

gem.efem.general_functions), 39
unitary_test() (in module pet-

gem.efem.nedelec_elements), 40

62 Index

PETGEM Documentation, Release 1.0

unitary_test() (in module pet-
gem.efem.vector_matrix_functions), 40

unitary_test() (in module petgem.mesh.mesh), 37
unitary_test() (in module petgem.monitoring.monitoring),

46
unitary_test() (in module petgem.parallel.parallel), 44
unitary_test() (in module pet-

gem.postprocessing.postprocessing), 46
unitary_test() (in module petgem.solver.assembler), 41
unitary_test() (in module petgem.solver.solver), 42
user_options (builder.NoOptionsDocs attribute), 30

Index 63

	List of figures
	List of tables
	1 Introduction
	1.1 3D CSEM FM in geophysics
	1.2 Present modelling challenges of 3D CSEM FM
	1.2.1 Discretisation remarks
	1.2.2 Computational remarks

	1.3 Summary and thesis objectives

	2 HPC python code for 3D CSEM FM
	2.1 EFEM formulation for 3D CSEM FM
	2.2 Field interpolation with EFEM
	2.3 Algorithms for EFEM
	2.4 PETGEM
	2.4.1 Code workflow
	2.4.2 Software stack overview
	2.4.3 Programming language
	2.4.4 Target architectures
	2.4.5 Requeriments
	2.4.6 Coding style
	2.4.7 Python 3.x compatibility
	2.4.8 Code availability

	2.5 Parallel strategies
	2.5.1 Parallelism on shared-memory platforms
	2.5.2 Parallelism on distributed-memory platforms

	2.6 Scalability tests
	2.6.1 Shared-memory tests
	2.6.2 Distributed-memory tests

	3 Use cases of 3D CSEM FM
	3.1 Canonical model of an off-shore hydrocarbon reservoir
	3.2 3D CSEM FM with bathymetry
	3.3 Synthetic model with real target
	3.4 Automatic mesh adaptation
	3.5 Convergence of solvers

	4 Conclusions and future work
	4.1 Conclusions
	4.2 Future directions

	5 Papers from the thesis
	References
	Appendix A Maxwell's equations theory
	Appendix B Numerical techniques in electromagnetics
	B.1 Finite Element Method (FEM)
	B.2 Edge Finite Element Method (EFEM)
	B.3 Test case of EFEM

	Appendix C Prototyping and validation with synthetic test
	C.1 Prototype for 3D CSEM modelling
	C.1.1 Synthetic test for mass matrix
	C.1.2 Synthetic test for stiffness matrix

	Appendix D PETGEM documentation

