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Abstract

Efficiently managing the memory subsystem of modern multi/manycore architectures is in-
creasingly becoming a challenge as systems grow in complexity and heterogeneity. From
multicore architectures with several levels of on-die cache to heterogeneous systems com-
bining graphics processing units (GPUs) and traditional general-purpose processors, the once
simple Von Neumann machines have transformed into complex systems with a high reliance
on an efficient memory subsystem. In the field of high performance computing (HPC) in
particular, where massively parallel architectures are used and input sets of several terabytes
are common, careful management of the memory hierarchy is crucial to exploit the full com-
puting power of these systems.

The goal of this thesis is to provide computer architects with valuable information to
guide the design of future systems, and in particular of those more widely used in the field
of HPC, i.e., symmetric multicore processors (SMPs) and GPUs. With that aim, we present
an analysis of some of the inefficiencies and shortcomings of current memory management
techniques and propose two novel schemes leveraging the opportunities that arise from the
use of new and emerging programming models and computing paradigms.

The first contribution of this thesis is a block prefetching mechanism for task-based pro-
gramming models. Using a task-based programming model simplifies parallel programming
and allows for better resource utilization in the large-scale supercomputers used in the field
of HPC, while enabling sophisticated memory management techniques. The scheme pro-
posed relies on a memory-aware runtime system to guide prefetching while avoiding the
main drawbacks of traditional prefetching mechanisms, i.e., cache pollution, thrashing and
lack of timeliness. It leverages the information provided by the user about tasks’ input and
output data to prefetch contiguous blocks of memory that are certain to be useful. The pro-
posed scheme targets SMPs with large cache hierarchies and uses heuristics to dynamically
decide the best cache level to prefetch into without evicting useful data.

The focus of this thesis then turns to heterogeneous architectures combining GPUs and
traditional multicore processors. The current trend towards tighter coupling of GPU and CPU
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enables new collaborative computations that tax the memory subsystem in a different manner
than previous heterogeneous computations did, and requires careful analysis to understand
the trade-offs that are to be expected when designing future memory organizations.

The second contribution is an in-depth analysis on the impact of sharing the last-level
cache between GPU and CPU cores on a system where the GPU is integrated on the same die
as the CPU. The analysis focuses on the effect that a shared cache can have on collaborative
computations where GPU and CPU threads concurrently work on a problem and share data
at fine granularities. The results presented here show that sharing the last-level cache is
largely beneficial as it allows for better resource utilization. In addition, the experimental
evaluation shows that collaborative computations benefit significantly from the faster CPU-
GPU communication and higher cache hit rates that a shared cache level provides.

The final contribution of this thesis analyzes the inefficiencies and drawbacks of demand
paging as currently implemented in discrete GPUs by NVIDIA. Then, it proposes a novel
memory organization and dynamic migration scheme that allows for efficient data sharing
between GPU and CPU, specially when executing collaborative computations where data is
migrated back and forth between the two separate memories. This scheme migrates data at
cache line granularities transparently to the user and operating system, avoiding false sharing
and the unnecessary data transfers that occur on the current demand paging mechanism.

The results show that the proposed scheme is able to outperform the baseline system
by reducing the migration latency of data that is copied multiple times between the two
memories. In addition, analysis of different interconnect latencies shows that fine-grained
data sharing between GPU and CPU is feasible as long as future interconnect technologies
achieve four to five times lower round-trip times than PCI-Express 3.0.
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Chapter 1
Introduction

Riding on the self-fulfilled words of Gordon Moore back in the 1960s, microprocessor design
saw a prolonged period of performance improvements during the 1990s. New technology
developments and architectural enhancements provided year over year performance gains
of ∼1.5x [1] for more than a decade. Unfortunately, memory technology improvements
during the same period of time were more limited, creating the gap in performance between
the processor and off-chip memory shown in Figure 1.1. This gap, known as the Memory
Wall [2], kept widening as core clock frequencies increased and as novel micro-architectural
improvements allowed processors to further exploit instruction-level parallelism (ILP).

By the early 2000s, power and temperature constraints (the so-called Power Wall [3])
had caused the stagnation of core clock frequencies, and the ILP achievable through micro-
architectural improvements was generally believed to be beyond the point of diminishing
returns [1]. Processor manufacturers soon realized a paradigm shift was necessary and tran-
sitioned to the first commodity SMPs. Those first dual-core processors signified the begin-
ning of the multicore era and the shift from ILP-driven performance gains to thread-level
parallelism (TLP)-based speedup.

Today, with an increasing number of cores per chip and multiple hardware threads per
core, the Memory Wall is is still very much present. In the field of HPC, in particular,
the top positions of the Top500 list of supercomputers [4] are already employing manycore
processors with hundreds of hardware threads per node. The memory subsystem of such
systems must, therefore, sustain the traffic generated by multiple concurrent threads without
sacrificing fairness and within a constrained power envelope.

As a consequence, a wide range of new memory technologies and organizations have
emerged to fulfill the requirements of these memory-hungry architectures. From software-
managed scratchpads giving the user full control of data movement, to 3D die-stacked mem-
ories providing one order of magnitude higher bandwidth than traditional memory tech-
nologies, or simply by integrating additional and larger levels of on-chip cache memories,
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Figure 1.1: Processor-memory performance gap. From ”Computer Architecture: A Quanti-
tative Approach” by John L. Hennessy, David A. Patterson.

the memory hierarchy of current systems is becoming increasingly complex and difficult to
manage efficiently.

The cache hierarchy, in particular, is a fundamental part of the memory subsystem in
modern architectures. Current processors employ a multi-level hierarchy of on-die cache
memories in order to reduce memory access times and bridge the processor-memory per-
formance gap. Static random access memory (SRAM) caches exploit the temporal locality
commonly found in CPU applications, providing access times one order of magnitude lower
than off-chip dynamic random access memory (DRAM) [1], while reducing the pressure on
the interconnect fabric and memory controllers. Their importance is such that the on-chip
real-estate devoted to the cache hierarchy may even overshadow that of the computing ele-
ments themselves. Utilizing these resources optimally is therefore paramount to achieve the
peak performance these architectures are capable of.

One of the techniques extensively used in modern processors to leverage the cache hier-
archy is data prefetching. The goal of prefetching is to hide the latency of accessing off-chip
memory, avoiding pipeline stalls derived from memory instructions missing in the cache hi-
erarchy. Data prefetching schemes attempt to predict the memory that will be referenced
in the future and fetch it in advance, moving it from high-latency DRAM memory into the
faster on-die caches. Prefetching can broadly be divided into hardware based or software
based. Software prefetching requires executing special prefetch instructions that are typi-
cally inserted by the compiler in an optimization pass. Hardware prefetching schemes re-
quire specialized hardware, known as prefetch engines, that analyzes the stream of memory
accesses attempting to find patterns to predict future memory references.
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Nowadays, most processors implement at least one level of hardware prefetching, and
in many cases, multiple schemes are implemented for the different levels of the cache hi-
erarchy [5]. Although prefetching schemes have become very efficient at predicting future
memory references, their effectiveness depends on the algorithms and data structures used
by the application. No single prefetching mechanism has been found that consistently ob-
tains large performance gains in all kinds of applications [6]. Furthermore, even the most
sophisticated prefetching techniques may degrade performance by polluting the cache with
unnecessary data or simply by prefetching data too early or too late [7, 8]. Accurate prefetch-
ing is therefore needed to ensure system performance is not degraded.

In order to exploit the computing power of current multicore architectures and effi-
ciently manage their complex memory organizations, scientists resort to new programming
models and runtime systems that can assist the hardware on the task of memory manage-
ment [9, 10, 11]. These new programming models can ease the tasks of programming par-
allel algorithms, while their memory-aware runtime systems offer a valuable opportunity
for memory optimizations such as data prefetching. Using the information available to the
runtime to guide prefetching can avoid the main drawbacks of traditional schemes.

Still, efficiently managing the memory hierarchy is a difficult task as processors be-
come more complex and heterogeneous. The traditional SMP model where several homoge-
neous cores share a common memory pool is being abandoned for heterogeneous architec-
tures. Multiprocessors with non-uniform memory access times (NUMA) [12], system-on-
chip (SoC) with differently sized cores [13] or processors with GPUs integrated on the same
die [14] are some examples of the heterogeneity we can find in current systems. This hetero-
geneity adds another layer of complexity to the task of memory management, as computing
elements with very different characteristics must share data and system resources.

In particular, the emergence in the field of HPC of heterogeneous systems composed of
commodity multicore processors and GPUs has led to a brand new world of scientific het-
erogeneous computing. GPUs are massively parallel processors specialized to exploit Data-
Level Parallelism (DLP) in a Single-Instruction Multiple-Data (SIMD) fashion (sometimes
called Single-Instruction Multiple-Thread, or SIMT). Initially designed for graphics process-
ing, GPUs have found their way into general-purpose computing, and more specifically into
the field of HPC, due to their enormous computing capabilities and energy efficiency. As an
example of their prevalence in HPC, 34 out of the top 50 supercomputers in the last Green500
list of the most energy-efficient supercomputers use GPUs from NVIDIA or AMD [15].

The large majority of GPUs found today in the market are discrete devices connected to a
host machine through an expansion bus, e.g., PCI-Express (PCIe) for x86 systems or NVLink
for POWER architectures. Discrete GPUs have their own pool of specialized high-bandwidth
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memory, requiring data to be copied back and forth between host and device. Yet, the trend
in the last few years has been towards logical and physical integration of GPU and CPU. We
find examples of physical integration in the latest chips from Intel and AMD, which integrate
the GPU on-die with the CPU [14, 16]. These architectures forgo the separate address spaces
and provide a unified memory pool that can be access directly by GPU and CPU cores.

Logical integration of GPU and CPU is a natural step taken by GPU manufacturers to im-
prove the programmability of their devices and to make general-purpose computing on GPUs
(GPGPU) more accessible to the public. Until recently, heterogeneous computing in systems
with discrete GPUs required the programmer to explicitly manage the two separate memory
pools and copy data back and forth between them. Newer products from NVIDIA improve
programmability with features such as a shared virtual address space that allows GPU and
CPU to use the same pointers to shared data structures [17], and more recently, automatic
data movement between memories performed transparently to the user by the CUDA run-
time [18]. Unfortunately, these features are still relatively new and suffer from inefficiencies
that cause performance loss compared to using fine-tuned manual data movement.

The trend towards tighter integration and the use of emerging heterogeneous computing
frameworks with features such as shared virtual memory and system-wide atomic opera-
tions [19] have opened the design space for collaborative computations. On the traditional
heterogeneous model the host does little to no computation, usually relegated to copying the
data to the GPU and waiting for the results. In collaborative computations, on the other hand,
the algorithms are partitioned and each part is assigned to the computing element it is best
suited for, i.e., regions with data and/or thread parallelism are assigned to the GPU, while
regions with low parallelism are assigned to the larger CPU cores that can exploit higher ILP.

Physical and logical integration of GPU and CPU is therefore desirable as it improves
programmability and allows for collaborative computations, but it also presents new chal-
lenges that computer architects must consider when designing tightly coupled heterogeneous
architectures. Physical integration leads to resource sharing among computing elements with
widely different characteristics, such as large out-of-order CPU cores and small in-order
GPU cores. Which resources should be shared and how to best manage them to guarantee
fairness and maximize performance are still open questions that require detailed analysis.

Logical integration on discrete architectures also leads to new issues that should be ex-
plored. The fine-grained data sharing patterns seen when executing collaborative computa-
tions greatly differ from that of traditional heterogeneous computations where data is copied
in bulk transfers only at kernel boundaries. The memory organization of current hetero-
geneous architectures is designed for the traditional computational model and is therefore
inefficient when collaborative computations are executed.
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CHAPTER 1. INTRODUCTION

1.1 Thesis Objectives and Contributions

In this dissertation we analyze the challenges of efficiently managing the memory hierarchy
in current multi/manycore processors. In particular, we analyze the architectures more com-
monly used in the field of HPC, i.e., multicore SMPs and GPUs. Our analysis focuses on
the use of new and emerging programming and computational models, and how their use
modifies the trade-offs encountered when designing the memory subsystem.

The objective of this work is to understand the shortcomings of current memory man-
agement schemes and identify possible design improvements. Our goal is to aid computer
architects by providing new techniques that can guide the design decisions of future archi-
tectures. In order to meet these goals, this dissertation makes the contributions we describe
in the following.

1.1.1 Adaptive Runtime-Assisted Block Prefetching

We identify an opportunity for efficient data management when using a task-based program-
ming model with a memory-aware runtime system. We propose an adaptive software-based
prefetching scheme that leverages runtime system memory awareness to avoid the main
drawbacks of typical prefetchers, i.e., cache pollution and cache thrashing.

Our scheme leverages the information about the tasks’ input and output data to prefetch
only data that is certain to be needed, avoiding cache pollution. In addition, knowing in
advance the memory region required by each task allows the runtime to generate prefetch
instructions for blocks of data instead of one cache line at at time, improving efficiency. The
runtime-directed scheme minimizes cache thrashing by dynamically deciding the cache level
to prefetch into based on the amount of data calculated to fit without evicting the current
working set. Lastly, it leverages the information about the execution path to initiate the
prefetch with enough time to ensure, to a certain degree, that data will be ready by the time
it is needed.

To support the prefetching scheme, we propose a small DMA-like controller to asyn-
chronously manage prefetching. This simple hardware structure receives prefetch commands
generated by the runtime system, performs address translation, and initiates the movement
of data from main memory to the cache hierarchy.
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1.1. THESIS OBJECTIVES AND CONTRIBUTIONS

1.1.2 Last-Level Cache Sharing on Integrated Heterogeneous Architec-
tures

The second contribution of this dissertation is an in-depth analysis on the effect of sharing the
last-level cache on a heterogeneous architecture integrating the GPU on-die with the CPU.
We provide an analysis of two memory configurations: a shared configuration where GPU
and CPU have a common L3 last-level cache they can access equally, and a split configura-
tion where each have their own private last-level cache.

In this part of the thesis we focus specifically on the behavior of the memory subsystem
when executing collaborative heterogeneous computations. In these applications, GPU and
CPU share data at fine granularities during the computation and therefore the design of the
memory hierarchy has a significant impact on the performance of the applications. In addi-
tion, we also evaluate the two memory organizations with a set of traditional heterogeneous
benchmarks where GPU and CPU only share data at kernel boundaries.

This analysis shows the benefits and drawbacks of a shared last-level cache and provides
insights in order to design the memory subsystem of future integrated architectures.

1.1.3 Efficient Data Sharing on Heterogeneous Architectures

The final contribution of this work is a memory organization and dynamic data migration
scheme for heterogeneous architectures with discrete GPUs. We identify the shortcomings of
the current dynamic data management scheme in NVIDIA GPUs and propose a mechanism
that efficiently shares data between host and device, especially when executing collaborative
computations where data is migrated multiple times between the two memories.

We analyze the inefficiencies of demand paging as it is currently implemented in the latest
family of GPUs by NVIDIA, namely, false sharing caused by the large granularity at which
data is migrated and unnecessary long-latency page fault handling on every migration. We
then propose a memory organization and a dynamic migration scheme that efficiently moves
data between the two memories transparently to the user and the operating system (OS).

Our scheme reduces the granularity of data transfers to cache lines from full OS-defined
memory pages and avoids paying multiple times the page fault handling of data that is mi-
grated more than once. We leverage the observation that the page table of the heterogeneous
process very rarely needs to be modified during runtime, and therefore copying only once
each page table entry to the GPU is sufficient to perform virtual address translation. In addi-
tion, we provide an analysis of different interconnect latencies to evaluate the feasibility of
fine-grained memory transfers.
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CHAPTER 1. INTRODUCTION

1.2 Thesis Organization

The rest of this dissertation is organized as follows:
Chapter 2: State of the Art introduces the state of the art and provides some background

to understand the rest of the work done in this thesis. This chapter explores previous work on
prefetching and similar proposals that leverage a runtime system. It then covers the topic of
resource sharing on integrated heterogeneous architectures and collaborative computations.
It concludes with state of the art on dynamic data movement schemes for heterogeneous
architectures with discrete GPUs.

Chapter 3: Methodology presents the methodology followed throughout the thesis. It
introduces the simulation infrastructure used in each chapter, as well as the workloads and
metrics used to evaluated the proposed work.

Chapter 4: Adaptive Runtime-Assisted Block Prefetching covers the first contribu-
tion, providing motivation, a description of the target architecture, implementation details
and the results obtained.

Chapter 5: Last-Level Cache Sharing on Integrated Heterogeneous Architectures
covers the second contribution, motivating it and providing details about the two memory
organizations evaluated. It then presents the evaluation with an in-depth analysis of the
results.

Chapter 6: Efficient Data Sharing on Heterogeneous Architectures covers the last
contribution of this thesis. It introduces the motivation behind this technique, details about
the target architecture, main implementation details and the evaluation of the proposed scheme.

Chapter 7: Conclusions and Future Work closes this dissertation, reviewing the con-
tributions, summarizing the insights obtained during the thesis and detailing some potential
lines of future work.
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Chapter 2
State of the Art

This chapter presents the state of the art relevant to this dissertation, introducing the concepts
and ideas that provide a background to understand and frame the rest of the work. It first in-
troduces task-based programming models and the concept of data prefetching, discussing
relevant prefetching schemes found in the literature and the metrics commonly used to eval-
uate them. It then focuses on heterogeneous architectures and the programming models used
for heterogeneous computing.

2.1 Task-Based Programming Models

Modern multicore processors integrate tens of cores with multiple hardware threads per core.
Furthermore, supercomputers are built by aggregating several processors in a node and con-
necting hundreds of nodes together. Programming applications to take advantage of the
enormous computing power of these systems is a complex endeavor and has spurred the
development of new programming models.

Task-based programming models, in particular, attempt to simplify parallel programming
by introducing the concept of tasks, i.e., self-contained portions of code that run serially but
can run concurrently with other tasks. A runtime system manages the execution order of the
tasks, guaranteeing that data dependencies between tasks are maintained.

Tasks provide an intuitive way for programmers to break down complex algorithms
into and to exploit the available parallelism of modern machines. Some examples of task-
based programming models include: Cilk [11], OpenMP [9], Sequoia [20], OmpSs [10],
StarPU [21], X10 [22], Chapel [23] and Intel TBB [24]

Task-based dataflow programming models, in particular, provide automatic dependency
tracking by the runtime system, further simplifying parallel programming. Programmers
require only annotating their code with information about the input and output data used by
each task [9, 10, 21].
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#pragma omp task in(a, b) inout(c)
void sgemm_t(float a[M][M], float b[M][M], float c[M][M]);

#pragma omp task inout(a)
void spotrf_t(float a[M][M]);

#pragma omp task in(a) inout(b)
void strsm_t(float a[M][M], float b[M][M]);

#pragma omp task in(a) inout(b)
void ssyrk_t(float a[M][M], float b[M][M]);

--------------------------------------------

float A[N][N][M][M]; // NxN blocked matrix, with MxM blocks
for (int j = 0; j<N; j++) {

for (int k = 0; k<j; k++)
for (int i = j+1; i<N; i++)

sgemm_t(A[i][k], A[j][k], A[i][j]);

for (int i = 0; i<j; i++)
ssyrk_t(A[j][i], A[j][j]);

spotrf_t(A[j][j]);

for (int i = j+1; i<N; i++)
strsm_t(A[j][j], A[i][j]);

}

Figure 2.1: Example code of a Cholesky Decomposition in the OmpSs programming model

Figure 2.1 shows a code snippet of a Cholesky Decomposition programmed in the OmpSs
programming model. Pragma annotations are used to identify and declare tasks. The key-
words in, out and inout are used to specify input and output dependencies, corresponding to
the read-only, write-only and read-write task data, respectively. This information is analyzed
by the runtime to produce a task dependency graph that guides the execution, maintaining
program correctness without the need for explicit synchronization.

2.2 Prefetching

Prefetching is a well-known and widely used mechanism to reduce memory access latency by
moving data from off-chip memory into the cache hierarchy before it is requested. Prefetch-
ing can be done for instructions and/or data. In this section we provide a broad overview
of some of the more widely used techniques for data prefetching and those that are more
relevant to the work done in Chapter 4.
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2.2.1 Traditional Prefetching

Prefetching schemes can be software, hardware-based or a combination of both. Hardware-
based prefetching relies on a dedicated hardware structure called the prefetch engine. The
prefetch engine, implemented within the cache hierarchy,1 analyzes at runtime the stream of
memory instructions and attempts to find patterns in order to predict future memory refer-
ences. Prefetch engines can implement different algorithms with various complexities and
various area requirements. Hardware-based prefetching is widely used in modern multicore
processors, where it is common to find multiple prefetch engines implementing different
algorithms in different cache cache levels.

The simplest form of prefetching, one block lookahead [25], fetches the next consecutive
block b + 1 after a reference to block b. Stride-based prefetching relies on finding con-
stant strides within the stream of memory accesses, either by lookahead into the instruction
stream [26] or by using a program counter-indexed reference prediction table (RPT) to keep
track of recent accesses [27]. Stride-based prefetching is highly effective for applications
with linear data access patterns and is still used in modern multicore processors [5].

History-based prefetchers leverage the observation that memory access patterns tend to
repeat within a program. Correlation prefetching in particular, attempts to correlate past
memory behavior with future memory references. Markov prefetching is a form of corre-
lation prefetching [28] where a state transition diagram is built with the history of memory
accesses. Each state or node in the graph has a probability associated with a state transition
that represents the likelihood that a memory reference will follow the target node. Transi-
tions with a probability above a certain threshold are selected for prefetching. Nesbit and
Smith [29] proposed using a global history buffer (GHB) to store past information more ac-
curately than previous RPT-based schemes. The GHB is a FIFO-like structure that stores the
cache miss history while eliminating stale data that can lead to useless prefetches.

More advanced prefetching schemes are able to dynamically modify the behavior of the
prefetch engine(s). Srinath et al. [30] propose a scheme that uses dynamic feedback ob-
tained at runtime to tune the aggressiveness of the prefetch engine based on its effect on
performance. Jimenez et al. [31] propose a similar adaptive prefetching mechanism lever-
aging the capabilities of the programmable prefetch engine in the IBM POWER7 processor.
Their algorithm dynamically adjusts the configurable prefetch parameters based on IPC vari-
ations during different application phases. The scheme we propose in Chapter 4 dynamically
selects the best cache level to prefetch into based on estimated cache space available.

1This is known as processor-side prefetching. There are also proposals for memory-side prefetching where
the prefetch engine is located in the memory controller.
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Contrary to hardware-based prefetching schemes, software-based prefetching does not
require additional hardware support, but requires executing special prefetch instructions.
Most modern instruction set architectures (ISAs) provide some form of non-blocking fetch

instruction that loads data from main memory into the cache hierarchy. To avoid potentially
harming performance due to memory related exceptions, i.e., page faults or segmentation
faults, prefetch instructions are typically not allowed to cause exceptions. If the address ref-
erenced is incorrect and an error is incurred, the instruction is dropped. Prefetch instructions
are inserted into the application code, usually by the compiler on an optimization pass [32],
although it can also be manually done by programmers. In the x86 and ARM-v8 ISAs,
prefetch instructions are considered hints and are not guaranteed to be executed [33, 34].

One of the main challenges of software prefetching schemes is finding the optimal po-
sition within the code to insert the prefetch instructions. This issue, also important for
hardware-based schemes, is known as prefetch timeliness. Issuing the prefetch too early
may evict useful data from the cache hierarchy (a problem known as cache thrashing), while
doing it too late may not fully hide the latency of accessing off-chip memory. Gornish et
al. [35] proposed an algorithm to find at compile time the earliest point in the code where
prefetch instructions can be inserted, focusing specifically on array references within loops.

Mowry and Gupta [36] analyzed the impact of hand-inserted prefetch instructions and
found that the performance improvement on applications with regular access patterns was
significant. Prefetching on applications with extensive use of pointers and linked lists, on
the other hand, was more complex and less successful. They further developed a compiler
algorithm to automatically insert prefetch instructions in scientific codes [37]. Their algo-
rithm analyzes the locality of memory references to find spatial and temporal reuse, and uses
the number of iterations in a loop as a reference to find the scheduling point for the prefetch
instructions. The timeliness of the prefetching scheme we propose in Chapter 4 relies on
the runtime system’s knowledge about the path of execution. By knowing when and where

data is required, the runtime system can initiate prefetching with enough time to ensure, to a
certain degree, that it will arrive before it is requested by the cores.

Hybrid prefetch schemes mixing hardware and software techniques have been proposed
to benefit from the advantages of each method: the accuracy of the non-speculative software
prefetching schemes and the performance potential of hardware-based prefetchers. Chen
and Baer [38] explored a scheme where the compiler inserts prefetches for user-defined data
objects of any size, fetching them into the second level cache. The hardware prefetch engine
then works at cache line granularity and brings data into the first cache level, closer to the
cores. They proposed defining a special control instruction that would enable or disable the
hardware prefetcher with the goal of prefetching only during loops. This approach is similar
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to the scheme proposed in Chapter 4, but we leverage the runtime system to generate prefetch
instructions using the dynamic information available during runtime instead of relying on the
limited static information available to the compiler.

Wang et al. [39] proposed a hybrid scheme where the compiler encodes hints in load
memory operations based on the presence of spatial locality or irregular data structures. The
hints are propagated at runtime to the prefetch engine on the second cache level, that uses
them to regulate its aggressiveness and reduce the bandwidth usage.

In addition to timeliness, two other metrics are used to evaluate the efficiency of a
prefetching scheme: accuracy and coverage. Accuracy represents the percentage of prefetched
cache lines that were actually referenced by the processor, and it is usually formulated as:

Prefetch Accuracy =
Useful Prefetches

Total Prefetches Issued

Coverage represents the percentage of misses avoided due to prefetching, and it can be
formulated as2:

Prefetch Coverage =
Misses Eliminated due to Prefetching

Total Cache Misses

In general terms, these three metrics constitute three design points that must be bal-
anced when designing a prefetch scheme. A very aggressive prefetcher may have very high
coverage at the expense of many mispredictions and thus low accuracy. Alternatively, a con-
servative prefetch scheme may only issue prefetch requests when there is a high confidence
that the block will be useful, thus having high accuracy but low coverage. Finding a good
middle ground between them is a complex issue and can largely depend on the workloads.

The prefetching scheme we propose in Chapter 4 uses the information provided by the
user about the task’s input data to prefetch, and therefore, no speculation is required. In this
manner, our scheme achieves 100% accuracy, as all the data prefetched is guaranteed3 to be
needed. Coverage, on the other hand, will depend on the percentage of data the task accesses
that is declared by the user. In order to maintain program correctness all global data must be
declared as either input or output, but the tasks are allowed to allocate extra local data, which
is not declared in a pragma clause and will therefore not be prefetched.

Another important consideration for prefetch schemes is the location where data is prefetched
into. Software prefetching schemes can use hints to decide which level of the cache hierarchy
to place the prefetched data into. For example, the x86 ISA provides four different prefetch
instructions: PREFETCHT0, PREFETCHT1, PREFETCHT2 and PREFETCHNTA, that

2A different formulation can also be found in the literature as: Useful Prefetches / Total Cache Misses.
3Perfect accuracy depends on the user successfully identifying and specifying the task’s input data.
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indicate which levels of the hierarchy to prefetch into, while the ARM-v8 ISA PRFM instruc-
tion uses a target parameter to specify the prefetch destination. As discussed, the scheme we
propose in Chapter 4 can dynamically decide the best cache level based on the task’s input
size and cache space available.

Hardware prefetchers place the fetched data in the cache level where the prefetch engine
observing the memory access stream and issuing prefetch requests is located. It is also pos-
sible to place the prefetched data into a small prefetch buffer located next to the cache [40].
The advantage of doing so is that it avoids cache pollution and thrashing.

Cache pollution is caused by mispredicted blocks taking space in the cache; cache thrash-
ing is caused by prefetched blocks – even when they are useful – evicting data that is still
in use by the processor. The disadvantage of using a prefetch buffer, in addition to the extra
die area required, is that it can either increase the cache access latency or waste power. If
the prefetch buffer lookup is done only after the cache tag array lookup returns a miss, the
operations are serialized and the access latency is increased. If the lookups are done in par-
allel, every cache access will consume power by doing a prefetch buffer look-up that may be
unnecessary if the access hits in the cache.

2.2.2 Block Prefetching

Traditional software and hardware prefetching schemes work at the granularity of cache
lines. In software-based schemes, this entails executing one prefetch instruction per cache
line fetched, using valuable micro-architectural resources that could instead be used to exe-
cute instructions that make forward progress and thus introducing a non-negligible execution
overhead [38]. In addition, prefetch instructions are interleaved in the code, increasing the
size of the resulting binary and reducing the effective size of the instruction cache.

The benefit of prefetching large blocks of data instead of individual cache lines was first
noted by Gornish et al. [35]. In their approach, the compiler performs static program de-
pendence analysis on array references in nested loops, inserting a block prefetch command
before the data is referenced. Wall [41] presented a study on the effect of different code op-
timizations on the memory subsystem, including software block prefetching using the MOV
instruction. This approach consisted on manually inserting MOV instructions in the code,
which, as author found out, may in some cases not work well with other compiler optimiza-
tions. Chen and Baer [38], as mentioned earlier, proposed a hybrid scheme where compiler-
inserted prefetch instructions fetch blocks of memory corresponding to user-defined objects
into the second cache level. The hardware prefetch engine then further brings data closer to
the cores at cache line granularity.
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ARM includes a block prefetcher in their Cortex-A8 and Cortex-A9 processors [42]. The
Preload Engine (PE), as it is named, allows the user to load selected regions of memory into
the L2 cache. The PE expects the programmer to add load directives by hand, requiring a
good understanding of the code and some knowledge of the underlying architecture. The
PE is attached to the cores, and is only able to direct the data transfers to the last level
L2 cache. While this approach relies on compiler analysis or the programmer to manually
insert prefetch instructions in the code, in our scheme the runtime system inserts them with
minimal user intervention and based on dynamic information available at runtime.

Papaefstathiou et al. [43] propose a software prefetching and cache management mecha-
nism for task-based programming models. They introduce a programmable prefetch engine
that receives prefetch commands generated by the runtime system based on the data known
to be used by the application. While their idea is similar to the scheme we propose, there are
a few important differences.

First, whereas their proposal is an alternative to traditional hardware prefetchers, we
propose a hybrid hardware-software prefetching scheme, where software prefetching brings
data on-chip to hide the large DRAM latencies, and hardware prefetching moves the data
closer to the cores.

Second, whereas Papaefstathiou et al. evaluate their approach using a simple in-order
processor, our evaluation uses an advanced out-of-order processor that can hide on itself
some memory latency. We therefore establish that the approach is also applicable to high-
performance processors implementing aggressive instruction-level parallelism techniques
where there is lower benefit from additional prefetching.

Third, they propose a prefetch engine per core, while our proposed prefetch engine may
be shared by multiple cores, reducing chip area and power consumption. Additionally,
grouping prefetch commands in a common engine allows for the coordination of priorities
among the cores, and also allows us to introduce effective throttling mechanisms. Finally,
while their approach prefetches only to the last-level cache, our scheme dynamically adapts
to the state of the cache hierarchy and selects the cache level to prefetch into which is most
beneficial at that time.

2.3 Heterogeneous GPU-CPU Architectures

We define heterogeneous architectures as systems composed of multicore processor(s) and
one or many GPUs. The GPU has traditionally been a discrete board connected to the host
machine through a system expansion bus, e.g. PCIe. Discrete GPUs contain their own pool
of high-bandwidth memory, as well as their own cache hierarchy. Until recently, this memory
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Figure 2.2: High level overview of a heterogeneous system composed of a multicore proces-
sor and a discrete GPU connected to the host through PCI-Express.

has been completely decoupled from the host’s memory, residing in its own virtual address
space and therefore not directly addressable by the host and vice versa.

In the traditional heterogeneous computational model, data allocated on the host must
be explicitly copied to the device’s4 memory before it can be used. Explicit data transfers
are done via direct memory access (DMA) operations using the DMA engine(s) found in the
GPU. Figure 2.2 shows a high level overview of a heterogeneous system with a discrete GPU
connected through PCIe. SM stands for Streaming Multiprocessor, NVIDIA’s terminology
for GPU cores; AMD’s equivalent is compute units (CUs).

The current trend in heterogeneous system design is towards tighter coupling of GPU
and CPU. From mobile and embedded chips [44, 45, 46] to desktop and laptop-oriented pro-
cessors [47, 14], it is increasingly common to find architectures integrating the GPU on the
same die as the CPU cores. In this design, the GPU is another element of the SoC, connected
to the rest of the system through the network-on-chip (NoC). Integrated architectures tightly
couple GPU and CPU cores, providing a shared pool of system memory, a unified virtual
address space and even some degree of cache coherence [48, 16, 19].

On-die integration of GPU and CPU cores provides multiple benefits: a shared memory
pool avoids explicit data movement and duplication; communication through the NoC in-
stead of a dedicated interconnect (PCIe) saves energy and decreases latency; lower communi-
cation latency enables efficient fine-grained data sharing and synchronization. Consequently,
an increasingly large body of research has been published on the benefits of heterogeneous
computing on integrated systems [49, 50, 51, 52, 53, 54, 55].

4Host and device refer to the CPU and GPU respectively in NVIDIA’s terminology.
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Figure 2.3: High level overview of two integrated heterogeneous architectures with different
cache hierarchy designs: a) with a last-level cache shared between GPU and CPU. b) with
no shared cache.

2.3.1 Resource Sharing on Integrated Architectures

Integrated systems require some degree of resource sharing between GPU and CPU, although
implementations from different vendors differ in which ones. For example, both AMD and
Intel processors use shared memory controllers to access off-chip memory [14, 47]. Intel
also uses a unified ring bus as the NoC connecting GPU and CPU with the system agent and
the memory controllers, while AMD implements two different bus paths for GPU and CPU
to access the memory controllers.

The last-level cache (LLC) also differs in chips from Intel and AMD. While Intel proces-
sors integrate a shared LLC between GPU and CPU cores and off-chip memory, AMD’s set
of Accelerated Processing Units (APUs, AMD’s terminology for integrated heterogeneous
systems), on the other hand, completely separate the cache hierarchies of GPU and CPU.
Similarly, NVIDIA does not implement a shared LLC in their line of integrated heteroge-
neous architectures [46].

Figure 2.3 shows a block diagram of two heterogeneous systems composed of a multicore
processor and an integrated GPU. Figure 2.3a shows an architectural design similar to an
Intel Haswell processor [47], where both GPU and CPU cores share a common level 3 cache.
Figure 2.3b shows a high level overview of a processor similar to AMD’s Kaveri [14], where
there is no shared cache between GPU and CPU.

Some recent works have tackled the issues of resource sharing within heterogeneous ar-
chitectures. Lee and Kim analyze the impact of LLC sharing between GPU and CPU [56].
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They find that the multithreaded nature of GPUs allows them to hide large off-chip latencies
by switching to different threads on memory stalls. In addition, they note that GPU work-
loads tend to stream through large amounts of data, showing a memory access pattern with
little data reuse. Therefore, they conclude that caching is barely useful for such workloads,
and argue that cache management policies in heterogeneous systems should take this into
consideration. They propose TAP, a cache management policy that detects when caching is
beneficial to the GPU application, and favors CPU usage of the LLC when it is not.

Mekkat et al. build on the same premise [57]. They use set dueling [58] to measure
CPU and GPU sensitivity to caching during time intervals. With this information, they dy-
namically set a thread-level parallelism (TLP) threshold for each interval. The threshold
determines after what amount of TLP the GPU’s memory requests start bypassing the LLC.
Their goal is to prevent the GPU from taking over most of the LLC space and depriving the
cache-sensitive CPU of it.

Other works have explored the challenges of resource sharing within GPU-CPU systems.
Ausavarungnirun et al. focus their study on the memory controller [59]. They find the high
memory traffic generated by the GPU can interfere with requests from the CPU, violating
fairness and reducing performance. They propose a new application-aware memory schedul-
ing scheme that can efficiently serve both the bursty, bandwidth-intensive GPU workloads
and the time-sensitive CPU requests.

Kayiran et al. consider the effects of sharing the NoC memory controllers [60]. They
monitor memory system congestion and if necessary limit the amount of concurrency the
GPU is allowed. By reducing the amount of active warps5 in the GPU, they are able to
improve CPU performance in the presence of GPU-CPU interference.

All these works analyze resource sharing within integrated GPU-CPU systems, but they
perform their evaluation on multiprogrammed workloads where GPU and CPU execute dif-
ferent unrelated benchmarks. This methodology can shed light on some of the problems
associated with resource sharing in heterogeneous architectures, but it is not able to provide
any insight about the effect such sharing has in heterogeneous computations where GPU and
CPU cores collaborate and share data. The goal of the work presented in Chapter 5 is to
analyze how these heterogeneous algorithms are affected by sharing the LLC.

5Warp is NVIDIA’s terminology for a group of threads running in lock-step on a core. AMD refers to the
same concept as wavefront.
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2.3.2 Heterogeneous Computing

The shift from graphics processing to general-purpose computing requires a set of new pro-
gramming models and frameworks for GPU programming. These have evolved over time as
GPUs have, introducing new features that improve programmability and simplify general-
purpose computing on GPUs. The two programming models most used for heterogeneous
computing are NVIDIA’s CUDA and the open standard OpenCL.

The OpenCL programming model [61] offers support for heterogeneous computing be-
tween CPU cores and multiple accelerator-like devices, such as GPUs, field-programmable
gate arrays (FPGAs) or digital signal processors (DSPs). It is an open standard contributed
to by many different vendors, such as AMD, Apple, ARM, IBM and Samsung. Since the 2.0
specification, OpenCL includes features especially designed for integrated systems, such as
Shared Virtual Memory (SVM) or system-wide atomic operations [62].

On a system supporting SVM features, the same pointer can be used indistinctly by the
CPU and GPU, and coherence is maintained by the hardware as in a traditional SMP. System-
wide atomic operations can be used to guarantee race-free code when sharing data through
SVM. These atomic operations allow for fine-grained synchronization among computing el-
ements, opening the door for heterogeneous applications that work on shared data structures
and coordinate much faster than using previous methods.

CUDA is NVIDIA’s proprietary programming model and API for general-purpose com-
puting. Currently in its 8.0 version, CUDA has evolved to include many quality-of-life
features that simplify the task of heterogeneous programming. Unified Virtual Addressing
(UVA) was introduced in CUDA 4 [17], providing a common virtual address space between
GPU and CPU that allows pointers allocated in one to be used directly by the other. CUDA 4
also introduced zero-copy memory, allowing the GPU to directly access pinned host memory
through the PCIe interconnect.

In CUDA 6 NVIDIA introduced Unified Memory (UM) [63]. UM featured automatic
data movement of memory regions allocated using cudaMallocManaged(). In UM,
managed memory pages are initially allocated in the GPU, populating the local page table.
If data is initialized by the host, it is then migrated by the CUDA runtime transparently to
the user, and on kernel launch, migrated back to the GPU for the computation [64].

This initial implementation of UM had several shortcomings: all managed memory mod-
ified by the host is copied to the GPU on kernel launch, even when it is not needed by the
kernel; page frames are assigned immediately as memory is allocated and thus no memory
oversubscription is possible; the managed region is limited to the size of the GPU’s physical
memory; data is migrated only at kernel boundaries and cannot be simultaneously accessed
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by GPU and CPU threads during the computation. Due to all these inefficiencies, the perfor-
mance of UM is hardly able to compete with fine-tuned manual data movement [65, 66].

In 2016 NVIDIA unveiled CUDA 8 and the Pascal line of GPUs. CUDA 8 lifts these
restrictions and allows host and device to concurrently access shared data, expands the man-
aged memory region to cover both GPU and CPU physical memory and supports system-
wide atomic operations [18]. The main feature that enables concurrent access to shared data
in Pascal-based chips is demand paging.

In CUDA 8 memory is lazily-allocated, i.e., the page frame is only reserved on first-
touch access in either GPU or CPU memory. Since the GPU’s page table does not contain
the virtual to physical address mapping of pages allocated in the CPU, the first GPU access to
one of such pages raises a page fault. GPUs are currently not able to context switch to execute
a page fault handling routine like CPUs do, and therefore the GPU memory management unit
handles the fault by forwarding it to the software runtime running on the host. The CUDA
runtime can then migrate the page to the GPU or map it in the GPU’s memory address space
to be accessed directly through the interconnect.

UM and demand paging greatly simplify heterogeneous programming by relieving pro-
grammers from the burden of explicit memory management, relegating that job to the CUDA
runtime and device driver. Unfortunately, the implementation currently found in Pascal-
based GPUs, while convenient, is unable to match the performance of manual data move-
ment via cudaMemCpy() operations. Processing GPU-initiated page faults incurs delays
that not even the highly threaded design of GPUs can completely hide, causing underutiliza-
tion of the compute units. The work presented in Chapter 6 tackles these inefficiencies and
proposes an efficient mechanism to shared data between GPU and CPU.

2.3.3 Heterogeneous Memory Management

By heterogeneous memory management we refer both to: management of the memory sub-
system on heterogeneous architectures, and management of hybrid memory designs com-
bining memories of different technologies, e.g. traditional DRAM and 3D die-stacked or
non-volatile memory.

2.3.3.1 Memory Management on Heterogeneous Architectures

On heterogeneous GPU-CPU architectures, one line of research has focused on the trade-offs
between copying data to the GPU or accessing it directly through the interconnect [67, 68,
69]. The general idea is using heuristics to decide at runtime whether it is more beneficial to
migrate data or to access it remotely based on metrics such as available bandwidth or total
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number of accesses. This topic is beyond the scope of this thesis; for our work in dynamic
data movement we assume data is always migrated to the requester’s local memory and never
accessed remotely through the interconnect.

With the assumption of data migration on every remote access, Zheng et al. [70] pro-
pose a hardware/software approach to hide the latency of fault handling and automatic page
migration as implemented currently in the Pascal family of GPUs by NVIDIA. They aug-
ment the GPU to support replaying fault-causing instructions, allowing the compute units to
continue executing on a fault. In addition, they propose a page prefetching mechanism that
speculatively requests and migrates pages to the GPU, aggregating multiple page migrations
in one operation to amortize the costs of fault handling and DMA transfer.

Shahar, Bergman and Silberstein [71] take on a different approach, proposing a software
layer that transparently enables address translation and paging on GPUs. Their goal is to
provide a simple way to access files from the GPU, mapping files to the GPU’s memory
space and allowing easy access via regular pointers. Their work is specially interesting
because they introduce a GPU-centric system to resolve page faults, moving away from the
current implementation where page faults must be sent to the CUDA driver running on the
host to be processed. This idea matches our intent of detaching the host from the process of
GPU memory management whenever it is possible.

Kim et al. [72] propose a memory organization where the GPU’s memory pool is used
as a cache of CPU memory. They argue that using pinned host memory to remotely access
data is inefficient as it causes multiple redundant memory transfers from host to device.
Their scheme dynamically moves data at cache line granularity from host to device as it is
referenced, keeping the working set of the kernel in GPU memory and taking advantage of
its high bandwidth compared to remote accesses.

Similarly to the related work discussed in Section 2.3.1, the main difference between
our work and all the related work presented here is that none of them consider collaborative
heterogeneous applications with fine-grained data sharing between host and device. In all
cases the issue is approached from the point of view of how best to manage GPU memory
or maximize GPU performance, but always assuming data is consumed only by the GPU.
In Chapter 6 we focus on collaborative computations where data migrates multiple times
between host and device, as their data sharing pattern exerts more pressure in the demand
paging scheme found in Pascal-based GPUs.
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2.3.3.2 Management of Hybrid Memory Designs

Heterogeneous architectures with dedicated discrete GPUs already combine memories of
different characteristics. The large majority of commodity processors use double data rate
synchronous dynamic random-access memory (DDR SDRAM) for system memory, while
GPUs integrate graphics DDR (GDDR) memory, a type of SDRAM specialized for higher
bandwidth. Furthermore, the shift towards die-stacked memory technologies has seen a def-
inite push on GPUs due to the significant larger bandwidth they provide. Therefore, the
new family of GPUs coming from NVIDIA and AMD forgo GDDR and use some form of
3D-stacked high bandwidth memory (HBM) [73, 74].

Another form of hybrid memory design tightly couples memories of different technolo-
gies. For example, some proposals combine 3D die-stacked or non-volatile memory with tra-
ditional GDDR memory to obtain higher GPU performance and/or energy efficiency [75, 76].
On the CPU side, numerous works propose integrating a pool of 3D-stacked memory on-chip
combined with DDR SDRAM-based system memory [77, 78, 79, 80, 81].

In particular, Chou, Jaleel and Qureshi proposed CAMEO [82] for a system where a
high-bandwidth 3D die-stacked DRAM is integrated in a traditional symmetric multiproces-
sor with commodity off-chip memory. The stacked memory is placed between the last-level
cache and off-chip DRAM and used as a high-capacity cache memory. Data is moved at
cache line granularity between the system memory and the 3D-stacked DRAM cache trans-
parently to the user and operating system, providing a high-bandwidth high-capacity last-
level cache. The design of CAMEO serves as an inspiration for the memory organization we
propose in Chapter 6.

2.3.4 Memory Consistency and Cache Coherence

Memory consistency models guarantee memory correctness on architectures using shared
memory by providing rules about the behavior of load and store instructions. In broad terms,
the semantics of a strict consistency model simplify programmability at the cost of per-
formance. Relaxed consistency models allow compilers and hardware to perform memory
reordering, increasing performance. This complicates the task of the programmer, since
memory may need to be operated on with atomic operations or synchronized via fences.

The x86 ISA follows a relaxation of Sequential Consistency (SC) [83] called Total Store
Order (TSO) [84]. In this model, loads following a store (in program order) can be executed
before the store if they are to a different memory address. Although there is not much public
information describing the memory consistency models followed by GPUs from the major
vendors, they have been largely inferred to be relaxed models. One of such models is Release
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Consistency (RC) [85]. RC enables many memory optimizations that maximize throughput,
but is strict enough to allow programmers to reason about data race conditions. RC is the
consistency model defined in the HSA standard [19], and it is followed in GPUs by vendors
such as ARM [86] and AMD [87].

While the programmer must have knowledge about the consistency model followed by
the architecture targeted in order to guarantee his or her parallel code does not show race
conditions, and will therefore, execute correctly, coherence protocols are transparent to the
user. Coherence protocols guarantee that all sharers of a datum always obtain the latest value
written, and in most systems, are pivotal to maintaining memory consistency. Regardless of
the protocol itself (i.e. MESI, MOESI, etc.), x86-based SMPs follow the coherence model
Read For Ownership (RFO). In an RFO machine, cores must obtain a block in an exclu-
sive state before writing to it. This scheme is effective for workloads that exhibit temporal
locality and data reuse, where the cost of exclusively requesting blocks and the associated
invalidation messages is amortized over time.

GPUs have traditionally exhibited a different memory access behavior, streaming through
data with little data reuse. In addition, the high memory traffic generated by the large num-
ber of threads running concurrently exerts a high pressure in the memory subsystem, and
any additional coherence traffic would only aggravate the problem. Because of this, GPUs
implement very simple coherence mechanisms with private write-through write-combining
L1 caches that can contain stale data [48, 88].

Recent work shows that the choice of consistency model minimally impacts the perfor-
mance of GPUs [87]. While stricter consistency models and system coherence does not come
for free, researchers are already working on solutions to solve the challenges faced [89].

We believe integrated systems will change the way we understand heterogeneous pro-
gramming and change the characteristics of heterogeneous workloads. Stricter consistency
models across a heterogeneous system will improve programmability and allow program-
mers to maintain the memory semantics they are used to on traditional SMPs. Therefore,
the work on integrated heterogeneous architectures done in Chapter 5 is evaluated on a sys-
tem implementing a TSO consistency model with RFO coherence across all computing ele-
ments.
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Chapter 3
Methodology

This chapter presents the experimental methodology followed throughout this dissertation.
We introduce the two architectural simulators employed as well as the benchmarks and met-
rics used in the evaluation of our proposals.

3.1 Simulation Infrastructure

The work on prefetching done in Chapter 4 is evaluated using TaskSim [90], an trace-driven,
cycle-accurate simulator developed at the Barcelona Supercomputing Center that models an
x86 multicore processor. Figure 3.1 shows the simulation workflow for TaskSim and OmpSs
applications. We use the dynamic binary instrumentation tool PIN [91] to obtain memory
traces; these traces are then combined with a trace of runtime system events. The combined
trace is replayed by the simulator, interfacing during the simulation with the runtime system
of the OmpSs programming model through a bridge. In this manner, the runtime system
modified with our proposed prefetching scheme is natively executed during the simulation,
and the dynamic behavior of the application run that depends on the architectural state (e.g.

task schedule) is captured.

In Chapter 5 and Chapter 6 we use the gem5-gpu [92] simulator to study heterogeneous
architectures. gem5-gpu is a cycle-level simulator that merges gem5 [93] and GPGPU-
Sim [94]. Figure 3.2 shows the simulation workflow for heterogeneous applications on
gem5-gpu. The GPU pipelines are simulated in detail by GPGPU-Sim, interfacing with
an implementation of the CUDA Runtime provided by the gem5-gpu developers. The bridge
between GPGPU-Sim and gem5 is a memory interface that transforms memory instructions
issued by the GPU cores into memory instructions understood by the gem5 simulator. The
memory interface injects transformed instructions into the gem5 memory subsystem model-
ing both GPU and CPU cache hierarchies, off-chip memories and interconnect fabric. Once
the instructions are satisfied by the memory subsystem, the interface transforms and returns
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Figure 3.1: Simulation workflow for OmpSs applications and TaskSim.
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Figure 3.2: Simulation architecture of the gem5-gpu simulator.

the replies back to the GPU cores. We use gem5-gpu’s full-system mode running the Linux
operating system with kernel 2.6.28.

Chapter 5 presents an evaluation of different cache hierarchy organizations on a system
where the GPU is integrated on-die with the CPU, while Chapter 6 focuses on architectures
with a dedicated, discrete GPU. gem5-gpu can be configured to simulate both systems in its
fused and split mode respectively.

In fused mode, the GPU is connected to the root crossbar as another element of the SoC.
Both GPU and CPU share a unified virtual address space and both can directly access off-
chip system memory. For virtual to physical address translation, the GPU uses the CPU’s
page table that is maintained by the operating system. GPU page faults are therefore re-
solved as CPU page faults, raising an interrupt and trapping into the OS to execute a fault
handling routine. In the fused mode, the simulator provides full cache coherence between
GPU and CPU. We use the MESI coherence protocol throughout the system, following the
TSO consistency model.

In split mode, the GPU is simulated as a separate device board connected to the rest of
the system through a PCIe interconnect. Initially, the GPU is in a different virtual address
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space and has its own page table and pool of memory. For our evaluation of a dynamic data
movement scheme in Chapter 6 we modify the system to provide a unified virtual address
space, similar to current GPUs from NVIDIA. In the baseline system, page faults initiated by
the GPU are sent to the host to be handled. In our scheme, only the first GPU access to a page
causes a fault, as explained in Section 6.3. In split mode there is no cache coherence between
GPU and CPU. The CPU cache hierarchy uses the MOESI coherence protocol with a TSO
consistency model, while the GPU uses a more relaxed consistency model and a simple
valid/invalid coherence protocol. GPU’s L1 caches are write-through and non-inclusive.

Chapter 4 and Chapter 5 present a power evaluation in the form of energy-to-solution.
The results in both chapters were obtained with CACTI [95] version 6.5 configured with the
parameters shown in Table 4.1 and Table 5.1 respectively.

3.2 Workloads

3.2.1 Adaptive Runtime-Assisted Block Prefetching

We evaluate the proposed block prefetching scheme using a set of scientific benchmarks
including PBPI, a parallel implementation of Bayesian phylogenetic inference method for
DNA sequence data [96], an implementation of the MD5 hashing algorithm and a set of
kernels representing algorithms commonly found in scientific applications. The full list can
be found in Table 3.1. All applications were compiled for x86-64 with the GCC compiler
version 4.6.3 using the -O3 optimization flag. The results were validated to confirm the
transformations done by the compiler do not alter program correctness.

We target scientific codes such as those used in the field of HPC. HPC applications usu-
ally operate on linear data structures and can therefore benefit both from our runtime-directed
software prefetching scheme and from hardware-based prefetching techniques. Our runtime-
directed prefetching scheme also works on applications with more irregular data structures
as long as the tasks’ input and output data is specified as described in Section 2.1.

An important aspect to consider in HPC applications is the granularity at which the work
is divided. In order to fully exploit the cache hierarchy and improve performance, the pro-
grammer must choose an appropriate block or task size to work with. This decision is usually
taken considering the size of the cache memories and the number of processing elements. To
improve load balancing, it is usually desirable to split computation into small tasks, allowing
the scheduler to keep all the cores busy at all times. On the other hand, working at a too
small granularity adds non-negligible overheads in the form of thread or task creation. There
is plenty of literature on the topic of how to best choose this parameter and the impact it has
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Benchmark Input size Task creation Task duration
Histogram 256KB 18µs 546µs
Matmul 128KB 14µs 631µs
Reduction 256KB 17µs 145µs
LU 128KB 16µs 1000µs
PBPI 200KB 13µs 114µs
Jacobi 258KB 15µs 245µs
MD5 512KB 14µs 2021µs

Table 3.1: Benchmarks evaluated, average task input size, average task creation overhead
and average execution time per task.

on the overall system performance [97, 98, 99, 100, 101]. We create tasks as small as possi-
ble to obtain good load balancing and exploit L1 cache locality, while keeping the overhead
of task creation relatively small over the total execution time.

Table 3.1 shows the average size of the inputs for each task, the average overhead of task
creation and the average execution time per task. These numbers were obtained on a 16-core,
dual-socket AMD Opteron 6128 machine running at a frequency of 2.4 GHz.

3.2.2 Heterogeneous Architectures

In Chapter 5 we evaluate a CUDA version of the Rodinia GPU benchmark suite. Rodinia
GPU [102] is a benchmark suite widely used to evaluate GPUs. Benchmarks from Rodinia
GPU follow the traditional heterogeneous computational model, where the host allocates
and initializes the data, copies it to the device in bulk data transfers via cudaMemCpy()
operations and launches a computational kernel. When the computation is completed, the
results are then copied back to the host.

Since Rodinia benchmarks were designed for architectures with discrete GPUs, we mod-
ify them to make use of the characteristics of integrated systems. We thus remove all explicit
data movement operations and substitute the allocations of data using cudaMalloc() calls
with regular malloc() operations, leveraging the shared address space. Table 3.2 lists the
Rodinia benchmarks evaluated and the input sets used.

As stated, Rodinia benchmarks follow the traditional model where the computation is
largely done in the GPU and where data is shared between GPU and CPU in a coarse-grained
manner only at kernel boundaries. One of the main goals of this thesis is to understand the
implications on the memory subsystem when executing collaborative computations. Collab-
orative computations split algorithms into different steps that can be assigned to the compute
unit best suited to execute them. Regions with high data or thread parallelism are sent to the
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Table 3.2: Rodinia Benchmarks.

Benchmark Short Name Dataset
Backprop RBP 256K nodes
Breadth-First Search RBF 256K nodes
Gaussian RGA 512 × 512 matrix
Hotspot RHP 512 × 512 data points
LavaMD RLA 10 boxes per dimension
LUD RLU 2K × 2K matrix
NN RNN 1024K data points
NW RNW 8K × 8K data points
Particlefilter RPF 10K particles
Pathfinder RPA 100K × 10K data points
Srad RSR 512 × 512 data points

GPU to take advantage of their massively parallel characteristics, while regions with low par-
allelism can be executed by the larger deeply-pipelined out-of-order CPU cores. These ap-
plications share data at fine granularities during the computation, using system-wide atomic
memory operations to synchronize.

We use as well a set of collaborative benchmarks in the evaluation of Chapters 5 and
6. For the work in Chapter 5 we prepared a collection of collaborative benchmarks. They
present different heterogeneous computation patterns and are summarized in Table 3.3.

Four benchmarks (DSP, DSC, IH, and PTTWAC) deploy concurrent CPU-GPU collabo-
ration patterns. In these benchmarks, the input workload is dynamically distributed among
CPU threads and GPU thread blocks1. DSP and DSC utilize an adjacent synchronization
scheme, which allows CPU threads and/or GPU blocks working on adjacent input data
chunks to synchronize. Each CPU thread or GPU block has an associated flag that is read and
written atomically with system-wide atomic operations. Both DSP and DSC are essentially
memory-bound algorithms, as they perform data shifting in memory. DSC deploys reduction
and prefix-sum operations in order to calculate the output position of the elements.

IH carries out an intensive use of atomic operations on a set of common memory locations
(i.e., a histogram). Chunks of image pixels are statically assigned in a cyclic manner to CPU
threads and GPU blocks. These update the histogram bins atomically using system-wide
atomic additions. PTTWAC performs a partial transposition of a matrix. It works in-place;
thus, each matrix element has to be saved (to avoid overwriting it) and then shifted to the
output location. As each of these elements is assigned to a CPU thread or a GPU block, these
need to coordinate through a set of atomically updated flags.

1Thread block is NVIDIA terminology for a group of threads that execute on the same core and can com-
municate via shared memory. AMD refers to them as work-groups.
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Table 3.3: Heterogeneous Benchmarks Evaluated in Chapter 5.

Benchmark Short Name Field Computation Pattern Dataset
Breadth-First Search [103] BFS Graphs Coarse-grain switching NY/NE graphs [104]
DS Padding [105] DSP Data manipulation Concurrent collaboration 2K × 2K× 256 float
DS Stream Compaction [105] DSC Data manipulation Concurrent collaboration 1M float
FineGrainSVMCAS link [106] LCAS Synthetic benchmark Fine-grain linked list 4K elements
FineGrainSVMCAS unlink [106] UCAS Synthetic benchmark Fine-grain linked list 4K elements
Image Histogram [107] IH Image processing Concurrent collaboration Random and natural images (1.5M pixels, 256 bins)
PTTWAC Transposition [103] PTTWAC Data manipulation Concurrent collaboration 197 × 35588 doubles (tile size = 128)
Random Sample Consensus [108] RANSAC Image processing Fine-grain switching 5922 input vectors
Task Queue Histogram [103] TQ Work queue Producer-consumer 128 frames

Table 3.4: Chai Benchmarks Evaluated in Chapter 6.

Benchmark Short Name Field Computation Pattern Dataset
Breadth-First Search BFS Graphs Coarse-grain switching NY/NE graphs
Bezier Surface BS Computer graphics Concurrent collaboration 500 × 500 double (tile size = 16)
Canny Edge Dectection CEDD Image processing Concurrent collaboration (data partitioning) 50 frames
Canny Edge Dectection CEDT Image processing Coarse-grain switching (task partitioning) 50 frames
Image Histogram HSTI Image processing Concurrent collaboration Random and natural images (1.5M pixels, 256 bins)
DS Padding PAD Data manipulation Concurrent collaboration 2K × 2K float (block size = 256)
Random Sample Consensus RSCD Image processing Fine-grain switching (data partitioning) 5922 input vectors
Random Sample Consensus RSCT Image processing Fine-grain switching (task partitioning) 5922 input vectors
Task Queue - Histogram TQH Work queue Producer-consumer 128 frames
PTTWAC Transposition TRNS Data manipulation Concurrent collaboration 197 × 35588 doubles (tile size = 64)
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In BFS the computation switches between CPU threads and GPU blocks in a coarse-grain
manner. Depending on the amount of work of each iteration of the algorithm, CPU threads
or GPU blocks are chosen. CPU and GPU threads share global queues in shared virtual
memory. At the end of each iteration, they are globally synchronized using system-wide
atomics. LCAS and UCAS are two kernels from the same AMD SDK sample. First, a CPU
thread creates an array which represents a linked list to hold IDs of all GPU threads. Then,
in the first kernel (LCAS) each GPU thread inserts in lock-free manner their respective IDs
into the linked list using atomic compare-and-swap (CAS). In the second kernel (UCAS) the
GPU threads unlink or delete them one-by-one atomically using CAS.

RANSAC implements a fine-grain switching scheme of this iterative method. One CPU
thread computes a mathematical model for each iteration, which is later evaluated by one
GPU block. As iterations are independent, several threads and blocks can work concurrently.
TQ is a dynamic task queue system, where the work to be processed by the GPU is dynami-
cally identified by the CPU. The algorithm performs a histogram calculation of frames from
a video sequence. Several queues are allocated in shared virtual memory. CPU threads and
GPU blocks access them by atomically updating three variables per queue that represent the
number of enqueued tasks, the number of consumed tasks, and the current number of tasks
in the queue.

The benchmarks evaluated in Chapter 5 were the seed of the now publicly available
Chai suite of collaborative heterogeneous benchmarks [109]. In Chapter 6 we use Chai to
evaluate our proposed data migration scheme. Chai drops the LCAS and UCAS benchmarks
and instead adds Bezier and CEDD/CEDT. In addition, we drop DSC because its behavior is
very similar to DSP and provides the same insights.

From the new benchmarks, Bézier tensor-product surfaces are geometric constructions
widely used in engineering and computer graphics [110]. Chai’s implementation divides the
surface into four-sided tiles, each of which is computed by a GPU block or a CPU thread.
The size of the GPU blocks is the same as each tile, so each output point is computed by
one GPU thread. CPU and GPU threads access a shared list of tiles to obtain the next tile to
process, thus work is dynamically assigned at runtime and system-wide atomic operations
are used to coordinate.

CEDD implements a Canny Edge Detection algorithm widely used in image processing.
In it, multiple frames of a video are processed through four stages, implemented as four dif-
ferent computational kernels. Chai provides two implementations of the algorithm. CEDD
partitions the input set and assigns frames either to the GPU or to the CPU. In this implemen-
tation, each frame is entirely processed by one or the other. CEDT partitions the algorithm
by task, where the two first processing steps are done by the CPU and the remaining two
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by the GPU. Similarly, Chai provides two implementations of RANSAC with two different
partition schemes. RSCD splits the input dataset assigning iterations to either GPU or CPU
threads. RSCT partitions the algorithm by tasks, where the sequential fitting stage is done
by CPU threads and the evaluation of the model is done by GPU blocks.

The full list of benchmarks used in Chapter 6 is shown in Table 3.4 with the input sets
used. For both the Rodinia benchmarks and the collaborative benchmarks evaluated in Chap-
ters 5 and 6, we select and evaluate only the region of interest, skipping initialization (mem-
ory allocation, input file reading, etc.) and clean-up phases.

3.3 Metrics

We use several metrics to evaluate the performance of our block prefetching scheme. The
most straightforward metric is execution time. Since our proposed scheme can (and we argue
that it should) be used in conjunction with the hardware prefetch engines of modern proces-
sors, first we find the best hardware prefetch configuration for every benchmark. We use that
configuration as the baseline, and show execution time for all benchmarks normalized to it.

The goal of a prefetch scheme is to bring useful data into the cache hierarchy, thus im-
proving cache hit rate. We therefore show cache hit rates for all three levels of the cache
hierarchy. Another metric commonly used to measure the performance of the memory sub-
system is average memory access time (AMAT). We calculate AMAT as:

AMAT = AccessT imeL1 +MissRateL1 ∗MissPenaltyL1

were

MissPenaltyL1 = AccessT imeL2 +MissRateL2 ∗MissPenaltyL2

and

MissPenaltyL2 = AccessT imeL3 +MissRateL3 ∗MissPenaltyL3

and MissPenaltyL3 equals the average time to access off-chip main memory.

In addition, we use energy-to-solution to evaluate whether our scheme has a positive or
negative impact on total energy usage. The results are normalized to the configuration with
the best hardware prefetcher only.

Chapter 5 presents a comparison between two cache hierarchy designs. We aim at show-
ing the impact of having a shared last-level cache among GPU and CPU cores. Again, the
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most straightforward metric is execution time. Unless stated otherwise, we show execution
times normalized to the configuration with private LLC. To compare the effect of sharing the
LLC on cache hit rates, we show the hit rates for both shared and private LLC configurations.
For the private configuration we calculate LLC hit rate as:

Hit rate =
Hits LLCCPU +Hits LLCGPU

Access LLCCPU + Access LLCGPU

∗ 100

To understand why sharing a LLC may have a positive effect on performance, we look at
the timing to perform system-wide atomic memory operations. In gem5-gpu atomic opera-
tions are performed with a read-modify-write (RMW) instruction. This operation is divided
in two steps, a first load of the cache line with exclusive state and a following write with the
new value. The time to perform the initial load is therefore representative of the time required
to obtain and lock the cache line, and hence of the time to perform the atomic operation.

We use the time to perform the load to evaluate the impact that sharing the LLC has
on performing system-wide atomic operations. In addition, we use instructions-per-cycle
(IPC) of both GPU and CPU to understand how it impacts the performance of GPU and
CPU separately. Finally, in Chapter 5 we analyze the energy implications of a shared LLC
by measuring energy-to-solution with a breakdown of its different contributors within the
memory hierarchy, i.e., DRAM and the three cache levels.

To motivate the work done in Chapter 6 on dynamic data movement, we analyze the
current scheme of demand paging found in NVIDIA GPUs. We show a breakdown of all
page faults raised during the execution of a set of benchmarks, differentiating those raised
by the CPU for pages located in GPU memory, those raised by the GPU on a first access
to a page located in CPU memory and for those which the GPU has already migrated at
some point to its memory but are currently located in CPU memory. In addition, to show the
inefficiency of migrating full memory pages, we show the percentage of data that is migrated
back and forth without being referenced.

In the evaluation presented in Chapter 6 we show execution times normalized to a con-
figuration resembling the demand paging scheme found in NVIDIA GPUs. To understand
the impact of reducing the granularity of migrations, we show the total number of migrations
for various migration sizes, normalizing the result to number of migrations with the smallest
possible size of one cache line. We also provide an analysis on the impact of varying the in-
terconnect round-trip time. We present execution time for different latencies and migration
sizes. For each latency-migration configuration we normalize the result to the execution time
with the baseline demand paging configuration and that same link latency.
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Chapter 4
Adaptive Runtime-Assisted Block

Prefetching

4.1 Motivation

The processor-memory performance gap still remains a significant source of performance
loss in modern multicore processors. Throughout the years, many mechanisms have been
developed that can alleviate the problem by hiding some or all the latency of accessing off-
chip memory, including: non-blocking caches, out-of-order execution and data prefetching.
Data prefetching in particular is a widely used technique that triggers the movement of data
from off-chip memory into the cache hierarchy before it is needed.

Software-based prefetch schemes rely on executing special prefetch instructions, usu-
ally inserted in the code by the compiler on an optimization pass. Most implementations of
prefetch instructions found in modern ISAs fetch one cache line per instruction. This can
lead to a non-negligible execution overhead and has a negative impact on the instruction
cache [38]. Prefetching blocks of data of variable size with a single instruction is a good
solution to this problem. Several works in the literature have proposed block prefetching
schemes, some relying on compiler analysis [35], others on manual insertion of prefetch di-
rectives in the code [41] and others using a runtime system to guide the prefetch engine [43].

While all approaches can be successful in some circumstances, compiler analysis is
still limited and manually inserting prefetch instructions in the code is a difficult and time-
consuming endeavor. Using a runtime system to guide prefetching, on the other hand, is a
simple and efficient way of performing block prefetching. A runtime system can see further
into the future than current compilers are able to, has dynamic information of the application
and requires minimal user intervention.

In particular, the runtime system of task-based programming models is specially well
suited to guide prefetching, as it has all the required information to make effective block
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prefetching, knowing accurately when, where and what.

• When: the runtime system knows when a task is going to execute because it builds a
task dependency graph, and its scheduler guides the execution flow.

• Where: the runtime system knows where data will be needed because it knows in
advance which core will execute each task.

• What: the runtime system knows what input data is required by each task, as indicated
by the programmer via pragma directives.

All this information puts the runtime system in a advantageous position to perform data
prefetching while alleviating the main drawbacks of traditional prefetching schemes. Know-
ing when and where data is needed allows the runtime to adjust the timeliness of the prefetch
requests and to prefetch directly into the cache of the core that needs the data, while knowing
what data is needed avoids speculation and thus the risk cache pollution due mispredictions.
In addition, if the runtime system is provided a map of the cache hierarchy, it can dynam-
ically adjust the prefetch destination, placing data into a lower cache level if necessary to
avoid cache thrashing.

In this chapter we propose a hybrid prefetching scheme that combines a runtime-assisted
block prefetcher with existing hardware-based prefetch schemes. The runtime system guides
a prefetch engine in bringing on-chip large blocks of data. Once the data is on-chip, tradi-
tional hardware prefetching mechanisms are used to bring data closer to the CPU at cache
line granularity. The runtime system leverages its information about application schedule
to decide when to start prefetching. In addition, it compares the task input data and cache
sizes to dynamically select the best prefetch destination for each task without displacing the
working set of the currently executing task.

4.2 Target Architecture

Our scheme targets a multicore processor following a SMP design. Figure 4.1 shows a high-
level overview of the architecture with the addition of the multicore data transfer engine
(MDTE). The MDTE is a small DMA-like controller that receives the prefetch commands
generated by the runtime system and initiates the fetch operations from main memory. Sec-
tion 4.4 provides the implementation details of the MDTE and explains how it interfaces
with the cache hierarchy.

We evaluate the proposed prefetching scheme on a multicore processor with three differ-
ent configurations of 4, 8 and 16 cores. In each case, each core has private L1 and L2 caches.
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Figure 4.1: High-level overview of the target multicore architecture with private and shared
MDTEs.

All the cores are connected through a crossbar to a shared L3, which is connected to off-chip
main memory. The MDTE can be placed next to a core’s L2 or the shared LLC. If placed
next to a private cache it will only process prefetch commands from that core. If placed
next to the LLC it can receive and process prefetch commands from every core. While our
scheme would work on a system integrating only the shared MDTE, ideally we also want
private MDTEs to let the runtime system decide which one to use in each case.

4.3 Block Prefetching

In order to avoid the overhead of executing one prefetch instruction per cache line and lever-
aging the information about tasks’ input data available to the runtime system, we implement
a special prefetch command instruction. Prefetch commands are similar to normal prefetch
instructions but reference a contiguous block of memory. They accept two parameters to
indicate a starting address and data size. They are generated by the runtime system based on
the input data of a task and have unrestricted length.

In order to enable the runtime system to issue prefetch commands we extend the ISA
with the following user mode instruction:

prefetch〈L〉 〈rb〉, 〈rs〉

where rb is the register holding the base address of the block to be prefetched, rs is
the register holding the size of the block in bytes, and L takes the value of the cache level to
which the prefetch command is to be sent. In this manner, the instruction prefetch2 〈r1〉, 〈r2〉
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Figure 4.2: Multicore Data Transfer Engine components.

would send a prefetch command with the address indicated in r1 and the size indicated
in r2 to the data transfer engine corresponding to the core’s L2 cache. In order to send a
prefetch command to the shared L3 cache level, the runtime system would issue the instruc-
tion prefetch3 〈r1〉, 〈r2〉.

If the runtime system has not been provided with a map of the cache hierarchy and there
is no L3 cache in the system, the instruction is ignored. In our implementation, one bit in the
instruction word is enough to specify whether the prefetch instruction targets the L2 or the L3
cache. We do not support block prefetching into the L1 cache because our experiments show
that it is not large enough to prefetch with such granularity (more details on Section 4.5.1).

Prefetch commands initially reference virtual addresses, but since the physical pages they
map to may not be contiguous in memory, they need to be split at page boundaries. Splitting
prefetch commands and address translation is performed in the MDTE (see Section 4.4 for
details).

4.4 Multicore Data Transfer Engine

The MDTE is a programmable DMA-like controller that receives and processes the prefetch
commands generated by the runtime system. Figure 4.2 shows its design. The main compo-
nents are:

• An input buffer to store received prefetch commands until they are queued.

• A prefetch command queue where commands are inserted in FIFO order. Each com-
mand in the queue can prefetch up to one memory page. Each entry in the queue
holds the starting address, size, address space identifier (ASID), a translated bit and a
translation requested bit.
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• A Translation Lookaside Buffer (TLB) to speed up address translation.

• An output buffer to store translated commands until they are sent to memory.

The MDTE reads the input buffer for new commands. When a new command is received,
it is split into page-contained commands and enqueued in the prefetch command queue. New
commands are discarded when the queue is full. The commands received contain virtual ad-
dresses that need to be translated. There are two main advantages to delaying the translation
until the command arrives at the MDTE: first, if address translation were to be done at the
core’s MMU, a prefetch command for a big block of data (e.g. a few megabytes) would
be split into a large number of page-sized prefetch commands. These would have to travel
to the corresponding MDTE, increasing traffic on the interconnect and wasting bandwidth.
Second, address translation at the MMU’s is in the critical path. Translations for prefetch
commands would delay the translation of demand requests, further degrading performance.

The MDTE contains a TLB to speed up address translation and reduce the traffic caused
by the translation requests. The impact of adding these TLBs is not significant since they
need not be very large (see Table 4.1). We use a TLB directory to minimize the overhead
of TLB shootdowns [111]. Once a translation response is received, the prefetch command is
updated and moved to the output buffer. Interrupts and exceptions can modify the virtual to
physical address mapping, rendering the prefetches useless. In these situations we flush the
TLB and the entries in the prefetch command queue which translation has been requested,
as well as the translated commands from the output buffer.

On every cycle at most one request will be issued, either a prefetch command or a trans-
lation request. Commands from the output buffer are sent to their target cache where they
are issued one cache line at a time in round robin fashion. These prefetches coexist with
hardware-based prefetch requests but are much less time sensitive, hence the need for some
form of arbitration. See Section 4.5.2 for more details.

4.5 Runtime-Assisted Prefetching

Prefetch commands are generated by the runtime system for the tasks’ input data as specified
by the user via pragma clauses. With the tasks’ input and output the runtime system builds a
task dependency graph that represents the flow of data. Figure 4.3 shows the task dependency
graph created by the runtime system for the Cholesky Decomposition shown in Section 2.1.

This graph is used by the runtime scheduler to guide the path of execution guaranteeing
that data dependencies among tasks are respected. It also enables the runtime system to start
prefetching with enough time to guarantee, to a certain degree, that data is present in the
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Figure 4.3: Task graph generated by the runtime system for a Cholesky Decomposition. The
numbers indicate the task creation order and the colors the task type.

cache hierarchy by the time it is needed. Prefetch timeliness depends on the size of the input
data and the time required to execute the task. Our evaluation shows that the average time
to execute a task is significantly larger than the time required to prefetch a task’s input data
for sensible task sizes, see Table 3.1. Thus, prefetching a task’s input data is triggered right
before the execution of the preceding task begins.

Figure 4.4 shows the sequence diagram for an example of data prefetching directed by
the runtime system of the OmpSs programming model. When the currently executing task A
completes, the runtime scheduler uses the task dependency graph to obtain the next two tasks
that can be executed: B and C. The runtime system generates a prefetch command for the
input data of task C. The prefetch command, an operation in the order of tens of assembly
instructions that entails a negligible overhead compared to the cost of running the runtime
scheduler, is executed by the core before task B starts executing.

Task B begins executing while data for task C is being prefetched, overlapping data
movement and computation. In addition, task C is pinned to the hardware thread executing
task B, disabling work stealing and guaranteeing that task C is scheduled to execute on the
core which caches hold the prefetched data. By doing so the runtime system implicitly
applies an affinity-based scheduling policy, allowing for simpler scheduler algorithms.
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Figure 4.4: Sequence diagram of runtime-assisted prefetching on OmpSs.

4.5.1 Adaptive Destination

As shown in Figure 4.1, we propose integrating the MDTE logic in two locations, a private
per-core MDTE and a shared MDTE that can be used by all cores. The private MDTEs will
always forward the translated commands to the private cache they are attached to, and the
shared MDTE to the LLC. Thus, another important aspect to determine is where to send the
prefetch commands to, i.e., the prefetch destination.

It is always desirable to place the prefetched data as close to the cores as possible without
hurting the performance of the current task. Although the runtime system does not know
exactly the content of each cache, it has knowledge of the input data used by each task.
Using that information and a map of the cache hierarchy it is able to approximate where
the prefetched data can be placed without evicting the working set of the current task. In
this manner, the runtime system can dynamically decide the best prefetch destination before
issuing the prefetch command.

Our experimental evaluation shows that L1 caches are typically too small for block
prefetching, as they cannot hold the prefetched data without evicting the working set of the
current task. Hence, the runtime initially attempts to prefetch data into the private L2 cache.
Once the runtime system estimates the L2 cache cannot hold more data without evicting the
current task’s working set, it directs the remaining prefetch commands to the shared MDTE.

Figure 4.5 summarizes the algorithm used by the runtime system to decide the prefetch
destination. The amount of data that can be placed in the L2 is calculated as:

CapacityL2 = SizeL2 − Inputcurr − PrefDatanext
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PrefDatanext = 0

while Inputnext > 0:

CapacityL2 = SizeL2 - Inputcurr - PrefDatanext

if CapacityL2 > 0 then:

L2 prefetch up to CapacityL2 bytes

increase PrefDatanext

decrease Inputnext

else

L3 prefetch Inputnext bytes

endif

Figure 4.5: Algorithm used by the runtime system to decide the prefetch destination.

where SizeL2 is the size of the L2 cache, Inputcurr the size of the input data for the task cur-
rently executing and Inputnext for the task that will be executed next. PrefDatanext represents
the amount of data already prefetched from the next task.

As an example, Figure 4.6 shows the prefetch destination for two executions of the same
benchmark with two different cache configurations. In this example, for simplicity, all tasks
have 160 KB of input data.

The caches are assumed to initially hold stale data, so the input set for task 1 is always
placed in the L2. On a system with a 128 KB L2 cache, only 128 KB of data fit; the remaining
32 KB are then prefetched into the L3 cache. When the runtime system begins prefetching
for task 2, the L2 is full with tasks’ 1 working set, therefore the 160 KB of data are prefetched
into the L3. This behavior repeats until the end of execution. On a system with a 256 KB L2
cache, the 160 KB of input data from task 1 are initially placed on the L2. When the runtime
system begins prefetching for task 2, 96 KB of its input data are prefetched into the L2 and
the remaining 64 KB into the L3. On this configuration the working set of the currently
executing task co-exists with a portion of the following tasks input data.

The L3 cache is assumed to be large enough to hold the working set of each of the
executing tasks plus the prefetched data. As discussed in Section 3.2, it is usually desirable
to divide the computation into small tasks to improve load balancing. Table 3.1 shows the
average task input data size for our workloads, and Table 4.1 the configuration parameters
of the simulated architecture. This shows that even for tasks with the largest input data size,
the L3 cache is large enough to fit all the required data. Since the runtime system can be
informed of the characteristics of the memory hierarchy, if the ratio of task input data to
last-level cache size were to change, it would be trivial to modify the runtime system to stop
prefetching when necessary.

42



CHAPTER 4. ADAPTIVE RUNTIME-ASSISTED BLOCK PREFETCHING

256 KB L2

128 KB L2

Time

Task 1
...

Task 2 Task 3 Task n

Task 1
...

Task 2 Task 3 Task n

L2 Prefetch L3 Prefetch

Figure 4.6: Prefetch destination of the input data for each task for two runs with different L2
configurations. Input data size: 160 KB.

4.5.2 Coordinating Hardware and Software Prefetch with Demand Loads

The main goal of our mechanism compared to previous prefetching work is to bring data on-
chip at a coarser granularity (blocks vs cache line) with the help of the runtime system, and
combine it with other traditional hardware and/or software prefetching mechanisms to move
data closer to the core, i.e. the L1 or L2 caches. Unfortunately, prefetching has potentially
a high cost in terms of bandwidth usage and network contention, specially if multiple and
simultaneous prefetching mechanisms are used. Throttling policies [112] can be used to
coordinate them, slowing or even stopping completely one of the prefetch engines in order
to maintain fairness or avoid contention on shared resources.

Our implementation takes into account some priority considerations to ensure that re-
quests in the critical path are always processed first. The first consideration is that demand
requests generated by the CPU are always prioritized over prefetch requests. This ensures no
prefetch instruction will delay a CPU request. Also, software prefetches are not as time sen-
sitive as hardware prefetches, as the data prefetched is only required for the next task which
is usually hundreds of thousands or millions of cycles in the future (see Table 3.1). Hardware
prefetch engines analyze the stream of accesses and generate requests for data needed in the
near future, and therefore are prioritized over the runtime-generated prefetches.

In addition, while demand requests are always prioritized, in-flight prefetches may still
stall the memory subsystem if any of the hardware structures becomes full (input buffers,
MSHR queues, etc.). We apply a simple throttling policy to deal with this issue. Any time
that a cache level is unable to process a new request, we stop issuing new prefetch requests
in that cache until demand requests can again be successfully processed. By doing so we
give time to the in-flight requests to complete and we avoid getting the hardware structures
filled with new prefetch requests that would further stall demand requests.
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Table 4.1: Memory hierarchy configuration parameters.

Parameter Value Parameter Value
Cache (L1/L2/L3) DRAM DIMM

Size (KB) 32/256/2048 per core Data rate (MT/s) 1600
Latency (cycles) 2/12/45 Burst length 8
Associativity 2/8/16 CL/RCD/RP/RAS (cycles) 11/11/11/34
MSHR entries 8/32/8 per core

MDTE (L2/L3) Memory Controller
TLB size 16/16 Access queue size 128
Prefetch queue size 256/1024 Number of DIMMs 4

4.6 Methodology

In order to evaluate the performance of our prefetching scheme we use the simulation infras-
tructure described in Section 3.1. We model the timing of an out-of-order processor, cache
hierarchy, interconnection network and off-chip memory. The configuration parameters of
the cache hierarchy are shown in Table 4.1. The cache line size is 128 bytes divided into
16 sub-blocks of 8-bytes each for all cache levels. All caches are inclusive, non-blocking
and implement an LRU replacement policy. The bandwidth of all on-chip network links is 8
bytes per cycle with a latency of 3 cycles.

The MDTEs are implemented as described in Section 4.4 and configured using the pa-
rameters shown in Table 4.1. For energy estimations we use CACTI version 6.5 with the
memory parameters specified in Table 4.1 and technology parameters based on ITRS predic-
tions for a 32nm technology.

We evaluate our block prefetching scheme using the seven scientific benchmarks shown
in Table 3.1. As stated earlier, we run simulations of a multicore processor with three differ-
ent configurations of 4, 8 and 16 cores. Each core has private L1 and L2 caches, and all the
cores share the L3 LLC. The LLC is multi-banked, with an 8MB bank per each 4 cores. As
we increase the number of cores we add an additional memory controller per each additional
LLC bank to sustain the extra traffic generated by the cores.

4.6.1 Hardware Prefetching

First we explore the effectiveness of the standalone hardware prefetchers for each of the
benchmarks. We implemented and evaluated two commonly used hardware prefetching
schemes: Next-line is the basic one block lookahead described in Section 2.2.1 that prefetches
the next N lines after a cache miss. Stride is a reference prediction table-based stride
prefetcher [27] that looks for regular strides among memory references from the same static
instruction. We explored a range of values for the prefetch degree and found N=2 to be
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Benchmark Best HW pref.
Histogram L1 Nextline + L2 Stride
Matmul L1 Stride
Reduction L1 Nextline
LU L2 Nextline
PBPI L1 Nextline + L2 Stride
Jacobi L1 Nextline + L2 Stride
MD5 L1 Nextline + L2 Stride

Table 4.2: Best standalone hardware prefetch configuration.

optimal for both schemes and the simulated architecture. We evaluated all the benchmarks
with all possible combinations of these prefetching schemes, e.g. only L1 stride, L1 stride
and L2 nextline, L1 and L2 stride, etc. Table 4.2 shows which hardware prefetching scheme
obtained the best performance for every benchmark.

We then repeat the experiments executing the benchmarks with all the hardware prefetch
permutations possible, but combined with our runtime-assisted prefetching scheme. For
all benchmarks but one, the hardware prefetch configuration that performs best standalone is
also the best configuration in our hybrid hardware + software approach. The exception is LU,
where every hardware + software configuration degrades performance by at least 5% over
no prefetching. For the rest of this evaluation, we use the best standalone hardware prefetch
configuration shown in Table 4.2 as the baseline for each benchmark. This configuration is
labelled as HW on the figures. The configuration with the best hardware prefetcher and our
proposed runtime-assisted prefetching scheme is labelled as HW+MDTE.

4.6.2 Compiler-Based Software Prefetching

We aim to compare our scheme to other traditional software prefetching techniques. We
therefore compile every benchmark with the GCC flag -fprefetch-loop-arrays.
With this optimization flag the compiler attempts to insert ISA-specific prefetch instructions
into loops that traverse large data arrays.

As stated before, our hybrid approach combines runtime-assisted block prefetching with
other traditional prefetching mechanisms that move data closer to the cores once it is brought
on-chip by the MDTE. Thus, we not only use the compiler-based prefetch scheme to compare
our proposal against, but we also evaluate the impact of combining both. We first execute the
benchmarks compiled with the prefetch flag in conjunction with every hardware prefetcher
and select the best performing. This configuration is labelled as HW+SW in the figures.
We then take this configuration and combine it with our runtime-assisted block prefetcher
(labelled as HW+SW+MDTE).
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Figure 4.7: Average memory access time in cycles.

4.7 Experimental Evaluation

In this section we evaluate our proposed runtime-assisted prefetch scheme by looking at
average memory access time (AMAT), cache hit rates and execution time. We also evalu-
ate the power implications of using our prefetching scheme, including the additional power
consumption caused by the MDTEs.

4.7.1 Average Memory Access Time

Figure 4.7 shows the AMAT for all the benchmarks on the various prefetch configurations
discussed. For six of the seven benchmarks the MDTE is able to reduce AMAT. As expected,
applications that display a high AMAT (even with hardware prefetching) benefit more from
our software block prefetcher. In particular, Jacobi, MD5, Reduction and Histogram obtain
on the 8 core configuration a reduction in AMAT of 18%, 28%, 48% and 49% respectively
over the execution with the best hardware prefetcher only.

The benefit obtained by our hybrid scheme is limited to a 5% AMAT reduction for
PBPI. The reason is that the AMAT for this application is already very low (20 cycles)
with no prefetching mechanism, and it is even further reduced to 14 cycles by the hardware
prefetcher. Since the latency of our L2 caches is 12 cycles and we model out-of-order cores
that can hide some of that latency, the benefit attainable is very limited. A similar effect can
be seen in Matmul, with an AMAT on the hardware prefetch configuration standalone of 8
cycles that our runtime-assisted prefetcher is not able to reduce. LU shows some interesting
results, where using the compiler-based software prefetching scheme increases AMAT more
than 4 times over the hardware prefetcher standalone configuration. In addition, we can see
how our runtime-assisted prefetcher also increases AMAT slightly (2%). In order to better
understand the reason we look at cache hit rates.
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4.7.2 Cache Hit Rates

Figure 4.8 shows hit rates for the three cache levels. We can see why Matmul barely obtains
any AMAT reduction with the runtime-assisted block prefetcher. Our implementation of
matrix multiply uses the BLAS library and applies an optimization known as blocking, where
the matrix is split in small blocks that can be computed concurrently. The block size adapts
to the size of the L1 cache, and thus the benchmark has a 99.9% L1 hit rate. In addition, we
can see how the L3 cache hit rate is also close to 99% on the hardware prefetch standalone
configuration. With almost no misses in the cache hierarchy and corresponding off-chip
accesses, our prefetching scheme cannot further improve performance. The memory access
pattern of Matmul is very regular and therefore the stride-based hardware prefetcher is able
to successfully predict and prefetch most future memory references.

Figure 4.8a shows the cause of the large spikes in AMAT observed in LU when using the
compiler-based software prefetch scheme. The compiler-inserted prefetch instructions are
evicting useful data from the L1 cache due to bad timing, reducing the hit rate and conse-
quently increasing the AMAT. We can also see why our scheme slightly increases AMAT. LU

factorization uses blocking as well, with a block size of 128 KB that fits comfortably in the
L2 cache the benchmark achieves near 100% L2 cache hit rate on the hardware prefetcher
standalone configuration. Our runtime-assisted prefetcher reduces L2 hit rate slightly by
evicting data from the current task’s working set. The runtime system is not correctly iden-
tifying the available space in the cache and is therefore prefetching more data that actually
fits. The cause is that the benchmark allocates private static data that is not declared as an
input, affecting the heuristics that calculate the optimal prefetch destination.

Nevertheless, due to the inclusive cache hierarchy, the L2 data evicted by the prefetcher
remains in the L3 cache, and in the end, our scheme successfully prefetches almost all data
used by the benchmark, achieving a 99% L3 cache hit rate.

Overall, Figure 4.8 shows how our runtime-assisted prefetch scheme is able to bring on-
chip most of the data used by the benchmarks. All benchmarks but one achieve 90% L3
cache hit rate or higher. The exception is PBPI, where our scheme achieves a 79% L3 hit
rate only and barely improves the hardware prefetcher standalone configuration. The reason
is that similarly to LU, the benchmark allocates a significant amount of local static data,
which the runtime system does not know about and can therefore not prefetch.

4.7.3 Execution Time

Finally, we evaluate execution time to see how the AMAT and cache hit rate changes affect
performance. Figure 4.9 shows the speedup for all benchmarks with the various prefetch
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Figure 4.8: Cache hit rates for all benchmarks on a 8 core system.

configurations over the execution with the best hardware prefetcher standalone. As stated
in Section 4.6.2 we first evaluate the compiler-based software prefetch configuration in con-
junction with the best hardware prefetcher for each benchmark. The results indicate that
using the GCC prefetch flag produces mixed results depending on the benchmark.

The AMAT increase caused by the low L1 hit rate in LU translates into a performance
drop of 46% on a 4 core system when using compiler-based prefetching. On the other hand,
Reduction sees a significant 44% speedup thanks to an increased L1 cache hit rate. Ad-
ditionally, compiler-based prefetching provides a small improvement in PBPI and a slight
performance loss on MD5. The rest of the benchmarks see almost no variation compared to
a hardware prefetch-only configuration.

As explained in GCC’s documentation [32], compiling with the prefetch flag may gener-
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Figure 4.9: Speedup over the baseline configuration with hardware prefetching only.

ate better or worse code and is highly dependent on the structure of loops, and therefore it is
an unreliable mechanism to consistently improve performance. Still, our proposed technique
is designed to work in conjunction with any other fine-grained prefetching mechanism, so it
is at the discretion of the user whether to use GCC-based software prefetching or not.

Combining hardware prefetching with our runtime-assisted software scheme produces
more consistent results. In the 4 core system, our hybrid hardware + MDTE configuration
obtains a 19% speedup over execution with the best hardware prefetcher standalone for His-

togram and Reduction, and a more modest 7% on Jacobi. These gains are clearly associated
to the substantial increase to L3 cache hit rate that our scheme provides.

PBPI and Matmul do not improve over the hardware prefetch configuration standalone.
As discussed earlier, this is due to the low AMAT the benchmarks already show on the
baseline configuration. Our scheme is not able to further reduce AMAT and hence provides
no performance gains. LU sees a slight performance degradation due to the eviction of useful
data from the L2 cache.

When combined with compiler-based software prefetching, our scheme is able to provide
a significant 73% speedup for Reduction over the baseline hardware prefetch configuration.
On this configuration our runtime-assisted prefetch scheme brings data on-chip, significantly
increasing L3 cache hit rate. The compiler-inserted prefetch instructions further improve
performance by prefetching data into the L1 that the hardware prefetcher alone cannot.

On average, the hybrid hardware + MDTE configuration obtains a 7% speedup over the
baseline in the 4 core chip. Although the configuration including compiler-inserted prefetch
instructions may perform best in some benchmarks, in others such as LU the performance
drop is considerable, and overall the best results are obtained with hardware prefetching and
our runtime-assisted prefetching scheme.

In the system with 8 cores we double the number of L3 banks and memory controllers

49



4.7. EXPERIMENTAL EVALUATION

to better support the bandwidth requirements of the extra cores. In this context our hybrid
prefetching scheme shines obtaining a 30% and 25% speedup in Histogram and Reduction

respectively, with an average of 9% for all benchmarks.

The configuration with compiler-inserted prefetch instructions experiences a large per-
formance loss on Reduction over the system with 4 cores. The reason is that even with
the additional memory controllers, the number of prefetch requests generated by the com-
piler saturates the interconnect network and memory controllers, diminishing the benefits
obtained. PBPI suffers a small performance degradation because, as explained before, block
prefetching does not provide any benefit over an already low AMAT, and because, as in
the case of LU, the overhead caused by the prefetch requests traveling through the memory
subsystem is non-negligible.

These results are maintained on the 16 core configuration with one exception: reduction

loses about 10% performance on our hybrid hardware + MDTE configuration. The reason is
that the LLC saturates with the increased number of requests and our throttling mechanism
stops all prefetching. More complex throttling policies could be applied to reduce the impact
of the increased traffic, and are left for future work.

4.7.4 Energy Consumption

Prefetching is usually considered a trade-off between performance and energy consump-
tion, especially on speculative hardware-based prefetchers [113]. Yet, our proposed runtime-
assisted prefetching scheme brings only data known to be needed, and the additional hard-
ware required to support our block prefetcher has an almost negligible cost in area and power.
In order to evaluate whether our scheme has a positive or negative impact on energy con-
sumption, we analyze the static and dynamic power consumption of all benchmarks on all
the different prefetch configurations.

Figure 4.10 shows energy-to-solution for each benchmark, with a breakdown of the dif-
ferent sources of energy consumption: dynamic power for each cache level and off-chip
DRAM, as well as the total energy derived from static power in the system. We show results
for all the prefetch configurations, each represented by a stacked bar. Results are normalized
to the energy-to-solution on the hardware prefetch standalone configuration. The increase in
power caused by the MDTEs has been included in the dynamic power of the cache level they
are attached to, i.e., L2 for the private MDTEs and L3 for the shared.

The results show how energy consumption is dictated primarily by static power, and
therefore by execution time. Thus, the additional power consumption caused by the MDTEs
is offset by the reduced execution times obtained using our hybrid prefetching scheme. This
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translates into energy-to-solution improvements of 10% on average for all benchmarks on the
4 core configuration. In all but two benchmarks we consume less energy by using our hybrid
scheme compared to hardware prefetching only. On the 8 core configuration, Reduction

and Histogram obtain a 13% and 15% decrease in energy-to-solution compared to the best
hardware prefetch configuration standalone, with an average of 12% for all benchmarks.
As expected, PBPI and LU see slight increases in energy consumption, e.g. 6% and 1%
respectively on the 8 core configuration. The hybrid prefetching scheme is not able to further
reduce execution times beyond what the hardware prefetcher is able to, and therefore there
is no energy-to-solution reduction.

4.8 Summary and Concluding Remarks

In this chapter we propose a hybrid hardware + software block prefetching scheme. Prefetch-
ing is a technique widely used to reduce the processor–memory performance gap by bringing
data from the high-latency off-chip memory into the cache hierarchy in advance.

We have demonstrated that by using a runtime system to guide a block prefetch engine
we effectively increase cache hit rates and hence reduce the average memory access time.
This approach is simpler and more robust than manually inserting prefetch instructions in the
code or relying on complex compiler analysis, a mechanism we have shown that provides
mixed results, significantly degrading performance in some cases.

By using a runtime system with knowledge of the upcoming task schedule and memory
referenced, we prefetch only data that the programmer states will be needed, avoiding cache
pollution. In addition, we let the runtime system leverage this information to dynamically
decide the best prefetch destination and avoid cache thrashing. Our proposal is especially
efficient for memory-sensitive applications, but does not harm compute-bound applications.

We show that the best results are obtained with a hybrid prefetch scheme combining
our runtime-guided block prefetcher with other traditional hardware and software prefetch-
ing techniques that manage locality at cache line granularity. Our runtime-assisted block
prefetcher brings large chunks of data from off-chip memory into the L2 or L3 caches, while
the other prefetchers move the data closer to the cores, further reducing memory access
times. For best results, we apply basic throttling to coordinate the prefetchers and reduce the
overhead caused by the prefetch engines.

The evaluation on a set of scientific workloads shows that our hybrid prefetching scheme
is able to obtain up to 32% performance improvement with an average of 9% compared
to the baseline configuration with a hardware prefetching scheme only. The performance
benefits offset the increased power from the extra hardware and the increase in dynamic
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power caused by prefetch activity, leading to a reduction of up to 18% with an average of
3% in energy-to-solution.

The experimental evaluation acknowledges our hypothesis that leveraging the informa-
tion available to the runtime system of task-based programming models provides a perfect
opportunity for efficient data prefetching. In addition, it shows that a hybrid prefetch scheme
combining the best characteristics of software and hardware-based prefetchers is the most
effective way of managing data prefetching in a multicore system.
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(a) 4 cores.
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(b) 8 cores.
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(c) 16 cores.

Figure 4.10: Energy-to-solution normalized to the execution with the best hardware
prefetcher standalone. From left to right for each benchmark: hardware + MDTE prefetch
(H+M), hardware + software prefetch (H+S) and hardware + MDTE + software prefetch
(H+M+S).
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Chapter 5
Last-Level Cache Sharing on Integrated

Heterogeneous Architectures

5.1 Motivation

Heterogeneous systems have become commonplace in the field of HPC. GPUs are widely
used as accelerators for their enormous computing power and energy efficiency. While most
GPUs used in HPC are still in a separate chip connected to a host machine through a com-
puter expansion bus such as PCIe, the trend is towards tighter coupling of host and device.

In particular, on-die integration of GPUs and general-purpose CPUs has become the
norm from desktop computers [14, 47] to mobile and embedded chips [46, 44]. This tighter
coupling of GPU and CPU cores allows for seamless sharing of data structures and low-
overhead synchronization, improving programmability and making heterogeneous comput-
ing more accessible. Yet, although on-die GPU integration seems to be the current trend
among the main microprocessor manufacturers, there are still many open questions regard-
ing the architectural design of these systems.

An important issue that has not yet been fully explored is resource sharing within these
integrated heterogeneous architectures. While resource sharing within homogeneous SMPs
is a well known and extensively studied problem, integrating computing elements with such
widely different characteristics as GPU and CPU cores have presents new challenges. Thus,
we are starting to see some work analyzing the effect of sharing on-chip resources such as the
last-level cache [7, 57], the memory controller [114, 59, 60], or the network-on-chip [115].
Most of these works start with the premise that GPU and CPU applications exhibit dif-
ferent characteristics (spatial vs. temporal locality) and have different requirements (high
bandwidth vs. low latency), and therefore careful management of the shared resources is
necessary to guarantee fairness and maximize performance. In their evaluation, the authors
use workloads composed of a mix of GPU and CPU applications running concurrently.
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While using multiprogrammed workloads to evaluate resource sharing can give insights
into some of the challenges of GPU-CPU integration, we believe it is not representative of
future HPC workloads. The tight integration of CPU and GPU cores enables features such
as a unified virtual address space and hardware-managed coherence, increasing programmer
productivity by eliminating the need for explicit memory movement. GPU and CPU cores
can seamlessly share data structures and perform low-overhead synchronization via atomic
operations. In this manner, algorithms can be divided in smaller steps that can be executed
on the device they are best suited for (i.e., data parallel regions on the GPU or serial/low
data parallelism regions on the CPU). These collaborative computations fully leverage the
capabilities of integrated GPU-CPU systems, and their data sharing patterns will have impli-
cations on the shared resources that need to be understood.

The design of the cache hierarchy on integrated GPU-CPU systems varies from vendor to
vendor and even among families of products from the same vendor. Even such a fundamental
decision as whether to provide a shared cache level between GPU and CPU is not agreed
upon by the major vendors. Intel chips since the Sandy Bridge family integrate the GPU
on-die with the CPU cores [47], and include a shared L3 cache connected to the same ring
bus as the GPU and CPU cores. AMD, on the other hand, completely separates the cache
hierarchies of GPU and CPU in their APUs (integrated heterogeneous systems in AMD
terminology) [14], as does NVIDIA in their Tegra line of integrated systems [46]. In this
chapter we move a step forward towards understanding the effect of sharing the LLC on
such architectures, and in particular when executing collaborative computations. Our goal is
to provide guidelines for the design of the cache hierarchy of future integrated architectures,
as well as for applications to best benefit from these.

5.2 Methodology

In order to analyze the effect of sharing the LLC we evaluate the set of heterogeneous GPU-
CPU workloads detailed in Section 3.2 with the two cache hierarchy designs depicted in
Figure 5.1. Configuration a) has separate, split L3 caches for GPU and CPU; memory re-
quests from one can only go to the other through the directory. Configuration b) has a unified,
shared L3 cache that both GPU and CPU can access directly and equally. In the evaluation
performed in this chapter we analyze the the effect that sharing the LLC as in configuration
b) has for heterogeneous computations where GPU and CPU collaborate and share data.

We simulate a four core CPU and an integrated GPU composed of four Fermi-like
SMs grouped in two clusters of two. Considering NVIDIA Tegra X1 is composed of two
SMs [46], this configuration is our best guess as to how the next generation of heterogeneous
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Figure 5.1: Integrated heterogeneous architecture with a) separate L3 caches for GPU and
CPU, and b) a shared L3 LLC.

systems may be. The CPU’s L1 and L2 caches are private per CPU core. Each GPU SM has
a private L1, connected through a crossbar to the shared L2, which is itself attached to the
global crossbar. In configuration a) the system has two L3 caches private to GPU and CPU;
configuration b) shows a unified L3 that can be used by both.

Table 5.1 lists the configuration parameters of the system evaluated. The LLC size listed
refers to the shared configuration. For the split configuration we partition the cache, giving
1/8 to the GPU and 7/8 to the CPU. We follow current products from Intel and AMD where
the ratio of GPU-to-CPU cache size is between 1/8 and 1/16 [47, 48]. We evaluated different
split ratios from 1/2 to 1/16 and saw similar trends among them.

Unfortunately, partitioning the LLC in this manner and directly comparing the results
would not provide a fair evaluation. The additional cache space available to both CPU and
GPU cores in the shared configuration may affect the results if the benchmarks are cache
sensitive. To isolate the gains that are caused by faster communication and synchronization
from those that are due to the extra cache space available in the shared configuration, we
also run all the benchmarks with an extremely large, 32-way associative LLC of 1 GB total
aggregate size. In this configuration, even on the split configuration the working set of most
benchmarks fits in both private caches, and therefore the gains when the cache is shared
cannot be attributable to the extra space available.

In both cases, the LLC(s) run in the same clock domain as the CPU. This allows us to
present a fair comparison by setting the same access latency on both configurations, albeit
providing a conservative estimation of the benefits of LLC sharing. All caches are write-
back and inclusive with a LRU replacement policy. Cache line size is 128 bytes across the
system. The NoC is modeled with gem5’s detailed Garnet model [116]. Flit size is 16 bytes
for all links; data message size is equal to the cache line size and fits within 9 flits (1 header
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Table 5.1: Simulation Parameters for the Integrated Heterogeneous Architecture.

CPU
Cores 4 @ 2 Ghz
L1D Cache 64kB - 4 way - 1ns lat.
L1I Cache 32kB - 4 way - 1ns lat.
L2 Cache 512kB - 8 way - 4ns lat.

GPU
SMs 4 - 32 lanes per SM @ 1.4 Ghz
L1 Cache 16kB + 48kB shared mem. - 4 way - 22ns lat.
L2 Cache 512kB - 16 way - 4 slices - 63ns lat.

LLC and DRAM
LLC 8MB - 4 banks - 32 way - 10ns lat.
DRAM 4 channels - 2 ranks - 16 banks @ 1200 MHz
RAS/RCD/CL/RP 32 / 14.16 / 14.16 / 14.16 ns

+ 8 payload flits). Control messages fit within 1 flit. The power results in Section 5.3.2 were
obtained with CACTI version 6.5 [95] configured with the parameters shown in Table 5.1.

Our simulation infrastructure, detailed in Section 3.1, simulates a discrete heterogeneous
architecture with global coherence and a unified virtual address space, allowing both GPU
and CPU to access data allocated by the host using the same addresses.

5.3 Experimental Evaluation

This section presents the experimental evaluation of the effects of sharing the LLC as de-
scribed in Section 5.2. We first evaluate the kernels from Rodinia GPU listed in Table 3.2.
As discussed in Section 3.2, we modify the benchmarks to use regular pointers, leveraging
the shared address space. Next, we evaluate a set of collaborative benchmarks that fully
make use of the characteristics of integrated heterogeneous systems.

Collaborative heterogeneous benchmarks split the computation into steps that are as-
signed to either GPU or CPU cores, share data at fine granularities during the computation
and synchronize via system-wide atomic operations. These benchmarks are a better repre-
sentation of what we believe will be heterogeneous computations in the future. Their data
sharing patterns tax the memory subsystem in different ways than traditional heterogeneous
kernels do, and thus analyzing them provides insights that can be useful for the design of
future heterogeneous architectures.
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Figure 5.2: Speedup for Rodinia benchmarks with a shared LLC. For every shared LLC size
the results are normalized to the private LLCs configuration with that same size.

5.3.1 Rodinia

As stated in Section 3.2.2, Rodinia benchmarks have minimal interaction between GPU and
CPU. The one interaction all benchmarks share is in the allocation and initialization of data
by the host prior to launching the computation kernel(s). Therefore, on a shared LLC con-
figuration, if the working set of the benchmark fits within the LLC, the initial GPU memory
requests after the kernel launches will hit in the LLC, avoiding an extra hop to the CPU’s
private LLC with the corresponding coherence traffic. The performance impact of finding a
warm cache depends on the duration of the computation kernels.

Figure 5.2 shows speedup for all benchmarks with a shared LLC over the configuration
with private LLCs. Note that the results for the 8MB shared LLC configuration are nor-
malized to the results with the 8MB private LLCs, while the 1GB shared LLC results are
normalized to the private 1GB LLCs configuration. Out of the 11 benchmarks, 7 show a
speedup of over 10% with an 8MB LLC. Among those, RBF and RLU lose all the speedup
with a 1GB cache. We can therefore attribute the gains to the additional cache space avail-
able to the GPU when sharing the LLC. RBF has a significant degree of branch and memory
divergence and is largely constrained by global memory accesses [117]. Our results confirm
this and show that the kernel benefits from caching due to data reuse. On the 1GB configura-
tion the GPU is able to fit the whole working set in its private cache hierarchy; since there is
no further GPU-CPU interaction after the GPU first loads the data, there is no performance
benefit by sharing the LLC. We also observe a similar behavior in RLU.

RBP, RPA and RSR speedup is also reduced on the 1GB configuration, but still obtain
13%, 33% and 13% improvement respectively. RSR contains a loop in the host code calling
the GPU kernels a number of iterations. After each iteration, the CPU performs a reduction
with the result matrix. This data sharing pattern between GPU and CPU benefits from the
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faster GPU-CPU communication that a shared LLC provides. The speedup is reduced on
the 1GB configuration because there is data reuse within the two GPU kernels and the larger
private LLC allows more data to be kept on-chip. In RBP the CPU performs computations
on shared data before and after the GPU kernel; the benefit of sharing the LLC is two-fold:
the GPU finds the data in the shared LLC at the start of the kernel, and the CPU obtains the
result faster after the kernel completes, avoiding an extra hop to the private GPU LLC.

RPA sees the largest performance improvement although there is no further GPU-CPU
communication past the initial loading of data by the GPU. The gains are thus attributable to
the GPU finding the data in the shared LLC at the start of the kernel. Both these benchmarks
see non-negligible performance gains despite the limited GPU-CPU interaction. The reason
is that the total execution time for both benchmarks is low, and the effect of the initial hits
on the host-allocated data is magnified. We chose a small input set in order to run our
simulations within a reasonable time-frame. On large computations this benefit would be
diminished over time, hence on real hardware with larger input sets, it is likely the gains
would be minimal.

RNW is the only benchmark where the performance gain of sharing the LLC actually
goes up to 27% when increasing the LLC size to 1GB. This effect is due to the large input
set used, with a heap usage of 512MB. The GPU’s private LLC on the split configuration is
not large enough to hold all the data; there is data reuse within the kernel, but due to the large
working set, it is evicted out of the LLC before it is reused. On the shared configuration, the
GPU benefits both from finding the data in the LLC and from being able to keep it there for
reuse. In addition, after the kernel completes, the CPU reads back the result matrix, further
benefiting from the faster GPU-CPU communication the shared LLC provides.

RNN experiences a small performance gain from sharing the LLC because it has GPU-
CPU communication beyond the initial loading of data. When the GPU finishes computing
distances, the CPU reads the final distance vector and searches for the closest value. The
benchmark also benefits from the extra cache space, and thus the gains are reduced on the
1GB configuration where the 12MB input set fits in the LLC.

RGA, RHP, RLA, and RPF do not benefit from sharing the LLC. RGA launches a kernel
multiple times to operate on two matrices and a vector. The benchmark benefits from caching
due to data reuse, but once the matrices and vector are loaded, there is no further interaction
with the CPU until the kernel completes. Although the CPU then reads the data and performs
a final computation, this is just a small portion of the execution and thus the gain is negligible.

In RLA, the kernel is optimized to access contiguous memory locations, allowing the
GPU to coalesce a large amount of memory accesses and to reduce the total memory traffic
pushed into the cache hierarchy. This memory access pattern and a high data reuse translates
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Figure 5.3: Speedup for Rodinia benchmarks as cache size increases. Each bar represents
speedup for a given private GPU LLC size normalized to a configuration with a private LLC
of 512KB.

into close to 99% cache hit rate in the GPU L1 caches despite an input set size of 8MB. As
a consequence, sharing the LLC provides no benefit. A similar behavior can be observed in
RPF, where the small memory footprint of the kernel allows data to fit within the GPU L1
and L2 caches.

RHP iterates multiple times operating over the same three matrices, showing data reuse
with a large reuse distance. With a 1GB LLC the whole working set is able to fit in the
cache, but the kernel is mostly cache insensitive and gains little from the increased hit rate.
There is no GPU-CPU communication, and the small benefit of initially hitting in the LLC
is diminished over the total execution time.

These results show that sharing the LLC does not provide a significant benefit for com-
putations such as the ones found in the Rodinia benchmark suite, with minimal GPU-CPU
interaction and data sharing only at kernel boundaries. The geometric mean speedup for all
benchmarks is 9% on the 1GB configuration and 13% with a 8MB shared LLC, gains mostly
due to the extra cache space available to the GPU. To further corroborate this hypothesis,
we measure the sensitivity of the benchmarks to cache size. We run each benchmark with
a split LLC configuration and with increasing private LLC sizes of 4MB, 8MB, 16MB and
1GB. Following the 1/8 ratio of GPU to CPU LLC, the GPU obtains 512KB, 1MB, 2MB,
and 128MB respectively. We keep the same access latencies for all configurations in order
to provide a meaningful comparison.

Figure 5.3 shows speedup as we increase cache size, normalized to the configuration
with a 512KB GPU LLC. Confirming our previous findings, we see that RBF, RGA, RLU,
RNW and RPA show sensitivity to cache size, obtaining over 20% performance increase with
an large 128MB cache. RGA and RBF show very high cache sensitivity, with up to 69%
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Figure 5.4: Speedup for the collaborative benchmarks with a shared LLC. Results for each
cache size are normalized to the configuration with private LLCs and that same size.

and 49% improvement respectively with a more realistic 2MB cache. RLA and RPF, as
discussed earlier, make almost no use of the LLC and therefore do not benefit from a larger
cache. RHP shows data reuse and sees minor gains with a 128MB LLC, where it is able to
fit the whole working set; with a smaller LLC the number of cache misses increases, but the
GPU is able to hide the extra latency and the benchmark is thus mostly cache insensitive.
RBP and RSR show some sensitivity to cache size, confirming the loss of speedup shown in
Figure 5.2 is due to the extra cache space available. RNN sees some improvements up to the
2MB configuration, after which the working set fits within the 16MB of aggregated cache
space. Although the 2MB of the GPU’s private LLC are not enough to hold the working set,
the kernel features no data reuse and therefore does not benefit from a larger LLC.

5.3.2 Collaborative Heterogeneous Benchmarks

The results presented in the previous section show traditional heterogeneous benchmarks are
largely insensitive to the design of the LLC. We now analyze a set of collaborative computa-
tions with fine-grained data sharing and synchronization between GPU and CPU cores. We
run the collaborative benchmarks with two CPU worker threads, with the exception of LCAS

and UCAS which use only one. As in Section 5.3.1, we also run the benchmarks with an
ideal 1GB LLC to isolate the gains that come from the additional cache space available on
the shared configuration.

Figure 5.4 shows the speedup obtained with a shared LLC over the private LLC con-
figuration. As with Rodinia, the results for each LLC size are normalized to the private
configuration with that same size. Of the 11 benchmarks, 6 show improvements of over 20%
with a shared LLC. For BFS we choose two different input graphs. The smaller NY graph
has variable amount of work (and thus available parallelism) per iteration, switching often
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Figure 5.5: LLC hit rates for private and shared configuration.

between GPU and CPU computation. The larger NE graph has many iterations with a high
amount of nodes, and therefore executes mostly in the GPU, switching less often between
GPU and CPU. The performance gain for BFS-NY is higher than for BFS-NE, achieving as
much as a 56% speedup on the 1GB configuration. This is reduced to 11% on BFS-NE with
the 1GB LLC because with limited GPU-CPU communication, the benefit comes mostly
from additional cache space.

In order to understand how sharing the LLC affects cache hit rates, we analyze L3 hit rate
for both split and shared configurations. For the private LLCs configuration we calculate the
aggregated L3 hit rate as explained in Section 3.3. We see in Figure 5.5 that BFS-NE obtains
39% higher hit rate in the private LLC configuration by increasing the size from 8MB to
1GB. As discussed, the computation is mostly performed by the GPU, where only 1MB of
LLC is available on the 8MB split configuration. Being able to use the remaining 7MB that
are mostly unused by the CPU provides a significant gain.

The speedup observed in BFS-NY supports the relevance of fast GPU-CPU communica-
tion on workloads making an extensive use of atomic synchronizations. In gem5-gpu atomics
are implemented with read-modify-write (RMW) operations. A RMW instruction is com-
posed of two parts, an initial load (LD) of the cache line with exclusive state, and a following
write (WR) with the new value. Once a thread completes the LD, no other thread can read
or modify that memory location until the WR finishes, guaranteeing atomicity.

Figure 5.6 shows the average access time to perform the LD part of the RMW on a shared
LLC configuration, normalized to the configuration with private LLCs. We can see how BFS

performs the operation 40% and 45% faster with a shared LLC for the NE and NY graphs
respectively. On the other hand, DSC and DSP perform slower RMW LDs with a shared
LLC and, nevertheless, show speedups of 27% and 42% respectively. The average time to
perform the RMW LD is higher because there are more L1 misses when the exclusive LD
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Figure 5.6: Average latency to perform a RMW LD normalized to private LLC.
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Figure 5.7: Normalized IPC with a shared 8MB LLC.

is attempted. This is a side-effect of the faster GPU-CPU communication. GPU and CPU
cores compete for the cache lines holding the array of synchronization flags, invalidating
each other. The shorter the latency to reach the current owner of the block, the more likely it
is for a core to have relinquished ownership of the block by the time it is reused.

The reason the benchmarks still obtain a speedup with a shared LLC is that the overall
memory access time for all accesses is lower. In particular for the GPU, the average latency
for all the threads of a warp to complete a coalesced load instruction is 65% and 40% lower
for DSC and DSP on the 8MB configuration. Figure 5.6 shows how both benchmarks go
from lower than 10% LLC hit rates with a private configuration to above 80% when sharing
the LLC. The benchmarks are memory bound and the reduced memory access latency caused
by hitting in the shared LLC compensates the higher miss rate when performing the atomics.

Figure 5.7 shows the average GPU and CPU instructions per cycle (IPC) with a shared
LLC configuration normalized to private LLCs. DSC and DSP achieve up to 30% and 47%
higher GPU IPC by sharing the LLC. The more latency-sensitive CPU cores see a large
increase of up to 49% on the 1GB configuration when the working set fits in the cache.
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IH calculates a histogram on an input image. We configure the benchmark with 256 bins
that fit within 9 cache lines (8 if aligned to block size). Our intuition was that these blocks
would be highly contended and the benchmark would benefit from faster atomic operations.
Interestingly we see only a relatively small speedup of 14% and 8% on the 8MB and 1GB
configurations, respectively. Figure 5.6 shows that sharing the LLC does not reduce the time
to perform a RMW LD. The speedup is small because in the end, the CPU is the bottleneck.
The GPU benefits from multiple bins falling on the same cache line, as threads from the
same warp can increment multiple bins in a fast manner. That, on the other hand, causes
false sharing in the CPU caches. In addition, the work is statically partitioned, so the GPU
completes its part while the CPU takes 10x longer to finish 1/8 of the image. We observe
how the GPU does indeed benefit from sharing the LLC; the average latency for all the
threads of a warp to finish a LD operation is reduced by 63% and 59% with a shared LLC.
After the GPU finishes computing its part, the CPU remains computing, and eventually all
the lines with the bins are loaded into the CPU caches, obtaining no benefit from the shared
LLC. Figure 5.7 clearly depicts this. The IPC of the GPU increases over 2x on the 8MB
configuration, while the CPU sees barely any improvement.

One of the consequences of using an image as the input is that we observe less conflict
than expected for the cache lines holding the bins. Images usually have similar adjacent
pixels, and it is likely that after obtaining a block in exclusive state to perform the atomic
increment, the following pixels require incrementing a bin in the same cache line. In order to
evaluate the shared LLC with a different memory access pattern, we also run the benchmark
with a randomized pixel distribution (IH-RAND). This input reduces the number of RMW LD
hits, indicating there is more contention for the lines holding the bins. Ultimately, however,
the reduction in cache hits is low, as with 32 out of 256 bins per cache line it is still likely
that the next atomic increment falls in a bin in the same block.

PTTWAC performs a partial matrix transposition in-place. The input matrix requires
53MB of memory, hence not fitting in the cache hierarchy on the 8MB configuration. Shar-
ing an 8MB LLC with such a large input barely increases L3 hit rate, but still provides a
39% speedup. Figure 5.6 shows this is due to a significant reduction to the average latency
required to perform the RMW LD. On the 1GB configuration the latency reduction is even
larger, but the speedup is down to 27%. In this case the cache is large enough to fit the
matrix, and the benchmark only benefits from faster atomics.

In RANSAC the CPU first performs a fitting stage on a sample of random vectors. When
finished, it signals the GPU to proceed with the evaluation stage where all the outliers are
calculated. This process is repeated until a convergence threshold is reached. We see that
sharing the LLC improves performance by 12% for both cache sizes without speeding the
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atomic operations. Both GPU and CPU threads spin reading the synchronization flag when
their counterpart is computing, therefore there is no contention for the block among them
once it is read. The hit rate when performing the LD in a RMW is 72% for both shared and
private LLC configurations, and thus the average access time is already low. The speedup in
this case is not produced by faster synchronization, but from sharing the vector array. The
memory footprint of the array is small, increasing L3 hit rate only by a 10%. Nevertheless,
Figure 5.7 shows this 10% has a large effect on the latency-sensitive CPU, that achieves over
60% higher IPC with a shared LLC. The GPU also finds the vector array in the LLC on the
first iteration, and sees a more modest 17% IPC increase. The total execution time of this
benchmark is low, and thus the impact of initially finding a warm cache is magnified. As
with Rodinia benchmarks, on a longer executing application the gains would diminish.

LCAS uses a CPU thread to traverse half of a linked list while the GPU threads traverse
the other half, inserting in each position an identifier and atomically updating the head of
the list. The cache line containing the head is highly contended, causing the atomic oper-
ations to be the bottleneck. UCAS traverses the list resetting the identifiers to zero. The
difference between both benchmarks lies in the order the elements are accessed. Although
the data structure holding the identifiers is conceptually a linked list, it is implemented as
an array where the first position contains the array index of the next element. In LCAS the
CPU inserts identifiers in consecutive array positions; GPU threads update the array posi-
tion matching their thread identification number, and therefore threads from the same warp
update contiguous positions.

In UCAS the order in which the elements are accessed is the reverse order in which the
linked list was updated in LCAS, i.e. the reverse order in which the threads were able to
perform the atomic operation. This difference causes the observed speedup variation. In
UCAS the scattered access pattern causes many blocks to be moved back and forth between
GPU and CPU, and is reflected by the near 0% L3 hit rate seen in Figure 5.5. In this case
the data migration latency from GPU to CPU is also an important factor. The results show
that although UCAS achieves on average a lower latency reduction to perform a RMW LD
with a shared LLC, the benefit of faster data movement actually results in a higher speedup
compared to LCAS.

In TQ the CPU is in charge of inserting 128 frames in several queues. GPU blocks de-
queue individual frames and generate their histogram. As the histogram of each frame is only
accessed by one GPU block, it will be kept in the L1 cache ensuring low latency for RMW
operations already on the private LLC configuration. Additionally, the number of atomics on
the control variables of the queues is very small compared to that of the atomic operations
on the histograms. Thus, the average latency to perform the RMW is not reduced by sharing
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Figure 5.8: Energy-to-solution normalized to the configuration with private LLCs.

the LLC. However, the LLC hit rate is higher on the shared configuration, because the GPU
blocks will eventually read frames previously cached by the CPU thread when enqueuing
them. This explains the 10% speedup on the 8MB configuration. The improvement is much
higher on the 1GB configuration (34%) because the larger cache can keep the entire pool of
128 frames (54MB) and the queues.

5.3.3 Energy

We provide an analysis of the energy implications of sharing the LLC when executing col-
laborative heterogeneous applications. Figure 5.8 shows energy-to-solution with an 8MB
LLC normalized to the configuration with private LLCs. We show a breakdown of the en-
ergy consumption of the different components of the memory subsystem, the different cache
levels and off-chip DRAM.

Our results show that sharing the LLC decreases energy-to-solution on all benchmarks
by at least 20%. BFS, DSC, DSP and UCAS see a reduction of over 40% while IH, RANSAC

and LCAS consume over 30% less energy compared to a configuration with no shared LLC.
Static energy is reduced on all benchmarks due to shorter execution times. The other major
reduction comes from lower L3 dynamic power. A shared LLC increases hit rates and avoids
the extra requests and coherence traffic caused by a cache miss. This can lead to significant
energy savings, as in BFS, DSC, RANSAC, LCAS and UCAS with 2.56x, 2.11x, 1.64x, 2x
and 2.17x lower L3 energy consumption respectively.

The third reduction in energy-to-solution comes from DRAM dynamic power. The re-
sults we present in this section are of the benchmark’s region of interest; data has already
been allocated and initialized. In most cases the data is already on-chip, and therefore the to-
tal number of off-chip accesses is already low. Sharing the LLC improves resource utilization
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by allowing GPU and CPU cores to access the full cache space available, and allows for data
to stay longer in the hierarchy, further reducing off-chip traffic. The exceptions are PTTWAC

and TQ. Both benchmarks have a working set size far larger than the cache hierarchy, and
must still load data from DRAM. The shared LLC minimally reduces off-chip accesses in
PTTWAC, and slightly increases it in TQ. The reason is that the frames sometimes evict the
queues from the shared LLC, causing off-chip write-backs and subsequent reloads, while on
the private configuration the queues are able to stay in the CPU’s LLC.

5.4 Summary and Concluding Remarks

The work presented in this chapter is motivated by the lack of efforts focusing on the effects
of resource sharing when executing collaborative heterogeneous computations. We believe
the tighter integration of CPU cores with GPUs and other accelerators will change the way
we understand heterogeneous computing in the same way the advent of multicore processors
changed how we think about algorithms. In order to understand the impact of sharing the
last-level cache on an integrated heterogeneous architecture, we perform an evaluation of
two different cache hierarchy designs on a set of heterogeneous benchmarks.

First, we perform an evaluation of the popular Rodinia benchmark suite modified to
leverage the unified memory address space. We find such GPGPU workloads to be mostly
insensitive to changes in the cache hierarchy due to the limited interaction and data sharing
between GPU and CPU. We then evaluate a set of collaborative heterogeneous benchmarks
specifically designed to take advantage of the fine-grained data sharing and low-overhead
synchronization between GPU and CPU cores that integrated architectures enable. We show
how these algorithms are more sensitive to the design of the cache hierarchy.

Our results indicate that sharing the LLC in an integrated GPU-CPU system is desir-
able for heterogeneous collaborative computations. The first benefit we observed is due to
the faster synchronization between GPU and CPU; in applications where fine-grained syn-
chronization via atomic operations is used and many actors contend to perform the atomics,
accelerating this operation provides considerable speedups. The second benefit is due to data
sharing; if GPU and CPU operate on shared data structures, sharing the LLC will often re-
duce average memory access times and dynamic power consumption. We have observed this
effect both with read-only and private read-write data.

The third benefit we observed is due to better utilization of on-chip resources; a cache hi-
erarchy where the LLC is partitioned will often underutilize the available cache space, while
sharing it guarantees full utilization if needed by the application. This insight is specially
relevant since it applies to any kind of computation, not only collaborative. A split LLC
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configuration executing GPU-only or CPU-only code will not utilize a portion of the LLC,
wasting resources and likely power.

Yet, resource sharing between such disparate computing devices introduces new chal-
lenges. We have seen an increase of conflict misses specially with large input sets. In the
benchmarks we evaluated the benefits of sharing the LLC offsets the drawbacks. However,
we are only focusing on computations that fully leverage the characteristics of integrated
heterogeneous architectures. In the last few years researchers have shown and proposed
solutions for the challenges of resource sharing with other types of workloads, and further
investigation is required if the trend of GPU-CPU integration is to continue.

Overall, our results show that Rodinia benchmarks with coarse-grained GPU-CPU com-
munication experience an average 13% speedup using an 8MB shared LLC versus a private
LLC configuration, mainly due to the extra cache space available to the GPU or short exe-
cution times. Collaborative computations that leverage the shared virtual address space and
fine-grained synchronization achieve an average speedup of 25% and of up to 53% with an
8MB shared LLC. In addition, energy-to-solution is reduced for all benchmarks, with 9 of
the 11 collaborative benchmarks evaluated showing reductions of more than 30% compared
to the configuration with private LLCs. The energy savings come mostly from lower static
power consumption due to shorter execution times and reduced L3 and DRAM dynamic
power consumption.

Summarizing, the benefits we have listed encourage a rethinking of heterogeneous com-
puting. In an integrated heterogeneous system, computation can be divided into steps; each
step can be executed on the computing device that is best suited for, seamlessly sharing data
structures among computing elements and synchronizing via fine-grained atomic operations.
Sharing on-chip resources such as the last-level cache can provide performance gains if the
algorithms fully leverage the capabilities of these integrated systems, and will guarantee a
better utilization of available cache space.

69



5.4. SUMMARY AND CONCLUDING REMARKS

70



Chapter 6
Efficient Data Sharing on Heterogeneous

Architectures

6.1 Motivation

As discussed in Chapter 5, the current trend for heterogeneous architectures is towards tighter
coupling of GPU and CPU. Yet, while physical integration of the GPU on-die with the CPU
cores is becoming the norm, the majority of heterogeneous systems used nowadays in the
field of HPC still use discrete GPUs connected to a multicore machine through an intercon-
nect such as PCIe or NVLink. Discrete devices, implemented on a separate, (relatively) large
chip with billions of transistors, usually contain higher core counts than integrated GPUs and
use specialized graphics memory that provides higher bandwidth than commodity DRAM.
Hence, the computing potential of discrete GPUs currently dwarfs that of integrated systems.

Programmability is one of the main challenges of discrete heterogeneous architectures
[118]. Manually managing two different memory pools and efficiently copying data back and
forth between them is a time-consuming and error-prone endeavor. Over the years GPGPU
has become more accessible due to the introduction of shared virtual memory and automatic
data movement. Today, the Pascal line of GPUs by NVIDIA is able to perform on-demand
paging of memory to the GPU transparently to the user [119]. This feature, possible due to
the support for GPU-initiated page faults simplifies heterogeneous programming and allows
discrete GPUs to execute collaborative computation and to use complex, pointer-based data
structures such as binary trees and linked lists.

Unfortunately, relying on the CUDA runtime to manage data movement comes at a price,
and that is performance. Automatic memory management is convenient but suffers from
many drawbacks, preventing heterogeneous systems from achieving their full potential. De-
mand paging in GPUs introduces significant overheads because GPUs are not yet able to
execute their own page fault handling routines and must forward them to the CPU. In tra-
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ditional heterogeneous applications, input data is initialized in the host and copied to the
device to take advantage of the local high-bandwidth memory; after the computation, the
results are copied back to the host. In this model, data is copied only once in each direction.
In collaborative heterogeneous applications, on the other hand, host and device operate on
shared data structures and data may migrate many times in both directions. In such compu-
tations demand paging is even more taxing because the page fault latency must be paid on
every migration.

In this chapter we analyze the inefficiencies of the current demand paging scheme found
in discrete GPUs. We argue that migrating full OS-defined memory pages on every memory
access is inefficient, as fine-grained data sharing between GPU and CPU causes unnecessary
data transfers. Furthermore, if both host and device operate on memory within the same
physical page, a ping-pong or false sharing effect may occur, severely degrading perfor-
mance of both CPU and GPU.

To solve these problems, we propose a memory organization and dynamic migration
scheme to efficiently share data between host and device. Our goal is to enable heterogeneous
systems with discrete GPUs to efficiently execute collaborative computations. In our scheme,
only the first GPU access to a memory page incurs a long-latency page fault, significantly
improving the performance of computations where data is migrated back and forth between
host and device. We leverage the observation that heterogeneous applications rarely need to
modify the page table of the heterogeneous process. Therefore, copying the corresponding
page table entry on the first GPU access is sufficient to perform virtual address translation in
the GPU for all subsequent accesses to that page.

In addition, the memory organization we propose, based on previous work on DRAM
caches, reduces the granularity of migrations from full pages to cache lines. The advantages
are two-fold: first, moving away from OS-defined memory pages avoids expensive page table
manipulations and allows for hardware-managed migration of data transparently to the user
and OS. Second, we save bandwidth and reduce false sharing by migrating only the cache
lines that are demanded and not surrounding memory regions that may be in use elsewhere.

6.2 Demand Paging on GPUs

Resolving GPU-initiated page faults is an expensive operation that requires: forwarding the
fault to the host, interrupting a core to execute a privileged page fault handling routine,
manipulating GPU and CPU page tables, sending TLB shootdowns and setting up the GPU’s
DMA engine to migrate the page. The most common interconnect used in heterogeneous
systems is PCIe, with an approximated round-trip time (RTT) of 2 µs [120]. Handling a fault
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Figure 6.1: Breakdown of all page faults caused by demand paging.

requires multiple messages between GPU and CPU, and thus resolving a GPU-initiated page
fault can take anywhere between 20 and 50 µs [70].

Recent work in the literature proposes hiding this latency by leveraging the highly-
threaded nature of GPUs and by prefetching memory pages [70]. While this is a sensible
approach for traditional heterogeneous applications where the GPU reads large regions of
contiguous memory and data stays in the GPU during kernel execution, collaborative hetero-
geneous computations display a different behavior. We will show that the current scheme of
demand paging is particularly inefficient on these computations because data is shared at fine
granularities and migrated multiple times between host and device, incurring the full page
fault latency every time.

6.2.1 Page Faulting on Known-Pages

Figure 6.1 shows a breakdown of all the page faults raised on a system with demand paging
during the execution of a set of collaborative heterogeneous benchmarks from Chai [109].
Details about the benchmarks can be found in Section 3.2.2 and about the simulation in-
frastructure used in Section 3.1. GPU first-touch represents faults caused by the first GPU
access to a page allocated in the CPU; GPU known pages are faults caused by GPU accesses
to pages that were migrated at some point to the GPU but are now in CPU memory; CPU

are faults caused by CPU accesses to pages located in GPU memory. As discussed in Sec-
tion 3.2.2, we only evaluate the region of interest of every benchmark, skipping initialization
and clean-up phases. We therefore do not consider the CPU-initiated page faults caused by
the operating system’s lazy-allocation, i.e. faults caused on the initialization of input data.
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Figure 6.2: Percentage of unused data with different migration granularities.

In the figure we can see how a large percentage of GPU-initiated faults are caused by
known pages that have been migrated to the GPU and back to the CPU at least once. In
benchmarks such as BFS, CEDD, RSCD, RSCT and SSSP only a small number of memory
pages are referenced and migrated multiple times back and forth between the two memories.
On average, 74% of GPU-initiated page faults and 39% of all the page faults are caused
by known pages migrating to the GPU, and 42% of all the faults are caused by migrations
back to the CPU. The goal of the work presented in this chapter is to reduce the latency of
migrating known pages to the GPU and back to the CPU.

6.2.2 Unused Data and False Sharing

The current demand paging scheme can also be inefficient because full OS-defined memory
pages are migrated on every memory access. Traditional GPU applications stream through
large contiguous memory regions and are likely to reference entire pages, but warp memory
divergence and the use of irregular data structures can result in a more irregular memory ac-
cess pattern. In addition, collaborative applications share data at a finer granularity; copying
a 4KB memory page on every access can waste bandwidth by migrating unneeded memory.

Figure 6.2 shows the percentage of unnecessarily migrated cache lines as we increase
the granularity of migrations. We consider a cache lines as unused if it is migrated back and
forth from one memory to the other without being referenced. Cache line size is 128 bytes in
our simulated architecture; we show results for migration sizes going from two cache lines
to a full page (4KB typically in Linux consumer systems). We can see how on average 57%
of all the migrated cache lines are transferred unnecessarily at least once when migrating full
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pages. That number is reduced to 14% when only two cache lines are migrated.

In three benchmarks, BFS, BS and SSSP, more than 75% of all the copied data is unnec-
essarily migrated at least once. In addition, if GPU and CPU concurrently reference memory
within the same page, the page will suffer from a ping-pong or false sharing effect. False
sharing is a well known problem in shared memory multiprocessors [121, 122] caused by
two or more cores simultaneously accessing different bytes within the same line. Due to
the cache line granularity the cache subsystem works at, the line is migrated back and forth
between the cores’ private caches, degrading performance. In Section 6.5 we provide a de-
tailed analysis of how collaborative benchmarks are affected by false sharing with page-sized
migrations.

6.3 Efficient Data Sharing in Heterogeneous Architectures

This section describes the main design points and implementation details that enable effi-
cient data sharing in heterogeneous systems. We first describe the memory organization that
allows reducing the granularity of migrations to cache lines, as well as modifying their phys-
ical address transparently to the OS. We then show how this reduces the migration latency
of data that has been previously copied to the GPU. Finally we explore the idea of grouping
multiple data migrations to amortize DMA setup times and interconnect latency.

6.3.1 Heterogeneous Memory Organization

The goal of the work presented in this chapter is to efficiently migrate data between two
different memory pools transparently to the user. Our first concern is to reduce the granu-
larity at which data is migrated, as we have shown how migrating full pages unnecessarily
transfers data not demanded, wasting bandwidth and potentially causing false sharing. In
addition, we require a scheme that migrates data without involving the CUDA driver or the
operating system as much as possible, as doing so introduces overheads and long latencies
that are to be avoid.

DRAM caches have been previously proposed for heterogeneous memory organizations,
where two pools of memory with different characteristics are combined and movement of
data between them must be handled transparently to the user to maximize performance.
In particular, we base the design of our memory organization on CAMEO [82]. CAMEO
fulfills both requirements for our efficient data migration scheme: it performs data movement
between two DRAM memories of different technologies at cache line granularity, and it
does so transparently to the user and OS, without page table manipulations. In addition,

75



6.3. EFFICIENT DATA SHARING IN HETEROGENEOUS ARCHITECTURES

as opposed to similar work on DRAM caches, CAMEO maintains the two memories in the
memory space visible to the OS, allowing the full aggregate memory range to be addressable
by the applications.

CAMEO was proposed for a heterogeneous memory system with vertical integration,
where a 3D die-stacked DRAM is integrated on-chip between the last-level cache and off-
chip memory. In such an architecture, the stacked memory is always accessed first, and
only on a miss an access to off-chip memory is required. Our heterogeneous architecture,
on the other hand, contains a memory organization with horizontal integration, where both
memories can be accessed first by either the GPU or the CPU. While CAMEO can store in
the stacked DRAM the metadata required to locate every cache line in the system, our design
requires duplicating the metadata and keeping it coherent.

The memory organization we propose in this chapter divides the physical memory space
into Congruence Groups, with the total number of groups N being equal to the number of
lines in GPU memory. The set of lines that can map to a given location in GPU memory
forms one Congruence Group. The Congruence Group for a line is identified by the bottom
log2(N) bits of the physical line address. On a system with a 3 to 1 ratio of CPU to GPU
memory, a Congruence Group is composed of four cache lines. For simplicity, we assume
the addressable space starts from GPU memory and CPU memory continues afterwards.
Figure 6.3 shows an example of the memory organization, where four lines A, B, C and D
form a Congruence Group.

When a line is migrated from one memory to the other, it is swapped with another line
from the same Congruence Group. A structure called the Line Location Table (LLT) is used
to identify the location of every line in memory. A Location Table Entry (LTE) contains
the real physical location of all the lines in the Congruence Group, and is updated whenever
there is a line swap.

Figure 6.4 shows how the LTE for a Congruence Group is updated as lines migrate to
the GPU and are swapped with lines from the same group. Initially, all lines are in their
starting physical location. When the GPU requests line C, currently in CPU memory, a swap
operation is done, migrating C to the GPU and A to the physical location where C previously
resided. As the execution continues, lines are swapped as they are requested by the GPU,
updating the LTE.

On the system described earlier with a 3 to 1 ratio of CPU to GPU memory, each LTE
is a four-entry tuple with two bits per line identifying in which of the four possible physical
locations within the congruence group a line is located. The storage requirements for the LLT
on a system with tens of gigabytes of memory are therefore non-negligible. In this example
where each LTE needs only 8 bits, a 32GB system with 128B cache lines would need 64MB
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Figure 6.3: Lines A, B, C and D form a Congruence
Group. As lines are migrated to the GPU, they are
swapped with other lines from the same group.
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of storage (32GB divided by 512B, the size of each congruence group). Since the storage
requirements are too high to realistically place the LLT in on-die SRAM memory, it is kept
in off-chip DRAM memory.

In order to minimize access time, the LLT is co-located with the data itself in DRAM
memory. By doing so, we avoid the need for two memory accesses on every memory request,
one to read the LLT and find the real location, and another to read the data. The LTE metadata
for every cache line is therefore appended to the line itself in the DRAM row buffer. In this
manner, a single burst read of DRAM1 will provide the physical location, and if the line is
found in that location, the data itself. Only if the LTE identifies the line as located elsewhere,
another access is then required.

In the architecture we evaluate in this work, DRAM row buffer size equals 2KB. In a
system with 128 byte-sized cache lines, each row buffer holds 16 cache lines (2KB / 128B
= 16). In order to co-locate the LLT with the data in DRAM memory, we need to sacrifice
some DRAM space. Using the 128 bytes of space of one cache line is more than sufficient
to hold all the LTEs for lines in a row buffer, leaving us with 15 cache lines per row buffer
and a DRAM utilization of 93.75% (15/16). A loss of 6.25% of DRAM memory is deemed
as an acceptable trade-off on systems with tens of gigabytes of memory, and it could also be
reduced by using smaller cache lines.

For simplicity, we remove the last 64MB from the OS-addressable space on both GPU
and CPU memories to allocate the LLT. The shift of data in memory caused by appending
the LTE to every cache line needs to be adjusted for before accessing the DRAM, in the
following manner: LineAddrX = (X + X/15) - LinesIn64MB, where X is the address of line
requested. The original CAMEO paper [82] suggests using residue arithmetic to perform the

1DRAM burst size must be large enough to read both the data and the LTE metadata with one access. See
Table 6.1 for details on the configuration of the simulated architecture.
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division by a constant with only a few adders. This operation is done in parallel with the
last-level cache lookup in order to hide the latency.

On a system with vertical integration where the DRAM cache is always accessed first, it
is sensible to store the LLT in the DRAM cache. In a heterogeneous system with horizontal

integration, placing the LLT in CPU (GPU) memory would require the GPU (CPU) to read
it through the high-latency interconnect even if the line was actually in the GPU (CPU). We
therefore need to replicate the LLT in both host and device memories, with the additional
complexity of keeping them coherent. Fortunately, since LTEs are only modified on a line
migration, we can use the DMA engine to serialize operations and ensure that both copies of
the LLT are always kept coherent.

6.3.2 Avoiding Host Intervention

Since current Pascal-based GPUs are not yet able to execute fault handling routines, the cur-
rent demand paging scheme requires sending the fault to the host to be processed. Involving
the host on every GPU-initiated page fault introduces significant overheads, as it requires
sending several messages through a high-latency interconnect, interrupting a CPU core to
execute a privileged page fault handling routine and updating both GPU and CPU page ta-
bles. The goal of our memory organization and migration scheme is to simplify the handling
of GPU-initiated page faults, avoiding host intervention as much as possible.

The memory organization explained in Section 6.3.1 can migrate data to and from GPU
memory, hence modifying the physical address, without invalidating the existing virtual to
physical address mapping. This allows us to avoid updating GPU and CPU page tables on
every migration. Still, the first GPU access to a memory page allocated in the CPU will
not find the corresponding page table entry (PTE) in the GPU’s page table. It is therefore
necessary to update at least once the GPU’s local page table in order to provide virtual to
physical address translation.

In the proposed scheme, the first GPU access to a memory page generates a long-latency
page fault similar to current Pascal-based GPUs. After resolving the fault, the PTE refer-
enced is copied to the GPU’s page table. We leverage the observation that the page table of
the heterogeneous process is rarely modified during runtime2, and it is therefore sufficient to
copy the PTE on the GPU’s first access to perform physical to virtual address translation in
the GPU. Subsequent GPU accesses to the same page are able to find the mapping either in
the local TLBs or the local page table, and do not incur a long-latency page fault.

2This observation is based on our experimental evaluation, where none of the benchmarks evaluated ever
required modifying the page table of the heterogeneous process from kernel launch to kernel completion.
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6.3.3 Efficient Fine-Grained Migration

Although the overheads of migrating data on-demand are significantly lower with our pro-
posed scheme compared to the baseline architecture, the latency of the PCIe interconnect
adds non-negligible delays to every data migration. In order to amortize the cost, it is neces-
sary to transfer large blocks of data that maximize the utilization of the interconnect.

GPU applications typically display a bursty memory access pattern where multiple mem-
ory accesses are issued from different warps in a short span of time. We leverage this be-
havior by grouping multiple data migration requests and processing them in batches. Due
to the data granularity we work with, a batch of data migrations will contain multiple cache
line requests from different warps to potentially non-contiguous memory. The DMA engines
found in current NVIDIA GPUs do not allow for data transfers of disjoint memory regions,
and would require multiple DMA commands to process all migrations. In order to efficiently
copy data at smaller granularities, the DMA engines must support scatter/gather operations.

DMA engines with support for scatter/gather are already available in accelerators such
as FPGAs [123], in some ARM chips [124] and in the Cell chip [125]. As heterogeneous
computations become more collaborative with fine-grained data sharing between host and
device, we believe allowing DMA transfers of disjoint memory regions will bring significant
performance gains, and therefore we advocate for supporting them in future GPUs.

Migration requests are aggregated in a small buffer or staging area (SA) and sent in
batches. After a defined time interval or when the SA is full, whichever comes first, all
buffered migrations are grouped together to create a single DMA list command. A DMA list
command is an array of source/destination addresses and lengths. In order to synchronize
the swapping operation and avoid overwriting data, we use the SA of the device initiating
the migration to store a copy of the lines to be swapped out. The process of swapping lines
involves two DMA operations. First, data from the remote (non-initiator) memory is copied
to the local (initiator) memory; then, the backed-up copy of the data is transferred to the
remote memory.

Once the initiator receives the data, pending memory accesses can complete and need not
wait for the other DMA to finish. During a swap operation the SA can continue receiving
migration requests. To ensure the backed-up data is not overwritten until the DMA has
completed, we divide the SA in two: one half holds the data for the current migration and
the other half contains the data for the next migration. Once a migration fully completes and
data has been swapped, the current half can be cleared.

Two physical registers are used to keep the starting address of current and future SAs.
When the SA is full or a time interval concludes, the value of the registers is updated and
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Figure 6.5: High level overview of the architecture and steps followed on a GPU-initiated
migration.

a new DMA list command is generated with the buffered migration requests. We evaluated
multiple SA sizes and time intervals and found 4MB and 10µs to be sufficient to hold the
migration requests generated in all benchmarks. In addition to the 64MB removed from the
addressable memory space discussed in Section 6.3.1, we remove 4MB of both GPU and
CPU memories to be used as staging areas.

The use of the SA to buffer migration requests may break the atomicity of line swaps
if two or more lines from the same congruence group need to be migrated simultaneously.
The first of a set of conflicting migrations that takes place will modify the location of lines
from the group and the corresponding LTE. Following migrations for the same congruence
group that have been backed up into the SA will attempt to copy the wrong lines, resulting
in an inconsistent memory state. In order to detect such situations and maintain consistency,
the LTE of each line migrated is compared to the LTE of the location it is copied into. An
LTE mismatch signifies a previous migration modified the location of lines from that group,
in which case we do not perform the copy. After the swap operation completes, all load
instructions will be retried, and thus a new migration can be started with the updated LTE.

Figure 6.5 shows a high level overview of the architecture and the steps followed on a
GPU-initiated migration, as described next (for simplicity we assume the data migrated has
already been copied to the GPU at some point, and therefore does not cause a page fault).

1 An SM executes a load instruction; GPU memory is read and the LTE provides the
current location of the cache line in CPU memory.

2 The cache line located in GPU memory from the same congruence group and the
corresponding LTE are copied to the staging area; the address requested by the SM is
added to the destination vector and the address obtained from the LTE to the source
vector
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3 After a time interval or when the staging area is full, a DMA list command is generated
from the source and destination vectors and inserted in the DMA command queue.

4 The DMA operation copies data from CPU to GPU memory; the LTEs of all cache
lines swapped are updated in GPU memory; the warp instructions pending data migra-
tions can now proceed.

5 A new DMA list command is generated with the GPU SA addresses in the source
vector and the previous source vector addresses (in CPU memory) in the destination
vector; the command is inserted in the command queue and the DMA transfer initiated.

6 Data from the SA is copied to CPU memory and the LTEs are updated; the swapping
operation completes.

Similarly, the CPU is also able to initiate migration operations in the other direction. The
main difference is that it must write the DMA command over the interconnect into the GPU’s
DMA command queue, with the additional latency it entails.

This procedure depicts the steps followed when data from known-pages is migrated back
to the GPU. Alternatively, when the GPU first accesses a virtual address for which no trans-
lation is yet available, a long-latency page fault is generated. These faults are forwarded to
the CUDA runtime running on the host where they are enqueued to be processed in batches.
Once all the faults are resolved and the physical addresses are known, the runtime initiates a
migration operation for the lines requested. First, the runtime starts or waits for completion
of the current CPU-initiated migration using the current half of the SA; then, CPU memory
is accessed for every physical address translated.

If the line matches its initial position in the congruence group, it is directly copied to the
CPU SA; if the LTE indicates a different address, an additional access is needed to the correct
location. A DMA list command is generated to copy data from device to host; the source
vector is populated with the congruence groups’ GPU addresses and the destination vector
with the addresses of the lines in CPU memory backed-up in the SA. The DMA command is
inserted into the GPU DMA command queue and the data is transferred.

Then, a new DMA command is executed with the CPU’s SA addresses as source and
previous source as destination; data is copied from host to device and the migration com-
pletes. It should be noted that this operation increases the latency of GPU-initiated page
faults compared to the baseline system, as it requires an additional DMA operation to swap
data between host and device. Nevertheless, this operation is only necessary on the first GPU
access to a page.
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Table 6.1: Simulation Parameters for the Discrete Heterogeneous Architecture.

CPU
Cores 10 @ 2 Ghz
L1D Cache 64KB - 2 way - 1ns lat.
L1I Cache 32KB - 4 way - 1ns lat.
L2 Cache 2MB - 8 way - 8ns lat.

GPU
SMs 16 - 32 lanes per SM @ 1.4 Ghz
L1 Cache 16KB + 48KB shared mem. - 4 way - 22ns lat.
L2 Cache 1MB - 16 way - 4 slices - 63ns lat.

CPU Memory
DDR4 24GB - 4 channels - 2 ranks - 16 banks @ 1200 MHz
Burst length / Row size 8 / 2KB
RAS/RCD/CL/RP 32 / 14.16 / 14.16 / 14.16 ns
RRD/CCD/WR/WTR 4.9 / 5 / 15 / 5 ns

GPU Memory
GDDR5 8GB - 4 channels - 1 rank - 16 banks @ 1000 MHz
Burst length / Row size 8 / 2 KB
RAS/RCD/CL/RP 28 / 12 / 12 / 12 ns
RRD/CCD/WR/WTR 6 / 3 / 12 / 5 ns

6.4 Methodology

In order to evaluate the memory organization and migration scheme we propose in this chap-
ter we analyze its impact when running the set of collaborative benchmarks from the Chai
benchmark suite described in Section 3.2. We run all benchmarks several times with increas-
ing migration granularities. For each granularity, the block of data transferred is aligned to
the migration size, i.e., with 4KB migrations, the physical page where the memory access
falls into is migrated; with 2KB migrations, the upper or lower half of the page, etc.

We simulate a heterogeneous system composed of a 10 core CPU and a GPU with 16
Maxwell-like SMs connected through a PCIe 3.0 interconnect. The PCIe link has a 2µs
RTT [120] and 16 GB/s of bandwidth. In Section 6.5.3 we explore the effect of varying the
RTT of the interconnect. Unless stated otherwise, we run all benchmarks with 8 CPU worker
threads. Table 6.1 lists the configuration parameters of the system. L1 data and instruction
caches and the L2 cache are private for each CPU core. L1 caches are private for each SM
while the L2 is shared among all SMs. Cache line size is 128 bytes across the whole system.
The CPU has 24GB of DDR4 memory and the GPU features 8GB of GDDR5.

Unless stated otherwise, all the results presented are normalized to the baseline configu-
ration. The baseline architecture behaves like current GPUs with support for demand paging.
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On a GPU access to a page located in CPU memory, a page fault is generated and forwarded
to the CUDA driver running on the host to be handled; the driver then raises a software in-
terrupt for a CPU thread to execute a privileged page fault handling routine. After the fault
is serviced, the faulting page is copied to the GPU and both GPU and CPU page tables are
updated. Subsequent CPU accesses to the page cause a migration back to CPU memory that
invalidates the GPU’s page table entry, thus incurring a new fault if the page is referenced
again by the GPU. Since we are simulating a full-fledged system running a Linux kernel, the
time to resolve a page fault is non-deterministic and depends on factors such as the state of
the interrupted core, whether the entry is cached, swapped out to disk, etc.

6.5 Experimental Evaluation

This section presents an evaluation of our proposed memory organization and dynamic mi-
gration scheme. We analyze our scheme with various migration granularities and identify
those benchmarks that suffer from false sharing when large migration sizes are used. In ad-
dition, we provide an analysis of how decreasing the link latency affects the feasibility of
fine-grained migrations.

6.5.1 Migration Granularity

We measure the execution time for all benchmarks as we increase the granularity of migra-
tions from 128 bytes corresponding to one cache line up to a full 4KB page.

Figure 6.6 shows execution time for Chai benchmarks normalized to the baseline system
implementing demand paging. We see how our scheme with cache line-size migrations is
able to reduce execution time by 15% on average for all benchmarks, although severely de-
grading performance on CEDD, CEDT, PAD and TRNS. As we have shown, 4KB migrations
inefficiently migrate data that is not needed, yet with our scheme they provide a significant
47% execution time reduction on average over the baseline. Overall, 2KB migrations pro-
vide the best results with a 50% execution time reduction on average for all benchmarks.
BS, HSTI and TQH obtain the best performance with 128 byte-sized migrations, while BFS,
RSCD and SSSP see a significant speedup with our scheme in all configurations.

CEDD and CEDT are two implementations of an imaging algorithm that analyzes frames
of a video. Small migrations degrade performance because 650 bytes of memory are read
per frame, and performing many small migrations to copy the data is inefficient. We see the
performance improving significantly for CEDD once the migration size increases to 1KB.

CEDD implements a data partitioning scheme while CEDT partitions the work by tasks.
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Figure 6.6: Execution time for various migration granularities normalized to the baseline
demand paging scheme.

In CEDD the GPU uses only one input buffer that is recycled every frame. Recycling the
same buffer improves execution time because only the first migration pays the full long-
latency page fault. CEDT divides the computation in stages, processing the first two in the
GPU and the second two in the CPU. In order to pipeline the algorithm one buffer per frame
is used; each buffer is only copied once to the GPU, so our scheme cannot avoid many long-
latency page faults. Still, the 4KB configuration achieves 17% lower execution time than the
baseline due to the reduced latency when migrating data back to the CPU. In addition, we
avoid several page faults on the pages containing the synchronization variables, which are
migrated back and forth as GPU and CPU update them to coordinate the work.

TRNS performs an in-place matrix transposition and splits the work with a coarse-grained
data partitioning scheme. PAD does an in-place padding operation on a matrix, partitioning
the matrix in blocks that are dynamically assigned to GPU and CPU threads at runtime.
Both benchmarks are memory bound and operate on large blocks of contiguous memory;
consequently, fine-grained migrations struggle to match the performance of the more effi-
cient page-sized migrations. In Section 6.5.3 we analyze how the latency of the intercon-
nect affects these benchmarks and whether fine-grained migrations are feasible. In both
benchmarks the 4KB configuration reduces the execution time over the baseline because our
scheme decreases the latency of migrations for already known pages, as well as for migra-
tions back to the CPU.

Figure 6.7 shows the number of total (non aggregated) migrations normalized to the
number of migrations on the 128B configuration. In an ideal scenario where GPU and CPU
access contiguous memory regions and there is no false sharing, doubling the migration
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Figure 6.7: Number of total migrations with various migration granularities normalized to
the configuration with 128B migrations.

size would halve the number of migrations required. If, on the other hand, the number
of operations increases, it can be attributed to false sharing. False sharing occurs when
GPU and CPU are simultaneously reading or writing two physical addresses that are located
within a migration range; this causes a ping-pong effect where the data in that range is
copied back and forth between the two memories. The larger the migration size is, the more
likely it is for false sharing to occur. We see in Figure 6.7 how BS, HSTI, RSCD and TQH

require additional DMA operations as we increase the size of migrations, which indicates
the benchmarks suffer from false sharing.

RSCD and RSCT implement the same consensus algorithm with different partitioning of
the work: data-partitioning in the case of RSCD and task-partitioning on RSCT. In RSCD

both GPU and CPU iterate on a loop selecting two random flow vectors and estimating the
parameters of a mathematical model; on every iteration 256 and 128 bytes of parameters are
read respectively, as well as two random 16-byte flow vectors. The most efficient migration
size for this benchmark is somewhere between 256 and 512 bytes, as larger migrations are
likely to cause false sharing. Yet, Figure 6.6 shows that although the 512B configuration
achieves the best results with an 80% execution time reduction over the baseline, all other
configurations except 128B and 4KB follow closely.

Figure 6.7 shows how the number of migrations required decreases as we increase the
migration size from 128B to 512B. On the other hand, larger transfer sizes increase the total
number of migrations required, a clear sign of false sharing. The performance is not degraded
although the benchmark suffers from false sharing because larger migrations prefetch model
parameters for future iterations; the GPU consumes flow vectors much faster than the CPU
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and is able to use the prefetched data before the CPU migrates it away.

The benchmark obtains such a large speedup because only a few pages are migrated
multiple times back and forth between the memories, and we significantly reduce the latency
of most migrations. RSCT partitions the work by tasks, where the CPU threads calculate
the model parameters and the GPU evaluates the model. In this implementation the GPU
evaluates flow vectors in sequential order instead of randomly; large migrations are able to
exploit spatial locality achieving a better performance than fine-grained data transfers.

BS displays a fine-grained memory access pattern where CPU and GPU threads iterate
on a loop and are dynamically assigned points in a 3-dimensional space. Figure 6.7 shows
how fine-grained migrations are more efficient, as larger granularities incur false sharing and
require additional data transfers. In the end even the 4KB configuration achieves a significant
51% reduction in execution time over the baseline because our scheme avoids most of the
long-latency page faults.

HSTI performs a histogram of the pixel values in a monochrome image. The bins are
padded to lie in different cache lines; the 128B configuration is very efficient because on
every atomic increment it migrates only the cache line where the bin is. Large migrations are
expected to cause false sharing and a significant slowdown as GPU and CPU contend for the
cache lines containing the bins, but that is not the case. The reason, as we saw in Section 5.3
is that the GPU with a large number of threads is much faster processing the image, and
large migration sizes prefetch bins that other GPU threads will increment. In the end the
128B configuration performs best with a 65% execution time reduction over the baseline.

TQH also implements an image histogram using work queues in a producer-consumer
model. Four CPU threads read and insert pixels in work queues; the GPU reads the pixels and
performs the histogram. The benchmark uses several queue counter variables to synchronize
the work; migration sizes beyond 128 bytes incur false sharing of the blocks containing these
counters, increasing the number of migrations required. There is a large number of long-
latency page faults we cannot avoid corresponding to the image pixels, as they are migrated
only once to the GPU; this causes a 10% slowdown in our scheme with 4KB migrations due
to the additional latency on handling first-touch page faults compared to the baseline. In
addition, the pixels are never migrated back to the CPU and thus the benchmark does not
benefit from the faster migrations to the CPU our scheme provides. The 128B configuration
is able to achieve 49% lower execution time and is the most efficient by migrating the least
amount of data.

BFS and SSSP are two graph traversal algorithms that switch computation between GPU
and CPU at every frontier depending on its size; large frontiers are more efficiently com-
puted on the GPU, while smaller are on the CPU. The number of nodes in each frontier is
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always high enough so that large migration sizes are more efficient. Figure 6.2 shows that
both benchmarks migrate a lot of unnecessary data with 4KB migrations, but since the com-
putation is not concurrent and switches between GPU and CPU, it does not cause migrations
to actively steal data being used by the other and thus performance is not degraded. Indeed,
Figure 6.7 shows no additional DMA operations are performed as we increase the granularity
of migrations. Both benchmarks obtain a considerable speedup because there are numerous
migrations of the same data between the two memories, and our scheme significantly reduces
their latency.

6.5.2 Impact of Block Sizes in Data Migrations

As discussed in Section 3.2, choosing an optimal block size is a complex problem that has
been the subject of many studies in the last decades. Small block sizes enable better distri-
bution of the work among computing elements, but tend to be burdened by the overhead of
thread creation on shared-memory multicore machines. Large block sizes, on the other hand,
amortize the costs over longer computations, but can create load imbalance in the system and
underutilize computing resources.

In heterogeneous architectures, the block size determines the granularity at which data
migrates between host and device. Understandably, it has significant effect on the efficiency
of migrations, the amount of data that is unnecessarily migrated and the amount of false
sharing that may occur. As an example, in our initial experiments PAD was configured with
a smaller block size, causing false sharing with migrations larger than 256 bytes that severely
degraded performance.

The issue is exacerbated in heterogeneous architectures because they combine comput-
ing elements with different characteristics (instruction-level parallelism vs. thread-level par-
allelism) and hence different optimal block sizes. Strategies to efficiently partition work and
data in heterogeneous architectures are out of the scope of this work, as a whole new disserta-
tion could be written on the topic. Still, our goal of providing efficient data sharing between
GPU and CPU at small granularities can allow programmers to more efficient partition the
work in fine granularities.

Overall, BFS, CEDD, CEDT, RSCT, SSSP, and TRNS perform best with 4KB migrations
because they do not show fine-grained data sharing between GPU and CPU, and thus large
migrations are more efficient to amortize the latency of data transfers. BS, HSTI, RSCD and
TQH show various degrees of sensitivity to migration sizes, and tend to perform best with
fine grain data transfers that avoid false sharing.
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6.5.3 Link Latency Analysis

Fine grain migrations are desirable to avoid false sharing and unnecessary data transfers,
but the results from Section 6.5.1 indicate that the overheads are too high when cache line-
sized migrations are used. The main source of overhead is the PCIe link, with a RTT of
2µs. A 4KB page migrated one line at at time can take up to 64µs with current link speeds,
a latency not even a highly-threaded GPU can hide. Fortunately, the new generation of
interconnects such as NVLink [126] reduce this latency and will perhaps make small data
transfers practical. There is no public information available regarding the exact round-trip
time of NVLink, but NVIDIA’s whitepaper claims it is between 5 and 12 times faster than
PCIe. In order to evaluate how changes in the interconnect latency will affect our scheme
and whether cache line-sized migrations are feasible, we run all benchmarks with latencies
going from the 2µs of PCIe 3.0 to a RTT of 0.1µs.

Figure 6.8 shows how execution time varies as a function of the link latency for various
migration granularities. For every latency the results are normalized to the baseline demand
paging scheme and that same latency. An interesting effect of varying the link latency can be
seen in the benchmarks that suffer more from false sharing: BS, RSCD and TQH. Different
latencies modify the timings and therefore the data interleaving between CPU and GPU,
which can aggravate or alleviate the impact of false sharing. RSCD and TQH see their curve
smoothing on the 0.1µs configuration; faster migrations increase the time data is available in
one memory from request until it is migrated away, and thus false sharing is reduced.

BS still suffers from false sharing with large migrations. Yet, as we decrease link latency
the benefits of prefetching data start to offset the overheads of false sharing, and larger gran-
ularities achieve better performance. BFS and SSSP obtain speedups with our scheme due
to faster data transfers when switching computation between CPU and GPU. This effect is
consistent as we reduce link latency and therefore the benchmarks show little variation.

CEDD, CEDT, PAD, RSCT, TRNS access large blocks of sequential data, and as we saw
in Figure 6.6 fine-grained migrations significantly degrade performance. Figure 6.8 shows
how reducing the link latency closes the gap considerably. With a 0.1µs interconnect CEDD

and PAD are able to match or slightly outperform the baseline configuration with cache
line-sized migrations, while CEDT suffers a 10% slowdown that is recovered with 256B
migrations. Overall, all benchmarks but TRNS achieve speedups or just break even with 256
byte-sized migrations and a 0.5µs link latency. This indicates that fine-grained migrations
will be possible as long as future interconnects provide latencies 4 to 5 times lower than
current PCIe 3.0.
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Figure 6.8: Execution time for various link latencies and migration granularities. Each configuration is normalized to the baseline
demand paging scheme with that same latency.
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6.6 Summary and Concluding Remarks

In this chapter we tackle the challenges and inefficiencies of demand paging in GPUs. We
have shown how demand paging as currently implemented in Pascal-based GPUs is ineffi-
cient because GPUs are not able to resolve their own page faults without host intervention
and must forward them to be handled by the CUDA runtime. This inefficiencies are ex-
acerbated when executing collaborative computations where data migrates multiple times
between host and device and the full page fault handling latency must be paid every time.

We have identified the issues of false sharing and unnecessary data transfers derived
from the granularity at which data is migrated. In order to solve these problems we propose
a memory organization and dynamic migration scheme that efficiently shares data between
GPU and CPU memories at cache line-granularity. We leverage the observation that the page
table of the heterogeneous process is rarely modified during runtime to reduce the migration
latency of data within known-pages. In our scheme, only the first GPU access to a page
in CPU memory incurs a page fault; following migrations can be done without software
intervention and transparently to the operating system.

We evaluated our scheme with a set of collaborative benchmarks and found it reduces
execution time by 15% on average with cache line size migrations, at the cost of degrad-
ing performance on benchmarks in which large blocks of contiguous memory are accessed.
Although inefficient, we found large migration sizes achieve better performance due to the
overheads of the PCIe interconnect. Our scheme with page-sized migrations obtains 47%
lower execution times on average over the baseline demand paging system.

In order to understand whether smaller migrations are feasible on faster interconnect
technologies, we evaluated all benchmarks with various link latencies and found that an in-
terconnect with a round-trip time four to five times faster than PCIe is sufficient to efficiently
perform fine-grained migrations. This leads us to conclude that fine-grained migrations will
be feasible in future heterogeneous architectures connecting host and device via low-latency
interconnects.
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Chapter 7
Conclusion and Future Work

7.1 Conclusions

Efficient management of the memory subsystem in modern architectures is becoming an
increasingly challenging task. Memory hierarchies have evolved to include several levels of
on-chip caches and gigabytes of off-chip DRAM, that must now feed tens of data-hungry
cores working at double or triple the speed than the memories themselves.

The task becomes yet more challenging with the emergence of heterogeneous architec-
tures combining GPUs with traditional general-purpose cores, either integrated on the same
die or connected through an expansion bus. These systems have become commonplace in
the field of HPC due to the enormous computing potential that GPUs offer.

The trend towards tighter integration of GPU and CPU cores opens the design space for
a new kind of heterogeneous computations, where both host and device collaborate on the
computation, sharing data at fine granularities and synchronizing via system-wide atomic
operations. Collaborative heterogeneous computations have only recently started to receive
attention from the research community, but we believe they will pose a paradigm shift that
will shape the heterogeneous architectures of the future.

The impact on the memory subsystem of combining cores with different characteristics
requires a thorough analysis to understand the challenges and inefficiencies they suffer from,
compared to homogeneous machines. This dissertation analyzes some of the challenges of
efficiently managing the memory subsystem of modern systems, focusing in particular in the
use of new and emerging programming models and computational paradigms, and proposes
new techniques to guide the design of future architectures.

Our first contribution on this thesis is a prefetching scheme for SMPs systems that avoids
most of the typical problems associated with prefetching. Our scheme relies on the runtime
system of a task-based programming model to guide prefetching. By using a runtime system
with knowledge of the data required by each task, we prefetch only useful data, avoiding
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speculation and thus cache pollution derived from mispredictions. That knowledge allows
the runtime to prefetch blocks of data of variable size, reducing the prefetch instruction
overhead compared to traditional software-based prefetch schemes that prefetch one line at a
time. The runtime dynamically adapts and selects the best cache level to prefetch into, based
on the estimated free space each cache level has at any point in time. In this manner our
scheme avoids evicting data that is still useful, reducing cache thrashing.

We then turn our focus to heterogeneous architectures combining GPU and CPU cores.
The second contribution is an in-depth analysis on the impact of sharing the last-level cache
on a system integrating the GPU on die. We argue that the current literature on resource
sharing on heterogeneous architectures does not evaluate collaborative computations, and
therefore cannot provide enough insights on the challenges of resource sharing within these
environments. We show how sharing the LLC is beneficial when applications share data
between GPU and CPU during the computation, as a shared LLC allows for faster commu-
nication and synchronization. In addition, sharing the LLC guarantees a better utilization of
the cache, as both GPU and CPU can access the full cache space if needed.

Our third contribution is a memory organization and data migration scheme for hetero-
geneous architectures with discrete GPUs. We show how demand paging as currently imple-
mented in Pascal-based GPUs is inefficient. GPUs are not yet able to handle their own page
faults and must forward them to the CUDA runtime running on the host, introducing over-
heads that result in significant slowdowns. We also show how migrating full memory pages
on every access is inefficient and may cause false sharing, further degrading performance.

Then, we propose a memory organization that migrates data between CPU and GPU
memories at fine granularities and without software intervention. By avoiding the need to
pay the latency of GPU-initiated page faults on every migration, we improve performance on
collaborative computations in which data migrates back and forth between the two memo-
ries. We show how fine-grained migrations suffer when the GPU is connected to the host via
a high-latency interconnect such as PCIe. Finally, we analyze how our scheme would per-
form with future interconnects that reduce the round-trip time, and conclude that fine grain
migrations are feasible as long as the interconnect is four to five times faster than PCIe 3.0.

7.2 Future Work

The work done in this dissertation leaves several lines of research to further explore efficient
memory management, both on SMPs and on systems with GPUs. In the following section
we detail some potential future work that could continue the research done throughout the
thesis.
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7.2.1 Runtime-Assisted Prefetching

Using the runtime system to guide prefetching allows for sophisticated techniques usually
not possible with only hardware-based prefetchers. The amount of information available to
the runtime system will dictate how efficient prefetching is. In our experiments we noticed
that although the runtime system of OmpSs has knowledge about input and output data used
by each tasks, as declared by the user, that may not be enough. Tasks are allowed to allocate
their own local data in the stack, and therefore the information to decide dynamically where
to prefetch into may be incomplete. Since stack-based memory allocation is static, a potential
improvement would be to adapt the compiler to provide the runtime system with information
about the static memory allocated by each task.

Another line of research that can be explored is using idle threads to prefetch for other
cores. In our current implementation a core only prefetches data for a task that it will execute
in the future. Due to data dependencies, there may not be enough parallelism to keep all cores
busy at all time. An idle core may start prefetching data for a task that due to the affinity
scheduling policy will be executed by a different core. Most systems include a shared cache
level where data could be fetched into from off-chip memory and used by a different core
than that starting the prefetch. This could be specially interesting on heterogeneous systems
with cores of different sizes, such as in ARM’s big.LITTLE designs. In this manner, a small
core could start prefetching data for the big core that will execute the task in the future.

7.2.2 Resource Sharing on Integrated Systems

Resource sharing has only recently started to attract some attention from researchers. The
work we have done in this thesis evaluating resource sharing with collaborative computations
is, to the best of our knowledge, the first to evaluate integrated heterogeneous architectures
with such computations. Further research is required to understand how other shared re-
sources, e.g. the memory controllers or the NoC are affected when both GPU and CPU cores
work together sharing data and synchronizing.

Our experiments assume a strict consistency model similar to that found on CPUs. It is
not clear what effect this has on the cache hierarchy and in particular on the shared cache
level. More relaxed models such as those found on GPUs could be evaluated, analyzing the
impact they have on the cache hierarchy when executing collaborative computations with a
lot of data sharing and synchronization. In addition, the architecture we evaluate in this work
uses the MESI coherence protocol throughout the system. Further research could be done
exploring the impact of using more advanced protocols or even hybrid protocols where GPU
and CPU caches are kept coherent with different states.
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7.2.3 Efficient Data Sharing on Heterogeneous Architectures

The data migration scheme we propose attempts to avoid the inefficiencies of the demand
paging implementation currently found in NVIDIA GPUs. Our work assumes that GPUs
cannot execute their own page fault handling routines, and must therefore forward them
to the CPU. Recent work in the literature proposes mechanisms to allow GPUs to context
switch and potentially resolve their own page faults. This is an interesting line of research to
explore, as most of the overheads of the current demand paging scheme could be reduced by
avoiding host intervention.

A different way to tackle the problem, more in line with the approach we propose in this
work would be to move away from paging altogether. Reducing the granularity of migrations
to cache lines as we have seen provides benefits as long as the interconnect supports it. A
potential line of research would be to treat GPU memory as a cache, completely removing
the local page table in a similar manner to integrated architectures. Although there are works
in the literature proposing a similar approach, none consider collaborative computations.
The memory access pattern of these computations greatly differ to that of traditional het-
erogeneous kernels, where data is copied in bulk transfers before and after the computation.
Further research is required to understand how a memory system where the GPU’s memory
is treated as a DRAM cache would behave when executing collaborative computations.

Data prefetching is another interesting line of research that could continue the memory
organization and data migration scheme work we propose in this thesis. We have seen how
fine-grained data migration is only efficient when a low-latency interconnect is used, but
prefetching data in advance could hide some of the latency and make fine-grained migrations
feasible even on current interconnect technologies. The CUDA API already provides some
prefetching hints that can be used by programmers to help the driver with automatic data
movement. Combining the existing prefetching hints with a fine-grained migration scheme
could be an interesting line of research to continue our work.
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