

Simulation methodologies for future
large-scale parallel systems

Thomas Grass

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

UNIVERSITAT POLITÈCNICA DE CATALUNYA

DOCTORAL THESIS

Simulation Methodologies for

Future Large-Scale Parallel Systems

Author:
Thomas GRASS

Supervisors:
Dr. Marc CASAS GUIX

Dr. Miquel MORETÓ PLANAS

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Facultat d’Informàtica de Barcelona
Departament d’Arquitectura de Computadors

July 17, 2017

iii

Declaration of Authorship

I, Thomas GRASS, declare that this thesis titled “Simulation Methodologies for

Future Large-Scale Parallel Systems” and the work presented in it are my own. I

confirm that:

• This work was done wholly or mainly while in candidature for a research de-

gree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed my-

self.

Signed:

Date:

v

Abstract

Since the early 2000s, computer systems have seen a transition from single-core to

multi-core systems. While single-core systems included only one processor core on

a chip, current multi-core processors include up to tens of cores on a single chip,

a trend which is likely to continue in the future. Today, multi-core processors are

ubiquitous. They are used in all classes of computing systems, ranging from low-

cost mobile phones to high-end High-Performance Computing (HPC) systems. De-

signing future multi-core systems is a major challenge [12]. The primary design tool

used by computer architects in academia and industry is architectural simulation.

Simulating a computer system executing a program is typically several orders of

magnitude slower than running the program on a real system. Therefore, new tech-

niques are needed to speed up simulation and allow the exploration of large design

spaces in a reasonable amount of time.

One way of increasing simulation speed is sampling. Sampling reduces simula-

tion time by simulating only a representative subset of a program in detail. In this

thesis, we present a workload analysis of a set of task-based programs. We then use

the insights from this study to propose TaskPoint, a sampled simulation method-

ology for task-based programs. Task-based programming models can reduce the

synchronization costs of parallel programs on multi-core systems and are becom-

ing increasingly important. Finally, we present MUSA, a simulation methodology

for simulating applications running on thousands of cores on a hybrid, distributed

shared-memory system. The simulation time required for simulation with MUSA is

comparable to the time needed for native execution of the simulated program on a

production HPC system.

The techniques developed in the scope of this thesis permit researchers and en-

gineers working in computer architecture to simulate large workloads, which were

infeasible to simulate in the past. Our work enables architectural research in the

fields of future large-scale shared-memory and hybrid, distributed shared-memory

systems.

vii

Resum

Des dels principis dels anys 2000, els sistemes d’ordinadors han experimentat una

transició de sistemes d’un sol nucli a sistemes de múltiples nuclis. Mentre els sis-

temes d’un sol nucli incloïen només un nucli en un xip, els sistemes actuals de

múltiples nuclis n’inclouen desenes, una tendència que probablement continuarà

en el futur. Avui en dia, els processadors de múltiples nuclis són omnipresents. Es

fan servir en totes les classes de sistemes de computació, de telèfons mòbils de baix

cost fins a sistemes de computació d’alt rendiment. Dissenyar els futurs sistemes de

múltiples nuclis és un repte important [12]. L’eina principal usada pels arquitectes

de computadors, tant a l’acadèmia com a la indústria, és la simulació. Simular un

ordinador executant un programa típicament és múltiples ordres de magnitut més

lent que executar el mateix programa en un sistema real. Per tant, es necessiten

noves tècniques per accelerar la simulació i permetre l’exploració de grans espais de

disseny en un temps raonable.

Una manera d’accelerar la velocitat de simulació és la simulació mostrejada. La

simulació mostrejada redueix el temps de simulació simulant en detall només un

subconjunt representatiu d’un programa. En aquesta tesi es presenta una anàlisi de

rendiment d’una col·lecció de programes basats en tasques. Com a resultat d’aque-

sta anàlisi, proposem TaskPoint, una metodologia de simulació mostrejada per pro-

grames basats en tasques. Els models de programació basats en tasques poden re-

duir els costos de sincronització de programes paral·lels executats en sistemes de

múltiples nuclis i actualment estan guanyant importància. Finalment, presentem

MUSA, una metodologia de simulació per simular aplicacions executant-se en mil-

ers de nuclis d’un sistema híbrid, que consisteix en nodes de memòria compartida

que formen un sistema de memòria distribuïda. El temps que requereixen les sim-

ulacions amb MUSA és comparable amb el temps que triga l’execució nativa en un

sistema d’alt rendiment en producció.

Les tècniques desenvolupades al llarg d’aquesta tesi permeten simular execu-

cions de programes que abans no eren viables, tant als investigadors com als en-

ginyers que treballen en l’arquitectura de computadors. Per tant, aquest treball ha-

bilita futura recerca en el camp d’arquitectura de sistemes de memòria compartida

o distribuïda, o bé de sistemes híbrids, a gran escala.

ix

Resumen

A principios de los años 2000, los sistemas de ordenadores experimentaron una tran-

sición de sistemas con un núcleo a sistemas con múltiples núcleos. Mientras los

sistemas single-core incluían un sólo núcleo, los sistemas multi-core incluyen dece-

nas de núcleos en el mismo chip, una tendencia que probablemente continuará en

el futuro. Hoy en día, los procesadores multi-core son omnipresentes. Se utilizan

en todas las clases de sistemas de computación, de teléfonos móviles de bajo coste

hasta sistemas de alto rendimiento. Diseñar sistemas multi-core del futuro es un reto

importante. La herramienta principal usada por arquitectos de computadores, tanto

en la academia como en la industria, es la simulación. Simular un computador eje-

cutando un programa típicamente es múltiples ordenes de magnitud más lento que

ejecutar el mismo programa en un sistema real. Por ese motivo se necesitan nuevas

técnicas para acelerar la simulación y permitir la exploración de grandes espacios de

diseño dentro de un tiempo razonable.

Una manera de aumentar la velocidad de simulación es la simulación muestreada.

La simulación muestreada reduce el tiempo de simulación simulando en detalle sólo

un subconjunto representativo de la ejecución entera de un programa. En esta tesis

presentamos un análisis de rendimiento de una colección de programas basados en

tareas. Como resultado de este análisis presentamos TaskPoint, una metodología

de simulación muestreada para programas basados en tareas. Los modelos de pro-

gramación basados en tareas pueden reducir los costes de sincronización de pro-

gramas paralelos ejecutados en sistemas multi-core y actualmente están ganando

importancia. Finalmente, presentamos MUSA, una metodología para simular apli-

caciones ejecutadas en miles de núcleos de un sistema híbrido, compuesto de no-

dos de memoria compartida que forman un sistema de memoria distribuida. El

tiempo de simulación que requieren las simulaciones con MUSA es comparable con

el tiempo necesario para la ejecución del programa simulado en un sistema de alto

rendimiento en producción.

Las técnicas desarolladas al largo de esta tesis permiten a los investigadores e in-

genieros trabajando en la arquitectura de computadores simular ejecuciones largas,

que antes no se podían simular. Nuestro trabajo facilita nuevos caminos de inves-

tigación en los campos de sistemas de memoria compartida o distribuida y en sis-

temas híbridos.

xi

Acknowledgements

First and foremost, I would like to thank my thesis directors, Marc Casas and Miquel

Moretó, for their continuous support and their guidance during these last years.

After my initial group ceased to exist, they offered me to work with them on the

RoMoL project, an opportunity for which I am very grateful. Without Miquel and

Marc this thesis would not have been possible.

Between 2013 and 2016, I was partially supported by the AGAUR of the Gen-

eralitat de Catalunya (grant 2013FI B 0058). Furthermore, this work was supported

by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067),

by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by

the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the

RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of

Excellence. The Mont-Blanc project received funding from the EUs Seventh Frame-

work Programme (FP7/2007-2013) under grant agreement no. 610402 and from the

EUs H2020 Framework Programme (H2020/2014-2020) under grant agreement no.

671697.

xiii

Contents

Declaration of Authorship iii

Abstract v

Resum vii

Resumen ix

Acknowledgements xi

Contents xiii

List of Figures xvii

List of Tables xix

List of Abbreviations xxi

1 Introduction 1

1.1 Thesis Contributions . 3

1.1.1 Execution Time Predictability of Task-Based Programs 4

1.1.2 Sampled Simulation of Task-Based Programs 4

1.1.3 Multi-Level Simulation of Hybrid Programs 5

1.2 Thesis Outline . 6

2 Background 7

2.1 Parallel Systems . 7

2.1.1 Shared-Memory Systems . 8

2.1.2 Distributed-Memory Systems . 8

2.1.3 Hybrid Systems . 10

2.1.4 Heterogeneous Systems . 10

2.1.5 Implications on Design Techniques for Future Systems 12

2.2 Parallel Programming Models . 12

2.2.1 Shared-Memory Programming Models 12

2.2.2 Message Passing Programming Models 14

2.2.3 Functional Parallelism vs. Data Parallelism 15

xiv

2.2.4 Task-Based Programming Models 17

2.2.5 Hybrid Programming Models . 19

2.3 Architectural Simulation . 19

2.3.1 Functional vs. Performance Simulation 19

2.3.2 Simulation of Shared-Memory Systems 21

2.3.3 Simulation of Distributed-Memory Systems 24

2.3.4 Simulation of Hybrid Distributed-Shared-Memory Systems . . 25

2.4 Acceleration Techniques for Architectural Simulation 25

2.4.1 Checkpointing . 26

2.4.2 Sampling . 26

2.4.3 Statistical Simulation . 31

2.4.4 Analytical Models . 32

2.4.5 Reduced Input Sets . 34

2.4.6 Parallelization . 34

2.4.7 Hardware Acceleration . 35

3 Experimental Setup 37

3.1 The OmpSs Programming Model . 37

3.2 Investigated Systems . 38

3.2.1 Shared-Memory Multi-Core Systems 38

3.2.2 Hybrid Distributed Shared-Memory System 39

3.3 The TaskSim Multi-Core Simulator . 40

3.4 Benchmarks . 42

3.4.1 Task-based Benchmarks . 42

3.4.2 Hybrid MPI+OpenMP Benchmarks 43

3.5 Performance Measurement in Native Execution 45

3.5.1 Hardware Performance Counters 45

3.5.2 Performance Measurement of Task-Based Programs 46

4 Execution Time Predictability of Task-Based Programs 47

4.1 Introduction . 47

4.2 Execution Time Predictability of Task-Based Programs 48

4.3 Evaluation . 49

4.3.1 Per-Task-Instance Performance Analysis 51

4.3.2 Predictability of Irregular Behavior 51

Input Dependence: . 53

Multiple Behaviors Per Task Type: 53

Resource Sharing: . 54

4.4 Related Work . 56

4.5 Summary . 57

xv

5 Sampled Simulation of Task-Based Programs 59

5.1 Introduction . 59

5.2 Background and Motivation . 61

5.2.1 Parallel Programming Models 61

5.2.2 Performance Variation of Task-Based Programs 62

5.2.3 Identifying Representative Task Instances 63

5.2.4 Analytical Performance Modeling 64

5.3 Sampled Simulation of Task-Based Programs 65

5.3.1 Requirements for the Architectural Simulator 65

5.3.2 Sampling Mechanism . 66

5.3.3 Periodic Sampling Policy . 69

5.4 Evaluation . 71

5.4.1 Adjusting the Model Parameters 72

5.4.2 Periodic Sampling . 74

5.4.3 Lazy Sampling . 77

5.4.4 Analytical modeling . 79

5.5 Summary . 81

6 Multi-Level Simulation of Hybrid Programs 83

6.1 Introduction . 83

6.2 Background and Motivation . 85

6.2.1 Co-Design of HPC Applications and Systems 85

6.2.2 Challenges Simulating Large HPC Applications 85

6.3 Multi-Level Simulation Approach . 87

6.3.1 MUSA - General Overview . 87

6.3.2 Tracing - Capture Multi-Level Behavior 87

6.3.3 Simulation - Leverage Multi-level Traces 89

6.3.4 Sampling - Reducing Simulation Time 90

6.4 Evaluation . 91

6.4.1 Applications . 91

6.4.2 Native HPC Infrastructure . 92

6.4.3 Tracing and Simulation Infrastructure 93

6.4.4 Validation . 95

6.4.5 Large-scale Simulations . 96

6.4.6 Simulation Time Cost Analysis 100

6.4.7 Design Space Exploration . 101

6.5 Related Work . 104

6.6 Summary . 105

xvi

7 Conclusions 107

7.1 Execution Time Predictability of Task-Based Programs 107

7.2 Sampled Simulation of Task-Based Programs 108

7.3 Multi-Level Simulation of Hybrid Programs 109

8 Future Work 111

8.1 Scheduling Task-Based Programs Using Execution Time Predictability 111

8.2 Sampled Simulation of Task-Based Programs 112

8.3 Multi-Level Simulation of Hybrid Programs 112

A Publications 115

A.1 Conference Publications . 115

A.2 Journal Publications . 115

A.3 Workshop Publications . 115

A.4 Poster Presentations . 115

A.5 Other Publications (Not as First Author) 116

Bibliography 117

xvii

List of Figures

1.1 Cores per socket of systems in the TOP 500 list over time 3

2.1 Illustration of shared-memory UMA system 8

2.2 Illustration of shared-memory ccNUMA system with 2 sockets 9

2.3 Illustration of distributed-memory system 9

2.4 Illustration of hybrid distributed shared-memory system 10

2.5 Systems using accelerators over time . 11

2.6 Illustration of multi-threaded OpenMP program 13

2.7 Illustration of MPI program executed with four ranks 14

2.8 Example of functional parallelism: H.264 15

2.9 Example of data parallelism: matrix-matrix multiplication 16

2.10 Dependency graph of task-based Cholesky decomposition 18

2.11 Illustration of basic-block vectors (BBVs) 26

2.12 Illustration of the SMARTS technique 28

3.1 Overview of the TaskSim simulation infrastructure 41

3.2 Reorder-Buffer Occupancy Analysis according to Lee et al. 41

4.1 Execution time prediction error for single sample 50

4.2 Performance variation on different platforms 52

4.3 Performance variation in fluidanimate and merge-sort 54

4.4 Execution time prediction error with clustering and linear interpolation 55

4.5 MPKI variation as a function of number of threads 56

5.1 IPC variation per task type for different benchmarks 62

5.2 Overview of TaskPoint with and without analytical modeling 63

5.3 Initial warmup, sampling, fast-forwarding and resampling in TaskPoint 66

5.4 Illustration of periodic sampling and lazy sampling in TaskPoint . . . 69

5.5 Changing number of threads and rare task clusters in TaskPoint 70

5.6 Error and speedup for different sizes of warmup interval 73

5.7 Error and speedup for different sizes of sample history 73

5.8 Error and speedup for different sizes of sampling period 74

5.9 Results periodic sampling, high-performance architecture 75

5.10 Results periodic sampling, low-power architecture 76

xviii

5.11 Results lazy sampling, high-performance architecture 77

5.12 Results lazy sampling, low-power architecture 78

5.13 Results model-based sampling, high-performance architecture 79

5.14 Results model-based sampling, low-power architecture 80

6.1 Overview of MUSA’s tracing and simulation methodology 86

6.2 Output of MUSA’s tracing- and simulation infrastructure 88

6.3 Validating MUSA with the NAS Multi-Zone benchmarks 94

6.4 Simulating BT-MZ with input class E and 256 MPI ranks 97

6.5 Simulating HYDRO with input class E and 256 MPI ranks 98

6.6 Simulating SPECFEM3D with input class E and 256 MPI ranks 99

6.7 Simulation time BT-MZ . 100

6.8 Simulation time HYDRO . 101

6.9 Simulation time SPECFEM3D . 102

6.10 Case study: simulating different architectures with MUSA 103

xix

List of Tables

2.1 Classification of shared-memory multi-core simulators 21

3.1 Investigated machines . 39

3.2 Task-based parallel benchmarks used for the evaluation of TaskPoint . 44

5.1 Parameters of the architectures simulated with TaskPoint 72

6.1 Characteristics of applications simulated with MUSA 92

6.2 Trace sizes for simulations with MUSA 92

6.3 Parameters of architectures used in case study with MUSA 102

xxi

List of Abbreviations

BBV Basic Block Vector

ccNUMA cache-coherent Non-Uniform Memory Access

CMP Chip Multi-Processor

CPU Central Processing Unit

DRAM Dynamic Random Access Memory

FPGA Field-Programmable Gate Array

GPGPU General Purpose Graphics Processing Unit

ILP Instruction-Level Parallelism

IPC Instructions Per Cycle

ISA Instruction Set Architecture

HPC High-Performance Computing

LLC Last-Level Cache

LRU Least Recently Used

MLP Memory Level Parallelism

NoC Network-on-Chip

NUCA Non-Uniform Cache Architecture

PMU Performance Monitoring Unit

ROB ReOrder-Buffer

RTL Register-Transfer Level

SIMD Single Instruction, Multiple Data

SMT Simultaneous Multi-Threading

SoC System-On-a-Chip

SPMD Single Program, Multiple Data

TLP Thread-Level Paralellism

UMA Uniform Memory Access

1

Chapter 1

Introduction

The first commercial microprocessor, the Intel 4004, was introduced in 1971 and con-

sisted of approximately 2,300 transistors integrated on a single chip [7]. It required

a variety of other integrated circuits to function. The Intel 4004 operated at a clock

frequency of 740kHz and was able to execute one instruction every eight clock cycles

or a total of up to 92,600 instructions per second. Ever since the introduction of the

Intel 4004, performance and complexity of computer systems have been increasing

exponentially over time.

In comparison, the Intel Xeon E5-2699 v4 processor [64], released early in 2016,

integrates approximately 7.2 billion transistors on a single chip. The chip contains 22

active cores1, 55MB of last-level cache and a variety of circuitry to interface with the

rest of the system. The cores operate at 2.2GHz and can process up to 4 instructions

per clock cycle, resulting in a theoretical maximum of 193.6 billion instructions per

second for the full processor. Thus, since the arrival of the Intel 4004, processor

performance has improved by a factor of more than 2 million.

The massive increase in processor performance over time has been possible be-

cause the manufacturing processes for integrated circuits have been continuously

improving, combined with architectural enhancements. Over time, these improve-

ments allowed to integrate an ever larger number of transistors on a single chip.

Gordon Moore observed in 1965 that the number of transistors had been doubling

every two years and he projected this trend into the future [84]. His observation

became known as Moore’s Law.

During the first three decades of the microprocessor’s history, computer archi-

tects used the increasing numbers of transistors coming along with Moore’s Law

primarily to improve single-thread performance. As the feature sizes of integrated

circuits shrank, it was possible to increase the frequency of operation, and thus the

instruction throughput. Besides, the newly available transistors allowed to employ

more sophisticated techniques to exploit instruction-level parallelism (ILP), allowing

a single processor to execute multiple instructions per cycle, potentially out of pro-

gram order. These efforts culminated in the Prescott micro-architecture, used by the

1The chip contains 24 cores, two of which are deactivated.

2 Chapter 1. Introduction

Intel Pentium 4 processor. The Prescott micro-architecture used 31 pipeline stages

to achieve a high clock frequency. Pentium 4 Prescott processors were able to run at

up to 3.8GHz, consuming more than 100W in power. It became apparent that fur-

ther increasing the operation frequency would lead to unacceptable thermal power

dissipation. At the same time, deeper pipelines would exacerbate the already high

penalties of pipeline flushes, e.g. in the case of branch misspeculation.

In the early 2000’s, the major processor manufacturers started to use the in-

creased transistor counts to implement chip multi-processors (CMPs), i.e. processors

integrating several processor cores on a single chip. These processor cores ran at

a lower operation voltage and clock frequency than their single-core predecessors.

CMPs achieved higher total performance while consuming less power. This perfor-

mance increase has been achieved by exploiting thread-level parallelism (TLP). Instead

of relying on ever more sophisticated techniques to detect and exploit ILP, CMPs ex-

ecute multiple execution threads simultaneously.

Exploiting TLP on CMPs typically requires support in programming languages

and runtime environments. Programmers need to take care of efficiently exposing

TLP in a program. Despite these inconveniences, CMPs are prevalent today. Intel’s

current high-end Xeon E5-2699 v4 processor has 22 cores, whereas Intel’s Xeon Phi

7120X systems even include 61 cores. An end to the continuously increasing core

counts in this multi-core era is currently not in sight.

Architectural simulation is a key tool for computer architects and application

developers. By relying on simulation, computer architects can evaluate the per-

formance and power consumption of a benchmark on a variety of design choices

without actually building costly hardware prototypes. Application developers use

simulation to develop and optimize system software and applications so that the

software is ready once a new machine hits the market.

High-performance computing (HPC) systems typically consist of a large num-

ber of shared memory nodes, each composed of multiple processors or sockets. In

recent years, the number of cores per socket is continuously increasing. The TOP

500 list [113] lists the 500 fastest HPC systems in the world and is updated twice a

year. Figure 1.1 shows the percentage of systems listed in the TOP 500 list for se-

lected numbers of cores per socket. The figure clearly demonstrates that, since the

advent of the dual-core processor, which reached its peak early in 2007, single-core

processors have practically vanished. Instead, systems are built with ever increas-

ing numbers of cores, and currently, there is no reason to assume that this trend will

change in the near future.

The impact that the increasing core count has on architectural simulation is two-

fold. First, a larger amount of simulated, state-holding hardware requires the sim-

ulation of larger workloads to stress the simulated design meaningfully. Second, a

1.1. Thesis Contributions 3

N
ov

 2
00

0

N
ov

 2
00

1

N
ov

 2
00

2

N
ov

 2
00

3

N
ov

 2
00

4

N
ov

 2
00

5

N
ov

 2
00

6

N
ov

 2
00

7

N
ov

 2
00

8

N
ov

 2
00

9

N
ov

 2
01

0

N
ov

 2
01

1

N
ov

 2
01

2

N
ov

 2
01

3

N
ov

 2
01

4

N
ov

 2
01

5

N
ov

 2
01

6

Month / Year

0

20

40

60

80

100
S

ha
re

 o
f a

ll
sy

st
em

s
[%

]
Cores per socket

1
2
4
6

8
10
12
16

FIGURE 1.1: Evolution of the number of cores per socket since
November 2000, as observed in the systems listed in the TOP 500 list

of the fastest HPC systems.

simulation of a system with multiple cores requires simulating the interactions of

these cores in shared system resources, e.g. last-level caches or the on-chip inter-

connect subsystem. Both the larger design complexity and the more complex sys-

tem behavior increase simulation complexity and thus simulation time. However,

the simulation speed of contemporary detailed architectural simulators has not in-

creased to the same extent.

The size of HPC systems is also increasing in terms of the number of nodes.

Consequently, system-level simulations need to simulate not only a larger number

of total cores, but also increasingly large interconnection networks. Existing simula-

tors for such machines either use high-level models or are prohibitively slow. While

high-level models achieve high simulation speed, they do so by sacrificing simula-

tion detail. Detailed simulation of programs executing on thousands of cores in a

distributed memory system is very accurate but infeasible due to its excessive sim-

ulation time.

1.1 Thesis Contributions

In the following, we list the contributions we make in the different chapters of this

thesis:

4 Chapter 1. Introduction

1.1.1 Execution Time Predictability of Task-Based Programs

• In Chapter 4, we analyze performance variability across instances of the same

task type in a set of task-based programs executing on multi-core systems. This

analysis shows the variability on an instance-by-instance basis.

• We identify different sources of execution time variability on instances of the

same task type, namely input dependence, multiple behaviors per task type,

and contention on shared system resources.

• We present a low-complexity model based on linear interpolation for predict-

ing the execution time of a task instance as a function of its instruction count.

• We use a clustering algorithm to identify different classes of behavior in the

same task type. In our example, we successfully classify task instances into

clusters, each of which exhibits regular performance.

The content of Chapter 4 has been published under the title “Evaluating Execution

Time Predictability of Task-Based Programs on Multi-Core Processors” at the MuCoCoS

workshop, which was held in conjunction with Euro-Par 2014 in Porto, Portugal.

1.1.2 Sampled Simulation of Task-Based Programs

• In Chapter 5 we use the insights from Chapter 4 and present TaskPoint, a sam-

pled simulation technique for multi-core architectures programmed with a dy-

namically scheduled, task-based programming model. We propose a mecha-

nism to accurately fast-forward an architectural simulation of a task-based pro-

gram. During fast-forward, we model the performance of a given task instance

based on previous instances of the same task type. We account for different

task input sizes across the application execution by factoring in the number of

instructions of the given task instance accordingly.

• For applications with varying behavior across instances of the same task type,

we employ basic block vectors (BBVs) and clustering to identify classes of sim-

ilar behavior. We show how we (i) identify multiple classes of behavior among

task instances of the same task type, and (ii) merge task instances with similar

behavior belonging to different types. We use an analytical performance model

to improve simulation accuracy during simulation in fast-forward mode. Our

approach combines the speed of analytical models with the accuracy of de-

tailed simulation.

• We evaluate TaskPoint simulating 27 task-based parallel benchmarks, includ-

ing the PARSEC benchmark suite. We evaluate the sensitivity of TaskPoint

1.1. Thesis Contributions 5

to different architectures by testing different numbers of simulated threads on

two configurations covering the opposite extremes of the multi-core design

space: high-performance and low power.

The content of Chapter 5 has been published under the title “TaskPoint: Sampled

Simulation of Task-Based Programs” at the 2016 International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS 2016) which was held in Uppsala,

Sweden. An extended version is currently under submission at IEEE Transactions

on Computers (TC).

1.1.3 Multi-Level Simulation of Hybrid Programs

• In Chapter 6 we present MUSA, a Multi-Scale Simulation Approach that en-

ables fast and accurate performance estimations of next-generation HPC ma-

chines. Our methodology seamlessly captures inter-node communication as

well as intra-node microarchitectural and system software interactions, im-

proving usability and simplifying the simulation workflow. MUSA relies on

native execution traces with two levels of detail to allow simulation of different

communication networks, numbers of cores per node, and relevant microar-

chitectural parameters. MUSA optionally employs TaskPoint, our sampled

simulation methodology for task-based programs presented in Chapter 5.

• We validate MUSA using the NAS Multi-Zone Parallel Benchmark suite [116],

and then evaluate three large-scale case studies (with up to 16,384 cores) us-

ing BT-MZ, HYDRO [75], and SPECFEM3D [72]. Our evaluation shows that

MUSA provides accurate performance predictions by combining information

at different levels of granularity. When comparing native executions and MUSA

simulations with up to 2,048 cores, we achieve relative errors within 10% in

the common case, demonstrating that our detailed model is able to capture

microarchitectural and system software effects. Besides, we show that our

simulations complete in an affordable amount of time, i.e. less than a day

of total aggregated CPU time for detailed 16,384-core simulations. This allows

to quickly identify scalability problems in the targeted case studies.

• Finally, we perform a design space exploration analysis using high-performance,

low-power, and die-stacked DRAM processor profiles on a system with 16,384

cores. We find that for one of the evaluated HPC applications, HYDRO, the

low-power processor can achieve on par performance even with the same

number of cores, because the high-performance memory hierarchy and ag-

gressive microarchitecture are over-dimensioned. In contrast, the other two

applications benefit from an aggressive out-of-order microarchitecture, and

6 Chapter 1. Introduction

SPECFEM3D achieves better scalability by exploiting the higher memory band-

width provided by die-stacked DRAM technology.

The content of Chapter 6 has been published under the title “MUSA: A Multi-

Level Simulation Approach for Next-Generation HPC Machines” at the International Con-

ference for High Performance Computing, Networking, Storage and Analysis 2016

(SC16), which was held in Salt Lake City, Utah, United States of America.

MUSA permits performing design space exploration of future HPC systems. To

this end, it has been used in the projects Mont-Blanc 2 and Mont-Blanc 3 to determine

architectural features required to build an exascale system. An exascale system is an

HPC machine with a peak performance of least one exaFLOPS, i.e. one quintillion

(1018) floating-point operations per second.

1.2 Thesis Outline

The remainder of this thesis is organized as follows: in Chapter 2, we provide back-

ground and present the state-of-the-art of simulation of shared- and distributed-

memory systems. Afterwards, in Chapter 3 we present our experimental setup.

Then, in Chapter 4, we present an analysis of execution time predictability of task-

based programs. Next, in Chapter 5, we leverage the results of this analysis and

propose TaskPoint, a sampled simulation technique for task-based programs. Then,

in Chapter 6, we extend a high-level simulator for distributed memory systems by

a detailed simulator which includes TaskPoint. The result is MUSA, a multi-level

simulation approach for hybrid applications. We conclude in Chapter 7 and outline

future work in Chapter 8.

7

Chapter 2

Background

In this chapter, we provide background and present the state-of-the-art related to

the research conducted in the course of this thesis. First, in Section 2.1, we introduce

parallel computer systems. Then, in Section 2.2, we introduce the prevalent paral-

lel programming models for shared- and distributed-memory machines, as they are

frequently used in HPC systems. Starting with traditional programming models,

we move on to more recent ones targeting modern multi-core machines and allow-

ing for increased programmer productivity. Afterwards, we review message pass-

ing, the prevalent programming model for distributed-memory systems. Finally,

we introduce hybrid programming models, which are a combination of shared- and

distributed-memory models.

Next, in Section 2.3, we introduce the concept of architectural simulation in the

context of computer architecture research. We discuss different techniques for sim-

ulation of shared- and distributed-memory systems and point out the lack of tech-

niques targeting hybrid programming models.

Finally, in Section 2.4, we present techniques for accelerating architectural sim-

ulation. After reviewing techniques for simulations of single-threaded systems, we

discuss the issues which arise when moving to the simulation of multi-threaded sys-

tems and how they are addressed by different recent techniques. We point out why

existing accelerating techniques are not directly applicable to dynamically sched-

uled, task-based programming models and motivate the work performed during

the course of this thesis.

2.1 Parallel Systems

In this section, we introduce the prevalent system architectures used in parallel com-

puting. First, we introduce shared-memory systems, in which all cores of a system

can communicate by accessing the same memory address space. Afterwards, we

present distributed-memory systems, in which processors have disjoint memory ad-

dress spaces and communicate through message passing. We then introduce hetero-

geneous systems. Finally, we show, how current HPC systems combine the shared-

8 Chapter 2. Background

and distributed-memory approaches.

2.1.1 Shared-Memory Systems

In a shared-memory system, as illustrated in Figure 2.1, memory can be accessed by

multiple processors using the same physical address space. Current high-end multi-

core processors typically feature multiple cores or central processing units (CPUs),

each of which with private L1 data- and instruction caches, and a unified L2 cache.

A cache-coherent on-chip network connects the private L2 caches to an L3 cache,

which is shared among all cores. The L3 cache interfaces to the DRAM subsystem.

Core 1

L1 I L1 D

L2

Core 2

L1 I L1 D

L2

Core N

L1 I L1 D

L2

...

L3

DRAM

FIGURE 2.1: Shared-memory UMA system with two levels of private
cache memories, shared L3 cache and DRAM subsystem.

Because all cores can access arbitrary memory locations with the same average

bandwidth and latency, the system is also referred to as a Uniform Memory Access

(UMA) system. However, modern multi-core systems include routed on-chip in-

terconnect networks and banked last-level caches. As a result, the average memory

bandwidth and latency measured on a particular core varies depending on the phys-

ical location of the accessed memory. Therefore, current multi-core systems do no

longer fall into the class of UMA systems. Instead, they belong to the class of Non-

Uniform Cache Architecture (NUCA) systems.

High-performance shared-memory systems can consist of multiple sockets, as il-

lustrated in Figure 2.2. Each socket itself is a shared-memory system. The different

sockets are connected via a cache-coherent interconnect, ensuring cache coherence

across the entire system. In such a system, bandwidth and latency of memory ac-

cesses depend on whether the data resides in the same or a different socket. Systems

of this type are referred to as cache-coherent Non-Uniform Memory Access (ccNUMA)

systems.

2.1.2 Distributed-Memory Systems

In a shared-memory system, all processors share a common logical memory address

space. In a distributed-memory system, as illustrated in Figure 2.3, each processor has

2.1. Parallel Systems 9

Core 1

L1 I

L2

...

L3

DRAM

Socket 1

L1 D

Core 2

L1 I

L2

L1 D

Core N

L1 I

L2

L1 D

Core 1

L1 I

L2

...

L3

DRAM

Socket 2

L1 D

Core 2

L1 I

L2

L1 D

Core N

L1 I

L2

L1 D

FIGURE 2.2: Shared-memory ccNUMA System with two sockets of N
cores each. The sockets are connected via a cache-coherent intercon-

nect.

its own memory address space. The memories of other processors are not directly

reachable and different processors communicate via an interconnection network.

Cores

Cache
Hierarchy

DRAM
Network

Controller

Node 1

Processor

Network

Cores

Cache
Hierarchy

DRAM
Network

Controller

Node 2

Processor

Cores

Cache
Hierarchy

DRAM
Network

Controller

Node N

Processor

...

FIGURE 2.3: Distributed-memory system; processors communicate
via message-passing over a network.

According to the TOP500 list of November 2016 [113], the two most widely used

interconnect network families, namely InfiniBand (37.4%) and 10 Gigabit Ethernet

(35.6%), together account for more than two-thirds of the systems on the current

TOP500 list. For a distributed system to deliver high performance across a wide

range of applications, it is critical that the interconnect system provides high band-

width and low message latency. Due to the large number of nodes in current HPC

systems, interconnect networks are typically organized in a hierarchical fashion.

The currently fastest system in the world, the Sunway TaihuLight, consists of

nodes featuring 260 processor cores each. The different cores, which are all inte-

grated on the same chip, communicate via a network-on-chip (NoC). 256 nodes form

a supernode. The entire system consists of 160 supernodes. Nodes and supernodes

are interconnected in a tree topology.

The K computer, still one of the ten fastest HPC systems in the world, uses a hy-

brid mesh-torus interconnect network. Nodes are organized into node groups of 12

10 Chapter 2. Background

nodes. Within a node group, nodes are interconnected using a three-dimensional

mesh topology. Different node groups are interconnected in a three-dimensional

torus topology. An advantage of this interconnect architecture is that there are mul-

tiple paths between any pair of nodes. As a result, the system can tolerate a small

number of link failures and still be operational.

The examples mentioned above illustrate that the interconnect network has a

significant influence on how applications are efficiently mapped to the nodes of a

system. Both mentioned systems provide higher communication bandwidth and

lower latency between processes running in the same supernode or node group, re-

spectively. Besides, the K computer’s mesh-torus interconnect is well-suited for ap-

plications in which processes mainly communicate with their immediate neighbors.

On the other hand, all-to-all communications or communications between distant

nodes can be costly in terms of latency. Communication between distant nodes ad-

ditionally causes network contention all along the message path.

2.1.3 Hybrid Systems

Current HPC systems cannot be classified into either shared- or distributed-memory

systems. Instead, they follow a hybrid design approach, as illustrated in Figure 2.4:

each multi-core processor is part of a UMA socket. Multiple UMA sockets together

form a shared-memory ccNUMA node. An HPC system consists of multiple cc-

NUMA nodes, potentially thousands to tens of thousands. Each ccNUMA node is

connected to a network, forming a (hybrid) distributed-memory system comprised

of shared-memory nodes.

Network Controller

...

Network

Node 1
Socket 1 Socket 2

Network Controller

Node 2
Socket 1 Socket 2

Network Controller

Socket 1 Socket 2
Node N

FIGURE 2.4: Hybrid system; shared-memory ccNUMA nodes ar-
ranged in a distributed-memory configuration.

2.1.4 Heterogeneous Systems

To achieve higher performance and better energy efficiency systems can incorporate

multiple types of processors. The different processor types can differ in a variety

of characteristics. They can use the same or different instruction set architectures

(ISAs) and vary in performance and power consumption. An example is systems

2.1. Parallel Systems 11

consisting of both multi-core processors and general-purpose graphics processing units

(GPGPUs). If a processor is optimized for a certain class of computations it is also

referred to as an accelerator.

The TOP 500 list [113] lists the 500 fastest HPC systems in the world and is up-

dated every six months. Figure 2.5 displays the percentage of different types of

accelerators used by systems in the TOP 500 list over time. Some accelerator types,

e.g. the IBM Cell processor or ATI Radeon GPGPUs, had some significance in the

past but disappeared afterwards. As can be seen in the figure, today the market for

accelerators in HPC is dominated by NVIDIA GPGPUs and Intel MIC accelerators.

Interestingly, lately, the total amount of system using accelerators is decreasing.

N
ov

 2
00

7

N
ov

 2
00

8

N
ov

 2
00

9

N
ov

 2
01

0

N
ov

 2
01

1

N
ov

 2
01

2

N
ov

 2
01

3

N
ov

 2
01

4

N
ov

 2
01

5

N
ov

 2
01

6

Month / Year

0

2

4

6

8

10

12

14

S
ha

re
 o

f a
ll

sy
st

em
s

[%
]

IBM Cell
NVIDIA GPGPUS
ATI GPGPUs
Intel MIC
Others

FIGURE 2.5: Percentage of systems in the TOP 500 list using accelera-
tors over time.

Another example of a heterogeneous system is the ARM big.LITTLE architec-

ture, designed to improve energy efficiency of battery-powered mobile devices. In

big.LITTLE, fast, more power-consuming ("big") cores are combined with slower,

more energy-efficient ("little") cores. Early implementations had restrictions, such

as only allowing to use either all big or all little cores. Starting with the Samsung

Exynos 5420 SoC, these limitations have been overcome. A big.LITTLE system can

also include a GPGPU. While big and little cores have the same ISA, the GPGPU

usually has a different ISA. However, big cores, little cores and the GPGPU share the

same physical memory address space, thus forming a ccNUMA system.

12 Chapter 2. Background

2.1.5 Implications on Design Techniques for Future Systems

In the previous subsections we pointed out how the hardware complexity of modern

computer systems is continuously increasing. In HPC systems, complexity increases

both at the intra-node and the inter-node levels. At the intra-node level core counts

and core heterogeneity are increasing over time. At the inter-node level, larger num-

bers of nodes need to be interconnected, requiring new network technologies.

The increase in overall system complexity exceeds the capabilities of existing

simulation techniques. New, advanced techniques are needed to simulate future

systems at a good accuracy and in a reasonable amount of simulation time. In this

thesis, we present techniques for improving simulation speed at the intra-node and

inter-node levels, while maintaining high simulation accuracy.

2.2 Parallel Programming Models

Parallel programming models can be classified according to a variety of different cri-

teria. In this section, we present a classification along two orthogonal dimensions.

The first dimension is the way in which a programmer manages different parallel

execution threads. The second dimension consists in the way the programmer de-

composes a problem in order to make it suitable for parallel execution.

2.2.1 Shared-Memory Programming Models

A parallel programming model for shared-memory machines provides a means to

create several execution threads that share all or part of their memory address space.

A program using more than one thread is referred to as a multi-threaded program.

The decomposition of a program into multiple threads can generate race conditions,

under which the outcome of a program depends on the order in which the different

threads access shared data. Undesired race conditions can be avoided with the aid

of synchronization primitives, namely locks and semaphores.

In traditional parallel programming models for shared-memory systems, like

POSIX Threads (Pthreads) [19], the programmer explicitly decomposes an appli-

cation into concurrent instruction streams and manages synchronization between

those. These instruction streams are processed simultaneously by different threads.

While Pthreads gives the application developer a large degree of control, the result-

ing programs are difficult to maintain. This is mainly due to the low degree of sim-

ilarity between the parallel code and a sequential implementation, which results in

low code readability. Furthermore, Pthreads programs can be tailored to a particular

architecture, hindering performance portability.

2.2. Parallel Programming Models 13

The most prevalent shared-memory programming model today is OpenMP [39].

OpenMP supports the C, C++ and Fortran programming languages. It allows the

programmer to parallelize a sequential version of a program by adding preproces-

sor directives. An advantage of OpenMP is that it allows a programmer to write a

parallel program in an incremental fashion, starting with a sequential implementa-

tion. This increases programmer productivity and improves code readability.

LISTING 2.1: Dense matrix-matrix multiplication in OpenMP

1 [sequential code]

2

3 #pragma omp parallel for

4 for (i = 0; i < n; i++) {

5 for (j = 0; j < n; j++) {

6 c[i][j] = 0.0;

7 for (k = 0; k < n; k++) {

8 c[i][j] = c[i][j] + a[i][k] * b[k][j];

9 }

10 }

11 }

12

13 [more sequential code]

OpenMP is an example of a programming model supporting the fork-join paradigm.

The code fragment in Listing 2.1 shows a case of a multiplication of two matrices of

dimension n × n, implemented using OpenMP. Lines 4 to 11 implement the actual

matrix multiplication. The declaration in line 3 fulfills two functions: first, it creates

a thread team, consisting of a user-specified number of worker threads. If no thread

count is specified, the number of worker threads is equal to the number of hardware

threads of the host machine. Second, the statement in line 3 causes the iteration

space of the outermost for-loop to be split into equally-sized chunks. The number of

chunks is equal to the number of threads, and each chunk is assigned to a different

thread. Once all threads finish the execution of their respective chunks, the worker

threads are destroyed, and the main thread continues the sequential execution of the

program.

Time

Thread 1

...Thread 2

Thread 3

Thread 4

Fork Join

FIGURE 2.6: Illustration of parallel execution in an OpenMP applica-
tion with four execution threads

14 Chapter 2. Background

Figure 2.6 illustrates the parallel execution of the previous example with four

threads. In the beginning, one thread executes the sequential portion of the program.

When entering the parallel section, three more threads are created. Afterwards, all

threads participate in the parallel computation. Threads can communicate explicitly

by accessing the same, shared memory of the application. At the end of the parallel

phase, all threads implicitly synchronize, and the additionally created threads are

destroyed. Then, the main thread continues with the execution of the sequential

parts of the application.

The aforementioned mechanism of distributing work across several threads is

referred to as work sharing. OpenMP also supports tasking, which is introduced in

Subsection 2.2.4 later in this section. Other examples of shared-memory program-

ming models are Cilk [15] and Intel Thread Building Blocks (TBB) [96].

2.2.2 Message Passing Programming Models

In message passing programming models, threads have only private memory. Com-

munication is achieved by means of messages exchanged between threads. Typi-

cally, message passing relies on parallelization across different processes or ranks,

in contrast to the threads used by shared-memory programs. The most widespread

representative of this class of programming models is the Message Passing Interface

(MPI) [56, 82]. MPI offers a variety of functions for sending and receiving messages

between two processes (point-to-point communication). There are also communica-

tion primitives involving more than two processes, e.g. all-to-all communications,

in which each process communicates with all other processes. Other examples are

one-to-all and all-to-one communications. They are also referred to as scatter and

gather operations, respectively.

Time

Rank 1

Rank 2

Rank 3

Rank 4

...

FIGURE 2.7: Illustration of computation phases (boxes) and messages
(arrows) in an MPI application with four ranks

Figure 2.7 illustrates an MPI application executed with four ranks, each of which

runs on a different node of a cluster. In the beginning, all ranks perform computa-

tions. At some point, each rank sends messages to its immediate neighbors. This

communication scheme is referred to as point-to-point communication. When the

communication is complete, all ranks resume computation. After some time, all

2.2. Parallel Programming Models 15

ranks exchange messages with each other, performing an all-to-all communication,

before once more they resume computation.

In MPI, a program is parallelized across different processes, each of which runs

on a different core. The cores can be located in different nodes, in different sockets of

the same node, or in the same socket. Processes typically communicate via a high-

bandwidth, low-latency network. If two communicating processes are located on

the same node, current MPI implementations avoid using the network interface for

communication. Instead, communication is achieved via shared memory in a way

which is transparent to the user, managed by the MPI library.

Note that the distinction between shared-memory and message passing pro-

gramming models is based on the programmer’s view of memory. Shared-memory

programming models map naturally to shared-memory systems, e.g. CMPs. On the

other hand, message passing maps naturally to distributed-memory machines, such

as clusters. However, it is also possible to program shared-memory machines using

message passing or to program distributed-memory machines with shared-memory

programming models. For example, Intel’s programming model Cluster OpenMP

hides explicit message passing from the programmer by creating the illusion of a

single address space encompassing the entire system’s memory [60].

2.2.3 Functional Parallelism vs. Data Parallelism

In the previous sections, we classify programming models into shared-memory and

message passing programming models, according to the programmer’s view of a

system’s memory. In this section we consider a different classification, according

to the way in which a program exposes parallelism. Note that this classification is

orthogonal to the one presented in the previous section.

The implementation of a parallel program requires the decomposition of a prob-

lem so that its computation can be accelerated by using multiple threads. The two

dominant types of parallelism are functional parallelism and data parallelism. Exploit-

ing these different kinds of parallelism requires different programming strategies.

I B B P B B P B B I B B P B B P B B I

GOP 1 GOP 2

FIGURE 2.8: Example of functional parallelism: Dependencies be-
tween different frames in an H.264 video stream

A program is said to contain functional parallelism performs several tasks se-

quentially, which could partially or entirely be executed in parallel without violating

16 Chapter 2. Background

program correctness. An example is decoding a video encoded in the H.264 stan-

dard [120]. As illustrated in Figure 2.8, a Group-of-Pictures (GOP) in an H.264 video

contains so-called I-, P- and B-Frames. I-Frames are independent of other frames

and can be decoded in parallel. P-Frames depend on the previous I-Frame. Once

this I-Frame is decoded, all P-Frames of the GOP can be decoded in parallel. Finally,

B-Frames depend on the surrounding non-B-Frames. Once those are decoded, all

B-Frames in a subsequence can be decoded in parallel.

A program containing data parallelism, repeatedly performs the same operation

on different elements or ranges of its data, whereas these operations could be exe-

cuted in parallel without violating program correctness. Several parallel execution

paradigms exploit data parallelism.

A Single Instruction, Multiple Data (SIMD) machine can exploit data parallelism

which is known at compile time. Special machine instructions operate on multiple

data items at a time. For example, Intel’s AVX512 instruction set extensions provide

instructions which can operate on up to 64 byte-sized operands with a single in-

struction. A second example is GPGPUs, in which multiple hardware threads share

the same control logic and operate in lockstep on different data. Finally, the matrix

multiplication example in Section 2.2.1 also relies on data parallelism.

Data parallelism can also be exploited by independent processors executing the

same program operating on different parts of the data domain, resulting in a Single

Program, Multiple Data (SPMD) execution scheme. An advantage of SPMD is that

data parallelism does not need to be known at compile time. Furthermore, SPMD

machines show a higher tolerance for control flow divergence, which occurs when

different threads follow different control paths due to data dependence of the control

flow.

A B A
11

A
21

A
12

A
22

C B
11

B
21

B
12

B
22

C
11

C
21

C
12

C
22

× = × =

FIGURE 2.9: Example of exploiting data parallelism through domain
decomposition: blocked matrix-matrix multiplication

One way to exploit data parallelism in SPMD machines is domain decomposition,

the decomposition of the problem domain into blocks or tiles, which can be processed

independently. Different threads can operate on different blocks simultaneously, ac-

celerating the overall program execution. Figure 2.9 illustrates three matrices. The

matrices A and B are to be multiplied, and the result stored in matrix C. After split-

ting the three matrices into sub-matrices, the multiplication rules for blocked matri-

ces can be applied and the sub-matrices of matrix C can be calculated in parallel,

2.2. Parallel Programming Models 17

according to Equations 2.1 to 2.4.

C11 = A11 ×B11 +A12 ×B21 (2.1)

C21 = A21 ×B11 +A22 ×B21 (2.2)

C12 = A11 ×B12 +A12 ×B22 (2.3)

C22 = A21 ×B12 +A22 ×B22 (2.4)

2.2.4 Task-Based Programming Models

A multi-threaded execution is said to be load-balanced if all threads reach a synchro-

nization point at the same time. The absence of load balance is referred to as load im-

balance. Load imbalance is a common problem with multi-threaded programs since

it limits parallel efficiency and, consequently, application scalability. Task-based pro-

gramming models have the potential to alleviate load imbalance and thus increase

parallel efficiency. When implementing a parallel program using a task-based pro-

gramming model, the programmer specifies program parts as tasks and, optionally,

data dependencies between these tasks. Tasks are instantiated many times during

the execution of a program, resulting in a large number of task instances. A runtime

environment dynamically schedules task instances to available execution threads,

taking into account the dependencies between different task instances.

Due to a fine-grained over-decomposition of the application, there are ideally more

task instances ready for execution than there are threads. This allows the runtime

environment to balance the workload assigned to each thread dynamically [79]. Fur-

ther optimizations are possible if the architecture interfaces directly with the runtime

environment [30, 114].

In this work, we differentiate between task types and task instances. Every ex-

ecution of a task declaration statement at runtime results in the creation of a task

instance. All task instances resulting from the same task declaration statement in

the source code are said to be of the same task type. In a typical task-based pro-

gram, the number of task types is small, i.e. up to a few tens. On the other hand, the

number of task instances can lie in the order of thousands to millions.

The decomposition of a sequential program into several task types can be seen as

a manner of functional decomposition, while the repeated instantiation of a task type

can be regarded as domain decomposition. Thus, task-based programming models

allow the programmer to exploit both functional and data parallelism.

Figure 2.10 shows a task dependency graph of a task-based implementation of a

Cholesky decomposition. The program consists of four task types, which are calls to

the functions dpotrf, dtrsm, dsyrk and dgemm of the Level 3 Basic Linear Algebra

Subprograms (BLAS) [76]. In the beginning, only one task instance can be executed,

18 Chapter 2. Background

since it gives a dependency of all other task instances. When this instance finishes

execution, more parallelism becomes available. Note that the last four task instances

need to be executed sequentially due to data dependencies.
main Dependence type:User functions:

2

3

4 56

7 8

12

13

18

9

10 11

14 15 19

16

17

20

21

smpSs_dpotrf_tile

smpSs_dsyrk_tile

smpSs_dtrsm_tile

smpSs_dgemm_tile True dependence

Anti-dependence

Output dependence

(A)

dpotrf

dtrsm

dsyrk

dgemm

(B)

FIGURE 2.10: Dependency graph of task-based implementation of
Cholesky decomposition

An example of a programming model supporting tasks is OpenMP [39]. Starting

with a sequential version of a program, the programmer adds source code annota-

tions to indicate which parts of the program are to be considered as tasks. These

tasks are annotated with the data read and written by each instance of the task. The

resulting parallel program is typically more intuitive to programmers, compared

to low-level parallel programming models. Besides, development and debugging

techniques are similar to the methods for the development of single threaded ap-

plications. Other parallel programming models supporting tasks are Intel Thread

Building Blocks (TBB) [96] and OmpSs [42].

2.3. Architectural Simulation 19

2.2.5 Hybrid Programming Models

As stated in Section 2.1.3, current HPC systems consist of a large number of nodes,

forming a distributed-memory system. Each node itself is a shared-memory multi-

core system. One way to program these machines is the use of hybrid program-

ming models. In a hybrid programming model, a distributed-memory programming

model is employed to perform a coarse-grain parallelization of the workload across

the different nodes of the system. A shared-memory programming model further

parallelizes the workload across the different processors within a node. A widely

used hybrid programming model is MPI+OpenMP [92].

Hybrid programming models seem to be a natural fit for the hybrid nature of

current HPC systems. However, they also introduce more variables which need to be

tuned by system users. Traditional distributed-memory programs, relying purely on

message passing for parallelization, are typically run with one process per processor.

In a hybrid program, a single process can run on multiple threads. An application

might scale well with the number of processes, but not with the number of threads

per process and vice versa. It is up to the user to determine the ideal numbers of

processes and threads per process.

2.3 Architectural Simulation

Architectural simulation is an important tool for computer architects in academic

research and industry [2]. Simulation allows evaluating architectural features and

their impact on performance and power consumption without actually building a

costly prototype of the proposed design. For example, out-of-order execution, a fea-

ture used by virtually every modern processor from mobile to high-performance

systems, was first evaluated in simulation [63]. Also, developers of system software

and applications resort to simulation while real hardware is not yet available.

The requirements of computer architects to a simulator are typically different

from the requirements of software developers. While the architect is mainly inter-

ested in accurately modeling the relevant hardware structures and their impact on

performance, the software developer wants a simulator that supports the instruction

set architecture (ISA) of the future machine.

2.3.1 Functional vs. Performance Simulation

According to the different needs of computer architects and software developers re-

lying on simulation, simulators can be classified roughly into two classes, namely

20 Chapter 2. Background

functional simulators and performance simulators. However, current simulators fre-

quently offer both functional and performance simulation modes and thus cannot

be classified into one of those two categories.

Functional simulation, also referred to as emulation, aims to provide a means to

execute software designed for a computer system which is not available. Exam-

ples are new systems which are not yet available on the market, systems which are

too expensive to buy, or legacy systems which are no longer available to the soft-

ware developer. Functional simulators can be classified into interpreters and simu-

lators based on native execution. Interpreters simulate the execution of a program

instruction-by-instruction within the simulator program. Simulators based on na-

tive execution, on the other hand, execute the instruction of the simulated program

on the host machine the simulator is running on. This results in a higher simula-

tion speed, compared to interpreters. Functional simulators do not model micro-

architectural details. Therefore they are not suitable for performance estimations of

the simulated system.

Performance simulation, also called timing simulation, aims to accurately predict

performance metrics and in some cases power consumption of a computer system.

Performance simulators include models of the relevant hardware structures that af-

fect performance. Typically, performance depends on a variety of system compo-

nents and performance bottlenecks can occur in different parts of the system, accord-

ing to the workload currently being executed and the historic state of the machine.

Therefore, performance simulation usually relies on detailed simulation models of

the processor cores, the memory hierarchy and the on-chip interconnect network.

Performance simulators can be further sub-classified into instruction schedulers

and cycle timers. Instruction schedulers model the propagation of machine instruc-

tions through the processor pipeline. Thereby, the simulator models the effect of

each instruction on the architectural and the micro-architectural state. In contrast,

cycle timers only model timing of a component of interest.

The highest degree of detail is achieved with models at the register-transfer level

(RTL), which describes the combinational and sequential logic of the simulated sys-

tem in its entirety. However, RTL models have several drawbacks. First, due to their

high level of detail, their development is very time intensive and therefore difficult to

manage in an academic research environment. Second, RTL simulations are orders

of magnitude slower than their more abstract, higher-level counterparts. Therefore,

in academic studies, simulating an entire system in an RTL simulation plays a minor

role. However, RTL simulations are used in industry due to their higher accuracy

and for verifying a design before tape-out.

Researchers in academia tend to rely on a variety of simulators, many of which

are distributed under open-source licenses and have an active developer community.

2.3. Architectural Simulation 21

Instead of describing the simulated design at the bit-level using a hardware descrip-

tion language, they use higher-level data types and software engineering techniques

found in modern programming languages, e.g. C++.

2.3.2 Simulation of Shared-Memory Systems

There is a variety of simulators for shared-memory multi-core systems, offering dif-

ferent tradeoffs between simulation speed and detail. In this section, we introduce

several state-of-the-art multi-core simulators. Table 2.1 gives a quick overview of the

different simulators.

TABLE 2.1: Classification of shared-memory multi-core simulators

Name of Simulator Trace- /
execution-

driven

Functional /
performance

simulator

Instruction
scheduler / Cycle

timer

gem5 Both Both Instruction
scheduler

Graphite Execution
driven

Performance Cycle timer

Sniper Execution
driven

Performance Cycle timer

TaskSim Trace
driven

Performance Cycle timer

ZSim Execution
driven

Performance Cycle timer

COTSon Execution
driven

Both Cycle timer

ESESC Execution
driven

Performance Cycle timer

The gem5 simulator [14] is a full-system simulator, i.e., it models an entire com-

puter system including devices like I/O controllers and system timers. This allows

gem5 to run unmodified versions of different operating systems on the simulated

hardware. Besides, gem5 features core models at several levels of detail, ranging

from a model employing virtualization and running at near-native speed [104] to a

detailed model of a superscalar out-of-order core. Amongst others, gem5 supports

the x86 and ARM architectures, which are the most common architectures today.

Graphite [83] is a simulator for shared- and distributed-memory systems. It achieves

high simulation speed by parallelizing a simulation across multiple cores of the host

system, or even across multiple systems. Graphite uses dynamic binary translation

to perform functional simulation of the simulated application.

22 Chapter 2. Background

The binary translator instruments all instructions of the simulated program and

feeds each thread’s instruction stream to an analytical core performance model. Mem-

ory requests from the application are serviced by Graphite’s simulated memory hi-

erarchy. First, this provides the input to the performance models of the memory

hierarchy, e.g. caches, on-chip interconnect and DRAM. Second, this approach de-

couples the memory address space of the simulated system from the simulation host

machine and allows to parallelize the simulation of a shared-memory system across

multiple hosts of a distributed-memory system.

Sniper [21], proposed by Carlson et al., is a simulator for shared-memory sys-

tems based on the Graphite simulator. Carlson et al. show that overly simplistic

core performance models can introduce high simulation errors and extend Graphite

by adding the interval model [48] as an improvement over Graphite’s core models

processing a fixed number of instructions per cycle. These models are also referred

to as fixed-IPC or one-IPC models, since they model program execution at an IPC of

one.

The interval model allows to simulate processors with superscalar out-of-order

execution, whereas the one-IPC model assumes in-order instruction issue and com-

mit stages and a scalar execution pipeline. The interval model assumes out-of-order

execution at the maximum steady-state IPC, which is interrupted by miss events. If

during steady-state execution a branch predictor miss or a cache miss occurs, the

model accounts for the number of cycles which are required to resolve the miss. Af-

terwards, execution at steady-state IPC is resumed. Consecutive, dependent misses

are accounted for separately. The higher level of abstraction of interval simulation is

directly reflected in a higher simulation speed, compared to more detailed models.

TaskSim [99, 100] is a trace-based simulator, meaning that a trace of the simu-

lated application is generated before simulation. This trace is afterwards used by all

simulations involving the corresponding application. The TaskSim tracer traces the

computation phases of an application and the parallelism management operations,

e.g. work creation and scheduling primitives in the runtime system. This allows the

tracer to be single-threaded, while a trace can be used to simulate the execution of

the application with an arbitrary number of execution threads. Another advantage

is that also the simulator can be a single-threaded process since it does not need to

perform functional simulation of the simulated application. TaskSim interfaces with

an unmodified instance of the OmpSs runtime system. TaskSim exposes the simu-

lated cores to the runtime system, which then schedules work units for execution on

those simulated cores. The instruction streams of these work units are read from the

application trace.

TaskSim features a detailed and an abstract simulation mode. The detailed mode,

2.3. Architectural Simulation 23

also referred to as Memory mode, models a superscalar processor core featuring out-

of-order execution, based on the Reorder-Buffer Occupancy Analysis technique [77].

The core of this technique is a model of the reorder-buffer. According to the specified

issue width of the simulated processor, a number of instructions is inserted into

the head of the reorder-buffer in every cycle. If the reorder-buffer is full, the issue

stage is halted. At the same time, instructions are committed from the tail of the

reorder-buffer at a rate equivalent to the specified commit rate. Memory accesses

are issued to an external model of the memory hierarchy, containing one or more

levels of private cache, on-chip interconnect structures, shared caches, and DRAM.

In the abstract simulation mode, also called Burst mode, TaskSim employs a high-

level core performance model. In Burst mode, computational phases are assumed

to have the same duration as during trace generation. Optionally, these durations

can be scaled by a user-defined factor. Microarchitectural core structures, as well

as the components of the memory hierarchy, are not simulated. Therefore, Burst

mode simulations do not capture contention on shared system resources. Instead,

they allow evaluating an application’s algorithmic scalability limit and its best-case

scalability, assuming that the application does not cause significant contention on

shared resources.

The ZSim simulator [103], proposed by Sanchez et al., relies on parallel simula-

tion in order to achieve high simulation speed. ZSim achieves good parallel simu-

lation scalability by relaxing synchronization between simulated cores. To this end,

simulated time is split into windows of typically 10,000 cycles. In each window, the

different threads are simulated without synchronization, and a per-core event trace

is generated.

At the end of each window, a dependency graph of all events is constructed, and

a timing model is invoked in order to determine the actual interleaving of the per-

core events. This timing model is also executed in parallel. The event dependency

graph is partitioned into different domains, and the simulation is synchronized only

in case of an event dependency crossing different domains.

Sanchez et al. report a simulation speed of 1,500 MIPS for simulations of a

thousand-core system. Although ZSim shows absolute performance prediction er-

rors of up to 20%, it achieves errors of less than 5% for scalability predictions of

benchmarks of the PARSEC benchmark suite [13].

COTSon [6] is a full-system simulator decoupling functional and timing simula-

tion. Functional simulation relies on just-in-time compilation of the simulated pro-

gram. COTSon features simulation models at several levels of detail and supports

sampling. Sampling reduces simulation time by simulating in detail only the repre-

sentative phases of a program and is introduced in detail later in this chapter.

In addition to performance, ESESC [5] also simulates a future design’s power

24 Chapter 2. Background

consumption and thermal behavior. ESESC, an extension of the SESC simulator, is

the first simulator applying time-based sampling to the simulation of multi-threaded

applications. We elaborate more on time-based sampling in Section 2.4.2.

2.3.3 Simulation of Distributed-Memory Systems

The simulation of an application executing on a distributed-memory system is con-

siderably more complex, and therefore time intensive than the simulation of a shared-

memory multi-core system. First, it requires the simulation of all nodes involved in

the computation. Second, besides the computation, also the network used for mes-

sage passing between nodes needs to be simulated.

The complexity of large distributed memory systems requires using abstract sim-

ulation models, or even simplistic models for system components which are not rel-

evant for the conducted study. E.g., when analyzing network performance, an ap-

plication’s computation phases are often modeled as durations, or CPU bursts. On

the other hand, when studying the intra-node architecture and its impact on an ap-

plication’s computation phases, the network is frequently modeled by a high-level,

analytical model.

The SST/gem5 simulation framework [61] combines the Structural Simulation Toolkit

(SST) [101] with the gem5 simulator [14]. SST is a scalable simulator for distributed-

memory systems. However, its core models lack the amount of detail necessary for

detailed architectural studies.

This lack of detail is addressed by the integration with gem5. While MPI com-

munications are simulated by SST’s network simulator component, the intra-node

communications and computations are simulated using gem5. SST/gem5 supports

checkpoints to resume a running simulation after storing the simulated system state

on disk.

Dimemas [49, 73] is a trace-based simulator for distributed-memory systems. In a

first step, an application trace is generated using the Extrae instrumentation library.

Extrae intercepts all calls to the MPI library and generates a trace containing infor-

mation on communication type (e.g. point-to-point or collective communication)

and size. Besides, the resulting trace contains the duration of computation phases

spent outside the MPI library.

The application trace generated with Extrae is afterwards used as an input to

the Dimemas simulator. Dimemas uses different analytical models to simulate the

performance of MPI communications, depending on a communication’s type. For

example, the duration T of a point-to-point communication is modeled based on the

message size S, and the bandwidth B and latency L of the link between sender and

receiver, according to Eqn. 2.5:

T = L+
S

B
(2.5)

2.4. Acceleration Techniques for Architectural Simulation 25

Network contention is modeled by limiting the number of simultaneous links shar-

ing a network connection to a user-specified value.

Collective communications, such as one-to-all, all-to-one or all-to-all, are modeled

using a more elaborate model, taking into account that a communication can require

multiple successive steps. Communications between processors in the same node

are modeled using a different set of parameters, reflecting the difference in band-

width and latency between inter- and intra-node communication.

Dimemas models different node architectures by applying a speed ratio to the

computation phases, whose duration is recorded in the input trace. Hence, the speed

ratio is the relative performance difference between the system used for trace gen-

eration and the simulated system. It is also possible to cluster computation phases

and apply per-cluster speed ratios [51].

SimGrid [26] also relies purely on analytical models. Like Dimemas, SimGrid is

trace-based and allows the user to provide speed ratios for modeling node archi-

tectures different from the system used for trace generation. SimGrid employs a

piece-wise linear flow-based model [37] to account for network contention, which is

not modeled by Dimemas.

2.3.4 Simulation of Hybrid Distributed-Shared-Memory Systems

Distributed-memory systems currently used in HPC consist of multi-core shared-

memory nodes, which are interconnected by a high-speed, low-latency interconnect

network. Therefore, these systems can be considered hybrid distributed-shared-

memory systems. The simulation of an application executing on such a system in-

volves the simulation of all nodes, and the interconnect network, which makes it

much more complicated than the simulation of a single, shared-memory multi-core

system.

Typically, simulation frameworks for hybrid systems consist of a network sim-

ulator, which models the communication between the different nodes of the sim-

ulated systems, and a multi-core simulator, which is responsible for modeling the

single nodes of the system. An example of a simulator supporting simulations of

hybrid systems is SST/gem5, introduced in the previous subsection.

2.4 Acceleration Techniques for Architectural Simulation

Over the last decade, simulation of shared-memory systems has become increas-

ingly time-consuming. Since the advent of CMPs, the number of processor cores

integrated on a single chip is continuously increasing. Simulations of designs in-

cluding a larger number of cores also require simulating larger numbers of instruc-

tions in order to meaningfully stimulate the simulated systems. The communication

26 Chapter 2. Background

between cores and the contention on shared system resources additionally increase

simulation complexity.

2.4.1 Checkpointing

Oftentimes, it is desirable to simulate not the entire execution of a benchmark, but

only a region of interest. However, especially execution-driven simulators require the

simulation of a benchmark from the beginning. Consequently, all program parts

leading to the region of interest, e.g. initialization of data structures, are simulated

out of necessity. A solution to this problem is checkpointing. When using check-

pointing, an image of the architectural state of the simulated system is stored on

the simulation host, together with the state of the simulator. This image is referred

to as a checkpoint. Checkpoints can be restored, allowing to resume a previously

checkpointed simulation. Architectural simulation can be accelerated by creating a

checkpoint before the region of interest. Successive simulations can start from this

checkpoint. The technique can also be applied to multiple regions of interest.

2.4.2 Sampling

Sampling techniques accelerate architectural simulation by performing detailed per-

formance simulation only on a subset, or sample, of a simulated program. The pro-

gram parts not belonging to the sample are either simulated in a faster, functional-

only simulation mode or even omitted. Finally, the performance metrics of the entire

simulation are extrapolated, based on the performance information obtained during

detailed simulation of the sample.

Single-Threaded Simulation Sampling

In their SimPoint methodology [107], Sherwood et al. use basic block vectors (BBVs)

to identify the representative parts of a program’s execution. Afterwards, only these

representative parts are simulated in detail. Finally, the performance metrics of the

entire program execution are extrapolated.

(I BB 1

I BB 2
)1 (IBB 1

IBB 2
)2 (IBB 1

IBB 2
)3 (IBB 1

IBB 2
)N

.. .

0 100M 200M 300M N·100M(N-1)·100M

FIGURE 2.11: Generation of basic block vectors (BBVs) for a program
consisting of two basic blocks

The first step of applying SimPoint is the generation of BBVs of the program

which is to be simulated. While the program is executed natively or in a simulator,

2.4. Acceleration Techniques for Architectural Simulation 27

the dynamic instruction stream is split into intervals of typically 100 million instruc-

tions, as illustrated in Figure 2.11. For each interval, a vector BBVi with as many

dimensions as the total number of basic blocks in the program is constructed. The

figure illustrates a hypothetic example of a program consisting of only two basic

blocks. Each dimension of this vector is indexed by a different basic block and con-

tains a counter for the number of dynamic instructions, belonging to the correspond-

ing basic block, which are executed during each 100 million instruction interval.

The key idea behind SimPoint is that if two intervals have similar BBVs, they

are similar in terms of the instructions the program executes during this interval

and, hence, are likely to have similar performance. This similarity between BBVs

is detected by applying k-means clustering [81] to the set of all BBVs. The resulting

clusters contain BBVs of similar performance. By selecting one representative BBV

of each cluster, one can obtain a set of 100 million instruction intervals capturing the

entire behavior of the simulated program.

Detailed simulation is performed only on the representative intervals, also re-

ferred to as simulation points, while the remainder of the application up to the last

detailed interval is simulated in a faster, functional simulation mode. After simula-

tion, the performance metrics of all intervals are used to extrapolate the performance

of the full detailed simulation, depending on the number of BBVs in each cluster.

Sherwood et al. report an average IPC error of 3.0% [107].

Perelman et al. propose a technique to select statistically valid simulation points

early in time [90]. The original SimPoint methodology spends a significant amount

of time in functional simulation between simulation points. By choosing simulation

points early in time, the amount of functional simulation leading up to the latest

simulation point is significantly reduced.

The Sampling Microarchitecture Simulation (SMARTS) framework [121], proposed

by Wunderlich et al., switches periodically between warmup, detailed simulation

and simulation in fast-forward mode, as illustrated in Figure 2.12. During a warmup

phase, W instructions are simulated in detail, but the simulation statistics are ig-

nored. The reason for this is that at the beginning of the simulation, the simulated

architectural structures, like branch predictors and caches, are in their initial, cold

state. Also, after a fast-forward phase, the micro-architectural state is stale and is

brought up-to-date during the warmup phase.

Once the warmup phase is complete, the simulator starts measuring micro-architectural

performance metrics while simulating U instructions during the detailed simula-

tion phase. At the end of the detailed phase, the simulation is switched to fast-

forward mode, which executes the simulated program in a purely functional simu-

lation mode without updating the micro-architectural state of the simulation.

Wunderlich et al. report warmup intervals of up to W = 4000 instructions

28 Chapter 2. Background

..

U (k−1)−W UW

k

Warmup Detailed Fast-Forward

#Inst

FIGURE 2.12: Periodic switching between warmup, detailed and fast-
forward simulation modes in SMARTS

and detailed simulation intervals of U = 1000 instructions. The length of the fast-

forward interval is set to a value which results in a total number of 10,000 inter-

vals. Consequently, the total number of instructions simulated in detail, including

warmup and detailed simulation, amounts to 500,000 instructions per benchmark,

or less than 0.1% of the total instruction count across all benchmarks of the SPEC2000

benchmark suite [59]. Simulations using SMARTS are 60 times faster than full de-

tailed simulations, which shows that simulation speedup is mainly limited by the

speed of functional simulation during the fast-forward phases.

With TurboSMARTS [118], the same group proposes an extension to SMARTS.

TurboSMARTS eliminates the functional simulation phases during the fast-forward

intervals. In an apriori step, TurboSMARTS generates a checkpoint library of the

simulated program, which can afterwards be used for all simulations of the pro-

gram. Before each warmup interval, the correct architectural state is restored from

this checkpoint library. The authors report simulation times of less than 2 minutes

across all SPEC2000 benchmarks.

Multi-Threaded Simulation Sampling

The previously introduced sampling techniques for simulations of single-threaded

architectures can not be directly applied to simulations of multi-threaded systems.

In a single-threaded program, progress can be measured in terms of committed in-

structions. However, this is generally not valid in multi-threaded programs. Differ-

ent threads of a multi-threaded program can progress at different rates, e.g. due to

the inhomogeneous nature of the workload. Another example is the lack of fairness

accessing shared system resources, e.g. when one thread monopolizes the last-level

cache. Finally, a thread can be executing instructions that do not contribute to the

progress of the program, e.g. while spinning on a lock.

For the reasons mentioned above, at any point in time, the different threads have

typically executed different numbers of useful instructions in the past. Hence, the

instruction count can not serve as a metric for measuring progress and identifying

common points in time across multiple threads. The sampled simulation techniques

2.4. Acceleration Techniques for Architectural Simulation 29

introduced in Section 2.4.2 rely on instruction count to measure progress and de-

termine phase boundaries in simulated programs. Instead, a technique targeting

simulation of multi-threaded programs must measure progress in terms of cycles,

i.e. time, which is the only common metric across all threads. In the following, we

present several techniques which are based on this insight.

Carlson et al. [24] apply periodic time-based sampling [5, 29] to parallel pro-

grams. Short, detailed simulation phases take turns with longer fast-forward phases,

resulting in an overall reduction of simulation time. The duration of detailed- and

fast-forward intervals is determined based on the periodicities of the simulated ap-

plication and are measured in terms of cycles.

During detailed simulation, the performance metrics of interest are measured

in a timing simulation of the different threads and their interactions with one an-

other. During fast-forward phases, Carlson et al. employ functional simulation. All

memory accesses are simulated by simulation models of the memory hierarchy, en-

suring that the simulated caches are always in a representative state at the transition

to detailed simulation. As the authors rightfully point out, it is possible to employ

more elaborate warmup techniques before detailed simulation and thus eliminate

the need for functional cache warmup during fast-forwarding.

As stated earlier, different threads of a multi-threaded program can progress

at different rates. Detailed simulation is used to model each thread’s interaction

with the system resources and also its interaction with other threads. Therefore, the

progress of each thread is modeled correctly. Fast-forwarding the simulation using

functional simulation at a constant IPC, as it is typical in architectural simulators,

would result in incorrect thread progress. At the beginning of the next detailed

simulation interval, the thread interleaving would not be the same as if the entire

simulation would have been run in detail. Carlson et al. minimize this problem by

fast-forwarding each thread at the average IPC of the last detailed simulation inter-

val. The technique achieves an average simulation speedup of 2.9 with an average

execution time error of 3.5%.

One of the primary advantages of the technique is that it is not tied to a particular

programming model. However, it is not directly applicable to task-based programs.

The sampling paramters are determined apriori in a profiling run. During simu-

lation, the correct sampling paramters can change due to different decisions of the

dynamic scheduler.

BarrierPoint [23], also proposed by Carlson et al., first analyzes micro-architecture

independent performance metrics of program sections between global barriers. Af-

terwards, the SimPoint infrastructure [107] identifies clusters of those inter-barrier

regions with similar performance. Simulation time is reduced by simulating only

one representative out of each cluster. BarrierPoint exploits the fact that all threads

30 Chapter 2. Background

synchronize at a global barrier and, hence, at the beginning of each inter-barrier re-

gion are aligned correctly.

Instead of characterizing program phases based on BBVs, BarrierPoint uses sig-

nature vectors (SVs). SVs are a combination of BBVs and stack distance histograms. The

stack distance is the number of memory accesses to unique addresses between two

accesses to the same memory location. A stack distance histogram is a histogram

of the stack distances observed between the beginning of the program and the end

of each inter-barrier region. Thus, stack distance histograms capture the historic be-

havior of all previous inter-barrier regions. In the case of BarrierPoint, the bins of

the stack distance histogram are spaced according to powers of two. This allows

for better resolution of smaller stack distances. Finally, for each inter-barrier region,

the BBV and the stack distance histogram are combined, either by addition or by

concatenation, to form an SV.

Once the SVs are generated, they are clustered using the existing, publicly avail-

able SimPoint tool [107]. SVs, in contrast to BBVs, capture the historic state of the

memory hierarchy. Therefore, they allow detecting inter-barrier regions with differ-

ent performance due to a different state of the memory hierarchy, which would go

undetected when only using BBVs.

Finally, one representative inter-barrier region of each cluster is simulated in de-

tail, and the overall program performance is extrapolated by applying weights to

the per-region simulation statistics. BarrierPoint achieves an average simulation

speedup of 24.7 with an average execution time error of 0.9%. In comparison to

the aforementioned technique targeting general parallel applications, this shows

that leveraging the nature of a parallel programming model can lead to significantly

higher simulation speedup.

Task-based programs aim at avoiding global barriers. Instead, synchronization

is achieved by dynamically scheduling different task instances in a valid execution

order. For this reason, the BarrierPoint technique is not generally applicable to task-

based programs.

In their Multilevel Simulation technique, Gonzalez et al. [51] identify represen-

tative phases (CPU bursts) of programs implemented in MPI programming model.

These representative CPU bursts are identified during profiling before simulation

and are afterwards simulated in detail. The obtained performance information is

then used to extrapolate the overall program performance.

2.4. Acceleration Techniques for Architectural Simulation 31

Warmup in Multi-Threaded Simulations

Warmup for single-threaded simulations has been extensively studied [38, 43, 58,

107, 117, 121]. The technique used by BarrierPoint combines two existing method-

ologies, namely functional warmup [38] and checkpointing [117]. The resulting tech-

nique uses dynamic instrumentation to track the most recent memory accesses on a

per-cache-line basis. Afterwards, this information is used to restore cache state at

the beginning of each detailed simulation interval.

Luo et al. [124] propose Self-Monitored Adaptive Cache Warm-Up (SMA), a tech-

nique not requiring profiling before simulation. Every cache in a simulated system

monitors its fraction of used lines over time. When this portion passes a threshold or

remains constant during a certain time, a cache is considered warmed. The authors

evaluate SMA for single-threaded simulations. However, no fundamental reasons

are impeding its applicability to multi-threaded simulations.

2.4.3 Statistical Simulation

Detailed simulation of a full program execution can be very time-consuming. Sta-

tistical models aim to reduce simulation time by creating a synthetic workload with

the same statistical properties as the dynamic instruction stream of a full program

execution.

The HLS simulator [85] creates a statistical profile of an application while simu-

lating it in an architectural simulator. For each static instruction of the application,

the profile contains the functional unit requirements, miss-rate distributions the in-

struction causes at the different cache levels, and the distance to other instructions

on which the current instruction depends. This analysis is done on a per-basic-block

basis. The branch instruction at the end of each basic block is assigned the pre-

dictability value observed during profiling in the architectural simulator. Finally,

the instruction profile is simulated repetitively, until the simulated IPC converges.

Nussbaum et al. propose a statistical performance model for superscalar pro-

cessors [87]. First, an instruction trace of the application to be simulated is cap-

tured during detailed simulation in an architectural simulator. Afterwards, the in-

struction mix, namely the percentages of dynamic instructions belonging to each

out of 14 different instruction types, is determined. At the same time, a distribu-

tion of the lengths of the dependency chains between dynamic instructions is de-

termined. Finally, a synthetic instruction trace with the same instruction mix and

inter-instruction dependency distributions. This trace is then used as an input to an

architectural simulator.

The aforementioned statistical simulation techniques use micro-architecture de-

pendent information to capture the behavior of the simulated branch predictor. If

32 Chapter 2. Background

the parameters of the branch predictor changes, the application profile needs to be

regenerated. Eeckhout et al. [44] improve on this model by using statistical flow

graphs. A statistical flow graph of order n predicts the outcome of a branch, de-

pending on the outcomes of the last n executions of that branch, similar to the way

actual branch predictors work.

2.4.4 Analytical Models

Analytical models follow the goal of avoiding architectural simulation and instead

rely on a set of analytical expressions to predict the performance of a system execut-

ing a specified workload. The two major classes of analytical performance models

are mechanistic and empirical models. Mechanistic models are built in a construc-

tive way with equations describing how the different architectural structures and

their interaction affect performance. Mechanistic models, therefore, allow reasoning

about why a particular design is better or worse than another. Empirical models, on

the other hand, are usually models developed in the field of machine learning e.g.

artificial neural networks of support vector machines. These models are trained on

a set of detailed reference simulations.

The Interval Model [16], presented by Breughe et al., models a program’s execu-

tion on a hypothetic system by assuming an execution at the designed steady-state

IPC. The execution at this maximum sustainable IPC is disrupted by miss events.

Breughe et al. distinguish between miss events occurring in the processor front-end,

e.g. branch mispredictions and instruction cache misses, and miss events taking

place in the back-end, e.g. last-level cache misses. While misses in the front-end are

serialized, long-latency misses in the back-end, e.g. DRAM accesses, can partially

overlap. The interval model predicts the overall performance of an application ex-

ecuted on the modeled system. It does not take into account the effects of single

instructions.

Genbrugge et al. extend this model for simulations of multi-threaded systems in

their Interval Simulation methodology [48]. In contrast to the original Interval Model,

Interval Simulation takes into account the effects of single instructions and how they

interact with each other in shared system resources.

Interval Simulation uses one model instance per simulated processor core. A

functional simulator supplies the per-core models with instructions. In the absence

of miss events, each model processes instructions at a rate equal to the processor

width. Dedicated simulation models simulate the occurrence of miss events. E.g., a

branch predictor model predicts if a branch missprediction occurs. If a miss event

happens, the interval model of the corresponding core accounts for the latency intro-

duced by the event. Note that, since the application profile is generated on-the-fly, it

is regenerated for each combination of evaluated architecture and application.

2.4. Acceleration Techniques for Architectural Simulation 33

Van den Steen et al. [115] propose an extension of the Interval Simulation model.

Interval Simulation requires micro-architecture dependent input data, namely the

number of cache misses per cache level, the number of branch predictor misses and

the amount of memory-level parallelism (MLP). The approach presented by Van den

Steen et al. eliminates the micro-architecture dependent parts of the model input.

Instead, they use a micro-architecture independent application profile and gener-

ate the micro-architecture dependent elements of the model input using analytical

models for caches, branch predictors and MLP.

Caches are modeled using StatStack [46], a technique for modeling arbitrarily

sized LRU caches. StatStack’s model requires the reuse distances of the modeled ap-

plication as an input. The reuse distance is the number of memory accesses between

two accesses to the same cache line. Based on the reuse distance profile, StatStack

predicts an application’s cache miss rate.

Branch predictors are modeled using the Linear Entropy model [91], proposed by

Pestel et al. First, the application to be modeled is executed in a profiler which, for

each static branch instruction and each history of past branches, counts the num-

ber of times the corresponding branch is taken and not taken. This information

is afterwards used to calculate each branch’s entropy. A linear model predicts the

per-branch miss rate for several different branch predictors based on the per-branch

entropy.

MLP is the number of simultaneously outstanding LLC misses, i.e. the number

of memory accesses which can be served by the DRAM subsystem in parallel. Van

den Steen et al. propose an MLP model, which separates MLP calculation into a

fraction stemming from LLC cold misses and a portion arising from capacity and

conflict misses.

In Chapter 5, we present TaskPoint, a sampled simulation methodology for task-

based programs. We show how we use a modified version of the model proposed

by Van den Steen et al. to improve the accuracy of TaskPoint.

Casas et al. propose an analytical performance model for MPI applications [28].

First, an execution trace of the application is generated which contains time-stamped

information about the occurrence of MPI calls or hardware performance counters,

e.g. the number of executed floating point operations per second. This information

is converted into a time series. By applying Discrete Wavelet Transform to this time

series, Casas et al. identify periodic behavior in the application and filter the appli-

cation trace for size reduction. Afterwards, they apply an analytical model to predict

the application’s speedup for different numbers of processors.

34 Chapter 2. Background

2.4.5 Reduced Input Sets

A common way to reduce simulation time is to simulate benchmark executions us-

ing smaller input sets under the assumption that the performance characteristics of

the benchmark are not affected. However, changing the input set frequently changes

important properties of a benchmark, e.g. the instruction mix or the amount of par-

allelism which can be exploited by a multi-core system.

KleinOsowski et al. present MinneSPEC [70, 71], a modified input set for the

SPEC2000 benchmark suite [59]. The authors show, that across all benchmarks ei-

ther the percentages of calls to the different functions within a benchmark or the

instruction mix do not match the values observed when using the reference input set.

Hsu et al. [62] confirm that the SPEC2000 benchmarks show different performance

for different input sets.

Southern et al. [110] present a study of the scalability of the benchmarks consti-

tuting the PARSEC benchmark suite [13]. All PARSEC benchmarks can be executed

with alternative input sets which are designed for architectural simulation. How-

ever, Southern et al. show that some benchmarks, when using the largest simulation

input, achieve a scalability several times lower than the scalability observed for the

native execution input.

For the reasons mentioned above, it is often impossible to reduce simulation

time by reducing the input size without significantly affecting a benchmark’s per-

formance characteristics. Therefore, in the scope of this work, we develop several

techniques for simulation time reduction based on sampling. These techniques are

presented in Chapters 5 and 6.

2.4.6 Parallelization

On a parallel system, architectural simulations can be parallelized in a trivial way by

executing multiple instances of a single-threaded simulator simultaneously. While

this technique does not reduce the time required for a single simulation, it can signif-

icantly increase simulation throughput. This is especially the case during the early

phase of design space exploration when tens to hundreds of thousands of simula-

tions need to be executed.

There are also approaches to parallelizing the simulator itself. At first glance,

architectural simulators used to simulate multi-core designs seem a natural fit for

parallelization on a multi-core shared-memory host. Ideally, each core of the host

would handle one or more simulated cores. However, threads running on differ-

ent cores of the simulated systems compete for shared system resources. Therefore,

the different simulation threads are frequently forced to synchronize, limiting scal-

ability. In order to circumvent this problem, parallel simulators frequently employ

2.4. Acceleration Techniques for Architectural Simulation 35

techniques to relax the synchronization requirements between different simulator

threads.

The Wisconsin Wind Tunnel II (WWT2) [86] executes different simulated cores

in different threads on the host system. Enforcing cycle-by-cycle synchronization

among the simulated cores implies a significant synchronization overhead, which

results in low simulation speed improvement for parallel simulations. WWT2 splits

simulation time into quanta, during which processors do not affect each other’s

state. Quanta are executed in parallel. At the end of each quantum, the simulated

processors synchronize. WWT2’s parallelization approach is conservative, i.e. it al-

ways maintains temporal causality between the simulated cores.

SlackSim [32] allows the simulated time to diverge by a user-specified number of

cycles. This temporal slack reduces synchronization overhead and allows for better

simulation scalability. The main difference to WWT2 is that different simulated cores

are only throttled if they diverge by more than the user-specified slack, an approach

which is not conservative. The authors of SlackSim report a simulation error of up

to 0.7% for a maximum slack of 100 cycles. For unlimited slack, the error amounts

to up to 4% at only slightly better simulation speedup, compared to a slack of 100

cycles.

2.4.7 Hardware Acceleration

The main limit to the scalability of architectural simulators is synchronization be-

tween simulation models of tightly synchronized system components, e.g. different

cores, cache memories and the on-chip interconnect. In a hardware instance of a

system, synchronization between system components happens in parallel via dedi-

cated signal lines, all of which can operate in parallel. In an architectural simulator,

synchronization is achieved with the help of software techniques, i.e. locks and

semaphores. As a result, many events which happen in parallel in a real system are

processed sequentially by the simulator.

There are proposals of using hardware acceleration to circumvent this problem.

A promising candidate is Field-Programmable Gate Arrays (FPGAs). FPGAs consist of

generic logic, storage elements and a configurable interconnect fabric. FPGA ven-

dors provide tools to synthesize RTL descriptions and generate a bitstream with the

configuration data for the FPGA. The amount of resources on a single FPGA scales

with Moore’s Law, as do the systems modeled by computer architects. Therefore,

FPGAs are a promising platform for architectural simulation.

The FPGA-Accelerated Simulation Technologies (FAST) framework [34] splits the

simulation of a program executing on a single-core system into two parts, namely

functional and timing simulation. Functional simulation of the simulated program

is performed in software using QEMU. The dynamic instruction stream executed by

36 Chapter 2. Background

QEMU is forwarded to a timing model residing in an FPGA. The authors of FAST

report an average simulation speed of 1.2 MIPS, which is comparable to the speed

of functional-only simulation of simulators performed in software.

RAMP gold [111] proposed by Tan et al., also separates functional and timing sim-

ulation. In contrast to FAST, RAMP gold is able to simulate target systems with up to

64 cores. Another difference to FAST is that also functional simulation is performed

by logic on the FPGA, improving simulation speed and minimizing communication

with a host server. Tan et al. report simulation speeds of up to 50 MIPS, which is a

significant improvement over FAST.

37

Chapter 3

Experimental Setup

In this chapter, we introduce the experimental setup used for the studies in the sub-

sequent chapters. First, we introduce the OmpSs programming model, which is used

throughout this thesis. Then, we present the different multi-core platforms used in

our analysis. Afterwards, we introduce the benchmarks used for the evaluation of

our sampled simulation methodologies for shared-memory and hybrid systems. Fi-

nally, we introduce our methodology for measuring performance of task-based pro-

grams in native execution.

3.1 The OmpSs Programming Model

For our evaluations we choose the OmpSs programming model [42]. The OmpSs

compiler and runtime environment are available as open source. OmpSs allows

the programmer to declare tasks and annotate them with data inputs and outputs.

Using this information, the OmpSs runtime system schedules task instances taking

data dependencies into account and performs synchronization only when necessary.

These OmpSs features were included into the specifications of OpenMP 3.0 and 4.0.

OmpSs consists of the Mercurium compiler and the NANOS++ runtime envi-

ronment. Mercurium is a source-to-source compiler supporting the C, C++ and For-

tran programming languages. It translates a program annotated with C-style com-

piler directives (pragmas) into an intermediate representation containing calls to the

NANOS++ API for task management and data transfer. This intermediate represen-

tation is generated in the same language as the source file. It is compiled with the

native C, C++ or Fortran compiler and linked to the NANOS++ library.

NANOS++ is the runtime environment of the OmpSs programming model. Its

API includes functions for specifying tasks and their input and output data. When

executing an OmpSs program, NANOS++ determines task dependencies based on

task input and output data. Task instances that have their dependencies fulfilled

are scheduled for execution on available threads, according to a pre-defined or user-

defined scheduling policy.

38 Chapter 3. Experimental Setup

LISTING 3.1: Task-based matrix-matrix multiplication in C

1 [sequential code]

2

3 for (i = 0; i < DIM; i++) {

4 for (j = 0; j < DIM; j++) {

5 for (k = 0; k < DIM; k++) {

6 #pragma omp task in([BS][BS] A, [BS][BS] B) inout([BS][BS] C)

7 matmulTask(A[i][k], B[k][j], C[i][j]);

8 }

9 }

10 }

11 #pragma omp taskwait

12

13 [more sequential code]

Listing 3.1 shows a code fragment performing a task-based dense matrix-matrix

multiplication. Note that this is a blocked implementation of matrix-matrix multi-

plication with a block size of BS. The function matmulTask sequentially multiplies

two input sub-matrices A and B and stores the result in matrix C. The pragma on

line 6 declares the function matmulTask as a task. Each call to matmulTask cre-

ates a task instance which reads the matrices A[i . . . i+BS − 1[k . . . k +BS − 1] and

B[k . . . k + BS − 1][j . . . j + BS − 1], as indicated by the in statements of the pra-

gram. The matrix C is read and written, which is indicated by the inout statement.

The statement in line 11 creates a global barrier, forcing all previously generated task

instances to finish execution before proceeding with the sequential code.

3.2 Investigated Systems

3.2.1 Shared-Memory Multi-Core Systems

In Chapter 4, we analyze execution time predictability of task-based programs on

four different shared-memory multi-core systems. Table 3.1 gives an overview of the

characteristics of the four systems used for this evaluation. The first two platforms

are high-end systems used in HPC environments, while the other two are based on

low-power mobile systems-on-a-chip (SoCs). This selection of machines covers three

of today’s most widely-used ISAs: x86-64, POWER ISA, and ARMv7.

The first investigated system is a single node of the MareNostrum 3 HPC sys-

tem. A node of MareNostrum 3 consists of two sockets in a ccNUMA configuration,

each equipped with an Intel Xeon E5-2670 processor based on Intel’s Sandy Bridge

architecture. Each processor has 8 cores, running at 2.6GHz in normal mode and at

3.3GHz in Turbo Boost mode. Each core has 32KB private L1 data- and instruction

cache and 256KB combined L2 cache. All cores of a socket share a 20MB L3 cache.
1DDR3L-1600 connected to a 750MHz interface

3.2. Investigated Systems 39

TABLE 3.1: Investigated machines

Micro-
arch.

Cores
per

socket

L1 size L2 size L3 size Memory

Intel
Sandy Bridge

8 32KB+32KB
per core

256KB
per core

20MB
shared

32GB 64-bit
DDR3-1600

IBM
POWER7

8 32KB+32KB
per core

256KB
per core

32MB
shared

64GB 64-bit
DDR3-1600

ARM
Cortex-A15

MPCore

2 32KB+32KB
per core

1MB
shared

n/a 2GB 32-bit
DDR3L-1600

ARM Cortex-A9
MPCore

4 32KB+32KB
per core

1MB
shared

n/a 2GB 32-bit
DDR3L-16001

Each socket disposes of 32GB DDR3-1600 DRAM. The system is capable of 2-way

simultaneous multi-threading (SMT). However, in the MareNostrum 3 system SMT

is deactivated.

Next, we investigate an IBM BladeCenter PS701 system, featuring an IBM POWER7

processor. The system features one CPU with 8 cores and can thus be classified as a

UMA system. The system runs at 3GHz. The system has 32KB private instruction-

and data caches, 256KB private L2 caches and a 32MB L3 cache and contains 64GB of

DDR3-1600 DRAM as main memory. The POWER7 architecture supports 4-way si-

multaneous multi-threading. Although activated, we do not make use of this feature

in the scope of this thesis.

Even though ARM microprocessors are not used in production HPC environ-

ments yet, there is an increasing interest in integrating ARM chips in future server

and HPC machines [57, 94]. Therefore, we investigated two ARM systems with dif-

ferent performance characteristics. The first system is an Arndale Board with a dual-

core ARM Cortex-A15 SoC. It features 32KB private instruction- and data cache per

core and a shared L2 cache of 1MB. The second ARM-based system is an NVIDIA

CARMA DEVKIT with an NVIDIA Tegra 3 SoC, featuring 4 ARM Cortex-A9 cores.

Each core has 32 KB of private L1 instruction- and data cache. All cores share 1MB

of L2 cache. Both system are connected to 2GB of DDR3L-1600 memory, and neither

system supports SMT.

These four machines cover a wide range of performance levels as well as differ-

ent ISAs, CPU, cache and memory technologies.

3.2.2 Hybrid Distributed Shared-Memory System

In Chapter 6, we present MUSA, our multi-level simulation approach for hybrid

systems. We validate MUSA against MareNostrum 3. The characteristics of a single

40 Chapter 3. Experimental Setup

node of MareNostrum 3 are listed in Tab. 3.1. MareNostrum 3 has three interconnect

networks:

1. An InfiniBand FDR10 network for MPI communication

2. A 10Gb/s Ethernet network for file system access

3. A 10Gb/s Ethernet network for system management and maintenance

3.3 The TaskSim Multi-Core Simulator

In Chapter 5, we present TaskPoint, our sampled simulation methodology for task-

based programs. We evaluate TaskPoint using the TaskSim simulator [99, 100]. We

also use TaskSim to evaluate MUSA, our multi-level simulation approach for hybrid

systems, presented in Chapter 6. TaskSim is a cycle-accurate, trace-driven perfor-

mance simulator for multi-core architectures. It interfaces with an unmodified ver-

sion of the OmpSs runtime system. The runtime system schedules the task instances

of the simulated application for execution on the simulated processor cores.

The main difference between trace-based and execution-driven simulation is that

a trace-based simulator needs to functionally execute a simulated application only

once, whereas an execution-driven simulator functionally executes an application in

each simulation. Representative applications can have a significant memory foot-

print, limiting the number of simulations which can be run simultaneously on a

multi-core host. Trace-based simulation does not have this restriction. Once an ap-

plication trace is generated, all simulations of this application, potentially with dif-

ferent architectural configurations, have a significantly lower memory footprint. In

the scope of this work, we have frequently run 16 simulations simultaneously on

simulation hosts with 16 cores.

TaskSim is designed for the exploration of large design spaces requiring large

numbers of simulations, i.e. hundreds to thousands. Although TaskSim is a single-

threaded simulator, design space explorations can be parallelized by executing mul-

tiple simulations in the same host in parallel. This is possible because, due to its

trace-based design, TaskSim has low memory requirements. All simulations con-

ducted in the scope of this work show memory footprints of less than 200MB.

Figure 3.1a illustrates the trace generation process required before conducting a

simulation with TaskSim. First, the application to be simulated needs to be compiled

and linked against the OmpSs runtime system. As illustrated in the figure, the ap-

plication is executed twice. In the first execution, a runtime system plugin intercepts

the application’s calls to the runtime system and stores them in the trace. In the sec-

ond execution, the application is executed with a dynamic binary instrumentation

tool. Currently, TaskSim supports Intel’s PIN tool [80]. Support for the open source

3.3. The TaskSim Multi-Core Simulator 41

Application
Binary

OmpSs
Runtime
System
Plugin

Dynamic
Binary

Instrumen-
tation

Trace

Trace

TaskSim
Simulation

Engine

OmpSs
Runtime
System

CPU

L1D

L2

CPU

L1D

L2

CPU

L1D

L2

CPU

L1D

L2

On-Chip Interconnect

L3

DRAM
(A)

Application
Binary

OmpSs
Runtime
System
Plugin

Dynamic
Binary

Instrumen-
tation

Trace

Trace

TaskSim
Simulation

Engine

OmpSs
Runtime
System

CPU

L1D

L2

CPU

L1D

L2

CPU

L1D

L2

CPU

L1D

L2

On-Chip Interconnect

L3

DRAM

(B)

FIGURE 3.1: Overview of TaskSim simulation infrastructure: trace
generation (A) and simulation (B)

DynamoRIO tool [18] is currently under development. All executed instructions are

decoded using PTLSim’s x86 decoder [123]. Afterwards, the micro-instructions re-

sulting from the decoding step are added to the trace.

Figure 3.1b shows how, during simulation, the TaskSim simulation engine reads

the application trace and forwards the runtime system events to an unmodified in-

stance of the OmpSs runtime system. The runtime system manages creation and

scheduling of parallel work units and communicates scheduling decisions back to

the simulation engine. According to these scheduling decisions, the simulated ap-

plication’s instructions are retrieved from the trace and processed by the simulated

CPUs.

A 9 inst. B 29 inst. C D 14 inst. E 19 inst.

Reorder-buffer (64 entries)

23 inst. 6 inst.

FIGURE 3.2: Illustration of Reorder-Buffer Occupancy Analysis: in-
structions streamed through 64-entry reorder-buffer. Original figure

by Lee et al. [77].

TaskSim has a detailed and an abstract CPU model. The detailed CPU model is

based on the Reorder-Buffer Occupancy Analysis technique proposed by Lee et al. [77].

Figure 3.2 illustrates an instruction stream flowing through a 64-entry reorder-buffer

(ROB). The boxes labeled A through E indicate instructions accessing memory, whereas

A is the oldest instruction in the ROB. Between two memory instructions, the figure

indicates the number of other instructions of any type. In each cycle, the Reorder-

buffer Occupancy Analysis model issues one or more instructions to the head of the

42 Chapter 3. Experimental Setup

ROB, according to the issue width of the simulated processor. When the ROB is fully

occupied, the issue stage is stalled.

When a memory instruction reaches the tail of the ROB, TaskSim creates a mem-

ory request and sends it to the CPU-side port of the corresponding core’s L1 cache.

Detailed timing models of caches, on-chip interconnect structures and DRAM sim-

ulate the path of the memory request through the memory hierarchy. Eventually, a

response message arrives at the CPU model where the request originated. The mem-

ory instruction is committed and leaves the ROB. Afterwards, non-memory instruc-

tions are commited at the specified commit rate, until the next memory instruction

is encountered or the simulation finishes.

In contrast, TaskSim’s abstract CPU model only accounts for the duration, mea-

sured in cycles, of computation phases and calls to the runtime system. In the ex-

isting implementation, TaskSim reads a task instance’s cycle count from the applica-

tion trace. In Chapter 5 we extend TaskSim with a fast-forward mechanism capable

of simulating execution at an arbitrary, user-defined IPC. Furthermore, we add sup-

port to switch between different simulation modes at runtime.

3.4 Benchmarks

In this section, we give an overview of the benchmarks used for the evaluation of

the simulation methodologies developed in the scope of this thesis. First, we present

the task-based benchmarks used in our evaluation of TaskPoint. Afterwards, we

introduce the hybrid (MPI+OpenMP and MPI+OmpSs) benchmarks used for our

evaluation of MUSA.

3.4.1 Task-based Benchmarks

In our evaluation of TaskPoint in Chapter 5, we investigate a set of 27 task-based par-

allel benchmarks implemented using the OmpSs programming model. The bench-

marks and their key characteristics are listed in Tab. 3.2. They cover a broad range

of algorithms widely used in scientific HPC applications and include programs with

different compute-to-memory ratios, different memory access patterns and different

amounts of parallelism and synchronization. Benchmarks 1 to 11 have been success-

fully used in previous works to evaluate HPC clusters [93, 94]. Benchmarks 12 to 16

are in-house implementations of algorithms frequently ocurring in scientific com-

puting. Finally, benchmarks 17 to 27 are part of the PARSEC benchmark suite [13],

which is widely used to evaluate the performance of parallel systems.

Whenever possible, we generate traces equivalent to at least ten seconds of single-

threaded execution on a state-of-the-art machine. For the PARSEC benchmarks, we

use the simlarge input sets. Table 3.2 lists the number of task types and task instances

3.4. Benchmarks 43

and the time required for a detailed simulation of the entire benchmark for 1 and 64

simulated threads using the TaskSim simulator.

We classified the benchmarks according to whether they are compute-intensive

or not. Because the working sets of all concurrently executing task instances fit into

the last level cache, we considered the following benchmarks as compute-intensive:

2d-convolution, 3d-stencil, atomic-monte-carlo-dynamics, merge-sort, dense-matrix-multiplication,

fluidanimate and swaptions.

We optimized compute-intensive benchmarks by adjusting the task working set

to fit into the on-chip last-level cache. This is one of the most straightforward op-

timizations applied by programmers in blocked numerical algorithms. The most

cache constrained configuration is the Cortex-A9 running with four threads. There-

fore, we adjusted the task working set to fit into a quarter of the last-level cache

in the Cortex-A9 chip. We use the same configuration for all platforms to have the

same basis for comparison.

For the remaining benchmarks, we configure the task granularity for the result-

ing task instances to be at least 100,000 instructions long. By doing so, we ensure

that the time spent in task execution is significantly larger than the time spent in

performance measurement code or in the runtime environment. The number of task

instances per application is adjusted to a large enough number so there is enough

parallelism to use all threads at all times.

3.4.2 Hybrid MPI+OpenMP Benchmarks

The NAS parallel benchmarks [9] have been widely used to evaluate the performance

of HPC systems. In this thesis, we use the Multizone versions [116] of the NAS par-

allel benchmarks BT, SP and LU, named BT-MZ, SP-MZ and LU-MZ, respectively.

All three benchmarks compute the solution of the unsteady, compressible Navier-

Stokes equations of a three-dimensional problem. To this end, the different bench-

marks employ different mathematical solvers. The benchmarks perform multiple it-

erations, whereas the number of iterations depends on the input size. Each iteration

represents a time step, at the end of which neighboring zones perform a boundary

exchange.

All three NAS multi-zone benchmarks partition the global problem domain into

blocks referred to as zones. Partitioning is done along the horizontal axes. LU-MZ

and SP-MZ work with zones of equal size. In BT-MZ the sizes of adjacent zones

approximately form a geometric series. In other words, moving along one of the

horizontal axes, the distance between adjacent zone boundaries grows by an approx-

imately constant factor. During execution, different zones are typically processed by

MPI processes running on different cluster nodes. Each MPI process can further

exploit parallelism by relying on OpenMP for intra-node parallelization.

44 Chapter 3. Experimental Setup

T
A

B
L

E
3.2:Task-based

parallelbenchm
arks

used
for

the
evaluation

ofTaskPoint

#
B

enchm
ark

#
Task

types
#

Task
instances

Sim
ulation

tim
e
[h

:
m
in
]

Properties
1

T
hread

64
T

hreads
1

2d-convolution
1

16384
31:37

59:34
K

ernel:strided
m

em
ory

accesses
2

3d-stencil
1

16370
9:12

40:51
K

ernel:strided
m

em
ory

accesses
3

atom
ic-m

onte-carlo-dynam
ics

1
16384

8:38
15:16

K
ernel:em

barrassingly
parallel

4
dense-m

atrix-m
ultiplication

1
17576

70:14
127:10

K
ernel:high

data
reuse,com

pute
bound

5
fft

8
25024

31:57
110:47

K
ernel:variable

stride
m

em
ory

accesses
6

histogram
1

16384
6:02

12:13
K

ernel:atom
ic

operations
7

m
erge-sort

4
20480

12:39
33:23

K
ernel:recursive

task
instantiation

8
n-body

2
25000

8:15
12:31

K
ernel:irregular

m
em

ory
accesses

9
reduction

2
16384

1:51
5:15

K
ernel:parallelism

decreases
over

tim
e

10
sparse-m

atrix-vector-m
ultiplication

1
1024

0:33
1:26

K
ernel:load

im
balance,m

em
ory

bound
11

vector-operation
1

16400
24:25

191:00
K

ernel:regular,m
em

ory
bound

12
sparseLU

11
22058

7:25
17:17

D
ecom

position
oflarge,sparse

m
atrices

13
cholesky

4
19600

33:42
59:29

D
ecom

position
ofH

erm
itian

positive-definite
m

atrices
14

jacobi
9

20480
19:07

19:54
Jacobiiterative

m
ethod

15
km

eans
6

16337
75:21

141:02
C

lustering
based

on
Lloyd’s

algorithm
16

knn
2

18400
31:28

65:27
Instance-based

m
achine

learning
algorithm

17
blackscholes

2
24500

8:42
17:19

O
ption

price
calculation

18
bodytrack

7
21439

15:24
31:28

H
um

an
body

tracking
w

ith
m

ultiple
cam

eras
19

canneal
1

16384
11:13

29:38
C

ache-aw
are

sim
ulated

annealing
20

dedup
4

15738
10:08

23:32
D

eduplication:com
bination

ofglobaland
localcom

pression
21

facesim
12

20086
15:13

22:15
Physicalm

odeling
ofhum

an
face

22
ferret

6
12288

58:34
115:22

Im
age

sim
ilarity

search
23

fluidanim
ate

9
8225

25:15
46:03

Sim
ulation

ofincom
pressible

fluids
24

freqm
ine

7
1932

23:52
34:13

FrequentPattern
G

row
th

m
ethod

for
FrequentItem

M
ining

25
stream

cluster
10

14656
21:09

37:41
O

nline
clustering

algorithm
26

sw
aptions

1
16384

29:27
70:25

M
onte-C

arlo
sim

ulation
to

calculate
sw

aption
prices

27
x264

3
383

121:47
122:25

V
ideo

com
pression

according
to

H
.264

standard

3.5. Performance Measurement in Native Execution 45

Besides the NAS multi-zone benchmarks, we use the HYDRO and SPECFEM3D

proxy applications. In the following, we summarize the key properties of all hybrid

benchmarks used in this thesis:

• BT-MZ employs a block tridiagonal solver based on Gaussian elimination.

Due to the irregular spacing between zones, the total size of the largest zone

is approximately 20 times larger than the size of the smallest zone, resulting in

different amounts of work assigned to different MPI processes. This makes it

difficult to achieve good load balance and, thus, high parallel efficiency.

• SP-MZ decomposes the problem domain into equally-sized zones, resulting

in approximately the same amount of work per MPI process. The number of

zones increases with the input size. This makes it easier to balance load across

different MPI processes. SP-MZ uses a scalar pentadiagonal solver.

• LU-MZ uses a lower-upper symmetric Gauss-Seidel solver [122]. In contrast to

BT-MZ and SP-MZ, the number of zones in LU-MZ is limited to 16. Therefore,

in order to scale to a large number of processors, LU-MZ needs to rely on intra-

node shared-memory parallelism.

• The HYDRO benchmark [75] is a proxy application based on the RAMSES ap-

plication [112]. RAMSES uses techniques from computational fluid dynamics

to model galaxy formation. HYDRO captures the key performance character-

istics of RAMSES, but at significantly less code complexity. RAMSES employs

adaptive mesh refinement to rebalance the computation as the mass distribu-

tion in the simulated universe evolves. HYDRO, on the other hand, assumes a

fixed cartesian mesh.

• SPECFEM3D [72] is an application for modeling seismic wave propagation.

SPECFEM3D uses the continuous Galerkin spectral-element method to simu-

late forward and adjoint seismic wave propagation on arbitrary unstructured

hexahedral meshes.

3.5 Performance Measurement in Native Execution

In Chapter 4, we investigate the performance predictability of task-based programs.

We show, that performance predictability is related to performance regularity. We

measure performance regularity using hardware performance counters.

3.5.1 Hardware Performance Counters

Modern processors include dedicated hardware for counting performance-related

events occurring in the processor. This hardware is referred to as the performance

46 Chapter 3. Experimental Setup

monitoring unit (PMU). The PMU can be configured by the user to count a variety

of events, e.g. the number of executed instructions, elapsed CPU cycles, or hits and

misses in the different cache levels or the branch predictor. The events monitored

by the PMU are accessible via a set of registers. The PMU registers can be accessed

only in privileged mode. Starting with kernel version 2.6.31, Linux includes kernel

support in order to access the PMU from user-space via system calls.

The exact set of observable PMU events and the number of simultaneously avail-

able counter registers depend on the processor model. The PMU used in Intel’s

Sandy Bridge architecture features 11 counter registers, whereas the number of coun-

ters on the ARM Cortex-A9 processor is limited to 6. Thus, out of the hundreds of

available PMU events on a modern processor the aforementioned platforms can si-

multaneously monitor up to 11 or 6, respectively.

Accessing the PMU via system calls is a tedious process. Since performance mea-

surement code depends on the ISA and the exact processor model, it is not portable.

The Performance Application Programming Interface (PAPI) library [17] provides a layer

of abstraction decoupling performance measurement code from architectural imple-

mentation details. PAPI defines a set of events, many of which exist on all modern

processors. As a result, performance measurement code can interface with PAPI in

a consistent, architecture independent way, as long as the underlying architecture

supports the measured events and provides enough counter registers.

3.5.2 Performance Measurement of Task-Based Programs

In Chapter 4, we investigate performance regularity of task-based programs in na-

tive execution. We measure cycle count, instruction count and numbers of L1 (data),

L2 (data) and L3 cache misses using hardware performance counters. To this end we

use the Mercurium compiler, which automatically inserts calls to a low-overhead in-

strumentation library at the beginning and the end of each task instance. Internally,

this library interfaces to the performance counter subsystem via the PAPI library.

In OmpSs, a task instance can be suspended before it finishes execution. In par-

ticular, when a task instance executes a call to the runtime system, it is not guaran-

teed that control is immediately returned to the calling task instance. Instead, the

runtime system can schedule another task instance for execution first, and at return

to the original task instance in the future. The instrumentation library used in this

work takes this into account by maintaining per-task-instance statistics.

47

Chapter 4

Execution Time Predictability of

Task-Based Programs

4.1 Introduction

Multi-core systems are integrating an increasing number of processor cores on a

single chip. This makes it difficult for programmers to exploit the available on-chip

thread-level parallelism.

Task-based programming models allow the programmer to specify program parts

as so-called tasks. Tasks may execute concurrently and are typically instantiated

many times during execution. A runtime environment dynamically maps task in-

stances to threads. The intuitive program partitioning improves programmability.

At the same time, dynamic task scheduling reduces the inherent synchronization

costs of other shared memory programming models thanks to a better load balanc-

ing [3].

The fact that all instances of the same task type consist of the same static code

suggests that they should exhibit similar performance and execution time and, there-

fore, execution time should be predictable. In this chapter, we investigate the exe-

cution time predictability of task-based programs based on performance regularity.

We carry out a performance analysis on four different state-of-the-art multi-core ma-

chines. Two machines are based on ARM Cortex-A9 MPCore and Cortex-A15 MP-

Core mobile CPUs. The other two are based on high-end Intel Sandy Bridge and

IBM POWER7 CPUs, respectively. This allows us to investigate if performance reg-

ularity depends on the architecture. We expect performance variability to increase

when increasing the number of execution threads competing for shared resources.

To this end, we analyze performance variability on a per-task-instance basis for

thread counts ranging from one up to the number of cores on each machine. We

reach similar conclusions for the different machines, but find that architectures with

more aggressive performance optimizations show a higher performance variability.

We identify three sources of variability across instances of the same task type: (i)

input dependence, (ii) multiple classes of behavior, and (iii) contention on accessing

48 Chapter 4. Execution Time Predictability of Task-Based Programs

shared resources. For programs suffering from resource contention, we investigate

how sharing decreases performance and increases performance variability. We also

present a model based on linear interpolation to predict execution time of input de-

pendent task types. Furthermore, we use a clustering algorithm to identify different

behaviors in the same task type. Using our interpolation model and clustering algo-

rithm, we dramatically increase the accuracy of execution time prediction. Predic-

tion errors over 80% are reduced to less than 12% for input dependent cases and less

than 2% on the presence of multiple behaviors.

In this chapter, we make the following contributions:

• An analysis of performance variability across instances of the same task type

in task-based programs executing on multi-core systems. This analysis shows

the variability on an instance-by-instance basis.

• A classification of the different sources of execution time variability on in-

stances of the same task type.

• A low-complexity model based on linear interpolation for predicting the exe-

cution time of a task instance as a function of its instruction count.

• The use of a clustering algorithm to identify different classes of behavior in the

same task type. In our example, we successfully classify task instances into

clusters, each of which exhibits regular performance.

4.2 Execution Time Predictability of Task-Based Programs

Many parallel implementations of numerical algorithms decompose the problem

domain into sub-domains called blocks or tiles. In task-based programming mod-

els the programmer specifies parts of a program as work units called tasks, each one

to perform a different operation. A task is usually instantiated many times, each

instance performing the common operation of the task on a separate block or tile.

Task instances can be scheduled to threads whenever they have their dependencies

satisfied. Typically, a thread executes many task instances before reaching a syn-

chronization point. Task-based programming models are a programming paradigm

relying on the exploitation of functional- and data parallelism. For background on

different types of parallelism we would like to refer to Chapter 2.2.3. Background

on parallel programming of shared-memory systems is provided in Chapter 2.1.1.

The fact that instances of the same task type consist of the same code leads us

to the assumption that they consist of similar numbers of instructions, exhibit sim-

ilar performance and therefore their execution time is predictable. However, this

assumption turns out to be wrong in some cases. Figure 4.1 shows the total exe-

cution time prediction error for a set of task based programs, assuming the time of

4.3. Evaluation 49

the first or the second executed instance for all instances of a task type. The error

is calculated according to Equation 4.1, with T the set of task instances of the same

task type, CSample the cycle count of the sample task instance and Ci the cycle count

of task instance i. We only investigate time spent in task execution and ignore oper-

ating system and runtime system overheads.

Err =

(
1−

∣∣∣∣∣
∑

i∈T CSample∑
i∈T Ci

∣∣∣∣∣
)
· 100% (4.1)

Before conducting our detailed analysis, we envision three potential sources of

performance variability that potentially degrade performance predictability:

• Input dependence: The behavior of a task instance depends on the task instance’s

input data. An example is sparse algorithms, in which task instances perform

different amounts of computation or exhibit different memory access patterns,

due to the nature of the sparse input data.

• Several types of behavior per task type: Task instances of the same type perform

one out of several possible types of computation. An example is recursive

algorithms, in which some task instances create more child tasks, while others

perform the actual computation when the recursion terminates.

• Contention on shared resources: Multiple threads interfere with each other when

accessing shared system resources. Different instances of the same task type

may suffer from different degrees of interference caused by other threads run-

ning in the system and accessing shared resources. This includes shared caches,

interconnect structures and memory bandwidth.

4.3 Evaluation

The results of the experiments conducted in the scope of this chapter show that,

despite the obvious intuition, performance can be irregular across instances of the

same task type. This directly affects execution time prediction (shown in Figure 4.1).

In this section, we first show the results of our performance analysis on a per-task-

instance basis. Afterwards, we present a case of input dependent task behavior and

present a model to estimate the execution time of a task instance as a function of its

instruction count. We also show a case of multiple classes of behavior within a single

task type. We use a clustering technique to distinguish these different classes of be-

havior and improve execution time predictability. Finally, we explain how resource

sharing affects performance regularity and analyze contention on different shared

resources in the memory hierarchy.

50 Chapter 4. Execution Time Predictability of Task-Based Programs

1 2 1 2 4 1 2 4 8 1 2 4 8
0

20

40

60

80

100
A15 A9 S.B. P7

2d­convolution

first
second

1 2 1 2 4 1 2 4 8 1 2 4 8

A15 A9 S.B. P7

3d­stencil

1 2 1 2 4 1 2 4 8 1 2 4 8

A15 A9 S.B. P7

atomic­monte­
carlo­dynamics

1 2 1 2 4 1 2 4 8 1 2 4 8
0

20

40

60

80

100

dense­matrix­
multiplication

1 2 1 2 4 1 2 4 8 1 2 4 8

histogram

1 2 1 2 4 1 2 4 8 1 2 4 8

merge­sort

1 2 1 2 4 1 2 4 8 1 2 4 8
0

20

40

60

80

100

n­body

1 2 1 2 4 1 2 4 8 1 2 4 8

reduction

1 2 1 2 4 1 2 4 8 1 2 4 8

sparse­
matrix­vector­
multiplication

1 2 1 2 4 1 2 4 8 1 2 4 8
0

20

40

60

80

100

vector­
operation

1 2 1 2 4 1 2 4 8 1 2 4 8

fluid­
animate

1 2 1 2 4 1 2 4 8 1 2 4 8

swaptions

Thread count

Platform
P

re
di

ct
io

n
er

ro
r

[%
]

FIGURE 4.1: Percent error when assuming the execution time of the
first / second executed task instance for all task instances to predict
total execution time. Results shown for four different machines (see

Tab. 3.1) and different thread counts.

4.3. Evaluation 51

4.3.1 Per-Task-Instance Performance Analysis

Figure 4.2 shows boxplots of the measured instructions per cycle (IPC) per task type.

Each chart corresponds to one task type and shows the measured results on four dif-

ferent platforms. Only one thread per core is executed in each experiment, which

limits the configurations to two threads (Cortex-A15), four threads (Cortex-A9), and

eight threads (Intel Sandy Bridge and IBM POWER7). The solid box contains the

interquartile range of the measured IPC values of all instances of the respective task

type, i.e., 50% of the observations are within this range. The horizontal line within

the box indicates the median. The whiskers extend from the 5th to the 95th per-

centile. The lower and upper 5% of the measured IPC values are treated as outliers

and are not shown in the plot.

Most of the investigated benchmarks only have one task type, whereas merge-

sort, n-body and reduction have two and fluidanimate has eight. The different task

types of fluidanimate show similar performance variability. Therefore, we limit our

evaluations to the task type ComputeForcesMT, which accounts for 40% of fluidan-

imate’s total instruction count.

In our results, we observe two general classes of behavior. The first class con-

sists of benchmarks for which IPC does not significantly degrade when increasing

the number of execution threads. This behaviour is exposed by the benchmarks

2d-convolution, atomic-monte-carlo-dynamics, merge-sort (both task types), n-body (both

task types), reduction (both task types), fluidanimate (all task types) and swaptions. We

make the important observation that 2d-convolution, atomic-monte-carlo-dynamics and

n-body (task type 1) present a nearly constant IPC with very low variability. This

behavior is persistent across the different platforms.

The second class of behavior consists of the benchmarks, for which IPC degrades

when increasing the number of execution threads. This phenomenon is known

as work time inflation [88]. In our benchmark suite, this behavior is exposed by

the benchmarks 3d-stencil, histogram, sparse-matrix-vector-multipli-cation and vector-

operation. For these benchmarks, besides work time inflation, we also observe an

increasing performance variability. Note that the variability shown in Figure 4.2 di-

rectly relates to the prediction error shown in Figure 4.1.

4.3.2 Predictability of Irregular Behavior

In this subsection, we identify three sources of irregular behavior, namely input de-

pendence, multiple classes of behavior per task type and resource sharing. We pre-

dict execution time of task types with input dependent behavior using an interpolation-

based model. For task types with several classes of behavior we use a clustering

52 Chapter 4. Execution Time Predictability of Task-Based Programs

1 2 1 2 4 1 2 4 8 1 2 4 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
vector­operation

n­body, task type 1 n­body, task type 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
reduction,

task type 1

1 2 1 2 4 1 2 4 8 1 2 4 8

fluidanimate

histogram

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
A15 A9 S.B. P7

2d­convolution

A15 A9 S.B. P7

atomic­monte­
carlo­dynamics

reduction,
task type 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
merge­sort,
task type 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
dense­matrix­mult. merge­sort,

task type 1

A15 A9 S.B. P7

3d­stencil

sparse­mat.­vec.­
multiplication

1 2 1 2 4 1 2 4 8 1 2 4 8

swaptions

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

Thread count

Platform

IP
C

FIGURE 4.2: IPC variation per task type on four different platforms
(ARM Cortex-A9 and A15, Intel Sandy Bridge and IBM POWER7)

4.3. Evaluation 53

algorithm to detect clusters of similar behavior and predict execution time on a per-

cluster basis. Finally, we analyze the impact of resource sharing on performance

predictability.

Input Dependence:

Input dependence is the dependence of the control flow of a task instance on the

input data. Figure 4.3 shows heatmaps of the programs fluidanimate and merge-sort.

Heatmaps are a graphical representation of a histogram of two independent vari-

ables. Both the horizontal and vertical axes are split into bins. For each combination

of horizontal and vertical bin, colours indicate how many task instances have a cer-

tain instruction count and a certain IPC.

In the case of fluidanimate, the instruction count of task instances varies between

1 million and 70 million instructions, while IPC tends to be higher for higher in-

struction counts. This results in different numbers of execution cycles. Assuming

the same cycle count for all task instances leads to the prediction error shown in Fig-

ure 4.1 which reaches over 80%. The instruction count and IPC variation is caused

by the fact that all task instances perform an index computation that is highly inef-

ficient for high indexes. We want to emphasize that this index computation is part

of the default implementation of the fluidanimate benchmark and is not caused by

porting the benchmark to the OmpSs programming model.

For the programs fluidanimate and merge-sort (task type 1), we apply a sampling-

based model to predict execution time as a function of instruction count for all task

instances. This model assumes that the instruction count of each task instance is

known apriori and works as follows. First, we add instruction count and execution

time of the first executed task instance to the (empty) set of support points. After-

wards, for each encountered task instance we check if its instruction count is less

than 90% of the smallest or greater than 110% of the largest instruction count in

the set of support points. If this is the case, we add it to the set of support points.

Otherwise, we predict the execution time by linear interpolation within the set of

support points or by constant extrapolation in the range outside the support points.

Figure 4.4 shows that the error of the total execution time prediction based on this

model stays below 12% for all configurations on the Intel Sandy Bridge system.

Multiple Behaviors Per Task Type:

For merge-sort (task type 2) we observe two clusters in the heatmap plot, indicating

two different behaviors. Strictly speaking, this is also a case of input dependence.

However, the difference to the type of input dependence covered in the previous

section is that there are multiple, clearly distinct classes of behavior. This is caused

54 Chapter 4. Execution Time Predictability of Task-Based Programs

0 20 40 60 80
0.0

1.0

2.0

3.0

4.0

IP
C

fluidanimate
(task type ComputeForcesMT)

0

2

4

6

8

10

12

14

16

Task size [Mio. Instructions]

0

25
0

50
0

75
0

10
00

0.0

0.5

1.0

1.5

2.0

IP
C

merge­sort
(task type 2)

0

200

400

600

800

1000

1200

1400

1600

1800

≥ 2000

Task size [1000 Instructions]

FIGURE 4.3: Instruction count vs. IPC histogram of benchmarks flu-
idanimate (task type ComputeForcesMT) and merge-sort (task type 2)

by the recursive implementation of the merge-sort algorithm. A task instance either

creates two child instances, resulting in the cluster on the left, or it performs a sort-

ing operation, resulting in the cluster on the right. Predicting execution time based

on the assumption of regular execution time and IPC leads to the error shown in

Figure 4.1.

For the aforementioned case, we perform a k-means clustering of all task in-

stances into two clusters, according to their instruction count. For each resulting

cluster, we determine the centroid and chose the task instance closest to the centroid

as a representative of the respective cluster. Finally, we estimate the total execution

time of each cluster by multiplying the execution time of the representative by the

number of task instances in the cluster. Figure 4.4 shows, that the error of the total

execution time prediction based on this method is smaller than 2% for all configura-

tions on the Intel Sandy Bridge system.

Resource Sharing:

The third source of irregular behavior we identified is resource sharing. In the fol-

lowing, we present four examples of resource sharing. These examples have in com-

mon that contention on shared resources affects the performance of task instances

of the same task type to a different extent. This increases performance variability

and thus decreases performance predictability. Figure 4.5 shows boxplots of L2

data cache and L3 cache misses per 1000 executed instructions (misses per kilo-

instruction, MPKI) of the benchmarks for which we observe a decrease of IPC for

increasing thread counts. The measured number of L3 cache misses includes misses

4.3. Evaluation 55

1 2 4 8
0

5

10

15

20 88
.3
89

.6
85

.0
84

.4
75

.0
78

.6

1 2 4 8
0

5

10

15

20 39
.1

22
.3
30

.8
34

.0

1 2 4 8
0

5

10

15

20 53
.3
63

.0

first
second
interpolate
cluster

fluidanimate merge­sort,
task type 1

merge­sort,
task type 2

Thread count

P
re

di
ct

io
n

er
ro

r
[%

]

FIGURE 4.4: Execution time prediction error using interpolation
model (fluidanimate and merge-sort, task type 1) and clustering (merge-

sort, task type 2)

caused by L2 data cache misses, due to the limitations of the available hardware

performance counters.

For 3d-stencil, we observe an increase of L2 MPKI when increasing the number

of threads. However, L3 MPKI stays nearly constantly low. Our theory is that the in-

creased L2 MPKI is caused by invalidations of data residing in the private L2 caches

by other threads.

The histogram benchmark shows not only an increase of L2 MPKI for increasing

thread counts, but also an increase in L2 MPKI variability. For increasing thread

counts, there might be several threads competing to execute an atomic operation,

resulting in higher contention. Furthermore, the execution of the atomic operation

itself can invalidate data in other threads’ private caches.

In case of sparse-matrix-vector-multiplication, L2 MPKI and L3 MPKI are nearly

constant for increasing thread counts. Since in this benchmark there is no data shar-

ing between different task instances, the decrease in IPC has to occur due to the

limited capacity of shared resources, e.g. memory bandwidth or cache bandwidth.

For vector-operation, we observe a decrease of L2 MPKI when increasing the num-

ber of execution threads. As memory bandwidth saturates for increasing thread

counts, threads progress at a slower rate and thus cause less demand misses in the

L2 cache.

56 Chapter 4. Execution Time Predictability of Task-Based Programs

1 2 4 8

ve
ct

or
­o

pe
ra

tio
n

1 2 4 8

hi
st

og
ra

m

1 2 4 8
0

10

20

30

40

50

60

3d
­s

te
nc

il

1 2 4 8
sp

ar
se

­m
at

.­
ve

c.
­

m
ul

tip
lic

at
io

n

Thread count

L2
 M

P
K

I

Thread count

L2
 M

P
K

I

Thread count

L2
 M

P
K

I

Thread count

L2
 M

P
K

I

1 2 4 8

ve
ct

or
­

op
er

at
io

n

1 2 4 8

hi
st

og
ra

m

1 2 4 8
0

5

10

15

20

25

30

3d
­s

te
nc

il

1 2 4 8

sp
ar

se
­m

at
.­

ve
c.

­
m

ul
tip

lic
at

io
n

Thread count

L3
 M

P
K

I

Thread count

L3
 M

P
K

I

Thread count

L3
 M

P
K

I

Thread count

L3
 M

P
K

I

FIGURE 4.5: L2 data and L3 cache misses per 1000 instructions
(MPKI) for 3d-stencil, histogram, sparse-matrix-vector-multiplication and
vector-operation, executed on Intel Sandy Bridge with 1, 2, 4 and 8

threads

4.4 Related Work

To the best of our knowledge, this is the first analysis of execution time predictability

of task-based programs. However, there are other performance analyses of task-

based programs focusing on other aspects.

Duran et al. [41] present a benchmark suite consisting of task-based OpenMP

programs. They give examples for different kinds of performance analyses of these

benchmarks. They evaluate total execution time as a function of various parameters

such as processor count and task creation cut-off parameters. Other works [98, 105]

investigate task granularity and task creation cost as performance-limiting factors

in task-based programs. However, these works neither analyze performance on a

per-task-instance basis nor task execution time predictability.

There are other works that use analytical models to predict execution time [48, 67,

87]. These works use mathematical models to compute the delays of certain events

during execution. Most past works compute delays for events at the instruction-

level, such as instruction issue and commit, branch mispredictions and cache misses.

Our model works at a coarser granularity by computing the delay of whole individ-

ual task instances.

Performance predictability of parallel applications on large HPC systems has

been explored from many perspectives. Some approaches combine the efficiency of

analytical models with the accuracy of simulation to generate accurate and fast per-

formance predictions [108]. Other approaches [68] explore performance predictabil-

ity by developing application-specific performance models, which are formulated

from an analysis of the code, inspection of key data structures, and analysis of traces

gathered at runtime. While this methodology provides fast and accurate predic-

tions, it is application specific and it requires a deep understanding of the scientific

4.5. Summary 57

codes. These works target MPI applications, while the work in this chapter focuses

on shared-memory task-based programs.

4.5 Summary

The analysis in this chapter shows that the naive assumption of regular performance

across instances of the same task type is not always valid. However, we show that

accurate performance predictions can be derived from detailed performance infor-

mation of a relatively small number of task instances.

We present techniques to improve the accuracy of execution time predictions for

task types with irregular performance. These techniques are based on linear interpo-

lation and clustering. The execution time prediction error is reduced from more than

80% to less than 12% for input dependent cases and to less than 2% for task types

exposing multiple classes of behavior. Further research is needed to improve execu-

tion time predictability of task-based programs experiencing contention on shared

resources.

In Chapter 5 we leverage the insights from this chapter and present TaskPoint,

a sampled simulation methodology for task-based programs execuded on multi-

core systems. We envision another potential application in the field of dynamic task

scheduling: apriori-knowledge of the execution time of a task instance would allow

for new, smart scheduling techniques.

59

Chapter 5

Sampled Simulation of Task-Based

Programs

5.1 Introduction

Computer architecture research heavily relies on simulation. Increasing design com-

plexity and increasing core counts in modern multi-core processors present new

challenges to architectural simulation. First, simulating a more complex design re-

quires more time for a given workload. Second, the more complex a design, the

larger the simulated workload needs to be in order to meaningfully stress the de-

sign.

One technique to reduce simulation time is sampling. Sampled simulation re-

duces simulation time by only simulating a fraction of a workload. Sampling is

a well-established technique for simulation of single-threaded architectures. The

prevalent techniques perform detailed simulation of either only the representative

program parts identified in profiling [107] or switch periodically between detailed

and fast-forwarding mode in time-based sampling [121].

While sampled simulation is a well-established technique for single-threaded

architectures, techniques targeting multi-threaded architectures have only been re-

cently proposed. The main challenge in sampling multi-threaded simulations is to

ensure that at the beginning of each detailed simulation interval all threads have

made the same amount of progress as in a full detailed simulation. A technique

proposed by Carlson et al. [24] achieves this by selecting a periodic sampling inter-

val during offline profiling and, during simulation, estimating the rate at which to

fast-forward each thread between intervals of detailed simulation. Carlson et al. [22]

also propose a technique based on the insight that after a global barrier all threads

are synchronized and resume execution simultaneously. The technique leverages

the inter-barrier regions in barrier synchronized programs as sampling units.

Task-based programming models have been proposed to reduce load imbalance

and thus increase parallel efficiency of future large-scale multi-core machines [79].

A task-based programming model allows the programmer to specify program parts

60 Chapter 5. Sampled Simulation of Task-Based Programs

as tasks and to specify dependencies between those tasks. Tasks are typically instan-

tiated many times during the execution of a program. Over-decomposition ensures

that there are many more task instances than there are execution threads. The over-

decomposition of a parallel program into tasks, together with dynamic scheduling

of task instances to threads, dynamically balances the amount of work assigned to

each thread. Inter-task dependencies enforce synchronization only when necessary.

The lack of global barriers and the dynamically scheduled execution of task-based

programs make them unsuitable for existing sampled simulation techniques.

In this work we present TaskPoint, a sampled simulation methodology for dy-

namically scheduled task-based programs executed on shared memory multi-core

machines. TaskPoint leverages task instances as sampling units and only simulates

a small number of them in detail. The remaining task instances are simulated in

a faster simulation mode, ensuring that progress in different threads is modelled

correctly.

In this chapter, we make the following contributions:

• We compare the performance variation of task-based programs in native exe-

cution and architectural simulation. This motivates the design of our TaskPoint

methodology, its sampling policies and its fast-forwarding methodology.

• We present TaskPoint, a sampled simulation technique for multi-core architec-

tures programmed with a dynamically scheduled, task-based programming

model. In this context, we introduce two sampling policies, periodic sampling

and lazy sampling. Lazy sampling simulates task instances in detail based on

their type while periodic sampling considers their type and distribution over

time.

• We propose a mechanism to accurately fast-forward an architectural simula-

tion of a task-based program. During fast-forward, we model the performance

of a given task instance based on previous instances of the same task type.

We account for different task input sizes across the application execution by

factoring in the number of instructions of the given task instance accordingly.

• We employ basic-block vectors (BBVs) and clustering to identify classes of be-

havior among task instances of an application. We show, how we (i) identify

multiple classes of behavior among task instances of the same task type and

(ii) merge task instances with similar behavior belonging to different types.

• We use an analytical performance model to improve simulation accuracy dur-

ing simulation in fast-forward mode. Our approach combines the speed of

analytical models with the accuracy of detailed simulation.

5.2. Background and Motivation 61

• We evaluate TaskPoint simulating 27 task-based parallel benchmarks, includ-

ing the PARSEC benchmark suite. We evaluate the sensitivity of TaskPoint

to different architectures by testing different numbers of simulated threads on

two different configurations covering the opposite extremes of the multi-core

design space: high-performance and low power.

The remainder of this chapter is organized as follows. In Section 5.2, we provide

background and motivation of our work. In Section 5.3, we present our TaskPoint

methodology. We evaluate TaskPoint in Section 5.4. Finally, we conclude in Sec-

tion 5.5.

5.2 Background and Motivation

This section provides background on task-based programming models. We then

motivate our work with an analysis of performance variation in native execution of

27 task-based parallel benchmarks.

5.2.1 Parallel Programming Models

In traditional parallel programming models for shared memory systems, like POSIX

Threads [19], the programmer explicitly decomposes an application into concurrent

instruction streams and manages synchronization between those. These instruction

streams are processed simultaneously by different threads. A common problem with

multi-threaded programs is load imbalance. Load imbalance occurs when different

threads reach a synchronization point at different points in time.

Task-based programming models have the potential to alleviate load imbalance

and thus increase parallel efficiency. When implementing a parallel program us-

ing a task-based programming model, the programmer specifies program parts as

tasks and, optionally, data dependencies between these tasks. Tasks are instantiated

many times during the execution of a program, resulting in a large number of task

instances, each of which operates on different data. A runtime environment dynam-

ically schedules task instances to execution threads.

Due to a fine-grained over-decomposition of the application, there are ideally more

task instances ready for execution than there are threads. This allows the runtime

environment to dynamically balance the workload assigned to each thread [79]. Fur-

ther optimizations are possible if the architecture interfaces directly with the runtime

environment [30, 114].

In this work, we differentiate between task types and task instances. Every ex-

ecution of a task declaration statement at runtime results in the creation of a task

instance. All task instances resulting from the same task declaration statement in

62 Chapter 5. Sampled Simulation of Task-Based Programs

2d
­co

nv
olu

tio
n

3d
­st

en
cil

ato
mic­

mon
te­

ca
rlo

­

dy
na

mics

de
ns

e­
matr

ix­

mult
ipl

ica
tio

n fft

his
tog

ra
m

mer
ge

­so
rt

n­
bo

dy

re
du

cti
on

sp
ar

se
­m

atr
ix­

ve
cto

r­

mult
ipl

ica
tio

n

ve
cto

r­o
pe

ra
tio

n

ch
ec

kS
pa

rse
LU

ch
ole

sk
y

jac
ob

i

km
ea

ns kn
n

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

re
t

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

20

10

0

10

20

IP
C

 v
ar

ia
tio

n
[%

]

­28­38

45

­59

48

FIGURE 5.1: IPC variation across all task instances for native execu-
tion with 8 threads, normalized per task type

the source code are said to be of the same task type. In a typical task-based program,

the number of task types is small, whereas the number of task instances lies in the

order of thousands.

5.2.2 Performance Variation of Task-Based Programs

In order to motivate TaskPoint, our sampled simulation technique for task-based

parallel programs, we analyze performance variation in native execution of 27 bench-

marks. The investigated benchmarks are introduced in Section 3.4.1.

Different benchmarks, and even different task types of the same benchmark, gen-

erally show different average instructions per cycle (IPC). For an easy comparison of

performance variation across benchmarks, we normalize the IPC of all task instances

to the average IPC of their respective task type. For each benchmark, we use one box

plot of these normalized IPC values to visualize performance variation across task

instances.

Figure 5.1 shows IPC variation across task instances observed in a native execu-

tion with 8 threads on a system with an Intel SandyBridge-EP E5-2670 CPU running

at 2.6 GHz and 128 GB of DDR3-1600 as main memory. The solid box of each box

plot indicates the range from the first to the third quartile of the normalized IPC val-

ues, while the whiskers extend from the fifth to the 95th percentile. IPC values of

task instances below the fifth and above the 95th percentile are treated as outliers.

The Figure shows that for 16 out of 27 benchmarks performance variation lies within

±5%.

We motivate TaskPoint based on the insight that performance of task-based pro-

grams is, in many cases, regular across instances of the same task type. For the

remaining cases, our improved version of TaskPoint automatically detects classes

of task instances with similar behavior using basic-block vectors and clustering. A

potential simulation error is compensated with a correction factor derived from per-

formance predictions obtained from an analytical performance model.

5.2. Background and Motivation 63

...
#pragma omp task
 label(task type 1)
do_something();

...

#pragma omp task
 label(task type 2)
do_something_else();
...

...
#pragma omp task
 label(task type 1)
do_something();

...

#pragma omp task
 label(task type 2)
do_something_else();
...

Generate
BBVs

Cluster BBVs

9 clusters

KMeans

DBSCAN

1 cluster

Assumption: Same task type → same behavior

or

Problems:

 Varying behavior within a task cluster

 Tasks with different behavior in the
 same cluster

 Duplicate work for similar behavior in
 different task types

Solutions:

 Irregularly shaped clusters are split into
 multiple clusters

 Tasks with different behavior end up in
 different clusters

 Tasks with similar behavior are merged,
 independent of task type

 Irregularly shaped clusters remain

 Tasks with unrelated behavior end up
 in different clusters

 Tasks with similar behavior are merged,
 independent of task type

(A) TaskPoint without analytical modeling. Task instances of the same
type are assumed to have similar behavior.

...
#pragma omp task
 label(task type 1)
do_something();

...

#pragma omp task
 label(task type 2)
do_something_else();
...

...
#pragma omp task
 label(task type 1)
do_something();

...

#pragma omp task
 label(task type 2)
do_something_else();
...

Generate
BBVs

Cluster BBVs

9 clusters

KMeans

DBSCAN

1 cluster

Assumption: Same task type → same behavior

or

Problems:

 Varying behavior within a task cluster

 Tasks with different behavior in the
 same cluster

 Duplicate work for similar behavior in
 different task types

Solutions:

 Irregularly shaped clusters are split into
 multiple clusters

 Tasks with different behavior end up in
 different clusters

 Tasks with similar behavior are merged,
 independent of task type

 Irregularly shaped clusters remain

 Tasks with unrelated behavior end up
 in different clusters

 Tasks with similar behavior are merged,
 independent of task type

(B) TaskPoint with analytical modeling. Classes of behavior are identified
using clustering.

FIGURE 5.2: Overview of original and improved TaskPoint method-
ology. The improved methodology uses BBVs to determine classes of

similar behavior.

5.2.3 Identifying Representative Task Instances

Our analysis of performance regularity on a per-task-type basis in Figure 5.1 shows

that, for many applications, task instances of the same task type behave similarly

in terms of performance. Therefore, it is reasonable to assume that, in those cases,

instances of the same task type can serve as performance samples for one another.

However, the figure also shows that some benchmarks expose a significant perfor-

mance variation among task instances. Examples are merge-sort, fft, freqmine and

dedup. These applications require more sophisticated techniques to identify classes

of task instances which can serve as samples for one another.

Basic-block vectors (BBVs) [107] have been used in the past to characterize phases

of a workload and identify representative workload regions. A BBV is a vector with

as many dimensions as there are static basic blocks in the simulated application.

Each dimension contains the number of executed dynamic instructions of the corre-

sponding basic block during a certain time interval. In this work, we determine one

BBV per executed task instance.

Figure 5.2a illustrates our original TaskPoint methodology. The figure shows the

BBVs of two task types of merge-sort. We apply random projection to two dimen-

sions to the BBVs for visualisation. Each task type consists of two clearly distinct

clusters of BBVs, which expose different behavior and performance at runtime. One

of this clusters is eccentrically shaped A , with the result, that task instances which

are in the same cluster, but at some distance w.r.t. each other, show different per-

formance. Furthermore, treating both clusters of a task type as if they showed the

same performance B , as in merge-sort, leads to a simulation error of more than 40%.

64 Chapter 5. Sampled Simulation of Task-Based Programs

Furthermore, each cluster observed in one task type is similar to a cluster in the

other task type C , resulting in duplicated work during sampled simulation. An

ideal clustering would consist in two clusters, each of which containing two of the

pairwise similar clusters shown in Figure 5.2a. This is achieved by the extension of

TaskPoint we present in this paper. Note that in Figure 5.2a BBVs are solely used for

the purpose illustration.

Figure 5.2b illustrates how we improve TaskPoint by applying BBVs and clus-

tering for the identification of different classes of task instances in an application.

To this end, we create a BBV for each task instance. If two task instances behave

similarly, they typically have similar BBVs. On the other hand, task instances with

dissimilar behavior are likely to also have dissimilar BBVs. The figure illustrates that

KMeans tends to split irregularly shaped clusters into many sub-clusters. In the case

of DBSCAN, task instances which are connected by a dense region of other task in-

stances are clustered together. In this work, we chose to rely on DBSCAN clustering,

because a lower number of clusters requires less detailed simulation and thus allows

for a higher simulation speedup.

5.2.4 Analytical Performance Modeling

Figure 5.2b illustrates that clusters of task instances, as they are detected by DB-

SCAN, can have asymmetric shape and large diameter A . If this happens, using a

sample to predict the performance of a task instance, which is further away in the

same cluster, introduces a simulation error. We leverage the relative accuracy of an

analytical model to correct this error during simulation.

Analytical performance models have been extensively used for sequential ap-

plications [16, 44, 67, 91]. As explained in Section 2.4.4, analytical models can be

classified into empirical and mechanistic models. Empirical models aim at capturing a

system’s behavior with machine learning techniques, e.g. support vector machines

or artificial neural networks. While they can achieve good accuracy, they do not pro-

vide much insight into why a certain design achieves better or worse performance

than another. Mechanistic models employ mathematical formulas to model the ef-

fect of the key architectural parameters on performance. Mechanistic models allow

to study the sources of particularly good or bad performance by simply comparing

the contribution of the different terms of the model’s formula. Since they provide

more insight into the sources of performance, in this work we use a mechanistic

performance model.

In this work, we use an analytical performance model proposed by Van den

Steen et al. [115]. The model is an extension of Interval Simulation [48]. Interval

Simulation requires micro-architecture dependent input data, namely the number

of cache misses per cache level, the number of branch predictor misses and the

5.3. Sampled Simulation of Task-Based Programs 65

amount of memory-level parallelism (MLP). The approach presented by Van den

Steen et al. eliminates the micro-architecture dependent parts of the model input.

Instead, they use a micro-architecture independent application profile and gener-

ate the micro-architecture dependent elements of the model input using analytical

models for caches, branch predictors and MLP.

Caches are modeled using StatStack [46], a technique for modeling arbitrarily

sized LRU caches. StatStack’s model requires the reuse distances of the modeled ap-

plication as an input. The reuse distance is the number of memory accesses between

two accesses to the same cache line. Based on the reuse distance profile, StatStack

predicts an application’s cache miss rate.

Branch predictors are modeled using the Linear Entropy model [91], proposed by

Pestel et al. First, the application to be modelled is executed in a profiler which, for

each static branch instruction and each history of past branches, counts the num-

ber of times the corresponding branch is taken and not taken. This information is

afterwards used to calculate each branches entropy. A linear model predicts the

per-branch missrate for several different branch predictors based on the per-branch

entropy.

MLP is the number of simultaneously outstanding LLC misses, i.e. the number

of memory accesses which can be served by the DRAM subsystem in parallel. Van

den Steen et al. propose an MLP model, which separates MLP calculation into a

fraction stemming from LLC cold misses. and a fraction stemming from capacity-

and conflict misses.

5.3 Sampled Simulation of Task-Based Programs

In this section, we present our TaskPoint methodology. First, we introduce the pre-

requisites which need to be fulfilled by an architectural simulator in order to serve as

an implementation platform for TaskPoint. Next, we present the different phases of

TaskPoint’s sampling mechanism, namely warm-up, sampling and fast-forwarding.

Afterwards, we introduce our periodic sampling policy. The separation into sam-

pling mechanism and policy allows for the integration of other sampling policies

with low implementation effort.

5.3.1 Requirements for the Architectural Simulator

Our objective is to provide a sampled simulation methodology for task-based pro-

grams which does not depend on a specific architectural simulator. Therefore, we

keep the requirements for the target simulator to a minimum. In order to serve as a

suitable platform for implementing our methodology, a simulator needs to fulfil the

following two requirements:

66 Chapter 5. Sampled Simulation of Task-Based Programs

A
1

Thread 1

Thread 2

Time

B
1

...

warmup

...

t
1

t
2

t
3

t
4

A
2

B
2

A
3

B
3

A
4

B
4

A
5

A
6

B
5

B
6

A
7

A
n-1

B
n

B
n+1

... A
n

A
n+1

B
n+3

A
n+2

B
n+4

A
n+3

B
n+5

t
5

A
n+4

A
n+5

B
n+6

B
n+7

A
n+6

...

measure sample fast-forward warmup measure sample

0

B
n+2

detailed
simulation

fast-forward

X
i

i-th instance
of task-type X

FIGURE 5.3: Initial warmup, sampling, fast-forwarding and resam-
pling in TaskPoint

1. The simulator needs to feature a detailed and a fast simulation mode.

2. The fast mode has to be capable of operating at a user-specified IPC.

Most contemporary architectural simulators feature several levels of detail [6, 14,

103], allowing to trade off speed for accuracy. Thus, we assume the first requirement

to be trivially fulfilled. Regarding the second requirement, if a simulator does not

support fixed-IPC simulation by default, we consider the implementation of this

functionality to be a minor effort.

5.3.2 Sampling Mechanism

TaskPoint operates on the level of granularity of task instances. A task instance is

simulated either in detailed or in fast mode. Simulation in detailed mode serves for

warming architectural state or to measure samples, whereas simulation in fast mode

accurately fast-forwards simulation time. Switching between detailed and fast mode

only occurs between two consecutive task instances.

Figure 5.3 illustrates the different phases of TaskPoint. For each task type, we

maintain two vectors holding the IPC histories of the most recently simulated task

instances. The size H of these vectors is a parameter referred to as the history size.

Both vectors are FIFO buffers in which a newly added element replaces the oldest

one. The first vector contains the history of task instances which are valid samples,

i.e. which are simulated after warming up architectural state. We refer to it as the

history of valid samples. The second vector holds the history of all task instances sim-

ulated in detailed mode, regardless of the simulation being properly warmed. We

refer to it as the history of all samples. While the former is the sample history we

usually use to determine which IPC to use in fast mode, the latter is needed if there

are task types that occur infrequently and can not be sampled in a single sampling

interval. We refer to these task types as rare task types.

In multi-threaded applications, co-existing threads interfere with each other, e.g.

by competing for shared resources, through inter-thread synchronization or by in-

validating data residing in remote caches. In order to correctly model thread inter-

ference, we simulate all threads either in detailed mode or in fast mode. Since we

assume that mode switching only occurs between two consecutive task instances,

5.3. Sampled Simulation of Task-Based Programs 67

there are short phases during which some threads are simulated in fast-forward

mode, while others are simulated in detailed mode (see t2, t3 and t5 in Figure 5.3).

Simulation Warmup

Before conducting performance measurements, a simulation needs to be warmed, i.e.

it needs to be put in a representative state. Warming micro-architectural state in sam-

pled simulation is well-studied [38, 58, 107, 117, 121, 124]. In this thesis, we warm

the simulation by simulating an empirically determined number of task instances

in detail and avoid complex warmup schemes. Instead, we focus on the sampling

methodology itself. However, we distinguish between warming at simulation start

and warming before resampling after a simulation phase in fast mode. When a task

instance simulated for warmup finishes execution, its IPC is added to the history of

all samples.

At simulation start, all simulated micro-architectural structures are in their initial

(cold) state. During detailed simulation, state-holding elements begin to fill until

occupancy reaches a steady state. In this work, we assume that simulating W task

instances per thread at simulation start is sufficient for putting the simulator into

a representative (warm) state. We refer to W as the size of the warm-up interval and

evaluate different values for W in Section 5.4.

After a simulation phase in fast mode, micro-architectural state is stale. Before

resampling the simulation, warmup makes sure that micro-architectural state is (ap-

proximately) the same as if the whole program was simulated in detail. Before re-

sampling, we perform detailed simulation until every thread has simulated one task

instance in detail.

Sampling

Like simulation warmup, sampling is performed in detailed simulation mode. When

warmup is finished, we start treating the simulated task instances as valid samples.

When a valid sample task instance finishes simulation, its average IPC is added to

the history of valid samples and to the history of all samples. We trigger the transi-

tion to fast mode when one of the following two conditions is fulfilled:

1. The history of valid samples is fully populated.

2. A certain number of task instances has been simulated without encountering

any instance of a rare task type whose history of valid samples is not yet fully

populated.

The first condition means that all task types are fully sampled. The second condition

is needed to avoid spending an excessive amount of time on detailed simulation in

68 Chapter 5. Sampled Simulation of Task-Based Programs

the presence of rare task types. In this paper, we cut off sampling when all threads

have simulated 5 task instances without encountering an instance of a previously

observed rare task type.

Accurate Fast-Forwarding

When the transition to fast mode is triggered, all task instances starting in the future

are simulated in fast mode. However, task instances which started in the past are

simulated in detailed mode until they complete. Task instances finishing simulation

after the transition to fast mode are only added to the history of all samples.

A task instance simulated in fast mode is simulated with the average IPC of the

history of valid samples of its task type. If a task instance belongs to a rare task type

whose history of valid samples is empty, we use the average IPC of the history of all

samples instead. If the history of all samples of the corresponding task type is also

empty, we trigger resampling.

Rare task types tend to occur infrequently during the execution of an application.

They account only for a small percentage of the total instruction count of an appli-

cation and are used for infrequent tasks, e.g. setting up and deleting data structures.

We find the impact of using non-representative samples for fast simulation of rare

task types to be negligible.

One contribution of this paper is the presented fast-forwarding mechanism for

architectural simulation of task-based parallel programs. Our technique fast-forwards

each thread at a rate depending on the task type of the task instance currently being

simulated.

Clustering Task Instances

Our improved version of TaskPoint identifies classes of task instances with similar

behavior prior to simulation. In a profiling step, we determine the BBVs of each

task instance of the application. Afterwards, BBVs are normalized and clustered

using the DBSCAN algorithm. BBVs are micro-architecture independent. Hence,

the costs of BBV generation and clustering are amortized across all simulations of

the application. In a trace-based simulation environment, BBVs can be generated

together with the application trace.

Analytical Modeling

Clustering of task instances with DBSCAN typically leads to a smaller number of

clusters, compared to clustering based on KMeans. The downside is that DBSCAN

can classify task instances with different, but not similar, behavior into the same clus-

ter, as illustrated in Figure 5.2b. For this reason, the performance of a task instance

5.3. Sampled Simulation of Task-Based Programs 69

Thread 1

Thread 2

Time

Time

1

1

2

2

P-1

P-1

P

P

1

1

2

2
...

...

...Thread 1

Thread 2

1

1

2

2

P-1

P-1

P

P

sampling

fast-forward

(a) Periodic sampling

(b) Lazy sampling

warmup

FIGURE 5.4: Illustration of periodic sampling (a) and lazy sampling
(b) as a special case of periodic sampling with infinite sampling pe-

riod P

observed in detailed simulation may not be representative for all task instances of a

cluster. In our extension of TaskPoint, we employ an analytical performance model

to correct this performance difference.

First, we generate a profile of the simulated application. This profile includes

the micro-architecture independent performance metrics required as inputs to the

analytical model and can be generated in the same profiling run as the per-task-

instance BBVs used for task instance clustering. As the BBVs, this profile is only

generated once per application.

Afterwards, we evaluate the analytical model for all task instances of the sim-

ulated application, assuming the same system configuration as the one used in de-

tailed simulation. For each simulated application, the model is evaluated once per

architectural configuration. Changing only the number of simulated threads does

not require to reevaluate the model.

We use the performance information obtained from the analytical model as fol-

lows: assume that two task instances i and j belong to the same cluster. Further-

more, i has been simulated in detail j is to be simulated in fast-forward mode, using

i as performance sample. Let IPCi,m and IPCj,m be the IPC of task instances i and

j, respectively, as predicted by the model, and IPCi,d the IPC obtained in detailed

simulation of i. We estimate the performance IPCj,ff of j in fast-forward mode

according to Equation 5.1:

IPCj,ff = IPCi,d ·
IPCj,m

IPCi,m
(5.1)

In other words, the IPC of the sample is multiplied with the performance ratio

of sample and fast-forwarded task instance. By following this approach, we com-

bine the accuracy of detailed simulation with the relative accuracy of the analytical

model.

5.3.3 Periodic Sampling Policy

A sampling policy decides when to resample a simulation running in fast-forward

mode. The periodic sampling policy, illustrated in Figure 5.4a, warms and samples a

70 Chapter 5. Sampled Simulation of Task-Based Programs

Thread 1

Thread 2

Time

...
Thread 3

Thread 4

t

...

 Task type B Task type A

(A) Change in number of execution threads at time t,
thus altering average performance due to resource con-

tention

Thread 1

Thread 2

Time

...
Thread 3

Thread 4

t

...

(B) Instance of rare task type starting execution at time t

FIGURE 5.5: Illustration of changing number of execution threads (a)
and rare task type (b)

simulation at simulation start. Afterwards, it switches the simulation to fast-forward

mode. When a thread has executed a number P of task instances of any task type

in fast-forward mode, the simulation is resampled. We refer to the parameter P as

the sampling period. When a simulation is resampled, the entries of the history of

valid samples are discarded. When resampling is complete, the simulation returns

to fast-forward mode and the process repeats.

Simulation speedup is determined by the size of the sampling period. The larger

the sampling period, the more task instances are simulated in fast mode. In the spe-

cial case of an infinite sampling period, resampling is never triggered by the sam-

pling policy. We refer to this case as lazy sampling. Lazy sampling is illustrated in

Figure 5.4b. If the number of task instances of a program is too small or the sam-

pling period is too large, a simulation finishes during the first fast-forward interval,

before any thread has simulated P task instances. In this case, periodic sampling is

equivalent to lazy sampling.

Besides the aforementioned case of a thread having simulated P task instances in

fast mode, resampling is also triggered when it is impossible to accurately simulate

a task instance in fast mode. This happens in the following two cases.

Figure 5.5a shows a case where the number of threads participating in task exe-

cution changes at runtime, e.g. when the simulated application enters a phase expos-

ing more parallelism. When the number of execution threads changes, so does the

contention on shared resources, like shared caches and main memory. This affects

per-thread performance and invalidates previously measured samples. Resampling

avoids prediction errors due to non-representative samples.

5.4. Evaluation 71

Figure 5.5b shows a case where the first instance of a new task type is encoun-

tered while simulating in fast mode. When encountering an instance of a previously

unknown task type, the task type’s sample history is empty. Therefore, it is impos-

sible to simulate this task instance in fast mode. We circumvent this problem by

triggering resampling.

With this resampling strategy, both periodic sampling and lazy sampling account

for phase changes in the application. If a new phase is implemented with different

task types, the simulation is resampled. The same holds for changes in the available

computation resources or the available parallelism.

5.4 Evaluation

In this section, we first introduce specific aspects of the experimental setup we use to

implement and evaluate TaskPoint. We introduce the two architectures we simulate

in our evaluation of TaskPoint. Afterwards, we show, how we extend the TaskSim

simulator to enable fast-forwarding a simulation at an arbitrary, user-defined per-

thread IPC. A general introduction to TaskSim can be found in Section 3.3. For an

introduction to the OmpSs programming model we refer to Section 3.1. The bench-

marks used for our evaluation of TaskPoint are presented in Section 3.4.1. After

presenting the experimental setup, we proceed with an evaluation of TaskPoint’s

model parameters, simulation error, and simulation speedup.

Simulated Architectures

We evaluate the fidelity of our methodology by investigating simulation speedup

and execution time error of multi-threaded simulations of two radically different

multi-core architectures. One resembles a server-class system, while the other re-

sembles a low-power mobile platform. Table 5.1 lists the key characteristics of the

simulated architectures. The high performance architecture features a large reorder

buffer and a three-level cache hierarchy, as found in HPC systems. The low-power

architecture has a smaller reorder buffer and two levels of cache memories, as is typ-

ical for battery powered mobile systems. Recently, low-power systems are gaining

interest for applications in HPC [94].

Extension of the TaskSim Simulator

As stated in Section 3.3, TaskSim features a detailed and a fast-forwarding mode. In

the fast-forwarding mode, called burst mode, TaskSim only accounts for the number

of CPU cycles between events, in this case between the beginning and the end of the

execution of a task instance. In the existing implementation, TaskSim reads a task

72 Chapter 5. Sampled Simulation of Task-Based Programs

TABLE 5.1: Architectural parameters of high performance and mobile
configurations used for model validation

Parameter High-perf. Low-power
Reorder-buffer size 168 40
Issue width 4 3
Commit rate 4 3
Cache line size 64 B 64 B
L1 cache 32 kB private

4 cycles latency
8-way associative

32 kB private
4 cycles latency
2-way associative

L2 cache 2 MB private
11 cycles latency
8-way associative

1 MB shared
21 cycles latency
16-way associative

L3 cache 20 MB shared
28 cycles latency
20-way associative

none

instance’s cycle count from the application trace. In the implementation of our fast-

forward mechanism, the duration of a task instance is calculated at the beginning of

its execution. Using the mean IPC of the sample history of a task instance i’s task

type T and its dynamic instruction count Ii, we estimate its number of execution

cycles Ci according to Ci = Ii
IPCT

. The result is the number of cycles it takes to

execute the task instance at an IPC of IPCT , the average IPC of the instance’s task

type. The dynamic instruction count is read from the application trace.

In the scope of this work, we extended TaskSim with the capability to switch

between detailed and fast-forward mode at runtime. We also extended its fast sim-

ulation mode. Instead of using previously recorded cycle counts from a trace, our

implementation of fast mode uses cycle counts predicted by our fast-forward mech-

anism. To the best of our knowledge, this is the first fast-forward mechanism ap-

plying different IPCs to different parts of a program. Our mechanism allows fast-

forwarding dynamically scheduled parallel programs in which the per-thread in-

struction stream is a-priori unknown. Next, we evaluate performance variation of

task-based programs observed in simulation with TaskSim.

In this section, we conduct a sensitivity analysis of TaskPoint’s model parame-

ters. Then, we evaluate execution time error and simulation speedup of periodic

sampling and lazy sampling. Finally, we test the robustness of our model by using

the same parameters to simulate a low-power architecture.

5.4.1 Adjusting the Model Parameters

We determine the optimal model parameters following an incremental approach.

First, we determine the optimal number W of task instances needed for warmup at

5.4. Evaluation 73

0 2 4 6 8 10

Number W of task instances for warmup

0

2

4

6

8

10

A
ve

ra
ge

 e
rr

or
 [%

]

0

50

100

150

200

A
ve

ra
ge

 s
pe

ed
up

Error
Speedup

FIGURE 5.6: Error and speedup for different sizes of warmup interval

1 2 3 4 5 6 7 8 9 10

Size H of sample history

0

2

4

6

8

A
ve

ra
ge

 e
rr

or
 [%

]

0

10

20

30

40

A
ve

ra
ge

 s
pe

ed
up

Error
Speedup

FIGURE 5.7: Error and speedup for different sizes of sample history

simulation start. Afterwards, we consider different numbers of task instances H con-

stituting the sample history. Finally, we explore a range of values for the sampling

period P .

In order to determine the optimal value for W we set H = 10 and P = ∞ and

evaluate different values ranging from W = 0 (no warmup) to W = 10. Figure 5.6

shows error and speedup, averaged over simulations with 32 and 64 threads. The re-

ported values are averaged over the benchmarks and kernels with an error > 5% for

at least one value of H , namely 2d-convolution, 3d-stencil, atomic-monte-carlo-dynamics,

knn and blackscholes. We found that W = 2 yields an average error of less than 2%.

Larger values of W do not significantly reduce the average error, but they reduce

simulation speedup. Therefore, for the remainder of this paper, we set W = 2.

Next, we evaluate different values for H , the size of the sample history. For this

purpose, we set P = ∞. Note that we already set W = 2. Figure 5.7 shows error

and speedup for different sizes H of the sample history, averaged over simulations

with 32 and 64 threads of the aforementioned benchmarks. We found that H = 4

minimizes the average error. This value also minimizes the standard deviation of

74 Chapter 5. Sampled Simulation of Task-Based Programs

101 102 103

Size P of sampling period

0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

 e
rr

or
 [%

]

0

5

10

15

20

25

A
ve

ra
ge

 s
pe

ed
up

Error
Speedup

FIGURE 5.8: Error and speedup for different sizes of sampling period

the average error, which is not shown in the Figure. Larger values of H do not only

result in a larger average error, but also in lower simulation speedup. Therefore, for

the remainder of this thesis, we set H = 4.

Finally, we explore different sizes of the sampling period P . With W = 2 and

H = 4 already fixed, P is the only remaining parameter. Figure 5.8 shows the av-

erage error for values of P ranging from 10 to 1, 000. We find that average error

and speedup increase with the size of the sampling period. The larger the value of

P , more task instances are simulated in fast mode. Since the total number of task

instances of a program is constant, the fraction of detailed simulation decreases, re-

sulting in increasing speedup. For P ≥ 1000 error and speedup remain constant.

At this point, none of the investigated programs has a sufficient number of task in-

stances for resampling the simulation at least once and periodic sampling becomes

equivalent to lazy sampling.

We aim for a simulation error of less than 1%. A sampling period P = 250 yields

an error of 0.8% and a simulation speedup of 15.1x, averaged over the benchmarks

used in our sensitivity analysis. In the remainder of this section, we evaluate Task-

Point for periodic sampling with P = 250 and for lazy sampling (periodic sampling

with P = ∞).

5.4.2 Periodic Sampling

First, we evaluate periodic sampling, simulating the high-performance architecture

in Table 5.1, which we also use to find the sampling parameters. Afterwards, we

simulate the low-power architecture using the same sampling parameters.

High-Performance Architecture

Figure 5.9 shows execution time error and simulation speedup for all investigated

benchmarks, simulated with the parameters W = 2, H = 4 and P = 250.

5.4. Evaluation 75

0

2

4

6

8

10
A

bs
ol

ut
e

er
ro

r
[%

] 36
.5
15

.1
36

.9

8 threads
16 threads
32 threads
64 threads

2d
­co

nv
olu

tio
n

3d
­st

en
cil

ato
mic­

mon
te­

ca
rlo

­d
yn

am
ics

de
ns

e­
matr

ix­

mult
ipl

ica
tio

n fft

his
tog

ra
m

mer
ge

­so
rt

n­
bo

dy

re
du

cti
on

sp
ar

se
­m

atr
ix­

ve
cto

r­

mult
ipl

ica
tio

n

ve
cto

r­o
pe

ra
tio

n

ch
ec

kS
pa

rse
LU

ch
ole

sk
y

jac
ob

i

km
ea

ns kn
n

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

re
t

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

av
er

ag
e

0
10
20
30
40
50
60
70
80

S
pe

ed
up

FIGURE 5.9: Error and speedup of periodic sampling; high-
performance architecture; P = 250

The average execution time error is less than 2% for 8, 16, 32 and 64 simulated

threads. The error for 1, 2 and 4 simulated threads is less than 1% and not shown

in the Figure. We observe the largest simulation speedup of 76.2 for sparse-matrix-

vector-multiplication executed with 8 threads.

We observe the highest error of 36.9% for merge-sort simulated with 64 threads.

We attribute this error to the fact that each of merge-sort task types has two distinct

classes of behavior, as stated earlier. Later on in this section we show, how model-

based simulation improves this error.

The simulation of freqmine with 8 threads shows an error of 8.9%. Freqmine con-

sists of 7 different task types, one of which accounts for 93% of the total number of

dynamic instructions. The dynamic instruction count of the instances of this task

type ranges from 490 to 11,000,000. Inspecting the source code reveals a construct

of nested if-statements in a task declaration. This causes different instances of the

same task type to follow completely unrelated control flow paths. The unbalanced

size across task instances makes sampling the simulations with 32 and 64 threads in-

effective. Since these configurations are simulated almost entirely in detail, the error

is negligible and speedup is close to 1.

From this finding, we derive a recommendation to programmers for improving

performance predictability of task-based programs: One should avoid large-scale

control flow divergence among instances of the same task type. In practice, this is

achieved by declaring code performing unrelated work as different task types.

We observe an error of 7.3% in the case of dedup with 64 threads. Dedup consists of

4 task types, one of which accounts for 99.9% of the dynamic instruction count. The

dynamic instruction count of the instances of this task type ranges from 3,500,000 to

25,100,000. The dominating task type performs de-duplication as well as compres-

sion, which are highly input dependent operations. Previous work identified input

dependence as a source of performance variation [53]. Performance variation makes

76 Chapter 5. Sampled Simulation of Task-Based Programs

0

2

4

6

8

10

A
bs

ol
ut

e
er

ro
r

[%
] 14

.3
13

.8
11

.0
15

.9
37

.1
13

.0
22

.3

1 thread
2 threads
4 threads
8 threads

2d
­co

nv
olu

tio
n

3d
­st

en
cil

ato
mic­

mon
te­

ca
rlo

­d
yn

am
ics

de
ns

e­
matr

ix­

mult
ipl

ica
tio

n fft

his
tog

ra
m

mer
ge

­so
rt

n­
bo

dy

re
du

cti
on

sp
ar

se
­m

atr
ix­

ve
cto

r­

mult
ipl

ica
tio

n

ve
cto

r­o
pe

ra
tio

n

ch
ec

kS
pa

rse
LU

ch
ole

sk
y

jac
ob

i

km
ea

ns kn
n

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

re
t

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

av
er

ag
e

0
10
20
30
40
50
60
70
80

S
pe

ed
up

FIGURE 5.10: Error and speedup of periodic sampling; low-power
architecture; P = 250

it difficult to determine a task type’s average performance during sampling.

We recognize that, in certain cases, input dependence can not be avoided. One

way to improve the accuracy of sampled simulation of programs showing input

dependence is to classify task instances into classes of similar performance. We en-

vision clustering of instances of the same task type based on micro-architecture in-

dependent metrics, e.g. instruction count or instruction mix. We leave this for future

work.

Next, we evaluate the generalization capability of periodic sampling. We simu-

late a low-power architecture which is radically different from the high-performance

architecture we used to determine the sampling parameters.

Low-Power Architecture

Figure 5.10 shows execution time error and simulation speedup for simulations of

all benchmarks executed on the low-power architecture introduced in Table 5.1 with

1, 2, 4 and 8 threads. We notice that, for increasing thread counts, speedup degrades

less than in the case of the high-performance architecture. Since we simulate smaller

thread counts, the simulation is resampled more often and the percentage of task

instances simulated in fast mode is more similar across different thread counts.

With an error of 37.1% for 2 threads, fluidanimate is the benchmark with the high-

est error. In the case of fluidanimate, the instruction count of task instances varies

between 1 million and 70 million, whereas task instances with more instructions

tend to execute at a higher IPC. The instruction count and IPC variation is caused by

the fact that all task instances perform an index computation that is highly inefficient

for high indexes. The assumption, that task instances of the same type have similar

performance is thus not fulfilled.

x264 shows an error of up to 22.3%. This benchmark performs video transcoding,

which is a highly input-dependent operation. Each frame is processed by a different

5.4. Evaluation 77

0

2

4

6

8

10
A

bs
ol

ut
e

er
ro

r
[%

] 22
.9
28

.0
40

.8
14

.2
15

.0
14

.5

8 threads
16 threads
32 threads
64 threads

2d
­co

nv
olu

tio
n

3d
­st

en
cil

ato
mic­

mon
te­

ca
rlo

­d
yn

am
ics

de
ns

e­
matr

ix­

mult
ipl

ica
tio

n fft

his
tog

ra
m

mer
ge

­so
rt

n­
bo

dy

re
du

cti
on

sp
ar

se
­m

atr
ix­

ve
cto

r­

mult
ipl

ica
tio

n

ve
cto

r­o
pe

ra
tio

n

ch
ec

kS
pa

rse
LU

ch
ole

sk
y

jac
ob

i

km
ea

ns kn
n

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

re
t

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

av
er

ag
e

0
100
200
300
400
500
600

S
pe

ed
up

FIGURE 5.11: Error and speed-up of lazy sampling; high-
performance architecture

task instance. Depending on the properties of a frame, performance can vary in a

wide range, resulting in a large simulation error.

Merge-sort and freqmine are other benchmarks with significant errors of up to

14.3% and 13.0%, respectively. This is consistent with the simulation of the high-

performance architecture. We attribute this error to the same reason as in the case

of the high-performance architecture, namely inconsistent behavior among task in-

stances belonging to the same task type.

Interestingly, with 11.0%, sparse-matrix-vector-multiplication shows a larger error

for the low-power architecture than for the high-performance architecture. Depend-

ing on the structure of the input matrix, memory accesses are more or less regu-

lar [52]. We conclude that, due to the two-level cache hierarchy, the smaller last-level

cache and the lower memory bandwidth, this has a higher impact on performance

variation than in the high-performance architecture. This is another example of in-

put dependence, similar to the case of dedup explained in the previous section.

5.4.3 Lazy Sampling

For our evaluation of lazy sampling, we set W = 2, H = 4 and P = ∞. We simulate

the benchmarks listed in Table 3.2 executing on the high performance architecture

and the low-power architecture listed in Table 5.1.

High-Performance Architecture

Figure 5.11 shows execution time error and simulation speedup of the lazy sampling

policy for the investigated benchmarks executed on the high-performance architec-

ture. The average error is less than 3.5% for all simulated thread counts (including

1, 2, and 4 threads, which are not shown in the Figure).

78 Chapter 5. Sampled Simulation of Task-Based Programs

0

2

4

6

8

10

A
bs

ol
ut

e
er

ro
r

[%
] 11

.5
14

.6
12

.9
10

.3
11

.2
11

.3
13

.1
47

.3
38

.0
24

.3

1 thread
2 threads
4 threads
8 threads

2d
­co

nv
olu

tio
n

3d
­st

en
cil

ato
mic­

mon
te­

ca
rlo

­d
yn

am
ics

de
ns

e­
matr

ix­

mult
ipl

ica
tio

n fft

his
tog

ra
m

mer
ge

­so
rt

n­
bo

dy

re
du

cti
on

sp
ar

se
­m

atr
ix­

ve
cto

r­

mult
ipl

ica
tio

n

ve
cto

r­o
pe

ra
tio

n

ch
ec

kS
pa

rse
LU

ch
ole

sk
y

jac
ob

i

km
ea

ns kn
n

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

re
t

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

av
er

ag
e

0
500

1000
1500
2000
2500
3000
3500
4000

S
pe

ed
up

FIGURE 5.12: Error and speed-up of lazy sampling; low-power archi-
tecture

Merge-sort and freqmine are still among the benchmarks showing the highest er-

ror. Compared to periodic sampling, the highest observed error of merge-sort in-

creases from 36.9% to 40.8% for the simulation with 64 threads. In the case of fre-

qmine, the highest observed error increases from 8.9% to 9.6% for the simulation

with 8 threads.

With up to 15.0% and 14.5%, dedup and x264 show considerably larger errors

compared to periodic sampling. This indicates that by resampling the simulation

periodic sampling is able to reduce the error for benchmarks with irregular behavior.

While the average error of lazy sampling is comparable to the error of periodic

sampling, we observe a significant increase of average simulation speedup. Com-

pared to periodic sampling, we observe the largest increase from 37.8 to 197.0 for the

average speedup of the simulations with 8 threads. The smallest gain in speedup is

observed for the simulations with 64 threads, in which speedup increases from 16.0

to 22.5. For 1 thread, which is not shown in the Figure, speedup increases from 35.2

to 1244.5.

Low-Power Architecture

Figure 5.12 shows execution time error and simulation speedup for the low-power

architecture. We observe a marginal increase of the maximum error of merge-sort,

sparse-matrix-vector-multiplication and freqmine. For dedup and x264, the error in-

creases for all simulated thread counts. We observe the highest increase, from 22.3%

to 47.3%, for the simulation of x264 with 2 threads.

5.4. Evaluation 79

0

2

4

6

8

10

A
bs

ol
ut

e
er

ro
r

[%
]

8 threads
16 threads
32 threads
64 threads

2d
­co

nv
olu

tio
n

3d
­st

en
cil

ato
mic­

mon
te­

ca
rlo

­d
yn

am
ics

de
ns

e­
matr

ix­

mult
ipl

ica
tio

n fft

his
tog

ra
m

mer
ge

­so
rt

n­
bo

dy

re
du

cti
on

sp
ar

se
­m

atr
ix­

ve
cto

r­

mult
ipl

ica
tio

n

ve
cto

r­o
pe

ra
tio

n

ch
ec

kS
pa

rse
LU

ch
ole

sk
y

jac
ob

i

km
ea

ns kn
n

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

re
t

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns

x2
64

av
er

ag
e

0
100
200
300
400
500
600

S
pe

ed
up

FIGURE 5.13: Error and speed-up with analytical model; high-
performance architecture

Limitations of Lazy Sampling

Our results show, that lazy sampling achieves significantly higher simulation speedup,

compared to periodic sampling. However, lazy sampling can lead to simulation er-

rors of more than 40%, especially if the simulated application contains task types

whose instances expose varying behavior. The most notable cases are merge-sort,

dedup, freqmine and x264. This motivates the use of smarter clustering techniques

to detect classes of task instances with related behavior. As stated earlier, we use

DBSCAN clustering in order to avoid eccentrically shaped clusters being split into

multiple sub-clusters. We correct the resulting simulation error using performance

predictions obtained from an analytical model.

5.4.4 Analytical modeling

For our evaluation of model-based simulation, we assume the same sampling pa-

rameters as for lazy sampling, i.e. W = 2, H = 4 and P = ∞. The application

profiles are generated together with the application traces before simulation. For

each simulated architecture, the model is evaluated once per benchmark.

High-Performance Architecture

Figure 5.13 shows error and speedup for the model-based simulations of the high-

performance architecture. The average error ranges from 0.09% for 8 threads to

1.32% for 64 threads. In comparison, lazy sampling shows average errors of almost

3% for 8 and 64 simulated threads.

For 21 out of 27 benchmarks, we observe errors of less than 2% across all sim-

ulated thread counts. The highest error is 8% in the case of merge-sort, which is a

significant improvement over the 40.8% observed in the case of lazy sampling.

80 Chapter 5. Sampled Simulation of Task-Based Programs

0

2

4

6

8

10

A
bs

ol
ut

e
er

ro
r

[%
]

1 thread
2 threads
4 threads
8 threads

2d­convolution

3d­stencil

atomic­monte­

carlo­dynamics

dense­matrix
­

multip
lication

fft

histogram

merge­sort
n­body

reduction

sparse­matrix
­vector­

multip
lication

vector­o
peration

checkSparseLU

cholesky
jacobi

kmeans knn

blackscholes

bodytrack
canneal

dedup
facesim

ferre
t

fluidanimate

freqmine

streamcluster

swaptions
x264

average

0
500

1000
1500
2000
2500
3000
3500
4000

S
pe

ed
up

FIGURE 5.14: Error and speed-up with analytical model; low-power
architecture

For some benchmarks, the simulation error increases for increasing thread counts.

In particular, this happens for the benchmarks dense-matrix-multiplication, fft, his-

togram, merge-sort, checkSparseLU and blackscholes. In our current implementation,

the analytical model does not model contention in the shared LLC. For the aforemen-

tioned benchmarks, we find the LLC misses per kilo-instruction (MPKI) to increase

for an increasing number of threads, which supports our aforementioned hypothe-

sis.

With an average speedup of 220 for 8 threads, model-based simulation is faster

than lazy sampling, which achieves a speedup of 200. At the same time, the simu-

lation error is reduced to less than half, compared to lazy sampling. Thus, model-

based simulation is superior to lazy sampling both in terms of error and speedup.

Low-Power Architecture

Figure 5.14 shows error and speedup for the model-based simulations of the low-

power architecture. The average error ranges from 0.06% for 1 thread to 0.49% for 4

threads, which is a large improvement over lazy sampling.

For 22 of 27 benchmarks, the maximum error across all thread counts is less than

2%. For 13 of these benchmarks the error is even less than 0.1%. The largest error

of 3.6% occurs in the case of fft. As in the case of the high-performance architecture,

for some benchmarks the error increases when increasing the number of simulated

threads.

The average simulation speedup ranges from 290 for 8 threads to 1490 for 1

thread. Lazy sampling achieves average speedups of 240 and 1300, respectively.

Thus, as in the case of the high-performance architecture, model-based simulation

achieves superior simulation accuracy and speed.

5.5. Summary 81

Summary

The results of our evaluation show that TaskPoint accurately predicts execution time

of task-based programs. For lazy sampling, the average error is 3.2% with a max-

imum error of 40.8% and a simulation speedup of 22.5. We show that, for most

benchmarks, periodic sampling leads to a smaller simulation error, however, at the

expense of simulation speedup. With per-task-instance BBVs, DBSCAN clustering

and analytical modelling, we reduce the simulation error across all benchmarks. For

64 simulated threads, model-based simulation leads to an average error of 1.3% with

a maximum error of 7.9%. With 22.3, the simulation speedup is only slightly lower

than the speedup of 22.5 of lazy sampling.

5.5 Summary

Previous sampled simulation techniques for parallel programs rely on profiling to

identify the parameters of the sampling mechanism. Although those techniques

have been proven to be accurate for statically scheduled fork-join based programs,

they are not directly applicable to dynamically scheduled task-based parallel pro-

grams.

The proposed methodology enables sampled simulation of task-based parallel

programs. Sampling units are identified based on the partitioning into tasks pro-

vided by the programmer. Between detailed simulation phases, we employ a novel

fast-forward mechanism, which correctly reflects the different progress rates of task

instances belonging to different task types and adapts to phase changes in the simu-

lated application.

In this chapter, we extend our original methodology with BBVs and clustering

to automatically determine classes of similar task instances. We correct simulation

inaccuracies by applying correction factors obtained from an analytical performance

model.

We assessed TaskPoint’s generalization capability by using two radically differ-

ent architectures to select sampling parameters and to run simulations. The evalua-

tion results are satisfactory across a wide range of benchmarks, different numbers of

simulated threads and different architecture models. The average simulation error

is less than 2% at an average speedup ranging from 19× for 64 threads to 1019× for

1 thread.

83

Chapter 6

Multi-Level Simulation of Hybrid

Programs

6.1 Introduction

The process of designing next-generation High Performance Computing (HPC) ma-

chines is extremely challenging. The increasing amount of computational resources

each new generation of HPC systems integrates makes this challenge even more dif-

ficult. In addition, the trend to use commodity server processors as the common

choice for designing such machines is changing, as processors with leaner core de-

signs that feature significantly different microarchirectural characteristics are start-

ing to make their debut in the HPC market [95, 119, 125]. Consequently, the design

space for next-generation HPC machines is expanding. Novel solutions are required

in order to quickly predict the performance of current and future scientific applica-

tions on those systems and to identify the best design points.

Besides taking into account the hardware, it is also important to consider its inter-

actions with the system software (e.g. operating system, runtime system) [30, 114].

Hybrid programming models are pervasive nowadays, employing MPI for inter-

node communication and a shared-memory programming model for node-level par-

allelism. Motivated by larger core counts within the same node, sophisticated ways

of handling shared memory parallelism are becoming increasingly attractive to re-

duce load imbalance and thus improve parallel efficiency in large shared-memory

multi-core configurations [42, 66, 79]. For example, OpenMP, the most popular ap-

proach for shared memory programming, has significantly evolved and currently

incorporates advanced features such as tasking support [8, 89]. For all these reasons,

parallel operations such as scheduling and synchronization are expected to become

key system software components. As a result, simulators targeting next-generation

HPC systems must take into account such parallel operations performed at the run-

time system level.

Existing tools make simulation of large-scale HPC machines with thousands of

cores unfeasible. Conventional cycle-accurate architectural simulators offer a great

84 Chapter 6. Multi-Level Simulation of Hybrid Programs

level of detail, but make simulation times impractical when simulating more than a

few tens [14, 21, 117] or a few hundreds of cores [103]. Higher-level simulators are

able to simulate thousands of cores at the cost of not modelling any microarchitec-

tural details or the impact of the system software [4, 40, 126]. Raising the level of

abstraction is necessary, but needs to be done to an appropriate degree. Hence, it is

critical to develop flexible simulation infrastructures that allow to quickly trim the

vast design space while still capturing the impact of the simulated microarchitecture

and system software.

In this chapter, we make the following contributions:

• We present MUSA, a multi-scale simulation approach that enables fast and ac-

curate performance estimations of next-generation HPC machines. Our method-

ology seamlessly captures inter-node communication as well as intra-node

microarchitectural and system software interactions, improving usability and

simplifying the simulation workflow. MUSA relies on native execution traces

with two levels of detail to allow simulation of different communication net-

works, numbers of cores per node, and relevant microarchitectural parameters.

• We validate MUSA using the NAS Multi-Zone Parallel Benchmark suite [116],

and then evaluate three large-scale case studies (with up to 16,384 cores) us-

ing BT-MZ, HYDRO [75], and SPECFEM3D [72]. Our evaluation shows that

MUSA provides accurate performance predictions by combining information

at different levels of granularity. When comparing native executions and MUSA

simulations with up to 2,048 cores, we achieve relative errors within 10% in

the common case, demonstrating that our detailed model is able to capture

microarchitectural and system software effects. In addition, we show that our

simulations complete in an affordable amount of time, i.e. less than a day of

total aggregated CPU time for detailed 16,384-core simulations. This allows to

quickly identify scalability problems in the targeted case studies.

• Finally, we perform a design space exploration analysis using high-performance,

low-power, and die-stacked DRAM processor profiles on a system with 16,384

cores. We find that for one of the evaluated HPC applications, HYDRO, the

low-power processor can achieve on par performance even with the same

number of cores, as the high-performance memory hierarchy and aggressive

microarchitecture are over-dimensioned. In contrast, the other two applica-

tions benefit from an aggressive out-of-order microarchitecture design, and

SPECFEM3D achieves better scalability by exploiting the higher memory band-

width provided by die-stacked DRAM technology.

6.2. Background and Motivation 85

6.2 Background and Motivation

This section describes the co-design challenges in next-generation HPC systems. Af-

terwards, we discuss the difficulties of simulating large HPC applications and the

limitations this imposes in exploring designs for future systems.

6.2.1 Co-Design of HPC Applications and Systems

In current HPC applications, the Message Passing Interface (MPI) is the most com-

mon way to expose parallelism across multiple computing nodes. As the number of

nodes increases with the deployment of new HPC systems, node-to-node communi-

cation costs become more relevant and need further consideration when designing

such systems. For example, certain applications might experience communication

time overheads in the presence of load imbalance across different nodes. Finding

the right ratio between the number of nodes and the number of processing units per

node is a primary design decision that can greatly impact application performance.

Hence, exploring such trade offs beforehand is a fundamental step when designing

a new system.

In current HPC systems, nodes typically consist of a small number of sockets

with shared memory. Shared-memory programming models such as OpenMP are

the most common approach to express parallelism within a node. Recently, ad-

vanced tasking features or support for accelerators and SIMD constructs have been

included in OpenMP. These features allow to exploit the computational power of the

node while increasing programmer productivity [8, 42, 89]. In next-generation HPC

systems, an appropriate amount of cache per core and enough memory bandwidth

are paramount to achieve the desired performance within a node when running one

of the targeted applications. Therefore, provisioning a node with enough resources

to fit such demands is a design decision that needs to be considered when designing

an HPC system.

Hybrid programming models simultaneously employ different paradigms to ex-

ploit both inter- and intra-node parallelism, e.g. MPI and OpenMP. To achieve peak

performance it is important to have an even amount of computation distributed

across the different nodes, and that the available parallelism within a node maps

well to the available resources. By properly dimensioning a system the node-to-node

communication overheads can be minimized, while at the same time achieving the

desired node level performance.

6.2.2 Challenges Simulating Large HPC Applications

Simulation is a key tool in order to design next-generation HPC systems and applica-

tions. However, simulating future HPC systems at a meaningful scale is challenging

86 Chapter 6. Multi-Level Simulation of Hybrid Programs

Tracing Infrastructure

Native execution
(N ranks)

MUSA
tracer

detailed?

Communication
trace

Computation
trace

Instruction
trace

coarse-grain

fine-grain

No

Yes
Requires computation
 and communication

traces

Specify representative
ranks and iterations

MUSA
simulator

detailed?

Parallel simulation of
computation phases

No

Yes

burst

detailed

Simulate each
communication phase

across all ranks

Integrate
computation

phases

Parameters of
simulated architecture

Generate
output trace

Simulated
traceSimulation Infrastructure

Traces

FIGURE 6.1: MUSA tracing and simulation methodology.

due to the large number of components that need to be considered. Consenquently,

HPC system designers have to constantly trade off accuracy for simulation speed. As

explained before, the number of nodes in the system and the amount of resources

within a node can create performance bottlenecks at the inter-node and intra-node

levels. Hence, scaling down the simulated system or focusing only on the node level

may lead to suboptimal design decisions. Moreover, applications used in large-scale

systems exhibit long execution times and downsizing the input sets to make them

more manageable can change the application’s characteristics, i.e. the amount of

cache or memory bandwidth needed to perform well under the original input sets.

In order to simulate such large HPC systems, new methodologies are needed to

gauge the necessary requirements both at the overall inter-node level as well as the

intra-node level. In this paper we propose MUSA, a multi-level simulation infras-

tructure capable of simulating large-scale HPC systems. MUSA combines different

levels of abstraction to provide insights on the expected performance of an applica-

tion on a hypothetical HPC system. The following section describes the proposed

infrastructure in detail.

6.3. Multi-Level Simulation Approach 87

6.3 Multi-Level Simulation Approach

In this section, we present MUSA, our multi-level simulation infrastructure for hy-

brid programs running on next-generation HPC systems.

6.3.1 MUSA - General Overview

MUSA is an end-to-end methodology that uses traces to enable large-scale simula-

tions with different communication networks, numbers of cores per node, and mi-

croarchitectural parameters in a comprehensive HPC environment that considers

the effects of system software. To this end, MUSA employs two components:

1. A tracing infrastructure that captures communication, computation and run-

time system events

2. A simulation infrastructure that leverages these traces for simulation at multi-

ple levels

Figure 6.1 illustrates our modular methodology that provides a streamlined work-

flow from tracing to the final simulation output.

HPC applications stress a system at multiple levels, including both the hardware

(i.e. pipeline, core, chip, node, network) and the software (i.e. scheduling, syn-

chronization, communication and computation phases). Using a single simulation

approach across all levels would be too rigid to adapt to the degree of detail appro-

priate for each level. For this reason, MUSA’s simulation infrastructure is capable

of changing the level of simulation detail, from cycle-accurate microarchitectural

simulations to high-level analytical models. The methodology allows to combine

detailed (higher computational cost) and high-level (higher simulation speed) sim-

ulations, enabling simulation of large-scale machines with thousands of cores in a

reasonable amount of computational time, while guaranteeing a high degree of ac-

curacy. The rest of this section provides further details on the tracing and simulation

infrastructures.

6.3.2 Tracing - Capture Multi-Level Behavior

The initial step is to trace an application’s execution at multiple levels. Given our tar-

geted hybrid programming model, we start tracing each MPI process representing a

rank. Within a rank multiple threads running in parallel may coexist, managed by a

runtime system. As shown in Figure 6.1, MUSA traces an application by running it

natively with the number of ranks to be used in future simulations and instructs the

runtime system to execute each rank using a single thread.

88 Chapter 6. Multi-Level Simulation of Hybrid Programs

(A) Coarse-grain instrumentation trace of HYDRO with 4 ranks. Delimits
computation and communication phases and includes runtime events.

(B) Simulation output trace for the above input trace when simulating a sys-
tem with 2 cores per rank. The runtime system is faithfully modeled.

FIGURE 6.2: Traces used in MUSA’s methodology: (a) tracing infras-
tructure and (b) simulation infrastructure output. Traces are shown

using the same time scale.

The tracer then generates a file with the communication and computation infor-

mation per rank. This trace file contains information about the MPI communication

phases, including:

1. Timestamps of beginning and end of each communication phase for all ranks

2. The type of each communication (e.g. collective or point-to-point)

3. The size of the data to be sent.

At the same time the computation information for each rank is recorded, storing

timestamps for each computation phase and multiple runtime events such as cre-

ation and synchronization of parallel sections. The instrumentation required to ob-

tain these traces is coarse-grained, leading to a small overhead that does not signifi-

cantly affect the application’s behavior.

In order to simulate a node in detail, MUSA requires additional instruction-level

instrumentation for computational phases; such as the operation code, the program

counter and the involved registers and memory addresses. Such detailed instru-

mentation is deferred to a separate native execution due to its higher overhead that

might alter application behavior. Hence, when tracing in detailed mode, the times-

tamps taken in the first trace are used to correct any deviation in the behavior of the

application introduced in the detailed trace step.

Figure 6.2a shows a trace generated by MUSA’s tracing infrastructure with com-

munication and computation information for a fraction of an application’s execu-

tion time. The tracing methodology generates traces that allow simulations even if

the characteristics of the simulated computational node (e.g. the number of cores,

the memory hierarchy) or the communication network change. As a result, we can

perform architectural analysis of a large design space using the same set of traces,

reducing trace generation time and storage requirements. Section 6.4.3 contains fur-

ther details on the employed tracing tools and their overheads.

6.3. Multi-Level Simulation Approach 89

6.3.3 Simulation - Leverage Multi-level Traces

MUSA’s simulation step employs the communication and computation events gath-

ered in the tracing step. As shown in Figure 6.1, the methodology initially identifies

the different computation phases for each rank, which are independent and can be

simulated in parallel. Each of these rank level computation phases is simulated with

the specified number of cores and parameters of the microarchitecture and the mem-

ory hierarchy. However, MUSA is able to simulate an arbitrary number of cores per

rank. To accomplish this, MUSA injects runtime system API calls by using the run-

time system events recorded in the trace, effectively simulating the runtime system,

including scheduling and synchronization for the number of simulated cores. The

architectural simulator we employ can perform simulations either in burst or detailed

mode, which allow from faster than native simulation speeds to slower but more

detailed design space exploration studies, respectively. Details about the chosen ar-

chitectural and network simulators can be found in Section 6.4.3.

Burst mode simulation: Simulations using burst mode replay the computation

events traced during native execution with coarse grained instrumentation. Burst

mode simulations do not take into account the contention that the memory hierar-

chy of a node might experience when running multiple threads, hence the obtained

performance estimations are to be treated as upper bounds. However, MUSA allows

the user to specify IPC correction factors to account for the impact of inter-thread

contention if there is any application-specific knowledge, making burst simulations

more accurate and flexible. Burst mode simulations allow faster than native simu-

lation speeds, thus enabling quick design space exploration studies with a variable

number of cores per rank and different communication networks.

Detailed mode simulation: When simulating a computation phase in detail,

MUSA also uses the detailed traces, enabling cycle-accurate simulations with de-

tailed models for microarchitecture and memory hierarchy. The detailed informa-

tion in the instruction-level trace allows to use different cycle-accurate simulators,

ranging from component-specific simulators, such as main memory, cache hierar-

chy, or interconnects, to detailed pipeline microarchitecture simulators. Detailed

simulations can be time consuming and an appropriate simulator has to be chosen

depending on the envisioned target study.

Simulating all computation phases of an application in detail is feasible for small

systems and short execution times. However, when going into the domain of thou-

sands of cores, full detailed simulation becomes prohibitive both in terms of trace

size and simulation time. Fortunately, HPC applications follow certain execution

patterns that are easy to identify with our visual trace format. We can leverage

this information by specifying a subset of the ranks, or even a subset of the itera-

tion phases within a rank, to be traced and simulated in detailed mode. Therefore,

90 Chapter 6. Multi-Level Simulation of Hybrid Programs

MUSA allows the user to define such bounds as input parameters, giving great flex-

ibility in deciding which computation phases are to be simulated in detail, while

the performance of the remaining phases is extrapolated. Section 6.3.4 details how

MUSA performs sampling of computation phases at different levels.

Network simulation and final output: After the computation phases have been

simulated, MUSA replays the execution of the communication trace events in order

to simulate the communication network and generate the final output trace of the

simulation. During this process, the durations of the computation phases are re-

placed by the results obtained in the simulations (either in burst or detailed mode),

and the communication phases are simulated using a network simulator. At the end

of this process the entire simulation is complete and the output trace is generated for

visualization.

Figure 6.2b shows an output simulation trace generated by MUSA when simu-

lating two cores per rank. The simulation models the OpenMP scheduling events by

calling the actual runtime system through inserted API calls for the traced events,

faithfully modeling the impact of having two cores on each node. The MPI commu-

nication is processed by thread T0 on each rank, while the computation phase load

of each rank is distributed across the two cores.

6.3.4 Sampling - Reducing Simulation Time

Accurate microarchitectural simulation is time consuming. Conventional simula-

tors achieve simulation speeds of 100 to 1000 KIPS [14, 99, 103]. As a consequence,

detailed simulation of large systems or long-running applications becomes infeasi-

ble. While MUSA allows simulations at different levels of detail, it still requires to

simulate some computation phases in detail. In an HPC application, these phases

typically run for a few seconds, before starting a new communication phase.

A common technique for reducing simulation time is sampling. Sampling can

be employed to allow detailed simulation of larger portions of an application or

to further reduce simulation time. Sampling seeks to minimize the amount of de-

tailed simulation by only simulating the representative parts of an application. In

the following, we point out how MUSA employs sampling at three orthogonal lev-

els of granularity in an application, namely (i) the whole application, (ii) a single

MPI rank, and (iii) a computation phase within an MPI rank. For a more thorough

introduction to sampled simulation we refer to Section 2.4.2.

Application level: Many applications in HPC show iterative behavior, with each

iteration representing a step in time or space. In many cases, different iterations

show very similar performance. Automatic techniques to identify iterations based

on performance monitoring counters or traces of logical events have been proposed

in the past [27, 65]. However, the simplest approach relies on directly analyzing the

6.4. Evaluation 91

code of the application, annotating the start and end of an iteration. When sampling

at the application level, MUSA leverages these techniques to identify repetitive be-

havior and select a small number of iterations for detailed simulation.

MPI rank level: As described in Section 6.2, a common programming technique

in HPC applications is the division of the problem domain into blocks. Afterwards,

each block is processed by a different MPI rank. Often, different MPI ranks show

similar performance across all processes. Consequently, MUSA can select a subset of

the MPI ranks for detailed simulation at the microarchitecture level. MUSA adopts

a simple approach consisting in simulating one out of every N MPI ranks (periodic

sampling). There are existing techniques to automatically select representative com-

putation phases of an application [50, 106].

Computation phase level: After selecting a subset of iterations and MPI ranks,

all computation phases have to be simulated in detail. Identifying representative

sections of a computation phase can be done automatically [107, 121], and applied

to parallel applications with barriers [22], as is the case of typical OpenMP pro-

grams with parallel loops. In the case of task-based programs, MUSA allows to

perform simulations with TaskPoint [54], the sampled simulation methodology for

task-based programs presented in Chapter 5 of this thesis.

6.4 Evaluation

In this section, we present our evaluation of MUSA. First, we introduce the appli-

cations we use to evaluate MUSA, and the native HPC system used for validation.

Afterwards, we introduce MUSA’s tracing infrastructure. Then, we validate MUSA,

before we apply our methodology to detect scalability bottlenecks in hybrid applica-

tions both at the algorithmic level, due to the lack of parallelism, and at the hardware

level, due to contention on shared resources. Finally, we also present simulation time

results and a design space exploration analysis.

6.4.1 Applications

To validate MUSA we use the NAS multi-zone benchmarks [116]: BT-MZ, SP-MZ

and LU-MZ. The benchmarks are introduced in Section 3.4.2. For this validation

step we use 16 MPI ranks with a mapping of one rank per node. Simulations are

performed with 1 to 8 cores per node. We run the benchmarks with the input class

D, for which we observe enough parallelism for the 16 MPI ranks employed.

In order to illustrate the potential of MUSA, we evaluate large-scale machines

using HYDRO [75], BT-MZ with the large input class E, and SPECFEM3D [72]. The

benchmarks HYDRO and SPECFEM3D are also introduced in Section 3.4.2. For the

92 Chapter 6. Multi-Level Simulation of Hybrid Programs

TABLE 6.1: Application characteristics.

Benchmark Characteristics
Name Input Ranks Tasks/rank Iterations Regions/iteration

BT-MZ Class D 16 2.3M 250 1
SP-MZ Class D 16 131K 500 1
LU-MZ Class D 16 1.3M 300 1

HYDRO big 256 1.0M 200 2
BT-MZ Class E 256 1.3M 250 1
SPECFEM3D n/a 256 1.9M 10700 1

TABLE 6.2: Application tracing statistics.

Benchmark Tracing
Name Input Overhead Burst Trace Detailed Trace

BT-MZ Class D 3.4% 5.6 GB 53.3 GB
SP-MZ Class D 1.2% 0.4 GB 13.7 GB
LU-MZ Class D 1.0% 3.2 GB 12.5 GB

HYDRO big 6.0% 16.1 GB 16.9 GB
BT-MZ Class E 8.5% 57.4 GB 120.0 GB
SPECFEM3D n/a 9.3% 101.4 GB 106.4 GB

large-scale simulations we employ 256 MPI ranks, one per node, and up to 64 cores

per node, resulting in simulations of up to 16,384 cores.

All applications use a hybrid programming model based on MPI [56, 82] for

inter-node parallelization and a task-based programming model, OmpSs [42], for

intra-node parallelization. MPI and OmpSs are introduced in Sections 2.2.2 and 2.2.4,

respectively.

Table 6.1 summarizes the main characteristics of each application. It includes

the number of MPI ranks, the total number of tasks per MPI rank, the number of

iterations of the application and the number of parallel regions within an iteration.

For example, in the case of BT-MZ with input class E there is an average of 5,200

tasks per parallel region (tasks/rank
iterations × regions).

Table 6.2 lists the trace sizes of the investigated applications. Burst traces contain

only MPI and OpenMP runtime system events, but no detailed instruction trace. The

table clearly shows, that detailed traces can be up to an order of magnitude larger

than burst traces. The table also lists the tracing overhead for generating burst traces,

i.e. the application slowdown caused by the instrumentation tool. Generating a

detailed trace introduces an overhead of up to three orders of magnitude, which is

not shown in the table.

6.4.2 Native HPC Infrastructure

We validate MUSA against the MareNostrum 3 supercomputer. Each node has two

sockets with an Intel Xeon E5-2670 featuring eight cores running at 2.6GHz. The

6.4. Evaluation 93

cores implement aggressive superscalar capabilities, have private L1 and L2 caches,

and a shared 20MB L3 cache. The nodes are connected via a high-bandwidth Infini-

Band FDR10 network. To validate MUSA, we simulate the same HPC infrastructure.

For the native executions, we present results with up to eight cores per node,

making use of a single socket. This avoids factoring in non-uniform memory access

timings that may bias the results. In addition, we run each native experiment five

times and select the measurement that presents the lowest amount of interference

due to current system load.

6.4.3 Tracing and Simulation Infrastructure

Our multi-level simulation infrastructure is based on two main components:

1. Dimemas, a high-level simulator able to model MPI communication phases us-

ing analytical models [49] (introduced in Section 2.3.3)

2. TaskSim, a detailed multi-core simulator with accurate memory models [99,

100] (introduced in Section 3.3)

Performing application simulations requires two steps. In the first step we gener-

ate traces that allow execution replay even if the characteristics of the simulated

computational node change, e.g. the number of cores or the memory hierarchy de-

scription. Hence we can perform design space architectural analysis using the same

set of traces, reducing trace storage requirements.

Traces are obtained using different lightweight tracing tools based on extrae [10]

and PIN [80]. To obtain the traces for an application, we instrument a native execu-

tion that runs only a single thread per node, i.e. per MPI rank. Extrae generates the

high-level trace (burst trace) using coarse-grain instrumentation. The tracer instru-

ments the entire application, i.e. all ranks and iterations. However, for the detailed

trace, such an approach would be impractical and require too much storage. For the

evaluated set of applications, we observe that tracing the second iteration of a sin-

gle MPI rank is enough to later reconstruct an application’s entire execution using

this information and the burst trace. This allows for manageable tracing times and

storage requirements.

Table 6.2 details the overhead of generating traces at burst level, and the sizes of

the burst and detailed traces for each application. The overheads include the trace

disk I/O costs, which actually do not affect the application behavior, as I/O is per-

formed at points where the application is halted by the tracer. In terms of trace sizes,

burst traces are relatively small, while covering the entire execution of applications

running for several minutes on the real machine. On the other hand, detailed traces

are bigger, even though they only cover the second iteration of a single MPI rank.

Note that a detailed trace for the entire BT-MZ application with input class D would

94 Chapter 6. Multi-Level Simulation of Hybrid Programs

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

BT-MZNative

MUSA (burst)

MUSA (detailed)

MUSA (detailed + sampled)

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

SP-MZ

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

LU-MZ

(a) A single iteration of the benchmark

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

BT-MZNative

MUSA (burst)

MUSA (detailed)

MUSA (detailed + sampled)

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

SP-MZ

16 32 64 128

Total cores

0

2

4

6

8

S
p

ee
d

u
p

LU-MZ

(b) Entire execution of the benchmark

FIGURE 6.3: MUSA validation using the NAS Multi-Zone Paral-
lel Benchmarks: BT-MZ (left), SP-MZ (middle) and LU-MZ (right).
Benchmarks are run natively and simulated using MUSA with 16 MPI

ranks and up to eight cores per node.

require more than 200 terabytes of storage. The obtained detailed traces are manage-

able while still allowing MUSA to perform meaningful detailed microarchitectural

simulations.

Our methodology requires both an architectural and a communication network

6.4. Evaluation 95

simulator. To simulate the computation phases we use TaskSim, a detailed multi-

core simulator with two operation modes, a fast exploration mode based on pre-

calculated computation phase execution times (burst) and a detailed mode with ac-

curate microarchitecture and memory models [99, 100]. For the network we employ

Dimemas, which is able to model MPI communication primitives using analytical

models [49]. However, we strongly believe that the MUSA methodology can be ap-

plied to nearly any simulator currently available in the community.

6.4.4 Validation

We validate MUSA by performing several experiments with the NAS Multi-Zone

benchmarks. As described in Section 6.4.1, all validation experiments are done with

16 MPI ranks and the class D input set, always assuming a single MPI rank per node.

Figure 6.3 shows the speedup for a single iteration (Figure 6.3a), and for the entire

application (Figure 6.3b) when increasing the number of cores per MPI rank. Having

both figures is very useful, as the overall execution time of the whole application or a

single iteration can be biased by the sequential execution of a particular phase of the

application, such as reading input files, initializing data structures or writing output

files.

Native executions are performed with up to eight cores per rank, as this is the

number of cores per socket on the available machine. Consequently, in our valida-

tion we use up to 128 cores, with parallel efficiencies that range from 48% (LU-MZ) to

92% (BT-MZ). Using a performance visualization tool, we observe that in all bench-

marks the first iteration is less representative than the others. We therefore chose to

trace the second iteration in detail to avoid capturing the impact of cold hardware

structures in the processor. Figure 6.3 shows that scalability in native and simulated

executions closely match when comparing a single iteration and the entire applica-

tion.

First, we evaluate the accuracy of MUSA with burst simulations, denoted MUSA

(burst) in the figure. A first observation is that burst simulations accurately model the

system for BT-MZ, with negligible relative errors. This is due to the fact that BT-MZ

is compute bound and contention on shared resources does not increase significantly

with larger core counts, leading to a speedup of 7.3× on an 8 core node. However,

SP-MZ and LU-MZ have higher memory contention and performance predictions

start to differ from the native execution as the number of cores per node increases.

For SP-LU and LU-MZ, MUSA (burst) predicts speedups of 6.9× and 7.5× with rela-

tive errors of 33% and 88% with respect to native runs.

The results obtained in burst simulation clearly indicate that, as we scale the

number of cores in the system, cycle-accurate memory simulations are necessary to

capture contention on shared resources. We perform a second set of simulations

96 Chapter 6. Multi-Level Simulation of Hybrid Programs

with MUSA using detailed microarchitectural and memory models, denoted MUSA

(detailed) in the figure. In this case, MUSA simulates one iteration of a single MPI

rank and extrapolates the results to the remaining MPI ranks and iterations.

MUSA (detailed) improves accuracy with respect to MUSA (burst) for both SP-

MZ and LU-MZ when simulating a system with 128 cores. In the case of SP-MZ, the

relative error is reduced from 33% to 10%, capturing the trend observed in native

execution. For LU-MZ the error is reduced from 88% to 25%. However, the trend is

not captured as accurately as in the other two benchmarks due to modeling inaccu-

racies in the simulated DRAM subsystem. LU-MZ has poor row-buffer locality and

internal bank conflicts, and thus needs a detailed component-specific simulator to

capture these behavior. Therefore, for this application we would suggest to use tools

like DRAMSim2 [102] or Ramulator [69]. In the case of BT-MZ, the error is negligi-

ble as happens in the burst simulation and, as expected, the performance is again

accurately predicted.

Next, we evaluate the accuracy of MUSA using TaskPoint [54] to speed up de-

tailed simulation, denoted MUSA (detailed+sampling) in the figure. In this case, we

only perform detailed microarchitectural simulation on a fraction of the task in-

stances of the application. We apply TaskPoint’s default parameters: first, we sim-

ulate 2 task instances in each thread in order to warm up microarchitectural state.

Afterwards, we simulate a total of 4 task instances of each task type as samples.

This reduces the total simulation time by a factor of 2.5× in BT-MZ, 1.9× in SP-MZ,

and 3.0× in LU-MZ. As shown in Figure 6.3b, MUSA (detailed+sampling) predicts

nearly the same speedups as MUSA (detailed). The average difference between these

approaches is less than 3%. These results are consistent with previously published

results with TaskPoint [54].

Our validation shows that MUSA provides accurate performance predictions by

combining information at different levels of granularity. When comparing native

executions of the entire application with MUSA simulations, we can see that the

relative errors are low and that the detailed models are able to capture microarchi-

tectural details such as memory contention. In addition, we can do this in an afford-

able amount of time, as even detailed simulations complete within a few hours. A

more comprehensive study in terms of simulation time is shown for our large-scale

simulations in Section 6.4.6.

6.4.5 Large-scale Simulations

We present large-scale simulations of BT-MZ with input class E, HYDRO and SPECFEM3D

for the entire application. Table 6.1 lists the relevant application characteristics. We

employ 256 MPI ranks, one per node, with up to 8 cores per node (2,048 cores)

for native executions and up to 64 cores for simulations with MUSA (16,386 cores).

6.4. Evaluation 97

256 512 1K 2K 4K 8K 16K

Total cores

0

10

20
S

p
ee

d
u

p

BT-MZ
Native

MUSA (burst)

MUSA (detailed)

MUSA (detailed + sampled)

FIGURE 6.4: Performance estimations of BT-MZ with input class E
for the entire application on 256 MPI ranks. Native runs with up to
8 cores per node (2,048 cores), and simulated runs with MUSA on up

to 64 cores per node (16,384 cores).

These simulations allow us to identify scalability bottlenecks occurring for large core

counts per node, a trend that continues to manifest.

Figure 6.4 shows speedup estimations for BT-MZ. Results with up to 8 cores per

node (2,048 total) are validated against the native execution of the application, show-

ing a good level of accuracy. With 8 cores per node, the parallel efficiency reaches

82% for the overall execution of the native application, and MUSA predicts the par-

allel efficiency with an error of less than 5% for all simulation modes.

When performing burst simulations with larger core counts, the parallel effi-

ciency significantly degrades, reaching 26% for 64 cores (16× speedup). We ana-

lyze if task management is the limiting factor to scalability. To this end, we run the

master thread with a significantly higher speed and observe no significant change

in scalability. From this experiment we conclude that BT-MZ does not expose suffi-

cient task parallelism to achieve a higher parallel efficiency at large core counts. One

possible solution is to reduce task granularity and thus increase the number of task

instances. As this approach also increases the task management overhead, it poses

an interesting optimization problem. MUSA predicts similar scalability trends with

all simulation modes because this application is not memory intensive, as stated in

the previous subsection.

In conclusion, we identify that BT-MZ lacks task parallelism and thus shows

limited scalability in executions with larger core counts per MPI rank. Scalability

can be improved by reducing task granularity, but only if this does not increase the

effort of task management to a point where it becomes the new limiting factor to

98 Chapter 6. Multi-Level Simulation of Hybrid Programs

256 512 1K 2K 4K 8K 16K

Total cores

0

5

10

15

S
p

ee
d

u
p

HYDRO
Native

MUSA (burst)

MUSA (detailed)

MUSA (detailed + sampled)

FIGURE 6.5: Performance estimations of HYDRO for the entire ap-
plication on 256 MPI ranks. Native runs with up to 8 cores per node
(2,048 cores), and simulated runs with MUSA on up to 64 cores per

node (16,384 cores).

scalability.

Figure 6.5 shows speedup estimations for HYDRO. Results with up to 8 cores per

node (2,048 total) are validated against the native execution of the application. For

up to 8 cores, detailed simulation modes predict parallel efficiency with an error of

less than 8%. For higher core counts, all simulation modes predict similar results.

We attribute this to HYDRO’s low memory intensity.

As we increase the number of cores, parallel efficiency significantly degrades,

reaching a value of only 17% at 64 cores per node. A significant percentage of paral-

lel efficiency is lost due to communication (MPI) overheads. We find the parallel effi-

ciency of the computation phases to be 31% when communication is ignored. There-

fore, the computational part of the application has room for improvement. With the

help of conventional performance analysis tools for MPI applications, we observe

that the sequential part in each iteration is limiting the scalability of the application

for core counts larger than 8. To avoid this limitation, the application needs to be

restructured to reduce the amount of sequential computation.

Furthermore, for 32 and 64 cores per node the time devoted to task creation and

scheduling limits the scalability of the application. There are multiple solutions to

alleviate this problem. The first solution consists in increasing the granularity of the

executed tasks, as this reduces the total number of task instances and thus the man-

agement effort. A second option is having multiple threads creating and scheduling

tasks using nested parallelism. Finally, a third alternative consists in using hardware

support for the runtime system [47].

6.4. Evaluation 99

256 512 1K 2K 4K 8K 16K

Total cores

0

5

10

15

S
p

ee
d

u
p

SPECFEM3D

Native

MUSA (burst)

MUSA (detailed)

MUSA (detailed + sampled)

FIGURE 6.6: Performance estimations of SPECFEM3D for the entire
application on 256 MPI ranks. Native runs with up to 8 cores per
node (2,048 cores), and simulated runs with MUSA on up to 64 cores

per node (16,384 cores).

Figure 6.6 shows speedup estimations for SPECFEM3D. Results for up to 8 cores

per node (2,048 total) are compared to the native execution of the application. For

2 and 4 cores per node, we observe notable relative errors when comparing MUSA

simulation modes and native execution. However, for 8 cores per node the detailed

simulation modes predict parallel efficiency with an error of less than 3%. In ad-

dition, we observe that for core counts per node of 8 and more, performance esti-

mations with burst and detailed mode differ significantly due to increasing off-chip

memory contention, leading to performance overestimations in burst mode.

As we increase the core count in burst simulation mode, we observe that the

application’s scalability suddenly saturates from 32 to 64 cores per node. We find

that this is because the number of task instances for this application is small, less

than 200 per parallel region (see Table 6.1). Moreover, there are several task types

that feature significantly different execution times, which eventually leads to severe

load imbalance, limiting scalability. Since MUSA faithfully models task scheduling

in burst mode, we correctly identify this bottleneck.

However, for detailed simulations we see that the performance actually saturates

when moving from 16 to 32 cores per node. This is due to the combined effect of load

imbalance and significant off-chip memory contention, which especially penalizes

long running tasks that now execute for an even longer period of time, exacerbating

load imbalance. With MUSA we are able to identify a bottleneck that manifests due

to the combination of two factors, and gain insight on the performance penalty each

factor imposes.

100 Chapter 6. Multi-Level Simulation of Hybrid Programs

256 512 1K 2K 4K 8K 16K

Total cores

102

103

104

105

106

T
im

e
[s

ec
]

BT-MZ
Native

Total CPU time - burst

Total CPU time - detailed

Total CPU time - detailed + sampled

FIGURE 6.7: Total aggregated CPU time for MUSA simulations ver-
sus time-to-solution for native executions, BT-MZ.

6.4.6 Simulation Time Cost Analysis

Figure 6.7 shows the time required to run native and simulated executions for BT-

MZ (input class E) with 256 ranks. We plot time-to-solution for native executions

and total aggregated CPU time for simulated runs with MUSA. The total CPU time

required for simulations in burst mode is nearly constant and comparable to the na-

tive execution with 1 thread per rank, as it uses pre-calculated task execution times.

Speedup of sampled over detailed simulation remains constant, providing around

one order of magnitude simulation time improvements. A sampled simulation for

16,384 cores requires less than 6 hours of total CPU time, while the native execu-

tion for 1 thread per rank takes about 24 minutes - only one order of magnitude of

slowdown, even when considering sequential simulation.

Figure 6.8 shows the same data for HYDRO with 256 ranks. Again, the sim-

ulation time in burst mode is nearly independent from the number of simulated

cores. A detailed simulation of HYDRO on 16,384 cores requires less than 3 hours.

This time is reduced to less than an hour when performing sampled simulation. We

observe that the speedup of sampled over detailed simulation decreases with in-

creasing core counts. HYDRO has two computation phases per iteration. Therefore,

architectural warmup and measuring of samples is performed twice per iteration.

In addition, the number of tasks per computational phase is lower than in the case

of BT-MZ. Both aforementioned effects hinder effective simulation sampling.

Figure 6.9 shows similar data for SPECFEM3D with 256 ranks. In this case we

see that burst and detailed executions take a similar amount of time. This is because

this application has a large number of iterations (i.e. 10,700). However, only one

6.4. Evaluation 101

256 512 1K 2K 4K 8K 16K

Total cores

101

102

103

104

105

T
im

e
[s

ec
]

HYDRO

Native

Total CPU time - burst

Total CPU time - detailed

Total CPU time - detailed + sampled

FIGURE 6.8: Total aggregated CPU time for MUSA simulations ver-
sus time-to-solution for native executions, HYDRO.

iteration is simulated in detailed mode. As a consequence, the time it takes to sim-

ulate the burst trace for the entire application is similar. Also note that sampling

is not effective and its simulation time eventually converges to the detailed simula-

tion time. The number of tasks per computational phase is so small that all of them

are simulated in detail as samples. For 16,384 cores detailed simulation and native

execution with 1 thread require 7.3 hours and 5.6 hours, respectively.

6.4.7 Design Space Exploration

We demonstrate the usefulnes of the MUSA infrastructure by performing a design

space exploration study. Prior simulations focused on increasing the core count per

node while leaving microarchitectural and memory parameters unchanged. Given

that the trend to use commodity server processors is starting to change and that

new technologies like die-stacked DRAM start to be available [109], we show how

MUSA can aid to explore this vast design space with simulations using 16,384 cores

- i.e. 256 MPI ranks and 64 cores per node - on BT-MZ with input class E, HYDRO

and SPECFEM3D.

With this objective, we study the performance of these applications on three dif-

ferent multi-core architectures. The first system resembles a high-end server-class

processor with a large reorder buffer and a three-level cache hierarchy, as found

in traditional HPC environments. The second configuration is inspired by a low-

power mobile platform. It has a smaller reorder buffer and only two levels of cache,

as is typical for battery-powered mobile systems. The third configuration represents

an emerging many-core chip with die-stacked DRAM, featuring medium cores and

102 Chapter 6. Multi-Level Simulation of Hybrid Programs

256 512 1K 2K 4K 8K 16K

Total cores

103

104

105

T
im

e
[s

ec
]

SPECFEM3D

Native

Total CPU time - burst

Total CPU time - detailed

Total CPU time - detailed + sampled

FIGURE 6.9: Total aggregated CPU time for MUSA simulations ver-
sus time-to-solution for native executions, SPECFEM3D.

TABLE 6.3: Architectural parameters of high-performance, low-
power and die-stacked DRAM configurations for a 64 core processor.

Parameter High-perf. Low-power Stacked DRAM

ROB 168 entries 40 entries 72 entries

Issue width 1/2/4 1/2/4 1/2/4

L1 cache 32KB private 32KB private 32KB private
4 cycles 4 cycles 4 cycles
8-way 2-way 8-way

L2 cache 256KB private 8MB shared 32MB shared
11 cycles 21 cycles 16 cycles
8-way 16-way 16-way

L3 cache 128MB shared none none
28 cycles
20-way

DRAM off-chip off-chip die-stacked
4 channels 3 channels 8 channels
DDR3-1600 DDR3-1600 DDR3-3200

moderate LLC capacity, but lower latency and higher bandwidth access to DRAM.

Table 6.3 lists the key characteristics of the simulated architectures.

Figure 6.10 shows the predicted performance on these platforms for different

issue width values of 1, 2, and 4 instructions per cycle. The reported speedup is

normalized to an execution with one thread per rank using the high-performance

configuration. The evaluated applications show very different behavior. BT-MZ

benefits from running on a high-performance processor, achieving more than 35%

additional performance compared to the speedup of the low-power processor for an

issue width of 4. This compute intensive application favors the combination of a

6.4. Evaluation 103

1 2 4 1 2 4 1 2 4

Issue width

0

5

10

15

20
S

p
ee

d
u

p
BT.E HYDRO SPECFEM3D

high performance

low power

die-stacked DRAM

FIGURE 6.10: Design space exploration of BT-MZ, HYDRO and
SPECFEM3D for different issue widths and processor profiles for 256

MPI ranks (16,384 cores).

large reorder buffer with quad-issue width, which also outperforms the die-stacked

DRAM configuration that has a medium sized reorder buffer. A final observation

is that, for the low-power configuration, increasing the issue width from 2 to 4 im-

proves performance by merely 6%, while significantly increasing the complexity of

the core.

In contrast, HYDRO shows a completely different behavior. The speedup achieved

by the low-power processor nearly matches the speedup of the high-performance

and die-stacked DRAM configurations. Since HYDRO has low memory intensity,

deep cache hierarchies or low-latency and high-bandwidth DRAM memory does not

improve performance significantly. Moreover, as explained in Section 6.4.5; existing

factors that limit the scalability of the application, such as communication overheads

and sequential code, hinder the performance of the aggressive cores. Furthermore,

HYDRO benefits much less from an increased issue width - performance improves

by less than 25% when increasing the issue width from 1 to 4 instructions per cy-

cle. Thus, we conclude that the much simpler low-power architecture can deliver

competitive performance for HYDRO.

Finally, for SPECFEM3D we observe that for issue widths of 2 and 4, the low-

power configuration falls behind due to a less performing memory hierarchy. This

application has a significant degree of memory contention. For this reason, the die-

stacked DRAM configuration is able to outperform the high-performance configu-

ration even though it features a less agressive core. However, the gains are not as

104 Chapter 6. Multi-Level Simulation of Hybrid Programs

significant as one might expect. This is due to the fact that the performance is limited

by severe load imbalance at the node level due to the small number of tasks per par-

allel region, as explained in Section 6.4.5. Nontheless, we conclude that die-stacked

DRAM is beneficial over an agressive core design for SPECFEM3D.

6.5 Related Work

In this section, we review prior work on simulation of both shared and distributed

memory machines as well as techniques to speed up simulation of parallel applica-

tions.

Simulating distributed machines: Prior work proposed simulation methodolo-

gies to evaluate the performance of large-scale parallel applications. Some proposals

also employ a multi-level approach, combining different simulation layers. How-

ever, only a few evaluate scenarios with thousands of cores, but at the cost of not

modeling microarchitectural details or system software interaction [40, 55, 126]. The

other proposals evaluate lower core counts [1], while also lacking important fea-

tures, e.g. detailed microarchitectural simulation [25], or support to capture oper-

ating system or runtime system interactions [51]. Finally, in other infrastructures

each simulation requires a large computational effort due to the use of full system

simulation [61] or the lack of sampling techniques [78], making them impractical for

large-scale studies.

The usefulness of parametric models based on basic machine performance met-

rics and application characteristics has also been explored [11, 68]. These models are

applied to understand the performance of current systems, to unveil bottlenecks,

and to show where tuning efforts can be useful, but are tailored to specific applica-

tions.

Simulating shared-memory systems: Most simulation infrastructures at this

level tend to be cycle-accurate to faithfully model the processing cores and the mem-

ory hierarchy. However, this level of detail comes at a significant slowdown, making

simulations with more than a few tens or hundreds of cores impractical [14, 21, 103].

Sampling techniques: To reduce simulation time, statistical sampling is applied

to identify a representative section of an application or even a synthetic trace, much

shorter than the original one [24, 45, 74, 106, 121]. This representative section is then

executed in a cycle-accurate simulator. However, the accuracy of these simulations

is tied to the quality of the selected representative section of the application.

Finally, to further reduce simulation time and allow the simulation of larger

multi-core processors, parallel simulators have been proposed [6, 21, 33, 83, 97, 103].

The main drawback of these proposals lies in the synchronization overhead. This

6.6. Summary 105

overhead can be reduced at the expense of sacrificing accuracy in the final results of

the simulation.

6.6 Summary

In this Chapter we have introduced MUSA, a multi-level simulation approach that

enables fast and accurate performance estimations of large-scale next-generation

HPC machines. MUSA can model microarchitectural and runtime system effects by

leveraging multi-level traces. These traces also allow for different simulation modes

and execution replay to quickly extrapolate results of entire hybrid applications run-

ning on tens of thousands of cores.

MUSA has been validated using a production supercomputer with up to 2,048

cores showing high accuracy, with relative errors below 10% in the common case.

For native codes that run for several minutes, MUSA allows detailed simulation of

systems with more than ten thousand cores within a few hours of total aggregated

CPU time. Our 16,384-core simulations revealed scalability bottlenecks in the evalu-

ated applications that were easily identifiable using the simulation output trace and

conventional performance analysis tools.

The main advantage of MUSA is that it provides results not only across known

systems, but also for future systems not yet available on the market. Our design

space exploration analysis provides useful insights on the different microarchitec-

tural requirements of three applications to achieve good scalability, showing the po-

tential MUSA offers in predicting the performance of applications on next-generation

HPC machines.

107

Chapter 7

Conclusions

In this thesis, we present a study of execution time predictability of task-based pro-

grams. The results of this study are the motivation to develop TaskPoint, our sam-

pled simulation methodology for task-based programs executed on shared-memory

multi-core systems. Finally, we present MUSA, our multi-level simulation approach

for hybrid applications. MUSA includes TaskPoint to speed up simulations at the

shared-memory node level.

7.1 Execution Time Predictability of Task-Based Programs

Task-based programming models are a promising way to efficiently program fu-

ture shared-memory systems with large core counts. In a task-based programming

model, the programmer declares program parts as tasks, which are instantiated

many times during the execution of the program. A runtime system calculates data

dependencies between task instances. Task instances which have their dependencies

fulfilled are scheduled to available execution threads.

In Chapter 4 we present an analysis of execution time predictability of task-

based programs. To this end, we evaluate performance variability across different

instances of the same task type and find that the naive assumption of regular perfor-

mance across instances of the same task type is not always valid.

We show that accurate performance predictions can be derived from detailed

performance information of a relatively small number of task instances. We present

techniques to improve the accuracy of execution time predictions for task types with

irregular performance. These techniques are based on linear interpolation and clus-

tering. The execution time prediction error is reduced from more than 80% to less

than 12% for input dependent cases and to less than 2% for task types exposing

multiple classes of behavior.

108 Chapter 7. Conclusions

7.2 Sampled Simulation of Task-Based Programs

Architectural simulation of future multi-core systems is becoming increasingly chal-

lenging. Due to the increasing total size of on-chip caches, larger workloads need to

be simulated in order to meaningfully stress a design. Furthermore, the increasing

core counts in multi-core designs require longer simulations in order to stress shared

system resources and simulate interactions of different threads in a meaningful way.

Previous sampled simulation techniques for parallel programs rely on the as-

sumption, that the sequence of useful instructions, i.e. the application’s instructions

excluding runtime system activity and synchronization, does not change across dif-

ferent executions of the application. Although those existing techniques have been

proven to be accurate for statically scheduled fork-join based programs, they are

not directly applicable to dynamically scheduled task-based parallel programs. In

task-based programs, the execution order of task instances can change due to the

dynamic scheduler of the runtime system.

In Chapter 5 we present TaskPoint, a methodology for sampled simulation of

task-based parallel programs. Sampling units are identified based on the partition-

ing into tasks provided by the programmer. Between detailed simulation phases,

we employ a novel fast-forward mechanism, which correctly reflects the different

progress rates of task instances belonging to different task types and adapts to phase

changes in the simulated application.

We improve the original TaskPoint methodology by automatically clustering task

instances using BBVs and DBSCAN clustering. After creating a BBV for each task

instance, DBSCAN clustering identifies clusters of task instances with similar behav-

ior. This has two advantages: first, different task types can have task instances with

similar behavior. Our improved approach merges these task instances into a single

cluster, reducing the amount of detailed simulation required for sampled simulation.

Second, a task type can have task instances with different classes of behavior. Our

new approach also identifies these cases and clusters the task instances accordingly.

For some applications, clustering with DBSCAN results in clusters with large di-

ameters, i.e. clusters containing task instances which are dissimilar, but connected

by a chain of task instances similar to their respective neighbors. Our improved

version of TaskPoint uses an analytical performance model to achieve accurate per-

formance predictions in the aforementioned cases.

We assess TaskPoints generalization capability by using two radically different

architectures to select sampling parameters and to run simulations. The evaluation

results are satisfactory across a wide range of benchmarks, different numbers of sim-

ulated threads and different architecture models. The average simulation error of

our model-based simulation mode ranges from 0.1% for 1 simulated thread to 1.3%

7.3. Multi-Level Simulation of Hybrid Programs 109

for 64 simulated threads. The simulation speedup ranges from 22.3×to 1,490×for

thread counts of 64 and 1, respectively.

7.3 Multi-Level Simulation of Hybrid Programs

The process of designing future HPC systems is extremely challenging. The ever

increasing system complexity, in terms of processors per node and nodes per sys-

tem, makes architectural simulation of entire systems prohibitively time consum-

ing. Furthermore, program execution on future systems is likely to be managed

by system software, e.g. a runtime environment. A simulation methodology for

future HPC systems ideally allows to perform detailed large-scale architectural sim-

ulations, while taking the effects of the system software into account.

In Chapter 6 of this thesis we introduce MUSA, a multi-level simulation ap-

proach for future HPC systems programmed with hybrid programming models

which enables fast and accurate performance estimations of large-scale next-generation

HPC machines. MUSA can model microarchitectural and runtime system effects by

leveraging multi-level traces. These traces also allow for different simulation modes

and execution replay to quickly extrapolate results of entire hybrid applications run-

ning on tens of thousands of cores.

MUSA has been validated using a production supercomputer with up to 2,048

cores showing high accuracy, with relative errors below 10% in the common case.

For native codes that run for several minutes, MUSA allows detailed simulation of

systems with more than ten thousand cores within a few hours of total aggregated

CPU time. Our 16,384-core simulations revealed scalability bottlenecks in the evalu-

ated applications that were easily identifiable using the simulation output trace and

conventional performance analysis tools.

The main advantage of MUSA is that it provides results not only across known

systems, but also for future systems not yet available on the market. Our design

space exploration analysis provides useful insights on the different microarchitec-

tural requirements of three applications to achieve good scalability, showing the po-

tential MUSA offers in predicting the performance of applications on next-generation

HPC machines.

111

Chapter 8

Future Work

8.1 Scheduling Task-Based Programs Using Execution Time

Predictability

In our evaluation of execution time predictability of task-based programs in Chap-

ter 4 we showed that execution time of task-based programs is predictable. In Chap-

ter 5, we leverage this insight and propose TaskPoint, our sampled simulation method-

ology for task-based programs executed on multi-core systems.

We envision another potential application of the insights of this work in the field

of dynamic scheduling of task instances in task-based programming models. In a

task-based programming model, a runtime system schedules task instances which

are ready for execution to available execution threads. The performance of each

task instance, and thus the overall program performance, can depend on the exact

schedule.

Scheduling task instances which share data closely after each other is typically

benefitial in order to achieve maximum performance. If a consumer task instance is

not yet ready, the optimal scheduling decision can be to schedule other task instances

in the meanwhile, as long as this does not cause the data accessed by the consumer to

be evicted from the shared last level cache [20, 31]. At the same time, it is desirable

to not increase the length of the critical path of an application’s task dependency

graph [35, 36].

Knowing a task instance’s execution time in advance has the potential to enable

a scheduler to make informed scheduling decisions. We believe that it is worthwhile

to investigate the potential of execution time predictability for improving dynamic

task scheduling policies.

112 Chapter 8. Future Work

8.2 Sampled Simulation of Task-Based Programs

In Chapter 5 we present TaskPoint, a sampled simulation methodology for dynam-

ically scheduled task-based programs. TaskPoint optionally uses clustering and an-

alytical performance modeling to improve simulation error and speedup, especially

for irregular applications.

As we show in our evaluation, our model-based simulation approach does not

take into account the contention on the shared LLC of a simulated, multi-threaded

system. In the future, we plan to fully integrate the analytical model with our simu-

lation environment, allowing to get more accurate performance prediction by taking

LLC contention into account.

Currently, model-based simulations with TaskPoint require detailed simulation

of a small number of sample task instances. For the future, we plan to eliminate

the need for detailed simulation. While we would still use a simulator to model the

effects of the runtime environment, performance estimations would rely purely on

analytical modeling. We are confident that this approach will achieve larger sim-

ulation speeds and, equally important, improve the scalability of simulation speed

when increasing the number of simulated threads.

8.3 Multi-Level Simulation of Hybrid Programs

In Chapter 6 of this thesis we present MUSA, our multi-level simulation approach

for hybrid systems. We validate MUSA and perform large-scale architectural sim-

ulations with up to 16,384 simulated cores. We also conduct a case study, in which

we simulate the performance of several large-scale hybrid applications on different

architectures, namely a state-of-the-art high-performance architecture, a low-power

architecture and an architecture featuring die-stacked DRAM. We find that some

applications, e.g. BT-MZ, benefit from being run on a system with aggressive out-

of-order processors and are not very sensitive to the performance of the DRAM sub-

system. Other applications, e.g. SPECFEM3D, clearly benefit from being run on

a system with high-bandwidth, die-stacked DRAM. The design space exploration

presented in this thesis is only an example to show the usefulness of MUSA. We

envision a more thorough study of future architectures using MUSA.

Currently, MUSA can only simulate systems consisting of single-socket nodes.

However, many current HPC systems consist of nodes containing two or more sock-

ets. We see potential for future work in extending MUSA for it to support multi-

socket nodes. This would allow to use MUSA to study the impact of how processor

cores are distributed across different sockets on performance.

8.3. Multi-Level Simulation of Hybrid Programs 113

Our current implementation of MUSA cannot simulate communications over-

lapped with computation, i.e., before sending or receiving an MPI message, all threads

of a rank need to synchronize. Due to the ever increasing number of processor cores

in a single HPC system, this can be a limiting factor to performance. In the future, we

would like to add support for simulating communications overlapped with compu-

tation. This would allow to study the performance benefits of a more asynchronous

execution model allowed by less synchronizations of the simulated application.

115

Appendix A

Publications

A.1 Conference Publications

• “MUSA: A Multi-Level Simulation Approach for Next-Generation HPC Machines”.

Thomas Grass, César Allande, Adrià Armejach, Alejandro Rico, Eduard Ayguadé,

Jesús Labarta, Mateo Valero, Marc Casas, Miquel Moreto. Published in Pro-

ceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis 2016 (SC16). Salt Lake City, Utah, United

States of America. November 2016.

• “TaskPoint: Sampled Simulation of Task-Based Programs”. Thomas Grass, Alejan-

dro Rico, Marc Casas, Miquel Moreto, Eduard Ayguadé. Published in Proceed-

ings of the 2016 International Symposium on Performance Analysis of Systems

and Software (ISPASS 2016). Uppsala, Sweden. March 2016.

A.2 Journal Publications

• “Sampled Simulation of Task-Based Programs”. Thomas Grass, Germán Ceballos,

Trevor Carlson, Alejandro Rico, Eduard Ayguadé, Miquel Moretó, Marc Casas.

Under submission at IEEE Transactions on Computers (TC).

A.3 Workshop Publications

• “Evaluating Execution Time Predictability of Task-Based Programs on Multi-Core

Processors”. Thomas Grass, Alejandro Rico, Marc Casas, Miquel Moreto, Alex

Ramirez. Published in Proceedings of Euro-Par 2014: Parallel Processing Work-

shops (MuCoCoS 2014). Porto, Portugal. August 2014.

A.4 Poster Presentations

• “Evaluating Execution Time Predictability of Task-Based Programs”. Thomas Grass,

Alejandro Rico, Miquel Moreto, Marc Casas, Alex Ramirez. Presented at Tenth

116 Appendix A. Publications

International Summer School on Advanced Computer Architecture and Com-

pilation for High-Performance and Embedded Systems (ACACES 2014). Fi-

uggi, Italy. July 2014.

• “Task Sampling: Computer Architecture Simulation in the Many-Core Era”. Thomas

Grass. Published in Proceedings of the 22nd international conference on Par-

allel architectures and compilation techniques (PACT 2013). Edinburgh, Scot-

land, United Kingdom. October 2013.

A.5 Other Publications (Not as First Author)

• “TaskInsight: Understanding Task Schedules Effects on Memory and Performance”.

Germán Ceballos, Thomas Grass, Andra Hugo, David Black-Schaffer. Pub-

lished in Proceedings of the 8th International Workshop on Programming Mod-

els and Applications for Multicores and Manycores (PMAM 2017). Austin,

Texas, United States of America. February 2017.

• “Characterizing Task Scheduling Performance Based on Data Reuse”. Germán Ce-

ballos, Thomas Grass, David Black-Schaffer, Andra Hugo. Published in Pro-

ceedings of the 9th Nordic Workshop on Multi-Core Computing (MCC 2016).

Trondheim, Norway. November 2016.

• “Evaluating the Effect of Last-Level Cache Sharing on Integrated GPU-CPU Systems

with Heterogeneous Applications”. Víctor García, Juan Gómez-Luna, Thomas

Grass, Alejandro Rico, Eduard Ayguade, Antonio J. Peña. Published in Pro-

ceedings of the 2016 IEEE International Symposium on Workload Character-

ization (IISWC 2016). Providence, Rhode Island, United States of America.

September 2016.

117

Bibliography

[1] V. S. Adve. “POEMS: end-to-end performance design of large parallel adap-

tive computational systems”. In: IEEE Transactions on Software Engineering

26.11 (2000), pp. 1027–1048.

[2] M. Al-Manasia and Z. Chaczko. “An Overview of Chip Multi-Processors

Simulators Technology”. In: Progress in Systems Engineering. Springer, 2015,

pp. 877–884.

[3] S. Amarasinghe, M. Hall, R. Lethin, K. Pingali, D. Quinlan, V. Sarkar, J. Shalf,

R. Lucas, K. Yelick, P. Balaji, P. C. Diniz, A. Koniges, M. Snir, and S. R. Sachs.

ASCR Programming Challenges for Exascale Computing. Tech. rep. U.S. Depart-

ment of Energy, 2011.

[4] E. Anger, S. Yalamanchili, D. Dechev, G. Hendry, and J. Wilke. “Application

modeling for scalable simulation of massively parallel systems”. In: Proceed-

ings - 2015 IEEE 17th International Conference on High Performance Comput-

ing and Communications, 2015 IEEE 7th International Symposium on Cyberspace

Safety and Security and 2015 IEEE 12th International Conference on Embedded

Software and Systems. 2015, pp. 238–247.

[5] E. K. Ardestani and J. Renau. “ESESC: A fast multicore simulator using Time-

Based Sampling”. In: Proceedings - International Symposium on High-Performance

Computer Architecture. IEEE, 2013, pp. 448–459.

[6] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega. “COTSon:

infrastructure for full system simulation”. In: ACM SIGOPS Operating Systems

Review 43.1 (2009), pp. 52–61.

[7] W. Aspray. “The Intel 4004 microprocessor: What constituted invention?” In:

IEEE Annals of the History of Computing 19.3 (1997), pp. 4–15.

[8] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,

P. Unnikrishnan, and G. Zhang. “The design of OpenMP tasks”. In: IEEE

Transactions on Parallel and Distributed Systems 20.3 (2009), pp. 404–418.

[9] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,

S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-

ishnan, and S. Weeratunga. “The NAS Parallel Benchmarks”. In: International

Journal of High Performance Computing Applications 5.3 (1991), pp. 63–73.

118 BIBLIOGRAPHY

[10] Barcelona Supercomputing Center. Extrae User guide manual for version 2.3.

Tech. rep. 2012.

[11] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and J.

C. Sancho. “Entering the petaflop era: The architecture and performance of

roadrunner”. In: International Conference for High Performance Computing, Net-

working, Storage and Analysis. 2008, pp. 1–11.

[12] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P.

Franzon, W. Harrod, K. Hill, J. Hiller, et al. “Exascale computing study: Tech-

nology challenges in achieving exascale systems”. In: Defense Advanced Re-

search Projects Agency Information Processing Techniques Office (DARPA IPTO),

Tech. Rep 15 (2008).

[13] C. Bienia, S. Kumar, J. P. Singh, and K. Li. “The PARSEC benchmark suite:

Characterization and architectural implications”. In: Proceedings of the Inter-

national Conference on Parallel Architectures and Compilation Techniques. 2008,

pp. 72–81.

[14] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. M.

D. Hill, D. A. D. A. Wood, B. Beckmann, G. Black, S. K. S. K. Reinhardt, A.

Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, A. Basil, J. Hestness, D.

R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. M. D. Hill, and D. A. D. A. Wood. “The gem5 Simulator”. In: Computer

Architecture News 39.2 (2011), pp. 1–7.

[15] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

Y. Zhou, R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.

Randall, and Y. Zhou. “Cilk: an efficient multithreaded runtime system”. In:

ACM SIGPLAN Notices 30.8 (1995), pp. 207–216.

[16] M. Breughe, S. Eyerman, and L. Eeckhout. “A mechanistic performance model

for superscalar in-order processors”. In: IEEE International Symposium on Per-

formance Analysis of Systems and Software. 2012, pp. 14–24.

[17] S. Browne, J. Dongarra, N. Garner, J. London, and P. Mucci. “A Portable Pro-

gramming Interface for Performance Evaluation on Modern Processors”. In:

International Journal of High Performance Computing Applications 14.3 (2000),

pp. 189–204.

[18] D. L. Bruening. “Efficient, Transparent and Comprehensive Runtime Code

Manipulation”. PhD Thesis. Massachusetts Institute of Technology, 2004.

[19] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Profes-

sional, 1997.

BIBLIOGRAPHY 119

[20] P. Caheny, M. Casas, M. Moretó, H. Gloaguen, M. Saintes, E. Ayguadé, J.

Labarta, and M. Valero. “Reducing cache coherence traffic with hierarchical

directory cache and NUMA-aware runtime scheduling”. In: Parallel Architec-

ture and Compilation Techniques (PACT), 2016 International Conference on. IEEE.

2016, pp. 275–286.

[21] T. E. Carlson, W. Heirman, and L. Eeckhout. “Sniper: Exploring the level of

abstraction for scalable and accurate parallel multi-core simulation”. In: In-

ternational Conference for High Performance Computing, Networking, Storage and

Analysis. ACM Press, 2011, p. 1.

[22] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. “An Evalua-

tion of High-Level Mechanistic Core Models”. In: ACM Transactions on Archi-

tecture and Code Optimization 11.3 (2014), Article No. 28.

[23] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout. “BarrierPoint:

Sampled Simulation of Multi-Threaded Applications”. In: IEEE International

Symposium on Performance Analysis of Systems and Software. 2014, pp. 2–12.

[24] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout. “Sampled sim-

ulation of Multi-Threaded Applications”. In: IEEE International Symposium on

Performance Analysis of Systems and Software. 2013, pp. 2–12.

[25] L. Carrington, A. Snavely, X. Gao, and N. Wolter. “A Performance Prediction

Framework for Scientific Applications”. In: International Conference on Com-

putational Science. Springer Berlin Heidelberg, 2003, pp. 926–935.

[26] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter. “Versatile,

scalable, and accurate simulation of distributed applications and platforms”.

In: Journal of Parallel and Distributed Computing 74.10 (2014), pp. 2899–2917.

[27] M. Casas, R. M. Badia, and J. Labarta. “Automatic Phase Detection and Struc-

ture Extraction of MPI Applications”. In: International Journal of High Perfor-

mance Computing Applications 24.3 (2010), pp. 335–360.

[28] M. Casas, R. Badia, and J. Labarta. “Automatic analysis of speedup of MPI

applications”. In: Proceedings of the 22nd annual international conference on Su-

percomputing. ACM. 2008, pp. 349–358.

[29] M. Casas, H. Servat, R. M. Badia, and J. Labarta. “Extracting the optimal sam-

pling frequency of applications using spectral analysis”. In: Concurrency and

Computation: Practice and Experience 24.3 (2012), pp. 237–259.

[30] M. Casas, M. Moreto, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes, L. Jaul-

mes, O. Palomar, O. Unsal, A. Cristal, E. Ayguade, J. Labarta, and M. Valero.

120 BIBLIOGRAPHY

“Runtime-Aware Architectures”. In: Euro-Par 2015: Parallel processing: 21st In-

ternational Conference on Parallel and Distributed Computing. Vol. 9233. 2015,

pp. 16–27.

[31] G. Ceballos, T. Grass, A. Hugo, and D. Black-Schaffer. “TaskInsight: Under-

standing Task Schedules Effects on Memory and Performance”. In: Proceed-

ings of the 8th International Workshop on Programming Models and Applications

for Multicores and Manycores. ACM Press, 2017, pp. 11–20.

[32] J. Chen, M. Annavaram, and M. Dubois. “SlackSim: A Platform for Parallel

Simulations of CMPs on CMPs”. In: ACM SIGARCH Computer Architecture

News 37.2 (2009), pp. 20–29.

[33] J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram, and M. Dubois. “Adaptive

and speculative slack simulations of CMPs on CMPs”. In: Proceedings of the

Annual International Symposium on Microarchitecture, MICRO (2010), pp. 523–

534.

[34] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe,

and H. Angepat. “FPGA-accelerated simulation technologies (FAST): Fast,

full-system, cycle-accurate simulators”. In: Proceedings of the Annual Interna-

tional Symposium on Microarchitecture, MICRO (2007), pp. 249–261.

[35] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta, and M. Valero.

“Criticality-Aware Dynamic Task Scheduling for Heterogeneous Architec-

tures”. In: Proceedings of the 29th International Conference on Supercomputing.

2015, pp. 329–338.

[36] K. Chronaki, A. Rico, M. Casas, M. Moreto, R. Badia, E. Ayguade, J. Labarta,

and M. Valero. “Task Scheduling Techniques for Asymmetric Multi-core Sys-

tems”. In: IEEE Transactions on Parallel and Distributed Systems PP.99 (2016),

pp. 1–1.

[37] P. N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova, and M. Quinson.

“Single node on-line simulation of MPI applications with SMPI”. In: Proceed-

ings of the 25th IEEE International Parallel and Distributed Processing Symposium.

2011, pp. 664–675.

[38] T. Conte, M. Hirsch, and W.-M. Hwu. “Combining trace sampling with single

pass methods for efficient cache simulation”. In: IEEE Transactions on Comput-

ers 47.6 (1998), pp. 714–720.

[39] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-

memory programming”. In: IEEE Computational Science and Engineering 5.1

(1998), pp. 46–55.

BIBLIOGRAPHY 121

[40] W. E. Denzel, Jian Li, P. Walker, and Yuho Jin. “A Framework for End-to-End

Simulation of High-performance Computing Systems”. In: Simulation 86.5-6

(2008), pp. 331–350.

[41] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguadé. “Barcelona openMP

tasks suite: A set of benchmarks targeting the exploitation of task parallelism

in openMP”. In: Proceedings of the International Conference on Parallel Process-

ing. 2009, pp. 124–131.

[42] A. Duran, E. Ayguadé, R. M. Badia, J. LABARTA, L. Martinell, X. Martorell,

and J. Planas. “OmpSs: A Proposal for Programming Heterogeneous Multi-

Core Architectures”. In: Parallel Processing Letters 21.02 (2011), pp. 173–193.

[43] L. Eeckhout, Y. Luo, K. De Bosschere, and L. K. John. “BLRL: Accurate and Ef-

ficient Warmup for Sampled Processor Simulation”. In: The Computer Journal

48.4 (2005), pp. 451–459.

[44] L Eeckhout, R. Bell, B Stougie, K De Bosschere, and L. K. John. “Control flow

modeling in statistical simulation for accurate and efficient processor design

studies”. In: Proceedings of the 31st Annual International Symposium on Com-

puter Architecture. 2004, pp. 350–361.

[45] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Bosschere. “Statistical Sim-

ulation: Adding Efficiency to the Computer Designer’s Toolbox”. In: IEEE

Micro 23.5 (2003), pp. 26–38.

[46] D. Eklov and E. Hagersten. “StatStack: Efficient modeling of LRU caches”. In:

IEEE International Symposium on Performance Analysis of Systems and Software.

2010, pp. 55–65.

[47] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta,

and M. Valero. “Task superscalar: An out-of-order task pipeline”. In: Proceed-

ings of the Annual International Symposium on Microarchitecture, MICRO (2010),

pp. 89–100.

[48] D. Genbrugge, S. Eyerman, and L. Eeckhout. “Interval simulation: Raising

the level of abstraction in architectural simulation”. In: Proceedings of the 16th

IEEE International Symposium on High-Performance Computer Architecture. 2010,

pp. 1–12.

[49] S. Girona, J. Labarta, and R. M. Badia. “Validation of Dimemas communi-

cation model for MPI collective operations”. In: Recent Advances in Parallel

Virtual Machine and Message Passing Interface 1908 (2000), pp. 39–46.

[50] J. Gonzalez, J. Gimenez, and J. Labarta. “Automatic evaluation of the compu-

tation structure of parallel applications”. In: International Conference on Parallel

and Distributed Computing, Applications and Technologies. 2009, pp. 138–145.

122 BIBLIOGRAPHY

[51] J. Gonzalez, M. Casas, M. Moreto, A. Ramirez, J. Labarta, and M. Valero.

“Simulating whole supercomputer applications”. In: IEEE Micro 31.3 (2011),

pp. 32–45.

[52] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris. “Un-

derstanding the performance of sparse matrix-vector multiplication”. In: 16th

Euromicro Conference on Parallel, Distributed and Network-Based Processing (2008),

pp. 283–292.

[53] T. Grass, A. Rico, M. Casas, M. Moreto, and A. Ramirez. “Evaluating Execu-

tion Time Predictability of Task-Based Programs on Multi-Core Processors”.

In: Euro-Par 2014: Parallel Processing Workshops. 2014, pp. 218–229.

[54] T. Grass, A. Rico, M. Casas, M. Moreto, and E. Ayguad?? “TaskPoint: Sam-

pled simulation of task-based programs”. In: International Symposium on Per-

formance Analysis of Systems and Software. 2016, pp. 296–306.

[55] E. Grobelny, D. Bueno, I. Troxel, a. D. George, and J. S. Vetter. “FASE: A

Framework for Scalable Performance Prediction of HPC Systems and Ap-

plications”. In: Simulation 83.10 (2007), pp. 721–745.

[56] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming

with the message-passing interface. Vol. 1. MIT press, 1999.

[57] T. R. Halfhill. “ARM’s 64-Bit Makeover”. In: The Linley Group Newsletters

(2012).

[58] J. Haskins and K. Skadron. “Memory reference reuse latency: Accelerated

warmup for sampled microarchitecture simulation”. In: International Sympo-

sium on Performance Analysis of Systems and Software. IEEE, 2003, pp. 195–203.

[59] J. L. Henning. “SPEC CPU2000: Measuring CPU performance in the new mil-

lenium”. In: IEEE Computer 33.7 (2000), pp. 28–35.

[60] J. P. Hoeflinger. “Extending OpenMP to Clusters”. In: Intel Corporation white

paper (2006).

[61] M. Hsieh, J. Meng, M. Levenhagen, K. Pedretti, A. Coskun, and A. Rodrigues.

“SST + gem5 = A scalable simulation infrastructure for high performance

computing”. In: Proceedings of the Fifth International Conference on Simulation

Tools and Techniques. 2012, pp. 196–201.

[62] W. C. Hsu, H. Chen, P. C. Yew, and D.-y. Chen. “On the predictability of pro-

gram behavior using different input data sets”. In: Proceedings Sixth Annual

Workshop on Interaction between Compilers and Computer Architectures. 2002,

pp. 45–53.

BIBLIOGRAPHY 123

[63] W.-m. Hwu and Y. N. Patt. “HPSm, a high performance restricted data flow

architecture having minimal functionality”. In: ACM SIGARCH Computer Ar-

chitecture News 14.2 (1986), pp. 297–306.

[64] Intel Xeon Processor E5-2699 v4. https://ark.intel.com/products/

91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-

GHz. Accessed: 2017-05-22.

[65] K. E. Isaacs, A. Bhatele, J. Lifflander, D. Böhme, T. Gamblin, M. Schulz, B.

Hamann, and P.-T. Bremer. “Recovering logical structure from Charm++ event

traces”. In: Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis (2015), 49:1–49:12.

[66] L. V. Kale and S. Krishnan. “CHARM++: A portable concurrent object ori-

ented system based on C++”. In: ACM SIGPLAN Notices 28.10 (1993), pp. 91–

108.

[67] T. Karkhanis and J. Smith. “A first-order superscalar processor model”. In:

Proceedings of the 31st Annual International Symposium on Computer Architec-

ture. 2004, pp. 338–349.

[68] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Git-

tings. “Predictive performance and scalability modeling of a large-scale ap-

plication”. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing.

2001, pp. 37–37.

[69] Y. Kim, W. Yang, and O. Mutlu. “Ramulator: A fast and extensible DRAM

simulator”. In: IEEE Computer Architecture Letters 15.1 (2016), pp. 45–49.

[70] A. J. KleinOsowski and D. J. Lilja. “MinneSPEC: A new SPEC benchmark

workload for simulation-based computer architecture research”. In: IEEE Com-

puter Architecture Letters 1.1 (2002), p. 7.

[71] A. J. KleinOsowski, J Flynn, N Meares, and D. J. Lilja. “Adapting the SPEC

2000 benchmark suite for simulation-based computer architecture research”.

In: Workload characterization of emerging computer applications (2001), pp. 83–

100.

[72] D. Komatitsch and J. Tromp. “Introduction to the spectral element method

for three-dimensional seismic wave propagation”. In: Geophysical Journal In-

ternational 139.3 (1999), pp. 806–822.

[73] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris. “DiP: A parallel pro-

gram development environment”. In: Proceedings of the Second International

Euro-Par Conference on Parallel Processing. April. 1996, pp. 665–674.

https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz
https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz
https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz

124 BIBLIOGRAPHY

[74] T. Lafage and A. Seznec. “Choosing Representative Slices of Program Exe-

cution for Microarchitecture Simulations: A Preliminary Application to the

Data Stream”. In: Workload characterization of emerging computer applications.

Springer US, 2001, pp. 145–163.

[75] P.-F. Lavallée, G. C. de Verdière, P. Wautelet, D. Lecas, and J.-M. Dupays. Port-

ing and optimizing HYDRO to new platforms and programming paradigms-lessons

learnt. 2012.

[76] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. “Basic linear al-

gebra subprograms for fortran usage”. In: ACM Transactions on Mathematical

Software 5.3 (1979), pp. 308–323.

[77] K. Lee, S. Evans, and S. Cho. “Accurately approximating superscalar pro-

cessor performance from traces”. In: International Symposium on Performance

Analysis of Systems and Software. IEEE, 2009, pp. 238–248.

[78] E. A. León, R. Riesen, A. B. Maccabe, and P. G. Bridges. “Instruction-level

simulation of a cluster at scale”. In: Proceedings of the Conference on High Per-

formance Computing Networking, Storage and Analysis. 2009, p. 1.

[79] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. “Work stealing and persistence-

based load balancers for iterative overdecomposed applications”. In: Proceed-

ings of the 21st international symposium on High-Performance Parallel and Dis-

tributed Computing. 2012, pp. 137–148.

[80] C.-K. Luk, B. C. Ed, F. C. G. Hi, E. D. Q. Rs, A Tu, R. Cohn, R. Muth, H.

Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. “Pin:

Building customized program analysis tools with dynamic instrumentation”.

In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation. Vol. 40. 6. 2005, p. 190.

[81] J. Macqueen. “Some methods for classification and analysis of multivariate

observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability. 1967, pp. 281–297.

[82] Message Passing Interface Forum. MPI: A message-passing interface standard.

2012.

[83] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,

J. Eastep, and A. Agarwal. “Graphite: A distributed parallel simulator for

multicores”. In: Proceedings of the Sixteenth International Symposium on High-

Performance Computer Architecture. 2010, pp. 1–12.

[84] G. E. Moore. “Cramming more components onto integrated circuits”. In: Pro-

ceedings Of The IEEE 86.1 (1965), pp. 82–85.

BIBLIOGRAPHY 125

[85] M.Oskin, F. T. Chong, and M Farrens. “HLS: Combining Statistical and Sym-

bolic Simulation to Guide Microprocessor Designs”. In: Proceedings of the 27th

annual international symposium on Computer architecture. 2000, pp. 71–82.

[86] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow, M. D. Hill, D. A.

Wood, S. Huss-Lederman, and J. R. Larus. “Wisconsin Wind Tunnel II: a

fast, portable parallel architecture simulator”. In: IEEE Concurrency 8.4 (2000),

pp. 12–20.

[87] S. Nussbaum and J. Smith. “Modeling superscalar processors via statistical

simulation”. In: Proceedings of the 2001 International Conference on Parallel Ar-

chitectures and Compilation Techniques. 2001, pp. 15–24.

[88] S. L. Olivier, B. R. De Supinski, M. Schulz, and J. F. Prins. “Characterizing

and mitigating work time inflation in task parallel programs”. In: Scientific

Programming 21.3-4 (2013), pp. 123–136.

[89] OpenMP Architecture Review Board. OpenMP application program interface

version 4.0. Tech. rep. 2013.

[90] E. Perelman, G. Hamerly, and B. Calder. “Picking statistically valid and early

simulation points”. In: Proceedings of the International Conference on Parallel Ar-

chitectures and Compilation Techniques. 2003, pp. 244–255.

[91] S. D. Pestel, S. Eyerman, and L. Eeckhout. “Micro-Architecture Independent

Branch Behavior Characterization”. In: IEEE International Symposium on Per-

formance Analysis of Systems and Software. 2015, pp. 135–144.

[92] R. Rabenseifner, G. Hager, and G. Jost. “Hybrid MPI/OpenMP parallel pro-

gramming on clusters of multi-core SMP nodes”. In: Proceedings of the 17th Eu-

romicro International Conference on Parallel, Distributed and Network-Based Pro-

cessing. 2009, pp. 427–436.

[93] N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic, and A. Ramirez. “Ex-

periences With Mobile Processors for Energy Efficient HPC”. In: Proceedings

of the Conference on Design, Automation and Test in Europe. November. 2013,

pp. 464–468.

[94] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and M. Valero.

“Supercomputing with commodity CPUs: Are Mobile SoCs Ready for HPC?”

In: International Conference for High Performance Computing, Networking, Storage

and Analysis. 2013, pp. 1–12.

[95] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez. “The low

power architecture approach towards exascale computing”. In: Journal of Com-

putational Science 4.6 (2013), pp. 439–443.

126 BIBLIOGRAPHY

[96] J. Reinders. Intel Thread Building Blocks: Outfitting C++ for Multi-Core Processor

Parallelism. Oreilly Media, Inc., 2007.

[97] P. Ren, M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan, N. Zheng, and

S. Devadas. “HORNET: A cycle-level multicore simulator”. In: IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems 31.6 (2012),

pp. 890–903.

[98] A. Rico, A. Ramirez, and M. Valero. “Available task-level parallelism on the

Cell BE”. In: Scientific Programming 17.1-2 (2009), pp. 59–76.

[99] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion, A. Ramirez,

and M. Valero. “On the simulation of large-scale architectures using multiple

application abstraction levels”. In: ACM Transactions on Architecture and Code

Optimization 8.4 (2012), pp. 1–20.

[100] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero. “Trace-

driven simulation of multithreaded applications”. In: IEEE International Sym-

posium on Performance Analysis of Systems and Software. IEEE, 2011, pp. 87–96.

[101] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. We-

ston, R Risen, J. Cook, P. Rosenfeld, E. Cooper-Balls, et al. “The structural

simulation toolkit”. In: ACM SIGMETRICS Performance Evaluation Review 38.4

(2011), p. 37.

[102] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. “DRAMSim2: A cycle accurate

memory system simulator”. In: IEEE Computer Architecture Letters 10.1 (2011),

pp. 16–19.

[103] D. Sanchez and C. Kozyrakis. “ZSim: Fast and accurate microarchitectural

simulation of thousand-core systems”. In: Proceedings of the International Sym-

posium on Computer Architecture. 2013, pp. 475–486.

[104] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and D.

Black-Schaffer. “Full Speed Ahead: Detailed Architectural Simulation at Near-

Native Speed”. In: 2015 IEEE International Symposium on Workload Characteri-

zation. IEEE, 2015, pp. 183–192.

[105] D. Schmidl, P. Philippen, D. Lorenz, C. Rössel, M. Geimer, D. An Mey, B.

Mohr, and F. Wolf. “Performance analysis techniques for task-based OpenMP

applications”. In: Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7312 LNCS.01

(2012), pp. 196–209.

BIBLIOGRAPHY 127

[106] T. Sherwood, E. Perelman, and B. Calder. “Basic block distribution analysis

to find periodic behavior and simulation points in applications”. In: Proceed-

ings of the International Conference on Parallel Architectures and Compilation Tech-

niques. 2001, pp. 3–14.

[107] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. “Automatically char-

acterizing large scale program behavior”. In: ACM SIGOPS Operating Systems

Review 36.5 (2002), pp. 45–57.

[108] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha.

“A framework for performance modeling and prediction”. In: Proceedings of

the ACM/IEEE Conference on Supercomputing. 2002, pp. 1–17.

[109] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani, S.

Hutsell, R. Agarwal, and Y. C. Liu. “Knights Landing: Second-Generation

Intel Xeon Phi Product”. In: IEEE Micro 36.2 (2016), pp. 34–46.

[110] G. Southern and J. Renau. “Analysis of PARSEC workload scalability”. In:

Proceedings of the International Symposium on Performance Analysis of Systems

and Software. 2016, pp. 133–142.

[111] Z. Tan, A Waterman, R Avizienis, Y. Lee, H Cook, D Patterson, and K Asanovic.

“RAMP gold: An FPGA-based architecture simulator for multiprocessors”.

In: Proceedings of the 47th ACM/IEEE Design Automation Conference. 2010, pp. 463–

468.

[112] R. Tessier. “Cosmological hydrodynamics with adaptive mesh refinement-A

new high resolution code called RAMSES”. In: Astronomy & Astrophysics 385.1

(2002), pp. 337–364.

[113] TOP500 Supercomputer Sites. URL: https://www.top500.org/ (visited on

03/02/2017).

[114] M. Valero, M. Moreto, M. Casas, E. Ayguade, and J. Labarta. “Runtime-Aware

Architectures: A First Approach”. In: Supercomputing frontiers and innovations

1.1 (2014), pp. 29–44.

[115] S. Van Den Steen, S. Eyerman, S. De Pestel, M. Mechri, T. E. Carlson, D.

Black-Schaffer, E. Hagersten, and L. Eeckhout. “Analytical Processor Perfor-

mance and Power Modeling Using Micro-Architecture Independent Charac-

teristics”. In: IEEE Transactions on Computers 65.12 (2016), pp. 3537–3551.

[116] R. F. Van der Wijngaart and H. Jin. NAS Parallel Benchmarks, Multi-Zone Ver-

sions. Tech. rep. 2003.

[117] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J.

C. Hoe. “SimFlex: Statistical Sampling of Computer System Simulation”. In:

IEEE Micro 26.4 (2006), pp. 18–31.

https://www.top500.org/

128 BIBLIOGRAPHY

[118] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. “TurboSMARTS: Ac-

curate microarchitecture simulation sampling in minutes”. In: Proceedings of

the 2005 ACM SIGMETRICS International Conference on Measurement and Mod-

eling of Computer Systems. Vol. 33. 1. 2005, pp. 408–409.

[119] S. White. “The AMD Opteron Seattle: A 64b ARM Dense Server Processor”.

In: Hot Chips (2014).

[120] T. Wiegand. “Overview of the H. 264/AVC video coding standard”. In: IEEE

Transactions on Circuits and Systems for Video Technology 13.7 (2003), pp. 560 –

576.

[121] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. “SMARTS: acceler-

ating microarchitecture simulation via rigorous statistical sampling”. In: Pro-

ceedings of the 30th Annual International Symposium on Computer Architecture.

2003, pp. 84–95.

[122] S. Yoon and A. Jameson. “Lower-upper symmetric-Gauss-Seidel method for

the Euler and Navier-Stokes equations”. In: AIAA journal 26.9 (1988), pp. 1025–

1026.

[123] M. T. Yourst. “PTLsim: A cycle accurate full system x86-64 microarchitectural

simulator”. In: IEEE International Symposium on Performance Analysis of Sys-

tems and Software. 2007, pp. 23–34.

[124] Yue Luo, L. John, and L. Eeckhout. “Self-Monitored Adaptive Cache Warm-

Up for Microprocessor Simulation”. In: 16th Symposium on Computer Architec-

ture and High Performance Computing. IEEE, 2004, pp. 10–17.

[125] C. Zhang. “Mars: A 64-core ARMv8 processor”. In: Proceedings of the 2015

IEEE Hot Chips Symposium. 2016.

[126] G. Zheng, G. Gupta, E. Bohm, I. Dooley, and L. V. Kale. “Simulating large

scale parallel applications using statistical models for sequential execution

blocks”. In: Proceedings of the International Conference on Parallel and Distributed

Systems. 2010, pp. 221–228.

	Declaration of Authorship
	Abstract
	Resum
	Resumen
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Thesis Contributions
	Execution Time Predictability of Task-Based Programs
	Sampled Simulation of Task-Based Programs
	Multi-Level Simulation of Hybrid Programs

	Thesis Outline

	Background
	Parallel Systems
	Shared-Memory Systems
	Distributed-Memory Systems
	Hybrid Systems
	Heterogeneous Systems
	Implications on Design Techniques for Future Systems

	Parallel Programming Models
	Shared-Memory Programming Models
	Message Passing Programming Models
	Functional Parallelism vs. Data Parallelism
	Task-Based Programming Models
	Hybrid Programming Models

	Architectural Simulation
	Functional vs. Performance Simulation
	Simulation of Shared-Memory Systems
	Simulation of Distributed-Memory Systems
	Simulation of Hybrid Distributed-Shared-Memory Systems

	Acceleration Techniques for Architectural Simulation
	Checkpointing
	Sampling
	Statistical Simulation
	Analytical Models
	Reduced Input Sets
	Parallelization
	Hardware Acceleration

	Experimental Setup
	The OmpSs Programming Model
	Investigated Systems
	Shared-Memory Multi-Core Systems
	Hybrid Distributed Shared-Memory System

	The TaskSim Multi-Core Simulator
	Benchmarks
	Task-based Benchmarks
	Hybrid MPI+OpenMP Benchmarks

	Performance Measurement in Native Execution
	Hardware Performance Counters
	Performance Measurement of Task-Based Programs

	Execution Time Predictability of Task-Based Programs
	Introduction
	Execution Time Predictability of Task-Based Programs
	Evaluation
	Per-Task-Instance Performance Analysis
	Predictability of Irregular Behavior
	Input Dependence:
	Multiple Behaviors Per Task Type:
	Resource Sharing:

	Related Work
	Summary

	Sampled Simulation of Task-Based Programs
	Introduction
	Background and Motivation
	Parallel Programming Models
	Performance Variation of Task-Based Programs
	Identifying Representative Task Instances
	Analytical Performance Modeling

	Sampled Simulation of Task-Based Programs
	Requirements for the Architectural Simulator
	Sampling Mechanism
	Periodic Sampling Policy

	Evaluation
	Adjusting the Model Parameters
	Periodic Sampling
	Lazy Sampling
	Analytical modeling

	Summary

	Multi-Level Simulation of Hybrid Programs
	Introduction
	Background and Motivation
	Co-Design of HPC Applications and Systems
	Challenges Simulating Large HPC Applications

	Multi-Level Simulation Approach
	MUSA - General Overview
	Tracing - Capture Multi-Level Behavior
	Simulation - Leverage Multi-level Traces
	Sampling - Reducing Simulation Time

	Evaluation
	Applications
	Native HPC Infrastructure
	Tracing and Simulation Infrastructure
	Validation
	Large-scale Simulations
	Simulation Time Cost Analysis
	Design Space Exploration

	Related Work
	Summary

	Conclusions
	Execution Time Predictability of Task-Based Programs
	Sampled Simulation of Task-Based Programs
	Multi-Level Simulation of Hybrid Programs

	Future Work
	Scheduling Task-Based Programs Using Execution Time Predictability
	Sampled Simulation of Task-Based Programs
	Multi-Level Simulation of Hybrid Programs

	Publications
	Conference Publications
	Journal Publications
	Workshop Publications
	Poster Presentations
	Other Publications (Not as First Author)

	Bibliography

