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ABSTRACT

Photons travelling through free space do not interact with each
other. This characteristic makes them perfect candidates to carry
quantum information over long distances. On the other hand,
processing the information they encode requires interaction mech-
anisms. In recent years, there have been growing efforts to re-
alize strong, controlled interactions between photons, and to
understand the underlying laws that describe the phenomena
that can emerge, thus spawning the new field of “quantum non-
linear optics."

While bulk materials have extremely weak nonlinear coeftfi-
cients, interactions between photons can be obtained by mak-
ing them interact with individual atoms, which are intrinsically
nonlinear objects, having the capability of absorbing only a sin-
gle photon at a time. Realizing deterministic interactions be-
tween photons and atoms is one of the main challenges of quan-
tum nonlinear optics. To circumvent the limitations due to the
small optical cross-section of the atoms and the diffraction limit
in free space, different strategies have been pursed, including
the use of cavities (CQED), of atomic ensembles, and more re-
cently of dielectric nanostructures able to confine light without
defocusing, thus enabling the interaction with atoms trapped
in the proximity of the structures. While for the CQED case
powerful theoretical tools have been developed to treat the in-
teractions of photons, in the case of atomic ensembles, either in
free space or coupled to nanophotonic structures, there is a gen-
eral lack of theoretical methods beyond the linear regime. This
relative lack of understanding also implies that there could be
rich new physical phenomena that have thus far not been iden-
tified. The overall goal of this thesis is to explore these themes
in greater detail.

In Chapter 2 of this thesis we develop a new formalism to
calculate the properties of quantum light when interfaced with
atomic ensembles. The method consists of using a “spin model"
that maps a quasi one-dimensional (1D) light propagation prob-
lem to the dynamics of an open 1D interacting spin system,
where all of the photon correlations are obtained from those
of the spins. The spin dynamics can be numerically solved us-
ing the toolbox of matrix product states (MPS), thus providing
a technique to study strongly interacting photons in the true
many-body limit. In the chapter, we show the power of this new
approach first studying the propagation of a weak probe field
in a Rydberg-EIT system, and then applying the MPS-based al-



gorithm to investigate light propagation under conditions of
vacuum induced transparency, where the velocity of a pulse
propagating through an ensemble becomes proportional to its
photon number.

In Chapter 3 we investigate the possibility of creating exotic
phases of matter using the recently realized photonic crystal
waveguide (PCW)-atoms interface. In such a system the band
gap modes of the PCW are used to mediate long-range interac-
tions between atoms trapped nearby, making feasible the sim-
ulation of condensed matter models. We describe and investi-
gate a realistic configuration in which these interactions cou-
ple strongly the motion of the atoms and their internal state
(“spins"). This form of coupling raises the intriguing question
of whether a novel “quantum crystal" can emerge, in which
the spatial order of the atoms is stabilized by spin entangle-
ment. Analysing in detail the Hamiltonian for different cou-
pling strengths and external field magnitudes, we find a rich
phase diagram of emergent orders, including spatially dimer-
ized spin-entangled pairs, a fluid of composite particles com-
prised of joint spin-phonon excitations, phonon-induced Néel
ordering, and a fractional magnetization plateau associated with
trimer formation.

In Chapter 4 we investigate the possibility of implementing
second-order nonlinear quantum optical processes with graphene
nanostructures, as a more robust alternative to the use of atomic
systems. Graphene is a two-dimensional material discovered in
2004 with peculiar optical and electronic properties. One inter-
esting feature is that graphene can support surface plasmons
(SP), collective charge-field oscillations that can be spatially con-
tined several orders of magnitude tighter than free-space pho-
tons. We quantify the second-order nonlinear properties, show-
ing that the tight confinement gives rise to extraordinary inter-
action strengths at the single-photon level. Finally, we predict
that opportunely engineered arrays of graphene nanostructures
can provide a second harmonic generation efficiency compara-
ble with that of state-of-the-art nonlinear crystals, with the high
Ohmic losses of graphene serving as the fundamental limita-
tion for deterministic processes.

In Chapter 5 we investigate how cooperative emission in
quantum memories realized with atomic arrays, i.e. spatially
ordered atomic ensembles, affects their efficiency. After devel-
oping a compact formalism for quantifying the retrieval effi-
ciency for an arbitrary detection mode, we study the case of
a 2D atomic array where we find a significant improvement in
the scaling with the number of atoms with respect to the case of
a disordered three-dimensional ensemble. In particular we find
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the impressive result that a memory realized with 16 atoms can
have the same efficiency of an ensemble of optical depth larger
that 100.

RESUMEN

Los fotones que viajan por el espacio libre no interacttian entre
si. Esta caracteristica los hace perfectos candidatos para trans-
portar la informacién cudntica a largas distancias. Por otro lado,
el procesamiento de la informacién que codifican requiere me-
canismos de interaccion. En los tltimos afios se han realizado
esfuerzos crecientes para realizar interacciones fuertes y contro-
ladas entre los fotones y para comprender las leyes subyacentes
que describen los fendmenos que pueden surgir, generando asi
el nuevo campo de la “6ptica cudntica no lineal".

Mientras que los materiales tridimensionales tienen coeficien-
tes no lineales extremadamente débiles, se pueden obtener in-
teracciones entre los fotones haciéndolos interactuar con ato-
mos individuales, que son objetos intrinsecamente no lineales,
teniendo la capacidad de absorber tinicamente un solo fotén a
la vez. La realizaciéon de interacciones deterministicas entre fo-
tones y &tomos es uno de los principales retos de la 6ptica cuan-
tica no lineal. Para eludir las limitaciones debidas a la pequefia
seccion eficaz 6ptica de los atomos y el limite de difraccion en el
espacio libre, se han aplicado diferentes estrategias, entre ellas
el uso de cavidades (CQED), de colectividades atémicas y, més
recientemente, de nanoestructuras dieléctricas capaces de con-
finar la luz sin desenfocarse, permitiendo asi la interaccién con
atomos atrapados en la proximidad de esas estructuras. Mien-
tras que para el caso de la CQED se han desarrollado potentes
herramientas tedricas para tratar las interacciones de los foto-
nes, en el caso de colectividades atémicas, ya sea en el espa-
cio libre o acopladas a estructuras nanofoténicas, hay una falta
general de métodos tedricos mas alld del régimen lineal. Esta
relativa falta de comprensiéon también implica que podria ha-
ber nuevos fendmenos fisicos interesantes que hasta ahora no
se han identificado. El objetivo general de esta tesis es explorar
estos temas con mayor detalle.

En el capitulo 2 de esta tesis desarrollamos un nuevo forma-
lismo para calcular las propiedades de la luz cuédntica cuando
interactia con sistemas atémicos. El método consiste en utilizar
un “modelo de espines'que mapea un problema de propaga-
cion de luz cuasi unidimensional (1D) a la dinamica de un sis-
tema abierto unidimensional de espines que interactiian entre
si, donde todas las correlaciones de fotones se obtienen a partir
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de las de los espines. La dindmica de los espines se puede re-
solver numéricamente utilizando la caja de herramientas de los
estados producto de matrices (MPS), proporcionando asi una
técnica para estudiar los fotones que interacttian fuertemente
en el regimen de la fisica de muchos cuerpos. En el capitulo
mostramos el poder de este nuevo enfoque estudiando primero
la propagaciéon de un campo débil en un sistema Rydberg-EIT,
y luego aplicando el algoritmo basado en los MPS para inves-
tigar la propagacién de luz bajo condiciones de transparencia
inducida por vacio (VIT), donde la velocidad de un impulso
que se propaga a través de una colectividad atémica se vuelve
proporcional a su niimero de fotones.

En el capitulo 3 se investiga la posibilidad de crear fases ex6-
ticas de la materia utilizando la interfaz entre gufa de ondas
de cristales foténicos (PCW) y dtomos recientemente realizada
experimentalmente. En un sistema de este tipo, los modos de
la banda de frecuencias prohibidas de la PCW se utilizan pa-
ra mediar las interacciones de largo alcance entre los dtomos
atrapados cerca de la guia de ondas, haciendo posible la simu-
lacién de modelos de materia condensada. Describimos e inves-
tigamos una configuracion realista en la que estas interacciones
unen fuertemente el movimiento de los 4tomos y su estado in-
terno (“espin"). Esta forma de acoplamiento plantea la intrigan-
te cuestion de si un nuevo cristal cuantico puede surgir, en el
cual el orden espacial de los 4&tomos se estabiliza por entrelaza-
miento de los espines. Analizando en detalle el Hamiltoniano
para diferentes fuerzas de acoplamiento y magnitudes del cam-
po externo, encontramos un rico diagrama de fases de érdenes
emergentes, incluyendo pares espin-entrelazados espacialmen-
te dimerizados, un fluido de particulas que corresponden a una
excitacion hibrida de espin y fonén, orden de Néel inducido por
fonones, y un plateau de magnetizacion fraccionaria asociada a
la formacién de trimeros.

En el capitulo 4 se investiga la posibilidad de implementar
procesos Opticos cudnticos no lineales de segundo orden con
nano-estructuras de grafeno, como una alternativa mas robus-
ta al uso de sistemas atomicos. El grafeno es un material bi-
dimensional descubierto en 2004 con peculiares propiedades
Opticas y electrénicas. Una caracteristica interesante es que el
grafeno puede acomodar plasmones superficiales (SP), oscila-
ciones colectivas de campo de carga que pueden ser confinadas
en regiones del espacio real varios 6rdenes de magnitud maés
pequefias que en el caso de fotones en el vacio. Cuantificamos
las propiedades no lineales de segundo orden, mostrando que
el estrecho confinamiento da lugar a extraordinarias fuerzas de
interaccion a nivel de un solo fotén. Finalmente, se predice que
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un disefio apropiado de las nano-estructuras del grafeno permi-
tiria generar el segundo arménico con una eficiencia compara-
ble a la de los cristales no lineales de tltima generacion, siendo
las grandes pérdidas 6hmicas del grafeno la tinica limitaciéon
fundamental para obtener procesos deterministicos.

En el capitulo 5, investigamos cémo la emisién cooperativa
en memorias cuanticas realizadas con reticulos atémicos, es de-
cir, colectividades espacialmente ordenadas, afecta su eficiencia.
Después de desarrollar un formalismo compacto para cuantifi-
car la eficiencia de recuperacién del fotén en un modo de de-
teccidn arbitrario, estudiamos el caso de un reticulo atémico 2D
donde encontramos una mejora significativa en la manera en la
cual la eficiencia depende del nimero de d4tomos con respecto
al caso de un gas atémico desordenado. En particular encontra-
mos el impresionante resultado de que una memoria realizada
con 16 d&tomos puede tener la misma eficiencia que un gas cuén-
tico atémico de profundidad 6ptica mayor que 100.
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INTRODUCTION

1.1 QUANTUM NONLINEAR OPTICS (QNLO)

The optical properties of vacuum and most materials are intensity-
independent, i.e. not sensitive to the number of photons which
are propagating through them. Light propagation in these me-
dia is represented schematically in Fig. 1.1a, where photons be-
have as non interacting particles. This is the realm of linear
optics, where the dynamics of light is simply described by a
complex number, called the index of refraction of the medium,
which contains all the information about the phase modifica-
tion (dispersion) and the loss of energy (absorption) of the light
during propagation [1]. In terms of applications, if on one hand
their non interacting behaviour makes photons perfect carriers
of information over long distances, on the other hand the need
of processing the information encoded in light makes it desir-
able to have a mechanism whereby photons can interact.

Shortly after the invention of the laser, a source of coherent
high-intensity light, it was realized that at large light intensities
some materials also present weak intensity-dependent optical
properties [2]. This important discovery signalled the birth of
classical nonlinear optics. Since then, one of the major goals of
this field has been to create the conditions for which optical
nonlinearities could be observed at progressively lower inten-
sity, ideally down to the limiting case of quantum nonlinear
optics (QNLO) [3], where few photons, or even a single one,
can change the optical properties of a medium, as represented
in Fig. 1.1b. Reaching this ideal limit would open the door to
the realization of both classical devices, such as optical transis-
tors and switches, operating at their ultimate limit, and devices
to generate and manipulate non-classical states of light, such as
for quantum information processing [4].

However, conventional bulk materials have nonlinear coeffi-
cients which are too small, orders of magnitude far away from
the QNLO regime [3]. The fundamental constituent of matter,
the individual atom, on the contrary is an extremely nonlin-
ear object, as a consequence of the anharmonicity of the atomic
spectrum resulting from the Coulomb potential. For this rea-
son, when light is nearly monochromatic and close to resonance
with a given atomic transition, the atom is often described as a
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(a) (b)
X P | Y P

Figure 1.1: Linear optics vs. quantum nonlinear optics (QNLO). (a)
When propagating through a linear medium photons ex-
perience dispersion and absorption, but these effects are
independent of the number of photons propagating inside
the medium. (b) On the contrary, in a nonlinear medium
light propagation is affected by the number of photons
entering the medium.

Figure 1.2: Schematic representation of a Gaussian beam focused
onto a single atom. The probability of interacting with the
atom for a (resonant) photon in the beam mode is given by
P ~ 0a/Ay,, where o3 ~ A? is the atomic optical cross sec-
tion and Ay, is the beam cross-sectional area at the atomic
position.

two-level system, an object which is thus capable of absorbing
and emitting only one photon at time.

At the same time, the daily-life experience of the transparency
of gaseous media such as air indicates that light interacts only
very weakly with atoms. If we imagine the atom as a solid disk,
it would have an area o) ~ A? as far as how it interacts with light
(the optical cross section), where A is the resonant wavelength
squared. The probability P to interact with a resonant photon
in a laser beam is then equal to o) /Ay (see Fig. 1.2), where Ay,
is the cross-sectional area of the beam [5]. o) is many orders of
magnitude larger than the physical dimension of the atom but
nevertheless, because of the diffraction limit which prevents fo-
cusing of light down to areas smaller than A?, achieving P ~ 1 is
extremely challenging. Up to now, experimental efforts to cou-
ple individual emitters to strongly focused beams have led to
record values of P ~ 0.05 for neutral atoms [6, 7], ~ 0.01 for ions
[8], and ~ 0.1 for molecules confined in a surface [9].



1.1 QUANTUM NONLINEAR OPTICS (QNLO)

Different and more sophisticated schemes have been explored
to increase the interaction probability P. In the following we
briefly review the main approaches: cavity quantum electro-
dynamics and atomic ensembles. The basic concepts underly-
ing these approaches will serve as a point of comparison later,
when we introduce new paradigms for atom-light interactions
and theoretical techniques to solve for the dynamics of strongly
interacting photons.

1.1.1  Cavity quantum electrodynamics (CQED)

One way to increase P consists of making the photon pass
through the atom more than once. In this way naively P gets
multiplied by the number of passages N (when NP < 1). The
strategy adopted to achieve these multiple passages is to trap
the atom between two mirrors separated by a certain distance
L, a system known as an optical cavity (see Fig. 1.3a) [10, 11].
In such a system, heuristically the photon bounces back and
forth between the mirrors until it exits the cavity by tunnelling
through one of the mirrors, or being absorbed or scattered by
mirror imperfections. Intuitively, N is given by the ratio be-
tween the average time the photon spends in the cavity, equal
to 1/k, with k being the decay rate of the cavity mode, and
the time spent to go from a mirror to the another one, equal to
L/c =2nl/(Aw.), with w being the cavity frequency. The ratio
wc/k is called the quality factor of the cavity in the jargon of
cavity quantum electrodynamics (CQED), and is denoted by Q.

We then have that the probability of interaction in the CQED
approach is P ~ QA3/V. = C, where V. = A.L is the cavity
effective mode volume. The factor C is called “cooperativity"
and is a figure of merit for how well the atom and photons in
the cavity mode interact. While the meaning of cooperativity as
probability holds strictly only for P < 1, the significance of the
cooperativity goes beyond that limit, as we will see later in the
discussion of CQED systems.

By quantizing the cavity mode one can obtain a Hamilto-
nian for the atom-cavity system, which is known as the Jaynes-
Cummings (JC) model [12]:

Hjc = hdjco® + hgjc(r)(0%9a + o9¢al), (1.1)

in a frame rotating at the cavity frequency. Here 6jc = weg — we
is the atomic resonance-cavity resonance detuning, gjc(r) is
the position-dependent atom-cavity field coupling (gjc(r) ~
gocoskx along the cavity axis, reflecting the standing wave
structure), 09¢ = |g) (e| is the atomic lowering operator and a is
the annihilation operator of the cavity mode. The first term in
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(a) (b)
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Figure 1.3: (a) Schematic representation of a cavity QED system. A
two-level atom is coupled to a mode of the cavity with
coupling strength gjc. The atom can also decay outside of
the cavity at a rate I'’. k is the cavity decay rate, due to
imperfect mirrors. (b) Spectrum of the Jaynes-Cummings
model for zero, one and two excitations. Red and blue ar-
rows are represented to show the anharmonicity of the
spectrum. In particular, the frequency needed to produce
a resonant transition from zero to either one of the single-
excitation eigenstates is then non-resonant when going
from the single- to two-excitation manifold.

the Hamiltonian corresponds to the detuning of the atomic tran-
sition from the cavity frequency, while the second term, arising
from the dipole interaction of the atom with the cavity mode,
describes the coherent exchange of excitations from the atomic
excited state to the cavity mode and vice versa. The coupling
strength gjc ~ 9/ W/ €M Veg is proportional to the atom dipole
matrix element p = (e/d|g) and inversely proportional to the
square root of the cavity effective volume.

The total number of excitations N = 0°¢ + a'a is a conserved
quantity, since it commutes with Hamiltonian (1.1), which can
thus be block-diagonalized. Each block, denoted by the number
of total excitations n, has dimension two and is spanned by the
basis {|g,n),le,n—1)}, a notation indicating the atomic state
and the number of photons in the cavity mode. The eigenvec-
tors |n, ) of each block are a superposition of these two states
and have eigenenergies E,, + = h(nw +dc = (1/2), /6]2C + 4912Cn).
The lowest states of this spectrum are shown in Fig. 1.3b (for
djc = 0). One can immediately notice that the dependence on
V1 of the separation between each pair of eigenvalues makes
the spectrum highly nonlinear. This fact is represented by the
blue and red arrows in the figure, which show that when a
photon is resonant with an eigenstate of the system, a second
photon with the same frequency in general is not. The transmis-
sion properties of a CQED system are thus expected to be pho-
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ton number-dependent [13], as for the ideal nonlinear medium
of Fig. 1.1.

In the introduction and short discussion of the JC model we
have ignored the fact that the system is in general not closed,
since excitations can be lost through the non-perfect reflectance
of the mirrors and through atomic spontaneous emission into
free space (with this latter decay characterized by the decay rate
I'"). To account properly for these dissipative mechanisms one
has to adopt the open system formalism, where the state of the
system is described by a density matrix, whose dynamics satis-
ties a master equation [14]. One can account for the losses by in-
troducing imaginary terms in the Hamiltonian. In this way the
spectrum becomes complex, and the energy levels (the lines in
Fig. 1.3b) acquire a width equal to the imaginary part of their
eigenvalues. The practical consequence of this fact is that the
nonlinearity of the spectrum will only have significant observ-
able consequences if the magnitude of that nonlinearity exceeds
the linewidths of the involved states.

The JC model is a powerful tool to describe the dynamics of
the atom-cavity system at a given number of excitations, but
not sufficient to describe how the system connects with the
outside world, and the quantum properties of the light exit-
ing the cavity. The necessary bridge between the internal and
the external dynamics is provided by a tool of quantum optics
called the “input-output formalism" [15]. Within this formalism
the external light is modelled as a one-dimensional continuum
of modes, described by the Hamiltonian Hext = ) wkb]tbk,
with wy = c|k|. The interaction between these external modes
and the cavity mode is assumed to be linear, and described by
He ¢ =1 Zk(aTbk + H.c.), with the coupling constant assumed
to be frequency-independent (at least over the range of frequen-
cies of interest).

From H = Hjc + Hext + He—c one can then obtain the equa-
tions of motion of the external and cavity mode operators. The
equations for the external field can be formally integrated in
time, yielding

t

bk(t):e_iwk(t_ti]bk(ti)+nj dt’ e wkttgt)),  (1.2)
t

where the first term on the r.h.s. is the initial boundary condi-
tion at an initial time t;, physically corresponding to the free
propagating field before the interaction with the cavity. The
second term consists instead of the field emitted by the cav-
ity mode into the external continuum. An equivalent formal
integration can be done in terms of the boundary condition at
a final time t;. In this case the first term on the r.h.s. will corre-
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spond to the free propagating field after the interaction with the
cavity. A natural step is then to define an input mode operator

bin = \/%[ J dke kil (), (1.3)
and, in a similar way, but involving by(t¢), an output mode op-
erator. Finally, if 1/wy is much shorter than the time over which
the cavity mode operator a(t) changes significantly, one can
perform the so-called Markov approximation and replace a(t’)
with a(t) in Eq. (1.2). Combining these ingredients one gets a
fundamental relation between the input and output modes:

bout(t) = bin(t) + \/Ea(t)/ (1.4)

with k = 2rm?. Eq. (1.4) is called the “input-output" equation of
the system, and shows that the quantum field leaving the cavity
is a sum of that which enters, and part of the cavity field leaking
out. This equation enables the properties of the field exiting the
system to be calculated, given knowledge of the input field and
system dynamics. Its importance cannot be underestimated; in
fact equations of this form will be recurrent in this thesis.

Applying the same mathematical manipulations to the equa-
tion of motion of the cavity mode operator, one finds that this
equation assumes the form of an Heisenberg-Langevin equa-
tion:

i K

a=[Hjc, a —5a—Vkbin(t), (1.5)
h 2

which is the equation of motion of an effective Hamiltonian

containing only the system degrees of freedom and the input

mode:

Hjc,open = Hjc — igaTa —1ivk(a by (t) + H.c). (1.6)
This result is extremely important since it shows that we can
couple a CQED system with a continuum of external modes
without having to deal with these modes explicitly. It is indeed
enough to add an imaginary term to the energy of the cavity
photons accounting for the decay of cavity excitations, as men-
tioned above, and to drive the cavity mode with a single input
mode.

After having presented all the tools required to study the op-
tics of a CQED system, we consider briefly the case in which
more than one atom is trapped inside the cavity, a situation
which is interesting because the cavity mode can facilitate the
exchange of excitations between the atoms, thus realizing an
effective atom-atom interaction. A particularly relevant case is
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when the detuning |5;c| > gjc. In this regime one of the single-
excitation eigenstates consists of an excited atom weakly dressed
by a cavity photon. For multiple atoms this virtual photon gen-
erates an effective exchange interaction between the atoms of
the form [16]

h
Hie = 5 - > giclr)gic(r)o®of. (1.7)
il

This effective Hamiltonian, which can be obtained rigorously
by integrating out the photonic degrees of freedom, describes
the process whereby one atom loses an excitation (G?e) and an-
other gains it (0}Y), mediated by a virtual photon. It is worth
to note that, since the virtual photon occupies all the cavity, the
coupling constant for a given pair of atoms depends only on
the positions of the atoms with respect to the cavity mode, and
not on the relative positions. In other words we can say that
this cavity-mediated effective interaction is infinite-range.

If one considers Eq. (1.7) with just two atoms and equal cou-
pling, it is possible to calculate the error probability in the
exchange of an excitation, i.e. the probability that the photon
gets lost during the transfer process instead of being absorbed
by the second atom. The exchange time is simply given by
T~ O/ 9]20 The loss rate is given by the sum of the spontaneous
emission into free space and of the cavity decay (weighted by
the populations in each degree of freedom), and is equal to
Mot ~ T+ k(d5c/ g]C)Z, where (8yc /g]c)2 is the cavity mode oc-
cupation. The total error probability is thus € = Tlio. It can
be minimized with respect to the detuning obtaining a lower
bound for the error equal to Eyin = 1/ V/C, where C is the
single atom cooperativity introduced previously. We thus see
again that the cooperativity is an important figure of merit in
CQED.

1.1.2 Atomic ensembles

A second way to enhance the atom-light interaction consists
of using an atomic ensemble [17], as schematically represented
in Fig. 1.4a. The obvious effect is to multiply the single-atom
interaction probability P ~ o) /A}, by a factor proportional to the
number of atoms in the ensemble N,. Here the figure of merit
is thus given by the factor OD = N,0,/Ay, called the “optical
depth" of the system [17]. This quantity enters, for instance, in
Beer’s law, which describes the exponential attenuation of the
intensity of a beam when crossing a gas of two-level atoms,
ie. I =Ipexp(—OD).

9
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Historically, the propagation of a field through an atomic en-
semble that it interacts with is modelled using the Maxwell-
Bloch equations [18, 19]. First, the propagation equation for the
quantum electric field E, taken to be one-dimensional for sim-
plicity, is coupled to a smoothed-out atomic polarization den-
sity (i.e. the granular nature of atoms or density fluctuations are
ignored),

(0t +¢0,)E =1igN,Pge (1.8)

where Pge = 1/N; Y ; 0{¢ are atomic operators averaged over
all the atoms with the same z coordinate (the dependence on z
and t of E and P is implied), and g is the field-atom coupling
strength.

Here, we have assumed two-level atoms, but the equations
can be suitably generalized to multi-level structure. The atomic
polarization density, on the other hand, is driven by the field,
and obeys an optical Bloch equation

where A = weq — wyp is the detuning of the probe field, I' is the
free-space decay rate of the atoms and F is a noise term.

In general, the equations above represent an open interact-
ing quantum field theory, which is in general unknown how
to solve for exactly. The complexity can be reduced by noting
that typically, the level of nonlinearities in atomic ensembles is
quite weak, since the number of atoms is typically larger than
the number of photons absorbed. Thus, one common approx-
imation is to treat the electric field at a mean-field level. For
weak light intensities, the linearized Maxwell-Bloch equations
can be solved, obtaining the above mentioned Beer’s law. For
larger intensities, this gives rise to a classical nonlinear prop-
agation problem. This limit, for example, can be used to de-
scribe the phenomenon of self-induced transparency [19]. Al-
ternatively, one can linearize the atomic system, such that the
resulting joint quantum state of matter and light is Gaussian
[17]. This regime itself covers important applications such as
quantum memories for light [20-23] or spin squeezing [24].

In recent years, a remarkable approach has been developed
that enables single-photon-level nonlinearities in atomic ensem-
bles. Qualitatively, the idea is that with large optical depth, an
incident photon can be efficiently absorbed and converted to
an atomic excited state. In turn, if these atomic excited states
can be made to interact strongly, such as in Rydberg states,
this atomic interaction effectively manifests itself as a photon-
photon interaction as photons exit the medium. Here we review
briefly the most successful approach in this direction, the EIT-
Rydberg scheme [25-28].
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Figure 1.4: (a) Schematic representation of an atomic ensemble in-
teracting with a laser beam. (b) Representation of the
Rydberg-EIT scheme. The red and blue arrow are the
probe and control field, here taken to be perfectly resonant
with the |g) — |e) and |e) — |r) transitions, respectively. On
the right, the energy of the Rydberg state is modified by
the dipole-dipole interaction, with consequent destruction
of the EIT resonant condition.

The key ideas of this scheme are represented in Fig. 1.4. First
of all, three-level atoms are used, with the probe field resonant
with the transition |g) — |e), and the transition |e) —|r) driven by
the classical control field Q.. In this way, when the sum of the
probe and control frequency is resonant with wg, the “electro-
magnetically induced transparency” (EIT) scheme is realized
[29]. In EIT (a topic which will be treated in greater detail in
Chapter 2) the linear response of the atomic ensemble changes
from absorptive to dispersive as a consequence of interference
between the probe and the control field, which suppresses the
excited state |e) population, while mapping the probe photons
into |r) state excitations that are assumed to be long-lived.

The second ingredient of the scheme, as anticipated, is that
Ir) is a Rydberg state, i.e. a state with a high principal number
n ~ 100 [28], and thus very large lifetime and dipole moment.
Such a large dipole moment results in strong van der Waals in-
teractions when two atoms are both in a Rydberg state. In par-
ticular, once a single photon is converted into an atomic excited
state [r) via EIT, this atom shifts the energy of Rydberg levels of
nearby atoms by a large amount (see Fig. 1.4b). This destroys
the two-photon resonance condition for EIT within a certain dis-
tance 1, called the Rydberg radius, and leads to strong multi-
photon absorption. It has been observed that this nonlinearity
is strong enough to preclude the existence of two overlapping
photons upon exit from the medium, resulting in a significant
non-classical “anti-bunching" signature [30-32]. Such schemes
can also be modified to produce dispersive nonlinearities [33].

11
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The Maxwell-Bloch equations can be easily modified to de-
scribe three-level atoms. However, the fact that these experi-
ments can produce strongly non-classical states of light clearly
indicates that the typical approximations made to solve the
Maxwell-Bloch equations are no longer applicable. Solving the
Maxwell-Bloch equations with this added complexity is a highly
non trivial task but of fundamental importance to understand
whether interesting many-body states of light, which can have
applications in quantum computing and metrology, can be gen-
erated by atomic ensembles. This problem will be dealt with in
Chapter 2 of the thesis.

1.2 ATOMS AND NANOPHOTONICS

In the previous section we have introduced the concept of quan-
tum nonlinear optics, observing that while an individual atom
looks like a highly nonlinear system, making single photons in-
teract with them is in general very challenging. We have then
reviewed the two main approaches adopted to increase the
atom-light interaction probability: CQED and atomic ensem-
bles. These schemes have the common characteristic to be free
space approaches, in the sense that the atoms, cooled and trapped,
interact with certain free space modes of the electromagnetic
field.

In this section we describe the advantages that can be ob-
tained by confining instead the light in dielectric structures,
giving an overview of such systems. We will see that atoms
coupled to these nanophotonic structures do not obviously fall
into the previous categories of cavity QED or atomic ensembles.
An interesting question is how to theoretically model such sys-
tems, and what similar or different paradigms for light-matter
interactions are possible. This question will be addressed fur-
ther in later sections of the thesis.

We have seen in Sec. 1.1 that the strong focusing of laser
beams permits one to reach atom-photon interaction probabili-
ties up to 10%. Such high values cannot be extended to atomic
ensembles, because strongly focused beams diverge quickly along
the propagation direction. The optical depth per atom in atomic
ensemble is indeed much lower, with typical ensembles con-
taining 10° — 107 atoms and having an optical depth smaller
than 100 [17]. A way to circumvent the problem of defocusing
and thus to keep constant the single atom-single photon inter-
action probability over a long propagation distance is to con-
fine light in guided modes of nanophotonic structures, such as
nanofibers and photonic crystal waveguides.
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Figure 1.5: (a) Schematic representation of experimental setup of
Ref. [34]. The inset shows the nanofiber with atoms peri-
odically trapped in its proximity. The diameter of the fiber
is 500 nm, while the atoms are trapped at approximately
200 nm from the surface. Red- and blue-detuned optical
fields guided by the nanofiber create the potentials plot-
ted in (b), where the black line is the overall potential felt
by the atoms in the transversal direction. The red-detuned
field is sent from both directions in order to create a longi-
tudinal periodic potential.

1.2.1  Optical nanofibers

The simplest dielectric structure able to confine propagating
light in one dimension is the optical nanofiber. It typically con-
sists of a high refractive index core surrounded by a lower index
cladding, or vacuum in our case of interest. In the ray optics
picture one can say that total internal reflection prevents the
light to leak out of the fiber, confining its propagation in the
longitudinal direction. More generally, a fiber mode must sat-
isfy the relation (w/ c)? = kﬁ + ki, where k| is the component

of wavevector parallel to the structure, k% the component or-
thogonal to it, and w is the mode frequency. Since the index of
refraction of the fiber is larger than 1, one can have kﬁ > (w/c)?.
Then, to satisfy the previous relation, the corresponding value
of k, is forced to be imaginary. Physically this means that the
tield is evanescent in the transversal direction, i.e. it decays ex-
ponentially with distance from the surface of the fiber, while
propagating along the fiber. For this reason such modes are
called “guided modes". For a sufficiently small radius, the fiber
becomes single-mode, in that only a single transverse mode
shape is allowed at a given frequency. The evanescent tail of a
guided mode can extend for some wavelengths out of the core,
enabling an interaction between guided light and atoms located
nearby the nanofiber.

The first experiments with atoms and fibers were realized
with atomic clouds surrounding the fiber [35]. Later on, it was
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realized that a trapping potential in the transversal direction
could be realized by sending in the fiber a combination of red-
and blue-detuned fields with respect to the atomic resonant fre-
quency [34] (see Fig. 1.5a). Indeed, the dipole force associated
with the red-detuned light, as well as van der Waals forces, at-
tract the atoms to the fiber surface; vice versa the blue-detuned
light pushes the atoms away from the fiber. Because of the dif-
ferent transverse extent of the two fields, the combination of
the two potentials creates a minimum at a fixed distance from
the surface (see Fig. 1.5b). A counter-propagating red-detuned
tield is also used to create a standing wave which serves as a
trapping potential in the longitudinal direction.

In such waveguide-atom systems the interaction probability
of a single atom with a photon propagating in the guided mode
is related to the ratio between the decay rate into the fiber I'p
and the decay rate in free space '/, as P ~ 2Ip/I"’. This for-
mula is strictly valid only for I''p < I/, a condition that is al-
ways satisfied for the case of optical nanofibers coupled to real
atoms, but that can be violated in other systems. Initial proof-
of-principle experiments have reported optical depths per atom
of 0.0064 [34] and 0.08 [36] with about 4000 and 800 atoms re-
spectively.

1.2.2  Photonic crystal waveguides (PCW)

Nanophotonic devices are not useful only for confining light
and guiding it, but also because they can modify its dispersion
relation. In the case of the nanofiber described above, the dis-
persion relation is approximately linear over very large band-
widths, i.e. w(k) = (c/n¢)k with n¢ being the index of refraction
of the fiber core. However, a periodic modulation of the dielec-
tric properties of the fiber can change qualitatively the form
of the dispersion relation. If a single defect in the fiber sim-
ply generates back-scattering and emission out of the guided
mode, a periodic array of defects open gaps in the dispersion
relation with the formation of photonic bands, realizing what
is called a photonic crystal waveguide (PCW) [37] (see Fig. 1.6).
The origin of the band gaps lies in the multiple scattering due
to the modulation, which creates destructive interference at
certain frequencies and thus prevents light propagation. The
physics is analogous to that of electrons in metals, where the
periodic potential due to the ions produces energy bands. Sim-
ilarly, in a PCW light is subjected to a periodic potential and
thus Bloch’s theorem applies for photonic modes. The theorem
states that normal modes must have electric fields of the form
Enx(x) = eik"unlk(x), where u is a periodic function with a pe-
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Figure 1.6: (a) Cartoon picture of a PCW with holes inserted periodi-
cally in a dielectric waveguide. (b) Typical band structure,
of guided mode frequency w versus Bloch wavevector k
(both rescaled by the lattice constant a), in a 1D PCW. In
yellow are represented frequency regions corresponding
to band gaps [37]. “Dielectric" and “air" bands refer to
where the electric field intensity is concentrated for each
of these modes.

riodicity given by the lattice constant of the structure, and k is
the Bloch momentum along the direction of propagation x.

As one might expect, the most interesting effects for light
propagating in a PCW are realized in proximity of the band
edges, where the PCW dispersion relation differs most from
the fiber one. At the band edges indeed the slope of the dis-
persion relation decreases to zero. This corresponds to a great
reduction of the group velocity of light vg(k) = dw/dk [39].
This slowdown of the group velocity increases the time of inter-
action of the atom and photon by a factor of ng = ¢/vg, so that
the atom-photon interaction probability P gets an enhancement
of the same factor [40]. Such enhancement can permit one to
go beyond the regime in which I'" >> T';p of a nanofiber, where
emission out of the guided mode dominates.

The first experimental demonstration of the interaction be-
tween light propagating in a PCW and quantum systems has
been realized with quantum dots by the authors of Ref. [41],
which reported a value of about 0.9 for the ratio I';p/Tiot, where
ot = Iip + '’ is the total decay rate of the atoms. Implementa-
tions with real atoms are much more recent. A Caltech group
has demonstrated atom-light coupling using a so-called “alli-
gator" photonic crystal waveguide (APCW) [38, 42—44]. This
device, schematically pictured in Fig. 1.7, consists of a pair
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Figure 1.7: (a) The “alligator” PCW. Side illumination (SI) is used to
trap the atoms in the red area between the waveguides
[38]. Inset: SEM image of the APCW and corresponding
single-atom coupling rate I';p along the x axis at the center
of the gap (y = 0). (b) The APCW dispersion relation. The
structure is designed in such a way that the D1 and D2
transition frequencies of Caesium, the atomic species used
in the experiments, align closely with the band edges.
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Figure 1.8: Band gap-mediated interaction between two atoms. When
Weg is inside a band gap, as shown in the inset, an excited
atom dresses itself with a photonic cloud that decays expo-
nentially from the atomic position (red shade). This virtual
photon can facilitate an exchange of spin excitation with a
second atom.

of parallel dielectric waveguides whose modes hybridize. The
alternation between dielectric and air is obtained by shaping
these waveguides in a sinusoidal form. Atoms can be trapped
between the two rails by using the reflected field from side illu-
mination, which creates a potential minimum above the plane
of the guides, or using far-detuned fields in another guided
band, analogously to the fiber case. In the experiment described
in Ref. [38], where up to three atoms are trapped and superra-
diant emission is observed, a value of I'p/T’ ~ 1 is reported.
The potential of PCW’s goes beyond the enhancement of
atom-photon interactions due to the confinement and slowdown
of light. They also permit one to obtain finite-range interactions
between atoms using the evanescent modes associated with
band gaps, as discussed in greater detail in Chapter 3. When
the transition frequency of the atoms lies in a band gap of the
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PCW the excited state cannot decay by emitting a propagating
photon. Instead, similarly to what happens in CQED, the atom
dresses itself with a photon cloud, as illustrated in Fig. 1.8. The
main difference from the CQED case is that there the photon
component is occupying all the cavity, while here it decays ex-
ponentially with the distance from the atom, since it is associ-
ated with the evanescent band gap modes [45]. For this reason,
it can also be said that an atom-photon “bound state" forms [45,
46]. As it is natural to expect, the spatial extent L of the bound
photon depends on the detuning between the band edge and
the atomic frequency: the deeper inside the band gap is weg,
the shorter is L. Similarly to the far-detuned regime of CQED
described in the previous section, where virtual cavity photons
mediate the interaction between atoms described by Eq. (1.6),
here virtual band gap photons create the effective interaction

[45-48]
Hpg = hifpg(x1,%2) (07909 + H.c.), (1.10)

where fpg(x1,%2) = Jpg exp(—1 — x2|/L) w(x1)uk(x2). Here Jyg
is a coupling constant depending on the atomic and photonic
crystal properties, while uy is the Bloch function of the band
edge mode [46]. The fundamental difference between the effec-
tive atom-atom interaction mediated by the cavity mode, de-
scribed by Eq. (1.6), and that one mediated by the PCW band
gap modes, described by Eq. (1.10), is that the latter has a finite
range (see Fig. 1.8). Long-but finite-range spin interactions have
begun to attract interest recently, for example, in the context of
the propagation of correlations through the system [49-51].

Similarly to the case of CQED, there are two main mecha-
nisms of dissipation which affect the coherent exchange of exci-
tations between atoms in the band gap regime. The first source
of dissipation comes from the possibility of losing a band gap
mode photon due to imperfections of the PCW. This dissipa-
tion mechanism is characterized by the decay rate k.. The sec-
ond source of dissipation comes from the decay rate I'’ of the
atoms in non guided modes. In Ref. [46] it is shown rigorously
that the minimum error in exchanging an excitation between
two atoms under (1.10) scales as 1/v/C, where C. = g% /KT is
an effective cooperativity factor of the PCW. Here, g. is equal
to the strength of interaction that an atom would have with
a real cavity of the same size. Recalling that in cavity QED,
Ce o< A3Q/ Ve, one sees that the combination of strong trans-
verse confinement of photons in PCW’s and the high achievable
quality factors (of up to Q ~ 107 [52]) enables highly coherent
interactions to be realized.

A first experimental observation of this atom-atom interac-
tion using the APCW in the band gap regime is reported in
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Ref. [44], where the authors observed a maximum ratio between
the coherent coupling Jp, and the dissipation rate associated
with guided modes [, of 20.

1.3 OVERVIEW OF THE THESIS RESULTS

In the first two sections of this chapter we have reviewed the
tields of quantum nonlinear optics using atoms and of nanopho-
tonic systems interfaced with atoms. Here we present an overview
of the contributions of the thesis to these fields, introducing its
main results.

1.3.1 Propagating light interacting with atomic ensembles: a new
formalism

In discussing the different approaches for making photons to in-
teract with individual atoms we have seen that in CQED there is
a well established input-output formalism [15], which permits
one to calculate the quantum properties of the field leaving the
cavity, in terms of the input field and the intra-cavity dynamics.
This formalism provides two tools: 1) the effective Hamiltonian
(1.6) which extends the Jaynes-Cummings model to the case of
an open system, i.e. a cavity with driving and dissipation, and
2) the input-output relation (1.4), which connects the state of
the system, governed by the effective Hamiltonian, and the ini-
tial and final states of the external electromagnetic field, which
are expressed through the input and output modes.

On the contrary, such an elegant formalism previously had
not existed for the case of light interacting with atomic ensem-
bles, neither for free space ensembles, where one has to de-
scribe the propagation of light using the Maxwell-Bloch equa-
tions under strict approximations, nor for atoms coupled to
nanophotonic structures, where a theoretical model was largely
missing altogether. Given already the experimental observation
of strong photon interactions in Rydberg ensembles, and rapid
progress in atom-nanophotonics interfaces, it is highly desir-
able and important to develop a suitable formalism.

As discussed in Sec. 1.1.2, the problem of atoms interacting
with a continuum of propagating field modes constitutes an
open, interacting quantum field theory, which is generally dif-
ficult to solve. In Chapter 2 of this thesis, we provide a novel
approach to this problem. In particular, we show that the field
is not an independent degree of freedom and in fact can be in-
tegrated out. Thus, analogous to cavity QED, an input-output
formalism encodes the correlations of the outgoing propagating
tield in terms of the incoming field and correlations between
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Figure 1.9: Schematic representation of an array of atoms interacting
with a 1D waveguide. The atoms emit in the guided mode
at a rate I';p and into free space modes at a rate I'’.

the atoms. The atomic dynamics, in turn, reduce to an effective
spin model, where “spins" representing the atomic ground and
excited states interact through an effective Hamiltonian that
physically describes photon-mediated exchange. The reduction
to a spin model is appealing, as it potentially enables a variety
of condensed matter techniques to be applied, such as a matrix
product state ansatz that we explore in detail.

The simplest system where this idea can be applied is the
nanofiber with atoms coupled at a fixed distance from its sur-
face, described in Sec. 1.2.1 (see Fig. 1.5a). In such a system
atoms interact with a continuum of guided modes, denoted by
their wavevector and direction of propagation. The photons in
these modes can excite the atoms, and vice versa excited atoms
can decay into these modes. Thus the atom-photon interaction
Hamiltonian of the system is very similar to Eq. (1.1), summed
over the continuum of modes and over all the atoms. The linear-
ity of the atom-guided mode coupling permits one to integrate
out the guided modes degrees of freedom, obtaining an input-
output relation of the form

N
Eout(t) = Ein(zendz t) —1 V r1D/2 Z eikO(Zend_Zj)o—)ge/ (1-11)
j

which is the analogy of Eq. (1.4) for the waveguide-atom system.
As in CQED, absent any atoms the quantum output field af-
ter some propagation distance directly corresponds to the field
sent into the system. With atoms, the output field also acquires
a component emitted from these atoms, which can interfere
with the incoming field. Intuitively, the strength of the emit-
ted field should depend on the emission rate into the guided
modes I';p (see Fig. 1.9), while the term etko(zena=2j) denotes the
propagation phase that the emitted field from atom j picks up
as it propagates to the end point of observation.

In order to use the input-output equation, one then needs to
understand how the atoms evolve. Indeed, the dynamics of the
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atoms are driven by the fields, but according to Eq. (1.11) these
in turn just depend on the input field and on the other atoms.
One thus finds an effective Hamiltonian of the form

N
.I'D . e e
Hege = Hat —1—== Z exp(ikolzj — zil) o} 90}
jl=1

N
I ikoz;
R Y (Enlte ol s He), (112)
)

where Hyt = Z]- (Weg —1il"/ 2)0]-“ for the case of two-level atoms
(see Fig. 1.9). Hat generally describes all atomic processes ex-
cept those mediated by the waveguide (in the two-level case, I’/
captures the decay rate of atoms into non-guided modes). The
second term of Heg consists of a long-range spin flip interaction
between the atoms. It describes the coherent and incoherent ex-
change of excitation between two atoms mediated by a photon,
with the prefactor exp(ikol|z; — z1|) being the phase acquired by
the photon in travelling between the two atoms. Finally the last
term describes the driving of the atoms by the input field (sim-
ilarly to the term describing the driving of the cavity mode in
Eq. (1.6)).

While the case of two-level atoms is intuitive, the model can
be easily generalized to multi-level structure and extra types of
interactions (e.g. Rydberg systems). Furthermore, although de-
rived literally for a 1D system, under certain conditions (such
as choice of atomic positions) the dynamics ruled by (1.12) can
match well the continuum Maxwell-Bloch equations, and thus
the 1D effective model can be employed to describe light prop-
agation in 3D ensembles.

This generalization of the input-output formalism of CQED
to systems where many atoms interact with propagating light
provides an extremely useful theoretical tool for quantum op-
tics. Indeed, the apparently “hard" problem of solving an out-
of-equilibrium, open field theory contained in the Maxwell-Bloch
equations is now reduced to solving the spin dynamics prob-
lem of Eq. (1.12). The field propagation is no longer treated as
an independent equation as in Eq. (1.8), but all of its proper-
ties are encoded in the input and spins through Eq. (1.11). It
is worth to remark the fact that the formalism keeps the same
structure as the elegant input-output equations for cavity QED
introduced in Sec. 1.1.1.

The Hilbert space associated with the spins has dimension
dN, where d is the local dimension of the atoms. The expo-
nential growth of the Hilbert space with the number of atoms,
characteristic of quantum many-body systems, prevents the ex-
act diagonalization of (1.12) for N 2> 20. Nevertheless, it is
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possible to study the quantum nonlinear dynamics of photons
using a weak pulse and limiting the Hilbert space to the sub-
spaces with at most two or three excitations, whose dimensions
scale quadratically and cubically with the number of atoms. In
Chapter 2 we will apply this formalism to the case of the 1D
EIT-Rydberg system discussed in Sec. 1.1.2, recovering the ex-
pected results for the transmission of single- and two-photon
pulses.

Another important result of the thesis is the formulation of
an algorithm to simulate numerically the dynamics generated
by (1.12) beyond the weak pulse regime which makes use of
the matrix product states (MPS) ansatz, widely used for one-
dimensional problems in condensed matter. The MPS ansatz
takes advantage of the fact that the dynamics of a typical sys-
tem might only explore a limited part of the Hilbert space,
and adapts to find such a space, making feasible numerical
time evolution. This simulation technique thus constitutes the
first within quantum optics that can deal exactly with fully
quantum light-matter interactions in ensembles, beyond previ-
ously explored techniques for two photons [31-33]. The impor-
tance of this result is to open the possibility of simulating the
many-body regime of quantum nonlinear optics, where phe-
nomena such as quantum phase transitions of light [53-55] or
photon crystallization [56, 57] have been speculated to occur,
but where the physics still remains very poorly understood. To
show the effectiveness of the algorithm developed, we simu-
late the propagation of a pulse under conditions of vacuum
induced transparency (VIT) [58, 59], a nonlinear variation of
EIT, whose physics is qualitatively understood and can thus
serve to benchmark our method. In particular, one of the spec-
tacular predictions of the theory of VIT, which we can analyze
in quantitative detail, is the emergence of a photon number-
dependent group velocity. Such an effect is interesting, for ex-
ample, as it enables photon number-resolving detection, simply
based upon the propagation delay time.

1.3.2 Exotic many-body states of spin and motion in atoms coupled
to PCW

In Sec. 1.2.2 we have described photonic crystal waveguides,
nanophotonic structures where the periodic modulation of the
dielectric properties can make the propagation of light differ
significantly with respect to uniform media. In particular, PCW’s
enable band gaps, frequency regions where light cannot propa-
gate. We showed that when atoms are coupled to PCW’s with
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transition frequencies situated within photonic band gaps, strong

coherent atomic interactions of tunable range can emerge, Eq. (1.10).

A possibility offered by this platform of atoms coupled to a
PCW is that one of simulating long-range interacting spin mod-
els [46]. Many atoms interacting with the spin flip interaction
(rj+ o, naturally realize an important model of quantum mag-
netism, the isotropic XY (or XX) spin chain (where the name
comes from the form oo} + o] o} that the spin flip interaction
assumes in the Cartesian basis of the Pauli operators). Using
more complex schemes, Ising interactions of the form o707 can
also be engineered [46].

While long-range spin models are generally considered inter-
esting [49-51, 60, 61], in Chapter 3 we go a step further and
investigate the possibility offered by Hamiltonian (1.10) when
the positions of the atoms themselves are treated as dynam-
ical degrees of freedom. The Hamiltonian should then be re-
garded as a spin-dependent potential, with the atoms feeling
forces that depend on the spin correlations with nearby atoms.
Note that these forces originate from photons confined to the
nanoscale and can thus have a magnitude much larger than
that associated to conventional optical trapping. The study of
atomic motion driven by spin interactions is inspired by pre-
vious investigations into classical self-organization of atoms in
cavities or coupled to waveguides, where the atoms have been
treated as classical dipoles, with no internal degrees of freedom
[62-67]. Here, our goal will be to investigate whether such a
system is capable of producing strongly correlated many-body
states of atomic spin and motion, where, for example, the spin
correlations are crucial to the emergent spatial order. Or more
roughly speaking, we are inspired by the question of whether
one can create a “quantum crystal," where spin entanglement
is responsible for holding the material together.

The PCW-atoms interface enables the realization of many dif-
ferent Hamiltonians, depending on the form of the spin-spin
interaction, on the length of the interactions compared with
the average atomic distance and on the presence or not of a
longitudinal trapping potential. To show the potential of the
platform we have focused our investigation on one particu-
lar model where atoms are weakly trapped in separated wells,
whose potential minima align with nodes of the band gap in-
teraction (see Fig. 1.10). Absent the spin-motion coupling in-
duced by the PCW, clearly the global ground state consists of
the atoms being in their individual spin ground states, while
the motional states are in the ground states of their respec-
tive trapping sites and thus centred at the bottom of each well
(see Fig. 1.10a). Our goal is then to investigate the many-body
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Figure 1.10: Atoms coupled to an APCW. The red shaded curve repre-
sents the modulation of the band gap atom-atom interac-
tion, while the blue dashed line is a longitudinal trapping
potential. In (a) the spin-spin coupling is too weak and
the atoms remain at the bottom of the trapping potential
in an uncorrelated state. On the contrary, in (b) the spin-
spin interaction overcomes the trapping potential, so that
the atoms dimerize, moving from the trap bottom and
creating entangled spin correlations (red ellipses).

ground state of spin and motion in the presence of the band
gap-mediated interaction. For our specific choice of Hamilto-
nian (detailed in Chapter 3), we find that one of the non-trivial
emergent states resembles a spin-Peierls transition [68—71]. In
particular, the spin-spin interaction leads to a spatial dimeriza-
tion of the atoms in the lattice, causing them to displace away
from the bottom of each external well, due to the spin entangle-
ment between the atoms in each pair (see Fig. 1.10b). A variety
of other exotic phases are possible as well, such as a fluid of
composite particles comprised of joint spin-phonon excitations,
phonon-induced Néel ordering, and a fractional magnetization
plateau associated with trimer formation.

1.3.3 Graphene as a platform for QNLO

We have seen at the beginning of this chapter that bulk mate-
rials have nonlinear coefficients which are by far too small to
realize nonlinear optical processes at the level of single photons.
Efforts to implement quantum optical nonlinearities have thus
focused on the use of individual atoms, seen as the natural plat-
form for QNLO. Here, we explore the question of whether it is
possible for a robust “real-life" material to attain nonlinearities
at the single-photon level. Intuitively, one expects that the re-
quirement would be that photons live for a long enough time
to accumulate interactions (i.e. high Q in a cavity), small mode
volume (so that photons are forced to see each other), and some
unique mechanism for interaction (beyond a simple saturation
effect). Here we argue that graphene favorably satisfies the last
two requirements.
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Graphene is two-dimensional material, consisting of a honey-
comb lattice of carbon atoms, with peculiar electronic, optical
and mechanical properties [72]. Its band structure consists of
two cones (Dirac cones) touching at their vertexes, with the
Fermi energy Er lying at the contact point, such that the lower
band is fully occupied and the upper band empty. Peculiarly,
the Fermi level can be shifted electrostatically (doped) from
that position, transforming graphene from a zero-gap semicon-
ductor into a metal [72]. For sufficiently high doping Er 2 w
graphene has the capability of supporting surface plasmons
(SP’s) [73—76]. These are electromagnetic waves coupled to charge
excitations at the surface of a metal. Compared to conventional
plasmonic materials such as noble metals, graphene SP’s are
much more strongly spatially confined [73]. The ratio between
their wavelength and the wavelength of light with the same
frequency propagating in free space is Asp/Ag ~ 2akg/(hw),
where o ~ 1/137 is the fine structure constant. In the out-of-
plane direction the electric field associated with the plasmon
decays exponentially as E ~ e *l?l (with ksp = 27t/ Asp), so that
the ratio between the volume of a photon at the diffraction limit
and that one of a standing wave plasmon with the same energy
on a graphene nanostructure is (Ay/ 7\sp)3, a factor which can be
as large as 10°. On the other hand graphene SP’s have lifetimes
which are comparable with those of noble metals (nanostruc-
tures with quality factors of 10-100 have been observed experi-
mentally [77]).

Since the carriers in a SP feel the electromagnetic potential
created by the plasmon itself, nonlinear interactions between
SP’s can be relevant for large enough plasmonic oscillations.
Thus one can in principle obtain a nonlinearity where the prop-
agation properties of the light, in this case in the form of SP’s,
depends on its intensity. This is a very similar to the nonlinear-
ity produced by atoms that we have encountered previously in
this chapter and takes the name of third-order nonlinearity. An-
other kind of nonlinearity, of second-order, describes the mix-
ing of two waves in a medium to produce a third wave whose
frequency is a sum or difference of the first two. A simple sym-
metry argument (explained in detail in Chapter 4) restricts the
possibility to have second-order nonlinearities only to materials
which are non-centrosymmetric, i.e. which have a lattice struc-
ture that is non-symmetric under spatial inversion.

We find that graphene, despite being a centro-symmetric ma-
terial, exhibits second-order nonlinearities. The violation of the
no-go theorem is a consequence of the nonlocal character of the
interactions between SP’s. Indeed, the range of interaction is
proportional to the average separation between carriers, given
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Figure 1.11: (a) An array of triangular graphene nanoislands of the
kind described in the text is illuminated with light at
frequency wp. The nonlinear dynamics of the SP modes
in the structures generate emission of light at frequency
2wyp. (b) Schematic representation of the second har-
monic generation of (a). The two plasmonic modes are
coupled at a rate g. When the first resonance is driven,
the nonlinear interaction between the two modes enables
the conversion of two quantized plasmons in the first
mode to a single plasmon of frequency 2wy, in the sec-
ond mode. Radiative emission from this mode realizes
SHG.

roughly by the Fermi wavelength Ar. In noble metals this sep-
aration is on the order of an angstrom (0.1 nm), and thus the

plasmon-plasmon interaction is local. On the contrary, in graphene

the possibility to tune Er makes it possible to have a density of
carriers so low that the interaction range is comparable to Agp.
The resulting nonlocality of the plasmon-plasmon interaction
enables second-order nonlinearities.

Having described how graphene exhibits some desirable char-
acteristics to possibly reach the single-photon limit, we then
quantitatively analyze the efficiency of down conversion of a
single photon into a frequency entangled photon pair (or con-
versely, second harmonic generation involving just two incident
photons). This analysis consists of two separate parts, (i) the
strengths of the same processes involving plasmons, and (ii)
an analysis of techniques via which plasmons and propagating
photons can be reversibly converted.

We identify a simple design for a graphene nanostructure (a
triangle with a certain aspect ratio) supporting two plasmonic
modes at frequencies wp and 2wy, coupled by the second-order
nonlinear interaction between plasmons. We find that, apart
from a coefficient depending only on the geometry of the two
modes, the rate g at which two quantized plasmons in the
lower-order mode and one quantized plasmon in the higher-
order mode convert between each other scales as (g/wp) ~
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(Ap/ 7\p1)7/ 4, verifying the importance of the plasmon wavelength
vs. scale of nonlocality.

The strong nonlinearities at the level of plasmons do not
convert directly into optical nonlinearities. Indeed, the short
lifetime of plasmons causes them to decay through dissipative
channels before they can be emitted radiatively as photons. For
the modes described above the radiative decay rate k associ-
ated the dipole moment of the modes is of the order of 1077wy,
with the non-radiative decay I'" being at least five orders of
magnitude larger. A convenient way to increase the coupling
of SP’s to radiation is to use an array of identical nanostruc-
tures. In this way the probability of light-plasmon interaction
gets multiplied by the number of structures (for Nk < I''), as
represented in Fig. 1.11a. It is then possible to realize a scheme
where incoming light resonant with the fundamental plasmonic
resonance produces the emission of light at frequency 2wy, via
the intermediate processes of plasmon excitation, conversion,
and re-emission (see Fig. 1.11b). A detailed calculation of the
efficiency of this second harmonic generation (SHG) scheme is
presented in Chapter 4, where it is shown that a two-photon
conversion efficiency of the order of 108, comparable to state-
of-the-art experiments with crystals [78], can be achieved. In
the same Chapter the efficiencies of other processes are also
considered for classical and quantum input light.

1.3.4 Quantum memories with atomic arrays

In Sec. 1.1.2 we have discussed the possibility of employing
atomic ensembles as a tool to create optical quantum nonlinear-
ities, that serve to process the quantum information encoded
into photons [20, 22, 79, 80]. Atomic ensembles find a natural
application also as quantum memories, systems in which quan-
tum states can be “stored" and then retrieved on demand.

Quantum memories with atomic ensembles are typically real-
ized using three-level atoms [29, 81, 82], where a classical con-
trol field maps photonic excitations, resonant on the |g) — |e)
transition onto a metastable state |s). The same control field
can then be applied to retrieve the stored excitation. The natu-
rally arising figure of merit for the storage process is then the
storage efficiency, defined as the ratio between the incoming
energy and stored energy. Similarly one can define the retrieval
efficiency as the ratio between the energy emitted into the desir-
able detection channel, i.e. a given mode of the electromagnetic
field, and the energy that must be emitted during the process. A
time reversal symmetry argument shows that these efficiencies
share the same upper bound.
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Figure 1.12: The field emitted by a 30 x 30 atomic array in the x —y
plane, when a stored excitation is retrieved. The figure
shows a cut of the field in the y = 0 plane. (Figure cour-
tesy of Mariona Moreno-Cardoner.)

A systematic study of this bound has lead to the conclusion
that the minimum error, i.e. the difference between one and
the maximum efficiency, scales as the inverse of the ensemble
optical depth OD [83] (see Sec. 1.1.2 for its definition). This
analysis is however built on the assumption that the emission
into modes other than the detection mode is independent of
the atomic correlations (independent emission model). This as-
sumption is generally valid for the case of disordered three-
dimensional ensembles but breaks down for the case of ordered
atomic arrays, i.e. systems in which the atoms are regularly posi-
tioned [84, 85] (see Fig. 1.12), when the distances between neigh-
bouring atoms are comparable to the resonant wavelength [86].

In Chapter 5 we use the spin model formalism for light propa-
gation in atomic ensembles developed in Chapter 2 to calculate
the retrieval efficiency of an atomic array taking into account
the exact positions and emissions pattern of all the atoms. We
tind an elegant expression for the efficiency, where the optimal
configuration for the initial distribution of the stored excitation
is given by an eigenvalue problem on an N, x N, matrix.

Applying this result to the case of a two-dimensional array
with a (non paraxial) Gaussian-like detection mode, we find
that the minimum error for optimized initial conditions and
value of the mode waist scales as eqpt ~ (logv/Na)?/NZ, with
proportionality constant of about one. This result reveals the
enormous potential of ordered arrays of atoms as a platform
for quantum memories. An array with as few as 4 x 4 atoms is
predicted to have the same efficiency of a disordered ensem-

27



28

INTRODUCTION

ble having optical depth OD > 100. In the chapter we also
study the effect of the presence of imperfections, such as miss-
ing atoms or classical disorder in the positions of the atoms, on
the efficiency of the memory.



Part II

RESULTS






QUANTUM DYNAMICS OF PROPAGATING
PHOTONS WITH STRONG INTERACTIONS

2.1 INTRODUCTION

In the first chapter of the thesis we have reviewed how the non-
linearity associated with the anharmonicity of the atomic spec-
trum can be exploited to create interactions between photons,
a crucial ingredient for quantum information processesing and
the creation of quantum networks [4]. Different approaches are
adopted to make the photons interact strongly with the atoms.
In free space one can place the atom between two mirrors, mak-
ing the photon to bounce back and forth between them and
thus increasing the interaction probability with the atom (cav-
ity QED, see Sec. 1.1.1). Alternatively, one can use an atomic
ensemble to increase the interaction probability (see Sec. 1.1.2).
The use of nanophotonic systems opens new possibilities. For
instance, one can confine photons into a one-dimensional di-
electric medium, such as a nanofiber with atoms trapped nearby,
and take advantage of both the confinement of the light to a
small cross-sectional area and of the possibility to couple the
optical modes with a large number of atoms at a constant cou-
pling strength (see Sec. 1.2).

We have also seen that to describe the dynamics of photons
interacting with a CQED system one has at disposal a powerful
theoretical tool, the “input-output” formalism [15]. Within this
formalism the continuum of modes of the light degrees of free-
dom external to the cavity is integrated out. By consequence
the internal dynamics is governed by an effective Hamiltonian
of the form of Eq. (1.6), where the external field enters only as
a single mode, the “input mode", which contains all the infor-
mation on the free-propagating field before the interaction with
the cavity. The field leaving the cavity, the “output mode", can
then be expressed through Eq. (1.4) as a sum of the input field
and of the cavity field leaking out.

On the contrary, such a simple and elegant tool to describe
the dynamics of photons propagating in free space or in a di-
electric of reduced dimensionality and interacting with an en-
semble of atoms has not existed. For the case of free space
atomic ensembles a set of coupled field equations for the (con-
tinuous) atomic and field degrees of freedom, the Maxwell-
Bloch equations (1.8)-(1.9) [18, 19], is widely used to describe
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the light propagation. Unfortunately such equations can only
be solved analytically or numerically in a very limited number
of cases, typically when the probe field is weak and the atoms
respond linearly. The more interesting situations in which non-
linearities produce non-classical states of light, such as in the
Rydberg-EIT scheme reviewed in Sec. 1.1.2, lie out of the range
of validity of the approximations which make Maxwell-Bloch
equations exactly solvable.

In the present chapter we show that the input-output formal-
ism of CQED can be readily generalized to the case of atomic
ensembles for both light in free-space and guided light. As com-
pared to the Maxwell-Bloch equations, the main advantage pro-
vided by the formalism consists of the full elimination of the
continuous degrees of freedom associated with the field. Using
this method one can reconstruct the dynamics of the photons
by solving a driven-dissipative model for the atoms, the “spin
model", followed by using a generalized input-output equation
to connect the output field with the state of the atomic ensem-
ble.

In Sec. 2.2 we first introduce the generalized input-output for-
malism for a one-dimensional waveguide coupled with an ar-
ray of atoms, and then we argue that the simpler 1D waveguide
model can be used to describe most of the experiments with
three-dimensional ensembles in free space provided that the
optical depths of the two systems are matched. In Sec. 2.3 we
present the connection between the generalized input-output
formalism and the S-matrix formalism for photonic Fock states.
In Sec. 2.4 we apply the introduced formalism to a Rydberg-EIT
system, studying the transmission properties for a weak probe.
Here, the low number of excited atoms enables a truncation of
the Hilbert space that makes numerical computation feasible.

In the second part of the chapter we deal with the problem of
having high intensity input fields, in which case the number of
excitations poses strong limitations to the number of atoms that
can be simulated numerically with the spin model. In Sec. 2.5
we show that this limitation can be circumvented by adopting
the matrix product state (MPS) ansatz. In particular, this ansatz
is based upon the observation that physical systems might only
explore a small part of the exponentially large Hilbert space. A
time evolution algorithm based upon MPS enables this reduced
space to be found in an adaptive way. We test the power of our
algorithm in Sec. 2.6, where we simulate the propagation of
light in a vacuum induced transparency (VIT) medium.
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Figure 2.1: Schematic representation of a system of many atoms cou-
pled to a common waveguide. The nonlinearity of an atom
enables the generation of a continuum of new frequen-
cies upon scattering of an incoming state. This property,
combined with multiple scattering from other atoms, ap-
pears to make this system more complicated than the cav-
ity QED case.

2.2 GENERALIZED INPUT-OUTPUT FORMALISM
2.2.1 Light propagation in a one-dimensional waveguide

The problem of the propagation of light in a waveguide coupled
with an array of atoms, the system introduced in Sec. 1.2.1, has
been the subject of intense investigation. In the weak excitation
limit, atoms can be treated as linear scatterers and the power-
ful transfer matrix method of linear optics can be employed
to solve the problem exactly [87, 88]. The full quantum case
on the other hand has been solved exactly in a limited num-
ber of situations in which nonlinear systems are coupled to 1D
waveguides [89—99]. The challenge compared to the cavity case
arises from the fact that a two-level system is a nonlinear fre-
quency mixer, which is capable of generating a continuum of
new frequencies from an initial pulse [100], as schematically de-
picted in Fig. 2.1. A priori, keeping track of this continuum as
it propagates and re-scatters from other emitters appears to be
a difficult task. Here we show that the elegant input-output for-
malism of CQED can be generalized and applied successfully
to describe light propagation in the atom-waveguide case.

We consider a generic system composed of many atoms lo-
cated at positions z; along a bidirectional waveguide. We as-
sume that there is an optical transition between ground and
excited-state levels |g) and |e) to which the waveguide couples,
but otherwise we leave unspecified the atomic internal struc-
ture and the possible interactions between them (e.g., Rydberg
interactions), as such terms do not affect the derivation pre-
sented here. The bare Hamiltonian of the system is composed
of a term describing the energy levels of the atoms Ha, and
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a waveguide part Hyp, = 3, [ dk wkbi,kbv,k/ where k is the
wavevector and v = £ is an index for the direction of propaga-
tion, with the plus (minus) denoting propagation towards the
right (left) direction. We assume that within the bandwidth of
modes to which the atoms significantly couple, the dispersion
relation for the guided modes can be linearized as wy = clk|.
The interaction between atoms and photons is given in the ro-
tating wave approximation (RWA) by

N
Hint = ¢ Z Z J dk (bvlkofg e +h.e.), (2.1)

v=x=£ j=1

which describes the process where excited atoms can emit pho-
tons into the waveguide, or ground-state atoms can become ex-
cited by absorbing a photon. The coupling amplitude g is as-
sumed to be identical for all atoms, while the coupling phase
depends on the atomic position (e"¥%). Here, we will explicitly
treat the more complicated bidirectional case, although all of
the results readily generalize to the case of a single direction of
propagation (chiral waveguide).

In analogy with the input-output formalism of cavity QED [15],
we will eliminate the photonic degrees of freedom by formal in-
tegration, obtaining that the output field exiting the collection
of atoms is completely describable in terms of the input field
and atomic properties alone. This formal integration also pro-
vides a set of generalized Heisenberg-Langevin equations that
governs the atomic evolution. We will then introduce an effec-
tive Hamiltonian from which these equations can be derived
directly.

The Heisenberg equations of motion for 0']9e and b, x can be
readily obtained by calculating the commutators with H:

by = —iwiby—ig) offe ™, (2.2)
j

6% = ilHa o]+ iglof — o) 3 ke, (23
V=1

Eq. (2.2) can be formally integrated and Fourier transformed to
the field in real space Ey(z,t) = (1/v2n) | dke*?by, to obtain
the real-space wave equation

Ev(z t) = Ev,in(t —vz/c)

_ N
1\/§_7T9 D 0(viz—z))o¥*(t—v(z—z)/c). (24)
=

Here we have introduced the input mode E, ;,, mathematically
corresponding to the homogeneous solution and physically to
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the freely propagating field in the waveguide. The second term
on the right consists of the part of the field emitted by the atoms.
Inserting Eq. (2.4) into Eq. (2.3), we obtain

69¢ =i[Hat, 0 j T+iv2 nig(o G?Q)Z Ev,in(t_vzj/c)

)
v=+

2719 e 99) ge
t — —
. —0; E oy lz; — z1l/c)). (2.5)

Importantly, in realistic systems time retardation can be ne-

glected, resulting in the Markov approximation E, i, (t —vz;/c) ~

Eyin(t)e™ 0% and of°(t — |zj — zil/c) ~ of°(t)e 052l Here,
ko = wp/c is the wavevector corresponding to the central fre-
quency around which the atomic dynamics is centered (typi-
cally the atomic resonance frequency weg). This approximation
is valid when the difference in free-space propagation phases
Awl/c < 11is small across the characteristic system size L and
over the bandwidth of photons Aw involved in the dynam-
ics. As a simple example, the characteristic bandwidth of an
atomic system is given by its spontaneous emission rate, cor-
responding to a few MHz, which results in a significant free-
space phase difference only over lengths L 2 1 m much longer
than realistic atomic ensembles. A complementary viewpoint
of the Markov approximation is that the dispersion of fields in
the empty waveguide is negligible compared to the large dis-
persion introduced by atoms driven near resonance.

We have thus obtained the generalized Heisenberg-Langevin
equation

. . . /C F1D . )
O_)ge = i[Hat, 0.)96] +1 5 (O']?e o O.jgg) Z Ev/in(t)ewkoz]

N
+ rlTD(G]?e — ngg) Z o7 exp(ikolzj —z1l), (2.6)
1=1
where we have identified I';p = 47g?/c as the single-atom spon-
taneous emission rate into the waveguide modes. If we keep
separated the terms proportional to 0{° coming from the right
and left-going photonic fields, we can find easily that the Lind-
blad jump operators corresponding to the decay of the atoms
into the waveguide are O+ = /T\p/4 }_; Gfeeﬁkozi, in terms of
which we can write the master equation for the atomic density
matrix p = £[p] = —i[Hat, p] + ¥, 20,00} —0}0,p—pO}0,.
We also see that we can derive Eq. (2.6) from a non-Hermitian
effective Hamiltonian Hgm = Hat + Hag eff + Harive, where

. N
ilip eg _ge _ikolzi—
Hadeff = —— Y of9ot etk (2.7)
j1=1
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and

N
cl D i .
Hdrive = - 21 - Z (Ev,in(t)el\)kozl Gjeg + HC) (28)
v=+ j

In particular, in the following sections we will be concerned
with coherent state driving from a single direction (v = +),
in which case E_;; = 0 and E,;, = &, is the incoming co-
herent state amplitude. The resulting infinite-range interaction
between a pair of atoms j,l in (2.7) intuitively results from the
propagation of a mediating photon between that pair, with a
phase factor proportional to the separation distance. In the fol-
lowing we will refer to the effective Hamiltonian Hsm, and the
corresponding jumps O+ associated with dissipation, as the

“1D spin model".

Within the same approximations employed above to derive
the Heisenberg-Langevin equations we can obtain a general-
ized input-output relation

Evout(z, t) = Ev,m wkoz m Z O_ge oivko(z— z))

(2.9)

where the output field is defined for z > zg = max[z] (z <
z1, = min[z]) for right(left)-going fields. However, smce the
right—going output field propagates freely after zp, it is conve-
nient to simply define E out(t) = E4 out(zr + €, t) as the field
immediately past the right-most atom (where € is an infinites-
imal positive number), and similarly for the left-going output.
The derived relation shows that the out-going field properties
are obtainable from those of the atoms alone.

The emergence of infinite-range interactions between emit-
ters mediated by guided photons, and input-output relation-
ships between these emitters and the outgoing field, have been
discussed before in a number of contexts [88, 9o, 101], but the
idea that such concepts could be used to study quantum in-
teractions of photons in extended systems has not been fully
appreciated. In Secs. 2.4 and 2.6, we will give concrete exam-
ples of the effectiveness of this approach to quantum nonlinear
optics. In particular, the infinite-dimensional continuum of the
photons is effectively reduced to a Hilbert space of dimension
dim(3] = 3 I ( ) where n is the maximum number of atomic

excitations (for n = N we have dim[H] = 2V). The atomic
dynamics, on the other hand, having been reduced to stan-
dard Heisenberg-Langevin equations, quantum jump, or mas-
ter equations, are solvable by conventional prescriptions [14].
More generally, the statement that quantum optics with atoms
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apparently reduces to a spin model (something much more
commonly seen in condensed matter) is quite intriguing, and
its consequences will be explored from multiple viewpoints
throughout this thesis.

In the derivation of the 1D spin model we have thus far ig-
nored the possibility of atomic decay with the emission of a
photon into a non-guided mode, i.e. into free space. We can
account for this decay mechanism by adding a phenomenolog-
ical independent decay rate I'’ for the excited atoms. This is
described by the locally acting Lindblad operator

/ N

_? .
j=1

(zc)gepo—leg - O—Jego—)gep - pG](egG)ge)‘ (2'10)

Lspont[p] =

Our 1D model quantitatively captures the microscopic details

of experiments where atoms or other quantum emitters are cou-

pled to 1D channels. This includes atoms coupled to nano-fibers

(Iip/T’ ~ 0.05) [34] or photonic crystals (I'p/T’ ~ 1) [38], or “ar-

tificial” atoms such as superconducting qubits or quantum dots
coupled to waveguides (I';p/T’ > 1) [102-105].

2.2.2  The 1D spin model for 3D atomic ensembles

The descriptive power of the 1D spin model extends beyond
purely one-dimensional systems; in fact, here we will discuss
how it can be used to reproduce the macroscopic observables
of light propagation in a conventional atomic ensemble. While
there are some phenomena in atomic ensembles that are truly
three-dimensional, such as radiation trapping [106] and collec-
tive emission at high densities [107-109], within the context
of generating many-body states of light, the problems of inter-
est largely involve quasi one-dimensional propagation [57, 110
115]. Indeed a typical experimental design is to input light in a
single transverse mode and detect the light in the same mode
after it traverses the ensemble (see Fig. 2.2).

The standard approach to describe light propagation in such
a system is to use Maxwell-Bloch equations [18, 19] in their
one-dimensional, paraxial form [17, 31, 33, 83, 110, 116, 117],
introduced in Sec. 1.1.2, and that we report here in a slightly
different form:

I
(7100 £ 0:)EL(z,1) =11/ =P Pge(z 1), (2.11)
and

atPge(Z/ t) = _i(weg - ir//z)Pge(Z/ t)

+1y/ FITD [Pgg(z,t) = Pee(z, t)] E(z, t) + F(t). (2.12)
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Figure 2.2: Schematic representation of a quantum optics experiment
with a three-dimensional atomic ensemble trapped in free
space. Both the input and output modes consist of the
same transverse Gaussian mode.

Again, here Py, denotes a continuous atomic polarization den-
sity operator, where the discreteness of atoms has been smoothed
out. The difference with respect to the equations presented in
the first chapter is that here we have introduced the coupling
rate I';p of an individual atom to the one-dimensional input
mode. In principle, this rate can vary with z depending on
the details of this mode, but for notational simplicity we as-
sume here that it is constant. In this standard formulation of
the Maxwell-Bloch equations, it should be noted that the in-
teraction of the atoms with the remaining continuum of three-
dimensional modes is reduced to an independent emission rate
I'', meant to approximately capture scattering of photons out
of the transverse mode of interest. The question of when this
approximation breaks down is quite complicated and rich [86,
110, 118] and will not be discussed here; in any case, Egs. (2.11)-
(2.12) are widely accepted as the standard model for quasi-1D
light propagation through atomic ensembles [17].

It should be noted that Egs. (2.11) and (2.12) have nearly the
same form as the Heisenberg equations of motion of the 1D
waveguide, Egs. (2.2) and (2.3). The independent emission I’ is
also captured by the phenomenological Lindblad term added to
the 1D evolution, Eq. (2.10). It can be seen that the only differ-
ence between the Maxwell-Bloch equations and the 1D model
is that in the latter, the discreteness of the atoms is explicitly
retained through their positions z;. These can in fact be chosen
in a way to reproduce phenomena associated with free-space
ensembles. In particular, as we discuss below, our numerical
calculations are facilitated by choosing ratios of I''p/T" ~ 1. It is
known that for a weak resonant input field, a single two-level
atom in a waveguide can produce an appreciable reflectance
of FIZD /(Tip +T7)? [119, 120]. The reflectance can be further en-
hanced if multiple atoms are placed on a lattice with lattice
constant defined by koa = 7, in which case the reflectance from



2.2 GENERALIZED INPUT-OUTPUT FORMALISM 39

individual atoms constructively interferes [88, 121, 122]. While
it is possible to observe similar effects in atomic ensembles [123,
124], this situation is atypical and will not be discussed fur-
ther here. To reproduce the typical case in atomic ensembles
where reflection is negligible, we thus always choose a spac-
ing koa = 7/2, in which reflection from different atoms in the
lattice destructively interferes.

In this configuration, the 1D waveguide model reproduces
one of the key features of an atomic ensemble, that of decay
of the transmitted field with increasing optical depth. If we
consider the transmittance T = <EI)utEout> /|&nl?, then for a res-
onant weak coherent state input we find in the 1D waveguide
model T = exp(—OD), where the optical depth is OD = 2NT;p /T’
for I'ip < T'[125]. Since OD < 10% in realistic atomic ensem-
bles, by artificially choosing I''p ~ I', the same optical depth is
achieved with just tens or hundreds of atoms. This exponen-
tial decay of a resonant incoming field in a two-level atomic
gas takes the name of Beer’s law and is the solution of the
Maxwell-Bloch equations in the linear regime given a resonant
input field.

One can get an intuition of how Beer’s law can be obtained
from the spin-model by considering a single atom coupled to
the waveguide. For a weak probe one can ignore saturation,
obtaining a steady-state atomic coherence of

(09 — inyv/clin/2

S +i(hp+T1)/27

(2.13)

where 0 = w — wegq is the detuning of the input field frequency
from the atomic resonance. Using this result in the input-output
relation (2.9) one can get the output state and the single atom
transmittance

s+ir’2 |2

hd) =157 iMp+T11)/2]"

(2.14)

For I'p < T’ and on resonance one can expand the transmit-
tance as T;(0) ~ 1 —2Ip/I"’. For N atoms in the spatial con-
tiguration kpa = 7/2 where atomic reflection destructively in-
terferes, the linear response is then approximately given by the
product of the single-atom transmittance. Then Ty ~ exp(—2NT;p/T"),
from which we get the expression for the optical depth reported
above. More rigorously one can solve the spin model for N
atoms under weak driving and use the input-output equation
to reconstruct the output field and the transmittance. In Fig. 2.3
we plot the transmittance spectrum obtained in this way for dif-
ferent values of the ratio I''p/I" and of the number of atoms N
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Figure 2.3: Transmittance spectrum obtained by solving the spin
model with a constant optical depth OD = 5 but differ-
ent values for the number of atoms N and the waveguide
decay rate I''p. The three (undistinguishable) lines corre-
sponds to N = 50, I)p = 0.1T" (continuous blue line),
N = 20, I'p = 0.25T' (red dashed line) and N = 10,
I'p = 0.5 (yellow dotted line).

but having the same optical depth OD = 2NTI';p/T". One can ap-
preciate from the figure that, as anticipated, the transmittance
depends only on the optical depth.

2.3 RELATION TO S-MATRIX ELEMENTS

In the previous section we have presented an extended input-
output formalism to describe light propagation in one-dimensional
systems. We have seen that the formalism can be readily used
to calculate the transmitted and reflected fields when the in-
put field is a coherent state, by solving for the dynamics of a
particular driven spin Hamiltonian and constructing the out-
put field in terms of the atomic solution by means of an input-
output relation. The dynamics of few-photon states can also be
approached from the point of view of scattering theory. Within
this formalism the dynamics of photons is provided by the scat-
tering matrix (S-matrix). Physically, the S-matrix provides, for
a given input field consisting of a number of monochromatic
(plane-wave) photons, the output field decomposed as a sum
of monochromatic photon states. As the set of plane waves
forms a complete basis, the full S-matrix associated with a given
system enables the problem of photon propagation to be com-
pletely solved.

The connection between the S-matrix formalism and the stan-
dard input-output formalism of quantum optics has been first
presented in Ref. [9o], where the asymptotic incoming and out-
going photonic states, which provide the basis over which the
S-matrix is defined, have been associated with the Fock states
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created by the (Fourier transformed) input and output field op-
erators. This connection for an n-photon process takes the form

= (0 Dout(P1)--bout (Pr) b} (k1)..b] (kn) [0)
— FT2 (0] bout (t1)--bout (ta)b) (t])..b] (£2)10), (2.15)

where the input and output creation operators respectively cre-
ate freely propagating incoming and outgoing photonic states.
The n-dimensional vectors p and k denote the outgoing and
incoming frequencies of the n photons. The input and output
operators can be any combination of + and - propagation di-
rections (we have omitted this index here for simplicity). In the
last line we have used a global Fourier transformation 72"
(2m) ™ [ TT,; dtidt! eltiPi=tki) to express the S-matrix in terms
of time correlations of the input and output fields. In Eq. (2.15)

we have assumed implicitly that the number of photons is con-
served for simplicity but the theory can be easily extended to

the more general case of non-conservation of the number of ex-
citations (we will give examples in Chapter 4 in the context of

second harmonic generation). While Eq. (2.15) has been used

to calculate the S-matrix elements in a limited number of cases

in Ref. [90], here we go a step further showing that the input-
output relation can be used to express all the matrix elements in

terms of atomic operators only. A similar conclusion has been

derived simultaneously and independently in Ref. [126].

For notational simplicity, we give here a derivation for a sin-
gle spin and a monodirectional waveguide, but its generaliza-
tion to the bidirectional waveguide and many atoms is straight-
forward. For our purpose it is enough to have an input-output
relation of the form

bout = bin — /Y0, (2.16)

We begin by noting that Eq. (2.16) enables one to replace output
operators by a combination of system and input operators, or
input operators by system and output operators. Selectively us-
ing these substitutions, one can exploit favorable properties of
either the input or output field, in order to gradually time order
all of the system operators (where operators at later times ap-
pear to the left of those at earlier times), while removing input
and output operators from the correlation.

Since the output operators commute between themselves be-
cause of the indistinguishability of photons, they can be freely
ordered by decreasing times. Introducing the time ordering op-
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erator T and also using Eq. (2.16), the operators in Eq. (2.15) can
be written as

T[(bin(t1) —iy¥09(t1))-. (bin(tn) — iy/¥09(ta))] bL (t]).bL ().
(2.17)

This expression can be expanded as a sum and each of its
terms can be labelled by the number m of system operators
09¢ present. Also, thanks to the fact that [09¢(t), bi(t')] = O for
t’ > t, all the input operators can be moved to the right of the
spin operators in each term. Thus, the generic term of order m
will be of the form

(01 T [09(t1)..09 (tm)] bin(tms1)-bin(tn) b (t])..b] (t})10),
(2.18)

which can be immediately simplified using the commutation re-
lations between input operators [bj(t), biTn(t’ )] = 8(t—t'). This
manipulation results in a sum of (nh?2/(m!)%(n —m)! terms for
each original term of order m. Each term of the sum consists
of n —m delta functions multiplied by a correlation function of
the form

(01 T[98 (t1)..09 (tm)] bL (t])..b] (£/.)10) . (2.19)

Since the 09¢ operators commute with the biTI1 operators at later
times, the time ordering operator can be extended to all the
operators in the correlation function. Using again Eq. (2.16) to
express the input operators one gets

(01 T[09¢(t1)..09 (tm) X
X (bi)ut(t{)_i yaeg(t{))..(blut(t;n)—i Yceg(t{n)” 0).
(2.20)

.I.

However, since the operators b

tors 09¢ on the left, only

commute with all the opera-

(01T [09¢(t1)..09 (tm ) 0°9(17)..0%9 (t7,)] 10) (2.21)

remains, which proves that the S-matrix elements can be ex-
pressed as a sum of (time-ordered) atomic correlation functions.
Note that in Eq. (2.21) the operators are in the Heisenberg pic-
ture, i.e. 09¢(t) = eHto9%e ! where H is the Hamiltonian
of the whole system without the driving field, and the vac-
uum state |0) stands for [0),, 1g)®N, i.e. the vacuum state of field
modes and the ground state of all the atoms.

Moreover, using the general expression for the Heisenberg-
Langevin equation and the quantum regression theorem, it can
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be proven that when any auxiliary fields driving the system
do not generate waveguide photons, the correlation function of
Eq. (2.21) can be evaluated by evolving 09¢(t) as e'fefit g9¢ ¢~ tHeirt
where Hegr = Hat + Hgqefr is the effective Hamiltonian of the
atom, with Hgq ¢ff described in the previous section. Although
such a form for 09¢(t) is not true in general due to quantum
noise, these noise terms have no influence on the correlation.
We can prove this statement by taking the term with t; > t;... >
tm > t] > th.. > t;, as an example (our argument holds for
any time ordering). The quantum regression theorem is applied
here to eliminate the bath or photonic degrees of freedom, and
results in

(Ol (0] 698 (t1)...09 (tm ) 0°9 (t])..0%9 (L, ) |0), 0) =

Tr[o9¢ett—t2)g9¢  ge9ettm1—tm)5¢95(0)], (2.22)

where p(0) = |g) (gl ®[0)y, (O] and £ is the Lindblad super-
operator corresponding to the effective spin model. £ contains
a deterministic part, which generates an evolution driven by
Heg and which conserves the number of excitations, and a jump
part, which reduces the number of atomic excitations. Because
of the form of the correlators, which contain an equal number
of atomic creation and annihilation operators, the jump part of
the evolution of the operators gives a vanishing contribution to
the correlation function, proving what was stated above.

While the discussion has thus far been completely general,
the case of S-matrix elements involving only one or two pho-
tons can be formally reduced to particularly simple expres-
sions. For example, it can be shown easily that the weak probe
transmission coefficient T(k) for the many-atom, bi-directional
waveguide case introduced in the previous section is related to
the S-matrix by sg ) e = (0104 0t (PIB] 1 (K) [0) = T(K)8(p — k).
Furthermore, it can be expressed in terms of a known ~ N x N
matrix corresponding to the single-excitation Green’s function
Go (Whose form varies depending on the system details),

T o
Tk)=1-— k 21D Z [Go(k)]j; e tnlzi73), (2.23)
)

Similarly, the two-photon S-matrix in transmission is generally
given by

(2) _
SP1 +p2tki+ko+ T Tie; Tigy 6p1k1 5p2k2
T7
_lﬁépﬁpz'h ko ) WyTya Way + (p1 ¢ p2), (2.24)

ijisj’
where the first and second terms on the right describe the lin-
ear and nonlinear contributions, respectively. The latter term
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can be expressed in terms of matrices W related to the single-
excitation Green’s function, and a known ~ N2 x N2 matrix T
characterizing atomic nonlinearities and interactions.

2.4 LIGHT PROPAGATION IN A RYDBERG-EIT MEDIUM
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Figure 2.4: (a) EIT level scheme. The atomic ground (|g)) and excited
states (|e)) interact with the quantum propagating field b
of the waveguide. An additional classical field with Rabi
frequency Q couples state |e) to a metastable state |s). The
total single-atom linewidth of the excited state is given by
I'. (b) The real (x') and imaginary (x”) parts of the lin-
ear susceptibility for a two-level atom (upper panel) and
three-level atom (lower panel), as a function of the dimen-
sionless detuning 8/I" of the field b from the resonance
frequency of the |g)-|e) transition. For the three-level atom,
the parameters used are 6 =0 and Q/T' =1/3.

In this section, we apply the formalism presented in Sec. 2.2
to a specific example involving three-level atoms under con-
ditions of electromagnetically induced transparency (EIT) and
with Rydberg-like interactions between atoms [28, 31-33, 127].
This scheme was briefly introduced in Sec. 1.1.2, and we re-
view it in greater detail here. The linear susceptibility for a
two-level atom with states |g) and |e), in response to a weak
probe field with detuning 6 = wp — weq from the atomic res-
onance, is shown in Fig. 2.4b. It can be seen that the response
on resonance is primarily absorptive, as characterized by the
imaginary part of the susceptibility (x”, red curve). In contrast,
the response can become primarily dispersive near resonance
if a third level |s) is added, and if the transition |e) —[s) is
driven by a control field (characterized by Rabi frequency Q
and single photon detuning &, = wp, — wes). Specifically, via
interference between the probe and control fields, the medium
can become transparent to the probe field (x” = 0) when two-
photon resonance is achieved, 6 — 6y, = 0, realizing EIT [21,
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29]. In this process, the incoming probe field strongly mixes
with spin wave excitations 0*9 to create “dark-state polaritons".
The medium remains highly transparent within a characteristic
bandwidth Agit around the two-photon resonance, which re-
duces to Agr ~ 2Q2/(I'vOD), when §; = 0. Here I' = I +Tp is
the total single-atom linewidth, and OD is the optical depth of
the atomic ensemble. These polaritons propagate at a strongly
reduced group velocity vg < ¢, as indicated by the steep slope
of the real part of the susceptibility x’ in Fig. 2.4b, which is
proportional to the control field intensity [21, 29].

Taking 03¢ to be the lowering operator from |e;) to [s;), EIT is
described within our spin model by the effective spin Hamilto-
nian

HEIT— <5L+1—)ZO'ee QZ (T —|—(7

F
=2 Zékm\z) Z“Geg(ﬁ , (2.25)

where the first line represents the explicit form of Hy; for the
EIT three-level atomic structure. In addition to waveguide cou-
pling, here we have added an independent atomic decay rate
I' into other channels (e.g., unguided modes), yielding a total
single-atom linewidth of I' =T + INp.

The spin model of EIT, i.e. Eq. (2.25), can be exactly solved
in the linear regime using the transfer matrix formalism [88],
which correctly reproduces the free-space result and depen-
dence on optical depth of the group velocity vy = 20%n/Tip
and transparency window Agrr, where n is the (linear) atomic
density. The corresponding minimum spatial extent of a pulse
that can propagate inside the medium with high transparency
is given by ogT = vg/AgrT.

A single photon propagating inside an ensemble of atoms
under EIT conditions is coherently mapped onto a single dark
polariton, corresponding to a delocalized spin wave populating
the single excitation subspace of the atomic ensemble. The po-
lariton dynamics can be therefore visualized directly by mon-
itoring the excitation probability (oj%) of the atoms in the en-
semble. In Fig. 2.5, we initialize a smgle polariton inside the

45

medium with an atomic wave function of the form ) = 3 _; f; stg lg)®N

and we determine numerically the time evolution under Hgyr
in Eq. 2.25 up to a final time t;. Choosing an initially Gaus-
sian spin wave, f; = exp(iki,dj) exp(—(jd — u)2/4012))/(27t0%,)1/4,
with spatial extent o}, (blue line), one sees that the wavepacket
propagates a distance vgt;, and with little loss provided that

0p > ogrr- Numerics (green line) show perfect agreement with
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Figure 2.5: EIT: single polariton propagation for o, < ogrr (a) and
op > ogrr (b). Plotted is the population Pj = <st5> of atom
j in the state |s). The blue line corresponds to the initial
state, the green line to the state numerically evolved over
a time t;, and the red dots to the theoretically predicted
evolution. Other parameters: tevg = Nd/6, T =5, ;p =
10, Q =1, N = 500 and ogr ~ 22d, where d is the lattice
constant.

theoretical predictions (red lines) obtained via the transfer ma-
trix formalism [88].

The spin model formalism can be easily extended to include
arbitrary atomic interactions, providing a powerful tool to study
quantum nonlinear optical effects. As a concrete example, we
consider a system in which atoms can interact directly over a
long range, such as via Rydberg states [57, 111, 128] or photonic
crystal bandgaps [46]. The total Hamiltonian is given by

HErr-Rryd = Herr + % > Uj105°07° + Hagive, (2.26)
il

in which Uj represents a dispersive interaction between atoms
j and 1 when they are simultaneously in state [s). As we are
primarily interested in demonstrating the use of our technique,
we take here a “toy model” where atoms experience a constant
infinite-range interaction, Uj;/2 = C. Such a case enables the nu-
merical results to be intuitively understood, although we note
that other choices of U;; do not increase the numerical complex-
ity. In particular we are interested in studying the propagation
of a constant weak coherent input field through the atomic en-
semble. The corresponding driving then is given by Hgyjve =
€3 ;(of" elkinzj g 1At 4 Glgee*ikinzi e'®t), where € < T is the ampli-
tude of the constant driving field, A = 5 — 8, the detuning from
two photon resonance condition, and the initial state is given
by the global atomic ground state [\;) = |g)®N [119, 129]. With
infinite-range interaction, one spin flip to state |s); shifts the
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energies of all other states [s); by an amount C. A second pho-
ton should then be able to propagate with perfect transparency,
provided it has a detuning compensating for the energy shift C,
thus ensuring the two-photon resonance condition is satisfied.
As we result, we expect to see a transparency window for two
photons, whose central frequency shifts linearly with C.

C/2

-0.5 -0.3 -0.1 P 0.1 0.3

Figure 2.6: (a) Single-photon (circles) and two-photon (triangles)
transmission spectrum for a weak probe field, for selected
values C/2 = 0 and C/2 = 0.2 of the infinite-range in-
teraction strength. The linear transmission is independent
of C, while the two-photon spectrum exhibits a shift in
the maximum transmission by an amount C/2. Other pa-
rameters: N = 200, I'p = 1,I' = 3, Q = 2,51, = O,
€ = 107°. (b) Contour plot of the two-photon transmission
spectrum T, = (ELOut(t)Eirout(t)E+,0ut(t)E+,Out(t)>/84, as
functions of interaction strength C/2 and two photon de-
tuning A = 8 (81, = 0). Cuts of the contour plot (illustrated
by the dashed lines) are plotted in (a).

This predicted behavior can be confirmed by plotting the
transmitted intensity fraction

Ty = [/Lin = (. oue(O)Esout(t)) /€%, (2.27)

and also the second-order correlation function

Ty = (B s (EL ot (V) E out (1) E+ out(1)) /€%, (2.28)

which corresponds roughly to the two-photon transmission. Fig.
shows the single-photon transmission T; and two-photon trans-
mission T, as a function of the interaction strength C and de-
tuning from two photon resonance A. To generate these plots,
we have taken a weak coherent state input, and truncated the
Hilbert space to two maximum atomic excitations (such that
the Hilbert space size is proportional to N?), which makes a
numerical solution tractable even for relatively large numbers
of atoms (N = 200 for Fig. 2.6). As expected, T; shows a peak
at A = 0 independently of the interaction intensity C; instead
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Figure 2.7: Comparison of g(?)(t) evaluated by numerical simula-
tions (red dashed line) and S-matrix theory (black line).
For constant infinite range interactions C = 1 and A =0,
the interactions induce photon antibunching. Other pa-
rameters: N =20, ,\p=2,T"=2,0=1,86, =0,& =10°.

the peak in T, shifts towards A = C/2 with increasing C. The
decay of T, for increasing C can be intuitively understood by
noting that we have a constant coherent state input, in which
photons are randomly spaced, causing two photons to enter the
medium at different times. Thus, until the second photon en-
ters, the first photon propagates as a single polariton detuned
by A from the single-photon transparency condition, getting
partially absorbed in the process. By increasing the interaction
we increase the detuning for this single polariton and conse-
quently its absorption, explaining the trend observed for T, in
Fig. 2.6b.

Field correlation functions like intensity I = (Ellout( t)E4 out(t))
or ga(t) = <EL,Out(t)Ei,ou’c(t +1)E4 out(t + T)E4 out (1)) /1% can be
computed according to the following strategy. First we switch
from Heisenberg representation to Schrodinger representation,
so that for the intensity we get

I=(EL e Erout(t)) = WIEL (o Erouhb(t)).  (2.29)

The time evolved wave function, [(t)), is determined by nu-
merically evolving the initial spin state \p;) under H for a time

t. Then, the state immediately after detection of one photon,
Eioutlb(t)) = |P), is evaluated by expressing b, oyt in terms

of spin operators using the input-output formalism: E oyt =
EetkinZR il /2 Zj Ggeeikin(l'?_zi). Finally we obtain the inten-
sity by computing the probability of the one-photon detected
state, I = (¢|P). For g;(T) an extra step is needed. Its numerator
describes the process of detecting two photons, the first at time

t and the second at time t + T f(t +1) = (El  ()E] . (t+
T)E4 out(t+T)E4 out(t)). As before we can switch to the Schrodinger
picture, f(t+ 1) = N)(t)|Ei,outeiHTEJJ[r,outEJr,oute_iHTEJr,outN)(t)>/
and evaluate the state after dectection of the first photon, E, outb(t)) =
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|d). Then detection of a second photon after a time T entails
performing an extra evolution under H and annihilating a pho-
ton, that is: By oute b)) = iy outld(T)). Finally, we evalu-
ate the quantity f(t+ 1) = <¢(T)IEiloutEjL,outldJ(’r)), by again
expressing Ei oyt in terms of spin operators. In Fig. 2.7, we
plot the numerically obtained result for 9(2)(1), for the case
where infinite-range interactions are turned on (C = 1) and
for a weak coherent input state with detuning A = 0. In such
a situation, one expects for the single-photon component of
the coherent state to transmit perfectly, while the two-photon
component is detuned from its transparency window and be-
comes absorbed. This nonlinear absorption intuitively yields
the strong anti-bunching dip g?(t = 0) < 1. We also evalu-
ate this second-order correlation function using the analytical
result for the two-photon S-matrix in Eq. (2.24), which shows
perfect agreement as expected.

2.5 HIGH INTENSITY INPUT FIELD: SIMULATING THE SPIN
MODEL WITH MATRIX PRODUCT STATES

In the first part of this chapter we have seen that using the 1D
spin model significantly reduces the size of the Hilbert space
required to simulate the light propagation problem, but the
dimension still grows exponentially with atom number. This
growth can be avoided in the case where the input field is
sufficiently weak that the Hilbert space can be truncated to
a maximum number of total excitations likely to be found in
the system [125], as we have seen in Sec. 2.4 where we ap-
plied the spin model formalism to the case of a Rydberg-EIT
system under weak driving. In the more general case, where
many-photon effects are important, the full Hilbert space may
be treated numerically for around 10 to 20 atoms depending on
the size of the single-atom Hilbert space dimension d. Going
beyond this requires some reduction of the Hilbert space and
here we choose to use matrix product states (MPS), which have
been successfully used in condensed matter to model a wide
variety of 1D interacting spin systems [130, 131] (see Appendix
A.1 for a more detailed introduction).

The key idea behind MPS is to write the quantum state of
the spin chain in a local representation where only a tractable
number of basis states from the full Hilbert space is retained.
In the case of time evolution, these basis states are updated dy-
namically in order to have optimum overlap with the true state
wave function. In particular, the wave function of a many-body
system ) = Vg,,0,,...,0n 101,02,...,0N) can be represented by
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Figure 2.8: Schematic of MPS operations. (a) Deterministic time evo-
lution of MPS. The initial state [\p(t)) in MPS form is pre-
sented pictorially as a tensor network, where the circles
represent the set of local matrices A on each site j. The
lines or bonds joining the circles represent the contrac-
tion of these local tensors to give the state \p(t)), where
the bonds have dimension Dj. The open ended lines cor-
respond to the local d-dimensional Hilbert space of the
atoms o0j. The deterministic evolution is then found by
contracting these open connectors with those of the MPO
representing e~ tHeii®t ~ 1 —iH.5t, shown as a tensor net-
work of red squares. (b) Quantum jumps. After each de-
terministic evolution a random number generator is used
to decide whether quantum jumps should be applied to
the wave function. This is achieved by applying the MPO
corresponding to a quantum jump O, shown as a ten-
sor network of green squares. (c) After the application of
the time evolution or jump MPOs the resulting MPS has
larger bond dimension, e.g., D{ = Dw x Dy, and is com-
pressed, typically back to the original bond dimension, al-
though this can be increased if the compression produces
a large error. (d) Measurement of observables. At any time
we may measure an observable by sandwiching the corre-
sponding MPO, here for example EiutEout, between the
MPS representing [1p) and (|, so that the corresponding
tensor contraction yields (| ElutEout ).
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reshaping the N-dimensional tensor Vs, ,,. 0y iNto a matrix
product state of the form

Wimps = D ATTA%2.. AN |oy,0,...,0n),  (2:30)

01,...,0N

where oj represent the local d-dimensional Hilbert space of the
atoms, e.g., 05 € {le),|g)} for two-level atoms. Each site j in the
spin chain has a corresponding set of d matrices, A%, and by
taking the product of these matrices for some combination of
0j’s we then recover the coefficient Vg, ¢,,..,on- The matrices
have dimensions Dj_; x D; for the jth site (Dg = Dny1 = 1),
which are referred to as the bond dimensions of each matrix.
We also define D = max;Dj; as the maximum bond dimension
of the state \)y;ps. This representation is completely general,
and as such the bond dimensions grow exponentially in size for
arbitrary quantum states. In certain circumstances, however, the
bond dimension D needed to approximate a state well might
grow more slowly with N due to limited entanglement entropy;,
which enables MPS to serve as an efficient representation.

For example, this forms the underlying reason for the effi-
ciency of density-matrix renormalization group algorithms for
computing ground states of 1D systems with short-range inter-
actions [132]. A priori, for our system involving the dynamics
of an open system with long-range interactions, we know of
no previous work that makes definitive statements about the
scaling of D. We can provide some intuitive arguments, how-
ever, that MPS should work well (at least without additional
interactions added to the system). First, we note that although
the dipole-dipole interaction term in Eq. (2.7) appears pecu-
liar, being infinite-range and non-uniform, it conserves excita-
tion number. For a single excitation, it simply encodes a (well-
behaved) linear optical dispersion relation that propagates a
pulse from one end of the atomic system to the other [125],
and thus does not add entanglement to the system. While the
spin nature in principle makes the atoms nonlinear, thus far in
atomic ensemble experiments the strength of nonlinearity aris-
ing purely from atomic saturation remains very small at the
level of single photons, and thus one can hypothesize that only
a small portion of the Hilbert space is explored. Once extra
interactions are added, at the moment the scaling of D must
be investigated on a case-by-case basis. However, generically
one expects that the system has a memory time correspond-
ing roughly to the propagation time of a pulse through the
length of the system. Thus, if the system is driven continuously,
it should generally reach a steady state over this time and there
will not be an indefinite growth of entanglement in time.
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In our MPS treatment of the spin model we adopt a quan-
tum jump approach to model the time dynamics of the master
equation [133], which has been successfully applied to many-
body dissipative systems [134, 135]. We write the master equa-
tion for our 1D spin model in the form p = —i(Hegp — pHiff) +

21 O1p0!, where Oy are the “jump" operators associated with
the dissipation resulting from emission into the waveguide and
into free space, and Hc¢ is a non-Hermitian effective Hamilto-
nian. This division of the master equation into jump terms and
an effective Hamiltonian He¢ is not unique and we attempt to
do so here in a way that the jump operators have a physical sig-
nificance. In particular, the emission of a photon into the foward
going mode of the waveguide may interfere with the input light
that is also travelling in the positive z direction (see Eq. (2.9)), an
interference that would be present in real detection of photons
output from the waveguide. This interference can be taken into
account in our jump operator, and as such we take the forward

going jump operator to be O = &n(t) —iy/Tip/2 3 ;e —ikoz; O'Qe
(in contrast with O, = /I'1p/2 Z) e lkoZJ 0‘)96 as in Sec. 2.2.1).
The backward going jump operator is simpler given the lack
of input field in that mode, O— = \/Tip/2}; etkoz; 0).96. In ad-
dition, we have N local jump operators O; = VT’ G].ge corre-
sponding to the free space decay, giving a set of possible jumps
OIS {O+, 0,04,...,0n}

With the jumps formulated in this way the effective Hamilto-
nian becomes

Heie = H t—l— Z exp (ikolz; —Zl|)0' 0'1
j,1=1

r _. ) ‘ir
— ITDgin(t) Z e~ koz; Gjeg — §|8in(t)|2- (2.31)
j

In general H,t can describe any additional atomic evolution;
in the specific case of two level atoms coupled to a probe of
frequency wp we can write, in the frame rotating with in the
input frequency, Hat = 2 ;(—A —1iI"/2)0f, where A = wp —
Weg-

The quantum jump approach uses the above decomposition
of the master equation to restate the evolution of the density
operator as a sum of pure state evolutions called trajectories
[133], where the wave function evolution is divided into (a)
deterministic evolution under Hq¢ and (b) stochastic quantum
jumps made by applying jump operators O;. Starting from a
pure state [\(t)) at time t, the deterministic evolution over a
time step &t gives [(t+ 5t)) = e He®t (1)), However, dur-
ing this evolution the norm of the state decreases to dp =
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T — (P(t)] etHlit e~ iHerdt hb(t)), as the effect of the jump oper-
ators is neglected. The effect of these operators is instead ac-
counted for stochastically, where after each deterministic evo-
lution we generate a random number r between o and 1. If
T > &p the system remains in state (p(t+ 6t)). Otherwise, the
state makes a random quantum jump to [P(t+ ot)) = O [P (t))
with probability op; = &t (P (t)| OIOL [W(t)). The state is then
normalized and the process repeats for the next time step and
each sequence of evolutions gives a quantum trajectory. Any
observable can be obtained by averaging its value over many
trajectories. Furthermore, as we choose our quantum jumps to
relate to physical processes, the distribution of the jumps can be
thought of as corresponding to actual photon detection in an ex-
periment. As an aside, we note that MPS-based techniques for
evolution of density matrices have also been developed [136-
139]. Whether and when such techniques out-perform quan-
tum jump methods for our problem is likely a subtle question,
which will be explored in more detail in future work.

There are then four essential manipulations of the MPS as
illustrated in Fig. 2.8. We first describe how to implement (a)
deterministic evolution over a small discrete time step 8t and
(b) stochastic quantum jumps that account for dissipation. Ad-
ditional steps specific to MPS are (c) state compression, to con-
strain the growth of the MPS representation of the state in time,
and (d) calculation of observables such as the output field given
an MPS representation of a state.

(a) Time evolution. To evolve the state [(t)) in time we need
to apply the operator e et to the MPS representation. This
is achieved by applying a matrix product operator (MPO) to
the state, where just as a state can be decomposed into an MPS,
any operator W can be expressed in a local representation as

w= ) WOLOTWO202 | WONON

/ /
0‘1 ,...,GN,G1 7o ON

x|07,0%,...,04) (01,02,...,0n]. (2.32)

Here W% are a set of matrices at site j, where the matrices
now have two physical indices O'j/ , 05 due to W being an oper-
ator. An MPO may be “applied” to an MPS via a tensor con-
traction over the physical indices oj of the MPS and MPO, as
shown in Fig. 2.8a. This generates a new MPS with higher bond
dimension, as the bond dimension of the MPO, Dy, multiplies
the bond dimension of the original MPS, and for the calcula-
tion to be tractable Dy must be small. Such a compact form
is not known for the operator e Heitdt. however, the first order
approximation e tHefft = [ —iH.¢5t has a compact MPO form
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if Hegr does. This is the case for the 1D spin model where the
bond dimension is Dy, = 4. Indeed we have

AT, AT 1
j ~2a ot oo e
0 AL 0 od¢
W = : i (233)
0 )\I) O‘jg
0 0 I
for 1 <j <N, and
W, = (11 A 59 A 9¢ H11°C> , (2.34)
Wi = (H o o In)., (2.35)

where A = e'%od, [; is the spin identity operator for atom j, and
HIo¢ contains all the local terms in Heg. Using a small time step
5t we can then advance the wave function in time.

(b) Quantum jumps. After evolving a time 6t, the state is ei-
ther kept and renormalized, or a jump is applied. To apply the
quantum jump formalism we then just require an MPO form of
the jump operators that can be applied to the MPS at each time
step, see Fig. 2.8b. The jump operators of the 1D spin model
can be written in compact MPO form, where the loss into free
space is a local matrix operation, and loss into the waveguide
requires an MPO of bond dimension Dy = 2:

o —ikoz: —ge
7, - I —iy/Tip/2e 0% 0; , (2.36)
0 L
for 1 <j <N, and
Z) = (11 —iy/Typ/2 e~ ko= o$e+8(t)11), (2.37)
. T
VANIES <—i\/F1D/2 e~ oI g IN> . (2.38)

The MPO of O_ is analogous, but without the external field
term in Z; and with kg replaced by —ko.

(c) State compression. After applying the time evolution op-
erator or jump operators the size of the MPS increases as the
bond dimension of the operator multiplies the bond dimension
of the original state. Over time this would lead to exponen-
tial growth in the MPS size if not constrained. This increase
in bond dimension can correspond to the true build up of en-
tanglement, but may also correspond to the new state being
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expressed inefficiently in the MPS form. In the second case, a
more efficient representation can be found and the bond dimen-
sion compressed to a smaller value, as in Fig. 2.8c. This can be
done using singular value decompositions (S5VD) to find low
rank approximations of the matrices A% in the MPS represen-
tation, or by variationally exploring the space of MPS states
with a fixed bond dimension that are closest to the original
state [130, 131]. The validity of such a compression can be
evaluated by checking how strongly the parts of the state dis-
carded in the compression contribute to the description. This
can be calculated easily using the SVD compression algorithm.
We denote by Ayj, the set of singular values at bond site j
and time t, with 1 < 1 < D’ (with the singular values or-
dered to monotonically decrease with increasing 1), then we
may reduce the bond dimension by only keeping the singu-
lar values with | < D. One measure of this compression error
is the norm of the difference of the original state and the com-
pressed state e = || [W(t))p — p(t))p- I, which can be expressed
aser = 1— H}\:]] (1—ey;) withey; =) 1op 7\%,).’1. The error accu-
mulated during the whole time evolutionis et = 1—] [, (1 —€y).
Since all the terms are small one can approximate the products
with sums and obtain

Ts N-1

arrY Y Y AL (2.30)

t=0 j=1 1>D

eT is a figure of merit for the quality of the time evolution. By
monitoring this quantity the bond dimension in the compres-
sion can be adjusted so that the error remains small.

(d) Calculating observables. At any point in time observables
such as the spin populations or output field may be calculated
for a particular quantum trajectory by applying the appropriate
operator associated with that observable in MPO form to the
state. For example, to find the output intensity, ({(t)| Elut(t)Eout(t) (t)),
one can express the individual elements as matrix product states
or operators. The intensity for that trajectory can then be eval-
uated through a tensor contraction, as shown in Fig. 2.8d. This
intensity is then averaged over all the quantum trajectories to
find the expectation value Ioyu(t) = (E! . (t)Eoue(t)). Multi-time
correlation functions such as Ig}t(t,t +1) = (Egut(t)Elut(t +
T)Eout(t + T)Eout(t)) can also be found. This is done by prop-
agating the state in time until time t and then applying the
operator Eoyt to the state. The state is evolved a further time
T and the operator applied again. The norm of the resulting
states are then averaged over many such evolutions to find the
two-time correlation.
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Figure 2.9: (a) VIT three-level scheme, where the transition |s) — [e)
is coupled to a cavity field with frequency w,, allowing
for transparent propagation of probe photons (wp). (b) In
VIT, an atomic ensemble is trapped inside an optical cavity
where the atoms couple both to the probe field Ej, and to
a cavity mode which is initially in its vacuum state. Pho-
tons in the cavity have an associated decay rate k from
transmission through the mirrors.

2.6 VACUUM INDUCED TRANSPARENCY

The model introduced above gives a powerful and flexible al-
gorithm for simulating the interaction of light with atomic en-
sembles in the multi-photon limit. To demonstrate the utility of
this approach we now investigate the phenomenon of vacuum
induced transparency (VIT) [58]. This example also serves to
benchmark our method, as exact solutions for non-trivial mul-
tiphoton behavior are not available, while in the case of VIT
at least the qualitative nature of the system dynamics is under-
stood.

VIT is closely related to the effect of EIT, presented in Sec. 2.6,
which occurs in three-level atomic media. The only difference
is that the control field is replaced by strong coupling of the
atoms to a resonant cavity mode as shown in Fig. 2.9a,b [58,
140], which is described by the Hamiltonian Heay = g Zj (O'jes a+
h.c.)/2 in the case of uniform coupling g to a cavity mode with
annihilation operator a. Here even when the cavity is empty
the atomic medium can become transparent as vacuum Rabi
oscillations transfer population from state |e) to [s) [59]. The
propagation of light in the system then takes on the nature of
the non-linear coupling of the atoms to the cavity. Specifically,
the formation of a spin wave from n probe photons is accom-
panied by the excitation of the same number of cavity photons,
which produce an effective control field strength of \/ng. Since
in EIT the group velocity of the light is determined by the con-
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Figure 2.10: Idealized time-dependent transmission of a coherent
pulse with average number of photons equal to one
through a VIT medium. In the case where all loss mecha-
nisms are ignored, as well as the effect of pulse distortion
on entry and exit from the atomic ensemble, the individ-
ual Fock number state components [n) of the input pulse
(blue) propagate through the medium with group veloc-
ity v, o< .. This leads to separation of the one- (red), two-
(yellow) and three-photon (violet) components of the out-
put field, and a total output intensity shown by the green
dashed line. We have taken vi = 4dl'’ and the medium
has a length L = 100d.

trol field, where vy o |Q%, the group velocity in VIT becomes
number dependent v, «x n [141, 142]. Fock states [n) input into
the system are then expected to propagate at v;,.

On the other hand, a coherent state |x) that has average num-
ber of photons |«f? is a superposition of Fock states, where n
photons are present with probability el 2n /m1. Input into
the VIT medium, these components are then expected to spa-
tially separate due to their different propagation velocities, given
sufficient optical depth. The output intensity can then be calcu-
lated naively by simply delaying the input Fock components by
a time t, = L/vn, where L is the length of the atomic medium.
The output intensity in time resulting from such a toy model is
shown in Fig. 2.10, for a coherent state input pulse with aver-
age number <npulse> = 1. We have taken the system length to
be L = 100d (d being the distance between the atoms, equal to
3A/4) and the single photon velocity v; = 4dI"/, which results
for example from taking g = 4I'"" and I'p = 2I'’ in which case
the system’s optical depth is OD = 400. We note that the exper-
imental conditions needed to observe photon number separa-
tion in VIT are difficult to achieve [59], and thus our parameters
are chosen to observe the desired effect, rather than correspond
to a given experiment. Such an effect would be interesting in a
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number of contexts; for example, it would allow for photon
number resolving detection simply through timing.

A plot similar to Fig. 2.10 was given in the original theory of
VIT [141], as at that time it was unknown how to calculate ob-
servables in the presence of losses and spatio-temporal effects,
such as occurring from pulse entry and exit from the atomic
medium. More recently, VIT has also been studied numerically
in the weak-field limit using the space discretization technique
[142]. In the weak field limit, only the single photon manifold
contributes to the output intensity and the higher number com-
ponents are only visible in higher order correlation functions
like g). This also means that quantum jumps have a negligible
effect on the system dynamics, and they were neglected in the
calculations. In more general circumstances, using MPS simula-
tions, we will show that the effects of quantum jumps and pulse
distortion can have a significant effect on the output field.

For concreteness, we take input pulses with central frequency
wp and Gaussian envelope &in(t) = oc(mr%/Z)_V4 exp(—(t —
T)?/0?)), which have an average photon number of (Mpulse) =
|«[? ~ 1. The average photon number chosen is not due to any
intrinsic limitation coming from the MPS method itself, but
rather because in VIT the spatial separation is largest for the
Fock components with low photon number (see Fig. 2.10) and
with |«? = 1 the single photon and two photon components
of the coherent state give an equal contribution to intensity em-
phasizing this effect. In this case, number states with three or
more photons make up 8% of the input state and constitute 26%
of the input intensity due to their high photon number.

To treat VIT, we include in the spin model formalism the
atomic part Hyt of the total effective Hamiltonian

T K
Hat = —Z (A-l-l?) 05¢ — <6C+1§> a'a
j
+%Z(Gfsa+h.c). (2.40)
j

Here A = wp — wegq is the detuning of the probe light from the
le)-|g) transition frequency, 6 = wp — W — wsq is the VIT two-
photon detuning and « is the decay rate of the cavity mode. The
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(a) Pulse propagation in a VIT medium with optical
depth OD = 400, simulated using N = 100 atoms cou-
pled to a 1D-waveguide, and averaged over 20000 quan-
tum trajectories. Input of a coherent pulse with |o|> = 1
(blue) results in an output intensity Iout(t) (red) with
two main peaks. Also plotted is the second-order corre-
lation function I((nzlz(t,t) (yellow). (b) Zoom of the plot
above, with dashed lines showing the expected posi-
tions of pulses delayed by 1, for n = 1,...,5. Simula-
tion parameters are I'p = 2I'", A = 6. = 0, g = 4T,
kK = 0.03I", oy =3/T"and T = 10/T’. We chose D = 50
and &t = 0.01/T"" where convergence was observed for all
observables of interest.
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MPO of the effective Hamiltonian for VIT is a straightforward
extension of (2.33):

%O.]es %O.)se

o 0

0o 0
wytT — , (2.41)
: 000 L 0 0

o I 0

0o 0

for 1 < j < N, where the dots stand for the elements given in
Eq. (2.33) and

T
W?\?El — <Hloc,cav 0 0 a d Icav) . (2.42)

In what follows we assume both the probe and cavity are reso-
nant with their respective transitions, so that A = 8. = 0. Dis-
sipation via the various loss channels is then included through
quantum jump operators. The jump operator corresponding to
cavity decay is O, = y/ka and we assume that the atomic ex-
cited state can decay via free-space spontaneous emission into
either state |g) or |s) (taking these decay rates to be equal for
simplicity), leading to 2N jump operators Ojge = /T’/20}"
and Ojse = 1/"/205. The cavity mode is represented in our
MPS treatment by an additional site in our spin chain, which
can support up to n. bosonic excitations. In the simulations we
present here we have taken n. = 10 and observe no difference
in observables if n. is increased.

In Fig. 2.11a,b we show the time-dependent output pulse in-
tensity Lout(t) = (Elut(t)Eout(tD calculated from an MPS simu-
lation of 100 atoms and an input pulse with |«|? = 1. We also
show the zero-delay second order correlation function Iézu)t(t, t) =
<Elut(t)Elut(t)Eout(t)Eout(tD. In the output intensity two main
peaks are observed, where the first peak in time (tI'" ~ 23) is
due to photon number components with two or more photons,
while the last peak (tI"’ ~ 36) is associated with the slow propa-
gation and exit of the single-photon component. That the most
delayed part contains only single photons can be seen by look-
ing at the second order correlation function which is only non-
zero in the first part of the pulse. In Fig. 2.11b we see good
agreement between the features of the numerical pulse shape
and the expected group velocity for each part of the pulse (com-
pare with Fig. 2.10), where the vertical black dashed lines rep-
resent the expected times for the peaks of the Fock state com-
ponents, that is, with delays T,.
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Compared with the ideal picture in Fig. 2.10, where a clean
separation is seen between one and two photons, one can see
that the full simulation produces a much larger intensity be-
tween the one- and two-photon peaks. We now show how the
trajectories from the MPS simulations can be further filtered
and analyzed, to gain insight about the underlying physics. In
particular, we find that quantum jumps play a key role in blur-
ring the separation between the different number components
in the output, even for the very good system parameters that
we have chosen (OD = 400, g/k ~ 130). An intuitive picture
of how the blurring occurs can be gained by considering two
photons that enter the medium, and initially propagate at a
velocity v, = 2v;. During evolution, this state may decay via
spontaneous emission into free space and leave behind a single
photon propagating in the medium, at which point the group
velocity is slowed to v;. This change in group velocity can hap-
pen at any point in the system and leads to single photons that
arrive at the output earlier than expected if just a single-photon
Fock state was input into the system, destroying the perfect
separation of the single photon output from the two photon
component.

We can quantify this behavior by analyzing the quantum
jumps that happen in our simulations, where due to the choice
of physical jump operators discussed above, the total number of
jumps in a given trajectory corresponds to the number of pho-
tons emitted from the system. Furthermore, the type of jumps
(and thus the emission channel) can be explicitly tracked, be-
tween free-space loss, cavity loss, or detection in the waveg-
uide output. In Fig. 2.12a, we create a histogram of jumps cor-
responding to output into the waveguide versus time for the
20000 trajectories used to produce Fig. 2.11. The count of the
jumps in the output channel provides an alternative way (com-
pare to Fig. 2.11) to calculate the intensity, as would be done in
an experiment where detector counts are averaged over many
identical realizations. In Fig. 2.12a, the vertical axis is re-scaled
in units of intensity rather than total number of events, to yield
a more direct comparison with the previously calculated out-
put intensity (black dotted line).

Furthermore, we can classify the jumps according to whether
they come from trajectories where 1, 2 or 3+ photons are emit-
ted into the waveguide (as indicated by the different bar colors
in Fig. 2.12a). As we see in the plot, the higher the number de-
tected in the waveguide, the earlier in time the jumps happen,
in agreement with the the simple theoretical model and with
the calculations of Ioy¢(t) and Igzu)t(t,t), discussed above. We
can also select only the trajectories where a single photon is de-
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Figure 2.12: (a) Stacked bar graph of quantum jumps into the out-
put channel over the 20000 quantum trajectories used
in Fig. 2.11. The height of each bar is the proportion P
of trajectories that have an output channel jump occur-
ring in the time bin defined by the bar’s width. The bars
are then divided into three categories by classifying each
jump according to how many jumps into the output chan-
nel occur for a particular trajectory (1, 2, or 3 or more).
Jumps from trajectories where there are a higher number
of photons emitted into the output channel are seen to oc-
cur earlier. For comparison the dashed black line shows
the output intensity from Fig. 2.11. (b) Stacked bar graph
for quantum jumps from trajectories where only a single
photon is detected in the output of the waveguide. These
jumps are then divided into jumps that are not accompa-
nied by any other jump into other channels, and those
that are. We see that the tail of photons detected earlier
are due to trajectories where 2 or more photons entered
the medium but all but one were lost into other channels.
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Figure 2.13: Post-selection of trajectories to find evolution for Fock
state input. By selecting only trajectories where there
were a total of 1 (blue), 2 (red), or 3 (yellow) jumps into
any channel we can reconstruct the intensity output for
the corresponding input Fock state.

tected at the waveguide output, and further separate those tra-
jectories into two distinct cases: (i) when that is the only jump
event (indicating a single photon was input and successfully
propagated through the system), and (ii) where a multi-photon
state was input, and all but one photon decayed into other chan-
nels. The histogram according to this classification in time is
shown in Fig. 2.12b, where we see that the tail of faster arriving
single photons, seen to the left of the main peak, results from
the decay of number states with two of more photons, and the
resulting mixing of propagation velocities.

Alternatively, we can use the jump statistics from a coherent
state input to identify the intensity resulting from a Fock state
input. Since the VIT system does not support any long lived
excitations (compared with the simulated time scale), the total
number of photon jumps (into any channel) out of the system
for any one trajectory is equal to the number of the photons
that entered the system for that trajectory. By post-selection on
the total number of jumps we can then find the intensity that
results from a Fock state input as shown in Fig. 2.13. Here we
see the same effect of jumps as noted above but observed in a
different way. In particular, while we categorized the trajecto-
ries in Fig. 2.12a,b by the number of photons that survive and
are output, in Fig. 2.13 we classify them by the number that are
input. For Fock state inputs of two or more photons, the out-
put intensities show tails of longer than expected delay times,
again as a result of photon loss and the mixing of propagation
speeds.

These longer than expected delay times are not only due to
quantum jumps however, they can also result from distortion
of the multi-photon wavepacket as it enters the medium [142].
This distortion happens as the input pulse crosses the boundary
of the atomic ensemble, as we illustrate for a two-photon wave
function in Fig. 2.14a. There, the initial Gaussian distribution
of the photon positions z; and z; is shown as a circle. The two-
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Figure 2.14: (a) Illustration of distortion as a two-photon wave-

function 1(z1,z,) enters the atomic medium. (b) Two-

time correlation function for the output field, I((nzlz (t1,t2),
of the VIT system, after excitation with a coherent Gaus-
sian input pulse for various average input photon num-
ber, |a|2 = 0.01, 0.25, 1.0 and 2.0. The system parame-
ters were for an optical depth of OD = 60, with N = 30,
Mo =T,A =58 =0,g =4I,k =0.03l", o =4/
and T = 6/T"". We chose a bond dimension of D = 30
and a time step of 5t = 0.01/T” where convergence was
observed for all observables of interest.
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dimensional space of the photon pair is divided into regions
where only one photon is inside the medium and has group
velocity v, indicated by the dashed lines, and when both pho-
tons are inside the medium having velocity v, = 2vy, the square
box. Photon pairs with greater separation spend more time in
the regions where only one photon is inside the medium, de-
laying them compared to pairs with z; = z;, leading to a char-
acteristic heart shaped pattern. In Fig. 2.14b we show how this
behavior can be observed in the two time correlation measure-
ment of the output photons for an input coherent pulse at low
input photon number. At weak input field the two-time cor-
relation function is purely due to the two photon component
and shows a clean heart shape. As the number of input pho-
tons increases, higher photon number components contribute,
which travel faster through the medium distorting the pattern
and pulling it forward in time.

2.7 CONCLUSIONS

In summary, in this chapter we have first introduced a power-
ful theoretical model to describe light propagation in atomic
ensembles by means of purely atomic one-dimensional effec-
tive Hamiltonian, and then we have presented a technique to
numerically simulate this effective model, which is based on
the powerful toolbox of matrix product states. This technique
appears quite versatile, and adaptable to many cases of theoret-
ical and experimental interest (e.g., with regard to level struc-
ture, types of interactions, additional degrees of freedom, etc.).
Similar to the important role that DMRG and MPS played in
one-dimensional condensed matter systems, we envision that
results gained from our numerical techniques could be used to
push forward the development of effective theories of strongly
interacting systems of light [57, 112-114, 125, 143, 144], and
conversely that such analytical work could be used to improve
numerical algorithms.

Beyond that, it would be also interesting to investigate fur-
ther why MPS apparently works well in the context of our open,
long-range interacting system, and under what conditions MPS
might fail. This could help to provide insight into the growth
of entanglement, which naively seems like a potentially useful
resource, but which has not been explored for such systems to
our knowledge. Finally, the ability to formally map atom-light
interactions to a quantum spin model appears rather intrigu-
ing in general, and it would be interesting to explore whether
other techniques for solving spin systems could be applied here
as well.






DESIGNING EXOTIC MANY-BODY STATES OF
SPIN AND MOTION

3.1 INTRODUCTION

In Sec. 1.2.2 we have briefly introduced photonic crystal waveg-
uides (PCW) [37], periodic dielectric structures in which the
propagation of light can differ significantly from uniform me-
dia. An important feature of photonic crystals is the appear-
ance of photonic band gaps, where strong interference in scat-
tering from the periodic dielectric yields a complete absence
of propagating modes within some bandwidth. We have also
seen that an excited atom whose transition frequency resides in
the gap would not be able to spontaneously emit, but that an
atom-photon bound state can form, in which the atom becomes
dressed by a localized photonic cloud [40, 45-48]. This pho-
tonic cloud can mediate exchange of excitations between atoms,
realizing long-range atom-atom interactions. Furthermore, the
tight spatial confinement associated with the band gap photon
yields large dispersive forces on proximal atoms that depend
on the atomic internal “spin” states, thus realizing a coupling
between the internal degrees of freedom of the atoms and their
position in space.

In condensed matter rich phenomena arise when quantum
spin systems couple to phonons or orbital degrees of freedom
of the underlying crystal lattice. Perhaps the most famous ex-
ample is the spin-Peierls model [68—71], wherein the spin inter-
action leads to a lattice instability resulting in a ground state of
singlet pairs and a bond-ordered density wave. Motivated by
this emergence of new physics, we investigate if the interplay
between internal and motional degrees of freedom that is real-
ized in the atoms-PCW interface can realize exotic many-body
states, where the spin-dependent forces dictate the properties
of the emergent spatial order. In such a case we would be in
presence of a novel “quantum crystal” that has not existed be-
fore, in which the emergent spatial patterns and spin properties
are intricately locked together, and where driving one would
automatically affect the properties of the other.

In this chapter we first review more in detail the physics
of atoms coupled to PCW’s, using a generalization of the for-
malism introduced in Chapter 2 for the case of atoms cou-
pled to a 1D waveguide. Then we focus our investigation on
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one of the many models that can be realized with the atoms-
PCW platform. In the case considered atoms are trapped in
a weak one-dimensional external potential, and a short-range
spin-dependent force can be made sufficiently strong to ex-
ceed the external potential. To understand the emergent orders
of this system we begin by treating the motion of the atoms
classically and their spins quantum mechanically. We find an
effect reminiscent of the spin-Peierls transition, in which the
atoms spatially dimerize and realize a high degree of entangle-
ment within each dimer. We then proceed to a fully quantum
model. Using density matrix renormalization group (DMRG),
we find a rich variety of quantum phases beyond the spin-
Peierls state, such as a state where spin and phonon excitations
form composite particles, phonon-induced Néel ordering, and
spatial trimers associated with magnetization plateaus.

While a specific model is studied, the results obtained sug-
gest that spin-orbital coupling can be a dominant phenomenon
in all hybrid systems of atoms and photonic crystals. Similar
considerations could also apply to a number of other atomic
systems where spatially-dependent spin interactions can be re-
alized, including polar molecules [145-147], Rydberg atoms [148],
ion chains [50, 51, 149], and atoms in high-finesse cavities [150].

3.2 ATOM-ATOM INTERACTIONS IN DIELECTRIC SURROUND-
INGS

In Sec. 2.2.1 we have derived an effective theory for atoms inter-
acting through the guided modes of a 1D waveguide to which
they are coupled. Here, we present the extension of that formal-
ism to the case of a generic atomic ensemble in a dielectric sur-
rounding, which we will later apply to the case of an ensemble
of atoms interacting via the process of photon exchange near a
photonic crystal. We generally begin by considering an ensem-
ble of two-level atoms with ground state |g) and excited state
le), with corresponding transition frequency wey. The atoms
can be in the vicinity of any linear, isotropic dielectric materi-
als, characterized by dimensionless electric permittivity €(r, w).
Here r denotes the spatial coordinate, and e in general is al-
lowed to be dependent on frequency w and absorbing (i.e., have
an imaginary component). A quantum theory of atom-light in-
teractions in the presence of such dielectric media has been pi-
oneered in a number of works by Welsch and co-workers [151,
152]. Here we will not go through the derivation again, but will
present the main results and qualitatively argue why the results
are physically reasonable.



3.2 ATOM-ATOM INTERACTIONS IN DIELECTRIC SURROUNDINGS

Intuitively, two-level atoms can interact via the electromag-
netic field through the exchange of photons. Microscopically,
one atom would be able to de-excite by emitting a photon (as
characterized by the atomic lowering operator 09¢ = |g) (e| and
another atom would be able to absorb the photon and become
excited (as characterized by the raising operator 0¢9 = [e) (g|).
By integrating out the field, one obtains an effective atom-atom
interaction Hamiltonian of the form [152]

N
Haa =— ) Jjojoal”, (3.1)
1=

where Jj = uowég d* - Re{G(1j, 1, weg)} - d. Here d is the dipole
matrix element of the transition, and G is the classical electro-
magnetic Green’s function, defined as the solution to the wave
equation with a point source,

(V x Vx)—w?e(r,w)/c?| G(r,t,w)=5r—1 )L (3.2)

The Green’s function G is in fact a 33 matrix, whose elements
Ggp have the meaning of being the field at v projected along a
(a = x,y,z), due to an oscillating source of frequency w at r/,
whose dipole moment is oriented along b. For simplicity, from
here forward we will not explicitly indicate the tensor nature
of G, e.g., by considering a transition that is linearly polarized
along x, d = pX, such that only the Gy« component is rele-
vant (and thus dropping the subscripts). Physically, although
a two-level system produces non-classical light, classical and
quantum fields propagate the same way, and thus the coherent
interaction strength between the atoms can be characterized by
the classical Green’s function. Moreover, the dependence of Hgyq
on the real part of G has a classical analogy, in that a field in
phase with an oscillating dipole stores time-averaged energy.

Likewise, an ensemble of atoms should experience dissipa-
tion in the form of spontaneous emission. Eliminating the fields
results in a corresponding master equation for the density ma-
trix p of the atoms alone, with Lindblad operator given by

N
Cadol = 3 D (20800t — 059080 — pot¥af),  (33)

1=
where I}, = Zuowﬁgd* -Im{G(xj, 11, weg)} - d. This equation also
has a classical analogy, in that the field out of phase with an
oscillating dipole performs time-averaged work. As a simple
limit, one can consider the case of a single atom in vacuum,
for which e(r, w) = 1. The corresponding Green’s function Gy
has the property that Im G(r, 1, weg) = weq/(67c). Substituting

69



70

DESIGNING EXOTIC MANY-BODY STATES OF SPIN AND MOTION

this into L[p] one finds that L{p] = IH(209¢p0c®9 — 0¢¢p — po€€),
where Iy = wigg)z /(3meghc?) correctly identifies as the single-
atom free-space spontaneous emission rate.

Egs. (3.1) and (3.3) are quite general and completely dictate
the atomic dynamics given knowledge of the Green'’s function
G. For an actual photonic crystal structure such as the “alliga-
tor" PCW used in experiments [42, 44], the Green’s function G
can be numerically calculated using standard electromagnetic
simulation software, as has been done in Ref. [46]. G contains in-
formation about fundamental dissipation rates such as atomic
spontaneous emission into free space, and in principle numer-
ical simulations could also incorporate any kind of imperfec-
tions stemming from structure disorder (that can be captured
in some imperfect dielectric profile e(r, w)) to infer its effect on
atom-atom interactions. However, in Ref. [46] it was shown that
the predictions from numerical simulations of G for a realistic
photonic crystal waveguide agree quantitatively with a simpler
theoretical model of atom-atom interactions at a band edge. We
thus present the simple model below, which provides excellent
intuition about the strengths of the coherent interactions and
dissipation, and the effect of certain imperfections.

3.3 MODEL OF ATOM-ATOM INTERACTIONS AT A PCW BAND
EDGE

In this section we present the model for the interaction between
atoms mediated by guided photons of a PCW, whose effects at
the many-body level will be investigated in the remaining of
this chapter.

3.3.1 Band-gap mediated interactions

We consider an idealized 1D model of atoms interacting via a
band edge of a photonic crystal structure. The two-level atoms
are assumed to predominantly couple to a single band, whose
dispersion relation can be expanded quadratically around the
band edge, w(q) = wy(1 —«(q —k)?/k?) (see Fig. 3.1a). Here,
wy, is the frequency at the band edge, q is the Bloch wavevector
of the guided mode, k = 7/a is the edge of the Brillouin zone
determined by the structure periodicity a, and o« > 0 is a di-
mensionless parameter characterizing the band curvature. The
atomic transition frequency weg > wy, is assumed to lie within
the band gap and couple to an upper band edge, as shown in
Fig. 3.1a. The conclusions below would also hold if the atoms
were coupled to a lower band edge, but with a change in the
sign of the resulting atom-atom interaction.
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Figure 3.1: (a) Energy level structure for a two-level atom coupled
to a photonic crystal. The transition frequency weq has
a detuning A}, above the band-edge frequency wy. 8. =
2/, is the detuning of the atom from the effective “cav-
ity" mode frequency. (b) Schematic representation of the
Jaynes-Cummings model: a two-level atom is coupled to
a cavity mode with coupling strength gjc. The atom can
decay to free space at a rate '’ (green arrow), while the
cavity mode decays at a rate k (red arrow).

The Hamiltonian describing the coupled atom-photonic crys-
tal system is given by H = Hy + V, where

Hy = Zwegoj€€+qu w(q)agaq, (3-4)
j

vV = gZqu(Gfgaquqm)eiq*i+h.c.). (3.5)
j

Here aq is the annihilation operator associated with guided
mode ¢, and u4(x) is a dimensionless periodic Bloch function
associated with the electric field profile of the guided mode.
The interaction strength g is given by g = p+/wp/(4meghA),
where A is the effective mode cross-sectional area.

Before deriving the atom-atom interactions, we first note that
while the dispersion relation w(q) provides the frequency of
the guided modes g, it also has physical meaning for frequen-
cies in the band gap. In particular, defining A, = weg — wy, >0
as the detuning of the atomic frequency from the band edge
and substituting it in for w(q), one finds an imaginary wavevec-
tor q as the solution, g —k = i\/k?A,/xwy. This describes
an evanescently decaying field, with a corresponding attenu-
ation length of L = 1/Im(q — k) = y/awy/k?Ay,. This is the
length over which the field from a dipole source would atten-
uate if its frequency were within the band gap. We now pro-
ceed to eliminate the photonic modes to arrive at an effective
atom-atom interaction, as formally described in the previous
section. Beginning with the manifold of states consisting of any
number of atomic ground and excited states and zero photons,
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{lg), |e>}®N ® |0), the interaction Hamiltonian V couples these
states to a manifold with one fewer excited atom and one pho-
ton in mode q, |14). The goal is to treat the fluctuations to the
manifold containing one photon within second-order pertur-
bation theory and project the effective system dynamics back
to the zero-photon manifold (e.g., by Schrieffer-Wolff transfor-
mation), resulting in a purely atomic interaction. The derived
effective Hamiltonian takes the form [46]

2
Hine = 55 ]Zl (i) u ) e 096, (36)

where g. = /27/Lg (note that g is a coupling strength to a
continuum and has units s~'\/m, so g, has units of s~'). Here,
we have assumed that the spatial Bloch modes uq ~ u can be
treated as nearly constant near the band edge. For realistic PhC
structures they appear sinusoidal uy(x) = cosmx/a along the
axis of the waveguide, i.e. at the band edge, the modes form a
standing wave exactly as in a Fabry-Perot cavity. The mode area
A (which enters in g) and the band curvature « can be calcu-
lated independently from numerical simulations for a realistic
structure, and upon doing so one finds that the simple model
of Eq. (3.6) quantitatively agrees with full Green’s function sim-
ulations without any free fitting parameters [46].

Hamiltonian (3.6) describes spin-spin interactions between
the atoms whose coupling strengths depend on the relative and
absolute positions of the atoms. The position-dependent cou-
pling naturally creates correlations between the motional and
the internal degrees of freedom of the atoms, which will be sys-
tematically investigated, at the level of ground state physics, in
Secs. 3.4 and 3.5.

3.3.2 Dissipative mechanisms

Writing the effective Hamiltonian in the form of (3.6) suggests
an elegant interpretation. Aside from the exponential spatial de-
pendence eI/l the interaction is exactly what one would
find for atoms coupled to an off-resonant cavity within the
Jaynes-Cummings model [16, 46, 153] described in Sec. 1.1.1
(see Fig. 3.1b). In particular, the Jaynes-Cummings Hamiltonian
is given by

Hjc = 5]CzO'jee+9]CZCOSka(Gjega+h-C-)/ (3.7)
j j

where gjc is the single-atom vacuum Rabi splitting of the cav-
ity, a is the annihilation operator of the cavity mode, and §;c is



3.3 MODEL OF ATOM-ATOM INTERACTIONS AT A PCW BAND EDGE

the atom-cavity detuning. In the far-detuned regime |8;c| > gjc
the off-resonant photons can be eliminated to yield an effective
atom-atom Hamiltonian Hjc ef = (9]2C /8c) 3y cos kxj cos kX[O'je Io7°
(see Eq. (1.7)). Compared to Eq. (3.6), this suggests that the PhC
interaction can be understood as arising from an effective cavity,
with the mapping gjc = gc and djc = 0. = 24, (i.e., the “cavity”
mode for the PhC sits A, below the band edge, see Fig. 3.1a).
The photon associated with this “cavity” mode is simply that
exponentially localized around an excited atom, unable to prop-
agate in the waveguide due to the band gap.

This analogy can in fact be made more formal [46]. In par-
ticular, in a real cavity the vacuum Rabi splitting scales with
mode volume as gjc o 1/ V'V, and it can be shown that the in-
teraction strength g. o 1/v/AL in the PhC is exactly the same
as a real cavity of the same size. Within the Jaynes-Cummings
model, the role of losses is well understood, and one can ex-
ploit this mapping to predict the effect of dissipation in the
PhC. As discussed in Sec. 1.1.1, within the Jaynes-Cummings
model, two fundamental dissipation channels are the sponta-
neous emission rate of an excited state atom into free space (at
a rate I'/ typically comparable to the vacuum emission rate I}),
and the decay of the cavity photon at a rate k (see Fig. 3.1b).
We have seen that the probability of losing a photon during the
exchange process between two atoms optimized with respect
to the detuning djc is Emin = 1/ V/C, where C = QJZC /(kT"’) is the
single-atom cooperativity factor. In a PhC, the same loss mecha-
nisms occur. An atom trapped near a PhC emits into free space
at a rate ~ I, and the photon localized around an excited atom
sees the absorption and scattering imperfections of the dielec-
tric to decay at a rate k. This rate k should be similar to PhC
cavities made from the same material and fabrication processes,
for which quality factors of Q > 10° [154] have been achieved.
Assuming an interaction length of L ~ A, this translates into an
effective vacuum Rabi splitting of g./(27) ~ 10 GHz (for a Cs
transition) and a cooperativity of Cy ~ 104

3.3.3 Raman scheme

In Secs. 3.3.1 and 3.3.2 we have presented the possible achiev-
able strengths of interactions in photonic crystals and the rele-
vant dissipation mechanisms. We now apply these results specif-
ically to the case of observing spin-motion coupling. First, it
should be noted that while the photon-mediated interactions
in PhC’s occur via the excited state, it is generally not con-
venient to directly work with excited states. In particular, we
are interested in observing the influence of spin-motion cou-
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Figure 3.2: Schematic rendering of the “alligator" photonic crystal
waveguide [43] with two atoms trapped. The atomic tran-
sition [1) — |e) is globally driven by an external laser with
Rabi frequency Qi. In principle, an atom originally in
[1) can Raman scatter a laser photon and flip to state |/).
However, when the frequency of the scattered photon wg.
lies within a bandgap (see Fig. 3.1a), this photon becomes
bound around the atom (illustrated by the pink cloud). It
can be subsequently absorbed by another atom initially in
state ||), resulting in a flip to state [1).

pling in competition with an external trapping potential for the
atoms. Typical external trap frequencies are below wm/27m S
1 MHz, which is much smaller than the achievable bare in-
teraction strengths in PhC structures (e.g., gc/(2m) ~ 10 GHz),
and the excited state decay rate (Iy ~ 27t x 5 MHz for Cs). Ide-
ally one would like the interaction strength to be comparable
to trapping energies, while making dissipation much smaller.
To achieve this, one can work within a hyperfine ground-state
manifold, employing an additional state |s) within the mani-
fold as illustrated in Fig. 3.2 (here the states |g) and |s) are rep-
resented by the “spin" states ||),[1), respectively). A classical
control beam Qp facilitates Raman transitions between |g), |s)
via the excited state |e). For a control beam detuning A;, the ex-
cited state |e) can be eliminated [46], resulting in a Hamiltonian
identical in form to Eq. (3.6),

2 Q 2
Hini = e () 3 sty o el o)

but with state |e) replaced with state |s) and the interaction
strength reduced by a factor (Qr, JAL)?.

Using a Raman process also decreases the optimized dis-
sipation rates by the same factor of (Qr/AL)?, such that the
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square root of cooperativity +/C still describes the ratio between
the rates of coherent interactions and dissipation [46]. Thus,
the general strategy to observe coherent spin-motion coupling
is to choose (Q /Ar)? such that the characteristic magnitude
] = (gg /) (Qr/AL)? of the spin-dependent potential becomes
comparable to the energy scale of external trapping, which en-
sures that dissipation is highly suppressed compared to the en-
ergy scales in the ideal Hamiltonian. It should also be noted
that the Raman process enables the Hamiltonian Hin(t) to be-
come time-dependent, if the control field amplitude Qy (t) is
varied in time.

From here we will denote the states |g) and |s) as the “spin"
states [),[1), respectively. We can thus rewrite Eq. (3.8) in the
equivalent but more compact form

Hint = % Z f(xj,x1) (0] oy +h.c), (3-9)
jl

with (x5, x) = e Mal/l cos kx; cos kxi, approximating the Bloch
function associated with the electric field at the atomic position
with a cosine. 0~ = ||) (1| denotes the spin lowering operator
from [1) to |{), and conversely for 0. We will assume that the
atoms are tightly trapped in the transverse direction, such that
the position along x is the only dynamical variable. Note that
absent any motional effects (i.e., if f is constant), Eq. (3.9) corre-
sponds to the “XX” spin model in 1D [155].

3.4 MANY-BODY MODEL OF INTERACTING ATOMS: CLASSI-
CAL MOTION

We propose in this section a realistic experimental setup, which
highlights the interplay of spin and motion, and we investigate
it treating the atomic motion classically. Within this scheme,
illustrated in Fig. 3.3, atoms interact via the Hamiltonian of
Eq. (3.9), and are separately trapped by an external, spin-independent
optical lattice Hyrap = VL Zj sin? kirX; (this could originate from
optical fields in another guided band far from the atomic res-
onance). Peculiarly, this lattice traps atoms at the nodes of the
Bloch function, and thus nominally hides the atoms from the
PCW interaction. Despite not being a fundamental requirement
to see spin-motion coupling, we assume that the trapping wave-
length is such that atoms are localized around even nodes of
the Bloch wave functions, i.e. kyy = k/2 = 7/(2a), where a is
the length of the unit cell of the PCW. It can be readily shown
that within our model, trapping atoms at every site would yield
a phase transition with discontinuous change in the atomic po-
sitions.
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Figure 3.3: Schematic 1D representation of the model, with atoms
(green) trapped in an external potential (blue). The
photonic-crystal mediated interaction is modulated by the
standing wave of the Bloch modes (red), while the external
potential creates trapping sites centred around the nodes.
The arrows represent the displacement from the trapping
sites to a dimerized configuration.

We consider the Hamiltonian in the case of one atom per
trapping site and an external magnetic field that can polarize
the atoms with energy h along z:

H= Htrap + Hmagn + Hint -

V)
= 7]‘ Z sin? k6j/2—|—hZ Gf—i—%z f(x5,%1) (0‘;—0‘1_ +h.c),
j j j#l
(3-10)

where 0; denotes the displacement of atom j from the bottom
of its external well. In the present section we treat the atomic
position classically, while investigating the case of quantum mo-
tion in the next section. We assume that the coupling strength
] is positive. For simplicity, in Eq. (3.10) we also ignore the self-
interaction term (j = 1), which can be compensated by an exter-
nal potential.

To study the many-body ground state of Hamiltonian (3.10)
without any assumption about the spatial configuration is very
difficult. Furthermore, for L/a > 1 the long-range character of
the interaction makes the spin model relatively difficult, even
for fixed positions. As a consequence, we restrict our attention
to the case L ~ a, for which we can make a nearest-neighbor
approximation.

We can get an intuition of the possible ground state config-
uration of a system of many atoms by considering how just
two atoms in neighboring sites interact. If the atoms remain at
the bottom of their trapping wells, the function f(x7,%x;) = 0
as these positions coincide with nodes of the Bloch functions.
However, the PCW interaction energy would become negative,
if the two atoms were to form a triplet state, |T) = ([f) +
141))/V2 (or a singlet for | < 0), and simultaneously displace to-
ward each other to form a spatial dimer. Such a process would
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become energetically favourable overall for a certain ratio of
J/ VL. Motivated by this simple case we make an ansatz that the
spatial configuration of the many-body ground state consists of
dimerized pairs. In particular, we assume that x; = 2ia+ (—1)3,
where 0 represents the displacement from the trap center, as pic-
tured in Fig. 3.3. This is reminiscent of the lattice instability that
creates spatial entangled dimers in the spin-Peierls model [68],
but with the substantial difference that our system becomes
non-interacting in the absence of dimerization (as the atoms
are at the nodes). In the following, we treat 6 as a variational
parameter and proceed to solve the spin ground state exactly.
The nearest-neighbor spin Hamiltonian can be mapped to
a chain of spinless fermions through standard Jordan-Wigner
transformation [156], with the presence/absence of a fermion
on a site corresponding to spin up/down, respectively. Because
of the staggered spatial configuration, it is natural to define a
unit cell j consisting of a pair of dimerized atoms (labelled L,R).
Two different spin couplings Jsw(8) = J sin® k& e~ (24¥20)/L then
characterize the interaction between atoms within the same
dimer, and between consecutive atoms R,L in neighboring dimers,
respectively (see Fig. 3.3). The Hamiltonian then reads

NVL
2

—ZJS (cf jerj +hc) + Jw(d) (cfser i1 +he), (3.11)

H(6) = sin’ kd/2 + 2h(C£’)~CL,j + C}L{’jCRIj —1)

where c (1 g); are fermion annihilation operators for site j. It is
convenient then to introduce the fermionic singlet and triplet
operators s; = (c{ —CR,j) )/v/2 and tj = (CL) +CRrj) )/V/2 in terms
of which (3.11) takes the form

H(8) = E"(8)+2h > ( tTt + s s]—1) Js(3) Z(thtj_SjTSj)
] j

(3)
— ]Wz Z (ththrl - s;[s]-+1 +thsj+1 — szth +h.c).
j
(3.12)

This Hamiltonian can be exactly diagonalized going to Fourier
space, obtaining

H(8) =E"(5) —=Nh+ ) [(Zh—i—eq)df]dq—lr(Zh—eq)uLuq ,
q
(3.13)
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Figure 3.4: (a) Spatial dimerization & (in units of the lattice constant
a), as a function of the interaction strength | and the mag-
netic field energy h (in units of the external trap depth
V1). (b) Triplet fraction of the reduced density matrix for
two atoms within a dimer (Tg, blue solid curve), and con-
secutive atoms in different dimers (T, red dashed), as a
function of dimerization §, at zero magnetic field (h = 0).

with the spectrum given by

1/2
€q(8) = (J%(& + Ji(8) 4+ 2J5(8)Jw(8) cos q)

1/2
=Je 2L sin ks (4 cosh? 28/ + 2(cos q — 1 )) (3.14)

and
1 )
V(eq+aq)2+b3
1
Uy = <—i(eq —aq)tq +bqsq>,(3.16)

\/(eq —aq)? +b(21

with aq = Js(8) + Jw(d) cosq and by = Jw(8) sin g. Since €4 is
positive for every q and | has been assumed to be positive, the
ground state involves only u operators and is equal to

|GS>5=( 11 ug) 0). (3.17)

qleq(8)>2h

By minimizing the ground-state energy with respect to 6 we
find the optimal spatial configuration (within the ansatz). In
Fig. 3.4a we plot the resulting value of & as function of the
interaction strength | and of the magnetic field h (in units of
V1). In the ] — h plane one can clearly distinguish a critical value
of the spin interaction strength, J.it(h), above which a phase
transition occurs from a non-interacting to a dimerized state.
The increase in spin entanglement with dimerization can be
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quantified by taking the two-particle reduced density matrix
p2s of atoms within a dimer, and calculating its overlap with
the triplet state, Ts(8) = (TlpasIT) = (1/N) X; (tt(1 —sls))).
We plot Ts(9) in Fig. 3.4b for zero magnetic field. For & = 0 this
quantity tends to the value in the conventional XX spin model,
Ts(0) = (1/2+1/m)? ~ 0.67, while for large values of & and
small L it tends to 1. Similarly, defining an analogous quantity
Tw () between consecutive atoms in neighboring dimers, we

tind a decrease in correlation with increasing dimerization.

3.5 MANY-BODY MODEL OF INTERACTING ATOMS: QUAN-
TUM MOTION

In the previous section we have introduced an experimental
scheme which produces correlations between the motional and
spin state of the atoms interfaced with the PCW, and we have
studied these correlations treating the positions of the atoms as
classical variables. In this section we consider a quantum de-
scription of both motion and spins for the same model, which
is relevant, e.g., if the motion is initially cooled to its ground
state.

3.5.1 Derivation of the Hamiltonian

As for the classical case, we assume a tight trapping of the
atoms around the minima of the external potential, such that
tunneling of atoms between sites can be neglected. We then pro-
ceed by projecting the Hamiltonian of Eq. (3.10) onto the lowest
two motional bands, and denote by |a); and [b); the associated
Wannier functions localized around site i, as shown in Fig. 3.5.
In particular, the projection of the interaction Hamiltonian onto
the two-band basis is equal to

il ~ ~ o' B’ _
M= 2 Y Ve 66 (oo the), (G.18)
ji#l afa’B’'=a,b

where we have introduced the operators ** = |«) (|, acting
on the motional basis. Because of the periodicity of the system,
the Wannier wavefunction centered on site j, wj «(x), is equal to
Wo,«(x — ;). Thus the matrix elements appearing in Eq. (3.18)
can be written as

Vgcl[sou(s/ = JdXdX/ sin kx sin kx’ e*‘Xj*Xer’\/L %
X Wa(x)wp (Jwar (X Iwps(x), (3.19)

with the site dependence now only appearing in the exponen-
tial.
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i-1 i i+1

Figure 3.5: Representation of the truncated basis states for few sites.
The blue arrow indicates the spin, while the two levels
the motional states |a) and [b), separated by an energy
difference 2A.

To simplify further the matrix elements we can use the ini-
tial assumption that the functions are tightly confined around
the lattice sites and that the overlap between functions at dif-
ferent sites is negligible. Indeed, |x —x’| < L in the region over
which the wavefunctions will have appreciable weight, motivat-
ing an expansion of the coefficients in powers of 1/L. As in the
previous section we will assume that L ~ a, such that we can
make the nearest-neighbor approximation for interactions. By
exploiting the parity of the functions w, and wy and the sine
function, we readily obtain that the zero order expansion of the
exponential gives the interaction Hamiltonian

0 o _
Hi(nz = 2g Z Gt (O';_O']-_H +h.c.), (3.20)
j

while the term coming from the first order expansion gives

1) Na +Mb [~ N
HOL = ~2920/0) 3 {™ 50 o )
j

+ ﬂbznoﬂa (65651 — 554 6)~Z+1)} (0j 05,4 +he). (3:21)
In these expressions we have introduced a set of pseudo-spin
operators on each site, 6]? = |bj) (bj| —laj) (qjl, etc., to repre-
sent the motional degree of freedom, and we have defined the
scaled coupling constant g = ]e_za/ L né /2 and the factors ng =
| dx sinkox wq(x)wp(x) and ngp = (1/2a) [ dx xsin koxwfl’b(x),
whose values depend on the details of the trapping. For con-
creteness, in the following we take L = 2a and the ratio be-
tween the trapping lattice depth Vi, and the recoil energy Eg to
be 20, for which numerical evaluation of the Wannier functions

yields g ~ 0.54, nq ~ 0.06 and 1y, ~ 0.16.
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Eq. (3.20) has largest expectation value when atoms sit in an
equal superposition of states |a) and [b) such that 6* = +1
(i.e., the wave-function is maximally displaced from the cen-
ter), which reflects that the atoms are trapped at nodes of the
PCW. At lowest order in 1/L, that is, ignoring the exponential
in Eq. (3.8) completely, the atoms clearly have no sense of rel-
ative spacing, and thus Eq. (3.20) is equally maximized when
each atom moves in any direction away from the node. The first
order correction in 1/L, given by Eq. (3.21) is then responsible
for spatial dimerization. Adding to the interaction Hamiltonian
terms for the energy arising from the band and from the exter-
nal magnetic field, we get the equivalent of Hamiltonian (3.10)
for quantized motion

- X~ a ~ ~
H= ZAG)?%—thZ—l—Zg {G}‘G}‘H oo {(na—l—nb)( F—07)
j

+ (Mo —Ma) (8654 — 6]-26;‘“)] } (6;0;1 +h.c). (3.22)

This represents the minimal model in which spin and motion
can couple, since superpositions of states |a) and |b) yield spa-
tial wave-functions that are displaced from the site centers, but
at the same time constitutes an extreme case of spin-orbit cou-
pled systems, as neither an orbital kinetic energy nor a motion-
independent spin interaction appear. While in the following we
present results for this specific Hamiltonian, we have also per-
formed calculations involving a third band to verify that the
conclusions made from the two-band approximation do not
qualitatively change.

3.5.2 Phase diagram

We study here the phase diagram of Hamiltonian (3.22) in the
g — h plane by means of a finite-size density matrix renormal-
ization group (DMRG) algorithm [131] (see Appendix A.2). The
resulting phase diagram for 0 < g, h < 2A is shown in Fig. 3.6
for N = 62 atoms, where we can clearly distinguish at least six
phases. First, for sufficiently large magnetic fields h > hqsit(g),
with hit(0) = 0, the spins are fully polarized and thus the spin-
motion coupling has no effect. The many-body state is thus sep-
arable, with each atom residing in the lowest motional band,
) =la, ¢>®N (“P” phase in Fig. 3.6).

Along the g-axis up to guit we have a Néel ordered phase
“N”, where the magnetization per atom M. = 1/(2N) 3 ; (o})
is zero and the Néel order parameter ® = (1/N) Zj(—1 )} <O'>jz
has a finite value, as shown in Fig. 3.7. This phase also extends
to finite values of h with a lobe-like shape. The existence of
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Figure 3.6: Ground state phase diagram obtained studying a system
of 62 atoms with open boundary conditions with a DMRG
algorithm. We identify unambiguously five phases: a para-
magnetic phase (P), a Néel ordered phase (N), a dimerized
phase of triplets (D), a spin-motion fluid phase (SMF) and
a phase of trimers (T). There is an additional phase corre-
sponding to a charge density wave with quasi-long-range
order, labeled as SMF(CDW), and whose boundary with a
set of still unknown phases U is not well understood. The
continuous line is the border of the paramagnetic phase
obtained analytically in the weak coupling regime (see
text), the dashed line corresponds to h = —A 4 2g. The
10 red stars indicate parameters (g, h) where the correla-
tions in Fig. 3.10c are evaluated.

this phase can be predicted analytically in the weak coupling
regime, i.e. for g/2A small, such that the high-energy excitations
associated with populating the upper band can be effectively
integrated out. In particular, through a Schrieffer-Wolff trans-
formation [157] on Eq. (3.22) one obtains the following effective
Hamiltonian acting only on the spin degrees of freedom:

Heftwe = —NA+ Y hof+]p (of0f,; —1)
j
+2J> (G;__1 0y + 05, O‘;:H). (3.23)

Here J1 = g*(1+4x%)/24, ], = g**/A and X = mq/MoL).
Hamiltonian (3.23) describes a nearest neighbor anti-ferromagnetic
(AF) Ising model with an additional XX term coupling next-
nearest neighbors, with all such terms mediated by virtual phonons.
For example, the spin-motion term in Eq. (3.22) proportional
to 6107, enables a fluctuation where two consecutive atoms,
anti-aligned in their spins, jump to the higher band and ex-
change their spins, before returning to the original state (see
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Figure 3.7: Surface plot of the magnetization per atom M., with the
phases of Fig. 3.6 indicated. Inset: contour plot of the order
parameters |®| and |D| in a unique color scale.

Fig. 3.8a). This process results in a lower energy for the anti-
aligned configuration and produces the longitudinal (ofo} ; —
1) term in (3.23). For zero magnetic field, given that J; > ],
the ground state exhibits AF ordering along z (® ~ 1). On
the other hand, for h > hsjt(g) all spins are in state [|). In-
tuitively, one can expect that the transition from Néel order-
ing to polarized occurs with all [|) spins in the Néel phase
remaining fixed (subchain “A”), while the [) spins (subchain
“B”) “melt” and then re-configure pointing downward. One
can thus make an ansatz where subchain A acts as an effective
magnetic field for B. Thus, subchain B satisfies an XX model
with H§™ = 3. (h—2J1)0? + 2], (05707, + 0 0f,), which
has two phase transitions to polarized phases (for subchain B)
at h = 2(J; £ J). It follows that for h < 2(J; —J2) the total sys-
tem (A and B) is in the Néel phase, while for h > 2(]; + J2)
it is in the P phase, as illustrated in Fig. 3.8b . In between the
two phases the subchain melts under the effective XX model.
Since J; <« Jj, in the g — h plane this transition region is too
narrow to quantitatively match the DMRG results to the XX
model predictions, although the effective theory gives correctly
the boundary between N and P at hgit(g) ~ g?/A for g < A
(solid line in Fig. 3.6).

The Néel order extends to values of g/A = 1 where the low-
energy description of (3.23) is no longer accurate, and decreases
discontinuously to zero with the onset of a new phase of dimer-
ized triplets (labelled “D” in Fig. 3.6). This phase is character-
ized by zero magnetization and a non-zero spin triplet dimer
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Figure 3.8: (a) The virtual process (for g < A) of two atoms exchang-
ing the spin excitation by jumping to the motional state |b)
and returning to the original state, which gives rise to the
effective Ising interaction term of Hamiltonian (3.23). (b)
Schematic representation of the ground state spin configu-
ration in the weak coupling regime. For h < 2(J1 —J2) the
system is in a Néel ordered phase, while for h > 2(]J1+]2)
the spin are all aligned (paramagnetic phase). For interme-
diate values of h subchains A (in red in the figure) remains

completely polarized, while subchain B “melts" under an
effective XX model.

order parameter, defined as Dt = (1/N) Zj(—ﬂj (Tlpj411T)
with |T) being the spin triplet state and p;;,; the two-site spin
reduced density matrix (Fig. 3.7). It also has a non-zero spatial
dimer order parameter, defined as Dy = (1/N) Zj(—Uj <c~r§‘>.
The entangled dimerized structure is evident in Fig. 3.9a, where
we plot the triplet fraction in the two-particle density matrix,
(Tl pjj+1T) and the displacement (6}) in a part of the chain for
(g,h) = (1.7,0.2)A. Also, we can observe that | <6]?‘> | ~ 1. Thus,
the two-band approximation for the atomic motion is techni-
cally violated since the displacement from the trap center is sat-
urated. However, calculations involving a third motional band,
which allows for a greater maximum displacement of atoms,
exhibit a slower onset of saturation with increasing g but no
appearance of new phases (at least within the range of param-
eters considered). Together, this suggests that an exact calcu-
lation involving all bands, although directly unfeasible, would
produce a result similar to the previously discussed case of clas-
sical motion, with a steadily increasing degree of dimerization
and triplet fraction with increasing g.

For simultaneously large values of g and h, there is a spin-
motion fluid phase (“SMF”) where the system is gapless and
the magnetic field strongly polarizes the spins, such that M, is
close to -1/2. This phase corresponds with good approximation
to the ground state of the XX Hamiltonian H* = }";(A+h)tf +

Zg(T;LTi_H +h.c.). Here 17 is the Pauli matrix with eigenstates
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Figure 3.9: (a) Spin triplet fraction (T|pi,i+1|T) (red dashed line with
dots between i and i+ 1) and displacement (&) (black
solid line) of the ground state for (g,h) = (1.7,0.2)A,
belonging to the dimerized (“D”) phase. Only atoms 24-
36 are shown for clarity. (b) (07) (black solid line), (6%)
(red dashed line) along the chain for the ground state
at (g,h) = (1.18,1.4)A belonging to the spin-motion
fluid (“SMF”) phase. The state contains 4 atoms flipped
to [1) along the direction of the magnetic field. The blue
dotted line is (%) on the ground state of H*. (c) Magne-
tization curve for g = 1.6A as a function of h. The red
dashed line is the magnetization predicted by H* for the
SMF phase.

1) = la,l) and |ft) = |b,?1), while T are associated raising
and lowering operators. Thus, this phase corresponds to a di-
lute fluid of composite flips of spin and motion. The existence of
this phase can be understood by noting that for large magnetic
tield, the system is only dilutely populated by spins pointing
up. Thus the terms in Eq. (3.22) proportional to n,p that are
responsible for dimerization can be neglected. The structure of
the remaining Hamiltonian connects naturally the states [{}) di-
rectly to [{}), in the form of HT. The locking between spin and
motional correlations can be observed in Fig. 3.9b, where the ex-
pectations values of o7 and 67 obtained with DMRG are plotted
for a representative point in the phase. The oscillations of (o%)
and (&7) are due to the open boundary conditions in a finite
system and are observable also in a pure XX model. In Fig. 3.9c
the magnetization curve predicted by H' is compared with the
numerical result from the DMRG study of the full Hamiltonian
for g = 1.6A, showing good agreement, while in Fig. 3.6 the
predicted boundary with the “P” phase hqit(g) = —A +2g is
represented by a dashed line.
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Figure 3.10: (a) Correlation functions C5 = (X{"X;") — (X{") (X;") with
X equal to T (black solid line), & (red dashed line) and
o (blue dotted line) at (g,h) = (1.74,1.38)A, in the
SME(CDW) region of the phase diagram. The value of
i1 = 29 is taken fixed in the bulk of the chain and j is
ranging from 30 to 44. Inset: |Cjj| plotted on a log-log
scale (black curve), as is the best fit to a Luttinger liquid
power-law decay for the points [i —j| > 4 (red dashed
line). (b) As in (a) but for the density correlation func-
tions (X{XF) — (X§) (X7). (c) In blue: value of the fitted
Luttinger parameter K as a function of the magnetiza-
tion, obtained by fitting the long-range part of the Cjj
correlation function for the (g, h) values marked by stars
in Fig. 3.6b. In red: sum of the squares of the residuals
& of the fit. (d) (07) (black solid line), (67) (red dashed
line) and (0}) (blue dotted line) along the chain for the
ground state at (g,h) = (1.7,1.1)A, where the ground
state belongs to the trimer (“T”) phase.

For —1/4 < M, < 0, H" no longer serves as a good de-
scription for the ground state. Most of this region consists of
a set of phases “U" whose origin is not completely understood
yet. However, for strong interactions g/A 2 1, the system qual-
itatively appears to behave as an interacting Luttinger liquid
for the T particles. Numerical evidence is shown in Fig. 3.10a,
where the two-point correlation functions Cé = (X{X)) — (X7 (X))
are plotted for various X = 1,0, 5, for a representative set of
values (g, h) = (1.74,1.38)A. In particular, if T behaves as a Lut-
tinger liquid, then the long-range decay of interactions is pre-
dicted to have a power law form of CiTj ~ (=)= — 7 1/2K [158].
The inset of Fig. 3.10a plots the absolute value |Cj| on a log-log
scale, which confirms an approximate power law decay. On the
other hand, correlations of the other degrees of freedom exhibit
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more erratic behavior. Similar observations hold for the density
correlation functions (Fig. 3.10b). We fit the Luttinger parame-
ter K [158] from the numerical data, taking the ten (g, h) values
indicated by red stars in Fig. 3.6b across the SMF to U boundary.
These fits are performed on the points [i —j| > 4 of ij, in order
to reduce the influence of short-range corrections, which exist
even for an ideal Luttinger liquid [158]. The inset of Fig. 3.10a
shows the best fit (red dashed line) for (g,h) = (1.74,1.38)A,
while the fitted values of K for all ten chosen (g, h) points are
plotted in Fig. 3.10c. We have also simultaneously plotted &, the
sum of the squares of the residuals between the best linear fit
on a log-log scale and the numerical data. We note that while
the choice of region of exclusion of [i —j| < 4 in taking the fit
is somewhat arbitrary, modifying this region (or excluding no
points at all) does not change the qualitative conclusions. The
decrease below K = 1 is indicative of the formation of a charge
density wave phase with quasi-long-range order, i.e. algebraic
decay of the correlation functions. We thus denote this part of
the phase diagram as SMF(CDW). The precise boundary of this
phase and the nature of the transition to neighboring phases is
still not completely understood.

Approaching M, — —1/6 we notice that not only the fitted
value of K tends to zero but also the quality of the fit decreases
rapidly, as indicated by the increase in the residual error &. This
indicates a change of the decay of the correlation function from
polynomial to exponential. This is in agreement with the fact
that the decrease in K is also known to facilitate the possibil-
ity of phases with spontaneously broken symmetry, which is
observed in our system as well. At M, = —1/6 (one third of
the maximum magnetization), we observe indeed the presence
of a plateau in the magnetization curve (Figs. 3.7 and 3.9c), for
values of g sufficiently large. In this region the ground state as-
sumes a trimerized configuration, as shown in Fig. 3.10d, where
(0%),(6%) and the displacement (6}) are plotted. While we are
not able to predict the appearance of such a plateau in our
model from first principles, we note that all of its features are
consistent with the conditions of Ref. [159]. In particular, our
Hamiltonian allows for a gapped phase with spontaneously
broken symmetry in the ground state with spatial periodicity
n = 3, provided that the quantization condition n(S —M,) = in-
teger is satisfied (here S = 1/2 is the total spin). Such a gapped
phase should be accompanied by a magnetization plateau.
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3.6 CONCLUSIONS

The platform of cold atoms coupled to photonic crystals offers
fascinating opportunities to create quantum materials in which
spin and motion interact strongly with one another. We have
analysed in detail the ground state properties of one experi-
mentally feasible setup, but there exist many exciting avenues
for future research. The field of interfacing atoms and photonic
crystals is still new and rapidly developing, which makes it dif-
ficult to say precisely how the ground state or nearby states can
be probed and prepared, but we briefly describe some of the
possibilities here. First, it has already been demonstrated that
tightly focused optical tweezers can be used to controllably po-
sition single atoms nearby nanophotonic structures and couple
the atom to the optical mode [154]. Separately, there have been
spectacular experiments to create arrays of up to ~ 102 atoms
in individual optical tweezers [84, 85, 160], and demonstrated
capabilities in such systems for motional ground-state cooling
and spin readout [160]. An optical tweezer array applied to
nanophotonic systems could then be a promising route toward
both deterministic positioning of atoms and single-site resolu-
tion. Absent single-site measurements, there are a number of
global measurements that could be applied to yield signatures
of the various phases. For example, it has also been theoreti-
cally and experimentally shown [62, 88, 121, 122] that different
atomic spatial patterns can give rise to very different global
reflection and transmission spectra for a weak guided probe
field. Similar to free space, a guided mode could also be used
to efficiently read out global spin properties [17]. In terms of
preparation of the ground state, one likely possibility would
be through adiabatic evolution (given that the atomic “spin"
states are internal states that do not readily thermalize). Here,
the atoms would be initially optically pumped to a separable
state (such as |$>®N), which corresponds to the ground state of
a single-particle Hamiltonian Hs. The system could then adia-
batically evolve through a Hamiltonian H(t) = Hs(t) + Hint(t),
where the single-particle Hamiltonian is gradually turned off
while the PCW interactions are turned on. Understanding the fi-
delity of this process requires a more thorough investigation of
the excitation spectrum, which itself should exhibit non-trivial
properties, including the possibility of signatures of fractional
spin [161].

The strong coupling between spin and motion more broadly
invites a number of other intriguing questions. For example,
it would be interesting to understand the transport properties
when spin and motion strongly hybridize. Moreover, it would
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be highly interesting to consider models without an external
lattice potential, and investigate whether the spin interaction
alone can produce full spin-entangled crystallization. One might
also consider models where the spin part of the interaction al-
ready exhibits non-trivial character, such as frustration or topol-
ogy. Finally, in terms of applications, it would be interesting
to explore whether specially engineered spin-motion Hamilto-
nians can give rise to useful many-body spin states (such as
squeezed states for metrology), when the spin interaction alone
is incapable of producing such states.

89






SECOND-ORDER QUANTUM NONLINEAR
OPTICAL PROCESSES IN GRAPHENE
NANOSTRUCTURES AND ARRAYS

4.1 INTRODUCTION

In Section 1.1 and 1.2 we have reviewed the main approaches
to obtain optical nonlinearities at the level of single photons
by exploiting the nonlinearity of the individual atom. The use
of bulk materials for the same task is typically prevented by
the extremely low nonlinear coefficients of conventional non-
linear crystals. An open question is if recently discovered low-
dimensional materials such as graphene can instead provide a
useful platform for quantum nonlinear optics.

In this chapter, we show that graphene is a promising second-
order nonlinear material at the single-photon level due to its
extraordinary electronic and optical properties [72]. This ap-
proach makes use of the fact that a conductor enables a non-
linear optical interaction that is spatially nonlocal over a dis-
tance comparable to the inverse of the Fermi momentum kg. In
graphene, this length can be electrostatically tuned to be sig-
nificantly larger than in typical conductors. At the same time,
graphene can support tightly confined surface plasmons (SPs)
—combined excitations of electromagnetic field and charge den-
sity waves— whose wavelength is reduced well below the free-
space diffraction limit [73] and whose momentum ¢, is conse-
quently enlarged. We show that the ability to achieve ratios
qp/kr approaching unity enables giant second-order interac-
tions between graphene plasmons.

We first study the implications of such nonlinearities in a
finite-size nanostructure, obtaining a general scaling law for
the nonlinearity as a function of the linear dimension of the
structure and the doping. To give an explicit example, we com-
pute numerically the nonlinearities associated with a structure
designed to support plasmon resonances at frequencies wy and
2wy, which enables second harmonic generation (SHG) or down
conversion (DC). Under realistic conditions, we find that the
rate of internal conversion between a single quantized plasmon
in the upper mode and two in the lower mode can be roughly
1% of the bare frequency, indicating a remarkable interaction
strength.
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It is not straightforward to directly observe plasmons, and
instead they are typically excited and coupled out to propa-
gating photons with low efficiencies. Thus, we then investigate
how the extremely strong internal nonlinearities can manifest
themselves given free-space input and output fields. First, we
show that the collectively enhanced coupling of an array of
nanostructures to free-space fields enables an extremely low-
intensity input beam to be converted to an outgoing beam at
the second harmonic, via interaction with plasmons. Next, we
derive an important fundamental result, that while such an ar-
ray can collectively increase the linear coupling between free
tields and plasmons, it ultimately dilutes the effect that the in-
trinsic nonlinearities of plasmons can have on these free fields.
Motivated by this, we finally argue that it is crucial to develop
techniques to couple efficiently to single nanostructures. We
show that efficient coupling would enable SHG or DC with
inputs at the single-photon level, and predict a set of experi-
mental signatures in the output fields that would verify that
strong quantum nonlinear interactions are occurring between
graphene plasmons.

4.2 SECOND-ORDER NONLINEAR CONDUCTIVITY OF GRAPHENE

Graphene has attracted tremendous interest due to its ability
to support tightly confined, electrostatically tunable SPs [73-77,
162-164]. More recently, the nonlinear properties have gained
attention [165-169]. For example, four-wave mixing produced
by single-pass transmission through a single graphene layer has
been observed [166], while a second-order response at oblique
incidence angles has been predicted [167], and intrinsic second-
order nonlinearities have been used to excite graphene plas-
mons from free-space beams via difference frequency genera-
tion [168]. It has also been proposed that graphene nanostruc-
tures could enable quantum third-order nonlinearities [169].

We use a unified approach to determine the linear and non-
linear properties within the single-band approximation based
upon the semi-classical Boltzmann transport equation [165, 169—
171]. This approach is semi-classical in the sense that the quantum-
mechanical band dispersion relation of the carriers is included
in the theory, but the position and momentum of the carriers
obey classical equations of motion. In particular, within this
theory the carriers are described by means of a distribution
function fy (r, t), which is defined so that

dN = fy(r, t) d®k d*r (4.1)

is the number of carriers with positions lying within a sur-
face element d?r about r and momenta lying within a momen-
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tum space element d’k about k, at time t. The position and
momentum k and r obey the classical equations of motion:
i = vi = (1/h)de,/0k, and hk = —eE. ¢y is the dispersion re-
lation of graphene, and since we are interested in energy scales
< 1eV, we linearize it around the Dirac points, i.e. e = thvglk|,
where +(-) denotes doping to positive (negative) Fermi energies
Er. The single-band approximation, and thus most of the re-
sults presented here, holds provided that the optical frequency
is less than ~ 2Ef, such that absorption arising from interband
electron-hole transitions is suppressed [162]. When collisions
between the carriers are neglected, the conservation equation
for the carrier distribution function fy(r, t) is

d 0 .

afk(l‘,t) = afk(r/t) +1- Vifie(r, t) + k- Vifi(r, t) = 0. (4.2)
Inserting in Eq. (4.2) the equations of motion for r and momen-
tum k, we obtain the Boltzmann equation, which describes the
dynamics of the distribution function,

%fk(r,t) £vek - Vifi(nt) = B Y- Vidi(nt),  (43)
where here E is the sum of the external field E®* and the in-
duced field E"? generated by the carrier distribution.

The macroscopic quantities such as the density of charge and
the surface current can be related to the microscopic dynamics
of the carriers. For instance, the surface current depends on the
microscopic carrier velocities as

d2

J(r,t) = —egugs J Sfiln ), (4.4)

where gs = gy =2 are the spin and valley degeneracies of graphene.

The set of Egs. (4.3) and (4.4) is nonlinear, since the electric
tield on the right-hand side of Eq. (4.3) depends on the carrier
distribution. The strategy we adopt to solve the nonlinear sys-
tem is to solve perturbatively Eq. (4.3) and then use Eq. (4.4)
to get the relation between the surface current and the electric
tield (i.e. the conductivity) at the different orders. In particular,
in Fourier space Eq. (4.3) can be written as

1 2 00
fk(q,w) _ 1e J (d P J d—VE(q—p,w—v) ) ’c)fk(p,v).

ok
(4.5)

h(w Fvrk-q) ) (2m)? ) o 27

At lowest order, one assumes that fy is slightly displaced from
its equilibrium (zero temperature) Fermi distribution, fl((o) (r,t) =
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O(kg — k). Thus, one can substitute fi(o) into the r.h.s. term of

equation (4.5), obtaining the first order contribution to f:

B ieR-E(q,w)
(w Fvrk - q)

5(k — k). (4.6)

Inserting Eq. (4.6) yields a linear relationship between the cur-
rent and the electric field Ji(q, w) = 0‘8 )(q, w) Ej(q, w), where

~——0(k—kg). (4.7)

B iezgvgstJ d’k kik;
(27)2 K2 (w Fvek - q)

(1)
off (g w) = =2

In the long-wavelength limit (vpq/w < 1) one can expand the
denominator in q to the zero order obtaining the well-known
(local) linear Drude conductivity [74, 75]

: 2
(1) _ e |Eg|
o' (w) P

(4.8)

Before calculating the second order conductivity we observe
that graphene is a centro-symmetric material, which is typically
associated with a vanishing second-order nonlinearity [1]. In-
deed, if the nonlinear response is spatially local, J?)(2w,r) =
o @ (w)E(w,1)?, spatial inversion symmetry implies that —] =
o2 (—E)?, which enforces that 0¥} = 0. This argument breaks
down if the conductivity is nonlocal [172], for example if o(w, q)
q, such that the current depends on the electric field gradient,
J@) = 6@ (w)EE.

In principle, nonlocal effects are present in any material. For
a given electric field strength, the size of this nonlinear effect
depends on a dimensionless parameter k/ky [173]. Here k is
the wavevector of the light that dictates how rapidly the field
changes in space, and k;ﬂ is a characteristic length scale over
which carriers in the material become sensitive to field gradi-
ents. In materials where the charges are tightly bound to their
atoms, the relevant length scale k;l] is given by the atomic size
of Angstroms, which is thus negligible compared to optical
wavelengths. In conducting materials, the length scale is set by
the typical distance between carriers, which is proportional to
the inverse of the Fermi wavevector. In a typical metal like sil-
ver, the high carrier density also yields a negligible length scale
of k;f ~ k1?1 ~ 1 Angstrom. In contrast, in graphene we can si-
multaneously exploit two effects to increase significantly k/k;.
First, graphene can be electrostatically tuned to have very low
carrier densities to increase ky 1. Second, one can use tightly
confined plasmon excitations in graphene, which have been
shown to yield a reduction in the wavelength (or equivalently
enhancement in wavevector qp) compared to free-space light by
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two orders of magnitude. Indeed, below we show specifically
that k/ky ~ qp/kp < 1 emerges as the relevant quantity to char-

acterize the strength of nonlocal nonlinearities in graphene.
After these considerations, we calculate the second-order con-
ductivity using the same procedure adopted for the calculation
of the linear conductivity. In particular we first insert f! into
the r.h.s. of (4.5) to obtain f(?), and then use the result in Eq. (4.4)
to obtain the second-order conductivity. As with the linear con-
ductivity we expand it in powers of p, in order to have an an-
alytical expression in the long-wavelength limit. As expected,
the zeroth-order term, which corresponds to the local contribu-
tion, vanishes, while the term linear in q, provides a relation
(in real space) between the electric fields at frequency w, and
an induced current density at frequency 2wy
Iipr = oV (2wp) EYP 4 ngzlll(pr; wp) E

1

w w

j pvkEl p' (49)
Here ijkl denote in-plane vector indices and summation over
repeated indices is implied. The nonlocal second order conduc-
tivity tensor reads

ie gv 95"12:

@ 19
327th2w%

Gi]kl(pr; (,Up) = (56@'5]{1 — 35“{5)'1 + 6115]']() . (4.10)
This result can be converted into a relation between the electro-
static potential and the induced charge, which reproduces pre-
viously obtained results for the nonlinear polarizability [167].

4.3 QUANTUM MODEL OF INTERACTING GRAPHENE PLAS-
MONS

The Drude conductivity for infinite graphene given by equa-
tion (4.8) provides a valid description of the carrier dynamics
of graphene when hw < Ep [74, 75], where the interband tran-
sitions can be neglected. Like any conductor in contact with a
dielectric (or vacuum, as we assume here), graphene supports
SPs with a dispersion relation given by
P 2« i, (4.11)
dp hwp
where qo = w/c is the free-space wavevector at the same fre-
quency and « =~ 1/137 is the fine structure constant. As Ep 2
huwyp, equation (4.11) indicates a reduction in the plasmon wave-
length compared to free space by up to two orders of magni-
tude, which should significantly drive up the effects of spatially
nonlocal interactions.
We have seen that at fixed field strength, the nonlinear in-
teractions between plasmons in graphene should be increased
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due to a large ratio of qp/kr. However, what is most impor-
tant for nonlinear optics is how to maximize the interaction
strength per photon (i.e. per quantized plasmon). A simple ar-
gument, made more precise below, is that because the energy
of a single plasmon is fixed at hwyp, confining it to as small
volumes V as possible maximizes its intensity or electric field,
Eo ~ /hwp/epV. This motivates the study of nonlinear optical
interactions between plasmons in nano-structures, which we
now present in detail. As a specific example, we will focus on
nanostructures that have plasmon resonances at frequencies wy
and 2wp. This particular choice of structure is to facilitate DC
or SHG.

The derivation of the quantum Hamiltonian of the system
starts from the expression of the electrostatic energy (a valid
approach provided that the linear dimension of the structure
D is small compared to the free-space wavelength Ay so that
retardation effects can be neglected)

H:%Jd%@%wmeﬂ+&%ﬁﬂ&%u» (4.12)
S

where p is the charge density and ¢ the electrostatic potential.
The charge density can be replaced by the current density using
the continuity equation. The potential can be expressed as well
in terms of the electric field, obtaining

1

H=—
lep

PWWMM%H %ﬁﬂﬁmmm
S S

i i

4iwp
(4.13)

After expressing the current at frequency wy, in terms of the
electric field, we impose the quantization condition to the first
mode:

oM (w
ﬁpp) L d’r IF_;UP(I')I2 = hwp ala, (4.14)
which can be enforced with the substitution Eiw Pr) — Eiw Pr)a=
ESU P f;” P(r) a. Here, f*?(r) is a vectorial function which describes
the geometry of the mode and normalized such that max [f*? (r)| =
1,E," = (hwpqp/eoS u)]/ ? is the maximum single-photon elec-
tric field amplitude, and p = S;Uff /S, with S;L;f =[5 d?r If?)p(r)l2
being the ratio between the effective mode area and the phys-
ical area of the structure. Similarly we can use the result of
the previous section to express the current at frequency 2wy, in
terms of the electric field and quantize the second mode.

We obtain in this way the quantum Hamiltonian of the struc-
ture

H = h(wp—ile/2) ala+h(2wp —il,/2) bib+ hg (bTa2 + h.c.) )
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(4.15)

where a and b are the annihilation operators of the two SP
modes, and g is an oscillation rate between a single plasmon
with frequency 2w, and two plasmons with frequency wy, [174].
Adopting a quantum jump approach we have added to the
frequencies an imaginary part accounting for the total decay
rates 'y and I}, of the two modes. The quantization associates
with a single plasmon a typical electric field amplitude Egvp ~

(hwpap/ eOS)]/ 2 where § is the structure area, confirming the
large per-plasmon field associated with tight confinement.

The quantum coupling constant g is rigorously given by the
classical interaction energy between the nonlinear current at
2wp and the fields at wp, but with the classical field values
replaced by the per-photon field strengths E“t(r)

1 2) 5 =2w
hg = Ve Gijkl(pr; wp) L drE; "

(0EF (1) Vi P (x).

(4.16)

Eq. (4.16) shows that g is directly proportional to the second-

order conductivity Gi(jzﬁl calculated in the previous section, and
its dependence on the particular geometric configuration of the
modes is confined to the overlap integral [175]. It should be
noted that for extended graphene, the mode functions are sim-
ply propagating plane waves E(r) ~ e*?. Thus the integral in
Eq. (4.16) produces a delta function, g o< 8(2k; — k), which re-
flects momentum conservation. In contrast, in small structures
the spatially complex modes can be thought of as a superpo-
sition of many different wavevectors, and a large interaction
strength is ensured by engineering the modes such that they
have good spatial overlap [176].

Using the fact that E, " ~ (hwpqp/€0S) "2 that the nonlinear
conductivity has an amplitude ¢/?) ~ e3vZ/h?w3, and that the

field gradients occur over a length scale q, 1, one can readily
verify that equation (4.16) predicts a general scaling of g/wp =

B/(kgD)”/4. The dimensionless coefficient of proportionality, which

we call 3, depends only on the geometric overlap of the modes
(e.g., B = 0 if the modes have the wrong symmetries, or 3 ~ 1
for modes with good overlap). As the minimum dimension of
the structure should be comparable to the plasmon wavelength,
D ~ 1/qp, the maximum ratio of g/wy scales like (qp/kp)7/4,
confirming the enhanced nonlinearities as q, become compara-
ble to k. Note that this relation is valid only for qp < kg, where
the conductivity of graphene is Drude-like, as discussed above.
In this derivation, we have assumed that a finite-size structure
has the same conductivity as infinite graphene. Although this is
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Figure 4.1: Plasmon modes in the graphene triangular nanoisland. (a),
(b) Induced electric field distribution associated with the
first (a) and second (b) harmonic modes, respectively. The
graphene structure consists of an isosceles triangle with
side lengths D = 22nm and d = 16.9nm, and a doping
level Eg = 0.2eV with an intrinsic decay rate hl' = 3 meV
(decay time ~ 220 fs). (c) Extinction cross section normal-
ized to the area (S = 169.6nm?) of the triangles depicted
in panels (a) and (b) with a strong fundamental dipolar
mode and a secondary weaker dipolar mode.
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not true for arbitrarily small structures, where quantum finite-
size effects play a significant role, this approximation is already
qualitatively correct for structures with D 2 10nm [177].

To show that a high overlap factor of 3 ~ 1 can be reached in
typical structures, we consider one specific example of a doped
graphene isosceles triangle embedded in vacuum. This choice
enables a simple optimization to obtain the desired ratio of 2
between the SP mode frequencies. Indeed, we find that an as-
pect ratio r = 1.3 produces plasmons at frequencies wp, and 2wy,
(see Fig. 4.1). The modes shown in Fig. 4.1 are numerically com-
puted using a commercial finite-difference code (COMSOL®)
by driving the system with a plane wave whose associated ex-
ternal field E®! is polarized along the axis of symmetry of the
triangle. We model the structure as a thin slab with rounded
edges and a dielectric function € = 1+ 4ino!" /wt. The thick-
ness t is chosen to be t = 0.5 nm (this value is sufficiently small
that the in-plane current has converged, and the results do not
depend on the specific value), and the expression of o!!) is
given by the equation (4.8). Since the characteristic length of
the structure is much smaller than the free-space wavelength,
the response can be determined electrostatically, where the re-
tardation and the response to the magnetic field are neglected.
Furthermore, the ratio 1:2 between the first and second plas-
mon resonances is preserved independently of the actual size
of the triangle and the doping [178]. While the remaining pa-
rameters are somewhat arbitrary, as a numerical example, we
consider the realistically achievable length and doping level
of D = 22nm and Eg = 0.2€V. For this choice, we observe
a pronounced first harmonic mode (Fig. 4.1a,c) with energy
hwp =~ 0.20€V, and a second harmonic resonance (Fig. 4.1b,c)
twice as energetic. Once we obtain the mode profiles, their
nonlinear coupling is evaluated using the equations (4.10) and
(4.16). Numerical calculations for this structure yield a value
of B = 0.34, hence the quantum oscillation rate g reaches a
remarkable 1.25% value of the dipolar frequency wp.

Surface plasmons in realistic graphene structures generally
decay by non-radiative mechanisms, whose precise nature is
still under active investigation [77, 179, 180]. We thus use a phe-
nomenological description associating an intrinsic decay rate I'’
to the modes. For our numerical calculations we will assume a
mode quality factor of Q = wy /T, where I' is the total decay rate
defined below, ranging from some tens to one hundred, close to
what has been experimentally observed in nanostructures [77],
although in our analytical results we will explicit keep track of
the scaling with T".

99



100

SECOND-ORDER QUANTUM OPTICAL PROCESSES WITH GRAPHENE

In addition to intrinsic decay channels, graphene SPs can also
be excited and detected through desirable channels, i.e. via ra-
diative decay. We will use the notation kq} to indicate such
decay rates. The total decay rate introduced in Hamiltonian
(4.15) is thus Tqp = Fc’l,b + Kqp. We will also introduce the no-
tation 14 to indicate the external coupling efficiencies of the
modes, defined as kq /. For example, in our structure, the
first and second harmonic modes radiate into free space at rates
Kqg ~ 2 X 10_7wp and Kk, ~ 5.4 x 10_8wp, as numerically cal-
culated through the extinction cross sections of the incident
tield. The external coupling efficiency can be increased by using
more sophisticated techniques, such as SNOM [76] or graphene
nanoribbons [169].

4.4 OBSERVING AND UTILIZING THIS NONLINEARITY: CLAS-
SICAL LIGHT

The rate of oscillation or internal conversion between a single
quantized plasmon and two lower-frequency plasmons is re-
markable, particularly considering that the state-of-the-art down-
conversion efficiency in conventional nonlinear crystals is ~
1078 [78, 181]. It should be pointed out that the internal con-
version rate holds independently of how the plasmons are gen-
erated. Of course, for both practical observation and for tech-
nological relevance, it would be ideal if the plasmons could be
efficiently excited and subsequently converted back into propa-
gating photons (such as from free space, fiber, or other evanes-
cent modes). Motivated by this, we now examine the coupling
problem to propagating photons in more detail and investigate
how their intermediate conversion and interaction as plasmons
manifests itself as strong, effective nonlinearities between prop-
agating photons.

Remarkably, the extinction cross section ¢®Xt = (3 /27[)7\% k/T
of a single nano-structure, as that one of a single atom, can ex-
ceed its physical size. However, the low values of k/T" still imply
that 0 is much smaller than the diffraction limited area A3 for
free-space beams, indicating that such sources cannot be used
to excite plasmons efficiently. In particular, it can be shown
using time-reversal symmetry that the best in-coupling (exci-
tation) efficiency that can be achieved is the same as the out-
coupling efficiency, 11 [83]. The situation is illustrated schemat-
ically in Fig. 4.2. This raises an important conceptual question.
On one hand, graphene plasmons seem to represent the “ul-
timate" quantum nonlinear optical device, capable of internal
conversion at the single-photon level. However, very little in-
coming light enters the structure and turns into a plasmon, and
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pl nph Y 77”p1 npl 2 nnph
Figure 4.2: (a) A given plasmon mode radiates into free space (or
more generally, into any desirable channel) with an effi-
ciency characterized by n. (b) By time-reversal symmetry,
incoming photons in the same spatial mode excite plas-
mons with the same efficiency. The efficiency n is related

to the extinction cross section and free-space wavelength
by n = (27/3) 0/},

n

vice versa, a small percentage of plasmons are radiated back
into light. We now discuss various ways in which the strong
quantum-level internal nonlinearities of graphene can be ob-
served and utilized, given these limitations.

One way of increasing the coupling to radiation, which has
already been discussed in the linear optical regime, is to ex-
ploit an array of nano-structures [77, 182]. Intuitively, since the
extinction cross section of a single element can exceed its phys-
ical size, having a dense array extending over an area larger
than Aj guarantees efficient interaction with an incoming beam.
We thus proceed to consider the nonlinear interaction between
an incoming radiation field with frequency w} resonant with
the fundamental mode and an array of nano-structures, as il-
lustrated in Fig. 5.1. We expect that the efficient coupling with
an array will enable the incoming photons to excite plasmons at
wp, internally convert to plasmons at 2wy, and then re-radiate
into free-space as a second harmonic signal. We consider here
a hexagonal lattice of nanostructures with lattice period | =
50nm. The array is illuminated at normal incidence with a field
of frequency w, and polarized along % to maximally drive the
plasmon resonance (see Fig. 5.1).

From Hamiltonian (4.15) extended to include the coupling
between the structures, we get the equations of motion of the
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Figure 4.3: A hexagonal array of triangular nanostructures illumi-
nated by laser light at normal incidence and frequency wy,
resonant with the first plasmonic mode of the structures.
The nonlinear coupling between this mode and the mode
at frequency 2w, generates an outgoing radiation field at
this second harmonic, which is in a direction normal to
the array.

operators for the first and second harmonic modes of structure
j in the array are

4 = —i (wp — ila/2) aj — iP2ER — 2ig alby

h
P w
+'L f Z Gjlpaj/ (417)
1
by = —i (2wp — iM/2) by — 1RUESS —iga?
. p% 2wy
+l€ Z G]l bl/ (418)
1

where the last term in both equations accounts for the dipole-
dipole interaction with other nanostructures 1 in the array. G;, =
G(rj, 1) is the electromagnetic Green’s function describing the
field produced at position 1; by a dimensionless dipole oscil-
lating at 1 assuming that all the dipoles have the same polar-
ization (see Sec. 3.2 for a more detailed discussion of the elec-

tromagnetic Green’s function), while p, = \/ 3meghkqcd/ wf’, is
the modulus of the electric dipole moment of a single plasmon
in the first mode (an equivalent expression holds for py at fre-
quency 2wp). We have also included the possibility of driving
either mode with classical free-space external fields, denoted
by EG. and E%fp.
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Figure 4.4: Back-scattered spectrum around 2wp. Reflectance curves

for a weak driving field as a function of the detuning o
(in units of the total decay rate I') from the second mode
of frequency 2wy, plotted for different values of the ratio
g/T'. The value of the solid curve corresponds to the ratio
g/l = 1.25 that we have predicted theoretically for the
structure presented in Fig. 4.1.

Before considering the generation of a second harmonic, it is
already interesting to point out that the strong internal interac-
tions between plasmons can manifest itself in the linear optical
response to an incoming laser with frequency near the second
mode 2wp. We proceed by solving the coupled system of equa-
tions (4.17) for a weak external driving field of frequency w
around 2wyp. We consider specifically an approximation where
edge effects are ignored (which becomes exact in the plane-
wave limit and an infinite array), which makes the sum ) ; Gj;
identical for each element. The effect of the Green function is to
renormalize both the resonance frequencies and the losses, so
that wp — @p, M — I, etc. We find that the linear reflection
coefficient of the array is

ko N2 Sa +ila
2 [Batifa] [Bo+ifo/2] — 297

Tp(w) = — (4.19)
where §; = w — 2, is the detuning of the input field with
respect to two times the renormalized first harmonic SP fre-
quency, and similarly for &y,. The quantity N)\% = (3/2m)(Ag/2)%/A
is proportional to the number of structures in a diffraction lim-
ited area A3, as A is the area of a unit cell in the array. In Fig. 4.4,
we plot Irp (w)]? as a function of the detuning for different val-
ues of the ratio I'/g. Here we have ignored the renormalized de-
tunings, Sa,b — 84, as the structure dimensions can be slightly
altered to compensate for these shifts. We also take Q = 100
and Q = 50 for modes a and b, respectively. Note that if the
nonlinear interaction between plasmons is negligible (g < T),
the spectrum exhibits the typical Lorentzian peak associated
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with a resonant scatterer. We observe a qualitative difference
in the reflection curve passing from the regime g < I'/2 to the
regime in which g > I'/2, which is characterized by the appear-
ance of a splitting in the reflection curve. Importantly, while
an efficient external coupling increases the peak reflection of
the structure, the magnitude of the mode splitting 2v/2g does
not depend on the coupling efficiency and represents a robust
signature of quantum strong coupling between the SPs modes.
We also emphasize that Eq. (4.19) is only obtained by solving
tully the Egs. (4.17), including quantum correlations between
the two plasmon modes. Solving the classical limit, in which
all quantum operators are replaced with numbers, would pro-
duce a Lorentzian spectrum for any value of g, which reinforces
the appearance of a mode splitting as a quantum signature.

In a similar way, we can calculate the intensity emitted at
frequency 2wy, when the system is driven at frequency wy by
a classical external field. We find that the SHG signal intensity
radiated into the far field is approximately

ext]2 ~ext

Ifar ~ 892 [Ga ] Oy, [Iext]z
2wp h(.l)prazrb A2 wp|

(4.20)

where G?lxlt) are the extinction cross sections of the two modes.

This expression is valid in the undepleted pump approxima-
tion, where the converted intensity is a small fraction of the
incident. Using the previously quoted parameters for the tri-
angular nanostructure, we find that a 1% conversion efficiency
can be observed for the low driving intensity of roughly 108
Wm~2.

While we have presented here a semi-classical calculation, in
which the input fields are treated as classical numbers, it would
be interesting to find what is the conversion efficiency at the
single-photon level. In particular, it would be interesting to see
how graphene compares to the state-of-the-art efficiencies of
~ 1078 in bulk crystals for SHG of just a two-photon input. For
this purpose, in the next section we use an approach based on
the S-matrix formalism.

4.5 QUANTUM FREQUENCY CONVERSION

In general, for a given few-photon input state, we wish to de-
termine the effect of nonlinear interactions on the output. All
of this information is contained in the S-matrix [90], which
specifically describes the overlap amplitude between a set of
monochromatic incoming and outgoing freely propagating pho-
tons. Because monochromatic photons form a complete basis,
the S-matrix thus contains all information about photon dy-
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namics. In particular, it can be used to determine how a wave
packet consisting of a superposition of monochromatic photons
(i.e. decomposed into frequency components) interacts with the
graphene nanostructure.

A simple example of an S-matrix element consists of the lin-
ear reflection amplitude 1y, (k) of a single photon of frequency
ky, which interacts with the higher-frequency SP mode (mode
b), which we have calculated in the previous section by solving
the Heisenberg equations of motion. In the S-matrix language
the reflection coefficient corresponds to the matrix element be-
tween an incoming photon propagating in one direction (say
to the right) and a photon of the same frequency py, = ky scat-
tered in the other direction (to the left). More compactly, this
relation is formally written as <p%| S Ikg) = 1y(k)d(k —p), where
d(k —p) denotes the Dirac delta function. Such an S-matrix el-
ement can be calculated by using standard input-output tech-
niques [15, 9o], which enable one to relate the outgoing field (af-
ter interaction) to the incoming field and internal dynamics of
the nanostructure (governed by the Hamiltonian of Eq. (4.15)).
We assume that the incoming photon is focused at the diffrac-
tion limit, S ~ A3, and interacts with N = N A2 structures. In par-
ticular, adopting the generalized input- output formalism pre-
sented in Chapter 2 we can show that the resulting reflection
coefficient gives a result of the form of Eq. (4.19) [183].

Analogously, we can express the amplitude for the DC pro-
cess as the S-matrix element between an incoming photon of fre-
quency ky near 2wp and two outgoing photons of frequencies
Pa, ga Near wyp. For simplicity we study the case in which the
incoming photon is a superposition of a photon coming from
the right and one coming from the left so that we can avoid
directional labels. We thus find for an array of N structures

(Pa,qal STko) = C mu(K)Talp)Talq)d(k—p—q),  (4.21)

where 1, 1, are respectively the reflection coefficients for pho-
tons in mode a and b, and C = 2Ng/ /27K Ky.

The S-matrix also enables one to calculate the dynamics of an
incoming pulse. In particular, assuming a single-photon input
wavepacket with a Fourier transform given by f(k), we find
that the total DC efficiency is given by Ppc = 1/2 [dp dq[f(p +
q) T (p + q) ra(p)ral(q)l?. For a near monochromatic resonant
incoming photon, i.e. |f (K)]2 ~ d(k — 2wp), the result simplifies
to

16N?K2 Ky, g2
Fallaly +4g2%

Ppc = (4.22)
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where in this case I' = T’ + Nk. The value of the coupling
constant that maximizes the probability of conversion is g =

VTalv/2, for which we have

2
poc o (2 Y(2), was

In general, we expect g to exceed the plasmon linewidth in
the graphene nanostructure considered, so that the condition
g = V/Talb/2 is satisfiable, in contrast to conventional materials
with weak nonlinear coefficients. For what concerns the opti-
mal number of nanostructures, we identify two limits, one of
low external coupling efficiency in which the array-enhanced
external coupling does not overcome the losses, i.e. k < I'’, and
the opposite case in which k 2 T, In the first limit, which is
satisfied for the system parameters presented earlier, the total
decay rate I' is roughly independent of the number of structures
N and P& ~ NZT](Z1 M (we recall again that ngp = Kqp/Tap). It
is clear that in this limit the use of an array of nanostructures
is an efficient way to increase the conversion (which anyway
remains much smaller than 1). For our system parameters, we
find that P33 ~ 1077, which compares favorably with state-
of-the-art numbers ~ 1073, a surprising result considering that
graphene is not a bulk nonlinear crystal. In the opposite limit
of good external coupling we find that P2 = N~nZny. This
remarkable result indicates that ultimately, there is a fundamen-
tal inequivalence between using many structures to increase the
(linear) response, and working to improve the coupling to just a
single structure. In particular, in the limit of efficient coupling,
the strong nonlinear interaction between plasmons becomes di-
luted by having multiple structures. Intuitively, this N~ scaling
can be understood from the complementary process of SHG
(whose S-matrix is identical to DC, as shown later). Clearly, in
order for two incoming photons to create a second harmonic,
they must excite two plasmons in the same structure. How-
ever, with many structures, the probability that this occurs (i.e.,
compared to exciting single plasmons in two different struc-
tures) falls like N~'. We thus argue that the development of
techniques [76, 169] to efficiently couple to single structures is
of fundamental importance to take maximal advantage of the
strong intrinsic nonlinear interactions between graphene plas-
mons.

It should further be noted that the created photon pairs are
frequency-entangled (see Eq. (4.21)), as energy conservation re-
quires that the sum of their frequencies equals that of the incom-
ing single photon. Intuitively, one expects that the DC process
remains efficient as long as the incoming pulse bandwidth o is
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Figure 4.5: (a) Probability of DC for a photon in a Gaussian
wavepacket of center frequency 2w, and bandwidth o.
Ppc is plotted as function of o and g (in units of I'), and
normalized with respect to PE&*. (b) Probability of SHG
for a pair of uncorrelated photons in Gaussian wavepack-
ets of center frequency w;, and bandwidth o, normalized
as in (a).

smaller than the cavity linewidth T'. This can be seen quantita-
tively in Fig. 4.5a, where Gaussian single-photon inputs with
bandwidth o are considered, i.e. f(k) o e (k—wp)?/4o?

In SHG two photons with frequencies centered around wp
are (partially) converted in a single photon of frequency 2wy,.
By the time reversal symmetry of the scattering matrix the re-
lation (pq, qal S [kp) = (kol S Ipa, qa)” holds. This implies that in
principle, a maximum up-conversion efficiency of PGy = PEE
can be achieved, but only if the two-photon input itself is an
entangled state. In Fig. 4.5a, we consider the more realistic case
of two identical, separate photons, each represented as a Gaus-
sian pulse of width o. It can be noticed the qualitatively differ-
ent functional behavior of Ppc and Psyg. The latter saturates
at a lower value than the former and exhibits a maximum for
a finite value of o, going to zero for both the limits 0 — 0 and
0 — oo. The inability to deterministically up-convert two sepa-
rate photons (Psgyg = 1), even for perfect coupling efficiencies,
notably deviates from the semiclassical prediction that perfect
conversion can be achieved [176].

We conclude showing that a single graphene nanostructure
can generate nonclassical light when irradiated with weak clas-
sical light at the lower frequency. We have seen above that in
the strong quantum coupling regime, g > I'/2, a mode split-
ting at the second resonance appears. Physically, this splitting
arises because the nonlinear interaction given in the Hamilto-
nian of equation (4.15) strongly mixes a single photon [0;1)
in mode 2wy, with two photons |2;0) in mode wy, as shown
in Fig. 4.6b. The resulting eigenstates of the Hamiltonian are
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Figure 4.6: (a) Schematic showing the creation of non-classical light.
A coherent state beam (yellow) of frequency w, incident
on the graphene is scattered and produces anti-bunched
light (red). (b) Energy level structure of the system, where
the notation |m, n) indicates the occupation of m (n) plas-
mons in mode wyp, (2wyp). The dressed states generated by
the coupling between |2;0) and |0; 1) are also represented.
Red arrows illustrate the origin of photon blockade. Due
to the nonlinear coupling, the nominally degenerate states
12;0) and [0; 1) hybridize into two dressed states with fre-
quencies 2wy, + g/ V2. When the fundamental mode is res-
onantly driven, the population of that mode by a single
photon (solid red arrow) blocks the excitation of a second
photon (dashed red arrow), as the mode hybridization re-
sults in the absence of a state at 2wp.

symmetric and antisymmetric combinations [0; 1) & [2;0) with
frequencies 2wy + v2g. The mode splitting creates an effec-
tive nonlinearity: once a single plasmon of frequency w; en-
ters the system, the absence of a resonant state at pr pre-
vents a second plasmon from entering, creating a blockade ef-
fect [174]. This is a complementary signature of strong coupling
observable in the lower mode. It can be quantified by consider-
ing the second-order correlation function of back-scattered pho-
tons (for instance left-propagating photons when the system is
driven by right-propagating laser light)
2 al o a] (T ) arou(T+ tapeu(T)
ga (t) = 5 - (4-24)
<a]]:,0ut (T) arout (1))

The output field itself is related to the input field and plasmon
mode by the equation ar oyt = arin + 1/ Ka/2 a. However, as the
left-going input field is in the vacuum state, the corresponding
input operator has no effect. Thus the second-order correlation
function can be written directly in terms of the plasmon mode

B (af(m)af (T4 t)a(t+t)a(T))
(af(t)a(T))* '

(4.25)
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For t = 0 this function indicates the relative probability to de-
tect two photons at the same time. Values of g2 (0) < 1 indicate
the presence of nonclassical light. In the limit of weak driving
amplitude we find that

r(16g% + 3I?)
3(4g2+T2)2 -

g (0) = (4.26)

For g = 0 it acquires a value of g(az)(O) = 1, reflecting the co-
herent state statistics of the laser, while exhibiting strong anti-
bunching ( g(az)(O) < 1) when g 2 T'/2. It is particularly impor-
tant that ggz)(O) is independent of the external coupling effi-
ciency k/I', thus making this effect a robust signature of strong
quantum coupling between plasmon modes.

4.6 CONCLUSIONS

We have shown that second-order nonlinear optical interactions
between plasmons in graphene nanostructures can be remark-
ably strong. Signatures of such nonlinearities should be imme-
diately observable in experiments involving arrays of nanos-
tructures, where incident free-space light can undergo frequency
mixing at very low input powers via interaction with plasmons.

We further show that single nanostructures should exhibit
the capability to generate non-classical states of light, observ-
able even with low coupling efficiencies, which opens up a
novel route to quantum optics as compared to the conventional
approach of using atom-like emitters. With improved coupling
efficiencies to the modes of these nanostructures, it would be-
come possible to realize efficient second-harmonic generation
or down-conversion at the level of a few quanta, which would
exceed the capabilities of current systems by several orders of
magnitude. While we focused on one concrete example con-
sisting of a graphene nanotriangle, our conclusions are quite
adaptable. Thus, it would be interesting to explore further the
potential of this unique “nonlinear crystal” in a wide variety of
classical and quantum nonlinear optical devices. It would also
be interesting to investigate the nonlinear optical response of
even smaller structures [184, 185], which is expected to deviate
significantly from large-scale graphene due to quantum finite-
size effects. Finally, we anticipate that our work will open up
the intriguing possibility of a search for new materials that are
capable of attaining the quantum nonlinear regime.






QUANTUM MEMORIES WITH ATOMIC ARRAYS

5.1 INTRODUCTION

One of the most highly explored potential applications for en-
sembles of atoms consists of a quantum memory of light, in
which a quantum state of light can be “stored" and then re-
trieved on demand at a later time [20, 22, 79, 80]. Quantum
memories form an important component of various protocols
within quantum information processing, including quantum re-
peaters [186], single-photon sources [187, 188], and quantum
logic operations between photons [189].

Different schemes have been proposed theoretically and demon-
strated experimentally to realize quantum memories with atomic
ensembles. The common idea is to reversibly convert a pho-
ton into a long-lived atomic excitation. For instance, EIT (see
Sec. 2.4) can be used to convert a propagating photon into a
slow-propagating dark-state polariton and then a completely
stationary one [29], by changing dynamically the control field
Q(t). In a similar approach the photonic excitations are mapped
into the metastable state of the atoms by stimulated Raman
transitions keeping a large detuning of both the probe and
control field in order to suppress the population of the fast-
decaying excited state [81]. In the photon-echo approach the
map to the metastable state is instead realized by mean of a
fast resonant 7t pulse on the |e) —|s) transition [82].

An important figure of merit is the storage (retrieval) effi-
ciency, the probability that a photon can be mapped to an atomic
excitation (or vice versa). A time reversal symmetry argument
shows that the maximum efficiencies of these two processes
are equal [83]. The approaches described above have several
sources of error. For instance, in all of them the pulse is re-
quired to fit within the medium to get high-fidelity mapping
of the photonic excitations into the atomic degrees of freedom.
On the other hand, a pulse that is too short does not fit fully
into the transparency window of EIT, and similarly cannot be
absorbed by the atoms with the photon-echo technique [83]. An
analysis of the efficiencies of these approaches has been done in
Ref. [83] by Gorshkov and coauthors within a unified physical
picture. There the storage and retrieval processes of the atomic
ensemble have been studied using the Maxwell-Bloch equations
(see Secs. 1.1.2 and 2.2.2), where the atomic distribution is mod-
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elled by a continuous field. The propagation and interaction of
a single transverse mode of light with the atoms is modelled by
a quasi-1D wave equation, while the interaction of the atoms
with the remaining free-space modes is accounted for heuristi-
cally via an effective, independent decay rate I’ of the atomic
population. Within this model it is predicted that the minimum
error in the retrieval efficiency is € ~ 5.8/OD, where OD is the
optical depth of the atomic ensemble.

While the previous analysis serves as a faithful empirical
model of free-space atomic ensembles with disordered atomic
positions, recently it has become possible to realize atomic ar-
rays of ordered positions with high fidelity [84, 85]. Much like
how a phased antenna array can be used to achieve highly di-
rected emission of radio waves, one might expect that in or-
dered atomic arrays the absorption and emission of light is
highly affected by interference and the specific atomic posi-
tions. A spectacular example has been described theoretically
in Ref. [190], where it has been predicted that an infinite 2D
square lattice of atoms can act as a perfect mirror for resonant
light at normal incidence, when the lattice constant of the ar-
ray is smaller than the resonant wavelength, d < Ag. This oc-
curs because for such a lattice constant, all potential diffraction
orders of light supported by the lattice become evanescent, en-
abling all of the incoming optical energy to be returned along
the original propagation direction. Naively, this result seems to
suggest that a 100% interaction probability between light and
an atomic array is possible. Motivated by this observation, we
are interested to functionalize this system, turning it from a
passive mirror into a quantum memory, and to investigate the
ultimate performance limits.

In this chapter we begin by presenting a formalism to cal-
culate the retrieval efficiency of a single photon stored in an
arbitrary atomic array, given only the spatial mode into which
the photon is collected and the Green’s function of the system.
Our formalism builds upon the general spin model for atom-
light interactions introduced in Sec. 3.2, which is an exact for-
mulation that accounts for the discreteness of the atoms and
interference in emission to all orders [86, 153]. We will show
that when a specific mode for the detection is fixed, the initial
conditions that maximize the retrieval efficiency, i.e. the initial
distribution of the atomic excitation in the array, are given by an
Hermitian matrix eigenvalue problem, in analogy with the con-
tinuum case [83]. We then apply the formalism to the case of a
finite 2D square array of N x N atoms with a Gaussian-like de-
tection mode (without assuming the paraxial approximation),
finding that for an optimized beam waist the retrieval error
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Figure 5.1: Schematic representation of a quantum memory realized
with an atomic array. An excitation initially stored in the
|s)-manifold is retrieved as a photon by turning on the
classical control field Q. (blue arrows), which then creates
a Raman scattered photon from the |g) —|e) transition. The
photon is then detected in some given mode, illustrated
here as a Gaussian beam.

scales as € ~ (log /N,)?/N2. While there is no straightforward
way to compare a single ordered layer of atoms with a contin-
uous 3D atomic ensemble, it is nonetheless interesting to note
that the error in the array decreases faster with atom number
than the 3D ensemble case, € ~ 5.8/0OD o 1/N,, indicating the
power that lies in exploiting strong interference.

5.2 THE SPIN MODEL RE-VISITED

In this section we describe how the dynamics of an arbitrary
collection of atoms in free space, specified only by their dis-
crete, fixed positions r; (see Fig 5.1), can be related to the spin
model described in Sec. 3.2. We consider three-level atoms with
two ground states |g) and |s) and an excited state |e). We as-
sume that the transition |g) — [e) is coupled with a continuum
of free space modes which includes the detection mode, while
the transition |s) — |e) is driven by a classical control field Q(t)
with frequency w., which we assume to be homogeneous over
the array. The formalism can be extended with little effort to the
case of a modulated control field. We will focus our attention
on the single excitation retrieval process in which an excitation
is stored in the |s) manifold and then retrieved as a Raman scat-
tered photon on the |g) — |e) transition when the control field is
turned on.
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As we have seen in Secs. 2.2 and 3.2 the interaction of the
|g) — |e) transition with light (including re-scattering from other
atoms) can be described by the effective spin model [151-153]

2 2 T3 3 e e
Hegr = _uOdegweg Z dj ) GO(rj/rl/ weg) -dy 05 90—? =
it

= —3mhl, Z Mﬂcr I07¢, (5.1)
jl

where degaj is the dipole moment of atom j, and I, = w? d2g /3mhc
is the single-atom spontaneous emission rate in vacuum. Go (15, 11, Weg)
is the electromagnetic Green’s function tensor in free space,
which is the solution of the equation

[(v x Vx) — wl /2| Golr ¥, weg) = 8(t—1) OL  (5.2)

The Green’s function can be explicitly derived in free space, and
takes the form

GO(rj/ r, weg) =
_ elkoR ] ikoR — 1 I 3 —3ikoR — k3R* RR (5:3)
~ 4R K2R2 K2R2 RZ | 3

where R = [r; — 15| and kg is the wavevector associated with the
resonant frequency weg. In Eq. (5.1) we have defined for conve-
nience the dimensionless matrix M;; = kg] a]?‘ -Gy, 11, Weg) - d;.
The Hamiltonian of Eq. (5.1) is non Hermitian, describing an
open system where the excitations can be lost with the emis-
sion of photons into free space.

We want to study the dynamics of the atomic ensemble, when
it initially contains a single metastable spin excitation \p(t = 0)) =
> jcilt =0)oy? 1g)*Na, Formally, the dynamics of the retrieval
process, where the spin flip |s) eventually gets mapped to a
Raman scattered photon, is encoded in the dynamics of the
wave function under the Hamiltonian H = Hgg + H., where
the control field Hamiltonian H, = Zj(Qj(t)Gfs +H.c.). In or-
der to calculate the efficiency of retrieval, we also need to be
able to re-construct the spatio-temporal properties of the field
Eout emitted by the array as the atoms evolve. Within the input-
output formalism the emitted field can be reconstructed by the
knowledge of the atomic states:

degk2
Eout(r) = Ein(r) + °9 0

ZGO I,Tj, Weg) - djcr)ge. (5-4)
j=1

In the retrieval case the input field is vacuum, and can be
dropped from Eq. (5.4) for our observables of interest.
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Figure 5.2: The total field produced by a 30 x 30 atomic array in the
x —y plane, when illuminated by a weak Gaussian beam
normal to the array. The figure shows a cut of the field in
the y = 0 plane. A nearly 100% reflectance of the Gaussian
beam can be observed (with visible interference fringes
between the incident and reflected fields), while transmis-
sion is highly suppressed. (Figure courtesy of Mariona
Moreno-Cardoner.)

The input-output equation above enables the field to be calcu-
lated at any point r, based upon the evaluation of an atomic cor-
relation function ~ Go (1, 1j, Weg) - d nge weighted by the Green’s
function. It is certainly possible to build up the field every-
where in space, by re-evaluating the Green’s function at each
r and the corresponding atomic correlation function. An exam-
ple is illustrated in Fig. 5.2. Here, a weak Gaussian beam drives
a finite 30 x 30 array of two-level atoms on resonance, and the
tield is calculated in space to show the highly efficient reflec-
tion of the array (here the atomic wave function is calculated in
the Schrodinger picture, truncated to a single excitation). This
approach to field construction can be quite tedious, however,
if many spatial points are taken. On the other hand, in exper-
iments one often cares about the efficiency that the field can
be collected into a specific spatial mode, such as a Gaussian.
In the following section, we will show that the input-output
equation can be projected efficiently into such a mode, so that
only a single weighted atomic correlation function needs to be
evaluated.

5.3 GAUSSIAN-LIKE DETECTION MODE

In this section we describe a concrete example of a detection
mode, onto which the field emitted by the array is projected. A
common and natural mode to project into is a Gaussian beam
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shape. There is a technicality, however, since a Gaussian beam
is only an approximate solution to Maxwell’s equations (i.e. in
the paraxial limit). While such an approximation suffices for
most purposes, it is anticipated in our case that one can achieve
nearly perfect storage and retrieval efficiencies. Thus, it is not
obvious a priori that the small (actual) retrieval errors are not
overwhelmed by the analysis error of the paraxial approxima-
tion itself. Thus, we first present an exact solution for Maxwell’s
equations, which approaches the Gaussian solution in the limit
of large beam waist.

We choose a solution where the x-component of the electric
field has a Gaussian distribution in wavevector space, while the
y-component is identically zero. The value of the z-component
is then determined by Maxwell’s equations [191]. It is conve-
nient to define the detection mode in the angular spectrum rep-
resentation (ASR), which consists of an expansion in propagat-
ing and evanescent plane waves with fixed wavevector length
ko and defined by p = ky/ko and q = ky/ko [192]. In this repre-
sentation the mode electric field components are

Eo (2. 2122
det(P,q) = ﬁe Pkt o1 —p2 —q?),  (5.5)
EderlP @) = 0, (5-6)
qet(p,q) = —%E’éetmq)f (5.7)

where m = /1 —p2 —q2ifp? +q> < Torm=1iy/p2+q? —1if
2 2
pe+q->1.
The real space profile of this mode is immediately obtained
by Fourier transforming Egs. (5.5)-(5.7):

+00 .
det(T) = J dpdq EX,,(p, q) eMoPxray+mz)

—0o0

1
~ E L db b e U KWE/4 ethozVI=b2 Iy (bkop), (5.8)

and

+00 P '
det(T) = —J dpdq - —Ege(p, q) elko(pxtaqytmz)
—0o0
1 2
b Y e
-t g Jo A e VoS HomVITEY  (bigp),
(5.9)

where (p, z) are the cylindrical coordinates for r, while Jy and J;
are Bessel’s functions. Without the step function in Eq. (5.5), the
corresponding field in real space would identically consist of a
Gaussian in the focal plane with beam waist wy. The step func-
tion removes evanescent field components, which in real space
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enforces a diffraction limit, and distorts the beam to prevent
a waist wy S Ag. For large wy the mode tends to the paraxial
solution, i.e. E5,, vanishes and E}_, assumes the form of a fun-
damental Laguerre-Gauss mode [192]. For this reason in the
following we will loosely refer to wy as the beam waist of the
mode. One can also expand the modes into the set of plane
waves defined on the sphere of radius ko in wavevector space,
with each of these plane waves having two possible orthogo-
nal polarizations. Within this representation the detection mode
considered is defined by
Eqt(0, d) = & e—sin2 0k3w3/2 .
det( O, 22 <cos 0 sin ¢, cos d)) , (5.10)
0

where the vector denotes the two components of the polariza-
tions, which are orthogonal to k and between them.

This last representation is particularly convenient to calculate
the normalization factor of the mode

Faet = (Ede/Buet) = J QY (1) - Egeelr) =

z=const
27 /2
= 4k, ? L dé JO d0sin 0 E..(0, d) - 5., (0, d) =
7TE%T:det(B)
k3
(5.11)

= 12p? [1 +V2(=BTT+B)D+(B/V2)| =
0

where 3 = kowp, D4 (z) is the Dawson’s integral and we have
defined the dimensionless function Fye(B). The flux of energy
of this mode, calculated for instance considering the surface
integral of the z-component of the Poynting vector across the
plane z = 0 [192], is given by

(Ddet - 2€OCFCIet- (5-12)

Finally, we calculate the overlap between the field emitted
by a collection of atoms and the detection mode. This can be
done quite straightforwardly by expanding the electromagnetic
Green’s function in plane waves. We obtain

idegko . .
(EqetlEout) = 5= D Bierlry) - djo}", (5.13)
j

a result that can be generalized to an arbitrary detection mode,
and shows that the overlap depends only on the values of the
electric field of the detection mode at the positions of the emit-
ters. In particular, it has the nice property that only a single
weighted atomic operator needs to be evaluated, in order to
calculate emission into the mode of interest.
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5.4 RETRIEVAL EFFICIENCY

We now turn to the question of the retrieval efficiency of a quan-
tum memory, and we derive a prescription that enables one to
tind a strict upper bound for the efficiency, given a particular
atomic spatial configuration and detection mode. As mentioned
in the introduction, the retrieval efficiency is defined as the ra-
tio between the total energy emitted in the detection mode and
the energy hiweg that must be emitted in the form of a Raman
scattered photon. The retrieved energy is the time integral of
the intensity in the detection mode during the retrieval pro-

cess Lret(t) = (@get/Fdet)| (Edet/Eout(t)) /v/Faetl, so that we can
express the efficiency as

1 JOO 1 Qg J“ ‘<Edet|Eout(t)> :
= dtl,et(t) = dt |——
" hweg 0 ret(t) T'u*)eg Faet Jo vV Fdet
(5.14)

For the case of the detection mode introduced in the previous
section we can use Egs. (5.11), (5.12) and (5.13) in the last equa-
tion obtaining

30 JOO e e
PN Y | dt o (t)e(), (5.15)
2Fget(kowo) Z o ) l 215

where we have defined the dimensionless vector U; = E_,(r;) -
aj /Ep as the relative amplitude of the mode seen locally at each
atomic position r;.

From H we obtain the equations of motion of the coherence
operators:

(')-]96 = iéo‘jge—iﬂ(t)O"]gs+37‘[ironj1(7?e (5.16)
l
6% = —iQ(t)of", (5.17)

with 6 = w¢ — wes. As discussed in detail in Ref. [153], since the
matrix M is symmetric rather than Hermitian, its eigenvalues
Ag are complex and its eigenmodes v; are non orthogonal in
the quantum mechanics sense, but obey the orthogonality and
completeness conditions V{ Vg =8ggrand ) ¢ ngz = I. In this
basis the equations of motion decouples into N, pairs:

63° = i(d+3mhoAg)of® —iQ(t)o?’ (5.18)
0" = —iQ(t)ef", (5.19)
where 079 = 3 ;v¢ j0/%9°. From these equations, and the as-

sumption that the control field is turned on for a time long
enough such that all the excitation leaves the system (so that all
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the atoms end up in the ground state at t = co), one can derive
the following equality

JOO dt 0.96( t)oyd(t) =
0

371]“0§VJ Vier (e —AL) T 02 (0) (085 (0))*. (5.20)

Using this result in Eq. (5.15) we find

gs
n= ZT[Fd t kowo Z o5 inKiji( Gl in) s (5.21)
(S
where
Ugu*/
Jl - 1Z Vj, E-Vl E’ — A\ ’ (5'22)
E8 &/

where Uz = } | vi mUm. While the last two equations may ap-
pear cumbersome, they have actually a simple interpretation. It
is immediate to verify indeed that K is an N, x N, Hermitian
matrix which depends only on the positions of the atoms, the
Green’s function and the detection mode, but not on the specific
time dependence of the control field. The maximum retrieval ef-
ticiency is thus given by the initial configuration corresponding
to the eigenvector of K with the largest eigenvalue.

5.5 TWO-DIMENSIONAL ARRAY

In this section we apply the results of the previous sections to
the case of a two-dimensional square atomic array with lattice
constant d. As said in the introduction, an infinite 2D square
array can act as a perfect mirror for incoming light at normal in-
cidence when its lattice constant is smaller than the wavelength
Ao associated with the atomic transition frequency [190]. In-
deed, under such conditions the polarization created by the in-
coming light produces a field that is evanescent at all diffraction
orders except that perpendicular to the plane. Then, the trans-
mission is suppressed because of destructive interference with
the input field, with all the energy back-scattered, in the same
way a two-level system perfectly coupled with a 1D waveguide
reflects a resonant photon travelling in the waveguide [120]. For
light incident at an angle 0 with respect to the normal, the array
provides complete reflection if 0 < Oit(d/Ao). The critical angle
reaches the value of 7t/2 when the lattice constant d is smaller
than A¢/2, meaning that complete reflection is achieved at ev-
ery angle of incidence [190]. It should be noted, however, that
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Figure 5.3: Minimum retrieval error as function of the lattice constant
d and the beam waist wy for three different numbers of
atoms.

this mirror is not broadband. In particular, 100% reflectance
is only achieved at one particular incident frequency (close to
Weg), and whose value varies with 6.

As a consequence, when an excitation is stored uniformly in
the infinite array with d < A, the retrieved photon is emitted
symmetrically in the two directions normal to the array with
unit efficiency. However, this is an highly idealized situation,
since in the real world no infinite atomic array nor plane wave
detectors are at one’s disposal. In the following we analyse the
retrieval efficiency of an N x N array, assuming that the detec-
tion mode is that introduced in the previous section. Through
all the section we assume that the array lies in the focus plane
of the detection mode, with its center on the axis of the mode.

To understand how the retrieval efficiency can decrease when
using a finite array it is helpful to first think to the reflectance
problem. Here, if the beam waist wy is too large with respect to
the array dimensions, then part of the incoming light will not
see the atoms and will be transmitted or scattered in other direc-
tions by the edges of the array. If wy is too small, the incoming
mode will contain a broad range of wavevectors with different
propagation directions. Since different angles have maximum
reflectance at different detunings, the overall reflectance for a
monochromatic photon will be reduced. For a given array there
is thus an optimal value of the input mode beam waist that max-
imizes the reflectance of an incoming photon (at optimal detun-
ing). The situation is analogous for the retrieval problem, where
the optimization over the photon frequency is replaced by an
optimization over the initial distribution of the excitation, as
discussed in the previous section. This is evident from Fig. 5.3
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Figure 5.4: Minimum retrieval error as function of (a) Sar /w(z), with
Sarr = d?N, and (b) log,,wo/Ao for d = 0.6A¢0 and N =
10, 20, 30,40, 50 (different colors).

where the minimum retrieval error, i.e. the error of the optimal
initial spin excitation configuration, is plotted as function of d
and wy for three different arrays 10 x 10, 20 x 20 and 30 x 30.
There it is possible to see that, as expected, 1) for constant d
and wy the error decreases as the array size N is increased, 2)
for constant d and N there is an optimal value of the beam
waist, and 3) for constant wy and N there is an optimal value
of d < Ao-

Here we look more in detail at the way the minimum error
scales with the different parameters. In Fig. 5.4a we plot the
error (in linear-log scale) as a function of the ratio between the
array area d’N, (with N, = N?) and the square of the beam
waist wy. It can be shown that when this ratio is not too big
the error is € ~ 1 — Erf"(Nd/v2w,), where Erf(x) is the er-
ror function. This result is not unexpected, since it corresponds
to the fraction of the energy of the detection mode associated
with the area outside of the array. In Fig. 5.4b we plot in log-
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Figure 5.5: Minimum retrieval error optimized with respect to the
beam waist wg. The blue line is the value from numer-
ical optimization, the red dashed line the approximated
analytical value given by Eq. (5.24).

log scale the retrieval error as function of the ratio between wy
and Ay (for values larger than one), again for different array
sizes. We can see that up to a point where the beam waist be-
comes comparable with the array dimension, the error scales as
e ~ (Ag/wg)*. As anticipated, this error comes from the range
of wavevector components that make up the detection mode,
which is inversely proportional to wy, as clear from Eq. (5.10).
The exact scaling behaviour can be derived more easily by con-
sidering the reflectance problem of an infinite array. There one
can expand the reflection coefficient as a function of 6, obtain-
ing the quartic scaling of the reflectance error. The same mech-
anism gives the quartic scaling of the retrieval error. Overall
we have that the minimum error can be approximated by the
expression

e(N,d, wp) ~ C/d)(Ao/wo)* + 1 —Erf (dN/v2wy), (5.23)

where C depends on d and can be obtained by fitting the error:
we find C ~= 0.0024 for d = 0.6A,.

One can use Eq. (5.23) to find the optimal beam waist. After
optimizing wy we find that that the leading term for the error
is given by

€opt ~ (log \/N_a)z/Ng (5-24)

In Fig. 5.5 the approximated analytical value for the optimized
minimum retrieval error is compared with the value obtained
by numerical optimization. Interestingly, the figure indicates
that even a 4 x 4 array of atoms can in principle already enable
a storage/retrieval efficiency of above 99%.

One useful feature of our technique for calculating retrieval
efficiency is that it readily enables different spatial configura-
tions to be studied. Thus, we can easily include imperfections
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such as the absence of atoms (i.e., “holes") in the array, or classi-
cal disorder in the positions. We first examine the case of holes
in the array. Averaging over many configurations and (low) den-
sities of holes, we find statistically the relation

U2
21 ) (5.25)

a1

where ngeg(5) is the optimized retrieval efficiency for an array
with missing atoms at positions {j}, while 1 is the optimized re-
trieval efficiency of a perfect array. Eq. (5.25) connects the loss
of efficiency with the portion of energy of the detection mode
associated with the missing atom, establishing a direct propor-
tionality between the two quantities. Since U; decreases expo-
nentially with the distance from the center of the beam (and
thus of the array), the magnitude of the relative retrieval error
introduced by the defect can range several orders of magnitude.
We find that the constant of proportionality « in Eq. (5.25) de-
pends only on d and is about 1.25 for d = 0.6A,.

Classical disorder for the atomic positions consists in having
the atoms displaced by random amounts &; = (8, dy;) from
their position in the perfect lattice. It is shown in Ref. [190] for
the case of the reflectance of an infinite array that, when the &’s
are extracted from a Gaussian distribution with standard devi-
ation o, then the decrease in reflectance introduced by the dis-
order scales as 0?/d%. We find numerically the same result for
the retrieval error. In particular, in Fig. 5.6 the error introduced
by the disorder is plotted as function of o for different arrays
dimensions and fixed lattice constant. This error is defined as
the difference between the optimized maximum retrieval effi-
ciency 1, i.e. optimized with respect to the initial excitation dis-
tribution and with the optimal value of the beam waist, and
the mean retrieval efficiency ng;s (sampled over many config-
urations) with the same initial conditions and beam waist but
with disorder in the atomic positions. A study of the effect of
local (quantum) motion on the retrieval efficiency will be left to
future work.

5.6 CONCLUSION

In summary, in this chapter we have introduced a compact for-
malism to calculate the efficiency of a quantum memory real-
ized with an atomic ensemble. We have considered the conven-
tional three-level atom quantum memory, and defined a real-
istic detection mode over which the emitted field is projected.
In our analysis, we explicitly account for the atomic positions,
and solve for the resulting interference in emission exactly. In
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Figure 5.6: Difference between the optimized maximum retrieval effi-
ciency n and the mean retrieval efficiency ng;s obtained
using with the same initial conditions and beam waist
but with disorder in the atomic positions (log-log scale).
The different colors correspond to N = 10,20,30, with
d = 0.6\ in all cases.

the previous studies [83], on the contrary, the emission into
modes other than the detection mode has been always treated
under the assumption of being independent of atomic correla-
tions. We show that in a 2D array, interference effects can lead
to highly efficient memories even for relatively small numbers
of atoms, and that the scaling of the efficiency significantly dif-
fers with atom number than a disordered 3D atomic ensemble.
This work should hopefully stimulate a broad examination of
the potential of atomic arrays for quantum optics applications.
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MATRIX PRODUCT STATES (MPS)

In the first section of the Appendix we review in greater detail
the concept of matrix product states [131], which is at the basis
of the algorithm we presented in Chapter 2 for the time evo-
lution of the spin model in the regime of high intensity input.
In the second section we present briefly the DMRG-MPS algo-
rithm that we have used in Chapter 3 to obtain the ground state
of the Hamiltonian of the photonic crystal waveguide-atoms
system studied.

A. 1 MATRIX PRODUCT STATES

A system of N particles, each with d possible states, can assume
dN configurations. The generic state of the system consists of
a superposition of all these configurations, and thus requires
dN coefficients to be defined. This exponential growth of the
Hilbert space with the number of particles poses a big obstacle
to the numerical study of quantum many-body systems. Re-
cently, it has been realized that in many problems of interest
the relevant states of the system are not spread over all the
Hilbert space, but occupy a small corner of it whose dimension
is not exponential in N, as we will see below.

Here we will focus only on one-dimensional spin systems,
whose generic wave function is

W)= > Coporon 07) 105 . lON), (A1)

01...05...0N

where c is a dN-dimensional tensor containing all the coeffi-
cients of the basis states |oy)...|0}) ... |on). Formally, one can
reshape the tensor as a matrix ¥, (5, ¢y ), Where rows are in-
dexed by o7 and the columns by the collective index (o;...0n),
and perform a singular value decomposition (SVD) on it. The
result is

T ™
- 1 = 07
Coyoz.on = Z u(71 /a1 Sﬂ]xal (V )(11,(0'2...0']\1) - Aa1 Caq,0;...0n7
aq aq
(A.2)

where 11 < d is the rank of the decomposition. In an SVD, U
and V take the form of unitary matrices, while S is a diagonal
matrix with real, non-negative entries (the singular values). In
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the last step we have multiplied S and V' and reshaped the re-
sulting matrix into a tensor. We also have reshaped the matrix
Uyg, ,q, into a collection of vectors A indexed by o7 for reasons
that will be clearer below. Similarly, one can reshape the ten-

SOT Cqy,0,..0n @S the matrix ¢(q; ¢,)(03..0n) @nd perform an SVD,
obtaining
™ T2
_ o1 t _
Coi0y..00 — Z Z Aa1u(a162),azsa2,az(v )az,(d3...GN) -
aj ap
T T2

— 01 A02
- Z Z Aa1 Aa1,a2C(12,<73-~-GN/ (A3)
ap az

where 1, < dry < d2. Going on with such operations one can
rewrite the state as

W)= > ATTA2_AN|0y)|03)...[on), (A.4)

0102...0N

where the A°’s are matrices whose multiplication is implicit
(i.e. we have suppressed the indices ay, ay, ...).

Each state in the Hilbert space can thus be written in the
form of Eq. (A.4), i.e. as a matrix product state. It is easy to see
that the maximum dimension of the matrices A’s increases ex-
ponentially (i.e. (1 x d), (d x d?), (d% x d3),...), as one can expect
from the fact that no approximation has been performed. These
matrices satisfy the orthogonality relation

> ATTAC =], (A.5)
o1

and are said to be left-normalized. Starting the decomposition of
the tensor c from the last spin N instead one can find an MPS
representation of the state

W)= >  BYB2.BN|oy)[02)...|on), (A.6)

0102...0N

in terms of matrices B’s satisfying the orthogonality relation

> BB =1 (A7)
o1

These matrices are said to be right-normalized. Because of the dif-
ferent properties of matrices A’s and B’s, the MPS in Eq. (A.4)
is said to be in the left-canonical form, while the MPS in Eq. (A.6)
in the right-canonical form.

The most important form of an MPS is the mixed-canonical
one, where the decomposition discussed above is performed
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j=1 2

$-4:9 34

Figure A.1: Graphical representation of a matrix product state.

from the left until the site | and from the right until site 1 + 1,
obtaining

W)=Y AT_A%SBI_BN|oy)[0y) ... [on). (A8)

07102...0N

The importance of this decomposition lies in the fact that it
corresponds to a Schmidt decomposition of the state \p) as

) = Z Sq, |al>A |al>]3 ’ (A.9)

with the matrix S containing the Schmidt coefficients, which
reveal the degree of entanglement between the two sub-systems
A and B that the system has been divided into.

The Schmidt decomposition can be used to approximate the
state \p) with an MPS having matrices of reduced dimensions.
If it were indeed possible to really perform the SVD on the full
state, one can imagine to progressively truncate the matrices
(taking a; < D in Eq. (A.9)). In this way one would obtain a
truncated MPS

|1b>trunc,D = Z CU] CGZ---CGN |G1> ’0—2> |UN> ’ (A.1o)

0102...0N

where the matrices C°t have at most dimension D x D. If the
truncation error decreases exponentially when D is increased,
then the state [\p) has an efficient MPS approximation. In typical
problems the state 1) (which can be a ground state, a partic-
ular excited state, or a state resulting from time evolution) is
unknown. The MPS ansatz consists then of finding the best ap-
proximation to the state in the family of MPS denoted by D,
where D is limited by the computational power and memory
at disposal. While for some problems it has been proven rig-
orously that the states of interest have an MPS representation
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e s 2o

Figure A.2: Graphical representation of the expectation value of an
operator in the MPO form on a state in the form of an
MPS.

[131], in many other cases the validity of the ansatz has to be
justified a posteriori, such as by explicitly monitoring the trunca-
tion error.

Matrix product states can be represented graphically by asso-
ciating each site with a box. Each box, except the first one and
the last one have three legs, one denoting the physical index o;
and the other two denoting the virtual (or bond) indices. The
contraction over virtual indices, i.e. the multiplication between
the matrices, is denoted by linking the legs for neighbouring
sites, as represented in Fig. A.1. This representation does not
distinguish between left- and right-canonical MPS, but this in-
formation can be easily included by changing the shapes or the
color of the boxes for each tensor according to its normaliza-
tion.

The concept of matrix product states can be generalized to
operators. An operator acting on the N-site system, for instance
the Hamiltonian, can be decomposed as

HO N = 091 0%2...0%, (A11)
where the O’s are sets of matrices indexed by the physical in-
dices 0y and o7, or equivalently tensors of rank four. An oper-
ator decomposed in this form is called a matrix product oper-
ator (MPO). The graphical representation of an MPO is simi-
lar to that of an MPS but with four legs for each tensor corre-
sponding to the two physical indices and the two virtual ones.
The graphical representation is quite insightful when it comes
to multiplying operators and states in the form of MPO’s and
MPS’s. For instance, in Fig. A.2 we pictorially represent the ex-
pectation value of the energy, (W|H[\p), as a tensor contraction
of the MPS of the state and the MPO of the Hamiltonian. Here,
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the vertical lines represent the contractions of the physical in-
dices.

A.2 GROUND STATE SEARCH: MPS-DMRG

A revolution in the study of quantum many-body one-dimensional
systems occurred with the invention of the density matrix renor-
malization group (DMRG) algorithm in 1992 [193, 194]. This
algorithm permits one to calculate the ground state of many
relevant 1D models with extremely high precision and low com-
putational effort.

About ten years after the introduction of DMRG, it was re-
alized that the algorithm can be reformulated completely in
terms of MPS [131]. For finite systems the MPS formulation
consists of an optimization problem over a given family of MPS
(denoted by the maximum virtual dimension D of its tensors),
that means to find p) = |11)>11\)/[PS which minimizes the Hamil-
tonian expectation value (\P|HNp). The simplest version of the
algorithm does the optimization in the following way. First H
is expressed as an MPO, and an MPS of the decided dimensions
is initialized (randomly or to some educated guess), i.e. an ob-
ject like that of Fig. A.2 is built. All the tensors of the MPS
except that one corresponding to the first site A°! are fixed and
an optimization over the elements of this tensor is performed.
A1 gets thus updated to A°1’ and the expectation value of the
energy decreases. In the second step the second tensor A°2 is
updated, by optimizing over it and keeping all the other ten-
sors fixed. This procedure is iterated over all the sites until the
last one, and repeated in the opposite direction. When, after
a certain number of such “sweeps"”, the energy has converged,
the algorithm stops and the MPS approximation of the ground
state is obtained.

In a more refined version of the algorithm two neighbouring
tensors are optimized at each step. In particular, in the first step
the tensor C = A°1A°2 is optimized. After the optimization a
SVD is performed on C to get the updated tensor for the two
sites, A°1" and A°2’. The advantage of this two-site algorithm
is that after the SVD one can keep a number of singular values
which depends on some condition on their magnitude. In this
way the bond dimension of the tensors can change dynamically
during the algorithm, while in the one-site version it is imposed
at the beginning.
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