
Improving Heterogeneous System
Efficiency: Architecture, Scheduling,

and Machine Learning

Daniel A Nemirovsky

Department of Computer Architecture

Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Doctor of Philosophy in Computer Architecture

October, 2017

Director: Dr. Adrian Cristal
Codirector: Prof. Mateo Valero

For Kim

i

Abstract

Computer architects are beginning to embrace heterogeneous systems
as an effective method to utilize increases in transistor densities for ex-
ecuting a diverse range of workloads under varying performance and
energy constraints. As heterogeneous systems become more ubiqui-
tous, architects will need to develop novel CPU scheduling techniques
capable of exploiting the diversity of computational resources. In recog-
nizing hardware diversity, state-of-the-art heterogeneous schedulers are
able to produce significant performance improvements over their pre-
decessors and enable more flexible system designs. Nearly all of these,
however, are unable to efficiently identify the mapping schemes which
will result in the highest system performance.

Accurately estimating the performance of applications on different het-
erogeneous resources can provide a significant advantage to heteroge-
neous schedulers for identifying a performance maximizing mapping
scheme to improve system performance. Recent advances in machine
learning techniques including artificial neural networks have led to the
development of powerful and practical prediction models for a vari-
ety of fields. As of yet, however, no significant leaps have been taken
towards employing machine learning for heterogeneous scheduling in
order to maximize system throughput.

The core issue we approach is how to understand and utilize the rise of
heterogeneous architectures, benefits of heterogeneous scheduling, and
the promise of machine learning techniques with respect to maximizing
system performance. We present studies that promote a future comput-
ing model capable of supporting massive hardware diversity, discuss

the constraints faced by heterogeneous designers, explore the advan-
tages and shortcomings of conventional heterogeneous schedulers, and
pioneer applying machine learning to optimize mapping and system
throughput. The goal of this thesis is to highlight the importance of ef-
ficiently exploiting heterogeneity and to validate the opportunities that
machine learning can offer for various areas in computer architecture.

Keywords: Computer Architecture, Multi Core, Heterogeneous Sys-
tems, Scheduling, Machine Learning, Deep Learning

Acknowledgements

Working to achieve a PhD is a unique adventure to experience. It is un-
like anything I have ever experienced. An era that has been altogether
marvelous in its own right, both its soaring peaks and excruciating val-
leys, surely to be warmly rekindled as a collection of moments frozen
in memory that one is fond to call their own. It is a remarkable journey
that navigates one to explore and understand, to create and withstand.
Above all else, it is a trial of one’s very own perseverance and dedica-
tion. An impassable mountain were it not for the mentorship, cama-
raderie, and tireless support of one’s advisors, colleagues, friends, and
family.

So here, on these two humble pages, I shall try and undoubtedly fail to
express my sincerest gratitude to all those who have been a part of this
expedition at one time or another.

I would first like to thank my advisors Dr. Adrian Cristal and Professor
Mateo Valero for accepting me into their research group and guiding my
work. Mateo is a tremendously capable professional, highly intelligent
and motivational. His leadership has fostered an outstanding academic
atmosphere that I was fortunate to be a part of. I greatly appreciate the
opportunity that you have given me.

There are few individuals that I have had the pleasure of working along-
side that I consider geniuses in their respective fields but Dr. Adrian
Cristal is certainly one. He has provided a guiding hand in all aspects
of my research and has continually inspired me with his ability to clarify
any technical barriers with the utmost ease.

I would also like to thank Dr. Osman Unsal who was the co-director of
our research group and has been a wonderful unofficial advisor. Tech-
nically adept, Osman is responsible for shaping a great deal of my re-
search and has always provided me with excellent advice for turning
my abstract ideas into practical approaches.

I would like to also extend my gratitude to the members of my defense
committee and reviewers of my thesis for your time and detailed as well
as constructive critiques. They include: Dr. Adria Armejach, Dr. Vasilis
Karakostas, Dr. Oscar Palomar, Dr. Gulay Yalcin, Dr. Antonio Cortes,
and Dr. Petar Radojković.

The outstanding and friendly staff at the Barcelona Supercomputing
Center and UPC’s Departament d’Arquitectura de Computadores, espe-
cially Joana Munuera, deserve much recognition for their support over
the years from dealing with all of us eccentric engineers.

I was fortunate to have brilliant colleagues which turned into great
friends including Nikola Marković, Nehir Sonmez, Oriol Arcas, Ivan
Ratković, Milan Stanić, Tugberk Arkose, Mladen Slijepcević, Behzad
Salami, Damian Roca, Francesco Ciaccia, Josue Esparza, Javier Arias,
and Vladimir Gajinov.

I would like to also thank my friends and family for their support over
these years, especially my loving parents Laura and Mario and sister
Michelle for their boundless dedication and encouragement. And to my
other and better half, Kim, you’re enduring patience and love I could
not imagine living without.

Contents

1 Introduction 1
1.1 Problem statement and objectives . 3
1.2 Scope of the thesis . 3

1.2.1 Machine learning . 4
1.2.2 CMPs . 4
1.2.3 Scheduling . 5
1.2.4 Workloads . 5

1.3 Key challenges . 5
1.4 Thesis contributions . 7

1.4.1 Reimagining heterogeneous computing 7
1.4.2 Preliminary studies . 8
1.4.3 Applying ML to heterogeneous scheduling 9

1.5 Thesis outline . 10

2 Motivation 13
2.1 Background . 13

2.1.1 Chip Multi-processors (CMPs) 13
2.1.2 Caches . 15
2.1.3 Program structures and behaviors 17
2.1.4 CMP scheduling . 22
2.1.5 Machine learning . 27

vii

2.2 Reimagining Heterogeneous Computing 30

2.2.1 Conceptual discussion . 32

2.2.2 Functional ISA . 34

2.2.3 Example case . 36

2.2.4 Conclusion . 40

3 Methodology 41

3.1 Simulator . 41

3.2 CMP architecture . 45

3.3 Benchmarks . 46

3.3.1 SPEC2006 . 46

3.3.2 SPLASH-2 . 47

3.4 Schedulers . 50

3.5 Artificial neural networks (ANNs) . 52

3.6 Measuring Error and Results . 53

I Preliminary Studies on the Potential of Heterogeneous Ar-
chitectures 55

4 Extending the flexibility of ACMPs for mobile devices using alternative
cache configurations 59

4.1 Motivation . 60

4.1.1 Cache footprint . 61

4.2 Alternative cache configurations . 63

4.3 Methodology . 65

4.3.1 Processor configuration . 65

4.3.2 Benchmark execution . 65

4.4 Experiments and evaluation . 66

4.5 Future work . 71

4.6 Conclusion . 71

viii

5 Performance and energy efficient hardware-based scheduler for symmet-
ric/asymmetric CMPs 73
5.1 Thread lock section-aware scheduling (TLSS) 74

5.1.1 TLSS algorithm . 74
5.1.2 Hardware implementation discussion 76
5.1.3 Hardware versus Software implementation 78

5.2 Evaluation . 78
5.2.1 Performance per Watt Evaluation 79
5.2.2 Performance evaluation of TLSS on a many core ACMP . . . 82
5.2.3 Energy efficiency comparison of the different schedulers on

an ACMP over an SCMP . 84
5.3 Conclusion . 87

II Applying ML to Heterogeneous Scheduling 89

6 A Machine Learning Approach for Performance Prediction and Heteroge-
neous CPU Scheduling 95
6.1 ML based heterogeneous scheduling 96

6.1.1 Parameter engineering . 98
6.1.2 Next quantum thread-behavior predictor (NQP) 99
6.1.3 ANN performance predictors 101
6.1.4 Mapping . 108

6.2 Evaluation . 109
6.2.1 Methodology . 109
6.2.2 Results . 111

6.3 Future work and conclusion . 114

7 A Deep Learning Mapper (DLM) for Heterogeneous Scheduling 117
7.1 Scheduling model . 118

7.1.1 Deep learning mapper (DLM) 120
7.1.2 Overheads . 126

7.2 Evaluation . 127
7.2.1 Methodology . 127

ix

7.3 Future Work and Conclusion . 129

8 Related Work 131
8.1 Heterogeneous architectures . 131
8.2 Scheduling . 132
8.3 Machine learning for systems . 134
8.4 Programming/analytical models and unconventional architectures . 135

9 Conclusion 139

10 Publications 143
10.1 Publications from the thesis . 143
10.2 Publications not included in the thesis 144

List of Figures 147

List of Tables 153

Bibliography 155

x

1
Introduction

The field of computer architecture has been evolving over the last decade to em-
brace multi and many core (i.e., chip multi-processors or CMP) designs and more
than ever, resource heterogeneity in terms of CPU and accelerator diversity found
within systems on a chip (SoC). CMPs have become so readily utilized that they
can be found in severs, desktops, laptops, mobile devices, and automated devices
making part of the Internet of Things (IoT). Each of these devices may be used for
running different workloads under specific circumstances, and within certain con-
straints. With processor fabrication technology currently at 7nm [25] and expected
to reach 5nm by 2020, the advances in transistor densities have provided substan-
tial opportunities for architects to combine even more general purpose cores, GPUs,
accelerators, and cache memory onto a single system on a chip (SoC). Exploring
heterogeneous solutions, however, requires studying microarchitecture as well as
novel tools and approaches for optimization within the context of performance,
energy consumption, and physical size or environment requirements.

Diversity is also found within the workloads that a CMP may need to execute.
Applications may behave in very different manners from one another depending
upon their program structure, computational, memory, I/O requirements, and par-
allelism. The rich heterogeneity of applications and system requirements is nicely
complemented by the heterogeneity found in state-of-the-art CMPs such as ARM’s
big.LITTLE [38] and Nvidia’s Tegra3 [74]. Extrapolating the trend of exploiting
transistor density increases using heterogeneity, systems of the future may include

1

1. INTRODUCTION

hundreds or thousands of accelerators specialized for executing common libraries,
kernels, or even whole programs.

In order to effectively support current and future heterogeneous architectures,
single and multi-threaded applications must be properly managed by a heteroge-
neous scheduler. An effective scheduler should be aware of a system’s diverse com-
putational resources and how threads perform and interfere with one another on
different cores. Heterogeneous scheduling uses its knowledge to periodically de-
termine which threads to assign to specific cores. This process, otherwise known
as mapping, is critical to perform efficiently in order to exploit hardware diver-
sity and maximize system performance. An efficient heterogeneous scheduler can
provide significant performance and energy benefits to heterogeneous CMPs com-
pared with typical schedulers targeted for homogeneous systems. As a result, het-
erogeneous scheduling can provide architects with added flexibility in their design
choices including the number of and types of cores as well as the cache configura-
tion.

The design opportunities provided by heterogeneous schedulers are significant
and provide insightful studies. There is, however, still room for improvement over
state-of-the-art heterogeneous schedulers regarding the mapping scheme. Current
schedulers, which make use of a priority [54] or round-robin [72] based heuristic to
determine the mapping scheme, are not capable of predicting a mapping scheme
to maximize system performance. To do so, a scheduler must know or at least
be able to predict what the system performance would be for different mapping
options and then select the one that results in the highest value. The correct ap-
proach and set of tools to use in order to predict system performance for different
mapping options could require identifying behavioral statistics for an executing
thread and finding relationships between these statistics and the thread’s resulting
performance on the different core types.

Managing and mapping threads is a problem that shares similarities with rec-
ommendation and navigation systems both of which have benefitted using machine
learning (ML) techniques [62, 60, 16]. Though heterogeneous scheduling is a pop-
ular area of research, there has yet been no work exploring the use of ML for map-
ping optimization. In fact, using ML techniques to optimize computer systems has
been as a whole seldom explored (see Chapter 8.3). The work in this thesis serves

2

1.1 Problem statement and objectives

to demonstrate the practicality and improvements that can result by applying ML
towards optimizing computer systems.

Artificial neural networks (ANNs) in particular are beginning to be utilized in a
wide variety of fields due to their great promise in learning relationships between
input data and numerical or categorical outputs [42]. The relationships are often
hard to identify and program for manually, but using ANNs can result in excellent
prediction accuracies. ANN based predictors have been shown to be useful in ac-
curately predicting target categories and values for a wider variety of fields such
as predicting network traffic [12] and stock market prices [39]. Moreover, feedfor-
ward ANNs such as those used in this work are lightweight in both computation
and memory overheads and can be easily accelerated using GPUs or specialized
hardware [103].

1.1 Problem statement and objectives

Given the contextual descriptions mentioned above, the problem statement of this
thesis is how can we understand and utilize the rise of heterogeneous architectures,
the benefits of heterogeneous scheduling, and the promise of machine learning
techniques with respect to maximizing system performance. The purpose of this
thesis is to highlight the importance of effectively exploiting heterogeneous sys-
tems, demonstrate the usefulness that ML can provide to heterogeneous schedul-
ing, and in doing so, highlight the potential that ML can offer for various areas in
computer architecture. To our knowledge, this work is the first to apply artificial
neural network machine/deep learning techniques to heterogeneous scheduling.

The rest of this chapter describes an overview of the scope of the thesis, key
challenges, contributions, and thesis outline.

1.2 Scope of the thesis

This thesis touches upon the fields of machine/deep learning, heterogeneous archi-
tectures, CPU scheduling, and multitasking. Described in this section is the scope

3

1. INTRODUCTION

of which this thesis goes into depth in each of these areas. More details about each
of these topics is provided in section 2.1.

1.2.1 Machine learning

This work examines ML centered around artificial neural networks (ANNs) and
deep ANNs (DNNs). These models are used for predicting performances of threads
or of a whole system and are composed of layers of artificial neurons that are
trained to develop relationships between the input parameters and the output tar-
get. The architectures of the specific ANNs used in this work is described in detail
in Part II entitled "Applying ML to Heterogeneous Scheduling."

1.2.2 CMPs

Heterogeneous architectures can include various general purpose as well as accel-
erator computational cores within a system on a chip (SoC). There are two main
types of heterogeneity that are explored within the scope of this thesis. The first
is based on the hardware resource diversity of all hardware elements found within
a SoC such as a CPU, a graphical processing unit (GPU), digital signal processor
(DSP), and other accelerators. This can be considered more of a macro type of
heterogeneity since the diversity is found between the different resources each of
which serves a different purpose.

In contrast, the second type of heterogeneity that is explored in depth in this
thesis is what can be referred to as micro heterogeneity or in other words, diver-
sity between resources dedicated to a similar purpose. This can include diversity
between different cores in a CPU related to microarchitectural differences. Con-
ventional CMPs either rely on homogeneous cores (known as symmetric CMPs
or SCMPs) or on cores which share an Instruction Set Architecture (ISA) but dif-
fer in terms of performance or functionality (referred to as asymmetric CMPs or
ACMPs). ACMPs have been shown to be able to outperform SCMPs for a fixed
area or power budget [81], [83] and are attractive candidates to exploit diverse
workloads and performance requirements. In this thesis, we explore the reaches of

4

1.3 Key challenges

heterogeneous diversity but our contributions are primarily applied to ACMP ar-
chitectures since they are currently the most popular conventional implementations
of heterogeneous systems.

1.2.3 Scheduling

The growth of heterogeneous architectures has led to a reexamination of scheduling
mechanisms to exploit the resource diversity. Schedulers are typically responsible
for CPU resource allocation for executing processes aimed at maximizing overall
CPU utilization. This work focuses on exploring different practical techniques to
optimize the scheduling mechanisms which are responsible for (i) selecting threads
to execute and (ii) mapping those threads onto the hardware cores. The selection
process is important in order to guarantee fairness in terms of execution time pro-
vided to all available threads, and the mapping process is critical for exploiting
the system resources given different workload characteristics. The scheduler is
called periodically (i.e., after every scheduling quantum which is typically within
the range of 1ms-4ms) to reassess the selection and mapping schemes.

1.2.4 Workloads

Scheduling is critical in CMP systems when performing multitasking and execut-
ing parallel applications. Different applications and individual threads behave dif-
ferently on the distinct hardware cores and may affect the performance of other
neighboring threads (for example by causing interference in the shared resources).
In this thesis, we evaluate various computational and memory intensive single and
multi-threaded benchmarks. We explore how their diverse behaviors affect the
abilities of our performance predictors and heterogeneous schedulers.

1.3 Key challenges

Each of the areas considered within the scope of this thesis consists of particular
constraints and challenges.

5

1. INTRODUCTION

For heterogeneous architectures, this involves identifying the performance, en-
ergy, and size requirements as well as what types of hardware resource diversity
can be practically implemented. It is important to examine the advantages and dis-
advantages that result from composing CMPs using different core types, memory
structures, and accelerators for executing diverse workloads under specific con-
straints. Crafting an analytical framework is a powerful method that can help with
analyzing different heterogeneous implementations.

For scheduling, the challenges include identifying the mechanisms and short-
comings of current techniques, heuristics and tools that could improve these mech-
anisms, and the feasibility of proposed implementations. Judging the practical-
ity of the proposed implementations combines balancing the performance benefits
that arise from the proposal with the overhead costs imposed which can include
quantifying the scheduling or algorithm computation cost, context swaps, and the
runtime statistics needed to be gathered.

A similar set of challenges can be found when applying ML techniques to the
mapping mechanism of a scheduler. Though numerous ML models could be useful
in predicting system performance, each model may result in different accuracies,
implementation practicality, and overhead costs. After a certain level of complexity,
the gains in performance from using ANNs may be outweighed by the overhead
costs owing to the amount of calculations needed to be performed and/or the
parameters needed to be gathered and stored.

Finally there is the challenge of determining the experimental framework in-
cluding simulators and benchmark suites with which to conduct our studies and
validate our proposals. The simulator should be hardware validated, accepted by
the community, and be able to accurately model numerous heterogeneous cores
and scheduling mechanisms. The benchmarks should be representative of the en-
vironments that are targeted by the proposals and include computational, mem-
ory, and I/O intensive single and multi-threaded workloads. It is necessary for the
chosen simulator to present performance, energy, and physical area results of the
different experiments. The scalability of the proposals is also a challenge pertinent
to design practicality and should be tested using a simulator that can accommodate
increasing the number and diversity of cores and benchmarks.

6

1.4 Thesis contributions

1.4 Thesis contributions

Our main contributions can be divided into two parts. Part I consists of a motivat-
ing contribution highlighting a long term vision for massively heterogeneous sys-
tems and two preliminary studies which explore the benefits that heterogeneous
schedulers can provide for energy savings and architecture flexibility. Part II is
composed of studies which justify and validate applying ML models to heteroge-
neous scheduling, resulting in significant performance improvements and implica-
tions for computer architecture as a whole. Specifically, we describe a pioneering
proposal to decouple a scheduler’s thread selection and mapping function, and
apply machine/deep learning to predict thread and system performance at the
quantum granularity. Below we provide a brief overview of each of the main con-
tributions in this work.

1.4.1 Reimagining heterogeneous computing

A semantic gap seems to be emerging between the advances in hardware and soft-
ware in terms of resource and program diversity and the use of high abstraction
levels. This is due to the physical and compatibility constraints that hardware de-
velopers face, which are far more flexible at the software level. However, given
the current state of the industry, architects need to consider radical paradigm-
shifting computing-model proposals. Such proposals will not necessarily offer clear
roadmaps or practical short-term solutions, but they could contain the hints and al-
ternate ideas needed to rethink the long-term vision that computer architects hope
to achieve.

In this motivating work, we address an emerging hardware-software semantic
gap by considering an unconventional computing model that merges current het-
erogeneous state-of-the-art hardware with the concept of abstraction that has been
very useful and ubiquitous in software. To do so, we use the concept of abstraction
to reinterpret the notion of the ISA. Most ISAs in use today remain (for compati-
bility reasons) based on designs developed several decades ago to solve that era’s
physical and software constraints. The current CMP model’s scalability is inher-
ently constrained because of the current ISA’s functional granularity, which intro-

7

1. INTRODUCTION

duces high memory footprint and energy consumption. As a remedy, we propose a
functional ISA (F-ISA) that increases the functional abstraction level of the machine
instructions. Consequently, this extra level of functional abstraction enables a dra-
matic increase in the heterogeneous diversity of a processor’s computational units,
resulting in greater specialized execution particular to the needs of the software
algorithms. We hope that this alternative computational model can significantly
improve and fine-tune system performance relative to latency, memory footprint,
and power.

1.4.2 Preliminary studies

Drawing inspiration from how heterogeneous system may look like in the future
from the subsection mentioned above, the objective of the preliminary studies is to
examine the opportunities and limitations present in current CMP and scheduling
designs. We believe this discussion presents a realistic starting point in order to ac-
quire several key insights instrumental for advancing towards the future of hetero-
geneous architectures. Each of the following two contributions provides separate
investigations into analyzing CMP design tradeoffs, and improving performance
and energy efficiency.

Extending the flexibility of ACMPs for mobile devices through alternative cache
organizations

The focus of this work is to highlight how architects can optimize the energy effi-
ciency and size of ACMP systems by using novel memory configurations. This ap-
proach offers a method to tailor an ACMP system to provide suitable performance,
energy efficiency, and area for very demanding mobile devices. We propose three
alternative cache configurations and examine their effects on system performance
and processor size when executing applications concurrently. Our results show that
adopting an alternative cache hierarchy in conjunction with a scheduler targeting
asymmetrical systems can lead to substantial energy savings of over 17%, power
reductions of over 5%, and over 19% reductions in physical size while still outper-
forming execution times achieved with conventional operating system schedulers
on a CMP with larger caches by over 10%.

8

1.4 Thesis contributions

Performance and energy efficient hardware-based scheduler for Symmetric/Asym-
metric CMPs

Since more and more applications become multi-threaded we expect to find a grow-
ing number of threads executing on a machine. Consequently, the operating system
will require increasingly larger amounts of CPU time to schedule these threads ef-
ficiently. Instead of perpetuating the trend of performing more complex thread
scheduling in the operating system, we propose a hardware implementation of the
Thread Lock Section-aware Scheduling (TLSS) scheduling mechanism [71]. This
lightweight mechanism helps to identify multi-threaded application bottlenecks
such as thread synchronization sections and complements state-of-the-art hetero-
geneous schedulers. It is, to our knowledge, the first hardware based lock section-
aware scheduling that is energy attentive and can be applied to both asymmetric
and symmetric CMPs. It achieves average performance gains of 10.9% compared
to the state-of-the-art Linux OS Scheduler when applied on an SCMP. At the same
time, it is 81% more EDP (energy-delay product) efficient when applied on an
ACMP and compared to the Linux OS Scheduler on an SCMP, where ACMP and
SCMP take relatively the same chip area.

1.4.3 Applying ML to heterogeneous scheduling

Accurately estimating the performance of applications on different heterogeneous
resources can provide a significant advantage to heterogeneous schedulers seeking
to improve system performance. Having demonstrated the opportunities and lim-
its available using current CMP and scheduling designs, the contributions of this
part of the thesis examine applying machine learning techniques to conventional
heterogeneous schedulers in order to predict the system performance for different
mapping schemes.

A machine learning approach for performance prediction and heterogeneous
CPU scheduling

In this study we propose a unique throughput maximizing heterogeneous CPU
scheduling model that uses ML to predict the performance of multiple threads on

9

1. INTRODUCTION

diverse system resources at the scheduling quantum granularity. We demonstrate
how lightweight ANNs can provide highly accurate performance predictions for
a diverse set of applications thereby helping to improve heterogeneous scheduling
efficiency. We show that online training is capable of increasing prediction accu-
racy but deepening the complexity of the ANNs can result in diminishing returns.
Notably, our approach yields 25% to 31% throughput improvements over conven-
tional heterogeneous schedulers for CPU and memory intensive applications on an
ACMP.

A deep learning mapper (DLM) for heterogeneous scheduling

This work pioneers applying a deep learning mapper to a scheduling model that
decouples thread selection and mapping routines. We use a conventional sched-
uler to select threads for execution and a deep learning mapper to map the threads
onto a heterogeneous hardware. The validation of our preliminary study shows
how a simple deep learning based mapper can effectively improve system perfor-
mance for state-of-the-art schedulers by 8%-30% for CPU and memory intensive
applications.

1.5 Thesis outline

The subsequent sections of this thesis are structured as follows. Chapter 2 presents
the necessary background on heterogeneous systems, application behaviors, CMP
scheduling, and machine learning models. It elaborates on the motivating factors of
this thesis and concludes by providing an inspirational vision of what a reimagined
massively heterogeneous computing model for the future can look like. Chapter 3
describes the experimental frameworks and metrics that were used in testing and
evaluating the contributions presented in this thesis. This includes descriptions of
the system simulator, processor models, and benchmark suites.

The thesis is then divided into two parts composed of preliminary investigations
followed by a study on applying ML to heterogeneous scheduling:

10

1.5 Thesis outline

Part I presents two preliminary studies on the increased architectural flexibility
and energy efficiency benefits provided by heterogeneous scheduling in Chapters
4 and 5.

Part II presents two pioneering studies on applying ML to heterogeneous schedul-
ing. Chapter 6 defines a scheduling model based upon a thread behavior predictor,
ANN based thread performance predictors for each core type, and a scheduling
heuristic. Chapter 7 presents an extension of the machine learning based hetero-
geneous scheduler which expands the scope of the predictors to cover thread in-
terference effects and extends their applicability to be compatible with nearly all
conventional schedulers as an add-on module.

Chapter 8 discusses the related work regarding all of the studies presented
in this thesis and Chapter 9 details our conclusions. A list of publications and
references is provided at the end.

11

2
Motivation

This chapter presents the necessary background on homogeneous and heteroge-
neous CMPs, application behaviors, multi-core scheduling, and ML techniques.
We identify the potential of heterogeneous CMPs, scheduling mapping shortcom-
ings, and ML tools as the motivating factors for this thesis. The chapter concludes
by providing a compelling vision of what a reimagined massively heterogeneous
computing model for the future can look like and why designing efficient hetero-
geneous scheduling is at the core of scaling heterogeneity.

2.1 Background

2.1.1 Chip Multi-processors (CMPs)

Computer architects have been greatly benefiting from the steady progress of chip
fabrication techniques which have vastly expanded the number of available transis-
tors to make use of in their designs. Previously, architects made use of the added
transistors by designing larger and more complex single core CPUs until the trend
fell out of favor due to power constraints and limits to parallel execution among
others. Current trends exploit these extra transistor densities by implementing
several identical (i.e., homogeneous) computational cores on a single chip, thereby
improving the performance when running several applications concurrently or par-
allelized workloads. These types of homogeneous CMPs are known as symmetric
or SCMPs.

13

2. MOTIVATION

As long as only a single core type is used, SCMPs can includes either complex
and powerful cores, such as those found in the Intel Xeon [52] or AMD Opteron
[17] processors, or simple and lower-power cores as in Sun’s Niagara [59]. A draw-
back of SCMPs, however, is that all cores will have to be implemented with the
same complexity as the most powerful core required to meet certain constraints.
This is a disadvantage since not all applications nor environments will have sim-
ilar constraints. Hence, the hardware is essentially limited by the weakest link of
all applications which requires higher core performance. This disadvantage is ap-
parent in conventional SCMP designs which are becoming more limited by power
dissipation and efficiency concerns. The power dissipation issues, which are also
highlighted in the study termed Dark Silicon [33], have served to highlight the
bounds of current design practices. Thermal dissipation constraints limits the to-
tal amount of transistors that may be powered concurrently at nominal voltage,
thereby leaving large areas of a transistor rich chip to be off at any given time.
The need to develop faster, smaller, and less power hungry CPUs has motivated
research related to heterogeneous or asymmetric CMPs (ACMPs).

Several studies [81, 83] have been conducted that highlight the ability of ACMPs
to outperform SCMPs for a fixed area or power budget. A wide range companies
have also conducted research on ACMP systems including Intel [64, 106], and HP
[81]. Commercial ACMP implementations such as ARM’s big.LITTLE [38] and
Nvidia’s Tegra3 [74] have also been popularly used.

Compared to SCMPs, ACMPs employ cores that execute the same instruction
set architecture (ISA) but differ in terms of microarchitecture. These differences can
include issue width, whether the core supports out-of-order (OoO) or in-order exe-
cution, brach predictors, cache configuration, and also voltage and clock frequency.
An advantage of using cores that share the ISA as opposed to specialized accelera-
tors is that the application code does not need to be compiled separately for each
core type that has a different ISA. Figure 2.1 illustrates the differences between an
SCMP and an ACMP design.

Determining which combination of different types of cores to include in a CMP
design is a non-trivial task and depends heavily upon the performance, power, and
size requirements. These requirements are based upon the workloads, environ-
ments, and devices that a CMP is targeted towards. Relying only on homogeneous

14

2.1 Background

(a) SCMP with 4 small cores. (b) ACMP with 1 large and 3 small cores.

Figure 2.1: An example of SCMP and ACMP CPU designs. Note that the cores must be all
of the same ISA (e.g., ARM, x86) but may be more of different complexities for the ACMP
system. The designs both have private L1 and L2 caches and a shared L3 cache.

CMP approaches is a simple approach but may result in sub-optimal performance
compared with a heterogeneous CMP. Part of the motivation and proposed solu-
tions of this work is what criteria is needed to evaluate potential CMP designs
and how to determine the optimal CMP configuration (either SCMP or ACMP)
given certain performance requirements. Though employing hardware specializa-
tion can be useful for determining which core type yields the most effective per-
formance/energy trade-off for a specific type of program behavior, it is up to the
scheduler to determine a thread mapping scheme with which to effectively exploit
system diversity.

2.1.2 Caches

CMPs include a cache hierarchy which consists of a set of private and shared cache
structures to keep data that will be reused close to the cores that need them. A
typical cache hierarchy configuration for a CMP may include separate but private
instruction and data level 1 caches (L1), combined but private L2 caches, and a last
level cache (LLC) shared amongst all the cores. In addition to private or shared,
caches can also take on a distributed nature similar to non-uniform cache accesses
(NUCA). A distributed cache is logically a single shared structure but physically
composed of separate cache structures located in different areas of the chip. Load

15

2. MOTIVATION

and store accesses to this cache may end up resulting in different latencies depend-
ing on how far the data physically resides from the core requesting it.

The L1 cache typically include tens of kilobytes (KB), the L2 contains up to a
few megabytes (MB), and the L3 or LLC with at least an order of magnitude more
cache (e.g., tens of MB). Architectural trends have also been to use the increases
in transistor densities to enlarge the sizes of the caches on chip. The levels of the
caches, whether private, shared, or distributed, size of each cache, associativity of
the caches, and replacement policies are various of the properties that may dif-
fer greatly between CMP designs and might affect the system’s and application’s
performance.

In order to ensure that no two threads are simultaneously modifying and using
the same data, a coherency mechanism is utilized by the caches. Various protocols
which change the state (e.g., modified, shared) of a data line or directory based
schemes can be used to enforce coherency between different cores’ private cache
structures. Since the coherency overheads rise as the amount of shared data ac-
cesses from different cores increase, selecting which threads to run and where (i.e.,
which physical core to map the threads to) can directly impact performance.

Cache footprint

This section considers the cache footprint in terms of energy consumption, power
budget, and physical size for an example case of an ACMP with one large and three
small cores with private L1 (32KB) and L2 (256KB) cache per core and a single
L3 (8MB) as the shared LLC (this ACMP is detailed comprehensively in Section
3.2). Modifying or reorganizing the cache hierarchy in order to mitigate the cache
footprint may be a promising endeavor depending upon the performance/energy
requirements of a CMP design.

The cache hierarchy of the example ACMP system when running both SPEC
and SPLASH-2 benchmark suites consumes on average about 30% of the total en-
ergy and power budget of the processor. The last level L3 cache (LLC) alone con-
sumes a significant chunk of the processor’s energy, power, and size budget. Using
measurements taken with McPAT [89] when running the 4 core ACMP, the LLC is
responsible for on average about 10% of the total execution energy. However, in

16

2.1 Background

experimental simulations of a four core ACMP, the LLC has been shown to be re-
sponsible for around 21% of the processor’s subthreshold leakage power (note that
the total processor leakage power was upwards of 25% of the total peak power). In
terms of physical size that it takes up on the die, the four cores, which include the
L1 and L2 cache structures, take up about 67% of the total chip size while the LLC
takes up a substantial 32%, and the interconnection network (NoC) a mere 1%.

2.1.3 Program structures and behaviors

A CMP system is regularly used to run programs which were designed for different
purposes. Additionally, each of these applications may utilize multiple software
threads to divide their work. Voice over IP programs, web browsers, media players
and editors, and even daemons which seek to perform background optimizations
and updates are just a small example of the diverse range of applications that a
CMP will be required to execute concurrently.

Program structure refers to the algorithms, variables/objects, methods/func-
tions, and dataflow used in the code itself. In contrast, a program’s or thread’s
behavior is characterized by periodic patterns related to the instructions per cycle
(IPC), instruction mix, branch prediction, cache and memory accesses and hit/miss
rates, and other statistics related to its performance on a particular hardware. Vari-
ations in program structure can result in different behaviors in terms of compu-
tational, memory, and I/O intensity, all of which may vary significantly. Conse-
quentially, program behavior is directly related to its structure and the physical
hardware which it is executed on. Even applications targeted to solve similar prob-
lems may be coded so differently from one another that they may behave differently
when executed on identical hardware. The memory access patterns are of partic-
ular interest in this case since applications may interfere with one another either
by polluting shared memory structures such as the last level cache, or by accessing
shared data structures which can be the case for multi-threaded programs.

Figure 2.2 illustrates the performance differences that result from executing
SPEC2006 and SPLASH-2 applications on a large core compared to a small core (for
core details see Section 6.2.1). On average, the applications achieve nearly 2-2.3x
better performance (instructions per cycle or IPC) when executing on the large core

17

2. MOTIVATION

compared with the small core. Variations in IPC differences can also be observed
between applications. For some applications, these IPC differences can be either
very minor (mcf 29%, barnes 6%, and radix 1%) or very sizable (gemsFDTD 171%,
omnetpp 161%, and water.nsq 200%). These variations can be partially explained
by the code’s structure and algorithms, including loops, data dependencies, I/O
and system calls, and memory access patterns among others.

These discrepancies between the performance gains of each benchmark when
running on the large core vs. the small core clearly demonstrates the potential
for system throughput optimization if an effective scheduling mapping scheme
is chosen. For instance, if a combination of these benchmarks is run in parallel
on an ACMP, then a scheduler with knowledge of performance behaviors of each
application for all core types may be able to find an optimal mapping scheme that
results in significantly better system performance than a random mapping scheme.

When investigating whether a program is computational, memory, or I/O in-
tensive, it is often useful to break down their execution in terms of a CPI (cycles
per instruction) stack. This stack separates the amount of total execution time an
application spent on each type of instruction. Depending on the CPI stack, it is
therefore possible to diagnose the application as being computational, memory, or
I/O intensive.

Understanding program structures and behavioral characteristics is crucial when
executing diverse programs on heterogeneous systems since each program may be-
have differently on distinct core types. For example, applications containing large
quantities of instruction or memory level parallelism (ILP and MLP) could be more
suited for execution on out-of-order (OoO) cores. On the other hand, applications
with high amounts of thread level parallelism (TLP) or explicit instruction level
parallelism may be ideal candidates for execution on lightweight in order cores.
By identifying the behaviors of applications on the different cores, it is possible
to better exploit the heterogeneous hardware. For instance, consider a two core
system composed of a large OoO core and small in order core. In this case, sys-
tem performance could be optimized when the small in order core is used to run
computationally intensive workloads while the larger OoO core is used to execute
memory intensive workloads, that would otherwise suffer from substantial perfor-
mance degradation due to memory request stalls if run on an in order core.

18

2.1 Background

(a) Core to core IPC differences for SPEC2006 benchmarks.

(b) Core to core IPC differences for SPLASH-2 benchmarks.

Figure 2.2: The performance differences that result from executing each benchmark on a
large vs. small core. Higher IPC numbers represent faster performance.

19

2. MOTIVATION

Figure 2.3: The IPC per quantum behavior of four SPEC benchmarks when running on the
big core compared to the small core.

20

2.1 Background

While not all programs exhibit the same behavior, studies [29, 94] have shown

that the behavioral periodicity in different applications is typically consistent. In

fact, the behavioral periodicity has been shown to be roughly on the order of several

millions of instructions and is present in various different and even non correlated

metrics stemming from looping structures inside of applications. Heterogeneous

architectures such as ACMPs provide excellent environments for exploiting the

behavioral diversity of concurrently executing programs.

Figure 2.3 helps to visualize this behavioral periodicity. It shows the IPC vari-

ability of the perlbench, cactusADM, gamess, and sjeng SPEC benchmarks through-

out their simulated execution on an Intel Nehalem using a 1ms execution quantum.

Though there are clearly periodic behavioral phases that span tens and sometimes

hundreds of quanta, it is also possible to observe that for finer granularities, the

IPC variation from quantum to quantum is quite minimal, and more so on the

small core.

CMPs typically employ a shared memory model which may result in coopera-

tive or interference effects when running applications and threads in parallel that

access shared resources using a common address space. Parallel programs, in spe-

cific, may consist of several threads which need to synchronize or share locked data

structures, commonly resulting in data races due to data dependencies. Accessing

and modifying shared data from different cores may cause cache lines to be trans-

ferred between private caches which penalizes application performance and total

system throughput. These effects are lower for work stealing workloads, however,

since they allow idle cores to steal work from busy cores. As described in [48],

inter-thread synchronization bottlenecks such as contended critical sections may

cause thread imbalances at runtime leading to adverse performance effects. How-

ever, parallelized applications can be effectively exploited by CMPs since they can

execute the different parallel sections of code using the various hardware resources

available. Distinct thread and memory management/sharing approaches can also

result in significant effects on system performance and utilization.

21

2. MOTIVATION

2.1.4 CMP scheduling

In order to properly manage threads and system resources, CMPs rely upon a
scheduler that can be implemented either in software, for example in the operating
system (OS), or hardware.

CMP schedulers rely chiefly upon two mechanisms to fulfill their policy objec-
tives: 1) thread selection and 2) thread to core mapping (from here on referred to
simply as mapping).

The thread selection mechanism is responsible for selecting a subset of threads
to run from a larger pool of available threads. It does so by using heuristics which
order the threads using priorities or scores related to how critical the threads are
(e.g., time constrained or system level tasks may be given a higher priority than
background tasks which search for application updates) or how much execution
time or progress the threads have made so far. To identify all available threads, the
scheduler keeps track of the current state of all the different threads (e.g., whether
a thread is ready for execution, paused, or stalled on a disk access). Thread selec-
tion generally ensures that no threads are continually starved of system resources
thereby guaranteeing a certain level of fairness and load balancing.

The scheduler may be triggered periodically via a specified scheduling quan-
tum to preempt the current execution of the running thread(s) or also be called
asynchronously as in the case of a thread stall. For the rest of this work, we will
utilize the terms scheduling quantum and execution quantum interchangably.

Different CPU schedulers may have different thread to core optimization ob-
jectives. Some may try to maximize system throughput (IPC), others may want to
finish the shortest thread or longest thread in the shortest time, and others may
try to optimize for energy efficiency. Deciding on the correct scheduling policy to
apply depends upon the target systems, programs, and applicability to different
environments.

Mapping

Finding the optimal thread to core mapping on a heterogeneous system is no sim-
ple endeavor. This is especially the case when executing diverse workloads since
the performance of each application is likely to vary from quantum to quantum

22

2.1 Background

(a) SPEC2006.

(b) SPLASH-2.

Figure 2.4: The importance of how different mapping schemes for a given set of appli-
cations can result in significantly different system throughputs. The y-axis represents the
probability of a given ratio of throughput differences (x-axis) between the best and worst
mapping schemes for all possible combinations of four applications from SPEC2006 and
SPLASH-2 when running on a 1-large and 3-small core system. X-axis values should be
read as the factor of system throughput improvement of selecting the best mapping scheme
compared to the worst mapping scheme for a given four application combination. The
white dot in the middle of the x-axis represents the mean and the black dots represent
observed values which occur more frequently near the mean.

23

2. MOTIVATION

Benchmark Min Max Mean

SPEC2006 1% 36% 16%
SPLASH-2 3% 71% 29%

Table 2.1: The minimum, maximum, and average differences (in percentage terms) be-
tween the best and worst mapping schemes for all possible combinations of SPEC2006 and
SPLASH-2 benchmarks on a 1-large and 3-small core system.

and from core to core. The specific performance differences that result from exe-
cuting an application on different core types can be measured by distance or as a
ratio. These differences can vary from application to application (inter-application)
as well as from phase to phase within an application (intra-application).

The inter-application variations in core to core IPC differences shown in Figure
2.2 also exist at the quantum level within each application (i.e., intra-application)
as shown in Figure 2.3. It is important to highlight that these differences can vary
as the application enters and exits different phases of execution. The more inter
and intra application variations of core to core IPC differences there are, the harder
it is for a scheduler to identify the optimal mapping scheme, but the more op-
portunities for improvement there are. A scheduler that needs to produce a new
mapping scheme every quantum can further take advantage of these fine gran-
ularity performance discrepancies between applications and threads. Exploiting
these variances may lead to identifying a mapping scheme every quantum which
maximizes system performance.

To showcase how identifying these core to core IPC differences can translate
into mapping benefits, consider the case where four applications (e.g., A, B, C, and
D) are selected to run on an ACMP with one large core and three small cores. Four
mapping schemes which assign one application to the large core and the other three
to the small cores can be A-BCD, B-CDA, C-DAB, D-ABC. Each mapping scheme
will produce a different resulting system IPC. The overall benefits of an effective
mapper will be based upon the difference between the best and worst mapping
schemes. For instance if A-BCD is the best mapping scheme resulting in a system
IPC of 4 and C-DAB is the worst with a system IPC of 2, then the difference in
percentage terms would be 100% (i.e., (4 � 2)/2).

24

2.1 Background

To demonstrate this in practical terms, we found the differences between the
best and worst mapping schemes for all possible combinations of four applications
from both the SPEC and SPLASH suites. Figure 2.4 exposes the more detailed dis-
tribution these results for both SPEC and SPLASH. Both subfigures plot the proba-
bility density distribution of the best vs worst mapping schemes which highlights
the importance of how different mapping schemes for a given set of applications
can result in significantly different system throughputs. While both distributions
are fairly similar, SPEC does appear to suffer from slightly more variation and less
overall throughput differences although it is still very significant. Table 2.1 presents
the average, minimum, and maximum differences (in percentage terms) between
the best and worst mapping schemes for all possible combinations. The minimum
differences range from 1%-3%, average differences from 16%-29%, and maximum
differences from 36%-71% for all possible mapping schemes for SPEC and SPLASH
respectively. These results expose the theoretical benefits that may be gained from
an effective scheduler at the application level granularity. Practical schedulers,
however, work at the quantum level granularity and may additionally take advan-
tage of intra-application core to core performance differences which could expose
greater opportunities for mapping optimization.

In order to identify an optimal mapping scheme, a heterogeneous scheduler
should be able to estimate the system performance that each individual mapping
scheme would produce. Conventional schedulers, however, typically do not make
use of the mechanisms needed to exploit this potential. As we shall see, machine
learning can be an effective tool for schedulers to utilize in order to help esti-
mate system performance. In the studies presented in Part II we use the powerful
prediction capabilities of artificial neural networks (ANNs) to greatly increase the
benefits that CPU schedulers can provide for maximizing heterogeneous multi core
performance.

CMP schedulers in practice

The vast majority of conventional CMP schedulers are designed for SCMP system
configurations and therefore cannot take advantage of differences between com-
putational cores. The Completely Fair Scheduler (CFS) [54], which was integrated

25

2. MOTIVATION

with the Linux 2.6 kernel, is an example of a homogeneous scheduler. The state-
of-the-art CFS selection scheme combines priorities with execution time metrics in
order to select the threads to run next; however, the mapping scheme is relatively
simplistic. When mapping, the CFS evenly distributes the threads onto the cores
such that all cores have approximately the same number of threads to run. These
threads are effectively pinned to the core because they are only swapped with
threads on their assigned core and not with those of another core (i.e., threads do
not move from the core they were initially assigned to).

In order to fully utilize heterogeneous systems, however, schedulers should be
aware of and make use of a system’s diverse resources. Several heterogeneous
schedulers targeting ACMP systems have been proposed that show significant im-
provements over conventional SCMP schedulers. Some of these make use of online
or offline profiling as well as sampling or estimation techniques to determine the
optimum thread to core mapping (in relation to performance and/or power) when-
ever a specific event is detected or scheduling time quantum is completed [66], [20],
[55] among others.

The fairness-aware scheduler by V. Craeynest et al. [56] is a heterogeneous
scheduler which works similarly to the CFS but instead of mapping all threads
evenly on all cores and pinning them there, it maps the highest priority thread (i.e.,
the one that has made the fewest progress) to the most powerful core. For example,
in a four core system with one powerful core and three smaller energy efficient
cores, this scheduler will send the thread with the highest priority to the large core
and the next three highest priority threads to the other 3 small cores. This is similar
to the Global Task Scheduler [51] used by ARM in its big.LITTLE heterogeneous
systems which modifies the Linux kernel to send ready threads who have spent
the most time waiting for a core to the large cores and the subsequent threads
to the small cores. Thread lock section-aware scheduling [71] expands upon the
fairness-aware scheduler by prioritizing threads who have recently switched back
from system level to user level code to run on the powerful cores. This is done in
an attempt to catch and accelerate the critical sections of a thread.

Another scheduler targeted at heterogeneous systems is the hardware round-
robin scheduler by Markovic et al. [72]. Instead of using priorities for thread
selection, this approach chooses which threads to run next in a round-robin manner

26

2.1 Background

(thereby guaranteeing fairness) and then maps the selected threads to the cores.
Using the same 4 core system as described above, this scheduler will rotate the
threads in a manner similar to a first in first out queue, from small core to small
core to small core to big core and then back into the thread waiting pool until all
threads have had a chance to execute.

Schedulers produce overheads which may mitigate efficiency gains due to the
cost of managing and selecting threads, calculating optimal thread to core map-
ping, and context switch penalties. It is therefore imperative for effective sched-
ulers to balance finding an optimal mapping without triggering unnecessary con-
text swaps and being as lightweight as possible.

Context switches

Implementing dynamic scheduling requires switching of the context of the cores
including swapping the architectural state (register file), flushing the pipeline, and
reloading the working-set into the private caches. A context switch incurs a fixed
cost for storing and restoring the architecture state (at most a few kilobytes) [88]
with most of the overheads being due to reloading the caches. Figure 2.5 presents
the context switch overheads costs when executing different working set sizes on
an Intel i7-4600U core[18]. The overheads grow gradually with the size of the
working set until an excessively large working set causes additional page faults
which increase the overheads significantly. The study [55] has shown the migration
overhead to be less than 1.5% across different types of single-threaded workloads,
ranging from memory to compute intensive, for a 4 MB shared LLC using a 1ms
quantum.

2.1.5 Machine learning

Part of the attraction of machine/deep learning is the flexibility that its algorithms
provide to be useful in a variety of distinct scenarios and contexts. For instance,
advances in computer vision and natural language processing using convolutional
neural network techniques [62, 60, 16] have led to high levels of prediction accuracy
enabling the creation of remarkably capable autonomous vehicles and virtual assis-
tants. Generally speaking, machine/deep learning techniques can be used to build

27

2. MOTIVATION

Figure 2.5: Context switch cost on a dual core Intel(R) Core(TM) i7-4600U CMP [18].
The overhead includes costs related to swapping architectural state, flushing the cores’
pipelines, and reloading data into the private caches.

highly accurate predictors, pattern recognition systems, and also systems for data
generation. Though ML techniques have been gaining traction over the last few
years, its application toward improving hardware performance remains in its ear-
liest stages. As of yet, there has been no seminal work applying machine learning
for predicting thread performance on heterogeneous cores and maximizing system
throughput.

Artificial neural networks (ANNs) in particular, are beginning to be utilized
in a wide variety of fields due to their great promise in learning relationships
between input data and both numerical or categorical outputs. The relationships
learned by the ANNs are often hard to identify and program manually but can
provide excellent prediction accuracies. Moreover, ANNs and deep ANNs (DNNs)
are readily utilized for prediction purposes and can be relatively lightweight and
flexible to implement. They consist of a set of input parameters (considered to
be the first layer) connected to a hidden layer of artificial neurons which are then
connected to other hidden layers before connecting to one or more output neurons.
The inputs to the hidden and to the output neurons are each assigned a numerical
weight that is multiplied with its corresponding input parameter and then added

28

2.1 Background

together with the result of the neuron’s other incoming connections. The sum is
then fed into an activation function (usually a rectified linear, sigmoid, or similar).
The output of these neurons is then fed as input to the next layer of neurons or to
the the output neuron(s). The result of the output neuron(s) is the prediction that
the ANN makes which may be either a numerical value estimate or a classification
estimate using one-hot bit encoding.

An ANN can learn to produce accurate predictions by adjusting its weights us-
ing a supervised learning method and training data. Other unsupervised methods
of learning such as clustering also exist but fall outside the scope of this work.
Supervised learning is performed via a learning algorithm such as backpropaga-
tion that adjusts the weights in order to find an optimal minima which reduces
the prediction error based on an estimated output, the target output, and an error
function. The more hidden layers and hidden units there are, the more intricate
relationships that may be learned, however having too deep of an ANN can also
lead to overfitting. Overfitting is when the model achieves very low error for data
it has seen but produces high error when predicting for previously unseen data.
Generalizing the ANN to be able to consistently predict at similar accuracies for
seen (i.e., training) and unseen (i.e., testing) data is a central issue in ANN design
and many different types of approaches are used.

One such common practice in machine learning is to divide the data into train-
ing (70%), validation (15%), and test (15%) sets in order to not overfit the model.
Evaluating how a model performs on the validation and test sets allows to modify
the ANN to improve its generalization when predicting for unseen data. Other ap-
proaches include using regularization techniques to regulate the importance of pa-
rameters within the learning algorithm and more intricate methods such as dropout
which trains the ANNs in phases excluding certain hidden units to ensure all neu-
rons are able to contribute to a prediction. A way in which to evaluate the error of
a model and how many data samples are needed to provide a consistent accuracy
is in the use of learning curves. The learning curves show how the training and
validation errors of the ANNs changes as the amount of training data increases.
After a certain amount of training data, the curves level off so that increasing the
amount of training data will not impact the ANN’s accuracy.

29

2. MOTIVATION

Another approach for providing prediction flexibility and generalization to new
data is the use of online learning. While ANNs can be trained statically before be-
ing ever used, they can also keep learning dynamically by periodically training as
new data samples are provided. This method improves the accuracy and gener-
alizability of the ANNs when predicting for applications that are run more than
once. Learning dynamically is an area of active research since there are tradeoffs
between how much to adapt the ANN for newer data and how that will impact the
ANNs generalizability to past data as well as heavier computational costs. Online
learning can also be extremely important in scenarios where the applications and
behaviors of the workloads being run change over time.

Advances in learning algorithms have enabled faster training times and allowed
for the practical use of intricate ANN architectures. The training calculations them-
selves may also be executed in parallel for the neurons within the same layer. The
latency of these calculations can be further mitigated through the use of hard-
ware support including GPUs, FPGAs, or specialized neural network accelerators.
Deep learning methods expand on more simplistic machine learning techniques by
adding depth and complexities to existing models. Using DNNs or ensembles of
different machine learning models is a typical example of deep learning.

We believe the predictive power of ML techniques such as artificial neural net-
works (ANNs) will be of significant use to computer architects for optimizing sys-
tem performance for example by estimating system performance, branch predic-
tions, and cache/memory accesses.

2.2 Reimagining Heterogeneous Computing

This section proposes a motivating long-term vision to support the expansion of
massively heterogeneous architectures which support and complement the diver-
sity and functionality found in software applications, tasks, and kernels.

In an innovative step forward, the hardware community has started to tackle the
power wall and the memory wall by diversifying the computational cores. Whereas
initial chip multiprocessors (CMPs) integrated several identical computation cores
per chip, we now see an increasing tendency to explore the reaches of integrating
an expansive range of diverse computational cores.

30

2.2 Reimagining Heterogeneous Computing

On the software front, the standardization of programming practices has pro-
moted the development of vast amounts of commonly utilized libraries, tools, and
frameworks. This has marked an unprecedented growth in the level of abstraction
available to the average programmer. Emphasis on code optimization and portabil-
ity has also led to the development of programming models and runtime systems
that let programmers define and extract substantial amounts of parallelism in their
code, such as OpenCL [102] Cilk Plus [86] and OpenMP [24].

Used effectively, these programming models allow significant gains in applica-
tion performance and resource utilization. Yet, while these software models have
been useful and complementary to advances on the hardware front, their consid-
erable runtime overheads, implementation complexity, and limited adoption have
hindered their appeal and applicability. Conversely, parallel applications have been
shown to share similar characteristics, which increase their appeal for standardized
libraries and hardware practices.

For now, a semantic gap seems to be emerging between the advances in hard-
ware and software. The scope and potential of new technologies have started to
lead to heterogeneous many-core systems, but hardware architects have not sim-
ilarly embraced, as of yet, the use of high abstraction levels. This is because of
the physical and compatibility constraints that hardware developers face, which
are far more flexible at the software level. However, given the current state of the
industry, architects need to consider radical paradigm-shifting computing-model
proposals. Such proposals will not necessarily offer clear roadmaps or short-term
pragmatic solutions, but they could contain the hints and alternate ideas needed
to rethink the long-term vision that computer architects hope to achieve. In this
section, we address this hardware-software semantic gap by considering an un-
conventional computing model that merges current heterogeneous state-of-the-art
hardware with the concept of abstraction that has been so useful and ubiquitous in
software, but not present in hardware. To do so, we use the concept of abstraction
to reinterpret the notion of the ISA.

Most ISAs in use today remain (for compatibility reasons) based on designs de-
veloped several decades ago to solve that era’s physical and software constraints.
The current CMP model’s scalability is inherently constrained because of the cur-
rent ISA’s functional granularity, which generally results in a large memory foot-

31

2. MOTIVATION

print and high energy consumption. As a remedy, we propose a functional ISA
(F-ISA) that increases the functional abstraction level of the machine instructions.
Consequently, this extra level of functional abstraction enables a dramatic increase
in the heterogeneous diversity of a processor’s computational units, resulting in
greater specialized execution particular to the needs of the software algorithms.
We hope that this alternative computational model can significantly improve and
fine-tune system performance relative to latency, memory footprint, and power.

2.2.1 Conceptual discussion

Computation as we know it today is grounded on the interaction and communica-
tion between two key elements: data (to be used, manipulated, and/or produced)
and functions (specifying what is done with the data). We identify three data-
function computational models: (i) data to function, (ii) function to data, and (iii)
data and function.

Data to function

This model is embodied in a system that comprises separate memory (instruction
and data) and computational structures in which, via one or more machine-level
instructions, data is sent from the memory (such as DRAM) to be executed in a
functional unit (such as an integer adder). This method is the standard approach
used by current CPUs, and both Von Neumann and Harvard architectures fall
within its scope. This model’s limiting factor is that a functional unit’s complexity
is determined by the ISA’s functional abstraction level. An add instruction corre-
sponds to an adder functional unit, a branch instruction to a branch unit, and so
on. Because nearly all conventional ISAs rely on low-level functional instructions,
the physical characteristics of the data and functional units are intrinsically bound
by the exposed level of functionality.

The limited diversity and complexity of the functional units mean that they
can understand only primitive data objects (e.g., integers, doubles, and branches).
Consequently, this produces a homogenizing effect on the executable data objects
and furthers the need for repetitive executions to perform higher-complexity func-
tions (such as list sort and matrix multiplication). If the data is homogenized

32

2.2 Reimagining Heterogeneous Computing

into primitive data objects, then more accesses to memory are required to load
the necessary data into the cores to perform the desired (higher abstraction level)
functions. These factors can significantly contribute to a system’s overall memory
footprint and power usage, a problem that is further exacerbated by the fact that
conventional CPUs consolidate the available functional units into a handful of com-
putational cores. Compared with a futuristic heterogeneous core configuration, in
which each core contains specialized functional units suited to specific data struc-
tures, memory contention is greater when all cores are equally capable of executing
the same functions on the same data. This is due to having larger number of si-
multaneous accesses to primitive data objects which are typically stored in shared
memory structures.

Function to data

In this model, functional machine-level instructions are sent to a unified (that is,
homogeneous) memory structure that contains both data and functional units, such
that the execution happens directly within the memory structure. A key limiting
factor of this model is that in order to maintain compatibility and reliability, all
memory structures and substructures must contain access to the same set of func-
tional units. A variation of this model is used occasionally to complement stan-
dard CPU processing. Processing in memory technologies [98] and other vector
functional units directly built in memory are examples of function to data cases.

Data and function

This is a hybrid approach that is similar to the function-to-data model but allows
for separate and distributed (that is, heterogeneous) memory structures. It is there-
fore possible to separate different data objects (such as matrices from lists) into
separate memory structures that contain the functional units specific to those data
objects (for example, the matrix multiplication unit versus the list sorting unit).
Although this approach is elegantly promising, its principal drawback is that the
size and composition of the physical memory structures should correspond to the
data structure itself. Any slight modification or extension to an existing data ob-
ject could result in significant performance penalties. This is because changes in

33

2. MOTIVATION

the data object can affect not only the functional part of the execution but also the
organization and quantity of data that the object uses. Moreover, if this radical
approach is implemented directly, it will create considerable code portability and
compatibility complications. Although there seem to be interesting developments
in implementing this model using specific accelerators and FPGAs, research in this
area is only just starting to scratch the surface of its true potential.

Discussion

To expand the hardware’s heterogeneous diversity, we must rely on one of the three
computational models discussed. The feasibility of the function-to-data scheme is
lacking, because the need to replicate every type of functional unit for every mem-
ory structure is unrealistic and unreasonable. Variations of this model, however,
offer clear opportunities for some fields of application, most notably embedded
systems and graphical processing.

On the other hand, we can reconsider using the standard data-to-function model.
But as we noted, if we were to use this approach by replicating the number of cores
on a chip, we would hit an impasse. If we could extract enough parallelism from
the workloads to keep the system constantly fed and balanced, our progress would
be halted by the memory wall and dark silicon, whereas if we underfed the system,
we would be inefficiently using the available transistor richness.

The data-and-function model could perhaps offer the most benefit in terms of
specialization based on a particular workload or programming model, but its struc-
tural inflexibility and code portability and compatibility concerns must be over-
come. However, we could attenuate these concerns by raising the ISA’s functional
abstraction level. This could allow for a substantially greater diversity and quantity
of functional units, while also providing flexibility in how the code is executed.

2.2.2 Functional ISA

Current ISAs, which most conventional CPUs are designed to execute, provide
low levels of functionality that limit the physical functional units’ scope and di-
versity. Far from considering them ineffective or wanting to replace such instru-
mental CPUs, we seek to foster code portability and compatibility using a flexible

34

2.2 Reimagining Heterogeneous Computing

model and applying it gradually. Thus, we developed a higher functional-level
intermediate ISA based on a conceptual combination of hardware principles and
software abstraction techniques. Similar to typical ISAs, our F-ISA consists of in-
structions that define a functional method and a data element. However, this F-ISA
follows a top-down approach, starting from a software perspective, to determine
the functionality and data context of each particular F-ISA instruction. A program
is typically developed using one or more abstraction levels (that is, using libraries,
classes, and subclasses), which, when unfolded, for instance by a compiler, expose
lower and lower abstraction levels until only pseudo machine code (such as LLVM
[61]) is left.

The theoretical objective of the F-ISA is to capture and follow each of these ab-
straction levels for as many function or method instances as possible. Practically
speaking, F-ISA’s appeal is its applicability in commonly used libraries and frame-
works that have functions, objects, and methods found across different programs.
An example of such a ubiquitously used library is the Java standard library, which
includes object structures and methods corresponding to vectors, hash tables, and
lists. Mobile applications are valuable, and more recent examples in which com-
mon data structures, functions, and methods (belonging to iOS or Android appli-
cation programming interfaces) are frequently used across different applications
that still rely on conventional general purpose CPUs for execution.

Compared to the composition of a typical ISA, the structure of F-ISA is flexible
and open-ended so that its final composition can be adapted on a per-application
basis. The end representation of a program as F-ISA code is analogous to a call
graph, in which each node represents one particular functional instruction. Every
instruction consists of three elements: an instruction identifier, a function identifier,
and a data context address.

The instruction identifier is a unique address associated with the memory loca-
tion where the F- ISA instruction can be found, similar to a typical instruction’s PC
(program counter) address, and is needed to preserve code sequentiality.

The function identifier is similar to a traditional opcode and denotes the spe-
cific executable function that the instruction will request (for example, MATMUL
would be an identifier for matrix multiplication). Because each unique function

35

2. MOTIVATION

or method in a program is assigned a particular function identifier, many more
function identifiers will be needed than there are typical opcodes.

The data context address provides the address of the context where all the
relevant data needed to properly execute the function can be found. To create the
data context, the data objects can be assigned particular addresses at compile time
(although they could also be allocated dynamically), and then these addresses are
organized into a data context that is assigned to a corresponding F-ISA instruction.

We can consider the actual size of an F-ISA instruction to be the sum of the
function identifier and the data context address. For example, an 80-bit F-ISA
instruction would allow for a 16-bit function identifier and the direct 64-bit address
for the data context.

2.2.3 Example case

To illustrate how a program could be represented as F-ISA instructions, consider
Figure 2.6. Once compiled, the F-ISA representation of this program, which has
the instruction-level syntax <function identifier, data context address>, can assume the
form shown in Figure 2.7. Note that &ABC corresponds to the address of the
data context that contains the addresses of matrices A, B, and C. Similarly, the
address &A contains the data context address of matrix A, and so on for the other
instructions.

Each instruction defines a function that can either directly correspond to a phys-
ical functional unit present in the hardware (for example, an add instruction to an
adder) or be further unfolded into the instructions representing its subfunctions.
If the first method is available, the instruction is dispatched to the functional unit
for execution, which assumes that it will be able to most efficiently perform the
function based on the information provided in the instruction. The second method
allows for an F-ISA instruction to be unfolded into another set of F-ISA instruc-
tions. This is shown in the case of the instruction [<func fill data, &ABC>, which
can be broken down further into three separate F-ISA instructions: <func A, &A>,
<func B, &B>, and <func C, &C>.

This unfolding process can be continued for each instruction until the first
method (that is, when the level of functionality of the instruction matches that of a

36

2.2 Reimagining Heterogeneous Computing

hardware functional unit) can be applied. If the function main() marks the highest
functionality level that an F- ISA instruction can specify, the lowest is equivalent
to the functional level expressed in conventional ISAs. For practical reasons, an
F-ISA instruction can also be expressed as a routine comprising a set of machine-
level instructions (that is, typical ISA instructions). This feature allows for the
preservation of conventional ISA processors because any F-ISA instruction can be
sent to a typical computational core as a machine-level routine. Additionally, an
F-ISA instruction’s ability to be expressed either as a collection of machine-level
instructions or unfolded into lower-level functional instructions allows for gradual
implementation and compatibility.

Given that the same program should be able to run on different physical sys-
tems, which could each consist of different computational cores and functional
units, a specialized hardware or software runtime will be needed to determine
whether to unfold or dispatch the F-ISA instructions to the appropriate and avail-
able functional units. Although a detailed description of such a runtime falls out-
side the scope of this work, we have been researching and designing possible hard-
ware implementations. Figure 2.8 shows the steps a theoretical F-ISA runtime unit
would take when determining how to process each F-ISA instruction. To most ef-
fectively take advantage of the program just presented, the hardware should have a
matrix accelerator that includes functional units specifically designed to efficiently
execute matrix-based operations, such as dot and cross products.

Furthermore, because most, if not all, matrix object data should be stored close
to the accelerator (assuming that the accelerator contains local memory or is close
to physically distributed memory), there would be lower memory bandwidth con-
tention due to reduced data movement and cache conflict and capacity misses
within the processor. Therefore, combining the use of F-ISA instructions with spe-
cialized functional units or accelerators could enable significant latency, power, and
memory footprint performance benefits.

At this point, we do not expect to present a comprehensive and faultless concep-
tual model. Because this is a new and unconventional proposal, various challenges
must be met to strengthen the model’s practical realization. Some key topics that
we need to elaborate further include runtime and compiler support, memory man-
agement (including data allocation and mapping), data dependencies, program

37

2. MOTIVATION

Figure 2.6: Pseudocode of a program comprising cross/dot product functions and data
initialization functions for three matrices.

Figure 2.7: A representation of the matrix multiply program when compiled into F-ISA
code. Each F-ISA instruction has the syntax <function identifier, data context address>.

sequentiality, and I/O and OS exception and interrupt handling. Although certain

existing techniques, including dynamic compilation, dynamic memory allocation,

and dataflow runtime models, could help alleviate some of these concerns, we will

38

2.2 Reimagining Heterogeneous Computing

Figure 2.8: The decision-making process of an F-ISA runtime dispatcher during the execu-
tion of an F-ISA instruction. The runtime is tasked with deciding whether to dispatch a
function directly to a computational core for execution or to unfold it into its subfunctions
and repeat the process. The runtime will dispatch functions for execution only on cores
that can execute the function in the most effective manner based on the state of the system;
otherwise, the function will be unfolded.

undoubtedly have to develop new schemes to strengthen the proposed model.

Of foremost importance to realize this aim is the need to address how the run-
time will determine whether to unfold a F-ISA instruction or send it to directly
execute on a specialized core and which core to send it to if more than one is avail-
able. The mechanism needed is tightly related to the area of CPU scheduling in
conventional CMPs but requires significant advances in scheduling for heteroge-
neous systems which as of today remain relatively limited in scope, sophistication,
and practicality.

39

2. MOTIVATION

2.2.4 Conclusion

The vast increases in transistor densities on chips have offered a challenge to com-
puter hardware architects. Keeping in mind the power limitations of uniprocessor
designs, architects have responded by integrating several optimized computational
cores within one processor. The push into embedded computing has added further
latency and power constraints, resulting in an increasing interest in heterogeneous
many-core processors. However, the current trend of exploiting heterogeneity is
inherently limited in scope by the low functionality level provided by the ISAs of
existing processor architectures. This results in a narrow set of possible functional
units that can be used and also serves to homogenize the data, which, for good
reasons, had been meticulously distinguished at the software level.

This work offers a new and unconventional computing model that raises the
level of functional abstraction of the hardware instructions to enable greater flex-
ibility and diversity for implementations of hardware functional units and accel-
erators. This method can enable significant advances in relation to object data
mapping and execution, resulting in latency, memory footprint, and power/per-
formance gains. The hope of our long-term vision is to support a powerful hetero-
geneous many-core processor that complements and embodies the diversity and
functionality found in applications.

For this vision to be realized, however, significant advances in heterogeneous
scheduling techniques and scalability will be needed. With the industry just start-
ing to adopt heterogeneous multi-cores, it is imperative to focus on building effi-
cient and scalable heterogeneous scheduling methods which will serve as a founda-
tion for future heterogeneous architectures. With this futuristic computing model
in mind, the rest of this work focuses on exploring the relatively new field of
heterogeneous scheduling as applied to the current state-of-the-art heterogeneous
CMPs.

40

3
Methodology

Before proceeding with the main studies of this thesis, it is important to describe
the experimental methodology utilized for validating our proposals. Properly im-
plementing and evaluating the proposals requires a simulation framework with
configurable CMP architectures and schedulers that can be used to run a set of
diverse benchmarks and provide statistical data such as detailed performance and
energy results.

This chapter describes in detail the simulator, system architectures, benchmarks,
schedulers, and machine learning tools utilized in the studies presented in this the-
sis. Furthermore, a specific methodology section highlighting the exact simulation
configurations is provided in each study in Parts I and II.

3.1 Simulator

In deciding which simulation framework to utilize, it is important to consider a
simulator which is widely used in the computer architecture research community,
produces fast simulations within reasonable error bounds, is highly configurable
in terms of architectures and schedulers, and includes hardware validated CMP
representations capable of simulating the execution of various threads in parallel.
Sniper [105] is a standout candidate capable of dealing with each of these issues
and is the simulation framework used in this thesis. Sniper is a popular parallel
x86-64 multicore simulator which is based on an interval core simulation model. It
provides fast simulation (tens millions of instructions per second or MIPS) while

41

3. METHODOLOGY

Figure 3.1: Sniper simulator interval model

still averaging within 25% performance results errors validated against multi-socket
Intel Core2 and Nehalem systems. As a result, Sniper is capable of more detailed
and accurate CMP studies when compared to simplistic one-IPC simulators and
also useful in scenarios evaluating a system running large parallelized workloads
which would take too long using cycle-accurate simulators.

In contrast to slow and highly complex cycle accurate simulators, the interval
model [19] utilizes an analytical model to abstract core performance. It is capable of
generating the timing and performance statistics of each individual core without
needing to reproduce every instruction passing through a core’s pipeline stages.
In an interval model, the simulator fast-fowards simulation to certain miss events
(e.g., serialization instructions, branch mispredictions, and cache and TLB misses)
and estimates the number of instructions and cycles executed since the previous
miss event. The period between the two miss events is called an interval. Miss
events and corresponding latencies are generated by functional simulators corre-
sponding to a core’s branch predictor, memory hierarchy, cache coherence, and
interconnection network. An analytical model then uses these events and laten-
cies to calculate the timing for each interval. Driving simulation using separate
functional simulators and an analytical model enables being able to model com-
plex performance behaviors (including thread interference effects) when executing
concurrent threads on a CMP.

An illustration of how the interval model simulates the timing for a CMP’s cores
is shown in Figure 3.1. It maintains an instruction window (one per simulated core)

42

3.2 CMP architecture

corresponding to the size of the reorder buffer (ROB) in an out-of-order (OoO)

core. Modeling OoO execution, the instruction window can handle miss events

that occur during outstanding memory accesses. New instructions are inserted

into the tail of the instruction window while a core’s progress depends upon the

instruction at the head. To account for OoO execution, only non overlapping miss

latency penalties may be added to the total simulated time. If no miss events

occur, then the instructions are dispatched at a rate dependent upon instruction

execution latencies and inter-instruction dependencies. To express the amount of

execution cycles spent in the different components (e.g., caches, branch predictor,

etc.) of a system, Sniper is capable of reproducing the CPI stacks visually. This

helps to identify how much system efficiency benefits improving each component

will result in. Figure 3.3 provides an illustration of CPI stacks which is elaborated

on below in Section 3.3.2

Sniper is also highly flexible in terms of simulation configurability including

the ability to evaluate different homogeneous and heterogeneous CMPs based on

customizable x86 architectures. The Intel Nehalem is the most state-of-the-art pro-

cessor architecture included in Sniper. A CMP composed of numerous Nehalem

cores can be chosen to be simulated with each core capable of being customized

to emulate, for example, different instruction windows, dispatch width, branch

predictor, ALUs, ld/st queues, out of order execution, and cache structures.

The configurability additionally extends to being able to modify and choose to

use different schedulers during each simulation. Sniper includes a set of software

implemented CMP schedulers which can be easily modified to emulate the Linux

Completely Fair Scheduler (CFS) and Fairness-aware scheduler. To model power

and area, Sniper is integrated with the Multicore Power, Area, and Timing (McPAT)

framework [89]. McPAT is configured in this work to measure results based on a

45nm technology. For the experiments presented this thesis, we modify the system

architecture, core microarchitecture, cache hierarchy, and scheduler Sniper simula-

tion configurations. The Sniper simulator is free to use for academic research and

maybe be found online [101].

43

3. METHODOLOGY

Table 3.1: Detailed configurations of the large and small cores.

Small core 4-wide, 5-stage out-of-order, 16-entry ROB, 6-entry
LD/ST queue, 2.66GHz

Large core 4-wide, 12-stage out-of-order, 128-entry ROB, 48-
entry LD/ST queue, 2.66GHz

IL1 caches private 32KB write-through, 4-cycle, 8-way
DL1
caches

private 32KB write-through, 4-cycle, 8-way

L2 cache private unified 256KB write-back, 8-cycle, 8-way
L3 cache shared 8MB, write-back, 30 cycle, 16-way
Line re-
placement

Least recently used (LRU)

Cache co-
herence

MESI protocol, on-chip distributed directory, L2-to-
L2 cache transfers allowed, 8K entries/bank, one
bank per core

NoC 12.8 GB/s per direction and per connected chip pair
Memory modeling all queues and delays, latency 120 cycles,

controller bandwidth 7.6 GB/s
Area 190mm2 for an ACMP with 1 large core and 3 small

cores using 45nm transistor technology.

44

3.2 CMP architecture

Figure 3.2: Heterogeneous CMP architecture principally used in this thesis.

3.2 CMP architecture

The concepts and proposals presented in this thesis are targeted towards differ-

ent heterogeneous CMP systems. The principal heterogeneous CMP we evaluate

consists of a four core ACMP with one large core and three small cores shown in

Figure 3.2. The cache structures for both the large and small core are the same

for most of the studies presented in this thesis unless specifically mentioned oth-

erwise. The main differences between the large and small core are the instruction

window sizes, ld/st queues, and branch predictors which help to extend or restrict

OoO execution. These differences result in approximately 3x performance of the

large compared to small cores but at a cost of extra power and size requirements.

Complementing a large powerful core with small more energy efficient cores is

reflective of current state-of-the-art ACMP implementations describe previously in

Section 2.1.1. Table 3.1 provides more detailed information of the ACMP config-

uration which will be used regularly (with occasional slight modifications) in the

following chapters of this thesis. Based on simulations of this ACMP implemented

using 45nm transistor technology, the total area equates to 190mm2 with the last

level cache (LLC) taking up about 60mm2 or nearly one third of the chip.

45

3. METHODOLOGY

3.3 Benchmarks

Two different comprehensive benchmark suites are utilized in the experiments pre-
sented in this thesis. The first is SPEC2006 [47] which includes benchmarks that
are both computational and memory intensive with large working sets and memory
footprints. The SPEC benchmarks are single-threaded applications and for our ex-
periments, we execute several of the applications concurrently. The second bench-
mark suite used is SPLASH-2 [91] which is composed of a set of multi-threaded
applications and kernels. Each SPLASH-2 benchmark is typically run by execut-
ing various parallel threads on the CMP concurrently. Using both SPEC2006 and
SPLASH-2 enables the use of both application and thread level parallelism for val-
idating proposals to maximize CMP resource utilization. Both benchmark suites
are compiled using gcc 4.8 with the -O3 optimization level flag. Their instruction
traces are gathered using Pin [15] (which is integrated in Sniper) while execut-
ing on an Intel(R) Core(TM) i7-4600U CMP processor [18] running an unmodified
Ubuntu 14.04.3 LTS (GNU/Linux 3.13.0-61-generic x86_64) operating system using
the reference input datasets.

3.3.1 SPEC2006

SPEC2006 is a widely used benchmark suite within the computer architecture
research community to evaluate the performance and energy results of differ-
ent computer system innovations. The benchmarks are divided into two sub-
sets (SPEC2006FP and SPEC2006INT) dependent upon whether they perform large
amounts of floating point calculations. If floating point operations account for
more than 30% of all dynamically executed instructions, then the application is
categorized into the FP subset, and INT if this is not the case. The FP subset in-
cludes seventeen benchmarks written in C, C++, and FORTRAN while the INT
subset consists of twelve benchmarks written in C and C++ . In the experiments
presented in this thesis, three applications (dealII, wrf, sphinx3) did not compile for
our platform, therefore, only twenty six of the twenty nine total SPEC benchmarks
have been used.

46

3.3 Benchmarks

Table 3.2 lists these twenty six benchmarks and their dynamic instruction count
and instruction mix. Several interesting observations can be made from the statis-
tics given in the table. Firstly, the instruction counts for most of the benchmarks
run into the trillions and are representative of the computational intensities found
in contemporary applications. Secondly, the percentage of branches executed by
the benchmarks differs between the INT and FP applications. In contrast to most
INT benchmarks which consist of around 20% branch instructions (with the excep-
tion of 456.hmmer and 464.h264ref having only 7% branches), the FP benchmarks
typically consist of about 5% branches or lower (with the exception of 450.soplex
and 453.povray resulting in approximately 15% branches). Lastly, the benchmarks
typically consist of a large average dynamic basic block size which may contain
substantial instruction level parallelism (ILP) that could be exploited using OoO.

3.3.2 SPLASH-2

SPLASH-2 (1995) is older than SPEC2006 but consists of a mixture of eight multi-
threaded applications and four kernels which are designed to solve graphics, engi-
neering and scientific problems. Table 3.3 provides an overview of the SPLASH-2
benchmarks utilized in the studies of this thesis with volrend being the only bench-
mark not used due to compilation issues.

Fig. 3.3 shows the execution time breakdown of the SPLASH-2 benchmarks.
Since these benchmarks are multi-threaded, they spend significant portions of exe-
cution time on synchronization and memory accesses. The synchronization bottle-
necks are due to critical sections or barriers that cause significant thread latencies
while waiting for a lock. The low percentage of branches found in applications
such as cholesky, fft, and ocean provide for sizable basic block and ILP opportu-
nities. Applications with high instruction level parallelism (ILP) and thread level
parallelism (TLP) are prime candidates for ACMP architectures blending OoO and
in-order style cores. Multi-threaded applications such as those in SPLASH-2 are
suitable benchmarks for validating heterogeneous schedulers needing to manage
numerous concurrently executing threads.

47

3. METHODOLOGY

Benchmarks Inst. Count
(Billion)

Branches
(%)

Loads (%) Stores (%)

400.perlbench 2,378 20.96 27.99 16.45
401.bzip2 2,472 15.97 36.93 12.98
403.gcc 1,064 21.96 26.52 16
410.bwaves 1,178 0.68 56.14 8.08
416.gamess 5,189 7.45 45.87 12.98
429.mcf 327 21.17 37.99 10.55
433.milc 937 1.51 40.15 11.79
434.zeusmp 1,566 4.05 36.22 11.98
435.gromacs 1,958 3.14 37.35 17.31
436.cactusADM 1,376 0.22 52.62 13.49
437.leslie3d 1,213 3.06 52.3 9.83
444.namd 2,483 4.28 35.43 8.83
445.gobmk 1,603 19.51 29.72 15.25
450.soplex 703 16.07 39 7.75
453.povray 1,220 13.23 35.4 16.1
454.calculix 3,041 4.2 40 10
456.hmmer 1,589 7.1 47.5 17.8
458.sjeng 2,400 21.5 27.4 14.65
459.GemsFDTD 1,450 2.5 54.15 9.7
462.libquantum 3,950 15 34.6 10.8
464.h264ref 4,230 7.5 41.63 13.14
465.tonto 3,024 5.05 45 12.8
470.lbm 1,800 0.87 38.3 11.8
471.omnetpp 782 21 35.1 20.19
473.astar 1,153 16 41.12 13.9
483.xalancbmk 1,247 25.9 34.1 10.19

Table 3.2: An overview of the instruction counts and mix for the utilized SPEC2006 bench-
marks.

48

3.3 Benchmarks

Benchmark Input problem size Description

barnes 65,536 particles models interaction of 3D bodies
choleskey tk29.O factoring of a sparse matrix
fft 4,194,304 data points six step FFT
fmm 65,536 particles models interaction of 2D bodies
lu.count 1024x1024 matrix, 64x64 blocks factoring dense matrix
lu.ncout 1024x1024 matrix, 64x64 blocks factoring dense matrix
ocean.count 514 x 514 grid models ocean movements
ocean.ncount 514 x 514 grid models ocean movements
radiosity large room computes distribution of light
radix 8,388,608 integers integer radix sort kernel
raytrace car 3-D rendering
water.nsq 4096 molecules models water molecules
water.sp 4096 molecules models water molecules

Table 3.3: A list of the SPLASH-2 benchmarks used in our experiments, workload sizes,
and descriptions.

Figure 3.3: Execution time breakdown of SPLASH-2 benchmarks on a four core ACMP.
This is akin to CPI stacks showing distribution of computational effort spent on differ-
ent CPU operations. Illustrates the total time spent in computation (core-base), branches
(branch), memory accesses (mem) and synchronization (sync) events. Synchronizations
events include barriers, locks and pauses.

49

3. METHODOLOGY

3.4 Schedulers

Comparative performance

The studies presented in this thesis make use of four different schedulers (CFS,
Fairness-aware, HRRS, and TLSS) described previously in Section 2.1.4. Depend-
ing on the study and implementations proposed, each scheduler uses either 4ms
or 1ms scheduling quantum which is within typical ranges and manage anywhere
from four to twenty six concurrently executing threads. To account for context
switch overheads due to architectural state swapping, we apply a 1000 cycle penalty
which is consistent with the value utilized in the studies [72, 71]. The additional
latency costs from needing to reload data into the caches after every context switch
is captured by the simulation. The cache latency cost can be orders of magni-
tude higher than the architecture state swapping overheads and depends upon the
workload size and memory access behaviors.

For the baseline scheduler, we sought to use a conventional scheduler readily
used in industry, personal, and research systems. For this reason, we chose to use a
scheduler based on the Linux Completely Fair Scheduler (CFS) [54]. This scheduler
maps all threads to the cores based on a round robin scheme in order to balance the
workloads between the cores. The threads remain assigned (i.e., pinned) to their
designated core until completion, unless another core becomes idle, and are basi-
cally never swapped between cores. The scheduler is therefore unable to identify
optimal mapping schemes that best take advantage of the heterogeneous resources.
To select which threads to execute next on a particular core, the scheduler chooses
the thread that has had the least amount of execution time from the pool of threads
corresponding to that particular core.

The second scheduler used is based on the Fairness-aware scheduler [56]. Re-
ferred to in the studies as either the Fair or Fairness-aware scheduler, it works in a
similar fashion to the CFS but with one critical difference. Instead of distributing
the threads evenly between the cores and pinning them to these cores, the Fair
scheduler distinguishes the differences between core types and selects the threads
that have made the least amount of progress (in terms of execution time or instruc-
tion executed). It then assigns the thread with the least progress of this subset to
be assigned to the most powerful core. For instance, given eight threads that need

50

3.4 Schedulers

to be executed on the ACMP described in Section 3.2, the Fair scheduler will select
four threads to execute next quantum (which corresponds to the number of avail-
able cores), and assigns the thread with the least progress made to run on the large
core and the other three to the small cores.

The third scheduler used is a hardware implementation of the round robin
scheduler [72]. This scheduler (referred to as HRRS or round robin in the studies)
uses a round robin scheme to select and map the threads onto the ACMP cores.
Every quantum, a new thread is assigned to the large core (if there is more than
one thread executing) thereby providing fair execution time for all threads on the
large core.

Finally, the fourth scheduler used is the thread lock-section aware scheduler
(TLSS) [71]. This scheduler prioritizes assigning to the large core threads which
return from system to user mode. If no threads experience this transition, then
TLSS defaults to using the method of the Fair scheduler.

0.95

1

1.05

1.1

1.15

1.2

1.25

Linux	CFS Fairness-aware HRRS TLSS	(non	hardware	
supported)

Ra
tio

	d
iff
er
en
ce
	(n
or
m
.	t
o	
Li
nu
x	
CF
S)

Execution	 time	comparison	 of	conventional	 schedulers

Figure 3.4: A performance comparison of the Linux CFS, Fairness-aware, Hardware Round-
Robin (HRRS), and TLSS schedulers normalized to the Linux CFS when running the
SPEC2006 and SPLASH-2 benchmark suites on a 1 large and 3 small core ACMP. Higher
speedup numbers are better.

Figure 3.4 presents a comparison between the four different schedulers when
simulated on ACMPs baed on the system described in 3.2 running both SPEC2006

51

3. METHODOLOGY

and SPLASH-2 benchmark suites. There are clear performance enhancing op-
portunities of using the heterogeneous schedulers over the conventional Linux
OS pinned scheduling technique with speedup benefits between the range of 9%
(Fairness-aware), 19% (HRRS), and 16% for the non hardware supported TLSS
scheduler implementations. These benefits can also lead to energy savings since
they require less time using power hungry system resources.

3.5 Artificial neural networks (ANNs)

The proposals in Part II of this thesis make use of ANN-based performance predic-
tors whose output is used by the scheduler to identify an optimal mapping scheme.
The predictors are used to either estimate what the resulting IPC will be of a thread
on a particular core type or to predict the total system IPC for a particular thread
to core mapping combination.

Before describing the different ANN architectural properties investigated, it is
important to mention how the data used to train and predict the ANNs are gath-
ered. These data can be either statically or dynamically collected and consist of
different statistics describing the execution of the threads on the different cores.
Performance counters provided by Sniper, but also feasible in physical hardware,
are used to gather the statistics (e.g., IPC, instruction mix, and cache accesses) after
ever scheduling quantum. The set of statistics for each quantum form one data
sample. The exact statistics chosen are described in added detail in the relevant
studies.

Every hyper-parameter of each ANN (i.e., the number of hidden units, layers,
training and error functions, and activation functions) used in this thesis has been
carefully studied and tuned to balance prediction accuracy and overheads. The
ANN implementations within the scope of this thesis range from 1-5 of hidden
layers and 6-25 hidden units per layer. The activation functions are either sigmoidal
or rectified linear while a stochastic gradient descent algorithm is used for training.

The latency overheads vary per ANN implementation and are quite minimal.
For example, an ANN with 9 inputs, 1 hidden layer with 6 units, and 1 output unit
requires 150 floating point and 80 memory operations for each prediction it makes.
Conservatively assuming it takes 20 cycles to complete each of the 230 operations,

52

3.6 Measuring Error and Results

this results in 4,600 cycles. The scheduler is called every 1M cycles (assuming the
CPU clock is set at 1GHz and the scheduling quantum occurs every 1ms) which
means that the computational overheads of this example ANN predictor are ap-
proximately 0.5% per prediction. Implementing the ANNs also requires overheads
in terms of modifications to the OS and/or hardware support (depending on the
choice of implementation). The ANNs models proposed in the studies in this work
require minimal changes to the OS scheduler, the most important being the the
thread to core mapper.

To implement the ANNs, the studies make use of either the Matlab machine
learning toolkit [67] or Python and the machine learning library scikit-learn [78].
Both of these toolkits provide ample support for implementing, training, optimiz-
ing, and online prediction using different ANN configurations. For several of the
studies in this work, the scheduling modules in the Sniper simulator are modified
to make use of the ANN implementations.

3.6 Measuring Error and Results

Several different metrics are used to evaluate the proposal described in this thesis.
Execution time (in seconds) or instructions per cycle (IPC) is used to quantify sys-
tem performance. System IPC is the result of averaging the sum of the IPC results
from the different cores during each quantum. This assumes that all cores run at
the same clock frequency, but may be easily adjusted for cases where the cores
run at different frequencies. Speedup is measured by dividing the baseline exe-
cution time by the new proposal’s execution time. The power budgets of a given
architecture are measured in Watts (W) and multiplying this by the execution time
provides the energy consumption results given in Joules (J). Multiplying the en-
ergy results with execution times produces the Energy-Delay-Product (EDP) which
is a popular metric for measuring architectural efficiency. Chip size is measured
in millimeters squared (mm2) and is useful for comparing architectures that must
fit within certain size constraints. Sniper provides easy access to the simulation
statistics necessary to calculate these metrics.

For measuring the accuracy of the ANNs, different metrics are used. These
metrics evaluate the accuracies and correlations between the predicted IPC values

53

3. METHODOLOGY

(for a particular mapping scheme) compared to the real observed IPC values. The
percentage error metric shown in Equation 3.1 expresses the error rates in terms of
misprediction percentages, or in other words, how far off as a percentage was the
predicted IPC from the observed IPC. Where in our case y is the predicted IPC and
t is the target (i.e., observed) IPC value for quantum i and n is the total number of
quanta (i.e., samples). The mean squared error metric which is shown in Equation
3.2 characterizes the error as the average of the sum of the squared differences
between the predicted and target (observed) IPC values. Lastly, an R2 coefficient
is calculated in Equation 3.3 that described the error as a correlation between the
predicted and target IPC values based on a regression sum of squares (u) and the
residual sum of squares (v).

errori =
|yi � ti|

ti

µerror =
1
n
⇥

n

Â
i=1

errori

(3.1)

MSE =
1
n
⇥

n

Â
i=1

(yi � ti)
2 (3.2)

R2 = 1 � u
v

u = Â(ytrue � ypred)
2

v = Â(ytrue � ȳtrue)
2

(3.3)

54

Part I

Preliminary Studies on the Potential
of Heterogeneous Architectures

55

The objective of this part of the thesis is to examine the opportunities and lim-
its present in current CMP and scheduling designs. We believe this discussion
presents a realistic starting point from which to acquire several key insights instru-
mental for advancing towards the future of heterogeneous architectures that was
outlined in Section 2.2. Each of the following two chapters provides separate in-
vestigations into analyzing CMP design tradeoffs and improving performance and
energy efficiency.

Chapter 4 highlights how architects can optimize the energy efficiency and size
of ACMP systems by using novel memory architectures in conjunction with a het-
erogeneous scheduler. This approach offers a method to tailor an ACMP system
to provide suitable performance, energy efficiency, and size for very demanding
mobile devices. We propose three alternative cache configurations and examine
their effects on system performance and processor size when executing applica-
tions concurrently. Our results show that adopting an alternative cache hierarchy
together with a scheduler targeting asymmetrical systems can lead to substantial
energy savings of over 17%, power reductions of over 5%, and over 19% reductions
in physical size while still outperforming execution times achieved with conven-
tional operating system schedulers on a CMP with larger caches by over 10%.

Chapter 5 presents a hardware implementation of the Thread Lock Section-
aware Scheduling (TLSS) scheduling mechanism described in [71]. The TLSS al-
gorithm helps to identify multi-threaded application bottlenecks such as thread
synchronization sections and complements the Fairness-aware Scheduler method.
The work we present is to our knowledge the first hardware supported implemen-
tation of TLSS that is energy attentive and can be applied to both asymmetric and
symmetric CMPs. It achieves an average performance gains of 10.9% compared
to the state-of-the-art Linux OS Scheduler when applied on an Symmetrical Chip
Multi-Processor (SCMP). At the same time, it is 81% more EDP (energy-delay prod-
uct) efficient when applied on an Asymmetrical Chip Multi-Processor (ACMP) and
compared to the Linux OS Scheduler on an SCMP, where ACMP and SCMP take
relatively the same chip area.

Taken together, these two chapters study conventional CMP and scheduler de-
signs and investigate techniques that highlight the architectural opportunities and
restrictions present in current designs.

57

4
Extending the flexibility of ACMPs for mobile

devices using alternative cache configurations

The focus of the work in this chapter is to highlight how heterogeneous schedulers
can provide CMP architectural flexibility in terms of cache configurations. Alter-
native cache configurations can help to optimize the energy efficiency and size
of ACMP systems. This approach offers a method to tailor an ACMP system to
provide suitable performance, energy efficiency, and size for very demanding mo-
bile devices. We propose three alternative cache configurations and examine their
effects on system performance and processor size when executing applications con-
currently. Our results show that adopting the most novel of these three configu-
rations in conjunction with a scheduler targeting asymmetrical systems can lead
to substantial energy savings of over 17%, power reductions of over 5%, and over
19% reductions in physical size while still outperforming execution times achieved
with conventional operating system schedulers on a CMP with larger caches by
over 10%.

The contributions in this chapter include:

• Extending the flexibility of ACMPs for mobile devices using an alternative
cache configuration technique. We introduce three alternative cache config-
urations (Larger, Asymmetric, and Distributed) for an ACMP featuring one
large core and three small cores. While all three configurations achieve ben-
efits, the Distributed approach is shown to be the most novel and beneficial
for ACMP systems that have frequent context swaps.

59

4. EXTENDING THE FLEXIBILITY OF ACMPS FOR MOBILE DEVICES
USING ALTERNATIVE CACHE CONFIGURATIONS

• Experimental results drawing from both the SPEC2006 and SPLASH-2 bench-
mark suites show that alternative cache schemes utilized in conjunction with a
simple ACMP scheduler achieve notable energy (over 17%), power (over 5%),
physical size (over 19%), and performance (over 18%) benefits over an ACMP
containing a larger cache, and greatly outperforms an alternative frequency
reduction technique.

4.1 Motivation

The diversity of devices and environments reflect the differing design priorities and
choices architects make depending on the target market and usage expectations.
For example, though a fitness tracking wristband and a tablet are both mobile
devices, they differ in form factor, utilization, and expectations. While a fitness
tracker can be expected to last for several days of constant usage running only
a small selection of applications, a tablet may be expected to last a day or two
but while executing a wider selection of applications much faster than a smaller
device but still not as quick as a desktop or server. The main ideas motivating the
study of this chapter reflect the need to decide how to balance the design decisions
when constrained with specific performance, energy consumption, and area design
parameters.

In this study, we focus on how a conventional ACMP system may be improved
for both energy efficiency and size constraints using a dedicated scheduler in con-
junction with reexamining the cache hierarchy. Doing so enables us to represent
the potential beneficial options a processor architect may choose from in needing
to adapt an ACMP processor to different mobile device and usage expectations.

As described in Section 2.1.4, there are clear performance enhancing oppor-
tunities of using the hardware round robin scheduler (HRRS) over the conven-
tional Linux OS CFS pinned scheduler technique for ACMPs. For SPEC2006 on
our ACMP configuration, using the HRRS method results in execution speedup
gains of nearly 16% and energy savings of almost 10% while requiring about 8%
more power (due to hardware support overhead). Similar numbers are achieved
when running the SPLASH-2 benchmark as it results in about 13% speedup gains
and 7% energy savings while requiring 6% more power. The consistent benefits of

60

4.1 Motivation

the HRRS implementation over the Linux scheduler on the ACMP provides added
flexibility in the architectural design choices within the processor. Specifically, our
work seeks to improve the energy efficiency of ACMPs by balancing the execution
speedups achieved using heterogeneous schedulers such as HRRS with gains in
power and energy efficiency through the use of alternative cache hierarchy config-
urations. These alternative organizations also help to decrease the footprint of the
caches which are the largest elements on the physical chip. This chapter explores
the performance benefits achieved with heterogeneous schedulers and the energy
and size footprint of the conventional ACMP cache hierarchy.

4.1.1 Cache footprint

The cache hierarchy of the ACMP system when running both SPEC and SPLASH-2
consumes on average about 30% of the total energy and power budget of the pro-
cessor. The last level L3 cache (LLC) alone consumes a significant chunk of the
processor’s energy, power, and size budget. Using measurements taken with Mc-
PAT [89] when running the 4 core ACMP, the LLC is responsible for on average
about 10% of the total execution energy. Leakage power, however, is costly since it
is power that is dissipated even when the components are not active and hence is
an important metric to consider when intending to design energy efficient chips.
For this ACMP, the leakage power represents upwards of 25% of the total peak
power. As shown in Figure 4.1a, the LLC is responsible for 22% and the four cores
make up 78% of the processor’s subthreshold leakage power. Figure 4.1b high-
lights how the four cores, which include the L1 and L2 cache structures, take up
about 67% of the total chip area while the LLC takes up a substantial 32%, and the
interconnection network (NoC) a mere 1%. For our simulations based on a 45nm
transistor technology, the total area of the processor corresponds to 190mm2 with
the LLC taking up about 60mm2. Along with other alternatives such as frequency
reduction, altering the cache configurations is a viable path towards maintaining
the speedup gained using HRRS while reducing power and size requirements and
increasing energy savings without modifying the internal microarchitecture of the
computational cores.

61

4. EXTENDING THE FLEXIBILITY OF ACMPS FOR MOBILE DEVICES
USING ALTERNATIVE CACHE CONFIGURATIONS

Processor	 leakage	power	 distribution
Cores Last	level	cache	(L3) NoC

(a) Leakage power distribution of the
ACMP.

Processor	 area	distribution
Large	Core	 (1) Small	Cores	(3) Last	level	cache	(L3) NoC

(b) Area distribution of the ACMP.

Figure 4.1: The subthreshold leakage power and chip area distributions of a 1 large and 3
small core ACMP including results for the L3 last level cache (LLC) and network on chip
(NoC).

62

4.2 Alternative cache configurations

4.2 Alternative cache configurations

In order to balance the performance gains achieved by ACMP schedulers with
size, energy, and power efficiency benefits for the overall ACMP system, we focus
on reorganizing the existing cache hierarchy shown to have substantial size and
power footprints. The alternate configurations we have proposed and evaluated
have been configured to eliminate the large last level cache (LLC) and reorganized
in order to mitigate the resulting increase in total DRAM accesses.

The loss of a shared LLC results in smaller processor area but longer average
memory access latencies since more memory accesses will end up reaching DRAM.
Additionally, context swaps may incur heftier penalties since the working set sizes
of the active threads may not be fully contained or easily transferred between L2
caches. For example, a recently swapped thread may request the data that is still
stored in its previous L2 and when it arrives, it may evict the data from the current
L2 which could be requested by another thread. In the case of a shared LLC, this
evicted data would still reside in the LLC, but with no shared LLC, any requests
for this evicted data will have to reach the DRAM. Conversely, the amount of time
it takes for a memory request to reach DRAM will slightly decrease by the amount
of time it used to take to perform a tag access on the original L3 cache.

Each of the four cores in every ACMP cache configuration use separate and
private L1 data cache and L1 instruction caches. For L2 and L1 cache details,
including tag/data access latencies, and coherency protocol refer to table 3.1.

1. Baseline : The baseline configuration consists of a four core ACMP (one large
core and three small cores defined in Section 4.3.1) where each core has a
private L1 (32KB) and L2 (256KB) data cache and a shared L3 last level cache
(LLC) of 8MB.

2. Larger : The simplest approach, this alternative configuration alleviates the
loss of the L3 cache by increasing the size of each L2 cache from 256KB to
512KB. Though doubling the overall size of each L2 increases the physical
size of each core, we have chosen to use this approach to demonstrate the
effects of the most simplistic and intuitive approach at increasing L2 cache
hits without resulting in significant energy/power penalties.

63

4. EXTENDING THE FLEXIBILITY OF ACMPS FOR MOBILE DEVICES
USING ALTERNATIVE CACHE CONFIGURATIONS

3. Asymmetric : This heterogeneous cache configuration keeps the size of the
small cores’ L2 caches steady at 256KB but increases the size of the large core’s
L2 cache from 256KB to 1MB. Though one of the characteristics of the large
core is that it is capable of sustaining more outstanding misses than the small
cores, the extra quantity of cache allows for more data from potentially other
threads to be locally available which can enable recently swapped threads to
avoid some cache warmup and run faster. This increase in the large L2 cache
size and subsequent L2 large to small cache ratio was chosen as a reflection
of the large core to small core size and performance capabilities (i.e., the large
core is configured to be generally between three to four times more powerful
than the small cores).;

4. Distributed : This distributed cache proposal intends to emulate a larger
shared cache in order to alleviate the adverse memory latency effects caused
by eliminating the shared LLC. Similar to the first alternative approach, this
proposal doubles each of the cores’ L2 caches to 512KB but instead of each L2
being private to each core, they are distributed such that every core can access
every L2 cache, albeit with non uniform cache access latencies. Unique to this
cache organization, this scheme forbids data to be replicated across L2 caches.
Using this method, an L1 miss from core 0 is sent to core 0’s L2, if it misses
again, then it is sent to core 1’s L2, and if it misses there then it is sent to core
2’s L2, then to core 3’s L2 upon which if it still misses it is sent to DRAM.
Data is not moved between physically separate L2 caches and no coherency
mechanism for the L2 needs to be utilized. Every access to the different L2’s
will result in different access latencies due to the varying distance from core
to cache as well as the extra latency penalties for each L2 miss. (e.g., the
time for core 0 to access core 1’s L2 will be higher than accessing its own L2
but lower than accessing core 3’s L2). This is similar to approaches taken in
conventional non-uniform cache architectures (NUCA) [58] but the L2 caches
are accessed in order. A memory management unit makes sure that two
identical memory accesses from separate cores are not replicated in both of
their L2’s. A new data line is stored in the L2 structure of the core that first
requested the line. The distributed and non-duplicate nature of this approach

64

4.3 Methodology

eliminates the need for cache coherency management and also helps to reduce
the costs of cache warm up and pollution effects after every context swap.

4.3 Methodology

The experimental setup of this work consists of the four cache hierarchy configu-
rations (one baseline and three alternate proposals) to be tested using a fixed pro-
cessor configuration running applications from two benchmark suites on a parallel
multi-core simulator. In addition, these results are compared with an alternative
scheme of running the baseline configuration at a lower frequency in order to re-
duce energy consumption.

4.3.1 Processor configuration

The processor that is used for all experimental runs in this work is a quad-core
ACMP consisting of one large core and three identical small cores. Both types of
cores are based on the Intel Nehalem x86 architecture running at 2.66GHz (2.1GHz
is used for the lower frequency configuration). Each core type has a 4 wide dis-
patch width, but whereas the large core has 128 instruction window size, 8 cycle
branch misprediction penalty, and 48 entry load/store queue, the small core has a
16 instruction window size, 14 cycle branch misprediction penalty, and a 6 entry
load/store queue.

4.3.2 Benchmark execution

We have utilized the SPEC2006 benchmarks to run multiple instances of the single
threaded applications concurrently on the system. We run each workload on the
four simulated cores. The SPLASH-2 benchmark suite is configured to run with 4
parallel threads and is executed separately. Therefore, at any given time, there will
be a maximum of four threads running from one application. All applications or
threads are run from start to finish. In the case of having several applications or
threads running at the same time, the threads that finish first are restarted such that

65

4. EXTENDING THE FLEXIBILITY OF ACMPS FOR MOBILE DEVICES
USING ALTERNATIVE CACHE CONFIGURATIONS

the number of threads running at any one time on the system remains constant.
Once the longest thread/application has been completed, the simulation is ended.

4.4 Experiments and evaluation

Figure 4.2 illustrates the execution time results obtained by running the differ-
ent configurations on each application of both benchmark suites. The context swap
overheads caused by how the different schedulers remap the threads onto the cores
is included in the simulated results. The results are normalized to the ACMP sys-
tem with the baseline cache configuration which utilizes an emulated Linux OS
CFS scheduling policy (referred to as Base with Linux in the figures). As expected,
the execution time of the alternative cache configurations were slightly slower than
the baseline configuration due to the loss of a large shared LLC and extra DRAM
accesses. However, though execution speeds may take slightly longer using these
techniques, they are outweighed by significant gains in energy and space savings.
Workload size, instruction length, and memory access patterns of the different ap-
plications result in different overheads due to frequent context swaps (the HRRS
policy triggers context swaps every quantum) which explains deviations in applica-
tion performance running on different cache configurations. For instance, while the
frequency reduction scheme consistently underperforms in nearly all benchmarks,
the Distributed cache configuration is able to attenuate context swap overheads in
applications that suffer from heavier context swap penalties (e.g., ocean in SPLASH-
2 and lbm and calculix in SPEC).

Figures 4.3a and 4.3b illustrate the average for execution time, power, and en-
ergy consumption of all SPEC2006 and SPLASH-2 benchmarks for each different
cache configuration. The results are also normalized to the ACMP system with the
baseline cache configuration utilizing the Linux OS CFS scheduling policy (Base
with Linux in the figures). The bars in the charts representing the alternative cache
configurations all utilize the HRRS scheduling policy. Figure 4.4 highlights the
difference in processor sizes resulting from the component modifications of the
separate cache configurations normalized to the baseline configuration (which in-
cludes a shared LLC).

66

4.4 Experiments and evaluation

(a) SPLASH-2 results.

0.5

0.7

0.9

1.1

1.3

1.5

Ra
tio

	D
iff
er
en
ce

SPEC2006	execution	 time	results
Base	with	Linux Base	with	HRRS LowFreq Large Asymmetric Distributed

(b) SPEC2006 results.

Figure 4.2: Execution time performance results obtained by running all configurations on
SPLASH-2 and SPEC2006. All configurations except Base with Linux use HRRS scheduling
policy. Lower numbers are better.

67

4. EXTENDING THE FLEXIBILITY OF ACMPS FOR MOBILE DEVICES
USING ALTERNATIVE CACHE CONFIGURATIONS

(a) SPLASH-2 results.

(b) SPEC2006 results.

Figure 4.3: Average results for execution time, power, and energy consumption of all cache
configurations on SPLASH-2. All configurations except Base with Linux use HRRS schedul-
ing policy. Lower numbers are better.

68

4.4 Experiments and evaluation

0.6

0.7

0.8

0.9

1

Base Large Asymmetric Distributed

Ra
tio

	d
iff
er
en
ce

Cache	congifuration

Processor	 area	comparison

Figure 4.4: The resulting processor sizes of each alternative cache scheme normalized to
the baseline configuration which includes a LLC. Note that a processor that is 70% the size
of the baseline processor can be also read as a 30% reduction in processor size.

The Large cache configuration is able to alleviate extra misses to DRAM by
being able to contain more data in the cores’ L2 cache and achieves modest average
speedup (7.5% for SPEC2006, 6.5% for SPLASH-2), power (5.5% for SPEC2006,
6.3% for SPLASH-2), and energy (12.5% for SPEC2006, 12.5% for SPLASH-2) gains
compared to the baseline configuration using the Linux scheduler. Even though the
size of the L2’s were doubled, the elimination of the L3 results in a 30% reduction
in processor size relative to the baseline ACMP configuration.

The Asymmetric cache configuration is an interesting alternative of how to al-
locate a limited cache budget to different core types. Since it has a larger amount
of L2 cache compared with the small cores, the discrepancy between the perfor-
mance of both core types becomes even greater and since all threads can benefit
from its added effectiveness since they evenly share execution time on the large
core. This configuration results in adequate average speedup (5.6% for SPEC2006,
5.6% for SPLASH-2), power (6.6% for SPEC2006, 7.2% for SPLASH-2), and energy
(11.8% for SPEC2006, 12.4% for SPLASH-2) gains. In terms of size, this cache con-

69

4. EXTENDING THE FLEXIBILITY OF ACMPS FOR MOBILE DEVICES
USING ALTERNATIVE CACHE CONFIGURATIONS

figuration, which is overall smaller than the Large cache configuration, results in a
reduced processor size of 33%.

The Distributed cache configuration produces the most promising results. Since
data may not be replicated between L2 caches but all cores may access each others’
L2, this setup avoids many of the cache warmup and pollution overheads incurred
in the other configurations during the frequent context swaps. The distributed
cache also acts as a pseudo-shared L2 LLC such that is four times larger than any
individual L2 cache thus increasing the probability of a memory access hit. More-
over, since the HRRS policy essentially provides each thread equal time on all cores,
the penalty for non uniform L2 access is shared by all cores which results in what
could be considered a shared L2 with shorter access time than the L3 found in the
baseline configuration. The gains are significant showing average speedup (18.4%
for SPEC2006, 10.4% for SPLASH-2), power (5.1% for SPEC2006, 7.8% for SPLASH-
2), and energy (22.6% for SPEC2006, 17.4% for SPLASH-2) benefits. The differences
in power savings from this scheme compared to the Large configuration are mainly
due to the existence of a directory cache coherency mechanism in the Large configu-
ration which is not needed in the Distributed scheme. The distributed configuration
results in a total processor size reduction of 19% which is significant but is not as
impressive as the other two configurations due to the need for extra resources to
provide the extra inter-L2 communication and data access management needed to
implement this scheme.

Conversely, the trivial approach of minimizing power and energy by utilizing a
reduced frequency with the baseline cache configuration running the HRRS policy
produces uninspiring results in speedup (1.4% for SPEC2006, -6.8% for SPLASH-2),
power (-0.7% for SPEC2006, 1.9% for SPLASH-2), and energy consumption (1.6%
for SPEC2006, -4.7% for SPLASH-2). In addition, the processor size is the same in
this case as the baseline configuration processor.

While all three alternative cache configurations show promise in reducing size,
power, and energy while maintaining speedup, the results from the Distributed con-
figuration standout. Compared to the baseline configuration running the HRRS it
is able to maintain to within 3% the speedup gains achieved by the HRRS running
on the baseline configuration while requiring nearly 13% less power and consum-
ing 11% less energy. Overall, the results show that adopting an alternative cache

70

4.5 Future work

hierarchy in conjunction with a scheduler targeting asymmetrical systems such as
HRRS can achieve energy savings of over 17%, power reductions of over 5%, and
speedups of over 10% over a ACMP with more cache using a Linux scheduler
found in conventional operating systems. In addition, a processor implemented
with an alternative cache configuration can provide physical size reductions of 19%
up to 33% compared with a conventional ACMP. The benefits of implementing an
alternative cache configuration significantly increases the flexibility of an ACMP
system and makes the option much more tempting for architects seeking to fit fast
and energy efficient processors into ever smaller and more agile mobile devices.

4.5 Future work

In order to scale to larger many core systems, a cache configuration such as those
proposed should be implemented in groups of cores. That is to say that a 16 core
system with 4 large cores and 12 small should be broken up into 4 groups of
4 cores (1 large and 3 small). However, if these alternative cache configurations
are to be scaled, evaluations on large many core systems including hundreds of
cores should also be conducted. Exploring combinations of heterogeneous and
distributed cache configurations for ACMPs appears to be a promising research
avenue to pursue. More radical alternative cache hierarchy proposals combining
asymmetric and distributed cache configurations will need to be studied. Further-
more, different ACMP scheduling strategies can be examined and incorporated into
the simulations. Additional performance benefits gained from scheduling mecha-
nisms offer more flexibility in designing alternative cache configurations that can
enhance the system’s energy efficiency and performance tradeoff.

4.6 Conclusion

In this study we have proposed three alternative cache configurations and shown
how they outperform typical frequency reduction strategies in achieving better en-
ergy efficiency. Additionally, these configurations also result in substantial reduc-
tions in the physical size of the processor. By utilizing a simple hardware based

71

4. EXTENDING THE FLEXIBILITY OF ACMPS FOR MOBILE DEVICES
USING ALTERNATIVE CACHE CONFIGURATIONS

round-robin scheduler in conjunction with an alternative cache configuration such
as a distributed scheme, it is possible to achieve substantial energy savings of over
17%, power reductions of over 5%, and 19% physical processor size reductions
while still outperforming the execution times achieved with conventional operat-
ing system schedulers on an ACMP with larger caches by over 10%. These benefits
show that considering alternative cache configurations may be a feasible option ar-
chitects can consider when choosing which processor designs to implement within
demanding performance, energy, and size budgets such as in mobile devices.

72

5
Performance and energy efficient hardware-based

scheduler for symmetric/asymmetric CMPs

The study in this chapter demonstrates the significant performance and energy
advantages that can be attained by improving CMP scheduling. We validate this
claim using a hardware based lock section-aware scheduler (TLSS) that is energy
attentive and can be applied to both asymmetric and symmetric CMPs. It achieves
average performance gains of 10.9% compared to the Linux OS CFS when applied
on an SCMP and 81% more EDP (energy-delay product) efficient when applied
on an ACMP and compared to a similarly sized SCMP. The contribution of this
study is the hardware implementation of the TLSS approach (outlined as a software
approach in the work [71]) and its application to both an SCMP and ACMP.

This chapter provides the following contributions:

• We discuss a hardware implementation of the TLSS scheduling policy [71]
which is aware of lock sections and kernel to user code transitions. It is in-
fluenced by the Fairness-aware Scheduling and bottleneck identification tech-
niques, thereby reducing thread serialization and improving parallel thread
performance.

• We evaluate and analyze the performance, power, and energy consumption
of the TLSS policy on an SCMP. It lowers total performance of the application
by 10.9% (geometric mean) compared to the Linux OS Scheduler on an SCMP.

73

5. PERFORMANCE AND ENERGY EFFICIENT HARDWARE-BASED
SCHEDULER FOR SYMMETRIC/ASYMMETRIC CMPS

• We offer power and energy efficiency evaluation of the TLSS policy applied on
an ACMP and compare it to the area equivalent SCMP system configurations
as well as to a Fairness-aware Scheduler on the ACMP system, where TLSS is
by 81% and 7.3% more EDP (Energy x Delay)-efficient respectively.

5.1 Thread lock section-aware scheduling (TLSS)

In the following subsections we briefly describe the TLSS policy, propose its possi-
ble application to an SCMP and discuss its hardware implementation.

5.1.1 TLSS algorithm

The intuition behind the TLSS method is to predict which threads are currently
entering a critical section of code to accelerate it by sending it to execute on a
large core. This helps to improve an application’s overall performance by miti-
gating bottleneck effects for threads waiting on a lock. It uses knowledge about
whether a thread has recently transitioned from kernel to user model (those that
haven’t been triggered by invoking the scheduler during the periodic scheduling
quantum) to estimate that the thread is entering a critical section. To illustrate the
inner workings of the TLSS approach, we will assume an x86 ACMP hardware con-
taining one large out-of-order (OoO) core and three smaller and identical in-order
cores. The operating system is provided an abstracted homogeneous hardware
view comprised of four identical logical cores. The OS scheduler maps threads to
the logical cores which enables the OS scheduling policies and implementation to
be left unmodified.

While the OS scheduler maps threads to the logical cores at every software-
quantum or other interrupts, the TLSS in turn maps the threads running on the
logical cores to the physical cores as shown in Fig. 5.1 every hardware-quantum.
In essence, TLSS can be viewed as mapping the logical cores that the OS sees and
schedules threads onto, to the physical cores of the underlying hardware which ac-
tually execute the threads. Furthermore, the TLSS algorithm must produce a new
scheduling scheme every hardware-quantum set by the hardware implementation

74

5.1 Thread lock section-aware scheduling (TLSS)

OPERATING SYSTEM
OS Scheduler

In-Order

Core 1

Threads

HW Scheduler

Out-of-Order

Core 0

In-Order

Core 2

In-Order

Core 3

Logical
Core 3

Logical
Core 2

Logical
Core 1

Logical
Core 0

Figure 5.1: TLSS scheduling - All logical cores are the same while the large physical core is
represented by Core 0 and the small physical cores are shown as Cores 1, 2 and 3.

(as opposed to the software-quantum which invokes the OS scheduler which hap-
pens less frequently - 1ms vs. 4ms). In order to minimize the amount of overhead
in implementing the scheduling policy, the TLSS algorithm determines the next
scheduling scheme to apply before the beginning of the next hardware-quantum.

The defining characteristic of the TLSS algorithm is its use of determining
whether a core made a recent transition from executing kernel code to user code
(an indication that an interrupt has occurred) to make scheduling decisions. Some
of these transitions activate the OS scheduler which will swap the currently exe-
cuting thread on a logical core for another thread in its ready queue. When this
happens, the hardware context of the thread being swapped out must be saved and
replaced by the context of the new thread chosen by the OS to be executed. Futex
calls may be mainly in the userspace but will require kernel mode when dealing
with contended locks and for requesting processes to be woken up and put on
the wait queue. The futex calls requiring accessing the wait queue and needing to
enter kernel mode are those focused on in this study. Therefore, by catching and
utilizing the kernel-level to user-level execution transitions in the cores, we are able
to localize some but not all of the critical sections of a thread without requiring
any extensions to the ISA. Transitions due to clock interrupts are not considered
for flagging kernel to user transitions and are ignored by the algorithm.

75

5. PERFORMANCE AND ENERGY EFFICIENT HARDWARE-BASED
SCHEDULER FOR SYMMETRIC/ASYMMETRIC CMPS

In order to determine these execution level transitions, the TLSS monitors the
state of the cores’ context control registers (the lower two-bits of the code segment
descriptor that determine the current privilege level of the code executing) during
the hardware-quantum and when a transition is detected a “transition-flag” (which
requires reusing or adding one bit in hardware) is set. To select the scheduling
scheme to apply for the start of the next hardware-quantum, the TLSS checks to
see which of the “transition-flags” belonging to the four cores are set. If none are
set, the TLSS proceeds to schedule based on a random selection scheme akin to the
Fairness-aware Scheduler. If only the large core has its "transition-flag” set, then
no swap is made. If only one small core has its "transition-flag” set, the logical
core running on that small physical core will be swapped with the logical core
running on the large physical core at the start of the next hardware-quantum even
if the large core also had its “transition-flag” set. Lastly, if more than one of the
small cores has its “transition-flag” set, one of their corresponding logical cores
will be chosen at random to be swapped with the logical core running on the large
physical core at the start of the next hardware-quantum. As a side-note, a core
running system code at the moment of determining the next scheduling scheme
cannot be selected to be swapped.

While Fairness-aware scheduling strives at achieving fairness by running each
logical core thread on each physical core type for an equal amount of time, the
TLSS scheduling instead tries to enhance these scheduling benefits by discovering
and running the critical sections of code on the larger cores.

TLSS scheduling policy as described above can be easily applied to an SCMP.
It would only require that the TLSS policy designates one core as a "large core",
different then the other cores in the system although it is not. This may be useful
(as detailed in section 5.2.3) due to the shared data amongst threads being located
in the cache of the large core, thus minimizing cache misses.

5.1.2 Hardware implementation discussion

From the perspective of the physical hardware, the TLSS scheduling policy guar-
antees only two things. First, a thread will not occupy a large physical core for
more than one hardware-quantum unless it is the only runnable thread at the end

76

5.1 Thread lock section-aware scheduling (TLSS)

of the hardware-quantum. Second, if a thread reaches a critical section and must
wait on a lock (operating system futex), the TLSS policy will attempt to promote
the thread, upon acquiring the lock, to be scheduled on the large physical core to
continue its execution. However, TLSS does not necessarily execute all the critical
sections of a thread on a large core.

The difference between TLSS with state-of-the-art bottleneck acceleration found
in BIS[48] and UBA[49] is that the TLSS does not require any ISA extensions that
impact on the re-usability of code. Conversely, the ease of the TLSS implementation
comes at the cost of not being able to catch all of the critical sections compared to
the BIS and UBA policies, since it can only identify a transition from system to
user-level code and does not have the precise knowledge that the thread entered
into a critical section. Unlike to BIS and UBA, the TLSS scheduling technique
does not facilitate hardware overheads in order to be able to store and restore the
architecture state in the cores. TLSS is intended for x86 systems and hence utilizes
the x86 hardware context switching mechanism, called Hardware Task Switching
in the CPU manuals [43]. To use it, TLSS needs to tell the CPU where to save
the existing CPU state, and where to load the new CPU state. The CPU state is
always stored in a special data structure called a TSS (Task State Segment). To
trigger a context switch and tell the CPU where to load its new state from, the far
version of CALL and JMP instructions are used. The offset given is ignored, and
the segment is used to refer to a "TSS Descriptor" in the Global Descriptor Table
(GDT). The TSS descriptor is used to specify the base address and limit of the TSS
to be used to load the new CPU state from. The CPU has a register called the "TR"
(or Task Register) which tells which TSS will receive the old CPU state. When the
TR register is loaded with an "LDTR" instruction the CPU looks at the GDT entry
(specified with LDTR) and loads the visible part of TR with the GDT entry, and the
hidden part with the base and limit of the GDT entry. When the CPU state is saved
the hidden part of TR is used.

The hardware context switching mechanism can be used to change all of the
CPU’s state except for the FPU/MMX and SSE state. If the FPU/MMX and SSE
state also needs to be changed during a context switch there are a few options. The
data could be explicitly saved, or the CPU can generate an exception the first time
an FPU/MMX or SSE instruction is used. With the second option, the exception

77

5. PERFORMANCE AND ENERGY EFFICIENT HARDWARE-BASED
SCHEDULER FOR SYMMETRIC/ASYMMETRIC CMPS

handlers would save the old FPU/MMX/SSE state and reload the new state. We
have used the second option since it may prevent this data from being changed
when it is not necessary.

TLSS has hardware additions which include a "transition-bit" on every core and
a separate unit with a vector that holds all of the "transition-bits", one counter and
one decoder to facilitate round-robin mechanism. The size of these depends on
the number of the cores in the system (e.g.,. for a four core system a 2-bit counter
is needed). However, in contrast to the low additional overhead needed by TLSS,
UBA requires the Lagging Thread Identification (LTI), the Bottleneck Identification
(BI) and the Acceleration Coordination (AC) [49] while BIS requires a Bottleneck
Table (BT) where each entry corresponds to a bottleneck, an Acceleration Index
Table (AIT) augmented to the each small core, and a Scheduling Buffer (SB) added
to each large core [48].

5.1.3 Hardware versus Software implementation

TLSS uses a similar approach as the Fairness-aware Scheduling method in that the
operating system level scheduling is untouched and it maintains a consistent view
of the underlying hardware. The hardware is able to provide the abstraction of a
symmetric hardware to software while dynamically rescheduling threads among
the cores in an asymmetric multi-core system [74]. Both of these approaches (TLSS
and Fairness) may also be implemented at the OS level by extending the OS sched-
uler but the advantage of a hardware approach is that it provides finer granularity
of the scheduling quanta and requires no changes to the OS code while minimizing
scheduling overhead [55].

5.2 Evaluation

In this section we evaluate the TLSS approach application on an SCMP. We also
offer detailed performance, power and energy comparison of the TLSS scheduler
on an ACMP over Fairness-aware Scheduling [56] on an ACMP and Linux OS
scheduler on an SCMP where ACMP and SCMP systems take approximately same
chip area.

78

5.2 Evaluation

In our work we run each benchmark from the SPLASH-2 suite on the four
simulated cores with each core capable of executing one hardware thread context
at a time. We run one iteration for each application except for radix where we run
ten consecutive iterations since radix execution time is one order of magnitude less
compared to other applications of the SPLASH-2.

A context switch incurs a fixed cost for storing and restoring the architecture
state [88] for which we presume a fixed 1,000 cycle penalty. We simulate the warm-
ing of the cache hierarchy during context switches for the workload migration. The
study [55] has shown the migration overhead to be less than 1.5% across different
types of single-threaded workloads, ranging form memory-intensive to compute-
intensive, for a 4 MB shared LLC using a 1ms hardware-quantum.

Figure 5.2: Performance and power consumption comparison of the TLSS and the Linux OS
scheduler on an SCMP, consisted of four large cores, for the SPLASH-2 benchmark suite.

5.2.1 Performance per Watt Evaluation

Fig. 5.2 shows the performance benefit and power consumption of the TLSS over
the Linux OS Scheduler on an SCMP with four large cores. The current practice

79

5. PERFORMANCE AND ENERGY EFFICIENT HARDWARE-BASED
SCHEDULER FOR SYMMETRIC/ASYMMETRIC CMPS

used by contemporary operating system schedulers, for example as implemented
starting in the Linux 2.6 kernel, is having threads pinned to the cores in a round-
robin fashion starting from the large core to the small cores and repeating till all
threads are assigned. The threads are then selected to be executed in a round-robin
fashion on the respective core that they are pinned to.

Figure 5.3: Distribution of the total execution time of the application.

The performance benefits arise form the fact that 1) the time spent executing
user and kernel code averages to 94.32% and 5.68% respectively as represented
in Fig. 5.3, 2) on average, 89.62% of the system calls in the non-sequential (i.e.,
when more than one thread is running concurrently) sections of the SPLASH-2
applications are caused by the synchronization (futex) calls and 3) the percentage
of threads continuing execution on the core marked as large after exiting futex
system calls is 64.22% for TLSS scheduler. The TLSS policy localizes more of the
synchronization sections onto the core marked as large, therefore optimizing a
program’s execution by improving overall average performance of the applications.
Fig. 5.4 represents the distribution of the total number of last level cache (LLC)
accesses between the core marked as large and the cores marked as small for the

80

5.2 Evaluation

Linux OS and TLSS scheduler on an SCMP system. While the total number of the
LLC accesses increases up by only up to 1.5% for the TLSS scheduler compared
to the Linux OS scheduler due to the more context switches, the total number of
the LLC accesses from the core marked as large is significantly larger for the TLSS
than for the Linux OS scheduler. This is due to the fact that more synchronization
sections are localized on the core marked as large.

Figure 5.4: The LLC cache accesses breakdown for the core marked as large and cores
marked as small cores of the Linux OS and TLSS scheduler for the SPLASH-2 benchmark
on an SCMP. LC stands for large core and SC stands for small core.

While TLSS is able to maximize performance substantially on an ACMP sys-
tem over Linux OS scheduler [71], it is also outperforming Linux OS scheduler on
average by 10.9% on an SCMP system due to the better localization of the syn-
chronization sections. Since threads in cholesky and lu applications are compute
intensive, the overhead cost due to the frequent context switches triggered by the
TLSS algorithm on the hardware threads (running on an SCMP system with four
identical OoO cores) leads to performance degradation compared to the Linux OS
scheduler which would keep the threads pinned to the cores.

81

5. PERFORMANCE AND ENERGY EFFICIENT HARDWARE-BASED
SCHEDULER FOR SYMMETRIC/ASYMMETRIC CMPS

TLSS minimizes the energy consumption in the cores marked as small but in-
creases it on the core marked as large, which leads to only 10.55% more overall
energy consumption compared to the Linux OS scheduler in an SCMP system.
However, since TLSS also is able to speedup execution time for most workloads,
our results show a 6.3% geometric average (and up to 22.5% for ocean.count) per-
formance per watt improvement of the TLSS over the Linux OS Scheduler. Fig. 5.5
shows the performance per watt benefit expressed as IPC/Watt of the TLSS over
the Linux OS Scheduler on an SCMP.

Figure 5.5: Performance per watt expressed as IPC/Watt comparison of the TLSS and the
Linux OS scheduler on an SCMP consisted of four large cores for the SPLASH-2 benchmark
suite.

5.2.2 Performance evaluation of TLSS on a many core ACMP

Results in Table 5.1 present the average cost of cache overheads in cycles for the
system with shared and private last-level caches where workloads range from a
few kilobytes to a few thousand kilobytes of data. This significant difference in the
workload migration cost between shared and private LLC systems shows the TLSS

82

5.2 Evaluation

Table 5.1: Cost of workload migration (in cycles) during context switch for workloads
ranging form a few kilobytes to a few thousand kilobytes.

Shared LLC Private LLC

Average 42985 301248

Min. 3406 15246

Max. 278112 3073444

mechanism would almost certainly suffer slowdowns for certain types of workloads

when applied on system with private LLC. If each core in the system has a private

LLC, the TLSS mechanism can not be adapted to overcome the drawbacks caused

by the higher workload migration cost. On the other hand if a few cores share a

portion of the LLC, TLSS can be modified so that it reschedules threads only among

cores that share a portion of the LLC, while the OS scheduler keeps its property

of keeping threads scheduled on the cores, or a group of cores, where they started

execution.

Fig. 5.6 shows the speedups of using TLSS for 8/16/32 simulated cores with as

many simulated threads per application, relative to the Linux OS scheduler. Each

group of four simulated cores (1 large + 3 small) share a 4MB L3 cache. For simu-

lated configurations of 8 (2 groups), 16 (4 groups) and 32 (8 groups) cores we get

performance improvements of 24%, 30% and 34% respectively. On the other hand,

BIS [48] proposal with 52 small cores (of similar configurations) having 3 large

cores gives average performance benefits of 42%, while UBA [49] outperformes it

by 8%. If we compare it to TLSS 32 cores (8 groups) configuration, BIS [48] ap-

pears to outperforms it by 8% and UBA [49] by 16% on average, with less large

cores in the system with similar specifications. This comes as consequence of TLSS

lightweight yet coarser grained approach which makes it unable to identify all bot-

tlenecks in the multi-threaded application and send them only to be executed on

the large cores.

83

5. PERFORMANCE AND ENERGY EFFICIENT HARDWARE-BASED
SCHEDULER FOR SYMMETRIC/ASYMMETRIC CMPS

Figure 5.6: Speedup comparison of the TLSS and the Linux OS (ACMP) Scheduler for
the SPLASH-2 benchmark suite in the private last-level L3 cache 8/16/32 cores system
configurations where each group of one large and three small share a 4MB L3 cache.

5.2.3 Energy efficiency comparison of the different schedulers on
an ACMP over an SCMP

We have used two commonly applied power metrics, in order to evaluate power
and energy efficiency of different scheduling policies applied on the ACMP and
SCMP systems that occupy approximately the same chip area. The first one repre-
sents total energy spent in the system during execution time. The second metric is
the energy delay product EDP = (D2)P where P stands for average power of the
system and D represents elapsed execution time. Total power multiplied by the de-
lay (i.e., total execution time) gives the total energy consumed which if multiplied
again by the delay gives the total energy delay product (EDP).

Since average power and energy consumption of the TLSS scheduling unit are
negligible compared to the whole CMP system, several million times less, we did

84

5.2 Evaluation

not consider them separately in this study. Fig. 5.7 and Fig. 5.8 represent nor-

malized energy and EDP efficiency (less is better) of TLSS scheduler on an ACMP,

Fairness-aware scheduler on an ACMP and Linux OS scheduler on an SCMP, where

ACMP and SCMP occupy approximately the same chip area. TLSS policy is 13.5%

more energy efficient and 7.3% more EDP efficient than Fairness-aware schedul-

ing on an ACMP, while being 41% and 81% energy and EDP efficient respectively

than Linux OS scheduler on an SCMP that occupies approximately the same chip

area as the considered ACMP. Detailed execution time, average power and energy

consumption results are presented in the Table 5.2.

Figure 5.7: Normalized energy efficiency of the TLSS and Fairness-aware schedulers on
an ACMP over Linux OS scheduler on an SCMP, where ACMP and SCMP occupy the
approximately the same chip area.

85

5. PERFORMANCE AND ENERGY EFFICIENT HARDWARE-BASED
SCHEDULER FOR SYMMETRIC/ASYMMETRIC CMPS

Figure 5.8: Normalized EDP, a commonly used power-delay product, of the TLSS and
Fairness-aware schedulers on an ACMP over Linux OS scheduler on an SCMP, where
ACMP and SCMP occupy the approximately the same chip area.

CMP Fair 1 LC+3 SC ACMP TLSS 1 LC+3 SC ACMP Fair 2 LC SCMP Fair 4 LC SCMP TLSS 4 LC SCMP
Application T [s] P [W] E [J] T [s] P [W] E [J] T [s] P [W] E [J] T [s] P [W] E [J] T [s] P [W] E [J]

barnes 0.803 37.67 30.24 0.702 39.37 27.64 0.980 50.51 49.52 0.476 85.31 40.59 0.481 97.99 47.17
cholesky 0.260 67.77 17.62 0.170 71.45 12.16 0.267 115.8 30.95 0.095 244.96 23.27 0.115 212.52 24.42
fft 0.672 60.18 40.44 0.575 60.03 34.5 0.602 65 39.15 0.534 80.07 42.78 0.459 90.07 41.33
fmm 0.554 76.64 42.46 0.451 80.85 36.43 0.493 119.74 59.03 0.251 197.27 49.44 0.235 251.58 59.09
lu.cont 0.351 72.35 25.39 0.313 71.52 22.41 0.242 111.48 26.98 0.133 197.48 26.23 0.166 160.76 26.74
lu.ncont 0.372 68.7 24.72 0.330 67.63 22.34 0.288 92.88 26.78 0.136 187.56 25.55 0.164 159.99 26.24
ocean.cont 1.773 35.68 63.25 1.590 35.88 57.04 1.662 39.18 65.11 1.696 45.39 76.99 0.964 65.33 62.95
ocean.ncont 1.858 37.11 68.96 1.700 36.71 62.42 1.735 40.48 70.26 1.735 47.24 81.97 1.065 64.91 69.13
radiosity 1.374 44.68 61.38 1.371 45.18 61.96 1.488 63.08 93.85 0.748 108.39 81.04 0.719 117.57 84.49
radix 0.477 30.82 14.7 0.471 31.2 14.7 0.781 30.3 23.6 0.388 55.98 21.7 0.412 53.85 22.2
raytrace 0.850 27.81 23.64 0.406 48.84 19.83 0.577 52.1 30.06 0.401 76.24 30.59 0.247 111.76 27.61
water.nsq 1.015 61.42 62.33 0.862 62.74 54.06 0.724 92.37 66.91 0.420 156.55 65.75 0.364 176.46 64.2
water.sp 0.275 67.81 18.65 0.231 70.29 16.27 0.196 101.05 19.8 0.109 176.75 19.22 0.100 191.31 19.08

Table 5.2: Simulation measured execution Time [s], average Power [W] and consumed
Energy [J] for the asymmetric and symmetric CMPs with different Schedulers.

These improvements in energy efficiency and EDP are attributable to the speedup
gains produced by the TLSS method. An ACMP is composed of one large and three

86

5.3 Conclusion

small cores while an SMP system has two large cores, where these two configura-
tions take approximately the same chip area. The speedup is the result of an ACMP
system having more cores, therefore being able to utilize parallelism better than an
SCMP system with fewer cores. Additionally, the power reduction arises from the
fact that small cores consume a lot less power then large cores. The performance
benefits of the TLSS over the Fairness-aware scheduler also contribute to lower
energy consumption when running the same system configuration. It should be
noted that SPLASH-2 is a multithreaded benchmark suite, and that TLSS is envi-
sioned to be useful for these cases. It may be less practical for applications whose
threads do not compete for locks and should be further explored in future work.

5.3 Conclusion

In this chapter we have discussed an implementation of the Thread Lock Section-
aware Scheduling policy [71]. TLSS scheduling is heavily influenced by Fairness-
aware Scheduling as well as bottleneck identification techniques. It seeks to provide
performance/power benefits from running parallel workloads on ACMPs without
the need for substantial hardware extensions, sampling, or runtime overheads. By
incorporating minimal hardware additions, our TLSS policy promotes the critical
sections of code to be executed on the larger rather than smaller cores within an
ACMP. We have proposed a possible application of the TLSS mechanism on SCMPs
by designating one of the cores as a large core. Our results show the 10.9% in per-
formance gains due to localizing crucial sections on the large core, while consum-
ing the same amount of energy, compared to a state-of-the-art Linux OS Scheduler
running SPLASH-2 benchmarks on an SCMP. As a consequence, the TLSS has an
average 6.3% performance per watt gains on an SCMP. Furthermore, comparing the
TLSS policy on an ACMP with the Linux OS scheduler on an SCMP, where ACMP
and SCMP occupy approximately the same chip area, shows an improvement of
41% and 81% in energy and EDP efficiency respectively.

The energy and performance improvements discussed in this study help to
demonstrate the utility that can arise from even simple prediction techniques such
as critical section identification when applied to CMPs. However, the rudimentary

87

5. PERFORMANCE AND ENERGY EFFICIENT HARDWARE-BASED
SCHEDULER FOR SYMMETRIC/ASYMMETRIC CMPS

prediction of the critical sections by TLSS leaves much to be desired without hav-
ing to resort to the hefty overheads required of more precise techniques such as
UBA and BIS. Next we will explore how more sophisticated estimation techniques
which can predict system performance for different mapping schemes can be im-
plemented using machine learning models and result in impressive throughput
benefits.

88

Part II

Applying ML to Heterogeneous
Scheduling

89

Having demonstrated the opportunities and limits available using current CMP
and scheduling designs in Part I, this part of the thesis examines applying machine
learning techniques to conventional heterogeneous schedulers in order to charac-
terize and estimate the performance of threads on different core types.

Accurately estimating the performance of applications on different heteroge-
neous resources can provide a significant advantage to heterogeneous schedulers
seeking to improve system performance. Recent advances in machine learning
techniques including artificial neural network models have led to the development
of powerful and practical prediction models for a variety of fields. As of yet, how-
ever, no significant leaps have been taken towards effectively employing machine
learning for heterogeneous scheduling.

In the following two chapters, the case is made of the advantages that applying
machine/deep learning (ML/DL) techniques can provide for computer architec-
ture. In particular, we apply artificial neural networks (ANNs) to help estimate sys-
tem performance and improve the mapping of conventional heterogeneous sched-
ulers leading to significant overall system performance gains.

Chapter 6 is entitled "A Machine Learning Approach for Performance Predic-
tion and Heterogeneous CPU Scheduling." It presents a study proposing a unique
throughput maximizing heterogeneous CPU scheduling model that uses machine
learning to predict the performance of multiple threads on diverse system resources
at the scheduling quantum granularity. We demonstrate how lightweight ANNs
can provide highly accurate performance predictions for a diverse set of applica-
tions thereby helping to improve heterogeneous scheduling efficiency. We show
that online training is capable of increasing prediction accuracy but deepening
the complexity of the ANNs can result in diminishing returns. Notably, our ap-
proach yields 25% to 31% throughput improvements over conventional heteroge-
neous schedulers such as HRRS and Linux CFS for CPU and memory intensive
applications.

Chapter 7 entitled "A Deep Learning Mapper (DLM) for Heterogeneous Schedul-
ing," describes a scalable scheduling model that decouples thread selection and
mapping routines. We use a conventional scheduler to select threads for execution
and a deep learning mapper to map the threads onto a heterogeneous hardware.
The validation of our preliminary study shows how a simple deep learning based

91

mapper can effectively improve system performance for state-of-the-art schedulers
by 8%-30% for CPU and memory intensive applications.

The justification and validation for the innovations proposed in this Part can be
summarized as follows:

• Claim: Heterogeneous scheduling is a prime candidate in computer archi-
tecture where applying ML/DL could result in significant performance im-
provements. Using lightweight ANN performance predictors to improve a
scheduler’s mapping is a practical approach to provide performance improve-
ments. The objective of these studies is to justify and validate this claim.

• Why scheduling: Heterogeneous scheduling is a popular area of research
since it is an important method to efficiently exploit the hardware diversity
in new architectures. Managing threads is a problem that shares similarities
with recommendation systems and navigation systems both of which have
benefitted using ML [9, 28].

• Mapping for heterogeneous CMPs: System performance (total instructions
per cycle) can vary significantly as a function of how the threads are mapped
onto a heterogeneous multicore. Therefore, an intelligent scheduler is one
which identifies a performance maximizing mapping scheme.

• Why ANNs: Artificial neural network based predictors are one such manner
which has been shown to be useful in accurately predicting target categories
and values for a wider variety of fields such as predicting network traffic and
stock market prices. Moreover, feedforward ANNs such as those used in this
work are lightweight in both computation and memory requirements and can
be easily accelerated using GPUs or specialized hardware.

• Validation: The preliminary results compared to [72] (using the same exper-
imental setup) show significant performance benefits of over 30%. The accu-
rate IPC predictions of the ANNs allow our schedulers to identify an optimal
mapping scheme which other schedulers cannot. We show that increasing
the complexity of the ANN may result in diminishing returns but may be
able to learn interference relationships as well. We believe these initial results

92

are significant for proof of concept studies that pioneers using ML/ML for
heterogeneous scheduling.

It is our hope that the novelty of these studies expose some of the exciting
opportunities available by applying machine and deep learning in the field of com-
puter architecture.

93

6
A Machine Learning Approach for Performance

Prediction and Heterogeneous CPU Scheduling

In this study we use lightweight ANN performance predictors to improve a sched-
uler’s mapping, compare it with other state-of-the-art schedulers, and demonstrate
that significant improvements can be achieved by applying ML to heterogeneous
multicore scheduling.

The preliminary results compared to conventional schedulers show significant
performance benefits between 25%-31%. The accurate IPC predictions of the ANNs
allow our scheduler to identify an optimal mapping scheme which other schedulers
cannot. We show that increasing the complexity of the ANN results in diminishing
returns (only 3-6% higher) compared with the more lightweight Base and Online
models which are easier to implement and have less overhead. These initial results
help to validate the proof of concept described in this study that to our knowledge
is the first to apply machine learning to heterogeneous scheduling.

The contributions of this chapter include:

• A heterogeneous scheduling model making use of a next quantum thread
behavior predictor, machine learning based performance predictors, and a
system throughput maximization scheduling policy.

• The design, implementation, and evaluation of two lightweight and one deep
ANN based performance predictors for two different core types which pro-
duce an accurate estimated instruction per cycle (IPC) value per execution
quantum for different threads on an ACMP system.

95

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

6.1 ML based heterogeneous scheduling

In this section we present our heterogeneous CPU scheduling model (targeted to

an ACMP system) using ANN based performance predictors. The structure of the

scheduler is shown in Figure 6.1 and consists of four parts. First is the statistical

information about each thread’s state and which core type it has been executing

on. The second is a next quantum behavior predictor (NQP) that predicts what will

be a thread’s behavior during the next scheduling quantum (described in further

detail in Section 6.1.2). Thirdly is a set of ANN based performance predictors

which use a thread’s behavior statistics to estimate its performance for a given

core type. The fourth and final part is a scheduling policy that uses the estimated

performance of all threads on all core types in combination with knowledge of the

available system resources to determine and initiate a mapping scheme for the next

execution quantum which maximizes system throughput.

The scheduler contains a list of threads where each entry details the thread

ID, state (e.g., running, ready, or stalled), and which core it previously executed

on. There are also two additional fields storing the performance estimates of the

thread if it were to be run on the large or small core during the next quantum. One

of these fields will be determined by the NQP while the other will be provided by

an ANN performance predictor. For example, after a thread executes on the large

core, the scheduler stores the observed IPC in the large core performance estimate

field and then uses the value generated by the small core ANN predictor, which is

propagated by the NQP, to fill in the small core performance estimate field. As a

result, threads only need to use one of the two ANN performance predictors that

correspond to the core type they did not run on last quantum.

Waiting or stalled threads do not need to go through the NQP or performance

predictors since their estimated IPC values will remain the same since last execut-

ing. At the end of each execution quantum, new IPC estimates are generated for

all running threads and the scheduler will apply its scheduling policy to determine

the optimal thread to core mapping which maximizes total system throughput.

96

6.1 ML based heterogeneous scheduling

Figure 6.1: The proposed ML based heterogeneous scheduling model. After each schedul-
ing quantum, statistics collected from the threads pass through the NQP and the ANN
based performance predictors. A scheduling policy then uses the estimated IPC perfor-
mance of all threads for both the large and small cores to identify an optimal mapping to
maximize system throughput for the next quantum.

97

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

6.1.1 Parameter engineering

To provide contextual awareness to a CPU scheduler, certain thread and hardware
statistics should be periodically collected. These may include values indicating a
thread’s states, execution time, number of instruction executed, types of instruc-
tions executed, number of memory operations, cache accesses/misses, and avail-
able cores and their types (if it is a heterogeneous system). The amount of statistics
needed to be collected depends upon the complexity and optimization scheme of
the scheduler. Being able to predict the performance of a thread on a particular
core depends on characterizing the type of instructions that will be executed next
quantum as well as estimating their effects on the given hardware resources. It is
therefore important to choose an appropriate set of thread statistics that will be
used as input parameters to our predictors.

However, in order to use statistical information as input to performance pre-
dictors for different core types, the statistics should be as generic as possible. This
is to say that the statistical input should not be dependent upon a particular core
implementation which may, for example, have different branch predictors and pri-
vate cache structures than other core types in the system. Normalizing the statistics
into ratios (e.g., instruction mix ratios) ensures ANN input to be consistent in cases
when training is done with data collected from the small core but predicting is
done using input statistics gathered from the large core. This is the procedure used
for the small core ANN performance predictors which is discussed in Section 6.1.3.

Without using normalization to get the instruction mix ratio, we would be left
with inconsistent statistical input to the ANNs since the number of actual executed
instructions of each type depend heavily on the microarchitecture of the cores (e.g.,
an out-of-order core may execute more instructions than an in-order core even
though the instruction mix ratios may be the same). Different forms of general-
ization can also be used in cases when the core types have different ISAs or cache
configurations. Generalizing statistics enables our approach to be useful in systems
with a variety of different architectures.

Different statistical values can be used as inputs to the ANNs. These can include
branch predictions, instruction mixes, TLB and cache accesses/misses, and DRAM
accesses. In determining the final set of statistics to use, we sought to balance

98

6.1 ML based heterogeneous scheduling

suitable ANN predictor accuracy while minimizing the collection and arithmetic
overheads. After exploring how different statistics (on an x86 system) affect ANN
prediction accuracies we settled upon the nine values given in Table 6.1.

Thread statistics

1 DL1
2 L2
3 L3
4 Loads
5 Stores
6 FP add/sub
7 FP mul/div
8 Branches
9 Generic arithmetic

Table 6.1: A list of the 9 statistics collected per thread (based on an x86 ISA), normal-
ized into ratios, and then used as input parameters to the ANNs in order to predict the
performance for that thread on a given core type.

Many conventional CPUs come with hardware support for collecting similar
statistics and in future work we will seek to further improve the set of statistics
needed in order to mitigate collection and processing overheads while maintaining
or improving the accuracy of our performance prediction model.

6.1.2 Next quantum thread-behavior predictor (NQP)

Several novel approaches [109, 29] have been proposed which predict program be-
havior based upon various statically or dynamically collected program statistics.
However, to lower overheads and for simplicity, in this study, we use a next quan-
tum thread behavior predictor (NQP) that will always predict the next behavior
to be equal to the previous quantum behavior. That is to say that if a thread just
finished executing during the previous quantum on the small core, it will predict
that the thread will perform the same (equal IPC) during the next quantum on the
same core (e.g., large core) The NQP does not rely on states, instead it sends the
behavioral statistics (e.g., instruction mix ratios, cache misses) gathered during a
thread’s previous execution quantum as the input parameters to the ANNs.

99

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

(a) perlbench. (b) gamess.

(c) sjeng. (d) cactusADM.

Figure 6.2: The IPC per quantum behavior of four SPEC benchmarks when running on the
large core compared to the small core.

Given that program behavior periodicity has been shown to be on the order
of several million of instructions and that we utilize a conventional scheduling
quantum of 1ms, we believe this "previous-value" based NQP is adequate for our
purpose of demonstrating the potential of performance predictors even though it
can certainly be optimized.

Figure 6.2 helps to visualize this behavioral periodicity. It shows the IPC vari-
ability of the perlbench, gamess, sjeng, and cactusADM SPEC2006 benchmarks
throughout their simulated execution on an Intel Nehalem x86 using a 1ms exe-
cution quantum. Though there are clearly periodic behavioral phases that span
tens and sometimes hundreds of quanta, it is also possible to observe that for finer
granularities, the IPC variation from quantum to quantum is quite minimal, and
more so on the small core. The figure also highlights the intra and inter application

100

6.1 ML based heterogeneous scheduling

core to core IPC differences which can fluctuate between phases.
The metric used to measure the accuracy of both the NQP and the ANN pre-

dictors is based on the prediction error as a percentage of the observed (target) IPC
value. The formulas used are given in equation 3.1 and reproduced below:

errori =
|yi � ti|

ti

µerror =
1
n
⇥

n

Â
i=1

errori

Where y is the predicted IPC and t is the target (i.e., observed) IPC value for
quantum i and n is the total number of quanta (i.e., samples).

Figure 6.3 presents NQP accuracy results for SPEC2006 and SPLASH-2 bench-
marks. These benchmarks were simulated executing on an Intel Nehalem x86
based heterogeneous configuration (described in Section 6.2.1) using a 1ms exe-
cution quantum. The error is calculated using equation 3.1 after measuring the IPC
differences of threads after running on the same core for sequential quanta. The
NQP results in average errors (including both benchmark suites) of 8% and 7%
for the large and small cores respectively. However, the results vary between indi-
vidual benchmarks with some outliers (e.g., cactusADM, soplex, cholesky, and ocean)
exhibiting larger errors. Higher errors demonstrate that the application behaviors
tend to change more frequently quantum to quantum and hence are harder for the
NQP to estimate accurately. These error variations can have a significant impact
on the accuracy of the ANN predictors and the efficiency of the resulting mapping
scheme.

Since the NQP predicts what the 9 statistics determining the behavior of a
thread will be for the next quantum based (using the same 9 statistics collected
during the previous execution quantum), it will then pass them to the ANN in
order for them to predict the thread performance for the next quantum on the core
type it did not previously execute on last quantum.

6.1.3 ANN performance predictors

One of the core contributions of this study centers around the implementation and
use of ANN based performance predictors. We implement separate performance

101

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

(a) SPEC2006.

(b) SPLASH-2.

Figure 6.3: The percentage error of the Next Quantum thread behavior Predictor (NQP) for
the different core types for SPEC2006 and SPLASH-2. Lower numbers are better.

102

6.1 ML based heterogeneous scheduling

(a) ANN used by the Base and Online performance predictors.

(b) ANN used by the Deep performance predictors.

Figure 6.4: A representation of the different ANN architectures used by the performance
predictors

predictors, one per core type, which take as input a set of statistics gathered from an
individual thread and output an IPC value that the thread is estimated to achieve
on a particular core type during the next execution quantum.

We implement and evaluate three different ANN models which are given below.
Two separate implementations of each ANN model are trained, one to predict for
the large core and a separate ANN to predict for the small core. In future work,
we will consider using different ANN architectures for the large and small cores.
The ANNs are implemented using the Matlab ML toolkit [67]. The three ANN
performance predictor types are:

1. Base: A lightweight ANN (shown in Figure 6.4a) composed of 9 input pa-
rameters, 1 hidden layer with 6 hidden units, and 1 output unit. All input units
are interconnected to every hidden unit. The hidden unit’s activation function is
the hyperbolic tangent sigmoid transfer function while the output unit used is a
rectified linear unit in order to predict a numerical value for the IPC. The base
predictor is used to evaluate the accuracy of the predictor as if it would only have
seen and been trained on a subset of all the applications that are to be run on a
system. To accomplish this, we train both the large and small core predictors with
data collected from individual executions of all SPLASH-2 benchmarks on both the

103

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

large and the small cores. We then evaluate the accuracy of the predictor on both
the SPLASH-2 and SPEC2006 benchmark suites.

2. Online: A replica of the Base ANN (see Figure 6.4a) but whose purpose
is to demonstrate the increased accuracy attainable once online learning has been
utilized to keep training the predictor dynamically after all applications from both
SPLASH-2 and SPEC2006 are executed at least once. Online training helps to gen-
eralize the predictions for diverse workloads and is also useful for improving the
prediction accuracy for applications that are executed more than once.

3. Deep: A deep learning version of the performance predictors composed
of the same 9 inputs but with 4 hidden layers of 20 hidden units and a single
rectified linear output unit (shown in Figure 6.4b). This type of predictor is used
to showcase the outstanding accuracy that these types of ANN based performance
predictors are capable of. Like the Online predictor type, it also emulates using
online learning for all the benchmarks in both SPLASH-2 and SPEC2006. Though
this type of predictor is not the most practical in terms of overheads needed for
weight storage and online learning, it does help to highlight whether increasing
the accuracy of the predictors would add significant benefits to the scheduler’s
performance, or whether the bottleneck is somewhere else such as the accuracy of
the NQP.

Training and prediction

Each training data sample consists of 9 input parameters and 1 target IPC value
which is periodically collected each quantum during execution of an individual
application on both the large or small core separately. Training data generated
from applications running on the large core will be used to train the large core
ANN predictor and vice versa. The error minimization function used for training
the ANN is the mean square error (mse) which is readily used in ML models.
Overfitting the ANNs to the training data can lead to large errors when predicting
for unseen data. This is a minor concern for the Online and Deep ANNs since the
predictor will keep learning as it sees new data and applications are generally run
more than once. To test for overfitting on the Base ANN, the total training data
set was randomly divided into training (70% of the total data samples), validation

104

6.1 ML based heterogeneous scheduling

Figure 6.5: The learning curves for the Online and Deep ANN performance predictors. The
prediction error decreases as the number of training samples from SPEC2006 and SPLASH-
2 benchmarks increase. The training set consists of samples collected every quantum from
simulated execution of both benchmark suites. The order of these samples is then random-
ized and provided as training samples to the ANNs.

(15%), and test (15%) subsets as is common practice in ML. The training subset
is used to train the ANN while the validation set is used to measure the ANN’s
generalization and the test set is employed to measure the final ANN accuracy. The
learning curves given in Figure 6.5 show how the training errors of the Online and
Deep ANNs decreases as the amount of training data increases. It is representative
of the amount of diverse training samples (i.e., execution quanta) the ANNs need
to start predicting consistently. After a certain amount of training data, the curves
level off so that increasing the amount of training data will not significantly impact
the ANN’s accuracy. The noise in the curves illustrates how sometimes the training
may stop at a local minima or plateau instead of reaching the optimal minima
where the error is lower. The shallower Online ANN is more susceptible to getting
stuck in local minima and even at optimal minima still results in higher errors than
the Deep ANN whose additional hidden units and layers allow it to learn more
complex relationships.

105

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

Figure 6.6: The average IPC prediction errors for both SPEC2006 and SPLASH-2 suites for
both core types. These values represent the true accuracy of the ANN predictors assuming
error free input data (i.e., no noise due to NQP). Lower numbers are better.

The ANNs are useful for predicting the performance of a thread on the core type

it has not executed on during the previous quantum. In terms of implementation,

however, this translates into needing to train the ANNs using data collected from

one core type but predicting using data collected from the other core type. To

predict how a thread currently running on a large core will perform on the small

core during the next quantum, the nine statistics collected from its execution on the

large core is used as the input for the small core ANN predictor. Similarly, the large

core ANN predictor uses the statistics collected from a thread’s previous execution

on a small core. The need to use data from one core type to predict for another

core type means that the resulting ANN predictions that the scheduler will use are

implicitly inclusive of the NQP errors. This is because the NQP already suffers

errors when predicting thread behavior for the next quantum (as seen in Figure

6.3), so the inputs to the ANNs which come from the NQP are inherently inclusive

of some level of noise.

106

6.1 ML based heterogeneous scheduling

Accuracies

The accuracy results in terms of average percentage error for the performance pre-

dictors are given in Figure 6.6. These accuracies are generated by using data from

the large core to test the accuracy of the large core predictor and vice versa. It

illustrates the true accuracy of the ANN given no errors in the inputs which is the

case when using the model in real time since the input from the small core will be

used to predict for the performance on the large core and vice versa. As shown,

the worst performing predictor type for the SPEC2006 benchmarks is the Base as

expected since we have only trained it with data from the SPLASH-2 benchmarks.

Its total average error for SPEC2006 is around 42%, 43% for the large core and

small core respectively. Its accuracy is much better for SPLASH-2 (expected since

it is trained with these benchmarks) attaining 10%, 7% average error for the large

core and small core respectively.

The Online predictor type greatly reduces the error especially for the SPEC2006

benchmarks but slightly reduces the accuracy on the SPLASH-2 benchmarks. This

is due to the ANN generalizing its weights for the behaviors of all benchmarks and

is therefore less likely to overfit just for those from the SPLASH-2 suite compared

to the Base. The average errors for the Online predictors are 18%, 15% (SPEC2006)

and 11%, 9% (SPLASH-2) for the large and small core respectively.

The Deep predictor type performs the best due to its complex architecture and

use of online learning. It should be noted that this network is the most suscep-

tible to overfitting but can also learn to predict better for newly run applications

dynamically once they run a second time after online training. Its error are 4%, 5%

(SPEC2006) and 4%, 3% (SPLASH-2) for the large and small core respectively.

These results show that the Online predictor is capable of improving the ac-

curacy of the Base predictor for SPEC2006 by over 4x while maintaining similar

accuracies for SPLASH-2. The Deep predictor improves upon the Base by nearly

10x for SPEC2006 and over 2x for SPLASH-2 while also lowering the standard devi-

ations for both. Evidently, greater performance prediction accuracy can be achieved

by including more diverse training data and using more complex ANNs.

107

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

Overheads

The overheads of the Online predictor, which we deem to be the most practical

approach, consists of approximately 150 floating point (FP) and 80 memory op-

erations for each prediction it makes. Conservatively assuming it takes 20 cycles

(though up to 4 FP per cycle may be done in advanced x86 designs [6]) to complete

each of the 230 operations, this results in 4,600 cycles of overhead each quantum.

The scheduler is called every 1M cycles (CPU clock is set at 1GHz and the schedul-

ing quantum occurs every 1ms) which means that the computational overheads

of the Online predictor are approximately 0.5% per prediction. Assuming four

predictions (one for each running thread) are to be sequentially calculated every

quantum, the total overheads are 2%. Online training may produce more compu-

tational overheads but can be triggered less frequently or when the system is less

busy or there are idle cores.

6.1.4 Mapping

After passing through the NQP and ANN performance predictors, the threads’ IPC

estimates for both core types are stored in the corresponding entries for these statis-

tics in the scheduler’s list of threads. At this point, the scheduler determines the

possible mapping schemes for the next quantum. Each mapping scheme assigns

specific threads to particular cores. The computational complexity for mapping is

then O((n
k)), which is related to the number of combinations that place different

threads on the large core(s). In this case, n is the number of threads and k is the

number of large cores with the assumption that all other threads are mapped onto

small cores. In the case of a 1-large 3-small core system executing four threads, four

different mapping scheme combinations exist which result in a different thread be-

ing assigned to the large core. For each possible mapping scheme, the scheduler

estimates the total system IPC by calculating the sum of the predicted IPC of each

thread for each core. The scheduler then ranks the different mapping schemes

based on the system IPC estimates and selects the highest for the next quantum.

108

6.2 Evaluation

6.2 Evaluation

This section presents the experimental setup and results of our simulations validat-
ing our proposal. The significance of the results should be viewed in terms of how
well they demonstrate the potential that applying lightweight ML techniques, such
as ANNs, can have on improving system throughput.

6.2.1 Methodology

The processor that is used for all experimental runs in this study is a quad-core
heterogeneous asymmetric multi-core processor consisting of 1 large core and 3
identical small cores. Both types of cores are based on the Intel Nehalem x86 ar-
chitecture running at 2.66GHz. Each core type has a 4 wide dispatch width, but
whereas the large core has 128 instruction window size, 8 cycle branch mispredic-
tion penalty (based on the Pentium M predictor), and 48 entry load/store queue,
the small core has a 16 instruction window size, 14 cycle branch misprediction
penalty (employing a one-bit history predictor), and a 6 entry load/store queue.

The 1-large 3-small multi-core system configuration is based on the experimen-
tal framework used in previous work [72, 56] that we evaluate our proposal against.
These works also make use of Sniper, which unfortunately does not provide for a
wide selection of different architectures such as ARM but does support hardware
validated x86 core types. We believe that using the experimental setup as employed
in previous work allows for the fairest comparison.

In running the simulations presented in this evaluation section, we created 12
combinations of 4 different SPEC2006 applications given in table 6.2. These dif-
ferent combinations were chosen to fairly include benchmarks which exhibit low,
medium, and high amounts of IPC prediction errors on our performance predic-
tors (shown categorized in the last column of the table). All benchmarks are run
from start to finish and the benchmarks that finish first are restarted such that the
number of benchmarks running at any one time on the system remains constant.
Once all the benchmarks finish at least once, the simulation is ended. This is done
to be consistent with simulating in the context of a real system which generally has

109

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

Combo Benchmarks ANN error

1 astar / lbm / tonto / h264ref High
2 gcc / cactusADM / gromacs /

bwaves
Med

3 hmmer / mcf / gcc / bwaves Med
4 leslie3d / gcc / bwaves / mcf Med
5 omnet / astar / bwaves /

gemsFDTD
High

6 perlbench / calculix / gamess /
bzip2

Low

7 calculix / mcf / soplex / gcc Med
8 gobmk / xalancbmk / namd /

zeusmp
Low

9 astar / zeusmp / cactusADM /
gemsFDTD

High

10 namd / gromacs / calculix /
cactusADM

Med

11 povray / gromacs / libquantum
/ bzip2

High

12 sjeng / leslie3d / gobmk / milc Med

Table 6.2: Simulated Benchmark Combinations. ANN error signifies which combination
exhibited more ANN errors when they were trained and tested with the benchmarks within
that combination.

110

6.2 Evaluation

enough ready threads to stay continuously busy and to demonstrate the ability of

our scheduler to maximize system throughput.

Schedulers

We have chosen to use the Hardware Round Robin Scheduler [72] as the baseline

to validate our proposals since it has been shown to provide performance improve-

ments for single and multi-threaded workloads over both the Linux scheduler and

Fairness-aware scheduler [77, 56]. As a reminder, the round robin scheduler func-

tions by swapping the thread executing on the large core with one of the threads

executing on a small core every quantum.

The three ML schedulers evaluated only differ in the ANN performance pre-

dictors they use and are named as such (i.e., the Base scheduler utilizes Base ANN

models for predicting for the large and small cores, the Online scheduler uses the

Online ANN model, and the Deep uses the Deep ANN model).

To account for context swap overheads, we apply a 1000 cycle penalty consistent

with the metric value utilized in the other studies.

6.2.2 Results

This section presents the predictor errors and system throughput of our 3 sched-

ulers compared to the round robin scheduler after running the 12 combinations of

different SPEC2006 benchmarks.

111

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

(a) The system throughput increase of the different schedulers
normalized to the round robin scheduler. Higher numbers are
better.

(b) The average NQP prediction error for all benchmark combi-
nations for the different schedulers. Lower numbers are better.

(c) The average ANN prediction error for all benchmark combi-
nations for the different schedulers. Lower numbers are better.

Figure 6.7: Simulation results of our ML based heterogeneous schedulers.

112

6.2 Evaluation

Figure 6.7a shows the system throughput improvement of our schedulers over
the round robin approach. Since our scheduling policy optimizes for maximum
system throughput, these results are central for evaluating and validating our ML
based heterogeneous scheduling approach. The three proposed schedulers achieve
impressive average throughput improvements over the round robin scheduler of
25%, 28%, and 31% for the Base, Online, and Deep schedulers respectively. These
improvements reflect the importance and significant differences that can arise from
using distinct mapping schemes. The results show that the ANN schedulers are
able to identify optimal mapping schemes that the round robin scheduler cannot.

The variations between the three schedulers for each individual benchmark
combination are noticeably related to the differences in their ANN and NQP er-
rors. Some of the throughput differences between the schedulers for some of the
combinations can also be attributed to the fact that the different ANNs learn differ-
ent relationships between the input parameters and output performance. Some of
these learned relationships may be very beneficial for some applications but less so
for others which behave irregularly. In addition, secondary effects such as context
swap penalties and thread interference can vary depending on the mapping and
thread behaviors.

Figure 6.7b shows the average performance (IPC) prediction error of the NQP of
the different schedulers. The error vary significantly between different benchmark
combinations (from 5% to 27%) and even slightly between the different schedulers
(up to 10%). The former is expected since the benchmarks behave differently from
one another and go through different phases of execution. However, the differences
in NQP error between the three schedulers when executing the same benchmark
combination is not necessarily intuitive. We believe that these discrepancies are
due to differences in mapping outcomes between the schedulers which results in
the benchmarks progressing differently and causing some variance of when and
how quickly they switch between phases. Differences in NQP error can produce
a noticeable impact on the accuracies of the ANNs. However, though the mea-
sured average error rate of the NQP can reach up to 14%, our proposed schedulers
nonetheless result in high accuracy and performance gains. This demonstrates that
even accounting for these phase and periodic variations in application behavior, it

113

6. A MACHINE LEARNING APPROACH FOR PERFORMANCE
PREDICTION AND HETEROGENEOUS CPU SCHEDULING

is still a reasonable approach for our proposal to predict the behavior for the next
quantum based upon the previous quantum.

Finally, Figure 6.7c shows the average performance (IPC) prediction error of the
three different ANNs. As expected, the Base scheduler, which averages 55% er-
ror, performs worse than both the Online and Deep predictors and achieves very
poor accuracy results for a couple of the combinations. These large errors illus-
trate that the Base ANN did not learn to generalize adequately to account for the
behaviors present in these combinations. Continuing to learn dynamically as new
applications are run can greatly improve the accuracy as illustrated by the Online
scheduler results which average 27% error. Further increasing the complexity of
the ANNs can also result in accuracy improvements as shown by the Deep results
which average 21% error. The errors are higher than those shown earlier (6.1.3) for
the individual benchmark runs because these errors also inherently include those
of the NQP. This is the case because the input to the ANNs comes directly from the
NQP. For example, combination 10 had lower NQP errors on the Base scheduler
which is reflected in the lower ANN error compared with the Online and Deep
ANNs.

In sum, these promising results validate the instrumental value that using ANNs
performance predictors can provide for effective heterogeneous scheduling.

6.3 Future work and conclusion

We seek to expand the scope of our work in the future by conducting studies related
to the input parameters, ANN hyperparameters (e.g., number of hidden layers and
units, training algorithms and regularization methods, etc.), improving the NQP,
and scalability. In particular we would like to develop further parameter normal-
ization methods to allow for more compatibility between very diverse architectures
and adapt our model to include thread interference effects.

In this study, we have pioneered applying machine learning to a throughput
maximizing heterogeneous CPU scheduler capable of predicting the performance
of multiple threads on diverse system resources at the scheduling quantum granu-
larity. We have shown how a lightweight ANN can provide highly accurate perfor-
mance predictions for a diverse set of applications even while only being trained

114

6.3 Future work and conclusion

on a small subset. In addition, we described how the predictor accuracy can be
greatly improved upon through the use of online learning and deep learning. Our
approach yields significant results with average throughput improvements between
25% to 31% over conventional heterogeneous schedulers for CPU and memory in-
tensive applications.

Though very promising, this approach does not take into consideration thread
interference effects, nor does it have an efficient scheduling mechanism for dealing
with the scenario when more threads than cores need to be selected and mapped
therefore requiring further modifications before being scalable. Next, we shall see
how a deep ANN (DNN) capable of predicting total system performance inclusive
of thread interference effects can be easily applied to a decoupled scheduling model
to handle large number of active threads.

115

7
A Deep Learning Mapper (DLM) for

Heterogeneous Scheduling

The objective of the study in this chapter is the proof of concept of the opportuni-
ties that arise by applying DL to computer architecture designs. The novelty of this
work centers on decoupling the selection and mapping mechanisms of a heteroge-
neous scheduler and fundamentally, the implementation of a deep learning mapper
(DLM) which uses a DNN to predict system performance. The selector remains re-
sponsible for ensuring fairness and selecting the threads to execute next scheduling
quantum while the mapper is charged with identifying an optimal mapping of se-
lected threads onto available cores. Compared to the previous study which did not
include a thread selection mechanism, this approach also uses an ANN to predict
the performance for the whole ACMP and not just per thread and per core. The
results of our proposal are promising, the DLM is capable of improving the per-
formance of existing conventional schedulers such as HRRS, Fairness-aware, and
Linux CFS by 8%-30% for computational and memory intensive applications.

The contributions of this chapter include:

• A heterogeneous scheduling model which decouples thread selection and
mapping to the computational resources.

• An implementation of a deep learning mapper (DLM) that uses a deep neural
network.

117

7. A DEEP LEARNING MAPPER (DLM) FOR HETEROGENEOUS
SCHEDULING

• An experimental validation presenting throughput results comparing 3 state-
of-the-art schedulers with and without making use of the DLM targeted to-
wards an ACMP system.

The rest of this chapter is structured as follows. Section 7.1 presents our pro-
posed scheduling model with a description of a practical implementation. Valida-
tion of our implementation with experimental results is found in section 7.2. Lastly,
we discuss future work and conclusion in section 7.3.

7.1 Scheduling model

In this section we present our scheduling model (shown in Figure 7.1) with decou-
pled thread selection and mapping mechanisms. This scheduling model uses (i) a
conventional scheduler (CS) to select a subset of available threads to execute next
quantum (using its prioritization scheme) and (ii) the deep learning mapper (DLM)
to map the selected threads onto the diverse system resources (using a throughput
maximization scheme). The scheduling quantum (the periodicity to run the sched-
uler) chosen is 4ms for the CS and 1ms for the DLM which reflect typical quantum
granularities of CS approaches. This difference allows the DLM to take advantage
of the finer grained variations in program behaviors and optimize the mapping on
the heterogeneous system while still maintaining CS objectives. Furthermore, the
context swap penalties is generally lower for the DLM since it only swaps threads
which are already running and have data loaded in their private caches while the
CS may select to run any thread that may not have any of its data in the caches.

In addition to selecting the threads to run next, the CS is responsible for thread
management, including modifying their statuses, dealing with thread stalls, and
mapping for the first quantum of new threads or when the number of available
threads is less than the number of available cores. When active, the DLM essentially
provides a homogeneous abstraction of the underlying heterogeneous hardware to
the CS since it only needs to select threads to run and not whether to execute on a
large or small core.

118

7.1 Scheduling model

Figure 7.1: The scheduling model. A conventional scheduler is used to select the threads to
run next quantum and the DLM then uses the NQP and DNN predictor to find the optimal
mapping to maximize system performance.

119

7. A DEEP LEARNING MAPPER (DLM) FOR HETEROGENEOUS
SCHEDULING

7.1.1 Deep learning mapper (DLM)

The DLM is responsible for finding a mapping of the selected threads onto the
hardware cores which optimizes system throughput. This objective helps to demon-
strate the significant potential that using DNN based performance predictors can
have for a continuously busy system. The DLM is composed of:

• Statistical information about each selected thread pertaining to its behavior.
These are collected during the thread’s previous execution quantum.

• A next quantum behavior predictor (NQP) that predicts what will be a thread’s
behavior during the next execution quantum.

• A DNN based performance predictor that uses the behavior statistics of all
threads selected for execution to estimate system performance for different
mapping combinations.

Upon being passed to the DLM, the selected threads enter the next quantum
predictor (NQP) which outputs behavioral statistics for each thread. These statistics
are then fed into the DNN system performance predictor which predicts the system
IPC for different mapping combinations. Since the objective of the mapper is to
map threads onto the hardware cores to maximize system throughput, the mapping
combination with the highest predicted system performance is chosen for the next
quantum.

The NQP utilized in this study is based upon the NQP presented in the previous
chapter. For a review of the NQP and parameter engineering analysis, refer to
Sections 6.1.2 and 6.1.1.

In determining the final set of statistics, we sought to balance DNN predictor
accuracy while minimizing the overheads due to gathering the statistics and the
arithmetic operations needed to be performed. Based upon the heterogeneous sys-
tem used in our study (detailed in section 7.2.1), we identified 12 different thread
statistics that are useful in describing thread behaviors on the cores and are inclu-
sive of thread interference effects. Compared to the previous study, the two floating
point parameters are combined into a single parameter and we have included four
additional parameters to better represent the cache access patterns of the threads.

120

7.1 Scheduling model

The statistics are collected after a thread completes an execution quantum and are
composed of the accesses and misses of the different structures of the cache hier-
archy as well as the instruction mix executed. These 12 thread statistics (given as
ratios) are given in Table 7.1.

Thread statistics

1 DL1
2 L2
3 L3
4 Loads
5 Stores
6 FP add/sub/mul/div
7 Branches
8 Generic arithmetic
9 IL1 divided by DL1 loads
10 L2 divided by DL1 misses
11 L3 divided by DL1 misses
12 L3 divided by L2 misses

Table 7.1: A list of the 12 statistics collected per thread (based on an x86 ISA), normalized
into ratios, and then used as input parameters to the ANN. Since the ACMP has four
cores, the ANN uses the parameters from four threads as input in order to predict the
ACMP system performance (a total of 48 input parameters).

The 12 statistics are saved as part of a thread’s context after each quantum it
executes, overwriting the values from the previous quantum. Many conventional
CPUs come with hardware support for collecting similar statistics and in future
work we will seek to further explore the set of statistics needed in order to mitigate
collection and processing overheads while maintaining or improving the accuracy
of our performance predictor.

DNN system performance predictor

The key component behind the DLM is a DNN system performance predictor
which takes as input a set of parameters from as many individual threads as there
are hardware cores and then outputs an estimated system IPC value. The system
we target is a heterogeneous CPU architecture composed of 4 cores with 2 different

121

7. A DEEP LEARNING MAPPER (DLM) FOR HETEROGENEOUS
SCHEDULING

Figure 7.2: An example of how the DLM uses the DNN to predict for 4 different mapping
combinations once it is passed the 4 threads selected by the CS (A, B, C, and D).

core types (1 large core and 3 small cores, described in section 7.2.1). The DNN
predictor takes as input the 12 normalized parameters from the 4 threads (selected
for execution by the CS) for a total of 48 input parameters. Thanks to the thread
selection scheme utilized, the ANN only every needs to have no more than four
threads to predict for and therefore its input can be statically set to 48 parameters.

The order in which the threads are inputted to the DNN correspond to which
physical core they would be mapped to. For instance, we have set the first 12 thread
parameters as corresponding to the thread mapped to the large core, the next 12
parameters correspond to the thread mapped to the first small core, the next 12
correspond to the thread mapped to the second small core, and the last 12 parame-
ters correspond to the thread mapped to the third small core. This way, we are able
to estimate what the system IPC would be for different mapping combinations.

An example of this is given in Figure 7.2. Here the CS has selected 4 threads (A,
B, C, and D) from a larger pool of available threads to execute next quantum. There
are 4 different combinations which we can map the 4 threads onto the hardware
where each combination will have a different thread mapped onto the large core.
The different mapping combinations represent the different ordering of the thread
parameter inputs to the DNN. For instance, combination 1 will have the first 12 in-
puts correspond to thread A, the next 12 to thread B and so on. We could also con-
sider all mapping permutations (i.e., different mappings between the small cores)
but since the only shared structure is the L3, there should be negligible differences
in performance and interference effects. In the example, the DNN predictions for
the 4 different combinations are given in the last column. Combination 2 has the

122

7.1 Scheduling model

highest estimated system and will be chosen as the optimal mapping scheme for
the upcoming quantum. It should be noted that unlike the study in the previous
chapter where statistics from the small core were used as input for the large core
predictor and vice versa, there is no indication to the ANN whether a thread has
previously executed in the large or small core. This could be an interesting modifi-
cation to make for future work by simply adding a binary parameter indicating if
the thread was previously run on the large or small core.

We have implemented the DNN performance predictor using Python and the
machine learning library scikit-learn [78]. After conducting a hyperparameter (i.e.,
the metrics that define the DNN architecture and training method) analysis for the
DNN, which we sought to balance accuracy with implementation practicality, we
settled on a DNN implementation consisting of 48 total inputs, 5 hidden layers of
25 hidden units each, and a single output unit that use a rectified linear activation
function:

f (x) = max(0, x)

.
The DNN is capable of dynamic learning via online training using micro-batches

of new training data collected as the system continues execution. Therefore, even
if the predictor begins with very low accuracy, it will be able to learn dynamically
such that its level of accuracy and generalization for different applications improves
over time.

Each training data sample consists of 48 input parameters and 1 target system
IPC value. These are collected after each scheduling quantum which has resulted
in the execution of 4 threads on the 4 cores. The algorithm used for training is a
stochastic gradient based optimizer with L2 regularization which is readily used in
machine learning models to regulate overfitting by diminishing the importance of
parameter weights. During training, the weights of the neural network are adjusted
after each full iteration of a batch of training data, always aiming to minimize the
mean square error (mse) between the predicted output and the target output. The
number of training samples to use for online training is adjustable; for instance we
could continue training after each single quantum or after 100 or more quanta, but
it is important to balance overheads with the ability of the predictor to generalize

123

7. A DEEP LEARNING MAPPER (DLM) FOR HETEROGENEOUS
SCHEDULING

for a wide scope of thread behavior. For our online DNN implementation, we have
chosen to keep training our predictor every 20 execution quanta (i.e., a micro-batch
of 20 samples). This requires needing to save only 20 quantum samples of data a
time. The frequency of online training is related to the average number of quanta
the benchmarks take to complete. A larger micro-batch could be used for longer
applications or when the system is exceedingly busy in order to lower overheads.
Micro batch training means that the weights are updated after the errors from all
the samples in the micro-batch are calculated. One training epoch passes when
the ANN updates its weights for all micro batches. Not all micro batches collected
over the entirety of a systems execution history needs to be saved and utilized for
training. This can cause large memory footprint and calculation overheads but
would also train the ANN to predict for all applications ever run. Conversely, if
only newer micro batches are used for training, then the ANN may forget what it
has previously learned and just be accurate for newly run applications. Striking
a balance between these approaches can be tricky but methods such as keeping
only a subset of older micro batches and newer micro batches may be a useful
middle ground. In this study we have retrained using a full history to showcase
the potential of the DLM model. Improving online training scalability for the model
will be an area of focus in future work.

Figure 7.3 plots the learning curves of the training and 10-fold cross-validation
results of the online DNN predictor. It highlights how, as the quantity of training
data grows, so too does the accuracy and generalizability of the predictor when
executing all the applications from SPEC2006. The score is measured in terms of
correlation between the predicted system performance and the observed system
performance using an R2 coefficient (see Equation 3.3) reproduced below:

R2 = 1 � u
v

u = Â(ytrue � ypred)
2

v = Â(ytrue � ȳtrue)
2

In particular, the figure shows that after about 15000 quanta, the correlation be-
tween the predicted performance and the observed performance on the data used

124

7.1 Scheduling model

Figure 7.3: The learning curve of the online DNN predictor. As the amount of training
data increases the predictor becomes more generalized (i.e., able to predict with similar
accuracy levels for both training and test data) to account for different applications and
behaviors. Higher y-axis numbers are better.

125

7. A DEEP LEARNING MAPPER (DLM) FOR HETEROGENEOUS
SCHEDULING

to train is very high (about 0.96) and after about 35000 quanta, the correlation sta-
bilizes for the unseen validation data at about 0.64. The difference between the
training and validation curves illustrates that the model has high variance which
may indicate overfitting, but can be explored in future work by adding more reg-
ularization and fine tuning the input parameters, hyperparameters, and sample
data. Since our model is capable of online learning, however, the prediction errors
introduced by running new applications will gradually settle at lower levels after
training dynamically.

7.1.2 Overheads

Schedulers typically add overheads due to the mapping calculations and resulting
context swaps after each scheduling quantum. Since the DLM is triggered 4 times
as often as the CS (1ms vs 4ms quantum), the DLM can also cause context swaps
by swapping threads between cores before the next CS quantum. A minimum of
0 and maximum of 4 extra context swaps can be issued by the DLM before the
next CS quantum. However, the DLM will only trigger a swap if the resulting
mapping is beneficial to overall system performance. The overheads due to the
NQP and performance predictor amount to less than 4000 floating point operations
per predicted mapping combination and less than 16000 in total. However, not only
can a large quantity of these calculations be done in parallel, but this overhead is
still orders of magnitude less than it costs to swap contexts and load the caches.
Online training also adds overheads but is only done after every 20 quanta (or the
chosen frequency of micro-batch training) and can be hidden by running it in the
background when a core is idle.

Storing the 64-bit weights of the DNN requires about 21KB of memory. The
introduction of new statistical fields to save for each thread is also a minor over-
head (96 bytes per thread) as is the memory needed to store the online training data
(7,680 bytes for 20 samples of 4 threads’ worth of parameters). Lowering these over-
heads is a topic for future work but are still reasonable for a viable implementation
of the scheduling model.

126

7.2 Evaluation

7.2 Evaluation

This section presents the experimental setup and validation results of our schedul-
ing model. The significance of the results should be viewed in terms of how well
they demonstrate the potential that applying lightweight DL techniques such as
DNNs can have on improving system throughput.

7.2.1 Methodology

Similar to the study presented in the previous chapter, the processor that is used for
all experimental runs in this work is a quad-core heterogeneous asymmetric multi-
core processor consisting of 1 large core and 3 identical small cores. The 1-large
3-small multi-core system configuration is based on the experimental framework
used in previous work [72, 56] that we evaluate our proposal against.

We have used the popular SPEC2006 [47] benchmark suite to evaluate and train
our scheduling model. The entirety of the benchmark suite is used with the ex-
ception of some applications which did not compile in our platform (dealII, wrf,
sphinx3). All 26 benchmarks are run concurrently from start to finish and the
simulation ends after all the benchmarks finish. This is done to emulate a busy
system which must execute a diverse set of applications. This setup is also useful
in demonstrating the ability of the DLM to improve system throughput.

We evaluate the performance for three different conventional schedulers (round-
robin [72], Fairness-aware [56], and CFS [77]) with and without a DLM trained
online. To account for context switch overheads due to architectural state swap-
ping, we apply a 1000 cycle penalty which is consistent with the value utilized in
the round robin study. The additional cache effects from the context switches are
captured by the simulation.

Figure 7.4 compares the system throughput improvements achieved for all 3
schedulers when using a DLM after running SPEC2006. The results show an av-
erage percentage throughput increase of 8%, 20%, and 30% for the round-robin,
fairness-aware, and CFS schedulers respectfully. These improvements are signif-
icant especially for a preliminary study with a simple deep neural network pre-
dictor. They also highlight how effective the DLM is at benefitting all 3 different

127

7. A DEEP LEARNING MAPPER (DLM) FOR HETEROGENEOUS
SCHEDULING

Figure 7.4: Average system throughput (IPC) improvements when using the DLM for all
SPEC2006. Higher numbers are better.

state-of-the-art schedulers. The improvements demonstrate the ability of the DLM
to find more optimal mappings than the schedulers can by themselves. It achieves
this thanks to two main factors. The DNN predictor allows the DLM to make highly
accurate predictions for different mapping combinations while the 1ms quantum
provides the opportunity to detect and adjust the mapping for variations in thread
behaviors. The differences in the throughput gains for the 3 schedulers are also
consistent with how they perform relative to one another without the DLM. On a
heterogeneous system, the round-robin scheduler has been shown to perform bet-
ter than the fairness-aware scheduler, which in turn performs better than the CFS.
We believe that the differences in improvements are largely due to the fact that
NQP produces more noise as new threads are introduced into the cores (which
is frequent for HRRS and Fairness-aware but less so for CFS) since this results in
different interference and cache warm up effects. This consequentially introduces
more error into the DNN predictor and causing the DLM to misidentify the best
mapping option.

The average total percentage prediction error of the DLM (calculated using

128

7.3 Future Work and Conclusion

equation 3.1) for the experiments was 12%. Similar to the previous chapter, the
results from our model includes errors from both the NQP and the DNN. This er-
ror rate is within reasonable margins and our results are notable when considering
that the DLM still showed such significant throughput benefits.

7.3 Future Work and Conclusion

We seek to expand the scope of our work in the future by conducting an exten-
sive exploration related to the thread statistics, alternative DL models, improving
the NQP, and scalability issues. In particular we would like to develop parameter
generalization methods to allow for more compatibility between very diverse ar-
chitectures. Clustering and ensemble models could be used to further widen the
scope of the DLM for dealing with irregular applications.

In this chapter we have presented a preliminary study which pioneers applying
DL to heterogeneous scheduling. We outlined a scalable scheduling model that
decouples thread selection and mapping routines. The thread selection mechanism
of a conventional scheduler is used in conjunction with a deep learning mapper
(DLM) to maintain fairness and increase system performance. The DLM uses a
deep neural network to predict the system performance for different mapping op-
tions at the scheduling quantum granularity. This lightweight deep neural network
can provide highly accurate predictions for a diverse set of applications while con-
tinuing to train dynamically. The validation of our approach shows that even a
simple DL based mapper can significantly improve system performance for state-
of-the-art schedulers by 8% to 30% for CPU and memory intensive applications.

We hope that the novelty of the two studies in this part of the thesis have ex-
posed some of the exciting opportunities available by applying machine and deep
learning techniques to the field of computer architecture.

129

8
Related Work

In this chapter we discuss the related work for the topics explored in this thesis
covering heterogeneous architectures, scheduling, machine learning for systems,
and programming/analytical models and unconventional architectures.

8.1 Heterogeneous architectures

There have been several developments in heterogeneous many-core systems, in-
cluding MorphCore [104], ARM’s big.LITTLE [38], and accelerated processing units
[23]. Moncrieff et al. [22] and Menasce et al. [21] analytically examined the trade-
offs between utilizing fast and slow processors in heterogeneous processors. Their
study showed that a system composed of few fast cores and many slow cores are
effective in terms of cost and performance.

An ACMP system containing various cores of the same ISA but of different
types was proposed by Kumar et al. [82]. Their process consists of deciding on the
core that will perform in the most power efficient manner each time a new phase or
program is detected using sampling techniques. Moncrieff et al. [22] and Menasce
et al. [21] analytically examined the tradeoffs between utilizing fast and slow pro-
cessors in heterogeneous processors. Their study showed that a system composed
of few fast cores and many slow cores are effective in terms of cost and perfor-
mance. In terms of microarchitectural differences, Chen et al. [46] implemented
their ACMP with cores consisting of separate branch predictors, issue widths, and
L1 cache sizes that used in conjunction with their scheduling method, achieved

131

8. RELATED WORK

throughput and energy efficiency improvements. The scheduling approach used
by Annavaram et al. [65] focuses on staying within a specified power envelope by
measuring the energy per instruction of an ACMP running multithreaded applica-
tions and running parallel sections of code on the small cores and then migrating
to the large cores for the sequential sections.

Grochowski et al.[31] studied the potential of ACMP architectures to save en-
ergy and improve throughput. The study [110] investigates the relationship be-
tween chip area and performance and determines a potential configuration. Pri-
vate caches generally require coherence mechanisms to manage sharing of data
which may impose overheads if the cores are mostly dealing with non shared data
or experience many contention cycles if attempting to access a resource shared by
multiple cores. However, as shown in the studies [57], [7], non-uniform cache ar-
chitecture (NUCA) caches are able to mitigate both of these disadvantages and can
be used to combine several separate cache modules into an emulated large shared
cache.

8.2 Scheduling

Our studies have been influenced by a wide scope of research applied towards het-
erogeneous scheduling. The idea of the contemporary chip multiprocessor (CMP)
originated in the early nineties with the research community recognizing the im-
pact scheduling can have on system utilization and performance. An early schedul-
ing algorithm for an asymmetric system called Single Architecture Heterogeneous
Multiprocessor that does not support multi-programming is presented in [69].

Optimal scheduling of independent applications running on a preemptive het-
erogeneous CMP has been studied by Liu et al. [50]. They analyze past non-critical
thread barrier stall times in order to estimate the future criticality of threads and
dynamic voltage and frequency effects. Building upon the occupancy-based ap-
proach of Contreras and Martonosi [37], the work [1], samples current behavior to
predict thread criticality and use the predictor to improve task stealing.

Scheduling based power management techniques have been examined in the
work of Winter et al. [44] which employ several sampling based algorithms in order
to analyze the optimal thread to core mapping. Sampling methods are also used

132

8.2 Scheduling

in the work [81], which investigates performance maximization of multithreaded
applications on an ACMP. A heterogeneous approach at allocating resources has
been previously applied to CMP interconnection networks in order to leverage the
non-uniformity in the demand of network resources [70]. A symbiotic job scheduler
for a simultaneous multithreading processor which sought to schedule concurrent
threads that do not severely impact the performance of one another on a single
SMT processor is studied by Snavely et. al. [100].

Fairness-aware Scheduler [56] is a software implemented ACMP scheduling
mechanism that enhances the pinned scheduler by triggering a software thread
swap after a specified software quantum (typically 4ms). They target a two core
type ACMP system and assign the thread with least execution progress to the more
powerful core type each scheduling quantum. Another fair based scheduling ap-
proach for asymmetric CMPs was explored by Saez et. al. in [92]. Similar work by
Becchi [66] consists of an ACMP that includes two distinct core sizes where thread
to core assignment is managed by initiating a mandatory swap of threads between
two different sized cores in order to measure the corresponding performance ra-
tio. Based on this ratio, the threads are then scheduled to their core that will
maximize the system performance. This work has given insight into ratio based
ACMP scheduling techniques but is limited as the number of distinct core types
used increase. Other work in this area has been done by Saez et al. [45] who use a
utility factor, defined as the ratio of L1 miss latency compared to a baseline ACMP
configuration (only small cores), with the aim of optimizing the performance of
both single and multithreaded workloads. Likewise, Koufaty et al. [20] determine
optimal thread to ACMP core mapping using a biasing method estimated by the
quantity of external memory stalls and internal pipeline stalls. A formula based
ACMP thread to core scheduling method is proposed by Srinivasan et al. [90]
which is used to estimate and compare thread performance on individual cores.
In contrast, a phase classification and regression analysis is utilized to optimize
thread to core mapping in an ACMP by Khan et al. [75].

A separate study [4] aims to create a contention-aware scheduler that maxi-
mizes throughput by learning and mimicking the decisions of an oracle scheduler.
Chronaki et al. [13, 14] propose a heterogeneous scheduler for a dataflow pro-
gramming model which improves performance using a prioritization scheme and

133

8. RELATED WORK

dynamic task dependency graph to assign newly created and critical tasks to fast
cores. A statistical method using extreme value theory is used in [84] to determine
the probabilities for optimal task assignment in massively multithreaded proces-
sors.

For scheduling within the domain of OpenMP parallel applications, the au-
thors of [11] propose a NUMA-aware scheduler that determines which threads are
sharing data on a common NUMA node. Based on monitoring memory related
performance counters, the scheduler is able to efficiently map threads to NUMA
nodes. A more generic NUMA-aware scheduler is presented in [87] which high-
lights how using schedulers unaware of the hardware architecture (referred to as
UMA systems in the paper) can negatively impact performance. These novel pro-
posals highlight the impact that efficient scheduling can have for increasing perfor-
mance when there is hardware resources contention.

8.3 Machine learning for systems

There has been very few previous studies conducted on applying machine/deep
learning to CPU scheduling. Much of the previous work using machine/deep
learning for scheduling has been to classify applications, as well as to identify
process attributes and a program’s execution history. This is the approach of [73]
which used decision trees to characterize whole programs and customize CPU time
slices to reduce application turn around time by decreasing the amount of context
swaps.

The work presented in [63] studies the accuracy of SVMs and linear regression
in predicting the performance of threads on two different core types. However,
they do so at the granularity of 1 second, use only a handful of benchmarks, and
do not implement the predictor inside of a scheduler.

The studies by Frederic et. al. [80], [27] investigates using machine learning to
automatically generate desired solutions for a set of problem instances and solve
for new problems in a massively parallel manner.

In the study [41], CPU burst times of whole jobs for computational grids are es-
timated using a machine learning approach employing decision trees and k-nearest
neighbors. A related work targeting grids by predicting execution time, memory

134

8.4 Programming/analytical models and unconventional architectures

and disk consumption for bioinformatics applications is done in [68]. An approach
that utilized machine learning for selecting whether to execute a task on a CPU or
GPU based on the size of the input data is done by Shulga et. al. [95]. Predicting
L2 cache behavior is done using machine learning for the purpose of adapting a
process scheduler for reducing shared L2 contention in [85]. Fedorova et. al. [36]
proposes an algorithm that uses reinforcement learning to maximize normalized
aggregate IPC. They demonstrate the need for balanced core assignment but do
not provide an implementation.

In the work done by Bogdanski et. al. [10], choosing parameters for task
scheduling and loadbalancing is done with machine learning. However, their pre-
diction is whether it is beneficial to run a pilot program that will characterize a
financial application. They also assume that the computational parameters of the
workload stay uniform over certain periods of time. Nearly all of these approaches
deal with either program or process level predictions and target homogeneous sys-
tems. It is important to note that one of the first pioneering studies of applying
a primitive model of machine learning towards improving CPU performance was
done by Jimenez et. al. [53] which employed perceptrons as a new method to
predict branches.

8.4 Programming/analytical models and unconventional
architectures

Several novel research studies have focused on evaluating microarchitectural de-
tails and providing an analysis or systematic approach at determining the most
optimal modifications. A statistical simulation approach at modeling processors is
presented in [32]. Design space exploration studies of embedded architectures is
done in [34] and [79].

Characterizing and exploiting program behavior and phases has been the sub-
ject of extensive research. Duesterwald et. al. [29] and Sherwood et. al. [94] showed
that programs exhibit significant behavioral variation and can be categorized into
basic blocks and phases which can span several millions to billions of instructions
before changing. Work done in [109] has taken advantage of the compilers ability

135

8. RELATED WORK

to statically estimate an applications varying level of instruction level parallelism
in order to estimate IPC using monotonic dataflow analysis and simple heuristics
for guiding a fetch-throttling mechanism.

Future programming models and architectures will likely make use of differ-
ent runtimes and abstraction layers. Proposals seeking to explore unconventional
designs can gain insight from cross platform runtime systems such as the Java pro-
gramming environment [5]. Java offers a rich framework of data structures and
methods that are shared as libraries and ubiquitously used in academia and in-
dustry. Java and other highly abstract cross-platform languages rely on the use of
virtual ISAs (such as Java Byte-code).

Existing virtual ISAs also express a very low level of functionality and must
be translated into the physical processor’s ISA in order to run [2, 99]. This proce-
dure naturally causes overheads, but most have been greatly minimized thanks to
a continual process of optimization. The virtual instruction set computing (VISC)
proposal builds on an LLVM method and applies it toward heterogeneous archi-
tectures [3]. Although there are similarities with F-ISA, in particular, both are in-
tended as a virtual intermediate representation and the VISC approach can be seen
as complementary to F-ISA. The VISC design builds on vector parallelism as well
as generalized macro dataflow graphs and, although it is novel, it sets an upper
bound on the level of functional abstraction it can support from the computation
cores. It also does not support function unfolding such as in F-ISA.

The neurocomputing Galatea project was an interesting proposal [107]. By using
a low-level virtual machine language that includes threaded-code techniques and
a certain amount of function unfolding capabilities, it can sustain code portability
across different systems (in this case, neurocomputers). This technique can also be
seen as complementary to F-ISA.

Although similar LLVM approaches could allow for function unfolding using
threaded-code techniques, their low level of functional abstraction limits the diver-
sity and complexity of computational cores that might be implemented, as com-
pared with the F-ISA approach. In addition, the F-ISA proposal is intended for
parallel applications running on typical workstations and mobile devices without
the need to modify user code. Task dataflow programming models provide useful
abstraction tools for developers to improve the parallelization and performance of

136

8.4 Programming/analytical models and unconventional architectures

their programs[35]. OmpSs and its earlier implementations [30, 26, 8] let program-
mers separate sections of code into tasks that are then passed to a runtime that
uses dataflow methods, including data tokens and dependency graphs, to deter-
mine which tasks are ready for execution and which cores to dispatch them for
execution. Whereas these programming models involve the developer inserting
hints or pragmas into the application code, our approach aims at optimizing the
hardware without requiring any modifications of the user code.

Nonconventional object processors have previously sought to exploit the mod-
ularity and parallelism inherent in object-oriented software techniques. The Intel
iAPX 432 [111], Rekursiv [40], and Smalltalk on a RISC (SOAR) [108], are all ex-
amples of early, yet novel, object-oriented processors. More contemporary designs
include the picoJava [76] and [93] processors based on a hardware implementa-
tion that can run Java bytecode. Many of these early systems, developed several
decades ago, were confronted with technological limitations that increased the im-
pact of software-related overhead latencies, for example, due to object type check-
ing routines. Decoupled architecture techniques have also been implemented to
great effect [96, 97]. These systems improve computer performance via separate in-
struction streams that can execute concurrently while still maintaining sequential
program execution flow. These proposal show that there has been constant interest
in the research community for pursuing unconventional system designs. Issues
dealing with scalability, legacy support, and cross platform practicality are often
the main barriers for new designs to be popularly adopted. However, widening
CPU constraints as well as the development of new processor technologies and
system efficiency techniques/tools, if properly utilized, can open new opportuni-
ties for unconventional designs to be widely adopted.

137

9
Conclusion

Computer architects have started embracing heterogeneous systems as an effective
method to make use of increases in transistor densities for executing a diverse range
of workloads under varying performance and energy constraints. While future of
heterogeneous systems may include tens or hundreds of different accelerators, cur-
rent heterogeneous designs are much more limited in scope. Typically combining
powerful general purpose cores with energy efficient cores, conventional heteroge-
neous systems can still provide for substantial amounts of architectural flexibility
with regards to computational and memory resource configurations. To effectively
exploit conventional and future CMPs, advances in heterogeneous designs should
be complemented by developments in CPU scheduling.

CMP schedulers typically rely on a thread selection mechanism to guarantee a
level of fairness with regards to execution time for all workloads, and also produce
a mapping scheme assigning workloads to specific hardware cores. Conventional
CMP schedulers rely on tried and tested prioritization or scoring thread selection
methods to provide fairness but are often unaware of hardware diversity and un-
able to produce optimal mapping schemes. Newer schedulers aimed at heteroge-
neous CMPs are able to recognize the differences between the cores and provide
an added level of fairness not just in terms of total execution time but also in the
amount of time spent running on each core type. As a result, state-of-the-art het-
erogeneous schedulers are able to produce significant performance improvements
over their predecessors and enable more flexible CMP designs including cache con-
figurations.

139

9. CONCLUSION

Identifying an optimal mapping scheme, however, is a difficult endeavor to pur-
sue without being able to estimate how different applications will perform on the
distinct core types. Most conventional schedulers are unable to do so and therefore
cannot compare the throughput that different mapping schemes would result in.
The proposals that do use performance estimation at the quantum granularity can
often suffer from significant overheads due to their high complexity and lack of
scalability.

Yet, managing and mapping threads is a problem that shares similarities with
recommendation systems and navigation systems both of which have benefitted
using machine learning techniques. Advances in machine learning (ML) prediction
models have unlocked an exceptional opportunity of using these techniques for
estimating system performance. Though heterogeneous scheduling is a popular
area of research, there has yet been no seminal work exploring the use of ML for
mapping optimization.

In this thesis we have explored the rise and utility of current heterogeneous
architectures and presented a futuristic model which supports massive hardware
diversity. Utilizing a functional ISA (F-ISA) increases the functional abstraction
level of the machine instructions, thereby enabling a significant increase in the
diversity of a processor’s computational units. This results in greater specialized
execution particular to the needs of the software algorithms which should be useful
in improving system performance relative to latency, memory footprint, and power.

After conducting a design space exploration of conventional heterogeneous de-
signs, we highlighted how CPU scheduling is at the crux of effective application
and hardware resource management. We have shown how heterogeneous aware
schedulers can provide for architectural design flexibility as well as energy and
performance improvements. For instance, adopting a smaller or distributed cache
hierarchy in conjunction with a heterogeneous scheduler was shown to lead to
substantial energy and area savings of over 17% and 19% respectively.

The thread lock section-aware scheduler was presented to emphasize the oppor-
tunities that arise from improving heterogeneous scheduling for ACMP systems. A
lightweight hardware implementation of this scheduler, which maps threads based
on estimating whether a thread has entered a synchronization section, results in

140

over 80% EDP improvements over a Linux scheduler and clearly demonstrates the
benefits of using heterogeneous schedulers over homogeneous schedulers.

Understanding the scope and importance of heterogeneous architectures and
scheduling techniques led us to our most impactful and pioneering studies of this
thesis. In two separate studies, we demonstrated the novelty and usefulness of
applying machine and deep learning techniques to computer architecture. The re-
sults of these studies have validated that using ANN/DNN predictors for mapping
improves the performance of conventional heterogeneous schedulers for CPU and
memory intensive applications by over 30% with minimal (2%) overheads. Combin-
ing ML/DL predictors with a decoupled thread selection and mapping scheduling
model is a scalable and lightweight method that can help to support the heteroge-
neous architectures of the future.

141

10
Publications

The work of the thesis has resulted in the following publications.

10.1 Publications from the thesis

• Daniel Nemirovsky, Nikola Markovic, Osman Unsal, Adrian Cristal, and Ma-
teo Valero, "Reimagining Heterogeneous Computing: a Functional Instruction
Set Architecture (F-ISA) Computing Model.", IEEE Micro (2015).

• Nikola Markovic, Daniel Nemirovsky, Osman S. Unsal, Marteo Valero, and
Adrian Cristal, "Performance and energy efficient hardware-based scheduler
for Symmetric/Asymmetric CMPs.", In Computer Architecture and High Per-
formance Computing (SBAC-PAD), 2015 27th International Symposium on,
pp. 33-40. IEEE, 2015.

• Daniel Nemirovsky, Tugberk Arkose, Nikola Markovic, Osman Unsal, Adrian
Cristal, and Mateo Valero, "A Machine Learning Approach for Performance
Prediction and Heterogeneous CPU Scheduling.", In the International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-
PAD), 2017 29th International Symposium on.

• Daniel Nemirovsky, Tugberk Arkose, Nikola Markovic, Osman Unsal, Adrian
Cristal, and Mateo Valero, "A Deep Learning Mapper (DLM) for Heteroge-

143

10. PUBLICATIONS

neous Scheduling.", In Latin America High Performance Computing Confer-
ence (CARLA), 2017.

• Daniel Nemirovsky, Nikola Markovic, Osman Unsal, Adrian Cristal, and
Mateo Valero, "Mathematical representation of the Hardware Round-Robin
Scheduler analytical model for single-ISA heterogeneous architectures.", 2nd
BSC Doctoral Symposium, Barcelona Supercomputing Center, Barcelona, 2015.

• Daniel Nemirovsky, Nikola Markovic, Osman Unsal, Adrian Cristal, and Ma-
teo Valero, "Extending the Flexibility of ACMPs for Mobile Devices Using
Alternative Cache Configurations." 10th MULTIPROG Workshop at the 12th
International Conference on High-Performance and Embedded Architectures
and Compilers (HiPEAC) , Stockholm, Sweden, January 2017

• Daniel Nemirovsky, Tugberk Arkose, Nikola Markovic, Osman Unsal, Adrian
Cristal, and Mateo Valero, "A Machine Learning Performance Prediction Model
for Heterogeneous Systems.", 4th BSC Doctoral Symposium, Barcelona Super-
computing Center, Barcelona, 2017.

10.2 Publications not included in the thesis

• Damian Roca, Daniel Nemirovsky, Mario Nemirovsky, Marc Casas, Miquel
Moreto, and Mateo Valero, "iQ: an efficient and flexible queue-based simula-
tion framework." IEEE 25th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS
2017).

• Damian Roca, Daniel Nemirovsky, Mario Nemirovsky, Rodolfo Milito, and
Mateo Valero, "Emergent Behaviors in the Internet of Things: The Ultimate
Ultra-Large-Scale System." IEEE Micro 36, no. 6 (2016): 36-44.

• Markovic, Nikola, Daniel Nemirovsky, Osman Unsal, Mateo Valero, and Adrian
Cristal, "Kernel-to-User-Mode Transition-Aware Hardware Scheduling.", IEEE
Micro 35, no. 4 (2015): 37-47.

144

10.2 Publications not included in the thesis

• Nikola Markovic, Daniel Nemirovsky, Osman Unsal, Mateo Valero, and Adrian
Cristal, "Thread lock section-aware scheduling on asymmetric single-ISA multi-
core.", IEEE Computer Architecture Letters 14.2 (2015): 160-163.

• Markovic, Nikola, Daniel Nemirovsky, Veljko Milutinovic, Osman Unsal, Ma-
teo Valero, and Adrian Cristal, "Hardware Round-Robin Scheduler for Single-
ISA Asymmetric Multi-core.", In European Conference on Parallel Processing,
pp. 122-134. Springer Berlin Heidelberg, 2015.

• Nikola Markovic, Daniel Nemirovsky, Ruben González, Osman Unsal, Mateo
Valero, and Adrián Cristal, "Object oriented execution model (OOM).", 2nd
Workshop on New Directions in Computer Architecture (NDCA-2): held in
conjunction with the 38th International Symposium on Computer Architec-
ture (ISCA-38): 5th June: San Jose, California. INRIA, 2011.

145

List of Figures

2.1 An example of SCMP and ACMP CPU designs. Note that the cores

must be all of the same ISA (e.g., ARM, x86) but may be more of

different complexities for the ACMP system. The designs both have

private L1 and L2 caches and a shared L3 cache. 15

2.2 The performance differences that result from executing each bench-

mark on a large vs. small core. Higher IPC numbers represent faster

performance. 19

2.3 The IPC per quantum behavior of four SPEC benchmarks when run-

ning on the big core compared to the small core. 20

147

LIST OF FIGURES

2.4 The importance of how different mapping schemes for a given set of
applications can result in significantly different system throughputs.
The y-axis represents the probability of a given ratio of throughput
differences (x-axis) between the best and worst mapping schemes
for all possible combinations of four applications from SPEC2006
and SPLASH-2 when running on a 1-large and 3-small core system.
X-axis values should be read as the factor of system throughput im-
provement of selecting the best mapping scheme compared to the
worst mapping scheme for a given four application combination.
The white dot in the middle of the x-axis represents the mean and the
black dots represent observed values which occur more frequently
near the mean. 23

2.5 Context switch cost on a dual core Intel(R) Core(TM) i7-4600U CMP
[18]. The overhead includes costs related to swapping architectural
state, flushing the cores’ pipelines, and reloading data into the pri-
vate caches. 28

2.6 Pseudocode of a program comprising cross/dot product functions
and data initialization functions for three matrices. 38

2.7 A representation of the matrix multiply program when compiled
into F-ISA code. Each F-ISA instruction has the syntax <function
identifier, data context address>. 38

2.8 The decision-making process of an F-ISA runtime dispatcher during
the execution of an F-ISA instruction. The runtime is tasked with
deciding whether to dispatch a function directly to a computational
core for execution or to unfold it into its subfunctions and repeat
the process. The runtime will dispatch functions for execution only
on cores that can execute the function in the most effective manner
based on the state of the system; otherwise, the function will be
unfolded. 39

3.1 Sniper simulator interval model . 42

3.2 Heterogeneous CMP architecture principally used in this thesis. . . 45

148

LIST OF FIGURES

3.3 Execution time breakdown of SPLASH-2 benchmarks on a four core
ACMP. This is akin to CPI stacks showing distribution of computa-
tional effort spent on different CPU operations. Illustrates the total
time spent in computation (core-base), branches (branch), memory
accesses (mem) and synchronization (sync) events. Synchronizations
events include barriers, locks and pauses. 49

3.4 A performance comparison of the Linux CFS, Fairness-aware, Hard-
ware Round-Robin (HRRS), and TLSS schedulers normalized to the
Linux CFS when running the SPEC2006 and SPLASH-2 benchmark
suites on a 1 large and 3 small core ACMP. Higher speedup numbers
are better. 51

4.1 The subthreshold leakage power and chip area distributions of a 1
large and 3 small core ACMP including results for the L3 last level
cache (LLC) and network on chip (NoC). 62

4.2 Execution time performance results obtained by running all configu-
rations on SPLASH-2 and SPEC2006. All configurations except Base
with Linux use HRRS scheduling policy. Lower numbers are better. . 67

4.3 Average results for execution time, power, and energy consumption
of all cache configurations on SPLASH-2. All configurations except
Base with Linux use HRRS scheduling policy. Lower numbers are better. 68

4.4 The resulting processor sizes of each alternative cache scheme nor-
malized to the baseline configuration which includes a LLC. Note
that a processor that is 70% the size of the baseline processor can be
also read as a 30% reduction in processor size. 69

5.1 TLSS scheduling - All logical cores are the same while the large phys-
ical core is represented by Core 0 and the small physical cores are
shown as Cores 1, 2 and 3. 75

5.2 Performance and power consumption comparison of the TLSS and
the Linux OS scheduler on an SCMP, consisted of four large cores,
for the SPLASH-2 benchmark suite. 79

5.3 Distribution of the total execution time of the application. 80

149

LIST OF FIGURES

5.4 The LLC cache accesses breakdown for the core marked as large and
cores marked as small cores of the Linux OS and TLSS scheduler for
the SPLASH-2 benchmark on an SCMP. LC stands for large core and
SC stands for small core. 81

5.5 Performance per watt expressed as IPC/Watt comparison of the TLSS
and the Linux OS scheduler on an SCMP consisted of four large cores
for the SPLASH-2 benchmark suite. 82

5.6 Speedup comparison of the TLSS and the Linux OS (ACMP) Sched-
uler for the SPLASH-2 benchmark suite in the private last-level L3
cache 8/16/32 cores system configurations where each group of one
large and three small share a 4MB L3 cache. 84

5.7 Normalized energy efficiency of the TLSS and Fairness-aware sched-
ulers on an ACMP over Linux OS scheduler on an SCMP, where
ACMP and SCMP occupy the approximately the same chip area. . . 85

5.8 Normalized EDP, a commonly used power-delay product, of the
TLSS and Fairness-aware schedulers on an ACMP over Linux OS
scheduler on an SCMP, where ACMP and SCMP occupy the approx-
imately the same chip area. 86

6.1 The proposed ML based heterogeneous scheduling model. After
each scheduling quantum, statistics collected from the threads pass
through the NQP and the ANN based performance predictors. A
scheduling policy then uses the estimated IPC performance of all
threads for both the large and small cores to identify an optimal
mapping to maximize system throughput for the next quantum. . . 97

6.2 The IPC per quantum behavior of four SPEC benchmarks when run-
ning on the large core compared to the small core. 100

6.3 The percentage error of the Next Quantum thread behavior Predic-
tor (NQP) for the different core types for SPEC2006 and SPLASH-2.
Lower numbers are better. 102

6.4 A representation of the different ANN architectures used by the per-
formance predictors . 103

150

LIST OF FIGURES

6.5 The learning curves for the Online and Deep ANN performance pre-
dictors. The prediction error decreases as the number of training
samples from SPEC2006 and SPLASH-2 benchmarks increase. The
training set consists of samples collected every quantum from simu-
lated execution of both benchmark suites. The order of these samples
is then randomized and provided as training samples to the ANNs. 105

6.6 The average IPC prediction errors for both SPEC2006 and SPLASH-2
suites for both core types. These values represent the true accuracy
of the ANN predictors assuming error free input data (i.e., no noise
due to NQP). Lower numbers are better. 106

6.7 Simulation results of our ML based heterogeneous schedulers. . . . 112

7.1 The scheduling model. A conventional scheduler is used to select
the threads to run next quantum and the DLM then uses the NQP
and DNN predictor to find the optimal mapping to maximize system
performance. 119

7.2 An example of how the DLM uses the DNN to predict for 4 different
mapping combinations once it is passed the 4 threads selected by the
CS (A, B, C, and D). 122

7.3 The learning curve of the online DNN predictor. As the amount of
training data increases the predictor becomes more generalized (i.e.,
able to predict with similar accuracy levels for both training and test
data) to account for different applications and behaviors. Higher
y-axis numbers are better. 125

7.4 Average system throughput (IPC) improvements when using the
DLM for all SPEC2006. Higher numbers are better. 128

151

List of Tables

2.1 The minimum, maximum, and average differences (in percentage
terms) between the best and worst mapping schemes for all possible
combinations of SPEC2006 and SPLASH-2 benchmarks on a 1-large
and 3-small core system. 24

3.1 Detailed configurations of the large and small cores. 44

3.2 An overview of the instruction counts and mix for the utilized SPEC2006
benchmarks. 48

3.3 A list of the SPLASH-2 benchmarks used in our experiments, work-
load sizes, and descriptions. 49

5.1 Cost of workload migration (in cycles) during context switch for
workloads ranging form a few kilobytes to a few thousand kilobytes. 83

5.2 Simulation measured execution Time [s], average Power [W] and
consumed Energy [J] for the asymmetric and symmetric CMPs with
different Schedulers. 86

6.1 A list of the 9 statistics collected per thread (based on an x86 ISA),
normalized into ratios, and then used as input parameters to the
ANNs in order to predict the performance for that thread on a given
core type. 99

153

LIST OF TABLES

6.2 Simulated Benchmark Combinations. ANN error signifies which
combination exhibited more ANN errors when they were trained
and tested with the benchmarks within that combination. 110

7.1 A list of the 12 statistics collected per thread (based on an x86 ISA),
normalized into ratios, and then used as input parameters to the
ANN. Since the ACMP has four cores, the ANN uses the parameters
from four threads as input in order to predict the ACMP system
performance (a total of 48 input parameters). 121

154

Bibliography

[1] A. Bhattacharjee, and M. Martonosi (2009). Thread criticality predictors
for dynamic performance, power, and resource management in chip multi-
processors. In Proc. 36th Ann. Intl. Symp. on Comp. Arch. (ISCA), 290–301. 132

[2] Adve, V., Lattner, C., Brukman, M., Shukla, A. & Gaeke, B. (2003). LLVA:
A Low-level Virtual Instruction Set Architecture. In Proceedings of the 36th an-
nual ACM/IEEE international symposium on Microarchitecture (MICRO-36), San
Diego, California. 136

[3] Adve, V., Adve, S., Komuravelli, R., Sinclair, M.D. & Srivastava, P. (2012).
Virtual Instruction Set Computing for Heterogeneous Systems. In Proceed-
ings of the 2012 4th USENIX Workshop on Hot Topics in Parallelism (HotPar’12),
Berkeley, California. 136

[4] Anderson, G., Marwala, T. & Nelwamondo, F.V. (2013). Multicore schedul-
ing based on learning from optimization models. Int. J. Innovative Comput.
Inform. Control. v9 i4, 1511–1522. 133

[5] Arnold, K., Gosling, J., Holmes, D. & Holmes, D. (2000). The Java program-
ming language, vol. 2. Addison-wesley Reading. 136

[6] Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S. &
Sancho, J.C. (2008). A performance evaluation of the nehalem quad-core
processor for scientific computing. Parallel Processing Letters, 18, 453–469. 108

155

BIBLIOGRAPHY

[7] Beckmann, B. & Wood, D. (2004). Managing wire delay in large chip-
multiprocessor caches. In Proc. of Int. Symp. Microarchit., 319–330. 132

[8] Bellens, P., Perez, J.M., Badia, R.M. & Labarta, J. (2006). Cellss: a program-
ming model for the cell be architecture. In SC 2006 Conference, Proceedings of
the ACM/IEEE, 5–5, IEEE. 137

[9] Bishop, C.M. (1995). Neural networks for pattern recognition. Oxford university
press. 92

[10] Bogdanski, M., Lewis, P.R., Becker, T. & Yao, X. (2011). Improving schedul-
ing techniques in heterogeneous systems with dynamic, on-line optimisa-
tions. In Complex, Intelligent and Software Intensive Systems (CISIS), 2011 Inter-
national Conference on, 496–501, IEEE. 135

[11] C. Su, D. Li, D. Nikolopoulos, M. Grove, K. W. Cameron, and B. R. de

Supinski (2011). Critical path-based thread placement for numa systems.
In Proc. 2nd international workshop on Performance Modeling, Benchmarking and
Simulation of high performance computing systems (PMBS), 19–20. 134

[12] Cannady, J. (1998). Artificial neural networks for misuse detection. In Na-
tional information systems security conference, 368–81. 3

[13] Chronaki, K., Rico, A., Badia, R.M., Ayguade, E., Labarta, J. & Valero, M.
(2015). Criticality-aware dynamic task scheduling for heterogeneous architec-
tures. In Proceedings of the 29th ACM on International Conference on Supercom-
puting, 329–338, ACM. 133

[14] Chronaki, K., Rico, A., Casas, M., Moreto, M., Ayguade, E., Valero, M.
et al. (2016). Task scheduling techniques for asymmetric multi-core systems.
IEEE Transactions on Parallel and Distributed Systems. 133

[15] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood (2005). Pin:building customized program
analysis tools with dynamic instrumentation. In Proc. ACM SIPLAN Conf. on
Prog. Lang. Design and Impl., 190–200. 46

156

BIBLIOGRAPHY

[16] Collobert, R. & Weston, J. (2008). A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine learning, 160–167, ACM. 2,
27

[17] Conway, P. & Hughes, B. (2007). The amd opteron northbridge architecture.
IEEE Micro, 27. 14

[18] Corporation, I. (2013). Intel core i7-4600u proces-
sor. [Online] Available: ark.intel.com/products/76616/

Intel-Core-i7-4600U-Processor-4M-Cache-up-to-3_30-GHz. 27, 28,
46, 148

[19] D. Genbrugge, S. Eyerman and L. Eeckhout (2010). Interval simulation:
Raising the level of abstraction in architectural simulation. In Proc. 16th Int.
Symp. High Perform. Comput. Arch., 1–12. 42

[20] D. Koufaty, and D. Reddy, and S. Hahn (2010). Bias scheduling in heteroge-
neous multi-core architectures. In Proc. 5th Eur. Conf. Comput. Syst., 125–138.
26, 133

[21] D. Menasce and V. Almeida (1990). Cost-performance analysis of hetero-
geneity in supercomputer architectures. In Proc. of the 4th Int. Conf. on Super-
computing, 169–177. 131

[22] D. Moncrieff, and R. E. Overill, and S. Wilson (1996). Heterogeneous
computing machines and amdahl’s law. Parallel Computing, 22, 407 – 413. 131

[23] Daga, M., Aji, A.M. & Feng, W.c. (2011). On the efficacy of a fused cpu+
gpu processor (or apu) for parallel computing. In Application Accelerators in
High-Performance Computing (SAAHPC), 2011 Symposium on, 141–149, IEEE.
131

[24] Dagum, L. & Menon, R. (1998). Openmp: an industry standard api for
shared-memory programming. IEEE computational science and engineering, 5,
46–55. 31

157

BIBLIOGRAPHY

[25] Dignan, L. (2015). Ibm research builds functional 7nm pro-
cessor. [Online] Available: http://www.zdnet.com/article/

ibm-research-builds-functional-7nm-processor/. 1

[26] Dongarra, J., Tourancheau, B., Planas, J., Badia, R.M., Ayguadé, E. &
Labarta, J. (2009). Hierarchical task-based programming with starss. The In-
ternational Journal of High Performance Computing Applications, 23, 284–299. 137

[27] Dorronsoro, B. & Pinel, F. (2017). Combining machine learning and genetic
algorithms to solve the independent tasks scheduling problem. In Cybernetics
(CYBCON), 2017 3rd IEEE International Conference on, 1–8, IEEE. 134

[28] Dougherty, M. (1995). A review of neural networks applied to transport.
Transportation Research Part C: Emerging Technologies, 3, 247–260. 92

[29] Duesterwald, E., Cascaval, C. & Dwarkadas, S. (2003). Characterizing and
predicting program behavior and its variability. In Parallel Architectures and
Compilation Techniques, 2003. Proceedings. 12th International Conference on, 220–
231, EEE. 21, 99, 135

[30] Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Mar-
torell, X. & Planas, J. (2011). Ompss: a proposal for programming hetero-
geneous multi-core architectures. Parallel Processing Letters, 21, 173–193. 137

[31] E. Grochowski, and R. Ronen, and J. Shen, and H. Wang (2004). Best
of both latency and throughput. In Proc. of the Int. Conf. on Computer Design
(ICCD), 236–243. 132

[32] Eeckhout, L. & De Bosschere, K. (2001). Hybrid analytical-statistical mod-
eling for efficiently exploring architecture and workload design spaces. In
Parallel Architectures and Compilation Techniques, 2001. Proceedings. 2001 Inter-
national Conference on, 25–34, IEEE. 135

[33] Esmaeilzadeh, H., Blem, E., St Amant, R., Sankaralingam, K. & Burger,
D. (2011). Dark silicon and the end of multicore scaling. In ACM SIGARCH
Computer Architecture News, vol. 39, 365–376, ACM. 14

158

BIBLIOGRAPHY

[34] Eyerman, S., Eeckhout, L. & De Bosschere, K. (2006). Efficient design space
exploration of high performance embedded out-of-order processors. In Pro-
ceedings of the conference on Design, automation and test in Europe: Proceedings,
351–356, European Design and Automation Association. 135

[35] Fatahalian, K., Horn, D.R., Knight, T.J., Leem, L., Houston, M., Park, J.Y.,
Erez, M., Ren, M., Aiken, A., Dally, W.J. et al. (2006). Sequoia: Program-
ming the memory hierarchy. In Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, 83, ACM. 137

[36] Fedorova, A., Vengerov, D. & Doucette, D. (2007). Operating system
scheduling on heterogeneous core systems. In TProceedings of the Workshop
on Operating System Support for Heterogeneous Multicore Architectures. 135

[37] G. Contreras, and M. Martonosi (2008). Characterizing and improving
the performance of intel threading building blocks. In Proc. IEEE Intl. Symp.
on Workload Characterization, 57–66. 132

[38] Greenhalgh, P. (2011). big.little processing with arm cortex-a15 & cortex-
a7. [Online] Available: http://www.arm.com/files/downloads/bigLITTLE_

Final_Final.pdf. 1, 14, 131

[39] Guresen, E., Kayakutlu, G. & Daim, T.U. (2011). Using artificial neural net-
work models in stock market index prediction. Expert Systems with Applica-
tions, 38, 10389–10397. 3

[40] Harland, D.M. (1988). Rekursive: Object-oriented Computer Architecture. Hal-
sted Press, New York, NY, USA. 137

[41] Helmy, T., Al-Azani, S. & Bin-Obaidellah, O. (2015). A machine learning-
based approach to estimate the cpu-burst time for processes in the computa-
tional grids. 3–8. 134

[42] Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural networks, 2, 359–366. 3

159

BIBLIOGRAPHY

[43] Intel (2015). Intel 64 and ia-32 architectures devel-
oper’s manual. [Online] Available: http://www.intel.

com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-software-developer-manual-325462.html.
77

[44] J. A. Winter, and D. H. Albonesi, and C. A. Shoemaker (2010). Scalable
thread scheduling and global power management for heterogeneous many-
core architectures. In Proc. Int. Conf. Parallel Archit. Compilation Tech. (PACT),
29–40. 132

[45] J. C. Saez, and M. Prieto, and A. Fedorova, and S. Blagodurov (2010). A
comprehensive scheduler for asymmetric multicore systems. In Proc. 5th Eur.
Conf. Comput. Syst., 139–152. 133

[46] J. Chen, and L. K. John (2009). Efficient program scheduling for heteroge-
neous multi-core processors. In Proc. Annu. Design Automation Conf. (DAC),
927–930. 131

[47] J. Henning, Sun Microsystem (2006). Spec cpu2006 benchmark descriptions.
In Proc. of of the ACM SIGARCH Computer Arch. News, 1–17. 46, 127

[48] J. Joao, and M. A. Suleman, and O. Mutlu, and Y. N. Patt (2012). Bot-
tleneck identification and scheduling in multithreaded applications. In Proc.
17th Int. Conf. Architectural Support Program Languages Operating Syst., 223–
234. 21, 77, 78, 83

[49] J. Joao, and M. A. Suleman, and O. Mutlu, and Y. N. Patt (2013). Utility-
based acceleration of multithreaded applications on asymmetric cmps. In
Proc. 40th Annu. Int. Symp. Comput. Archit., 154–165. 77, 78, 83

[50] J. Liu and A. Yang (1974). Optimal scheduling of independent tasks on het-
erogeneous computing systems. In Proc. of the 1974 annual conference, 38–45.
132

[51] Jeff, B. (2013). big.little technology moves towards fully heterogeneous global
task scheduling. Tech. rep., ARM. 26

160

BIBLIOGRAPHY

[52] Jeffers, J., Reinders, J. & Sodani, A. (2016). Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition. Morgan Kaufmann. 14

[53] Jiménez, D.A. & Lin, C. (2001). Dynamic branch prediction with perceptrons.
In High-Performance Computer Architecture, 2001. HPCA. The Seventh Interna-
tional Symposium on, 197–206, IEEE. 135

[54] Jones, M. (2009). Inside the linux 2.6 completely fair scheduler.
[Online] Available: http://www.ibm.com/developerworks/library/

l-completely-fair-scheduler/l-completely-fair-scheduler-pdf.pdf. 2,
25, 50

[55] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer (2012).
Scheduling heterogeneous multi-cores through performance impact estima-
tion (pie). In Proc. 39th Annu. Int. Symp. Comput. Archit., 213–224. 26, 27, 78,
79

[56] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout

(2013). Fairness-aware scheduling on single-isa heterogeneous multi-cores.
In Proc. 22nd Int. Conf. Parallel Archit. Compilation Tech., 177–187. 26, 50, 78,
109, 111, 127, 133

[57] Kim, C., Burger, D. & Keckler, S. (2002). An adaptive, non-uniform cache
structure for wire-dominated on-chip caches. In Proc. of Int. Conf. Architectural
Support Program Languages Operating Syst., 211–222. 132

[58] Kim, C., Burger, D. & Keckler, S. (2003). Nuca: a non-uniform cache access
architecture for wire-delay dominated on-chip caches. 64

[59] Kongetira, P., Aingaran, K. & Olukotun, K. (2005). Niagara: A 32-way
multithreaded sparc processor. IEEE micro, 25, 21–29. 14

[60] Krizhevsky, A., Sutskever, I. & Hinton, G.E. (2012). magenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, 1097–1105. 2, 27

161

BIBLIOGRAPHY

[61] Lattner, C. & Adve, V. (2004). Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the international sympo-
sium on Code generation and optimization: feedback-directed and runtime optimiza-
tion, 75, IEEE Computer Society. 35

[62] LeCun, Y., Kavukcuoglu, K. & Farabet, C. (2010). Convolutional networks
and applications in vision. In Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on, 253–256, IEEE. 2, 27

[63] Li, C.V., Petrucci, V. & Mossé, D. (2016). Predicting thread profiles across
core types via machine learning on heterogeneous multiprocessors. In Com-
puting Systems Engineering (SBESC), 2016 VI Brazilian Symposium on, 56–62,
IEEE. 134

[64] M. Annavaram, and E. Grochowski, and J. Shen (2005). Mitigating am-
dahl’s law through epi throttling. In Proc. 32st Annu. Int. Symp. Comput. Ar-
chit., 298–309. 14

[65] M. Annavaram, E. Grochowski, and J. Shen (2005). Mitigating amdahl‘s
law through epi throttling. In Proc. of the 32nd Ann. Symp. on Comp. Arch.,
298–309. 132

[66] M. Becchi, and Patrick Crowley (2008). Dynamic thread assignment on
heterogeneous multiprocessor architectures. J. Instruction-Level Parallelism, 10,
1–26. 26, 133

[67] MATLAB (2017). version R2016b. The MathWorks Inc., Natick, Massachusetts.
53, 103

[68] Matsunaga, A. & Fortes, J.A. (2010). On the use of machine learning to
predict the time and resources consumed by applications. In Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, 495–504, IEEE Computer Society. 135

[69] Miller, L. (1982). A heterogeneous multiprocessor design and the dis-
tributed scheduling of its task group workload. In Proc. of the 9th Ann. Symp.
on Comp. Arch., 283–290. 132

162

BIBLIOGRAPHY

[70] Mishra, A.K., Vijaykrishnan, N. & Das, C.R. (2011). A case for heteroge-
neous on-chip interconnects for cmps. ACM SIGARCH Computer Architecture
News, 39, 389–400. 133

[71] N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and A. Cristal (2014).
Thread lock section-aware scheduling on asymmetric single-isa multi-core.
IEEE Computer Architecture Letters, DOI:10.1109/LCA.2014.2357805, 1. 9, 26,
50, 51, 57, 73, 81, 87

[72] N. Markovic, D. Nemirovsky, V. Milutinovic, O. Unsal, M. Valero, and

A. Cristal (2015). Hardware round-robin scheduler for single-isa asymmet-
ric multi-core. Euro-Par 2015: Parallel Processing, Lecture Notes in Computer
Science, 9233, 122–134. 2, 26, 50, 51, 92, 109, 111, 127

[73] Negi, A. & Kumar, P.K. (2005). Applying machine learning techniques to
improve linux process scheduling. In TENCON 2005 2005 IEEE Region 10,
1–6, IEEE. 134

[74] NVIDIA (2011). Tegra 3 (kal-el) quad-core mobile processor. [Online] Avail-
able: http://www.nvidia.com/object/tegra-3-processor.html. 1, 14, 78

[75] O. Khan, and S. Kundu (2010). A self-adaptive scheduler for asymmetric
multi-cores. In Proc. of the 20th Symp. on Great lakes symposium on VLSI, 397–
400. 133

[76] O’Connor, J.M. & Tremblay, M. (1997). picojava-i: The java virtual machine
in hardware. IEEE Micro, 17, 45–53. 137

[77] Pabla, C.S. (2009). Completely fair scheduler. Linux Journal, 2009, 4. 111, 127

[78] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. & Duch-
esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12, 2825–2830. 53, 123

163

BIBLIOGRAPHY

[79] Pimentel, A.D., Polstra, S., Terpstra, F., Van Halderen, A., Coffland,
J.E. & Hertzberger, L.O. (2002). Towards efficient design space exploration
of heterogeneous embedded media systems. In Embedded Processor Design
Challenges, 57–73, Springer. 135

[80] Pinel, F. & Dorronsoro, B. (2014). Savant: Automatic generation of a paral-
lel scheduling heuristic for map-reduce. International Journal of Hybrid Intelli-
gent Systems, 11, 287–302. 134

[81] R. Kumar, and D. M. Tullsen, and P. Ranganathan, and N. P. Jouppi,
and K. I. Farkas (2004). Single-isa heterogeneous multi-core architectures for
multithreaded workload performance. In Proc. 31st Annu. Int. Symp. Comput.
Archit., 64. 4, 14, 133

[82] R. Kumar, and K. I. Farkas, and N. P. Jouppi, and P. Ranganathan, and

D. M. Tullsen (2003). Single-isa heterogeneous multi-core architectures: The
potential for processor power reduction. In Proc. 36nd Annu. IEEE/ACM Int.
Symp. Microarchit., 81. 131

[83] R. Rodrigues, and A. Annamalai, and I. Koren, and S. Kundu, and O.
Khan (2011). Performance per watt benefits of dynamic core morphing in
asymmetric multicores. In Proc. Int. Conf. Parallel Architectures Compilation
Tech., 121–130. 4, 14

[84] Radojkovi

´

c, P., Čakarevi

´

c, V., Moretó, M., Verdú, J., Pajuelo, A., Ca-
zorla, F.J., Nemirovsky, M. & Valero, M. (2012). Optimal task assignment
in multithreaded processors: a statistical approach. ACM SIGARCH Computer
Architecture News, 40, 235–248. 134

[85] Rai, J.K., Negi, A., Wankar, R. & Nayak, K. (2012). A machine learning
based meta-scheduler for multi-core processors. In Technological Innovations
in Adaptive and Dependable Systems: Advancing Models and Concepts, 226–238,
IGI Global. 135

[86] Robison, A.D. (2013). Composable parallel patterns with intel cilk plus. Com-
puting in Science & Engineering, 15, 66–71. 31

164

BIBLIOGRAPHY

[87] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova (2011). A
case for numa-aware contention management on multicore systems. In Proc.
USENIX Annual Technical Conference (USENIXATC), 1–15. 134

[88] S. Li, and J. Ho Ahn, and R. D. Strong, and J. B. Brockman, and D. M.
Tullsen, and N. P. Jouppi (2007). Quantifying the cost of context switch. In
Proc. Workshop Exp.Comput. Sci., 2–es. 27, 79

[89] S. Li, and J. Ho Ahn, and R. D. Strong, and J. B. Brockman, and D. M.
Tullsen, and N. P. Jouppi (2009). Mcpat: An integrated power, area, and
timing modeling framework for multicore architectures. In Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchit., 469–480. 16, 43, 61

[90] S. Srinivasan, and L. Zhao, and R. Illikkal, and R. Iyer (2011). Efficient
interaction between os and architecture in heterogeneous platforms. Operat-
ing Syst. Rev., 45, 62–72. 133

[91] S. Woo, and M. Ohara, and E. Torrie, and J. P. Singh, and A. Gupt (1995).
The splash-2 programs: Characterization and methodological considerations.
In Proc. 22nd Annu. Symp. Comput. Archit., 24–36. 46

[92] Saez, J.C., Pousa, A., Castro, F., Chaver, D. & Prieto-Matias, M. (2017).
Towards completely fair scheduling on asymmetric single-isa multicore pro-
cessors. Journal of Parallel and Distributed Computing, 102, 115–131. 133

[93] Schoeberl, M. (2008). A java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54, 265–286. 137

[94] Sherwood, T., Perelman, E., Hamerly, G., Sair, S. & Calder, B. (2003).
Discovering and exploiting program phases. IEEE micro, 23, 84–93. 21, 135

[95] Shulga, D., Kapustin, A., Kozlov, A., Kozyrev, A. & Rovnyagin, M. (2016).
The scheduling based on machine learning for heterogeneous cpu/gpu sys-
tems. In NW Russia Young Researchers in Electrical and Electronic Engineering
Conference (EIConRusNW), 2016 IEEE, 345–348, IEEE. 135

165

BIBLIOGRAPHY

[96] Smith, J.E. (1998). Decoupled access/execute computer architectures. In 25
Years of the International Symposia on Computer Architecture (Selected Papers),
ISCA ’98, 231–238, ACM, New York, NY, USA. 137

[97] Smith, J.E., Dermer, G.E., Vanderwarn, B.D., Klinger, S.D. & Rozewski,
C.M. (1987). The zs-1 central processor. SIGPLAN Not., 22, 199–204. 137

[98] Smith, J.E., Sastry, S., Heil, T. & Bezenek, T.M. (1998). Achieving high per-
formance via co-designed virtual machines. In Innovative Architecture for Fu-
ture Generation High-Performance Processors and Systems, 1998, 77–84, IEEE. 33

[99] Smith, J.E., Sastry, S., Heil, T. & Bezenek, T. (1999). Achieving high per-
formance via co-designed virtual machines. In In International Workshop on
Innovative Architecture, 77–84. 136

[100] Snavely, A. & Tullsen, D.M. (2000). Symbiotic jobscheduling for a simulta-
neous mutlithreading processor. ACM SIGPLAN Notices, 35, 234–244. 133

[101] Sniper (2015). The sniper multi-core simulator. [Online] Available: http://

snipersim.org. 43

[102] Stone, J.E., Gohara, D. & Shi, G. (2010). Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science & engi-
neering, 12, 66–73. 31

[103] Strigl, D., Kofler, K. & Podlipnig, S. (2010). Performance and scalability of
gpu-based convolutional neural networks. In Parallel, Distributed and Network-
Based Processing (PDP), 2010 18th Euromicro International Conference on, 317–
324, IEEE. 3

[104] Suleman, M.A., Hashemi, M., Wilkerson, C., Patt, Y.N. et al. (2012). Mor-
phcore: An energy-efficient microarchitecture for high performance ilp and
high throughput tlp. In Proceedings of the 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 305–316, IEEE Computer Society. 131

166

BIBLIOGRAPHY

[105] T. E. Carlson, and W. Heirman, and L. Eeckhout (2011). Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simula-
tion. In Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal. (SC), 1–12.
41

[106] T. Li, and D. Baumberger, and D. A. Koufaty, and S. Hahn (2007). Ef-
ficient operating system scheduling for performance-asymmetric multi-core
architectures. In Proc. of the ACM/IEEE conference on Supercomputing, 53. 14

[107] Treleaven, P. (1991). Neural computing and the galatea project. In Proceed-
ings on Parallel Architectures and Languages Europe, 25–33, Springer-Verlag New
York, Inc., New York, NY, USA. 136

[108] Ungar, D., Blau, R., Foley, P., Samples, D. & Patterson, D. (1984). Architec-
ture of soar: Smalltalk on a risc. In Proceedings of the 11th Annual International
Symposium on Computer Architecture, ISCA ’84, 188–197, ACM, New York, NY,
USA. 137

[109] Unsal, O.S., Koren, I., Khrishna, C. & Moritz, C.A. (2004). Cool-fetch: A
compiler-enabled ipc estimation based framework for energy reduction. In
Interaction between Compilers and Computer Architectures, 2004. INTERACT-8
2004. Eighth Workshop on, 43–52, IEEE. 99, 135

[110] Van Haastregt, S. & Knijnenburg, P. (2007). Feasibility of combined area
and performance optimization for superscalar processors using random
search. In Design, Automation & Test in Europe Conference & Exhibition, 2007.
DATE’07, 1–6, IEEE. 132

[111] Witten, I. & Cleary, J. (1983). An introduction to the architecture of the intel
iapx 432. Software and Microsystems, 2, 29–34. 137

167

