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Chapter 1
Introduction

Point processes constitute a powerful tool for the analysis of sets of randomly loc-
ated objects in a plane, in the 3D-space, or in general in an abstract space. These
objects can be defined rigorously as a locally finite random counting measure on
a locally compact completely separable Hausdorff space (Daley and Vere-Jones,
2003, 2007). The applications of this theory are widely diverse and include a
considerable variety of situations that come from reality. These applications
include astronomy (Neyman and Scott, 1958), biology (Diggle, 2013), ecology
(Thorsten Wiegand, 2014), economic sciences (Bowsher, 2007), epidemiology
(Diggle, Guan, Hart, Paize and Stanton, 2010), materials engineering (Ohser and
Miicklich, 2000), medicine (Andersen and Hahn, 2016; Diggle et al., 1991; Hahn,
2012), seismology (Tranbarger and Schoenberg, 2010), amongst many others
(see e.g. Illian et al., 2008 for a nice treatment of theory and practice). There is
also an extensive bibliography covering a broad spectrum, both theoretical (Chiu
et al., 2013; Daley and Vere-Jones, 2003, 2007; Mgller and Waagepetersen, 2004)
and practical. The practical aspect also covers from the resolution of problems
that come from the reality and increasingly complex and demanding datasets
(Diggle, 2013), to the implementation of several methodologies in user-friendly,
free and affordable software (Baddeley et al., 2015; Gabriel et al., 2013).

One of the assumptions that is usually made in working with point processes is
that there is a single pattern observed in reality, i.e. a single set of points located
in an observation window. The distribution of this pattern is mathematically
complex, this has led to propose in the literature some summary-statistics that
can show or describe the nature of the distribution. Normally, these statistics are
functions or real numbers that are based on distances between the points within
the pattern or in counts. For instance, the first-order intensity describes the dens-



2 Introduction

ity of the points of a point pattern. The well-known second-order characteristics
(Chiu et al., 2013; Illian et al., 2008), are extensively used by scientists since these
characteristics describe the attraction or repulsion that may exist between the
points of the point pattern. In general these functions or descriptors can be non-
parametrically estimated and some of the most famous are Ripley’s K-function
(Ripley, 1977) and its standardised version, the L-function (Besag and Diggle,
1977); the J-function (van Lieshout and Baddeley, 1996), the pair-correlation
function, etc.

Some datasets of point patterns contain more than one observed pattern,
and in this case, answering the questions that usually are associated with data
is not easy and only few authors have worked on the subject. Baddeley et al.
(1987, 1993) presented an approach using ratio-regressions in three-dimensional
replicated point patterns by using three-dimensional K-functions. Diggle et al.
(1991) presented an approach on analysis of variance in clinical neuroanatomy
through the comparison of estimated K-functions and non-parametric inference
through a Monte Carlo bootstrap test. This method was later improved by Diggle
et al. (2000) and by Hahn (2012) who developed a studentized permutation test for
the comparison of several groups of spatial point patterns. Some authors (Bagchi
and Illian, 2015; Landau and Everall, 2008; Landau et al., 2004; Myllymaki et al.,
2014) have included, for example, categorical and continuous predictors in linear
models of mixed effects or discrete marks for the explanation of the variation in
the spatial structure of replicated patterns.

The fundamental aim of this thesis is to introduce a new set of tests to compare
estimated K-functions (or in general any suitable functional descriptor). Two
parallel lines are available for the development of the new tests.

In the first place, the studentized permutation test proposed by Hahn (2012)
is extended to the spatio-temporal case. Since the study of spatio-temporal
point processes has not been as widely covered in the literature as its spatial
counterpart, a complete review is made. The review is as a reference paper of
the available techniques and approaches regarding the spatio-temporal context.
Some of these techniques are applied to interesting datasets (Gonzalez et al.,
2016). The new spatio-temporal permutation test shows an accurate performance
in terms of empirical level and power. This test is motivated by a complex dataset:
the locations of tornadoes in the U.S. in a period of 36 years. This is why in
addition to the test itself, some additional tools have been developed as a non-



separable estimator of the first-order spatio-temporal intensity, which allows a
much more realistic analysis of the phenomenon through the new test.

Secondly, an ANOVA two-way design is considered, where the observations
are spatial point patterns and where in addition, replicates are available for
each of the combinations of the treatments. This methodology is motivated by a
materials engineering experiment, where the locations of bubbles in a flotation
cell have been measured in a fixed time and the levels of two factors involved
in the experiment have been varied. A whole scheme of analysis of variance is
developed for factorial experiments, that is, we develop efficient statistics to test,
in a non-parametric way, the influence of the factors and the possible interaction
effect. For this, several possibilities are proposed to make inference through
random permutations and demonstrate that they are useful in practice.

The thesis is organized as follows. First of all, we present some introductory
information (Chapters 1 and 2). The particularity of the subsequent chapters is
that they are self-contained, since they correspond to articles already published
(in the case of Chapter 3), or they are in the process of being published (Chapters
4 and 5). Therefore, they can be addressed independently.

In Chapter 2, we provide a brief summary of the theory of spatial point
processes. The most basic concepts are presented at an abstract level, some
important typical moment-measures are also introduced. We define theoretically
some of the classical models of point processes. The spatial summary statistics
are presented and finally, we show some non-parametric estimators of these
summary statistics.

In Chapter 3 we start with a brief description of the datasets that are analysed.
Subsequently, we present an introduction to spatio-temporal point processes.
Then, we introduce some characteristics (descriptors) of first- and second-order
for spatio-temporal point processes. A review of the empirical and mechanistic
models is made and, finally, we conclude with a general discussion and some
future research ideas.

In Chapter 4, we first consider a description of the tornado data in the U.S.
We proceed to study of the first-order spatio-temporal intensity function and to
analyse the hypothesis of separability in two yearly seasons of tornadoes, indeed
cold- and warm- seasons. We consider a spatial partition of the map regions in
order to simplify the analysis by considering the elements of the partition as
possible replicates of an underlying point process. We check the performance
of the spatio-temporal permutation test and we apply it to the dataset. Finally,
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some questions and problems are discussed. This chapter motivates interesting
lines of research. For instance, developing suitable tests that do not require the
exchangeability hypothesis (Hahn, 2012). Additionally, the selection of bandwidth
in the spatio-temporal context and the possible inclusion of additional dimensions
in the observed point patterns as covariates or marks.

Chapter 5 begins with an introduction to the engineering problem that gener-
ates the bubble data. Afterwards, we make a complete description of the database.
A small section is presented where the mathematical tools used are described.
We give a motivation of the factorial analysis of two factors starting from the
simplest case to arrive at the balanced two-way ANOVA design. The necessary
statistics for the analysis are proposed, and a whole simulation outline is presen-
ted to verify that the statistics work properly. Finally, we apply the procedures
and statistics to the bubbles dataset. This chapter also motivates some lines of
research such as the extension to more complex designs as nested designs and
designs with fixed and mixed effects through the use of Fisher-type statistics. The
use of more complex functional descriptors (including marks, for example) in the
ANOVA design also constitutes an open field of research. Finally, the definition
of the factorial analysis statistics but using complex functional distances between
patterns (Mateu et al., 2015) or between functions, could be a challenging field of
research.

Chapters 3,4 and 5 are independent articles that are meant to be self-contained.
Therefore, they have their own notation, introduction and conclusion sections.



Chapter 2

Basic framework of point
processes

2.1 Point process methodology

In order to provide a unified and proper context to develop our methodology, we
consider in this chapter a set of definitions and important results that provide
subsequently a nice grammatical and mathematical basis. We take Stoyan and
Stoyan (1994), Mgller and Waagepetersen (2004), Illian et al. (2008), Chiu et al.
(2013) and Baddeley et al. (2015) texts as fundamental references, treating deeply
and rigorously all the concepts that we need in the rest of the work.

We begin recalling the definition and basic concepts of point processes in
general metric spaces. We give the theoretical description of first- and second-
order characteristics such as the intensity function, the pair correlation function,
K-function and J-function, which is not first- or second-order but it looks at all
orders. We also provide the definition of certain types of models for spatial
point patterns. In addition, we present an extension of this theory to the case
of multivariate point processes (Lotwick and Silverman, 1981). We show some
statistical estimators of these first- and second-order characteristics in the spatial
context by using non-parametric methods.

2.1.1 Point processes on metric spaces

Let S be a metric space with metric d (-,-) and 4 be the Borel c-algebra (generated
by open sets) in S. Let %y C % be the system of all bounded Borel sets. We define
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the space of locally finite subsets of S as
NMe={xC S:n(xg) <+, VB E %},

where xg = xN B and n(y) denotes the cardinality of the set y. Elements of Nj¢ are
called locally finite point configurations. We equip Ny with the c-algebra

Mr=0{{x € Ng:n(xp) =m},meNo,BE By},

where Ny = NU{0}. A point process is defined as a random locally finite point
configuration {§;}" , = {u;}!_; CS. Let (Q,.#,P) be an abstract probability space,
a point process X is a measurable mapping

X: (ngZ?P) — (leaf/%f) .

The distribution of simple point process is a measure Py defined on (N, Hr)
by the relation

Px(F)=P(XeF)=P{owoecQ:X(w)€F}), F € M.

We say that the point process is finite if n(X) < +o almost surely. For a
point process X, we will denote the number of points in the set B by N (B) =
n(Xp) = n(XNB) and refer to the function N as a counting function. Thus X is
a point process if and only if N(B) is a random variable for any B € %,. By void
probabilities we understand probabilities P(N (B) =0),B € %,. Whereby, a point
process is uniquely determined by its void probabilities.

A point process X is stationary if its distribution is translation invariant,
i.e. X +u has the same distribution as X for any u € S. A point process X is
isotropic if its distribution is invariant under rotations around the origin, i.e.
rX = {ru:u € X} has the same distribution as X.

The intensity measure u on S is given by

w(B)=E[N(B), Be®.
If the intensity measure u can be written as

/,L(B):/Bl(u)du Be %,
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where A is a non-negative function, then A is called the intensity function. If
A is constant, then X is said to be homogeneous or first-order stationary with
intensity 4; otherwise X is said to be inhomogeneous. Heuristically, A (u)du is
the probability for the occurrence of a point in an infinitesimally small ball with
centre u and volume |du| = du. For a homogeneous point process, 1 is the mean
number of points per unit volume and the constant is called intensity or rate.

If X is a stationary point process with locally finite intensity measure u, then
u is proportional to the Lebesgue measure. Since the intensity measure of a
stationary point process is proportional to the Lebesgue measure, the intensity
function is constant and equal to this proportionality constant. It means that
every stationary point process is homogeneous.

2.1.2 Moment measures

First- and higher-order moments of the counts N (B) with B € %, can be expressed
by the following measures. For a point process X on S and each m € N, define the
m-th order moment measure u™ on $” by

™ (D) =E , Dcs",

Z 1[(&17“-75141)61)]

élr'wgmex

and the m-th order factorial moment measure a™ on S by

a™(D)y=E| Y7 1[&,....En) €D] DCsm,
éla"wgméx
where the Y7 over the summation sign means that the m points &;,...,&, are

pairwise distinct and 1[-] denotes the indicator function.

In particular, u = u' = «! is called the intensity measure. The m-th order
moment measure i) determines the m-th order moments of the count variables
N (B), BC S, since

u(m)<leme):E

For any m € N, there is a one-to-one correspondence between (u(!), ... u(™)
and (aV,..., al™). It is often more convenient to work with the reduced moment



8 Basic framework of point processes

measures. The above definition immediately extends to

E| Y7 h(él,...,@m]:A---/Sh@l,...,&m)dwm<51,...,§m>,

gl:mvgmex

for non-negative functions #.

The second-order reduced moment measure

Let %? be the Borel c-algebra (generated by open sets) in R¢. If the second-order
factorial moment measure o2 can be written as

a® ()= [ [ 1Em eaA® Emagdn,  CCRIxR,

where 1) is a non-negative function, then A2 is called the second-order product
density function. If both A and A2 exist, the pair correlation function is defined
by
A&,
gem = pa
(&)A(n)

where we take a/0 = 0 for a > 0. Suppose that X has intensity function A and that
the measure
1 + 1§ €A,n—§ €B d
A (B)=—E ,  BCR
B=mE L A@Am

does not depend on the choice of A, wher A C R? and 0 < |A| < 4o, furthermore,
we take a/0 =0 for a > 0. Then X is said to be second-order intensity reweighted
stationary and ¥ is called the second-order reduced moment measure.

If the pair correlation function exists and is invariant under translations,
then we have second-order intensity reweighted stationarity and

H(B)= [ o(&)ag,  BCR,

Campbell measures and Palm distributions

Campbell measures and Palm distributions are very important tools as they
play a fundamental role in the definition and calculation of characteristics of
point processes or their estimators. We present the main results related to these
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important concepts. Assume that pu is o-finite, i.e. u(B;) < + for a countable
partition B; of S (this is e.g. satisfied if u is locally finite). The Campbell measure
is defined by

C(D)=E| ) 1[(£.X)€D]|,

Eex

D € % x N;.

For a point process X on S, define the reduced Campbell measure C' on S x Ny
by

Y 1[(EX\{E}H) eD]|,

Eex

D € #B x N.

We have

) h(&,X\{éD] = [h(Exac ).

Eex
for non-negative functions /. Note that C' determines (u, a?), since clearly u (-) =
C! ( X le) and
ol (B By) = [ 1[6 € BiJn (xm,)dC' (€.,
Foreach F € Af;, C' (- x F) < u (), s0C' (- x F) is absolutely continuous (C' (- x F) < u)

with respect to . Then by the Radon-Nikodym theorem, there exists a p-almost
surely unique integrable function Pé such that

C'(BxF) :/BPé (F)du (&),

where Pé (+) is a probability measure for each & € S (see e.g. Daley and Vere-Jones
(2007)). The probability measure Pé () on At is called a reduced Palm distribution
at point . Based on the above, we obtain the Campbell-Mecke formula as

Zh(i,X\{é}] [ n(&,x)aP, (x)du (),

Eex

for non-negative functions h. If X ~ Poisson(S,A), then for functions 7 : S x Ny —

[0,00),
= [En(E0AE)E.

Assume that X is a stationary point process on R? with intensity 0 < A < H-oo.
For £ cRY, x € Ny, y F C Nig, let x4+ & ={n+& : n € x} denote the translation of

) h(E.X\{&})

EeXx
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the point configurationx by £, and F + & ={x+& : x € F} the translation of F by
. In the stationary case

y 1X\{¢} € F+¢]

Pj(F)=E 1B

, F C Ny,

EeXp

for an arbitrary set B C S with 0 < |B| < 40, and Pé (F)= P} (F — &). Moreover

E

Y h(é,X\{é})] =4 [{ n(&x+&)dR;(x)dE,

Eex

for non-negative functions #.

Consider the problem of estimating P; (F) for some F € . Since X is stationary
we may consider X — &, £ € X, for a bounded B, as representing observations of X
conditional on 0 € X. Thus a natural estimator of P; (F) is the empirical average

1

v L 1XME e F e

é €Xp
If B is large, we may expect that A ~ N (B) /|B|, and so we obtain the estimator

1
ngXBl[X\{é} € F+¢&].

Interpretation of 7" as Palm expectation

The second-order reduced moment measure .# has an interpretation as a Palm
expectation, since

%(B):/ Z 1[17——§€B]dpé (x),

w2 ()

for almost all £ € RY. In the stationary case, it follows that
BCR?,

where E/, denotes expectation with respect to 7.
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2.1.3 Models
Poisson point process

Poisson point processes play a fundamental role. They serve as a tractable model
class for no interaction or complete spatial randomness in spatial point patterns.
They also serve as reference processes when summary statistics are studied. A
point process with 7 i.i.d points with density f is called a binomial point process
with n points in B. We write X ~ Binomial (B,n, f).

A point process X on S is a Poisson point process with intensity function A if
the following properties are satisfied

i. For any B € # with u(B) < 4o, N(B) follows a Poisson distribution with
mean [ (B).

ii. For any n € N and B € # with 0 < u(B) < +e, conditional on N(B) = n, Xp
follows a Binomial distribution with f (&) = A (§) /u (B) and number of points
n.

We write X ~ Poisson(S,A). If A is constant, the process Poisson(S,A) is called a
homogeneous Poisson process on S with rate or intensity A; else it is said to be an
inhomogeneous Poisson process on S. A homogeneous Poisson point process is a
stationary and isotropic process. A Poisson point process exists and it is uniquely
determined by its intensity measure.

If X; ~ Poisson(S, A;), for i € N mutually independent and

is locally integrable, then with probably one,
—+oo
x=Jx,
i=1
is a disjoint union, and X ~ Poisson(S,A).

The Neyman-Scott process

We consider here Neyman-Scott processes, proposed initially by Neyman and
Scott (1958). Let C be a stationary Poisson process on R? with intensity x > 0.
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Conditional on C, let X..,c € C, be independent Poisson processes on R? where X,
has intensity function

Ae(8) = ax (6 —c),
where « > 0 is a parameter and « is a kernel (i.e. for all c € R?, k(€ —c¢) is a

X=X,

ceC

density function). Then

is a special case of a Neyman-Scott process with cluster centres C and clusters
X.,c € C (in the general definition of a Neyman-Scott process, n (X.) given C is not
restricted to be a Poisson variate, see e.g. Chiu et al. (2013).

Matérn cluster process is a special case of a Neyman-Scott process where the
density function k(&), is the uniform density on the ball with centre zero and
radius r. Let w; and o, be the volume and the surface area of the d-dimensional
unit ball, respectively. Then

/2 27d/2

T TRy T TERy

where I is the classical Gamma function. Under the definition of the Neyman-
Scott process, the Matérn cluster process density is given by (Matérn, 1986)

()= el =r

the uniform density on the ball 5(0,r).

The hard-core process

The construction of a hard-core process is based on the sequential approach. Let
r>0and B € %, be given. A simple sequential inhibition (SSI) process in the set
B is constructed in the following way:

i. choose &; € B uniformly at random,
k—1
91 b(&i,r),

1=

ii. if k— 1 points are chosen, choose &; uniformly in B\

n
iii. the construction ends in n steps, if BC J b(&;, 7).
i=1

Since B\ Uf;ll b(&;,r) can have complicated geometrical shape, in practice the
process is simulated by the rejection method. A point &; is generated uniformly in
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the window B and if it lies closer than r from an existing point, then it is rejected
and a new point is generated.

2.2 Summary statistics

2.2.1 Second-order summary statistics

The K- and L-functions for a second-order reweighted stationary point process
are defined by

1/d
K()= 4 (b(0.r), L(r)= (Kaﬁd)) " o
This definition, which extends the definition of Ripley’s K-function (Ripley
(1976, 1977)) for the stationary case to the case of second-order intensity re-
weighted stationarity, is due to Baddeley et al. (2000). In the stationary case,
AK (r) is the expected number of further points within distance r from the origin
given that X has a point at the origin. For a stationary and isotropic process

1 d

.
K(r)=o04 | u?'g(u)d = ———K(r).
() =04 [ 1~ glwdu or g(r)= 5 TK(r)
For a stationary Poisson point process
d)2,d
T
K(r) =y = —rd and L(r)=r
r(1+9)

So, in the particular case of d =2,
K (r) = nr? and g(r)=1.

The K- and L-functions are in one-to-one correspondence, and in applications
the L-function is often used instead of the K-function. One reason is that L is the
identity for a Poisson process. In general, at least for small values of r, L(r) —r >0
indicates aggregation or clustering at distances less than r, and L(r) —r <0
regularity at distances less than r. This may be due to certain latent processes or
attraction or repulsion between the points. Moreover, for a homogeneous Poisson
process, the transformation K — L is variance stabilising when K is estimated by
non-parametric methods (Besag, 1977).
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2.2.2 Summary statistics based on inter-point distances

Assume that X is stationary. The empty space function F is the distribution
function of the distance from the origin (or another fixed point R¢) to the nearest
point in X i.e.

F(r)=P(Xnb(0,r) #0), r>0.

The nearest-neighbour function G is

G<r>=ﬁ1@ Y 1\ EDNbEN £0)|,  r>0,

EeXnA

for an arbitrary set A C R? with 0 < |A| < +e. For the nearest-neighbour function
G, it follows that
G(r) =Py(N(b(0,r)) >0),  r>0.

The J-function is defined by

B 1—-G(r)
- 1—F(r)’

J(r) for F(r) <.
The J-function was suggested by van Lieshout and Baddeley (1996). For a sta-
tionary Poisson process on R with intensity A < oo,

F(r)=G(r)=1—exp(—Aayr?) and Jir)=1 r>0,

where the equality for G comes from the Slivnyak-Mecke formula.

In general, at least for small values of r > 0, F(r) < G(r) (or J(r) < 1) indicates
clustering, and F(r) > G(r) (or J(r) > 1) indicates regularity, but if J(r) = 1 does
not imply that X is a stationary Poisson process (see Bedford and van den Berg
(1997)). For Neyman-Scott point processes, the J-function can be expressed as

1) = [K&exp | ~a [ KE+myn | dc.

Inl<r

thus J(r) is non-increasing for r > 0 with range (exp(—a),1). So F(r) < G(r) for
r>0.
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2.3 Extension to multivariate processes

Let Y be a point process on U C R?. Given some space M, if a random mark mg €M
is attached to each point £ €Y , then

X={(Eme):Eer},

is called a marked point process with points in U and mark space M. One simple
example is a multitype point process, where M = {1,... ,n} and the marks specify k
different types of points. This is equivalent to a k-dimensional multivariate point
process, that is a tuple (Xi,...,X;) of point processes Xj,...,X; corresponding to
the k different types of points.

2.3.1 Marked Poisson processes

Consider a marked point process X = {(§,m;) : & € Y } with points in U and mark
space M. Suppose that Y is Poisson(U,¢), where ¢ is a locally integrable intensity
function, and conditional on Y, the marks {mg & e Y} are mutually independent.
Then X is a marked Poisson process. If the marks are identically distributed with
a common distribution Q, then Q is called the mark distribution.

Let X be a marked Poisson process with M € %4” and where, conditional on Y,
each mark m; has a discrete or continuous density A: which does not depend on

Y\{€). Let &.(§.m) = ¢ (£) A (m). Then
i. X ~ Poisson(U x M, ).
ii. If the density on M defined by k (m) = [ A (§,m)d¢ is locally integrable, then

{me : & €Y} ~ Poisson (M, k).

2.3.2 Multivariate Poisson processes

By a multivariate Poisson process it is usually meant that each X; is a stationary
Poisson process on R? with intensity 0 < A; < +oo fori=1,...,k, see e.g. Diggle
(2013). We have the equivalence between the following two properties:

1. P(mg =i]Y =y) = pg (i) depends only on & for realisations y of ¥ and & € y.

2. (X1,...,X;) is a multivariate Poisson process with independent components
X; ~ Poisson (U, A;) where A; (&) = ¢ (§) pe (i), i=1,...,k.
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A common hypothesis for marked point processes {mg ey } is that of ran-
dom labelling which means that conditional on Y, the marks m¢ are mutually
independent and the distribution of mg does not depend on Y.

2.3.3 Cross-moment measure

Consider a multivariate point process X = {X,-}f.‘zl, we assume that each X; is
a point process in R¢ with intensity function A’ and count function N;. Let
i,j€{l,...,k} be different, and set a/0 =0, for a > 0.

i. We define the cross-moment measure for points of types i and j by

a/(C)=E| Y 1[&nec|, cezn!xz
éEX,’,T]GXj

ii. If o/ can be written as
ai(c)= [ [ 11Em) ecai® E mdian,  ceslx
R JR

where 17/(2) is a non-negative function, then A“(?) is called the cross second-

order product density.
The cross pair correlation function for points of types i and j is defined by

A& m)

/&M = TEmim)

Suppose that the measure

1 1[E €A,n—E& € B]

A (B) = — i : ., Be#
TP Y HERIEY

does not depend on the choice of A € ¢ with 0 < |A| < +eo. Then (X;,X;) is said to
be cross second-order intensity reweighted stationary.

Consider a multivariate point process X = {X,-}le, we assume that each X; is
a point process in R? with intensity function A’ and count function N;. The cross

K- and L-functions are defined by

. iy g i () V4
K (r) = 2 (5(0,r)), L’J(r):<Kwi)> r>0.
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If X; and X; are independent, then (X;,X;) is cross second-order
reweighted stationary,

K7(B)=K/(B)=|B|, and  LY(r)=r.

Assume that (X;,X;) is stationary with intensities 0 < A/ < +o0 and 0 < 1/ < +oo.
The nearest-neighbour function G” is the distribution function for the distance
from a typical type i point to its nearest type j point, i.e.

1
ATlA]

G (r)= E| Y 1Xxnb&,r)£0|, r>0,

EeXx;nA
for an arbitrary set A ¢ R? with 0 < |A| < +oo. Moreover, define

J"j(r):ll_%l;((:)), for F'(r) <1.

The cross statistics G/ and J/ are not symmetric in i and j.

2.4 Non-parametric estimation

The non-parametric methods do not assume a specific parametric model for the
first- and second-order behaviour. The estimation approach is typically based on
simple counts and kernel methods. We consider methods for analysing spatial
point pattern data not linked to special families of parametric models.

Let X be a spatial point process on R? with intensity function A; if X is
stationary, A is assumed to be a constant with 0 < A < +. Whenever needed
we assume that the measure 7 exists. We confine to the case where a single
point pattern Xy = x is observed in a bounded window W € %¢ with [W| > 0, and
discuss non-parametric estimation of 1, K, g, L and J functions in the isotropic case.
Higher-order summary statistics can be introduced as well, but the corresponding
non-parametric estimators may be less stable if the number of points observed is
not sufficiently large; see Peebles and Groth (1975), Stoyan and Stoyan (1994),
Mgller et al. (1998).
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2.4.1 Estimation of intensity functions

In the homogeneous case, a natural unbiased estimate of the intensity function
is
N (Xw)

A=
14

This estimator is unbiased and, if N is ergodic, then it is consistent, i.e. as
W increases it converges to the true value A. This holds independent of the
specific distribution of N, whereas the variability of the estimator A is of course
distribution-dependent (Illian et al., 2008). This is in fact the maximum likelihood
estimate if X is a homogeneous Poisson process. In the inhomogeneous case, a
non-parametric kernel estimate of the intensity function, following Diggle (1985),
is

L@ -y e ey

TIEXW CW,{—: (n) ’

Here «; is a kernel with bandwidth € > 0, i.e.

Ke(S) :ix(%)

where « is a given density function, and

Cue (M) = [ xe(&—m)dé,

is an edge-correction factor.

The estimate of the intensity is usually sensitive to the choice of e. When d =2,
it is common to use a product kernel given by x (&) = e (&) e (&) for & = (&1,&) € RY,
where

ew) =3 (-1 <1],  ueR,
is the Epanechnikov kernel (Epanechnikov, 1969). [, Ae (€)dE is an unbiased
estimate of u (W). A simple stationarity test is closely related to the intensity,
and can be built by calculating an estimator of the intensity A(-) and verify that
a plot of the obtained estimate shows only local irregularities but not a general
trend.
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2.4.2 Estimation of K-, L- and g-functions

For non-parametric estimation of 2", we consider the following steps. Let |®|,
denote the a-dimensional Hausdorff measure of ® € #?. See Stoyan and Stoyan
(1994). Let £,n € W, we define the Ripley’s isotropic edge-correction factor, (see
Ripley (1976), Illian et al. (2008)) as

S bENE W,
W) = e e Dl

Here |- |p and |- |; are the zero- and one-dimensional Hausdorff measures respect-

ively in R and R2. The zero-dimensional Hausdorff measure in R is the number
of points of the set. The one-dimensional Hausdorff measure of a simple curve in
R? is equal to the length of the curve.

Suppose that X is second-order intensity reweighted stationary, then

# 1n—-¢e€B
ey, A E)AMw(E,m)’

is an unbiased estimator for J# (B). In practice A is not known, so A (§)A (1)
must be replaced by the estimator A (§) A (n). The combined estimator

A=y An-Sesl

gnexy A(E)A (m)w? (E,1)

is then biased (see Illian et al. (2008)). In fact unbiasedness is usually unob-

tainable for many estimators in spatial statistics, but instead they are often
ratio-unbiased, i.e. of the form 6 =Y /Z where 6 = E[Y]/E[Z]. For example, in
the homogeneous case, if 1 (Jj/)/l\(n) —22is unbiased, then it is ratio-unbiased.
Illian et al. (2008) discuss various possibilities for the homogeneous case: one
possibility is to transform the estimate to obtain (N (Xy))?/|W|* as an estimate

of A%; an alternative is
= NCw) (V () — 1)
w?

)

which is unbiased for a Poisson process. For the inhomogeneous case, Baddeley
et al. (2000) propose to use A (E)A (1) = A¢ () Ae () where

;Lg(é)— Ke(é_n)

- ) g € W7
nexinigy e ()
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is a slight modification. Also, Baddeley et al. (2000) show that for an inhomogen-
eous Poisson process, A¢ (£) is less biased than A¢ (¢) when & is a data point.
Consider K(r) = 7 (b(0,r)):

1. From its definition, it is clear that 1/w? (£,n) > 1. Also, the larger weights
tend to be associated with pairs of events separated by large distances.
Typically, Var{K(r)} tends to increase with r.

2. The dimension of W clearly limits the range of values of r which can be
considered. In practice, the increasing variance of K(r) is a more serious
limitation. As a rough guide, for data on a rectangle W, it is usually not
worth trying to estimate K(r) at values of r bigger than one-half the length
of the shorter side of W.

The estimate of L(r) obtained from transforming that of K(r) is in general
biased.

An alternative edge-corrected estimator for the pair correlation function
(Fiksel (1988), Stoyan and Stoyan (1994), Baddeley et al. (2000)) is given by

o) = 1 4 %—nll—ﬁ ‘
Gdrd|W| Enexw A (5)l (n)Wd (évn)

Here «x;,(u) = x(u/b) /b, u € R and bandwidth b > 0, (see Illian et al. (2008)).

2.4.3 Estimation of F-, G- and J-functions

Reduced-sample estimators of F and G are derived using minus sampling. Let

d(&,B) =inf{||§ —n|n € B},

be the shortest distance from a point & € R? to a set B C R¢. Let I ¢ R? denote a

finite regular grid of points (chosen independently of X), and let #I, denote the

cardinality of the set I, = INWxr, where Wor ={& e W : b(&,r) CW} for r > 0.
The following estimator is unbiased for F

1[d(, Xw) <]
#I, ’
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for #I, > 0, and the next one is a ratio-unbiased estimator for G

é(l”) _ Z 1[d(§7XW) < I’]

b

EcXynWe AW |

for |W-| > 0, so that J(r) is given by

2.4.4 Multivariate estimators

If (X,-,X j) is cross second-order reweighted stationary, then for B € %

Z# N —& € B
EeX;,nw (i)l](n)wd(ﬁ,n)’
nex;Nw

is an unbiased estimator of %/ (B). We can substitute A; () A;(n) with a non-
parametric estimator A; (517( n).

IfX = (Xi,...,X;) is a multivariate point process, then the k(k+ 1)/2 functions
K'/(r) with 1 <i < j < k, completely describe the second-order properties of the
process. A necessary, but not sufficient, condition for the process of points of
type i to be independent of the process of points of type j is that K/ (r) = w;r? for
all . Not surprisingly, description and estimation of the second-order structure
of a multitype process requires consideration of only two of the types at a time.
Therefore it will be sufficient when discussing the problem of estimation to
consider a two-type process consisting of n; points {,...,s,,} and n, points
{G1,-..,61,} - Suppose that we observe such a process over a plane region W.

Lotwick and Silverman (1982), and Diggle (2013), give a combined estimator
for the bivariate K- function:

_ WL 3 Ml =l <7

K”
C mn IZ;]Z: wd (5,6;)
where y .,
we (%‘,Qj) _mw (giv%j) +now (%ivgj)'

ni+ny



22 Basic framework of point processes

If g/ is isotropic, a kernel estimator for the cross pair correlation is given by

gAij(r): 1 # Kb(Hg_n”_r) .
Oart W1 ¢S, A1 (E) AT (m)w (€,1)

Similarly, for (X;,X;) the reduced-sample estimator of G'/(r) is

1[d(S,X;NW) <]

Gin=Y

EeXnWar AW |

Y

By substitution of F/(r) and G%(r) functions the estimator for /¥ (r) is obtained.

2.5 Envelopes procedure

Consider a simple hypothesis H,. Confidence intervals and other distributional
characteristics associated with some non-parametric estimate R of a second-order
summary can be obtained by a bootstrap using simulation under Hy. For a given
distance r € B, let Ty (r) = T (X,r) denote any statistic obtained from the point
process X observed within the window W. Let ® = {T;(r)}!_, be obtained from
i.i.d. simulations Xi,...,X, under Hy. From the empirical distribution of ® we
can estimate any quantile for the distribution of Tj (r) under Hy, and we can do
this with any desired precision if  is large enough. Notice that although T, ..., T,
are i.i.d., the random vectors (7i (r),...,T,(r)) considered for different values of r
are dependent. So some caution should be taken when we compare the results
for different values of r

If the computation of 7j(r), i = 1,...,n, is time consuming, the following envel-
opes may be used where n is small. Let

Tiin(r) = min @, and Tiax(r) = max @,
under H,
1
IP)(TO(”) < Tmin(r)) = P(TO(") > Tmax(r)> < n_|_—1,

with equality if Ty(r), T1(r),. .., T,(r) are almost surely different. The bounds T, (7)
and T« (r) are called the 100/(n + 1)%-lower and the 100n/(n+ 1)%-upper envel-
opes.
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2.6 Replicated spatial point patterns

In the literature (Baddeley et al., 1993; Diggle et al., 1991, 2000; Hahn, 2012),
second-order characteristics have been used to find a methods to discriminate
between groups of replicated patterns. Usually these methods have been focused
on Ripley’s K function by defining a series of statistics analogous to those used
in classic ANOVA analysis and by taking into account that Var (K (r)) is roughly
proportional to % /n? if r is small.

2.6.1 Diggle et al.’s Monte Carlo test

Consider an experiment with g groups of point patterns, each one containing m;
1
(1991, 2000), we can define the estimated group-specific mean function as

replicates. Let w;; =n;;j/n; (n; =YY" n;;), and n = le n;. Following Diggle et al.

m;
Ki(r): Zwinij(r)7 i:17"'7g7 (2-1)
j=1
and an overall average mean function as

K(r) =

S| =

g
Y niki(r), (2.2)
i=1
and then consider the statistic
8 ro 1 _ _ >
Dg=}, /0 ni— [Ki(r) = K(r)]"dr. (2.3)
i=1

The statistic D, is an intuitively sensible measure of the difference between K-
functions along the groups and is loosely analogous to a residual sum of squares
in a conventional one-way ANOVA.

The interest focuses on testing the null hypothesis that the expectations of
the empirical K-functions do not differ between groups. The analytical form of
the distribution of D, is not known. A pure randomisation test is available in
which one permutes the K; i(r) across groups and recomputes D, to obtain its
exact conditional distribution.

Define

R\ij(r) = \/I’l_lj [I%ij(r) —I?i(r)} . (24)
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R;j(r) should be approximately exchangeable quantities because the sampling vari-
ance of each K;;(r) is proportional to ni;l. They call the R;;(r) residual K-functions.
Obtain an empirical approximation to the distribution of D, by recomputing its
values from a large number of bootstrap samples

(2.5)

where the I?;-kj (r) are obtained by drawing at random and without replacement,
keeping group sizes fixed, from the empirical distribution of the R;; (r).

2.6.2 Studentized permutation test

Hahn (2012) stated that non-uniformity of p-values under the null hypothesis as
observed with Diggle’s et al.’s Monte Carlo test is apparently a general problem of
bootstrap tests based on small samples. As an alternative, Hahn (2012) proposed
two pure permutation tests. Such tests have uniformly distributed rejection rates
by construction even when sample sizes are small, as long as the samples are ex-
changeable. In order to achieve robustness of the test towards heteroscedasticity,
they suggest to use a statistic related to the Behrens-Fisher-Welch z-statistic, or
alternatively the corresponding F-statistic. This is generalised to the functional
data case by considering the L,-norm of the t-statistic, i.e. the integral over the
squared studentized differences between the group means

2
- ¥ / Kf o 2.6
where
:mii and sl-(r):—. - (kij(r)—Ki(r))z-
=1 j=

Tests using the statistic T are still sensitive to pronounced heteroscedasticity.
In these cases, its better to use the following statistic instead

o i r 2
T = Z / i_Z 1J(_)) dr,

1<i<j<g —|——S§(I’>

i
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where ) )
— re 70 s7(1)
s2(r) = _ltz

1

= — dr.
ro Jo

The variance estimator used in 7 is more stable than the individual denom-
inators in the statistic 7. T should therefore be preferred to T in the cases of

heteroscedasticity.
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Abstract

Spatio-temporal point process data have been analysed quite a bit in specialised

fields, with the aim of better understanding the inherent mechanisms that govern

the temporal evolution of events placed in a planar region. In particular, in

the last decade there has been an acceleration of methodological developments,

accompanied by a broad collection of applications as spatio-temporally indexed

data have become more widely available in many scientific fields. We present a

self-contained review describing statistical models and methods that can be used

to analyse patterns of points in space and time when the questions of scientific
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interest concern both their spatial and their temporal behaviour. We revisit
moment characteristics that define summary statistics, as well as conditional
intensities which uniquely characterise certain spatio-temporal point processes.
We make use of these concepts to describe models and associated methods of
inference for spatio-temporal point process data. Three new motivating real-data
examples are described and analysed throughout the paper to illustrate the most
relevant techniques, discussing the pros and cons of the different considered
approaches.

Keywords Edge-correction; Empirical models; Intensity function; Mechanistic
models; Second-order properties; Separability.

3.1 Introduction

The term spatio-temporal / spatial-temporal point pattern reveals two main pieces
of information (regarding space and time) about the data considered. We are
considering a collection of data which may be treated as 1) the realisation of a
random collection of points, which 2) somehow evolves in space and time. The
notion of something evolving in space and time is rather vague in the sense that
it is not directly revealed how that evolution actually occurs. Consulting the
literature, it becomes clear that the term spatio-temporal point pattern or, the
term spatio-temporal point process if referring to the data generating mechanism,
has been used for an array of different entities. As indicated in e.g. Cox and
Isham, 1980; Illian et al., 2008, considering a non-discrete spatial study region
W and a time frame/temporal study period 7, we may roughly put them into the
following main categories in which we refer to the locations as events:

1. The data {(u;,v;)}?.; CW x T are treated as being generated as a snapshot
in space-time. More specifically, the data are treated as a collection of
instantaneous events, each occurring at a given spatial location u;, with a
given associated time point/event time v;. In other words, at a given time
point we observe at most one event. A point is thus not considered to remain
in W after its occurrence. Typical applications include earthquakes and
disease outbreaks. Essentially, this category may be viewed as a spatial
point process with a further (temporal) dimension (see e.g. Daley and Vere-
Jones, 2003; Diggle et al., 1995; Greenspan, 2013; Schoenberg et al., 2006;
Vere-Jones, 2009). The questions posed are in many ways the same as those
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posed in the study of spatial point patterns, as well as those in the study of
events occurring according to a temporal point process; two main factors
in the analysis are related to intensity variations and (spatio-temporal)
interaction.

2. During T we observe a total of n points {u;}”" ;, C W. The ith point arrives at
some given time v; € T, obtains a spatial location u; € W and stays there for
some given period of time /; > 0, after which it is removed from W. Hence, we
may express the data generating process as Z(r) C {u;}}_, CW,t € T. Here
there are, in essence, two things of interest. Firstly, one is interested in
understanding the mechanisms behind the arrivals of new points as well as
those behind the removals of points (births and deaths). This basically boils
down to modelling the total number of points present in W, |Z(r)| € {0,1,...},
at any time point 7 € T; this is done by means of some stochastic process.
Secondly, there is an interest in the probabilistic laws governing the spatial
aspects of additions and removals of points. The latter part has more of a
spatial point process nature. Typically such a set-up is governed by a spatial
Jump process, where a subclass is given by the family of spatial birth-death
processes; these models have been used extensively e.g. to simulate spatial
point processes (Berthelsen and Mgller, 2002; Daley and Vere-Jones, 2007,
van Lieshout, 2000; Mgller and Sgrensen, 1994; Mgller and Waagepetersen,
2004).

Such an approach has been employed for e.g. the modelling of forest stands,
where v; refers to the birth time of the ith tree and /; refers to its life time.

3. Objects move (more or less) continuously through the spatial domain W and
form paths Y;(1) e W,r €T, i=1,...,m. By sampling these movements at
discrete times T1,--- ,T; € T we obtain as end result the collection {u;}} | =

" U’J‘-Zl Y;(Tj) CW. Typical applications can be found in e.g. movement
ecology (Preisler et al., 2004).

Here one is mainly interested in understanding the underlying movement
processes, which often are modelled as spatial stochastic processes (Cressie
and Wikle, 2011). This analysis helps us clarify e.g. migratory patterns of
animals. Statistically, the analysis is basically focussed on fitting spatial
stochastic processes to discretely sampled paths.

Note that this setting may be fitted into both of the above categories: in the
latter case we let each /; be so large that we do not remove any of the points
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during T and in the former case we include the associated sampling times

asv,i=1,...,n.

As already indicated, there are naturally intersections between the three
categories, i.e. there are situations where the modelling approach of one category
fits the data of another. However, as we have indicated, the questions of in-
terest and the methods employed are essentially different in the three categories.
Throughout we will focus on category one.

It is the intention of this review to give a thorough overview of the different
tools and methods available to analyse and model spatio-temporal point patterns
{(w;,v;)}!_; €W x T. The main reason for producing this summary at this moment
is to emphasise important contributions delivered in the last years, such as Cronie
and van Lieshout (2015), as well as providing a catalogue of sort, which may be
employed for the statistical analysis of the many interesting datasets appearing
nowadays; the “new” datasets presented in this paper highlight this. After such
an explosion of methodological and practical developments in the field of spatio-
temporally indexed data, we aim at presenting a self-contained review describing
statistical models and methods that can be used to analyse spatio-temporal point
patterns when the questions of scientific interest concern both their spatial and
temporal behaviour.

Note that many purely spatial datasets often in fact have an evolutionary
nature, being the result of temporally evolving processes; spatial point patterns
can appear quite differently over disjoint time windows and explaining these
differences may be an essential aspect of the analysis. In essence, this aspect
could be resolved by aggregating the patterns over time (Banerjee et al., 2014).
Hence, adding a temporal dimension to the study of spatial point patterns can
reveal many interesting and important features, which help us understand the
inherent data generating mechanisms. Many datasets can be analysed as purely
spatial data only if and when in so doing we can address interesting scientific
questions. Despite this importance of spatio-temporal analysis, studies of spatio-
temporal models have lagged a bit behind those of simple temporal models, as
well as those of purely spatial models. Undoubtedly, the reasons have been largely
practical, notably the difficulty lying in combining good spatio-temporal datasets
and the heavy computations needed to analyse them. The scope of our discussions
throughout the paper is to treat distributions in two-plus-one-dimensional space
and time, i.e. W being two-dimensional (planar) and T being one-dimensional.
Paraphrasing Diggle (2013), it should be emphasised that in this context two plus
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one does not equal three, since the time dimension is fundamentally different
from either of the two spatial dimensions. This equally happens in the marked
and 3D cases, i.e. the cases 2D space + time and 2D space + marks are similar in
the sense that the third dimension differs from the spatial dimension. However,
the 3D case is different since all three directions are spatial and, indeed, in
this case two plus one would equal three. This observation is key, even in the
mathematical formulation of different related methods.

As already indicated, in the last decade there has been an acceleration of
methodological development, accompanied by a diverse array of application as
spatio-temporal indexed data have become more widely available in many sci-
entific fields. Book-length treatments are now beginning to appear, including
the edited collection by Finkenstadt et al. (2007), several chapters of Gelfand
et al. (2010), Cressie and Wikle (2011) and, most recently, Diggle (2013) and
Banerjee et al. (2014). It is evident that spatio-temporal point process techniques
have covered a wide spectrum of scientific research. Environmental problems
such as wildfires, earthquakes, lightning-caused fires, tornadoes and radioact-
ive particles, among others, which represent important aspects of e.g. ecology,
economy and social damage, have been well studied by many authors (see, for
instance, Altieri et al., 2015; Clements et al., 2011; Karpman et al., 2013; Mgller
and Diaz-Avalos, 2010; Pereira et al., 2013 and the many references therein). A
wealth of epidemiological problems have also been handled by employing spatio-
temporal point process methodologies. Good and complete accounts of methods
and models can be found in e.g. Diggle (2013) and Banerjee et al. (2014), where
an impressive number of problems and data coming from the study of the spread
of infections in animals and humans, and public health are treated.

Turning to some of the specifics discussed in the body of the text, we first note
that in certain situations, where we treat the spatial locations u; as marks of a
purely temporal point process {v;}} , C T, it is possible to define a given point
process through its so-called conditional intensity function, which, heuristically,
is the function governing the expected number of future events at some fixed time
point, given all the previously observed events. Note that additional characterist-
ics of an event, such as size, magnitude, spatial extent, or even duration, can be
added as marks (additional dimensions). Daley and Vere-Jones (2003, Chapter
7) gives a rather extensive overview of the history of conditional intensities, as
well as a good probabilistic coverage of the theory.
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Following the terminology of Diggle (2013), we will refer to conditional intensity-
based models as mechanistic models. This set-up may be considered the somewhat
classical approach to analysing spatio-temporal point patterns (see e.g. Cox and
Isham, 1980; Daley and Vere-Jones, 2003; Diggle, 2013; Karr, 1991; Snyder and
Miller, 1991; Vere-Jones, 2009 and the references therein for details). Note that
since the distribution of such a process is completely governed by its conditional
intensity function, most of the statistical analysis and inference here reduce
to analysis of conditional intensity functions. Hence, this approach presents
one possible route to statistical analysis, and in particular likelihood analyses,
of spatio-temporal point processes. Ogata (1998) wrote a summary paper on
parametric and maximum likelihood techniques. Furthermore, regarding non-
parametric estimation of the conditional intensity function, Choi and Hall (1999)
considered a kernel estimation approach. The employment of mechanistic models
has been considered extensively in the context of e.g. earthquake data (Choi
and Hall, 1999). To exemplify the treatment of other applications, e.g., Rathbun
and Cressie (1994) discuss spatio-temporal point processes in the context of tree
growth and Tamayo-Uria et al. (2014) analyse the spatio-temporal distribution of
rat sightings, which are directly related to rat infestation.

The arguably most prominent class of mechanistic models are the Epidemic-
Type Aftershock Sequence (ETAS) models (see e.g. Daley and Vere-Jones, 2003;
Ogata, 1988, 1998; Ogata and Zhuang, 2006), which have become somewhat
the main tool for the analysis of earthquakes (Adelfio and Chiodi, 2015; Adelfio
and Ogata, 2010; Marsan and Lengliné, 2008, 2010; Mohler et al., 2011); they
belong to the more general family of Hawkes processes (see e.g. Daley and Vere-
Jones, 2003; Marsan and Lengliné, 2008, 2010). In particular, hazard maps,
declustering, diagnostic methods and other methods have been developed within
the framework of ETAS models (Adelfio and Chiodi, 2010; Musmeci and Vere-
Jones, 1992; Peng et al., 2005; van Lieshout and Stein, 2012; Zhuang et al., 2002).
Also, regarding mechanistic models in general, spatio-temporal separability is
a key issue (see Assuncao and Maia, 2007; Chang and Schoenberg, 2011; Diaz-
Avalos et al., 2014; Ogata, 1988; Schoenberg, 2003, 2004). Here separability
refers to the conditional intensity function being expressed as the product of a
purely spatial and a purely temporal component.

For reasons that will be noted, it is not always possible and/or convenient to
treat spatio-temporal point processes by means of conditional intensities. Instead,
it is often more suitable to treat them in the way they are defined, as a random
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collections of (dependent) points, observed in some region, where one of the
dimensions represents time. This leads us to the other approach for analysing
spatio-temporal point patterns. This approach is very similar to that of purely
spatial point processes, as opposed to the conditional intensity approach, which
is more of an extension of the purely temporal point process approach, exploiting
the natural ordering of time.

We next indicate some important aspects that will be treated in this paper.
Often the analysis starts by estimating and/or modelling the intensity function,
which governs the univariate properties of a spatio-temporal point process. Diggle
(2013) provides an account on fully-, semi-, and non-parametric approaches to
intensity estimation for spatio-temporal point patterns. Turning to the quanti-
fication of higher moments, i.e. the space-time interactions between the points,
different summary statistics have been proposed. Under the assumption of sta-
tionarity, Diggle et al. (1995) considered the problem of detecting and describing
spatio-temporal interactions in point process data. They extended existing second-
order methods for purely spatial point process data to the spatio-temporal setting.
This extension allows one to estimate spatio-temporal interaction and express
it as a function of spatial and temporal lags. Furthermore, Gabriel and Diggle
(2009) extend the inhomogeneous K-function of Baddeley et al. (2000) for in-
homogeneous spatial point process data to the spatio-temporal setting, under the
assumption of so-called second-order intensity-reweighted moment stationarity.
Extending those ideas, Mgller and Ghorbani (2012) study further the inhomogen-
eous K-function as well as the pair correlation function, under the assumption of
so-called first- and second-order separability (the first- and second-order moments
may be expressed as space-time products) and clarify the different consequences
of such separability assumptions. Ghorbani (2013) proposes a weak stationarity
test for spatio-temporal point processes and Gabriel (2014) presents an intensive
simulation study to show the efficiency of the second-order estimators on different
scenarios for various spatio-temporal edge-corrections. In order to account for
possible anisotropy in the spatial domain, Comas et al. (2015) extend the spatial
point pair orientation distribution (see Illian et al., 2008, Section 6.10) to the
spatio-temporal context. The summary statistics just mentioned are all based
on pairwise interaction and thus detect at most second-order interactions. For
higher-order interactions, higher-order summary statistics, which take the whole
point process distribution into account, are required. The J-function is a key
example of these statistics. In the inhomogeneous spatio-temporal setting, it
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has been defined by Cronie and van Lieshout (2015), under the assumption of
so-called intensity-reweighted moment stationarity, and it reduces to a homo-
geneous version under the assumption of stationarity; c.f. van Lieshout and
Baddeley (1996). A non-parametric estimator is also derived in the same paper.
The above mentioned statistical methods will be presented in a stepwise fashion
in the text. Note that the above mentioned assumptions of second-order intensity-
reweighted stationarity and intensity-reweighted moment stationarity have not
yet been widely tested or evaluated statistically in the available literature, with
the exception of Hahn and Vedel Jensen (2016). Hence, these should be viewed
as pragmatic assumptions, which are convenient starting points, and the related
statistical analysis may be treated as an exciting open field of research.

In practice, one often deals with inhomogeneity, which manifests itself through
e.g. parts of the spatial study region having no points and/or time periods where
no events are occurring, or e.g. trends in the form of an increasing number
of points in some direction or an increasing/decreasing number of points over
time. Hence, depending on what interactions one is interested in studying, it
is wise to proceed by assuming second-order intensity-reweighted stationarity
or intensity-reweighted moment stationarity. In addition to the mechanistic
models presented above, in this review we further devote a substantial part of
the paper to presenting different parametric spatio-temporal models, such as
Poisson processes, Cox processes, hard-core processes and inhibition processes.

Regarding the mathematical treatment of the concepts above, we recall char-
acteristics such as intensity functions, product densities, conditional intensities,
Papangelou conditional intensities and reduced Palm distributions, since these
are all crucial for the development of the statistical methods presented. We then
proceed to reviewing models and methods for spatio-temporal point process data.
To illustrate the relevant techniques presented, we apply most of them to the
three new real-data examples previously mentioned.

It should finally be mentioned that we have purposely chosen not to consider
the case where we include marks in the analysis (although they are mentioned
here and there). The reason is twofold; partly, the paper would become too long
and, partly, for the non-conditional intensity-based set-up the study of marked
spatio-temporal point patterns is rather limited (there is, however, ongoing work
on the topic).

The plan of the paper is the following. We start in Section 3.2 with a description
of our datasets and in Section 3.3 we present a set-up of spatio-temporal point
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processes. Section 3.4 considers some characteristics of spatio-temporal point
processes, discussing summary statistics, product densities, k-point correlation
functions, Palm distributions and Papangelou conditional intensities for spatio-
temporal point processes. Spatio-temporal empirical models are summarised
in Section 3.5, and mechanistic models in Section 3.6. The paper ends with an
overall discussion and depicts some existing and ongoing research lines.

3.2 Datasets

Below we describe the three data sets that are analysed throughout the paper. It
should be noticed that there are cases where we only know the time up to a year
and, therefore, several points appear at the same time.

3.2.1 Human outbreaks of Ebola

This dataset, obtained from Mylne et al. (2014), collates existing knowledge on
the geographic spread of past Ebola outbreaks in a standardised format. They
outlined simple procedures for data abstraction and each outbreak is summarised
with a map and a brief text description. These data are useful for conducting
spatio-temporal analyses of Ebola outbreak spread. They include every outbreak
preceding the atypical 2013 Guinea epidemic which has spread further and
faster than any previous epidemic. We have a temporal period from 1976 to 2012
with 96 records corresponding to the centre of each outbreak, where the time is
reported as the year of the first reported case in the occurrence. Three outliers
were removed in order to make easier the interpretation of results. The data
locations are depicted in Figure 3.1.

3.2.2 Euphausia glacialis

Euphausia glacialis is a type of Antarctic krill of the family Euphausiidae and a
member of the species Euphausia superba (Board, 2015), which is the dominant
herbivore of the Southern Ocean. It is a small, swimming crustacean that lives
in large schools, called swarms, which reach densities of 10000 — 30000 individual
animals per cubic metre (see Hamner et al., 1983).

The Euphausia glacialis dataset is extracted from biodiversity.aqg (Van de
Putte et al., 2015), which is the Antarctic biodiversity information system, which
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Figure 3.1 Locations of 96 past Ebola outbreaks occurred in a large region of
Africa during the years 1976 — 2012, the region of interest is formed by the smallest
polygon containing all locations (left panel), here time is treated as a quantitative
mark; dark dots correspond to the oldest events and light dots correspond to the
most recent outbreaks (right panel).

gives access to a distributed network of contributing datasets, according to the
principles of the Global Biodiversity Information Facility (GBIF). It is an in-
ternational open data infrastructure, funded by governments and available at
http://www.gbif.org/.

We have the locations, given in geographic latitude and longitude coordinates,
of 57006 swarms reported between 1980 and 2008, year by year. Each location has
its associated year as a third coordinate. Due to the inherent computing problems
when working with such a large number of locations, we apply a completely
random thinning with probability p = 0.13 of retention over the whole set of
spatio-temporal points (see Baddeley et al., 2015), reducing it to 7263 sample
points, see Figure 3.2.

3.2.3 Tornadoes in South Carolina

This dataset is provided by the Storm Prediction Center (SPC, http:/www.spc.
noaa.gov) of the National Oceanic and Atmospheric Administration (NOAA). It
contains information of all starting locations of tornado records with the year
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Figure 3.2 Left panel: sampling area of swarms of Euphausia glacialis in the
Antarctic marine environment. Right panel: orthogonal projection of locations
corresponding to a sample of 7263 swarms enclosed by the smallest polygon
containing all the events taken between 1980 — 2008; the darker points correspond
to older records.

of its respective occurrence along fifty nine years (1953 —2012) occurring in the
region of South Carolina. The number of records is 890 and the pattern associated
is displayed in Figure 3.3.

3.3 Fundamentals of spatio-temporal point

processes

Throughout the paper we assume every subset of R?> and R to be a Borel set and
every function is assumed to be measurable. We also assume that W C R? and
that 7 C R is an interval and consider as spatio-temporal point pattern data
a collection of points {&;}! | = {(u;,v;)}}_; CW x T. Formally, a spatio-temporal
point process X is a random countable subset of R? x R, for which |[X N (A x B)| < oo
for bounded A x B C R? x R (Hereinafter we use |- | to denote both cardinality of a
set and absolute value of a real number). Although we here assume that 7 is an
interval in R, it is still possible to construct everything considered in this paper
for, say, T C Z. However, we could then instead treat all event times #; as marks
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Figure 3.3 Left panel: South Carolina state within U.S. Right panel: starting
locations of tornado occurrences reports over South Carolina between 1953 —2012;
the darker points correspond to older records.

of a purely spatial point pattern/process with locations u; (Daley and Vere-Jones,
2007; Vere-Jones, 2009). Recall that in our datasets we do not have the exact
times but only the times with one year accuracy.

From a practical point of view, we treat a spatio-temporal point pattern
observed in W x T either directly as the realisation of a spatio-temporal point
process in W x T or as the realisation of the restriction of a spatio-temporal point
process in R?> x R to W x T. Note that, depending on the modelling assumptions,
one is better suited than the other.

The cylindrical neighbourhood B[(u,v),r,t], centred at (u,v) € W x T with spatial
radius r > 0 and temporal radius ¢ > 0, is defined as

Bl(u,v),nt] =Blu,r] x[v—t,v+t]={(a,p) eW X T :||lu—a| <r|v->b|<t}, (3.1)

where Blu,r] = {a € W : |lu—al| < r} is the Euclidean ball, centred at u € W, with
radius r. We set B, = B[(0,0),r,t]. Hereby, given our way of measuring spatio-
temporal distances (Cronie and van Lieshout, 2015; Mgller and Ghorbani, 2012),
the closed ball B[(u,v),r] of radius r > 0, which is centred at (u,v) e W x T, is
precisely the cylindrical neighbourhood B|(u,v),r,r]|.
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Henceforth N(A x B) denotes the number of points of a set (A x B) N X, where
ACW and BCT. As usual (Daley and Vere-Jones, 2003), when N(W x T) < e
with probability one, which holds e.g. if X is defined on a bounded set, we call X
a finite spatio-temporal point process.

Next, we turn to the distribution that X induces on the space of point config-
urations. In particular, we consider different forms of stationarity and isotropy
for a spatio-temporal point process. In the case of isotropy, we note that some
care has to be taken since W x T is non-Euclidean.

Definition 1 Let X be a spatio-temporal point process on W x T CR?> xR. X is
called (spatio-temporally) stationary if the shifted counterpart process (u,v) +X
has the same distribution as the original process X for any (u,v) € W x T. We say
that X is (spatially) isotropic if, for any rotation r around the origin, the rotated
point process rX = {(ru,v) : (u,v) € X} has the same distribution as X.

Note that one can define explicit spatial stationarity or temporal stationarity by
assuming, respectively, that the definition of stationarity holds only for transla-
tions (u,0)+X,u € R?, or (0,v) +X, v €R.

When X is a finite spatio-temporal point process or taken as the restriction of
a spatio-temporal point process to W x T, it may be natural, at times, to project X
onto W and T, and thus deal with the space and time components of X separately.
Following Mgller and Ghorbani (2012), let

Xspace ={u: (u,v) eX,veT}, Xpme={v:(u,v)eX,ucW}.

Note that these projections are not well defined unless we have a finite total
number of points. The rotated version of Xgpace Will be denoted by rXgpace.

3.4 Characteristics of spatio-temporal point

processes

Having established the set-up of spatio-temporal point processes, we next turn
to some point process characteristics that we need in order to define, for in-
stance, the different summary statistics considered in this paper. Below we
define product densities, k-order correlation functions, Palm distributions and
Papangelou conditional intensities for spatio-temporal point processes.
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3.4.1 Product densities

Arguably, the main tools in the statistical analysis of point processes are the
product densities A®), k > 1. A®) may be defined through the so-called Campbell
theorem (see Daley and Vere-Jones, 2007, p. 268), which states that, given a
spatio-temporal point process X, for any non-negative function z on (R? x R)%,

Y ] J AR Bt RN-AT LT R- Hd&,

S1nbkeX R2xR  R2xR

where the left hand side is infinite if and only if the right hand side is. This
constitutes an essential result in spatio-temporal point process theory. Here Y7
indicates that the summation is taken over distinct k-tuples of spatio-temporal
events i.e. points of X.

Since we assume that the point process is simple and that the product density
A% exists and is finite, then

P(N(d&) =1,...,N(d&) = 1) =P(X NdE, £0,...,X Nd& £ 0)
él; 7 Hdél;

for infinitesimal spatio-temporal regions d&;,...,d§, C W x T with d§; = du; x dv;
and size |d&;| = du;dv;, i = 1,...,k. Note that d§; denotes both the infinitesimal
spatio-temporal regions and its Lebesgue measure (Daley and Vere-Jones, 2003).
Hence, provided A% exists, it governs the infinitesimal k-dimensional joint dis-
tributions of the points of X in W x T.

3.4.2 Intensity functions

We next turn to the intensity measure and intensity function, which govern the
univariate distributions of the points of X in W x T'. The first step of a statistical
analysis is usually to estimate and model the intensity function.

Definition 2 Considering the intensity measure u(A x B) =E[N(A xB)|, AxB C
W x T, when A = AV exists, we have that

U(A x B) :/A/Bl(u,v)dudv,

and we refer to A(u,v) as the intensity function of X.
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When X is stationary, also referred to as X being homogeneous (or completely
stationary, see Illian et al., 2008), then A(u,v) = A > 0. This constant is referred
to as the intensity of X.

There is an alternative heuristic definition of the spatio-temporal intensity
(see Diggle, 2013; Diggle et al., 1995), given by

- E[N(du x dv)]
A = 1 _
(w,) |du xlcgl\ -0 dudv

First-order spatio-temporal separability

If the first-order intensity function of a spatio-temporal temporal point process
can be factorised (almost everywhere) as

Alu,v) = A (u) Ao (v), (3.2)

whereby

(A XB) = /A 21 (u)du /B A2 (v)dv,

where A4 (-) and A,(-) are non-negative functions, then the process is referred to as
first-order spatio-temporal separability. Note that these functions are not unique.

If this identity is taken as assumption, it implies that effects that are non-
separable could be interpreted as second-order effects, rather than first-order
effects (see Gabriel, 2014; Gabriel and Diggle, 2009; Mgller and Ghorbani, 2012).
We assume this along the paper (unless specific mentioning of non-separability).

A stationary spatio-temporal point process X is automatically first-order sep-
arable since its intensity A = A4, > 0 is constant. If X is space-stationary (recall
Definition 1), implying that A(u,v) depends only on v, it is also first-order separ-
able with A; being a non-negative constant. Similarly, when X is time-stationary,
implying that A(u,v) depends only on u, first-order separability holds with A,
being a non-negative constant. When we have obtained Xspace and Xiime, we may
also define the marginal spatial and temporal intensity functions Aspace and Atime,
respectively, as

Aspace(u) = 41 (1) /T L)dv and  Agme(v) = Ao(v) /W A (u)du,
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whereby A (u,v) o< Aspace (1) Atime (v), With A, Agpace, Atime all being constant when X
is homogeneous.

3.4.3 Estimation of first-order intensity functions

When estimating the first-order intensity function we are challenged with the
task of finding an estimate L:WXT =R, taking into account that usually we
have one single realisation. Suppose we have obtained unbiased estimators
given by ispace(') and ﬁﬁme(-). If we assume separability, the estimator of the
spatio-temporal first-order intensity function is given by

ﬁ' (u7v) = % (ispace (u) j«time (V)> . (3.3)

This also constitutes an unbiased estimator of the expected number of points.
For non-parametric estimation of the spatial intensity function, it is common
to follow Diggle (1985), Berman and Diggle (1989) and Choi and Hall (1999) in
using a kernel estimate,

A " Ke (u—w;)

)Lspace (U) = Z W, ucWw. (34)

Here
Ke (u) = 1 K <E>
€ - 82 € ’
where k(-) is a bivariate kernel and € > 0is the bandwidth, a smoothing parameter,
and

Cwe (u,-):/WKg (u—u;)du

is an edge-correction factor included in the estimation to guarantee that

/ ispace (ll) dll =n
w

(Diggle, 1985; Ghorbani, 2013; van Lieshout, 2011). Similarly, we may also
estimate Atime (v) non-parametrically by means of kernel estimators (Gabriel et al.,
2013). Note that the specification of the bandwidth of the kernel is debatable.
It should be emphasised that large values of spatial or temporal bandwidths
produce very smooth estimates, whereas very small values produce noisy and
unrealistic estimates. This is the most problematic aspect of the estimation
(see Baddeley et al., 2000; Illian et al., 2008). Although these non-parametric
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estimators may only lead to approximately unbiased estimates, we will still
employ Eq.(3.3) for the estimation of A (u,v).

In the literature one finds that it is common to model both the spatial and the
temporal intensity components by using either a kernel estimators or parametric
methods, which in the latter case gives rise to a semi-parametric estimation
approach for A (u,v). For example, Gabriel and Diggle (2009) estimate the tem-
poral intensity using a log-linear regression model to analyse the pattern of
cases of human Campylobacter jejuni infections reported in Preston, Lancashire,
UK over three years. Incidence of such infections is sporadic, with a seasonal
variation which rises in spring and peaks in summer. This suggests an annual
and four-monthly periodicity, so they fitted a harmonic linear model with one-year
period

3
log Adtime (v Z oy cos(kav) + By sin(kwv)) + €v,

where @ = 27/365, € denotes the trend and d(v) identifies the day of the week for
day v=1,...,1096. See also Diggle (2013) and Tamayo-Uria et al. (2014).

Estimation of first-order intensities for the considered examples

Following what has been proposed in the literature, we restrict the analysis in this
section to the case of first-order separability. We show the non-parametric estim-
ation of the spatial and temporal intensities of the Ebola outbreaks described in
Section 3.2.1 by means of kernel smoothing (Diggle, 2013 and references therein).
A two-dimensional kernel intensity estimator, with bandwidth & = (2.64,0.45)
degrees (remember we are dealing with data given in long-lat coordinates here
and later on), with an axis-aligned bivariate Gaussian kernel, evaluated on a
square grid, is used for the spatial intensity. Also, a one-dimensional kernel
intensity estimator, with bandwidth 6 = 3.13 years, with a univariate Gaussian
kernel is used for the temporal intensity. To choose the bandwidth of the Gaus-
sian kernel intensity estimator we use a rule of thumb, which defaults to 0.9
times the minimum of the standard deviation and the interquartile range divided
by 1.34 times the sample size to the negative one-fifth power (Silverman, 1986,
p. 48). Figure 3.4 illustrates the estimates of the spatial (left) and temporal
(right) densities, understood as the intensities normalised by the total number
of cases. We can see in Figure 3.4 (left), three isolated areas, each one with a
high intensity. For example, one of these areas corresponds to the region around
Gabon and the Democratic Republic of Congo; here the probability of infection is
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higher. Looking at Figure 3.4 (right) we note high rates of infection around the
year 2000 indicating a clear degree of temporal inhomogeneity.
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o 010
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longitude year

Figure 3.4 Spatial (left) and temporal (right) kernel-based estimates of the norm-
alised intensity functions for the Ebola outbreaks data.

For the estimation of the intensity functions of the Euphausia glacialis dataset
described in Section 3.2.2, we again use a two-dimensional kernel with an axis-
aligned bivariate Gaussian kernel for the spatial intensity and a bandwidth of
€ = (13.18,0.43) degrees. For the temporal intensity we use a one-dimensional
Gaussian kernel for the temporal intensity, with a bandwidth of 6 = 0.8 years.
Both intensities (normalised by the total number of cases) are displayed in Figure
3.5. In Figure 3.5 (left), a fairly high intensity in the region of Antarctica is
observed near the American continental southern part, i.e., on the Antarctic
Peninsula, specifically in Shetland and over the Weddell Sea. Notice an increase
in the number of swarms in the region closest to Oceania. This may be due to
the geography of the ocean floor, in terms of there being better conditions close
to the surrounding continents. In Figure 3.5 (right), there is a rapid decrease in
the last fifteen years that may be due to many factors, including environmental
ones and human intervention.

The corresponding estimated intensity functions for the Tornado dataset
described in Section 3.2.3, in which we set a spatial bandwidth of € = (0.24,0.16)
degrees and a temporal bandwidth of 6 = 3.70 years, are depicted in Figure 3.6.
In this case we note that there is small variation throughout the entire spatial
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Figure 3.5 Spatial (left) and temporal (right) kernel-based estimation of the
normalised intensity functions for the Euphausia glacialis data.

region, meaning that the geography of the state of South Carolina is probably
not very complicated and tornadoes can occur almost anywhere with an almost
constant probability. This is not so in the temporal domain, where we note
rapid growth in the last twenty-five years, likely due to various climatic factors
(including global warming). Another possibility is that the measurements have
improved during this period, making possible the reporting of more cases.

3.4.4 Conditional intensity functions

Assume next explicitly that X is a spatio-temporal point process on W x T C
R? x [0,00), such that Xiime is well defined. X may be treated as a temporal point
process with corresponding marks Xspace and we may define the cumulative
process Xtime(?) := |[Xtime N [0,7]|, # € T. This is the classical approach for spatio-
temporal point processes, see for example Cox and Isham (1980).

The conditional intensity function A* (u,v|.7;) of a spatio-temporal point pro-
cess is the expected rate that points occur around the spatio-temporal location
(u,v), conditionally on the history J#,, v € T, consisting of the set of locations and
times of all events of the process that occur prior to time v. In other words, 77, is
the family of c-algebras generated by the events occurring at times up to, but
not including v. Following e.g. Daley and Vere-Jones (2003), Diggle (2013) and
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Figure 3.6 Spatial (left) and temporal (right) kernel-based estimation of normal-
ised intensity functions for the tornado in South-Carolina data.

Mgller et al. (2016), we have that
A* (u,v|5%) dudv = E[N(du x dv)| 7], (u,v) eduxdvCW xT.

We are assuming that the underlying process X is orderly in the sense of Diggle,
Guan, Hart, Paize and Stanton (2010); Diggle, Kaimi and Abellana (2010), which
means that the probability of observing more than one point in a time interval is
decreasing with the order of the size of the the interval. Denoting by / +V and U
the time and location, respectively, of the first event that occurs after time [, it
follows that

[+v
P(V>v):exp{—/l /l*(u,t!%’j)dudi},
w

the conditional probability density of U given V = v is proportional to the condi-
tional intensity, A* (u,/+v|7,), u e W.

3.4.5 Papangelou conditional intensities

Analogously to the purely spatial context, the Papangelou conditional intens-
ity A7(u,v|X), (u,v) € W x T, of a spatio-temporal point process may be defined
through the reduced Campbell-Mecke formula (see Cronie and van Lieshout,
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2015). Heuristically,
AT(u,v[X)dudy = P[N(du x dv) = 1| (X \ du x dv)],

i.e. A7(u,v|X)dudv gives the conditional probability of finding a point of X in the
infinitesimal spatio-temporal region du x dv, with size dudv, given the process
outside du x dv.

3.4.6 Edge-correction

Edge-correction methods |/ factors have been widely studied in the spatial case
(see e.g. Baddeley et al., 2000; Ripley, 1988; Stoyan and Stoyan, 1994 and Illian
et al., 2008). There are some approaches dealing with three-dimensional data
(Baddeley et al., 1993; Jafari-Mamaghani et al., 2010), with spatio-temporal
data (Gabriel, 2014) and with marked and spatio-temporal data (Cronie and
Sarkka, 2011). In particular, Gabriel (2014) extends three classical spatial edge-
correction factors to the spatio-temporal context and compares the performance
of the related estimators of several second-order characteristics for stationary/
non-stationary and/or isotropic/anisotropic spatio-temporal point processes. It
is common to consider correcting edge-effects separately (Diggle et al., 1995),
thus, the edge-correction factor is the product of a spatial and a temporal edge-
correction factor. The behaviour of the edge-correction should depend on how
well the underlying assumptions hold. However, it is known that different edge-
correction methods provide similar results when they are used in estimation
procedures, in particular the isotropic edge-correction is one of the most widely
used in practice (see e.g. Gabriel, 2014). In general, we denote an edge-correction
factor by a weight w;;, where i and j represent two different points of the pattern.

Isotropic correction

In this case, the weight is proportional to the product between the Ripley edge-
correction factor (see Ripley, 1977) for the spatial region, and its one-dimensional

analogue, giving

Wij = ’W X T‘Wl(;l)wl(;)
(w
ij
u; with radius ||u; —u;|| that lies within W. The temporal edge-correction factor

Here w;.’ is the proportion of the circumference of a circle centred at the location
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o)
within 7, and wg;) = 1/2 otherwise (Gabriel and Diggle, 2009).

= 1 if both ends of the interval of length 2|v; —v;| that is centred at v; lie

Border method

Let Wo, ={ue W :Blu,r] CW} and T, = {v € T : B|v,t] C T}, be eroded spatial and
temporal regions, obtained by trimming off a margin of width r >0 and ¢t > 0
from the borders of W and T, respectively. Note that W, x T, may be visualised
by taking the flat trimmed region W, x {0} and stretching it in the r-dimension
until its height reaches |T| — 2¢. This method restricts attention to those events
lying more than r units away from the boundary of W (see Diggle, 1979) and more
than 7 units away from the boundary of 7. For the border method we have that
Yo H{(uj,v)) € Wor X Ty } /A (uy,v))

L t>0.
Wij 1{(11,',\/,') € Wo, X T@t} » hi=

Modified border method

As an extension of the method proposed by Baddeley and Turner (2000), Gabriel
(2014) gives a spatio-temporal version of the border method by considering

s (Worl [T |
" 1{(ui,vi) € Wg, X T@t},

r,t > 0.

This edge-correction considers the eroded domain instead of the whole domain to
avoid the edge-effect of the general term |W x T|.

Translation correction

Ohser and Stoyan (1981) proposed a correction based on the proportion of trans-
lation of regions. Gabriel (2014) defined the weights for the spatio-temporal case,
which are given by the proportion of translations of ((u;,v;), (u;,v;)) which have
both (u;,v;) and (u;,v;) inside W x T. More specifically,

Wij = ‘W leli*lleT N T;’i*Vj’?

where Wa,—u, and T,,—v, are, respectively, the translated spatial and temporal
regions along the vectors u; —u; and v; —v;.



3.4 Characteristics of spatio-temporal point
processes 49

3.4.7 The pair correlation function

Turning to measures of second-order spatio-temporal interaction, in particular
in presence of inhomogeneity, the pair correlation function (Gabriel and Diggle,
2009; Illian et al., 2008; Mgller and Ghorbani, 2012) is defined as

_AD(ELE)
L&A (&)

For a spatio-temporal Poisson process (i.e. a completely random process, see

8(&1,8) $1,6 € WXT. (3.5)

Sections 3.5.1 and 3.5.2 for details), the pair correlation function is identically 1.
Hence, larger or smaller values than this benchmark indicate, informally, how
much more or less likely it is that a pair of events will occur at the specified
locations, than in a Poisson process with the same intensity function.

Similarly to the case of first-order separability (equation (3.2)), the pair cor-
relation function is said to be separable (Mgller and Ghorbani, 2012) if

g((u,v),(s,l)) :gl(u,s)gz(v,l), (3.6)

where g; and g, are non-negative functions. Before turning to the different sum-
mary statistics used to quantify interactions in inhomogeneous spatio-temporal
point processes, we first consider so-called second-order intensity-reweighted
stationarity, which has to be imposed when we consider some of the different
inhomogeneous summary statistics. Following Baddeley et al. (2000), Gabriel
and Diggle (2009) and Cronie and van Lieshout (2015), we have the following
definition.

Definition 3 A spatio-temporal point process X is second-order intensity-reweighted
stationary (SOIRS) if

g((u,v),(s,l)) :g‘(u—s,v—l),

for any (u,v),(s,l) € W x T, where g is some non-negative function. If the process is
also isotropic, then g(u—s,v—1) = go(nt), i.e. g(-,-) depends only on the distances
r=|lu—sl| and t = |v—1|, where gy is some non-negative function.

The pair correlation function can be extended to general orders k > 2 by
defining
_ AW 8

, L EEWNXT.
M aE) @ osEw

g(k)(éla"'vék)
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Estimation of the pair correlation function

Non-parametric estimation of pair correlation functions is usually based on kernel
methods (see Diggle, 2013; Gabriel and Diggle, 2009; Stoyan and Stoyan, 1994).

Given X = {(uw;,v;)}!_,, the spatio-temporal pair correlation function defined
in (4.1) can be estimated by

1 i — || — i—Vi|—t
§(",l‘):—zz KIS(HuA uJH Ar)K'zg(’V v]’ )7 r>€,t>5, (37)
4mr i=1j=1 A (wj,vi) A (“jv"j) Wij
J#

where k| and k,5 are one-dimensional kernel functions with spatial and temporal
bandwidths € and J, respectively. For details see Cressie and Collins (2001);
Gabriel (2014); Gabriel et al. (2013) and Rodriguez-Cortés et al. (2014). As
in Section 3.4.6, w;; are edge-correction factors, which correct for the loss of
information regarding the interaction occurring between points close to the
border of W x T and those (unobserved) ones outside.

3.4.8 The spatio-temporal K-function

Continuing the quantification of interactions between pairs of events, we may
also consider the inhomogeneous spatio-temporal K-function defined in Gabriel
and Diggle (2009) and Mgller and Ghorbani (2012). Let X be a SOIRS (according
to Definition 3) spatio-temporal point process. Then define

Kinbom (121) = /R 2 /R 1{(u,v) € By} g(u, v)dudv, (3.8)

for r > 0 and r > 0. Note that in (3.8), for convenience we write u = u—s and
v =v—1. This form was suggested by Mgller and Ghorbani (2012). Note that, as
usual, the K-function can be defined based on the Palm distribution, expectations
and first-order intensities (Baddeley and Turner, 2000). There also exists a
weighted version of K, Where the first-order intensity A is replaced by the
conditional intensity function A*, as described in Veen and Schoenberg (2006)
and Adelfio and Schoenberg (2009); this version is only considered for planar
point processes and has not been extended to the spatio-temporal context so far.

Assuming further that the process is isotropic, we obtain the original definition
of the spatio-temporal inhomogeneous K-function, which was given in Gabriel
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and Diggle (2009),
rort
Kinh0m<r,t) = 275/ / Sg()(S,l)del.
0 J—t

where g is taken as in Definition 3. Note that Gabriel and Diggle (2009) originally
suggested a different form, which only takes the present and future events
into account, but its value only differs from the present form by a factor of 1/2.
For a spatio-temporal Poisson process (see Sections 3.5.1 and 3.5.2 for details),
K(r,t) = mr’t, so that K(r,t) — nr’t can be used as a measure of spatio-temporal
aggregation or regularity (aggregation and regularity refer to variations in the
density of points that cannot be explained by inhomogeneity alone), using the
Poisson process as a reference. Following Mgller and Ghorbani (2012), when
Xspace and Xiime are defined, under the assumption of separability we can write
the spatial and temporal components of the K-function as

t
Kspace(’”) :/ 1< gspace(u) du and Ktime(l) :/ gtime(V)dV7 nt >0,
ul|<r —t

where
8space(W,8) = gspace(Ul /Tsz(v)‘z)z(l)g(u—s7v—l)dvdl7
gtime(M,1) = gtime(v—1) :/W/Wpl(u)pl(s)g(u—s,v—l)duds,
with

. ll (ll) . lz(v)
pl(u) - IWA'I (u)du and pZ(v) - fTAQ(V)dV.

Let {P'"")(X € -): (u,v) € R? x R} be the family of reduced Palm distributions
of X (see Cronie and van Lieshout 2015; Daley and Vere-Jones 2003, 2007);
P(uy) (X € -) may be interpreted as the distribution of X on the (rather abstract)
space of point configurations, conditional on there being a point (u,v) € X, which
we neglect. Let E'(™")[.] denote expectation under P'®)(.),

In the stationary case K(r,¢) = Kinnhom(7;7), i.e. the spatio-temporal version of
Ripley’s K-function (Ripley, 1977), defined in Diggle et al. (1995). AK(rt) =
E'©0[N(B,,)] is simply the expected number of further points within distance r
and time lag 7 from the origin, given that X has a point at the origin.

Note that when X is a SOIRS, the pair correlation function is proportional to
the derivative of K(r,t) with respect to r and ¢ (see Rodriguez-Cortés et al. (2014)),
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i.e.
1 82K(r t)

P P r>0, t>0. (3.9)

g(nt) =

Estimation of Kiom(7,?)

Letting X = {(u;,v;)}’_,, a general estimator of Ki;nom(7,?) is given by

o w1 [l <]

- < (3.10)
1 ),(ui,vi)/l(uj,vj) Wij

Following common practice in the literature of spatio-temporal point processes,
if we assume that w;; is Ripley’s spatial edge-correction factor, we obtain an
approximately unbiased non-parametric estimator of Kiphom(r,7) (Gabriel, 2014).
We also have an alternative estimator, which matches the original definition of
Gabriel and Diggle (2009) and does not take into account the past of the process.
It is given by

< r} 1 [vj—vi St}

K*(rt) = EZZ [H“z uj <

i =1j>i A (u;,v;) (ujavj) Wij

Y

where 7, is the number of events v; < b —r whenever T = [a,b] CR,.

3.4.9 Spatio-temporal nearest neighbour distance distribu-
tion and empty- space functions

Second-order summary statistics should be applied mainly when one knows/believes
that higher-order interactions do not exist. Or simply if one wants to quantify
second-order effects explicitly. Hence, to get a general quantification of higher-
order interactions as well, one should not limit oneself to finite-order interaction
summary statistics (Cronie and van Lieshout, 2015). When this is the case, just
as in the SOIRS case we need to consider some form of reweighted stationarity.
It turns out that the assumption of intensity-reweighted moment stationarity
(IRMS) is what is needed to be imposed on X. Note that for the purpose of clarity
of exposition, we choose to define things a bit differently than originally done by
Cronie and van Lieshout (2015).
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Definition 4 Given a spatio-temporal point process X on R? x R, if the intensity
is bounded away from 0, i.e. A =inf(y,)A(u,v) >0, and

gW(&,... &) =gW(c+E,...,c+ &)

almost everywhere for any c € R> xR and any k > 2, we say that X is intensity-
reweighted moment stationary (IRMS).

Note that stationarity implies IRMS, which in turn implies SOIRS. Throughout
this Section we assume that X is IRMS.

Under IRMS, Cronie and van Lieshout (2015) defined the inhomogeneous
spatio-temporal nearest neighbour distance distribution function as

1 (1_&1{<u,v> EBKa,b),nrn)] |

(u,v)eX A(u,v)

Ginhom(rat> =1 _E!(a7b)

and the inhomogeneous spatio-temporal empty space function as

1 (1_&1{<u,v>eB[(a,b>,r,r]})]7

(u,v)eX A(u,v)

Finhom(rat) =1-E

for (a,b) € R? xR and r,¢ > 0, under the convention that empty products take
the value one. It turns out that under IRMS the above functions are (almost
everywhere) constant with respect to (a,b). Note that when X is stationary,
Ginhom (1;1) and Fypom(r,7) reduce to spatio-temporal versions G(r,t) and F(r,t) of
the classical nearest neighbour distance distribution function and the empty-
space function, respectively.

3.4.10 The spatio-temporal /-function

The inhomogeneous spatio-temporal J-function is given as the ratio between
1-— Ginhom(r,t) and 1 —Finhom(}’,l), i.e.

1— Ginhom(rat)

11
I_Enhom(’@l‘)7 (3 )

Jinhom(r7t) -

for all r,z > 0 such that F,pom(r,1) # 1. By the reduction of Giphom(r,7) and Fippom(7,¢)
to G(r,t) and F(r,t) under stationarity, Jinhom(,7) reduces to a spatio-temporal ex-
tension J(r,t) of the original J-function of van Lieshout and Baddeley (1996) under



54 On spatio-temporal point process statistics: a review

stationarity. Hence, Jiphom (1,7) is truly an extension of J(r,¢) to the inhomogeneous
setting.
To see that Kinnom(7,) is closely related to Jippom(7,7), it may be shown that

Jinhom(rat) —1= &(27’[1‘21‘ _Kinhom(rat)) —|—ﬁ, (312)

where 3 represents the interaction terms of order > 2 (Cronie and van Lieshout,
2015). Hence, for Kiznom(r,¢) we neglect all interaction terms of order higher than
two.

The intuition behind Jiphom(7,7) and J(r,7) is that we look at whether condi-
tioning on having a point at, say, the origin increases/decreases the probability
of finding further points within B,;, r,t > 0. Note that for a Poisson process,
Jinhom (,7) = 1. Hence, if Jiphom(r,¢) < 1 we conclude that there is clustering at the
spatio-temporal lag pair (r,¢). Conversely, Jinhom(7,7) > 1 indicates regularity.

Estimation of Jiyhom(7,7)

Turning next to the estimation of the inhomogeneous spatio-temporal summary
statistics above, assume that we observe X on W x T. In order to simplify the
expressions, we first define some important quantities. For r,r > 0,let LCW x T
be a fine grid, ¥x = XN (We, X T;), ¥ = LN (Ws, X Ty),

o = (x\{(s,)})NB[(s,1),r,1],

Q%) = xnB[(s,1),r1).

A minus sampling estimator of 1 — Gjynom(7;7) is defined as

1 A
— 1— ==, 3.13
Wy (572 I ( 7L(u,v)> (513

l) e¥x (U,V) Gg(f,/)

and a minus sampling estimator of 1 — F; pom(r,2) as

1 p)
—_— 1——= , 3.14
‘lPL’ (572 H < l(u,v>> ( )

DEYL (u )
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where A = min ,) A(u,v). The ratio of the estimators given in (3.13) and (3.14)
provides an estimator of Jinom(7,7). The latter is unbiased and the former is
ratio-unbiased (see Cronie and van Lieshout, 2015).

3.4.11 Estimation of summary statistics for the considered
examples

We keep here our assumption of first-order separability, that is, Eq. (3.2) is
assumed to be true, but it is not required to assume that the separability is
satisfied in the second-order terms, i.e., Eq. (3.6) is not necessarily true. We use
a combination of Gaussian kernels, where the bandwidths are selected by using
the rule-of-thumb, which is specially designed to be used with Gaussian kernels
(see Section 3.4.3). Note that here we are estimating second-order characteristics,
whose estimators are mainly based on distances between points, so that the
bandwidths for such descriptors are quite different in general from those chosen
to estimate the first-order intensity function. In addition, we use other kernels
than the Gaussian kernel along this section and the bandwidths here are selected
based on a mean square error minimisation approach (Berman and Diggle, 1989).

Figure 3.7 illustrates the estimates of g (left) and K (right) for the Ebola
outbreaks pattern described in Section 3.2.1. The K-function is illustrated by
subtracting the theoretical surface under an inhomogeneous Poisson process
with the same intensity function (see Sections 3.5.1 and 38.5.2), i.e., K(r,t) — 27r’t.
For the pair correlation function estimation, we use an Epanechnikov kernel for
space and a biweight kernel for time, with the selected bandwidths being € = 0.99
degrees and 6 = 1.57 years respectively. The g(r,7) surface, which describes the
spatio-temporal structure of the pattern, shows the typical form of a cluster
process for small distances, since g(r,¢) > 1 for small r and 7. We can see certain
regular behaviour when the spatial and temporal distances become large, this is
mainly because the few clusters observed in the spatial window (Figure 3.2.1)
tend to be very distant from each other. This conclusion is also supported by the
K-function with 27r%t subtracted, which deviates positively from the plane K = 0,
reinforcing the fact that we have clustering at short distances, and a tendency
towards regularity over long distances.

Analogously, the estimates of the g and K summary descriptors for the Eu-
phausia glacialis dataset described in Section 3.2.2 are displayed in Figure 3.8.
We use a spatial Epanechnikov kernel and a temporal biweight kernel for the pair
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Figure 3.7 Spatio-temporal summary statistics g(r,¢) (left) and K(rt) — 2mrt
(right) for the Ebola outbreaks data.

correlation estimation, where the bandwidths are € = 0.01 degrees and 6 = 1.2
years. Here the analysis is basically the same, with both graphs describing strong
aggregation in the pattern for short and middle distances, whereas for large
distances the interactions seem to be stable and more regular. Note that in this
analysis we are assuming riskily that the underlying point process is isotropic,
that is not necessarily true and we can suspect it by inspecting Figure 3.2. How-
ever, we perform this analysis as a first descriptive approach to understand the
nature of the pattern interactions. In Section 3.4.12 we focus in the case in which
the isotropy assumption is violated and this dataset is analysed more deeply.
The estimates of the descriptors g and K for the tornado dataset described in
Section 3.2.3 are depicted in Figure 3.9. We use a spatial Epanechnikov kernel
and a temporal biweight kernel with bandwidths € = 0.12 degrees and 6 = 1.55
years for the pair correlation function. The g-function seems to fluctuate over the
plane g = 1 (the plane is shown with the contours in Figure 3.9 (left)). We might
think that the proximity of the ¢ function to the plane g = 1 could indicate complete
spatio-temporal randomness (hereinafter CSTR, see Section 3.5.1 for details).
To justify this conclusion, one could plot envelopes under CSTR and observe the
behaviour of the surface with respect to the envelopes. However, in this case, even
the K-function is difficult to interpret because of the jumps. We can appreciate a
small scale of growth on the selected mesh, leading to a reconfirmation of our
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Figure 3.8 g(r,t) (left) and K(r,t) — 277’ (right) summary statistics for the Eu-
phausia glacialis data.

suspicions of not having CSTR and reinforcing the notion that there is some
degree of clustering in the spatio-temporal pattern. We conclude that there is
enough information in favour of clustering (although not very strong in this case).
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Figure 3.9 g(r,t) (left) and K(r,1) — 27r*t (right) summary statistics for tornadoes
in South-Carolina data. The plane g = 1 is shown with the contours
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Figure 3.10 illustrates the estimated J-function for both the Ebola and tor-
nadoes datasets. Since for both Ji,hom(r,7) < 1 for almost all ranges r and ¢, we
see that both point patterns exhibit clustering at certain distances, as expected
and already seen in the estimated K-function. Note that the J-function for the
tornadoes case takes values close to one, indicating a Poisson process behaviour
(see Sections 3.5.1 and 3.5.2 for details). Note also that the jumps seen are an
artefact of the time scale of the data being discrete and that high peaks in the
right plot are an effect of the lags considered being too large; recall that we are
employing a minus sampling estimator.
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Figure 3.10 J(r,t) function estimated for the Ebola outbreaks (left) data and
tornado data (right).

3.4.12 Directional second-order summary statistics

In the case of anisotropic planar point processes, Ohser and Stoyan (1981) defined
a reduced second moment measure and provided an estimator for the orientation
analysis when the intensity is known. Comas et al. (2015) consider a similar
approach but assume a SOIRS and anisotropic spatio-temporal point process.
The directional K-function (hereinafter K,-function) should be proportional to
the mean number of points in a cylindrical sector with spatial distance r, angle ¢,
and time lag 7, centred at an arbitrary point of the spatio-temporal point process
X. Let 6(u,s) be the least angle between the x-axis and the line connecting the
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points u and s. The pair (r,¢), where r >0, 0 < ¢ < 7, t > 0 denotes the point
with polar coordinates r and ¢. The definition of Ky(r,7,¢) differs from that of
Kinhom (1) in that we restrict the points of X to have inter-point angles at most
¢. In the stationary and isotropic case the relation between them is given by
K(rt) =Ky(r,t,21w) = 2Ky (1,1, 7).

For a SOIRS and anisotropic spatio-temporal point process, we present an
approximately non-parametric edge-corrected estimator of the K-function, which
is a straightforward generalisation of the presented in Comas et al. (2015). The
expression includes a general first-order intensity function estimator (see Section
3.4.3) and considers an edge-correction according to the nature of the underlying
process. The estimator is given by

() ZZI{HHZ ujf| < n[0(w,u))| < 9, vi—v;| <t}
i= 1]‘#1. A‘(uhvi)ﬂ’ (uj’vj) Wij
JFL

where w;; is the translation edge-correction if the process is stationary, or the

, (3.15)

border or modified border edge-corrections for other cases.

It is possible to detect the predominant directions in spatio-temporal point
patterns through the orientation analysis suggested by Ohser and Stoyan (1981).
They used the directional distribution of line segments connecting point pairs of
the point pattern. The corresponding distribution function is called point pair
orientation distribution and is equal to the probability that a randomly chosen
line segment forms an angle with the x-axis, that is smaller than ¢ € [0,7]. A
spatio-temporal counterpart version can be obtained via

IS 12 [ dKg (rt, )
fOﬂ: ttlz fr’;2 dK(P(r7t7 ll/) ’

19(”’[1)7(,,27t2)(¢) = rh>r1>0,6p>t >0. (3.16)

For two suitable positive values 7, and 1, Bo,),(1,)(¢) describes a short-range
spatial directionality in the point pattern, 9, ;) (r,)(¢) provides a middle-range
spatial orientation for r| < ry, while ¥, ;) (cos,)(#) = };ngo B0, (r2) (9) describes
long-range spatial directionality.

Short-range orientation provides information about the clustering degree of
the point pattern for short distances in a particular direction at some fixed time.
This kind of information can be useful as a first exploratory analysis looking for
predominant directions in the spatio-temporal point pattern. Given the nature
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of the K-function as a cumulative function, proportional to the mean number
of points in a cylindrical sector, the middle-range orientation reveals whether
such directionality in terms of interaction (aggregation degree) is maintained
for middle distances or if it has changed in a certain range of distances. Finally,
long-range orientation describes the asymptotic orientation (residual orientation)
of the point pattern and together with short-range and middle-range orientations
provide the whole anisotropic behaviour of the spatio-temporal point pattern.

Furthermore, combinations of spatial and temporal intervals are not worth
to be described given their lack of practical relevance. In the case of isotropy, all
these distributions coincide with the uniform distribution on [0, 7]. As (3.16) is a
cumulative measure for a given angle ¢, it can be useful to consider a cylindrical
sector instead to better highlight the possible directional components (as in Mgller
et al. 2015),

19(*r1 ,tl),(rz,zz)<¢) - 19(”1>tl)7(’"2»t2)(¢ +a)— 19(V1J1)7(r27t2)(¢ —a), 0<¢p<m, (3.17)

where 0 < a < ¢ is a fixed prescribed angle interval, which provides the direction
in which anisotropic effects are tested. Using (3.15), we obtain estimators of
(3.16) and (3.17), that is, B, 1) (. ot

We consider the Euphausia glacialis dataset and calculate é(o,l),(o. 1,5) and

) and 1§*(V1 1),(r212) (@), Tespectively.

1§(0‘171)7(0.375), and obtain the rose histograms (see e.g. Baddeley et al., 2015; Ohser
and Stoyan, 1981) depicted in Figure 3.11. They show that the pattern is oriented,
with a remarkably clear main direction around 38° (0.217-rad) and 114° (0.637-
rad), both for short as well as for long distances, i.e. pairs of Euphausia glacialis
swarms in the Antarctic marine environment tend to be either above or below
each other. It is noteworthy that the polar coordinate system (very convenient to
visualise) shown in Figure 3.5 (left), is not the same we used here for calculations.
Here we worked with a polygon that stretches across the coastline of Antarctica
in the long-lat system. Interestingly these two graphs highlight that there is
a grouping in the direction of about 47° (0.26z7-rad), a fact that already was
suspected from the intensity in Section 3.4.3.



3.5 Spatio-temporal empirical models 61

104 95 85 95
114 76 114 104 85 g

123 66
133 57

142 47
0.015- 152 38

0.05-
0.020-
0.04-
0.03-

0.02 - 0.010- 161 28

171 19

0.01- 0.005 -
180 Ve 9

0.00- 0.000-

Figure 3.11 Anticlockwise rose histogram of the short and middle orientation
distribution 9(g 1) (0.1,5) (left) and of the middle range orientation distribution

151(0.1, 1),(0.3,5)(right), for the sample of Euphausia glacialis displayed in the right-
side of Figure 3.2, and described in Section 3.2.2. The blue circle corresponds to
the median of each range.

3.5 Spatio-temporal empirical models

3.5.1 Spatio-temporal homogeneous Poisson processes

Poisson processes are considered benchmark models for spatio-temporal point
pattern data. They are rarely realistic models for data but they do, however,
provide a proxy for complete spatio-temporal randomness (CSTR). Explicitly, a
spatio-temporal homogeneous Poisson process with intensity A > 0 is defined as
a spatio-temporal point process X satisfying:

i. Given any disjoint A; X By,...,A;, X B, CW x T, the corresponding random
variables N(A| x By),...,N(A,, x By,) follow independent Poisson distributions
with the respective means p(A; x B;) = A|A; X Bj|,i=1,...,m.

ii. Conditioned on N(A x B), the points falling in A x B form an independent
random sample from the uniform distribution on A x B.

It follows that all product densities exist and are given by

l(k)(élv"Wék)EAka kZI
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Figure 3.12 shows the locations of points in the unit cube (meaning that even the
time axes is one unit long) and their respective projections, according to three
homogeneous Poisson process realisations, with varying intensities.
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Figure 3.12 Simulated realisations of a spatio-temporal homogeneous Poisson

point process with A =50, A = 150 and A = 800 in left, central and right panels
respectively in W x T = [0, 1]? x [0, 1], the darker points correspond to older events.

3.5.2 Spatio-temporal inhomogeneous Poisson processes

The spatio-temporal inhomogeneous Poisson process is the simplest non-stationary
spatio-temporal point process. It is obtained by replacing the constant intensity of
a homogeneous Poisson process by a spatially and/or temporally varying intensity

function A(u,s), (u,s) € W x T. Inhomogeneous Poisson processes are defined by

the following postulates:

i. Given any disjoint A| X By,...,A;; X B, CW x T, the corresponding random
variables N(A| x By),...,N(A,, X B,,) follow independent Poisson distributions
with the respective means

//A(u,v)dudv, i=1,....m
A; JB;
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ii. Given N(W x T) = n, the n events in W x T form an independent random
sample from the distribution on W x T' which has density function

B A(u,v)
FY) = e vy dudy'

Clearly, we obtain the homogeneous Poisson process by setting A(u,v) =1 > 0.
Similarly to the homogeneous case, it follows that the product densities exist and

are given by
k

AW ((ay,vy), .o (e v) = [A(uv), k> 1.

As an example, we consider a time-stationary, spatially inhomogeneous Poisson
process with

A(x,y,v) = asin (n\/(%ﬂx— 2)° 4 (3Zy—2)* - 1) +2, (3.18)

where the Cartesian horizontal and vertical coordinates (x,y) € W, the timev e T
and a is a constant governing the average number of points lying in [0, 1]2. Note
that the intensity is separable and Atime(v) = 1. For @ = 1000, in Figure 3.13 we
find the intensity together with a realisation of such a process and its cumulative
times. We are aware that this form of intensity function is hardly realistic in
practice. However some intensities coming from rare phenomena, could well be
fitted by this model through a good parameter choice.

Likelihood inference for inhomogeneous spatio-temporal point processes

An instance where the likelihood function is tractable is the inhomogeneous
Poisson process with intensity function A(u,v). Essentially, the distribution
associated with a partial realisation of X on a bounded region W x T can be
factorised as the product of a Poisson distribution with mean [, [, A(u,v)dudv
for the number of events n, and a set of mutually independent spatio-temporal
locations (u;,v;) whose common distribution has density

A(u,v)
Jw J7 A(u,v)dudy’

Following Daley and Vere-Jones (2003) and Diggle (2013), the likelihood may be
defined as the probability of obtaining a given number of points in the spatio-
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Figure 3.13 Simulated realisation of a spatio-temporal inhomogeneous Poisson
point process in W x T = [0, 1]? x [0, 1], with A given by (3.18). On the upper left-
side panel the spatial intensity function is displayed, the points of the realisation
on the right-side panel represented in a three-dimensional plane with darker
points being older. The projection in the plane is displayed in the down left-side
panel. Cumulative distribution of times is displayed in the right-side panel

temporal observation window, times the joint conditional density for the locations
of those points, given their number. Suppose that there are n observations on
W x T at spatio-temporal points {(u;,v;)}" ,. Since the distribution of the number
of points is Poisson, then the probability of obtaining single points in some
differential volume A centred at (u;,v;) and no points on the remaining part of
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W x T is given by

exp{— /W /T x(u,v>dudv}lﬁ1(ui,vim

Hence, dividing by A", letting A — 0 and taking logs, we have that the log-
likelihood for A(-,-) based on data is given by

:Zlogl(u,—,vi)—/ /l(u,v)dudv.
i=1 wJT

In practice, it is particularly useful if A (u,v) can be specified through a regression
model, e.g.

<

logA(u,v) Z izj(u,v) (3.19)

where the z;(u,v) are covariates that may vary in space and time (Diggle, 2013).

3.5.3 Spatio-temporal Neyman-Scott processes

We define a spatio-temporal Poisson cluster process as the following direct gener-
alisation of its spatial counterpart (Gabriel and Diggle, 2009):

i. Parents form a Poisson process with intensity A, (u,v).

ii. The number of offspring per parent is a random variable N, with mean m,,
realised independently for each parent.

iii. The locations and times of the offspring relative to their parents are inde-
pendently and identically distributed according to a trivariate probability
density function ® : R> xR — R.

iv. The final process is composed of the superposition of the offspring only.

Analogously to the spatial case, the process formed by the parents is taken
as an auxiliary construction, and the parents are an unobservable part of the
resulting pattern. The shape of a cluster depends on the probability distribution
of the offspring so, for example, in a generalisation of the Matérn cluster process
to the spatio-temporal domain, the offspring are independently and uniformly
distributed on disks with a fixed radius around each parent for a fixed time. If the
process is time-stationary, the shape of the whole cluster would be cylindrical. In
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a possible generalisation of the modified Thomas process, the offspring locations
follow a normal distribution around each parent for each time, so if the process is
time-stationary, then the shape of the cluster would also be cylindrical but with
a tendency to accumulate along the temporal axis of the cylinder.

Some examples of patterns which follow this kind of spatio-temporal structure
are illustrated in Figure 3.14, where we set an intensity for parents of A, (x,y,v) =
6v|cos(x+y)|, where x,y € [0,7] and v € [0, 1]. We use different distributions for
the offspring: normal, exponential and uniform, respectively. Note that in this
case we have no time-stationary process.
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Figure 3.14 Three examples of spatio-temporal Neyman-Scott cluster patterns
over the rectangular region [0,7]> and along the unit temporal interval [0, 1],
darker points correspond to older occurrences, and m. = 8. The distributions of
offspring are: normal (left patterns), exponential (middle patterns), and uniform
(right patterns).
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3.5.4 Spatio-temporal geometric anisotropic Poisson
cluster processes

This type of process is defined as a spatio-temporal stationary Poisson cluster
process (Neyman-Scott process) with pair correlation function given by

g(u,v) = go (\/uZ—lu’,v> ,

where v’ € R? is the transpose of u € R? and gy : R x R — [0, ] satisfies the in-
tegrability condition [; [§sgo(s,/)dsdl < o, for r,¢ € (0,00). The matrix ¥ is 2 x 2
symmetric positive definite and has the form £ = 0’Uydiag(1,{?)Uj, with { being
the anisotropy factor. The ellipse E = {u: uX~'u’} has semi-major axis @ cor-
responding to the angle 6 and semi-minor axis w{ corresponding to the angle

0+ n/2 and
[ cos(8) —sin(0)
U = ( sin(0) cos(0) ) '

The processes here have a shape of an ellipse at each fixed time. If, further, the
process is time-stationary, we have spatio-temporal elliptical cylinder shapes.
For details see Gabriel (2014) and Mgller and Toftaker (2014).

Figure 3.15 shows a set of three realisations of an anisotropic Poisson cluster
process with an average number of parents of 14, and an average of offspring
of m. =17, and using a normal distribution for the locations of offspring with a
standard deviation of 6 = 0.13. Here we fix ® = 5 and a rotation angle of 6 = 7/8,
and we vary the anisotropy factor ¢ € {0.05,0.30,0.80}.

3.5.5 Spatio-temporal inhibition processes

Spatio-temporal inhibition processes were presented by Gabriel et al. (2013).
They either prevent (strict inhibition) or make unlikely the occurrence of pairs
of close events, resulting in patterns that are more regular in space and/or in
time than a Poisson process of the same intensity. In a spatial simple sequential
inhibition process, also called RSA as an abbreviation for “random sequential
adsorption” (a term used in physics and chemistry Chiu et al., 2013), which gives
strict inhibition, let §, denote the minimum permissible distance between events
and Agpace the spatial intensity of the process. The proportion of the plane covered
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Figure 3.15 Realisations of geometric anisotropic Poisson cluster processes in
W x T = [0,1]?> x [0,1]. The three cases correspond to { = 0.05,0.30,0.80 and left,
central and right patterns, respectively. Dark dots correspond to older events in
time.

by non-overlapping discs of radius 6,/2 is

AP — lspaceﬂ(sg
4

which Gabriel et al. (2013) call the packing density. The maximum achievable
packing density is obtained for a pattern of points in a regular triangular lattice
at spacing &, for which A” = \/3/2. Depending on how the points are generated,
even this value of 6, may not be feasible. Simple sequential inhibition processes
in space and time are defined by the following algorithm. Consider a sequence of
m events (u;,v;) € W x T. Then,

i. u; and v; are uniformly distributed in W and T, respectively.
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ii. At the k-th step of the algorithm, k =2,...,m, u; is uniformly distributed on
W N Agpace, Where

Aspace:{u:Hu—uJ'HZSU, jzl,...,k—1}7
and v; is uniformly distributed on 7 N Atime, Where

Atime ={v:lv—v;|>86,, j=1,....k—1}.

To obtain a larger class of inhibition processes, it is possible to extend condition
(ii) of the above algorithm definition by introducing functions py (s) and p, (1) that
together determine the probability that a potential point at location u and time v
will be accepted as a point of the process. Figure 3.16 shows examples of three
different single realisations of simple sequential inhibition point processes.

o
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Figure 3.16 Simulated realisations of simple sequential spatio-temporal inhibition
point processes with (8, 8,,n) = (0.04,0.001,300) (left), (84, 6,,n) = (0.07,0.005, 150)

(center) and (8, 5,,n) = (0.10,0.001,75) (right) in W x T = [0,1]? x [0, 1]. The darker
points correspond to older locations.
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3.5.6 Spatio-temporal Strauss processes

Cronie and van Lieshout (2015) define the spatio-temporal hard-core process as a
stationary spatio-temporal point process, specified by the Papangelou conditional
intensity

AT(u,v|[X) = B1{X NB[(u,v),Ry,Rr] = 0}
=B 1 H(s.0) ¢ Bl(w,v),Rw,Rr]},

(s,l)ex

where (u,v) € W x T, B > 0 is a model parameter, and Ry > 0 and Ry > 0 are,
respectively, the spatial and the temporal hard core distances. Hence, we have
inhibition since
P9 (N(B[(0,0),Rw,Rr]) > 0) = 0.

The authors further introduce inhomogeneity into the spatio-temporal hard-core
process by applying independent thinning. They show that it is IRMS and that
both for the thinned and the original hard-core process the corresponding J-
functions are increasing and larger than 1, given certain set-ups of Ry > 0 and
R7 > 0. This was finally verified numerically and it was shown that the hard-core
distances Ry ,Rr were well estimated through the inhomogeneous J-function.

Since the spatial hard-core process is a particular case of a spatial Strauss
process (van Lieshout, 2000), it is easily realised that we may define spatio-
temporal Strauss process by

AT (u,v|X) = VBl RwR) B~ 0 ye0,1].

Note that this replacing of Euclidean balls by spatio-temporal cylindrical neigh-
bourhoods clearly provides a recipe for extending certain spatial Gibbs/Markov
processes to the spatio-temporal context.

3.5.7 Spatio-temporal Cox processes

Cox processes are natural models for point patterns that are thought to be
determined by environmental variability (see Cox, 1955; Diggle, 2013 and Diggle
et al., 2013 for a nice exposition of definitions and properties of Cox processes).
A Cox process is a “doubly stochastic” process formed as an inhomogeneous
Poisson process with an intensity function coming from some stochastic mechan-
ism. A spatio-temporal Cox process can be defined by the following two postulates:
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i. {A(u,v): (u,v) € R? x R} is a non-negative-valued stochastic process.

ii. Conditionally on {A(u,v) = A(u,v) : (u,v) € R? x R}, the events form an
inhomogeneous spatio-temporal Poisson process with intensity function

Afu,v).

The moment properties of a Cox process are inherited from those of the process
A(u,v), and thus first- and second-order properties are obtained from those of the
inhomogeneous Poisson process by taking expectations with respect to {A(u,v)}.
Assuming that the covariance structure y(r,r) = Cov{A(uy,v;),A(uz,v2)}, for r =
|lu; —uy|| and 7 = |v; —v,|, is stationary, a convenient reparametrisation is

A(a,v) =A(u,v)S(u,v), (3.20)

where S(u,v) is a stationary process with expectation 1 and covariance function
y(r,t) = 6%s(r,t), where 62 is the variance of S(u,v) and s(-,-) is a spatio-temporal
correlation function. It follows that A(u,v) is the first-order intensity of the
point process, and the stationarity of S(u,v) implies that the point process is
intensity-reweighted stationary (Diggle, 2013).

Given the parametrisation (3.20), we can say that A(u,v) is first-order separ-
able if (3.2) holds, and second-order separable if y(r,t) = 6251 (r)s2(t), where s1(r)
and s,(t) can be chosen as any pair of valid correlation functions in R? and R,
respectively. Following (Diggle, 2013; Mgller and Diaz-Avalos, 2010), the assump-
tion of first-order separability can be supported from a practical point of view.
However, the assumption of second-order separability is more difficult to deal
with, but undeniably convenient.

The K-function of an intensity-reweighted stationary Cox process, paramet-
rised according to (3.20), is given by

t r
K(rt)=nr’t+ 27[1_262/ / xs(x,y)dxdy.
0 Jo

3.5.8 Spatio-temporal log-Gaussian Cox processes

Mgller et al. (1998) introduced the class of log-Gaussian Cox processes. The
construction has an elegant simplicity. One of its attractive features is that the
tractability of the multivariate Normal distribution carries over, to some extent,
to the associated Cox process.
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A spatio-temporal log-Gaussian Cox process is a spatio-temporal Poisson
process, conditional on the realisation of a stochastic intensity function logA(u,v)
(see Diggle et al., 2013). In the intensity-reweighted stationary case with the
parametrisation (3.20), for a log-Gaussian Cox process it is possible to write
S(u,v) = exp{Y¥(u,v)}, where Y (u,v) is a Gaussian process with expectation —72/2,
variance 72 and correlation function g(r,¢). It follows that S(u,v) has variance
o2 =exp{7?} 1.

Diggle et al. (2013) state that, any valid family of spatio-temporal correlation
functions can be used to define a valid class of spatio-temporal log-Gaussian Cox
processes. The study of such families is reviewed in Gneiting and Guttorp (2010),
where they make a distinction between physical and empirical formulation.

Diggle et al. (2005) used the spatio-temporal Ornstein-Uhlenbeck process
approach proposed by Brix and Diggle (2001) to model the underlying spatio-
temporal stochastic process component Y (u,v). However, this model only accom-
modates separable covariance functions. As an example of a physically motivated
construction, Brown et al. (2000) propose models based on a dispersion process.
Other parametric families of non-separable models are studied in Cressie and
Huang (1999); Gneiting (2002); Ma (2003, 2008) and Rodrigues and Diggle (2010).
Alternatively, Rodrigues and Diggle (2012) use a class of low-rank, convolution-
based models proposed by Rodrigues and Diggle (2010) to alleviate the com-
putational burden involved in applying likelihood-based methods to full-rank
models.

As an illustration, we generated realisations of two log-Gaussian Cox pro-
cesses, both separable and non-separable. For the separable case, the spatial and
temporal covariances are assumed to belong to the class of exponential covariance
functions. For the non-separable models we have chosen the so-called Gneiting
covariance function (see details and options in Gabriel et al., 2013). In Figure
3.17 we display the realisations together with the spatial random intensities of
two log-Gaussian Cox processes.

Spatio-temporal log-Gaussian Cox processes are quite generally easy-going
for statistical inference. The literature provides three different parameter estim-
ation methods: moment-based estimation, maximum likelihood estimation, and
Bayesian estimation.

Moment-based estimation. In the stationary case, moment-based estimation
consists of minimising a measure of the discrepancy between the empirical and
theoretical second-moment properties. One class of such measures is a weighted
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Figure 3.17 Spatial intensities (left), realisations (two central panels), and cumu-
lative distributions of times (right) of log-Gaussian Cox processes. Non-separable
(top) and the separable (bottom) cases.

least squares criterion (Diggle et al., 2013). In the intensity-reweighted case,
this criterion can still be used after separately estimating a regression model
for a spatially varying A (u,v) under the working assumption that the data are
a partial realisation of an inhomogeneous Poisson process. In any case, this
method of estimation has an obvious ad hoc quality and depends on appropriate
choices of several tuning parameters.

Maximum likelihood estimation. The general form of the Cox process likeli-
hood associated with a point pattern X = {(u;,v;) e W xT :i=1,--- ,n} is given by
(Diggle, 2013; Diggle et al., 2013)

0(8;X) = Epjo(£*(A; X)), (3.21)

where i L
(A X) = EA(ui,vi) (/W/TA(u,v)dudv)

is the likelihood for an inhomogeneous Poisson process with intensity A(u,v).
The evaluation of (3.21) involves integration over the infinite-dimensional dis-
tribution of A. Diggle et al. (2013) describe an implementation in which the
continuous region of interest is approximated by a finely spaced regular lattice,
hence replacing A by a finite set of values covering the region. Even so, the high
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dimensionality of the implied integration presents obstacles to analytic progress.
One solution is to use Monte-Carlo methods. A crude Monte-Carlo method is
proved to be inefficient in practice (Diggle et al., 2013), and a better approach is
to use the method of Geyer (1999) (as cited in Diggle et al., 2013).

Bayesian estimation. One way to implement Bayesian estimation would be
directly to combine Monte-Carlo evaluation of the likelihood with a prior for 6
(Diggle et al., 2013). However, it turns out to be more efficient to incorporate
Bayesian estimation and prediction into a single MCMC algorithm. Rodrigues
and Diggle (2012) adopt a Bayesian approach to parameter estimation and spatial
prediction using low-rank, convolution-based models. Diggle et al. (2013) provide
a nice account of the pros and cons of implementing Bayesian inference, MCMC
or INLA (integrated nested Laplace approximations, see Rue et al., 2009). See
also Taylor and Diggle (2014) for a comparison of the performance of MCMC and
INLA for a spatial log-Gaussian Cox process.

Prediction. Diggle et al. (2013) depict very nicely a comparison between plug-
in and Bayesian prediction. Suppose that data Z are to be used to predict a target
7 under an assumed model with parameters 6. Then, plug-in prediction consists
of a series of probability statements within the conditional distribution [.7|Z; 8],
where 6 is a point estimate of 8, whereas Bayesian prediction replaces [.7|Z; 0]
by

71z~ | |7

where O is the domain of the parameter vector 6. Thus Bayesian prediction is a

Z:0](6]z]de, (3.22)

weighted average of plug-in predictions, with different values of 6 weighted ac-
cording to the Bayesian posterior for 6. The Bayesian solution (3.22) incorporates
parameter uncertainty in a way that is both natural and elegant.

3.5.9 Spatio-temporal stationary Poisson cluster and shot-

noise Cox processes

These cluster processes are built as follows. The spatial distribution of the off-
spring is zero-mean bivariate, diagonal with identity diagonal entries, normally
distributed with standard deviation ¢. The temporal distribution is exponential
with rate a. The expected number of offspring per parent follows a Poisson dis-
tribution with mean m.. This process has an interpretation as a spatio-temporal
shot-noise Cox process (see Mgller and Diaz-Avalos, 2010, and Gabriel, 2014).
We consider Cox processes in Section 3.5.7. Here, the residual process S(-) in
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equation (3.20) is given by

S0 =5 ¥ o¢-&)

Eex

Here X is a stationary Poisson process in R? x R with intensity A and ¢ is a
density function given by

¢(8) = ¢(u,v) = ¢2(||ul)) e (v),

where ¢,2(||u||) is the density of a zero-mean bivariate isotropic normal distribu-
tion with variance 62 and &, is the density of a exponential distribution with
rate . For such a process, the main summary statistics are

glu,v) =1+ o exp —M—OCM ,
8woA 402

and

K(r,t)=2mr’t + %(exp{at} —exp{—ar}) (1 — exp{—g}) .

From the above, we see that K(r,) > 2xr*¢, thus we have clustering by construc-
tion.

Spatio-temporal Cox processes show enough flexibility to adapt to a variety of
practical situations driven by data. For instance, Prokesova and Dvorak (2013)
introduce a flexible inhomogeneous spatio-temporal shot-noise Cox process model
where the inhomogeneity is estimated by means of a Poisson score estimating
equation. They use minimum contrast estimation based on second-order proper-
ties to obtain estimates of the clustering parameters. These authors suggested a
non-separable model and use the spatial and temporal projections of the process
for parameter estimation.

Now, let .Z be a Lévy basis, which is defined as an independently scattered,
infinitely divisible random measure (Hellmund et al., 2008). It can be shown
that Lévy basis include Poisson, Gaussian and mixed Poisson random measures,
among others. When we consider a spatio-temporal Cox process in which the
random field {A(§),E € W x T} has a driving field of the form

AG) = [ (EmZ ()
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where k is a kernel function (weight) and .Z is a non-negative Lévy basis (see
Benes et al., 2015; Hellmund et al., 2008), we have a spatio-temporal Lévy-driven
Cox process. Under some regularity conditions, A has an equivalent shot-noise
representation (Mgller, 2003) with additional random noise.

3.6 Spatio-temporal mechanistic models

3.6.1 Poisson processes

For a Poisson process, by the independence of the events, we have that
A* (u,v| %) dudv = E[N(du x dv)|7#)] = E[N(du x dv)] = A (u,v) dudy,

i.e, the conditional intensity function and the first-order intensity function are
the same.

We recall from Section 3.4.2 that the intensity function can be estimated either
by smoothing the observations or by fitting some parametric model, and here
the situation is similar. In the conditional intensity setting, the non-parametric
estimation procedure of the first-order intensity (see Eq (3.3)) is directly followed
(see Choi and Hall, 1999).

3.6.2 Self-exciting processes

Stationary spatio-temporal point processes are sometimes described by the cov-
ariance between the number of points in some spatio-temporal regions A x B and
A X B+ (u,v) (A x B shifted by (u,v)). A spatio-temporal point process X is called
self-exciting (underdispersed) if

Cov[N(A x B),N(A x B+ (u,v))] > 0

for small values of (u,v); on the other hand, X is self-correcting (overdispersed) if
such covariance is negative. Thus the occurrence of points in a self-exciting point
process causes other points to be more likely to occur in space-time, whereas in a
self-correcting process, the points have an inhibitory effect (see Schoenberg et al.,
2010). These models are commonly used in seismology.
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Hawkes processes

Hawkes processes (Marsan and Lengliné, 2008, 2010; Schoenberg et al., 2010),
are of interest in general point process modelling. There are some alternative
ways to define a Hawkes process, here we follow Mgller and Rasmussen (2006).
Let X = {(u;,v;)} be a Poisson cluster process with events (u;,v;) € R? x R. The
cluster centres of X are given by certain events known as immigrants, while
the other events are known as offspring. A spatio-temporal Hawkes process X
satisfies:

i. The immigrants follow a Poisson process with intensity function y(u,v).

ii. Each immigrant (u;,v;) generates a cluster C;, which consists of events
of generations of order m =0, 1,... with the following branching structure.
We first have (u;,v;), which is said to be of generation 0. Given the 0,...,m
generations in C;, each (u;,v;) € C; of generation m recursively generates a
Poisson process X; of offspring of generation m + 1 with intensity function
ki(u,v) = x(u—u;,v—v;). Here, x is a non-negative function defined on (0, o).

iii. Given the immigrants, the clusters are independent.
iv. X consists of the union of all clusters.

Marsan and Lengliné (2008, 2010) used such processes to investigate how
aftershocks are spatially distributed relative to the mainshock. They analysed a
regional earthquake dataset, using non-parametric estimations of probabilities
of finding aftershocks relative to mainshocks.

Epidemic-Type Aftershock Sequence (ETAS) processes

The Epidemic-Type Aftershock Sequence (ETAS) model is considered the main
tool for the spatio-temporal analysis of earthquakes. These models are Hawkes
processes and were introduced by Ogata (1988) to describe the times and mag-
nitudes of earthquakes and they were extended to the spatio-temporal setting
by Ogata (1998); Ogata and Zhuang (2006), and have since then been widely
used to describe earthquakes (see, for instance, Adelfio and Chiodi, 2015; Adelfio
and Ogata, 2010; Marsan and Lengliné, 2008, 2010; Mohler et al., 2011 and
references therein).

A wealth of analysis techniques have been developed, taking as a starting point
an ETAS model; for example Hazard maps, declustering, diagnostic methods,
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among others (Adelfio and Chiodi, 2010; Musmeci and Vere-Jones, 1992; Peng
et al., 2005; van Lieshout and Stein, 2012; Zhuang et al., 2002).

The magnitude of an earthquake is treated as a mark M;, associated with its
event (u;,v;), and the conditional intensity becomes A *(u, v, M| %) = j(M)A*(u,v|7%),
where

A(uv[) =w)+ Y k(u—uw,v—vi|M).
{ivi<v}
Note that we here have deviated from the previously indicated omission of marks.
Hence, ETAS models work by dividing earthquakes into two categories: back-
ground events, which occur independently by means of a stationary Poisson
process y(u), with magnitudes distributed independently of y/(-) according to
the density j(M), and aftershock events which represent the risk of aftershocks
where the increased risk spreads in space and time following the kernel «(-,-).

Zhuang et al. (2002) dealt with estimation of the spatial intensity function
of the background earthquake occurrences from an earthquake catalogue that
includes numerous clustered events in space and time. An ETAS model is used
for describing how each event generates offspring events. They combined a
parametric maximum likelihood estimate for the clustering structures using
the space-time ETAS model with a non-parametric estimate of the background
seismicity.

3.6.3 Likelihood inference

We assume that the process is orderly (see Diggle, Guan, Hart, Paize and Stanton,
2010; Diggle, Kaimi and Abellana, 2010 and the references therein). It follows
that for data {(u;,v;)}}_; € W x T, the log-likelihood is given by

Zlogl (wj,vi|74,) // A (a,v|H4) dudv. (3.23)

Hence, likelihood-based inference is quite straightforward for any model for
which the conditional intensity is specified. It is only required that A* (u,v|5%)) is
non-negative and integrable over W, for any possible history at any time [ € T.
For a counterexample, see Diggle (2013).

To make inference two further assumptions must be hold (for an example see
Peng et al., 2005). First, if a model is not directly specified through its conditional
intensity, we must have an explicit expression for 1* (u,v|7%), and this may be
difficult, even impossible. Secondly, the integrand of the integral term on the
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right-hand side of Eq. (3.23) is often a complicated function with many local
modes, so the accurate evaluation of the integral becomes very complicated.

3.6.4 Partial likelihood

As a direct adaptation of an efficient method originally proposed by Cox (1975), for
proportional hazard modelling of survival data, which is much more convenient
for computing (Diggle, 2013; Tamayo-Uria et al., 2014), we have a variant of the
log-likelihood given in Eq. (3.23) called partial likelihood.

Conditioning on the times v; and considering the resulting log-likelihood for
the observed time-ordering of events 1,...,n, the individual contribution to the
partial likelihood is (Diggle, Kaimi and Abellana, 2010)

A% (w,vi|FE,)

P 2 (ol ) dx (3.24)

and the partial log-likelihood is given by

n
=Y logpi.
i=1

Usually, the integral in Eq. (3.24) is not tractable from the analytical point of view,
but it can be approximated by using some numerical integration technique. When
we have a spatio-temporal point process in which W is a finite set of locations
u; with j=1,...,N for some N >n, L,(1*) becomes (see Diggle, 2006; Mgller and

Segrensen, 1994)
" (wg,vi| )

n
(S s )
where Z; denotes the risk set at time v;, and typically %, = {i,i+1,...,N}.

3.6.5 Separability of conditional intensities

Separability in the context of mechanistic models assumes, similarly to the first-
order intensity case (Eq. (3.2)), a multiplicative form for the conditional intensity
function

A*(uv| ) = A (u]) A5 (v| A7), (u,v) €W T,

where A (-|7¢)) and AS(-|.7%) are two non-negative given functions. This hypothesis
is especially convenient since each component of a separable process may be
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modelled and estimated individually, and this greatly facilitates model building,
fitting, and assessment. Diaz-Avalos et al. (2014) considered non-parametric
kernel-based estimators; their approach calculates thinning probabilities under
the conditions of separability and non-separability and compares them through
divergence measures.

The separability assumption is, in fact, quite restrictive. However, few works
have addressed a rigorous analysis of separability. Some authors, e.g. Ogata
(1988) and Schoenberg (2003), used parametric methods to analyse departures
from separability in the ETAS models, for earthquake occurrences. Assuncéao
and Maia (2007); Chang and Schoenberg (2011); Schoenberg (2004) and Diaz-
Avalos et al. (2014) developed non-parametric separability tests for the conditional
intensity of spatio-temporal point processes. The two latter authors developed
Monte-Carlo separability tests based on the comparison between the separable
and non-separable kernel estimators of the conditional intensity function, which
should match if the point process is separable. These tests have been developed
for spatio-temporal marked point processes and for point processes that depend
on covariates, but we consider the particular case of separability between the
spatial and temporal components of unmarked spatio-temporal point processes.

Assuming that |[{i: v; <t}| = n, consider a three-dimensional kernel estimator
of the non-separable spatio-temporal conditional intensity function iﬂ}s(u,wf%’i),
and its separable counterpart estimator jLS* (u,v|.7%) consisting of the product of
two kernels (two-dimensional and one-dimensional, respectively). Schoenberg
(2004) proposes separability tests based on the standardised maximum and min-
imum absolute distances, a Cramér-Von-Mises type statistic, and a log-likelihood
separability test. Diaz-Avalos et al. (2014) take advantage of the fact that the
ratio between the intensity and its integral over the whole spatio-temporal region
is a density. They consider

NS _ ﬁ’f\krs(uiavﬂjﬁ) and .S ig(lli,vﬂ%)

~ .

Pi n Ax n Di n *
j:IA”NS(uﬁij%?) j:lls(“jv"ﬂ%)

Under the null hypothesis of separability we have that pNS = 55, and the Kullback-
Leibler and Hellinger divergences (see Deza and Deza, 2009) are given by
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respectively. They found that KL and H are competitive with the former tests.
In particular, for both Poisson and clustered point processes, they found that
when testing for separability between the spatial and temporal components, the
probability of type II error for the Monte-Carlo tests, KL and H decreased faster
than for any other test statistic.

3.7 Graphical means of assessing goodness-of-fit

Some recent model evaluation tools in the assessment of spatio-temporal point
process models include, in addition to the spatio-temporal summary statistics,
residual point process methods such as thinning, superposition and rescaling,
comparative quadrat methods such as Pearson residuals and deviance residuals,
and weighted second-order statistics for assessing particular features of a model
such as its background rate or the degree of spatial clustering. We present here
some examples.

Clements et al. (2011) reviewed modern model evaluation techniques for
spatio-temporal point processes and demonstrated their use and practicality on
earthquake forecasting models.

Schorlemmer et al. (2007) proposed originally an L-test, which works by sim-
ulating some fixed number m of realisations from the forecast model. The log-
likelihood L is computed for the observed earthquake catalogue (L,,s) and each
simulation (L;, for j =1,2,...,m). The quantile score, 17, is defined as the fraction
of simulated likelihoods that are less than the observed catalogue likelihood

1 m
1; = E Z I{Lj < Lobs}-
=1

If 17 is close to zero, then the model is considered to be inconsistent with the data,
and can be rejected. Otherwise, the model is not rejected and further tests are
necessary. In the N-test, the quantile score examined is instead the fraction of
simulations that contain fewer points than the actual observed number of points
in the catalogue, N,,s. The quantile score Yy is defined in a similar way, and the
model is rejected if Ty is close to 0 or 1.

Methods for residual analysis of spatial point processes have been introduced
by Baddeley et al. (2005). Such methods extend readily to the spatio-temporal
case. Consider a model A1 (u,v|X) for the Papangelou intensity at any location u
and time v. Raw residuals may be defined as the difference between the number
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of observed points and the number of expected points in any set AXxBC W x T,
that is,
R(AXB)=N(A X B) ///1T (u,v]|X) dudv.

Zhuang (2006) extended the definition to the spatio-temporal case using the
conventional conditional intensity function. With the purpose of having raw
residuals with mean 0, it is possible to rescale them so that Pearson’s residuals
are defined as

Rp(A x B) = Y //\/M u,v|X)dudy,

(u;,v;)EXN(AXB) A{T uan ’X

for all 11 (u,v|X) > 0. These residuals constitute an analogue for spatio-temporal
point patterns of the comprehensive strategy for model criticism in the linear
model, which uses tools such as residual plots and influence diagnostics to identify
unusual or influential observations, to assess model assumptions one by one,
and to recognise forms of departure from the model (Baddeley et al., 2005). In
analogy with deviances defined for generalised linear models, a good option for
comparing models is using deviance residuals (Clements et al., 2011). The spatio-
temporal window is divided into evenly spaced bins, and the differences between
the log-likelihoods within each bin for the two competing models are analysed.
Given two models for the conditional intensity, il* and iz*, the deviance residual
in each bin IT; = (A x B);, of il* against ﬁa* is given by

Ro(l) = ¥ loghi (wonl )= [ Af wvls)du.y)
i:(ui,vi)eHi In;
~ X toghs (wonl )+ [ A3 (ol ) d(uy).
i:(u;,v;) €IT; I

Positive residuals imply that the model 11* fits better in the given bin and negative
residuals imply that ;12* provides a better fit. By taking the sum of the deviance
residuals, one gets a log-likelihood ratio score, which gives an overall impression
of the improvement in fit from the best fitted model.

As Clements et al. (2011) establish, the distribution of raw and Pearson
residuals tend to be skewed when the spatio-temporal bins are small. When bins
are larger, a drawback of bins-based residuals is that considerable information is
lost in aggregating over the bins. Instead, it can be possible to look at how the data
and model agree, without relying on such aggregation. One way to perform such
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an assessment is to transform the points of the process, by rescaling, thinning,
superposition or super-thinning, to form a new point process that should be
a homogeneous Poisson process if and only if the model used to govern this
transformation is correct. The residual points can be assessed for inhomogeneity
as a means of evaluating the goodness-of-fit of the underlying model.

3.8 Conclusion

This paper presents a review of known developments for spatio-temporal point
process statistics. We have covered aspects of summary statistics, assumptions
often considered in this context, statistical models and inference. However we
have not entered into details of marked spatio-temporal point process as these
still need quite a bit of additional development. We have resisted the temptation
of considering novel ideas and concepts, and we have focused on writing a paper
which aims at providing the state-of-the-art in the analysis of spatio-temporal
point patterns. Another point that we have not covered in the paper is providing a
deep modelling framework for the considered datasets. This would have enlarged
the present paper, and it is itself the core of another papers.

It is easy to see that all concepts and contexts referred to in this review are
closely interconnected. Together, they play an important role in application
and current development of spatio-temporal point processes. Of course, they do
not represent the only fields where statistical methods in spatio-temporal point
processes have been applied with success.

Of the spatial data types, as recently recognised by Banerjee et al. (2014),
spatial and spatio-temporal point patterns are the least developed in terms of the
use of Bayesian methodology and its application. In this recent and updated book,
the authors specifically outline the hierarchical approach through fully Bayesian
modelling, which has received much less attention. The emphasis on hierarchical
modelling through the Bayesian paradigm in the context of spatio-temporal point
processes opens new avenues for future research.

Current open topics of interest, some of them suggested in Banerjee et al.
(2014), are the following: (a) Handling measurement error in spatio-temporal
point patterns, although this is a quite unstudied area even in the purely spatial
context; one of the few papers in which this measurement error is discussed
is due to Lund and Rudemo (2000). Consider the setting where the observed
locations are measured with error perhaps in both space and time, and we seek to
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assess the effect on the intensity function or on second-order summary statistics;
(b) Presence-only spatio-temporal data. Analysis of presence-only data (see
examples in Chakraborty et al., 2011) has become popular in recent years, and
model-based strategies are needed; (c) Preferential sampling. The choice of the
sampling locations in a spatio-temporal point pattern rises the question of how
to adapt this concept (originally born in the geostatistical field) into the context
of point patterns. Once again, preferential sampling has not been discussed
so much in the spatial case, even though some studies exist (see e.g. Diggle,
Menezes and Su, 2010; Ho and Stoyan, 2008).
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Abstract

Understanding the spatio-temporal distribution of tornado events is increasingly
imperative not only because of the natural phenomenon itself and its tremendous
complexity, but also because we can potentially reduce the risks that they entail.
In particular, the U.S. regions are particularly susceptible to the occurrence of
tornadoes and they are the focus and the motivation of our statistical analysis.
Tornado reports can be seen and treated as spatio-temporal point patterns,
and we aim at developing and applying some methods for the analysis of replicated
spatio-temporal patterns in order to identify significant structural differences
between cold- and warm- seasons along the sampling years. We extend some
existing techniques for the spatial case based on the classical spatio-temporal
K-function. In particular, we develop two non-parametric tests, one based on a
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bootstrap procedure to approximate the null distribution of the test statistic, and
the other based on a permutation test. We present intensive simulation studies
that demonstrate the validity and power of our tests.

Keywords K-function, non-parametric test, permutation test, separability,
spatio-temporal point process, tornadoes.

4.1 Introduction

Formally speaking, according to the Glossary of Meteorology (American Met-
eorological Society, 2013), a tornado is defined as “a rotating column of air, in
contact with the surface, pendant from a cumuliform cloud, and often visible
as a funnel cloud and/or circulating debris/dust at the ground”. These terrible
natural phenomena occur more frequently in certain regions of the world such as
the United States, where there is an approximate annual average of 1200 reports
and they kill an average of 60 people per year (data provided by National Severe
Storms Forecast Center).

It is far from easy to mathematically study the occurrence of tornadoes, and
one of the biggest problems is the considerable uncertainty due to problems in
spotting and reporting occurrences (Doswell III and Burgess, 1988). The past
officially recorded tornado climatologies are thought to be incomplete or with high
error rates because, for instance, events can be missed or misclassified and some
non-damaging tornadoes in remote areas could still be unreported (Grazulis,
1993). Therefore, studies of tornado climatology apply on reports of tornadoes
(noisy data) with all the underlying errors that may have, rather than on the
true occurrence of tornadoes (Karpman et al., 2013). The underlying error also
widely motivates the need for statistical inference mechanisms to obtain valid
conclusions (Wikle and Anderson, 2003).

There is a universally accepted scale known as The Fujita (or Fujita-Pearson)
F-scale that allows the classification of tornadoes, and it is based largely on the
damage inflicted by tornadoes to buildings and vegetation; this scale has five
categories listed in increasing order of damage (FO— F5).

Many authors have focused on large-scale studies of tornadoes, especially
on the most deadly tornadoes (F2 — F5) in order to estimate and predict, for
instance, daily climatological probability of tornadoes and yearly counts (Bruen-
ing et al., 2002; Concannon et al., 2000; Grazulis, 1993). Some other authors
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have concentrated in particular regions (with similar weather conditions) and
in specific seasons (e.g. season El Nifio and La Nifia), to study tornado counts
in such spatio-temporal regions (Monfredo, 1999). There are also studies about
the correlation between reports of tornadoes and, for example, the Pacific sea
surface temperatures; Marzban and Schaefer (2001) found such a correlation to
be negative and weak. However, it has also been found that certain exogenous
climatic processes, such as the activity index of El Nifio, are significantly asso-
ciated with reports of tornadoes and this association depends on the regional
variability (Wikle and Anderson, 2003).

If the tornado reports are based on spatio-temporal locations in form of coordin-
ates in space and the time of occurrence, we might think about spatio-temporal
point patterns as a way to represent and further analyse such tornado reports.
However, little has been said about tornadoes in U.S. from the perspective of
spatio-temporal point processes due to the high number of reports, the intrinsic
complexity of the phenomenon and the large magnitude of the study area. An
interesting first attempt is provided by Karpman et al. (2013), who proposed,
focussing only on F3,F4 and F5 tornadoes, a non-parametric and separable model
for the first-order intensity measure, that takes into account the topographical
variability in the region (measured through an elevation factor), as well as spatial
and seasonal effects.

The analysis and characterisation of the intensity of tornadoes and their
spatio-temporal structure remains a challenging question for climatologists.
Karpman et al. (2013) identified some strategies to estimate the spatio-temporal
intensity using point process techniques. Here we go further in the statistical
analysis of tornadoes by exploiting the spatio-temporal first- and second-order
characteristics.

Motivated by the seasonal patterns of tornadoes, we present several statistical
approaches for a better understand the behaviour of such patterns in space and
time. We first aim at detecting seasonal effects in density. This has to do with
first-order characteristics of the spatio-temporal patterns. Then we try to analyse
differences in the spatio-temporal structure for two large seasonal point patterns
selected as cold and warm seasons. This would allow us to a better understanding
of the large-scale occurrence of tornadoes regardless of the huge difference in
intensity over these two seasons, and without taking into account unobservable
and some very complicated covariates as those that can describe geographic
conditions of country.
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Roughly speaking, we propose to test the null hypothesis that two (or more)
observed spatio-temporal point patterns are realisations of point processes that
have the same second-order descriptors. Following the ideas of Hahn (2012)
and Hahn and Vedel Jensen (2016), we subdivide the observation windows into
disjoint regions with certain conditions of regularity so that we will obtain several
subpatterns that under the null hypothesis should have the same K-function, for
instance. Estimates of second-order functions on subpatterns are approximately
independent, and behave as if they resulted from replicates of the same underlying
process. Therefore our motivating problem is approached by proposing new
testing procedures for replicated spatio-temporal point patterns by using non-
parametric methods.

In Section 4.2 we describe data from reports of tornadoes in the U.S. In Section
4.3, we consider several approaches for the statistical analysis without additional
covariates. We first deal with the first-order intensity function of both the cold-
and warm-seasons. We consider a partition of each season in order to carry out
an analysis of spatio-temporal patterns to assess possible structural differences
in the two yearly cold- and warm-seasons. Finally in Section 4.4 we address some
open questions and issues.

4.2 Tornado reports in the U.S.

Tornado data were obtained directly from the performance branch of the Storm
Prediction Center (SPC, http:/www.spc.noaa.gov) of the National Oceanic and
Atmospheric Administration (NOAA), which is part of the National Weather
Service (NWS) and the National Centers for Environmental Prediction (NCEP).
The data-set contains information on all tornado records in United States and
their associated warnings and characteristics. We have extracted all reports
collected between 1980 and 2016 because tornado reports prior to 1980 exhibit a
high degree of inaccuracy due to record limitations. We have a sample of n = 39864
continental tornadoes (we removed all these tornadoes that took place at sea)
along 36 years.

We focus on the starting location of each tornado report, which represents the
most reliable entry (see e.g. Wikle and Anderson, 2003), in each of the regions
identified by the corresponding 50 states. The locations are given by longitude
and latitude of the touchdown of the tornadoes with a precision of one-hundredth
of a degree. To make spatial analysis a bit more realistic, we might apply a map
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projection considering that the U.S. is a fairly large proportion of the Earth’s
total area (about 1.79%)!. Additionally, we would have to consider, for instance,
whether the best projection is one that preserves the area (Mollweide), shape
(Lambert Conformal Conic), or the distances (Azimuthal Equidistant), see Fig
4.1. Since it is difficult to agree on what is the most important feature in the

Mollweide Lambert Conformal Conic Azimuthal Equidistant long-lat

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
-02 -01 00 01 02 -0.2 -0.1 0.0 0.1 0.2 -0.4 -0.2 0.0 0.2 04 -120 -100 -80

Figure 4.1 Left: Three different projections of the U.S. map with different proper-
ties, preserving area, shape and distances respectively. Right: A global coordinate
system long-lat.

context of point processes, we prefer to use longitude and latitude as x and y
coordinates of the point u. The whole data-set is displayed in Figure 4.2.
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Figure 4.2 Observed point patterns of tornado occurrences in U.S. from 1980
to 2016. Darker points represent older records according to a yearly scale of 36
years.

IThe measure of the total area of the U.S. should include Alaska, Hawaii and outlying territ-
ories as Guam and Puerto Rico. However, we avoid these territories because of the availability of
tornadoes data. The total world area is 5.10 x 108 km? and the U.S. area is 9.15 x 10° km? (Central
Intelligence Agency, 2017).
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4.3 Spatio-temporal distribution

Let W c R? and T C R, = [0, +o0) be compact sets of positive Lebesgue measures
|W|and |T|, that are considered as spatial and temporal windows, respectively. Let
X be a spatio-temporal point process, which stands as a random countable subset
of R? x R, . The number of points in XN (W x T) is finite and denoted by N(W x T).
A realisation of XN (W x T) has the form X = {(uy,vy),...,(u,,v,)} CW xT.

Let A(u,v) be the first-order intensity function of the process X, so that
A(u,v)dudy is the mean number of points in an infinitesimal region around (u,v)
with volume dudv. A spatio-temporal point process is called first-order stationary
if its intensity function A (u,v) is constant. Clearly, the tornado process does not
possess this property. The intensity may have a parametric form, or it can be
modelled through non-parametric components for spatial and seasonal effects as
in Karpman et al. (2013). The interaction between points can be described, for
instance, by the pair correlation function

~2AD((a,v), (s,0)
(@) (8:0) = aen

(w,v),(s,]) e W xT. 4.1

where A(2)(., -) is the second-order product density function and
22 ((u,v), (s,0))d(u,v)d(s,!)

for (u,v) # (s,1), may be interpreted as the probability that there is a point from
X in each of the infinitesimal regions around (u,v) and (s,!) of spatio-temporal
volumes d(u,v) and d(s,!), respectively (see e.g Gonzalez et al., 2016). The process
X is called second-order intensity-reweighted stationary (SOIRS) if

g((“?‘))ﬂ(svl)) :g(u_s7v_l)a

for any (u,v),(s,l) € W x T, where g is some non-negative function. For further
details on spatio-temporal point processes, see e.g Gonzalez et al. (2016) and
references therein. The SOIRS property was defined for spatial point processes
in the seminal paper by Baddeley et al. (2000). This assumption has since been
widely adopted in the literature on inhomogeneous point processes. A formal
test was given in Hahn and Vedel Jensen (2016).
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The K-function of a spatio-temporal SOIRS process is given by
K(rt) = / L fualw ), r>0.0>0 (4.2)
c(rt

where c(r,1) represents a spatio-temporal cylinder of radius r and height 27, see
Gabriel and Diggle (2009); Ghorbani (2013). In the stationary case, i.e. when A
is a constant over the spatio-temporal window, we have that

K(r1) = A7 'EL (N[e(r1)]). (4.3)

The conditional expectation E{(-) can be interpreted as the expected number of
further events within distance r and time r of an arbitrary event (taken as the
origin). Note that the K-function measures the interaction structure of the SOIRS
spatio-temporal pattern independently of its first-order intensity function.

For a spatio-temporal homogeneous Poisson process, whose spatial and tem-
poral components are independent homogeneous Poisson processes on R? and R,
respectively, g = 1 and K(r,¢) = 27r’t, this represents the volume of a cylinder with
base radius r and height 2¢. The homogeneous spatio-temporal Poisson process
provides a benchmark of complete spatio-temporal randomness (CSTR) (Gabriel
and Diggle, 2009). Clustering, which represents attraction between points within
a spatial distance r and a temporal distance 2¢, is reflected by K(r,z) > 2%, and
values below 277°t indicate regularity or repulsion between points.

In order to estimate K(r,¢) from a given spatio-temporal point pattern in a
bounded region W x T C R?> x R, and to compensate for the unobservable points
out of such region, usual estimators for K(r,¢) include a spatio-temporal edge-
correction factor e¢(£,n). A useful edge-correction is the isotropic edge-correction
method (Gabriel, 2014; Gabriel and Diggle, 2009). The weight is proportional to
the product between the spatial Ripley’s isotropic edge-correction Ripley (1977)
and its analogue for the temporal component. Let (u,v) and (s,/) be points of

W x T, so we have
eS(u,s)eT (v,1)
WxT|

e((u7v)7 (SJ)) =

where ¢5(u,s) is the reciprocal of the proportion of the perimeter of the circle
centred at location u, with radius ||ju —s|| which lies within W, and T (v,/) = 1 if
both ends of the interval of length 2 |v — /| centred at v lie within 7', and 2 otherwise

(see e.g. Diggle et al., 1995; Gabriel and Diggle, 2009). The estimator of K(r,7) is
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then given by

5 [[[u—sl| < A1[v—1| <tle((w,v),(s,]))
K(rt)= ~ ~ , (4.4)
( t) (u,v)z;é:(s,l) ;L(u’v)l(&l)

where Y., means that the sum is over all pairs (u,v) # (s,[) of the data points.
The variance of the estimator K(r,z) depends on the point process model, on the
arguments r and ¢, and on the size and shape of the sampling window. For a
homogeneous spatio-temporal point process conditional on the number of points
N(W x T) = n, the variance can be roughly approximated by

Var, (R (r.1) [N(W x T) = ) ~ 4= WIIT| [1 +0.3051951" +0.0414n 'fjv“'é"’;" ]
where 7 is the number of points in the spatio-temporal window, and [dW| is the
perimeter length of W. See a sketch of the proof in the Appendix.

In the following sections we deal with first- and second-order properties of
spatio-temporal point processes. Our methodological approaches for comparing
groups of patterns come in Sections 4.3.3 and 4.3.3.

4.3.1 Sample
Tornado-Land

Tornadoes occur only rarely in the Western states, and are concentrated on
few very restricted areas there. The data appear too sparse for a second-order
analysis there. So we restrict the space-time analysis to a region that makes the
pattern being closer to a second-order reweighted stationary pattern than the
whole U.S. does. We therefore decided to restrict the space-time analysis to a
region with relatively high tornado intensity. We thus divide the U.S. map into
sensible tornado zones using an ad hoc method: define a cut-off at the median of
the tornado density, and find the longitudes for which the density exceeds the
median. As this is a contiguous interval, all steps have the same length, see
Figure 4.3 (left). Therefore, we define the tornado-land as the region determined
by the longitude range that is preferred by tornadoes, see Figure 4.3 (right).
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Figure 4.3 Left: Average density of tornadoes in their longitude coordinate. Right:
Tornado-land.

Seasons

Our most relevant objective in this paper is to verify if structural seasonal
differences exist in the patterns of tornadoes throughout the sampling time.
To do this, we split our data-set (Tornado-land) in two exclusionary sets: a cold-
season defined as the set of all those tornadoes that have occurred during the
autumn and winter periods, and a warm-season as the set of tornadoes occurred
during spring and summer periods.

We define the start of the warm-season as March 1st, and the start of the cold
season as September 1st. These are the meteorological definitions of spring +
summer, and autumn + winter on most countries of the northern hemisphere. We
make bins starting 1979/01/01 (midst in the cold season), and then 1979/03/01,
1979/09/01, etc. This way dates falling into a bin with an odd number are the
in cold-season, and dates in even numbers are in the warm-season. There is
only one problem, the daylight saving. To avoid this, we let the cold season start
one hour later and starts at midnight (+1). When calculating time differences,
we can now decide on the time granularity, starting with seconds. The largest
possible time unit is the week, because months and years vary in length. The
final seasons along all the years are shown in Figure 4.4.

4.3.2 First-order separability

Computations simplify a lot when the spatio-temporal intensity can be assumed
to be separable. We therefore check this assumption first. We say that X has a
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Figure 4.4 Left: The spatio-temporal pattern of tornadoes corresponding to
cold-seasons in tornado-land. Right: The spatio-temporal pattern of tornadoes
corresponding to warm-season.

separable first-order intensity function if
A(a,v) =21 (u)Az(v) V(a,v) e W xT, (4.5)

where 4, and A, are non-negative functions; in fact, for spatio-temporal stationary
and isotropic process, A(u,v) assumes a constant value A.

Some authors have suggested separable intensity models for the case of tor-
nadoes. For example, Karpman et al. (2013) have proposed a separable model
that has included not only spatio-temporal information but also the elevation
variance in a neighbourhood of the location in a semi-parametric model given by

Ala,v) =A-M"(u)-S?(v)-D¥(u),

where M(u) is the spatial first-order intensity function usually estimated by
kernel-smoothing, S(v) is the seasonality component or temporal intensity func-
tion and D(u) is the component that takes into account the elevation variability,
and exponents v, ¢, and y are parameters to be estimated. So far, only models
with separable intensity functions have been considered for tornadoes in the
literature.

To assume that equation (4.5) holds, we have to study in some depth the tor-
nado intensity functions. The separability hypothesis is particularly convenient
since each component of a separable process can be modelled and estimated
individually (see Schoenberg, 2004); this represents an important issue given
the implications of the model. Despite the importance of this assumption, the
separability of a process is rarely rigorously tested. The only available tests apply
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to conditional intensity functions, as Diaz-Avalos et al. (2013) suggest. However,
nothing has been said about first-order intensity functions. Under a separable
first-order intensity model, for two different spatial regions W; and W,, the ratio

le A(a,v)da
Jw, A(w,v)du’

does not change with time. This assumption is quite strong, in particular in our
context as a separable model for tornadoes would imply that the ratio of the risk
of a tornado occurrence in a certain area to that of a tornado in another area
does not change over time. Thus, although the conditions that affect the risk of a
tornado in the regions W; and W, can be different, their variation along time is
similar. This would be the case if the risk of tornado occurrence is proportional
to other climate factors related with the geography of the region. Moreover, a
separable model is needed for processes in which there is a local temporal change
that is more driven by the particular regional conditions such as precipitation
and temperature.

We follow this approach to check for first-order separability; consider the
projection of all points in space, that is, regardless of time, we divide each of the
seasons into 4 groups corresponding to the decades over the years of sampling,
and we estimate the spatial first-order intensity function in each of the decades
to observe roughly how constant is the variation over time on a large scale. We
consider an uniformly corrected kernel estimator for the spatial intensity (see
e.g Baddeley et al., 2015; Diggle, 1985), given by

! i K2(u—w), (4.6)

jbspace (u> = 22 (u>
i=1

for any spatial location u inside the window W, where
¢’ (u) :/ K2 (u—s)ds,
14

and where k7 is the isotropic two-dimensional Gaussian kernel with bandwidth
€ = (&, &) calculated by a simple rule of thumb that depends on the short size
of the window. The estimated intensities can be seen in Figure 4.5. The data
look long-term non-separable: the early years had a focus on Florida, which
disappeared in the later years for instance. This is consistent with the evidence
of temporal trends in tornado counts, with spatial variation in the magnitude
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Figure 4.5 Estimation of the spatial intensity for decades (1980, 1990, 2000,
2010) of each tornado pattern given by the cold-(up) and warm-(down) seasons in
Tornado-land.

and sign of the trend, see e.g. Wikle and Anderson (2003) and the references
therein.

We then use a non-separable estimator which apply a Gaussian kernel for
all coordinates. Let 6 be the bandwidth for the time, let us define the following
non-separable estimator for the spatio-temporal intensity function

(ll — lll') K'é (V — V,')

B i=1 e2(u;)e! (v;) ’

(4.7)

where k! denotes a one-dimensional Gaussian kernel density with bandwidth &
and ¢! (v) is the analogous to Diggle’s edge correction for time.

Note that when the intensity is estimated non-parametrically, everything
depends on selection of the bandwidth and this makes the second-order inter-
pretation of inhomogeneous point processes an extremely delicate issue. For
the tornado data, a large bandwidth will result in a clustered interpretation,
and a small bandwidth leads everything to be interpreted as CSR. Some studies
of simulation (not shown here) for the case of a non-separable intensity and
some tests with different bandwidths led us to opt, in the case of the temporal
dimension, for the use of an optimal bandwidth proposed by Sheather and Jones
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(1991). We have then two bandwidths, one for the cold-season and another one for
the warm, indeed, 6 = 63 days for cold-season and 6 = 51 days for warm-season.

4.3.3 Tiles

Spatio-temporal point patterns in Figure 4.4 seem to be inhomogeneous and
possibly highly clustered, and trying to analyse the complete patterns makes
modelling and inference a difficult task. These intrinsic issues motivate to
propose some statistical procedures that relieve the computational burden of the
tornadoes data-set and at the same time that is able to develop further statistical
testing procedures dealing with replicates of spatio-temporal point patterns.

Therefore, as a variant of the method presented by Hahn (2012) and Hahn
and Vedel Jensen (2016), our proposal is as follows. Consider partitioning the
Tornado-land map into sub-regions based on deterministic rectangular spatial
tiles that have (almost exactly) the same number of points. One can find the
boundaries as quantiles, taking one coordinate after the other. These regions
are season-specific spatial tiles. Figure 4.6 shows two of such partitions of the
spatial region into tiles by splitting the latitudinal coordinate first.

cold-season warm-season
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Figure 4.6 Deterministic tiles for warm and cold seasons by splitting the latitud-
inal coordinate first (a) and (c). Two enlargements from tessellations of the cold-
and warm-seasons in (b) and (d), containing observed point patterns of tornado
occurrences in the Tornado-land in arbitrary chosen tiles.

(c

Once established this particular way of viewing and splitting the data into two
groups of approximately replicated spatio-temporal point patterns, we proceed to
show our methodological approaches to give answer to the main scientific question
that is of concern in this paper: are there significant differences between the
underlying process of the warm- and cold-seasons regardless of their intensity?
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Spatio-temporal Diggle’s Monte Carlo test

We develop a test in the spatio-temporal case, as a direct extension of a spatial
version proposed by Diggle et al. (1991, 2000), who suggested a bootstrap proced-
ure in order to test the differences between independent replicates of empirical
spatial K-functions. We assume an original sample consisting of g groups of
sizes my,...mg, let n;;j(j =1,...,m;) be a random variable representing the count of
tornado occurrences for the jth replicate in the ith group (in our case we have two
groups: cold- and warm-seasons respectively), n; is the mean over all replicates in
the group i and n = Z‘le n;. We first compute a non-separable version of i,-j(u, V),
and subsequently a descriptor K; j(r,t) (as in Eq. (4.4)) for each pattern, and define
the estimated group-specific and overall mean functions as usual in the context
of one-way ANOVA by

_ 1 N 1 & _
Y‘l‘) = Z,Winij(’"»l) and = ;; K I’I (4.8)

The test statistic, referring to conventional between-treatment sum-of-squares,
can be written as

1
BT SSgt = Z / / ' r’;’t [Ki(r,t) — K(r,1)]) dedr, (4.9)

which is a natural extension of that proposed by Diggle et al. (1991, 2000) to
measure differences between groups.

The variance of K;;(r,¢) increases with r and ¢ (at least in the CSTR case),
so we use a weighting factor (1/r%t), which down-weights the variance of the
spatio-temporal K-function estimator for large r and 7. The statistic BT SSg; is
a sensible measure of the extent to which the group-specific mean K-functions
differ, and is analogous to a residual sum-of-squares in a conventional one-way

ANOVA.

A bootstrap procedure The interest focuses on testing the null hypothesis
that the K-functions do not differ between groups, i.e.

Ay ER(n1) =E(Ka(rt) = =E(&,(r1)) forall rand:
A E(Ki(rt)) #E(K;(r,t)) for some r, some ¢ and for some i and j.
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The analytical form of the probability function of BT SSg; is intractable, but we
perform a pure randomisation test (Diggle et al., 1991) to permute the K; i(nt)
across groups and recompute BTSSs in order to obtain its exact conditional
distribution. We generate bootstrap samples as follows: in a first step, residual
spatio-temporal functions are defined as

Rij(r,t) =n;f>

i (Kij(rnt) = Ki(rt)). (4.10)

Under the null or the alternative hypotheses, the R; j(r,t) are approximately ex-
changeable quantities since the sampling variance of each K;;(r,) is proportional
to ni’jl, although according to Hahn (2012), a more appropriate weight could be
used, namely n~!. Note that K;;(r,t) = Ki(r,1) +n;j1/21§,~j (r,t). Then, we obtain a

random sample, without replacement, of functional residuals and define
¢boot _ 7 —1/2 sboot
K% (nt) =K(nt) +n; "R (nt). (4.11)

To determine the Monte Carlo bootstrap p-value, the observed value of BT SSyt is
ranked among the corresponding bootstrap values.

Empirical level We are interested in determining the empirical level of the
spatio-temporal version of Diggle’s test, so we consider several simple situations
that could be useful when analysing the tornado data. To validate the spatio-
temporal bootstrap procedure, we apply it to 1000 simulations under the null
hypothesis. We consider two groups, each group associated with a number of
replicates of m; = m; = 10 under the same type of process, namely spatio-temporal
Poisson, cluster and inhibition and three different settings as proposed in Hahn
(2012).

A spatio-temporal Poisson cluster process (Neyman-Scott) is defined as follows.
The parents constitute a Poisson process with intensity 4, (u,v). For each parent
the number of offspring is a random variable with mean L, realised independently.
The positions and times of the offspring relative to their parents are independently
and identically distributed according to a trivariate probability density function
v(u,v). Finally, the process is composed by the superposition of the offspring
points (Gabriel et al., 2013).

Spatio-temporal inhibition processes were also presented by Gabriel et al.
(2013). In this case the points are prohibited from being closer than some distance
apart, resulting in patterns that are more regular in space and time than a Pois-
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son process of the same intensity. Let 6, and 0, denote the minimum permissible
spatial and temporal distances between events respectively, for a sequence of ¢
events (u;,t;) € W x T, where (uy,t) is uniformly distributed in W x T. Now each
(ug,vg) is uniformly distributed on

WxT)N{(wv):|lu—wj|| > 6u;lv—v;| > 8, j=1,....k— 1.}

Firstly, we preserve the homogeneity structure of the window, and the intens-
ity of the processes. Secondly, we set different intensities but the same window,
and finally we consider same intensity but with different windows.

For the first case (same intensity), we keep a constant intensity of A = 100 for
the two sets of patterns, and simulations in the unit cube (W x T = [0,1]2 x [0, 1])
and we set ro =1y = 0.125. For the spatio-temporal cluster process, we consider
a constant intensity of the parent process (1, =20) and an average number of
offspring per parent of u. =5 with offspring following a normal distribution with
(0u,0,) = (0.05,0.05). For the inhibition process, we consider J; = 0.05 as the
maximum spatial distance of inhibition and 6 = 0.001 as the maximum temporal
distance of inhibition and simulated 100 points per pattern.

For the second case (different intensities), we set for the Poisson case, one
intensity of A = 100 and another one of A = 150. For the cluster process, we
consider for the first group A, =20 and p. =5 and for second group 4, =20 and
U =7.5. For the inhibition process, we set for the first group n =80 and n = 120
for the second one.

In the third case, we set the spatio-temporal window to W x T = [0,1.5]% x [0, 1.5]
for the first group, and for the second group we consider the unit cube, we keep
a constant value for the intensity of A = 100 in all cases. The results for the
simulation experiments are summarised in Table 4.1.

Table 4.1 shows that in all cases the bootstrap procedure gives a somewhat
conservative test and confirms the generally mildly good performance using the
new statistic BT SSgt.

We now show the influence of the upper limits on the integrals of the statistic
(4.9) in connection with the empirical values. For this purpose, we vary spatial
and temporal limits assigning three values for each, and setting the simulation
scenario as in the first homogeneous case (see first row in Table 4.1). The results
can be seen in Figure 4.7, where a similar performance is observed in all three
cases, slightly better when both the spatial and the temporal limits tend to 0.2.
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Rejection Rates
Nominal significance level o 0.01 0.05 0.10
Same intensity Poisson process 0.020 0.067 0.121
Cluster process 0.014 0.043 0.074
Inhibition process 0.022 0.068 0.113
Different intensities Poisson process 0.030 0.072 0.112
Cluster process 0.027 0.061 0.104
Inhibition process 0.041 0.092 0.144
Different spatio-temporal Poisson process 0.015 0.041 0.074
windows Cluster process 0.059 0.116 0.164
Inhibition process 0.018 0.049 0.075

Table 4.1 Rejection rates from 1000 replicated simulations of the bootstrap
procedure under the null hypothesis of no differences among the samples of
K-functions of two groups of spatio-temporal point patterns.
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Figure 4.7 Empirical rejection rates of the Diggle’s test under the null hypothesis
as a function of the upper limits ry and ¢y, for nominal significance levels o =
0.01, ¢ =0.05, and o = 0.10. Results based on 1000 replications for Poisson models,
on the unit cube with an intensity of A = 100. Gray central area is an 90% interval
around the true significance level under uniformity of p-values.

Power In order to assess the power of the bootstrap procedure, we simulated
sets of 1000 replicates under the alternative hypotheses using five combinations
of spatio-temporal processes with intensity A = 100 on the unit cube and with 10
replicates in each group against CSTR.

We set a Poisson process as a standard group and for second group, three
cluster processes with an average number of offspring per parent of u. = 1,4
and . = 4, respectively, and with a uniform distribution for the offspring with
spatial and temporal dispersions of (o, 6,) = (0.20,0.20), (0.20,0.20) and (0y, 0,) =
(0.15,0.15), respectively. We also consider a second case using two inhibition
processes with (6y,6,) = (0.02,0.002) and (dy,9d,) = (0.05,0.005) respectively to
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Significance level

Underlying process Parameters 0.01 0.05 0.10
Cluster process Ue =1,0,=0.20,0,=0.20 0.235 0.384 0.480
Ue =4,04 =0.20,0, =0.20 0.972 0.983 0.989
Ue =4,04 =0.15,0,=0.15 0.997 0.999 0.999
Inhibition process Ou = 0.02,6, = 0.002 0.301 0.494 0.612
Ou = 0.05,6, = 0.005 0.992 0.997 0.998

Table 4.2 Empirical power when the underlying spatio-temporal point processes
are CSTR in the first group, and cluster and inhibition processes respectively for
the second group. The upper limits are ry =y = 0.125.

generate replicates for the second group. We fix ry =y = 0.125 as upper bounds
in the integrals in BT SSg given in (4.9). The empirical power estimates are
tabulated in Table 4.2.

The results convey the general trends in power analysis in which, as we would
expect, we have high values when specific spatio-temporal processes are clearly
different in form. Of course, and as shown in the spatial case, the power decreases
when we consider spatio-temporal processes that visually appear to be similar or
have subtle differences.

Spatio-temporal studentized permutation test

We have been seen that the bootstrap procedure is somewhat conservative. As an
alternative, we provide a spatio-temporal version of the studentized permutation
test proposed by Hahn (2012), which exact by construction if the observations
(K-functions in this case) are exchangeable. Consider the estimates of K;;(r7)
using an unbiased estimator as in (4.4). Let

_ | AN
Kl(l’,l‘) = — ZK,'j (I’,t)
m,'j:]
and
Szz(rvt): (Klj(rvt)_Kl(rvt))
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denote the empirical mean and variance of the K-function estimates on a given
group i. We define a statistic associated to the ¢-statistic as

ro 10 _. 2
- Y | / ’2 ’(F;t;) dedr (4.12)

I<i<j<g ss(nt) +m; ](r,t)

The use of the statistic 7y may lead to tests sensitive to heteroscedasticity. In
these cases, we prefer using the modified version

_ 0 (Ki(r. K( )
Ta= Y / / _2 - ) drdr, (4.13)

1<i<j<g ; 5( t)

where

— ro o S
s2(nt / / LY b
roto

When working with a heteroscedastic sample, the use of T rather than Ty
guarantees a better performance of the test (Hahn, 2012).

Empirical level To verify the performance of the spatio-temporal permutation
test, we follow the same scenarios as the previous case with the spatio-temporal
Diggle’s test. Thus we consider two groups of patterns, each with ten replic-
ates (m; = my = 10), and the combinations of models, intensity functions and
observation windows as the same as in the previous test. We compare the two
groups using the statistic T given in (4.13). Note that we are not considering
the statistic 75z because our tiles exhibit heteroscedasticity. The results for the
simulation experiment are summarised in Table 4.3.

Table 4.3 shows that in all cases the permutation test has a good performance
analogously to the spatial case (Hahn and Vedel Jensen, 2016), as long as the
assumption of exchangeability is met. The empirical rejection rates usually
exceed the nominal rejection rates, but it shows a clear improvement with respect
to Diggle’s test. Again, we consider the configurations of homogeneity in order to
observe the influence of the upper limits on the integrals of the statistic (4.13).
For this purpose, we vary spatial and temporal limits assigning three values for
each case, see Figure 4.8. A similar performance is observed in all three cases
for each type of process, although the performance is slightly better when both
the spatial and the temporal limits tend to 0.1 and 0.2.
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Rejection Rates
Nominal significance level o 0.01 0.05 0.10
Homoscedastic Poisson process 0.010 0.055 0.100
Cluster process 0.008 0.050 0.098
Inhibition process 0.011 0.046 0.101
Different intensities Poisson process 0.010 0.046 0.098
Cluster process 0.011 0.053 0.099
Inhibition process 0.012 0.068 0.115
Different spatio-temporal Poisson process 0.019 0.071 0.130
windows Cluster process 0.018 0.069 0.118
Inhibition process 0.020 0.063 0.112

Table 4.3 Empirical rejection rates under null hypothesis of the spatio-temporal
permutation test with different underlying processes, based on 1000 replications.
The test is applied to two groups of ten realisations of each spatio-temporal point
process model.

Poisson Cluster Inhibition
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Figure 4.8 Empirical rejection rates of the permutation test under the null
hypothesis as a function of the upper limits ry and #y, for nominal significance
levels o = 0.01,x = 0.05, and o = 0.10. Results based on 1000 replications, for
Poisson, cluster and inhibition models. Gray central area is a 90% interval around
the true significance level under uniformity of p-values.



4.3 Spatio-temporal distribution 105

Significance level

Underlying processes Parameters 0.01 0.05 0.10
Cluster process e =1,0, =0.20,0,=0.20 0.229 0.395 0.537
Ue =4,04 =0.20,0,=0.20 0.968 0.987 0.990
Ue =4,04,=0.15,0,=0.15 0.995 0.998 0.998
Inhibition process 0y = 0.02,6, = 0.002 0.224 0.476 0.631
6u = 0.05, 6, = 0.005 0.971 0.990 0.993

Table 4.4 Empirical power of the spatio-temporal permutation test when the
underlying processes are cluster and inhibition, respectively, for the second group
against CSTR. The upper limits are ry =) = 0.125.

Power The power of the test is calculated considering, as an alternative hy-
pothesis, various combinations of realisations of inhibition and cluster spatio-
temporal point processes against CSTR patterns, and ry = 1o = 0.125 as upper
limits in the integrals involved in the statistic T (4.13). Once again, we sim-
ulate sets of 1000 replicates of alternative hypothesis and five combinations of
spatio-temporal processes with intensity A = 100 on the unit cube and with
10 replicates in each group against CSTR for clustered and inhibition mod-
els. We keep the same settings as in the study of the power in the case of
Diggle’s test. We set for the second group, three cluster processes with an av-
erage number of offspring per parent of u. = 1,4,4 for each case with a uni-
form distribution for the offspring with spatial and temporal dispersions of
(0w, 0,) = (0.20,0.20),(0.20,0.20),(0.15,0.15). In a second case we use two inhibi-
tion processes with (8y,d,) = (0.02,0.002),(0.05,0.005). The results are shown in
Table 4.4.

In this case, we have the expected results in comparison with those obtained
through the bootstrap procedure. Generally, but not always, a non-parametric
bootstrap is less powerful than a permutation test (Good, 2005). As the paramet-
ers of the models tend to generate virtually indistinguishable realisations from a
CSTR, the power of the test decreases. Obviously, and as was already studied in
Hahn (2012); Ho and Chiu (2006), the power continuously depends on the upper
limits of integrals (in both test studied), here we are using the recommendation
of Ripley (1979) of setting ro = 1.25/v/A.
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Spatio-temporal pattern analysis of tornado data

As described in earlier sections, we aim to analyse differences in the spatio-
temporal structure for cold- and warm- seasons. Thus we split the tornado
records into two major seasonal groups, then we subdivide each season into
spatio-temporal tiles as shown in Figure 4.6.

We assume that the K-function estimates from different tiles are approxim-
ately independent. This assumption is motivated by the high number of points
contained in each tile as well as the fact of asymptotic independence of the
subpatterns defined by tiles on growing windows, cf. (Hahn, 2012).

A current use of our tests needs a proper selection of the upper limits ry and ¢ of
the integrals involved in the statistics (4.9) and (4.13) in order to obtain reasonable
p-values. Hahn and Vedel Jensen (2016) suggested to take ro = 1.25/4/supy, i(u),
where supy, A (u) denotes the supremum of the spatial intensity over its domain W
However, we have a non-separable spatio-temporal intensity function, so that for
dealing with the spatio-temporal upper limits we define the marginal intensity
functions as (Illian et al., 2008)

A (1) = % /T Awv)dy and Ar(v) = IW1| /W A(u,v)du,

and we consider their natural estimators, which in this case come from our
estimate of the intensity through Eq. (4.7). We have approximated the integrals
through conventional Riemann sums. Thus we consider the following individual
upper limits

= - and "= = ,
SUPyew Aw (u) SUPyeT Ar(v)

and set rg = 1.25r* and 1y = 1.25¢*, although the constant 1.25 can be changed to
obtain alternative p-values as indicated below.

For each pattern in each tile, we calculated the spatio-temporal inhomogen-
eous K-function based on the non-separable estimator of the first-order intensity
function (see Eq. 4.7) with upper integration bounds ro = 3.91 degrees and 1y = 67.5
days, see Figure 4.9. Thus, we perform both Diggle’s and the permutation tests.
We rank the observed value of the statistic BT SSst among 90000 bootstrap res-
amples yielding a p-value of 0.0042, and rank the observed value of Tt among all
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Figure 4.9 Estimates of the spatio-temporal K-function (K(r,¢) — 27r’t) for Tor-
nadoes in Tornado-land using Ripley’s isotropic edge correction. Up (blue): cold-
season K-functions. Down (magenta): warm-season.

possible outcomes, (%8) /2 =92378, yielding a p-value of 0.01514, so in both cases

the tests give significant p-values

To further analyse the dependence of the results on the upper limits, we

proceed to vary these limits and obtain the corresponding p-values. For the
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spatial bounds, we range ry from ro = 3.13 degrees (ro = r*), to ryp = 9.39 degrees
(ro = 3r"), and the temporal bounds 7y, from 7y = 53.99 days, (1o =) to 7o = 161.99
days (7o = 3t*). The two tests based on the statistics BT SSs; and T, were carried
out and the associated p-values are shown in Figure 4.10.
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Figure 4.10 Empirical p-values of both the permutation and Diggle’s tests as a
function of the two upper integration bounds ry and ¢y of BTSSy; and Ts;. Results
based on 99999 bootstrapping resamples and 92378 (all) permutations.

Interestingly, both tests give somewhat significant p-values, and we may reject
the null hypothesis regardless of the upper limits for the tests. So we can conclude
that there are significant structural differences between the tornado cold-season
and warm-seasons, meaning that the sources of spatio-temporal variation of
interaction do change from one season to another, even though the number of
tornadoes is much larger in the warm-season.

To take the data analysis a little further, it should be noticed that in the applic-
ation of the tests, to avoid the loss of mass, we shift the data in the subsets together
according to each season. However, for the estimation of the spatio-temporal
inhomogeneous K-function, shifting times together creates an interpretation
problem, because for instance, we consider any tornado happened in 30 August
2015 as one day apart from those happened on 1 March 2016. In order to avoid
that strange neighbour tornadoes in time, one should estimate the K-function
in temporal stripes corresponding to a season. The K-function estimates on the
stripes are then pooled over all stripes from one season in each tile, where the
weights are the number of tornadoes in that stripe in the respective season and
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tile. We can perform the permutation test by using that pooled means. Only
stripes with more than 30 points are included in the test, with upper integration
bounds ry = 3.13 degrees and 7y = 54.00 days, the permutation test yields a p-value
of 8.66 x 107>, The results for using several upper integration bounds are depicted
in Figure 4.11. The difference between K-functions for cold and warm seasons
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Figure 4.11 Empirical p-values of the permutation tests as a function of the two
upper integration bounds of Ts;. The permutation test is performed by using
pooled K-functions over all temporal stripes from one season in each tile. Results
based on 92378 (all) permutations.

was statistically significant, no matter how the spatial upper limit was chosen.

4.4 Discussion

The statistical framework we have adopted here corresponds to a set of extensions
of spatial point process techniques to spatio-temporal point processes. We have
divided the point pattern of occurrences of tornadoes in the U.S. in two seasons
(cold and warm) to proceed to the comparison of the patterns in a structural
(interaction) level through the partition of the spatial region into tiles.

In the first place, it is important to note that, strictly speaking, the Euclidean
distance used for the calculations involved in the geometry of space is not strictly
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fair. Although tornado-land is not particularly a huge land region, all our cal-
culations are based on long-lat coordinates as we have highlighted in Section
4.2. For a more rigorous approach, we should be aware that Earth is a spaces
with curvature, where straight lines should be replaced by geodesics. Thus we
could use spherical trigonometry and replace the Euclidean distance by the great
circle distance, which is the shortest distance between points u; and u; on the
surface of the Earth measured along a path on the Earth’s surface (Deza and
Deza, 2009). It is the length of the great circle arc, passing through u; and u,, in
the spherical model of the planet. Another interesting question for further study
would be to investigate how the analysis is affected by different projections of the
data.

We have focused on reports of tornadoes rather than their actual locations.
These reports could have some kind of noise that is difficult to control in practice.
According to the Storm Prediction Center, tornado dataset has gone through
many changes over the years. The source data ingested into the database are
widely varied and leads to many questions about the precision and accuracy of
the location data. Nevertheless, the reports have been vastly improved in matters
of precision and automation since 1995 where reports are made through sophist-
icated technological tools. Handling of such noise would be a very interesting
topic for future research since there is not much done in this area in point process
context.

We have implemented a new estimator for non-separable first-order intensity
function. The use of separable estimators for the first spatial-temporal order
intensity is very common in the literature (Diggle et al., 1995; Gabriel, 2014;
Gabriel and Diggle, 2009; Gabriel et al., 2013). However, neither the verification
of this assumption nor its compliance in practice are trivial at all and if the data
were separable, the analysis would be much easier. Separable intensities are a
special case of the more general non-separable ones, so a non-separable estimator
is always suitable in this context even though it could overfit the data somewhat
if the true intensity function is separable.

Although a Monte Carlo test could be developed to verify that the assumption
is fulfilled, it must be taken into account that the separability hypothesis is a
composite hypothesis (i.e. when it is necessary to estimate parameters), this
makes that the Monte Carlo inference has to be made through a nested two-
stage test which performs well for composite null hypotheses as it is described
in Baddeley et al., 2017. The test could be developed as follows. Let X be a
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spatio-temporal point process with unknown intensity A (u,v). The hypothesis
0 A(u,v) = A1 (0)A2(v),

for two positive and measurable functions 4,(-) and A,(-) and for all (u,v) e W x T,
is composed. A test statistic F can be given, for example, by an f-divergence
(Kullback-Leibler divergence or Hellinger distance) between the estimated non-
separable and separable intensities AN5(u,v) and 15(u,v) = 1; (w)A,(v) respect-
ively. For a Monte Carlo test, given the observed pattern X, we may estimate F
simulate n point patterns {X;}! , with separable intensity. For each simulated
pattern X; we estimate the separable and non-separable intensities and simulate
m patterns {X;;}_, with such separable intensities. We calculate F;; for each
pattern and obtain the Monte Carlo p-value of the test as

L4y 1 1+Z;”:nlli[fij2m <F

n+1

p=

The test of nominal size a rejects 77 if p < «.

It is demonstrated that kernel selection is not as determinant as the band-
width. Research in this field is still ongoing and there is no unique best recom-
mendation. Although in the spatial context there are many available methods
(Baddeley et al., 2015; Diggle, 2013; Illian et al., 2008), in the spatio-temporal
context bandwidth is a subject not enough explored in the literature. In the
paper we have used a rule of thumb implemented in spatstat package (Baddeley
et al., 2015) for the spatial kernel. For the temporal part, we have used the
optimum bandwidth of Sheather and Jones (1991). It should be noted that all
the conclusions made throughout this paper depend on the estimated intensity
function and therefore, on the choice of the bandwidths.

We have set the spatial region in such a way that we focus on a middle region
with the largest number of tornadoes per area, see Fig.4.3. This selection of the
region is motivated by the strong inhomogeneity shown in the complete map of
the U.S. Considering the whole region for the analyses can lead to errors in the
tests due to the huge variance of the descriptors.



112 Spatio-temporal analysis of tornado reports

Appendix

Theorem 5 Let E =W x T C R? x R be a spatio-temporal window and X a spatio-
temporal process observed within E. Multiple points are not allowed, so each point
of R? x R occurs at most once. Let X be a spatio-temporal binomial process, i.e., a
stationary point process with a fixed number of points n, then

Var, (R (r,t) IN(E) = n) o< — . (4.14)

Sketch of the proof. We mainly extend the proof provided by Ripley (1988) for
the planar case by including time as an additional dimension and making use of
his numerical approximations. Let & = (u;,v;),&; = (u;,v;) € Xfori,j=1,...,n. Con-

sider the estimator of K (r,¢) given by (4.4) for a constant spatio-temporal intensity

A =n/|E| and isotropic spatio-temporal edge corrections ¢5(u;,u;)e™ (v;,v;) = ege;IJ‘,
then
N |E|
K(rt) =

s 21 ;= || < ] 1[Jvi—v;| <t] efels. (4.15)
t#J

Note that we can write (4.15) as

5 E
R (1) = s T 1 [l —will < 7)1 [vi— vyl <] 3 (eSel +eSie).

Let

v (&,8) = 1]llwi—wy|| < r] 1 pvi—vj| <1] el = w® (wi,u;) wT (vi,v))
and
0 (&,&) =3{vw(&.&)+v(&.&)}-

Note that ¢ (&,&;) is a symmetric function by construction thus (4.15) becomes

b E]

K(rt)= Y. (4.16)

E]
o L0 68 = oy

Then, using factorial moment measures a®) (see e.g. Daley and Vere-Jones, 2003),

= [ oEmda® &) (417)
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and

E(?) = | 9Eme(E0)da®(En.( 0)
E4
+4 [ 0Eme(E.0)da (€m0
2 [ 0 da (&),

Let v; denote the Lebesgue measure on R?. Then for a spatio-temporal binomial
process,
a® =n(n—1)-- (n—k+1)|E| *vyp)

and we define

s= [ 0(&.magan.

si= [0 Emo@0uEno) = [ ([oEnae) an

and

$:= [, 0(&m)’dzdn.

For a binomial process,

o . _ 2
Var, (R(rt)) = 2”n3 : (2(”|E|2>Sl - (2”|E’§)S +sz). (4.18)

Since K(r,t) is an unbiased estimator for K(r,7) (see Gabriel, 2014), then we have

=5 (o) = e )

where E, is the conditional expectation given n events in the region E. So S =
2nr2t|E|.
For further cases we restrict our attention to the main terms of the integrals

in order to simplify the proof. Define

E'=W*'xT*={ueWlb(u,r) CW}x{veT|bvt)CT},



114 Spatio-temporal analysis of tornado reports

where b denotes, indistinctly, a ball in R? or R. Note that in W*, ¢ (u;,u;) = 1,
and the same happens with ¢! (1;,7;) in T*. Note also that

E=WxT =(W*xT*UW*x (T\T*)U((W\W*) x T*)U((W\W*) x (T\T*)).

Following Ripley (1988) we assume that the boundaries are straight. Then
v(W*) =~ |W|— |dW|r, where |0W| stands for the perimeter length of W. For the
time, and considering that we have only two points and that the correction only
assigns 1 or 2, we assume that v(7*) ~ |T|. Note that these conditions imply that
we can avoid the further integrals in every region related with 7\ T* in E.

For S; we have

51 = /E</E¢(§,n)dé>2dn
_ /E</E¢(§,n)d§—2nrzt>2dn

+4|E|7rr2t/Ez¢ (€.1)dEdn — |E| (2mr1)’
= 4n’r*P|E| +/E (/E(p (E,m)dé& —27rr2t)2dn,
and (---) is non-zero only when u ¢ W* or v ¢ T*, so
S = 4n*r*?E| +/ / (---)*dudv
T JW\W*

2 2
~ 4n2r4t2|E|+4n2r5t2\aW|yTy/ (/ x(h,s)ds—l) dh
0 w

]8W\|T|r>

~ 4n*rrE| (1 +0.0066 |

where y(h,s) = w5(

we have

uy,s) for a point u;, distance 4 from the boundary. Also for S,

0]
[\)
I
=

2 E2 E2

/ vS(u,s)duds / v (v, 1)dvdl
w2 T2

1 / S (u,s)yS (s, u)duds / w0, )T (1, v)dvdl.
w2 T2

¢>(§,n)2d§dn=%/ w(é,n>2d€dn+%/ w(E,n)w(n,&)dédn
S

=

+
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Since yS(u,s) = 1 unless s is within distance 2r of 9W, and taking into account
the approximation of the temporal component, we have that
Sy = 24|T|{mr*(|W|—2|0W|r)

1 2
—|—7tr3|8W|<1+/ x(h,s)dsdh+/ x(h,s)x(s,h)dsdh)}
0 0

|8W|]T|r)

~ 4nr’t|E| (1 40.305
E|

Finally, collecting the pieces for S, S;,S; and from (4.18) we have

Var, (K (r,t)[N(E) =n) ~ ﬂ;lEl [1 +0_305% +0_0414n%] 0
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Abstract

Factorial experiments allow for evaluating combined effects of two or more experi-
mental variables and their interactions. Here we are interested in factorial exper-
iments when the observations are spatial point patterns rather than real-valued
random variables. In particular, we develop a number of random permutation
techniques to test main effects and interactions in a two-way ANOVA design
under orthogonal experiments, where the observations correspond to observed
functional second-order summary statistics such as Ripley’s K-function. We con-
duct simulation experiments in order to demonstrate the statistical performance
of the new statistics that we propose for the analysis of variance. Our method
works well compared to existing methods.
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Our work is motivated by the analysis of the spatial distribution of bubbles under
three specific frother concentrations and three levels of volumetric air flow, in a
flotation experiment. We analyse if there are significant main and interaction
effects of these two factors, keeping all other physico-chemical and technological
variables fixed when explaining the spatial patterns of bubbles.

Keywords Bootstrap hypothesis testing; Flotation bubble data; Frother concen-
tration; K-function; Replicated point patterns; Volumetric air flow

5.1 Introduction and data

The cooper production process consists of a large number of steps that allow to
obtain cathodes from a mineral deposit. Once the ore has been extracted from a
mine, it passes through successive stages of a comminution process. In the case of
copper oxide ores, the subsequent processing steps correspond to hydrometallurgy
and electrometallurgy. For sulphide ores, after the comminution, the processing
requires steps of concentration by flotation and pyrometallurgy (Schlesinger et al.,
2011, Chapter 3).

The flotation process, as part of the production chain of copper sulphide ores,
allows to separate mineral particles from non-metallic gangue particles. This is
achieved by taking advantage of differences in hydrophobicity of the two species:
the comminuted material is deposited in reactors (flotation cells) forming a pulp
with water and some reagents. The particles of mineral which adhere to air
bubbles and float towards a foam phase generated in the top of the cell, are
recovered by injecting air bubbles (Schlesinger et al., 2011, Chapter 3).

Contrary to sulphide minerals, the non-metallic gangue particles are not
hydrophobic, so they are not collected by the air bubbles. It should be noticed
that the flotation recovers gangue mineral found in mixed particles, i.e. particles
with both mineral and gangue. From the foam phase, sulphides rich particles are
separated from the non-metallic gangue, which is removed as part of the pulp
in the bottom of the cells. The process is controlled by using several reagents:
lime to regulate the pH, collectors favouring bonding stability bubble-particle,
and foam which favours the formation of smaller air bubbles, which are the most
efficient in the mineral particles collection.

In order to quantify the hydrodynamic performance within flotation cells, a
series of so-called gas dispersion characteristics are defined, namely, gas holdup
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(volumetric fraction of gas in a gas-slurry mix, &,), superficial gas velocity (volu-
metric gas flowrate per cross-sectional area of a cell, J;), bubble size distribution
(BSD, characterised by a random bubble diameter d;), and the derived parameter
bubble surface area flux (S, = 6J;/d),, where d, is usually the Sauter mean dia-
meter d3;) (Gémez and Finch, 2007; Nesset et al., 2006). S}, represents the flux of
bubble surface area per cross-sectional area in the flotation machine, and it is re-
lated to the flotation rate constant (Gorain et al., 1997, 1999; Hernandez-Aguilar
et al., 2004).

The bubble size distribution is a very complicated variable to be measured
(Kracht et al., 2013). One of the sampling techniques for measuring it is the
sampling-followed-by-imaging (Gomez and Finch, 2007 and Miskovic and Luttrell,
2012). Some further approaches have been applied in the literature to analyse
BSD by using methods from stochastic geometry such as Boolean models (Emery
et al., 2012; Kracht et al., 2013). These approaches lead to calculate, for instance,
the diameters d3, and the BSD directly from the binary image by taking advantage
of the assumption of complete spatial randomness, which is usually taken for
granted.

High resolution images (170 pixels/mm) were recorded by using a Nikon D-
5100 photo camera with a macro lens of 60mm, the camera was adjusted manually
always with the aim of achieving the same dimensions in all the photographs of
the experiment. Thus images were obtained with a rectangular box of exactly the
same size for each pattern with dimensions 29.0mm x 19.2mm. Figure 5.1 shows
two images of bubbles generated in a flotation machine.
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Figure 5.1 Two images of bubbles in a flotation machine.

When the bubble images have been successfully recorded through the proced-
ure described above, they have been processed through classic image analysis
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(Kracht et al., 2013). The analysis of such images is performed to identify bubbles
and some characteristics associated with them such as the location of their
centroids, diameters, areas, etc. Our dataset consists of 54 images containing a
total of 8385 floating bubbles. The images of bubbles can be regarded as spatial
point patterns where locations are the centroids of the bubbles and where we
can consider the further characteristics as quantitative marks. An example of a
typical bubble point pattern is displayed in Figure 5.2. Flotation cell performance
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Figure 5.2 Two point patterns of bubbles in a flotation cell where points are
centres of bubbles (left) and the bubbles size is attached to centres locations as
marks (right).

is strongly dependent on a variety of important operating and design factors.
For instance, a proper combination of gas rate and bubble size is required to
provide a considerable gas holdup in the flotation pulp (Miskovic and Luttrell,
2009). The volumetric air flow (Lmin~') and the specific frother concentration
(ppm) are two factors that could influence the physical properties (Gomez et al.,
2016; Laskowski, 2001).

We are interested in these two factors that are potentially influential in the
spatial distribution of the bubbles. A relevant question is if there is a significant
interaction between volumetric air flow and frother concentration, keeping all
other physico-chemical and technological variables fixed to explain the spatial pat-
tern. Thus in the dataset we have three frother concentration levels 5ppm, 10ppm

l'and

and 15ppm, as well as three volumetric air flowrate levels SLmin~!, 8L min™
10Lmin~!. Additionally, we have 6 replicates (point patterns) at each combination
of levels of such factors. The treatment combinations of the experiment as well
as the observed bubble point patterns are represented in Figure 5.3. In classical
statistics, factorial experiments allow to evaluate the combined effects of two or
more experimental variables. The information obtained in this type of experi-
ments is much more complete than that obtained through a series of single-factor
experiments, since factorial experiments allow the study of the interaction of

the factors. The problem we are facing here is considering factorial experiments
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Figure 5.3 General arrangement for patterns of locations (centres) of floating
bubbles from three concentration levels of certain type of frother and three
volumetric air flow levels.

when the observations are spatial point patterns rather than numeric random
variables.

The analysis of this type of experiments when the observations are not quant-
itative variables is in its infancy, specially in the field of point processes. A few
authors have treated the observations in an experiment when they are point
patterns (Baddeley et al., 1993; Diggle et al., 1991, 2000; Hahn, 2012; Hahn
and Vedel Jensen, 2016), and their studies have concentrated mainly on the
comparison of several groups of patterns (a single factor). Some other authors
have included, for example, non-spatial variables or mixed effects in their models
(Bagchi and Illian, 2015; Landau and Everall, 2008; Myllyméki et al., 2014).
Finally, only a few works have been focused on factorial experiments, for instance
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Ramon et al. (2016) have tried to extend these methods to the case of two factors
but from a very practical approach.

The purpose of this paper is twofold. One is to develop a set of techniques
that help us to answer the set of questions coming from the bubble data of the
flotation experiment. The second one is to provide a methodology for the analysis
of variance in the case of two factors in balanced experiments when observations
are point patterns. Section 5.2 presents a necessary background. Section 5.3
develops the methodology for factorial experiments for spatial point patterns. In
particular, we provide a new set of Fisher’s test statistics as well as some new
residuals scheme useful for inference. The bubbles dataset is analysed in Section
5.4. The paper ends with a discussion.

5.2 Background and Set-up

Throughout this paper, we assume that every subset A of R? is measurable and
any function f defined on R? is integrable, see Daley and Vere-Jones (2003, 2007)
for details. Let T be a finite interval, and ||f|| be the L>-norm of a measurable

function f(r),r €T, i.e.
Wfll=1/ [

Provided that || f|| < oo, f is said to be a squared integrable function and it belongs
to the Hilbert space formed by all squared integrable functions over 7. We use
the notation || - || indistinctly to denote the Euclidean vector norm and the L>-
norm. Let y(r),r € T be a stochastic process with covariance function y(r,s),r,s € T.
Consider the two-dimensional Euclidean space R”. A planar point process W C R?
is a random, finite or countable collection of points X with no accumulation points.
A realisation X of a point process can be considered as a finite subset {u;}! , CW.
Let N(A) be the number of points of X in A C W. For real functions f defined on
R2, we have ¥ f(u;) = [ f(u)N(du).

5.2.1 Second-order summary statistics

We assume here that the point processes are stationary, so we use Ripley’s
K-function (Ripley, 1977) in its homogeneous version, given by

H(r) =B

eX
1 u

Z 1{|ju—u| <r} , (5.1)

u;eX




5.2 Background and Set-up 123

provided that this value does not depend on the choice of the location u (see e.g.
Baddeley et al., 2015; Mgller and Waagepetersen, 2004) and where ||-|| represents
the Euclidean distance and A is the first-order intensity of X. In this context we
set a/0=0and r € T = [0,ry]. For homogeneous Poisson processes (Diggle, 2013),
the K-function is K(r) = nr2. Note that the the homogeneous Poisson processes
are the archetype of complete spatial random processes (hereinafter CSR). A
natural estimator for the K-function is given by

A | -

K(r)= > H||lwi—u;| < W), 5.2
)= g L M= et 52)

where |- | is, in this case, the set size, e¢(u,v;r) is an edge-correction weight (see
e.g. Baddeley et al., 2015; Ripley, 1988), and 2 is an estimator of the first-order
intensity function; A2 is usually estimated by

rn nn—1)

R (5.3)

where n is the number of points of the pattern X.

5.2.2 Pooled estimators

If a summary-statistic function, usually given by a ratio Y (r) = E[U(r)]/E[V (r)],
is calculated for a set of n independent observations of a point process X, then,
according to Baddeley et al. (1987, 1993, 2015) (and references therein), the
pooled summary-statistic across replicates, which is unbiased for Y (r) and has
minimum variance (given the denominators V;(r)), is the weighted average of the
individual ratios with weights proportional to V;(r), i.e.

_ i(r)
ZiVi(F) ZiVi(r)

>

P(r) = Y. Ui(r) _ Y. Vi(r)

If our summary-statistic is Ripley’s K-function, the estimator given in Eq. (5.2)
using the isotropic or the translation edge-correction factors, may be seen as
the ratio of two estimators; the numerator is a sum over all pairs of data points
and the denominator corresponds to the number of pairs of distinct points, i.e.
Vi(r) = n;(n; — 1) where n; is the number of points in the ith point pattern (see e.g
Baddeley et al. (2015)). Thus the pooled K-function estimator for a sample {K;}",
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coming from m point patterns {X;}" |, is given by
1 m
=— Z e, (5.4)
a) :

where
a)i:n,-(ni— 1), (55)

and . = Y ni(n; —1). For the sample covariance function §(r,s) we have

#(r,s) = Cov{R(r), R (s)} = —— ¥ [Ri(r) = R(r)] [Ri(s) =R(5)], rseT. (5.6)

i=1

5.3 Factorial experiment procedures for point pat-

terns

In this section we extend the methodology of ANOVA procedures for general
functional data provided by Zhang (2013), to the particular case of functional
descriptors associated with replicated spatial point patterns.

5.3.1 One-sample tests

We start with a simple example meant to motivate our further analysis. Suppose
that we have a functional sample of estimated K-functions {K;}” , coming from
m point patterns {X;}" ,, which in turn, are realisations of the same underlying
point process X with unknown K-function .7 (r). In this case we want to test the
following hypothesis

o H (r)=Ko(r),reT versus J4:.% (r)#Ko(r), forsomereT, (5.7)

where Kj(r) is some known function by virtue of properties of the underlying
process X. For example, if we want to test the hypothesis of complete spatial
randomness of the point process, we could extrapolate the technique used by
Diggle (1986) (improved in Diggle, 2013, p.77), and exploit the fact of having

2

replicates. Since in the Poisson case Ky(r) = wr°, we can then define the following

statistic to test (5.7)
A(r)=+/m[K(r) - nrz} , refT, (5.8)
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as a pivotal function, where K(r) is given in Eq. (5.4). A L*>-norm-based test uses
the squared L?>-norm of A(r) as its test statistic

2
—m [ LR - (5.9)

D, =
m Tr2

r

I

where the integration domain is some compact set T C (0,r]. Note that in this
statistic, the term 1/r? is thought to stabilise the variance of K;(r), which is
roughly proportional to r> (Ripley, 1988) in the case of CSR patterns. However,
in the general case, it is analytically intractable so we can use the variance
62(r) = §(r,r) of the sample of K-functions as an adjustment factor and build a
Fisher-test type statistic (in the sense of Hahn, 2012), as follows

1A[]>

Fn =111 (5.10)

5.3.2 One-way ANOVA

In the literature of point processes, some procedures have been developed to
compare the expected values of second-order summary statistics of two or more
samples or groups (see e.g Baddeley et al., 1993; Diggle et al., 1991, 2000; Hahn,
2012). To observe in a natural way these comparisons, we can consider that the
different samples of point patterns are grouped by a categorical variable defined
as a factor in classical linear models, whose different values are called factor
levels. In this section we try to give some slight modifications to the statistics
presented in the literature and establish a unified notation.

We assume that we have m independent samples (groups) {K;;},j=1,--- ,mj,i=
1,---,m, with {#}", the unknown group mean K-functions and {y} are the
covariance functions. The main idea is to check this null hypothesis

I H(r)=J(r) == Ju(r), reT. (5.11)

The group weighted mean function of the m groups is given by

Ki.O’) = CO,'jI%,’j(I"), i=1,...,m, (5.12)
1

1
;. o
where the weights w;; are defined as in Eq. (5.5). Note that we could make
the convenient assumption of equal covariance functions between groups, and
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estimate the covariance jointly. However, for practical purposes and due to the
delicate structure of the variance function of Ripley’s K-function (Ripley, 1988),
we directly estimate covariances separately based only on each group (sample).
Note also that under the independence of the patterns, the means of the groups
remain independent. We may define the pointwise between-subject variation as

mi [Ki.(r) — K.(r)]7, (5.13)

-

SSH,,(r) =

i=1

where K.(r) denotes the overall mean function of the m groups, i.e.

R.(r)= wi Y K (1), (5.14)
i=1
where I
(0) :Zznij(nij_l)- (5.15)

i=1j=1

In this case we can define a L>-norm-based test through the test statistic given by

Dm—/TSSH dr —Zm,/ K..(r)]zdr.

Notice that the statistic D,, is Diggle’s statistic (Diggle et al., 1991, 2000). Simil-
arly, we can define a statistic that takes into account the variability of particular
groups in the sample, i.e. where the patterns are observed prior to any treatment.
Such statistic is the pointwise within-subject variation and it is given by

SSE,(r) = Y, (1 —mji/m) &(r).

=1

~.

We could include the last term into a Fisher-test type statistic in order to include
the sampling variations of the variance functions 6;,i = 1,...,m. In this case
Fisher’s statistic is

J7 SSH,,(r)dr

=" "SSE,, (rdr

(5.16)

5.3.3 Balanced two-way ANOVA

We have seen in the previous section a model for the analysis of variance with one
factor whose categories are used to classify the actions of a spatial descriptor of a
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point pattern (in our case the K-function) in groups whose functional means are
compared. In this section, the model is extended to include two factors instead of
only one.

This inclusion is far from trivial, the problem of comparing groups of means of
functional descriptors induced by two factors is not solved by simply extending the
model of one factor. It is possible that both factors are fixed, both random, or one
fixed and one random, and it could be the case that both factors act independently
or that the combined action of two factors enhances or inhibits the action of each
other in the response function. In the latter case we say that there is interaction,
and we might consider an interaction model. Note that this interaction is not the
interaction between points within a point process. When every category of one
factor co-occurs in the design with every category of the other factor, then we talk
about a crossed model or a factorial model. A first approach of this model was
proposed by Wilson (1998) by using Ripley’s K-function and it was later applied
by Ramon et al. (2016). Throughout this work we focus on a factorial model,
involving only two factors.

Suppose that factor A has a levels and factor B has b levels. Each realisation
or replicate contains all ab factorial combinations. In general, there are m;;
replicates in each level combination, even though the analysis for unequal {m;;}
becomes much more complicated than for equal {m;;}. In this paper we assume
the same number of observations in the cells, i.e, m;j =cforalli=1,...,a and
j=1,...,b,. We have a functional descriptor sample

{Kiyli=1,...,a,j=1,....bk=1,....c.
The functional observations can be described by the model
Riju(r) = Aj(r) + e(r),r T, (5.17)

where ¢ (r) is a random error with mean zero. Note that in this case the
covariance functions are supposed to be different across the level combinations
and the functional samples are assumed to be independent. Therefore, model
(5.17) is a heteroscedastic two-way ANOVA model.

For a two-way ANOVA, the mean %;;(r) can be expressed in the form

Hii(r) = 2 (r) +t(r) + Bj(r) + (tB)ij(r), i=1,...,a,j=1....,b,reT, (5.18)
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where J#,(r) is the overall mean effect, 7;(r) is the effect of the ith level of the
row factor A, B;(r) is the effect of the jth level of column factor B, (tf3);;(r) is the
effect of the interaction between 7;(r) and 8;(r). Both factors are assumed to be
fixed, and the factor effects are defined as deviations from the overall mean. If
nothing more is stated about the decomposition (5.18), the components of the
decomposition are not uniquely defined. Some restrictions over the decomposition
are required (see e.g Zhang, 2013). We set

Zfi ZBJ Z TB)ij(r) = Z(Tﬁ)ij(r) =0

So, hereafter, we limit our discussion to equi-replicated orthogonal ANOVA. We
are then interested in testing equality of factor effects (hereafter treatments), i.e,
that there are no treatment effects in both row treatments

A n(r)=...=1(r)=0,reT,
A2 1(r) #0, for some i, and for some r € T, (5.19a)

and column treatments

A Bi(r)=...=Bp(r)=0,r T,
HE B(r) #0, for some j, and for some r € 7, (5.19b)

as well as testing if the main-effects are simultaneously zero,

A8 1(r) =0 and Bi(r)=0 for all i, j, and for r € T,
8 . at least one 7;(r) or Bj(r) #0, for some r € T. (5.19¢)

Finally, we could be interested in determining whether row and column factors
interact, so testing

A (TB)ij(r) =0 for all i, j, and for r € T,
! : at least one (7f8);(r) # 0, for some r € T. (5.19d)

The estimators of cell means and variance functions are well defined whenever
¢ > 1. We consider the same pooled estimators defined in Section 5.2.2 including
factors and their levels, so that we have cell weighted mean and covariance
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functions given by

Kij (r) =

Zw,JkK,Jk( r), i=1,...,a,j=1,...,b, (5.20)
a),] o

and

ZL: Kiji(r) — Kij.(r)] [Kiju(s) — Kij.(s)] (5.21)

Yij(r,s) =

where the weights o;; are defined as in Eq. (5.5), and the number of points per
pattern is denoted by 7;x, where k is the individual within the ij cell (sample) and
i=1,...,aand j=1,...,b,and w;;. = Y5_, n;jx(nijx — 1). As in the classical ANOVA
two-way analysis, we define K;..,K.;. and K... as the corresponding row, column,
and grand weighted average K-functions. Thus,

_ 1 2 _
Ki.(r) = o Z ®;;.Kij.(r), i=1,....,a,
i j=1
_ 1 ¢ _
Kj(r) = FZ(DUKU (r), j=1,...,b, (5.22)
J =1
i} 1 & & _
K.(r) = —Y ) oK),
Sy |
where
b a a b
;.. = Z w;j., 0. = Z Q. and Q... = Z Z i j- - (523)
j=1 i=1 i=1j=1

From (5.22), the estimators of the general mean, main and interaction effects
are then

(5.24)

(tB),;(r) = Kij.

Analogous to the classical functional data analysis, let us consider some
fixed r € T and let SST(r) be the pointwise total-sum-of-squares, SSA(r),SSB(r)
are the main-effect pointwise sum-of-squares, respectively, and let SSI(r) be
the interaction-effect pointwise sum-of-squares. Finally, let SSE(r) denote the
pointwise sum-of-squares due to errors. Following the classical balanced two-way
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ANOVA, we can define the following estimators

SSA(r) = bcé[ i (r)—K..(r)]* = bci:l 2 (r),
b b

SSB(r) = ac Z K j.(r)—K..(r)]* = ac Z Jz(r),

a ]:bl . a b (5.25)
SSI(r) = Zi Z}[Ku (r) = Ki..(r) = K j.(n) + K. ()] = Czi Z] (7B)i(r),

i=1j= i=1j=

a b ¢ a b
SSE(r) =Y. ¥ ¥ [Kix(r) =K (] = (c= DY Y. 6%().

N
]
~
]
=
i
L
-
]
L
~
[N

The corresponding L*>-norm-based test statistics for our null hypotheses JZA, 8, A8
and ] respectively, are

7'2 i—1 }"2
s [ SSB,(r) b Br(r)
D—/T 2 d—acj_ztl/T 2 dr,
1 (5.26)
DB — /T [SSA(r) +SSB()]dr = D4 +D¥  and
—2
SSI, a b (Th);(r)
DI:/T rz(r)dr:c;Z/T ,,2] dr.

Similarly, for the Fisher-test type statistics for 7, 8, #8 and ], respect-
ively, we have

FA JrSSA(r)dr/(a—1)
[7 SSE(r)dr/(ab(c—1))’
FB_ J7SSB(r)dr/(b—1)
[ SSE(r)dr/(ab(c—1))’
AB _ J7 [SSA(r)+SSB(r)|dr/(a+b—2)
[ SSE(r)dr/(ab(c—1)) ’
g _ JrSSIndr/((a—-1)(b—1))
[ SSE(r)dr/(ab(c—1))

(5.27)
F

Remark 6 Note that the entire previous theoretical approach can be reproduced in
identical conditions by replacing Ripley’s K-function with its respective weighted
mark version. Undoubtedly, the variance in that case becomes increasingly difficult
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to be controlled since the distribution of the marks implies an additional source
of variation. However, the inclusion of marks constitutes a much more realistic
treatment whenever the marks are dependent from locations. See further comments
in Section 5.5.

5.3.4 Random permutation tests

The null distribution of our test statistics is not analytically tractable in any of
the cases. We assume that the observed K-functions come from the statistical
model (5.17). In order to determine the null distribution of our test statistics,
we use the so-called the bootstrap based on residuals method. This method was
proposed by Efron (1979), and has been applied in the point process context by
e.g. Diggle et al. (1991).

Many permutation strategies can be applied for tests for individual terms in
classic ANOVA designs. Anderson and Braak (2003) provide a complete guide to
build accurate and approximate permutation strategies for all terms in a classic
two-way ANOVA. Following this motivation, we consider inference through the
choice of several types of exchangeable units under the null hypothesis (residual
in our case of approximate permutation tests).

We provide results of Monte Carlo simulations to show the empirical level
and the power of our tests. We consider some standard cases, namely Poisson
(Complete Spatial Random model), Cluster (Aggregation model) and Inhibition
(Regular model) processes. The parameters are chosen according to our questions
related to the bubbles dataset, i.e. an equi-replicated design with two factors
with three levels each one, equal observation windows (unit square window
[0,1] x [0, 1]) and small sample sizes per level of each factor c = 6. We are interested
in those situations in which the overall hypotheses hold true: the underlying point
processes have the same K-function, meaning they have the same approximated
spatial distribution and such distribution is not affected by the levels of factors.
Recall that we are investigating the second-order behaviour, i.e. the patterns can
have different intensities. The integrals are numerically approximated by using
the trapezoidal rule. Additionally, we set T = (0,r9] = (0,0.15] according to the
results obtained by Hahn (2012). We perform each value through 1000 random
permutations of observed stationary K-functions estimated by using Ripley’s
edge-correction. We consider several scenarios to the null hypothesis in order
to verify the performance of the test under homoscedastic and heteroscedastic
cases.
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Poisson model We first consider complete spatial random patterns (Poisson
patterns) with some configurations of homoscedasticity and heteroscedasticity
given by the intensity of the process in each cell of the design, such configurations
are shown in Table 5.1.

Homoscedastic configurations Heteroscedastic configurations

50 50 50 50 50 50

SConfig.1 A= 50 50 50 DConfig.l A= 100 100 100
50 50 50 150 150 150

100 100 100 50 100 150

SConfig.2 A= 100 100 100 DConfig.2 A= 50 100 150
100 100 100 50 100 150

150 150 150 60 120 180

SConfig.3 A= 150 150 150 DConfig.3 A= 80 140 200
150 150 150 100 160 220

Table 5.1 Arrangement of independent configurations of cell intensities in a
two-way ANOVA design in the Poisson case.

Hard-core and Cluster models We also consider point patterns coming from
Matérn hard-core and cluster point processes (see e.g Chiu et al., 2013 and
references therein) with parameters leading to different degrees of regularity
or clustering. Both types of point processes come from a parent Poisson point
process. In this case we use a Matérn hard-core obtained by dependent thinning.
The points are first marked with independent, identically distributed random
numbers and all points that have a higher mark than any neighbours (further
points) within the hard-core distance & are removed.

On the other hand, the Matérn cluster point process consists of independent
clusters of daughter points around each parent point. The numbers of daughter
points per cluster are Poisson distributed with mean u, and the points are
independently uniformly scattered in the ball with centre in the parent point
and radius r. The parent points are not included in the observed point pattern.
Some realisations of these two processes and CSR are shown in Figure 5.4.
The bootstrap tests are briefly described as follows. We take model (5.17) as a
starting point. Let P¢(r) be the unknown distribution of ¢;;(r), such distribution
is assumed to be centred at zero. We estimate P.(r) as the sample probability
distribution of the residuals & ;(r) defined as
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Figure 5.4 Sets of three independent realisations of Matérn hard-core, Poisson
and Matérn cluster point processes, with intensity A = 100 on a unit square.
Model parameters: hard-core radius (1) 2 = 0.02, (2) 2 = 0.05 and (3) 7 = 0.08;
mean number u of points per cluster and cluster radius » (1) u = 1,r =0.1, (2)
p=4,r=0.1,(3) u=4,r=0.05.

&i(r) = y/mijk(nip—1) [Kiju(r) — Kij.(r)]

i=1,...;a,j=1,....bk=1,...c.

(5.28)

Note that we can not construct an exact test since the assumption of exchange-
ability is not strictly satisfied, that is, the residuals are weakly correlated and
the correction factor \/n;jx(n;jx — 1) is motivated by the asymptotic approximation
of the variance of Ripley’s K-function for Poisson patterns where the number of
points has been observed (Ripley, 1988). We can calculate the statistics by using
the residuals and repeat this process a large number of times (by drawing at
random with replacement) so that we can obtain bootstrap samples that can be
used to obtain an empirical approximation of the (1 — «¢)-percentiles of our test
statistics.

For the interaction effect we also consider a more sophisticated version of
the residuals. Indeed, we use the model (5.18) to give a weighted version of the
residuals (as long as the processes are stationary)

A

é;jk(r) = nijk(nije — 1) [Kijk(”) —Ki.(r) —Kj*(r) +K~--(”)} )
i=1,...;a,j=1,....0,k=1,...c.

(5.29)



134 Factorial experiments for spatial point patterns

These residuals are meant to attempt to control for main effects and asymp-
totically approach the exact test because, although SSA and SSB are not kept
constant, variability due to A and B are estimated and removed by subtracting
weighted means.

We go further and propose some residuals to study the main effects. These
model-based residuals have been motivated by those referred already by Diggle
et al. (1991), although they have never been used in this context, not even in the
one-way case. The residuals are given by

gl (r) = \/nip(nije—1) [Kije(r) = Kie.(r)], (5.30)
i=1,...,a,j=1,....bk=1,...c,
for the row effect, and
&) = \fnije(nije—1) [Rije(r) = K j.(r)] (5.31)

i=1,...;a,j=1,....bk=1,...c,

for the column effect.

Level accuracy under the null hypothesis

The available methodologies for the analysis of variance in the context of point
processes are given by using D-type statistics, given in Eq. (5.26), whose null
distribution is obtained by permuting residuals proportional to & (r) for all ef-
fects (Wilson, 1998) or permuting residuals proportional to é;(jk(r) for interaction
effects (Ramon et al., 2016). Therefore, we first study the empirical distribution of
D-type statistics by permuting residuals &;;(r) and by using the simplest scenario
(Poisson) with configurations given in Table 5.1. The results are shown in Table
5.2. Unfortunately these test statistics show a poor performance in the homosce-
dastic case. As expected, we are also not doing better with the heteroscedasticity
From now on, we concentrate on the study of our proposed F-statistics with
several suitable residuals according to each effect. Indeed, Table 5.3 shows the
performance in the homoscedastic and heteroscedastic Poisson cases, and Table
5.4 shows the performance in the specific cluster and hard-core models. Tables
5.3 and 5.4 show much better performance even in heteroscedastic cases. It is
important to highlight the good performance of the test statistic F/ that measures
the interaction effect. This statistic is probably the most important in an ANOVA
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Sig. level Rejection Rates
D 0.01 0.05 0.10
SConfig.l DA 0.024 0.098 0.164
D®  0.037 0.109 0.189
DA% 0.050 0.140 0.209
D' 0.047 0.129 0.205
SConfig.2 DA 0.037 0.102 0.166
D®  0.038 0.109 0.191
DA 0.049 0.147 0.223
D' 0.040 0.141 0.237
SConfig.3 DA 0.035 0.109 0.170
DE  0.034 0.097 0.171
DA% 0.057 0.138 0.192
D' 0.055 0.132 0.099
DConfig.1 D* 0.056 0.164 0.272
D®  0.019 0.072 0.129
DA 0.061 0.175 0.278
D' 0.041 0.116 0.218
DConfig.2 D* 0.020 0.067 0.116
DB 0.060 0.169 0.276
DA% 0.062 0.177 0.261
D' 0.044 0.129 0.199
DConfig.3 D* 0.025 0.076 0.129
DB 0.047 0.133 0.219
DA 0.056 0.139 0.226
D' 0.051 0.153 0.237
Table 5.2 Rejection rates from replicated simulations of the true null hypothesis
of no differences amongst the samples of K-functions of two factors with 3 levels
and 6 replicates (point patterns) in each cell by using naive statistics given in Eq.
(5.26). The scenarios indicated in left columns come from configurations shown
in Table 5.1. Exchangeable units for a test were chosen according to the residuals
given in Eq. (5.28).

two-way design because if the interaction is significant, the interpretation of the
individual effects of the factors becomes incomplete and misleading. So digging
a bit more into the interaction effect, the performance of the test statistic F/ by
using the residuals (5.29) is shown in Table 5.5. Once again, the test statistic F’
shows an absolutely satisfactory performance (even in the case of heteroscedasti-
city). This shows that for the interaction both types of residuals are efficient and
robust against a moderate violation of the equality of variances.
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Sig. level Rejection Rates
F 0.01 0.05 0.10
SConfig.l1 F4 0.012 0.056 0.093
FB 0.013 0.056 0.098
FAB 0012 0.054 0.102
F'' 0.012 0.053 0.091
Sconfig.2 F4 0.018* 0.052 0.096 **
FB 0.013 0.053 0.103
FAB 0013 0.062 0.108
F' 0.013 0.057 0.111
Sconfig.3 F4 0.011 0.046 0.100
F® 0010 0.039 0.089
FAB0.014 0.044 0.087
F! 0.013 0.051 0.092
DConfig.1 FA 0.026 0.080 0.151
FB 0010 0.037 0.073* **
FAB0.030 0.078 0.133
F' 0009 0.063 0.116 *
DConfig.2 FA 0.004 0.031* 0.066* **
FB 0.025 0.088 0.165
FAB0.023 0.078 0.128
F' 0012 0.056 0.104 *
DConfig.3 FA  0.010 0.027* 0.068* **
F5  0.031 0.089 0.171
FAB0.024 0.087 0.148
F' 0011 0.051 0.100 *
Table 5.3 Rejection rates from replicated simulations of the true null hypothesis
of no differences amongst the samples of K-functions by using Fisher-test type
statistics including the degrees of freedom within the statistic. Exchangeable
units for tests were chosen according to the residuals given in Eq. (5.28). Values
that lie outside the 95% confidence interval for type I error, which has a binomial
distribution with parameters n = 1000, p = 0.01,0.05 and 0.1 respectively, are
indicated with no symbols in the case of violation of the three nominal levels, or
with ** in the case of violation of at most two nominal levels. Finally, * indicates
three good nominal levels.

* ¥ ¥ ¥

* ¥ ¥ X K ¥ ¥

By using the same simulation scheme, we study the model-based residuals
(Eq. 5.30 and 5.31) that in theory are the most adequate to test the main effects
in ANOVA two-way designs (Anderson and Braak, 2003). The performance is
shown in Table 5.6. Interestingly, model-based residuals (Eq. 5.30 and 5.31) do
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cluster
Sig. level Rejection Rates
F 0.0l 0.05 0.10
u=1,r=01 FA* 0.008 0.044 0.093 *
K =100 FB  0.006 0.041 0.080 *
FAB 0.008 0.047 0.086 *
FI' 0.009 0.044 0.098 *
u=4r=0.1 F4 0.014 0056 0.101 *
K = 100 FB 0016 0.063 0.104 *
FAB 0.012 0.052 0.111 *
FI' 0.008 0.061 0.102 *
u=4,r=005 FA 0.017* 0.054 0.097 **
K =100 FB  0.009 0.049 0.097 *
FAB 0.011 0.055 0.098 *
FI'0.012 0.056 0.095 *
hard-core
h=0.05 FA  0.009 0.041 0.091 *
FB  0.010 0.052 0.101 *
FAB0.012 0.044 0.087 *
FI' 0.015 0.047 0.098 *
h=0.02 FA  0.010 0.045 0.101 *
FB 0011 0.044 0.098 *
FAB - 0.009 0.055 0.101 *
FI' 0.013 0.047 0.092 *

Table 5.4 Performance of the test for cluster (left) and hard-core (right) models
whose parameters are given in the left columns. Exchangeable units for a test
were chosen according to the residuals given in Eq. (5.28). Values are indicated
as in Table 5.3.

not outperform the full-model residuals when using Fisher-test type statistics to
test main-effects.

Power of the tests

Analysing the power of the ANOVA (even in the classical case) is far from being a
simple task. The problem is that there are infinite possibilities to get away from
the null hypotheses, and each one of those infinite differences implies a different
power. The problem comes from trying to compare several groups according to
all the levels of the factors and replicates.
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Poisson
Sig. level Rejection Rates
F 0.0l 005 0.10
SConfig.1 F 0.008 0.042 0.094 *
SConfig.2 F'' 0.012 0.048 0.097 *
Sconfig.3 F'' 0.012 0.054 0.095 *
DConfig.1 F' 0.011 0.052 0.103 *
DConfig.2 FI' 0.016 0.049 0.088 *
DConfig.3 F'' 0.010 0.049 0.088 *
cluster
u=1,r=0.1,x=100 F' 0.008 0.042 0.098
u=4r=0.1,k=25 F' 0011 0.047 0.091
u=4r=005x=25 F' 0.013 0.047 0.094
hard-core
h=0.05 F' 0.006 0.048 0.097
h=0.02 F' 0.015 0.055 0.105 *

Table 5.5 Rejection rates from replicated simulations of the true null hypothesis
of no interaction between factors A and B by using residuals given in Eq. (5.29).
Three null models are considered: homogeneous Poisson (left), cluster (right-
up) and hard-core (right-down) as underlying processes. Values are indicated
as in Table 5.3.

In the classical literature, there is a suitable function, called degree of falsity
(Feldt and Mahmoud, 1958) that can help us in detecting uniquely the power
(for some fixed parameters). It is the measure of effect size (Anderson and
Braak, 2003). This function measures the average of the quadratic differences
between the means of the null hypothesis and those of the alternative hypothesis.
Symbolically the function is defined for main and interaction effects as

1 /Y% (A —A)?
fi=— Lo (AizA) , and
O¢ a

(5.32)

g = 1 Yo X{(AB;j—AB)?
AB = fo ab '

In classical ANOVA it is defined 64 = o, f4 and analogously for the other cases.
The index 6 is used to measure the power. In order to extrapolate the function
0 to our point process context, we point out the nature of the K-function, which
makes it sensitive to the aggregation parameters of the underlying process and
only to them. This is why for example, all Poisson processes have the same
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Poisson
Sig. level Rejection Rates
F 0.01 0.05 0.10
SConfig.1 FA  0.008 0.046 0.087

FB 0012 0.051 0.09
FAB 0.011 0.054 0.094
Sconfig.2 FA  0.008 0.051 0.108
FB 0014 0.046 0.095
FAB 0.007 0.047 0.102
Sconfig.3 FA  0.009 0.051 0.098
FB 0013 0.044 0.092
FAB0.014 0.052 0.096
DConfig.1 FA  0.032 0.095 0.163
FB  0.005 0.027* 0.065* **
FAB0.031 0.087 0.143
DConfig.2 FA  0.008 0.034* 0.069* **
FB  0.027 0.097 0.163
FAB 0.029 0.091 0.151
DConfig.3 FA  0.008 0.043 0.078* **
FB 0018 0.064 0.127% **
FAB 0.013 0.061 0.115 *

* K X K X ¥ X ¥ ¥

cluster
u=1,r=01, FA* 0013 0.058 0.104
K =100 FB 0010 0.047 0.082

FAB0.014 0.054 0.102
u=4r=01 FA4 0008 0.040 0.075*% **
K =100 FB  0.009 0.044 0082 *

FAB 0.008 0.037 0.077 **

u=4r=005 FA4 0013 0.048 0.089 *
K = 100 FB  0.009 0.044 0.088 *
FAB 0.007 0.057 0.094 *
hard-core
h=0.05 FA  0.004 0.043 0.091 *
FBE 0009 0.049 0.09% *
FAB 0.010 0.041 0.095 *
h=0.02 FA  0.014 0.057 0.100 *

FB 0.017* 0.059 0.099 **
FAB0.016 0.060 0.110 *
Table 5.6 Rejection rates from replicated simulations of the true null hypothesis
of no main effects in the samples of K-functions. Three null models are considered:
homogeneous Poisson (left), cluster (right-up) and hard-core (right-down) as
underlying processes. Exchangeable units are the model-based residuals (Eq.
5.30 and 5.31). Values are indicated as in Table 5.3.
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theoretical K-function (772 in the planar case). So, we can move away from the
null hypothesis by systematically increasing or decreasing these parameters.

In a Matérn-cluster process (as a particular case of the Neyman-Scott) the
K-function depends on the intensity of the parents and the degree of aggregation
of the offspring around the parents Diggle (2013). Therefore, we could easily
establish structural differences between Matérn processes through the variation
of these two parameters. On the other hand, in a Matérn-hard-core process, the
K-function depends on both the intensity of the proposal-points and the inhibition
distance Cressie (1993). So again we could fix structural differences through the
modification of these sensitive parameters.

Our most general alternative hypothesis is that the levels of the factors as
well as the interaction between them affect in a significant way these paramet-
ers. Therefore they also affect the K-function of the resulting patterns in equal
measure. So we define such degree of falsity through the standard deviation of
the parameters matrix in each scenario. Thus, for an array of Matérn cluster
patterns with k¥ =25, u = 4, and radius of the clusters in the patterns of the cells

given by
0.1 0.1 0.1 0.1 0.3 0.5 0.1 0.1 0.1
rag=1| 0.1 03 0.1 |,ra=] 0.1 03 05 |,andrg=1| 03 03 03 |,
0.1 0.1 0.5 0.1 0.3 0.5 0.5 05 0.5

the degree of falsity with respect to r is given by 645 = sd(rap) = 0.1414,04 = 0 =
0.2. Note that any of the alternative hypotheses for rows or columns effects apply
directly over the effects of addition of rows and columns, because in this case the
effects of rows and columns are not simultaneously zero.

To study the power of the statistic for the interaction effects we fix a set of
configurations as given in Table 5.7. The results of the simulations for the power
of the interaction and main effects statistics are shown in Table 5.8.

Clearly, strongly aggregated patterns in the cells (patterns with larger K-
functions) are discriminated from weakly aggregated patterns with an approxim-
ate probability of 1, and the same happens with strongly regular patterns. As
might be expected, as the parameters of the models approach each other (6 — 0),
and therefore generate virtually indistinguishable patterns, the power of the
tests decreases.



5.4 Data analysis 141

Cluster Configurations

0
045 = 0.0014 raAp = 0.002 + @cJ3
0.004
0
045 = 0.0707 rap = 0.1 + @cJ3
0.2

0
GAB =0.3536 raAp = ( 0.5 ) +¢CJ3
1.0

0 0.002 0.004
0 0.002 0.004 |+ ¢cd3

64 =0.0017 Iy =
0 0.002 0.004

0 01 02
64 =0.0866 ra=| 0 01 02 |+4+¢J3

L~ -~ ~ —

0 0.1 02
0 05 1.0
04 = 0.4330 rA = 0 05 1.0 |+0¢Jd3
0 05 1.0
Hard-Core Configurations

0
645 =0.0014 hyp = 0.002 + ¢iJ3
0.004
0
645 = 0.0567 hyp = 0.08 +0iJ3
0.16

0
645 = 0.07071 hsg = ( 0.1 +¢1J3
0.2

0 0.002 0.004
64 =0.0017 hy=[ 0 0.002 0.004 |+ ¢cJs

0 0.002 0.004
0 0.08 0.16

64 =0.0693 hy=[ 0 008 0.16 |+¢cJs
0 0.08 0.16

0 01 02
04 =00866  hy= ( 0 01 02 ) + 0
0 01 02
Table 5.7 Configurations of systematic departures from null hypotheses of no
interaction between factors in the ANOVA two-way design. The parameters of
the cluster processes are u € (1,4,4); k € (100,25,25). J3 denotes the 3 x 3 matrix

of ones and ¢, € (0.1,0.05) and ¢; € (0.02,0.05,0.08).

5.4 Data analysis

5.4.1 Poisson log-linear model for the expected cell counts

One of the first questions that we are interested in, is whether there are significant
differences in the intensities of the bubble patterns as the levels of the volumetric



Factorial experiments for spatial point patterns

142

"1°G 9[qe], Ul UaAILS siojoweded [}Im 9100-paey pue
J9IsN[d aae s09ss9004d Jurod SUIAIOpUN S} USYM SOTISIIB)S J09]J0 UTRW pUR UOT}oRISIUIL 10f Jomod [edridwy g°G a[qe],

000'T 0001 0001 800 000'T 000 T 0001 (S0°0°ST°¥)

000'T 000T 0007 SO0 ] 000'T 0007 0001 (1'0°ST¥) .

000T 000'T 0001 200 O] 0007 000'T 00077 (1°0°00T°T) (73

000'T 0001 000'T 800 000'T 0007 0001 (SO0'ST'Y)

000'T 0001 000'T SO0 000'T 0007 0001 (1°0°ST¥)

000'T 000T 0001 200 ()13 99800 =¥ 0007 000 T 8660 (1°0°001°T) ()1 0gEr’0 =Y

L86'0 L3860 L860 80°0 000'T 0007 00071 (S0°0°ST‘Y)

000'T 0001 0001 SO0 ] 000'T 0007 0001 (1°0°ST‘¥) ]

000'T 000 0001 200 (73 L66'0 6860 60 (10°001°T)  (4)}43

6660 6660 6660 80°0 000'T 000 T 000 (S0°0°ST‘Y)

000'T 0007 0001 SO0 000'T 000 T 0001 (1°0°ST‘¥)

000'T 000 T 0001 200 ()13 £690°0= "0 1860 LS6'0 9980 (1°0°001°T) (O 99800 = ¥

86€°0 0LZ0 111°0 80°0 0600 0S0°0 1100 (S0°0°ST‘Y)

LTF0 96T0 6010 SO0 ] 0110 €900 6000 (1'0°ST't) ]

6610 €L0°0 0Z0'0 200 (73 TI0 9500 6000 (1'0°001°T) (O3

€TP0 €0€0 T111°0 80°0 1010 Lv0'0 L00'O (SO0‘ST‘h)

Yo ¥6T0 ¥01'0 SO0 . 8600 LVO'O t100 (1°0°ST‘Y) .

0S1'0 6000 1000 200 (1)*3 L1000 ="0 680°0  TSO'0 100 (1°0‘001‘1) ()73 L1000 ="0

P66'0 ¥66'0 1£6°0 800 S66'0 8860 +T60 (S0°0°STY)

0660 0660 0660 SO0 . L86°0 1960 +SL'0  (1°0°ST‘Y) .

6660 6660 6660 1070 )"z 8850 €6€0 6600 (1'0°001°T) Ok

¥66'0 ¥66'0 ¥66'0 80°0 866'0 6860 1¥6°0 (S0°0°ST‘Y)

886'0 0001 0001 SO0 886'0 ¢S6'0 6LL0 (1°0°ST‘Y)

000'T 000T 0007 100 ()13 1L0L0°0 = Y L850 6070 OFI'0 (I'0°001‘T) (4)1g 9¢6£°0 = v

9660 ¥66'0 ¥66°0 80°0 ¥96°0 1160 €£9°0 (S0°0°STY)

6660 €660 0660 SO0 ] 968°0 00,0 9T€0 (1°0°ST‘Y) .

6660 6660 6660 1070 N v9€'0 €00 8500 (1'0‘00r‘T) (D3

Y660 7660 ¥66°0 800 9960 €060 290 (S0°0°STY)

9860 9860 9860 SO0 968'0 0IL0 19€0 (1'0°ST‘Y)

000'T 000'T 000'T 100 ()13 L9500 =99 S9¢€0 LITO 9S00 (I0°001°1) ()1 L0LO'0 =0

€210 6900 €100 80°0 7800 ¥€0°0 6000 (SO°0‘ST‘Y)

€210 L90°0 TIOO SO0 ] S60°0 ¥¥0'0 1100 (1°0°ST‘Y) ]

6600 SS00 S100 200 N 7600 0s00 v10°0 (ro‘00r‘n) (D'

LITO €900 %100 80°0 ¥60°0 #4000 L00'0 (SO°0°ST‘Y)

1Z1'0 $90°0 6100 SO0 1600 €400 v100 (10°ST'p)

€11°0__SS0'0 SI0°0 200 (1)¥13 ¥100°0 = 9% 801'0 #S0°0 11070 (1'0°001°1) (1)1 £100°0 = 4%

000 SO0 100 ' Tenpisoy  Aysyejy yo 98 00 S00 100 (¢ ‘> ‘m) [enpisey Ajsrey jo eeaSe

s99eY uoraley 19A9] 818 s99eY uorafey 19A9] 818
suoreInsyuo)) 810)-piey suorjeIngyuo)) I9)sny)




5.4 Data analysis 143

air flow and the specific frother concentration vary. Since the spatial windows
are fixed and constant throughout the experiment, it is sufficient to compare
the count differences between the groups. Figure 5.5 shows violin-plots of the
number of points in each pattern, broken down by the three levels of frother
concentration levels, and faceted by the three levels of volumetric air flow levels.
The violin plot allows us to suspect that the number of points, as well as their
probability distributions, vary between the cells along the levels of the two
factors. We use a quasi-Poisson regression model in order to deal with possible
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Figure 5.5 Violin-plots of numbers of bubbles per level of the two different factors.
Each panel corresponds to a level of volumetric air flow and the horizontal axis
corresponds to frother concentration.

overdispersion Diggle et al. (1991); McCullagh and Nelder (1989) with a quasi-
likelihood approach. Let us denote as a random variable the count »; x, and we can
assume that E(n;x) = y;; and Var(n;;x) = ¢u;j, where ¢ > 0 is an overdispersion
parameter. We fit the following model

ij = exp{Bo+ Bri+ Baj+ Bsij}

where 3 and f3, are the parameters for the main effects, and f3; is the parameter
for the interaction. The estimated overdispersion parameter is ¢ = 2.737 which
is quite high. Such overdispersion can be explained by non-measured covariates,
random effects or by non-Poisson variation within bubble patterns (clustering or
inhibition into the point patterns for instance, see Diggle et al., 1991). We test
the overall effect of the two factors by comparing the deviance of the full model
with the deviance of the model excluding each one (Table 5.9). The Chi-square
test indicates that factors, taken together, are statistically significant predictors
of the number of points despite the overdispersion.
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Model Deviance Res. df df Res. Deviance P(> X(%f)
Null 53 3255.9

Frother concentration 1738 51 2 1517.6 < 0.01
Volumetric air flow 299 49 2 1218.6 < 0.01
Interaction 1095 45 4 123.40 < 0.01

Table 5.9 Analysis of deviance table for the quasi-likelihood model.

Overall, the counts differ between frother concentration levels and volumetric
air flow and their interaction is significant, i.e, there are combined effects of these
two factors on the observed number of bubbles. This interaction is extremely
important since when an interaction effect is present, the impact of one factor
depends on the levels of the another factor.

5.4.2 Spatial distribution of bubble patterns

Once we have checked the influence of the factors on the densities of the patterns,
the next question to answer is whether the factors or their interaction affect
the second-order structure of the patterns. Indeed, the 54 point patterns shown
in Figure 5.3 represent the positions of the bubbles in the flotation experiment
described in Section 5.1. The estimated K-functions are shown in Figure 5.6. To
measure the variability of the pooled estimates K;;., we used the delta-method
approximation to the variance of a ratio described in Baddeley et al. (2015).
We thus calculated a standard error and made approximated 95% confidence
intervals (grey shadings in Figure 5.6) for the K-function. K-functions of the
bubble experiment array indicate small-scale regularity with an inhibitory effect
up to 0.5mm on average in most of the cells, except in cells (SLmin"!, 8ppm) and
(5L min~!, 10ppm), where the inhibitory effect is almost 1.0mm. For larger dis-
tances there is a tendency to clustering in most patterns, except perhaps in those
of the first cell (SLmin~!, 5ppm) where it is seen that the K-functions oscillate
around CSR line (horizontal zero). Furthermore, one would suspect that the
Sppm case behaves differently than the others. The first row indicates a (close to)
Poisson pattern and the two other rows indicate a larger radius for the inhibition.

Tests based on Fisher-type statistics were carried out using the integration
interval T = (0,ry|, whose upper limit is recommended to be taken as (Hahn,
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Figure 5.6 General arrangement of estimates of centred K-functions (black lines)
and pooled K-functions (red lines) of point patterns for floating bubbles with
three concentration levels and three gas flow levels. The grey shading in each
panel corresponds to pointwise 95% confidence interval based on the observed
within cell sample variance in the estimated K-function.

obtaining an upper integration bound ry = 1.57mm. We implemented the tests
with 500000 random permutations. For the interaction effect, we have a signi-
ficant p-value associated with the residuals given in Eq. (5.28), Pe;, = 0.0275,
analogously ﬁé;k = 0.0153 in the case of the residuals given in Eq. (5.29). For
the main effects, we have p-values of zero in the case of the frother concentra-
tion factor for both residuals as well as p-values of zero in the additive effect.
Finally, for the volumetric air flowrate factor, we have also significant p-values
(P2, =0.0110 and fya = 0.0059).

Apparently the point patterns do not behave the same (in the sense of their
structure) up to small distances, and this difference is explained by the levels of
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the row and column factors. We conclude that the concentration and the volu-
metric air flow are significant terms in the model for the bubble point patterns.

We have seen that if the tests are made at the 0.05 level of significance, the
critical p-values for the tests of the hypothesis that the action of the frother
concentration is independent of the volumetric air flowrate category (ie, zero
interaction) are significant. Hence bubble patterns do not support hypothesis
of zero interaction. The K-functions indicate that the effects of the frother con-
centration differ for the three levels of the volumetric airflow rate. Contrary
to classical analysis of variance, in this case it is quite difficult to indicate the
nature of the interaction in a geometric fashion since the means of the cells are
pooled K-functions, see Figure 5.7. For the geometric interpretation we define
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Figure 5.7 Pooled mean values of K;(r) estimated on 9 cells of the flotation
experiment. The red line represents the complete spatial randomness.

the following quantities
gl

Eij = ||Kij.(r) — mr
so we have a single number for each weighted cell mean, which may represent
the overall behaviour of the pooled K-function. These quantities represent the
quadratic differences between the estimates of the K-function and the theoretical
K-function of a completely random pattern. This means that larger differences
imply stronger interaction within the observed pattern. Values close to zero
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indicate weak attraction or inhibition and, vice versa, high values indicate high
degree of clustering or inhibition. We could relate this integral differences to the
cell means of the classical experimental design. So a geometric representation
of these &;; is given in Figure 5.8. This figure (in the left panel) represents the
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Figure 5.8 Profiles for simple effects for frother concentration (left) and for volu-
metric air flowrates (right), based on the measure Z;;.

profiles corresponding to the simple effects of the frother concentration (column
factor) for each of the volumetric air flowrates (row factor). An approximate
graphical test for the presence of interaction might be equivalent to a test on
the difference in the shapes of the profiles of these simple effects. A geometric
representation (equivalent) of the profiles corresponding to the simple effects of
the volumetric air flowrates for each of the frother concentrations is also displayed
(right panel).

5.5 Discussion

We have implemented a collection of methods for the analysis of factorial ex-
periments in the context of point processes where observations are functional
second-order descriptors. Classical inference for spatial point processes is a quite
delicate matter (see e.g Baddeley et al., 2017; Diggle et al., 1991; Hahn, 2012).
We have implemented a new approach for the analysis of experiments with two
fixed factors in the presence of replicates through approximate permutation tests.
These tests have been demonstrated by simulation (the validity and power). Our
tests require exchangeable units (functions), and this assumption can be guaran-
teed through the independence of point patterns in the sample. We have focused
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on the case of balanced experiments with two factors and the same number of
replicates within cells.

Our approach can be enhanced in many ways depending on the questions
related to the experiment itself. Obviously a possible generalisation consists
of considering unbalanced experiments, or more ambitiously, non-orthogonal
designs. Our test statistics are defined through integral distances between the
estimates of K-functions, their means and variances, implying that the power of
the tests depends on the interval of integration T = (0, ry] (Choi and Hall, 1999;
Hahn, 2012). So, further functional distances that are not as sensitive to the ry
parameter could be used instead. Although we have focused mainly on Ripley’s
K-function, these methods could be used with other descriptors such as the L-
function Besag (1977), the pair-correlation function g(r), the nearest-neighbour
distance distribution F(r), the empty space function G(r), or the J-function (Illian
et al., 2008; van Lieshout and Baddeley, 1996).

Regarding the flotation experiment and the data of the bubbles, we applied a
scaled Poisson model to the bubble counts in the flotation cells and we observed
significant differences between the levels of the two factors as well as an extra-
Poisson variation within the groups that suggests that a spatial structure may be
achieved by the levels of the factors. We have discovered through the K-function
that the patterns exhibit a small-scale regularity to move on to aggregation
thereafter. This aspect represents an advance in the assumptions usually made
in the literature of flotation experiments, since CSR patterns have been assumed
(see e.g Emery et al., 2012; Kracht et al., 2013). We have shown how an analysis of
variance for the effects of the frother concentration for each level of the volumetric
air flowrate can explain the structural variations of the patterns. This variation
is the product of the factors separately and, most importantly, of their interaction.

One of the important covariates that are associated with bubbles is their
diameter. The diameter can be associated as a mark attached to the location of
the centre of the bubble. Consider a space M in R, called the space of marks, let
m(u) € M (hereinafter mark) be a random variable describing further information
of u € X. The set ® = {(u,m(u))|u € X}, defined in W x M, is a planar marked point
process (Illian et al., 2008; Mgller and Waagepetersen, 2004; Penttinen et al.,
1992). It is natural to represent a marked point process as a collection of pairs
{(us,m)}_, CW x M.

Let t(n,n’) be a non-negative function (called test function, see e.g. Stoyan
and Stoyan, 1994) depending on the marks 1n,n’. Similarly to the unmarked case,
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a second-order characteristic can be defined by the Ripley’s K-function in the
marked scenario. In this context we have the Mark-weighted K-function (see e.g
Baddeley et al., 2015; Illian et al., 2008; Penttinen et al., 1992), defined as

) = g | ) K- < )

u;eX

ueX|, (5.33)

where 1(u) and 1(u;) denote the mark values at the points u and u;, respectively.
A and 4" are independent random marks having the same distribution as the
marks in the point process. Here the contribution from each pair of points is
weighted by 7 (n(u),n(u;)). A remarkable property is that under random labelling,
J;(r) = (r). Under stationarity, an unbiased estimator of 7/ (r) is

Ki(r) = 5 Z Z.l (n(w;),n(w;)) 1{||w; — ;|| < r}e(us,ujr), (5.34)

where

and where A2 is given by Eq. (5.3).

Before proposing an analysis through this marked methodology, it would be
necessary to verify if the marks depend on the locations since, if not, the analysis
proposed in this paper would be sufficient. To test this dependency Schlather
et al. (2004) introduced two functional descriptors for homogeneous marked point
processes describing the conditional expectation E(r) and conditional variance
V(r) of a mark, given the existence of a further point of the process within a
distance r. They presented tests based on such descriptors related with the
null hypothesis that an independently marked point process has marks that
are independent, identically distributed and independent of the locations. The
descriptors are given, respectively, by

E(r) = E[m(u)|u,veX] (5.35)
V(r) = E [(m(u) —E(r))z‘ uve X] (5.36)

where u,v are arbitrary locations with |[u—v|| = r. Under the null hypothesis
E(r) and V(r) are constant. Thus, it can be tested by Monte Carlo tests based on
measures of non-constancy of V(r) + £%(r) (a combined test), where the estimates



150 Factorial experiments for spatial point patterns

can be obtained through non-parametric smoothing methods as E(r) is a especial
case of the mark-correlation function with t(m,m') = m and similarly for V (r) (see
e.g. Baddeley et al., 2015).

As an additional exercise, we perform a Monte Carlo test by using the test

statistic
ro A A2 2
ST:/ [V(r)+E*(r)—C] dr, (5.37)
0

where the constant estimator C is calculated as the sum of the sample quadratic
mean of the marks and their sample variance. The results are shown in Figure
5.9. It can be seen that the hypothesis that E(r) and V(r) are constant is not
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Figure 5.9 Array of p-values of the Schlather et al.’s test for each of the bubble
point patterns in each cell of the experiment. Grey horizontal bands are critical
regions (o < 0.1) and the continuous horizontal lines corresponds to o = 0.05.

always rejected. Apparently the dependence between marks and locations is
also strongly influenced by the levels of the experiment factors. This inspires
additional analysis approaches, for example by considering mark K-functions
instead of classical K-functions to build Fisher-test type statistics for the factorial
analysis. It is also possible to model the strength of the dependence as a functional
response variable and implement Fisher-test type statistics in order to corroborate
the effect of the interaction and the factors separately in the dependence structure
of the array of the point patterns.
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Chapter 6
Conclusions

In this thesis we have studied spatial and spatio-temporal point processes and
how to analyse such point pattern data. Special attention has been paid to data
with replicates. We have covered the analysis of spatio-temporal replicated point
patterns and factorial procedures for spatial point patterns trying to answer
statistical questions arisen from applications.

In Chapter 2, we have given a framework for spatial point processes and for the
analysis of point patterns. Some basic definitions and concepts of point processes
are recalled, both in stationary and inhomogeneous (second-order intensity-
reweighted stationary) cases, and in the case of multivariate and general marked
point processes. Definitions of first- and second-order characteristics are recalled
and their non-parametric (edge-corrected) estimation discussed. In addition,
some models for point patterns are given. Attention is carefully paid to define the
different concepts for stationary and second-order intensity reweighted stationary
(SOIRS) point processes, as they are both of interest along the thesis. Comments
about replicated point patterns are made as they are essential in this thesis.
This chapter is quite brief and intend to provide basic notions to make the thesis
a more self-contained work. However, the extensive bibliography available in
the field of spatial point processes, makes it very easy to go further in any of the
exposed concepts.

Chapter 3 is a review paper, co-authored with Francisco J. Rodriguez-Cortés,
Ottmar Cronie and Jorge Mateu. It has been published in Spatial Statistics
in 2016. Spatio-temporal point processes are considered as coming from three
categories and we have focused on the case where data can be thought as snap-
shots in space-time. We have presented the three data sets used for illustration
through the paper and we have given a general definition for spatio-temporal
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point processes as well as discussed on spatio-temporal separability. Some char-
acteristics, such as intensity function and higher-order characteristics, and their
edge-corrected estimation, are recalled. Depending on the summary statistic,
stationarity, isotropy, second-order intensity-reweighted stationarity or intensity-
reweighted moment stationarity has been assumed. Some attention has been
paid also to anisotropic spatio-temporal point processes. Finally, some spatio-
temporal empirical and mechanistic models, estimation of parameters, and test-
ing goodness-of-fit of the models are discussed and some ongoing research is
highlighted and discussed.

Chapters 4 and 5 are the principal focus of the thesis. The paper in Chapter
4 is co-authored with Ute Hahn and Jorge Mateu. We have considered tornado
reports as a realisation of a SOIRS spatio-temporal point process. We have not
assumed separability of the spatio-temporal first-order intensity function. We
have defined a new non-parametric estimator of the spatio-temporal intensity
function. In order to test if there are differences between the underlying processes
of the warm- and cold-seasons, we have partitioned the study region (Central
and Eastern U.S.) into spatial tiles with almost the same number of points per
tile. Finally we have introduced new tests to compare the second-order structure
(described by the spatio-temporal K-function) of such point patterns. A simulation
study is carried out to study the performance of the new tests. A discussion about
the assumptions and methods used is proposed.

Chapter 5 is composed by a paper co-authored with Bernardo M. Lagos-Alvarez
and Jorge Mateu. We have extended the balanced two-way factorial analysis to
the case of replicated spatial point patterns. The paper is motivated by a flotation
experiment in minerals engineering affected by two experimental factors. We
have assumed stationarity given the physical conditions of the experiment. The
second-order structure of the point patterns is described by Ripley’s K-function
and it is investigated whether the structure is affected by the experimental
factors. Different test statistics are derived and their distribution under the null
hypothesis found by using bootstrap. A simulation study is performed in order
to study the performance of the new tests. The methodology has been applied
to the spatial distribution of bubbles in the flotation experiment. Some possible
generalisations are discussed, in particular the fact of considering important
properties of the bubbles along the experiment as marks attached to the locations
and including them in the second-order descriptors.
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Finally, we would like to emphasize that the fact of having replicates has not
been widely exploited throughout the literature of point processes. However, in
recent years, certain data sets have inspired researchers to become interested
in developing methodologies in this context. There are still very interesting
questions to be answered. For example, the violation of assumptions is not yet a
subject sufficiently studied in the literature. The use of descriptors other than
Ripley’s K-function or its generalisations (marked, spatio-temporal etc.) has been
proposed but never tested in practice. Support changes are not yet explored when
there are replicated patterns. As authors, we believe that these methodologies
are in their beginning and that they will increasingly be demanded and used by
scientists from different branches of science.
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Appendix A

Resumen

Los procesos puntuales constituyen una poderosa herramienta para el analisis de
conjuntos de objetos aleatoriamente localizados en un plano, en el espacio, o en ge-
neral en un espacio abstracto. Estos objetos pueden ser definidos rigurosamente
como colecciones localmente finitas de espacios segundo-contables de Hausdorff
(Daley and Vere-Jones, 2003, 2007). Las aplicaciones de esta teoria son diversas
e incluyen una considerable variedad de situaciones que provienen de la reali-
dad. Estas aplicaciones incluyen astronomia (Neyman and Scott, 1958), biologia
(Diggle, 2013), ecologia (Thorsten Wiegand, 2014), ciencias econémicas (Bowsher,
2007), epidemiologia (Diggle, Guan, Hart, Paize and Stanton, 2010), ingenieria
de materiales (Ohser and Miicklich, 2000), medicina (Andersen and Hahn, 2016;
Diggle et al., 1991; Hahn, 2012), seismologia (Tranbarger and Schoenberg, 2010)
entre otras Illian et al. (2008). Existe ademas una extensa bibliografia que cubre
un amplio espectro tanto teérico (Chiu et al., 2013; Daley and Vere-Jones, 2003,
2007; Mgller and Waagepetersen, 2004), como practico. El aspecto practico va
desde la resolucién de problemas que provienen de la realidad y de bases de datos
cada vez mas complejas y exigentes (Diggle, 2013), hasta la implementacion de
las diversas metodologias en software sencillo, libre y asequible (Baddeley et al.,
2015; Gabriel et al., 2013).

Uno de los supuestos habituales en el trabajo con procesos puntuales es que se
dispone de un tnico patron observado en la realidad, es decir un dnico conjunto de
puntos localizado en una regién de observacion. La distribucién de este patrén es
matematicamente compleja y esto ha llevado a que se propongan en la literatura
algunos summary statistics que pueden mostrar o describir la naturaleza de dicha
distribucién. Normalmente estos estadisticos son funciones o nimeros reales
que se basan en las distancias entre los puntos del patrén o en los conteos. Por
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ejemplo, la intensidad de primer-orden describe la densidad de los puntos de
un patron puntual. Las famosas caracteristicas de segundo orden (Chiu et al.,
2013; Illian et al., 2008), son habitualmente utilizadas por los cientificos puesto
que estas describen la atraccion o repulsion que pueda existir entre puntos del
patrén. En general estas funciones o descriptores pueden ser estimados de forma
no-paramétrica y algunos de los mas conocidos y utilizados en la literatura son
la K-funcion de Ripley (Ripley, 1977) y su respectiva version normalizada, la
L-funcién (Besag and Diggle, 1977); la J-funcién (van Lieshout and Baddeley,
1996) y la pair-correlation function.

Algunas bases de datos de patrones puntuales contienen méas de un patrén ob-
servado, en este caso responder las preguntas que suelen traer consigo las bases
de datos resulta complejo y pocos autores han trabajado en el tema. Baddeley et al.
(1987, 1993) presenté un enfoque utilizando ratio-regressions en patrones pun-
tuales tridimensionales replicados utilizando la K-funcién tridimensional. Diggle
et al. (1991) present6 un enfoque de analisis de la varianza en una aplicacién
de neuroanatomia clinica a través de la comparacién de K-funciones estimadas
e inferencia no-paramétrica a través de un test de Monte Carlo. Este método
fue posteriormente mejorado por Diggle et al. (2000) y por Hahn (2012) quien
desarrollé un test de permutacion estudentizado para la comparacion de varios
grupos de patrones puntuales espaciales. Algunos autores (Bagchi and Illian,
2015; Landau and Everall, 2008; Landau et al., 2004; Myllyméki et al., 2014) han
incluido, por ejemplo, predictores categéricos y continuos en modelos lineales
de efectos mixtos o marcas discretas para la explicacion de la variacién en la
estructura espacial de patrones replicados.

El objetivo fundamental de esta tesis es introducir un nuevo conjunto de
test para comparar K-funciones estimadas (o en general cualquier descriptor
funcional adecuado). Se dispone de dos lineas paralelas para el desarrollo de los
nuevos test.

En primer lugar, se extiende el test de permutacién estudentizado propuesto
por Hahn (2012) al caso espacio-temporal. En vista de que el estudio de los proce-
sos puntuales espacio-temporales no ha sido tan profundo en la literatura como
el estudio de los procesos puntuales espaciales, se hace un resumen completo, a
modo de texto de consulta, de las técnicas disponibles y los enfoques de analisis
en el contexto espacio-temporal y se aplican algunas de estas técnicas a tres bases
de datos de diferentes campos cientificos (Gonzalez et al., 2016). El nuevo test de
permutacion espacio-temporal muestra un rendimiento adecuado en términos de
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nivel empirico y de potencia. Este test estd motivado por una base de datos com-
pleja: el registro de tornados en estados unidos en un periodo de 36 anos. Es por
esto que ademas del test en si mismo, se han desarrollado algunas herramientas
adicionales como un estimador no-separable de la intensidad espacio-temporal
de primer orden, que permite un analisis mucho mas realista del fenémeno a
través del nuevo test.

En segundo lugar, se considera un disefio ANOVA two-way donde las observa-
ciones son patrones puntuales espaciales y donde ademas, se dispone de réplicas
por cada una de las combinaciones de los tratamientos. Esta metodologia viene
motivada por un experimento de ingenieria de materiales en donde se han medido
las localizaciones de las burbujas resultantes en una celda de flotacién en un
tiempo fijo y se han variado los niveles de dos factores implicados en el experi-
mento. Se desarrolla un esquema de analisis de la varianza para experimentos
factoriales, es decir, desarrollamos estadisticos eficientes para testear, de forma
no-paramétrica, la influencia de los factores y el posible efecto de interaccion.
Para esto se proponen varias posibilidades para el procedimiento inferencia a
través de permutaciones aleatorias y se prueba que son ttiles en la practica.

La tesis esta organizada como sigue. En primer lugar se presenta la infor-
macion introductoria (Capitulos 1 y 2). La particularidad de los capitulos sub-
siguientes es que son auto-contenidos, puesto que corresponden a articulos ya
publicados (en el caso del Capitulo 3), o en proceso de publicacién (Capitulos 4 y
5). Por lo tanto se pueden abordar de forma independiente.

En el Capitulo 2, se presenta un breve resumen de la teoria de los procesos
puntuales espaciales. Se proporcionan los conceptos basicos a nivel abstracto, se
introducen algunas medidas tipicas importantes. Se definen teéricamente algunos
modelos clasicos de procesos puntuales. Se presentan los summary-statistics
espaciales y finalmente se ensenan algunos estimadores no paramétricos de
dichos summary-statistics.

El Capitulo 3 se comienza con una breve descripcién de las bases de datos que
se analizan. Posteriormente se presenta una introduccion a los procesos puntuales
espacio-temporales. Luego se presentan algunas caracteristicas (descriptores) de
primer y segundo orden para procesos puntuales espacio-temporales. Se presenta
un resumen de los modelos empiricos y mecanisticos y finalmente se concluye
con una discusion general y algunas futuras ideas de investigacion.

En el Capitulo 4 se considera primero una descripcion de los datos de los
tornados en los U.S. A continuacion se procede a estudiar la funcién de intensidad
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de primer orden espacio-temporal y a analizar la hipétesis de separabilidad en
dos temporadas de tornados, fria y calida. Se considera una particiéon espacial
de las regiones del mapa con el fin de simplificar el anéalisis al considerarse los
elementos de la particion como posibles réplicas de un proceso puntual subyacente.
Se comprueba el rendimiento del test de permutacion espacio-temporal y se aplica
a la base de datos. Finalmente, se discuten algunas preguntas y problemas. Este
capitulo motiva interesantes lineas de investigacién. Por ejemplo, el desarrollo de
test adecuados que no requieran la hipétesis de intercambiabilidad Hahn (2012).
Adicionalmente, la seleccion del ancho de banda en el contexto espacio-temporal y
la posible inclusion de dimensiones adicionales en los patrones observados como
covariables o marcas.

El Capitulo 5 comienza con una descripcion del procedimiento de ingenieria
mediante el que se obtienen los datos de las burbujas en la celda de flotaciéon. Pos-
teriormente se hace una descripcion completa de la base de datos. Se presenta un
pequeio apartado donde se describen las herramientas matematicas utilizadas.
Se da paso entonces a una motivacion del analisis ANOVA de dos factores partien-
do desde el caso méas simple para llegar al disefio ANOVA two-way balanceado. Se
proponen los estadisticos necesarios para el analisis y se presenta un escenario
de simulaciéon para comprobar que los estadisticos funcionan adecuadamente.
Finalmente se aplican los estadisticos a la base de datos. Este capitulo también
motiva algunas lineas de investigacion, tales como la extensién a disennos méas
complejos como diseinios anidados y disefos con efectos fijos y mixtos a través de
la utilizacion de estadisticos de tipo Fisher. El uso de descriptores funcionales
mas complejos (que incluyan marcas por ejemplo) en el diseno ANOVA también
constituye un campo abierto de investigacion. Finalmente, la definiciéon de los
estadisticos del diseio ANOVA pero utilizando distancias funcionales complejas
entre patrones Mateu et al. (2015) o entre funciones, podria ser un desafiante
campo de investigacion.
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