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Abstract

La ciencia es la expresión de una
necesidad inherente al ser humano y,
en todo caso, esta ligada a la función
superior de su naturaleza inteligente:

la capacidad de crear.

René Favaloro

The heart is a complex system. From the transmembrane cell activity
to the spatial organization in helicoidal fibers, it includes several spatial
and temporal scales. The heart muscle is surrounded by two main tissues
that modulate how it deforms: the pericardium and the blood. The
former constrains the epicardial surface and the latter exerts a force in the
endocardium. The main function of this peculiar muscle is to pump blood
to the pulmonary and systemic circulations. In this way, solid dynamics of
the heart is as important as the induced fluid dynamics. Despite the work
done in computational research of multiphysics heart modelling, there is no
reference of a tightly-coupled scheme that includes electrophysiology, solid
and fluid mechanics in a whole human heart. In this work, we propose,
develop and test a fluid-electro-mechanical model of the human heart.

To start, the heartbeat phenomenon is disassembled in the different
composing problems. The first building block is the electrical activity of
the myocytes, that induces the mechanical deformation of the myocardium.
The contraction of the muscle reduces the intracavitary space, that pushes
out the contained blood. At the same time, the inertia, pressure and viscous
stresses in this fluid exerts a force on the solid wall. In this way, we can
understand the heart as a fluid-electro-mechanical problem.

All the models are implemented in Alya, the Barcelona Supercomputing
Center simulation software. A multi-code approach is used, splitting the
problem in a solid and a fluid domain. In the former, electrophysiology
coupled with solid mechanics are solved. In the later, fluid dynamics in
an arbitrary Lagrangian-Eulerian domain are computed. The equations
are spatially discretized using the finite element method and temporally
discretized using finite differences. Facilitated by the multi-code approach, a
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x Abstract

novel high performance quasi-Newton method is developed to deal with the
intrinsic issues of fluid-structure interaction problems in biomechanics. All
the schemes are optimized to run in massively parallel computers.

A wide range of experiments are shown to validate, test and tune the
numerical model. The different hypothesis proposed — as the critical
effect of the atrium or the presence of pericardium — are also tested in
these experiments. Finally, a normal heartbeat is simulated and deeply
analyzed. This healthy computational heart is first diseased with a left
bundle branch block. After this, its function is restored simulating a
cardiac resynchronization therapy. Then, a third grade atrioventricular
block is simulated in the healthy heart. In this case, the pathologic
model is treated with a minimally invasive leadless intracardiac pacemaker.
This requires to include the device in the geometrical description of the
problem, solve the structural problem with the tissue, and the fluid-structure
interaction problem with the blood. As final experiment, we test the parallel
performance of the coupled solver. In the cases mentioned above, the
results are qualitatively compared against experimental measurements, when
possible.

Finally, a first glance in a coupled fluid-electro-mechanical cardiovascular
system is shown. This model is build adding a one dimensional model of
the arterial network created by the Laboratório Nacional de Computação
Científica in Petropolis, Brasil. Despite the artificial geometries used, the
outflow curves are comparable with physiological observations.

The model presented in this thesis is a step towards the virtual human
heart. In a near future computational models like the presented in this
thesis will change how pathologies are understood and treated, and the way
biomedical devices are designed.



Resumen

El corazón es un sistema complejo. Desde la actividad celular hasta la
organización en fibras helicoidales, incluye gran cantidad de escalas espaciales
y temporales. El corazón está rodeado por dos tejidos que modulan su
deformación: el pericardio y la sangre. El primero, restringe el movimiento
de la superficie del pericardio, mientras el segundo ejerce presión sobre el
endocardio. La función principal de este músculo, es bombear sangre a
la circulación sistémica y a la pulmonar. De esta manera, la deformación
del miocardio es tan importante como la fluidodinámica inducida. A pesar
de los trabajo publicados en modelado multifísico del corazón, no existe
referencia de un esquema fuertemente acoplado que incluya electrofisiología,
mecánica del solido y mecánica de fluidos en un corazón humano completo.
En esta tesis, proponemos, desarrollamos y probamos un modelo fluido-
electro-mecánico del corazón.

Primero, el fenómeno es descompuesto en los distintos subproblemas.
El primer bloque componente es la actividad eléctrica de los miocitos los
cuales inducen la deformación del miocardio. La contracción de este músculo,
reduce el espacio intracavitario, que empuja la sangre contenida. Al mismo
tiempo, la inercia, presión y fuerzas viscosas del nombrado fluido inducen
una tensión sobre la pared del sólido. De esta manera, podemos entender el
latido cardíaco como un problema fluido-electro-mecánico.

El modelo es implementado en Alya, el software de simulación del
Barcelona Supercomputing Center (BSC). Se utiliza un esquema multi-
código, separando el problema según el dominio en sólido y fluido. En el
primero, se resuelve electrofisiología acoplada con mecánica del sólido. En el
segundo, fluido dinámica en un dominio arbitrario Lagrangiano-Euleriano.
Las ecuaciones son discretizadas espacial y temporalmente utilizando el
método de elementos finitos y diferencias finitas respectivamente. Facilitado
por el diseño multi-código, se desarrolló un novedoso método quasi-Newton
de alta performance, pensado específicamente para lidiar con los problemas
intrínsecos de interacción fluido-estructura en biomecánica. Todos los
esquemas son optimizados para correr en ordenadores masivamente paralelos.

Se presenta un amplio espectro de experimentos con el fin de validar,
probar y ajustar el modelo numérico. Las diferentes hipótesis propuestas
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xii Resumen

– tales como el efecto producido por la presencia de las aurículas o del
pericardio – son también demostradas en estos experimentos. Finalmente, un
latido normal es simulado y sus resultados son analizados con profundidad.
El corazón computacional sano es, primeramente, afectado con un bloqueo
de rama izquierda. Posteriormente, se restaura la función normal mediante
la terapia de resincronización cardíaca. Luego, se afecta al corazón de un
bloqueo atrioventricular de tercer grado. Esta patología es tratada mediante
la implantación de un marcapasos intracardíaco. Para tal efecto, es preciso
incluir el dispositivo en la descripción geométrica, resolver el problema
estructural con el tejido y resolver la interacción fluido-estructura con la
sangre. Como experimento numérico final, se prueba el desempeño paralelo
del modelo acoplado. En los casos presentados, los resultados numéricos son
comparados con mediciones experimentales, en la medida que es posible.

Finalmente, se muestran resultados preliminares para un modelo fluido-
electro-mecánico del sistema cardiovascular. Este modelo se construye
agregando un modelo unidimensional desarrollado por el Laboratório
Nacional de Computação Científica en Petrópolis, Brasil. A pesar de
las geometrías artificiales usadas, la curva de flujo en la raíz aórtica es
comparable con observaciones experimentales.

El modelo presentado en esta tesis representa un paso más hacia el
corazón humano virtual. En un futuro cercano, modelos como el presentado
en este documento, cambiarán la forma en la que se entienden y tratan las
enfermedades y la forma en la que los dispositivos biomédicos son diseñados.
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Chapter 1

Foreword

La ciencia es sólo un ideal.
La de hoy corrige a la de ayer,

y la de mañana, la de hoy.

José Ortega y Gasset

Summary: This introductory chapter starts describing the economic
and social burden produced by the cardiovascular disease. This
analysis highlights the importance of the tight relationship between
experimental medicine and computational simulations, which is the
motivation of this work. After that, a brief description of the
cardiovascular physiology is included. In it, a close relationship
between the electrical, mechanical and fluid activity can be understood.
Regarding the fluid-electro-mechanical simulation, the surrounding
tissues are considered critical in this thesis. Understanding the
relations of the heart with the neighboring tissues, allow to correctly
define the physical problem, providing boundary conditions. Then,
a thorough review of the state-of-the-art in cardiac modelling is
presented. First, computational electrophysiology is reviewed, followed
by electro-mechanical models and finishing with the most complete
fluid-electro-mechanical computational simulations. Once understood
the reach and limitations of the heart models that are currently under
development, goals and reach are defined for this work. This chapter
finishes describing the structure of this thesis.

1.1 Motivation

Every year the American Heart Association (AHA) publishes [1] a new
revision of the “Heart Disease and Stroke Statistics”, with relevant

1
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information on how these pathologies are distributed amongst the worldwide
population. Cardiovascular disease (CVD) is the most common cause of
death in the world, accounting for an estimate of 17.3 million every year.
About 92.1 million adults in United States (US) (more than 30% of the
population) have at least one type of CVD. By 2030, a 43.9% is projected
to have some form of CVD. Since the begining of the XIX century, CVD
accounted for more deaths than any other leading cause in the US. The high
prevalence of this type of disease produces immense health and economic
burdens in the US and globally, becoming one of the greater problems
in public health. It is no surprising that there is a great interest in
understanding the heart and vasculature, its normal behavior and how to
restore the function after a pathology develops.

It is true that since modern medicine was born, in-vivo studies have
become essential to understand our body, improve diagnosis methods and
develop novel treatment techniques. But it is also true that, since the
first computers were developed (even mechanical ones [2]), these machines
permeated and improved every field of human interest and physics was not
the exception. That was the case of the experimental medicine, which
took advantage from studies developed for mechanical engineering. Soft
tissues respect the basic postulates like the conservation of mass, momentum
and energy and the basic concepts such as stress and strain. Moreover,
biomechanics can be defined as the development, extension and application
of mechanic purposes to better understanding physiology, diagnosis and
treatment of disease. Thus, mechanics of soft tissues owes much to those
who led the post second World War renaissance in nonlinear continuum
mechanics [3].

While the models become more complex, and the computers more
capable, in-silico experiments are becoming ingrained in medical research.
Nowadays, there are models and supercomputers capable of solving complex
physiological events. The advantage of in-silico experiments is that they
are cheaper, faster and do not have the ethical burden that governs in-
vivo experimentation. Thanks to this, biomechanical simulations gained
great attention from the medical community. Regarding cardiac modelling,
computational simulations provide a powerful tool to understand heart
function and its behavior under congenital and acquired pathologies. Despite
this, such type of computational models are still far away from everyday
clinical use.

Modelling the heartbeat is a highly complex task that involves several
scales and different tightly coupled problems. A large number of spatial
orders of magnitude are linked, from the microscopic cell arrangement into
a volumetric description, to the macroscopic shape of the cardiac chambers.
In the same way, several temporal scales coexist, from the fast intracellular
chemical reactions to the long term remodeling of the heart.
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From the engineering point of view, the heartbeat can be decomposed
in three different physical problems. In the muscle, the electrical stimuli
propagates along the cardiac myocytes, which contract deforming the
macroscopic geometry. This produces a change of the volume within the
cardiac chambers that are filled with blood. Ventricular computational fluid
dynamics (CFD) has to be solved in order to compute the pressure produced
by the blood against the endocardium. Since we can decompose the problem
in these three sub-problems, we can say that the heartbeat is a fluid-electro-
mechanical phenomenon. Each one of these sub-problems is computationally
demanding by itself. On the one hand, non-linear ordinary differential
equations (ODEs) governs the electrical propagation and an exponential
orthotropic material models the myocardium solid mechanics. On the
other hand, large deformation occurs in the fluid domain with step changes
in the velocities. When these problems are coupled, the computational
cost multiplies making supercomputer resources a requirement to solve the
proposed model.

Due to the previously exposed reasons, modelling the heartbeat requires,
not only knowledge about the anatomy and physiology of the heart, but also
experience in multi-physics modelling and massively parallel programming.
This is why the Barcelona supercomputing center (BSC) CASE (Computer
Applications in Science and Engineering1) department is the ideal place to
develop a model with such features. The CASE department is composed
by programmers, physicists, engineers and bioengineers providing a truly
multi disciplinary work environment to develop an HPC-based, fluid-electro-
mechanical model of the whole heart. Motivated by clinician’s questions,
we design computational experiments that show the impact of the proposed
model in clinical applications.

1.2 Cardiovascular physiology

1.2.1 Anatomy and function

Brief anatomical description The heart is a remarkably complex and
efficient mechanical pump, designed to deliver blood to the entire body
through the circulatory system. The structure of the heart can be
differentiated in right and left, atrium and ventricles resulting in four
quadrants: right atria (RA), right ventricle (RV), left atria (LA) and left
ventricle (LV). These four chambers compose two serial-connected pumps.
Four valves regulate the fluid path in the heart. The tricuspid and mitral
valves produce an unidirectional flow from the atrium to the ventricles for the
right and left sides respectively. The aortic and pulmonary valves regulate
the flow from the ventricles to the vessels, which guide the blood flow to the

1Visit bsc.es/discover-bsc/organisation/scientific-structure/case

bsc.es/discover-bsc/organisation/scientific-structure/case
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systemic or pulmonary circulation. For a graphic reference see Figure 1.1.

Figure 1.1: Anatomy and function. Scheme of a human heart, representing
the four chambers LV, RV, LA and RA and the main vessels that direct
the blood in and out the organ. The specialized conduction system is also
detailed. Illustration taken from [4].

Heart depolarization is orchestrated by the specialized conduction
system, that is in charge to synchronously depolarize the four chambers
(for a graphical reference see Figure 1.1). It is composed by the sinoatrial
(SA) node, the internodal fibers, the atrioventricular (AV) node and the
Purkinje fibres. The SA node, which is located in the RA, paces the rest of
the system and triggers the depolarization of both atria. The AV node is
located under the valvular plane and delays the propagation of the wave
(about 120 [ms]), so the atrial contraction can fill the ventricles. After
that delay, the AV node starts the action potential that is conducted by
the Purkinje network and almost instantaneously depolarizes the left and
right endocardium, leading to systole. Factors like blood pressure, oxygen
saturation, and humoral and nervous stimuli modulate the action of the
SA, regulating the depolarization frequency. Human heartbeat rate varies
from 60 − 90 [bpm] (beats per minute) at rest, up to 200 [bpm] at intense
exercise. The electrical activity of the heart can be easily visualized with an
Electrocardiography (ECG). In this technique, with surface electrodes in the
patient skin, the different phases of the electrical activity can be seen.
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Function of the heart The vascular system carries the blood from the
heart to every part of the human body. Oxygenated blood nourishes the
tissues and removes CO2 by reducing hemoglobin. This deoxygenated blood
flows through the venous system up to the RA. This chamber acts as a
distensible venous reservoir. From the RA the blood flows to the RV during
diastole. Then, with a ventricular contraction, this deoxygenated blood
moves out of the RV to the pulmonary artery. Once oxygenated by the
lungs, the blood returns to the heart through the pulmonary veins to the
LA. With the atrial contraction, the blood moves through the mitral valve
to the LV. Finally, during systole, a fraction of this blood is ejected out of
the LV to the aorta through the aortic valve.

From the paragraph above, we can understand the heart as two serially
connected pumps. The right heart receives low pressure, deoxygenated blood
from the systemic circulation and sends it to the pulmonary circulation. The
left heart receives low pressure, oxygenated blood from the lungs and sends
it into the high-pressure systemic circulation. Both sides of the heart beat
in perfect synchrony. When this does not occurs, the efficiency of the pump
is drastically reduced [5].

1.2.2 Histology of the myocardium

Histology is defined as the study of the fine structure of tissues [3]. Thus,
histological description of the myocardium is also critical for the cardiac
function.

Myocytes: the unitary building block The heart muscle is mainly
composed by myocytes. These are long tubular cells with two main functions:
electrical conduction and contraction. The former happens, mainly, in the
cell membrane as a consequence of the induced transmembrane currents.
When this surface is depolarized, an all-or-nothing process starts where the
electrical impulse is spread all along the cell. The contraction of the myocyte
happens exclusively in the interior of the cell, the so called cytoplasm or
sarcoplasm. Myocytes are filled with myofilaments, that are long protein
structures that reacts with the presence of Calcium ([Ca+2]) released by the
sarcoplasmic reticulum, once the cell membrane is depolarized. This process
is called excitation contraction coupling (ECC).

The heart wall It is generally accepted that the heart can be decomposed
in three layers, from the inside to the outside: the endocardium, the
myocardium and the epicardium (see Figure 1.2).
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Figure 1.2: Histology of the myocardium. The heart wall. From inside to
outside: endocardium, myocardium and pericardium. Image taken from [6].

The myocardium can be characterized as an orthotropic material, with
a longitudinal preference in the electrical conduction and the generated
stresses. Due to this, cell distribution is a major determinant in how the
muscle depolarizes and contracts (see Section 3.2.2 for a detailed description).
This has been described [7, 8] as an helicoidal fibrous structure with
transmural angle variation from −60◦ to 60◦. Beside the variation in the
fibre distribution, histological differences can be found from endocardium to
epicardium, and in apex-base direction [9, 10, 11, 12]. The fibre distribution
in the atrium has also been described [13], but with a more complex and
less organized pattern. Due to the orthotropic characteristic of the tissue,
this histological description affects both, the electrical depolarization and
the muscle deformation.

The heart and the continuum hypothesis From the description above,
it is valid to question if myocardial contraction can be modeled by continuum
mechanics. An average myocyte has a diameter 25[µm], a length of 100[µm]
[14] and a 490[pm3] volume. This means that in a cube with side equal
1[mm] (and volume equal to 1[mm3]) fits about 20000 myocytes. The
continuum hypothesis, in which is based the finite element method (FEM)
technique used in this work, assumes that the unitary spatial discretization
behaves exactly as the macroscopic geometry. Therefore, if we consider that
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20000 myocytes behaves as a characterizable continuum material, a spatial
discretization of 1[mm3], is compliant with the continuum hypothesis.

1.2.3 The cardiac cycle

Te cardiac cycle is composed by the periodic filling of the ventricles and the
subsequent ejection of blood. It can be split in four different phases: diastole,
isovolumic contraction, systole and isovolumic relaxation (see Figure 1.3).

Figure 1.3: Cardiac cycle. Wiggers diagram. Pressure and volume curves
associated with the ECG phases. The ventricular depolarization (QRS
complex) can be associated with the isovolumic contraction and systole.

Description of the cycle Diastole, is the portion of the cycle when
the atrium fills the ventricles. This is, mainly, caused by the pressure
difference between the upper and the lower chambers, but also by the atrial
kick. The isovolumic contraction is a short phase after the ventricles start
contracting when the intracavity pressure rises without changing volume.
Once the intraventricular pressure rises above the pressure on the vessels,
the valve opens initiating the systole. This phase occurs until the pressures
in the ventricle and the aorta are equilibrated again, closing the aortic
and pulmonary valves. This leads to the isovolumic relaxation of the
ventricles, where the intracavitary pressure decays with a constant volume.
This phase finishes when the ventricular pressure is low enough to open
the atrioventricular valves and let the blood flow from the atrium to the
ventricles.
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The ECG These phases are closely related to the ECG as they are a
consequence of the electro-mechanical activity of the myocardium. The
ECG plot has three main features: the P wave, the QRS complex, and
the T wave. P wave is produced by the auricular depolarization, the QRS
complex is due to the ventricular depolarization and T wave in produced
by the ventricular re-polarization. The reader may note that the description
lacks of an auricular repolarization, but this small wave is hidden in the QRS
complex.

1.2.4 Relations of the heart

The surrounding structures of the heart have a critical function as they
modulate the deformation of the muscle, affecting the way the heart beats.
The organ is located in the mediastinum in contact with the lungs, the
diaphragm, and the great vessels. It is in intimate relation with the
pericardium, a thin fibrous membrane that covers the organ and modulates
the ventricular deformation. Between the pericardium and the epicardium,
we can find a fluid that lubricates the contact between both surfaces.

Figure 1.4: Relations of the heart in a transverse view. The heart is located
in the center of the mediastinum, with a close relation with the neighboring
tissues. Image taken from [15].

Recently developed imaging techniques as speckle tracking [16]
echocardiography and diffusion tensor Magnetic Resonance Imaging (MRI)
[17, 18] give a deeper understanding of cardiac mechanics [19, 20]. These
new imaging techniques confirmed that, due to the described histological and
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mechanical conditions, the ventricular contraction involves the base of the
heart rather than the apex. The basal plane moves in base-apex direction,
with a slight torsion of the ventricles due to the helicoidal structure of the
fibres [20]. This twisting creates an energetically efficient swirling effect in
the ventricular flow [21, 22]. Due to the pericardium [20], the epicardium
has barely not normal displacement, while is free to move in the tangential
direction.

1.3 State of the art review

1.3.1 The starting point: electrophysiology modelling

Historically speaking, the first steps in computational heart modelling were
in models of the electrical activity of the heart. The first electrophysiology
cell model, described by Hodgkin and Huxley [23], made the authors winners
of the Nobel prize in medicine (1963). This set of equations described the
transmembrane voltage and ionic currents in an axon.

The electrophysiology models rapidly evolved from axon model to tissue-
specific models. By 1961 the first phenomenological set of equations for
cardiac cells appeared [24]. These models reproduce the shape of the
electrical voltage in the cell membrane, but they cannot give information
about the transmembrane currents. Due to their relative simplicity,
phenomenological models become widely used and evolved with more
complex and detailed descriptions [25, 26]. For some applications, where
the ionic currents are required to faithfully reproduce the event under study
[27], phenomenological models are extremely oversimplified.

Cell models were the following step in electrophysiology simulations.
Nowadays, authors proposing this type of equations create the models fitting
ODEs to experimentally measured transmembrane currents. Today most
complex cell models include a wide range of transmembrane ionic currents
measured in dog [28] or human [29] tissue. These complex models are used to
simulate the electrical activity of the heart in normal conditions and under
complex chaotic depolarization patterns like re-entrance [30, 31, 32].

Despite cell models are preferred due to the high detail of the
transmembrane currents, these are more computationally expensive and
rely on a large set of parameters difficult to personalize. Due
to this, phenomenological models are still popular. In this way,
the electrophysiological models used nowadays can be classified in
phenomenological and cell models. An extensive review on electrophysiology
models can be found in [33].
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1.3.2 The evolution: coupled electro-mechanics

Despite the intrinsic difficulty behind these simulations, electrophysiology is
only one portion of the heartbeat problem. The electrical activity of the cells
is occurring in a solid domain that is deforming. In this way, the mechanical
deformation of the tissue is as important as the electrical activity.

When modelling the solid mechanics of the heart, two sources of stresses
should be accounted, the passive and active portion. Passive stresses are
a consequence of the structural properties of the cells and the connective
tissues. Active stresses are a consequence of the electro-mechanical activity
of the heart. The final stresses produced in the tissue are obtained adding
the passive stresses (σpas = σpasij ) and the active stresses (σact = σactij ).

Modelling passive stresses Soft tissue passive cardiac mechanics,
evolved parallely to the electrophysiology models. From early stages [34] soft-
tissue behavior was described as non-linear over finite strains. Despite this,
the simplicity and familiarity of the linearized theory, induced the first soft-
tissue models to be linear [35, 36]. Soon after [37], soft tissue biomechanics
was placed within the framework of finite elasticity. In 1973 the first model
of arterial and ventricular stresses was developed [38]. Nowadays, the great
majority of the models [39, 40] are based on the 1981 Yin [41] model. These
modern models also include some type of orthotropic properties derived from
the known helicoidal fibre distribution of the heart [7].

Coupling the active stresses When the first models of active stress
generation appeared, electrophysiology and passive tissue behavior crossed
roads. ECC is the phenomenon in which the membrane depolarization
induces a mechanical response in the myocytes. So the first active stress
models [42] were, in some way, voltage-stress transfer functions. Although
there are various models for ECC, none enjoys widespread acceptance
[43, 44]. Both, passive stress models and ECC models, quickly evolved
allowing complex computational experiments in cardiac electro-mechanical
modelling [45, 46, 47, 48].

Bidirectional electro-mechanical models ECC is a two side problem.
Electrical activity induces mechanical deformation but, also, mechanical
stimulus can also induce transmembrane currents that develop in electrical
activity. E.g. it has been proven [49] that ventricular filling slows down
epicardial conduction and increases action potential duration. Also, in [31],
the authors demonstrate that mechanical deformation could affect complex
electrophysiological phenomena like spiral wave breakup. This effect, where
mechanical stimulus induce electrical activity, is called mechano-electric
feedback. This is a complex phenomena and only a few models exist for
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such behavior [50, 48, 51].

1.3.3 Whole heartbeat modelling: fluid-electro-mechanics

Great advances has been done in electro-mechanical modelling. Despite this,
the main function of the heart is pumping blood. This fluid exerts a force in
the endocardial wall that have to be computed to know the precise solution
to this problem. Also, in some cases, the electro-mechanical activity of the
heart is not the focus of interest, but the focus is in the intracavitary fluid
dynamics. If a more accurate solution for the solid mechanics is required,
or the interest is in the intracavitary flow, ventricular fluid dynamics should
be computed. This phenomenon, where the fluid exerts a force on a solid
that deforms and modifies the fluid solving domain is called Fluid-Structure
Interaction (FSI). Although great advances has been done in the independent
fields (electro-mechanical simulations and in FSI) fluid-electro-mechanical
models of the heart are unusual, even for single-ventricle geometries. We
acknowledge that efforts are being carried out on this line by a few groups
worldwide, although hitherto published references are not existent to the
authors knowledge.

Two ways to solve the FSI problem Once the electro-mechanical
simulations were mature enough, and FSI techniques were sufficiently
complex to deal with highly deformable domains, the first partial fluid-
electro-mechanical models appeared. Two popular FSI techniques are
generally used in biomechanics (for a further explanation see Section 3.5).
The arbitrary Lagrangian-Eulerian (ALE) method deforms the fluid mesh
using imposed boundary displacements. The immersed boundary (IB)
technique uses a fixed mesh in the fluid and interpolates the wet surface
position from the Lagrangian solid mesh. These methods can be one-way, or
bidirectional. If the method is one way, only displacements are transferred
from the solid to the fluid. If the technique is bidirectional, there is also
communication from the fluid to the solid, requiring iterations to converge
position and force in the contact boundary.

Review on fluid-electro-mechanical models of the heart The
simplest approach to solve the FSI problem of the heart, is to use a one-way
FSI coupling. In this technique, the electro-mechanical simulation computes
the deformation of the mesh, and these boundary displacements are imposed
in the deformable fluid domain, technique used in [52, 5, 53]. With this
approach, forces computed by the fluid dynamics solver are not imposed in
the solid wet boundary. This feature is required to correctly reproduce the
involved physics. Despite all the efforts done, there is only one documented
case of a bidirectionally coupled FSI model of the ventricles [54]. In both
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unidirectional and bidirectional cases, Navier-Stokes equations are solved
in the fluid domain to compute fluid dynamics. In one exceptional (and
arguable, as [55] explains) unidirectional case [56] a turbulence model is also
included.

The overall complexity of the fluid-electro-mechanical model of the heart,
not only lies in the type of FSI method. On the contrary, each one of the
building blocks contribute to the completeness of the overall model. E.g.
some models [52, 54] use phenomenological models like the Fitzhugh-Nagumo
[24], and others [56], use more detailed cell models like the Tentusscher [57].

To sum-up, the most advanced coupled fluid-electro-mechanical model
so far is that of the University of Tokyo, known as UTHeart (University
of Tokyo Heart simulator) [54, 58, 59], where a bi-ventricular geometry is
used as simulation scenario. In [5], the authors present a model based on
cable methods for a heart, where a complete model is solved in simplified
geometries. Finally, in [53] and in [56] a one-way FSI model is solved in a
single-ventricle scenario.

Importance of the solving domain Finally, there are other two
important aspects to consider in the heart simulation: geometry and spatial
discretization. In the reviewed literature, single and bi-ventricular geometries
are the most frequent scenario in electrophysiology, electromechanical or
fluid-electro-mechanical cardiac modelling. In [53] and [60] the authors
take a step further, creating the biventricular geometry from MRI images.
Although bi-ventricular domains are very useful for electrophysiology, these
type of geometries present important disadvantages when used for electro-
mechanical simulations. Moreover, when simulating fluid-electro-mechanical
models, the problem becomes more apparent, rendering them almost useless
for such multi-coupled cases. The reason is evident: the richer the physics
included in the problem, the higher the requirements of geometry definition.
For instance, such kind of incomplete geometries do not contract in a
realistic way because mechanical behavior require the missing parts to impose
boundary conditions and to consider mechanical inertia. In this way, we
suggest that a 4-chamber geometry is required for a more accurate simulation
of the heart. Only in one case, the authors use a four-chamber model, but
with an oversimplified geometry [5]. Spatial discretization is also important;
a coarse mesh as the used in [58] does not allow to visualize details in
electrical depolarization or ventricular flow. Both, geometry and spatial
discretization, contribute to the completeness of the heart model.

1.3.4 Current challenges

Great advances have been achieved in heart modelling from the first electrical
wave propagation simulations. Current models are incremental evolutions
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from previous, slightly simpler stages. Creating a fluid-electro-mechanical
model of the heart is a new required stage to improve heart models. Despite
all the efforts done, none of the models cited above include all the physics
involved in the heartbeat –electrophysiology, solid mechanics and fluid
dynamics– in a whole-heart geometry.

FSI, the Achilles’ heel of current models Almost all the cited works
choose for a one-way FSI, as this approach eases implementation and
convergence. The downside of this technique is that it does not faithfully
reproduces the FSI physics, as the phenomenon is lacking the bidirectional
response. When using a bidirectional approach for the FSI problem, fluid
forces are imposed in the solid boundary, modifying the solid domain
solution. Using this FSI coupling approach in soft tissues is challenging
due to the numerical instabilities that may arise (see Section 3.5) and the
associated computational cost. At the same time, complex models have
to be solved in both sides: the fluid and the structure. Highly non-
linear phenomenon occurs in the myocardial tissue, while a large mesh
displacements and step changes in velocities are induced in the blood. From
the description above, it can be understood that supercomputing resources
are required for a model with all the desired features.

Simulations on heart geometries In the reviewed bibliography, it seems
that the solving domain is underestimated. Great efforts are done in creating
complex models for the involved phenomena but, then, less importance is
given to the solving domain.

Creating computational geometries from medical images is a challenging
area by itself, as it requires a very handcraft work from the medical image to
the computational mesh. Despite this, obtaining an accurate and complete
description of the whole organ is important for a faithful physical description.

Importance of the three-physics The heart has three different tightly-
coupled physical systems: the electrical, mechanical and fluid dynamics.
Physicians evidence this three-way coupling on a daily basis. The ECG,
which measures electrical potentials in the skin of the patient, can be
used to diagnose mechanical pathologies like myocardial hypertrophy [61].
In the same way, a reduced ventricular output can have an electrical or
mechanical etiology. Electrophysiology or electromechanical models are
useful when analyzing localized events in the heart (for a deeper discussion
see Section 1.5). But, if a more extensive overview in the heartbeat
phenomena is expected, it is required to increase the model complexity
including the blood fluid dynamics. As Lee et al[62] states: “(. . .) these
separated models are limited. Both types of decoupled models are hindered
by the need of a detailed a priori knowledge of the forces or dynamics of the
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fluid/solid interface, effectively requiring that the dynamic interplay between
fluid and solid be prescribed (. . .)”. Adding the FSI model not only makes
the model more accurate, but also provides a new set of data to evaluate
heart function and compare with experimental measurements. Due to this,
the main goal of this work is to provide a complete computational model of
the human heart.

1.3.5 HPC-based models in cardiac simulations

Each one of the independent problems (electrophysiology, solid mechanics
and fluid dynamics) is, by itself, computationally demanding. When these
problems are coupled, computational costs grows more than the sum of the
independent parts. For this reason, efficient and scalable solvers for each
problem are required, together with a proven performance for the coupled
model. There are four reasons that justify the high computational cost
and the requirement of supercomputing resources for fluid-electro-mechanical
simulations of the whole heart:

• Non-linear material model for solid mechanics.

• Fluid dynamics modelling.

• Implicit coupling for the FSI problem.

• Mesh refinement to capture geometry details.

Despite this, parallel performance for cardiac biomechanics has not been
extensively developed in the bibliography. In [63] the authors present a
detailed high performance computing (HPC) study for an electrophysiology
model, aimed to obtain clinical time-scales. In [59], the authors analyze how
to extend the flud-electro-mechanical model presented to more complex cases
using HPC techniques, but the named improvements are never presented.

1.4 Goals and contributions of this thesis

Goals The main goal of this work is to present a fluid-electro-mechanical
model of the human heart and show potential clinical applications for it.
The work done during this Ph.D. thesis differentiates from other publications
mainly for two reasons:

a. A whole heart geometry is used to run the simulations.

b. The FSI scheme used to couple both domains is bidirectional.

Despite this two facts, the combination of other features makes this work
noteworthy compared with other previous publications. To summarize, the
presented model includes:
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• A human cell electrophysiology model.

• A ventricular solid mechanic model, including passive and active
stresses.

• Intracavitary fluid dynamics bidirectionally coupled with the solid
mechanics problem.

This three problems are solved in a whole heart geometrical description.
This geometry includes ventricles, atria, great vessels, a rule-based fibre
description and boundary conditions based in published experimental
observations. This multi-physics model of the human heart is used to model
and analyze:

• A healthy heartbeat.

• A left bundle branch block (LBBB) model.

• A cardiac resynchronization therapy (CRT) treatment for the LBBB
case.

• A heart beating as a consequence of an intracavitary pacemaker and
the impact produced in the surrounding tissues.

Contributions The top contributions of this thesis, are:

• An FSI coupling algorithm capable of dealing with the instabilities
present in biomechanical simulations.

• A fluid-electro-mechanical model of a whole human heart.

• The analysis of the model in healthy and pathological conditions,
comparing the numerical results with published experimental data.

• A simplified version of a coupled cardiovascular system including heart
and main arteries.

1.5 Reach of the model presented

In this thesis, the heartbeat is understood as a tightly coupled multi-
physics problem. With the experiments presented ahead, we prove that the
heart model is able to simulate a systole including all the involved physics:
electrophysiology, solid mechanics, and fluid dynamics. Despite these facts,
a fluid-electro-mechanical in a whole heart model is not always necessary.
The requirements of the used model depend on two factors: (1) the initial
hypothesis and (2) the purpose of the study.
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(1) Initial hypothesis The features of the chosen models must fit and
be able to reproduce the assumptions made in the simulation design stage.
Also, the hypothesis made for one model should be extrapolated to the
remaining models. For example, if a bidirectional electro-mechanic model is
used [50, 48, 51], special care must be taken in the solid boundary conditions
and body forces. With this we mean that, if such a detailed ECC model is
used, the same level of detail has to be used in the other solid mechanic
forces, as the pressure computed by the blood. As [49] shows, cardiac filling
affects repolarization of the ventricle.

(2) Purpose of the study In the same way, the variables to solve and
measure should be coherent with the needs of the ongoing work. For instance,
computing the aortic root blood flow seems unnecessary if the objective is
to study the re-entrance phenomena [27] produced by an ischemic scar [64].

A general rule cannot be made, but this hypothesis-method-objectives
coherence should stand. In the two clinical cases presented in this thesis,
a three-physics model is mandatory. For the LBBB and CRT cases
(Section 5.3), an electrophysiology-only approach would give a partial
understanding on the pathology and the treatment, as explained in the
results of the cited experiment. Even though an electrophysiology-only
model can show the resynchronization of both ventricles, it cannot reflect
that improvement in the cardiac output. In the same way, the fluid-electro-
mechanical model is required for the leadless pacemaker case (Section 5.4).
An electro-mechanic model for this problem would not be able to reflect the
fluid effect against the device.

1.6 Structure of this thesis

This document is organized as follows. First, in Chapter 1, we
have introduced this thesis, cardiac anatomy, the different physical
problems involved, and the state of the art in cardiac modelling. In
Chapter 2 the continuum equations for the different physical problems are
described. Following, in Chapter 3, the governing equations are translated
to the discrete temporal/spatial domain, explaining the computational
implementation for the involved models. After this, in Chapters 4 and 5 we
present a series of numerical experiments to validate and test the methods
developed. In the same chapter, results for the fluid-electro-mechanical
model of the heart are shown. Then, in Chapter 6, we present a first glance
on a cardiovascular coupled model, developed together with the Laboratório
Nacional de Computação Científica (LNCC) in Petropolis, Brasil. Finally, in
Chapter 7, we close this work discussing the results and showing the scientific
contributions and proposing future research lines from this work.



Chapter 2

Governing equations

Poets say science takes away
from the beauty of the stars
- mere globs of gas atoms.

I too can see the stars
on a desert night,

and feel them.
But do I see less or more?

Richard Feynman

Summary: In this chapter the continuum equations that model the
human heartbeat are described. The problem is analyzed as a three
coupled physics system. First of all, each one of composing problems
are described, electrophysiology, solid mechanics and fluid dynamics
in a deformable domain. After that, the equations that model the
coupling points between the different building blocks are shown.

2.1 Heartbeat: three coupled physics problem

In Chapter 1 we described the heartbeat as phenomena that can be
decomposed in three, more simple coupled problems: (a) the electrical
depolarization, (b) the solid mechanics and (c) the fluid dynamics. These
three problems are tightly related, and must be solved in a coupled way.
In the previous chapter, we saw that the propagation of the electrical
depolarization in the muscle cells induces the mechanical deformation of
the myocardium in a process called excitation contraction coupling (ECC)
(see Section 1.2). Also, we saw that the intracavitary and vascular fluid
dynamics is induced by the deformation of the ventricular cavities and, as a
reaction, the fluid exerts a force against the solid wall. From the description

17
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in the previous lines, we identify two coupling points. On the one hand
we have the electro-mechanical coupling between the electrophysiology and
the solid mechanics models. On the other hand, we have the bidirectional
structure-fluid coupling, frequently called Fluid-Structure Interaction (FSI).

Breaking the heartbeat apart To ease the analysis and implementation
of the three problems, we can categorize them depending on the domain they
are solved. Electrophysiology and solid mechanics are solely solved in the
myocardium, this is to say the solid or structural domain. On the contrary,
the fluid dynamics problem is only solved in the deformable fluid domain.
Figure 2.1 shows a graphical reference for a problem splitting as the described
above. The arrows represent the coupling points, and the dotted lines the
two bidirectional problems.

Electrophysiology

Solid mechanics Fluid dynamics 
(deformable mesh)

FSI problem

Electromechanical 
problem

Coupling

Coupling

Figure 2.1: A three physics problem. The system can be decomposed in
two bidirectionally coupled problems: the electro-mechanical and the fluid-
mechanical one. These two problems can be decomposed in sub-problems
leading to three systems of equations to solve: electrophysiology, solid
mechanics, and fluid mechanics in deformable mesh.

All the equations described in this chapter, are temporally and spatially
discretized with the techniques described in Chapter 3 and implemented in
Alya, the Barcelona supercomputing center (BSC) in-house workbench for
finite element method (FEM).

2.2 Electrophysiology

The electrical depolarization of the heart is orchestrated by the specialized
conduction system (see Section 1.2.1), which regulates heart rate and
synchronous depolarization. When talking about normal ventricular
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depolarization, the phenomena starts in the Purkinje network, that guides
the electrical impulse to almost every point of the ventricular endocardium,
initiating the depolarization of the myocardium.

Once a few myocytes are excited, a so called all-or-nothing process
starts, where the induced electrical wave propagates to the whole heart.
There is evidence that, at cell scale, the action potential propagation is
a discrete process [65]. However, at larger spatial scales (few thousands
cells) depolarization appears to propagate smoothly [66]. A common
and important assumption is that this discrete nature can be neglected,
and propagation can be considered as continuous. Therefore, cardiac
tissue behaves as a functional syncytium, supporting propagating waves of
depolarization and repolarization. Due to this, the electrical propagation
phenomenon can be modeled under the continuum mechanics hypothesis.

Equation for the wave propagation Once the tissue is depolarized and
the all-or-none barrier for the cell model is surpassed, the ionic currents along
the membrane produce the action potential that travels along the fibres. The
equation for the electrical activation potential (φ) propagation reads:

Cm
∂φ

∂t
+

∂

∂xi

(
Gij
Sv

∂φ

∂xj

)
+ Iion (φ) = 0, (2.1)

where φ is the activation potential and Sv the surface to volume ratio.
The left-hand side is the tissue propagation model that is based on the
continuum cable equation. The conductivity tensor Gij comes from the
transversally isotropic fibre-like structure of the tissue. The anisotropic
tensor is computed by rotating the material fiber framework to the global
system using transformation matrix Tij , resulting in:

Gij = Tik G
d
kl T

−1
lj , (2.2)

where Gd
kl is the fibre conductivity for the material coordinates. The

conductivity tensor Gij can also be written as:

Gij = g0 [(1− r)ninj + rδij ] , (2.3)

where g0 is the conductivity along the fibre, ni is a vector defining the fibre
direction r is transverse/longitudinal conductivity ratio and δij the identity
tensor. In Equations (2.1) and (2.2) the Latin subscripts label the space
dimension. Cm and Sv are the membrane capacitance and the surface-to-
volume ratio model constants, respectively. Diffusion governs the passive
propagation of the wave over the tissue. The reactive part Iion is modeled
by a set of ordinary differential equation (ODE) and is what, in the end,
forms the pointwise wave shape.
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Model for the ionic current Several phenomenological and cell models
(Section 1.3.1) has been proposed for the Iion term [67, 68, 69, 70, 71, 66,
24, 25, 57, 26, 29]. In this work we use the O’Hara-Rudy model [29]. It is
partially1 human-based, and one of the most complete cell models. The
authors used an ODEs fitting technique to create this cell model. The
used model includes ∼ 50 equations that modulate 41 state variables in
which there are included all the critical transmembrane currents like Sodium,
Potassium, Chlorum and their different channels and exchangers. This model
not only have scientific relevance as it allows to model complex physiological,
pathological and pharmacological events [72, 73], but also it has been chosen
by the Cardiac Safety Research Consortium [74] (a consortium partially
sponsored by the food and drug administration (FDA)) as the gold standard
for electrophysiology modelling.

2.3 Solid mechanics

To model solid mechanics we use the finite elasticity framework. The solid
mechanics in the heartbeat problem should include the stresses produced
by the material model, the boundary conditions, the fluid that is making
pressure in the solid walls, and the active tension induced by the myocytes.
The way pressure is imposed in the endocardium and the equations for active
tension, are treated ahead in this chapter. In the following lines, we describe
the passive behavior of the tissue. The solid problem is governed by the
linear momentum balance:

ρs
∂2ui
∂2t

=
∂PiJ
∂XJ

+ ρsBi, (2.4)

where ρs is the density of the material. The Cauchy stress σ = J−1PF T ,
is related to the nominal stress PiJ through the deformation gradient
FiJ = ∂xi/∂XJ and J = det(F ) is the Jacobian determinant. In cardiac
tissue [3], stress is assumed to be a combination of passive and active stress:

σ = σpas + σact(λ, [Ca
2+])f ⊗ f , (2.5)

accounting for the passive (σpas = σpasij ) and the contractile (σact = σactij )
parts respectively. The active part will be defined in Section 2.5.1.

Model for passive stresses The passive part is modeled as a slightly
compressible invariant-type material [39] and through a transverse isotropic
exponential strain energy function W (b). This constitutive relation describe
the response of a material to applied loads, which depends on the internal

1To date, there are no action potential models based on experimental data from a single
specie.
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constitution of the material. The energy function W (b) relates to the
Cauchy stress σpas to the right Cauchy-Green deformation b and the strain
invariants. For the slightly compressible Invariant-type material used in this
work [39], the pseudostrain energy function has an exponential stress-strain
behavior:

Jσpas = (a eb(I1−3) − a)b+ 2af (I4 − 1)ebf (I4−1)2f ⊗ f +K(J − 1)I. (2.6)

The strain invariants I1 and I4 represent the non-collagenous material
and the muscle fibres, respectively. Parameters a, b, af , bf are determined
experimentally. K sets the compressibility. Vector f defines the
fibre direction, modifying the electrophysiology propagation through
Equation (2.2). This near incompressibility is physiologically justified with
the high volume fraction of water in most soft tissues that do not diffuse in
or out during the period of interest.

2.4 Fluid dynamics

The last building block in the heartbeat problem is the set of equations to
model fluid dynamics.

Momentum and continuity in the fluid The blood is modeled as
Newtonian and incompressible. This fluid is modeled with the Navier-Stokes
equations in deformable domain, this means with an arbitrary Lagrangian-
Eulerian (ALE) formulation:

ρf
∂vi
∂t

+ ρf
(
vj − vdj

) ∂vi
∂xj

+
∂

∂xj

[
+pδij − µ

(
∂vi
∂xj

+
∂vj
∂xi

)]
= ρffi (2.7)

∂vi
∂xi

= 0, (2.8)

where µ is the dynamic viscosity of the fluid, ρf the density, vi the velocity, p
is the mechanical pressure, fi the volumetric force term and vdj is the domain
velocity.

Deformable domain As the fluid domain deforms due to the imposed
boundary displacements, the deformation for the inner portion of the domain
must also be solved. To do this, we use the technique proposed in [75].
Dirichlet conditions imposed in boundaries of the domain, are diffused
thorough the whole domain with a Laplacian equation:

∂

∂xj

(
[1 + αe]

∂bi
∂xj

)
= 0, (2.9)
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where bi are the components of the displacement in each point for the domain.
In Equation (2.9), the diffusive term αe controls how the domain deforms
with the imposed boundary conditions.

2.5 Coupling the physics

2.5.1 Excitation contraction coupling and mechano-electric
feedback

Excitation contraction coupling ECC is the way the electrophysiology
model has to induce an active tension in the solid mechanics model. As
explained in Section 1.2.2, muscle contraction starts with the depolarization
of the cell membrane. This electrical effect triggers Calcium ([Ca+2]) release
from the sarcoplasmic reticulum in the cell, which ultimately generates the
mechanical contraction of the sarcomeres in the myocytes.

As it has been said in Section 2.3, the stress produced in the solid domain
has two components. The passive portion σpasij is due to the connective tissue
and is modeled by the material model, already described in Section 2.3. The
active portion σactij is produced by contraction of the myocytes and is a
function of the Calcium concentration (see Equation (2.5)). Several models
are proposed for the ECC, but in this work the Hunter-McCulloch [76] model
is used due to its simple Calcium-stress relation. The equation reads:

σactij =

[
Ca+2

]n
[Ca+2]n + Cn50

+ σmaxij (1 + η(λ− 1)), (2.10)

where C50 is the Calcium concentration for 50% of σmaxij , n is a coefficient
that controls the shape of the curve, and σmaxij is the maximum tensile stress
generated at λ = 1.

Mechano-electric feedback In Section 1.3.2 we described the mechano-
electric feedback as the phenomena in which mechanical deformations
modulate the electrical activity, by an explicit set of ODE [50, 48, 51]. In
this thesis, we do not include such modulation as our focus is on the overall
deformation of the heart and not on localized electromechanical phenomena
(recall Section 1.5).

Bidirectional electromechanical formulation Despite not using an
mechano-electric feedback, we use a bidirectional coupling in the
electromechanical model. With this approach, both involved models
(electrophysiolgy and solid mechanics) are solved under the same deformable
solid domain (see Equation (2.2)). Computing the electrophysiology
equations in the deformed mesh do not create new transmembrane currents,
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but changes the electrophysiology module solution to accurate solving
domain.

2.5.2 Fluid-structure interaction

The last item lacking of physical description is the structure-fluid coupling.
FSI is the process where a fluid and and a solid interact through a wet
surface, inducing forces and displacements on each other. Lets call Ωa the
fluid domain, and Ωb the solid domain, interacting in the wet surface Γc. In
the fluid domain, Navier-Stokes with ALE formulation is solved and, in the
other domain, (at least2) the solid mechanics model is solved.

Let us label with “nsi” (after Navier-Stokes incompressible) and “sld” the
fluid and solid sides of a coupled FSI problem. Then, at the contact or “wet”
surface Γc, displacements di and stresses σij must be continuous:

nsidΓc
i = slddΓc

i (2.11)
nsiσΓc

ij nj = sldσΓc
ij nj , (2.12)

where nsidΓc
i and slddΓc

i are the deformation in the contact boundary for
the fluid and for the solid respectively; and sldσΓc

ij and nsiσΓc
ij and are the

stresses in the contact boundary. Both equations represent continuity of
displacements and forces respectively. We have to add that during the fluid
dynamics modelling (Section 2.4), The stresses nsiσΓc

ij are translated as a
volumetric force applied in the contact boundary Γc as:

fi = nsiσΓc
ij · nj , (2.13)

where fi is the traction in Equation (2.7) and nj is the normal to the surface.

2Afterwards, other models can be added to each side of the problem.





Chapter 3

Computational implementation

“To whom speed means
freedom of the soul”

Vanishing Point (1971)

Summary: The objective of this chapter is to describe the
numerical methods to run computational experiments. To do this, the
continuum equations for the electrical, mechanical and fluid portions
are translated to the discrete spatial and temporal domain, explaining
the solution strategies for each model. First, the simulation software,
Alya, is described. Then, the geometrical description of the heart, the
domain where the equations are solved, is detailed. This description
includes the geometry, spatial discretization, fibre and cell distribution.
After that, the numerical strategies for each model are detailed,
starting with electrophysiology, following with solid mechanics and
finishing with fluid dynamics. The FSI problem is solved using a
novel HPC coupling strategy, called interface quasi-Newton. The
implementation is eased by the computational framework used in this
Thesis. Finally, the boundary conditions for the problem are detailed.

3.1 Alya: HPC-based multi-physics and multi-scale
simulation code for supercomputers

All developments in this thesis are programmed in Alya, the BSC’s in-
house simulation software, optimized to run in large-scale computers. This
code is versatile enough to easily write new models and solving techniques
while hiding a big deal of the parallel implementation burden. Among
other features, Alya is capable of running in a multi-code environment that
provides flexibility at the time of developing new solving strategies.
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3.1.1 Code description

Alya is the Barcelona supercomputing center (BSC) in-house tool used in
this work to solve the models and to implement the solving strategies. This
software is designed from scratch to run efficiently in high performance
computers, with a tested scalability up to 100.000 cores [77, 78, 79, 80, 81].

The code is programmed in a modular way, with a kernel in charge
of generic input/output subroutines, solvers, mathematical functions and
services like parallelization or other complementary tools. Then, there are
several modules, allowing to solve a wide range of coupled problems such as
radiation, compressible and incompressible fluids, excitable media and solid
mechanics. The software is written in Fortran 90/95. The time dependent
partial differential equations (PDEs) are solved using, mainly, finite element
method (FEM), but finite volumes can also be used for some problems. The
platform is designed to be multiphysics and flexible for coding and running
in high performance computing (HPC) machines.

In this thesis a maximum of four physics are used: electrophysiology, solid
mechanics, fluid mechanics and the arbitrary Lagrangian-Eulerian (ALE)
solver for the deforming meshes. In all the cases FEM is the spatial
discretization strategy and, except said otherwise, the code is run in parallel.

3.1.2 Programming framework: divide and conquer

Alya is prepared to run in a multi-code environment. With a built-in library,
our simulation tool can be coupled with other modelling software, or with
other(s) Alya instance(s). In this work, and for the most general case
computed, a multi-code approach is used. Two Alya instances are coupled
to solve the fluid-electro-mechanical model, splitting the whole domain in
two parts: the fluid sub-problem (blood) and the solid sub-problem (tissue).
Each part is solved in one of the instances of the code. Each instance works in
a sandbox manner, being completely independent from the other, with their
own input configuration and mesh files. Both instances communicates with
a black-box approach, knowing only the coupling points and the variables to
be transferred.

The fluid-electro-mechanical problem in a multi-code approach
The most integrative cases solved in this thesis are the fluid-electro-
mechanical cases. As said before, this multiphysics problem can be naturally
decomposed in two sub-problems: solid and fluid. Using the multi-code
approach available in the simulation tool, we can distribute the involved
physics, depending on the sub-problem where they are being solved.

With this approach, the solid domain runs in one Alya instance,
computing the electrophysiology (EP) (explained in Section 3.3.1) model
and the computational solid mechanics (CSM) (detailed in Section 3.3.2)



3.1. Alya: HPC-based multi-physics and multi-scale simulation code for
supercomputers 27

equations under the same mesh. The fluid domain runs in another instance of
Alya computing the ALE deformable domain (explained in Section 3.4.2) and
the computational fluid dynamics (CFD) (detailed in Section 3.4.1) problem,
in another mesh. Both codes communicate through a set of integrated ad-
hoc Message Passing Interface (MPI) subroutines in specific coupling points
(see Figure 3.1).

Electrophysiology

Solid mechanics

Alya 1
Solid doman

 

Fluid mesh 
deformation

Fluid dynamics

Alya 2
Fluid domain

Coupling 
subroutines

Figure 3.1: Alya Framework. Scheme of the multi-code implementation
solving the EP and CSM in one Alya instance and another instance solving
the ALE and CFD problems in another mesh.

This coupled multi-physics problem is then solved in a staggered way.
Each Alya instance solves two problems: on one side, electrophysiology
and tissue mechanics; and on the other side, fluid mechanics and mesh
deformation. In turn and for each iteration, each of the four physical
problems is solved independently. This strategy has its benefits and
drawbacks. Among the benefits is its flexibility, because each physical
problem can be programmed independently of the other, with smaller
problem matrices and its own best-suited solution strategy, allowing to solve
the problems in a standalone way if required or adding more and more
problems to solve. The drawback is that the coupling strategy must be robust
and efficient enough to take real profit of the advantages. The efficiency
issue is important not only from the algorithmic viewpoint but also from the
parallel implementation one, especially when the two instances are coupled.
In this work we show at what extent these drawbacks are overcame.

Domain partition and communication points Both of the multi-
code approach sub-problems (e.g. Ωa and Ωb) are potentially very large,
requiring in turn parallel runs. Each sub-problem is then partitioned using a
mesh partitioner such as METIS [82] and distributed to many MPI parallel
threads, every thread with its corresponding sub-domain: Ω1

a, Ω2
a, Ω3

a, (· · · )
and Ω1

b , Ω2
b , Ω3

b , (· · · ). If both sub-problems are parallelized, then an efficient
MPI point-to-point communication scheme is required for the wet surface Γc,
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as can be seen in Figure 3.2.

{
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⌦3
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Figure 3.2: Physical sub-problems Ωa and Ωb in contact by the wet surface
Γc. Each physical sub-problem is subdivided in three computational sub-
domains. To be parallelly efficient, communications for the contact surface
Γc between the sub-problems must be carefully designed.

3.1.3 Modelling pipeline

The pipeline used to obtain the simulations results is shown in Figure 3.3.
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geometry

Geometry 
modification

Mesh 
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(ANSA)
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(ANSA) (Alya)

(Alya)(Alya)(Alya)

(Alya) (Paraview)

Figure 3.3: Modelling pipeline to for pre-processing, simulation and post-
processing.
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As a first step, the original geometry is modified, and the mesh is created
with a pre-processor software (explained in Section 3.2). Then, the fibre and
cell distribution are computed through a rule-based method (described in
Section 3.2.2), and the boundary conditions (B.C.) are imposed for each
physic. After, each one of the problems is incrementally added to the model,
starting with EP (Section 3.3.1), following with CSM (Section 3.3.2) and
finishing with the coupled Fluid-Structure Interaction (FSI) (Section 3.5)
problem that includes the CFD (Section 3.4.1) formulation. Once each
physic is added, the simulations results are analysed to look for convergence
problems and physical consistency with the originally defined problem. The
most common encountered issue was after including the FSI formulation.
Often, the intracavitary space contracts in such a manner that the elements
of the fluid domain get extremely flatten and the CFD problem diverge or
the elements are inverted. In that case, the mesh should be rebuilt taking
special care in that conflictive region.

3.2 Computational description of the heart

In this section we describe the domain where the computational models are
solved. As said in Section 1.2, the heart not only has a complex geometry, but
also a complex histology. Due to this fact, many critical information intrinsic
to the geometry as fibre and cell distribution (Section 3.2.2) is required.

Two geometries are presented. Firstly, we show a full heart geometry,
that is the most complete geometrical description in the work. Then, we
present a ventricles-only geometry, used to run simpler experiments.

3.2.1 Geometry and spatial discretization

Geometry generation The whole heart geometry used in this thesis
comes from the Zygote Solid 3D heart model [83] shown in Figure 3.4. This
geometry represents the 50th percentile U.S. 21-year-old healthy Caucasian
male (average error under 5 %). Images were reconstructed from 0.75 [mm]
thick Magnetic Resonance Imaging (MRI) slices [83].
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Figure 3.4: Computational description of the heart. Complete geometry of
the original Zygote human heart model [83].

Even though the acquisition and reconstruction were performed during
70% diastole, the geometry is subjected to residual stresses. The geometry
could be pre-stressed using a fictitious configuration technique [84, 85], but
due to the known condition of end-diastolic configuration, we assume that
the geometry is stress-free.

Modifying the geometry To modify the geometry and create the mesh,
the proprietary software ANSA pre-processor 1 was used. This is a very
handcrafted job that took several trial and error iterations until the mesh was
good enough for modelling. The main modifications of the Zygote geometry
were:

• The non-specific structures were removed ( i.e. fat and vessels).

• The valvular leaflets were removed, closing the space with a plane
surface in the atrioventricular case.

• The geometry surfaces were modified to make them fit between each
other.

1visit https://www.beta-cae.com/ansa.htm for more information.

https://www.beta-cae.com/ansa.htm
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• The atria was filled with an isotropic lineal solid material, with a
density of ρ = 1.04

[
g/cm3

]
, a young modulus of E = 5 [Ba] and a

Poisson ratio of ν = 0.0005. This allows a physiological dynamic of
the structure without modelling the atrial inner fluid dynamics.

• The inner surface of the endocardium were smoothed to reduce possible
mesh inverting problems in the fluid mesh.

• The inner cavities volumes were created.

In Figure 3.5 the modified geometry next to the ventricular fibres can be
seen.

Figure 3.5: Computational description of the heart. Left: mesh of the
modified version. Center: slice of the geometry showing the filled atrium
and the ventricular cavities. Right: Fibre description of the ventricles, top
and frontal view.

Spatial discretization As seen from literature of cardiac electro-
mechanical coupling (at least for the relatively few cases reported), the most
common approach so far has been to use [86, 87, 54, 88] different meshes
to simulate electrophysiology and solid mechanics, even though they are
virtually the same domain. This approach is generally motivated by two
reasons. On one hand, is generally observed that while the electrophysiology
problem is eventually well parallelized, solid mechanics is not. On the
other hand, it is generally stressed that electrophysiology needs a finer mesh
definition that solid mechanics. It is worth to remark that the use of different
mesh sizes do not represent a problem per se (it is well known that solving
in different mesh sizes and interpolating fields can arise stability problems).
However, Alya is highly efficient to solve in parallel all of its programmed
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models. Therefore, we use the same mesh for the electrical and the solid
mechanical problems. For this work, an average element size of 250 [µm] is
used. Figure 3.6 shows histograms for the element volume distribution for
the solid mesh and the fluid mesh.

Figure 3.6: Element volume distribution for the solid and the fluid mesh.

The meshing strategy fits, whenever possible, larger elements in the non-
conductive volumes (atria and vessels), obtaining a non-uniform element
volume across de mesh. This allows to have an appropriate spatial
discretization in the regions required, while maintaining the element overall
element count as small as possible. For the fluid domain mesh this constrain
is not required, so bigger elements are allowed. Despite this, as both meshes
are enforced to have matching nodes in the contact boundary, the fluid
domain mesh results almost as fine as the solid mesh.

3.2.2 Fibre and cell distribution

As discussed in Section 1.2.1, fibre and cell distribution are critical for the
electrical depolarization and mechanical deformation of the myocardium.
The fiber distribution can be experimentally recovered from animal or ex-
vivo organs with diffusion tensor imaging magnetic resonance (DTI) [18, 89],
allowing to have fibre distribution from biological tissues. This technique
measures water molecules diffusion to reveal microscopic detail about fibre
architecture. However, as the water molecules diffuse in all directions, DTI
does not provide a good spatial resolution and results in very noisy data. On
the other hand, fibre distribution can be generated with rule-based methods
[90, 91, 92, 7, 93]. These techniques find the relative position for each node in
the domain with respect to the endocardium and the epicardium and assigns
a fibre direction and cell tag.
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Streeter fiber model In this work we create the fibres with the algorithm
developed in [94, 7], which we briefly describe here. For each node in the
ventricles, the minimal distance to endocardium and epicardium is computed
(dendo, depi). After this, a thickness parameter e is defined:

e =
dendo

dendo + depi
. (3.1)

The fibres are build orthogonal to the local base generated, ensuring a
smooth angle variation. Fibre orientation is then determined by:

α =
π

3
(1− 2e)n , (3.2)

where n determines a linear (n = 1) or cubic (n = 3) variation (see Figure 3.7
for a comparison of both functions). π/3 is the maximum and minimum
angles for the fibres (−60◦, 60◦). Through Equation (3.1) cell differentiation
is also assigned, being the first 1/3 endocardial cells, the second 1/3 mid-
myocardial cells and the last 1/3 epicardial cells, with slightly different
electrophysiology parameters. For a graphical reference of the fibre an cell
distribution see Figure 3.7.
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Figure 3.7: Fibre an cell distribution form endocardium to epicardium.

In this thesis the fibre distribution in the left ventricle (LV) and in the
right ventricle (RV) are similarly treated with the Streeter algorithm. This is
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a simplification, as the RV fibre distribution can be separately characterized
[95]. Such a feature could be included implementing an algorithm as the
described in [90, 93].

Atria fibre model As explained in the last pages, in the whole-heart
model proposed in this thesis, atria do not depolarize or contract. Despite it
is true that the passive mechanical properties of the tissue are also aligned
with the fibre distribution, the main source of internal stresses come from the
active contraction (explained ahead). Due to this, the fibre distribution in
the atria is extrapolated from the ventricles, following the helicoidal shape,
given by the outer and inner walls and the Streeter rule-based method
described above. This is a simplification that must be tackled when the
whole heart model includes contractile atria, as the fibre field in these
structures follow a complex distribution [13, 96]. But, under the hypothesis
we use, a simplified fibre distribution should not have a great impact as the
passive deformation of both atrium are small compared against the active
deformation of the ventricles.

3.2.3 Bi-ventricular version

We also propose a ventricle-only version of the Zygote human heart geometry.
For this, we apply the same process as the described in Sections 3.2.1
and 3.2.2 but only to the surfaces related to the ventricles. The geometry and
mesh are shown in Figure 3.8. A slice and other views of the same geometry
are shown in Figure 4.6. The bi-ventricular geometry is very similar to those
simplified geometries when the electrophysiology problem is solved alone. We
will use it here to show some features of the coupled problem when running
on such kind of scenarios.

Figure 3.8: Computational description of the heart. Biventricular geometry
overview.

Spatial discretization The mesh has 500k elements and 80k nodes.
Although the element size and shape is not constant, mesh quality is
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evaluated using the scaled Jacobian (SJ), which is kept within the range
0.3-1.0, with only 3000 elements below 0.5.

3.3 Computational implementation: The structure
domain

Here we describe the problems solved in the solid sub-problem, which are
the electrical wave propagation and the deformation of this domain due to
the electrical activity. As said above, both sets of equations are solved in
the same computational mesh and computed by one Alya instance, i.e. the
left side of Figure 3.1.

3.3.1 Electrical wave: electrophysiology modelling

The electrical propagation is ruled by Equation (2.1) described in Section 2.2.
The continuum equations are discretized in time and space using finite
differences and finite element, respectively.

Discretized form The linear diffusive terms can be integrated by parts
using either open or closed rules. Closed integration is used in the ionic
current term Iion(φ) to preserve the nodal character. This strategy used
for the non-linear part produces a trivially invertible diagonal mass matrix.
Once discretized, Equation (2.1) becomes:(

M

∆t
+ θK

)
∆φ+ MdIion = −Kφn (3.3)

where ∆φ = φn+1 − φn is the unknown difference between two time steps.
θ determines if the time integration scheme is Forward Euler (first order
explicit, θ = 0), Backward Euler (first order implicit, θ = 1) or Crank-
Nicolson (second order implicit, θ = 0.5) respectively.

Solving strategy The discrete equations in Equation (3.3) are solved
using a first order Yanenko operator splitting:

Cell model(∆φ∗) :
∆φ∗

∆t
+ Iion(φ) = 0

Tissue model(∆φ̃) :

(
M

∆t
+ K

)
∆φ̃ = −Kφ∗, where ∆φ∗ = φ∗ − φn

Update(φn+1) : φn+1 = φn + ∆φ∗ + ∆φ̃.

where the Cell Model is explicitly solved using a Forward Euler scheme and
the Tissue Model is solved implicitly with either a Backward Euler or a
Crank-Nicolson scheme. From numerical experiments we observed that as
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the main critical time limitation comes from the Tissue Model, the proposed
scheme is both efficient and accurate enough.

3.3.2 Myocardium mechanical deformation: CSM

Equations in Section 2.3, which governs the mechanical solid dynamics in
the heart tissue, are spatially discretized with finite elements and temporally
discretized with finite differences.

Discretized form Discretizing Equation (2.4) leads to a matrix equation
of the form:

ρsM
∆u

∆t2
+ K(u)un+1 = R (3.4)

where u is the unknown displacement, R is the force term, M is the mass
matrix, and K(u) is the stiffness matrix.

Solving strategy The resulting system is solved using a Newmark scheme,

u∗ = un + ∆tvn + ∆t2(
1

2
− β)an

ρsM

∆t2β

(
un+1 − u∗)+ Kun+1 = −fext

an+1 =
1

∆t2β

(
un+1 − u∗)

vn+1 = vn + ∆t(1− γ)∆tγan+1. (3.5)

In this work we solve the second system in an explicit way, where parameters
β and γ are chosen for good stability properties (see [80]).

Dynamic problem treatment and spurious oscillation control
In this work, we solve all problems dynamically. Therefore, either a
physical (adding viscoelastic terms to the material model) or numerical
strategy (adding artificial dissipation to the equations) is required, because
hyperelastic-type materials can present spurious oscillations if no additional
dissipation is considered. In this work we prefer the second one, where
dissipation can be added as a Rayleigh damping term, which leads to modify
Equation (3.4):

ρM
∆u

∆t2
+ C(u)

∆u

∆t
+ K(u)u∗ = R (3.6)

where C(u) = αM + βK(u). Parameters α and β are computed depending
on the frequency range to be damped. In [97] we propose to use β = 0 and
α = cω with c = 5. The frequency target ω is obtained after a frequency
spectrum analysis on a large number of simulations on smaller pieces of tissue
with the same material model and no Rayleigh damping.
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3.4 Computational implementation: The fluid
domain

The main problem to be solved in the fluid mesh is the incompressible Navier-
Stokes equation. But also, the way in which the fluid mesh deform, should
be computed. Both problems belong to the same physical domain, the fluid
sub-problem. In this way, they are solved in the same computational mesh,
in the second Alya instance.

3.4.1 Intraventricular blood flow: CFD

As said in Section 2.4 the physics describing the fluid inside the ventricles
are governed by the incompressible Navier Stokes equation (Equation (2.7)).

Discrete compact form for the Navier-Stokes equation For the sake
of simplicity, let us rewrite the equations in a more compact form. First, lets
define v := vi and let ε and σ be the velocity rate of deformation and the
stress tensors respectively, defined as:

ε(v) =
1

2

(
∇v +∇vT

)
=

(
∂vi
∂xj

+
∂vj
∂xi

)
(3.7)

σ = −pI + 2µε(v). (3.8)

With this, we can define vector with the unknowns U = [v, p]T , a
differential operator L (U) and a force term F as:

L (U) =

[
ρf
[(
v − vd

)
· ∇
]
v −∇ · [2µε(v)] +∇p
∇ · v

]
(3.9)

F =

[
ρf f
0

]
, (3.10)

(3.11)

where the domain velocity vd becomes the mesh velocity vm once the
equation is discretized. If the matrix M = diag

(
ρfI, 0

)
, where I is the

identity tensor, we can write the incompresible Navier-Stokes in the compact
form:

M∂tU + L (U) = F. (3.12)

The numerical model is based on FEM, using the variational multiscale
(VMS) method [98] to stabilize convection and pressure. The formulation
is obtained by splitting the unknowns into grid scale and a subgrid scale
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components, U = Uh + Ũ. This subgrid scale Ũ is also modeled. Lets
define R

(
Ũ
)
the Navier-Stokes residue as:

R
(
Ũ
)

= F−M∂tU− L (U) . (3.13)

Then, the expression:

Ũ = τR
(
Ũ
)
, (3.14)

is considered for the stabilization where τ is a diagonal matrix, depending
on the convection velocity.

Solving strategy The resulting system is solved through a velocity-
pressure splitting strategy, already implemented in the Alya simulation code.
Time discretization is based on second order backwards differences, and
linearization is carried out using Picard method. At each time step, the
system: [

AuuAup

ApuApp

] [
u
p

]
=

[
bu
bp

]
, (3.15)

must be solved for velocity (u) and pressure (p) vectors. In order to solve this
system efficiently in supercomputers, a split approach is used [77]. The Schur
complement is obtained and solved with an Orthomin(1) algorithm [99]. To
do so, the momentum equation is solved twice using GMRES (Generalized
Minimal Residual Method) and the continuity equation is solved with the
Deflated Conjugate Gradient algorithm.

3.4.2 Deformable fluid domain: the ALE problem

The Laplacian equation that rules the fluid domain deformation is proposed
in [75]. Once the volume is discretized, the position of each node (bi) in the
mesh is computed as:

∂

∂xj

(
[1 + αe]

∂bi
∂xj

)
= 0. (3.16)

The factor αe controls de mesh distortion depending on the volume of
each element:

αe =
1− Vmin/Vmax

Ve/Vmax
. (3.17)

In this way, while small elements remain almost undeformed, large
elements suffer the larger deformations. In the last expression Vmax and
Ve are the maximum and current element size in the grid. This equation
spatially discretized using the FEM and solved with a Deflated Conjugate
Gradient algorithm [100].
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3.5 Fluid-structure interaction

In this section we discuss the FSI coupling. As it is a key part of the
algorithm, we will do it in a deeper way following what is presented in [101].
We need to compute the solution for the contact boundary (also called wet
surface) Γc (see Figure 3.2). In this surface, the solid domain deforms the
boundary and the fluid imposes forces due to the inertia, the pressure and
the viscous stresses of the blood. In this part of the problem is where the
multi-code approach described in Section 3.1.2 eases the implementation.
Having two Alya instances solving the domain-specific problems, allows to
easily implement the FSI relaxation strategies. For the sake of simplicity,
as FSI problem is independent of the electrophysiology model, the electrical
wave propagation will be avoided in this section. Despite this, all said in the
next pages stands if the electrophysiology model is included.

3.5.1 Computational framework for the FSI problem

Strategies to solve the FSI problem The main two families of methods
to solve FSI problem are the following: the ALE and the immersed boundary
(IB) methods [102]. The former deforms the fluid mesh following the solid
wet boundary, and the latter tracks the wet surface in an Eulerian fluid mesh
to enforce velocities in the fluid. The ALE method may require remeshing,
but has a more precise solution. The IB method mesh requirements are more
lenient, but the continuity equation (Equation (2.8)) may have convergence
problems due to the spatial interpolation. Also, due to the same reason,
the IB method lacks numerical precision. Alya (Section 3.1.2), already have
efficient CSM and CFD solvers. In this way, reusing this codes to solve the
FSI problem with the partitioned ALE method, is a natural way to proceed
in our work.

Dirichlet-Neumann decomposition of the problem The classical
technique to solve the FSI problem with a partitioned ALE method is to
use a Dirichlet-Neumann (D-N) splitting approach [103]. When using this
technique, one of the sides computes the Dirichlet part (displacement, dα)
and the other computes the Neumann one (force, fα). Generally, the solid
side computes the Dirichlet problem (i.e. dα = S(fα)), and the fluid side
computes the Neumann problem (i.e. fα = F(dα)). With this, we can write
the fixed point equation as:

f I+1
α = F(S(fα)), (3.18)

where I is the coupling iteration. Computing Equation (3.18) solves both
problems for each time step.
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Algorithms to solve the D-N splitting The fixed point equation can
be solved through either Gauss-Seidel or Jacobi schemes. In the former,
the solvers runs one after the other, improving convergence but penalizing
performance. In the later both solvers runs at the same time, improving
performance but penalizing convergence [104].

In this work, we use the Gauss-Seidel scheme to ease convegence. Both
algorithms are shown in Algorithm 1. The term ϕGS and ϕJ in Algorithm 1
is what relaxes the solution before a new iteration.

while Time loop do
dα = diniα
while Coupling loop do

f Iα = F(S(f̃α))

f̃ I+1
α = ϕGS(f Iα)

end
end

while Time loop do
dα = diniα
while Coupling loop do

dα = S(f̃α) ; fα = F(d̃α)

< d̃I+1
α , f̃ I+1

α >= ϕJ(dα, fα)

end
end

Algorithm 1: Gauss-Seidel (left) and Jacobi (right) schemes. ϕGS and
ϕJ are the convergence acceleration algorithm for each case. d̃α and f̃α
represent the relaxed variables. Note that in the Gauss-Seidel approach the
problems are solved in a block-sequential way, and in the Jacobi approach
in a block-parallel way.

Left side of Algorithm 1 shows the Gauss-Seidel scheme. In it, for each
coupling iteration, the Alya instances run one after the other in a block serial
manner. Due to this, one of the solvers is idle while the other is computing.
When both problems (i.e. S(fα) and F(dα)) are solved, the convergence
acceleration algorithm ( ϕGS) executes and a new coupling iteration starts.
This temporal scheme can be visualized in the schematic trace in Figure 3.9.

On the contrary, in the Jacobi scheme (right side of Algorithm 1), the
fluid and solid solvers run at the same time. In this way, no solver has
to wait for the results of the other. Similarly as the Gauss-Seidel scheme,
after both problems are solved, the convergence acceleration algorithm ϕJ
executes before starting a new iteration.
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Figure 3.9: Implementation framework. Schematic trace for the Gauss-Seidel
approach The parallel solvers are executed in a block manner. The right side
remarks the MPI communication points in the used scheme.

3.5.2 Added mass instability

Added mass instability, is a numerical problem that appears with similar
fluid and solid densities, and incompressible formulations [105, 106, 107].
This instability aggravates when:

• Time step decreases

• Viscosity of the fluid increase

• Rigidity of the solid decreases

• Temporal discretization order increases

In this work we focus our interest in biomechanics applications, specially
heart modelling. As tissue and blood have very similar densities, the added
mass effect can affect convergence of the solution procedure in partitioned
schemes. In order to deal with this instability, non-trivial relaxation schemes
were developed.

These type of algorithms can be classified in two categories: scalar
and vectorial. In the former, like the popular Aitken algorithm [108], one
relaxation parameter is found for all the contact surface. In the latter, like the
Broyden scheme [109], one relaxation parameter is computed for each node
in the boundary. This second group of algorithms work better when different
type of dynamics rule the coupling surface, as the relaxation parameter is
computed pointwise. Such is the case of the heartbeat, where there are two
virtually disjoint surfaces (right and left ventricles). In the following pages
we explain the interface quasi-Newton (IQN) scheme[110]. After that, we
propose a high performance implementation, the Compact interface quasi-
Newton (CIQN) algorithm.
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3.5.3 High performance interface quasi-Newton algorithm

In this section we firstly give a general description of the algorithm
(Section 3.5.3.1). Next, we propose several improvements to obtain the
CIQN iterative coupling scheme (Section 3.5.3.2), especially designed for
large-scale problems (Section 3.5.3.3).

A note on index notation convention In order to better describe
the implementation, the Einstein notation [111] will be followed. This
notation is particularly helpful on computational grounds, because
it simultaneously describes the mathematics, the physics and the
computational implementation aspects. Depending on the context, whether
the problem is continuum or discretized, we use different labeling sets. For
the continuum problem, the convention on repeated indices is the usual
one, with indices labeling space dimensions. On the other hand, once the
continuum problem is discretized and we obtain a system matrix, we identify
different labeling sets. The lowercase Greek alphabet α = 1, · · · p labels the
total number of degrees of freedom p, i.e. the matrix rows. The lowercase
Latin alphabet labels the matrix columns, i = 1, · · · q− 1 where q is the last
stored iteration. In the CIQN scheme matrices are not square, with p � q.
Additionally, a capital latin subindex labels the IQN iteration I = 1, · · · q−1,
where q is again the last stored iteration and, to simplify notation, the current
iteration is not explicitly indexed. A final rule is how those indices operate:
only those of the same kind contract. For instance, QI−1

αi is the Q matrix
for iteration I − 1 with rows labeled α and columns i. When this matrix is
multiplied by a certain vector Bi, it results in a given vector AI−1

α :

AI−1
α = QI−1

αi Bi =

q∑
i

QI−1
αi Bi,

where Latin indices i contract.

3.5.3.1 General overview of the IQN algorithm

The first implementation of the IQN algorithm is described in [110], which
can be considered an improvement of the Aitken algorithm. Whereas the
Aitken algorithm can be understood as a quasi-Newton scheme where the
Jacobian is enforced to be a scalar, in the IQN the Jacobian is approximated
by a field defined in the contact surface and depending on the local residual
variation over a given number of iterations [112].

Let us restate Equation (3.18) as x̃α = H(xα). If the residual at each
iteration is:

rα = H(xα)− xα = x̃α − xα, (3.19)
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the problem is converged when rα = 0. To solve this problem using Newton-
Raphson iterations, the derivative with respect to the variable must be
computed:

∂rα
∂xβ

∆xβ = −rα. (3.20)

Solving this system, ∆xβ is obtained and the next iteration unknown is
computed as:

xI+1
α = xα + ∆xα. (3.21)

Generally ∂rα/∂xβ cannot be computed or it is computationally expensive
to do so. But, the inverse Jacobian fulfills the secant equation:(

∂rα
∂xβ

)−1

Vαi ≈Wβi, (3.22)

where:

Vαi =
[
∆rI−1

α ,∆rI−2
α , ...,∆r0

α

]
(3.23)

Wαi =
[
∆x̃I−1

α ,∆x̃I−2
α , ...,∆x̃0

α

]
. (3.24)

At each iteration I, the columns of the increment matrices are built as
follows:

∆rI−1
α = rI−1

α − rα for matrix Vαi (3.25)

∆x̃I−1
α = x̃I−1

α − x̃α for matrix Wαi (3.26)

where rα and x̃α are the values in the actual iteration and rI−1
α and x̃I−1

α

are the values in the saved past iterations (I = 1, · · · q − 1). The residual
increment of the current iteration is approximated as a linear combination
of the previous residuals increments:

∆rα = Vαiλi, (3.27)

where λi ∈ Rq×1 is the solution of the optimization problem ‖ ∆rα−Vαiλi ‖
described in [113]. It is worth to remark that matrices Equations (3.23)
and (3.24) are far from being square, because while the number of rows
corresponds to the total number of degrees of freedom, the number of
columns is the stored number of Newton-Raphson iterations done.

Firstly, the matrix Vαi is decomposed by a QR decomposition, where
an orthogonal matrix Qαβ ∈ Rp×p and an upper triangular Uαi ∈ Rp×q are
obtained:

Vαi = QαβUβi. (3.28)

As Uαi is upper triangular, only the first q rows are different from zero,
which means that only the first q columns of the matrix Q are relevant to



44 Chapter 3. Computational implementation

solve the system. Then, a modified QR decomposition can be built with
Uij ∈ Rq×q and Qαi ∈ Rp×q such that:

Vαi = QαkUki, (3.29)

highly reducing the amount of memory and computing effort required, as
described below in Sections 3.5.3.2 and 3.5.3.3. After this decomposition,
the vector λi can be built by backsubstitution of the upper triangular matrix
Uij :

Uijλj = Qαi∆rα. (3.30)

As Qαi is orthogonal, the inverse is equal to the transpose, avoiding the
inversion of this matrix. Also, as ∆rα = rI−1

α − rα and the objective is to
get ∆rα = 0α − rα, we can say:

Uijλj = −Qαirα. (3.31)

Once λi is computed, the increment of the unknown ∆xα can be computed
as ∆xα = Wαiλi, and the update of the unknown as:

xI+1
α = x̃α +Wαiλi. (3.32)

The simplest description of the IQN coupling technique is summarized
in Algorithm 2. In the first step, an initial guess for both fluid and solid
solvers are computed together with the first residual r0

α. In the first coupling
iteration, a fixed relaxation ω0 is used. After the first iteration, the loop
continues until convergence is achieved. Once computed the second iteration,
the increment matrices Vαi and Wαi can be built. Each matrix has p rows
(the total number of contact degrees of freedom (d.o.f.)), and q columns (the
number of past increments saved). Generally (see Section 3.5.3.2) p is much
larger than q. It is worth to remark that q is set as the number of stored
iterations, being usually lower than the performed iterations, i.e. only the
q newer past increments are used, discarding the older ones. To develop an
efficient yet accurate implementation of the IQN algorithm, we should focus
in the QR decomposition, which involves complex matrix operations.
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For each time step, solve:
x0
α = xiniα
x̃0
α = H(x0

α)
r0
α = x̃0

α − x0
α

update x1
α = x̃1

α + ω0r
0
α

while problem not converged do
x̃α = H(xα)
rα = x̃α − xα
build Vαi =

[
∆rI−1

α , ...,∆r0
α

]
; with ∆rIα = rIα − rα

build Wαi =
[
∆x̃I−1

α , ...,∆x̃0
α

]
; with ∆x̃Iα = x̃Iα − x̃α

decompose Vαj = QαiUij (by QR decomposition)
solve Uijλj = −Qαirα
update xI+1

α = x̃α +Wαiλi
end

Algorithm 2: Simplest version of the IQN algorithm.

3.5.3.2 Compact matrix-free QR decomposition algorithm

The QR decomposition by Householder reflections [114] can be seen as
a change of base, from a linearly independent set of vectors sorted in a
matrix, to an orthogonal base of the original matrix. The goal is to obtain
the orthogonal matrix Qαβ and the upper triangular matrix Uαi, with the
following shape:

Qαε = 1Bαβ
2Bβγ ...

qBγε (3.33)

Uαi = qBαβ...
2Bβγ

1BγεVεi, (3.34)

where Bαβ are intermediate matrices obtained during the iterative
decomposition. At each of these iterations, the matrix Vαi is modified column
by column. We use a left supraindex to identify the corresponding iteration.
We do not apply the repeated index convention to the left supraindices. This
structure can be considered as a set of q ordered vectors:

Vαi =


v11

v21
...


v12

v22
...

 · · ·

v1q

v2q
...


 = [vα1, vα2, · · · , vαq] . (3.35)

It is worth to remind that the total number of stored iterations q, i.e. the
rows of Vαi, will be always much lower than the total number of degrees of
freedom p, i.e. the columns of Vαi.

The QR decomposition iteratively makes each column orthogonal to the
original base and to each other column in the matrix. The QR decomposition
starts iteration j with a matrix jVαi obtained with data from iteration j−1.
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To decompose the j− th column of jVαi, a unitary vector uα has to be built:

uα =
nα
‖nα‖

with, nα = vα − ‖vα‖ jeα, (3.36)

where vα is the column to decompose and jeα is a unitary vector with j− th
position equal to 1 and to 0 otherwise. Then,

jB∗
αβ = δαβ − 2uαuβ (3.37)

is the Householder matrix associated to the original plane, and δαβ is the
identity matrix. If the matrix jVαi is premultiplied by jB∗

αβ , a new matrix
jB∗

αβ
jVβi is obtained (recall that repeated left supraindices do not sum).

The resulting matrix is upper triangular in all the j first columns; and dense
everywhere else. For the decomposition of the first column of the matrix
1Vαβ this would look like:

1B∗
αβ

1Vαi =


‖vα1‖ · · · · · · · · ·

0
... 2Vβj
0

 (3.38)

A new submatrix j+1Vβj is therefore defined as the remainder of 1Vαi after
erasing the first column and row. This process can be repeated until the
initial matrix becomes upper triangular.

Once the algorithm is computed for all the columns of the original matrix
1Vαi, a set of q gradually smaller matrices 1B∗

αi ∈ Rp×p, 2B∗
αi ∈ Rp−1×p−1

... jB∗
αi ∈ Rp−(j−1)×p−(j−1) ... qB∗

αi ∈ R1×1 are obtained. In order to
properly compute Equations (3.33) and (3.34), matrices jBαi are filled with
the identity:

jBαi =

[
Iij 0

0 jB
∗
αi

]
(3.39)

where Iij ∈ Rj−1×j−1. Finally, the matrix Vαi is decomposed in an upper
triangular Uij and an orthogonal matrix Qαi, such that Vαi = QαiUij . The
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process is described in Algorithm 3.

l 1Vαi = Vαi
for j=1...q do

choose vα = jVαi with α = j...p and i = j
nα = vα − ‖vα‖eα
uα = nα/‖nα‖
B∗
αβ = I − 2 uα uβ

j+1Vαi = Bαβ Vβi
end
Qαε = 1Bαβ

2Bβγ ...
qBγε

Uαi = qBαβ
q−1Bβγ ...

1BγεVεi

Algorithm 3: Overview of the QR decomposition algorithm.

In order to improve computing and memory cost, we propose some
modifications, especially targeted to solving large-scale problems. As jBαβ
is obtained by the relation Equation (3.37), the product jBαβ

jVβi can be
expanded as:

jBαβ
jVβi = (δαβ − 2uαuβ) jVβi = jVαi − 2uαuβ

jVβi. (3.40)

In this way, instead of computing and storing jBαβ of size p × p for
each iteration j, we compute and save q vectors uα of size p. Moreover,
Qαβ , which is used in the backsubstitution (see Equation (3.31)), is never
completely computed. Instead, the vector −Qαirα is directly computed,
using a strategy similar to Equation (3.40). The difference here, is that
Qαε = 1Bαβ · · · qBγε, so after computing qBαirα, the rest of the matrices
Bαβ = δαβ − 2uαuβ have to be premultiplied. For the first product qBαβrβ
the expansion is:

qBαβrα = (δαβ − 2 quα
quβ)rβ = rβ − 2 quα

quβrβ. (3.41)

As the result of Equation (3.41) is a vector, the rest of the premultiplications
are computed similarly. Note that this algorithm not only avoids building
the intermediate matrices Bαβ but also the construction of the final matrix
Qαβ of the QR decomposition. In this way, matrices B in Equations (3.33)
and (3.34) are never completely computed and stored. The proposed changes
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are described in Algorithm 4.

l 1Vαi = Vαi
for j=1...q do

if j > 1 then
j+1Vαi = 1Vβi − 2uαuβ

1Vβi
end
choose vα = jVαi with α = j...p and i = j
nα = vα − ‖vα‖eα
juα = nα/‖nα‖

end
Uij = (δiγ − 2 qui

quγ) · · ·
(
δγα − 2 2uγ

2uα
) (

1Vαj − 2 1uα
1uβ

1Vβj
)

−Qαirα = −
(
δiγ − 2 1ui

1uγ
) (
δγβ − 2 2uγ

2uβ
)
· · · (rβ − 2 quβ

quαrα)

Algorithm 4: Compact matrix-free QR decomposition.

3.5.3.3 Compact matrix-free QR decomposition parallel
implementation

When using domain decomposition methods as parallelization strategy [115],
work and data are distributed among MPI tasks in partitions of the original
discretization. Therefore, the contact surface will also be distributed in this
MPI tasks (see Figure 3.2 for a graphical reference) and so the increment
matrix Vαi (Equation (3.35)).

The proposed algorithm is a collection of matrix-vector and vector-vector
products restricted to the contact or wet surface. An efficient parallelization
of the algorithm requires a proper point-to-point MPI communication and
a fusion of the compact QR decomposition and the backsubstitution step.
Therefore, the input of the parallel algorithm will be the Vαi matrix and the
residuals vectors to operate in the backsubstitution (see Equation (3.31)),
and the output will be the coefficient vector αi. This is what we call it the
Compact IQN algorithm or CIQN. The whole sequence of steps is described
in Algorithm 6.

The mesh partitioner [82] divides the mesh minimizing the area between
sub-problems but without any requirements on the wet surface, as depicted
in Figure 3.2. Then, we have to derive the upper triangular matrix from Vαi
in an efficient way. We firstly look for a partition with a number of nodes
on the wet surface that is, at least, equal to the amount of iterations stored
q. We call this first partition the “leader” partition. With this information,
we renumber matrix Vαi so the first rows correspond to the leader partition
and we start the algorithm.

Two critical operations to parallelize are matrix-matrix product Bαβ jVβi
and the matrix-vector product Qαirα. But if the former product is studied
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carefully, it is actually a matrix-vector product. As Bαβ jVβi is obtained by
the relation Equation (3.40), the multiplication sequence can be expanded
as:

(δαβ − 2uαuβ) jVβi = δαβ
jVβi − 2uαuβ

jVβi = jVαi − 2uα
(
uβ

jVβi
)
.

(3.42)

Now, the product uα
jVαi can be computed first, then compute

uα(uβ
jVβi) and finally subtract Iαβ jVβi − 2uαuβ

jVβi.
To compute Uij (see Equation (3.34)) we proceed similarly, but this

time the first operation is (δαβ − 2 1uα
1uβ)Vβi and the rest of the matrices

(δαβ − 2uαuβ) are premultiplied. Something similar happens with Qαirα.
The first multiplication, detailed in Equation (3.41) can be expanded as:

(δαβ − 2 quα
quβ)rβ = δαβrβ − 2 quα

quβrβ = rα − 2 quα ( quβrβ) (3.43)

The product quβrβ is firstly computed and then rα−2 quα( quβrβ). The
resulting vector is multiplied by δαβ−2 (q−1)uα

(q−1)uβ until δαβ−2 1uα
1uβ

is multiplied. In this way, matrices qBαi are never completely computed,
we only compute those entries that are needed. The steps to compute
Equations (3.42) and (3.43) are depicted in left and right sides of Algorithm 5.

function SMat_x_mat()
Data: vα and Vαi
Result: AUXαi

auxi = vαVαi
MPI_SUM(auxi)
AUXαi = Vαi − 2vαauxi

return AUXαi

function SMat_x_vec()
Data: vα and rα
Result: auxα

a = vαrα
MPI_SUM(a)
auxα = vα − 2vαa

return auxα

Algorithm 5: Parallel implementation. Algorithms for computing the
productsBαβVβi = (δαβ−2uαuβ) jVβi (left) andBαβrβ = (δαβ−2uαuβ) jrβ
(right).

The backsubstitution is computed once Uij and Qαirα are built in
parallel. As all the non-zero elements of the upper triangular matrix Uij
are located in the leader partition, so this operation is computed only in this
MPI task, with no extra communication. Finally the λi vector is scattered to
the rest of sub-problems, obtaining the result of the parallel algorithm. The
complete CIQN algorithm is depicted in Algorithm 6. We remark again that
thanks to the fusion between the QR decomposition and the preoperations
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for the backsubstitution, intermediate matrices (such as qBαi) are never
completely computed and stored.

1 Initialize problem and Chose leader partition
while not the last time step do . time loop

2 x0
α = xiniα

3 x̃0
α = H(x0

α)
4 r0

α = x̃0
α − x0

α

5 update x1
α = x̃1

α + ω0r
0
α

while problem not converged do
6 x̃α = H(xα)
7 rα = x̃α − xα
8 build Vαi =

[
∆rI−1

α , ...,∆r0
α

]
; with ∆rIα = rIα − rα

9 build Wαi =
[
∆x̃I−1

α , ...,∆x̃0
α

]
; with ∆x̃Iα = x̃Iα − x̃α

10 1Vαi = Vαi
for j=1...q do . QR decomposition loop

11 if j > 1 then j+1Vαi = 1Vβi − 2uαuβ
1Vβi

if I am the leader then
12 vα = jVαi with α = j...p and i = j (cropped)

else
13 vα = jVαi with α = 1...p and i = j (not cropped)

end
14 parallel compute ‖vα‖
15 if I am the leader then nα = vα − ‖vα‖ jeα
16 parallel compute ‖nα‖
17 uα = nα/‖nα‖

end
18 Uij = (δiγ − 2 qui

quγ) · · ·
(

1Vαj − 2 1uα
1uβ

1Vβj
)

19 −Qαirα = −
(
δiγ − 2 1ui

1uγ
)
· · · (rβ − 2 quβ

quαrα)
20 if I am the leader then backsubstitute Uijλj = −Qαirα
21 xI+1

α = x̃α +Wαiλi . variable update
end

end

Algorithm 6: Compact Interface quasi-Newton (CIQN) algorithm.

3.5.4 Boundary conditions for the fully coupled fluid-electro-
mechanical problem

In this section we discuss the boundary conditions for the fully coupled
problem.
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Electrophysiology Equation (2.1) is the continuum model for the
electrophysiology depolarization. Neumann zero-flow boundary condition
is imposed everywhere: φni = 0, where ni is the surface normal vector.
As initial condition, the system is excited with a nodal variation of the
voltage. This stimuli can be imposed as a voltage or as a current density.
Except specified the contrary, the left and right endocardial surfaces are
excited synchronously. In the heart, the Purkinje network is in charge to
depolarize these two structures. As the Purkinje network is distributed
along the vast majority of the endocardium [116] and the depolarization
process occurs in a few miliseconds, exciting both of the inner ventricular
surfaces synchronously is a good approximation for this initial excitation.
Despite we acknowledge this is a simplified approach, not valid for complex
electrophysiology scenarios, it is still useful when the main interest is not in
the electrophysiology behavior.

Solid mechanics As said in Section 1.2.4, physiologic deformation of the
ventricles includes a displacement of the valvular plane towards the apex of
the ventricle, inducing apex-base shortening. In this way, articles that have
reported results with excessively constrained boundary conditions like fixing
the base of the heart, cannot reproduce at all the physiological movement
of the ventricles. In [117, 118] authors from two different research groups
propose a pericardium boundary condition as a frictionless contact problem.
In [119] we propose a solution that with a different approach achieves a
similar result, which is used in this work. We propose to restrict the normal
displacements dini = 0 at the ventricular pericardium for the deformed
configuration while allowing free displacements at the tangential planes,
letting the boundary to slide. As a matter of fact, the “sliding pericardiaum”
condition is not imposed in all of the pericardium, because we leave free the
region near the valve plane to allow a more uniform and realistic movement.
We acknowledge that this condition is a first order approach, because a better
one should allow some normal movement but with a damper, combining a
spring and a velocity-related viscous force. In this work we show that even
with the first order approach, the improvement is clear. The forces computed
by the fluid mechanics are imposed in the endocardium. It is worth to remark
that in our simulations, there is no other artificial endocardium boundary
condition imposed. When used in the reviewed articles, such condition
is applied on the normal direction (i.e. pressure) through a Windkessel
function. Authors using this approach have the intention to model the
work done by the fluid against the endocardium, as it is pumped out of
the ventricles. However, when simulating single or bi-venticular geometries,
applying this force requires to also fix the heart displacement somewhere
else. As it is clearly shown in [56], when a pressure endocardium function is
combined with fixing the base the resulting systolic movement is incorrect. In
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[56], although ventricles contract along their long-axis, the apex has a large
displacement in apex-base direction and the base remains, of course, fixed.
Although this can be visually corrected (quoting [56], “For visualization we
shifted the deformed configuration such that the apex is fixed”) this effect is
not physiologically correct. On the other hand, we have observed that the
pericardium and endocardium boundary conditions proposed in this work,
produce a much more physiologically realistic movement.

Fluid mechanics As stated in Equations (2.11) and (2.12) we enforce
continuity of interface unknowns in the wet surface. This means that an
input force is added to the right hand side of Equation (2.7) through the
Equation (2.13) as a weakly imposed Neumann boundary condition. No slip
condition vi = 0 is also used on the wet surface for the fluid mechanics
problem. For the outflow boundaries, as flow may not always be fully
developed, a stabilization boundary condition must be used. Here we use
the technique described in [120]:

nTσn + Ca

∫
Γout

vndΓout + p0 = 0, (3.44)

with:
σn = −pn + 2µ∇v · n− ρf

(
{v · n}−

)
v, (3.45)

where Γout are the boundary surfaces to impose Equation (3.44), ρf is the
fluid density and the term {v · n}− denotes the negative part of v · n, this
is to say {v · n}− = v · n if v · n > 0 or {v · n}− = 0 otherwise. The term
nTσn stabilizes the outflow, while the integral term in Equation (3.44) acts
as an order-zero Windkessel model, imposing a pressure proportional to the
outflow.

Arbitrary Lagrangian-Eulerian problem The boundary conditions
for the ALE problem are Dirichlet everywhere. In the wet boundary Γc
where the displacements computed in the solid problem are imposed (see
Equation (2.11)). Otherwise, it is set to zero deformation.

3.5.5 Summary of the fluid-electro-mechanical heart model

Features of the model To sum up, the model presented in this thesis
includes:

• A human cell electrophysiology model.

• A bidirectionally coupled electro-mechanical model of the myocardium,
with passive and active stresses and a popularly accepted solid material
model.
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• A bidirectional FSI formulation for the contained fluid using the ALE
method.

• A whole heart geometry of an average healthy human heart, including
atria, ventricles, and great vessels.

• Detailed boundary conditions for the electrophysiology, solid and fluid
mechanics.

• Anisotropic electrophysiology and mechanical ventricles behavior.

• High space resolution for both tissue and blood, solved in large-scale
tetrahedral meshes.

Limitations The presented model does not include:

• Purkinje network model. Despite not including a Purkinje network,
the electrophysiology model is excited in a physiologically accurate
manner.

• Valve model. 3D modelling of the heart valves is a scientific challenge
by itself [121, 122, 123, 124]. Also, the ALE method used in this work
is not convenient to model them, as the fluid mesh will invert for sure
when the valves are about to close completely.

• Fluid mechanics model of the atrium. As the atrium has thin walls and
a complex geometry [125], the FSI problem becomes more unstable,
due to the smaller inertia of the muscular structure. Also, to include
the fluid dynamics of the atria, a model for the atrioventricular valves
should be included, enormously increasing the computational cost of
the problem. As there is no fluid model of the atrium, diastole is not
modeled.

• A non-Newtonian rheological description of the blood.

In the next chapter, this model is used to compute simple and advanced
simulations.





Chapter 4

Basic experiments in simplified
geometries

The only difference between
science and screwing around

is writing it down.

Adam Savage

Summary:
The objective of these basic simulations is to verify and test

different single and coupled problems that are present in the heartbeat.
Three different types of numerical experiments are proposed: simple
electrical propagation cases, coupled electro-mechanical experiments,
and fluid-structure interaction results. The first case is designed to
validate the electrophysiology model. After that, the second set of
experiments tests the solid mechanics conditions defined in the previous
chapters. Finally, the fluid-structure interaction CIQN algorithm is
tested and validated, leaving temporarily aside the electrophysiology
modelling. The three sets of simple experiments presented in this
chapter act as a prologue to the whole heart numerical experiments
in next chapter.

4.1 Electrical propagation simulations

The goal of this section is to validate the electrophysiology model. For this
reason, we reproduce the gold-standard test presented in [126].

4.1.1 Mesh convergence

The objectives of this case is to verify the electrophysiology model against
benchmarking data, and to verify that the solution converges while the
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computational mesh is refined. In order to achieve this, we replicate the
test proposed in [126]. In the cited work, eleven simulation codes are used to
solve a predefined problem and mesh convergence results are presented and
compared between them. In this work we use the same geometry, boundary
conditions and mesh but a different cell model.

Description For this experiment, we use the human cell model of O’hara-
Rudy [29] instead of the [57] originally used in [126]. For the electrical
diffusion, the parameters proposed in [26] were used. To create the meshes
for the convergence test, a mesh division technique [127] is used to refine
the slab in Figure 4.1. The element sizes chosen are 0.5, 0.25, 0.125 and
0.06125[mm], resulting in: 20k, 165k, 1.5M and 10M tetrahedra respectively.

2[cm]

0.3[cm]
0.7[cm]

Starting
stimuli

Z

Y
X

Figure 4.1: Electrophysiology set-up. Scheme of the geometry proposed by
[126].

Velocity of the electrical depolarization is measured along the major
diagonal of the slab, as described in [126]. If activation time is plotted
against distance, the slope of the curve represents the inverse of the wave
velocity.

Results Results are presented similarly as done in [126]. In Figure 4.2 we
plot the activation time, as a function of the length for the different meshes
that have been tested. The slice shows the activation time for the geometry.

Results are comparable to those of [126]. As expected, at large element
sizes, there is a slow wave velocity, a behavior has been previously shown in
[128]. When the mesh is refined, conduction velocity converges ([33, 129]).
Previous works ([30, 130, 126]), suggest that a spatial discretization of
200[µm] should be enough for simple propagation. However, in [27] the
authors suggest that this may be too coarse to simulate chaotic behaviors
like reentrance. If simulating complex electrophysiology conditions is not the
main objective, a trade off solution can be achieved where the conductivity
values are tuned until physiological activation times are obtained. This
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Figure 4.2: Electrophysiology set-up Left: mesh convergence for a given set of
parameters. Right: activation time (isochrones) for a converged simulation.

technique has been used in the past by other authors such as [56]. We
conclude that for the cases solved in this work, a mesh discretization under
200[µm] is enough.

4.2 Coupled electro-mechanical simulations

In this section, we couple the solid mechanics model to compute electro-
mechanical simulations. Four sets of experiments are presented. First, we
show results for a simple contracting hexahedron, originally presented in
[56]. Then, using the bi-ventricular geometry, we compare the solution
for the sliding pericardial boundary condition against two other options.
Then, using the same bi-ventircular geometry, different fibre distributions are
tested. Finally, we compute an electro-mechanical simulation of the whole
heart geometry to compare results against the bi-ventricular geometry. The
aim of this section is to evaluate the electro-mechanical module and to test
the proposed boundary condition and the possible fibre fields.

4.2.1 Contracting hexahedron: a simple reproducible test

In [56] the authors show qualitative results for a simple contractible
hexahedron. Here we repeat the experiment, but including quantitative
comparable results. A secondary objective of this case is to propose
quantitative results for the experiment, to ease comparison for other authors.

Description A 16 × 12 × 20 [mm] hexahedron is used, discretized with
a 0.25 [mm] element size, resulting in a 1.5M elements mesh. The
electrophysiology model is excited in a corner (the (0.0, 0.0, 0.0) node). The
solid is free to move in every direction except for the three faces of the
cuboid that coincide in the starting stimulus point. In these boundaries (Γe,
zero normal displacements ( slddΓe

i ni = 0) are imposed, while the tangential
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direction is free to move. The fibres are aligned with the major axis (Z) of
the geometry, representing a slab of cardiac tissue with homogeneous fibres.
Displacements are measured in the corner opposite to the starting stimulus
vertex. See Figure 4.3 for a geometry description.

1.6[cm]

1.2[cm]

2.0[cm]

Starting
stimuli

Measuring
point

Figure 4.3: Electro-mechanical simulations. Scheme for the geometry
(proposed in [56]). Starting stimulus point and measuring points are marked.

Results Left side of Figure 4.5 show the simulation results analogously
as done in [56]. A similar contraction of the cuboid is obtained. In order
to complement the study, we plot displacement increments (∆X,∆Y , ∆Z)
for a measuring point. To measure the electrical activity, the total charge
in the domain is integrated and normalized from 0 to 1, a measure called
“normalized electrical depolarization”. In the left side of Figure 4.5 we show
the normalized depolarization and (∆X,∆Y , ∆Z) displacements. In the
right side, there is a sequence of images for the simulation.
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Figure 4.5: Electro-mechanical simulations. Left: normalized electrical
depolarization and displacement increments (∆X,∆Y and ∆Z) for the
measuring point. Right: simulation snapshots.
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The results obtained in this section are comparable to the qualitative
results shown in [56]. Considering the nodal measurement presented in this
thesis, the stretch rate can be computed as (Lini−∆Zmax)/Lini, where Lini
and ∆Zmax are the original length of the slab and the maximum deformation
in the contracting direction respectively. The resulting maximum stretch
rate is 70%, a value comparable with the 75% measured in [131] for an
experimental setup.

4.2.2 Sliding pericardium boundary condition

In this numerical experiment, we perform a study to show the importance
of considering physiological boundary conditions in cardiac modelling. As
explained in Section 1.2.4, the movement of the heart is modulated by
the action of the surrounding tissues. As it has been shown by the new
imaging techniques (see Section 1.2.4), cardiac long-axis contraction causes
the base to move down rather than the apex to move up. Particularly, the
pericardium acts as a sort of sliding surface, avoiding normal displacements of
the epicardium, but leaving the tangential direction almost free to move. To
prove this, we compare results for three different solid mechanics boundary
conditions against experimental results.

Description We use the bi-ventricular geometry described in Section 3.2.3.
To analyze and compare the results between the different numerical
experiments, the geometry is divided using the 32 segments partition
described in [132]. This segmentation of the ventricles also includes the 17-
segment American Heart Association (AHA) classification (see Figure 4.6).

In order to compare numerical against experimental results, we compute
the longitudinal strain (L%) for each segment. A similar measurement is also
given by speckle-tracking echocardiography [133]. To obtain this value, we
compute a weight-averaged integration of the Green-Lagrange strain tensor
Eij for each segment. The normal deformation along the unit apex-base
vector abvi (see Figure 4.6) is calculated and divided by the volume of each
segment:

L% =

(∫
Ωseg

Eij abvj dVΩseg

)
abvi∫

Ωseg
dVΩseg

. (4.1)

The assessment is done by running three cases: no boundary condition
for displacements (labelled as “Free” or “F”), fixing only the ventricular
base displacements (labelled as “Fixed top” or “T”) and using a sliding
pericardial boundary condition (labelled as “Sliding pericardium” or “SP”,
see Section 3.5.4).
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Figure 4.6: Pericardial boundary condition. The top left figure shows a
slice of the geometry and the apex-base unitary vector (abvi = (−0.75,
0.57, −0.327) for the original Zygote coordinates). The other figures show
a scheme of the 32 segment representation [132] and the correspondent
mapping in a frontal and top view of the ventricles.

Results The results for the three boundary conditions (F,T and SP)
are shown in Figure 4.7. Plot Figure 4.7.A shows normalized electrical
depolarization as a reference. The following three plots (Figure 4.7.B,
Figure 4.7.C and Figure 4.7.D) show overall, basal and apical longitudinal
strain, respectively. Then, snapshots for the three boundary conditions are
shown in Figure 4.7.E . From left to right: Free (F), Base fixed (T), and
sliding pericardium (SP). Finally, the longitudinal strain is shown in the
AHA plot segment-wise for each case in Figure 4.7.F.

The sliding pericardium boundary condition shows a reduced overall
longitudinal strain L% if compared against the other two cases. Despite
this, the apical and basal deformations follow a more physiological dynamic.
Due to the sliding pericardium, apical deformation is restricted to move.
For the same reason, the base moves down. The bottom part of Figure 4.7
shows three geometries with their respective 32-segments plot, compared at
t = 120[ms], reinforcing the stated above. Note that in the case of the “free”
condition the ventricles contracts in a relatively uniform way. In the “fixed
top” condition, the ventricles largely contract upwards and inwards. Finally,
in the “sliding pericardium” condition, ventricles retain their pericardium
perimeter, while moving down the base and, consequently, thickening the
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Figure 4.7: Effect of pericardium boundary condition in a bi-ventricular
geometry. Normalized electrical depolarization is shown as a reference for the
reader (A). The following three plots show overall (B), basal (C) and apical
(D) longitudinal strain, respectively. Then (E), snapshots at maximum
contraction (t = 120 [ms] ) for the three boundary conditions are shown.
From left to right: Free (F), Base fixed (T), and sliding pericardium (SP).
Finally (F), the longitudinal strain is shown in the AHA plot segment-wise
for each case.
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ventricle walls (recall that the upper pericardium is left free to move, as
seen in the figure). It is observed that the sliding pericardium condition
highly reduces apex lift-up while allowing a maximum of 20% average base
move-down.

Figure 4.8: Effect of sliding pericardium in myocardial dynamics.
Longitudinal strain measurements captured using speckle tracking
echocardiography for a healthy heartbeat. Image taken from [19].

It is worth to mention that the curves for the proposed condition also
match those obtained experimentally using speckle tracking techniques,
like it is observed in Figure 4.8 (taken from [19]). There are appreciable
similarities between the L% curves in Figure 4.8 and the overall and basal
L% curves in Figure 4.7 for the SP condition. On the contrary, the base L%

for the T and F cases remains relatively flat for thorough all the contraction,
and cannot be assimilated to any curve in Figure 4.8. Using the proposed
sliding pericardial boundary condition (SP), the epicardium surface stays
in place, but allows tangential displacements. With this condition the base
of the heart contracts in the apical direction. On the contrary, by fixing
vertical displacements at the base (T), it is obtained a non-physiological
myocardial deformation. In the same way, leaving the heart free to deform
everywhere (F), also gives a non-physiological deformation, with excessive
apex displacements. The fact that this measure allows us to compare
numerical and experimental results, suggest that the described measuring
technique may be a valid way to validate electro-mechanical cardiac models.

In this way, the sliding pericardial boundary condition (SP) is used in
the whole heart model, except specified otherwise. This boundary condition
provides a physiological displacement of the base towards the apex, as
explained in Section 1.2.4. This also induces a thickening of the myocardium
that help to reduce the ventricular cavities and therefore eject the containing
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blood.

4.2.3 Effect of the angle variation in the rule-based model of
fibre distribution

In this experiment, we test the impact in myocardium deformation produced
by two different versions of fibre fields. The rule-based method used in
this thesis (Streeter method, described in Section 3.2.2) allows to generate
linear and cubic fibres for the myocardium. The difference between them is
that the angle varies from the endocardium to the epicardium, with a linear
or a cubic function (see Figure 3.7 for a graphical reference). The main
goal of this experiment is to quantify the deformation of both cases and
choose the version (linear or cubic) that better resembles the experimental
measurements.

Description Linear an cubic fiber configurations (see Figure 3.7)
computed by Streeter rule-based method in the bi-ventricular geometry are
tested. In both cases, the test are run using the same simulation conditions,
including the sliding pericardium condition studied before.

Results Results are shown in Figures 4.9 and 4.10. In Figure 4.9, the
surface represents results for the linear fibre distribution and the outline,
for the cubic distribution. In both figures, minimal differences can be
appreciated.

Long axis Short axis

Figure 4.9: Effect of the fiber distribution in the bi-ventricular study. The
surface plot shows the linear fiber distribution, and the outline shows the
cubic fiber distribution. Long and short axis slices are shown for both
configurations at t = 120[ms].

In Figure 4.10.A, normalized electric depolarization is shown, together
with longitudinal strain for the base (Figure 4.10.B) and the apex
(Figure 4.10.C). Both sets of fibers are compared. In the same figure, long
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and short axis slices of the ventricles are shown. The overall second invariant
(Figure 4.10.D), used to show cutting stresses, is also shown.
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Figure 4.10: Effect of the fiber distribution in the bi-ventricular study. Cubic
and linear distributions are compared. Similar basal and apex longitudinal
strains are observed, with a appreciable difference in the apical deformation.
The overall second invariant, showing the cutting stresses, is also shown.

Results in Figures 4.9 and 4.10 show small differences between both
types of fibres. As expected, the fibre angle interpolation function does
not drastically modify the overall deformation of the ventricles. Despite
this, there is a sensible reduction (∼ 30%) in the apex longitudinal strain,
when cubic fibers are used. In the literature [8, 134, 135, 136], a dominant
mass of circumferential fibers in the myocardium is described. Due to this
histological fact and supported by the reduced apex deformation, we suggest
to use a cubic interpolation to build the fibers instead of a linear function.

4.2.4 Mechanical effect of the atrium

Traditionally, cardiac simulation papers focus on geometries with isolated
ventricles (one or both). But, anatomically speaking, and specially if electro-
mechanical or fluid-electro-mechanical models are used, atria presence
strongly conditions the overall movement. In this section, we show the
importance of this effect.
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Description In this case, we use the whole heart geometrical model shown
in Figure 3.4, where the atrio-ventricular plane is closed, filling inner cavity
of the atrium with an isolineal soft material (see a complete description in
Section 3.2.1). With this configuration, the atria offers a small resistance to
stresses but inertially behaves like blood due to its density. This condition is
also reasonable when studying ventricular systole because, when ventricles
contract pumping out blood through the aortic and pulmonary valves, the
atria remains almost entirely filled with the atrio-ventricular valves tightly
closed. The advantage of this set-up is that we are able to simulate a
whole heart in ventricular systole without modelling the Fluid-Structure
Interaction (FSI) problem in the atrium or the atrioventricular valves. We
compare results of the whole-heart with a more traditional bi-ventricular
geomety. In both geometries, cubic fibres and the sliding pericardium
boundary condition are used.

Results Figure 4.11 shows a slice for the whole heart and the bi-ventricular
geometries at at the maximum contraction point. These results are
complemented with Figure 4.12, where basal and apical longitudinal strains
are shown.

Bi-ventricular Whole heart

Figure 4.11: Mechanical effect of the atria presence. Left side compared a
bi-ventricular simulation against the whole-heart undeformed mesh. Right
side shows the whole heart simulation against the original mesh.

As it can bee seen in Figures 4.11 and 4.12, the atrium have a critical
effect in the ventricular dynamics due to the associated mass of these
structures. Basal longitudinal displacement is reduced, due to the inertial
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Figure 4.12: Mechanical effect of the atria presence. Normalized electrical
depolarization is shown for reference, together with base and apex
longitudinal strain. The effect of the atria presence can be seen not only in
the base, restraining its deformation due to the mass of the added structures
but also, with a smaller impact, in the apex.

effect produced by the directly connected structure. Deformation of the
apex is also affected, but not as drastically as the apical deformation. If
the orthogonal plane is analyzed, the atria act as constraining structures,
reducing the basal area while it contracts. This effect also induces a non-
physiological stretch in the valvular plane, produced by the rather rigid
material used in this artificial closure. Ventricular deformation is clearly
different when both atria are included in the geometry.

Despite some non-physiological effect is seen in the artificial closure plane,
using th atria allows us to have a watertight intraventricular space, including
also the sliding pericardium boundary condition. Although great advances
have been achieved using ventricle-only geometries, including atria in the
simulations is recommendable even for ventricular mechanics due to the
intimate relation between these two sets of chambers.

4.3 Bidirectional fluid-structure interaction test
simulations

In this section, we validate and test the novel Compact interface quasi-
Newton (CIQN) algorithm proposed in this thesis with pure FSI problems
(without solving electrophysiology). Two experiments are presented. The
first case, is a validation simulation. The main goal of this first case, is
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to show that the numerical technique developed to solve the FSI problem
faithfully reproduces the physics. The second case is specially designed to
test all the features required for heart simulations. In this complex case,
the goal is to prove that the CIQN technique can deal with added mass
instability and with multiple coupled surfaces.

4.3.1 Algorithm validation

The main objective of this case is to validate the CIQN algorithm presented
in Section 3.5 with the “Turek” benchmark [137].

Description In this test, a flexible bar hold by a rigid circumferential
body oscillates due to a laminar flow. These oscillations produce vortices
in the fluid, closing the bidirectional loop. Amplitude of displacement and
frequency are measured in the tip of the rod and are used to check the
results. Such problem is extensively described in section 4.3 of [137]. With
this experimentally and numerically reproducible case, the CIQN coupling
algorithm can be validated.

Results A snapshot of the simulation is shown in Figure 4.13.

Figure 4.13: Method Validation. Part of the domain proposed by [137] in
time t = 3 [s]. Deformation is represented on the bar and velocity field in
the fluid domain.

The obtained amplitude and frequency on the quasi-periodic period are
Ax = −2.60 × 10−3 ± 2.40 × 10−3 [f = 10.8] and Ay = 2.3 × 10−3 ± 33.7 ×
10−3 [f = 5.4], agreeing with the Ax = −2.69× 10−3± 2.53× 10−3[f = 10.9]
and Ay = 1.48 × 10−3 ± 34.38 × 10−3 [f = 5.3] obtained in the original
experiment1. In [137] the numerical experiment is validated against a
physical experiment. With this, we can say that our algorithm faithfully

1The results are presented as in the original experiment: mean ±amplitude[freq].
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validates the involved physics in the FSI problem. It is worth to remark that
the same validation test and with similar results is also presented in [81],
using Alya as a solver, but with a different coupling strategy.

4.3.2 A biomedically inspired problem: a 3D 2-field case

This numerical experiment is designed to test the performance of the
CIQN algorithm against two other relaxation schemes widely used: Broyden
[109] and Aitken [108] methods. To do this comparison, we propose a
biomechanically inspired case: a filled flexible tube is lying in a flexible
surface which is in contact with a big volume of another fluid. The reader
can think about this academic example as a coronary artery close to the
endocardium, that is in contact with the blood inside the ventricle.

Description A scheme of the geometry used is shown in Figure 4.14. A
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Figure 4.14: Biomedically inspired FSI case. Geometry, showing dimensions
and fluid direction.

constant velocity is imposed in the bigger fluid domain and an oscillating
velocity in the distensible tube. The fluid mesh has 10187 elements and
the solid mesh 76280. Time step is ∆t = 0.1[s]. Bulk properties for the
fluid are: ρf = 1[g/cm3] and µ = 0.03[Poise]. Bulk properties for the
solid are ρs = 1[g/cm3], E = 1.5E4[Baryes] and ν = 0.3[−]. The inflow
velocity profile is v = (0, 0, 1.0/sin(2πt))[cm/s]. The geometry and physical
properties are prone to induce added mass instability (ρs/ρf = 1) and a
complex interface problem (with two wet surfaces to couple with different
dynamics).

Continuity of displacements and stresses are imposed in the contact
boundary (see Section 2.5.2). No-slip condition (v = 0) is imposed
everywhere in the fluid except for the output and the input. The outflow
boundary condition is stress equal to zero weakly imposed. For the solid
domain, the geometry is fixed everywhere except for the contact boundaries.
The tolerances for the non-linear solvers and the coupling where set to 1E-6.
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Results The CIQN algorithm is compared against the Aitken (atk) and
a Broyden (brd) relaxation schemes. Coupling convergence for the different
schemes is shown on Figure 4.15.

Figure 4.15: Typical convergence for the coupling. Left: number of coupling
iterations for the first 10 time steps. Right: residue of the coupling for the
first time step.

The algorithms are used to relax force and displacement separately, so
there are two variations for each coupling scheme. Also two different numbers
of saved iterations are tested for the CIQN algorithm. 100 time steps were
computed with all the possible relaxation combinations. A first glance on the
results is presented in Figure 4.16 were we show a snapshot of the solution
and a plot of the accumulated2 solver iterations.

Figure 4.16: Biomedically inspired FSI case. Left: snapshot of the simulation
at t = 0.4 [s] for the biomechanical inspired case. Right: Accumulated solver
iterations in each time step for the best variant in each algorithm family. The
different acronyms stand for: atkd, Aitken relaxed in displacement; brdd,
Broyden relaxed in displacement; iqnd, CIQN relaxed in displacement.

2Solid mechanics solver and fluid dynamics solver for momentum and continuity
accumulated for each time step.
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Table 4.1 summarizes the results for all the possible combinations:
Aitken, Broyden and CIQN, relaxed in displacement and force (atkd, atkf,
brdd, brdf, ciqnd, ciqnf). For CIQN we also show the effect in increasing
the number of past iterations used (rank 5 and rank 20). For each coupling
strategy we show the average coupling iterations, the computing time per
time iteration (in [s]), the average subiterations per time step for the fluid
(momentum and continuity) and the solid mechanics problems, and the
average solver iteration per time step.

coup. coup. time x CFD CSM
strate. iter. iter. subit sol ite subit sol ite

atk displ 9.36 16.70 18.70 2064.76/989.36 6.51 2513.36
atk force 9.52 16.27 20.88 2340.99/1078.36 5.99 2353.96

brd displ 12.16 16.31 18.50 2586.81/1271.28 6.53 3150.89
brd force 17.65 16.05 20.30 3565.25/1670.89 5.98 4488.76

iqnd r5 8.64 17.24 20.84 2040.46/961.70 6.72 2347.26
iqnd r20 8.66 17.37 20.81 2022.46/961.63 6.71 2375.82
iqnf r5 10.54 17.25 22.04 2715.19/1246.88 6.22 2724.44
iqnf r20 14.39 16.33 20.17 3605.16/1784.84 6.33 3496.33

Table 4.1: Biomedically inspired FSI case. Summary of the experiment. The
different acronyms stand for: atk, Aitken family; brd, Broyden family; iqn,
CIQN family. If the family name is followed by “displ” it is relaxing the
Dirichlet variable; if it is followed by “force”, it is relaxing the Neumann
variable. In the iqn family, the number of past saved variables can be
modified. In this case, five (r5) and twenty (r20) iterations were tested.

The four graphs in Figure 4.17 refine the information in the table. The
iterations for all the tested schemes are detailed, aggregating the results
by coupling scheme. Finally, a candle plot shows the distribution for the
coupling iterations detailing the median and the interquartile range.

All the coupling schemes are capable to solve the system, with differences
in the performance. For the best set up in each family, the CIQN algorithm
required 8.5% less iterations compared with the Aitken algorithm and 30%
less iterations if compared against the Broyden scheme. Regarding the
processing time, CIQN performs 9% and 6% faster compared to Aitken and
Broyden respectively.
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Figure 4.17: Biomedically inspired FSI case. Top left: coupling iteration
distribution. For each candle the middle line represents the median, and the
upper and lower lines the 25% and 75% percentiles. Top right: convergence
for the Aitken family. Bottom left: convergence for the Broyden family.
Bottom right: convergence for the CIQN family.

4.4 Parallel performance for the fluid-electro-
mechanical model

As the developed model is designed to run in high performance computing
(HPC) machines, is a requirement for our work to test the parallel
performance of the coupled problem. The main reasons are:

• the high complexity of the models exposed in Sections 2.2 to 2.4.

• the complex numerical treatment required for the FSI problem shown
in Section 3.5

• the fine mesh required to capture the details of the geometry described
in Section 3.2 including the mandatory mesh requirements to truly
capture the features of the O’Hara-Rudy model (fact proven in
Section 4.1)

It is clear that such a problem cannot be solved without supercomputer
resources, ranging from a few hundred to few thousand cores, depending on
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the problem. As said in Section 2.1 all the models are programed in Alya
and implemented in the way explained in Chapter 3. In this section we
prove the high scalability of this code, a feature that even goes beyond the
requirements of the problems presented in this thesis.

To test the parallel performance of the code, the geometry presented
in Section 3.2 was uniformly refined using the algorithm described in [127].
Obtaining a ∼ 70 and ∼ 40 million elements for the solid and fluid domain
respectively. All the cases have run in Marenostrum IV supercomputer. In
a first stage, the parallel performance of each solver running independently
(not coupled) is tested. Results are shown in Table 4.2 and Figure 4.18.

Core CFD CSM
count elem./core S-U eff. elem./core S-U eff.

192 210k 192.00 1.00 365k 192.00 1.00
384 104k 384.00 1.00 182k 384.00 1.00
480 83k 480.00 1.00 146k 480.00 1.00
768 52k 768.00 1.00 91k 768.00 1.00
1536 26k 1489.92 0.97 46k 1520.64 0.99
1968 20k 1896.61 0.95 36k 1908.96 0.97
2400 16k 2256.02 0.94 30k 2315.28 0.96
2880 15k 2563.21 0.89 25k 2771.46 0.96
3840 11k 3275.13 0.85 18k 3615.74 0.94
4320 9k 3411.64 0.79 16k 3992.47 0.92
4800 8k 3713.68 0.77 14k 4426.08 0.92

Table 4.2: Massively parallel performance. Speed up and efficiency for the
fluid dynamics computational fluid dynamics (CFD) and solid mechanics
computational solid mechanics (CSM) solvers running separately.

Efficiencies about 80% and 90% were obtained for fluid mechanics and
solid mechanics running up to 4800 cores for each one. The obtained
curves separates form the ideal when the elements/core ratio falls under
a certain value. This phenomenon occurs because the time invested in the
communication between Message Passing Interface (MPI) threads becomes
comparable to the computing time. As the communication process is slow,
if it is compared against the computation time in each core, the scalability
drops.
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Figure 4.18: Massively parallel performance. Speed up and efficiency for the
CFD and CSM solvers running separately.

In this thesis, the FSI coupling is solved using the Gauss-Seidel approach,
where each parallel solver (fluid and structure) run in a block manner, one
after the other (see left side of Algorithm 1). This causes one of the threads
to wait while the other is computing. For better understanding refer to
the schematic trace in Figure 3.9, or to the experimental trace in figure
Figure 4.19. In Figure 4.19, ps and pf are the number of cores for the solid
and fluid problems respectively; Ini is the initialization process; Ssolve and
Fsolve are the solving time for the solid and fluid mechanics; Swait and Fwait
the waiting time for the solid and fluid mechanics respectively and Cou the
coupling iterations.

The execution in Figure 4.19 uses the same number of cores for each
problem (pf = ps = 48), resulting in a very inefficient run, as the cores
computing the fluid have to wait for the solid solver results. In multi-code
executions, the pf − ps core assignation have to be tuned to optimize the
execution efficiency. To obtain this optimum point, a core allocation swipe is
done. To do so, we fix the number of cores for one problem (In this case ps),
and then swipe the number of cores in the other problem (pf ). If efficiency
is computed for each execution, the optimal point pf − ps can be found.
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Figure 4.19: Massively parallel performance. Trace for three iterations of a
coupled problem. The same number of cores (pf and ps) were assigned the
parallel solvers. First, there is an initialization stage (Ini). The solid solver
executes (Ssolve) while the fluid solver waits for the results (Fwait), then the
fluid portion is computed (Fsolve) while the solid thread waits (Swait). Once
solved both, the coupling iterations (Cou) start to converge the wet surface.
Three complete time steps are shown.

Figure 4.20 shows speed-up and efficiency for four fixed values in the
fluid solver core count pf . In each case the core count for the solid mechanic
solver ps is ranged between 64 and 2048, with increments in power of two.
These processes is performed for a core count of 256, 512, 1024, and 2048
in the fluid solver. For each speed-up curve, a maximum in the efficiency
can be achieved. These maximum values of efficiency indicate the number of
cores that should be assigned in order to attain an optimum execution time
for a specific configuration of the Gauss-Seidel scheme.
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Figure 4.20: Parallel performance analysis. Speed-up and Efficiency for a
core allocation of p = pf + ps, where pf = {256, 512, 1024, 2048} in the core
count for the fluid, and ps = {64, 128, 256, 512, 1024, 2048} for the solid.
An optimal allocation popt which allows to achieve the maximum efficiency
Epf of the coupled system can be found for each curve Spf .





Chapter 5

Fluid-electro-mechanical
simulations in a whole-heart
geometry

Marenostrum happens to be one of the
finest ’modelling’ computers on earth,
specializing in complex simulations, its
most famous being ’Alya Red’ –a fully

functioning, virtual human heart that is
accurate down to the cellular level.

Winston to Prof. Robert Langdon
Extracted from Origin,
a novel by Dan Brown

Summary:
In this chapter, the whole heart human geometry is used to

simulate all the physics involved in the heartbeat: electrophysiology,
solid mechanics and fluid dynamics. First, the model is used to
simulate a healthy heart systole. These results are deeply analyzed
and compared against experimental measurements taken from the
bibliography. This healthy heart simulation also works as a baseline for
the following experiments, where the computational heart is diseased.
In the first pathologic situation, a left bundle branch block is modeled
in the computational heart. After that, it is treated with cardiac
resynchronization therapy. In the second pathologic case, a third
degree atrioventricular block is modeled in the computational heart.
To treat the disease, an intracavitary leadless pacemaker is implanted
and the interaction between the device and the surrounding tissues
is modelled. Finally, In the last pages of this chapter, we present a
scalability test for the three-physics coupled model.

77



78
Chapter 5. Fluid-electro-mechanical simulations in a whole-heart

geometry

5.1 Computational scenario

In this chapter, all the simulations are run with the fluid-electro-mechanical
model in the whole heart geometrical description. As a reminder, the
human cell model of O’hara-Rudy [29] is used for electrophysiology (see
Section 3.3.1), with the parameters proposed in [26]. The solid mechanics
have been modelled with the Holtzapfel-Ogden [39] formulation and
parameters, bidirectionally coupled with electrophysiology by the Hunter-
McCulloch [76] scheme (refer to Section 3.3.2). Fluid dynamics have been
solved using the Navier-Stokes equations with an arbitrary Lagrangian-
Eulerian (ALE) framework, previously described in Section 3.4.1. The Fluid-
Structure Interaction (FSI) problem is solved using the Compact interface
quasi-Newton (CIQN) technique developed in Section 3.5.

The whole-heart geometry used, is presented in Section 3.2.1. It is
composed by ventricles, atrium and great vessels. The ventricles are the only
contractile structure, while the rest of the tissue is passively deformed. Cubic
fibres are created with the Streeter rule-based method. For the electrical
depolarization, both endocardium surfaces are depolarized at the same time,
except specified otherwise. In the computational solid mechanics (CSM),
the sliding pericardium boundary condition is used in the ventricles, and the
force computed by the computational fluid dynamics (CFD) is imposed in
the endocardium surface. CFD is solved with the ALE formulation. No slip
boundary condition is imposed everywhere except for the outputs, where the
stabilized outflow condition Equation (3.44) is used.

The simulation starts with the depolarization of the endocardium, with
the aortic and pulmonar valves open, and finishes when the net ventricular
outflow drops to zero. The Wiggers diagram in Figure 5.1 shows the
simulation time frame.

Figure 5.1: Computational scenario. Wiggers diagram (see Section 1.2.3) for
a healthy heart systole showing the simulation time frame.
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As only systole for one heartbeat is simulated, we may be visualizing
transient state results. To obtain a steady state solution, hundred of
complete (systole-diastole) heartbeats should be computed. Despite this,
the cases proposed aim to analyse instantaneous depolarization voltages,
deformations and velocities. Long term (minutes) effects produced by flow
or pressure, or closed circuit volume balance are out of the scope of this
thesis.

The problem is computed using the multi-code strategy described in
Section 3.1.2. One Alya instance computes electrophysiology and CSM and
the other Alya instance solves CFD with the ALE formulation. The solid
domain mesh has 2M tetrahedra and 500k nodes. The fluid domain mesh
has 1.2M tetrahedra and 300k nodes. All the cases run in Marenostrum
IV supercomputing using 5 nodes composed by 48 cores each, giving a total
of 240 cores. 192 cores are used for the electrophysiology and CSM and 48
cores for the CFD problem (load balance is discussed in Section 4.4). Each
run takes a mean time of ∼ 10 hours, with a slight variability depending
each case.

5.2 Analysis of a healthy systole

In this section, we model a healthy systole. By “healthy” we mean that all
the framework previously described is used and no pathological condition is
purposely introduced. This first heart simulation is deeply analyzed and used
as a baseline comparison for the experiments in other sections this chapter.

5.2.1 Description

The three physics fluid-electro-mechanical model is solved in the whole
heart geometry presented in Section 3.2. Also, all the models and
boundary conditions previously tested are used. This includes the sliding
pericardium boundary condition and a cubic fibre distribution. Also, the
electrophysiology model is stimulated by depolarizing both endocardial
surfaces synchronously.

5.2.2 Results

In the following images a detailed analysis of the fluid-electro-mechanical
simulation in the whole heart geometry is shown. Results are presented
in the following way. First, we give an overall view in the healthy heart
dynamics. Then, we separate the results for the analysis, first the CSM and
after the CFD. In Figure 5.2 we show image sequence including myocardium
contraction and the ventricles interior fluid dynamics, where an overall view
of the simulation is depicted.
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10[ms] 30[ms] 50[ms]

70[ms] 90[ms] 110[ms]

130[ms] 150[ms] 170[ms]

Figure 5.2: Analysis of an healthy systole. Simulation snapshots. The
deforming slice in the myocardium shows a long axis view, coloured by
electrical depolarization. The arrows in the fluid domain shows the velocity
field.
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In Figure 5.2 the overall behavior of the simulation is shown. The slice
represents the four chamber view, where the myocardium depolarization
can be observed. The electrical stimulus starts in the endocardial surface,
and propagates mainly to the epicardium. In the fluid domain, velocities
and pressure are computed for every time step. The arrows represent the
velocity and are scaled with the module. It can be seen that the main
fluid features occur in the outflow vessels rather than in the intracavitary
space. Despite the relatively large endocardial displacements, there are small
intraventricular velocities due to the relatively large size of the cavities. On
the contrary, the smaller transversal area in the outflow vessels induces higher
velocity profiles. Results for fluid dynamics are further analyzed below.

Myocardium behavior Figure 5.3 shows deformation for basal, medial
and apical slices.
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Figure 5.3: Simulation of a healthy systole. Material point tracking in the
myocardium. The left side shows the position for the basal, medial and
apical slices. In the right, top and side views for the slices.
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The slices of the myocardium are shown together with material points
in this domain, and the temporal pathlines for this particles. This way of
tracking the myocardium movement is similar to tagged Magnetic Resonance
Imaging (MRI) or speckle tracking echocardiography. Left side of Figure 5.3
shows the positions of the slices. In the right side, the slices and the material
points are shown at t = 0[ms] and t = 130[ms]. The red dots indicate the
original position (t = 0[ms]) of the material points. The pathlines show the
trajectory for each point during the time interval. If the apex-base direction
is analyzed, we observe that the base moves in the base-apex direction, while
the apex has barely no longitudinal displacement. The pathlines in the
orthogonal plane show rotation of the apical region. These observations were
seen in the numerical experiments in Section 4.2.2, and are experimentally
confirmed by speckle tracking techniques [19, 138, 133] and by tagged MRI
[139, 140].

Fluid dynamics domain behavior Figure 5.4 shows the deformation of
the mesh in both ventricles, together with a plot of the ventricular volume.
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Figure 5.4: Simulation of a healthy systole. Ventricular volumes. Top plot
shows the ventricular volume as a function of time. The image sequence
shows the deformation of the ventricles.

After taking measures, the end diastolic volumes (EDVs) 1, end systolic
volumes (ESVs) 2 and ejection fraction (EF) for the left ventricle (LV) and
right ventricle (RV) are shown in Table 5.1. Although these values are
slightly deviated from statistical measurements (EDV ∼ 150[cm3] for each

1Volumes of the cavities in diastole, measured at t = 0[s].
2Volumes of the cavities at maximum contraction, measured at t = 130[s].
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ventricle [141, 49, 142]), we attribute the error to the modifications done in
the original geometry (see Section 3.2).

EDV [cm3] ESV [cm3] EF

LV 113.16 49.12 56 %
RV 147.58 97.43 35%

Table 5.1: EDVs, ESVs and EF for the LV and RV for the healthy heart
simulation.

In Figure 5.5 outflow curves for the RV and LV in the simulation are
compared against experimental measurements flows [143]. In the cited work,
from MRI images the authors measure LV output and then compute CFD
simulations from ventricular deformation.
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Figure 5.5: Analysis of a healthy systole. Left: Simulation results for the LV
and RV outflows. Right: experimental/modelling curves taken from [143].
the PC-MRI curve is the experimental measurement taken using MRI. The
model curve is the numerical result obtained by the cited authors.

Due to the synchronous depolarization of both endocardial surfaces,
the thin wall of the RV, and the orthotropic conduction speed, the RV is
fully depolarized before the LV. This disparity, induces a 5[ms] difference
between the peak of the LV and RV outflows. This effect can be tackled
if an activation protocol as the proposed in [66] is used, where the RV
is depolarized with a 25[ms] delay. Despite this, results are qualitatively
comparable with human measurements [144, 143]).

In Figures 5.6 and 5.7 we analyze the intracavitary fluid dynamics
through Q-criterion[145, 146] isosurfaces (at 5000 and 50 [s2] respectively).
The deformable slice in the solid domain represent a long axis view of the
myocardium. The colour in that represents the electrical depolarization. Q-
criterion isosurfaces in the fluid domain are coloured by velocity magnitude.
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10[ms] 30[ms] 50[ms] 70[ms]

90[ms] 110[ms] 130[ms] 150[ms]

Figure 5.6: Analysis of a healthy systole. Image sequence showing a
four-chamber slice in the myocardium and Q-criterion isosurfaces (value of
5000[s−2]) for the fluid dynamics domain. The isosurfaces are colored by
velocity module.

Figures 5.6 and 5.7 show a slice of the myocardium, The isosurfaces are
coloured by velocity module. Q-criterion allows to visualize vortex formation.
The difference between Figure 5.6 and Figure 5.7 is the threshold value for the
Q-criterion isosurfaces. When the whole-heart window is used (isosurfaces
at 5000 [s−2]) we are able to see vortex with higher speeds. When the
ventricular window is used for the Q-criterion (isosurfaces at 50 [s−2]), we are
able to see smaller vortices. As expected, the main features in the flow occur
in the outflow vessels rather than in the ventricular space as a consequence
of the higher speeds. Despite this, there is more complex vortex structure in
the ventricular region, even though they have smaller velocities.
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10[ms] 30[ms] 50[ms] 70[ms]

90[ms] 110[ms] 130[ms] 150[ms]

Figure 5.7: Analysis of a healthy systole. Image sequence similar to
Figure 5.6 but using Q-criterion isosurfaces at 50[s−2]. Please that the scale
of the velocity module goes up to 20[cm/s].

For better understanding of the intraventricular fluid dynamics features,
in Figure 5.8 we show a view for the ventricular depolarization, displacements
and intracavitary fluid dynamics. Figure 5.8 shows a slight desynchronization
between the right and left side, feature also seen in Figure 5.5. In the slices of
the solid domain, it can be seen how the endocardium is depolarized and this
wave front travels mainly to the epicardial region. As the right ventricle is
considerably thiner than the left ventricle, it is depolarized earlier. However,
there is a net outwards flow condition in the ventricular region. In Figures 5.9
and 5.10 we focus in the apex and the aortic root respectively. The glyphs in
this figures are scaled to the maximum velocity in the studied domain. The
flow patterns in the apical regions show velocities in the apex-base direction.
In the early stage some flow occurs from base to apex due to the basal
displacement.



86
Chapter 5. Fluid-electro-mechanical simulations in a whole-heart

geometry

10[ms] 30[ms] 50[ms] 70[ms]

90[ms] 110[ms] 130[ms] 150[ms]

Figure 5.8: Analysis of a healthy systole. Detail of the ventricular electrical
depolarization, deformation and fluid dynamics.

10[ms] 30[ms] 50[ms] 70[ms]

90[ms] 110[ms] 130[ms] 150[ms]

Figure 5.9: Simulation of a healthy heart. Detail of the apical region. The
upper row shows the fluid mesh, and velocity arrows. The lower row shows a
slice of the geometry, plotting electrical field in the solid domain and velocity
in the fluid domain.
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10[ms] 30[ms] 50[ms] 70[ms]

90[ms] 110[ms] 130[ms] 150[ms]

Figure 5.10: Analysis of a healthy systole. Image sequence for the aorta
showing the co-planar aortic arch output, the brachiocephalic output and the
left common carotid artery output. Arrows and colors represents velocity. A
short axis view for the aortic root is also shown. In this last view the helical
pattern in the aortic root is clearly seen.

The ventricular fluid dynamics (in Figures 5.8 and 5.9) features a fairly
uniform and laminar flow, with maximum velocities of 9.8[cm/s]. On the
contrary, flow in Figure 5.10 features a more active pattern, with maximum
punctual speeds above 80[cm/s] (comparable with the ∼ 100[cm/s] obtained
with MRI measurements by [147]), with larger transversal gradients, and a
slight backflow despite the net outflow condition. The aortic root section in
Figure 5.10 shows an non-symetric flow, with a velocity pattern diverted
to the lateral part of the aortic root. This flow pattern is also seen in
experimental measurements [148, 149]. A similar study for the aortic root,
comparing different imaging techniques with simulation results can be found
in [150]. To finish the analysis for the healthy systole, in Figure 5.11 we
compare a 4D flow MRI image [151] taken from [152] with the simulation
results. Both figures show velocity pathlines, despite the chosen color scales
are different. A high qualitative resemblance can be seen.
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Figure 5.11: Simulation of a healthy systole. Left: MRI 4D flow image taken
from [152]. Right: simulation results with the whole heart model.

To conclude, in this section we show that the results for the whole-
heart fluid-electro-mechanical simulation model under normal conditions, at
least for the systole, are similar to the experimental measurements, with
a physiological behavior in most regions. This detailed analysis of the
results also define a baseline for the following numerical experiments, where
pathological conditions are modelled.

5.3 Clinical application I: left bundle branch block

In this section we induce a pathological condition in the heart model
presented in the previous section. First, a left bundle branch block
(LBBB) [153, 154] is simulated. In this pathology, a faulty conduction
system produces dyssynchronous contraction of the ventricles. After, we
treat the diseased heart with cardiac resynchronization therapy (CRT)
[155, 156, 157, 158, 159, 160].

We choose left bundle branch block (LBBB) as the first test case for our
healthy heart because it is a well known pathology and it is often used as an
example by the simulation community [5, 161, 162, 53, 163, 164]. However,
it is worth to remark that, this pathology and the cardiac resynchronization
therapy (CRT) treatment are being simulated for the first time in a fluid-
electro-mechanical model in this work. The main goal of this simulation is
to prove that the computational model of the heart, can be used to model
a LBBB and a CRT, with results that resemble the physiological behavior.
This goal, can be decomposed in two:

• Confirm that the clinical signs observed in patients affected by LBBB
are also reflected in our simulation.
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• Confirm that the CRT restores the cardiac function in the
computational heart affected with LBBB.

5.3.1 Background and description

Pathology description LBBB, can be induced by a wide range
of etiologies like drug overdose, myocardial infarction [165, 166, 167],
degenerative diseases or infectious causes [168] among others. In this
pathology, there is faulty conduction from the atrioventricular (AV) node
(see Section 1.2.1 for a reference) to the LV. Despite this, the RV is normally
depolarized. The depolarization of the LV is induced by the wave front
originated in the RV. This condition produces a dyssynchronous beating of
the heart and a dramatical reduction of the EF.

Treating the pathology This condition can be treated by CRT [169]. In
this technique, a pacemaker is used to resynchronize the depolarization of
the heart. To do so, the electrical activity is measured in the right side,
and the LV is activated after a delay from the first measure. In the classical
approach, a pacemaker lead is guided through the great vessels, up to the
aortic sinus. After, the tip of the lead is positioned in an specific spot in
the LV epicardium. The final location of the lead depends on the coronary
branches of the patient being treated, and the decision of the interventionist.
After the lead is positioned, the stimuli has to be synchronized to obtain the
mutual depolarization of both ventricles. To do so, the pacemaker measures
electrical activity in the right side and delays the LV stimuli from that
measure as temporal reference.

Modelling the case In this section we model a LBBB and then we treat
it with CRT. The same setup for the healthy heart experiment is used
here, except for the electrical depolarization sequence. To model LBBB,
we eliminate the initial stimuli in the left endocardium, “blocking” the
left branch of the conduction system. As a consequence, the LV is only
depolarized due to the electrical wave coming from the right side of the
heart. When LBBB is treated by CRT, the pacemaker lead’s tip is guided
through the coronary arteries and placed as close as possible to the optimal
spot in the epicardium. In this experiment we choose the mid anterolateral
region as a generic pacing spot. The LV depolarization is triggered a ∆td
time after the RV electrical activity. Cardiac output is evaluated an analysis
in the CFD domain.

5.3.2 Results

In this section we show the results for the experiment. First the LBBB case
is shown. Then, we show results for the diseased heart treated with CRT.
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Base pathology: LBBB Figure 5.12 shows snapshots for the LBBB case.

10[ms] 40[ms] 70[ms]

90[ms] 130[ms] 160[ms]

180[ms] 200[ms] 220[ms]

Figure 5.12: LBBB. The slice in the myocardium shows that the RV is
depolarized first, and the LV is depolarized due to the wave coming from the
RV. This dyssynchrony reduces the cardiac output.
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In order to ease comparison, the plots for the healthy case, the pathologic
condition and the CRT simulations are shown ahead in Figure 5.14.

As there is no depolarization of the LV by the left Purkinje network,
this is depolarized by the wave coming from the RV, inducing a severe
dyssynchronization in the depolarization and contraction of both ventricles.
Consequently the depolarization time is doubled, and a reduction in the
outflow of both ventricles. The delay in the depolarization of the ventricles
is a clinical sign also reflected in the Electrocardiography (ECG) of patients
with such condition [153]. The present pathology diminishes the ventricular
outflow a ∼ 60% for the LV and ∼ 30% for the RV. Despite the impact of
LBBB is very patient dependent [155, 156], it is accepted that the LBBB not
only affects the LV function, but also the RV function. Figure 5.13 shows a
basal slice with material points tracking. Note that if this figure is compared

t = 0[s] t = 130[s] t = 260[s]

B
as
al

Figure 5.13: LBBB. Basal slice with material points and pathlines. The
figure shows the dyssynchrony of the RV and LV.

against the healthy heart (see Figure 5.3), a great delay in the LV can be
seen.

Treating LBBB with CRT CRT is modeled depolarizing the left
ventricle in the mid-anterolateral region at ∆td = (−10,−40,−80)[ms]
before the RV depolarization [170]. In Figure 5.14.A we show total
normalized depolarization for the healthy heart, the LBBB heart, and for the
different synchronization timings for the CRT. In Figure 5.14.B RV and LV
outflows are shown for the same experiments. In order to ease comparison,
all plots and image sequences are shown synchronizing the depolarization of
the RV. Figure 5.14.C shows electrophysiology only results for the LBBB
and the different CRT simulations.

Figure 5.14.A shows a severely delayed total depolarization for the LBBB
case, compared against the healthy case. Figure 5.14.B shows that the
modeled pathology affects both LV and RV outflows, with a higher impact
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Figure 5.14: CRT for LBBB. The normalized electrical depolarization (plot
A) and ventricular outflow (plot B) is shown for the healthy heartbeat, the
LBBB case and the different CRT timings. Outflows for both chambers are
also shown. snapshots in plot C shows electrical activation times for the
pathological case ( LBBB) and the three resynchronization cases.

in the latter. The treated cases are also shown in Figure 5.14. Once the
heart is treated with CRT, a significant improvement can be seen, even
with a suboptimal timing for the pacing. Even for the worst case scenario
simulated (∆td = 10[ms]), there is a considerable improvement in the LV
outflow that rises from ∼ 30% to ∼ 70% of the normal values. Table 5.2
summarizes the results for the CRT applied to the LBBB case. The healthy
and the pathological values are also transcribed to ease comparison.

Case depol. time LV-EF LV-ESV RV-EF RV-ESV

Healthy 120 [ms] 56 % 49 [cm3] 35 % 103 [cm3]
LBBB 400 [ms] 19 % 91 [cm3] 30 % 103 [cm3]
CRT10 250 [ms] 40 % 67 [cm3] 30 % 103 [cm3]
CRT40 230 [ms] 42 % 65 [cm3] 30 % 103 [cm3]
CRT80 230 [ms] 44 % 63 [cm3] 30 % 103 [cm3]

Table 5.2: CRT for LBBB. Depolarization time, EF for the LV and RV and
ESV for both ventricles is shown.
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In this table is easy to see the effect of the CRT. The depolarization time
is not only reduced, but the EF is increased almost to the reference values.
Also reverse remodeling is seen, as the ESV decrease with the application of
CRT.

The classical approach of studying CRT using electrophysiology only
simulations, is shown in Figure 5.14.C. Despite this approach reflects the
severe dyssynchrony produced by the LBBB and how CRT resynchronizes
the heart, it fails in reflecting how the treatment improves cardiac output.

To conclude, with this experiment we show that the heart model
presented is able to model a pathological condition such as a LBBB reflecting
clinical signs also seen in practice. In the same way, treating the diseased
heart with CRT improved cardiac output. This improvement is obtained
even with suboptimal timing in the stimulation. The electrophysiological
curves or the electrical activation patterns shown in Figure 5.14 would also
allow us to study LBBB and CRT. Despite this, adding the mechanical
deformation and the FSI formulation not only makes the problem more
physiologically accurate, but also allows to quantify changes in the heart
performance.

It is important to remark that both catheter position [171, 172, 173]
and timing optimization [174, 175] have a great impact in CRT to achieve
normalization of the ventricular parameters. In this thesis we fix the catheter
position while measuring the treatment sensitivity to the pacemaker timing,
leaving for a future work a more thorough sensitivity analysis.

5.4 Clinical application II: leadless pacemaker

In this section, we treat a third degree AV block modelled in the
computational heart. In this pathology, none of the impulses produced
upstream are conducted to the ventricles. The diseased heart is treated
with a leadless pacemaker implanted in the RV apical region. This device
acts as a foreign body interacting with the surrounding tissues. Due to this,
the interaction with the muscle and the blood have to be solved. The main
objective of this experiment is to show how the cardiac simulator presented
can be used as a workbench for design and simulation of biomedical devices.
To achieve this goal, specific objectives are proposed:

• Simulate the heart beating due to the leadless pacemaker.

• Analyze the interaction between the device, the cardiac muscle and the
blood flow.
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5.4.1 Background and description of the case

Pathology and treatment In a third grade AV block, none of the atrial
impulses are conducted to the ventricles as a consequence of a disruption
in the conducting system. Therefore, complete dissociation of the atrial
and ventricular activity exists [176]. With this, the ventricles beat at the
Purkinje network depolarization frequency, completely independent from the
atrium depolarization. On ECG, AV block is represented by QRS complexes
being conducted at their own rate and totally independent of the P waves (see
Figure 1.3 for a graphical reference of a normal ECG). Patients with complete
heart block are frequently hemodynamically unstable, and as a result, they
may experience syncope, hypotension, cardiovascular collapse, or death.
Pacemaker implantation together with pharmacologic therapy is indicated
when there is an irreversible AV block. When single-chamber ventricular
demand pacing (VVI3) is used, a novel type of minimally invasive device can
be implanted, instead of the conventional leaded pacemaker. These leadless
pacemakers [177] are inserted through femoral venous catheterization in the
right ventricle endocardium, without any other type of incision.

Here, we use the heart model as a design guide for a leadless intracardiac
pacing system, like the Medtronic Micra, or the St. Jude Nanostim (see
Figure 5.15).

Medtronic micra St. Jude nanostim

Figure 5.15: Leadless pacemakers. Left: Medtronic’s Micra and St. Jude’s
nanostim leadles pacemakers. Both devices are implanted in the RV using
different anchoring strategies.

These novel type of pacemakers are gaining attention due to the
reduced invasiveness during the implantation, if compared against a

3Treatment with pacemakers can be classified with three letters: P-S-E, where P and
S are the chamber paced (P) and sensed (S) respectively, and E is the action taken. P
and S, can be replaced by V (ventricle) , A (atrium) or D (dual). E can be replaced by O
(no action taken), I (inhibited), T (triggered) or D (evaluation of auricular activity). In
this case, VVI accounts for V- ventricle paced, V-ventricle sensed, I pacing is inhibited if
beat is sensed.
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leaded pacemaker. These devices fit the battery and electronics in a
compact package that is implanted inside the ventricle. The pacemaker is
anchored to the myocardium, being in direct contact with the intracavitary
blood. These interactions induce stresses in the tissue and a disturbance
in the intracavitary flow, phenomena yet not completely understood.
Understanding them, will lead to improvements in device design and
operation or the disease treatment.

Description The first step to simulate a leadless pacemaker inside a heart
is to include the geometry of the device in the geometrical description of
the heart. The device is included in the RV apical region of the whole heart
geometry presented in Section 3.2. Figure 5.16 shows the modified geometry,
detailing the implantation region. In order to model the third degree AV

Figure 5.16: Clinical application II. Geometry of the heart including the
implanted leadless pacemaker.

block, all the endocardial stimuli are suppressed. The electrophysiology
model is excited in a single spot located in the device-tissue interface.

5.4.2 Results

Behavior of the treated heart To model the treatment, a single stimuli
is applied in the device-muscle junction. In Figure 5.17 the whole heart
model is shown beating as a consequence of the pacemaker. In this figure,
the overall activity can be seen. Ahead in this chapter we present deeper
analysis of the results for the CFD, the CSM for the whole heart and focusing
on the apical region, where the device is implanted.
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20[ms] 40[ms] 60[ms]

80[ms] 100[ms] 120[ms]

140[ms] 160[ms] 180[ms]

Figure 5.17: Clinical application II: A leadless pacemaker. The long axis
slice shows muscle deformation and is coloured by electrical depolarization.
The arrows in the fluid domain show the fluid velocity field.
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If the results of the paced heart (Figure 5.17) are compared against
the healthy ones (Figure 5.2), the base pathology can be seen. In the
former, there is no depolarization of the whole endocardial surface. On
the contrary, the ventricles only depolarizes as a consequence of the induced
pacing stimulus. This punctual depolarization makes the heart to beat again.
Figure 5.18 compares curves of ventricular depolarization and outflows for
the healthy case and the paced 3rd degree AV block case. Showing the base
pathology is futile as no depolarization or ventricular contraction would be
seen 4.
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Figure 5.18: Clinical application II. Normalized electrical depolarization and
ventricular outflow comparing a healthy case with the paced third grade
ventricular block.

In the paced case, the small stimuli area creates a small wavefront [33],
inducing a slow ventricular depolarization if compared against the healthy
case. Despite this, the ventricular pumping function is partially restored, up
to ∼ 50% of the original output.

This model can also be used to analyze the blood flow differences in
the ventricle when the device is implanted. Figures 5.19 and 5.20 shows
the contraction due to the leadless pacemaker with the contours showing
Q-criterion isosurfaces (5000 and 50 [s−2], respectively) coloured by velocity
magnitude.

4Except for some eventual scape beat, not considered in our model.
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20[ms] 40[ms] 60[ms] 80[ms]

100[ms] 120[ms] 140[ms] 160[ms]

Figure 5.19: Clinical application II: A leadless pacemaker. The long axis
myocardium slice shows electrical depolarization and muscle deformation.
Q-criterion isosurfaces (5000[s−2]) coloured by velocity are shown. The
apical stimuli gives a distinctive ventricular vortex pattern. The scales are
replicated from Figure 5.6 to ease comparison.

In Figures 5.19 and 5.20, scales are identical to Figures 5.6 and 5.7 to
allow an easy comparison. In the healthy heartbeat, all the endocardial
surface deforms synchronously to the interior of the cavities. With the
punctual stimuli produced by the pacemaker, the electrical wave travels from
apex to base, producing a sequential contraction in the same direction. This
apex-to-base wave induces a small vortex that follows with the mechanical
deformation, feature not present in the healthy systole. It is worth to remark
that, although the largest flow speeds are within the arteries, flow patterns
closer to the apex has much more complex vortical structures.
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20[ms] 40[ms] 60[ms] 80[ms]

100[ms] 120[ms] 140[ms] 160[ms]

Figure 5.20: Clinical application II: A leadless pacemaker. This figure is
presented similarly to Figure 5.19, except that Q-criterion isosurfaces are at
50[s−2]. This figure is directly comparable with Figure 5.7.

Interaction between the device and the surrounding tissues In this
section, we analyze the interaction between the device and the cardiac tissue
in the implantation region. Figure 5.21 shows the Von Mises stresses of the
apical region including the pacemaker.

Figure 5.21: Clinical application II. Von Mises stresses at maximum
contraction for the solid mechanics in the apical region, including the device.

Although there is a small stress concentration around the region where
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the device is implanted, the obtained values are in the same order of
magnitude as the rest of the tissue. Device insertion area is large if compared
against the clinical insertion area (tines or spring, see Figure 5.15), so
results may change when the specific anchoring structure is included in the
simulation.

Figure 5.22 shows a detail of the apical region including the device, where
the interaction of the leadless pacemaker with fluid can be seen. The figure
is built so the reader can directly compare the results with the apical view
of the healthy heart (Figure 5.9).

0[ms] 10[ms] 20[ms] 30[ms]

40[ms] 50[ms] 60[ms] 70[ms]

Figure 5.22: Clinical application II. Sequence of images showing a detail
of the apical region and the interaction of the leadless pacemaker with the
surrounding tissues.

In Figure 5.22 a remarkably different contraction of the apical region
can be seen, when compared against the healthy case. As the electrical
stimulus is localized in the apex, and not distributed along the endocardium,
there is marked apex-base depolarization/contraction sequence. Despite this,
the same overall CFD behavior can be seen, with a short initial base-apex
component followed by the net apex-base flow. The main difference is the
distortion produced in the flow due to the foreign body. A priori, a larger
displacement of the pacemaker was expected due to the apex-base flow.
We suspect that the small displacements obtained are a consequence of the
reduced velocities inside the ventricles.

Despite the outflow produced by the paced heart does not reach healthy
values (shown in Figure 5.18), the heart affected with III degree AV block,
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beats again. Although heart function is restored, it can be improved. In
this simulation, one of the functions of the fluid mechanics solvers is to
measure the performance of the heart. Fluid mechanics is a consequence of
solid mechanics, which is the result of the electrical activity. Analyzing the
results, the main problem seems to be the extremely reduced stimulation
area produced by the pacemaker. This small excitation area, produces a
slow depolarization of the heart, and an anti-natural apex-base sequential
contraction (seen on Figures 5.17 and 5.22, but mainly reflected in the fluid-
dynamics activity in Figure 5.19).

The simulations presented here inspire alternatives for pacemakers
design. For instance, if a more diffuse stimuli could be induced instead of an
extremely localized one, a more natural depolarization of the endocardium
could be obtained. One can fancy a sort of network-like pacemaker that,
instead of depolarizing a focused spot in the myocardium, depolarizes a
greater surface of the endocardium, as the Purkinje network does. To
conclude, this case shows the potential of the presented fluid-electro-
mechanical model not only for cardiac dysfunction and healing therapies
but also for device operation and design. With it, overall effect of the device
in the heart can be studied, but also the detail of the interaction between
the device and the surrounding muscle and blood.

Left ventricular implantation Pacemakers are never implanted in the
LV, for several reasons [178]:

• The LV endocardium is less trabeculated making the task of fixing the
device more complicated.

• The LV pressures are higher, increasing risks in case of ventricular
perforation.

• The LV is more arrhythmogenic.

• There is a higher risk of systemic embolization with endocardial LV
pacing.

• Arterial catheterization to the LV involves more risks than venous
catheterization to the RV.

Despite this, implanting a leadless pacemaker in the left ventricle may be
interesting to cardiologist, as this chamber could be independently paced.
In the computational model of the heart none of the disadvantages itemized
before occurs, being easy to test different hypothetical situations. For this
reason, we solve a case with a leadless pacemaker implanted in the LV. As
this results lack of clinical interest nowadays, they are shown in the appendix.
The plots presented replicate the views in this section.





Chapter 6

Expanding the model: coupling
the computational heart with a
1D arterial network

Para Adán, el paraíso
era donde estaba Eva.

Mark Twain

Summary: In this chapter, a first glance in a fluid-electro-mechanical
model of the cardiovascular system is presented. To do this, we couple
our 3D fluid-electro-mechanical model of the human heart with a 1D
Fluid-Structure interaction (FSI) model of the vasculature developed
by the Laboratório Nacional de Computação Científica (LNCC) in
Petropolis, Brasil. After describing the governing equations, two
academic cases are presented. First a model of a pipe, half modelled
with the 3D formulation and the other half with a 1D formulation, is
used to validate the numerical scheme. With this example, the coupling
variables and the relative error can be measured. After that, a case
where single ventricle is connected with a simplified arterial network
is presented. Despite that the geometry used in the simulation is not
real, the outflow curves shows a physiological response.

6.1 Background

In this chapter we present the first results of a dimensionally heterogeneous
model of the cardiovascular system. The model includes the heart and part
of the vasculature. This coupled model was developed in a collaboration

103
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between the Barcelona supercomputing center (BSC) and the Laboratório
Nacional de Computação Científica (LNCC) in Petropolis Brasil. On the
one hand BSC has a fluid-electro-mechanical model of the human heart,
extensively described in the previous chapters. On the other hand, LNCC
has developed the Anatomically Detailed Arterial Network (ADAN) model,
a one-dimensional Fluid-Structure Interaction (FSI) formulation to solve the
flow inside deformable pipes [179, 180].

Description of the arterial network ADAN was created from an
anatomical database and takes into account more than 1500 arteries from
an average human body, featuring a physiologically consistent systemic
impedance at the aortic root, among other characteristics [181]. ADAN
is build from the definition of the vascular topology, including most of the
arteries which are acknowledged in the medical and anatomical literature.
In this thesis we present some preliminary results using simplified models for
both the arterial network and the heart. We use the ADAN55 model [181],
that is a 55 artery version of the full ADAN model (see Figure 6.1).

Figure 6.1: ADAN55 model. Left side: whole 1D model. The radius of the
arteries are plotted as tubes, so the radius of the vessels can be observed.
Right side: detail of the upper part of the model.

Coupling the codes Both codes are coupled by a black-box
decomposition approach. On one side, a simplified heart model, which in
spite of its geometrical simplicity it solves the fully coupled fluid-electro-
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mechanical model described thus far. On the other side, the vascular model
solves the condensed 1D Navier-Stokes formulation in compliant vessels (see
Figure 6.2 for a scheme of all the problems solved). The codes are coupled by
the inclusion of a third coupling software that using a Jacobian free solver,
allows a strong iterative coupling strategy.
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Figure 6.2: Scheme of the coupled problem. The electrophysiology model
acts on the solid mechanic problem. The solid mechanics deforms the
intracavitary space that pumps out the fluid. This fluid is sent to the arterial
network model that returns back a pressure.

Both models are able to run standalone, each one with predefined
boundary conditions. In the case of the heart model, a pressure function can
be imposed on the outflow to model the resistance of the arterial network. For
the ADAN model, a function of a generic aortic root flowrate can be imposed
in the inlet, in order to mimic the cardiac function. When both models
are coupled through the 3D-1D coupled model, the aortic root flowrate
and the systemic impedance of the arterial network are computed for each
time step. Then, the pressure imposed connecting outflow of the 3D heart
model varies with the flowrate through that output. In the same way, the
pressure computed by the ADANmodel varies with the incoming blood. This
bidirectional coupling model allows to have variable boundary conditions for
both the heart and the vascular models. Using this bidirectional 3D-1D
coupled model allows us to analyze the effect of one system over the other.
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6.2 Governing equations

6.2.1 For the 3D heart model

For the 3D fluid-electro-mechanical model of the human heart, the governing
equations and the computational solution strategy are presented above in
Chapter 2 and Chapter 3.

6.2.2 For the 1D arterial network model

The governing equations and numerical techniques for the one dimensional
arterial network, are extensively described in [179]. Blood flow in large
arteries can be modeled using the condensed 1D Navier-Stokes equations
in compliant vessels, which comprise momentum and mass conservation as
follows:
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= 0, (6.2)

where A is the luminal area, R is the radius, Q is the flow rate, P is the
mean pressure, ρ is the density and αm is the momentum correction factor.
The term τo accounts for the viscous effects since and it has the following
form:

τo =
frρU |U |

8
, (6.3)

where U is the mean velocity (U = A/Q) and fr is the Darcy friction factor
corresponding to a fully parabolic velocity profile. Equations (6.1) and (6.2)
are analogous to the 3D versions (Equations (2.7) and (2.8) respectively)
where in 1D version we solve for Q and P and in 3D version for v and p.

The fluid dynamic equations presented are complemented with a
constitutive relation for the arterial wall induced pressure:
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(6.4)

where index 0 refers to reference values, h is the wall thickness and E and
K are the material parameters that characterize the elastic and viscoelastic
material response respectively.

6.2.3 Coupling strategy

Both codes are coupled by a black-box decomposition approach previously
proposed in [179]. For 3D-1D interface, information is exchanged at every
iteration of the FSI problem (see Figure 6.3). The 1D arterial network is only
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directly coupled with the computational fluid dynamics (CFD) problem in
the fluid-electro-mechanical model. This weakly coupled scheme is stable for
relatively small time steps.

Electrophysiology

Solid mechanics

Alya 1
Solid doman

 

Fluid mesh 
deformation

Fluid dynamics
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Fluid domain
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Arterial 
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Figure 6.3: Dimensionally heterogeneous model of the cardiovascular system.
The scheme shows how the 1D arterial network model is coupled with the
fluid-electro mechanical model. In this black-box approach the arterial model
is only connected with the CFD problem.

At each time step, the 3D heart FSI problem is solved, computing the
velocity field in the connecting boundary. To obtain the flow rate in the
interface for the 3D model, the momentum is integrated and then divided
by the area A of the boundary:

Q3D =
1∫

Γ

dΓ

∫
Γ

ρudΓ. (6.5)

This flow computed in the 3D heart problem is imposed in the arterial
network. The 1D formulation is solved, and a pressure is computed for the
connecting node. The pressure computed in the arterial network is weakly
imposed in the boundary Γ of the 3D model as a forcing term:

fP =

∫
Γ

PiudΓ. (6.6)

For the 1D model, pressure and flow are degrees of freedom in each node
of the 1D mesh. Following this statement, four unknowns are defined in the
each nodal interface: Q1, Q2, P1 and P2, using the subindex to identify each
model. But continuity of flow and pressure are enforced, so we can say that
in the interface i which connects the boxes 1 and 2:

Qi = Q1 = Q2 (6.7)

Pi = P1 = P2. (6.8)
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Additionally, not any combination of Qi and Pi is possible for each side
of the interface: fixing Qi will automatically determine Pi in each one of the
models. In this way, let be defined two equations that relates Qi and Pi in
each node: F1(Qi, Pi) = 0 and F2(Qi, Pi) = 0. In this way, flow rate and
pressure at the interface i corresponds to a state of the problem [182].

6.2.4 Computational implementation

The Alya 3D heart model is solved using the multi-code approach explained
in Section 3.1.1. In this way, the electromechanic problem is computed in
one Alya instance. The intracavitary fluid dynamics is solved in another
Alya instance. This two problems are bidirectionally coupled to compute
the FSI for the simplified ventricle geometry.

The ADAN model of the arterial network is solved by the ADAN
solver, that compute the condensed Navier-Stokes equations. This software
communicates with Alya through subroutines specifically developed to that
end.

6.3 Numerical experiments

6.3.1 A 3D-1D validation case

As a validation case, a 3D cylinder was coupled with a 1D pipe. The 3D
cylinder plays the role of the ventricular fluid dynamics model, and the 1D
pipe, plays the role of an arterial network. This academic example with an
analytical solution eases the task of validating the coupling scheme. If the
inflow imposed in the 3D model is measured at the 3D-1D interface, the
coupling scheme is correctly implemented.

Description. In this case, a 3D cylinder solved with Alya is coupled with
a 1D cylinder solved using ADAN. A diagram is shown in Figure 6.4.

Both cylinders are dimensionally and parametrically consistent: a
diameter of 2[cm], a longitude of 5[cm], viscosity of 0.04[g/cm/s] and
a density of 1.04[g/cm3] for both sides. The input velocity was set in
the Alya inlet as a Poiseullie flow variable on time with the function:
f(t) = 1 − cos(8t). The ADAN outlet has an open boundary, with normal
stresses equal to zero: n ·T ·n, where T represents the stress tensor. In the
walls, non slip condition has been defined u ·n = 0. The 3D mesh have 7000
elements. The 1D mesh 750 elements and the time discretization has been
set in 0.05[s]. Flow and pressure in the coupling point and convergence for
each unknown are shown in Figure 6.5. Convergence is measured with the
relative error ε(X) computed as ε(X) = |X(n) − X(n − 1)|/|X(n)|, where
X is the unknown.
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Alya
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Alya outlet

ADAN inlet

ADAN
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3D model (Alya) 1D model (ADAN)

Interface

Figure 6.4: Scheme of the model used in the first numerical test. A 3D
cylinder was solved with Alya and a 1D cylinder was solved with ADAN.

Results Figure 6.5 shows flow and pressure for the coupling point. The
measured quantities replicate the imposed in the inlet. Convergence is also
shown, for the coupling point. Relative error is measured for both degrees
of freedom, achieving values under 1E− 10 and 1E− 8 for flow and pressure
respectively.
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Figure 6.5: 3D-1D coupling, validation case. Flow and pressure in the
coupling point, next to relative error.

6.3.2 Simplified ventricle coupled with ADAN55

After validating the numerical method used, we present a conceptual example
where model a simplified ventricle connected with the ADAN55 model. The
main goal of this case is to exemplify how the cardiovascular model can be
used, using test geometries.

Description The geometry of the simplified ventricle is created using an
ellipsoidal cavity made of an active cardiac tissue. The fibre field is created
with the Streeter technique (see Section 3.2.2), varying linearly from −60◦
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to −60◦. A short non-active tubular part plays the role of the aorta. The
activation potential starts at the bottom. The fluid and the solid meshes
combined have ∼ 7000 elements.

The arterial network mesh is the ADAN55 geometry, depicted in
Figure 6.1. This mesh is built with ∼ 2000 1D elements arranged in the
three dimensional space.

Results Figure 6.6 shows a snapshot of the cardiovascular coupled
simulation. In this figure the mesh of the ventricle is shown with the

Figure 6.6: Detail of the results for the coupled cardiovascular model. The
ventricle shows depolarization of the myocardium and the 1D model the flow
wave.

myocardial depolarization. The 1D arterial network shows the flow wave. It
is worthy to note that, as it is a distensible pipe, flow and pressure travel in
waves. A slice of the simplified ventricle together with the intracavitary fluid
dynamics are shown on the image sequence in Figure 6.7. The depolarization
is followed by the contraction and the blood ejection. Systole happens in a
short period of time (50[ms]) as the dimensions and the diffusion parameters
are not tuned to obtain physiological measurements. Despite that, this
academical example fulfills its purpose. Flow, pressure, and the error in
the convergence are shown in Figure 6.8. Due to the small intracavitary
volume on the artificial ventricular geometry, the outflow does not achieve
physiological values. Despite this, the shape of the flow in Figure 6.8 reminds
to the Wiggers diagram presented in Figure 1.3. Flow and pressure show a
notch during the first moments of the ejection. This phenomenon is also
seen in experimental measurements and is due to the reflection of the wave
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10[ms] 20[ms] 30[ms] 40[ms] 50[ms]

Figure 6.7: Simplified ventricle. This figure shows an image sequence of the
simplified ventricle that is coupled with the arterial network model.
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Figure 6.8: Coupled cardiovascular model. Flow and pressure in the coupling
point, next to the relative error for each unknown.

in the bifurcations in the arterial network.
To conclude, with this academical example, we show a simplified

version of the cardiovascular system. Despite geometries are far from real,
the pressure and flow measurements have a behavior that resembles the
physiological response. The message is that the computational heart model
has all the potential of being connected with arterial and venous network,
becoming the “heart” of a full cardiovascular system simulation.





Chapter 7

Conclusions and future lines

Ce que nous connaissons
est peu de chose,

ce que nous ignorons
est immense.

Pierre-Simon Laplace

Summary:
This chapter firstly recapitulates the main features, contributions

and accomplishments of this thesis. Then, we discuss new applications
for the current model and improvements to widen the application
range.

7.1 Summary

In this thesis a fluid-electro-mechanical model of the human heart have been
presented. We start analyzing the anatomy and function of the organ under
study, decomposing the heartbeat problem in the three building blocks.
The tight relation between the different structures and physics involved is
always present along the discussion, understanding the heartbeat as a fluid-
electro-mechanical system. Each one of the independent physics is, by itself,
computationally demanding. Even more, when these problems are coupled,
the computational cost is greater than the sum of their components and the
supercomputing resources becomes mandatory. This is why, we propose a
new fluid-electro-mechanical model of the human heart for supercomputers.

7.1.1 Discussion of this thesis chapter by chapter

1. Foreword. The first chapter starts with a brief description of the
heart physiology and introducing concepts required ahead in the document.
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A review on the state-of-the-art for each independent problem is done,
but focusing in current fluid-electro-mechanical models. The importance of
having the three physics coupled is stated, and this multi-physics approach
is used as a motivation to implement the models with supercomputing
resources. Despite this, the three-physics model is not always mandatory
but dependent on the hypothesis done and the purpose of the study.

2. Governing equations. The heartbeat problem is decomposed in the
three coupled physics using an engineer point of view. Electrophysiology
is modelled with the human cell ionic current model of O’Hara-Rudy. As
the hypothesis and purpose of this thesis does not require a complex cell
model, using such formulation may result arguable. Despite this, solving
the nodal ordinary differential equation (ODE) of the chosen cell model
does not represent a considerable increment in the computational cost in
this case, as the solver is parallel and implemented using a semi-implicit
approach. Solid mechanics is modelled with the Holzapfel-Ogden energy
form for ventricles. Despite it is not a viscoelastic material model, is widely
accepted by the simulation community. The problem is solved dynamically
and the oscillations damped using Rayleigh damping. Fluid dynamics is
solved using the Newtonian incompressible Navier-Stokes equations. This
approach is completely valid at the velocities and pressures seen in the
intracavitary space. Fluid-Structure Interaction (FSI) is described with a
Dirichlet-Neumann approach. On the one hand, force is applied against the
solid. On the other hand, displacements are imposed in the deformable fluid
domain.

3. Computational implementation. A multi-code approach is used to
solve the problem. In one domain (the structure domain) electrophysiology
(EP) and computational solid mechanics (CSM) are solved. In the other
(fluid domain) the computational fluid dynamics (CFD) equations in an
arbitrary Lagrangian-Eulerian (ALE) are computed. Solving EP and CSM
under the same mesh is not the typical approach in the bibliography as,
generally, EP requires a finer mesh compared with CSM. We chose to solve
them under the same mesh for two reasons: 1. Interpolations are not
required; 2. The CSM solver has a good scalability. Using a multi-code ALE
method to solve the FSI problem with large deformations is not the classical
approach. The main problem of using the ALE method is that the fluid
domain elements may get flatten or inverted, producing the divergence of the
solution. In order to be able to compute the final result, the preprocessing
meshing step requires lots of effort. Using the immersed boundary (IB)
technique would save this energy, as the fluid dynamics problem is solved
in a fixed mesh. The disadvantage of the IB method is that it lacks spatial
precision due to the interpolations required. To mitigate the instabilities
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produced by the partitioned approach a novel high performance coupling
strategy is developed, the so called Compact interface quasi-Newton (CIQN).
A whole heart is used as a solving domain, including boundary conditions
based on medical observations.

4. Basic experiments in simplified geometries. The first set of
experiments are designed to verify the model implementation and to test
the proposed hypothesis. First, some classical experiments are reproduced.
Then, the boundary conditions and whole heart geometry are tested. Using
the sliding pericardial boundary condition shows a higher physiological
consistency, compared against other classical approaches. Also, we show that
the whole heart geometrical model is recommended as even affects ventricular
dynamics.

5. Fluid-electro-mechanical simulations in a whole-heart model.
First, a healthy systole is analyzed to set a reference point for the following
numerical experiments. Myocardium deformation shows consistency with
physiological observations with a base-apex displacement of the base, and a
twisting of the apex. CFD also shows physiological features, with smaller
velocities in the ventricular space and higher velocities in the aortic root.
Despite this difference on the velocities, the vortical structures present in the
ventricles are more complex than the ones present in the vessels. This is to
say, the flow in the output vessels is faster but simpler. As a first clinical case,
a left bundle branch block (LBBB), is modelled in the computational heart.
There is a marked dyssynchrony between the right ventricle (RV) and the left
ventricle (LV), something already stated in the published bibliography. In
this work, we also analyse the heart performance through a CFD study.
A massive drop in the ejection fraction (EF) is seen in both ventricles
accompanied with a marked dyssynchrony in their ejection. This diseased
heart is posteriorly treated with cardiac resynchronization therapy (CRT).
The treatment applied produced remodeling of the affected organ, reducing
the end systolic volume (ESV) and therefore increasing the EF. The second
clinical case modelled, is the operation of an implanted leadless pacemaker
in a heart affected by a III degree atrioventricular (AV) block. In the overall
analysis, even though the heart beats again, the outflow values does not
reach the reference values obtained in the healthy case. The reason for this
is, probably, the high locality of the applied stimuli. The main interest of
this case is the device-tissue interaction. Stresses are accumulated around
the device-myocardium interface, but in the same scale as the rest of the
heart. Apical flow is disturbed due to the presence of the device, but not in
a severe manner due to the reduced apical velocities.
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6. Expanding the model: coupling the heart with an arterial
network. In this chapter the fluid-electro-mechanical model is expanded
coupling an arterial network model. With it, both computational models
have a feedback for their respective outflow/inflow. The model is tested
with a simplified geometry for the ventricle and a simplified geometry for
the arterial network.

7.1.2 Accomplishments of this thesis

During the development of this thesis, the proposed goals have been achieved.
The scientific contributions are:

a. A robust HPC-based FSI algorithm for biomechanics. As
explained in the first part of this thesis, the FSI problem is specially
problematic in biomechanics. There are multiple interfaces to solve, and the
added mass instability is generally present as a consequence of the similar
densities between the blood and the tissue. We have developed the CIQN
algorithm capable of dealing with such problems. The algorithm is validated
and tested in the numerical examples section. Thanks to an HPC-based
design and implementation, the algorithm is highly efficient to solve large-
scale problems.

b. A set up for a fluid-electro-mechanical model of the human
heart. To build the three physics heart model, the governing equations
and the numerical methods have to be explained. Particularly for
electrophysiology, the human cell model of O’Hara-Rudy is used. The
solid mechanics have been modelled with the Holtzapfel-Ogden formulation,
bidirectionally coupled with electrophysiology by the Hunter-McCulloch
scheme. Fluid dynamics have been solved using the Navier-Stokes equations
with an arbitrary Lagrangian-Eulerian formulation. The FSI problem has
been solved using the CIQN technique. These models have been solved in a
whole heart geometry. This simulation scenario includes ventricles, atrium,
great vessels and a fibre/cell field created with Streeter’s rule-based method.
Finally, detailed boundary conditions have been proposed, based on medical
image analysis.

c. A simulation and analysis of a healthy heartbeat. Using the
fluid-electro-mechanical whole-heart model, we firstly simulate a healthy
heartbeat, focusing on systole. All the framework developed have been
used, without any pathological condition purposely induced. This first case
is deeply analyzed and compared against experimental measurements and
medical images whenever possible. Also, this simulation is used as a reference
point for the pathologic cases presented afterwards.
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d. A simulation and analysis of an LBBB heart and a CRT. In the
first pathological case a LBBB has been modelled and studied. The behavior
seen in the results agrees with physiological observations. After, a CRT has
been performed to the LBBB model, restoring the cardiac function.

e. A simulation of an intracardiac pacemaker. In the second clinical
case, a leadless pacemaker has been implanted to a heart suffering of a third
degree AV block. The main objective of the case is to see the interaction
between the device and the surrounding tissues. Due to this, we focus the
study in the apical region, where the device is implanted.

f. A coupled cardiovascular model. As a first step to expand the
model, a simplified version of a ventricle has been coupled with a one
dimensional arterial network. In order to do this, a 3D-1D coupling strategy
has been developed and implemented in the involved codes. The model is
firstly validated with an academic example, and then tested with simplified
geometries.

7.1.3 Uses for the proposed model: a computational cardiac
workbench

The hypotheses proposed to solve the heart allow us to move forward in
computational heart modeling. Despite the results presented in this thesis
resemble to experimental measurements, there is still a long way to obtain
a fully validated heart model. We never have to forget that, in numerical
experimentation, we are studying the behavior of a model of the human
heart. Under this assumption, the model can be extensively applied to
clinical problems. The extreme detail in the ionic currents of the O’hara-
Rudy model opens the door for pharmaceutical industry. With this model,
ejection fraction (EF) can be computed in a diseased heart and after treating
with membrane permeability modifying drugs. The robust FSI algorithm
proposed can be used to test virtually all the structural pathologies of
the heart, among them myocardial infarction, hypertrophic cardiomyopathy,
patent ductus arteriosus, atrial septal defect or acute/chronic heart failure,
to name a few. Biomedical technology industry can also find this model
very useful. Virtually, all the biomedical devices can be tested in this
heart dummy during the design process, in order to reduce the stratospheric
research and development costs of biomedical devices industry and animal
experiments.
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7.2 Future work

It is out of question that computational medicine is gaining wider acceptance
in the clinical community. The model developed in this thesis has numerous
applications, but it can expanded to widen the fields of impact. On the one
hand, we propose the use of this model in problems such as:

• Broaden the CRT study presented in Section 5.3. Mapping the optimal
lead tip position in the epicardium and the synchronization time in
order to optimize the EF would have a great impact in the medical
community.

• Study congenital structural pathologies. Only by modifying the
myocardium geometry, allows us to study structural problems and to
test treatments.

• Study the effect of drugs in the overall behavior of the heart. The
electrophysiology model can be easily tuned to behave as in presence
of drugs. This can be used to analyze the impact in the EF.

• Simulate other intracardiac biomedical devices. This model can be
used to design cardiac devices, not only leadless pacemakers, but also
pacemaker tips or sutures.

On the other hand, the model can be improved to make the model more
computationally efficient and widen the application range:

• Move from an explicit CSM formulation to an implicit one. Differences
in Young modulus when solving biomedical devices reduces the critical
time step in several orders of magnitude. This feature will improve
simulation times.

• Implement the Jacobi scheme for the FSI coupling. Despite it has
been proven that a Jacobi scheme is eventually less stable for scalar
coupling schemes as the Aitken, it should be as stable as the Gauss-
Seidel scheme for the quasi-Newton algorithm developed.

• Move from an ALE formulation to an IB formulation for the FSI
problem. As the latter technique uses a Cartesian mesh in the fluid,
the mesh generation is simplified. The IB technique is less accurate.
Also it allows to model heart valves and simplify the overall scheme.

• Use more precise boundary conditions. The work done in Chapter 6
is an effort to improve outflow/inflow boundary conditions for both
models. Coupling a 1D arterial network to the heart model improves
the outflow pressure boundary condition. In the same way, using a



7.3. Scientific publications 119

computational heart as an input for the arterial network, improves the
inflow boundary condition for the 1D model.

• Move forward in patient specific geometries. The pathline from
imaging acquisition to meshes for simulation is neither straightforward
nor automatic. Being able to easily create a simulation mesh from an
Magnetic Resonance Imaging (MRI) or computed tomography (CT)
image is critical for simulations in computational medicine.

A computational model of an entire human, modelled from the molecular
level to the organ structure, would help to understand pathologies and
test novel drugs or surgical procedures. This thesis is a step towards the
computational human. In a near future, models like this will change the way
pathologies are understood and treated, and the way biomedical devices are
designed.

7.3 Scientific publications
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M., Rivero, M., Sacco, F., Houzeaux, G., Vazquez, M. Clinical and
Industrial applications with a fluid-electro-mechanical model of the
human heart. (2017). Frontiers in physiology. (submitted).

• Santiago, A., Aguado-Sierra, J., Zavala, M., Doste-Beltran, R., Gomez,
S., Arís, R., Vazquez, M. Fluid-electro-mechanical model of the human
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Chapter 8

Appendix

Mistakes are not a problem.
Not learning from them, is.

Anonymous

8.1 Appendix I: Results for a left ventricular
implanted leadless pacemaker

8.1.1 Behavior of the treated heart

Figure 8.1 shows electrical depolarization and outflow for the LV and the RV
as shown in Figure 5.18 but for a left heart implantation. Figure 8.2 shows
an overall systole for the paced heart.
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Figure 8.1: Leadless pacemaker in the left ventricle. Normalized electrical
depolarization and ventricular outflow for the healthy and the pathologic
case.

20[ms] 40[ms] 60[ms] 80[ms]

100[ms] 120[ms] 140[ms] 160[ms]

Figure 8.2: Leadless pacemaker in the left ventricle.Depolarization,
contraction and fluid velocities for the paced heart.

Figure 8.3 shows the contraction due to the leadless pacemaker with the
contours showing Q-criteria isosurfaces coloured by velocity magnitude, as
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done in Figure 5.19, but for a LV implantation.

20[ms] 40[ms] 60[ms] 80[ms]

100[ms] 120[ms] 140[ms] 160[ms]

Figure 8.3: Leadless pacemaker in the left ventricle. The contours show the
Q-criteria (5000[s−2]), and are colored by velocity magnitude.

8.1.2 Analysis of the device-tissues interaction

As the device is located in the apical area, the views in this section will focus
in that specific region. Figure 8.4 shows a detail of the apex including the
device, where the interaction of the leadless pacemaker with the surrounding
tissues can be seen.
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Figure 8.4: Leadless pacemaker in the left ventricle. Detail of the apical
region and the interaction of the leadless pacemaker with the surrounding
tissues.
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To see the world, things dangerous to come to,
to see behind walls, draw closer,

to find each other, and feel
- that is the purpose of life.
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