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1.1 Motivation of this thesis 
 

The increased availability of high-frequency data has spurred a wide range of 

empirical investigations to comprehensively understand financial markets 

behavior. Certainly, the use of data on a high-frequency basis can disclose new 

facts that cannot be noticed at lower frequencies; however, they also pose a 

number of challenges for academics and researchers due to the intraday 

regularities present in intraday data (Goodhart and O´Hara, 1997).  

Based on this approach, the general objective in this thesis is to discuss the main 

conclusions reached when high-frequency data are used in the following analysis: 

a) the analysis of the lead-lag relationship between spot and future stock indexes 

when regimes are present in the data, b) the influence of intraday seasonality in 

volatility transmission between spot and futures markets; and c) optimal portfolio 

choice. To do so, this dissertation is divided in three separate and publishable 

papers; in such a way that each one corresponds to a chapter. Thus, these three 

chapters (namely Chapter A, B and C) are the core of this thesis and are free 

standing (in the sense that each one can be read and understood independently) 

but they are on the related topic of high-frequency data. They are preceded by a 

short introduction to the overall topic with essential background information and 

are followed by a general conclusion. 

Therefore, the common link between the three chapters in this dissertation is the 

use of high-frequency data.  

 

1.2 Methodology review 
 

The main objective of this subsection is to provide the reader a brief overview of 

the methodology used in this dissertation and explain in detail those empirical 

models which have not been described in each article. 

 

The empirical models employed in Chapter A of this thesis are the Vector Error 

Correction Model (VECM), the Vector Error Correction Model Markov Switching 

(MS-VECM) and the Regime Dependent Impulse Response Function. This chapter 

gives a succinct overview of these methods, but do not give an in-depth 

examination of the Markovian regime shifts originally proposed by Hamilton 

(1988, 1989). Thus, section 1.2.1 is devoted to the algorithm used for drawing 

probabilistic inference about whether and when shifts might occur. 
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Chapter B uses as methodology to remove the intraday seasonality present in 

intraday data the Fourier Flexible Form (FFF) which is explained in detail 

throughout the chapter. Likewise, this chapter also implements and gives an 

overview of the Impulse Response Function. Additionally, one of the pillars of 

chapters B and C is the Realized Volatility theory based on high-frequency data 

which is revised in section 1.2.2. 

As far as the chapter C is concerned, the methodology regarding the optimal 

portfolio strategies, the details of the estimation procedure as well as the measures 

to evaluate the performance are explained in sufficient detail. The reader can see 

this chapter to revise the aforementioned methods.  

 

1.2.1 Markov Switching Models 
 

In the last decades, the literature regarding the analysis of regime shits and non-

linear models has become an increasingly prominent field.  The pioneer study 

applying regime shifts to financial series is the research of Hamilton (1989) who 

extended the Markov switching regression model of Goldfeld and Quandt (1973) to 

a time series framework and proposed an approach to model structural changes in 

which the parameters of an autoregressive model are viewed as the outcome of a 

discrete-state Markov process. These structural changes may not be observed 

directly, but it is possible to draw probabilistic inference about whether and when 

they may have occurred based on the observed behavior of the time series. In this 

article, an algorithm for drawing such probabilistic inference in the form of a 

nonlinear iterative filter is presented, which also allows estimating the population 

parameters by the method of maximum likelihood and provides the foundation for 

forecasting future values of the series.  

Later, Krolzig (1997) extended the Markov Switching model in mean considering a 

multivariate framework with cointegration relationships among series (MS-VECM) 

According to Krolzig (1997), the main advantage of the MS-VECM is to provide a 

systematic approach to deliver statistical method for: a) extracting the information 

included in the data regarding regime shifts in the past, b) estimating consistently 

and efficiently the parameters of the model, c) detecting recent regime shifts, d) 

correcting the VECM at times when the regime alters, and e) incorporating the 

probability of future regimes shifts into forecasts. 

As a first introduction to the Markov Switching models, we thereupon review the 

Regime Switching Autoregressive Systems.    
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Let 𝑟𝑡 be a financial return series, Hamilton's (1989) two state Markov regime 

switching AR (1)1 model is defined as follows:  

 𝑟𝑡= 𝑐𝑠𝑡
+ 𝛼1,𝑠𝑡

𝑟𝑡−1 + 𝑒𝑡   (1) 
 

 

where we assume that the innovations 𝑒𝑡 follow a normal distribution 

𝑁(0, 𝜎𝑠𝑡
2 )  and 𝑠𝑡 is an unobservable variable that determines if the process is in 

regime 1 at period 𝑡 ( 𝑠𝑡 = 1) or in regime 2 ( 𝑠𝑡 = 2).  

To construct the likelihood function a two-step procedure is implemented. First, 

joint density of returns (𝑟𝑡 ) and unobserved regime variable (𝑠𝑡) can be written as:  

 𝑓(𝑟𝑡, 𝑠𝑡|Ψ𝑡−1) = 𝑓(𝑟𝑡|𝑠𝑡,Ψ𝑡−1) 𝑓(𝑠𝑡|Ψ𝑡−1)         (2) 
 

 

where Ψ𝑡−1 is the all available information up to 𝑡 − 1 and 𝑓(𝑟𝑡|𝑠𝑡,Ψ𝑡−1) is the 

state-dependent likelihood function defined as follows: 

 
𝑓(𝑟𝑡|𝑠𝑡,Ψ𝑡−1) =

1

√2𝜋𝜎𝑠𝑡
2

exp [−
1

2
 
(𝑟𝑡 − 𝑐𝑠𝑡

− 𝛼1,𝑠𝑡
𝑟𝑡−1)2

𝜎𝑠𝑡
2

] 
(3) 

 

Then, the marginal density function of   𝑟𝑡 can be expressed as:   

 𝑓(𝑟𝑡|Ψ𝑡−1) = ∑ 𝑓 (𝑟𝑡
2
𝑠𝑡=1

, 𝑠𝑡|Ψ𝑡−1)= ∑ 𝑓(𝑟𝑡
2
𝑠𝑡=1 | 𝑠𝑡, Ψ𝑡−1) 𝑓(𝑠𝑡|Ψ𝑡−1) (4) 

 

where 𝑓(𝑟𝑡|𝑠𝑡,Ψ𝑡−1) has been defined previously and 𝑓(𝑠𝑡|Ψ𝑡−1) = 𝑃𝑟(𝑠𝑡 =𝑖|Ψ𝑡−1) 

for 𝑖 = 1,2 is the regime probability, that is to say, the probability that the process 

is in regime 𝑖 at time 𝑡 based on the all information up to time 𝑡.   

Thus, the log-likelihood function can be defined as:   

 

𝐿 = ∑ ln (∑ 𝑓(𝑟𝑡|𝑠𝑡,Ψ𝑡−1)  𝑃𝑟(𝑠𝑡|Ψ𝑡−1)

2

𝑠𝑡=1

)           

𝑇

𝑡=1

 

 
(5) 

 

To estimate this log-likelihood function the regime probabilities must be 

computed, but to make inference about regime probabilities is necessary to do 

some assumptions on the unobserved variable. Therefore, we hypothesize that 

regime switching is directed by a first order Markov Chain process with constant 

                                                
1 The procedure for the AR(p) case is analogous. 
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transition probabilities, where the current regime 𝑠𝑡 only depends on the previous 

period, that is to say, only depends on  𝑠𝑡−1, thus  

 

 𝑃𝑟(𝑠𝑡|𝑠𝑡−1, 𝑠𝑡−2…𝑠1,Ψ𝑡−1) =  𝑃𝑟(𝑠𝑡|𝑠𝑡−1)       (6) 
 

Hence, considering two regimes with constant transition probabilities, the 

transition matrix which reflects the probability of switching from one regime to 

other regime is defined as follows:   

 

 
𝑃̂ = [

     𝑃𝑟(𝑠𝑡 = 1|𝑠𝑡−1 = 1) = 𝑝                               𝑃𝑟(𝑠𝑡 = 1|𝑠𝑡−1 = 2) = (1 − 𝑞)       

𝑃𝑟(𝑠𝑡 = 2|𝑠𝑡−1 = 1) = (1 − 𝑝)         𝑃𝑟(𝑠𝑡 = 2|𝑠𝑡−1 = 2) = 𝑞
] 

         

 
(7) 

 
 

An iterative technique designed for a general class of models is used to estimate 

the maximum-likelihood function, where the observed time series depends on 

some unobservable stochastic variables. Each iteration involves a pass through the 

filtering and smoothing iterations, followed by an update of the first order 

conditions and the parameter estimates guaranteeing an increase in the value of 

the likelihood function. In the filtering and smoothing steps the unobserved states 

are estimated by their smoothed probabilities where all probabilities are 

calculated with recursions by using the estimated parameter vector of the last 

maximization step. Using the regime probabilities, an estimation of the parameter 

vector is obtained as a solution and it can be employed to update the filter and 

smooth probabilities and so on. Hence, we have to apply the following steps: 

Step 1: Given 𝑃𝑟(𝑠𝑡−1 = 𝑗|Ψ𝑡−1) for 𝑗 = 1,2 at the end of the period  𝑡 − 1, the 

regime probability 𝑃𝑟(𝑠𝑡 = 𝑖|Ψ𝑡−1) for 𝑖 = 1,2 is calculated as follows: 

 

 
𝑃𝑟(𝑠𝑡 = 𝑖|Ψ𝑡−1) = ∑ 𝑃𝑟(𝑠𝑡 = 𝑖, 𝑠𝑡−1 = 𝑗|Ψ𝑡−1)

2

𝑗=1

   
 

      (8)     
 

 

 

We assume that current regime 𝑠𝑡 only depends on the regime one period before 

(𝑠𝑡−1), then: 
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𝑃𝑟(𝑠𝑡 = 𝑖|Ψ𝑡−1)

= ∑ 𝑃𝑟(𝑠𝑡 = 𝑖, 𝑠𝑡−1 = 𝑗|Ψ𝑡−1)

2

𝑗=1

= ∑ 𝑃𝑟(𝑠𝑡 = 𝑖|𝑠𝑡−1 = 𝑗)𝑃𝑟(𝑠𝑡−1 = 𝑗|Ψ𝑡−1)        

2

𝑗=1

 

 
 
 

(9) 

                                                  

Step 2: At the end of time 𝑡, using Bayesian arguments the 𝑃𝑟(𝑠𝑡−1 = 𝑗|Ψ𝑡−1) is 

computed as: 

 𝑃𝑟(𝑠𝑡 = 𝑖|Ψ𝑡) = 𝑃𝑟(𝑠𝑡 = 𝑖|𝑟𝑡,Ψ𝑡−1)

=
𝑓(𝑠𝑡 = 𝑖, r𝑡|Ψ𝑡−1)

𝑓(𝑟𝑡|Ψ𝑡−1)

=
𝑓(𝑟𝑡|𝑠𝑡 = 1,Ψ𝑡−1)𝑃𝑟(𝑠𝑡 = 𝑖|Ψ𝑡−1)

∑ 𝑓(𝑟𝑡|𝑠𝑡 = 1,Ψ𝑡−1)𝑃𝑟(𝑠𝑡 = 𝑖|Ψ𝑡−1)2
𝑖=1

      

 
 

(10) 

 

Then, the regime probabilities for all periods can be calculated by iterating these 

two steps that are determined by the likelihood function itself. 

Step 3: An estimation of the parameter vector is obtained as a solution of the first 

order conditions of the likelihood function when the regime probabilities used are 

those obtained in the previous two steps. With the new parameter vector, the 

filtered and smoothed probabilities are updated and the algorithm starts again 

until the optimum is reached. 

Thus, in the MS-VECM used in this study, we hypothesize that deviations from the 

long run equilibrium are characterized by different rates of adjustment depending 

on the unobservable regime 𝑠𝑡 , which represent the probability of being in a 

different state. As the state variable 𝑠𝑡 cannot be directly observed, its realization is 

governed by a Markov Chain. Then, the MS-VECM is specified as follows: 

 
∆𝑆𝑡 = 𝑎𝑠 + ∑ 𝑏𝑠𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑠𝑖∆𝐹𝑡−𝑖 + 𝛼𝑠,𝑠𝑡 𝑍𝑡−1

𝑘

𝑖=1

𝑘

𝑖=1

+  𝜀𝑠,𝑡,𝑠𝑡
           

 

(11) 

 
∆𝐹𝑡 =  𝑎𝑓 + ∑ 𝑏𝑓𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑓𝑖∆𝐹𝑡−𝑖 + 𝛼𝑓,𝑠𝑡

𝑍𝑡−1

𝑘

𝑖=1

𝑘

𝑖=1

+  𝜀𝑓,𝑡,𝑠𝑡
          

(12) 

 𝜀𝑠,𝑡,𝑠𝑡

𝜀𝑓,𝑡,𝑠𝑡
| 𝜓𝑡−1 ~ 𝐵𝑁(0, 𝐻𝑡,𝑠𝑡

) 

 

(13) 

 
𝐻𝑡,𝑠𝑡

=  [
ℎ𝑠,𝑠,𝑠𝑡

ℎ𝑠,𝑓,𝑠𝑡

ℎ𝑓,𝑠,𝑠𝑡
ℎ𝑓,𝑓,𝑠𝑡

] 
         (14) 
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where the short run relationship is captured by coefficients 𝑏𝑠𝑖 , 𝑐𝑠𝑖, 𝑏𝑓𝑖, 𝑐𝑓𝑖;  the long 

run relationship is represented by the error correction term   𝑍𝑡−1 =  𝑆𝑡−1 − 𝛽 −

 𝛾𝐹𝑡−1, where 𝑆𝑡−𝑖  and 𝐹𝑡−𝑖 are log lagged spot and futures prices, respectively; 𝑎𝑠 

and 𝑎𝑓 represent the unconditional return; 𝑠𝑡 is an unobservable state variable that 

can take the value 1 and 2;  𝜀𝑠,𝑡,𝑠𝑡
    and 𝜀𝑓,𝑡,𝑠𝑡

 are the residuals in the spot and 

futures equations depending on the regime 𝑠𝑡 = {1(𝑠𝑡𝑎𝑡𝑒 1), 𝑜𝑟 2 (𝑠𝑡𝑎𝑡𝑒 2)} 

respectively; 𝜓𝑡−1 refers to the information available at time t-1; 𝐻𝑡,𝑠𝑡
 is the regime 

dependent variance-covariance matrix and the parameters 𝛼𝑠,𝑠𝑡 , 𝛼𝑓,𝑠𝑡
  

accompanying the ECT depend on the regime 𝑠𝑡 = {1(𝑠𝑡𝑎𝑡𝑒 1), 𝑜𝑟 2 (𝑠𝑡𝑎𝑡𝑒2)}2. 

The MS-VECM is estimated using a two-step maximum likelihood procedure. The 

error correction term 𝑍𝑡−1 is determined in the first step3 and is the same variable 

computed in the linear VECM, also implemented in this research. The second step 

consists of the implementation of an expectation-maximization algorithm using 

maximum likelihood to estimate equations (11) to (14). 

 

1.2.2 Realized Volatility theory 
 

It is widely known that volatility of financial assets is difficult to estimate because 

the conditional variance is latent and is not directly observable; therefore it has to 

be estimated by using parametric or nonparametric procedures. Whereas the 

parametric models rely on explicit functional form assumptions regarding the 

expected and/or instantaneous volatility, the nonparametric models do not make 

such functional form assumptions and therefore enable estimates of notional 

volatility that are flexible, as well as consistent, as the sampling frequency of the 

asset returns increases (Andersen et al., 2002). 

The parametric models include the AutoRegressive Conditional Heteroskedastic 

(ARCH), which were first introduced in the seminal paper by Engle (1982). Since 

their inception, the ARCH models have enjoyed remarkable empirical success and 

the related literature has undergone unprecedented growth. These models allow 

the conditional variance to change over time as a function of past errors leaving 

the unconditional variance constant. Then, as an extension of these models, 

Bollerslev (1986) introduced the so-called Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models which also allow the past conditional 

variances to be added in the current conditional variance equation. 

                                                
2 These states will be identified as 1=Low State and 2=High State. 
3 In the first step the error correction term 𝑍𝑡−1, is computed as follows:   𝑍𝑡−1 =  𝑆𝑡−1 − 𝛽 −  𝛾𝐹𝑡−1, where 

𝑆𝑡−𝑖  and 𝐹𝑡−𝑖  are log lagged spot and futures prices, respectively. 
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Although these models have been proven to be useful in modeling several different 

economic phenomena, the new technological era and the increasing availability of 

financial market data at intraday frequencies has produced an explosive growth in 

the financial econometrics of volatility dynamics, so that recent literature has 

focused on nonparametric approaches such as the Realized Volatility to fully 

exploit the benefits of high-frequency data as an information source to estimate 

return volatility. 

Given that return volatility is a key element for the theory and practice of asset 

allocation, asset pricing, and risk management, much effort has been done to 

provide accurate estimates and forecast of current and future volatility. In this 

regard, it was Merton (1980) who first introduced the idea of estimating return 

volatility over shorter time intervals. As this author highlights, provided that data 

are available at a sufficiently high sampling frequency, “the variance over a fixed 

interval can be estimated arbitrarily, although accurately, as the sum of squared 

realizations”. Moreover, high-frequency data is “one measure of progress in 

empirical econometrics” (Engle, 2000) that allows us to estimate realized measures 

by using all available information with the added advantage of not having to 

estimate parametrical models commonly used, such as the aforementioned ARCH 

and GARCH models. Later on, Andersen and Bollerslev (1998) and Andersen et al. 

(2001, 2003) paved the way for the use of models that employ Realized Volatility 

(RV) measures. 

 

Below, we review in this subsection the RV theory (a more extensive theoretical 

explanation can be found in Andersen and Bollerslev, 1998; Andersen et al. 2001, 

2003; Barndorff-Nielsen and Shephard, 2002; McAleer and Medeiros2008). 

Thus, consider a simple discrete time model in which the daily returns of a given 

asset are typically characterized as follows, 

 

𝑟𝑡 =  ℎ𝑡
1/2

 𝜂𝑡  

 

Where { 𝜂𝑡}𝑡=1
𝑇   is a sequence of independently and normally distributed random 

variables with zero mean and unit variance, 𝜂𝑡  ∼ NID (0, 1). 

Assume that, in a given trading day  𝑡, the logarithmic prices are observed tick-by-

tick.  

Consider a grid Λ𝑡={ 𝜏0,…,𝜏𝑛𝑡
} containing all observation points, and set 

𝑝𝑡,𝑖, 𝑖 = 1, … , 𝑛𝑡  to be the 𝑖𝑡ℎ price observation during day 𝑡, where 𝑛𝑡  is the total 

number of observations at day 𝑡. 
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Moreover, hypothesize that 

 

𝑟𝑡,𝑖 =  ℎ𝑡,𝑖
1/2

𝜂𝑡,𝑖 

 

where 𝜂𝑡,𝑖  ∼ NID(0,𝑛𝑡
−1), 𝑟𝑡,𝑖  = 𝑝𝑡,𝑖  - 𝑝𝑡,𝑖−1  is the 𝑖𝑡ℎ intraperiod return of day 𝑡 so  

that 

 

𝑟𝑡= ∑ 𝑟𝑡,𝑖
𝑛𝑡
𝑖=0  

 

and 

ℎ𝑡= 
1

𝑛𝑡
 ∑ ℎ𝑡,𝑖

𝑛𝑡
𝑖=1  

 

Describe the information set  𝑆𝑡,𝑖̃ ≡ 𝑆̃{𝑝𝑎,𝑏}𝑎=−∞,𝑏=0
𝑎=𝑡,𝑏=𝑖  4as the 𝜎-algebra generated by 

all the information to the 𝑖𝑡ℎ tick in day 𝑡. Therefore, 𝑆𝑡,0̃  is the information set 

available before the start of day t. Then, it follows that 𝐸(𝑟𝑡
2 | 𝑆𝑡,0̃) = ℎ𝑡   and 

V(𝑟𝑡
2 | 𝑆𝑡,0̃) = 2ℎ𝑡

2 . 

The realized variance, defined as the sum of all available intraday high-frequency 

squared returns given by  

 

 𝑅𝑉𝑡
(𝑎𝑙𝑙)

=∑ 𝑟𝑡,𝑖
2𝑛𝑡

𝑖=0                             (15) 

 

is a consistent estimator of the integrated variance when there is no 

microstructure noise (Andersen et al., 2003). 

Andersen and Bollerslev (1998) showed that one can gain a better understanding 

of the ex post daily foreign exchange volatility by aggregating 288 squared five 

minute returns. Moreover, as stated in McAleer and Medeiros (2008), “the five-

minute frequency is a trade-off between accuracy, which is theoretically optimized 

using the highest possible frequency, and microstructure noise that can arise through 

the bid-ask bounce, asynchronous trading, infrequent trading, and price discreteness, 

among other factors”. Likewise, notice, that in practice, as Cartea and Karyampas 

                                                
4
 𝑝𝑎,𝑏 is the tick price. For more details see McAleer and Medeiros (2008). 
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(2011) suggest, employing the whole dataset at high-frequency data (HFD) is not 

the usual option to estimate the realized variance-covariance matrix; and it is usual 

to employ observations on a five-minute interval basis. Thus, based on this 

previous research, we rely on intraday returns data on a five-minute interval basis 

to estimate the RV. 

 

1.3 Thesis structure 
 

This thesis is divided in 3 chapters, besides the introduction and the last chapter 

devoted to the general conclusions.  

Chapter A entitled Lead-lag relationship between spot and futures stock 

indexes: Intraday data and Regime Switching Models, investigates the lead-lag 

relationship between the DAX30 stock index and DAX30 index futures. This 

research contributes to the existing literature by using high-frequency data and 

nonlinear models based on an extension of Markovian regime shifts (named 

Regime Switching Models) to overcome the weakness of linear assumptions in the 

dynamic relationship between spot and futures prices widely used in previous 

literature. The findings highlight the importance of considering the different 

regimes detected in the error correction term to provide a more suitable empirical 

model and a better understanding of the information transmission so that market 

participants can define more efficient trading strategies. Moreover, the results 

suggest that linear models might be misspecified when structural changes are 

present in the data and they are neglected. 

 

The title of chapter B is: The influence of intraday seasonality on volatility 

transmission pattern and it analyses the effects of the well-documented intraday 

seasonality on volatility transmission between the spot and futures markets of the 

CAC40, DAX30 and FTSE100. It uses high-frequency data and the realized variance 

to compare the results obtained using models in which the seasonal component 

has been neglected versus results reached by models in which the seasonal 

component has been considered. The major contribution of this investigation to 

the volatility spillovers literature is to become aware of the impact that the 

intraday seasonality has on the results and the conclusions reached in the studies 

about volatility transmission. The results suggest that high-frequency data can 

shed new light on issues concerning the volatility transmission between markets, 

and underscore how important it is to be conscious of the importance of removing 

the seasonal component to reduce the risk of spurious causality when employing 

high-frequency data in volatility modeling.  
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Finally, chapter C entitled An application of high-frequency data to optimal 

portfolio choice studies the benefits of using intraday data to estimate the 

variance-covariance matrix for asset allocation purposes, considering a 

comprehensive listing of major stock market indexes to build a diversified 

portfolio. Recently, a prominent strand of literature related to portfolio allocation 

shows evidence that common portfolio optimization strategies do not beat the 

equally-weighted strategy (DeMiguel et al., 2009b); raising a serious doubt on the 

usefulness of the investment theory .To challenge these findings we evaluate in 

this investigation whether, by using high-frequency data in optimal portfolio 

choice, instead of data at lower frequencies, we can improve the performance and 

beat the naïve rule. Thus, we suggest the construction of diversified portfolios 

considering monthly and high-frequency data in the modelling of the second 

moments, and compare the performance of these portfolios in terms of several out-

of-sample metrics, namely the Sharpe ratio, the certainty equivalent rate of return 

and the turnover. The outcome of this research suggests that the positive 

performance of switching from data at lower frequencies to intraday data in the 

context of optimal asset allocation pays off; and moreover, by using high-frequency 

data, dynamic strategies beat the equally-weighted portfolio even in presence of 

transaction costs.  
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2. CHAPTER A:  

LEAD-LAG RELATIONSHIP BETWEEN SPOT AND 

FUTURES STOCK INDEXES: INTRADAY DATA AND 

REGIME SWITCHING MODELS 

 

 

 

 

 

Abstract 

 

This paper analyses the lead-lag relationship and the effect of arbitrage 

opportunity changes in the price discovery process between the 

futures and spot markets of the DAX30. The following two aspects will 

be considered: high-frequency data and nonlinearities in the 

cointegrating vector. The results reveal the importance of considering 

structural changes present in the error correction term using Regime 

Switching Models and the peril of assuming strong linear models. 

Additionally, the regime dependent impulse response function shows 

that the dynamic causal effect is remarkably different across regimes, 

so as the arbitrage opportunities increase, the impact of unexpected 

shocks on prices increases.   
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2.1 Introduction 
 

A key question in finance is the lead-lag relationship between spot and futures 

markets. Understanding information flow across markets, in addition to being of 

academic interest, is important for asset valuation, hedging, investment strategies 

and economic policy. A better comprehension of the information transmission 

provides investors with more efficient trading strategies (Kawaller et al., 1987). 

Although in past decades, a significant strand of both theoretical and empirical 

research has focused on the study of the dynamic relationship between futures and 

spot prices, the conclusions obtained remain ambiguous because the empirical 

evidence diverges across articles. 

According to the efficient market theory, the price of an asset reflects all relevant 

information available about its intrinsic value. Numerous articles have focused on 

the study of deviations from the Cost of Carry model and have investigated the 

linkages between futures and spot prices (Kawaller et al., 1987; Ng, 1987; Stoll and 

Whaley, 1990 and Chan, 1992, among others). In an efficient market, there will be 

a simultaneously perfect relationship between spot index and index future 

contract price changes. Therefore, innovations would be synchronously reflected 

both in spot and futures prices, and there should be no lead-lag relationship 

between prices in the two markets. Notwithstanding, due to market imperfections, 

such as asymmetric information, transaction costs, liquidity and other market 

restrictions, one market may reflect information faster than the other one, and as a 

result of that, a lead-lag relationship exists. Hence, price discovery may be 

considered an indicator of the market efficiency (Tse, 1999). 

The main goal and major contribution of this investigation is analyzing the lead-lag 

relationship between the futures and spot markets of the DAX30 considering three 

aspects, given that, as will be explained below, they are considered essential. These 

aspects include a) high-frequency data (on a five-minute interval basis); b) regime 

switching, which will allow us to consider arbitrage opportunities changes, linking 

these opportunities of arbitrage to the magnitude of long run disequilibrium 

between spot and futures prices given by the error correction term (ECT); and c) 

regime dependent impulse response analysis, which has been implemented to 

deepen the understanding of how markets react to shocks in high ECT regimes 

(more arbitrage opportunities) and low ECT regimes (less arbitrage 

opportunities). 

 

The connection between the ECT and arbitrage is not recent. In fact, arbitrage has 

been described as an attempt to benefit from the long run trading opportunities 

involved in the cointegration relationship (Bondarenko, 2003; Hogan et al., 2004)5. 

                                                
5 The ECT may be interpreted as an opportunity of arbitrage. When the futures price is higher than the spot 
price, arbitragers will buy in the spot market and sell in the futures market. If the futures price is lower, they 
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Moreover, as Kawaller et al. (1987) highlight, ”the lead-lag relationship during 

periods when arbitrage activity is present might reasonably be expected to differ 

from the lead-lag relationships present when no arbitrage activity occurs”. 

Considering this approach, this study intends to determine whether there exists an 

asymmetric adjustment process between spot and futures prices depending on the 

magnitude of the deviation from the long run equilibrium and which market (spot 

or future) has more predictive capability. Previous research has documented that 

the presence of arbitrage opportunities has a noteworthy effect on the dynamics of 

the price discovery process and faster adjustment is expected when deviations are 

large enough to make arbitrage advantageous, that is to say, arbitrage is associated 

with more rapid convergence of the basis to the cost of carry (Dwyer et al., 1996 

and Theissen, 2012). Consistent with the above outcome, this study finds that the 

nature of the price discovery process depends on the presence of regimes in the 

ECT and that in the German market the leading role of the futures market in the 

price discovery process is noticeably pronounced when arbitrage opportunities 

are greater.  

 

The traditional Vector Error Correction Model (VECM) implies that the speed of 

adjustment of prices towards long-run equilibrium does not depend on the size of 

the deviation. To overcome this restraint, a state-dependent error correction 

model is estimated. Not considering that disequilibrium of different magnitudes in 

the ECT and hence that arbitrage opportunities provokes asymmetric responses in 

these markets might lead us to misspecified models and misleading conclusions 

regarding the market leadership or even conclude that these markets are not 

cointegrated.  

 

A relevant issue that should be considered when studying empirically the lead-lag 

relationship between two markets or assets, and thus, the presence of arbitrage 

opportunities, is the frequency of the analysed data. Numerous empirical studies 

suggest that the lead-lag relationship is an important stylized fact at high-

frequency data; nevertheless, it vanishes when the frequency of observations 

decreases (Huth and Abergel, 2014). Harris et al. (1995) show evidence that 

frequency is crucial to testing pricing dynamics between markets that are 

cointegrated due to the following two reasons: 1) if the time interval is too wide, it 

might provoke the error correction to occur inside an interval that had not been 

considered, so higher frequency trading strategies might not be detected 

considering daily prices; and 2) cointegration models allow establishing long-term 

relationships between temporal series that may diverge in very short periods but 

readjust to the long run equilibrium. Therefore, the use of data on a high-frequency 

basis can disclose new facts that cannot be detected at lower frequencies; for this 

reason, it is considered to be the most convenient way to approach this 

                                                                                                                                          
will do the reverse. This trading forces prices back towards equilibrium in such a way that at the time of 
futures contract expiration, the ECT becomes zero. 
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investigation. In this paper, data on a five-minute interval basis of transaction 

prices from January 2, 2014 to September 30, 2015 for the DAX30 index for both 

the stock index and index futures are used.6 

 

Moreover, an increasing empirical strand of the literature suggests that the 

dynamic relationship between futures and spot prices may be characterized by a 

nonlinear specification, and failing to consider this might lead to biased results 

(Brooks, 1996; Hiesh, 1991). Regime Switching Models (RSM hereafter) have the 

ability to adequately characterize and capture unusual movements that appear in 

the relationship between spot and futures markets. These models can capture 

these changes of behaviour and the fact that the new dynamics of prices and 

fundamentals persist for several periods (Sarno and Valente, 20007). Ang and 

Timmermann (2012) determined three reasons why RSM have become popular in 

financial modelling, as follows. 1) The idea of regime shifts is natural and intuitive. 

When this methodology is implemented in financial series, regimes determined by 

econometric methods are often identified with different periods in regulation, 

policy, and other secular changes (Hamilton, 1989). 2) RSM can capture the 

stylized behaviour of many financial return series. Finally, 3) they can exhibit 

nonlinear dynamics of asset returns in a framework based on linear specifications. 

Furthermore, to achieve more complete comprehension of differences between 

states, the regime dependent impulse response function is implemented in this 

study. The authors perform this analysis in periods of low and high ECT and 

examine whether a shock of the same magnitude has similar responses in states 

with different arbitrage opportunities. 

 

Although high-frequency data has been used in many previous studies, to the best 

of the authors´ knowledge, there is no study that has analysed the contribution of 

spot and futures markets to the price discovery process on a high-frequency 

interval basis while using a) the nonlinear equilibrium correction model based on 

an extension of Markovian regime shifts in time series proposed by Hamilton 

(1988, 1989) to relax the restrictive linear assumption in the deviation from the 

long run equilibrium, and b) the regime dependent impulse response function to 

trace out how a shock affects prices when arbitrage opportunities differ. 

 

The main results of our paper related to linear models (traditional VECM) might be 

summarized as follows: a) in the short run, the relationship is unidirectional from 

the futures to the spot; and b) the ECT is not significant, so consequently it may be 

concluded that both markets are not cointegrated and do not respond to deviations 

                                                
6 As Andersen (2000) highlights, “the 5-minute frequency is about the highest at which properties of the return 
series are not seriously distorted by irregular quoting, the discreteness of prices, and the tendency of foreign-
exchange dealers to position their quotes with a view toward inventory control”. 
7They find strong evidence against the hypothesis of linear dynamics and in favor of the capability of regime-
switching-vector-equilibrium models (nonlinear models) to capture properly the time-series properties of the 
data. 
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from the equilibrium relationship or the existence of arbitrage opportunities, and 

therefore, there would be no long run relationship binding the markets together. 

Likewise, nonlinear models (MS-VECM) indicate the following. a) The relationship 

is bidirectional in the short run, so that there is a two-way feedback relationship 

between both markets, although the futures market leads the spot market. b) The 

ECT becomes significant for both markets and regimes. c) In the long run, the 

futures market also leads the stock market, and moreover, the greater the ECT is, 

the faster the speed of adjustment is. Finally, d) the regime dependent impulse 

response function reveals the noticeable asymmetries across regimes when a 

shock hits the system, so the impact of unexpected shocks on prices is more 

pronounced when there are more arbitrage opportunities. In this regard, we can 

state that the results obtained and the conclusions that can be drawn certainly 

underpin the importance of considering nonlinear models MS-VECM vs. the linear 

traditional VECM. 

 

The remainder of this paper is organized as follows: section 2.2 contains a review 

of the literature; section 2.3 describes the data used, including some summary 

statistics; section 2.4 explains the methodology employed; section 2.5 presents the 

empirical results from the traditional VECM and MS-VECM; section 2.6 addresses 

the regime dependent impulse response function; and finally, section 2.7 

summarizes the results and concludes. 

 

2.2 Review of the literature 
 

The lead-lag relationship between price movements of stock index futures and the 

underlying cash market describes how fast one market reflects innovation relative 

to the other one as well as the linkage between them. When one market responds 

faster to new information and the other market reacts later, a lead-lag relationship 

is observed (Chan, 1992). A significant body of the literature has attempted to 

determine whether price discovery occurs primarily in the spot or futures market. 

Some empirical studies support the leading role of the spot market. Frino, Walter 

and West (2000) note that traders with stock specific information will benefit 

more by trading in the spot market than in the futures market; therefore, the spot 

market might reflect innovation better. There are other articles that conclude that 

both markets contribute to price discovery, but the conclusion drawn from 

previous research has mostly been supportive of the price discovery role of the 

futures prices. The reason why the futures market is the main source of market-

wide information is generally explained by its inherent low transaction costs8, 

higher leverage effect and lack of short sales restrictions (Tse, 1999). 

                                                
8 Storage costs (if storability is possible) are only associated with commodities. 
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Kawaller et al. (1987) examine the intraday price relationship between the S&P 

500 Index and S&P 500 Futures Index using minute-to-minute data for all trading 

days during 1984 and 1985 and conclude that the equity futures market leads the 

stock market by over twenty to forty-five minutes; however, movements in the 

spot market rarely affect futures by more than one minute. 

Ng (1987) used the S&P 500 Index and S&P 500 Futures Index daily data for 

approximately 5 years and concludes that futures prices lead spot prices by one 

day, although the magnitude of the lead coefficients is rather weak. It has not been 

detected as the lead for spot prices. 

Stoll and Whaley (1990) examine the time series properties of 5-minute intraday 

returns for approximately 5 years of stock index and stock index futures contracts 

and conclude that on the one hand, S&P500 Index and MM index futures returns 

tend to lead stock market returns over five minutes, on average, but sometimes 10 

minutes or more. On the other hand, lagged stock index returns have a moderate 

predictive impact on futures returns, so the effect is bidirectional, but futures 

market has more predictive capability. 

Chan, Chan and Karolyi (1991) studied, simultaneously, the intraday relationship 

between returns and returns volatility (utilizing the GARCH models) in the S&P 

500 stock index and stock index futures market from 1984 to 1989. Each day, 

trading hours are partitioned into five-minute intervals. Their evidence is 

consistent with the hypothesis that both markets contribute to price discovery.  

Chan (1992) studies the lead-lag relationship between intraday futures and cash 

index prices on a five-minute interval basis for two sample periods, August 1984–

June 1985 and January 1987–September 1987. The article analyses data on the 

MMI and an index comprising 20 actively traded stocks. The author finds strong 

evidence that there is an asymmetric lead-lag relationship between the two 

markets with strong evidence that the futures index leads the cash index and weak 

evidence that the cash index leads the futures. 

 

Engle and Granger (1987) demonstrate that cointegrated series have an error 

correction term9 representation (also named speed of adjustment coefficient) that 

allows correcting in one period the disequilibrium detected in the previous one. 

Not only does the error correction term indicate the percentage of disequilibrium 

from one period that is corrected in the next period, but it also shows the relative 

magnitude of adjustments in both markets towards equilibrium. The rationale 

behind the concept of cointegration is that two variables may deviate in the short 

                                                
9One interpretation of the error correction term is that it reflects the effect of arbitrage. If the futures price is 
too low compared to the index value, arbitragers will sell the stocks underlying the index and buy the futures 
contract. On the contrary, if the futures price is too high, they will sell the futures contract and buy the stocks 
underlying the index. 
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run from each other, but market forces will bring them back together, and 

therefore, there exists a long run equilibrium relationship between these two 

variables. If the error correction term is not considered, then the model could be 

misspecified. Roughly, spot and futures prices are cointegrated with an order of 

one, and the linear VECM has been traditionally used to investigate the error 

correction process between spot and futures prices. 

Wahab and Lashgari (1993) extend the study of the lead-lag relationship by 

applying the cointegration approach to investigate the robustness of previous 

studies including an alternative model parameterization, the error correction 

model. They use daily closing spot and futures prices for both the S&P 500 Index 

and the Financial Times Index from January 4, 1988 to May 30, 1992. The authors 

find evidence that a two-way relationship exists between the cash and futures 

markets, which is consistent with the important price discovery role served by 

both the stock and index futures markets and confirm the hypothesis that both 

markets contribute to price discovery. Furthermore, they find that the price 

leadership of the spot market is stronger. 

 

Tse (1999) examines the intraday price discovery process and volatility spillovers 

between the DJIA futures and index using minute-by-minute data for the six-month 

period of November 1997 to April 1998. The author uses the VECM to analyse the 

price discovery process and concludes that the informational contribution 

attributable to the futures market is 88,3% implying that DJIA futures dominate 

the cash market in price discovery. It is the spot price that makes the greater 

adjustment to re-establish the equilibrium, or, to put it another way, the futures 

price leads the cash price in price discovery. 

Pardo and Climent (2000) and Blanco (2003) study the temporal relationship 

between the IBEX 35 Index and IBEX 35 Futures Contracts applying a cointegration 

parameterization and using minute-by-minute data for the entire year 1996 and 

five minute data from January 11, 1995 to October 27, 1995, respectively. They 

conclude that both markets contribute to price discovery, but there exists strong 

evidence that the predictive capability of the futures market is greater. 

Several publications have appeared in the past decades documenting a new 

approach to answer the longstanding question in the research field regarding the 

lead-lag relationship between spot and futures prices. Plenty of articles, such as 

Sarno and Valente (2000), Li (2009) and Theissen (2012), among others suggest 

the presence of different regimes in financial markets and employ nonlinear 

models to account for the dynamic of the relationship between spot and futures 

prices. 

Sarno and Valente (2000) examine the dynamic relationship between spot and 

futures prices in stock index futures markets using weekly data for the S&P 500 
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and the FTSE 100 indices from January 1, 1988 to December 26, 1997 and using 

nonlinear Markov-switching vector equilibrium correction models that allow for 

three regimes in the mean of the equilibrium correction model as well as in the 

variance-covariance matrix. They find strong evidence against the hypothesis of 

linear dynamics and in favour of the capability of regime-switching-vector-

equilibrium models to capture the stylized behaviour of the financial series. 

Li (2009) studied the dynamics of the relationship between spot and futures 

markets of three mature markets (S&P500, FTSE100, DAX) and two emerging 

markets (BOVESPA, BSI) from the period April 3, 1995 to December 12, 2005 using 

daily data. The author uses a traditional VECM and a Markov-switching vector 

error correction model (MS-VECM), in which the parameter of the deviation of 

spot-futures prices changes according to the stage of the volatility regime, and 

compares the results. When a conventional VECM is used to examine the spot-

futures price discovery process, the conclusions among markets are inconsistent. 

However, when a MS-VECM is considered, the findings show the following. 1) 

During a high variance state, the spot-futures disequilibrium adjustment process 

depends mainly on the futures market and on the spot market in the low variance 

state; that is to say, the futures price leads the spot price in price discovery during 

stable periods; on the contrary, during volatile periods, the price discovery occurs 

in the spot market. This finding is robust for all markets. 2) The scale of price 

adjustment in the futures market during a high variance state is greater than that 

in the spot markets during a low variance state. 3) The correlation between the 

spot and futures markets for the high variance state is lower than that for the low 

variance state in all cases. The study also provides evidence that the price 

adjustment process between spot and futures markets occurs very quickly in 

mature markets; additionally, for emerging markets, the disequilibrium between 

spot and futures prices takes longer to diminish. This fact denotes why the 

deviation in the spot and futures prices in the two emerging markets analysed is 

remarkably greater in absolute value than that in the three mature markets, 

particularly in the high variance state. 

Theissen (2012) examines the intraday price discovery process of the following 

two data sets: 1) DAX index values from the spot equity market and DAX index 

futures data from the first quarter of 1999 at a frequency of 15 seconds and 2) DAX 

EX (the most liquid DAX ETF) and DAX index futures data from the last quarter of 

2010 at a frequency of 1 minute. The datasets contain transaction prices, bid and 

ask quotes for 61 trading days. The author estimates a threshold error correction 

model to allow for arbitrage opportunities to have an impact on the return 

dynamics including two dummy variables to identify the arbitrage opportunities 

that require selling in both the spot and futures market. Bidirectional Granger 

causality is found, and the evidence shows that the spot market depends on the 

futures market much more than the converse. Consequently, the futures market 

leads in the process of price discovery, and furthermore, the presence of arbitrage 
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opportunities has a strong impact on the dynamics of the price discovery process. 

Therefore, the results suggest that the leading role of the futures market in the 

price discovery process is noteworthy when arbitrage signals are present. 

The novelty of this research lies in the use of high-frequency data on a five-minute 

interval basis, while using the nonlinear equilibrium correction model based on an 

extension of Markovian regime shifts in time series proposed by Hamilton (1988, 

1989), and the regime dependent impulse response function. Thus, to shed more 

light on the lead-lag relationship between spot and futures markets, we begin in 

the next section by explaining the data used in this study. 

 

2.3 Data and preliminary analysis 
 

This study uses high-frequency observations on a five-minute interval basis of 

transaction prices from DAX30 for both the stock index and index futures. The 

sample period extends from January 2, 2014 to September 30, 2015, and only data 

for the period of simultaneous operation of both markets are used in our analysis. 

Additionally, it is frequent in the literature to exclude some observations at the 

beginning of each trading day. When the negotiation in the spot markets begins, 

volatility reaches its highest level; therefore, in this study, the first return of the 

trading day, 09:05 hour, which generally reflects the adjustment to information 

accumulated overnight and displays the highest average return variability, is 

deleted to avoid deleterious effects on the econometric analysis (see Andersen et 

al., 2000 and Lee and Mathur, 1999). 

After cleaning the data10, we obtain the continuously compounded returns at each 

5-minute interval by taking the logarithms and subtracting the previous value. 

Returns at the 𝑛 interval at day 𝑡, for 𝑛 = 1,2 … 𝑁  and 𝑡 = 1,2, …  𝑇 can then be 

calculated as follows: 

𝑅𝑛,𝑡 = 100 𝑥 𝑙𝑜𝑔( 𝑃𝑛,𝑡 ÷ 𝑃𝑛,𝑡−1)    

 

where, 𝑃𝑛,𝑡 represents the spot (𝑆𝑛,𝑡) and futures (𝐹𝑛,𝑡) price level on interval 𝑛, at 

day 𝑡. 

 

Table 1 presents some statistical tests on a five-minute interval basis for the prices 

and the returns series used. Some results are remarkable. As can be appreciated in 

panel A, returns are clearly not normally distributed due to the asymmetric and 
                                                
10This leave us with a sample of 438 days with 103 intraday five-minute returns per day.  
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leptokurtic patterns of the series, and mean returns are close to zero. 

Leptokurtosis may be considered to be a measure of the fatness of the tails of 

distribution with more extreme movements than would be predicted by a normal 

distribution. Panel B shows the Ljung-Box test statistic that detects autocorrelation 

for both prices and returns.  

Panels C and D exhibit stationary and cointegration tests. Spot and futures prices 

are nonstationary; however, returns series are found to be stationary. Thus, the 

study reveals that both series contain a unit root and are integrated of order one. 

Additionally, when analysing cointegration, contradictory results are encountered. 

Residuals 𝑍𝑡  from the regression 𝑆𝑡 =  𝛽 + 𝛾𝐹𝑡+𝑍𝑡  are tested for the presence of 

unit root using Augmented Dickey Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-

Shin (KPPS) tests. According to ADF test, the residuals from this regression (ECT) 

are stationary, that is to say, the ECT is I (0), and as a consequence of that, the spot 

and futures markets are cointegrated; nevertheless, the result of the KPPS test is 

just the opposite; it reveals that the ECT is not stationary, and therefore, these 

markets are not cointegrated. 

The cointegration analysis computes the long run equilibrium relationship 

between two series; thus, a large dataset is needed to test for cointegration. 

Nonetheless, the main disadvantage is that the longer is the dataset analysed, the 

more likely the series include structural changes. 
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TABLE 1: Statistics results 

 Levels Returns 

 Spot Futures Spot Futures 

Panel A: Summary Statistics 

Mean  10,195.49 10,201.05 -0.00034 -0.00031 

Standard Deviation 927.45 930.61 0.099 0.100 

Skewness 0.66 0.67 -0.389 -0.367 

Kurtosis 2.12 2.15 16.78 17.021 

Minimum 8,363.08 8,367.00 -2.100 -2.205 

Maximum 12,385 12,422 1.245 1.292 

Jarque Bera 4,741 4,746 358,054 370,532 

Observations 45,115 45,115 45,114 45,114 

Panel B: Autocorrelation test 

LB - 𝑄(20) 900,772.62 900,775.64 98.41 114.15 

LB - 𝑄2(20) 896,284.85 896,409.88 15,126.42 14,631.81 

Panel C: Stationary test 

ADF(H0:Not stationary) -0.0365 -0.0494 -215.4262* -216.9964* 

KPSS(H0:stationary) 347.51* 348.13* 0.1434 0.1336 

Panel D: Cointegration test 

ADF(H0:Not stationary) -38.537* 

KPSS (H0:stationary) 103.654* 

The * denotes the significance at 0.05. 

Table 1 shows some statistical tests for DAX30 index prices and returns on a five-minute 

interval basis for both the spot and futures market from January 2, 2014, to September 30, 

2015. Returns at the 𝑛 interval at day 𝑡 have been calculated as follows: 𝑅𝑛.𝑡 =

100 𝑥 (𝑙𝑜𝑔 𝑃𝑛,𝑡 ÷ 𝑙𝑜𝑔 𝑃𝑛,𝑡−1), where 𝑃𝑛,𝑡represents the price level on interval 𝑛, at day 𝑡. 

Panel A presents the main summary statistics and the Jarque-Bera test for normality. 

Panel B displays the results of the serial autocorrelation test Ljung-Box using 20 lags. 

Panel C performs the Augmented-Dickey Fuller and Kwiatkowski-Phillips-Schmidt-Shin 

stationary tests, and panel D shows the results of the cointegration tests (checking 

whether the error correction term is stationary).  
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Perron (1989, 1990) found that failure to allow for these structural changes in the 

data series leads to biased results in the ADF test. Additionally, Lee et al. (1997) 

showed that the stationarity test KPSS proposed by Kwiatkowski et al. (1992) is 

biased towards rejecting null hypothesis of stationarity repeatedly when the data 

generating process is stationary with a structural break. In other words, the power 

of unit root tests is sensitive to structural breaks in the data, and neglecting the 

presence of different regimes may lead to distorted values in the stationarity and 

cointegration tests (Bartley et al., 2001). 

To gain more insight into this issue, the ECT for the German market is depicted in 

Plot 1.  
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PLOT 1: Error correction term 

 

 

 

 

 

 

Plot 1 shows the error correction term for the DAX30 from January 2, 2014, to September 

30, 2015. The horizontal axis represents the observations on a five interval basis, and the 

vertical axis measures the ECT. 
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As can be appreciated in Plot 1, different regimes seem to be detected in the ECT. 

On the basis of this evidence, a state-dependent error correction model will be 

considered in our empirical study when comparing with the traditional VECM. 

 

2.4 Methodology 
 

This section explains the empirical models used in this study. First we describe the 

linear model, and then, we consider a nonlinear dynamic in the ECT. If two 

variables are cointegrated, they can be represented by a VECM that incorporates 

the last period error term as well as lagged returns of each variable. Thus, 

temporal causality may be evaluated by analysing the statistical significance and 

relative magnitude of lagged variables coefficients and ECT coefficients.  

 

2.4.1 Traditional VECM 
 

The first approach to analyse the price discovery process is the traditional Vector 

Error Correction Model (VECM), which assumes a permanent causal relationship 

between the spot and futures prices over the sample period. 

 

 
∆𝑆𝑡 =  𝑎𝑠 + ∑ 𝑏𝑠𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑠𝑖∆𝐹𝑡−𝑖 + 𝛼𝑠𝑍𝑡−1

𝑘

𝑖=1

𝑘

𝑖=1

+  𝜀𝑠,𝑡          

 

 
(1) 

 

 
∆𝐹𝑡 =  𝑎𝑓 + ∑ 𝑏𝑓𝑖∆𝑆𝑡−𝑖 + ∑ 𝑐𝑓𝑖∆𝐹𝑡−𝑖 + 𝛼𝑓𝑍𝑡−1

𝑘

𝑖=1

𝑘

𝑖=1

+  𝜀𝑓,𝑡           
 

(2) 

 

 

In the study of the price discovery process, both the short run and the long run 

causality will be analysed. The short run relationship is captured by coefficients 

𝑏𝑠𝑖, 𝑐𝑠𝑖, 𝑏𝑓𝑖, 𝑐𝑓𝑖. When these coefficients are significant, it implies that a lead-lag 

relationship exists, and therefore, lagged returns in one market might be used to 

predict futures returns in the other market. Additionally, the long run relationship 

is represented by the error correction term   𝑍𝑡−1 =  𝑆𝑡−1 − 𝛽 −  𝛾𝐹𝑡−1, where 𝑆𝑡−𝑖  

and 𝐹𝑡−𝑖 are log lagged spot and futures prices, respectively. 
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The error correction coefficients 𝛼𝑠, 𝛼𝑓 collect information regarding the direction 

of the casual relationship between two series and show the speed with which the 

departures from equilibrium are corrected in the short run. Cointegrating 

variables may deviate from their relationship in the short run, but in the long run, 

their association will return. If a departure from equilibrium arises, prices in one 

or both markets should adjust to correct the deviation; otherwise, the series would 

wander apart without bound. 

 

Additionally, 𝑎𝑠 and 𝑎𝑓 represent the unconditional return, and 𝜀𝑠,𝑡 and 𝜀𝑓,𝑡 are the 

residuals in the spot and futures equations, respectively. The optimal lag length 

will be determined using the Akaike information criteria (AIC) and the Bayesian 

information criteria (BIC). 

 

2.4.2 MS-VECM 
 

Recent years have witnessed a remarkable increase in the popularity of nonlinear 

modelling (Sarno and Valente, 2000 and Ang and Timmermann 2012, among 

others). Most of the previous studies have usually neglected nonlinearities in their 

empirical models employing linear specifications. In this section, to account for the 

dynamic of the ECT, we use a Vector Error Correction Model Markov Switching 

(MS-VECM) in which the parameter of the long run deviation of spot-futures prices 

is dependent on 2 regimes11.The nonlinear dynamic approach presented here 

implies that the degree and speed of adjustment towards long run equilibrium 

depends on the size of the deviation. Moreover, the main advantage of the Markov 

Switching methodology is that it endogenously determines the changes in the 

dynamic relationship without postulating exogenous structural changes. Thus, 

instead of conjecturing a known regime in a certain period, its probability in each 

point of time is estimated based on the information extracted from the sample. 

The methodology is basically the result of extending the Markovian regime shifts 

to time series analysis originally proposed by Hamilton (1988,1989), considering 

changes in causality as random events governed by an exogenous Markov process. 

In the MS-VECM used in this study, we parameterize that the ECT comes from a 

particular causality regime with a certain probability, and it is specified as follows: 

 

 
∆𝑆𝑡 = 𝑎𝑠 + ∑ 𝑏𝑠𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑠𝑖∆𝐹𝑡−𝑖 + 𝛼𝑠,𝑠𝑡 𝑍𝑡−1

𝑘

𝑖=1

𝑘

𝑖=1

+  𝜀𝑠,𝑡,𝑠𝑡           
 

(3) 

                                                
11 To keep the number of parameters tractable, this investigation considers two regimes in the ECT. 
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∆𝐹𝑡 =  𝑎𝑓 + ∑ 𝑏𝑓𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑓𝑖∆𝐹𝑡−𝑖 + 𝛼𝑓,𝑠𝑡𝑍𝑡−1

𝑘

𝑖=1

𝑘

𝑖=1

+  𝜀𝑓,𝑡,𝑠𝑡          (4) 

 

 
(4) 

 𝜀𝑠,𝑡,𝑠𝑡

𝜀𝑓,𝑡,𝑠𝑡
| 𝜓𝑡−1 ~ 𝐵𝑁(0, 𝐻𝑡,𝑠𝑡) 

 

         (5) 

 
𝐻𝑡,𝑠𝑡 =  [

ℎ𝑠,𝑠,𝑠𝑡 ℎ𝑠,𝑓,𝑠𝑡

ℎ𝑓,𝑠,𝑠𝑡 ℎ𝑓,𝑓,𝑠𝑡
] 

         (6) 
 

 

where 𝜓𝑡−1 refers to the information available at time t-1, 𝐻𝑡,𝑠𝑡 is the regime 

dependent variance-covariance matrix, and 𝑠𝑡 is an unobservable state variable 

that can take the value 1 and 2; the parameters 𝛼𝑠,𝑠𝑡 , 𝛼𝑓,𝑠𝑡  accompanying the ECT 

depend on the regime s𝑡 = {1(𝑠𝑡𝑎𝑡𝑒 1), 𝑜𝑟 2 (𝑠𝑡𝑎𝑡𝑒2)}12. 

The MS-VECM is estimated using a two-step maximum likelihood procedure13. The 

error correction term 𝑍𝑡−1 is determined in the first step and is the same variable 

computed in the traditional VECM. The second step consists of the implementation 

of an expectation-maximization algorithm using maximum likelihood to estimate 

equations (3) to (6).14 

Moreover, one interpretation of the ECT is that it reflects the effect of arbitrage 

opportunities. When the futures price is too high relative to the index value, 

arbitragers will buy the stocks underlying the index and sell the futures contract. 

When the futures price is too low, they will do the reverse. As a consequence of 

these transactions, prices back towards equilibrium, that is to say, the ECT reverts 

to zero. We analyse in the next section, the extent to which the dynamic of the 

adjustment is affected by the presence of different regimes in the ECT. 

 

2.5 Empirical findings 
 

This section displays the main empirical results using the models described in the 

previous section. First, we will estimate the traditional VECM and then the MS-

VECM, discussing the main differences afterwards. 

 

                                                
12 These states will be identified as 1=Low State and 2=High State. 
13 See Perlin, M. (2010) MS Regress - The MATLAB Package for Markov Regime Switching Models. Available at 
SSRN: http://ssrn.com/abstract=1714016. 
14For more details about the algorithm used for drawing probabilistic inference about whether and when 
shifts might occur, see Hamilton, 1989. 
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2.5.1 Estimations for linear models 
 

The use of the error correction models enables differentiation between short run 

and long run deviations from the equilibrium relationship. We initially investigate 

the short run and long run casual links between stock index futures returns and 

stock index returns using the model presented in section 2.4.1 (Traditional VECM). 

According to AIC/BIC criteria, the optimal lag length is set at 5.15 

Table 2 represents the main results obtained for the traditional bivariate VECM. 

  

                                                
15 The same lag length is used in the VECM-MS 
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TABLE 2: Parameter estimates of the linear VECM   

  SPOT RETURN 
EQUATION 

FUTURES 
RETURN 

EQUATION 

Intercept 𝒂𝒔, 𝒂𝒇 

 

 -0.00037 -0.00033 

ECT 𝜶𝒔, 𝜶𝒇 

 

 -0.011786 0.00222 

Lagged Spot Return Coefficient                               
1 

-0.551384* 0.00559 

𝒃𝒔𝒊, 𝒃𝒇𝒊 

 

                             
2 

-0.300798* 0.02479 

                              
3 

-0.182988* 0.00462 

                              
4 

-0.13084* -0.03498 

                              
5 

-0.06758* -0.02765 

Lagged Futures Return Coefficient                             
1 

0.54140* -0.02712 

𝒄𝒔𝒊, 𝒄𝒇𝒊                             
2 

0.28443* -0.04650 

                             
3 

0.20317* 0.01171 

                             
4 

0.14388* 0.04631 

                             
5 

0.07046* 0.02782 

The * denotes significance at 0.05. 

Table 2 presents the results of the linear VECM  

∆𝑆𝑡 =  𝑎𝑠 + ∑ 𝑏𝑠𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑠𝑖∆𝐹𝑡−𝑖 + 𝛼𝑠𝑍𝑡−1
𝑘
𝑖=1

𝑘
𝑖=1 +  𝜀𝑠,𝑡                  Spot return equation 

∆𝐹𝑡 =  𝑎𝑓 + ∑ 𝑏𝑓𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑓𝑖∆𝐹𝑡−𝑖 + 𝛼𝑓𝑍𝑡−1
𝑘
𝑖=1

𝑘
𝑖=1 +  𝜀𝑓,𝑡                Futures return equation 

     

 

where 𝑺𝒕−𝒊  and 𝑭𝒕−𝒊 are log lagged spot and futures prices, respectively; ∆  is the first-

difference lag operator, 𝒂𝒔 and 𝒂𝒇 represent the unconditional return; coefficients 

𝑏𝑠𝑖, 𝑐𝑠𝑖 , 𝑏𝑓𝑖, 𝑐𝑓𝑖 capture the short-run relationship; 𝒁𝒕−𝟏 , computed as 𝒁𝒕−𝟏  = 𝑺𝒕−𝟏 − 𝜷 −

 𝜸𝑭𝒕−𝟏, is the error correction term (ECT); 𝛼𝑠, 𝛼𝑓  are the error correction coefficients that 

collect information regarding the long-run relationship; and 𝜺𝒔,𝒕 and 𝜺𝒇,𝒕 are the residuals 

in the spot and futures returns equations, respectively. The optimal lag length has been 

determined using the Akaike information criteria (AIC) and the Bayesian information 

criteria (BIC) and has been set in five lags. 
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It is worth noting that short run causality is unidirectional from the futures to the 

spot market. Note in Table 2 that lagged spot return coefficients (𝒃𝒇𝒊) are not 

significant in the futures equation. Therefore, the short run adjustments 

underscore the importance of futures prices in the price discovery process for the 

German market. Additionally, contemporaneous spot returns are affected 

negatively by lagged spot returns (𝑏𝑠𝑖) and positively by lagged futures returns 

(𝑐𝑠𝑖) (the same evidence is found by Theissen, 2012). In the futures market, this 

pattern is not observed. 

As far as the long run relationship is concerned, it is found to be not significant (see 

significance of alfa parameters 𝛼𝑠, , 𝛼𝑓  accompanying the ECT in Table 2). None of 

them is significant; hence, this means that both series are not cointegrated, and 

they deviate without a bound in the long run. Contradictory results in the unit root 

test ADF vs. KPPS are hereby confirmed. Because spot and futures prices 

concerning the same index react to the same information, short run deviations 

might be possible, but in the long run, spot and futures prices are expected to 

strike a balance. In this regard, and according to the MS-VECM results, which will 

be further explained, neglecting structural changes apparently present in the ECT 

(see Plot 1), may be leading us to inefficient estimations. This finding reinforces 

the idea that ECT regime switching should be considered; thus, in the next 

subsection, we postulate the existence of two regimes in the ECT (high and low 

regimes). 

 

2.5.2  Estimations for nonlinear models (MS-VECM) 
 

Table 3 presents the parameter estimates of MS-VECM16. As can be appreciated, in 

the spot equation, similar results to the linear estimation are obtained; lagged spot 

returns (𝑏𝑠𝑖) have a negative impact while the impact of lagged futures returns is 

positive (𝑐𝑠𝑖).  

 

However, in the futures equation, the results differ from those in the linear 

estimation, considering that both lagged spot returns (𝑏𝑓𝑖) and lagged futures 

returns (𝑐𝑓𝑖) are significant. Thus, after considering regimes in the ECT, a two-way 

causality is detected in the German market, which means that price innovations in 

either the cash or futures markets might be able to predict the arrival of new 

information in the other market and both markets play important price discovery 

roles. However, note that there is an asymmetric lead-lag relationship between the 

two markets with strong evidence that the futures index leads the cash index and 

                                                
16 For the estimation of the VECM-MS, we use the specification-robust estimator of the variance-covariance 
matrix suggested by Bollerslev and Wooldridge (1992) to prevent the effect of heteroskedasticity and 
autocorrelation in the residuals. 
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weak evidence in the opposite direction (see in Table 3 that the magnitude of 𝑐𝑠𝑖 

coefficients accompanying lagged futures returns in the spot equation is much 

greater, in absolute terms, than the lagged spot returns parameters 𝑏𝑓𝑖 in the 

futures equation, for instance, 𝑐𝑠1 = 0,70512, whereas 𝑏𝑓1 = 0,00213). Therefore, in 

the short run, the effect is bidirectional, but the futures market has more predictive 

capability. As one might expect, these findings are consistent with previous 

empirical studies that reinforce the idea of the leading role of the futures market 

(Kawaller et al., 1987; Ng, 1987; Stoll and Whaley, 1990; Chan, Chan and Karolyi, 

1991; and Chan, 1992, among others).  

 

The main difference between the estimations in the traditional VECM and the MS-

VECM is encountered in the analysis of the long run relationship. Contrary to 

results found in the linear estimation, parameters accompanying the ECT (𝛼𝑠,𝑠𝑡  

and 𝛼𝑓,𝑠𝑡 ) have become statistically significant, suggesting that spot and futures 

prices may diverge temporarily but then readjust to the cointegrated pattern, and 

any mispricing is driven back to the equilibrium by arbitrage forces; in other 

words, there exists a long run equilibrium relationship between spot and futures 

markets. The leading role of the futures market is also corroborated in the long run 

in both the high and low states. Note that the 𝛼 parameters measure the speed of 

disequilibrium correction and the greater is the value of this coefficient (in 

absolute terms), the more informationally efficient the market is. Hence, it is 

inferred from Table 3 that the spot price makes the greater adjustment to re-

establish the equilibrium, and moreover, this speed of convergence to equilibrium 

is faster in states with higher ECT than in states with lower ECT. That is to say, the 

futures market leads the cash market in price discovery, but the dynamic of the 

adjustment differs when there exist arbitrage opportunities, and arbitrage can be 

related to faster convergence of the basis to the cost of carry. Note that in Table 3, 

in the spot return equation parameter accompanying the ECT in the high state 

(𝛼𝑠,2 = 0,020933) is more than four times the magnitude of the parameter 

accompanying the ECT in the low state ( 𝛼𝑠,1 = 0,004472). These results are, 

therefore, consistent with those found by Theissen (2012)17, who documents that 

the futures market leads in the process of price discovery and highlights that the 

leading role of the futures market in the price discovery process is especially 

pronounced when arbitrage opportunities arise. 

As far as the expected duration of each regime is concerned, during states with 

lower ECT, the expected duration of the regime is approximately two hours, 

whereas it decreases to 25 minutes in states with more arbitrage opportunities 

(see in Table 3, state duration of 25,52 and 4,9 intervals of 5 minutes for the high 

                                                
17 This author analyses 2 datasets with frequencies of 15 seconds and 1 minute (each dataset comprises 61 
trading days for the German stock market) and uses a threshold error correction model (TECM) to account for 
different magnitudes of the ECT. To do this, arbitrage signals are defined exogenously. 
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and low states). This implies that regime with lower ECT is more persistent than 

the other one, and it takes a longer time to reach the new equilibrium. 

To sum up, our findings reveal the importance of considering the magnitude of the 

deviation from the long run equilibrium; otherwise, estimations may be biased. 

Linear models might be misspecified if there are structural changes in the sample 

analysed and they are not considered. 
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TABLE 3: Parameter estimates of the MS-VECM 

Non-switching parameters 

 SPOT RETURN 
EQUATION 

FUTURES RETURN 
EQUATION 

Intercept 𝒂𝒔, 𝒂𝒇 -0.00004* -0.00026* 

Lagged Spot Return Coefficients 
𝒃𝒔𝒊, 𝒃𝒇𝒊 

1 -0.73230* 0.00213 

2 -0.53412* 0.02000* 

3 -0.39150* 0.00601* 

4 -0.26318* -0.00686* 

5 -0.12683* 0.00244* 

Lagged Futures Return Coefficients 
𝒄𝒔𝒊, 𝒄𝒇𝒊 

1 0.70512* -0.03853* 

2 0.48213* -0.07588* 

3 0.00500* 0.35822* 

4 0.29444* 0.03645* 

5 0.14066* 0.00860* 

     

Switching parameters 

State with higher ECT 𝜶𝒔,𝒔𝒕, 𝜶𝒇,𝒔𝒕 0.020933* -0.000317* 

State with lower ECT 𝜶𝒔,𝒔𝒕, 𝜶𝒇,𝒔𝒕 0.004472* 0.000403* 

Variance - covariance matrix 𝑯𝒕,𝒔𝒕 

State with higher ECT 0.025739 0.024996 
 0.024996 0.026798 

State with lower ECT 0.005084 0.005085 
 0.005085 0.005219 

State duration 

State with higher ECT 4.90  

State with lower ECT 25.52  

The * denotes significance at 0.05. 

Table 3 presents the results of the VECM - MS 

∆𝑆𝑡 = 𝑎𝑠 + ∑ 𝑏𝑠𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑠𝑖∆𝐹𝑡−𝑖 + 𝛼𝑠,𝑠𝑡 𝑍𝑡−1
𝑘
𝑖=1

𝑘
𝑖=1 +  𝜀𝑠,𝑡,𝑠𝑡          Spot return equation 

∆𝐹𝑡 =  𝑎𝑓 + ∑ 𝑏𝑓𝑖∆𝑆𝑡−𝑖 +  ∑ 𝑐𝑓𝑖∆𝐹𝑡−𝑖 + 𝛼𝑓,𝑠𝑡𝑍𝑡−1
𝑘
𝑖=1

𝑘
𝑖=1 +  𝜀𝑓,𝑡,𝑠𝑡         Futures return equation 

     

 
𝜀𝑠,𝑡,𝑠𝑡

𝜀𝑓,𝑡,𝑠𝑡
| 𝜓𝑡−1 ~ 𝐵𝑁(0, 𝐻𝑡,𝑠𝑡)         

𝐻𝑡,𝑠𝑡 =  [
ℎ𝑠,𝑠,𝑠𝑡 ℎ𝑠,𝑓,𝑠𝑡

ℎ𝑓,𝑠,𝑠𝑡 ℎ𝑓,𝑓,𝑠𝑡
]    

where 𝑺𝒕−𝒊  and 𝑭𝒕−𝒊 are log lagged spot and futures prices, respectively; ∆ is the first-

difference lag operator; 𝒂𝒔 and 𝒂𝒇 represent the unconditional return; coefficients 

𝑏𝑠𝑖, 𝑐𝑠𝑖 , 𝑏𝑓𝑖, 𝑐𝑓𝑖 capture the short-run relationship; 𝒁𝒕−𝟏 , computed as 𝒁𝒕−𝟏  = 𝑺𝒕−𝟏 − 𝜷 −

 𝜸𝑭𝒕−𝟏, is the error correction term; 𝛼𝑠,𝑠𝑡 , 𝛼𝑓,𝑠𝑡 are the parameters accompanying the ECT 

that depend on the regime s𝑡 = {1 = 𝐿𝑜𝑤 𝑆𝑡𝑎𝑡𝑒, 2 = 𝐻𝑖𝑔ℎ 𝑆𝑡𝑎𝑡𝑒},  which collect 

information regarding the long run relationship; 𝐻𝑡,𝑠𝑡 is the variance-covariance matrix 

(s=spot market, f=futures market); and 𝜀𝑠,𝑡,𝑠𝑡 and 𝜀𝑓,𝑡,𝑠𝑡 are the residuals in the spot and 

futures returns equations, respectively. The same lag length set in the VECM is used in the 

MS-VECM (five lags). 
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2.6 Regime dependent impulse response function   
 

Since the valuable contribution of Sims (1980), the dynamic interaction between 

the variables and the disturbances in vector autoregressive models (VARs) has 

been widely explained by the impulse response or “error shock” methodology. 

Impulse response functions (IRFs) are considered to be useful tools to study the 

effect of a shock on the variables in the model throughout time.  

The analysis of IRFs in linear models has been extensively implemented; however, 

the study of nonlinear cases has been less covered. As Gallant et al. (1993) 

highlight, it is crucial to expand research of time series to nonlinear models. In this 

regard, these authors extend the analysis of IRFs to the nonlinear case and 

emphasize the importance of using these models to capture dynamics. Considering 

that characteristics of nonlinear models are different across regimes, the IRF will 

depend on the magnitude of the shock and the time that it occurs (Koop, 1996; 

Koop et al., 1996). Therefore, to gain more insight into the idiosyncrasy of each 

regime in the MS-VECM, we determine how the system will respond following a 

shock18 when arbitrage opportunities differ.  

To obtain the regime dependent impulse response function, we follow a two-stage 

procedure. First, we convert the MS-VECM back to a VAR19 model, and then, the 

resulting VAR model is used to perform the regime dependent IRF (RDIRF)20.  

The RDIRF may be defined as follows: 

 𝜃𝑘,𝑠𝑡,ℎ =
𝜕Ε𝑡𝑃𝑡+ℎ

𝜕𝑢𝑘,𝑡
𝑠𝑡         𝑓𝑜𝑟 ℎ ׀ ≥ 0  (7) 

 
 𝑠𝑡 = {1 = 𝑙𝑜𝑤 𝑟𝑒𝑔𝑖𝑚𝑒, 2 = ℎ𝑖𝑔ℎ 𝑟𝑒𝑔𝑖𝑚𝑒} 

 
 

 

where 𝑢𝑘,𝑡 is the structural shock to the k-th variable, 𝑃𝑡+ℎ are the spot (𝑆𝑡+ℎ) or 

futures (𝐹𝑡+ℎ) prices at time t+h21 and 𝜃𝑘,𝑠𝑡,ℎ is a k-dimensional response vector 

dependent on the regime st. 

Given that two regimes are present in the ECT, our general model contains 4 

regime dependent impulse response functions, which include spot and futures 

market IRFs in low and high regimes. 

                                                
18 For each variable, a shock of one standard deviation magnitude is applied to the residuals. 
19 The VECM(5) is converted into a VAR(6); then, we can express the VAR(6) as an infinite moving average 

model. 
20 The Generalized impulse response function by Pesaran and Shin (1998) is used. 
21 The dynamic response for each variable is traced out over a period of 30 intervals  of five minutes (two and 
one half hours). 
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PLOT 2: Regimen Dependent Impulse Response Function 

 

Response in states with lower ECT (subplot 2.1) 

 

Response in states with higher ECT (subplot 2.2) 

Plot 2 gives the impulse responses to a one standard deviation shock in states with lower (subplot 

2.1) and higher ECT (subplot 2.2). The horizontal axis represents the period in intervals of five 

minutes. The vertical axis represents the magnitude of the shock expressed as a percentage of the 

price increase. The solid line and the solid line with markers denote the impulse response of the 

spot and futures markets to a shock in the futures market, respectively. In addition, the dashed line 

and the dashed line with markers represent the impulse response of the spot and futures markets 

to a shock in the spot market, respectively. All impulses are based on the Generalized Impulse 

Response Function by Pesaran and Shin (1998). 
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Plot 2 illustrates the RDIRF for an unexpected shock in states with lower (subplot 

2.1) and higher ECT (subplot 2.2). A noteworthy result is that the shock implies a 

temporary and permanent effect on prices, but note that the impact of a shock of 

one standard deviation magnitude has a greater reaction on regimes with higher 

ECT. As can be appreciated in subplot 2.1, after the shock hits the system in states 

with lower ECT, prices increase approximately 0,07%, whereas in regimes with 

more arbitrage opportunities (see subplot 2.2), prices increase between 0,15 and 

0,16%. Moreover, the effect of the shock stabilizes after 40-45 minutes (8-9 

periods), inducing a permanent increase in prices on both regimes, which rise to 

reach their new long run equilibrium level. Moreover, when a shock is applied to 

the futures prices, the market responses are more pronounced than when a shock 

is introduced into the spot market. The findings thus obtained in the impulse 

response analysis are coherent with the results of  MS-VECM. As is illustrated in 

Plot 2, both futures and spot prices react to unexpected shocks in the spot and 

futures markets, which suggests that there exists bidirectional interaction between 

the DAX30 index and the DAX30 index futures; however, note that the response to 

a shock in futures prices is relatively larger than the response to a shock in spot 

prices (see that solid lines are above the dashed lines), indicating that the futures 

market leads the spot market and reinforcing the idea of the leading role of the 

futures markets in the price discovery process. 

Therefore, summing up, the most interesting results of the RDIRF analysis are as 

follows: a) the response to a shock in futures prices is relatively larger than the 

response to a shock in spot prices; b) shocks induce a permanent increase22 in 

prices, which rise to reach their new long run equilibrium level; and c) the dynamic 

causal effect is remarkably different in low/high regimes, so as the arbitrage 

opportunities increase, the impact of unexpected shocks on prices increases.  

These findings, therefore, support the importance of the RDIRFs to confirm causal 

relationships between spot and futures prices from MS-VECM and capture 

asymmetries in both regimes. 

 

2.7 Conclusions 
 

In this paper, we investigate the lead-lag relationship between the DAX30 stock 

index and DAX30 index futures. The development of high-frequency databases has 

boosted interest in empirical market microstructure and provides great potential 

to improve our understanding of financial markets (Goodhart and O'Hara, 1997). 

                                                
22 Prices are not stationary. If prices contain a unit root, the shocks have permanent effects, while if they are 
stationary, then the effects of shocks eventually die out. 
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In addition, increasingly growing empirical research has stressed the existence of 

relevant nonlinearities in both spot and futures returns (Sarno and Valente, 2000; 

Li, 2009 and Theissen, 2012 among others). This study contributes to the existing 

literature by using high-frequency data and nonlinear models based on an 

extension of Markovian regime shifts to overcome the weakness of linear 

assumptions in the dynamic relationship between spot and futures prices widely 

used in previous studies. These nonlinear models allow us to consider the 

presence of different regimes in the deviation from the long run equilibrium. 

From the outcome of our investigation, it is possible to conclude that linear models 

might be misspecified when structural changes are present in the data and they are 

neglected. Therefore, it is important to capture the different regimes detected in 

the ECT to provide a more suitable empirical model and a better understanding of 

the information transmission so that market participants can define more efficient 

trading strategies. 

In the short run, the results support the hypothesis that innovations propagate in 

the futures market before that in the spot market; however, pronounced two-way 

causality is detected in the estimation of the MS-VECM suggesting bilateral 

interaction in the price discovery process. These results are in good agreement 

with previous empirical studies that reinforce the idea of the leading role of the 

futures market (Kawaller et al., 1987; Ng, 1987; Stoll and Whaley, 1990; Chan, 

Chan and Karolyi, 1991; and Chan, 1992, among others). However, when analysing 

the cointegration relationship, the results are completely different depending on 

the model used to make the estimations. 

In the long run analysis, according to the estimations of the traditional VECM, spot 

and futures prices do not follow a common long term trend. Nevertheless, in the 

MS-VECM, parameters accompanying the time varying ECT suggest that spot and 

futures prices may diverge temporarily but both readjust to the cointegrated 

pattern, although it is the spot price that makes the greater adjustment to re-

establish the equilibrium. Moreover, spot price adjustment accelerates in states 

with higher ECT, revealing faster convergence of the basis when arbitrage 

opportunities arise.  

Finally, results from the impulse response analysis reinforce the idea that the 

dynamic causal effect is remarkably different in regimes with different arbitrage 

opportunities in such a way that as the arbitrage opportunities increase, the 

impact of unexpected shocks  on prices increases.  

Overall, these results underpin the importance of considering regimes present in 

the error correction term and the perils of strong linear assumptions when 

analysing the lead-lag relationship.  
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3. CHAPTER B:  

THE INFLUENCE OF INTRADAY SEASONALITY ON 

VOLATILITY TRANSMISSION PATTERN 

 

 

 

 

 

Abstract 

 

Using data on a five-minute interval basis, this article analyses the 

effects of the well-documented intraday seasonality on volatility 

transmission between the spot and futures markets of the CAC40, 

DAX30 and FTSE100. Remarkable differences in the impulse response 

analysis and in the dynamic and directional measurement of volatility 

spillovers are encountered depending on whether the intraday 

periodic component is considered. Thus, the importance of removing 

intraday seasonality seems to be critical to reduce the risk of spurious 

causality when employing high-frequency data in volatility 

transmission.  
  



60 
 



61 
 

3.1 Introduction 
 

Volatility modelling is one of the key developments in empirical finance. As stated 

by Andersen et al. (2000) “financial market volatility is central to the theory and 

practice of asset pricing, asset allocation, and risk management”. The importance of 

understanding volatility transmission comes from its crucial role in the pricing of 

many financial assets, which is paramount in the overall decision making process 

of researchers, market participants, regulators and policy makers. Most of the 

empirical literature analysing the dynamic of volatility spillover has focused on 

transmission across international stock indexes; however, the literature related to 

volatility transmission between the stock market index future and its underlying 

market is less extensive.23 

 

Studies regarding the volatility transmission between spot and futures stock 

indexes might be organized into two major groups depending on the frequency of 

the data: a) The first category of studies employs data on a daily basis (Koutmos 

and Tucker, 1996 and Meneu and Torró, 2003 among others), and b) the second 

group of studies are based on high-frequency data (Kawaller et al., 1990; Tse, 

1999; Chan et al 1991; Fung, et al., 2005 among others). Although the empirical 

evidence about volatility spillovers between spot and futures markets diverges 

across articles, and there are some studies that document unilateral volatility 

spillover from the futures market to the stock market or the other way round, the 

conclusions drawn from previous research have mostly been supportive of the 

presence of bidirectional volatility transmission. Thereby, studies such as Koutmos 

and Tucker (1996) conclude that volatility transmission is unidirectional from the 

futures market to its underlying market; Kawaller et al. (1990) and Abhyankar 

(1995) conclude that this relationship depends on the time interval considered 

and that the intraday volatility transmission runs from one direction to another, in 

both directions, or in neither direction, concluding that there is not a systematic 

pattern of futures volatility leading the index volatility or vice versa; Meneu and 

Torró (2003), Chan et al. (1991), Tse (1999) and Fung et al. (2005) find evidence 

that there exists a two-way volatility transmission between the cash and futures 

markets. Additionally, it should be noted that Meneu and Torró (2003) and Chan et 

al. (1991) extend the analysis of volatility transmission by using the impulse 

response function and find evidence that shocks take a very long time to vanish 

(concretely, Meneu and Torró, 2003 document that the effect of the shock vanishes 

in about 100 days)24.  

                                                
23 Soriano and Climent (2006) review the literature on volatility transmission and provide a broad vision of 
the state of the art on this topic. 
24 Koutmos and Tucker (1996) examine the dynamic of volatility transmission between the S&P 500 Index and 

S&P 500 Futures Index using daily data from the period 1984 to 1993; Kawaller et al. (1990) study the 

intraday volatility transmission between the S&P 500 Index and S&P 500 Futures Index, employing minute-by-
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As has been discussed above, although conclusions drawn from most of the studies 

are not conclusive, the vast majority of research on volatility transmission finds 

evidence of a bidirectional volatility transmission, and moreover, historically, there 

has been a general consensus of the leading role of the futures market due to its 

trading cost advantage, greater liquidity and fewer restrictions. 

 

Likewise, high-frequency data can shed new light on issues concerning the 

volatility spillover between markets that otherwise might be neglected when 

analysing data on a lower frequency basis. Certainly, the recent availability of high-

frequency data has offered more efficient ways for a more detailed analysis and 

further comprehension of market microstructure activity. It enables us to estimate 

daily volatilities, particularly realized volatility (RV), with the added advantage of 

not having to estimate parametrical models commonly used, such as the ARCH and 

GARCH models. After the introduction of the ARCH models by Engle (1982), 

models employing realized volatility (RV) have been promoted by Andersen et al. 

(2001, 2003).25 

 

As Goodhart and O'Hara (1997) highlight, the economic value of analysing high-

frequency financial data is now undeniable and of direct practical relevance, both 

in the academic and financial world. Nevertheless, researchers should be cautious 

about the intraday statistical idiosyncrasies of many financial markets, particularly 

the so-called intraday periodic (or intraday seasonality) component, when dealing 

with intraday data in the volatility modelling process. Note that the studies 

mentioned above that use intraday data neglect the intraday periodic component. 

 

It is a well-known stylized fact of the intraday statistical features of many financial 

markets that a strong intraday repetitive pattern is observed in the average 

absolute returns26. At market opening, absolute returns usually reach the highest 

values, and then around lunch hour, they decrease dramatically; finally, at the end 

of the trading day, they rise again. This suggests a U-shaped seasonal volatility 

pattern27 (see, among others, Wood et al., 1985; Harris, 1986; Andersen and 

Bollerslev, 1997 and Tse, 1999). Due to this strong intraday periodicity generally 

                                                                                                                                          
minute data from 1984 to 1986; Abhyankar (1995) uses FTSE100 Index and FTSE100 Futures Index hourly 

data from April, 1986 to March, 1990; Meneu and Torró (2003) use IBEX 35 Index and IBEX 35 Futures Index 

daily data from 1994 to 2001; Chan et al. (1991) study, simultaneously, the intraday relationship between 

returns and returns volatility in the S&P 500 stock index and stock index futures market from 1984 to 1989 

using five-minute data; Tse (1999) examines the intraday price discovery process and volatility spillovers 

between the DJIA futures and index using minute-by-minute data for the six-month period of November 1997 

to April 1998; and Fung et al. (2005) examine the volatility transmission between the Hang Seng Index and 

Hang Seng Index future using intraday data on a one-minute interval basis from the period November, 1999 to 

December, 2000.  
25 The concept of “realized volatility” dates back from Merton (1980). This author already mentioned that the 
sum of squared intraday returns can be used to estimate daily volatility. 
26 Intraday volatility is often proxied by the average absolute returns. 
27 Some markets exhibit a double U-shape pattern, one in the morning and the other one in the afternoon 
(Andersen et al., 2000; Harju and Hussain, 2011). 
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detected in the average absolute returns, standard volatility models, which usually 

involve a monotone geometric decay in the autocorrelation structure of the 

absolute returns (for instance, standard ARCH models), are not appropriate and 

might lead to spurious inference about the dynamic of the return volatility28 

(Andersen and Bollerslev, 1997). Therefore, any study that analyses asset return 

volatility should consider the strong intraday seasonality exhibited by the data. 

The Fourier Flexible Form (FFF), originally proposed by Gallant (1981, 1982), is 

particularly useful for this problem of seasonality detected in the intraday data and 

makes it possible to obtain deseasonalized or standardized data (Andersen and 

Bollerslev, 1997). 

 

The main goal and major contribution of this investigation is to highlight the 

impact that the seasonal component of volatility has on the results and the 

conclusions reached in the studies about volatility transmission. In essence, this 

research attempts to address the following questions: Are the results obtained in 

this research field the same whether raw data or standardized data (data in which 

this seasonal component has been removed) are considered? Or, is the persistence 

of a shock on volatility return in a market and the net directional spillover effects 

among the spot and futures markets the same regardless of whether this seasonal 

component is considered? 

 

In accordance with the approach of Andersen and Bollerslev, 1997 (A&B97 

hereafter), this investigation computes the deseasonalized volatility29, also called 

standardized volatility, and compares the results obtained through models in 

which raw data are considered (that is to say, those that do not remove the 

seasonal or periodic component) with results reached by models with 

standardized data. Overall, this study contributes to the existing literature by 

providing clear and overwhelming evidence of the effects on results of neglecting 

this aspect and the importance of removing the seasonal component to reduce the 

risk of spurious causality when employing high-frequency data in volatility 

modelling.  

 

To complement and provide added value to the existing literature regarding 

volatility transmission, the futures and spot markets of the CAC40, DAX30 and 

FTSE100 will be studied considering the following issues: a) high-frequency data 

on a five-minute interval basis, b) the Fourier Flexible Form (FFF) as a 

methodology for standardized returns, c) realized volatility (RV) computed using 

standardized returns, d) an analysis of the volatility spillover and the Impulse 

Response (IR) effects on volatility models with raw and standardized data, and e) 

the methodology developed by Diebold and Yilmaz (2012) to provide information 
                                                
28 Inference procedures implemented using high-frequency returns should consider, as noted by Andersen 
(2000), “the strong daily periodicity and the longer-run slow decay in the serial dependence”. 
29 The realized volatility from which the seasonal component has been removed, which will be explained 
further on.  
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about how much the spot (futures) market contributes to volatility in the futures 

(spot) market in net terms. This novel approach is based on forecast error variance 

decompositions from vector autoregression models to measure which markets are 

the net contributors and the net receivers of volatility spillovers. In this study, we 

will show that the high persistence of a shock and the contribution of one market 

to the volatility in another market in net terms are directly related to the lack of 

consideration of the intraday seasonality in all markets studied. 

 

From the outcome of our investigation, the following conclusions can be drawn: a) 

although there exists a seasonal structure in our intraday data and remarkable 

similarities are detected in the markets analysed, they do not illustrate a 

conventional intraday U-shape pattern but a distorted double U-shape; b) the FFF 

methodology used to remove the intraday periodic component considerably 

reduces intraday seasonality; c) cross-correlation analysis reveals significant 

cross-market volatility interactions between the spot and futures markets that 

have also been reduced noticeably after considering the seasonal pattern; d) 

volatility transmission differs significantly when considering raw and standardized 

absolute returns; that is to say, when intraday data are not standardized, the 

optimal number of lags in the VAR model determined by the selection criteria 

seems to be redundant, suggesting that if the seasonal pattern is neglected, it might 

have serious side effects in the spillover analysis due to the presence of spurious 

causality; f) the impulse response function shows that when a shock hits the 

system and the intraday periodic component has not been used to adjust the 

returns before conducting the spillover analysis, the response to that shock is 

highly persistent, reinforcing, once again, the importance of considering intraday 

seasonality; and g) the directional measurement of volatility spillover (Diebold and 

Yilmaz, 2012) also exhibits the fact that considering such a periodic component is 

paramount. In particular, it suggests that changes over time of either direction in 

volatility seem to occur less frequently, that the spot market is the largest net 

sender of volatility spillovers to the futures market throughout all the sample and 

that, in terms of magnitude, the net volatility spillovers are generally greater than 

those in models in which seasonality has not been removed. 

The remainder of this chapter is organized into 5 sections: Section 3.2 explains the 

methodology employed; section 3.3 describes the data used, including summary 

statistics of them; section 3.4 presents the empirical results; and finally, section 3.5 

concludes by summarizing the main results. 
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3.2 Flexible Fourier Form for deseasonalized 

volatility 
 

The intraday pattern in the volatility of financial market returns has an important 

impact on volatility modelling of high-frequency data. Two straightforward 

methods that consider the intraday pattern are as follows: a) a time-of-day 

volatility dummy is used for each return observation, or b) alternatively, the 

returns might be mean adjusted. Unfortunately, the first approach is generally 

over-parameterized and leads to inefficient estimations, and the second one is 

useless because the mean return is nearly zero (A&B97; Andersen, 2000). 

As A&B97 highlight, the FFF is especially convenient to deal with this intraday 

seasonality. This approach involves polynomial methods that approximate the 

intraday periodic component by using linear polynomials regression and also 

Fourier methods, which consider sines and cosines to approximate the periodic 

intraday component. 

The general framework for modelling high-frequency return volatility explicitly 

incorporates the effect of intraday periodicity. Concretely, the following 

decomposition for the intraday returns is considered: 

 

 𝑅𝑡,𝑛 = 𝐸(𝑅𝑡,𝑛) +  
𝜎𝑡𝑆𝑡,𝑛𝑍𝑡,𝑛

𝑁1/2    

 

(1) 

 

where 𝐸(𝑅𝑡,𝑛) indicates the unconditional mean, 𝑁 indicates the number of return 

intervals per day, 𝑆𝑡,𝑛 is the periodic component for the 𝑛𝑡ℎ    intraday interval, 𝜎𝑡,𝑛 

is the conditional volatility factor for day 𝑡 and 𝑍𝑡,𝑛 is an i.i.d. mean zero, unit 

variance error term assumed to be independent of the daily volatility process. By 

taking squares on both sides and applying logarithmic transformations, it can be 

rewritten as 

 

 log  (𝑅𝑡,𝑛 
2 ) = log (𝐸[𝑅𝑡,𝑛]

2
) + log ( 

𝜎𝑡
2𝑆𝑡,𝑛

2 𝑍𝑡,𝑛
2

𝑁
  )  (2) 

 

From equation (2), define 
 

𝑋𝑡,𝑛  ≡ 2 log  [𝑎𝑏𝑠(𝑅𝑡,𝑛 − 𝐸(𝑅𝑡,𝑛)] −  log 𝜎𝑡
2 +  log  𝑁 ≡  log 𝑆𝑡,𝑛 

2 +

 log 𝑍𝑡,𝑛
2   

(3) 
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The linear FFF regression modelling approach is then based on the ordinary least 

squares (OLS) regression of 𝑋𝑡,𝑛 ≡ 𝑓(𝜃; 𝜎𝑡; 𝑛) +  𝜀𝑡,𝑛, where the error term 

𝜀𝑡,𝑛 ≡ log(𝑍𝑡,𝑛
2 ) − 𝐸 (log 𝑍𝑡,𝑛

2 ) is i.i.d mean zero, and 𝑓(𝜃𝑡; 𝜎𝑡; 𝑛) takes the following 

parameterized form: 

 

log (𝑆𝑡,𝑛
2 ) = 𝑓(𝜃; 𝜎𝑡; 𝑛) =  ∑ 𝜎𝑡

𝑗
[ 𝜇0𝑗 +  𝜇1𝑗

𝑛

𝑁1
+ 𝜇2𝑗

𝑛2

𝑁2
+ ∑ 𝜆𝑖𝑗

𝐷
𝑖=1 𝐼𝑛=𝑑𝑖

𝐽
𝑗=0 +

 ∑ (𝛾𝑝𝑗 cos
𝑝𝑛2𝜋

𝑁
+ 𝛿𝑝𝑗 sin

𝑝𝑛2𝜋

𝑁
)𝑃

𝑖=1 ]  

 

 
(4) 

 

where 𝑁1, 𝑁2 are normalizing constants defined as 𝑁1 = (𝑁 + 1) 2⁄ ; 𝑁2 =

(𝑁 + 1)(𝑁 + 2) 6⁄  and 𝐼𝑛=𝑑𝑖
 are dummy variables that capture irregularities in the 

seasonal pattern30. Additionally, if J> 0, the whole regression is multiplied by the 

daily volatility factor 𝜎𝑡
𝑗 31. In our empirical application, we follow A&B97 and set 

J=1, allowing the pattern to be a function of the daily volatility factor. The optimal 

value of the coefficient P is determined by means of Schwartz Information Criteria 

or Akaike information Criteria. 

Additionally, according to Berument and Kiymaz (2001), knowing the volatility 

pattern of stock index returns by day of the week “may allow investors to adjust 

their portfolios by taking into account day of the week variations in volatility”. Thus, 

to deepen the understanding of the seasonal volatility pattern and determine 

whether market volatility is the same or different for each day of the week, the 

intraday periodic component has been classified by weekday. Additionally, the 

expiration and maturity effects have also been studied32. To our knowledge, this is 

the first study to examine the day of the week (DOW) effect and the expiration and 

maturity effects on volatility by means of the intraday periodic component.  

The DOW literature states that market participants behave in a different way 

depending on the day of the week. Consistent with the previous literature, results 

corroborate that there exists a DOW effect on market volatility for the three 

markets analysed for both the spot and the future stock index; moreover, the 

highest volatility is observed on Thursday and Friday, whereas the lowest volatility 

occurs on Monday (see, among others, Han et al., 1999; Kiymaz and Berument, 

2003). 

                                                
30Dummy variables have been considered for the 5-interval minute in which volatility rises dramatically (three 
dummy variables for CAC40 and DAX30 at intervals 14:35, 14:40 and 16:05, and four dummy variables for 
FTSE100 at intervals 13:35, 13:40, 15:05 and 15:10).  
31 We employ the widely used parametric GARCH (1, 1) model to capture daily volatility. In most empirical 
applications, the GARCH (1, 1) is enough to reproduce the volatility dynamics of financial series, and thus the 
GARCH (1, 1) is the “workhorse” model for both academics and practitioners (Engle, 2001). 
32 Dummy variables representing the day of the week and the expiration week have been introduced in the 
Fourier regression to identity the intraday periodic component for each day and for the expiration week.  
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As far as the maturity effect33 is concerned, according to the Samuelson (1965) 

hypothesis, futures prices should increase as the futures contract approaches the 

expiration date. However, there is a wide range of literature that documents that 

the maturity effect in financial futures is weaker (Duong and Kalev, 2008). Related 

to the expiration effect, some studies suggest that stock market volatility tends to 

increase significantly when the expiration date of the futures contracts approach 

(see, among others, Stoll and Whaley, 1991); nevertheless, there are those that find 

the opposite results (Kan, 2001). Thus, the effect of the expiration of futures 

contracts on spot market volatility, the so-called expiration effect, is far from 

conclusive (Stoll and Whaley 1987, 1991; Hancock, 1993; Chow et al., 2003; 

Karolyi, 1996 among others). Our results suggest that there is a significant increase 

in the conditional variance of the stock index and the stock index future in the 

week of the expiration day for the three markets analysed34. 

To consider these 3 effects (DOW, expiration and maturity), dummy variables 

representing these aspects have been included in the fourier regression as follows:  

 

log (𝑆𝑡,𝑛
2 ) = 𝑓(𝜃; 𝜎𝑡; 𝑛) =  ∑ 𝜎𝑡

𝑗
[ 𝜇0𝑗 +  𝜇1𝑗

𝑛

𝑁1
+ 𝜇2𝑗

𝑛2

𝑁2
+ ∑ 𝜆𝑖𝑗

𝐷
𝑖=1 𝐼𝑛=𝑑𝑖

+𝐽
𝑗=0

∑ 𝛶𝑠𝑠 𝐷𝑠 + ∑ 𝜇𝑥𝑥 𝐷𝑥 +  ∑ (𝛾𝑝𝑗 cos
𝑝𝑛2𝜋

𝑁
+ 𝛿𝑝𝑗 sin

𝑝𝑛2𝜋

𝑁
)𝑃

𝑖=1 ]    

 
(4.1) 

 

 

where variables 𝐷𝑠 represent dummy variables for each day of the week35, and 

variables 𝐷𝑥 are dummy variables for each expiration and maturity date36. 

In order to implement the Fourier regression, a two-step procedure is applied: In 

the first stage, 𝑋̂𝑡,𝑛 is computed from equation (3). Then, 𝑋̂𝑡,𝑛 is considered as a 

dependent variable in the fourier regression (4.1), which is estimated by OLS. 

Once 𝑓 ̂(𝜃; 𝜎𝑡; 𝑛) is calculated, the intraday periodic component 𝑆𝑡,𝑛̂ for interval 𝑛 

on day 𝑡, which provides a close approximation to the overall volatility patterns in 

each market, is retrieved as37:  

 𝑆𝑡,𝑛̂ =  
𝑇.𝑒(𝑓𝑡,𝑛̂ 2)⁄

∑ ∑ 𝑒(𝑁
𝑛=1 𝑓𝑡,𝑛̂ 2)⁄

[
𝑇
𝑁

]

𝑡=1

   

 

(5) 

 

                                                
33 The effect on the volatility of the future markets when the expiration date of futures contracts approaches. 
34 To keep this article to a reasonable length, results are not attached to this article, but they are available upon 
request. 
35 Their role is to capture the daily effects by taking a value of 1 at each five-minute interval belonging to a 
trading day of the week (s=Monday, Tuesday, Wednesday, Thursday and Friday) and 0 otherwise. 
36 These dummy variables capture the expiration and maturity effects by taking the value 1 at each five-minute 
interval belonging to a trading day of the expiration week and 0 otherwise. Additionally, the day before 
expiration and the week before expiration have also been considered in our analysis; the results are available 
upon request. 
37For more details, see A&B97. 
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Finally, the standardized five-minute returns series are defined as follows: 

  𝑅𝑡,𝑛̂ ≡ 𝑅𝑡,𝑛/ (𝜎𝑡̂𝑆𝑡̂)     
 

(6) 

 

 

3.3 Data: Descriptive statistic for raw and 

standardized data 
 

Our empirical data set comprises high-frequency observations on a five-minute 

interval basis of transaction prices from different markets, namely, CAC40, DAX30 

and FTSE10038, for both the stock index and the index futures during the period 

from July 1, 2003 to September, 30 2015.39 

Only data for the period of simultaneous operation of the spot market and future 

market are used in this study. Additionally, in order not to mislead the statistical 

inference, the first return of the trading day, 09:05 hour, which generally reflects 

the adjustment to overnight information and is regarded as the highest average 

return variability, is removed (Andersen et al., 2000). 

Once data40 have been cleaned, the continuously compounded returns are 

computed at each five-minute interval by taking the logarithms and subtracting the 

previous value. So, the five-minute raw returns 𝑅𝑡,𝑛 at the 𝑛 − 𝑡ℎ interval at day 𝑡 

for 𝑛 = 1,2 … 𝑁 and 𝑡 = 1,2, … 𝑇 are computed as follows: 

 

 𝑅𝑡,𝑛 = 100 𝑥 𝑙𝑜𝑔( 𝑃𝑡,𝑛 ÷ 𝑃𝑡−1,𝑛)    

  

(7) 

where 𝑃𝑡,𝑛 represents the spot (𝑆𝑡,𝑛) and future(𝐹𝑡,𝑛) price level on interval 𝑛 at 

day 𝑡. 

Table 1 reports some summary statistics for raw (𝑅𝑡,𝑛) and standardized returns 

( 𝑅𝑡,𝑛̂) on a five-minute interval basis. Note that returns are not normally 

                                                
38

 Intraday data has been collected from Tick Data  
39 The RV, computed as the sum of the squared intraday returns for the given trading day, would be an 
excellent estimate of the volatility in an ideal world in which prices were observed continuously and without 
measurement error (Merton, 1980). In this regard, the optimal intraday sampling frequency plays a critical 
role. The decision to use a five-minute frequency is based on the research of Andersen (2000), who highlights 
that  “the five-minute frequency is about the highest at which properties of the return series are not seriously 
distorted by irregular quoting, the discreteness of prices, and the tendency of foreign-exchange dealers to position 
their quotes with a view toward inventory control”. 
40This leaves us with a sample of 3,055 trading days for CAC40, 3,070 trading days for DAX30 and 2,982 days 
for FTSE100. Each day consists of 101 intraday five-minute returns. 
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distributed and mean returns for all markets are close to zero. Returns are 

characterized by statistically significant kurtosis, suggesting that the series are 

leptokurtic; that is to say, the series have fatter tails and higher peaks compared 

with a normal distribution; note that the Jarque-Bera test suggests that the returns 

are far from being normal.  

As far as the first order autocorrelation coefficient AC (1) is concerned, it is small 

for returns for the three markets analysed; nonetheless, it increases considerably 

for absolute raw returns (which stand at approximately 0,3 as shown in Table 1), 

suggesting volatility persistence. Conversely, note that the AC (1) coefficient 

diminishes considerably for absolute standardized returns41.  

  

                                                
41 See previous section in which standardized returns are defined. Further on in this section the study of the 
absolute standardized returns will be addressed in depth.  
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TABLE 1: Summary statistics results for raw and standardized returns  

 CAC40 DAX30 FTSE100 

 Spot Future Spot Future Spot Future 

 Raw  
returns 

Standardized 
returns 

Raw  
returns 

Standardized 
returns 

Raw  
returns 

Standardized 
returns 

Raw  
returns 

Standardized 
returns 

Raw 
 returns 

Standardized 
returns 

Raw 
returns 

Standardized 
returns 

Mean (103) 0.1485 -0.0494 0.0986 0.0005 -0.1459 -0.0169 -0.1205 0.0140 -0.2754 0.4296 -0.2051 -0.3425 

Standard 
Deviation 

0.1069 0.0961 0.1078 0.9777 0.1106 0.0963 0.1100 0.0967 0.0917 0.0960 0.0921 0.0999 

Skewness -0.0820 -0.1670 -0.1250 -0.1549 -0.1416 -0.3045 -0.1027 -0.3009 -2.2980 -0.1473 0.1502 -0.1345 

Kurtosis 20.1962 14.0596 18.9137 15.9970 27.3136 17.2746 31.0580 21.6101 381.5737 14.0286 31.2606 13.4104 

Minimum -1.9756 -2.6242 -1.9309 -2.7415 -2.5480 -3.1251 -2.7321 -3.5134 -8.9585 -2.5886 -1.9973 -2.7737 

Maximum 2.9889 2.1737 2.5160 2.6164 3.1769 2.0023 3.9045 2.5418 4.6610 2.2975 3.3360 2.0435 

Jarque Bera 3,802,141 3,256,653 1,573,980 2,172,967 7,638,433 10,171,472 2,637,329 4,479,170 1,798,799,271 10,023,762 1,527,450 1,360,946 

AC(1) returns -0.0052 -0.0031 -0.0191 -0.0189 -0.0151 -0.0168 -0.0154 -0.0193 0.0080 0.0105 -0.0144 -0.0212 

AC(1) absolute 
returns 

0.3145 0.1716 0.3090 0.1721 0.3210 0.1707 0.3166 0.1740 0.3227 0.1638 0.3442 0.1697 

 

Table 1 shows the main summary statistics, the Jarque-Bera test for normality and the first-order autocorrelation coefficient (AC(1)) for the CAC40, 

DAX30 and FTSE100 index on a five-minute interval basis for both the spot and futures markets from July 1, 2003, to September 30, 2015. For each 

market, the statistical analysis has been implemented for raw returns (𝑅𝑡,𝑛) and standardized returns ( 𝑅𝑡,𝑛̂). Raw returns at the 𝑛 interval on day 𝑡 

have been calculated as follows: 𝑅𝑡,𝑛 = 100 𝑥 (𝑙𝑜𝑔 𝑃𝑡,𝑛 ÷ 𝑙𝑜𝑔 𝑃𝑡−1,𝑛) , where, 𝑃𝑡,𝑛 represents the spot (𝑆𝑡,𝑛) and future (𝐹𝑡,𝑛) price levels on interval 𝑛, 

at day 𝑡. Additionally, standardized returns have been computed as 𝑅𝑡,𝑛̂ ≡ 𝑅𝑡,𝑛/ (𝜎𝑡̂𝑆𝑡̂), where 𝜎𝑡,𝑛 is the conditional volatility factor for day 𝑡 and 𝑆𝑡,𝑛 

is the periodic component for the 𝑛𝑡ℎ intraday interval.  

7
0
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As has been underlined by A&B97 an appropriate intraday dynamic analysis 

requires computing and extracting the intraday periodic component of return 

volatility. Thus, following these authors and in view of the AC (1) results, the next 

step is to evaluate whether there are intraday patterns in our data. To do so, the 

intraday average absolute returns for each five-minute interval are depicted in Plot 

1. Whereas it is notable that the intraday average returns are centred on zero with 

little clear evidence for any systematic pattern42, Plot 1 reveals that the volatility 

dynamic of high-frequency spot and future returns, often estimated as the average 

of the absolute returns during a time interval, is characterized by remarkable 

intraday patterns.  

                                                
42 To keep this article to a reasonable length the intraday average returns plot is not attached to this document. 
It is available upon request. 
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PLOT 1: Mean absolute returns for CAC40, DAX30 and FTSE100 indexes 

 

SUBPLOT 1.1: Mean absolute returns for CAC40 

 

SUBPLOT 1.2: Mean absolute returns for DAX30 

 

SUBPLOT 1.3: Mean absolute returns for FTSE100 

Plot 1 reports the five-minute average absolute returns during a trading day for the stock index and 

the stock index futures of CAC40 (subplot 1.1), DAX30 (subplot 1.2) and FTSE100 (subplot 1.3) 

during the period from July 1, 2003, to September 30, 2015, for a total of 308,555, 310,070 and 

301,182 observations for CAC40, DAX30 and FTSE100, respectively. The horizontal axis represents 

the number of five-minute intervals in a trading day. There are 101 intervals per day; thus, 

observation 1 corresponds to 09:10 for CAC40 and DAX30 indexes and 8:10 for FTSE100, and 

observation 101 corresponds to 17:30 for CAC40 and DAX30 indexes and 16:30 for FTSE100. The 

vertical axis represents the mean absolute returns. These plots provide evidence of the presence of 

seasonal structures in our intraday data.  
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A widely known stylized fact about the intraday statistical features of many 

financial markets is that volatility is higher at the opening and closing of the 

trading day and lower in the middle (see, among others, Wood et al, 1985; Harris, 

1986 and Tse, 1999). This strong intraday periodicity in the average absolute 

returns is hereby confirmed by Plot 1. Note an observable repetitive pattern each 

day for all markets in which remarkable similarities can be appreciated. However, 

they do not present the conventional intraday U-pattern; instead, they suggest a 

distorted double U-shape pattern in the sample autocorrelations, which occupies 

precisely one day. All markets show a decaying pattern in intraday volatility until 

14:30 (which corresponds to the interval 65 in plot 1). At 14:35 (interval 66), 

return volatility increases considerably and then declines until 15:30 (interval 77), 

a point at which a remarkable increment occurs again and remains relatively high 

until 17:30, reaching its maximum peak at 16:05 (interval 84)43.This pattern is 

similar to that found by Harju and Hussain (2011) for the major European equity 

markets, that is to say, CAC40, FTSE100, SMI and DAX 30 indexes, from 1 

September 2000 to 31 March 2006. They identify a periodic pattern in the intraday 

volatilities that resembles a W, and find evidence that US macroeconomic 

announcements44 at 14:30 and 16:05, and the NYSE cash market opening time at 

15:30 have cross border impacts on European equity volatilities.    

After corroborating evidence of intraday periodicities in return volatility and the 

noticeable repetitive pattern in the 10-day autocorrelogram for the absolute 

returns, we implement the FFF and compute the intraday periodic component, 𝑆𝑡,𝑛̂. 

Once the intraday periodic component has been estimated, standardized five-

minute returns are computed using equation (6).  

  

                                                
43 Notice that for the FTSE100 index this pattern occurs an hour earlier due to the different time zones.  
44 Such as, Producer Price Index, Retail Sales, Consumer Price Index, Consumer Confidence, etc. 



74 
 

PLOT 2: Autocorrelogram for raw and standardized five-minute intraday absolute 

returns 

 

 

  

 

SUBPLOT 2.1: CAC40  

 

SUBPLOT 2.2: DAX30 

 

SUBPLOT 2.3: FTSE100  

Plot 2 shows the autocorrelation pattern for the raw (dashed line) and standardized (solid line) five-minute absolute index returns up to a 

lag of  1,010 (10 days with 101 intervals of five minutes per day). In each subplot, the autocorrelogram for the index stock is depicted at 

the top, and the autocorrelogram for the index stock future is depicted at the bottom. The sample period extends from July 1, 2003, to 

September 30, 2015, for a total of 308,555, 310,070 and 301,182 observations for CAC40, DAX30 and FTSE100, respectively. The 

horizontal axis represents the lag length, and the vertical axis represents the magnitude of the autocorrelation coefficient. 
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Plot 2 depicts the autocorrelogram for the absolute returns (the dashed line) and 

absolute standardized returns (the solid line) considering a maximum lag length of 

10 trading days. The periodic volatility pattern across each trading day, whose 

origin is the intraday seasonality illustrated in Plot 1, is clearly illustrated by the 

autocorrelation structure of absolute returns, and it reveals the importance of 

considering the intraday seasonal component of the volatility and the hazard of 

straightforward ARCH modelling of intraday return volatility (A&B97). As can be 

appreciated in Plot 2, after standardizing the data, the periodic dependencies have 

been considerably reduced, and there is a significant decay in the serial 

autocorrelation. From observation 600-700 (approximately 1 week) onwards, 

autocorrelation is close to zero for the spot and futures market and for the three 

indexes surveyed (see the solid line in subplots 2.1, 2.2 and 2.3). Therefore, it can 

be inferred that the FFF significantly reduces the intraday seasonality. 

Furthermore, to comprehensively understand financial market performance and 

model volatility dynamics, the analysis of cross-correlations between assets is 

highly relevant. Previous research has documented significant cross-correlations 

between spot and futures market returns (see, among others, Kawaller et al., 1987; 

Herbst et al., 1987; Brooks et al., 1999). At this stage, it is important to analyse the 

differences in the degree of cross-correlation between spot and futures markets 

considering both raw and standardized returns in a similar way to the analysis 

implemented in plot 2. Thus, consider now the five-minute intraday absolute 

returns (dashed line) and the five-minute intraday absolute standardized returns 

(solid line) cross-correlations between the spot and futures markets up to ten days 

depicted in Plot 3.  
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PLOT 3: Cross-correlations for raw and standardized five-minute intraday absolute 

returns 

 

Subplot 3.1 Cross-correlations for raw and standardized absolute returns for CAC40 index 

 

Subplot 3.2 Cross-correlations for raw and standardized absolute returns for DAX30 index  

 

Subplot 3.3 Cross-correlations for raw and standardized absolute returns for FTSE100 index 

Plot 3 depicts the cross-correlations for five-minute intraday absolute returns between the stock 

index and the stock index futures up to ten days for raw (dashed line) and standardized returns 

(solid line) for the CAC40, DAX30 and FTSE100 indexes, up to a lag length of  1,010 or 10 trading 

days (101 five-minute intervals per day). The sample period extends from July 1, 2003 to 

September, 30 2015 for a total of 308,555, 310,070 and 301,182 observations for CAC40, DAX30 

and FTSE100 respectively. The horizontal axis represents the lag length, and the vertical axis the 

magnitude of the cross-correlation coefficient.  
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Note that the dashed line reveals a similar pattern detected in the 10-day 

autocorrelogram for the absolute returns (see Plot 2), suggesting the presence of 

significant cross-market volatility interactions between the spot and futures 

market. All markets show a U-pattern correlogram each trading day. Cross-

correlations increase at the beginning of the day (0.30 for CAC40, 0.31 for DAX30 

and 0.33 for FTSE100), then decline until 12:15 approximately (0.12 for CAC40, 

and DAX30 and 0.15 for FTSE100), the point at which an increment occurs again 

and remains relatively high until 17:30. As we expected after standardizing the 

returns, it can be appreciated in Plot 3 (solid line) that cross-correlations for 

standardized absolute returns have been steadily reduced and remain relatively 

constant during the trading day (0.02 for the three indexes). This finding is 

consistent with results obtained by Kofman and Martens (1997) and underscores, 

once more, the importance of considering seasonalities present in high-frequency 

data; otherwise, significant bias in the second moment causality analysis might be 

introduced.  

The conclusions reached in this section highlight significant differences, 

particularly a noticeable reduction in correlation, either in the autocorrelation or 

in the cross-correlation when considering raw or standardized data. These 

findings lead us to conjecture that remarkable differences might be encountered in 

the results of studies regarding volatility spillover and certainly in the response to 

a shock on volatility through the Impulse Response Function. 

 

3.4 Empirical Results: Volatility transmission, 

Impulse Response Function and Directional 

Measurement of Volatility Spillovers. 
 

Based on the results reached so far, in section 3.4.1, we investigate the daily 

volatility transmission by using the widely known bivariate vector autoregressive 

model (VAR) and the consequences of the presence of seasonality in the volatility 

spillover analysis when using high-frequency data. Additionally, in section 3.4.2, an 

impulse response analysis is implemented to deepen the understanding of 

volatility transmission. Finally, in section 3.4.3 we use the spillover index approach 

proposed by Diebold and Yilmaz (2012) to measure the net pairwise volatility 

spillovers among the spot and futures markets of the CAC40, DAX30 and FTSE100 

indexes. 
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3.4.1 Volatility transmission 

 

Ross (1989) suggests that the volatility of an asset is directly related to the rate of 

information flow in a market. Because information flow is the core of risk 

management and asset pricing, it is crucial to fully understand volatility dynamics 

and the way in which volatility is transmitted across markets. Sims (1980) first 

introduced the vector autoregressive (VAR); from then on, these models have 

become one of the most widely used methodologies in the fields of 

macroeconomics and financial economics to analyse the existence of volatility 

spillover effects between two markets.  

In this section, we use the following bivariate model to examine the way in which 

spot and futures markets interact through their second moments. 

 
𝑉𝑠,𝑡 =  𝛼𝑠 + ∑ 𝛽𝑠𝑠,𝑖𝑉𝑠,𝑡−𝑖 +  ∑ 𝛽𝑠𝑓,𝑖𝑉𝑓,𝑡−𝑖

𝑘

𝑖=1

𝑘

𝑖=1

+  𝜀𝑠,𝑡   

𝑉𝑓,𝑡 =  𝛼𝑓 + ∑ 𝛽𝑓𝑠,𝑖𝑉𝑠,𝑡−𝑖 +  ∑ 𝛽𝑓𝑓,𝑖𝑉𝑓,𝑡−𝑖

𝑘

𝑖=1

𝑘

𝑖=1

+  𝜀𝑓,𝑡    

 

 
 

(8) 
 

    

where  𝑽𝒔,𝒕  , 𝑽𝒇,𝒕 and 𝑽𝒔,𝒕−𝒊 , 𝑽𝒇,𝒕−𝒊 are the contemporaneous spot and futures daily 

volatilities and the lagged spot and futures daily volatilities, respectively; 𝜶𝒔 and 

𝜶𝒇 represent the unconditional spot and future market daily volatilities; 

coefficients 𝛽𝑠𝑠,𝑖, 𝛽𝑠𝑓,𝑖 , 𝛽𝑓𝑠,𝑖, 𝛽𝑓𝑓,𝑖 are the parameters accompanying the lagged daily 

volatilities and 𝜀𝑠𝑡 and 𝜀𝑓𝑡 are the residuals in the spot and futures volatility 

equations. Our focus is on the consequences of ignoring or considering the periodic 

intraday component on the study of volatility transmission. First, we analyse the 

effects on volatility transmission when the intraday seasonality is neglected. To do 

so, we perform a VAR estimation employing the following input data: a) daily 

volatilities computed using raw returns and the GARCH (1, 1) model (namely, VAR 

A) 45 and b) daily realized volatilities using raw returns (namely, VAR B)46. Then, 

the importance of removing the seasonal component to reduce the risk of spurious 

causality in the analysis of volatility spillovers is evaluated by c) estimating the 

VAR model using daily realized volatilities computed with standardized returns 

(namely, VAR C)47.   

 

                                                
45 First, daily returns, 𝑅𝑡, have been computed by adding the five-minute returns 𝑅𝑡,𝑛 in each day, that is to say, 

𝑅𝑡 = ∑ 𝑅𝑡,𝑛
𝑁
𝑛=1 . Then, daily volatilities have been calculated using a GARCH (1, 1) model. 

46 Realized volatility, 𝑅𝑉𝑡, is computed as the sum of squared intraday returns; thus, 𝑅𝑉𝑡 =  ∑ 𝑅𝑡,𝑛
2𝑁

𝑛=1 . 
47 Realized volatility computed using the standardized returns ( 𝑉𝑅𝑡̂) is described as the sum of squared 

intraday standardized returns      𝑉𝑅𝑡̂ = ∑ 𝑅𝑡,𝑛
2̂𝑁

𝑛=1            . 
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TABLE 2: Parameter estimates of the bivariate Vector Autoregressive model (VAR) 

 

  

  CAC40 DAX30 FTSE100 

  VAR A 
Raw  

GARCH 

VAR B 
Raw  
 RV 

VAR C 
Standardized 

RV 

VAR A 
Raw  

GARCH 

VAR B 
Raw  
 RV 

VAR C  
Standardized 

RV 

VAR A 
Raw  

GARCH 

VAR B 
Raw  
 RV 

VAR C 
Standardized 

RV 

Intercept  αs 0.0291* 0.1393* 0.6261* 0.0305* 0.0678* 0.6136* 0.0207* -0.0693
* 

0.5041* 

Intercept  αf 0.0316* 0.1296* 0.6589* 0.0343* 0.1233* 0.6190* 0.0237* 0.0750
*
 0.5449* 

AR(1) βss,1 0.9168* 0.1030* 0.4581* 0.2320* 0.1243* 0.3531* 1.0720* 0.2155
*
 0.5128* 

βsf,1 0.0345 0.3482* -0.1948* 0.6987* 0.3651* -0.0960 -0.1529* -0.0619 -0.2105* 

βfs,1 0.0538 0.0886 0.3478* -0.5232* 0.1036* 0.3288* -0.0372* -0.0689
*
 0.3211* 

βff,1 0.9015* 0.3768* -0.0873 1.452* 0.3846* -0.0623 0.9789* 0.4821
*
 -0.0130 

AR(2) βss,2 0.8747* 0.2013* 0.0017 0.4704* -0.0147 0.2252* -0.1387* -0.2336
*
 -0.1918* 

βsf,2 -0.8738* -0.0851 0.0720 -0.3821* 0.4027* -0.1354 0.1983* 1.3680
*
 0.2898* 

βfs,2 0.5632* 0.0664 -0.1096 0.5502* -0.0625 0.1789 0.1008* 0.0463
*
 -0.1934* 

βff,2 -0.5797* 0.0509 0.1747* -0.4684* 0.3354* -0.9722 -0.1140* 0.2859
*
 0.2967* 

AR(3) βss,3 -0.7459* 0.2581*  0.4027* -0.0490  0.1558* -0.0166 0.0590 

βsf,3 0.7691* -0.3257*  -0.4469* -0.1998*  -0.1522* -0.1510
*
 -0.0574 

βfs,3 -0.5108* 0.2416*  0.2241* -0.0762  0.0955* -0.0770 -0.0331 

βff,3 0.5449* -0.3263*  -0.2641* -0.1345*  -0.0283 0.0235 0.0298 

AR(4) βss,4  0.4011*   -0.1836  0.0235 0.3320
*
 0.0733 

βsf,4  -0.2431*   0.2173*  -0.0550 -0.4478
*
 -0.0425 

βfs,4  0.3591*   -0.2218*  -0.1624* 0.1726
*
 -0.0217 

βff,4  -0.2435*   0.2774*  0.0817* -0.1878
*
 0.0447 

AR(5) βss,5  -0.0929   -0.1935*  -0.1005* -0.0141 0.2953* 

βsf,5  0.2551*   0.2653*  0.2499* 0.1688
*
 -0.2553* 

βfs,5  -0.1508*   -0.1593*  0.0201 -0.0419
*
 0.2241* 

βff,5  0,3531*   0.2551*  0.1185* 0.1688
*
 -0.1849* 

AR(6) βss,6  0.1937*   -0.0618  -0.1050* -0.1903
*
 -0.1576 

βsf,6  -0.2183*   0.1200*  -0.0102 0.1229
*
 0.1495 

βfs,6  0.2522*   0.0163  -0.0078 -0.1134
*
 -0.2521* 

βff,6  -0.2473*   0.0808  -0.0302 0.1584
*
 -0.2395* 

AR(7) βss,7  -0.0852   0.1118*  0.1760* -0.0918
*
 0.0375 

βsf,7  0.1105   0.0373  -0.2607* 0.0712 -0.0303 

βfs,7  -0.0144   0.1322*  0.1713* -0.0485
*
 -0.0740 

βff,7  0.0141   -0.0312  -0.2670* 0.1119
*
 0.0733 

AR(8) βss,8  -0.1840*   0.0662  -0.2796*   

βsf,8  0.2420*   -0.0921  0.3932*   

βfs,8  -0.1386   0.0067  -0.2590*   

βff,8  0.2203*   -0.0965*  0.3564*   

AR(9) βss,9     -0.1446*  0.1872*   

βsf,9     0.0218  -0.2260*   

βfs,9     -0.1267*  0.1198*   

βff,9     0.0482  -0.1686*   

AR(10) βss,10     0.0114     

βsf,10     0.1555*     

βfs,10     0.0279     

βff,10     0.1444*     

BIC -10,745 11,1138 5,685 -8,541 16,423 5,040 -2,478 18,627 6,613 

Number of lags 3 8 2 3 10 2 9 7 7 

The * denotes significance at 0.05. 

Table 2 presents the results of the bivariate VAR 

𝑉𝑠,𝑡 =  𝛼𝑠 + ∑ 𝛽𝑠𝑠,𝑖 𝑉𝑠,𝑡−𝑖 + ∑ 𝛽𝑠𝑓,𝑖 𝑉𝑓,𝑡−𝑖

𝑘

𝑖=1

𝑘

𝑖=1

+ 𝜀𝑠,𝑡   𝑆𝑝𝑜𝑡 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛    

𝑉𝑓,𝑡 =  𝛼𝑓 + ∑ 𝛽𝑓𝑠,𝑖 𝑉𝑠,𝑡−𝑖 +  ∑ 𝛽𝑓𝑓 ,𝑖 𝑉𝑓,𝑡−𝑖

𝑘

𝑖=1

𝑘

𝑖=1

+ 𝜀𝑓,𝑡     𝐹𝑢𝑡𝑢𝑟𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛    

where  𝑽𝒔,𝒕  , 𝑽𝒇,𝒕 and 𝑽𝒔,𝒕−𝒊 , 𝑽𝒇,𝒕−𝒊 are the contemporaneous spot and futures daily volatility and the lagged spot and futures daily 

volatilities, respectively; 𝜶𝒔 and 𝜶𝒇 represent the unconditional daily volatility; coefficients 𝛽𝑠𝑠,𝑖 , 𝛽𝑠𝑓,𝑖 , 𝛽𝑓𝑠 ,𝑖 , 𝛽𝑓𝑓 ,𝑖 are the parameters 

accompanying the lagged daily volatilities; and 𝜀𝑠𝑡  and 𝜀𝑓𝑡  are the residuals in the spot and futures volatility equations, respectively. The 

lag length has been set by means of the AIC/BIC criteria. This VAR model has been implemented by employing the following data: 1) 

daily volatilities computed using raw returns and the GARCH [1, 1] model (named VAR A), 2) realized volatilities using raw returns 

(named VAR B); and 3) realized volatilities computed with standardized returns (named VAR C). The estimated coefficients are displayed 

in the first, second and third columns respectively for each index. 
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Table 2 displays some remarkable results from the estimations of the VAR A, VAR 

B and the VAR C models48.  

As far as the VAR A model is concerned, note in table 2 that parameters 

accompanying the lagged spot and future volatilities in the spot and future 

equation (𝛽𝑠𝑠,𝑖, 𝛽𝑠𝑓,𝑖𝛽𝑓𝑠,𝑖, 𝛽𝑓𝑓,𝑖) are significant until lag 3 for the CAC40 and DAX30 

index and until lag 9 for the FTSE100 index. The results show that 

contemporaneous volatility returns are affected by their own lagged return 

volatility and by the lagged return volatility of the other market. Therefore, there 

exists significant bidirectional volatility spillover for the three indexes studied; 

that is to say, the most recent innovations in one market are quickly transmitted 

and affect the volatility of the other market. These results are in good agreement 

with previous results (Chan et al., 1991; Abhyankar, 1995; Fung et al., 2004 among 

others). 

Regarding the VAR B model, two fundamental aspects should be highlighted: a) It 

is the model that includes more significant lags on the whole: 8 lags for the CAC40 

index, 10 lags for the DAX 30 and 7 lags for the FTSE100 index; and b) the dynamic 

interaction between the spot and futures markets through their second moments 

is also bilateral. Nevertheless, when dealing with high-frequency data, it should not 

be neglected that the intraday repetitive pattern in average absolute returns may 

induce bias in the estimation of volatility transmission. Any study that analyses 

assets return volatility using intraday data should consider the strong intraday 

seasonality exhibited by the data (A&B97); therefore, we finally estimate in this 

section the VAR model using RV with standardized returns (VAR C model).  

Note that in the VAR C model, there is bidirectional volatility transmission for the 

CAC40 and FTSE100 indexes, whereas volatility transmission runs from the spot to 

the futures market for the DAX3049. Additionally, as we expected, it is the VAR C 

model that has less significant lags: 2 lags for the CAC40 and DAX30 index and 6 

lags50 for the FTSE100 index. Note that in all markets, the models with more lags 

are the VAR A or the VAR B, that is to say, those models that do not consider the 

intraday periodic component.51 The most likely explanation of this finding is that 

the repetitive pattern in the autocorrelogram for the absolute returns (dashed 

lines in Plot 2) makes some endogenous variables redundant in equation (8); 

therefore, this outcome may be indicative of the presence of spurious causality in 

the models VAR A and VAR B. 

Certainly, one of the best ways to fully understand how volatility shocks in one 

market affect the volatility of the other market is to invert the system in order to 

                                                
48 The optimal lag length for each bivariate VAR model has been set by means of the AIC/BIC criteria. 
49 Thus, although results from VAR A, B and C suggest that volatility transmission is mostly bidirectional, they 
are not conclusive. This finding is in line with Kawaller et al.,1990 and Abhyankar 1995. 
50 Note that lag 7 is statistically insignificant for the FTSE100 index. 
51 Although for the FTSE100 index the lag length of the VAR B and the VAR C model is the same, note that there 
are more significant parameters in the VAR B model. 

http://rfs.oxfordjournals.org/search?author1=Kalok+Chan&sortspec=date&submit=Submit
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express volatilities as a function of all past shocks emanating from both markets, 

that is to say, by means of the Impulse response function that will be further 

explained in the next section. 

 

3.4.2 Impulse response function 
 

Since the seminal contribution by Sims (1980), the dynamic interaction between 

the variables and the disturbances in vector autoregressive models (VARs) has 

been widely analysed using the impulse response methodology52. The Impulse 

response function (IRF) is considered to be a useful mechanism to study the effect 

of a shock on the variables in the model throughout time and can be generalized to 

the study of shocks in volatility53.The IRF will therefore provide valuable 

information about the impact of a shock on volatility. 

Plots, 4, 5 and 6 exhibit the IRFs for an unexpected shock for the CAC40, DAX30 

and FTSE100 indexes, respectively54.  

 

  

                                                
52 For more details on the methodology, see Sims (1980). 
53 The Generalized impulse response function by Pesaran and Shin (1998) is applied. 
54 Each plot consists of three subplots. The first, the second and the third subplot represent the IRF for the VAR 
A, VAR B and VAR C models, respectively. In Plots 4, 5 and 6, subplot spot-spot represents the impact on the 
spot market of an unexpected shock in the spot market, subplot spot-future represents the impact on the 
futures market of an unexpected shock in the spot market, subplot future-spot represents the impact on the 
spot market of an unexpected shock in the futures market, and subplot future-future represents the impact on 
the futures market of an unexpected shock in the futures market. 
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PLOT 4: Impulse response function (IRF) for the CAC40 index 

 

 

 

Subplot 4.1: IRF for the CAC40 considering daily volatilities computed by the means of the GARCH (1,1) model (named the VAR A model) 

  

Subplot 4.2: IRF for the CAC40 considering daily volatilities computed by the means of the RV using raw returns (named the VAR B model) 

   

Subplot 4.3: IRF for the CAC40 considering daily volatilities computed by the means of the RV using standardized returns (named the VAR C model) 

Plot 4 exhibits the impulse response to a one-standard-deviation shock for the CAC40 index considering the VAR A model (subplot 4.1), the VAR B model (subplot 4.2) and the VAR C model (subplot 4.3). 
The horizontal axis represents the number of days, and the vertical axis represents the magnitude of the shock expressed as a percentage of the volatility increase. Subplots spot-spot represent the impact on 
the spot market of an unexpected shock in the spot market, subplots spot-future represent the impact on the futures market of an unexpected shock in the spot market, subplots future-spot represent the 
impact on the spot market of an unexpected shock in the futures market, and subplots future-future represent the impact on the futures market of an unexpected shock in the futures market. 
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PLOT 5: Impulse response function (IRF) for the DAX30 index

 

  

Subplot 5.1: IRF for the DAX30 considering daily volatilities computed by the means of the GARCH (1,1) model (named the VAR A model) 

   

Subplot 5.2: IRF for the DAX30 considering daily volatilities computed by the means of the RV using raw returns (named the VAR B model) 

   

Subplot 5.3: IRF for the DAX30 considering daily volatilities computed by the means of the RV using standardized returns (named the VAR C model) 

 

Plot 5 exhibits the impulse response to a one-standard-deviation shock for the DAX30 index considering the VAR A model (subplot 5.1), the VAR B model (subplot 5.2) and the VAR C model 
(subplot 5.3). The horizontal axis represents the number of days, and the vertical axis represents the magnitude of the shock expressed as a percentage of the volatility increase. Subplots spot-spot 
represent the impact on the spot market of an unexpected shock in the spot market, subplots spot-future represent the impact on the futures market of an unexpected shock in the spot market, 
subplots future-spot represent the impact on the spot market of an unexpected shock in the futures market, and subplots future-future represent the impact on the futures market of an unexpected 
shock in the futures market. 
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PLOT 6: Impulse response function (IRF) for the FTSE100 index

 

 

Subplot 6.1: IRF for the FTSE100 considering daily volatilities computed by the means of the GARCH (1,1) model (named the VAR A model) 

   

Subplot 6.2: IRF for the FTSE100 considering daily volatilities computed by the means of the RV using raw returns (named the VAR B model) 

  

Subplot 6.3: IRF for the FTSE considering daily volatilities computed by the means of the RV using standardized returns (named the VAR C model) 

Plot 6 exhibits the impulse response to a one-standard-deviation shock for the FTSE100 index considering the VAR A model (subplot 6.1), the VAR B model (subplot 6.2) and the VAR C model 
(subplot 6.3). The horizontal axis represents the number of days, and the vertical axis represents the magnitude of the shock expressed as a percentage of the volatility increase. Subplots spot-spot 
represent the impact on the spot market of an unexpected shock in the spot market, subplots spot-future represent the impact on the futures market of an unexpected shock in the spot market, 
subplots future-spot represent the impact on the spot market of an unexpected shock in the futures market, and subplots future-future represent the impact on the futures market of an unexpected 
shock in the futures market. 
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As can be appreciated in subplot 4.1(CAC40), 5.1(DAX30) and 6.1(FTSE100), when 

daily volatilities are computed by means of the GARCH (1, 1) model (named VAR 

A), after the shock hits the system, volatility increases approximately 0.23% for the 

CAC40 index, 0.28% for the DAX30 index and 0.17%-0.27%55 for the FTSE100 

index and then steadily diminishes until the shock stabilizes after approximately 

200 days56 in the three markets. Thus, the results show that the degree of volatility 

persistence is remarkably high when the intraday periodic component is not 

considered and the daily volatility is estimated through a GARCH model. Such a 

result is in good agreement with evidence provided by Lamoureux and Lastrapes 

(1990), who suggest that a common finding when GARCH models are employed 

with high-frequency data is that shocks on volatility are highly persistent57. This 

result highlights that standard volatility models, which usually involve a monotone 

geometric decay in the autocorrelation structure of the absolute returns, may not 

be appropriate and might lead to spurious inference about the dynamic of the 

return volatility when strong intraday periodicity is observed in the average 

absolute returns (A&B97). 

Likewise, note that in subplots 4.2 (CAC40), 5.2 (DAX30) and 6.2 (FTSE100), the 

magnitude of the shock when daily volatilities are computed using RV with raw 

returns (named VAR B) is significantly greater (approximately 1.20% for the 

CAC40 index, 1.40% for the DAX30, and 0.85%-1.84% for the FTSE10058) and 

exhibits a rather erratic pattern during the first days after the shock. Furthermore, 

observe that the effect of the shock is less persistent and disappears in about 40 

days for the CAC40 and DAX30 indexes and after 25 days for the FTSE100 index. 

Notice that, the presence of market seasonality in high-frequency data may hamper 

the estimation of volatility because it induces autocorrelation in the intraday 

returns; as a consequence of this, the results obtained through the VAR B model 

might be questionable. 

Strikingly, as can be noted in subplots 4.3(CAC40), 5.3(DAX30) and 6.3(FTSE100), 

when the intraday periodic component has been removed before conducting 

volatility transmission analysis (the VAR C model), the effect of the shock vanishes 

after approximately a week in the three markets. In terms of magnitude, volatility 

increases by around 0.80% for the CAC40 and DAX30 indexes and approximately 

0.90% for FTSE100 after the shock hits the system. Note that when a shock is 

                                                
55 0.27% when the shock is from the spot market to the spot market, .0.21% when the shock is from the spot 
market to the future market, 0.17% when the shock is from the future market to the spot market and 0.22% 
when the shock is from the future market to the future market. 
56 Meneu and Torró (2003) study the volatility transmission between the IBEX 35 Index and IBEX 35 Futures 
Index using daily data and extend their analysis implementing an impulse response analysis. They find 
evidence that shocks take a very long time to vanish (about 100 days). 
57 “The application of GARCH to long time series of stock returns data will yield a high measure of persistence 
because of the presence of deterministic shifts in the unconditional variance and the subsequent failure of the 
econometrician to model these shifts” (Lamoureux and Lastrapes, 1990) 
58 1.84% when the shock is from the spot market to the spot market, 1.35% when the shock is from the spot 
market to the future market, 0.85% when the shock is from the future market to the spot market and 1.15% 
when the shock is from the future market to the future market. 
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applied to the futures market, the immediate market responses are slightly more 

pronounced than when a shock is introduced into the spot market, and then, the 

impact of the shock evolves in a similar pattern. Observe for instance that for the 

CAC40 index, after a shock on the spot market, volatility in the spot (spot-spot) and 

futures (spot-future) markets rises 0.80% and 0.78%, respectively, whereas after a 

shock on the futures market, volatility in the spot (future-spot) and futures 

(future-future) markets rises 0.85% and 0.87%, respectively; it then declines until 

the effect of the shock dies out after about a week59. Thus, the results obtained in 

the impulse response analysis are consistent with previous findings (Chan et al., 

1991; Meneu and Torró, 2003) and suggest that there exists bidirectional 

interaction between the stock index and the stock index future, although we find 

evidence that shocks on volatility are far less persistent.  

Consequently, the most remarkable results of this section may be summarised as 

follows: a) Volatility transmission differs significantly regardless of whether raw 

and standardized returns are considered or not, suggesting that if the seasonal 

pattern is neglected, it might have serious side effects in the spillover analysis; and 

b) when a shock hits the system and the intraday periodic component has not been 

used to adjust the returns before conducting the spillover analysis, the response to 

that shock is highly persistent. 

Additionally, to further assess spillovers across spot and futures markets, the 

Diebold and Yilmaz (2012) Spillover Index is implemented in the following section.  

 

3.4.3 Directional measurement of volatility 

spillovers 
 

Diebold and Yilmaz (2012) show how it is possible to aggregate spillover effects 

across markets, capturing a great deal of information in a single spillover measure. 

This volatility spillover measure is based on forecast error variance 

decompositions from vector autoregressions and is useful for measuring the 

impact that shocks on a market have on the volatility of others markets. This 

method, which is an extension of the one proposed in Diebold and Yilmaz (2009), 

has two main advantages: a) The generalized variance decomposition makes 

spillover measures independent of the ordering of variables in the VAR model, and 

b) not only does it consider the total spillovers from one market to another, but it 

also considers the directional and the net spillovers60. 

In this section, we study the net directional spillover effects among the spot and 

futures markets utilizing the novel Diebold and Yilmaz (2012) approach 

                                                
59 In the VAR C model, this pattern is observed in the three indexes.  
60 For more details about this methodology, see Diebold and Yilmaz 2009, 2012. 

http://rfs.oxfordjournals.org/search?author1=Kalok+Chan&sortspec=date&submit=Submit
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mentioned above. Our main focus point is the net pairwise volatility spillover 

(NPVS) between the spot and futures markets of the CAC40, DAX30 and FTSE100 

indexes for each VAR model defined in the previous sections. Thus, the originality 

of our research lies in the fact that in order to determine which market is net 

sender and which market is net recipient of volatility spillovers, we use three input 

data based on high-frequency data on a five-minute interval basis: a) The daily 

volatilities of returns obtained using raw returns and the GARCH (1, 1) model (VAR 

A), b) the daily realized volatilities using raw returns (VAR B) and, c) the daily 

realized volatilities using standardized returns (VAR C). This analysis will enable 

us to shed new light on the dynamic interdependence between spot and futures 

market volatilities by providing new empirical evidence about differences in the 

directional measurement of volatility transmission regardless of whether the 

seasonal component of volatility is considered.61 

To quantify the contribution of the spot (futures) market to the volatility shocks in 

the futures (spot) market in net terms, we study the NPVS between these markets. 

In this respect, Plots 7, 8 and 9 depict the NPVS for the CAC40, DAX30 and 

FTSE100 indexes examined in this article.62 These graphics allow us to analyse the 

evolution of the net directional spillovers among the spot and futures markets and 

to identify which markets are the net transmitters and receivers of spillovers and 

the main contributors to total spillovers. 

  

                                                
61 In this study, we follow Diebold and Yilmaz (2012), and we use generalized variance decompositions of 10-

day ahead volatility forecast errors and estimate the time-varying volatility spillovers using a 200-day rolling 

sample framework. Additionally, the optimal lag length for each bivariate VAR model has been set by means of 

the AIC/BIC criteria. Note that even though the Diebold and Yilmaz (2012) results are based on vector 

autorregressions of order 4, these authors report that the total spillover plot is sensitive neither to the lag 

order of the VAR nor the choice of forecast horizon. 
62 The net spillover for the spot market is calculated as a positive value, indicating that the spot market 
transmits spillovers to the futures market. On the contrary, when the net spillover has a negative value, the 
spot market receives spillovers from the futures market. 
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PLOT 7: Net pairwise volatility spillover between the CAC40 index and CAC40 

index future  

 

 

 

 

Subplot 7.1 VAR A model (GARCH) 

 

Subplot 7.2 VAR B model (RV raw returns) 

 

Subplot 7.3 VAR C model (RV standardized returns) 

Subplots 7.1, 7.2 and 7.3 represent the net pairwise volatility spillover between the CAC40 index and CAC40 index future for the VAR A, 

VAR B and VAR C models, respectively. The horizontal axis represents the date (from April 2004 to September 2015), and the vertical 

axis represents the net spillover (expressed in terms of percentages). When the net spillover has a positive value, it indicates that the 

spot market transmits spillovers to the futures market. On the contrary, when the net spillover has a negative value, it means that the spot 

market receives spillovers from the futures market. 

-45

-35

-25

-15

-5

5

15

2
7

-A
p

r-
2
0
0

4

3
0

-n
o
v
.-

0
5

2
-j

u
l.
-0

7

5
-f

e
b
.-

0
9

1
7

-s
e
p
.-

1
0

2
3

-A
p

r-
2
0
1

2

1
8

-n
o
v
.-

1
3

2
9

-j
u

n
.-

1
5

-45

-35

-25

-15

-5

5

15

2
7

-A
p

r-
2
0
0

4

3
0

-n
o
v
.-

0
5

2
-j

u
l.
-0

7

5
-f

e
b
.-

0
9

1
7

-s
e
p
.-

1
0

2
3

-A
p

r-
2
0
1

2

1
8

-n
o
v
.-

1
3

2
9

-j
u

n
.-

1
5

-45

-35

-25

-15

-5

5

15

2
7

-A
p

r-
2
0
0

4

3
0

-n
o
v
.-

0
5

2
-j

u
l.
-0

7

5
-f

e
b
.-

0
9

1
7

-s
e
p
.-

1
0

2
3

-A
p

r-
2
0
1

2

1
8

-n
o
v
.-

1
3

2
9

-j
u

n
.-

1
5



89 
 

 

PLOT 8: Net pairwise volatility spillover between the DAX30 index and DAX30 

index future 

 

 

 

Subplot 8.1 VAR A model (GARCH) 

 

Subplot 8.2 VAR B model (RV raw returns) 

 

Subplot 8.3 VAR C model (RV standardized returns) 

Subplots 8.1, 8.2 and 8.3 represent the net pairwise volatility spillover between the DAX30 index and DAX30 index future for the VAR A, 

VAR B and VAR C models, respectively. The horizontal axis represents the date (from April 2004 to September 2015), and the vertical 

axis represents the net spillover (expressed in terms of percentages). When the net spillover has a positive value, it indicates that the 

spot market transmits spillovers to the futures market. On the contrary, when the net spillover has a negative value, it means that the spot 

market receives spillovers from the futures market. 
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PLOT 9: Net pairwise volatility spillover between the FTSE100 index and FTSE100 

index future 

 

 

 

Subplot 9.1 VAR A model (GARCH) 

 

Subplot 9.2 VAR B model (raw returns) 

 

Subplot 9.3 VAR C model (standardized returns) 

Subplots 9.1, 9.2 and 9.3 represent the net pairwise volatility spillover between the FTSE100 index and FTSE100 index future for the 

VAR A, VAR B and VAR C models, respectively. The horizontal axis represents the date (from April 2004 to September 2015), and the 

vertical axis represents the net spillover (expressed in terms of percentages). When the net spillover has a positive value, it indicates that 

the spot market transmits spillovers to the futures market. On the contrary, when the net spillover has a negative value, it means that the 

spot market receives spillovers from the futures market. 
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Subplots 7.1(CAC40), 8.1(DAX 30) and 9.1(FTSE100) report the variation over 

time in the NPVS between the spot and futures market when daily volatilities have 

been calculated by means of the GARCH (1, 1) model (named VAR A). Note that net 

volatility tends to switch between positive and negative values in the three indexes 

during the period analysed; this occurs in such a way that positive values mean 

that the spot market is a net transmitter of volatility to the futures market, and 

conversely, when the net spillover has a negative value, the spot market is a net 

receiver. Likewise, it can be drawn from Table 3 that on average, the futures 

market is the greatest net contributor of volatility spillovers (0.11%, 0.39% and 

3.73% for the CAC40, DAX30 and FTSE100 indexes). These results are consistent 

with most of the previous studies related to volatility spillover that find evidence 

of a two-way volatility transmission and support the leading role of the futures 

market in information transmission.  
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TABLE 3: Summary statistics results for net pairwise volatility spillover 

 

 

  

 VAR A (GARCH) VAR B (RV raw returns) VAR C (RV standardized returns) 
 Spot to 

future 
Future to spot Net spot to 

future 
Net future to 

spot 
Spot to 
future 

Future to 
spot 

Net spot 
to future 

Net future 
to spot 

Spot to 
future 

Future to 
spot 

Net spot 
to future 

Net future 
to spot 

CAC0 

Mean 24.57 24.68 -0.11 0.11 24.27 24.02 0.24 -0.24 24.97 22.42 2.55 -2.55 
Standard deviation 2.31 2.42 4.67 4.67 1.67 1.39 2.88 2.87 1.87 2.13 3.74 3.74 
Skewness -0.08 -1.25 0.66 -0.66 -1.60 0.65 -1.25 1.25 0.32 -0.89 0.80 -0.80 
Kurtosis 4.77 5.15 4.77 4.77 18.65 16.45 21.10 21.10 2.31 3.27 2.89 2.89 
Min 14.88 16.21 -17.10 -14.65 0.12 18.44 -43.70 -11.73 20.61 16.45 -4.86 -12.57 
Max 30.87 31.98 14.65 17.10 30.17 43.83 11.73 43.70 29.03 26.72 12.57 4.86 

DAX30 

Mean 24.63 25.02 -0.39 0.39 24.07 23.87 0.20 -0.20 24.64 23.56 1.08 -1.08 
Standard deviation 1.10 0.91 1.97 1.97 2.19 2.32 3.16 3.16 1.38 1.80 2.52 2.52 
Skewness -1.08 0.82 -0.97 0.97 -1.91 -1.56 -1.95 1.95 -0.77 -1.86 1.12 -1.12 
Kurtosis 3.64 3.57 3.55 3.55 11.62 12.86 26.73 26.73 9.49 6.92 5.76 5.76 
Min 19.24 23.17 -10.96 -3.34 2.00 14.24 -43.67 -13.01 9.46 14.94 -15.43 -8.65 
Max 26.51 30.23 3.34 10.96 30.31 45.66 13.01 43.67 27.69 31.60 8.65 15.43 

FTSE100 

Mean 21.11 24.85 -3.73 3.73 24.07 21.95 2.12 -2.12 24.79 21.52 3.27 -3.27 
Standard deviation 5.81 3.40 6.21 6.21 4.39 2.49 5.13 5.13 1.96 2.73 2.81 2.81 
2.81 -1.87 -0.85 -0.35 0.35 -1.92 -0.41 -0.95 0.95 -0.95 -1.38 -0.91 0.91 
Kurtosis 5.95 4.59 4.07 4.07 6.43 8.88 8.07 8.07 3.71 5.77 3.18 3.18 
Min 0.53 11.61 -40.43 -22.42 1.87 12.76 -46.97 -15.79 18.29 11.69 -6.92 -9.83 
Max 34.45 45.77 22.42 40.43 29.84 48.85 15.79 46.97 28.67 25.91 9.83 6.92 

 

 

Table 3 shows the main summary statistics for the net pairwise volatility spillover (NPVS) between the spot and futures markets of the CAC40, DAX30 and FTSE100 indexes for the VAR A, B and C 

models, respectively, for the period from July 1, 2003, to September 30, 2015. 

 

9
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With regard to subplots 7.2 (CAC40), 8.2 (DAX 30) and 9.2 (FTSE100), in which the 

input data are the realized volatility computed with raw returns (VAR B model), it 

is important to highlight two main findings. First, net volatility also tends to shift 

between positive and negative values, and second, contrary to the previous 

findings, the results when considering the VAR B model show that the spot market 

is on average a net volatility transmitter for most of the sample period (0.24%, 

0.20% and 2.12% for CAC40, DAX30 and FTSE100, respectively, according to Table 

3). Nevertheless, considering the perils of the presence of seasonality in high-

frequency data when modelling the volatility dynamic and given the fact that 

neither the VAR A model nor the VAR B model consider the intraday periodic 

component before implementing the Diebold and Yilmaz (2012) approach, 

previous findings might be unreliable and should be interpreted with caution. We 

therefore remove intraday seasonality before estimating the NPVS. 

Therefore, we finally depict subplots 7.3 (CAC40), 8.3 (DAX 30) and 9.3 (FTSE10), 

in which, as mentioned above, the intraday periodic component has been removed 

before conducting the directional measurement of volatility spillovers (VAR C 

model). Some interesting findings are remarkable. Note that, in general terms, 

changes over time with positive and negative values of the NPVS between the spot 

and futures markets are not so frequent, and since positive values in the graphic 

indicates that the spot market transmits spillovers to the futures market, it is 

visually observable that the spot market is the largest net sender of volatility 

spillovers to the futures market throughout all the sample. This finding is 

corroborated by the results reported in Table 3. Note that on average the 

magnitude in which the spot market contributes to the NPVS is about 2.55% for 

the CAC40, 1.08% for the DAX30, and 3.27% for the FTSE100. That is to say, on 

average, considering for instance the CAC40, the volatility shocks transmitted from 

the spot market to the futures markets is about 2.55% in net terms63. On the 

whole, looking at the graphics, it is also worth emphasizing that in terms of 

magnitude, the NPVS are greater than those in models VAR A and VAR B64; this 

suggests, once more, that when the intraday periodic component is neglected 

(models VAR A and B), we might be losing some relevant information regarding 

the volatility transmission. Although at first sight one might think that the 

conclusions drawn from the IRF and the Diebold and Yilmaz (2012) approach are 

contradictory, note that they are two different measures used to assess spillovers 

across markets. The IRF provides information about the impact of a shock on 

volatility at a particular time and might be regarded as indicative of the effects of 

                                                
63 See in Table 3 that, on average, the directional spillover from the spot market to the futures market is 
24.98%, while the directional spillover from the futures market to the spot market is 22.43%; therefore, the 
spot market is a net volatility transmitter (2.55%) for most of the sample period. 
64 Except for the FTSE100, in which on average the net volatility transmission from the futures market to the 
spot market for the VAR A model is higher than the net volatility transmission from the spot market to the 
futures market for the VAR C model (although this difference is not significant). 
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future shocks, whilst the Diebold and Yilmaz (2012) methodology captures an 

average of directional and net spillovers throughout a period. 

Based on the above results, it is highly evident that there exist significant 

differences in the measurement of volatility transmission depending on whether 

the intraday seasonality has been considered. Overall, the results underscore the 

importance of removing the intraday periodic component to reduce the risk of 

spurious causality when employing high-frequency data in volatility modelling.  

 

3.5 Conclusions 
 

In the last decades, the upsurge in interest in studying the interaction between the 

financial markets has increased dramatically. Significant attention has been paid to 

examining the volatility transmission mechanism that exists in major financial 

equity markets. Needless to say, understanding volatility spillover is important by 

virtue of the critical repercussions for monetary policy, optimal resource 

allocation, risk measurement, capital requirements and asset valuation. 

Additionally, the growing availability of high-frequency data has boosted research 

on intraday data which has emerged as a major area in econometrics and statistics.  

However, handling high-frequency data may be especially challenging because of 

the idiosyncrasy of the data, which makes it crucial to consider the intraday 

seasonal patterns present in the volatility of financial markets before modelling 

the dynamics of intraday volatility. 

In this article, we aim to address if the well-documented strong intraday repetitive 

pattern in average absolute returns is present in our data and if there is any 

change in volatility transmission dynamics when the intraday periodic component 

is considered. Regarding this, the most remarkable results may be summarised as 

follows: a) Noteworthy similarities are detected in the markets analysed; all of 

them illustrate a distorted double U-shape in the average absolute returns during a 

trading day; b) the FFF methodology used to remove the intraday periodic 

component considerably reduces serial autocorrelation; c) cross-correlation 

analysis reveals significant cross-market volatility interactions between the spot 

and futures markets that have also diminished noticeably after considering the 

seasonal pattern; d) volatility transmission differs significantly regardless of 

whether raw and standardized returns are considered, so that when intraday data 

are not standardized, the optimal number of lags in the VAR model determined by 

the selection criteria seems to be redundant, suggesting that if the seasonal pattern 

is neglected, it might result in invalid statistical inference in the spillover analysis; 

e) when a shock hits the system and the intraday periodic component has not been 

used to adjust the returns before conducting the spillover analysis, the response to 
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that shock is highly persistent; and f) the directional measurement of volatility 

spillovers shows that the spot market is the largest net sender of volatility 

spillovers to the futures market and that, in terms of magnitude, the NPVS are 

generally greater when the intraday periodic component has been considered, 

which suggests, once again, that when this seasonal component is neglected, we 

might be losing some relevant information regarding volatility transmission. 

In sum, this article highlights how high-frequency data can shed new light on 

issues concerning the volatility spillover between markets and why it is really 

important to remove the seasonal component to diminish the risk of spurious 

causality when using intraday data in volatility modelling.   
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4. CHAPTER C:  

AN APPLICATION OF HIGH-FREQUENCY DATA TO 

OPTIMAL PORTFOLIO CHOICE 

 

 

 

  

Abstract 

 

This article investigates the usefulness of high frequency data in 

optimal portfolio choice using a comprehensive listing of major stock 

market indexes. We construct diversified portfolios considering 

monthly and high frequency data in the modelling of volatility and 

compare the performance of these portfolios in terms of several out-of-

sample metrics. Not only does the results underscore the positive 

performance of switching from data at lower frequencies to intraday 

data in the context of optimal asset allocation, but the capability of 

beating the equally-weighted portfolio even in presence of transaction 

costs. 
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4.1 Introduction 
 

One of the most crucial investment decisions made by investors involves the 

allocation of wealth among risky assets. Since the seminal paper of Markowitz 

(1952) the Modern Portfolio Theory has played a pivotal role in finance and has 

revolutionized investment management. Despite the fact that it is more than half a 

century since its publication, the mean-variance approach remains the major 

model implemented in practice in portfolio allocation.  An elemental premise of 

economics is that, due to the lack of resources, all economic decisions are made in 

the face of trade-offs. In this article, Markowitz identifies that choices involve a 

trade-off  between expected return and risk and demonstrates how the 

combination of assets in a portfolio could minimize portfolio risk at a given level of 

expected return or maximize expected return at a given level of risk. Therefore, 

according to this theory, there is a set of portfolios that form the efficient frontier 

which maximize the expected return given a certain level of risk. 

Even though no question remains that Markowitz approaches are optimal 

theoretically, these moments are unknown in practice, and therefore, they have to 

be estimated using historical data of the risky assets that may lead to estimation 

errors in expected returns, variances and covariances. It is widely known that 

estimation error presents a major obstacle to successful implement portfolio 

optimization strategies and may undermine the performance of the selected 

investment portfolio suggesting portfolios weights with poor out-of-sample 

results. Thus, one of the main problems of the sample-based mean-variance 

optimization approach is that it neglects estimation error, in such a way that the 

usefulness of the mean-variance strategy is brought into question (Frankfurter et 

al. 1971). It has motivated an extensive literature suggesting different methods to 

reduce the impact of estimation error (see among others Jorion, 1986; James and 

Stein, 1961; Mackinlay and Pástor, 2000; Jagannathan and Ma, 2003; DeMiguel et 

al., 2009a). 

Recently, a prominent strand of literature regarding portfolio choice even suggests 

that common portfolio optimization strategies do not beat the equally-weighted 

strategy65 (DeMiguel et  al., 2009b); raising a serious doubt on the usefulness of the 

investment theory. To challenge the findings of DeMiguel et  al. (2009b), we 

evaluate in this article whether, by using high frequency data (HFD henceforth) in 

optimal portfolio asset allocation, instead of data at lower frequencies, we can 

improve the performance and beat the naïve rule. 

Previous research has documented that covariance matrix estimates based on HFD 

leads to more accurate results than estimates based on lower frequencies (see 

among others Pooter et al., 2008). In this context, several publications have 

                                                
65 Also called naïve strategy or 1/N rule 
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appeared in recent years documenting that decision making in portfolio theory is 

influenced by the frequency of the data used in the estimates and that the benefit 

from using intraday data may be worthwhile. However, despite the widespread 

availability of intraday data and the latest technological and econometric advances, 

in the field of asset allocation, daily or monthly returns are generally used to 

estimate the whole covariance matrix and only a handful of studies use intraday 

data to estimate the variance and covariance matrix (see Fleming, Kirby and 

Ostdiek, 2003; Zhang et al., 2005; Liu, 2009; Hautsch, Kyj and Malec, 2015). 

Thus, the main contribution of this research is to reduce the estimation error in the 

covariance matrix by using HFD to successfully implement portfolio optimization 

methodologies, while considering a comprehensive listing of major stock market 

indexes to build a diversified portfolio. Hence, taking as a benchmark the naïve 

rule strategy, we use a wide-range portfolio containing American, Asian and 

European stock market indexes on a five-minute interval basis and compare the 

out-of-sample performance of different portfolio methodologies when using the 

realized covariance matrix with the out-of-sample performance of those portfolio 

strategies that utilize the traditional way of computing the covariance matrix with 

monthly returns. 

From the outcome of our investigation we can conclude that: a) when monthly data 

are introduced into the optimization problem we obtain poorer performance as 

reported in DeMiguel et  al. (2009b), b) in the absence of transaction costs, 

portfolios designed using intraday data, are found to provide better performance 

than those that employ monthly data (the Sharpe ratios for intraday data are 

higher than Sharpe ratios for monthly data), and moreover they beat the equally-

weighted portfolio strategy (the annualized out-of-sample certainty equivalent 

rate of return, CEQ, corroborates the previous conclusions drawn by the analysis of 

the Sharpe ratio); and c) results show evidence that the use of intraday data in 

optimal portfolio choice improves the performance by reducing the estimation 

error, which is not the primary barrier to successful optimization, but the 

turnover; and despite the higher turnover obtained in the HFD-based approaches, 

the performance, after considering transaction costs improves considerably 

beating the naive rule. Thus, the benefit from using intraday data in optimal 

portfolio choice may be worthwhile, leading to superior performance even after 

considering transaction costs.  

Overall, this research advocates the usefulness of the investment theory and 

suggests that HFD may add significant value in the field of optimal asset allocation. 

The remainder of this paper is organized as follows: section 4.2 contains a review 

of the literature, section 4.3 describes the data employed in the empirical analysis 

and the procedure to construct the conditional variance-covariance matrix using 

monthly and high-frequency data; section 4.4 explains the portfolio strategies and 
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metrics of performance employed; section 4.5 is the core of the paper as it 

documents the results of the various out-of-sample studies, compares the 

performance of these models to that of 1/N rule and reports the error in 

estimating the covariance matrix depending on the returns series used; section 4.6 

performs a few robustness checks; and finally, section 4.7 concludes by 

summarizing the main results. 

 

4.2 Review of literature 
 

During the last decades, great effort has been devoted to improve the out-of-

sample performance of asset allocation strategies. To fulfill this goal, several 

methodologies have been proposed which involve among others: using Bayesian 

methods (Jorion, 1986; Pástor, 2000; James and Stein, 1961), moment restrictions 

(Mackinlay and Pástor, 2000), constraining short sales (Frost and Savarino, 1988; 

Jagannathan and Ma, 2003), constrained weights (DeMiguel et al., 2009a) and 

optimal combinations of portfolios (Kan and Zhou, 2007). Notwithstanding, recent 

research suggests that these challenging methodologies are usually unable to beat 

the so-called 1/N or naïve strategy. 

The essence of the naïve formulation rule, lies in investing equally across N assets, 

therefore the investor´s strategy depends on neither any data nor any statements. 

In terms of the out-of-sample performance, there has been a longstanding and 

contentious debate in portfolio optimization between the traditional Markowitz 

model (and its extensions) and the equally-weighted portfolio66 trying to answer 

the following question: Is it preferable to use the naïve rule and avoid selecting the 

wrong portfolio as a result of the sampling errors or is it preferable to use optimal 

portfolio strategies despite the probable sampling errors?. DeMiguel et al. (2009b) 

attempt to answer this question by comparing the 1/N rule with 14 different 

portfolio strategies using seven different empirical datasets. The results show that 

the naïve 1/N diversification rule outperforms the sample-based mean-variance 

optimization strategy and all the sophisticated methodologies. Likewise, Duchin 

and Levy (2009) use mean-variance portfolios parametrized employing monthly 

sample data, and find that the Markowitz theory outperforms the naïve strategy 

for relatively large portfolios. Furthermore, Jacobs et al. (2014) compare 11 

optimization methodologies with a very broad range of straightforward heuristic 

allocation approaches and suggest that portfolio optimization methodologies do 

not beat heuristic weighting strategies. 

Conversely, Tu and Zhou (2011) combine the 1/N rule with four portfolio 

strategies, namely, the Markowitz approach and its extensions proposed by, Jorion 

                                                
66 Early discussions include among others, Frankfurter et al. (1971) and Brown (1979). 
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(1986), Mackinlay and Pástor (2000) and Kan and Zhou (2007) achieving better 

performance,  beating the naïve rule and restating the profitability of the 

investment theory. Moreover, Kirby and Ostdiek (2012) suggest that results in 

DeMiguel et al. (2009b) come from their research design, which focuses on 

portfolio based on high estimation risk and extreme turnover. According to Kirby 

and Ostdiek (2012), mean-variance optimization usually outperforms the 1/N 

strategy; however, in presence of high transaction costs, turnover usually 

undermines its gains. To address this matter, they develop two new methodologies 

(volatility timing and reward-to-risk timing) that consider the most interesting 

characteristics of the naïve rule (no covariance matrix inversion, no short sales and 

no optimization) and, at the same time, benefit from sample information. Their 

proposed approaches outperform the 1/N rule even in the presence of high 

transaction costs.  

Previous studies indicate that the estimation of covariance matrices plays a key 

role for determining the optimal portfolio allocation. Even though a large part of 

the literature on portfolio selection has focused on such an improvement (see 

among others, Green and Hollifield, 1992; Ledoit and Wolf 2003, 2004a; 

Jagannathan and Ma, 2003), more effort needs to be done to improve the 

estimation of the second moments. Based on this premise, this paper proposes a 

new approach to estimate the variance-covariance matrix for portfolio 

optimization using a comprehensive dataset of stock market indexes on an 

intraday basis.  

It is now beyond doubt that the economic value of high-frequency financial data is 

of direct practical relevance, so that its use has become very popular in recent 

years (Goodhart and O'Hara, 1997). HFD is “one measure of progress in empirical 

econometrics” (Engle, 2000) that enables us to estimate realized measures by using 

all available information with the added advantage of not having to estimate 

parametrical models commonly used, such as the ARCH and GARCH models. It was 

Andersen et al. (2001, 2003) who paved the way for the use of models that employ 

Realized Volatility (RV) measures. 

Nevertheless, despite the widespread availability of HFD, daily returns are 

generally used to estimate the whole covariance matrix and there is limited 

research focus on the use of intraday data to estimate the variance and covariance 

matrix. With regard to optimal portfolio allocation literature, although the use of 

high-frequency data is scarce, research in this field concludes that decision making 

in portfolio theory is influenced by the frequency of the data used in the estimates 

and that the benefit from using intraday data may be worthwhile (see Fleming, 

Kirby and Ostdiek, 2003; Zhang et al., 2005; Liu, 2009; Hautsch, Kyj and Malec, 

2015). 
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As far as we are aware, Fleming, Kirby and Ostdiek (2003) were the first authors to 

evaluate the economic benefits of the RV in the context of portfolio choice. Their 

research uses a “volatility timing” approach and is based on allocations across 

three highly liquid futures contracts from January 3, 1984 to November 30, 2000 

and comprises two sets of estimates of the conditional covariance matrix using 

rolling estimators. One set is based on daily returns and the other set is based on 

intraday returns on a five-minute interval basis. Their findings indicate that it is 

valuable to switch from daily to intraday data to estimate the conditional 

covariance matrix even in presence of transaction costs. Liu (2009) extends the 

findings in Fleming, Kirby and Ostdiek (2003) using the 30 DJIA stocks from 

January 2, 1993 to June 30, 2000. The author computes multiple covariance matrix 

estimators based on daily returns and high-frequency returns and for the purpose 

of monthly rebalancing, a monthly covariance matrix is also constructed from 

these estimates. The results suggest that the benefits of using high-frequency data 

in portfolio optimization decision depend on the rebalancing frequency and the 

estimation horizon. Additionally, Hautsch, Kyj and Malec (2015) construct Global 

Minimum Variance Portfolios using 400 assets of the S&P 500 index during the 

sample period between January 2006 and December 2009 and conclude that high 

frequency based forecasts outperform methods employing daily returns in terms 

of volatility, which translate into significant utility benefits for investors with 

pronounced risk aversion. 

Furthermore, the answer to the long-lasting question whether high frequency 

volatilities should be adjusted to consider microstructure noise is ambiguous. As 

Merton (1980) highlights, the RV computed as the sum of the squared intraday 

returns for the given trading day, would be an excellent estimate of the volatility in 

an ideal world in which prices were observed continuously and without 

measurement error. Thus, microstructure noise should not be neglected and it is of 

paramount importance the use of standardized HFD (see among others, Hansen 

and Lunde, 2006 and Cartea and Karyampas, 2011). Conversely, a second strand of 

literature concludes that noise correction does not appear to be meaningful for 

volatility prediction. Ghysels and Sinko (2006) examine whether the correction of 

RV for microstructure noise improves the forecast of future volatility, and they find 

that uncorrected volatility measures perform on average better than noise-

adjusted RV67 and conclude that in terms of predicting future volatility “it appears 

that corrections for microstructure noise do not matter very much”. Likewise, Pooter 

et  al. (2008) try to answer the question regarding the optimal intraday sampling 

frequency in the context of minimum variance portfolio using intraday return 

frequencies ranging from 1 to 130 minutes and conclude the following: a) the 

conditional covariance matrix estimates based on intraday returns improves 

portfolio performance when compared with results obtained using returns at 

                                                
67 One explanation is that “the signal-to-noise ratio is high, and, in terms of the MSE, the uncorrected measure 
is better than the corrected one” (Ghysels and Sinko, 2006). 
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lower frequencies; and b) an appropriate return frequency is more relevant than 

the bias correction techniques. Furthermore, several studies suggest that “the five-

minute horizon is short enough that the accuracy of the continuous record of 

asymptotics underlying our realized volatility measures work well, and long enough 

that the confounding influences from market microstructure frictions are not 

overwhelming” (Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P. ,1999; 

Andersen et  al, 2001). Thus, based on these aforementioned ideas, we employ in 

this research observations on a five-minute interval basis and do not explicitly 

handle microstructure noise.  

 

Seasonality has also been a critical issue when dealing with high-frequency data. 

Literature related to HFD has thoroughly documented a strong intraday repetitive 

pattern in the average absolute returns. At market opening, absolute returns 

usually reach the highest values, and then around lunch hour, they diminish 

dramatically; finally, at the end of the trading day, they rise again, what suggests a 

seasonal (U-shape) pattern of volatility. Such a pattern makes especially 

challenging deal with high-frequency data, and we should address the fact that in 

an intraday setting the presence of seasonality may cause problems when 

estimating realized measures. Thus, in this regard, the question is: Should we 

seasonality adjust time series? Arguments on both sides can be found in the 

literature related to seasonality (for further discussion on this topic see Ghysels 

1996, and Ghysels and Osborn 2001). As far as this study is concerned, results 

seem to be consistent with the  stream of literature in favour of not removing 

seasonality. 

Thus, to shed new light into the usefulness of HFD in optimal portfolio allocation, 

we begin in the next section by explaining the data employed in this research. 

 

4.3 Data 
 

Quite recently, considerable attention has been paid to the improvement of the 

estimation of the covariance matrix in the field of asset allocation (Ledoit and Wolf 

2003, 2004a; Jagannathan and Ma, 2003 among others). In this respect, the 

originality of our approach lies in the fact that not only do we estimate the monthly 

covariance matrix of stock index returns using monthly data but also HFD. Note, 

that in practice, as Cartea and Karyampas (2011) suggest, employing the whole 

dataset at HFD is not the usual option to estimate the realized variance-covariance 

matrix; and it is common to employ observations on a five-minute interval basis. 

The decision of using a five-minute frequency is also based on the research of 

Andersen (2000) as commented in the previous section. 
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This means that, to implement this research, two datasets are needed to compute 

the covariance matrices. Thus, the first and the second datasets comprise 

respectively excess monthly68 and intraday returns on a five-minute interval 

basis69 over the risk free asset70 from 8 different stock market indexes, namely 

CAC40, DAX30, FTSE100, KOSPI 200, NIKKEI 225, S&P/TSX 60, S&P 500 and SMI 

stock indexes from January 2, 2004 to September 30, 201671 which are listed in 

Table 1. 

 

                                                
68 Monthly data has been obtained from Morningstar. To implement the rolling sample approach explained in 

section 3.2 we also used monthly returns from December, 1993 to December, 2013.  
69Intraday data has been collected from Tick Data. 
70 The risk free rate has been obtained from the website: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
71 Our dataset comprises 153 months with 3.318 trading days in total. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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TABLE 1: List of the considered datasets 

 

 
Index 

 
Number  

observations 

 
N 

 
Stock exchange 

 
Trading hours 

 

 
Source 

 Local Time Central European Time Intraday data  Monthly data 
CAC 40 329,967 40 Euronext Paris 09:00-17:30 09:00-17:30 Tick Data Morningstar 
DAX 30 327,947 30 Frankfurt Stock exchange 09:00-17:30 09:00-17:30 Tick Data Morningstar 

FTSE 100 325,422 100 London Stock Exchange 08:00-16:30 09:00-17:30 Tick Data Morningstar 
SMI 212,200 20 Swiss Exchange 09:00-17:30 09:00-17:30 Tick Data Morningstar 

KOSPI 200 317,592 200 Korea Stock Exchange 09:00-15:00 01:00-07:00 Tick Data Morningstar 
NIKKEI 225 222,088 225 Tokyo Stock Exchange 09:00-15:00   01:00-07:00 Tick Data Morningstar 
S&P/TSX 60 247,247 60 Toronto Stock Exchange 09:30-16:00 15:30-22:00 Tick Data Morningstar 

S&P 500 246,708 500 New York Stock Exchange 08:30-15:00 14:30-21:00 Tick Data Morningstar 

 

 

Table 1 lists the stock indexes used for the evaluation of the portfolio performance. From left to right we see their abbreviations, the number of 

observations, the number of assets included in each index, its corresponding Stock Exchange, the trading hours expressed in local time and in central 

European time and the data sources. Intraday data are expressed on a five-minute interval basis.  

1
1
0
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Notice that monthly returns can be incorporated straightforwardly into the 
optimization problem to estimate the parameters needed; however, intraday 
returns require previous data cleaning. Therefore, in order not to mislead the 
statistical inference, when using intraday data, the primary step to generate the 
raw intraday returns is to remove the first return of the trading day, which 
generally reflects the adjustment to overnight information and is regarded as the 
highest average return variability (Andersen et al., 2000).72 The next step, in line 
with literature advocating that seasonality should not be neglected73, is to deal 
with the U-pattern present in the intraday data74 and calculate the so-called 
deseasonalized or standardized returns75, which requires computing and 
extracting the intraday periodic component of return volatility. To do so, we rely 
on the FFF methodology (Andersen and Bollerslev, 1997)76  to remove the intraday 
seasonality present in raw intraday returns and obtain the standardized intraday 
returns which. Although, Andersen and Bollerslev (1997) and Martens (2002) 
suggest using the FFF to remove seasonality from high frequency data, to the best 
of the authors´ knowledge, this methodology has not been previously used in 
previous studies regarding optimal asset allocation. At this point; the three return 
series available to be used in the analysis are the following: a) monthly returns, b) 
raw intraday returns; and c) standardized intraday returns. 
 

Likewise, given that the stock markets studied do not have the same time-zone and 

operate within different timetables, before estimating the monthly realized 

covariance matrices by using raw and standardized intraday returns on a five-

minute interval basis, the previous step is to organize the two series considering 

the Central European Time and the trading hours of each market as can be 

appreciated in Table 1. After that, for each index, we complete with zeros77 the 

non-trading periods of five minutes in such a way that each day consists of a total 

of 288 observations. Then, we merge data from each index to consider only the 

days of simultaneous operation of the markets used in this study. At this stage, we 

construct the whole realized covariance matrices for each month by summing the 

outer products of the intraday returns, starting from January, 2004 and until the 

end of the dataset (September, 2016), so that our dataset comprises 153 months 

and therefore, we generate for each data series introduced into the optimization 

problem 153 variance-covariance matrices.78 

                                                
72 We conduct additional steps to clean the raw data. They are available upon request. 
73 See Bollerslev (1997) and Martens (2002) among others 
74 A repetitive U-shape pattern in the sample autocorrelations which occupies exactly one day can be 
appreciated each day for all markets. This corroborates the evidence of intraday periodicities in return 
volatility and raise concern about the importance of removing the intraday seasonal component of the 
volatility. To keep this article to a reasonable length these results are not attached to this article but they are 
available upon request. 
75 Returns from which the seasonality has been removed. 
76 For more details about the Fourier Flexible Form methodology to remove seasonality see Andersen and 
Bollerslev, 1997. 
77 In those periods in which there is no trading we consider that return is equal to zero. 
78 Thus, to do the analysis we estimate the covariance matrix in three different ways: a) using monthly returns; 

and b) using raw intraday returns and c) standardized intraday returns to estimate the whole realized 

covariance matrix. 
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Notice that by completing with zeros the non-trading periods we are assuming that 

during these intervals of five minutes the estimated pair-wise correlations 

between the excess risky-asset returns are zero. In line with Kirby and Ostdiek 

(2012), we consider this a form of shrinkage for the realized covariance matrix 

that despite the information loss due to this assumption it might outperform the 

covariance matrix estimates based on data at lower frequencies. As robustness 

check of the effect of this assumption we implement in section 6 the same study 

excluding those indexes without overlapping period with any other market, that is 

to say, we remove the KOSPI 200 and the NIKKEI 225 stock indexes from the study.  

 

4.4 Methodology  
 

In this section, we outline the portfolio allocation strategies, the details of the 

estimation procedure as well as the measures to evaluate the performance. 

 

4.4.1 Portfolio strategies 
 

Before starting with a briefly overview of the methodologies used in this research 

we illustrate the basic framework of the Modern Portfolio Theory or mean-

variance analysis. Suppose an investor who wants to allocate his wealth among N 

risky assets and a risk-free asset. It was Markowitz (1952) who developed the 

optimal rule for allocating wealth across risky assets in a static setting by choosing 

a portfolio on the efficient frontier. According to this author, “the investor does (or 

should) consider expected return a desirable thing and variance of returns an 

undesirable thing”. Thus, consider 𝑋𝑡 is a N-dimensional vector of the portfolio 

weights invested in the N risky assets at time t, investors will choose those weights 

that optimizes the trade-off between the mean and the variance of portfolio 

returns, or in other words, that maximize the following expected utility function: 

 

 max 𝑋𝑡
𝑇 𝜇𝑡 −  

𝛾

2
 𝑋𝑡

𝑇 ∑ 𝑋𝑡𝑡     (1) 

 

where 𝛾  denotes the investor´s risk aversion; T the total length of the data 

series;  𝜇𝑡    represents the N -dimensional vector of expected excess returns on the 

risky assets over the risk-free rate; and ∑t   is the N X N variance-covariance matrix 

of returns . 

                                                                                                                                          
 



 

113 
 

The solution to this optimization problem is  

 

 𝑋𝑡 = (1/𝛾) ∑ 𝜇−1
𝑡    (2) 

 

 

 If ( 1 −  1𝑁
𝑇  𝑋𝑡)  is the amount invested in the risk-free asset, then the vector of 

relative weights in the portfolio with only risky assets may be expressed as follows 

 

 𝑤𝑡 =  
𝑋𝑡

|1𝑁
𝑇  𝑋𝑡|

    (3) 
 

 

 

Thus, from (2) and (3) can be inferred that the vector of relative portfolio weights 

invested in the N risky assets at time  𝑡  is as follows 

 𝑤𝑡= 
∑ 𝜇𝑡

−1
𝑡

1𝑁 ∑ 𝜇𝑡
−1
𝑡

    

 

(4) 

 

 

The essence of each portfolio optimization methodology explained below lies in 

the fact that each method proposes different ways to estimate parameters 𝜇𝑡  and 

∑t. Given that the majority of academics are familiar with these models and it is 

beyond the scope of this article to comprehensively explain them, we only report a 

succinct overview. 

 

4.4.1.1 Naïve rule 

 

The use of the 1/N policy, or also called the naïve rule, has a long-standing history 

in asset allocation. Indeed, this rule can be dated back to around the fourth century 

when this way of allocation was recommended in the Talmud. Rabbi Isaac bar-Aha 

gave the following asset allocation advice:  “A man should always place his money, a 

third into land, a third into merchandise, and keep a third at hand” (Duchin and Levi, 

2009). Thus, the core of this method consists of making an equal allocation to each 

asset; it involves neither optimization nor estimation; and completely neglects the 
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data. In line with DeMiguel et al. (2009b) the naïve rule will be used in this study as 

benchmark to evaluate the performance of the different strategies implemented. 

 

4.4.1.2  Mean-Variance (with and without short sale constrains) 

 

In the mean–variance portfolio optimization theory of Markowitz (1952), the 

optimal portfolio weight vector, 𝑤𝑡 , is a function of the investor’s preference 

parameters, 𝛾, and the first two moments of the return distribution, that it to say,  

the mean vector 𝜇𝑡   and the variance-covariance matrix ∑t . Given that these two 

moments are not directly observable, they have to be estimated, and the most 

straightforward method to estimate them is simply to use the sample mean and 

the sample covariance matrix. Thus, portfolio weights can be computed as follows: 

 𝑤𝑡= 
∑̂ 𝜇̂𝑡𝑡

−1

1𝑁∑̂ 𝜇̂𝑡𝑡
−1       (5) 

 
 

Additionally, following Frost and Savarino (1988) and Chopra (1993), who 

highlight the fact that short sale constraints can help reduce estimation error, we 

also consider the mean–variance strategy with short sale constrains, so that 

optimal portfolio weights have to be non-negative. Therefore, we set the following 

restriction  𝑤𝑡 ≥ 0 . 

 

4.4.1.3  Minimum variance (with and without short sale constrains) 

 

It is widely known that it is more difficult to estimate means than covariances of 

asset returns and that errors in means estimates have greater impact on portfolio 

weights than errors in covariance estimates (Merton, 1980; Jorion, 1986)79. For 

this reason, much recent research on the minimum variance portfolios has been 

done (see among others Jagannathan and Ma, 2003). Notice that the minimum 

variance portfolio strategy relies only on estimates of the covariance matrix and as 

a result of that it is deemed to be less vulnerable to estimation error than other 

methodologies that consider the mean as well. 

Thus, this strategy selects the portfolio of risky assets that minimizes the variance 

of returns and ignores the estimate of the expected returns; that is,  
                                                
79 Jagannathan and Ma (2003) claim that “the estimation error in the sample mean is so large that nothing much 

is lost in ignoring the mean altogether when no further information about the population mean is available.” 

Their research shows that the global minimum-variance portfolio usually performs better out-of-sample with 

regard to the mean- variance portfolio strategy.  
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 min   𝑤𝑡
𝑇  ∑ 𝑤𝑡𝑡  , s.t    1𝑁

𝑇 𝑤𝑡 = 1     (6) 
 

 

As in the previous strategy, we also consider the minimum variance methodology 

with short sale constraints; that is to say including the restriction 𝑤𝑡 ≥ 0. 

The remaining strategies, Volatility timing (VT) and Reward-to-Risk timing (RRT), 

follow Kirby and Ostdiek (2012). These authors develop these two methodologies 

that use sample information, a tuning parameter to measure aggressiveness and at 

the same time exploit the most attractive aspects of the naïve rule; that is: no 

optimization, no covariance matrix inversion and no short sales.  

 

4.4.1.4 Volatility timing 

  

In this strategy portfolio weights are rebalanced based on changes in the estimated 

conditional matrix of returns and they are computed as follows: 

 
𝑤𝑖𝑡̂ =  

(1/𝜎𝑖𝑡
2̂ )𝜂

∑ (1/𝜎𝑖𝑡
2̂ )𝜂𝑁

𝑖=1

 , 𝑖 = 1,2, … , 𝑁    

 

(7) 

 

 

where 𝜂 > 0,  is a tuning parameter which determines how aggressively the 

investor adjusts portfolio weights in response to volatility changes, and therefore 

enables to control turnover, and 𝜎𝑖𝑡
2  is the estimated conditional variance of the 

excess return on the 𝑖𝑡ℎ risky asset. Thus, if the tuning parameter, 𝜂, tends to zero 

we get the equally-weighted portfolio, and when it tends towards infinity the 

weights on the assets with less variance approach to one.  

 

4.4.1.5 Reward-to- Risk timing 

 

Note that the VT strategy neglects information about conditional expected returns. 

The RRT method aims to improve performance considering this information, so 

that the weights are calculated of the form 

 

 
𝑤𝑖𝑡̂ =  

(𝜇𝑖𝑡̂
+/𝜎𝑖𝑡

2̂)𝜂

∑ (𝜇𝑖𝑡̂
+/𝜎𝑖𝑡

2̂)𝜂𝑁
𝑖=1

 , 𝑖 = 1,2, … , 𝑁     
(8) 
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where 𝜇𝑖𝑡̂
+ = max (𝜇𝑖𝑡̂, 0). This means that the investor removes any asset with 

𝜇𝑖𝑡  ≤ 0. Note that the rest of parameters are the same employed in the previous 

methodology80. 

 

4.4.2 Performance evaluation 
 

In accordance with DeMiguel et al. (2009b) we employ a rolling sample approach 

of length M=120 months to estimate the optimization input parameters. Portfolio 

weights are first based on the estimation period from January 1993 to December 

2003 (that is to say, 120 months) using the monthly excess returns; and the out-of-

sample period is from January, 2004 to September, 2016 (153 months), so that, the 

data introduced in the optimization problem are different depending on the 

dataset used. For dataset 1, comprised by monthly returns, we use each month, 

starting from t=M+1, the data in the previous M months to estimate the required 

parameters to implement the optimization strategies. With these parameters each 

strategy determines its optimal portfolio weights, and then the out-of-sample 

return in month t+1. We follow the same procedure by moving one month forward 

and dropping the earliest return until we reach the end of the period, which keeps 

the estimation window length fixed, so that, given a dataset with N risky assets of 

length T months, with the rolling sample methodology we obtain a vector of T-M 

monthly out-of-sample returns and a (T-M) × N matrix of optimal portfolio weights 

for each strategy81. For dataset 2 the rolling sample approach is basically the same, 

but the difference lies in the fact that each month we introduce in the optimization 

procedure, on one hand the realized covariance matrices estimated using raw 

intraday returns, and on the other hand, the realized covariance matrices 

computed using standardized intraday returns as explained in section 4.3.  

The out-of-sample returns are then used to measure portfolio performance in 

terms of two metrics: the Sharpe ratio and the certainty equivalent rate of return. 

Additionally the optimal portfolio asset weights are used to compute a third 

measure of performance: the turnover.  

 

4.4.2.1 Performance metrics: Sharpe ratio, certainty equivalent rate of 

return (CEQ) and turnover 

 

                                                
80 In line with Kirby and Ostdiek (2012) we set 𝜂 = 1;  𝜂 = 2  and  𝜂 = 4. 
81 In this research, we use N=8 risky assets;  T=273 months; and we obtain a  vector of 153 monthly out-of-
sample returns and a 153x8 matrix of optimal portfolio weights for each portfolio strategy. 
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The out-of-sample Sharpe ratio of strategy 𝑘 is the most commonly used 

performance measure. It is defined as the sample mean of the out-of-sample excess 

returns (over the risk-free asset) 𝜇̂𝑘, divided by their sample standard deviation 

𝜗̂𝑘, 

 𝑆𝑅𝑘  ̂ =  
𝜇̂𝑘

𝜗̂𝑘
   

 

(9) 

 

 

Another utility-based measure is the certainty equivalent rate of return (CEQ). The 

CEQ for strategy 𝑘 is the risk-free rate of return that the investor is willing to 

accept instead of undertaking the risky portfolio strategy. In the literature 

regarding portfolio allocation it is common to mathematically define the CEQ as: 

 

 𝐶𝐸𝑄𝑘̂ =  𝜇̂𝑘 −  
𝛾

2
𝜎̂𝑘

2    

 

(10) 

 

 

where 𝜇̂𝑘 and 𝜎̂𝑘
2 are the mean and variance of out-of-sample excess returns(over 

the risk-free asset) for strategy k, and the parameter 𝛾 represents the investor’s 

risk aversion82.  

The third measure of out-of-sample performance is portfolio turnover which, in 

terms of active management of an investment portfolio, is an important concept in 

finance. It is a volume based metric of the amount of trading required to 

implement a particular portfolio strategy that gives investors some insight into 

how often assets in the portfolio are bought or sold. Thus, turnover for strategy 𝑘 

is mathematically expressed as the average sum of the absolute value of trades 

across the N risky assets: 

 

 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =  
1

𝑇−𝑀
 ∑ ∑ ( |𝑤̂𝑘,𝑗,𝑡+1 −  𝑤̂𝑘,𝑗,𝑡+| )𝑁

𝑗=1
𝑇−𝑀
𝑡=1        

 

(11) 

 

                                                
82 The results reported are for the case of γ = 1 as in DeMiguel et al. (2009b). 
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where 𝑤̂𝑘,𝑗,𝑡+  and  𝑤̂𝑘,𝑗,𝑡+1 are  respectively, the portfolio weight in asset j at time t 

under strategy 𝑘 before rebalancing  and the desired portfolio weight at time t + 1 

after rebalancing. 

 

4.5 Empirical results 
 

In this section we comprehensively examine the performance implications of using 

HFD in optimal portfolio allocation throughout the various portfolio strategies 

implemented, taking as a benchmark the 1/N strategy. Firstly, section 4.5.1 deals 

with baseline results, that is to say, results without considering transaction costs 

(TCs), section 4.5.2 introduces TCs in the optimization problem; given that, trading 

costs may considerably reduce portfolio´s return, in practice it is advisable to 

account for them at the portfolio construction stage; and finally, section 4.5.3 

measures error estimate of covariance matrices. 

 

4.5.1 Baseline results 
 

We start by analyzing the first metric of performance: the Sharpe ratio. Table 2 

gives the annualized Sharpe ratio83 of the optimal portfolio allocation strategies 

that employ monthly returns and; raw and standardized intraday data. The 

strategies are listed in rows (results for the benchmark 1/N strategy are reported 

in the leading row of the table), whereas the columns refer to the returns data 

series introduced in the optimization problem, namely data series A (monthly 

returns), data series B (raw intraday data) and data series C (standardized 

intraday data). 

  

                                                
83 We rely on the Opdyke (2007) test to test whether the null hypothesis that the Sharpe ratio of an optimal 

strategy is less than or equal to that of the benchmark strategy (1/N).  
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TABLE 2: Annualized Sharpe ratio before transaction costs 

 

 Series A (monthly 
returns) 

Series B (raw 
intraday data) 

Series C (standardized 
intraday data) 

1/N 0.2699 0.2699 0.2699 

Mean variance 0.3350 
(0.00)*** 

0.3461 
(0.00)***  

-0.3395 
(1.00)   

Mean Variance 
restricted 

0.2047 
(0.99) 

0.3450 
(0.00) ***  

0.2657 
(1.00)  

Minimum variance -0.0007 
(0.96)  

0.3561 
(0.00) *** 

0.2515 
(1.00)  

Minimum variance 
restricted 

0.2040 
(0.99)  

0.3450 
(0.00) *** 

0.2660 
(1.00)  

VT1  0.2106 
(1.00)  

0.3235 
(0.00) *** 

0.2823 
(0.00) *** 

VT2 0.1909 
(1.00)  

0.3894 
(0.00) *** 

0.3281 
(0.2424) 

VT4 0.1680 
(1.00)  

0.5106 
(0.50) 

0.4188 
(0.04) ** 

RRT1 0.2882 
(0.00) *** 

0.3790 
(0.00) *** 

0.3599 
(0.00) *** 

RRT2 0.2539 
(1.00)  

0.3641 
(0.00) *** 

0.3485 
(0.00) *** 

RRT4 0.2311 
(1.00)  

0.3530 
(0.00) *** 

0.3163 
(0.00) *** 

 

Table 2 exhibits the annualized Sharpe ratio of the optimal portfolio allocation strategies. 

The strategies are listed in rows (results for the benchmark 1/N strategy are reported in 

the leading row of the table), whereas the columns refer to the returns data series 

introduced in the optimization problem, namely data series A (monthly returns), data 

series B (raw intraday data) and data series C (standardized intraday data). We rely on the 

Opdyke (2007) test to check whether the null hypothesis that the Sharpe ratio of an 

optimal strategy is less than or equal to that of the benchmark strategy (1/N).The 

associated p-values are shown below the performance metric in each case and ***,** and *  

denote that the null hypothesis is rejected at 1%, 5% and 10% significance level. The 

strategy with the highest Sharpe ratio for each data series is given in bold. VT1, VT2 and 

VT4 represent the volatility timing strategy with a tuning parameter of 1, 2 and 4 

respectively. In the same way RRT1, RRT2 and RRT4 represents the reward-to-risk timing 

strategy with a tuning parameter of 1, 2 and 4 respectively. 
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To assess the magnitude of the potential profit that an investor might achieve by 

switching from data at lower frequencies to intraday data, it is crucial to study the 

out-of-sample Sharpe ratio of the different strategies. As can be appreciated in 

Table 2, when monthly returns are used, the Sharpe ratios for the different 

strategies are substantially lower than the Sharpe ratio for the 1/N strategy, note 

that only the mean variance (0.3350) and the reward-to-risk timing with a tuning 

parameter equal to 1 (0.2882) beat the naïve rule (0.2699). However, when 

intraday data are used in the optimization problem the out-of-sample performance 

improves considerably. The out-of-sample Sharpe ratios obtained by using raw 

intraday data are higher than those Sharpe ratios obtained using monthly data (the 

estimated Sharpe ratios range from 0.3235 to 0.389484), and moreover they also 

beat the 1/N rule for all the strategies (for instance for the min variance strategy 

the Sharpe ratio is equal to 0.3561 when using raw intraday data, whereas it is 

equal to -0.0007 when using monthly data). Similarly, for standardized intraday 

data the Sharpe ratios for the different strategies are remarkably better than those 

computed using monthly data (excluding the mean variance strategy), and 

moreover, note that the VT and the RRT strategies proposed by Kirby and Ostdiek 

(2012) beat the equally-weighted strategy as well.  

These results suggest that, in this context, the best performance is achieved by 

those portfolio allocation strategies that employ raw intraday data. This result is in 

line with the strand of literature that advocates that seasonality does not appear to 

be meaningful when an appropriate return frequency is considered85.  

Thus, in the absence of TCs, portfolios designed using HFD and, in particular raw 

data, are found to provide better performance than those that employ monthly 

data (see that the Sharpe ratios for intraday data are higher than Sharpe ratios for 

monthly data). To put it another way, these findings suggest that the estimate 

error is greater as the frequency of the observation decreases, and it worsens 

Sharpe ratios on the optimization strategies. 

The annualized out-of-sample certainty equivalent rate of return (CEQ) 

corroborates the conclusions drawn by the analysis of the Sharpe ratio. This fact is 

already observed in previous literature (see among others DeMiguel et al. 2009b) 

given that, in both metrics, the higher the mean returns and the lower the variance, 

the greater the measure of performance. To keep this article to a reasonable 

length, results regarding the CER are not attached to this article, but they are 

available upon request. 

Hence, our first observation is in good agreement with those results found by 

Fleming, Kirby and Ostdiek (2003); Zhang et  al. (2005); Liu (2009); and Hautsch, 

Kyj and Malec (2015), suggesting that: a) when monthly data are introduced into 

                                                
84 Note that the Sharpe ratio for the VT4 strategy (0.5106) is not significant 
85 See among others, Ghysels 1996, and Ghysels and Osborn 2001. 
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the optimization problem we obtain poorer performance as reported in DeMiguel 

et  al. (2009b), b) the benefit from using intraday data in optimal portfolio choice 

may be worthwhile, and c) considering raw intraday data leads to superior 

performance. 

Table 3 exhibits the third measure of performance: the monthly turnover for each 

portfolio allocation strategy. The undisputed winner in terms of turnover, reported 

in the first row, is the turnover of the equally-weighted strategy in which only 

0.0001 (0.01%) of wealth is traded on average at each rebalancing. Obviously, this 

turnover is smaller because in this strategy the weight for each asset is constant 

and equal to 1/N; therefore turnover is not originated by optimization decisions, 

but only by changes in prices. Consequently, in all cases the turnover for the 

portfolio from the optimization strategies is considerably greater than for the 1/N 

strategy. We also see that the mean variance strategy has the greatest turnover 

and as previous studies corroborate the strategies with shortsale constraints have 

lower turnover than the unrestricted ones (DeMiguel et al., 2009b).  As far as 

series A is concerned (monthly returns) the best dynamic portfolio strategy with a 

turnover of 0.0079 (0.79%) is the VT1. Moreover, for all strategies, excluding the 

mean variance approach, notice that when using monthly data, the turnover for the 

optimization strategies is lower and ranges from 0.0079 (0.79%) to 0.1822 

(18.22%), whereas the turnover varies from 0.1854 (18.54%) to 0.5803 (58.03%) 

and from 0.1822 (18.22%) to 0.6665 (66.65%) when using raw and standardized 

intraday data respectively. Hence, despite the better performance of the HFD-

based approaches due to the efficient use of more recent information, what leads 

to higher responsiveness of forecasts, the main drawback of using HFD, in line with 

results found by Hautsch, Kyj and Malec (2015), is the greater variability in 

portfolio weights that increases portfolio turnover and therefore, transaction costs.  
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TABLE 3: Turnover for the asset allocation strategies 

 

 

 Series A 
 (monthly returns) 

Series B (raw 
intraday data) 

Series C (standardized 
intraday data) 

1/N 0.0001 0.0001 0.0001 

Mean variance 65.6150 
 

7.6742 27.0986 

Mean Variance 
restricted 

0.0903 0.2492 0.2769 

Minimum variance 0.1822 
 

0.3309 0.3417 

Minimum variance 
restricted 

0.0889 0.2486 0.2760 

VT1 0.0079 
 

0.1874 0.1972 

VT2 0.0148 
 

0.3506 0.3733 

VT4 0.0269 
 

0.5803 0.6665 

RRT1 0.1084 
 

0.1854 0.1822 

RRT2 0.1357 
 

0.2786 0.2612 

RRT4 0.1740 
 

0.3609 0.3267 

 

 

Table 3 reports the monthly turnover for the optimal portfolio allocation strategies, that is 

to say, the average percentage of wealth traded in each month (see equation 11). The 

strategies are listed in rows (results for the benchmark 1/N strategy are reported in the 

leading row of the table), whereas the columns refer to the returns data series introduced 

in the optimization problem, namely data series A (monthly returns), data series B (raw 

intraday data) and data series C (standardized intraday data). VT1, VT2 and VT4 represent 

the volatility timing strategy with a tuning parameter of 1, 2 and 4 respectively. In the 

same way RRT1, RRT2 and RRT4 represents the reward-to-risk timing strategy with a 

tuning parameter of 1, 2 and 4 respectively. The dynamic strategy with lowest turnover 

for each data series is given in bold.  
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Additionally, note that Table 3 shows that when using HFD the smaller turnover is 

obtained with the volatility timing (VT) and Reward-to-Risk timing (RRT) 

strategies considering a tuning parameter equal to 1 ( 𝜂 = 1), that is to say in those 

VT and RRT strategies in which the timing aggressiveness is lower, thus, the more 

risk loving the investor is the greater the turnover is. 

On the basis of this evidence, it can be inferred that the use of HFD in optimal 

portfolio allocation improves the performance by reducing the estimation error, 

which is not the primary barrier to successful optimization, but the turnover. 

Notice that active strategies that imply high turnover are dramatically affected by 

transaction costs, in such a way that, as highlighted by Kirby and Ostdiek (2012), 

periodic rebalancing and associated TCs may dramatically undermine the benefits 

of portfolio optimization strategies. Hence, in the next section we assess the 

different portfolio performances after incorporating the transaction costs of 

rebalancing monthly which play a crucial role whenever we follow a dynamic 

strategy.  

Having concluded by means of the Sharpe ratio (before TCs) that the use of HFD 

improves the performance, at this point, the focus is on how the higher turnover 

detected when using HFD affects the dynamic portfolio strategies performance. 

 

4.5.2 Breakeven transaction cost 
 

Although Markowitz (1952) demonstrated how to find the best portfolio at a 

specified time, his basic methodology based on the maximization of expected 

returns of the portfolio and the simultaneous minimization of the investment risk 

does not include the costs generated by changing portfolio weights. Given that, in 

practice, each transaction has an associated cost that must be considered in the 

decision investment process, we evaluate, to this extent, the impact of TCs on the 

utility gains reported in the above section. Thus, the role of transaction costs on 

portfolio selection is not trivial, so that the higher the turnover the greater the cost 

that the investor has to pay.  

Following Pooter et al. (2008), we define transaction costs as follows; 

  
𝐶𝑡+1 = 𝐶 ∑ | 𝑤𝑖,𝑡+1

𝑁
𝑖=1 −  𝑤𝑖,𝑡|             

 

(12) 

where 𝐶𝑡+1, 𝐶 and ∑ | 𝑤𝑖,𝑡+1
𝑁
𝑖=1 −  𝑤𝑖,𝑡|  represents the cost of reallocating the 

portfolio at the point of rebalancing, a fixed TC expressed in annualized 

percentage, and the sum of the absolute changes in the portfolio weights 

respectively. Thus, the net portfolio return is computed by deducting 𝐶𝑡+1. 
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Unfortunately, it is not easy to compute the total TCs associated to an investment. 

Accurate estimation of the amount of TCs is challenging because the appropriate 

estimates of TCs are not usually available and it requires information on the type 

of investor and broker. Academic research regarding TCs has employed a wide 

range of estimates. For instance, there are studies that apply TCs of 10 basis points 

(DeMiguel et  al., 2014), other investigations consider TCs of 50 basis points 

(DeMiguel et  al., 2009b), while there are those that use three levels of TCs, ranging 

from 10 to 100 basis points, representing low, medium, and high costs, 

respectively (Marquering and Verbeek, 2004). To overcome this issue and in line 

with Han (2006) we estimate the breakeven transaction cost (BTCs henceforth) 

defined as the TCs that make investors indifferent between the dynamic and the 

static strategies in terms of utility. In such a way that, when TCs are lower than the 

breakeven transaction cost, investors will follow a dynamic strategy; otherwise, 

they should follow the static benchmark, that is to say, the naïve rule86.  

Table 4 exhibits the BTCs of the dynamic strategies. As one might expect, in 

presence of TCs, the performance of dynamic strategies deteriorates; nevertheless, 

notice that all the portfolio methodologies that use raw HFD beat the benchmark 

strategy when TCs are below 12.08 basis points, and moreover,  for series B (raw 

intraday data) the maximum transaction costs possible that makes an investor 

indifferent between holding the equally-weighted portfolio and implementing a 

sophisticated strategy ranges from 12.08 to 76.43 basis points, being the best 

strategy to follow the RRT with a tuning parameter equal to one (RRT1). 

  

                                                
86 Our analysis assumes that the level of transactions costs is constant across assets and throughout the whole 
sample period. 
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TABLE 4: Breakeven transaction costs for monthly rebalancing strategies 

 

 Series A (monthly 
returns) 

Series B (raw 
intraday data) 

Series C (standardized 
intraday data) 

Mean variance 4.70 
 

12.08 -98.60 

Mean Variance 
restricted 

-61.29 35.09 1.99 

Minimum variance -140.63 
 

28.00 -3.06 

Minimum variance 
restricted 

-63,00 35.10 2.12 

VT1 -672.37 
 

35.50 12.30 

VT2 -482.80 
 

37.27 20.30 

VT4 -344.00 
 

41.90 26.90 

RRT1 29.70 
 

76.43 67.09 

RRT2 -5.83 
 

46.42 43.89 

RRT4 -20.89 
 

33.58 23.67 

 

Table 4 exhibits the breakeven transaction costs expressed in basis points and computed 

as the maximum transaction costs possible that makes an investor indifferent between 

holding the equally-weighted portfolio and implementing a sophisticated strategy, thus, 

when TCs are lower than the breakeven transaction cost, the investor will follow a 

dynamic strategy; otherwise, he should follow the static benchmark (1/N rule). VT1, VT2 

and VT4 represent the volatility timing strategy with a tuning parameter of 1, 2 and 4 

respectively. In the same way RRT1, RRT2 and RRT4 represents the reward-to-risk timing 

strategy with a tuning parameter of 1, 2 and 4 respectively. The best portfolio for each 

series, defined as the one with the highest breakeven transaction costs, is shown in bold. 
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As far as standardized HFD is concerned only the VT and RRT strategies 

outperform the equally-weighted strategy for TCs below 12.30 basis points. As can 

be appreciated in Table 4, for series C (standardized intraday data), the BTCs for 

the timing strategies vary from 12.30 to 67.09 basis points and the winner strategy 

is the RRT1 as well. 

With regard to monthly data (series A), only the RRT1 strategy beats the naïve rule 

for TCs smaller than 29.70 basis points. The BTC for the mean variance strategy is 

4.70 basis points and the remaining strategies have negative BTCs, obviously, 

because the Sharpe ratio before TCs is lower than the Sharpe ratio for the naïve 

strategy as can be appreciated in Table 2. Consequently, when monthly data are 

introduced into the optimization problem we obtain poorer performance as 

reported in DeMiguel et al. (2009b). 

Thus, despite the higher turnover obtained in the HFD-based approaches, the 

performance of those strategies that use HFD to estimate the covariance matrix 

improves considerably beating the 1/N rule in the majority of cases. 

Overall, these results underscore the positive performance implications of 

deploying HFD in the field of optimal portfolio allocation, especially raw intraday 

data. Likewise, in line with Kirby and Ostdiek (2012), the VT and RRT strategies 

seem to be two promising approaches. 

 

4.6 Measurement estimation error 
 

It is widely known that estimating the covariance matrix of returns has always 

been challenging. Previous studies indicate that when the number of assets 

considered is large in relation to the number of return observations, the sample 

variance-covariance matrix is estimated with a lot of error. Furthermore, provided 

that asset returns are independently and identically distributed, the higher the 

number of observations, the lower the errors in the covariance matrix estimated 

using historic returns (Ledoit and Wolf, 2004b).87 Thus, based on this idea and the 

results obtained so far, we expect that error in estimating the variance-covariance 

matrix to be lower when raw88 HFD are used in the analysis.  

Given that, previous results suggest better performance when raw HFD are used in 

the optimization problem, we compare in this section the estimation error 

obtained when using raw intraday data (data series B) and monthly data (data 

                                                
87 When the number of variables  are finite and fixed, and the number of observations  goes to infinity, under 
standard asymptotics, the sample covariance matrix is well-conditioned (in the limit) and has some appealing 
optimality properties. 
88 Results in previous sections show that dynamic strategies that use raw intraday data outperform those 
dynamic strategies that use standardized intraday data. 
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series A). To this end, we measure the estimation error by means of the following 

metrics: a) mean absolute error (MAE), b) mean squared error (MSE) and c) the 

Mincer-Zarnowitz regression89 expressed as follows: 

 𝜎̃𝑖𝑡
2 =  𝑎0 +  𝑎1 𝜎𝑖𝑡

2  ̂ + 𝑒𝑖𝑡,          𝑡 = 1, … , 𝑇; 𝑖 = 1, … , 𝑁  (13) 

 

where 𝜎̃𝑖𝑡
2  is a proxy for the ex-post volatility90, 𝜎𝑖𝑡

2  ̂  is the out-of-sample variance 

forecast91 and 𝑒𝑖𝑡 are the residuals of the regression. Then, we compare the results 

of these metrics.  

Table 5 exhibits the results of the metrics employed to measure errors in the 

estimation of the variance-covariance matrix when using monthly returns (data 

series A) and raw intraday returns (data series B).  

  

                                                
89 Mincer and Zarnowitz (1969). 
90 We consider the realized volatility obtained with raw returns as a proxy of the ex-post volatility. 
91  For each data series (monthly and raw intraday data series), we consider the variance estimated in the 
previous period as variance forecast 
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TABLE 5: Measurement estimation error 

PANEL A: Mean absolute error (MAE) and Mean squared error (MSE) 

 Series A (monthly returns)  Series B (raw intraday data) 
MAE 2.300%  0.525% 
MSE 0.008%  0.003% 

PANEL B: Mincer-Zarnowitz regression with monthly data (data series A) 

 CAC40 DAX30 FTSE100 SMI KOSPI200 NIKKEI225 S&P 500 S&P/TSX 60 

Coeficient 𝐚𝟎   0.004** 
(0.01) 

0.002 
(0.17) 

0.005 
(0.16) 

0.002*** 
(0.00) 

0.001 
(0.27) 

0.009*** 
(0.00) 

0.012*** 
(0.00) 

0.001 
(0.70) 

Coeficient 𝐚𝟏 -0.570 
(0.37) 

0.144 
(0.65) 

-2.013 
(0.36) 

-0.373 
(0.28) 

0.215** 
(0.01) 

-2.120** 
(0.01) 

-5.498** 
(0.00) 

0.457 
(0.54) 

𝑹𝟐 0.005 0.001 0.005 0.007 0.042 0.038 0.047 0.002 

Mean(|𝐞𝐢𝐭|) 0.0018 0.0018 0.0015 0.0011 0.0014 0.0013 0.0017 0.0013 

Standard deviation   
(𝒆𝒊𝒕) 

0.0027 0.0032 0.0031 0.0018 0.0030 0.0023 0.0031 0.0028 

PANEL C: Mincer-Zarnowitz regression with raw intraday data (data series B) 

 CAC40 DAX30 FTSE100 SMI KOSPI200 NIKKEI225 S&P 500 S&P/TSX 60 

Coeficient 𝐚𝟎  0.0012*** 
(0.00) 

0.0013*** 
(0.00) 

0.0009*** 
(0.00) 

0.0006*** 
(0.00) 

0.0007*** 
(0.00) 

0.0007*** 
(0.00) 

0.0006** 
(0.01) 

0.0005** 
(0.01) 

Coeficient 𝐚𝟏 0.555*** 
(0.00) 

0.516*** 
(0.00) 

0.457*** 
(0.00) 

0.567*** 
(0.00) 

0.6366*** 
(0.00) 

0.6356*** 
(0.00) 

0.644*** 
(0.00) 

0.6710*** 
(0.00) 

𝐑𝟐 0.309 0.267 0.200 0.320 0.404 0.403 0.415 0.450 

Mean(|𝐞𝐢𝐭|) 0.0012 0.0012 0.0011 0.0008 0.0010 0.0009 0.0009 0.0007 

Standard deviation 
(𝒆𝒊𝒕) 

0.0024 0.0029 0.0029 0.0016 0.0024 0.0024 0.0026 0.0022 

Table 5 exhibits the results of the metrics used to measure errors in the estimation of the variance-covariance matrix when using monthly returns (data series A) 

and raw intraday returns (data series B). Panel A shows the MAE and MSE, which are listed in rows, whereas the columns refer to the returns data series used in 

this research. The return series with the lowest estimation error is given in bold. 

Panels B and C show the Mincer-Zarnowitz regression for data series A and B respectively, given by 𝜎̃𝑖𝑡
2 =  𝑎0 + 𝑎1 𝜎𝑖𝑡

2  ̂ +  𝑒𝑖𝑡    𝑓𝑜𝑟  𝑡 = 1, … , 𝑇; 𝑖 = 1, … , 𝑁,  where 𝜎̃𝑖𝑡
2  

is a proxy for the ex-post volatility, 𝜎𝑖𝑡
2  ̂  is the out-of-sample variance forecast and 𝑒𝑖𝑡  are the residuals of the regression. The associated p-values are shown below 

the coefficients of the regression ( 𝑎0, 𝑎1) and ***, ** and * denote significance at 0.01, 0.05 and 0.1.  

1
2
8
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Panel A shows the mean absolute error (MAE) and the mean squared error (MSE). 

Note that these error estimation metrics are listed in rows, whereas the columns 

refer to the returns data series (monthly data and raw HFD). As can be 

appreciated, the lowest estimation error is obtained when raw intraday data are 

used in the analysis (see that MAE and MSE are equal to 0.525% and 0.003% 

respectively for raw intraday data).  

Additionally, panel B presents the results of the Mincer-Zarnowitz regression. The 

regression coefficients (𝑎0, 𝑎1), the coefficient of determination (𝑅2), the mean of 

the absolute errors (𝑒𝑖𝑡) and their standard deviation are given in rows, whereas 

the columns show the indexes employed. Notice that when raw intraday data are 

used to implement the Mincer-Zarnowitz regression all the coefficients are 

significant, contrariwise, when monthly data are employed even no statistically 

significant linear dependence between 𝜎̃𝑖𝑡
2  and 𝜎𝑖𝑡

2  is detected in some indexes 

(DAX30, FTSE100 and S&P/TSX 60). Likewise, the coefficient of determination for 

monthly data ranges from 0.001 to 0.042, while it varies from 0.200 to 0.450 when 

using raw intraday data. These results suggest that the overall goodness of fit 

when using monthly data is really poor and it improves considerably by using raw 

HFD. Furthermore, see that the mean of the absolute errors and their standard 

deviation are lower in panel C than in panel B for all cases (see for instance that for 

the CAC40 index the mean absolute error is 0.0018 and 0.0012 for monthly and 

raw intraday data respectively, and the standard deviation is 0.0027 for monthly 

data and 0.0024 for raw intraday data). Thus, given that, the lower the errors the 

more accurate the forecast, this underscores once more the aforementioned 

findings.  

The results thus obtained are in line with the findings in the previous sections and 

suggest that the performance of dynamic portfolio strategies worsens as the 

frequency of the observations decreases.    

Therefore, this outcome is consistent with the theoretical predictions of Ledoit and 

Wolf (2004b) and confirms our expectations, suggesting that the use of HFD in 

optimal portfolio allocation, particularly raw data, leads to better performance by 

reducing the estimation error.  

To sum up, it can be concluded that the higher the frequency of the observations 

the lower the estimation error and, as a consequence of that, dynamic portfolio 

strategies obtain better performance. 
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4.7 Additional performance results 
 

As explained above in section 3, by completing with zeros the non-trading periods 

we are assuming that during these intervals of five minutes the estimated pair-

wise correlations between the excess risky-asset returns are zero. Thus, as 

robustness check of the effect of this assumption we implement in this section the 

same study excluding those indexes without overlapping period with any other 

market, that is to say, we remove from the study the KOSPI 200 and the NIKKEI 

225 stock indexes, this leaves us with a sample of six stock market indexes.  

Table 6 reports the annualized Sharpe ratio before TCs considering only the six 

stock market indexes with overlapping period with other markets, that is to say 

the CAC40, DAX30, FTSE100, S&P/TSX 60, S&P 500 and SMI stock indexes. As can 

be appreciated when monthly data are considered, after having removed the 

NIKKEI 225 and KOSPI 200 indexes, results suggest that only the Sharpe ratio for 

the mean variance strategy (0.4257) beats the equally-weighted portfolio (note 

that the Sharpe ratio for the naïve strategy is equal to 0.2598 whereas the Sharpe 

ratios for the remaining dynamic strategies varies from 0.1732 to 

0.2473).However, the performance substantially improves by using HFD, 

particularly by using raw HFD. Column 2 in Table 6 shows the Sharpe ratios when 

raw intraday data are used in the optimization problem. See that in this case, the 

Sharpe ratios are greater than those ratios obtained by using monthly data (except 

for the mean variance approach), and moreover, they also beat the equally-

weighted strategy. For instance, the Sharpe ratio for the VT4 is equal to 0.1732 and 

0.5404 for monthly and raw intraday data respectively. 
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TABLE 6: Annualized Sharpe ratio before transaction costs (excluding Nikkei 225 

and Kospi 200 stock market indexes) 

 

 Series A (monthly 
returns) 

Series B (raw 
intraday data) 

Series C (standardized 
intraday data) 

1/N 0.2598 0.2598 0.2598 

Mean variance 0.4257 
(0.00)*** 

-0.2006 
(1.00)  

0.1240 
(1.00) 

Mean Variance 
restricted 

0.2473 
(1.00)  

0.3575 
(0.00) *** 

0.2834 
(0.00) *** 

Minimum variance 0.0357 
(0.99)  

0.3959 
(0.00) *** 

0.2802 
(0.00) *** 

Minimum variance 
restricted 

0.2473 
(1.00)  

0.3575 
(0.00) *** 

0.2806 
(0.00) *** 

VT1  0.2203 
(1.00)  

0.3190 
(0.00) *** 

0.2740 
(0.38) 

VT2 0.2023 
(1.00)  

0.4018 
(0.00) *** 

0.3017 
(0.15) 

VT4 0.1732 
(1.00)  

0.5404 
(0.00) *** 

0.3561 
(0.45) 

RRT1 0.1860 
(0.99)  

0.2466 
(0.99) 

0.2309 
(0.26) 

RRT2 0.1916 
(0.98) 

0.2882 
(0.00) *** 

0.2636 
(0.18) 

RRT4 0.1995 
(0.87) 

0.3274 
(0.06)* 

0.3003 
(0.00) *** 

 

Table 6 exhibits the annualized Sharpe ratio of the optimal portfolio allocation strategies. 

The strategies are listed in rows (results for the benchmark 1/N strategy are reported in 

the leading row of the table), whereas the columns refer to the returns data series 

introduced in the optimization problem, namely data series A (monthly returns), data 

series B (raw intraday data) and data series C (standardized intraday data). We rely on the 

Opdyke (2007) test to test whether the null hypothesis that the Sharpe ratio of an optimal 

strategy is less or equal to that of the benchmark strategy (1/N). The associated p-values 

are shown below the performance metric in each case and ***, ** and * denote that the null 

hypothesis is rejected at 1%, 5% and 10% significance level. The strategy with the highest 

Sharpe ratio for each data series is given in bold. VT1, VT2 and VT4 represent the volatility 

timing strategy with a tuning parameter of 1, 2 and 4 respectively. In the same way RRT1, 

RRT2 and RRT4 represents the reward-to-risk timing strategy with a tuning parameter of 

1, 2 and 4 respectively. 
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Table 7 exhibits the outcome of the BTCs analysis considering only these six 

indexes. Notice that, similar to results found in the previous section, the majority of 

strategies have negative BTCs when using monthly data; however, see in column 2 

that most of the strategies improve their performance when using raw HFD (for 

instance, see that for the VT strategies the BTCs ranges from 40 to 51 basis points 

for raw HFD, whereas it varies from -569 to -325 basis points when using monthly 

data). Therefore, these findings reinforce the positive performance of switching 

from data at lower frequencies to intraday data in the context of optimal asset 

allocation, especially when using raw data. 
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TABLE 7: Breakeven transaction costs for monthly rebalancing strategies 

(excluding Nikkei 225 and Kospi 200 stock market indexes) 

 

 Series A (monthly 
returns) 

Series B (raw 
intraday data) 

Series C (standardized 
intraday data) 

Mean variance 3.45 
 

-55.57 -13.60 

Mean Variance 
restricted 

-10.32 42.36 8.78 

Minimum variance -115.00 
 

38.00 6.10 

Minimum variance 
restricted 

-10.00 42.00 8.90 

VT1 -569.00 
 

40.00 9.61 

VT2 -414.50 
 

48.00 14.50 

VT4 -325.00 
 

51.00 18.80 

RRT1 -92.44 
 

-9.56 -21.30 

RRT2 -81.97 
 

13.8 2.65 

RRT4 -66.96 
 

26.00 18.30 

 

Table 7 exhibits the breakeven transaction costs expressed in basis points and computed 

as the maximum transaction costs possible that makes an investor indifferent between 

holding the equally-weighted portfolio and implementing a sophisticated strategy, thus, 

when TCs are lower than the breakeven transaction cost, the investor will follow a 

dynamic strategy; otherwise, he should follow the static benchmark (1/N rule). VT1, VT2 

and VT4 represent the volatility timing strategy with a tuning parameter of 1, 2 and 4 

respectively. In the same way RRT1, RRT2 and RRT4 represents the reward-to-risk timing 

strategy with a tuning parameter of 1, 2 and 4 respectively. The best portfolio for each 

series, defined as the one with the highest breakeven transaction costs, is shown in bold. 
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4.8 Concluding remarks 
 

The modern portfolio theory and its extensions have been widely used in practice. 

Nevertheless, as a result of estimation errors, some studies suggest that the naïve 

strategy beats the optimization portfolio strategies in any case. These findings 

have brought into question the benefits of the investment theory.  

Additionally, a prominent strand of literature suggests that intraday returns may 

be used to construct daily volatility estimates which theoretically should be more 

accurate than those based on data at lower frequencies, and may minimize the 

portfolios tracking error volatility.  

Based on this approach, the purpose of this paper is to contribute to the existing 

literature regarding asset allocation by studying the benefits of using intraday data 

in optimal portfolio choice to estimate the variance-covariance matrix, while 

considering at the same time, a comprehensive listing of major stock market 

indexes to build a diversified portfolio.  

In the absence of TCs, portfolios designed using HFD and, particularly raw data, are 

found to provide much better performance than those that employ monthly data, 

and moreover they beat the equally-weighted portfolio strategy.  

Furthermore, results suggest that the use of HFD in optimal portfolio allocation 

leads to better performance by reducing the estimation error, which is not the 

primary barrier to successful optimization, but the turnover. Even though, the 

performance of the HFD-based approaches is considerably superior before 

transaction costs, high turnover is the most troublesome aspect of using HFD. 

Notwithstanding, despite the higher turnover obtained when using HFD, the 

performance of those strategies based on intraday data to estimate the covariance 

matrix improves considerably beating the 1/N rule even after having considered 

TCs. Thus, an accurate forecast and minimization of the estimation error is 

paramount, and in this sense, HFD seems to play a major role.  

Overall, these results underscore the positive performance implications of 

deploying HFD, especially raw intraday data, and suggest that the benefit from 

switching from data at lower frequencies to intraday data may be worthwhile in 

the field of optimal portfolio allocation.  
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5. GENERAL CONCLUSIONS 
 

With the advent of the new technological era, the development of high-frequency 

datasets is easier than ever. It has allowed a wide range of empirical investigations 

regarding the financial markets to deepen the understanding on several fields. In 

this dissertation, three important issues, namely, the study of the lead-lag 

relationship, volatility transmission and optimal portfolio choice, are addressed by 

considering intraday data on a five-minute interval basis. Thus, the main purpose 

of this thesis is to provide new insights into the aforementioned aspects when 

high-frequency data are used in the analysis. 

Chapter A is devoted to the study of the lead-lag relationship between the DAX30 

stock index and DAX30 index futures. This research contributes to the existing 

literature by using high-frequency data and nonlinear models based on an 

extension of Markovian regime shifts to consider the presence of different regimes 

in the deviation from the long run equilibrium.  

On one hand, in the short run analysis, when using linear models, results support 

the hypothesis of unilateral causality in such a way that the futures market leads 

the spot market; however, pronounced two-way causality is detected in the 

estimation of the MS-VECM suggesting bilateral interaction in the price discovery 

process, but the futures market has more predictive capability as well. These 

results are in good agreement with previous empirical studies that reinforce the 

idea of the leading role of the futures market. 

On the other hand, when analysing the cointegration relationship (long run 

analysis), the results are completely different depending on the model used to 

make the estimations. The traditional VECM suggests that spot and futures prices 

do not follow a common long term trend; however the MS-VECM reveals that spot 

and futures markets are cointegrated and it is the spot price that makes the greater 

adjustment to re-establish the equilibrium. Moreover, spot price adjustment 

accelerates in states with higher ECT, suggesting that the convergence towards 

equilibrium is faster when arbitrage opportunities arise.  

Additionally, results from the impulse response analysis reinforce the idea that the 

dynamic causal effect is remarkably different in regimes with different arbitrage 

opportunities in such a way that as the arbitrage opportunities increase, the 

impact of unexpected shocks on prices increases.  

In sum, these results underscore the importance of considering regimes present in 

the error correction term and the hazards of strong linear hypothesis when 

analysing the lead-lag relationship. 
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Chapter B studies the effect of the well-documented intraday seasonality on 

volatility transmission between the spot and futures markets of the CAC40, DAX30 

and FTSE100.In this article, we aim to address how this strong intraday repetitive 

pattern in average absolute returns affects the volatility transmission dynamics. In 

essence, the questions that this study attempts to answer are the following: Are the 

results obtained in this research field the same whether raw data or standardized 

data are considered? Or, are the persistence of a shock on volatility return in a 

market and the net directional spillover effects among the spot and futures 

markets the same regardless of whether this seasonal component is considered?. 

In this respect, the most noteworthy results are that cross-market volatility 

interactions between the spot and futures markets have diminished noticeably 

after considering the seasonal pattern and that volatility transmission differs 

significantly whether raw and standardized returns are considered, so that when 

intraday data are not standardized, the optimal number of lags in the VAR model 

determined by the selection criteria seems to be redundant, suggesting that if the 

seasonal pattern is neglected, it might result in invalid statistical inference in the 

spillover analysis. Moreover the impulse response function analysis reveals that 

when a shock hits the system and the intraday periodic component has not been 

removed before implementing the spillover analysis, the response to that shock is 

highly persistent. Finally the directional measurement of volatility spillovers 

shows that the spot market is the largest net sender of volatility spillovers to the 

futures market and that, in terms of magnitude, the net pairwise volatility spillover 

are generally greater when the intraday periodic component has been considered, 

which suggests, once again, that we might be losing some relevant information 

regarding volatility transmission if this seasonal component is ignored. 

Overall, this second chapter reveals that high-frequency data can shed new light on 

issues concerning the volatility spillover between spot and futures markets and the 

importance of removing the seasonal component to reduce the risk of spurious 

causality when using intraday data in volatility modelling.   

 

The third and last chapter of this dissertation (chapter C) contributes to the 

existing literature regarding asset allocation by studying the benefits of using 

intraday data to estimate the variance-covariance matrix considering a 

comprehensive listing of major stock market indexes to build a diversified 

portfolio. From the outcome of this research can be inferred that even after 

considering transaction costs, not only do portfolios designed using high-

frequency data, and, particularly raw data, provide much better performance than 

those that use monthly data, but they also beat the naïve strategy. Therefore, these 

results highlight the positive performance implications of deploying high-

frequency data and suggest that the benefit from switching from data at lower 

frequencies to intraday data in the field of optimal portfolio allocation is worthy. 
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Thus, what seems clear is that high-frequency data is an area of paramount 

importance and plays a major role in the fields studied in this dissertation. High-

frequency data provides a great potential to improve our understanding of the 

lead-lag relationship, as well as the volatility spillovers between the spot and 

futures markets. Finally, it also reveals great potential when implemented to the 

problem of optimal portfolio choice, showing better performance than other 

standard strategies that use data at lower frequencies.  

To sum up, this thesis advocates that high-frequency data may add compelling 

value in the fields that have been covered.  
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6. RESUMEN 
 

6.1 Introducción92 
 

La creciente disponibilidad de datos de alta frecuencia ha impulsado un amplio 

abanico de investigaciones empíricas que tratan de explicar el comportamiento de 

los mercados financieros. Sin duda, el uso de datos de alta frecuencia puede revelar 

nueva información que no puede ser detectada con frecuencias menores; sin 

embargo, este tipo de datos también suponen un reto para académicos e 

investigadores  debido a las regularidades presentes en los datos intradiarios 

(Goodhart and O´Hara, 1997).  

En base a esta idea, el objetivo general de esta tesis es analizar las principales 

conclusiones alcanzadas cuando datos de alta frecuencia son utilizados en los 

siguientes estudios: a) el análisis de las relaciones de lead-lag entre los índices 

bursátiles de contado y futuro cuando diferentes regímenes están presentes en los 

datos, b) la influencia de la estacionalidad intradiaria en la transmisión de 

volatilidad entre los mercados de contado y futuro; y c) la selección óptima de 

carteras. Para ello, esta tesis se divide en tres artículos publicables, de forma que 

cada uno de ellos corresponde a un capítulo de tesis. Por tanto, estos tres capítulos 

que constituyen la esencia de esta tesis, son independientes entre sí (en el sentido 

de que cada uno puede ser leído y entendido de forma independiente) pero su 

nexo común es el uso de datos de alta frecuencia. Estos capítulos están precedidos 

por una breve introducción al tema que contiene la información esencial y les sigue 

a continuación una conclusión general.  

Así pues, el punto de unión entre los tres capítulos es el uso de datos de alta 

frecuencia.  

 

6.2 Capítulos de la tesis 
 

Esta tesis está dividida en tres capítulos (capítulos A, B y C), además de la 

introducción y el último capítulo dedicado a las conclusiones generales. 

El Capítulo A se titula La relación de lead-lag entre los índices bursátiles de 

contado y futuro: datos intradiarios y Modelos de Cambio de Régimen, e 

                                                
92 Dado que ninguno de los capítulos han sido redactados en ninguna de las dos lenguas oficiales de la 
Universitat Jaume I, en cumplimiento de lo previsto en el artículo 27 de la Normativa de los estudios de 
Doctorado, regulados por el RD 99/2011, en la Universitat Jaume I, aprobada por el Consejo de Gobierno núm. 
19 de 26 de enero de 2012 y en vigor desde 11 de febrero de 2012, se resumen a continuación los tres 
capítulos y se presentan las conclusiones de la tesis en Castellano.   
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investiga la relación de lead-lag entre los índices bursátiles de contado y de futuro 

DAX30. Este estudio contribuye a la literatura existente utilizando datos de alta 

frecuencia y modelos no lineales basados en una extensión de cambio de régimen 

con cadenas de Markov (denominados Modelos de cambio de régimen) con el 

objetivo de superar las carencias derivadas de las hipótesis lineales, ampliamente 

utilizadas en la literatura previa, en la relación dinámica entre los precios de 

contado y futuro. Los resultados de este estudio muestran la importancia de tener 

en cuenta los diferentes regímenes detectados en el término de corrección de error 

para proporcionar modelos empíricos más adecuados y una mejor comprensión de 

la transmisión de la información de forma que los agentes participantes en el 

mercado pueden implementar estrategias más eficientes. Además, los resultados 

indican que los modelos lineales podrían estar mal especificados cuando en los 

datos hay cambios estructurales y estos han sido ignorados. 

 

El capítulo B es La influencia de la estacionalidad intradiaria en el patrón de 

transmisión de la volatilidad y analiza el efecto de la documentada 

estacionalidad intradiaria en la transmisión de volatilidad entre los mercados de 

contado y futuro de los índices bursátiles CAC40, DAX30 y FTSE100 utilizando 

datos de alta frecuencia y la varianza realizada, y compara los resultados obtenidos 

utilizando modelos en los que el componente estacional ha sido ignorado versus 

los resultados obtenidos con modelos en que este componente estacional si se ha 

considerado. Este estudio pone de manifiesto el impacto que la estacionalidad 

intradiaria tiene en los resultados alcanzados sobre trasmisión de volatilidad. Los 

resultados muestran que los datos de alta frecuencia pueden aportar nueva 

información sobre cuestiones relacionadas con la transmisión de volatilidad entre 

mercados, y destacan la importancia de eliminar el componente estacional para 

reducir el riesgo de causalidad espuria cuando se utilizan datos de alta frecuencia 

en los modelos de volatilidad.  

Por último, el Capítulo C se titula Aplicación de datos de alta frecuencia en la 

selección optima de carteras y estudia los beneficios de utilizar datos 

intradiarios en la estimación de la matriz de varianzas-covarianzas en la selección 

óptima de carteras, considerando al mismo tiempo una amplia lista de los 

principales índices bursátiles que nos permita construir una cartera diversificada. 

Recientemente, una importante corriente de la literatura relativa a selección de 

carteras muestra evidencia de que las estrategias tradicionales de optimización de 

carteras no superan la estrategia 1/N (DeMiguel et al., 2009b); lo que pone en 

cuestión la utilidad de la teoría de inversión. Estos hallazgos suponen un desafío 

interesante que nos llevan a evaluar en este estudio si mediante el uso de datos de 

alta frecuencia en la selección de carteras, en lugar de datos con frecuencias 

menores, podemos mejorar los resultados y batir la estrategia naïve. En este 

sentido, se propone la construcción de carteras diversificadas considerando datos 

mensuales y datos de alta frecuencia en la modelización de los segundos 
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momentos, y se comparan los resultados de estas carteras en términos de varias 

medidas out-of-sample, concretamente el Sharpe ratio, el certainty equivalent rate 

of return y el  turnover. Los resultados muestran las ventajas de pasar de datos con 

baja frecuencia a datos con alta frecuencia; y además, se concluye que los 

resultados obtenidos con las estrategias dinámicas que utilizan datos intradiarios 

son mejores que aquellos obtenidos con la estrategia 1/N, incluso en presencia de 

costes de transacción.         

 

6.3 Conclusión 
 

Con la llegada de la nueva era tecnológica, el desarrollo de las bases de datos de 

alta frecuencia nunca fue tan fácil. Ello ha permitido un amplio abanico de 

investigaciones empíricas relacionadas con los mercados financieros para  

profundizar en la comprensión de diversos campos. En esta tesis se abordan tres 

cuestiones importantes utilizando datos intradiarios con una frecuencia de cinco 

minutos, en concreto el estudio de la relación de lead-lag y transmisión de 

volatilidad entre los mercados de contado y futuro, y la selección óptima de 

carteras. Por tanto, el principal objetivo de esta tesis es aportar nueva información 

relativa a estos tres aspectos cuando se utilizan datos de alta frecuencia en el 

análisis.  

El capítulo A está dedicado al estudio de la relación de lead-lag entre los índices 

bursátiles de contado y futuro DAX 30. Este estudio contribuye a la literatura 

existente utilizando datos de alta frecuencia y modelos no lineales basados en una 

extensión de los modelos de cambio de régimen markovianos, los cuales nos 

permiten incorporar diferentes regímenes presentes en la desviación del equilibrio 

a largo plazo. 

Por una parte, el estudio de la relación a corto plazo cuando se utilizan modelos 

lineales indica que existe causalidad unidireccional corroborando la hipótesis del 

liderazgo del mercado de futuro; sin embargo al utilizar el modelo no linear MS-

VECM se detecta que en el proceso de Price Discovery la interacción es bilateral, 

aunque el mercado de futuro sigue teniendo también más capacidad predictiva. 

Estos resultados son acordes con estudios previos que apoyan la idea del liderazgo 

del mercado de futuro. 

Por otra parte, al analizar la relación de cointegración, los resultados son 

completamente diferentes en función del modelo utilizado para hacer las 

estimaciones. Las estimaciones del modelo tradicional VECM indican que los 

precios de contado y futuro no siguen una tendencia común a largo plazo; sin 

embargo, el modelo no lineal MS-VECM muestra que los precios de contado y 

futuro están cointegrados y que es el precio de contado el que más ajusta para 
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reestablecer el equilibrio. Además, el ajuste del precio de contado se acelera en 

aquellos estados con mayor término de corrección de error, lo que pone de 

manifiesto que la convergencia hacia el equilibrio es más rápida cuanto mayor son 

las oportunidades de arbitraje. 

Asimismo, los resultados del análisis impulso respuesta refuerzan la idea de que 

cuando las oportunidades de arbitraje se incrementan, el impacto en los precios de 

un shock inesperado aumenta.  

En síntesis, los resultados de este primer capítulo subrayan la importancia de tener 

en cuenta los regímenes presentes en el término de corrección de error y el peligro 

de las hipótesis lineales en el análisis de la relación de lead-lag. 

El Capítulo B analiza el efecto de la ampliamente documentada estacionalidad 

intradiaria en la transmisión de volatilidad entre los mercados de contado y futuro 

de los índices bursátiles CAC40, DAX30 a y FTSE100. En este artículo el principal 

objetivo es estudiar como el patrón repetitivo intradiario de los rendimientos 

medios absolutos puede afectar a la dinámica de transmisión de volatilidades. En 

esencia, las cuestiones que este estudio trata de responder son las siguientes: ¿son 

los resultados obtenidos es este campo de investigación los mismos si se 

consideran datos raw o datos estandarizados? O, ¿es la persistencia de un shock en 

la volatilidad de los rendimientos en un mercado y el efecto neto de los directional 

spillover entre el mercado de contado y futuro el mismo si el componente 

estacional es considerado o no? En este sentido, los resultados más notables 

muestran que las interacciones de volatilidad entre los mercados de contado y 

futuro disminuyen considerablemente después de eliminar el patrón estacional y 

que la transmisión de volatilidad difiere significativamente en función de si se 

utilizan datos raw o estandarizados, de forma que cuando los datos intradiarios no 

han sido estandarizados, el número óptimo de retardos en el modelo VAR 

determinado por el criterio de selección parece ser superfluo, sugiriendo que si el 

componente periódico es ignorado, esto podría invalidar la inferencia estadística 

en el análisis de spillovers. Además el análisis impulso respuesta muestra que 

cuando un shock llega al mercado y el componente intradiario no se ha eliminado 

antes de realizar el análisis de spillover, la respuesta a ese shock es altamente 

persistente. Finalmente, el estudio del efecto neto de los directional spillover entre 

el mercado de contado y futuro indica que el mercado de contado es el máximo 

emisor de volatility spillovers al mercado de futuro y que en términos de magnitud, 

la transmisión neta de volatilidades entre estos mercados es mayor cuando se 

tiene en cuenta el componente intradiario, poniendo de manifiesto una vez más 

que si no se considera este patrón intradiario podríamos estar perdiendo 

información relevante relativa a la transmisión de volatilidad.  

En líneas generales, el segundo capítulo destaca la importancia de los datos de alta 

frecuencia en el estudio de la transmisión de volatilidad y la importancia de 
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eliminar el componente periódico para reducir el riesgo de causalidad espuria al 

utilizar datos intradiarios en la modelización de la volatilidad. 

Por último, el capítulo C de esta tesis contribuye a la literatura existente relativa a 

optimización de carteras estudiando los beneficios de utilizar datos intradiarios en 

este campo de estudio. Los resultados muestran que aquellos portfolios diseñados 

utilizando datos de alta frecuencia, y en particular datos raw intradiarios, arrojan 

mejor performance  que aquellos portfolio diseñados con datos mensuales, incluso 

después de considerar los costes de transacción; y que además, son capaces de 

batir a la estrategia 1/N.  

Así pues, lo que parece claro  es que el análisis de datos de alta frecuencia es 

interesante en muchos sentidos y que juega un papel crucial en los ámbitos de 

estudio abordados en esta tesis. Los datos de alta frecuencia proporcionan un gran 

potencial para mejorar la comprensión de las relaciones de lead-lag, así como de la 

transmisión de volatilidades entre los mercados de contado y futuro. Finalmente, 

cabe destacar su gran potencial en la selección óptima de carteras para la 

obtención de una mejor performance. 

En síntesis, esta tesis pone de relieve que los datos de alta frecuencia son una 

valiosa propuesta para el estudio de los campos de investigación abarcados en este 

trabajo.  
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