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Universitat Autònoma de Barcelona, Spain.

This document was typeset by the author using LATEX2ε.

The research described in this book was carried out at the Superior School of Mechanical
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ii



Abstract

Nowadays, digital images are used in many areas in everyday life, but they tend to be big. This
increases amount of information leads us to the problem of image data storage. For example,
it is common to have a representation a color pixel as a 24-bit number, where the channels
red, green, and blue employ 8 bits each. In consequence, this kind of color pixel can spec-
ify one of 224 ≈ 16.78 million colors. Therefore, an image at a resolution of 512 × 512 that
allocates 24 bits per pixel, occupies 786,432 bytes. That is why image compression is important.

An important feature of image compression is that it can be lossy or lossless. A compressed
image is acceptable provided these losses of image information are not perceived by the eye.
It is possible to assume that a portion of this information is redundant. Lossless Image Com-
pression is defined as to mathematically decode the same image which was encoded. In Lossy
Image Compression needs to identify two features inside the image: the redundancy and the
irrelevancy of information. Thus, lossy compression modifies the image data in such a way
when they are encoded and decoded, the recovered image is similar enough to the original one.
How similar is the recovered image in comparison to the original image is defined prior to the
compression process, and it depends on the implementation to be performed.

In lossy compression, current image compression schemes remove information considered ir-
relevant by using mathematical criteria. One of the problems of these schemes is that although
the numerical quality of the compressed image is low, it shows a high visual image quality,
e.g. it does not show a lot of visible artifacts. It is because these mathematical criteria, used
to remove information, do not take into account if the viewed information is perceived by the
Human Visual System. Therefore, the aim of an image compression scheme designed to obtain
images that do not show artifacts although their numerical quality can be low, is to eliminate
the information that is not visible by the Human Visual System.

Hence, this Ph.D. thesis proposes to exploit the visual redundancy existing in an image by
reducing those features that can be unperceivable for the Human Visual System.

First, we define an image quality assessment, which is highly correlated with the psychophys-
ical experiments performed by human observers. The proposed CwPSNR metrics weights the
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well-known PSNR by using a particular perceptual low level model of the Human Visual Sys-
tem, e.g. the Chromatic Induction Wavelet Model (CIWaM). Second, we propose an image
compression algorithm (called Hi-SET), which exploits the high correlation and self-similarity
of pixels in a given area or neighborhood by means of a fractal function. Hi-SET possesses the
main features that modern image compressors have, that is, it is an embedded coder, which
allows a progressive transmission. Third, we propose a perceptual quantizer (ρSQ), which is
a modification of the uniform scalar quantizer. The ρSQ is applied to a pixel set in a certain
Wavelet sub-band, that is, a global quantization. Unlike this, the proposed modification allows
to perform a local pixel-by-pixel forward and inverse quantization, introducing into this pro-
cess a perceptual distortion which depends on the surround spatial information of the pixel.
Combining ρSQ method with the Hi-SET image compressor, we define a perceptual image
compressor, called ΦSET. Finally, a coding method for Region of Interest areas is presented,
ρGBbBShift, which perceptually weights pixels into these areas and maintains only the more
important perceivable features in the rest of the image.

Results presented in this report show that CwPSNR is the best-ranked image quality method

when it is applied to the most common image compression distortions such as JPEG and

JPEG2000. CwPSNR shows the best correlation with the judgement of human observers,

which is based on the results of psychophysical experiments obtained for relevant image quality

databases such as TID2008, LIVE, CSIQ and IVC. Furthermore, Hi-SET coder obtains better

results both for compression ratios and perceptual image quality than the JPEG2000 coder

and other coders that use a Hilbert Fractal for image compression. Hence, when the proposed

perceptual quantization is introduced to Hi-SET coder, our compressor improves its numerical

and perceptual efficiency. When ρGBbBShift method applied to Hi-SET is compared against

MaxShift method applied to the JPEG2000 standard and Hi-SET, the images coded by our

ROI method get the best results when the overall image quality is estimated. Both the proposed

perceptual quantization and the ρGBbBShift method are generalized algorithms that can be

applied to other Wavelet based image compression algorithms such as JPEG2000, SPIHT or

SPECK.
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Resumen

Hoy en d́ıa las imágenes digitales son usadas en muchas areas de nuestra vida cotidiana, pero
estas tienden a ser cada vez más grandes. Este incremento de información nos lleva al problema
del almacenamiento de las mismas. Por ejemplo, es común que la representación de un pixel a
color ocupe 24 bits, donde los canales rojo, verde y azul se almacenen en 8 bits. Por lo que,
este tipo de pixeles en color pueden representar uno de los 224 ≈ 16.78 millones de colores. Aśı,
una imagen de 512× 512 que representa con 24 bits un pixel ocupa 786,432 bytes. Es por ello
que la compresión es importante.

Una caracteŕıstica importante de la compresión de imágenes es que esta puede ser con per-
didas o sin ellas. Una imagen es aceptable siempre y cuando dichas perdidas en la información
de la imagen no sean percibidas por el ojo. Esto es posible al asumir que una porción de esta
información es redundante. La compresión de imágenes sin pérdidas es definida como deco-
dificar matemáticamente la misma imagen que fue codificada. En la compresión de imágenes
con pérdidas se necesita identificar dos caracteŕısticas: la redundancia y la irrelevancia de in-
formación. Aśı la compresión con pérdidas modifica los datos de la imagen de tal manera que
cuando estos son codificados y decodificados, la imagen recuperada es lo suficientemente pare-
cida a la original. Que tan parecida es la imagen recuperada en comparación con la original es
definido previamente en proceso de codificación y depende de la implementación a ser desarrol-
lada.

En cuanto a la compresión con pérdidas, los actuales esquemas de compresión de imágenes
eliminan información irrelevante utilizando criterios matemáticos. Uno de los problemas de
estos esquemas es que a pesar de la calidad numérica de la imagen comprimida es baja, esta
muestra una alta calidad visual, dado que no muestra una gran cantidad de artefactos visuales.
Esto es debido a que dichos criterios matemáticos no toman en cuenta la información visual
percibida por el Sistema Visual Humano. Por lo tanto, el objetivo de un sistema de compresión
de imágenes diseñado para obtener imágenes que no muestren artefactos, aunque su calidad
numérica puede ser baja, es eliminar la información que no es visible por el Sistema Visual
Humano.

Aśı, este trabajo de tesis doctoral propone explotar la redundancia visual existente en una
imagen, reduciendo frecuencias imperceptibles para el sistema visual humano.
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Por lo que primeramente, se define una métrica de calidad de imagen que está altamente
correlacionada con opiniones de observadores. La métrica propuesta pondera el bien conocido
PSNR por medio de una modelo de inducción cromática (CwPSNR). Después, se propone un
algoritmo compresor de imágenes, llamado Hi-SET, el cual explota la alta correlación de un
vecindario de pixeles por medio de una función Fractal. Hi-SET posee las mismas caracteŕısticas
que tiene un compresor de imágenes moderno, como ser una algoritmo embedded que permite la
transmisión progresiva. También se propone un cuantificador perceptual(ρSQ), el cual es una
modificación a la clásica cuantificación Dead-zone. ρSQes aplicado a un grupo entero de pixeles
en una sub-banda Wavelet dada, es decir, se aplica una cuantificación global. A diferencia de lo
anterior, la modificación propuesta permite hacer una cuantificación local tanto directa como
inversa pixel-por-pixel introduciéndoles una distorsión perceptual que depende directamente de
la información espacial del entorno del pixel. Combinando el método ρSQ con Hi-SET, se define
un compresor perceptual de imágenes, llamado ΦSET. Finalmente se presenta un método de
codificación de areas de la Región de Interés, ρGBbBShift, la cual pondera perceptualmente los
pixeles en dichas areas, en tanto que las areas que no pertenecen a la Región de Interés o el
Fondo sólo contendrán aquellas que perceptualmente sean las más importantes.

Los resultados expuestos en esta tesis indican que CwPSNR es el mejor indicador de calidad

de imagen en las distorsiones más comunes de compresión como son JPEG y JPEG2000, dado

que CwPSNR posee la mejor correlación con la opinión de observadores, dicha opinión está

sujeta a los experimentos psicof́ısicos de las más importantes bases de datos en este campo,

como son la TID2008, LIVE, CSIQ y IVC. Además, el codificador de imágenes Hi-SET obtiene

mejores resultados que los obtenidos por JPEG2000 u otros algoritmos que utilizan el fractal

de Hilbert. Aśı cuando a Hi-SET se la aplica la cuantificación perceptual propuesta, ΦSET,

este incrementa su eficiencia tanto objetiva como subjetiva. Cuando el método ρGBbBShift

es aplicado a Hi-SET y este es comparado contra el método MaxShift aplicado al estándar

JPEG2000 y a Hi-SET, se obtienen mejores resultados perceptuales comparando la calidad

subjetiva de toda la imagen de dichos métodos. Tanto la cuantificación perceptual propuesta

ρSQ como el método ρGBbBShift son algoritmos generales, los cuales pueden ser aplicados a

otros algoritmos de compresión de imágenes basados en Transformada Wavelet tales como el

mismo JPEG2000, SPIHT o SPECK, por citar algunos ejemplos.
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Chapter 1

Introduction

The main objective of this thesis is the introduction of perceptual criteria into the

image compression process. On the one hand, a perceptual image quality assessment

is defined, in order to evaluate the visual quality of a compressed image. On the other

hand, to identify and to remove non-perceptual information of an image, maintaining

as far as possible, the same entropy as the source image. Furthermore, we introduce

these perceptual criteria into a proposed image compression system.

1.1 Problem Statement

One of the most amazing abilities of human beings is Vision, since it is considered

the most important sense, but the most difficult to model. When a light ray enters

into our eyes undergoes a highly complex process, which ends in the visual cortex

of brain. Color researches try to model some of these features of the Human Visual

System(HVS). If accurate models are developed, they can be easily incorporated into

many image processing applications such as Quality Assessment instruments and image

compression schemes.

Nowadays, Mean Squared Error (MSE) is still the most used quantitative perfor-

mance metrics and several quality measures are based on it, Peak Signal-to-Noise Ratio

(PSNR) is the best example of this usage. But some authors like Wang and Bovik in

(57, 59) consider that MSE is a poor device to be used in quality assessment systems.

Therefore, it is important to know what is the MSE and what is wrong with it, in order
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1. INTRODUCTION

to propose a new indicator that fulfills the properties of HVS and keeps the favorable

features that the MSE has.

Digital image compression has been a research topic for many years and a num-

ber of image compression standards has been created for different applications. The

JPEG2000 is intended to provide rate-distortion and subjective image quality perfor-

mance superior to existing standards, as well as to supply another functionalities (10).

However, JPEG2000 does not provide the most relevant characteristics of the human

visual system, since for removing information in order to compress the image mainly

information theory criteria are applied. This information removal introduces artifacts

to the image that are visible at high compression rates, because of many pixels with

high perceptual significance have been discarded.

Hence it is necessary an advanced model that removes information according to

perceptual criteria, preserving the pixels with high perceptual relevance regardless of

its numerical information. The Chromatic Induction Wavelet Model (CIWaM, proposed

by Otazu et. al. in (32, 33)) presents some perceptual concepts that can be suitable

for it. Both CIWaM and JPEG2000 use wavelet transform.

CIWaM uses the wavelet transform in order to generate an approximation to how

every pixel is perceived from a certain distance taking into account the value of its neigh-

boring pixels. CIWaM inhibits or attenuates the details that the human visual system

is not able to perceive, enhances those that are perceptually relevant and producing

an approximation of the image that the brain visual cortex perceives. By contrast,

JPEG2000 applies a perceptual criteria for all coefficients in a certain spatial frequency

independently of its surrounding values. In other words, JPEG2000 performs a global

transformation of wavelet coefficients, while CIWaM performs a local one.

Therefore, this dissertation is centered in the definition of a perceptual image quality

metrics, as well as the incorporation of CIWaM, in many parts of a image compression

system.

1.2 Image Compression Systems

General System Theory defines information = −entropy, this is, entropy is the ten-

dency that systems have when they wear down or disintegrate by themselves or by

external factors(8). Thus, entropy means the loss of a given information. Then, a
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1.2 Image Compression Systems

compressed image should have almost the same total entropy as the original, but using

fewer bits. That is, a compressed image has more entropy per bit than its original

image. The main goal of modern image compression systems is to exploit redundancies

of images, understanding some information as redundant. These redundancies can be

either statistical or due to visual or application specific irrelevancies(51, Sec. 1.2).

In general, a system is composed by four subsystems: an input, a process, an

output and a feedback (cybernetic model depicted in Figure 1.1). Hence, a system can

be defined as a set of elements standing in interrelation among themselves and with

environment.

Figure 1.1: Description of System according to the General System Theory.

The subsystem Process is a black box for the subsystem Feedback, and vice versa.

Feedback is employed in order to adjust some parameters or to assess the efficiency of

the Process. Similarly, an image compression algorithm can be described as follows,

Figure 1.2:

• Input : Original image considered with infinite quality f(i, j);

• Process: Set of sub-processes, these are commonly: Forward Transformation (Sec-

tion 3.3), Quantization (Section 3.4), Entropy Coding, Entropy Decoding, Inverse

Quantization and Inverse Transformation. When a ROI algorithm is used, it is

placed before Entropy Coding;

• Output : Reconstructed image f̂(i, j), whose quality has been presumably dis-

torted;

• Feedback : Assessment of the posible distortion between original and reconstructed

images, in order to measure the efficiency of the image compression system. MSE

and PSNR are the most common image quality assessments. Advantages and

drawbacks of these important measurements are described in Section 2.1.
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1. INTRODUCTION

Figure 1.2: General Block Diagram for an image compression system.

1.3 Proposed Perceptual Image Compression System

In this dissertation, we introduce perceptual criteria in specific sub-process of a general

image compression system, Figure 1.1, such as Forward and Inverse Perceptual Quanti-

zation, Perceptual Region of Interest, a new Entropy Coder, besides a perceptual image

quality assessment, green blocks in Figure 1.3.

Therefore the parts, that our system includes,are:

• Input : Original image considered with infinite quality f(i, j);

• Process: Set of sub-processes: Forward Wavelet Transformation (9/7 analysis Fil-

ter, Table 3.2), Forward Perceptual Quantization (using a Chromatic Induction

Model, Section 2.2), Hi-SET Coding (Sec. 3.5), Hi-SET Decoding, Inverse Per-

ceptual Quantization (Section 4.4) and Inverse Wavelet Transformation(9/7 syn-

thesis Filter, Table 3.2). When it is important to encode and to decode an specific

area of the image first, we propose a Region of Interest algorithm, ρGBbBShift

method, described in Section 5.2.2);

• Output : Reconstructed image f̂p(i, j), whose perceptually important frequencies

have been enhanced of the rest of frequencies;

• Feedback : The proposed image compression system needs a perceptual metrics,

which is why we propose a perceptual assessment, CwPSNR, based on the inter-

pretation of perceptual energy degradation.
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1.4 Thesis Outline

Figure 1.3: General Block Diagram for the proposed perceptual image compression sys-
tem. Contribution of this thesis are the green blocks.

1.4 Thesis Outline

This dissertation consist of four chapters (2 to 5) that describe the contributions of this

work.

In Chapter 2 we propose a quality assessment, which weights the mainstream PSNR

by means of a chromatic induction model (CwPSNR). This is feasible referenced-

measuring the rate of energy loss when an image is observed at different distances.

CwPSNR is the best-image quality assessment, when an image is distorted by JPEG

blocking or wavelet ringing, namely images compressed by any Discrete Cosine Trans-

form (DCT) or wavelet based image coder, across databases TID2008, LIVE, CSIQ

and IVC not only on an individual image database but also overall performance.

In Chapter 3 we present an effective and computationally simple coder for image

compression based on H i lbert Scanning of Embedded quadT rees (Hi-SET). It allows

to represent an image as an embedded bitstream along a fractal function, avoiding

to store coordinate locations. Embedding is an important feature of modern image

compression algorithms, in this way Salomon in (42, pg. 614) cites that another feature

and perhaps a unique one is the fact of achieving the best quality for the number of

bits input by the decoder at any point during the decoding. Hi-SET possesses also this

latter feature. Furthermore, the Hi-SET coder is based on a quadtree partition strategy,

which is naturally adapted to image transformation structures such as discrete cosine

or wavelet transform. This last property allows to obtain an effective energy clustering

both in frequency and space. The coding algorithm is composed of three general steps,

using, unlike some state of the art algorithms, only one ordered list, the list of significant

pixels.

The aim of Chapter 4 is to explain how to apply perceptual criteria in order to

5



1. INTRODUCTION

define a perceptual forward and inverse quantizer. We present its application to the

Hi-SET coder. Our approach consists in quantizing wavelet transform coefficients using

some of the human visual system behavior properties. Taking in to account that noise

is fatal to image compression performance, because it can be both annoying for the ob-

server and consumes excessive bandwidth when the imagery is transmitted. Perceptual

quantization reduces unperceivable details and thus improve both visual impression and

transmission properties. The comparison between JPEG2000 coder and the combina-

tion of Hi-SET with the proposed perceptual quantizer (ΦSET) shows that the latter is

not favorable in PSNR than the former, but the recovered image is more compressed

(less bit-rate) at the same or even better visual quality measured with well-know image

quality metrics, such as MSSIM, UQI or VIF, for instance.

Chapter 5 describes a perceptual method (ρGBbBShift) for codding of Region of

Interest (ROI) areas. It introduces perceptual criteria to the GBbBShift method when

bitplanes of ROI and no-ROI background areas are shifted. This additional feature

is intended for balancing perceptual importance of some coefficients regardless their

numerical importance. Hence, there is no observing visual difference at ROI when

the MaxShift method and the proposed method are compared, at the same time that

perceptual quality of the entire image is improved.

Finally general conclusions are drawn, in addition to some recommendations for a

continuation of this work are presented.
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Chapter 2

Full-Reference Quality

Assessment using a Chromatic

Induction Model: JPEG and

JPEG2000

2.1 Introduction

Nowadays, Mean Squared Error (MSE) is still the most used quantitative performance

metrics and several image quality measures are based on it, being Peak Signal-to-Noise

Ratio (PSNR) the best example. But some authors like Wang and Bovik in (57, 59)

consider that MSE is a poor device to be used in quality assessment systems. Therefore

it is important to know what is the MSE and what is wrong with it, in order to propose

new metrics that fulfills the properties of human visual system and keeps the favorable

features that the MSE has.

In this way, let f(i, j) and f̂(i, j) represent two images being compared and the

size of them is the number of intensity samples or pixels. Being f(i, j) the original

reference image, which has to be considered with perfect quality, and f̂(i, j) a distorted

version of f(i, j), whose quality is being evaluated. Then, the MSE and the PSNR are,

respectively, defined as:

MSE =
1

NM

N∑

i=1

M∑

j=1

[
f(i, j)− f̂(i, j)

]2
(2.1)
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and
PSNR = 10 log10

(
Gmax

2

MSE

)
(2.2)

where Gmax is the maximum possible intensity value in f(i, j) (M ×N size). Thus, for

gray-scale images that allocate 8 bits per pixel (bpp) Gmax = 28 − 1 = 255. For color

images the PSNR is defined as in the Equation 2.2, whereas the color MSE is the mean

among the individual MSE of each component.

An important task in image compression systems is to maximize the correlation

among pixels, because the higher correlation at the preprocessing, the more efficient

algorithm postprocessing. Thus, an efficient measure of image quality should take in

to account the latter feature. In contrast to this, MSE does not need any positional

information of the image, thus pixel arrangement is ordered as a one-dimensional vector.

Both MSE and PSNR are extensively employed in the image processing field, since

these metrics have favorable properties, such as:

1. A convenient metrics for the purpose of algorithm optimization. For example in

JPEG2000, MSE is used both in Optimal Rate Allocation (5, 51) and Region of

interest (6, 51). Therefore MSE can find solutions for these kind of problems,

when is combined with the instruments of linear algebra, since it is differentiable.

2. By definition MSE is the difference signal between the two images being com-

pared, giving a clear meaning of the overall error signal energy.

However, the MSE has a poor correlation with perceived image quality. An example

is shown in Fig. 2.1, where both (a) Baboon and (b) Splash Images are distorted by

means of a JPEG2000 compression with PSNR=30 dB. These noisy images present

dramatically different visual qualities. Thereby either MSE or PSNR do not reflect the

way that human visual system (HVS) perceives images, since these measures represent

an input image in a pixel domain.

In section 2.2 we outline the CIWaM chromatic induction model. It inhibits or

enhances information according to perceptual criteria, preserving the pixels with high

perceptual relevance and inhibiting those with low perceptual impact. This model is

important for section 2.3, since CwPSNR makes use of it. The CwPSNR methodology

is subdivided in five steps, which are also described in this section. Section 2.4 shows

8



2.2 Chromatic Induction Wavelet Model: Brief description.

(a) Image Baboon (b) Image Splash

Figure 2.1: 256× 256 patches (cropped for visibility) of Images Baboon and Splash dis-
torted by means of JPEG2000 compression, although both images have the same objective
quality (PSNR=30dB), their visual quality is very different. Original size 512× 512 of
both images are shown in Figures 2.10(b) and 2.10(c), respectively.

experimental results, comparing CwPSNR with twelve image quality metrics such as

MSSIM (54), SSIM (45) and VIF (58), among others. In these tests, we use the

perceptual image quality information supplied by four image databases TID2008 (38,

39), LIVE (46), CSIQ (22) and IVC (23).

2.2 Chromatic Induction Wavelet Model: Brief descrip-

tion.

The Chromatic Induction Wavelet M odel (CIWaM) (32) is a low-level perceptual

model of the HVS. It estimates the image perceived by an observer at a distance d just

by modeling the perceptual chromatic induction processes of the HVS. That is, given an

image I and an observation distance d, CIWaM obtains an estimation of the perceptual

image Iρ that the observer perceives when observing I at distance d. CIWaM is based

on just three important stimulus properties: spatial frequency, spatial orientation and

surround contrast. This three properties allow to unify the chromatic assimilation

and contrast phenomena, as well as some other perceptual processes such as saliency

perceptual processes (29).

The CIWaM model takes an input image I and decomposes it into a set of wavelet

planes ωs,o of different spatial scales s (i.e., spatial frequency ν) and spatial orientations

9
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(a) (b)

Figure 2.2: (a) Graphical representation of the e-CSF (αs,o,i(r, ν))) for the luminance
channel. (b) Some profiles of the same surface along the Spatial Frequency (ν) axis for
different centersurround contrast energy ratio values (r). The psychophysically measured
CSF is a particular case of this family of curves (concretely for r = 1).

o. It is described as:

I =
n∑

s=1

∑

o=v,h,dgl

ωs,o + cn , (2.3)

where n is the number of wavelet planes, cn is the residual plane and o is the spatial

orientation either vertical, horizontal or d iagonal.

The perceptual image Iρ is recovered by weighting these ωs,o wavelet coefficients

using the extended Contrast Sensitivity Function (e-CSF, Fig. 2.2). The e-CSF is

an extension of the psychophysical CSF (28) considering spatial surround information

(denoted by r), visual frequency (denoted by ν, which is related to spatial frequency

by observation distance) and observation distance (d). Perceptual image Iρ can be

obtained by

Iρ =
n∑

s=1

∑

o=v,h,dgl

α(ν, r) ωs,o + cn , (2.4)

where α(ν, r) is the e-CSF weighting function that tries to reproduce some perceptual

properties of the HVS. The term α(ν, r) ωs,o ≡ ωs,o;ρ,d can be considered the perceptual

wavelet coefficients of image I when observed at distance d and is written as:

α(ν, r) = zctr · Cd(ṡ) + Cmin(ṡ) . (2.5)
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2.2 Chromatic Induction Wavelet Model: Brief description.

This function has a shape similar to the e-CSF and the three terms that describe it are

defined as:

zctr Non-linear function and estimation of the central feature contrast relative to its

surround contrast, oscillating from zero to one, defined by:

zctr =

[
σcen
σsur

]2

1 +
[

σcen
σsur

]2 (2.6)

being σcen and σsur the standard deviation of the wavelet coefficients in two

concentric rings, which represent a center−surround interaction around each co-

efficient.

Cd(ṡ) Weighting function that approximates to the perceptual e-CSF, emulates some

perceptual properties and is defined as a piecewise Gaussian function (27), such

as:

Cd(ṡ) =





e
− ṡ2

2σ2
1 , ṡ = s− sthr ≤ 0,

e
− ṡ2

2σ2
2 , ṡ = s− sthr > 0.

(2.7)

Cmin(ṡ) Term that avoids α(ν, r) function to be zero and is defined by:

Cmin(ṡ) =

{
1
2 e

− ṡ2

2σ2
1 , ṡ = s− sthr ≤ 0,

1
2 , ṡ = s− sthr > 0.

(2.8)

taking σ1 = 2 and σ2 = 2σ1. Both Cmin(ṡ) and Cd(ṡ) depend on the factor

sthr, which is the scale associated to 4cpd when an image is observed from the

distance d with a pixel size lp and one visual degree, whose expression is defined

by Equation 2.9. Where sthr value is associated to the e-CSF maximum value.

sthr = log2

(
d tan(1◦)

4 lp

)
(2.9)

Fig. 2.3 shows three examples of CIWaM images of Lenna, calculated by Eq. 2.4

for a 19 inch monitor with 1280 pixels of horizontal resolution, at d = {30, 100, 200}
centimeters.

11
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(a) Original image (b) d=30 cm. (c) d=100 cm. (d) d=200 cm.

Figure 2.3: (a) Original color image Lenna . (b)-(d) Perceptual images obtained by
CIWaM at different observation distances d.

2.3 CIWaM weighted Peak Signal-to-Noise Ratio

Figure 2.4: General block diagram for the proposed perceptual image compression system.
CwPSNR is indicated by the green block.

In the referenced image quality issue, there is an original image f(i, j) and a dis-

torted version f̂(i, j) = Λ[f(i, j)] that is compared with f(i, j), being Λ a distortion

model. The difference between these two images depends on the features of the distor-

tion model Λ. For example, blurring, contrast change, noise, JPEG blocking or wavelet

ringing.

In Fig. 2.1, the images Babbon and Splash are compressed by means of JPEG2000.

These two images have the same PSNR=30 dB when compared to their corresponding

original image, that is, they have the same numerical degree of distortion (i.e. the

same objective image quality PSNR). But, their subjective quality is clearly different,

showing the image Baboon a better visual quality. Thus, for this example, PSNR and

perceptual image quality has a small correlation. On the image Baboon, high spatial

frequencies are dominant. A modification of these high spatial frequencies by Λ in-

duces a high distortion, resulting a lower PSNR, even if the modification of these high

frequencies are not perceived by the HVS. In contrast, on image Splash, mid and low

frequencies are dominant. Modification of mid and low spatial frequencies also intro-

12
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duces a high distortion, but they are less perceived by the HVS. Therefore, correlation

of PSNR against the opinion of an observer is small. Fig. 2.5 shows the diagonal high

spatial frequencies of these two images, where there are more high frequencies in image

Baboon.

(a) (b)

Figure 2.5: Diagonal spatial orientation of the first wavelet plane of Images (a) Baboon
and (b)Splash distorted by JPEG2000 with PSNR=30dB.

If a set of distortions f̂k(i, j) = Λk[f(i, j)] is generated and indexed by k (for

example, let Λ be a blurring operator), the image quality of f̂k(i, j) evolves while

varying k, being k, for example, the degree of blurring. Hence, the evolution of f̂k(i, j)

depends on the characteristics of the original f(i, j). Thus, when increasing k, if f(i, j)

contains many high spatial frequencies the PSNR rapidly decreases, but when low and

mid frequencies predominated PSNR slowly decreases.

Similarly, the HVS is a system that induces a distortion on the observed image

f(i, j), whose model is predicted by CIWaM. Hence, CIWaM is considered a HSV par-

ticular distortion model Λ ≡ CIWaM that generates a perceptual image f̂ρ(i, j) ≡ Iρ

from an observed image f(i, j) ≡ I, i.e Iρ = CIWaM [I]. Therefore, a set of distor-

tions is defined as Λk ≡ CIWaMd, being d the observation distance. That is, a set of

perceptual images is defined Iρ,d = CIWaMd[I] which is considered a set of perceptual

distortions of image I.

When images f(i, j) and f̂(i, j) are simultaneously observed at distance d̄ and this

distance is reduced, the differences between them are better perceived. In contrast, if

f(i, j) and f̂(i, j) are observed from a far distance human eyes cannot perceive their

differences, in consequence, the perceptual image quality of the distorted image is
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always high. The distance where the observer cannot distinguish any difference between

these two images is d̄ = ∞. In practice, d̄ = D where differences are not perceived

and range some centimeters from the position of the observer. Consequently, the less

distorted f̂(i, j), the highest the image quality of f̂(i, j)) and the shorter the distance

D.

2.3.1 Methodology

Let f(i, j) and f̂(i, j) = Λ[f(i, j)] be an original image and a distortion version of

f(i, j), respectively. CwPSNR methodology is based on finding a distance D, where

there is no perpetual difference between the wavelet energies of the images f(i, j) and

f̂(i, j), when an observer observe them at d centimeters of observation distance. So

measuring the PSNR of f̂(i, j) at D will yield a fairer perceptual evaluation of its image

quality.

CwPSNR algorithm is divided in five steps, which is summarized by the Figure 2.6

and described as follows:

Figure 2.6: Methodology for PSNR weighting by means of CIWaM. Both Reference and
Distorted images are wavelet transformed. The distance D where the energy of perceptual
images obtained by CIWaM are equal is found. Then, PSNR of perceptual images at D is
calculated, obtaining the CwPSNR metrics.
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Step 1: Wavelet Transformation Forward wavelet transform of images f(i, j) and

f̂(i, j) is performed using Eq. 3.5, obtaining the sets {ωs,o} and {ω̂s,o}, respec-

tively. The employed analysis filter is the Daubechies 9-tap/7-tap filter (Table

2.1).

Table 2.1: 9/7 Analysis Filter.

Analysis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 0.6029490182363579 1.115087052456994

±1 0.2668641184428723 -0.5912717631142470

±2 -0.07822326652898785 -0.05754352622849957

±3 -0.01686411844287495 0.09127176311424948

±4 0.02674875741080976

Step 2: Distance D The total energy measure or the deviation signature(53) ε̄ is the

absolute sum of the wavelet coefficient magnitudes, defined by (61)

ε̄ =
N∑

n=1

M∑

m=1

|x(m,n)| (2.10)

where x(m,n) is the set of wavelet coefficients, whose energy is being calculated,

being m and n the indexes of the coefficients. Basing on the traditional definition

of a calorie, the units of ε̄ are wavelet calories (wCal) and can also be defined by

Eq. 2.10, since one wCal is the energy needed to increase the absolute magnitude

of a wavelet coefficient by one scale.

From wavelet coefficients {ωs,o} and {ω̂s,o} the corresponding perceptual wavelet

coefficients
{

ωs,o;ρ,d̃

}
= α(ν, r) · ωs,o and

{
ω̂s,o;ρ,d̃

}
= α(ν, r) · ω̂s,o are obtained

by applying CIWaM with an observation distance d̃. Therefore, Equation 2.11

expresses the relative wavelet energy ratio εR
(
d̃
)
, which compares how different

are the energies of the reference and distorted CIWaM perceptual images, namely

ερ and ε̂ρ respectively, when these images are watched from a given distance d̃.

εR
(
d̃
)

= 10 ·
∣∣∣∣∣∣
log10

ερ

(
d̃
)

ε̂ρ

(
d̃
)

∣∣∣∣∣∣
(2.11)
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Fig. 2.7(a) shows that distance D is composed by the sum of two distances,

nP and εmL. Thereby for the estimation of D, Eq. 2.12, it is necessary to

know the observation distance d besides to figure out the nP and εmL distances.

Furthermore Fig. 2.7(b) depicts a chart of εR, which sketches both the behavior

of the relative energy when d̃ is varied from 0 to ∞ centimeters and the meaning

of the distances D, nP and εmL inside an εR chart.

D = nP + εmL (2.12)

(a) Portrayal of distances employed by the CwPSNR

algorithm.

(b) εR Chart.

Figure 2.7: D, nP and εmL depicted by (a) a graphical representation and (b) inside an
εR Chart.

The peak inside an εR chart is nP, which is the distance where the observer is

able to better assess the difference between the images f(i, j) and f̂(i, j). From

this point nP the observer starts to perceive fewer the differences, until in∞ these

differences disappear, in practice, this point varies from 15 to 25 centimeters. Our

metrics is based on finding an approximation of the distance D where the wavelet
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2.3 CIWaM weighted Peak Signal-to-Noise Ratio

energies are linearly the same, that is, εR (D) ≈ 0. This is achieved by projecting

the points (nP, εR (nP)) and (d, εR (d)) to (D, 0).

Therefore, εmL is the needed length to match the energies from the point where

the observer has the best evaluation of the assessed images to D and it is described

as follows:

εmL =
εR (nP)
dεR + ς

(2.13)

where εR (nP) is the relative energy at nP and dεR is the energy loss rate

(wCal/cm or wCal/visual degrees) between (nP, εR (nP)) and (d, εR (d)), namely,

the negative slope of the line joining these points, expressed as:

dεR =
εR (nP)− εR (d)

d− nP
(2.14)

When a lossless compression is performed, consequently f(i, j) = f̂(i, j), hence

dεR = 0 and εmL →∞. In order to numerically avoid it, parameter ς is intro-

duced, which is small enough to not affect the estimation of εmL when dεR 6= 0,

in our MatLab implementation ς = realmin.

Step 3: Perceptual Images Obtain the perceptual wavelet coefficients {ωs,o;ρ,D} =

α(ν, r) · ωs,o and {ω̂s,o;ρ,D} = α(ν, r) · ω̂s,o at distance D, using Equation 2.4.

Step 4: Inverse Wavelet Transformation Perform the Inverse Wavelet Transform

of {ωs,o;ρ,D} and {ω̂s,o;ρ,D}, obtaining the perceptual images fρ(i,j),D and f̂ρ(i,j),D,

respectively. The synthesis filter in Table 2.2 is an inverse Daubechies 9-tap/7-tap

filter.
Table 2.2: 9/7 Synthesis Filter.

Synthesis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 1.115087052456994 0.6029490182363579

±1 0.5912717631142470 -0.2668641184428723

±2 -0.05754352622849957 -0.07822326652898785

±3 -0.09127176311424948 0.01686411844287495

±4 0.02674875741080976
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Step 5: PSNR between perceptual images Calculate the PSNR between percep-

tual images fρ(i,j),D and f̂ρ(i,j),D using Eq. 2.2 in order to obtain the CIWaM

weighted PSNR i.e. the CwPSNR.

2.3.2 Discussion

In this section, we analyze the implications of three concepts of the CwPSNR algorithm;

i.e. the εR(nP) value, the distance D and the relation between these two points, and

the observation distance d. In brief; first εR(nP) gives a first assessment of the image

quality, then, the shorter the distance D the better the predicted perceptual image

quality, and finally when the HVS assesses the quality of an image, it depends on, among

many parameters, the interaction of the points nP and d. Thereby the HVS evaluation

of image quality is in a dynamic way, taking into account not only the observation

distance but also the point where the observer can better perceive the distortions among

images. We consider that CwPSNR is closer to the HVS, because our metrics employs

the PSNR indicator for evaluating the images presumably are formed in our brain,

that is, fp(i, j) and f̂p(i, j) at distance D, maintaining its favorable properties. For

visually illustrating some of these characteristics, some images from the Miscellaneous

volume of the University of Southern California, Signal and Image Processing Institute

image database (USC-SIPI image database, Figures A.5 and A.6) are used(2). All the

distortions are implemented using JPEG2000 compression.

2.3.2.1 First Sub-indicator: εR

When two or more distorted versions of an original image are compared each other, the

value of the εR function, at any point, gives an approximation of perceived quality of

the distorted image. Thus, when the εR function tends to zero is because the perceived

image quality tends to look like the original one, since there are less differences at any

distance. Figs. 2.8(a) and 2.9(a), Splash and Baboon respectively, depict that 40dB

images have a lower εR (nP) than 30dB ones.

Thus, in the particular case where different distorted versions of the same original

image are analyzed, the εR(nP) value can be considered by itself a perceptual image

quality metrics. For instance, in Figure 2.10 when the images Baboon and Splash,

indexed by 1 and 2 respectively, are distorted 30dB and then compared them εR (nP1) <

εR (nP2). This clearly shows that the distorted image Baboon1 has better perceptual
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2.3 CIWaM weighted Peak Signal-to-Noise Ratio

(a) Relative Energy Chart

(b) PSNR=30dB (c) PSNR=40dB

Figure 2.8: Relative Energy Chart of Image Splash (a), which is distorted by means of
JPEG2000 (b) PSNR=30dB and (c) PSNR=40dB.

image quality than the one of Splash2 and it would not be needful to know either their

respective distances D1 and D2 or PSNR of perceptual images at those distances. But

if D would be computed, Splash2 would need of half of meter after the observation

point in order to not perceive the differences between original image and distorted one,

while only ten centimeters would be necessary for Baboon1.

2.3.2.2 Second Sub-indicator: D

There are cases where nP does not give an accurate perceptual measurement. For

example, in Fig. 2.11, Relative Energy Ratio of Sailboat on Lake image εR (nP2)

(index 2, Figure 2.11(c)) is twice εR (nP1) of Tiffany image (index 1, Figure 2.11(b)),

nevertheless Sailboat on Lake image has a better perceptual quality. However when nP1

is projected along together d1 to D1, D1 > D2, that is, the distorted version of Tiffany1
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(a) Relative Energy Chart

(b) PSNR=30dB (c) PSNR=40dB

Figure 2.9: Relative Energy Chart of Image Baboon (a), which is distorted by means of
JPEG2000 (b) PSNR=30dB and (c) PSNR=40dB.

needs 12cm more for matching the perceptual quality regarding its original pair than the

Sailboat on Lake2 image. Moreover when CwPSNR algorithm is performed, with d1 =

d2 = 120cm as observation distance, the assessed image quality of Sailboat on Lake2

image is 36.77dB while in Tiffany1 image is 34.82dB, having approximately 2dB of

perceptual difference despide these images were originally distorted 31dB by means of

JPEG2000. Thus, distance D is a good approximation to an image quality estimator

when the degree of distortion of the two images is the same, since the closer to d the

better perceptual quality.

2.3.2.3 Third Sub-indicator: CwPSNR Metrics

However, D cannot be considered as a precise metrics, since in some cases, it pre-

dicts the same distance when the perceptual quality of compared images is evidently
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(a) Relative Energy Chart

(b) D1=130.36cm (c) D2=167.46cm

Figure 2.10: (a) Relative Energy Chart of Images Baboon and Splash, both distorted by
means of JPEG2000 with PSNR=30dB and Observation distance d=120cm. Perceptual
quality CwPSNR is equal to 36.60dB for (b) and 32.21dB for (c).

different. For instance, in Figures 2.11(c) Sailboat on Lake2 and 2.12(b) Splash1

D2 = D1 = 129cm, but subjective quality of Splash1 is clearly better than the one of

Sailboat on Lake2. Thus, even when CIWaM versions of Splash1 and Sailboat on Lake2

are calculate at 129cm, the resultant perceptual images have different objective quality.

Hence, CwPSNR predicts that the error in Figure 2.12(b) is twice less (∼ 3dB) than in

Figure 2.11(c).

That is why overall CwPSNR algorithm is the estimation of the objective quality

taking into account the set of the interactions of parameters nP, d and D. Figures

2.12 and 2.13 show examples when perceptual quality is the same and their respective

points (nP, εR (nP)) do not correspond. In Figure 2.12, there is a difference of 6cm

between D1 and D2, while in Figure 2.13, there is a small difference between distances
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(a) Relative Energy Chart

(b) D1=141.45cm (c) D2=129.67cm

Figure 2.11: (a) Relative Energy Chart of Images Tiffany and Sailboat on Lake both
distorted by means of JPEG2000 with PSNR=31dB and Observation distance d=120cm.
Perceptual quality CwPSNR is equal to 34.82dB for (b) and 36.77dB for (c).

D1 and D2.

2.4 Experimental Results

In this section, CwPSNR performance is assessed by comparing the statistical signifi-

cance with the psychophysical results obtained by human observers when judging the

visual quality of an specific image. These results are expressed in Mean Opinion Scores

either differential (DMOS) or not (MOS) of well-known image databases. In this way,

perceived image quality predicted by CwPSNR is tested only for JPEG and JPEG2000

distortions across four image databases:

1. Tampere Image Database (TID2008) of the Tampere University of Technology,
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(a) Relative Energy Chart

(b) D1=129.10cm (c) D2=135.89cm

Figure 2.12: (a) Relative Energy Chart of Images Splash and Baboon both distorted by
means of JPEG2000 with CwPSNR=39.69dB and Observation distance d=120cm. Objec-
tive quality PSNR is equal to 35.88dB for (b) and 31.74dB for (c).

presented by Ponomarenko et.al. in (38, 39).

2. Image Database of the Laboratory for Image and Video Engineering (LIVE) of

University of Texas at Austin, presented by Sheikh et.al. in (46).

3. Categorical Subjective Image Quality Image Database (CSIQ) of the Oklahoma

State University, presented by Larson and Chandler in (22).

4. Image and Video-Communication image Database (IVC) of the Université de

Nantes, presented by le Callet and Autrusseau in (23).

TID2008 Database contains 25 original images (Figure A.2), which are distorted by

17 different types of distortions, each distortion has 4 degrees of intensity, that is, 68
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(a) Relative Energy Chart

(b) D1=137.12cm (c) D2=139.49cm

Figure 2.13: a) Relative Energy Chart of Images Lenna and F-16 both distorted by
means of JPEG2000 with CwPSNR=34.75dB and Observation distance d=120cm. Objec-
tive quality PSNR is equal to 31.00dB for (b) and 30.87dB for (c).

versions of each source image. TID2008 also supplies subjective ratings by comparing

original and distorted images by 654 observers from Italy, Finland and Ukraine. Thus,

for JPEG and JPEG2000 compression distortions, there are 200 (25 images × 2 distor-

tions × 4 distortion degrees) images in the database. MOS is presented as the global

rating.

LIVE Database contains 29 original images (Figure A.3), with 26 to 29 altered

versions or each original image. In addition, rating of perceptual quality for each

distorted image is given in DMOS values. LIVE uses 5 distortions, including 234

distorted images for JPEG compression degradation and 228 for JPEG2000 one.

CSIQ Database includes 30 original images (Figure A.4), which are distorted by six

different types of distortions at 4 or 5 grades. In this way, for JPEG and JPEG2000
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compression distortions, CSIQ Database contains 150 distorted versions of these two

degradations of the original images. CSIQ Database also has 5000 perceptual evalua-

tions of 25 observers and its assessments are reported in DMOS values.

IVC Database includes 10 original images (Fig. A.1) with 4 different distortions

(JPEG, JPEG2000, LAR coding and Blurring) and 5 distortion degrees, that is, there

are 50 degraded images by distortion. Perceptual ratings are reported by DMOS.

2.4.1 Performance Measures

Strength of Relationship (SR) is measured by a correlation coefficient. SR means how

strong is the tendency of two variables to move in the same (opposite) direction. Pear-

son Correlation Coefficient (PCC) is the most common measure for predicting SR, when

parametric data are used. But in the case of the correlation of non-parametric data the

most common indicator is Spearman Rank-Order Correlation Coefficient (SROCC).

Results of image quality metrics have no lineal relationship, which is why, it is not

convenient to employ PCC, since even PSNR and MSE are the same metrics, PCC

calculates different values.

Hence SROCC is a better choice for measuring SR between the opinion of observers

and the results of a given metrics. However SROCC is appropriate for testing a null

hypothesis, but when this null hypothesis is rejected is difficult to interpret(17). In

the other hand, Kendall Rank-Order Correlation Coefficient (KROCC) corrects this

problem by reflecting SR between compared variables. Furthermore KROCC estimates

how similar are two rank-sets against a same object set. Thus, KROCC is interpreted as

the probability to rank in the same order taking into account the number of inversions

of pairs of objects for transforming one rank into the other(1). Which is why, CwPSNR

and the rest of metrics are evaluated using KROCC. One of Limitation of KROCC is

located in complexity of the algorithm, which takes more computing time than PCC

and SROCC, but KROCC can show us an accurate Strength of Relationship between

a metric and the opinion of an human observer.

MSE(18), PSNR(18), SSIM(45), MSSIM(54), VSNR(12), VIF(58), VIFP(45), UQI(55),

IFC(47), NQM(14), WSNR(25) and SNR are compared against the performance of

CwPSNR for JPEG and JPEG2000 compression distortions. We chose for evaluating

these assessments the implementation provided in (21), since it is based on the param-

eters proposed by the author of each indicator.
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CwPSNR is implemented assuming the following features:

• Observation Distance, d=8H, where H is the height of a 512× 512 image.

• 19” LCD monitor with horizontal resolution of 1280 pixels and 1024 pixels of

vertical resolution.

• Gamma correction, γ = 2.2

• Wavelet Transform, set of wavelet planes ω with n = 3, Eq. 3.5.

2.4.2 Overall Performance

Table 2.3 shows the performance of CwPSNR and the other twelve image quality assess-

ments across the set of images from TID2008, LIVE, CSIQ and IVC image databases

employing KROCC for testing the distortion produced by a JPEG compression.

Table 2.3: KROCC of CwPSNR and other quality assessment algorithms on multiple
image databases using JPEG distortion. The higher the KROCC the more accurate image
assessment. Bold and italicized entries represent the best and the second-best performers
in the database, respectively. The last column shows the KROCC average of all image
databases.

Image Database
Metrics TID2008 LIVE CSIQ IVC All

Images 100 234 150 50 534

MSE 0.7308 0.7816 0.6961 0.5187 0.6818
PSNR 0.7308 0.7816 0.6961 0.5187 0.6818
SSIM 0.7334 0.8287 0.7529 0.6303 0.7363

MSSIM 0.7580 0.8435 0.8097 0.7797 0.7977
VSNR 0.7344 0.8149 0.7117 0.5827 0.7109
VIF 0.7195 0.8268 0.8287 0.7911 0.7915

VIFP 0.7004 0.8140 0.8188 0.6763 0.7524
UQI 0.5445 0.7718 0.6990 0.6254 0.6602
IFC 0.5909 0.7767 0.7644 0.8158 0.7369

NQM 0.7142 0.8269 0.7907 0.6664 0.7495
WSNR 0.7300 0.8181 0.8020 0.6959 0.7615
SNR 0.6035 0.7735 0.6942 0.4481 0.6298

CwPSNR 0.7616 0.8457 0.8473 0.8335 0.8220

Table 2.3 also shows an average performances for the 534 images of the cited image

databases. Bold and Italicized represent the best and the second best performance
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assessment, respectively. It is appropriate to say that CwPSNR is the best performer

both in each image database and average of them. MSSIM is the second best-ranked

metrics not only in all databases but also on the average, except for the CSIQ database,

where VIF has this place. CwPSNR is better 0.0243 than MSSIM and improves the

performance of PSNR or MSE by 0.1402 for JPEG compression degradation.

While Table 2.4 shows the performance of CwPSNR for JPEG2000 compression

distortion across all image databases comparing the same twelve metrics presented in

Table 2.3.

Table 2.4: KROCC of CwPSNR and other quality assessment algorithms on multiple
image databases using JPEG2000 distortion. The higher the KROCC the more accurate
image assessment. Bold and italicized entries represent the best and the second-best per-
formers in the database, respectively. The last column shows the KROCC average of all
image databases.

Image Database
Metrics TID2008 LIVE CSIQ IVC All

Images 100 228 150 50 528

MSE 0.6382 0.8249 0.7708 0.7262 0.7400
PSNR 0.6382 0.8249 0.7708 0.7262 0.7400
SSIM 0.8573 0.8597 0.7592 0.6916 0.7919

MSSIM 0.8656 0.8818 0.8335 0.7821 0.8408
VSNR 0.8042 0.8472 0.7117 0.6949 0.7645
VIF 0.8515 0.8590 0.8301 0.7903 0.8327

VIFP 0.8215 0.8547 0.8447 0.7229 0.8110
UQI 0.7415 0.7893 0.6995 0.6061 0.6602
IFC 0.7905 0.7936 0.7667 0.7788 0.7824

NQM 0.8034 0.8574 0.8242 0.6801 0.7913
WSNR 0.8152 0.8402 0.8362 0.7656 0.8143
SNR 0.5767 0.8055 0.7665 0.6538 0.7006

CwPSNR 0.8718 0.8837 0.8682 0.7981 0.8555

Thus, for JPEG2000 compression distortion, CwPSNR is also the best metrics for

each database. CwPSNR gets its better results when correlation is 0.8837 for a corpus

of 228 images of the LIVE database. On the average, our algorithm is also the best

performing metrics with a SR, using KROCC, of 0.8555. For this distortion, MSSIM is

also the second best indicator for TID2008, LIVE and IVC image databases in addition

to the average. For CSIQ image database VIFP occupies this place. In this way the
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results of MSSIM correlates with the opinion of observers 0.0143 less than the ones of

CwPSNR. Furthermore CwPSNR improves 0.1155 the perceptual functioning of PSNR

when this metrics compares perceptual images in a dynamic way.

In summary, CwPSNR is the best performing algorithm for JPEG and JPEG2000

compression distortions, that is, for image compression algorithms, which use either

Discrete Cosine Transform or Wavelet Transform as method of pixel transformation in

samples for the quantization process(51, pg. 14).

2.5 Conclusions

CwPSNR is a new metric for full-reference image quality based on perceptual weighting

of PSNR by using a perceptual low-level model of the Human Visual System (CIWaM

model). The proposed CwPSNR metrics is based on three concepts.

The CwPSNR assessment was tested in four well-known image databases such as

TID2008, LIVE, CSIQ and IVC. It is the best-ranked image quality method in these

databases for JPEG and JPEG2000 distortions when compared to several state-of-

the-art metrics. Concretely, it is 2.5% and 1.5% better that MSSIM (the second best

performing method) for JPEG and JPEG2000 distortions, respectively. CwPSNR sig-

nificantly improves the correlation of PSNR with perceived image quality. On average,

when CwPSNR is applied on the same distortion, it improves the results obtained by

PSNR and MSE by 14% and 11.5%,respectively.
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Chapter 3

Image Coder Based on Hilbert

Scanning of Embedded quadTrees

3.1 Introduction

One of the biggest challenges of image compressors is the massive storage and ordering

of data coordinates. In some algorithms, like EZW (44), SPIHT (41) and SPECK (34,

35, 36), the execution path defines the correct order of the coefficients by comparison

of its branching points (52). Our coder makes use of a Hilbert Scanning, which exploits

the self-similarity of pixels. Since the space-filling path of Hilbert’s fractal is known a

priori, it implicitly defines the coefficient coordinates. Hence, the decoder only needs

the coefficient magnitudes in order to recover them. Furthermore, applying a Hilbert

Scanning to Wavelet Transform coefficients takes the advantage of the self-similarity

of neighbor pixels, helping to exploit their redundancy and to develop an optimal

progressive transmission coder. In this way, at any step of the decoding process the

quality of the recovered image is the best that can be achieved for the number of bits

processed by the decoder up to that moment.

Figure 3.1 shows the block diagram of image compressor based on Hi lbert Scanning

of Embedded quadT rees (Hi-SET) for the encoding and decoding processes. The green

blocks in 3.2 indicate the position of these latter processes inside the proposed percep-

tual compression system. The source image data may contain one or more components

(up to 23 in the case of Hi-SET). Each component is decomposed by a discrete wavelet

transform into a set of wavelet planes of different spatial frequencies and orientations.
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Figure 3.1: General block diagram of a generic compressor that uses Hi-SET for encoding
and decoding.

Figure 3.2: General block diagram for the proposed perceptual image compression system.
The Hi-SET compression algorithm is indicated by the green blocks.

Wavelet plane coefficients are quantized with a dead-zone uniform scalar quantizer

(SQ) for reducing the precision of data in order to make them more compressible. This

Quantization block introduces distortion and it is only employed for lossy compression.

In the following step, Hi-SET algorithm encodes the entropy among quantized coeffi-

cients, obtaining an output bitstream. The decompression process is the inverse of the

compression one: the bitstream is entropy decoded by Hi-SET, dequantized by SQ and

an inverse discrete wavelet transform is performed, getting as a result the reconstructed

image data.

3.2 Component Transformations

Image compression algorithms are usually used in color images. These images can

be numerically represented in several color spaces, such as RGB, Y CbCr, Y CM , and

HSB, being RGB the most commonly used.

In this way, an RGB color image is decomposed into three components, namely Red,

Green, and Blue color components. Figure 3.3 depicts that when Hi-SET performs a
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Figure 3.3: Hi-SET multiple component encoder.

color compression, a complete encoding is developed at each color layer. R, G and B

color components are statistically more dependent than Y , Cr and Cb, thus the chromi-

nance channels can be processed independently at lower resolution than luminance one

in order to achieve better compression rates (59).

Hi-SET supports both Reversible Component Transformation (RCT) and Irre-

versible Component Transformation(ICT) (10, Annex G). For lossy coding is employed

an ICT, which makes use of the the 9/7 irreversible wavelet transform, forward and

inverse are calculated by the Equation 3.1 and 3.2, respectively (48, 51).

[
Y

Cb

Cr

]
=

[
0.299 0.587 0.114

−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131
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][
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Cb

Cr

]
. (3.2)

RCT is used for lossy and lossless codding, together with the 5/3 reversible wavelet

transform. The forward RCT transformations is achieved by means of the Equation

3.3 while the inverse by the Equation 3.4.
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3.3 Wavelet Transform

The input image I used by Hi-SET is separated into different spatial frequencies and

orientation using a multiresolution discrete wavelet decomposition (DWT) either re-
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versible or irreversible (3, 49), by each component. Thus I is decomposed into a set

of wavelet planes ω of different spatial frequencies, where each wavelet plane contains

details at different spatial resolutions and it is described by:

DWT {I} =
n∑

s=1

∑

o=v,h,d

ωo
s + cn (3.5)

where s = 1, . . . , n, n the number of wavelet planes and cn the residual plane. o = v, h, d

represents the spatial orientation either vertical, horizontal or diagonal, respectively.

The DWT is performed in order to filter each row and column of I with a high-pass

and low-pass filter. Since this procedure derives in double the number of samples, the

output from each filter is downsampled by 2, thus the sample rate remains constant. It

is not important if the rows or the columns of the component matrix are filtered first,

because the resulting DWT is the same. The reversible transformation is implemented

by means of 5/3 filter. The analysis and the respective synthesis filter of coefficients

are described by the Table 3.1. The irreversible transform is implemented by means of

the 9/7 filter and Table 3.2 illustrates its analysis and synthesis filters.

Table 3.1: 5/3 Analysis and Synthesis Filter.

Analysis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 6/8 1

±1 2/8 -1/2

±2 -1/8

Synthesis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 1 6/8

±1 1/2 -2/8

±2 -1/8

The number of filtering stages, i.e. the number n of wavelet planes, depends on its

implementation. Nevertheless, taking into account the trade-off between image quality

and compression ratio, some authors report that the best results are obtained with

n = 3 (41).

Figure 3.4 depicts the DWT generation of the Y component the image Pepperswith

n = 3.
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Table 3.2: 9/7 Analysis and Synthesis Filter.

Analysis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 0.6029490182363579 1.115087052456994

±1 0.2668641184428723 -0.5912717631142470

±2 -0.07822326652898785 -0.05754352622849957

±3 -0.01686411844287495 0.09127176311424948

±4 0.02674875741080976

Synthesis Filter

i Low-Pass High-Pass

Filter hL(i) Filter hH(i)

0 1.115087052456994 0.6029490182363579

±1 0.5912717631142470 -0.2668641184428723

±2 -0.05754352622849957 -0.07822326652898785

±3 -0.09127176311424948 0.01686411844287495

±4 0.02674875741080976

Figure 3.4: Three-level wavelet decomposition of the Peppers image.

3.4 Dead-zone Uniform Scalar Quantizer

Marcellin et.al. summarize in (24), among other, the uniform scalar quantizer. This

quantizer is described as a function that maps each element of a subset of the real

numbers into a particular value, which ensures that more zeros result. This way, quan-

tization values are uniformly spaced by step size ∆ except for the interval containing

the zero value, which is called the dead-zone, that extends from −∆ to +∆. Thus, a
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dead-zone means that the quantization range around 0 is 2∆.

Taking a given wavelet plane ωo
s , a particular quantizer step size ∆o

s is used to

quantize all the coefficients in that spatial frequency s and orientation o. Hence a

particular quantized index is defined as:

q = sign(y)
⌊ |y|

∆o
s

⌋
(3.6)

where y is the input to the quantizer (i.e., the original wavelet coefficient value), sign(y)

denotes the sign of y and q is the resulting quantized index. Figure 3.5 illustrates such a

quantizer with step size ∆, here vertical lines indicate the endpoints of the quantization

intervals and heavy dots represent reconstruction values.

The inverse quantizer or the reconstructed ŷ is given by

ŷ =





(q + δ)∆o
s, q > 0

(q − δ)∆o
s q < 0

0, q = 0
(3.7)

where δ is a parameter often set to place the reconstruction value at the centroid of

the quantization interval and varies form 0 to 1.

Figure 3.5: Dead-zone uniform scalar quantizer with step size ∆: vertical lines indicate
the endpoints of the quantization intervals and heavy dots represent reconstruction values.

The International Organization for Standardization recommends to adopt the mid-

point reconstruction value, setting δ = 0.5 (10). Experience indicates that some small

improvements can be obtained by selecting a slightly smaller value. Pearlman and Said

in (34) suggest δ = 0.375, especially for higher frequency subbands (e.g. high frequency

wavelet planes). It is important to realize that when −∆ < y < ∆, the quantizer level

and reconstruction value are both 0. Since it is known that many coefficients in a

wavelet transform are close to zero (usually those of higher frequencies), it implies that

they are on the dead-zone, thus, the quantizer sets them to q=0.

Once a wavelet plane ωo
s is quantized, it is further losslessly encoded, since the

image compression degradations are only induced by the Quantization process.
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3.5 The Hi-SET Algorithm

3.5.1 Startup Considerations

3.5.1.1 Hilbert space-filling Curve

The Hilbert curve is an iterated function that is represented by a parallel rewriting

system, concretely a L-system. In general, a L-system structure is a tuple of four

elements:

1. Alphabet : the variables or symbols to be replaced.

2. Constants: set of symbols that remain fixed.

3. Axiom or initiator : the initial state of the system.

4. Production rules: how variables are replaced.

In order to describe the Hilbert curve alphabet let us denote the upper left, lower

left, lower right, and upper right quadrants as W, X, Y and Z, respectively, and the

variables as U (up, W → X → Y → Z), L (left, W → Z → Y → X), R (right,

Z → W → X → Y), and D (down, X → W → Z → Y). Where → indicates a movement

from a certain quadrant to another. Each variable represents not only a trajectory

followed through the quadrants, but also a set of 4m transformed pixels in m level.

The structure of our Hilbert Curve representation does not need fixed symbols,

since it is just a linear indexing of pixels.

(a) (b)

Figure 3.6: First three levels of a Hilbert Fractal Curve. (a) Axiom = D proposed by
David Hilbert in (16). (b) Axiom = U employed for this work.

The original work by David Hilbert(16) proposes an axiom with a D trajectory

(Figure 3.6(a)), while we propose to start with an U trajectory (Figure 3.6(b)). Our

proposal is based on the most of the image energy is concentrated where the higher
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subbands with lower frequencies are, namely at the upper-left quadrant. The first three

levels are portrayed in left-to-right order by Figure 3.6.

The production rules of the Hilbert Curve are defined by

• U is changed by the string LUUR

• L by ULLD

• R by DRRU

• D by RDDL.

In this way high order curves are recursively generated replacing each former level

curve with the four later level curves.

The Hilbert Curve has the property of remaining in an area as long as possible

before moving to a neighboring spatial region. Hence, correlation between neighbor

pixels is maximized, which is an important property in image compression processes.

The higher the correlation at the preprocessing, the more efficient the data compression.

3.5.1.2 Linear Indexing

A linear indexing is developed in order to store the coefficient matrix into a vector. Let

us define the Wavelet Transform coefficient matrix as H and the interleaved resultant

vector as
−→
H, being 2γ×2γ be the size of H and 4γ the size of

−→
H, where γ is the Hilbert

curve level. Algorithm 1 generates a Hilbert mapping matrix θ with level γ, expressing

each curve as four consecutive indexes. The level γ of θ is acquired concatenating

four different θ transformations in the previous level γ − 1. Algorithm 1 generates the

Hilbert mapping matrix θ, where
−→
β refers a 180 degree rotation of β and βT is the

linear algebraic transpose of β. Figure 3.7(b) shows an example of the mapping matrix

θ at level γ = 3. Thus, each wavelet coefficient at H(i,j) is stored and ordered at
−→
Hθ(i,j)

,

being θ(i,j) the location index of it into
−→
H.

3.5.1.3 Significance Test

A significance test is defined as the trial of whether one coefficient from a set of coeffi-

cients achieves a predefined significance criterion. A coefficient that fulfills the criterion

is considered significant, otherwise it is considered insignificant. The significance test
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Algorithm 1: Function to generate Hilbert mapping matrix θ of size 2γ × 2γ .
Input: γ

Output: θ

if γ = 1 then1

θ =

[
1 4

2 3

]

2

else3

β = Algorithm 1 (γ − 1)4

θ =

[
βT (β̃)T + (3× 4γ−1)

β + 4γ−1 β + (2× 4γ−1)

]

5

also defines how these subsets are formed and what coefficients are considered signifi-

cant.

With the aim of recovering the original image at different qualities and compression

ratios, it is not needed to sort and store all the coefficients
−→
H but just a subset of

them: the subset of significant coefficients. Those coefficients
−→
Hi such that 2thr ≤ |−→Hi|

are called significant otherwise they are called insignificant. The smaller the thr, the

better the final image quality and the lower the compression ratio.

Let us define a bit-plane as the subset of coefficients So such that 2thr ≤ |So| < 2thr+1.

The significance of a given subset So amongst a particular bit-plane is store at Ĥsig

and is defined as:

Ĥsig =
{

1, 2thr ≤ |So| < 2thr+1

0, otherwise
(3.8)

Algorithm 2 shows how a set So is divided into four equal parts (line 6) and how

the significance test (lines 7-12) is performed, resulting in four subsets (S1, S2, S3 and

S4) with their respective significance stored at the end of Ĥsig. The subsets S1, S2,

S3 and S4 are 2 × 1 cell arrays. The fist cell of each array contains one of the four

subsets extracted from So, Si (1) and the second one stores its respective significance

test result, Si (2) .

3.5.2 Coding Algorithm

Similarly to SPIHT and SPECK (34, 35), Hi-SET considers three coding passes: Initial-

ization, Sorting and Refinement, which are described in the next subsections. SPIHT

uses three ordered lists, namely the list of significant sets (LIS), the list of insignificant
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Algorithm 2: Subset Significance Test.
Data: So, thr

Result: S1, S2, S3, S4 and Ĥsig

γ= log4(length of So)1

The cell 1 of the subsets S1, S2, S3 and S4 is declared with 4γ−1 elements, while the cell 2 with just one2

element.

i = 13

Ĥsig is emptied.4

for j=1 to 4γ do5

Store So
[
from j to

(
i× 4γ−1

)]
into Si(1).6

if 2thr ≤ max |Si(1)| < 2thr+1 then7

Si(2) = 18

Add 1 at the end of the Ĥsig .9

else10

Si(2) = 011

Add 0 at the end of the Ĥsig .12

i and j are incremented by 1 and 4γ−1, respectively.13

pixels (LIP ), and the list of significant pixels (LSP ). The latter represents just the in-

dividual coefficients, which are considered the most important ones. SPECK employs

two of these lists, the LIS and the LSP. In contrast, Hi-SET makes use of only one

ordered list, the LSP.

Using a single LSP place extra load on the memory requirements of the coder,

because the total number of significant pixels remains the same even if the coding

process is working in insignificant branches. That is why we employ spare lists, storing

significant pixels in several sub-lists. This smaller lists have the same length than

significant coefficients found in the processed branch. With the purpose of speeding up

the coding process, Hi-SET uses not only spare lists, but also spare cell arrays, both

are denoted by an apostrophe, LSP ′, Ĥ′ or S′1, for instance.

3.5.2.1 Initialization Pass

The first step in this stage is to define threshold thr as

thr =
⌊
log2

(
max

{−→
H

})⌋
, (3.9)

that is, thr is the maximum integer power of two not exceeding the maximum value of
−→
H.
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The second step is to apply Algorithm 2 with thr and
−→
H as input data, which

divides
−→
H into four subsets of 4γ−1 coefficients and adds their significance bits at the

end of Ĥ.

3.5.2.2 Sorting Pass

Algorithm 3 shows a simplified version of the classification or sorting step of the Hi-SET

Coder. The Hi-SET sorting pass exploits the recursion of fractals. If a quadtree branch

is significant it moves forward until finding an individual pixel, otherwise the algorithm

stops and codes the entire branch as insignificant.

Algorithm 3: Sorting Pass
Data: S1, S2, S3, S4, thr and γ

Result: LSP and Ĥ

LSP and Ĥ are emptied.1

if γ = 0 then2

for i = 4 to 1 do3

if Si(2) is significant then4

Add Si(1) at the beginning of the LSP .5

if Si(1) is positive then6

Add 0 at the beginning of the Ĥ.7

else8

Add 1 at the beginning of the Ĥ.9

else10

for i=1 to 4 do11

if Si(2) is significant then12

Call Algorithm2 with Si(1) and thr as input data and Store the results into S′1, S′2, S′3,13

S′4 and Ĥ′.
Add Ĥ′ at the end of the Ĥ.14

Call Algorithm3 with S′1, S′2, S′3, S′4, thr and γ − 1 as input data and Store the results15

into Ĥ′ and LSP ′.
Add Ĥ′ at the end of the Ĥ.16

Add LSP ′ at the end of the LSP .17

Algorithm 3 is divided into two parts: Sign Coding (lines 2 to 9) and Branch

Significance Coding (lines 11 to 16). The algorithm performs the Sign Coding by

decomposing a given quadtree branch up to level γ = 0, i.e. the branch is represented

by only 4 coefficients with at least one of them being significant. The initial value of

γ is log4(length of
−→
H) − 1. Only the sign of the significant coefficients is coded, 0

for positives and 1 for negatives. Also each significant coefficient is added into a spare

LSP or LSP ′.
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The Branch Significance Coding calls the Algorithm 2 in order to quarter a branch

in addition to call recursively an entire sorting pass at level γ − 1 up to reach the

elemental level when γ = 0. The Significance Test results of a current branch (obtained

by the Algorithm 2) and the ones of next branches (acquired by Algorithm 3, denoted

as Ĥ′) are added at the end of Ĥ. Also, all the significant coefficients found in previous

branches (all the lists LSP ′) are added at the end of the LSP . This processes is

repeated for all four subsets of
−→
H.

3.5.2.3 Refinement Pass

At the end of Ĥ, the (thr − 1)-th most significant bits of each ordered entry of the

LSP, including those entries added in the last sorting pass, are added. Then, thr is

decremented and another Sorting Pass is performed. The Sorting and Refinement steps

are repeated up to thr = 1.

The decoder employs the same mechanism as the encoder, since it knows the fractal

applied to the original image. When the bitstream Ĥ is received, by itself describes the

significance of every variable of the fractal. Then with these bits, the decoder is able

to reconstruct both partially and completely, the same fractal structure of the original

image, refining the pixels progressively as the algorithm proceeds.

3.5.3 A Simple Example

In order to highlight the operations employed by Hi-SET, a simple example is shown.

The wavelet transform coefficient matrix H of an 8× 8 pixels image is depicted in

Figure 3.7(a), which is a three scale (n = 3) transformation, which implies γ = 3. The

indexed vector
−→
H (Figure 3.7(c)) is acquired interleaving H with a three-level matrix

θ (Figure 3.7(b)).

Table 3.3 shows the entire process up to the first bit-plane. The eleven steps in

Table 3.3 represent the three passes of the scheme. Initialization Pass is described by

steps 1 and 2, Sorting Pass by steps 3-10, while step 11 illustrates Refinement Pass.

Figure 3.8 depicts the fractal partitioning diagram of the first bit-plane encoding.

The following remarks refer to steps of the Table 3.3:

Step 1 The largest coefficient magnitude inside
−→
H is 63, thus the initial threshold,

defined by the Equation 3.9, is thr = 5 (i.e. 25 = 32). It implies that the first
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bit-plane is placed at (−64,−32] and [32, 64). Both LSP and Ĥ are emptied and

level γ = 3 is adopted by the axiom (3U).

Step 2 Using the production rules, a 3U curve changes to 2LUUR. At the first bit-

plane, the 2L and 2U curves are subsets of 42 pixels, where at least one coefficient

is significant, in this case 63, −34 and 49 for 2L (e.g. upper left quadrant) and

47 for 2U (lower left quadrant). The other two curves, 2U and 2R, have only

insignificant coefficients. Therefore the significance of these curves is 1100, which

is placed at Ĥ.

Step 3 Using the production rules, a 2L curve changes to 1ULLD. At the first bit-

plane, the 1U and 1L curves are subsets where at least one pixel is significant, in

this case 63 and −34 for 1U and 49 for 1L. The other two curves, 1L and 1D,

(a) Matrix H (b) Matrix θ

(c) Vector
−→
H

Figure 3.7: Example of Hilbert indexing of an 8× 8 pixels image. (a) Three-scale wavelet
transform matrix H with its Hilbert path. (b) Hilbert Indexing matrix θ when γ = 3. (c)
Interleaved resultant vector

−→
H.

Figure 3.8: Fractal partitioning diagram of the first bit-plane encoding, using Hi-SET
scheme.
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Table 3.3: The First bit-plane encoding using Hi-SET scheme. H, θ and
−→
H are taken

from Figure 3.7, with initial threshold thr = 5.

Step Former Current Bitstream Decoded

Curve Curve(s) Ĥ LSP

1 3U

2 3U 2LUUR 1100

3 2L 1ULLD 1100

4 1U SIIS 1001

5 sign +− 01 +32 −32

6 1L SIII 1000

7 sign + 0 +32 −32 +32

8 2U 1LUUR 0001

9 1R IIIS 0001

10 sign + 0 +32 −32 +32 +32

11 ref. 1010 +48 −32 +48 +32

have only insignificant coefficients. Therefore the significance of these curves is

1100, which is placed at Ĥ.

Step 4 The 1U curve represents 41 pixels, e.g. 63, −31, 23 and −34, which are signif-

icant (S), insignificant (I), insignificant and significant coefficients, respectively.

Thereby, the significance of this curve is 1001, which is placed at Ĥ.

Step 5 At 1U only the signs of 63 and −34 are coded. Thus, sign bits for these pixels

are 01, which are placed at Ĥ. Furthermore, 63 and −34 are laid into the LSP .

Step 6 From Step 3, the 1L curve represents 41 pixels, e.g. 49 (S), 10 (I), −13 (I) and

14 (I). Thus, the significance bits in this curve are 1000, which are placed at Ĥ.

Step 7 At 1L only the sign of 49 is coded. Thus, sign bit for this pixel is 0, which is

placed at Ĥ. Furthermore, 49 is laid into the LSP .

Step 8 From Step 2, using the production rules, a 2U curve changes to 1LUUR. At the

first bit-plane, the first three curves 1L, 1U and 1U are subsets with insignificant

coefficients, while the last one 1R has at least one significant pixel, in this case

only 47. Therefore the significance of these curves is 0001, which is placed at Ĥ.

Step 9 The 1R curve represents 41 pixels, e.g. 2 (I), −3 (I), −1 (I) and 47 (S). Thus,

the significance bits in this curve are 0001, which are placed at Ĥ.
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Step 10 At 1R only the sign of 47 is coded. Thus, sign bit for this pixel is 0, which is

placed at Ĥ. Furthermore, 47 is laid into the LSP .

Step 11 The encoded LSP contains four ordered entries: 63(111111), −34(100010),

49(110001) and 47(101111). At the end of Ĥ is added the second most signif-

icant bits of each entry of the encoded LSP, i.e. 1010. Therefore, when the

bitstream Ĥ is received by the decoder, it recovers a LSP with the following

values: +48(110000), −32(100000), +48(110000) and +32(100000). Binary mag-

nitudes in parentheses are in absolute value beacuse the sign bits are encoded (or

decoded) previously.

3.6 Hi-SET Codestream Syntax

The Hi-SET Codestream Syntax is a compressed representation of image data that

contains all parameters used in the encoding process and it is also a lineal stream of

bits. This bitstream is mainly divided into two consecutive groups: Headers and the

Ĥ obtained in the coding process (Figure 3.9).

Figure 3.9: Hi-SET Codestream Syntax.

Headers are subdivided in groups of Markers. We consider two types: Mandatory

and Complemental Headers. Figure 3.10(a) shows the structure of the Mandatory

Header, that is a 16 bit fixed size substream. This Header is fractionated in six Markers,

namely Imagesize, thrmax, wlev, Channels, wfilter and Qstep , described as:

Imagesize (4 bits). If this marker is different to zero means that the processed image

is squared with both height and width equal to 2Imagesize+1. Thus the overall size

of a square image varies from 42 to 416 pixels. Otherwise when Imagesize = 0000

the markers Imageheight and Imagewidth of the Complemental Header are used

for establishing the image size.
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thrmax (4 bits). It stores the maximum threshold thr−1 defined in eq (3.9), hence, its

value varies from 1 to 16. Thus, Hi-SET can process an image up to 16 bit-planes.

wlev (3 bits). This marker contains the number of spatial frequencies minus one per-

formed by the wavelet transform, thus its value varies from 1 to 8 wavelet spatial

frequencies.

Channels (3 bits). The number of image (color) components minus one is stored in

this marker, thus managing up to eight components.

wfilter (1 bit). If it is one, a 9/7 wavelet filter is used, otherwise a 5/3 filter is employed.

Qstep (1 bit). It indicates whether the coefficients are quantized or not. If they are

quantized, the size of Quantization steps ∆o
s are placed in a marker at the end of

the Complemental Header.

(a) Mandatory Header.

(b) Complemental Header.

Figure 3.10: Hi-SET Headers with their Markers.

Figure 3.10(b) shows the Complemental Header, which is formed by three consec-

utive Markers: two for storing the size of a non-squared image and the other one for

the quantization steps.

Imageheight (16 bits). It contains the height of a non-squared image. Hence, an image

up to 65535 pixel height can be supported.

Imagewidth (16 bits). It contains the width of a non-squared image. Hence, an image

up to 65535 pixel width can be supported.
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Qstepsorientation and frequencies (64-400 bits). This marker is a collection of several sub-

markers. Hi-SET can use a quantization step ∆o
s for every spatial frequency

(indexed by s) and spatial orientation (indexed by o) for a wavelet plane ωs,o, in

addition to another one for the residual plane cwlev+1.

Since the Codestream of Hi-SET supports up to wlev + 1 spatial frequencies and

three spatial orientations, there are 3× wlev + 4 quantization steps.

Each quantization step is represented by a two-byte long sub-marker, which is

divided in three parts: Sign, Exponent εo
s and Mantissa µo

s (Figure 3.11).

The most significant bit of the sub-marker is the sign of ∆o
s, whether 0 for positive

or 1 for negative. The ten least significant bits are employed for the allocation of

µo
s, which is defined by (10) as:

µo
s =

⌊
210

(
∆o

s

2Ro
s−εo

s
− 1

)
+

1
2

⌋
(3.10)

Equation (3.11) expresses how εo
s is obtained, which is stored at the 5 remaining

bits of the ∆o
s sub-marker

εo
s = Ro

s − dlog2 |∆o
s|e (3.11)

where Ro
s is the number of bits used to represent the peak coefficient inside ωo

s ,

defined as

Ro
s = dlog2 [max {ωo

s}]e . (3.12)

Figure 3.11: Structure of the ∆o
s Sub-marker.
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3.7 Experiments and Numerical Results

The aim of this section is to show how much error is introduced by Hi-SET during the

compression process. The quality of the recovered image is obtained by comparing it

against the original image.

3.7.1 Comparison with Hilbert Curve based algorithms

Hi-SET has some resemblances with other image compression algorithms, concretely

we are interested in those developed by Kim and Li (20) and Biswas (9). Similarly

to them, Hi-SET maximizes the correlation between pixels using a Hilbert scanning.

The differences between Hi-SET and these methods are that Hi-SET is an embedded

algorithm and also proposes a coding scheme, while the Kim and Li and Biswas methods

are not embedded because the entropy is encoded by a Huffman coder.

Figure 3.12 shows the comparison between these two algorithms and Hi-SET. This

comparison has been performed only for the case of the image Lenna because it is the

only result reported by these authors.

Figure 3.12(a) shows the PSNR difference between Hi-SET and Kim and Li algo-

rithm as a function of the bit-rate (bits per pixel, bpp). On the upper horizontal axis,

we show the PSNR obtained at the bpp shown on the lower horizontal axis. On average,

Hi-SET reduces PSNR in 4.75 dB (i.e. reduces the Mean Square Error around 63.07

%).

Similarly, Figure 3.12(b) shows the difference between Hi-SET and Biswas algo-

rithm. On average, Hi-SET diminishes the MSE in 84.66% (8.15 dB). For example, the

quality of a Hi-SET compressed image stored at 22.4 KB (0.70 bpp) is 36.37 dB, while

the Biswas algorithm obtains 28.73 dB, that is, 7.65 dB less.

Thus, on average our method improves the image quality of these two Hilbert fractal

based methods in approximately 6.20 dB.

3.7.2 Comparing Hi-SET and JPEG2000 coders

Two tests are performed in order to compare Hi-SET and JPEG2000 coders. The first

test is to apply to the coders the same parameters and the second one is to employ the

same subset of wavelet coefficients.
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(a) Kim and Li algorithm

(b) Biswas algorithm

Figure 3.12: Performance comparison (PSNR difference) between Hi-SET and the algo-
rithms proposed by Kim and Li and Biswas, for a gray-scale image Lenna. On the upper
part of the figures we show the obtained PSNR at the bpp shown on the lower part.
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3.7.2.1 With the same parameters

In this section we compare Hi-SET and JPEG2000 with the same parameters. The

comparison of Rate Distortion (RD) performance for JPEG2000 is taken from (43, Sec.

1.5), where the parameters used are the following:

• Single Tile.

• 3 levels of wavelet decomposition 9/7 Filter (Table 3.2).

• Size code blocks 64× 64.

• Keeping the step size the same (default ∆ = 1/128).

Therefore, the only way to achieve a given bit-rate is the truncation of the com-

pressed code-block bit-stream, which forms a single layer. The Embedded Block Coding

with Optimized Truncation (EBCOT) (51) postcompression RD optimization proce-

dure is used to determine these truncation points.

Figure 3.13: Comparison of RD performance of JPEG2000 and Hi-SET for the image
Lenna. The JPEG2000 results are taken from (43, Sec. 1.5)).

Figure 3.13 shows the comparison of RD performance of JPEG2000 and Hi-SET for

the image Lenna(Fig. 2.3(a)) Channel Y . The Hi-SET coder obtains, on the average,

in a higher PSNR=1.38 dB than the JPEG2000 standard. The reported results are

obtained for lossy coding for bit-rates of 0.0625, 0.125, 0.25, 0.5, 1.0 and 2.0.
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3.7.2.2 With the same subset of wavelet coefficients

An image compression system is a set of processes with the aim of representing the

image with a string of bits, keeping the length as small as possible. These processes are

mainly Transformation, Quantization and Entropy Coding. For the sake of compar-

ing the performance between the JPEG2000 standard entropy coder (51) and Hi-SET

entropy coder, the entropy coding is isolated from the rest of the subprocess of the com-

pression system. This way, a subset of wavelet coefficients are selected from the original

source image data Iorg such that Iorg ≥ 2thr−bpl+1, being bpl the desired bit-plane and

thr the maximum threshold

thr =
⌊
log2

(
max
(i,j)

{∣∣∣Iorg(i,j)

∣∣∣
})⌋

. (3.13)

These selected coefficients are inverse wavelet transformed in order to create a new

source of image data, i.e. I′org, which are near-losslessly compressed, that is until the

last bit-plane, by each coder. Figure 3.14 depicts this process. The software used

to perform JPEG2000 compression is Kakadu (50) and JJ2000 (40). The irreversible

component transformation (ICT, Y CbCr) is used in addition to the 9/7 irreversible

wavelet transform.

Hi-SET is tested on the 24 bit color images of Tampere Image Database (TID2008)(39),

which contains 24 images (Figure A.2). All images in the database are 512×384 pixels.

The fixed size of all images is obtained by cropping selected fragments of this size from

the original images.

The compression algorithms are evaluated in five experiments: low resolution gray-

scale images, medium resolution gray-scale images, low resolution color images, medium

resolution color images and high resolution gray-scale images. For these experiments

the JPEG2000 compression is performed by JJ2000 implementation(40).

Experiment 1. Low resolution gray-scale images. In order to test the image

coders in the worst possible conditions, the image database is transformed and

resized into gray-scale images (Y component) of 128× 96 pixels. The less pixels

an image contains, the less redundancies can be exploited on it. Figure 3.15

shows the quality of the recovered images as a function of their compression

rate. On the average, an image with 30 dB is compressed by JPEG2000 coder
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Figure 3.14: Bit-plane selection. Some coefficients are selected provided that they fulfil
the current threshold.

(dashed function) at 1.59 bpp (1:5.04 compression ratio) in 2.38 KBytes and by

Hi-SET (continuous function) at 1.10 bpp (1:7.3 ratio) in 1.64 KBytes. Figure

3.16 shows this differences when the image kodim18 is compressed at 0.8 bpp by

JPEG2000 and Hi-SET, being the latter 2.36 dB better. In general, for 128× 96

gray-scale images the JPEG2000 coder compresses either 0.551 bpp less or stores

847 Bytes more than Hi-SET with the same objective visual quality. At the same

compression rate Hi-SET is 1.84 dB better.

Experiment 2 Medium resolution gray-scale images. In this experiment, the

source image data both for the JPEG2000 standard coder and Hi-SET algo-

rithms are the selected images from the TID2008 (Figure A.2) transformed into

gray-scale images (Y component). Figure 3.17 shows the average quality of the

recovered images as a function of compression rate, for both JPEG2000 (dashed
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Figure 3.15: Comparison between Hi-SET and JPEG2000 image coders. Experiment 1:
Compression rate vs image quality of the 128× 96 gray-scale image database.

(a) JPEG2000 PSNR=23.99 dB (b) Hi-SET PSNR=26.35 dB

Figure 3.16: Experiment 1. Example of 128×96 reconstructed image kodim18 compressed
at 0.8 bpp (Y Component).

function) and Hi-SET (continuous function). Hi-SET improves the image quality

in approximately 0.427 dB with the same compression rate, or the bit-rate in

approximately 0.174 bpp with the same image quality. It implies saving around

4.18 KBytes for 512 × 384 pixels gray-scale images. On average, a 512 × 384

image compressed by JPEG2000 with 30 dB needs 19.8 KBytes at 0.827 bpp,

while Hi-SET needs 5.75 KBytes less at 0.587 bpp. In Figure 3.18, the difference
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in visual quality between JPEG2000 and Hi-SET when the image kodim23 is

compressed at 0.2 bpp are seen . The image quality of the recovered image coded

by (a) JPEG2000 is 2.74 dB lower than the one obtained by (b) Hi-SET.

Figure 3.17: Comparison between Hi-SET and JPEG2000 image coders. Experiment 2:
Compression rate vs image quality of the original image database in gray-scale.

(a) JPEG2000 PSNR=27.05 dB (b) Hi-SET PSNR=29.79 dB

Figure 3.18: Experiment 2. Example of 512× 384 recovered image kodim23 compressed
at 0.2 bpp (Y Component).

Experiment 3. Low resolution color images. As previously explained, the image

database is resized (performing a cropping process) to 128 × 96 pixels images.

They are transformed into the Y CbCr color space (the one used by JPEG2000).
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Figure 3.19 shows the PSNR of recovered images as a function of compression

rate. On the average, an image compressed by Hi-SET(continuous function)

with 34 dB is stored in 4.87 KBytes at 3.25 bpp, while using JPEG2000 (dashed

function) it is stored in 6.76 KBytes at 4.51 bpp. In Figure 3.20 we can see these

differences when image kodim06 is compressed at 1.4 bpp by JPEG2000 standard

(a) and Hi-SET(b). Thus, at the same compression rate, Hi-SET obtains a better

image quality (up to 2.26 dB better) than JPEG2000 coder. On avergage, Hi-SET

compresses either 0.925 bpp or saves 1.39 KBytes more than the JPEG2000 coder

with the same statistical error induced by the coding process or 1.43 dB with the

same compression rate.

Figure 3.19: Comparison between Hi-SET and JPEG2000 image coders. Experiment 3:
Compression rate vs image quality of the 128× 96 color image data base.

Experiment 4. Medium resolution color images. In this fourth experiment, tests

are made on the selected images of the Kodak test set transformed into Y CbCr

color space (it is the color space used by JPEG2000). Figure 3.21 shows the rela-

tion between compression rate and average quality. On average, a 512×384 image

compressed by Hi-SET(continuous function) with 35 dB is stored in 46.8 KBytes

at 1.95 bpp, while JPEG2000 (dashed function) stores it in 53.2 KBytes at

2.22 bpp. In Figure 3.22 we can see the difference when the image kodim04 is

compressed at 0.4 bpp by JPEG2000 (a) and Hi-SET(b). At the same compres-
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(a) JPEG2000 PSNR=25.99 dB (b) Hi-SET PSNR=28.25 dB

Figure 3.20: Experiment 3. Example of 128 × 96 recovered image kodim06 compressed
at 1.4 bpp (Y , Cb and Cr Components).

sion ratio, Hi-SET improves image quality by 1.83 dB. On average Hi-SET either

compresses 0.33 bpp more with the same image quality or reduces in 1.06 dB

the error with the same bit-rate. Thus, Hi-SET saves 7.9 KBytes more than the

JPEG2000 standard for 512× 384 color images.

Figure 3.21: Comparison between Hi-SET and JPEG2000 image coders. Experiment 4:
Compression rate vs image quality of the original color image data base.

Experiment 5. High resolution gray-scale images. This experiment is performed

in order to test the Hi-SET compression performance with high resolution images.
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(a) JPEG2000 PSNR=28.53 dB (b) Hi-SET PSNR=30.36 dB

Figure 3.22: Experiment 4. Example of 512× 384 recovered image kodim04 compressed
at 0.4 bpp (Y , Cb and Cr Components).

We use th e Y component of image Bicycle (19). Table 3.4 shows the PSNR

obtained by JPEG2000 and Hi-SET at 0.25, 0.50 and 0.75 bpp. On average,

images recovered by JPEG2000 are 3.16 dB lower than the ones decoded by

Hi-SET. Figure 3.23 shows image Bicycle compressed both by JPEG2000 (a)

and Hi-SET(b) at 0.38 bpp (e.g. 1:21.05), which is stored in 243 KBytes. The

right column of Figure 3.23 shows bottom left squared sections of 512×512 pixels.

These regions are cropped to ease the visual inspection of the differences between

algorithms. On the other hand, left column displays recovered images in their

original size. This Figure shows that the image processed by Hi-SET has a better

visual quality (it reduces the mean squared error in 80.41 percent in comparison

to JPEG2000).

Table 3.4: Comparison of lossy encoding by JPEG2000 standard and Hi-SET for the
image Bicycle.

bpp (rate) JPEG2000 Hi-SET

PSNR in dB’s PSNR in dB’s

0.25 (32:1) 19.08 23.82

0.50 (16:1) 24.91 28.00

0.75 (10.67:1) 29.65 31.30
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(a) JPEG2000 PSNR=19.48 dB

(b) Hi-SET PSNR=26.56 dB

Figure 3.23: Experiment 5. Examples of 2048×2560 recovered image Bicycle compressed
at 0.38 bpp (Y Component).
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3.7.2.3 Perceptual Image Quality Analysis

Although Hi-SET is not developed taking into account perceptual criteria, we com-

pare the perceptual image quality of JPEG2000 and Hi-SET. Hi-SET and JPEG2000

are compared with some state of the art numerical image quality estimators. Con-

cretely, Hi-SET and JPEG2000 performances are compared using MSE(18), PSNR(18),

SSIM(45), MSSIM(54), VSNR(12), VIF(58), VIFP(45), UQI(55), IFC(47), NQM(14),

WSNR(25) SNR and CwPSNR(Section 2.3.1). This comparison is made across the im-

age databases: CMU (Sec. A.5, using Kakadu implementation for JPEG2000 compres-

sion (50)), CSIQ(Sec. A.4, using JJ200 implementation for JPEG2000 compression),

IVC(Sec. A.1, using JJ2000 implementation for JPEG2000 compression), LIVE(Sec.

A.3, using Kakadu implementation for JPEG2000 compression) and TID2008(Sec. A.2,

using JJ2000 implementation for JPEG2000 compression), for color and gray-scale (Y

Channel) compression. For the sake of simplicity, in this Section, only CwPSNR results

are exposed (Fig. 3.24) and the rest of metrics are shown in Annex B. Thus, Fig.

3.24 shows that Hi-SET significantly improves the results of JPEG2000 coder. That

is, the images obtained by Hi-SET are perceptually better than the ones obtained by

JPEG2000, regardless the JPEG2000 implementation.

3.8 Conclusions

The Hi-SET coder is based on Hilbert scanning of embedded quadTrees. It has low

computational complexity and some important properties of modern image coders such

as embedding and progressive transmission. This is achieved by using the principle of

partial sorting by magnitude when a sequence of thresholds decreases. The desired

compression rate can be controlled just by chunking the stream at the desired file

length. When compared to other algorithms that use Hilbert scanning for pixel or-

dering, Hi-SET improves image quality by around 6.20 dB. Hi-SET achieves higher

compression rates than JPEG2000 coder not only for high and medium resolution im-

ages but also for low resolution ones where it is difficult to find redundancies among

spatial frequencies.
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(a) CMU gray-scale (b) CMU color

(c) CSIQ gray-scale (d) CSIQ color

(e) IVC gray-scale (f) IVC color

(g) LIVE gray-scale (h) LIVE color

(i) TID2008 gray-scale (j) TID2008 color

Figure 3.24: Comparison between JPEG2000 vs Hi-SET image coders. Compression
rate vs perceptual image quality, performed by CwPSNR, of the CMU (a-b), CSIQ (c-d),
CMU (e-f), LIVE (g-h) and TID2008 (i-j) image databases. In left column is shown the
gray-scale compression of all image databases, while the right one color compression is
depicted.
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Chapter 4

Perceptual Quantization

4.1 Introduction

Digital image compression has been a research topic for many years and a number of im-

age compression standards has been created for different applications. The JPEG2000

is intended to provide rate-distortion and subjective image quality performance supe-

rior to existing standards, as well as to supply functionality (10). However, JPEG2000

does not provide the most relevant characteristics of the human visual system, since

for removing information in order to compress the image mainly information theory

criteria are applied. This information removal introduces artifacts to the image that

are visible at high compression rates, because of many pixels with high perceptual

significance have been discarded.

Hence, it is necessary an advanced model that removes information according to

perceptual criteria, preserving the pixels with high perceptual relevance regardless of

the numerical information. The Chromatic Induction Wavelet Model presents some

perceptual concepts that can be suitable for it. Both CIWaM and JPEG2000 use

wavelet transform. CIWaM uses it in order to generate an approximation to how every

pixel is perceived from a certain distance taking into account the value of its neigh-

boring pixels. By contrast, JPEG2000 applies a perceptual criteria for all coefficients

in a certain spatial frequency independently of the values of its surrounding ones. In

other words, JPEG2000 performs a global transformation of wavelet coefficients, while

CIWaM performs a local one.

CIWaM attenuates the details that the human visual system is not able to perceive,
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enhances those that are perceptually relevant and produces an approximation of the

image that the brain visual cortex perceives. At long distances, as Figure 2.3(d) depicts,

the lack of information does not produce the well-known compression artifacts, rather it

is presented as a softened version, where the details with high perceptual value remain

(for example, some edges).

4.2 JPEG2000 Global Visual Frequency Weighting

In JPEG2000, only one set of weights is chosen and applied to wavelet coefficients

according to a particular viewing condition (100, 200 or 400 dpi’s) with fixed visual

weighting(10, Annex J.8). This viewing condition may be truncated depending on the

stages of embedding, in other words at low bit rates, the quality of the compressed image

is poor and the detailed features of the image are not available since at a relatively large

distance the low frequencies are perceptually more important.

The table 4.1 specifies a set of weights which was designed for the luminance com-

ponent based on the CSF value at the mid-frequency of each spatial frequency. The

viewing distance is supposed to be 4000 pixels, corresponding to 10 inches for 400 dpi

print or display. The weight for LL is not included in the table, because it is always 1.

Levels 1, 2, . . . , 5 denote the spatial frequency levels in low to high frequency order

with three spatial orientations, horizontal, vertical and diagonal.

Table 4.1: Recommended JPEG2000 frequency (s) weighting for 400 dpi’s (s = 1 is the
lowest frequency wavelet plane).

s horizontal vertical diagonal

1 1 1 1

2 1 1 0.731 668

3 0.564 344 0.564 344 0.285 968

4 0.179 609 0.179 609 0.043 903

5 0.014 774 0.014 774 0.000 573
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4.3 Perceptual Forward Quantization

4.3 Perceptual Forward Quantization

4.3.1 Methodology

Quantization is the only cause that introduces distortion into a compression process.

Since each transform sample at the perceptual image Iρ (from Eq. 2.4) is mapped

independently to a corresponding step size either ∆s or ∆n, thus Iρ is associated with

a specific interval on the real line. Then, the perceptually quantized coefficients Q, from

a known viewing distance d, are calculated as follows:

Q =
n∑

s=1

∑

o=v,h,d

sign(ωs,o)
⌊ |α(ν, r) · ωs,o|

∆s

⌋
+

⌊
cn

∆n

⌋
(4.1)

Unlike the classical techniques of Visual Frequency Weighting (VFW) on JPEG2000,

which apply one CSF weight per sub-band (10, Annex J.8), Perceptual Quantization us-

ing CIWaM (ρSQ) applies one CSF weight per coefficient over all wavelet planes ωs,o. In

this section we only explain Forward Perceptual Quantization using CIWaM (F-ρSQ).

Thus, Equation 4.1 introduces the perceptual criteria of Equation 2.4 (Perceptual Im-

ages) to each quantized coefficient of Equation 3.6(Dead-zone Scalar Quantizer). A

normalized quantization step size ∆ = 1/128 is used, namely the range between the

minimal and maximal values at Iρ is divided into 128 intervals. Finally, the perceptu-

ally quantized coefficients are entropy coded, before forming the output code stream

or bitstream. Figure 2.3 shows three CIWaM images of Lena, which are calculated by

Equation 4.1 (∆s = 1 and ∆n = 1) for a 19 inch screen with 1280 pixels of horizontal

resolution, at 30, 100 and 200 centimeters of distance. In this specific case, Eq. 2.4 =

Eq. 4.1.

4.3.2 Experimental Results applied to JPEG2000

The Perceptual quantizer F-ρSQ in JPEG2000 is tested on all the color images of the

Miscellaneous volume of the University of Southern California Image Data Base(2). The

data sets are eight 256× 256 pixel images (Fig. A.5) and eight 512× 512 pixel images

(Fig. A.6), but only visual results of the well-known images Lena, F-16 and Baboon

are depicted, which are 24-bit color images and 512× 512 of resolution. The CIWaM

model is performed for a 19 inch monitor with 1280 pixels of horizontal resolution at 50
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centimeters of viewing distance. The software used to obtain a JPEG2000 compression

for the experiment is JJ2000 (40).

Figure 4.1 shows the assessment results of the average performance of color im-

age compression for each bit-plane using a Dead-zone Uniform Scalar Quantizer (SQ,

Section 3.4, function with heavy dots), and it also depicts the results obtained when

applying F-ρSQ(function with heavy stars).

Figure 4.1: JPEG2000 Compression ratio (bpp) as a function of Bit-plane. Function
with heavy dots shows JPEG2000 only quantized by the dead-zone uniform scalar manner.
While function with heavy stars shows JPEG2000 perceptually pre-quantized by F-ρSQ.

Using CIWaM as a method of forward quantization, achieves better compression ra-

tios than SQ with the same threshold, obtaining better results at the highest bit-planes,

since CIWaM reduces unperceivable features. Figure 4.2 shows the contribution of F-

ρSQ in the JPEG2000 compression ratio, for example, at the eighth bit-plane, CIWaM

reduces 1.2423 bits per pixel than the bit rate obtained by SQ, namely in a 512× 512

pixel color image, CIWaM estimates that 39.75KB of information is perceptually irrel-

evant at 50 centimeters.

Both Figure 4.3 and 4.4 depict examples of recovered images compressed at 0.9 and

0.4 bits per pixel, respectively, by means of JPEG2000 (a) without and (b) with F-ρSQ.

Also these figures show that the perceptual quality of images forward quantized by ρSQ

is better than the objective one.

Figure 4.5 shows examples of recovered images of Baboon compressed at 0.59, 0.54
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Figure 4.2: The bit-rate decrease by each Bit-plane after applying F-ρSQ on the
JPEG2000 compression.

(a) JPEG2000 PSNR=31.19 dB. (b) JPEG2000-F-ρSQ PSNR=27.57 dB.

Figure 4.3: Examples of recovered images of Lenna compressed at 0.9 bpp.

(a) JPEG2000 PSNR=25.12 dB. (b) JPEG2000-F-ρSQ PSNR=24.57 dB.

Figure 4.4: Examples of recovered images of F-16 compressed at 0.4 bpp.

and 0.45 bits per pixel by means of JPEG2000 (a) without and (b and c) with F-ρSQ.

In Fig. 4.5(a) PSNR=26.18 dB and in Fig. 4.5(b) PSNR=26.15 dB but a perceptual
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metrics like WSNR (25), for example, assesses that it is equal to 34.08 dB. Therefore,

the recovered image Forward quantized by ρSQ is perceptually better than the one only

quantized by a SQ. Since the latter produces more compression artifacts, the ρSQ result

at 0.45 bpp (Fig. 4.5(c)) contains less artifacts than SQ at 0.59 bpp. For example the

Baboon’s eye is softer and better defined using F-ρSQ and it additionally saves 4.48 KB

of information.

(a) JPEG2000 compressed at 0.59 bpp.

(b) JPEG2000-F-ρSQ compressed at 0.54 bpp. (c) JPEG2000-F-ρSQ compressed at 0.45 bpp.

Figure 4.5: Examples of recovered images of Baboon.

4.4 Perceptual Inverse Quantization

The proposed Perceptual Quantization is a generalized method, which can be applied to

wavelet-transform-based image compression algorithms such as EZW, SPIHT, SPECK

or JPEG2000. In this work, we introduce both forward (F-ρSQ) and inverse perceptual

quantization (I-ρSQ) into the Hi-SET coder. This process is shown in the green blocks

of Fig. 4.6. An advantage of introducing ρSQ is to maintain the embedded features

not only of Hi-SET algorithm but also of any wavelet-based image coder. Thus, we call

Perceptual Quantization + Hi-SET = PHi-SET or ΦSET.
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Figure 4.6: The ΦSET image compression algorithm. Green blocks are the F-ρSQ and
I-ρSQ procedures.

Both JPEG2000 and ΦSET choose their VFWs according to a final viewing condi-

tion. When JPEG2000 modifies the quantization step size with a certain visual weight,

it needs to explicitly specify the quantizer, which is not very suitable for embedded

coding. While ΦSET neither needs to store the visual weights nor to necessarily specify

a quantizer in order to keep its embedded coding properties.

The main challenge underlies in to recover not only a good approximation of coef-

ficients Q but also the visual weight α(ν, r)(Eq. 4.1) that weighted them. A recovered

approximation Q̂ with a certain distortion Λ is decoded from the bitstream by the

entropy decoding process. The VFWs were not encoded during the entropy encoding

process, since it would increase the amount of stored data. A possible solution is to

embed these weights α(ν, r) into Q̂. Thus, our goal is to recover the α(ν, r) weights

only using the information from the bitstream, namely from the Forward quantized

coefficients Q̂.

Therefore, our hypothesis is that an approximation α̂(ν, r) of α(ν, r) can be recov-

ered applying CIWaM to Q̂, with the same viewing conditions used in I. That is, α̂(ν, r)

is the recovered e-CSF. Thus, the perceptual inverse quantizer or the recovered α̂(ν, r)

introduces perceptual criteria to 3.7(Inverse Scalar Quantizer) and is given by:

Î =





n∑

s=1

∑

o=v,h,d

sign(ω̂s,o)
∆s · (|ω̂s,o|+ δ)

α̂(ν, r)
+ ( ĉn + δ) ·∆n |ω̂s,o| > 0

0, ω̂s,o = 0

(4.2)

For the sake of showing that the encoded VFWs are approximately equal to the

decoded ones, that is α(ν, r) ≈ α̂(ν, r), we perform two experiments.

Experiment 1: Histogram of α(ν, r) and α̂(ν, r). The process of this short exper-

iment is shown by Figure 4.7. Figure 4.7(a) depicts the process for obtaining

losslessy both Encoded and Decoded visual weights for the 512×512 Lena image,

channel Y at 10 meters. While Figures 4.7(b) and 4.7(c) shows the frequency

histograms of α(ν, r) and α̂(ν, r), respectively. In both graphs, the horizontal
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axis represents the sort of VFW variations, whereas the vertical axis represents

the number of repetitions in that particular VFW. The distribution in both his-

tograms is similar and they have the same shape.

(a)

(b) (c)

Figure 4.7: (a) Graphical representation of a whole process of compression and decom-
pression. Histograms of (b) α(ν, r) and (c) α̂(ν, r) visual frequency weights for the 512×512
image Lenna, channel Y at 10 meters.

Experiment 2: Correlation analysis between α(ν, r) and α̂(ν, r). We employ the

process shown in Fig. 4.7(a) for all the images of the CMU (Figs. A.5 and A.6),

CSIQ(Fig. A.4) and IVC(Fig. A.1) Image Databases. In order to obtain α̂(ν, r),

we measure the lineal correlation between the original α(ν, r) applied during the

F-ρSQ process and the recovered α̂(ν, r). Table 4.2 shows that there is a high

similarity between the applied VFW and the recovered one, since their correlation

is 0.9849, for gray-scale images, and 0.9840, for color images.
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Table 4.2: Correlation between α(ν, r) and α̂(ν, r) across CMU (Figs. A.5 and A.6),
CSIQ(Fig. A.4) and IVC(Fig. A.1) Image Databases.

Image 8 bpp 24 bpp
Database gray-scale color

CMU 0.9840 0.9857
CSIQ 0.9857 0.9851
IVC 0.9840 0.9840

Overall 0.9849 0.9844

In this section, we only expose the results for the CMU image database. In Sec-

tions C.1.1 and C.1.2, we display the results for CSIQ and IVC image databases,

respectively.

Fig. 4.8 depicts the PSNR difference (dB) of each color image of the CMU

database, that is, the gain in dB of image quality after applying α̂(ν, r) at d = 2000

centimeters to the Q̂ images. On average, this gain is about 15 dB. Visual exam-

ples of these results are shown by Fig. 4.9, where the right images are the original

images, central images are perceptual quantized images after applying α(ν, r) and

left images are recovered images after applying α̂(ν, r).

Figure 4.8: PSNR difference between Q̂ image after applying α(ν, r) and recovered Î after
applying α̂(ν, r) for every color image of the CMU database.
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(a) Girl 2

(b) Tiffany

(c) Peppers

Figure 4.9: Visual examples of Perceptual Quantization. Left images are the original
images, central images are forward perceptual quantized images (F-ρSQ) after applying
α(ν, r) at d = 2000 centimeters and right images are recovered I-ρSQ images after applying
α̂(ν, r).
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After applying α̂(ν, r), a visual inspection of these sixteen recovered images show

a perceptually lossless quality. We perform the same experiment experiment for

gray-scale and color images with d = 20, 40, 60, 80, 100, 200, 400, 800, 1000 and

2000 centimeters, in addition to test their objective and subjective image quality

by means of the PSNR and MSSIM metrics, respectively.

In Figs. 4.10 and 4.11, green functions denoted as F-ρSQ are the quality metrics of

perceptual quantized images after applying α(ν, r), while blue functions denoted

as I-ρSQ are the quality metrics of recovered images after applying α̂(ν, r). Thus,

either for gray-scale or color images, both PSNR and MSSIM estimations of

the quantized image Q decrease regarding d, the longer d the greater the image

quality decline. When the image decoder recovers Q̂ and it is perceptually inverse

quantized, the quality barely varies and is close to perceptually lossless, no matter

the distance.

(a) PSNR (b) MSSIM

Figure 4.10: PSNR and MSSIM assessments of compression of Gray-scale Images (Y
Channel) of the CMU image database. Green functions denoted as F-ρSQ are the quality
metrics of forward perceptual quantized images after applying α(ν, r), while blue functions
denoted as I-ρSQ are the quality metrics of recovered images after applying α̂(ν, r).

4.5 ΦSET Codestream Syntax

ΦSET Codestream Syntax is similar to the Hi-SET one (Section 3.6), only two Markers

are added inside Complemental Header (Fig. 3.10(b)), Perceptual Quantization Marker

(PQ) and Observation Distance Marker (d).
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(a) PSNR (b) MSSIM

Figure 4.11: PSNR and MSSIM assessments of compression of Color Images of the CMU
image database. Green functions denoted as F-ρSQ are the quality metrics of forward
perceptual quantized images after applying α(ν, r), while blue functions denoted as I-ρSQ
are the quality metrics of recovered images after applying α̂(ν, r).

PQ (1 bit). If Qstep = 1, PQ would specify if the wavelet coefficients were perceptually

quantized or not. Fig. 4.12(a) shows this marker.

d (16 bits). This marker stores the observation distance d. d is represented by a two-

byte long sub-marker, which is divided in two parts: Exponent εd and Mantissa

µd (Fig. 4.12(b)).

The eleven least significant bits are employed for the allocation of µd, which is

defined as:

µd =
⌊
211

(
d

2Rdmax−εd
− 1

)
+

1
2

⌋
(4.3)

Equation (4.4) expresses how εd is obtained, which is stored at the 5 remaining

bits of the d marker

εd = Rdmax − dlog2 (d)e (4.4)

where Rdmax is the number of bits used to represent the peak permitted observa-

tion distance d < 2048H, being H the height of a 512×512 pixel image presented

in an Msize LCD monitor with horizontal resolution of hres pixels and vres pixels

of vertical resolution. Therefore, Rdmax = 11.
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(a) PQ Marker

(b) d Marker

Figure 4.12: Markers added to Complemental Header (Fig. 3.10(b)). (a) Perceptual
Quantization Marker and (b) Structure of Observation Distance Marker

4.6 Experiments and Results

4.6.1 Comparing ΦSET and Hi-SET coders

Figure 4.13: Comparison between ΦSET and Hi-SET image coders. Compression rate vs
CwPSNR perceptual image quality of Image Lenna (128× 128, Channel Y ).

In this Section, we compare ΦSET and Hi-SET coders with the Image Lenna (Fig.

2.3(a), 128× 128, Channel Y ), in order to know if there is an improvement when ρSQ

is applied to the Hi-SET coder. Thus, for this particular case, Fig. 4.13 shows that

there is a slight improvement in ΦSET (Green function) in the perceptual quality of the
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image of about CwPSNR=0.26 dB, on the average, regarding the Hi-SETcoder (Blue

function).

4.6.2 Comparing ΦSET and JPEG2000 coders

For the sake of comparing the performance between the JPEG2000(51) and ΦSET

coders, both algorithms are tested according to the process depicted in Fig. 4.14.

First a ΦSET compression with certain viewing conditions is performed, which gives a

compressed image with a particular bit-rate (bpp). Then, a JPEG2000 compression is

performed with the same bit-rate. Once both algorithms recover their distorted images,

they are compared with some numerical image quality estimators such as: MSE(18),

PSNR(18), SSIM(45), MSSIM(54), VSNR(12), VIF(58), VIFP(45), UQI(55), IFC(47),

NQM(14), WSNR(25), SNR and CwPSNR(Section 2.3.1).

Figure 4.14: Process for comparing JPEG2000 and ΦSET. Given some viewing conditions
a ΦSET compression is performed obtaining a particular bit-rate. Thus, a JPEG2000
compression is performed with such a bit-rate.

This experiment is performed across the CMU (Section A.5) and IVC (Section

A.1) Image Databases. Image quality estimations are assessed by the thirteen metrics

before mentioned, but in this section only CwPSNR results are exposed, the remaining

metrics are shown in Sections C.2.1 and C.2.2 for the CMU and IVC Image Databases,

respectively.

The parameters for estimating the CwPSNR assessment are: d = 8H, Msize = 19′′,

hres = 1280 and vres = 1024.
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(a) CMU Image Database (b) IVC Image Database

Figure 4.15: Comparison between ΦSET and JPEG2000 image coders. Compression rate
vs CwPSNR perceptual image quality, of (a) the CMU and (b) IVC image databases.

Fig. 4.15(a) shows the perceptual quality, estimated by CwPSNR, of the recovered

color images both for JPEG2000 and ΦSET as a function of their compression rate. For

this experiment, we employ the CMU Image Database (Section A.5) and the Kakadu

implementation for JPEG2000 compression(50). On the average, a color image with

CwPSNR=36 dB is compressed by JPEG2000 coder (blue function) at 2.00 bpp (1:12

compression ratio) in 64 KBytes and by ΦSET (green function) at 1.50 bpp (1:16 ratio) in

48 KBytes. In Figure 4.16, we can see these differences when images Lenna, Girl2 and

Tiffany are compressed at 0.92 bpp, 0.54 bpp and 0.93 bpp, respectively, by JPEG2000

and ΦSET. Thus, on the average for this image database, ΦSET is 2.38 dB better than

JPEG2000.

Fig. 4.15(b) shows the perceptual quality, estimated by CwPSNR, of the recovered

color images both for JPEG2000 and ΦSET as a function of their compression rate. For

this experiment, we employ the IVC Image Database (Section A.1) and the JJ2000

implementation for JPEG2000 compression(40). On the average, a color image com-

pressed at 1.5 bpp (1:16 ratio, stored in 48 KBytes) by JPEG2000 coder (blue function)

has CwPSNR=34.70 dB of perceptual image quality and by ΦSET (green function) has

CwPSNR=36.86 dB. In Figure 4.17, we can see these differences when images Barbara,

Mandrill and Clown are compressed at 0.76 bpp, 1.15 bpp and 0.96 bpp, respectively,

by JPEG2000 and ΦSET. Thus, on the average for this image database, ΦSET is 2.33 dB

better than JPEG2000.
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4.7 Conclusions

We defined both forward (F-ρSQ) and inverse (I-ρSQ) perceptual quantizer using

CIWaM. We incorporated it to Hi-SET, proposing the perceptual image compres-

sion system ΦSET. In order to measure the effectiveness of the perceptual quantization,

a performance analysis is done using thirteen assessments such as PSNR, MSSIM, VIF,

WSNR or CwPSNR, for instance, which measured the image quality between recon-

structed and original images. The experimental results show that the solely usage of

the Forward Perceptual Quantization improves the JPEG2000 compression and im-

age perceptual quality. In addition, when both Forward and Inverse Quantization are

applied into Hi-SET, it significatively improves the results regarding the JPEG2000

compression.
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(a) JPEG2000, CwPSNR=34.40 dB (b) ΦSET, CwPSNR=37.81 dB

(c) JPEG2000, CwPSNR=33.42 dB (d) ΦSET, CwPSNR=38.22 dB

(e) JPEG2000, CwPSNR=32.88 dB (f) ΦSET, CwPSNR=38.10 dB

Figure 4.16: Example of reconstructed color images Lenna, Girl2 and Tiffany of the
CMU image database compressed at (a-b) 0.92 bpp, (c-d) 0.54 bpp and (e-f) 0.93 bpp,
respectively.
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(a) JPEG2000, CwPSNR=30.87 dB (b) ΦSET, CwPSNR=31.69 dB

(c) JPEG2000, CwPSNR=27.71 dB (d) ΦSET, CwPSNR=28.86 dB

(e) JPEG2000, CwPSNR=31.74 dB (f) ΦSET, CwPSNR=33.19 dB

Figure 4.17: Example of reconstructed color images Barbara, Mandrill and Clown of
the IVC image database compressed at (a-b) 0.76 bpp, (c-d) 1.15 bpp and (e-f) 0.96 bpp,
respectively.
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Chapter 5

Perceptual Generalized

Bitplane-by-Bitplane Shift

5.1 Introduction

Region of interest (ROI) image coding is a feature that modern image coder have,

which allows to encode an specific region with better quality than the rest of the image

or background (BG). ROI coding is one of the requirements in the JPEG2000 image

coding standard (10, 11, 48, 51), which defines two ROI methods(4, 13, 30, 31, 51):

1. Based on general scaling

2. Maximum shift (MaxShift)

The general ROI scaling-based method scales coefficients in such a way that the bits

associated with the ROI are shifted to higher bitplanes than the bitplanes associated

with the background, as shown in Figure 5.1(b). It implies that during a embedded

coding process, any background bitplane of the image is located after the most signif-

icant ROI bitplanes into the bit-stream. But, in some cases, depending on the scaling

value, ϕ, some bits of ROI are simultaneously encoded with BG. Therefore, this method

allows to decode and refine the ROI before the rest of the image. No matter ϕ, it is

posible to reconstruct with the entire bitstream a highest fidelity version of the whole

image. Nevertheless, If the bitstream is terminated abruptly, the ROI will have a higher

fidelity than BG.

The scaling-based method is implemented in five steps:
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5. PERCEPTUAL GENERALIZED BITPLANE-BY-BITPLANE SHIFT

(a) No ROI coding (b) Scaling Based Method with ϕ = 3

Figure 5.1: Scaling based ROI coding method. Background is denoted as BG and Region
of Interest as ROI. MSB is the most significant bitplane and LSB is the least significant
bitplane.

1. A wavelet transform of the original images is performed.

2. A ROI mask is defined, indicating the set of coefficients that are necessary for

reaching a lossless ROI reconstruction, Figure 5.2.

3. Wavelet coefficients are quantized and stored in a sign magnitude representation,

using the most significant part of the precision. It will allow to downscale BG

coefficients.

4. A specified scaling value, ϕ̃, downscales the coefficients inside the BG.

5. The most significant bitplanes are progressively entropy encoded.

Figure 5.2: ROI mask generation, wavelet domain.

The input of ROI scaling-based method is the scaling value ϕ, while MaxShift

method calculates it. Hence, the encoder defines from quantized coefficients this scaling
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value such that:

ϕ = dlog2 (max {MBG}+ 1)e (5.1)

where max {MBG} is the maximum coefficient in the BG. Thus, when ROI is scaled up

ϕ bitplanes, the minimum coefficient belonging to ROI will be place one bitplane up of

BG (Fig. 5.3). Namely, 2ϕ is the smallest integer that is greater than any coefficient

in the BG. MaxShift method is shown in Figure 5.3. Bitplane mask (BPmask) will be

explained in section 5.2.2.

Figure 5.3: MaxShift method, ϕ = 7. Background is denoted as BG, Region of Interest
as ROI and Bitplane mask as BPmask.

At the decoder side, the ROI and BG coefficients are simply identified by checking

the coefficient magnitudes. All coefficients that are higher or equal than the ϕth bit-

plane belong to the ROI otherwise they are a part of BG. Hence, it is not important to

transmit the shape information of the ROI or ROIs to the decoder. The ROI coefficients

are scaled down ϕ bitplanes before inverse wavelet transformation is applied.

5.2 Related Work

5.2.1 BbBShift

Wang and Bovik proposed the bitplane-by-bitplane shift (BbBShift) method in (60).

BbBShift shifts bitplanes on a bitplane-by-bitplane strategy. Figure 5.4 shows an illus-

tration of the BbBShift method. BbBShift uses two parameters, ϕ1 and ϕ2, whose sum

is equal to the number of bitplanes for representing any coefficient inside the image,

indexing the top bitplane as bitplane 1.

79
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Figure 5.4: BbBShift ROI coding method, ϕ1 = 3 and ϕ2 = 4. Background is denoted
as BG, Region of Interest as ROI and Bitplane mask as BPmask.

The encoding process of the BbBShift method is defined as:

1. For a given bitplane bpl with at least one ROI coefficient:

• If bpl ≤ ϕ1, bpl is not shifted.

• If ϕ1 < bpl ≤ ϕ1 + ϕ2, bpl is shifted down to ϕ1 + 2 (bpl − ϕ1)

2. For a given bitplane bpl with at least one BG coefficient:

• If bpl ≤ ϕ2, bpl is shifted down to ϕ1 + 2bpl − 1

• If bpl > ϕ2, bpl is shifted down to ϕ1 + ϕ2 + bpl

Summarizing, the BbBShift method encodes the first ϕ1 bitplanes with ROI coef-

ficients, then, BG and ROI bitplanes are alternately shifted, refining gradually both

ROI and BG of the image (Fig. 5.4).

5.2.2 GBbBShift

In practice, the quality refinement pattern of the ROI and BG used by BbBShift method

is similar to the general scaling based method. Thus, when the image is encoded and

this process is truncated in a specific point the quality of the ROI is high while there

is no information of BG.

Hence, Wang and Bovik (56) modified BbBShift method and proposed the gen-

eralized bitplane-by-bitplane shift (GBbBShift) method, which introduces the option

to improve visual quality either of ROI or BG or both. Figure 5.5 shows that with
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GBbBShift method it is posible to decode some bitplanes of BG after the decoding of

same ROI bitplanes. It allows to improve the overall quality of the recovered image.

This is posible gathering BG bitplanes. Thus, when the encoding process achieves the

lowest bitplanes of ROI, the quality of BG could be good enough in order to portray

an approximation of BG.

Figure 5.5: GBbBShift ROI coding method. Background is denoted as BG, Region of
Interest as ROI and Bitplane mask as BPmask.

Therefore, the main feature of GBbBShift is to give the opportunity to arbitrary

chose the order of bitplane decoding, grouping them in ROI bitplanes and BG bitplanes.

This is posible using a binary bitplane mask or BPmask, which contains one bit per

each bitplane, that is, twice the amount of bitplanes of the original image. A ROI

bitplane is represented by 1, while a BG bitplane by 0. For example, the BPmask for

MaxShift method in Figure 5.3 is 11111110000000, while for BbBShift in Figure 5.4

and GBbBShift in Figure 5.5 are 11101010101000 and 11100011110000, respectively.

At the encoder side, the BPmask has the order of shifting both the ROI and BG

bitplanes. Furthermore, BPmask is encoded in the bitstream, while the scaling values

ϕ or ϕ1 and ϕ2 from the MaxShift and BbBShift methods, respectively, have to be

transmitted.

5.3 ρGBbBShift Method

In order to have several kinds of options for bitplane scaling techniques, a percep-

tual generalized bitplane-by-bitplane shift(ρGBbBShift) method is proposed. The

ρGBbBShift method introduces to the GBbBShift method perceptual criteria when
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bitplanes of ROI and BG areas are shifted. This additional feature is intended for

balancing perceptual importance of some coefficients regardless their numerical im-

portance and for not observing visual difference at ROI regarding MaxShift method,

improving perceptual quality of the entire image.

Figure 5.6: ρGBbBShift ROI coding method. Background is denoted as BG (perceptually
quantized by ρSQ at d2), Region of Interest as ROI (perceptually quantized at d1 by
ρSQ)and Bitplane mask as BPmask.

Thus, ρGBbBShift uses a binary bitplane mask or BPmask in the same way that

GBbBShift (Figure 5.6). At the encoder, shifting scheme is as follows:

1. Calculate ϕ using Equation 5.1.

2. Verify that the length of BPmask is equal to 2ϕ.

3. • For all ROI Coefficients, forward perceptual quantize them using Equation

4.1 (F-ρSQ) with viewing distance d1.

• For all BG Coefficients, forward perceptual quantize them using Equation

4.1(F-ρSQ) with viewing distance d2, being d2 À d1.

4. Let τ and η be equal to 0.

5. For every element i of BPmask, starting with the least significant bit:

• If BPmask(i) = 1, Shift up all ROI perceptual quantized coefficients of the

(ϕ− η)-th bitplane by τ bitplanes and increment η.

• Else: Shift up all BG perceptual quantized coefficients of the (ϕ− τ)-th

bitplane by η bitplanes and increment τ .
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At the decoder, shifting scheme is as follows:

1. Let ϕ = length of BPmask
2 be calculated.

2. Let τ and η be equal to 0.

3. For every element i of BPmask, starting with the least significant bit:

• If BPmask(i) = 1, Shift down all perceptual quantized coefficients by τ bit-

planes, which pertain to the (2ϕ− (τ + η))-th bitplane of the recovered im-

age and increment η.

• Else: Shift down all perceptual quantized coefficients by η bitplanes, which

pertain to the (2ϕ− (τ + η))-th bitplane of the recovered image and incre-

ment τ .

4. Let us denote as ci,j a given non-zero wavelet coefficient of the recovered image

with 2ϕ bitplanes and ci,j as a shifted down c obtained in the previous step, with

ϕ bitplanes.

• If (ci,j & BPmask) > 0, inverse perceptual quantize ci,j using Equation 4.2(I-

ρSQ) with d1 as viewing distance.

• If (ci,j & BPmask) = 0, inverse perceptual quantize ci,j using Equation 4.2(I-

ρSQ) with d2 as viewing distance.

5.4 Experimental Results

The ρGBbBShift method, as the other methods presented here, can be applied to

many image compression algorithms such as JPEG2000 or Hi-SET. We test our

method applying it to Hi-SET and the results are contrasted with MaxShift method in

JPEG2000 and Hi-SET. The setup parameters are ϕ = 8 for MaxShift and BPmask =

1111000110110000, d1 = 5H and d2 = 50H, where H is picture height (512 pixels) in a

19-inch LCD monitor, for ρGBbBShift. Also, we use the JJ2000 implementation when

an image is compressed by JPEG2000 standard(40).
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5.4.1 Experiments

Figure 5.7 shows a comparison among methods MaxShift and GBbBShift applied to

JPEG2000, in addition to, ρGBbBShift applied to Hi-SET. The 24-bpp image Barbara

is compressed at 0.5 bpp.

(a) MaxShift in JPEG2000 coder, 0.5 bpp

(b) GBbBShift in JPEG2000 coder, 0.5 bpp (c) ρGBbBShift in Hi-SET coder, 0.5 bpp

Figure 5.7: 512 × 640 pixel Image Barbara with 24 bits per pixel. ROI is a patch of
the image located at [341 280 442 442], whose size is 1/16 of the image. Decoded images
at 0.5 bpp using MaxShift method in JPEG2000 coder((a) ϕ = 8), GBbBShift method in
JPEG2000 coder ((b)BPmask = 1111000110110000) and ρGBbBShift method in Hi-SET
coder ((c)BPmask = 1111000110110000).

It can be observed that without visual difference at ROI, the ρGBbBShift method

provide better image quality at the BG than the general based methods defined in
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JPEG2000 Part II(11).

In order to better qualify the performance of MaxShift, GBbBShift and ρGBbBShift

methods, first, we compared these methods applied to the Hi-SET coder and then, we

compare MaxShift and ρGBbBShift methods applied to the JPEG2000 standard and

Hi-SET, respectively .We compress two different gray-scale and color images of 1600,

from CSIQ image database (Fig A.4), and Lenna at different bit-rates. ROI area is a

patch at the center of these images, whose size is 1/16 of the image.

(a) PSNR gray-scale (b) CwPSNR gray-scale

(c) PSNR color (d) CwPSNR color

Figure 5.8: Comparison among MaxShift(Blue Function), GBbBShift(Green Function)
and ρGBbBShift(Red Function) methods applied to Hi-SET coder. 512× 512 pixel Image
1600 with (a-b) 8 and (c-d) 24 bits per pixel are employed for this experiment. ROI is a
patch at the center of the image, whose size is 1/16 of the image. The overall image quality
of decoded images at different bits per pixel are contrasted both (a and c) objectively and
(b and d) subjectively.

Figure 5.8 shows the comparison among MaxShift(Blue Function), GBbBShift(Green
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Function) and ρGBbBShift(Red Function) methods applied to Hi-SET coder. 512× 512

pixel Image 1600 both for gray-scale and color are employ for this experiment. These

Figures also show that the ρGBbBShift method gets the better results both in PSNR(objective

image quality) and CwPSNR(subjective image quality) in contrast to MaxShift and

GBbBShift methods.

(a) PSNR gray-scale (b) CwPSNR gray-scale

(c) PSNR color (d) CwPSNR color

Figure 5.9: Comparison between MaxShift method applied to JPEG2000 coder and
ρGBbBShift applied to Hi-SET coder. 512× 512 pixel Image 1600 with (a-b) 8 and (c-d)
24 bits per pixel are employed for this experiment. ROI is a patch at the center of the
image, whose size is 1/16 of the image. The overall image quality of decoded images at
different bits per pixel are contrasted both (a and c) objectively and (b and d) subjectively
.

When MaxShift method applied to JPEG2000 coder and ρGBbBShift applied to

Hi-SET coder are compared, in the whole image quality assessment of image 1600,

JPEG2000 obtains better objective quality both for gray-scale and color images (Fig-
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ures 5.9(a) and 5.9(c), respectively). But when the subjective quality is estimated

ρGBbBShift coded images are perceptually better.

A visual example is depicted by Figure 5.10, where it can be shown that there is no

perceptual difference between ROI areas besides the perceptual image quality at BG is

better when ρGBbBShift is applied to the Hi-SET coder (Fig. 5.10(d)). Furthermore,

Figs. 5.10(b) and 5.10(c) show the examples when MaxShift and GBbBShift methods,

respectively, are applied to the Hi-SET coder.

Similarly, when a ROI area is defined in Image Lenna, Fig. 5.11 shows the compari-

son among MaxShift(Blue Function), GBbBShift(Green Function) and ρGBbBShift(Red

Function) methods applied to Hi-SET coder. 512 × 512 pixel Image Lenna both for

gray-scale and color are employ for this experiment. These Figures also show that the

ρGBbBShift method gets the better results both in PSNR(objective image quality)

and CwPSNR(subjective image quality) in contrast to MaxShift and GBbBShift meth-

ods. In addition, When MaxShift method applied to JPEG2000 coder and ρGBbBShift

applied to Hi-SET coder are compared, ρGBbBShift obtains less objective quality (Fig-

ures 5.12(a) and 5.12(c)), but better subjective quality both for gray-scale and color

images (Figures 5.12(b) and 5.12(d), respectively).

Figure 5.13 shows a visual example, when image Lenna is compressed at 0.34 bpp

by JPEG2000 and Hi-SET. Thus, it can be observed that ρGBbBShift provides an

important perceptual difference regarding the MaxShift method(Fig. 5.13(d)). Fur-

thermore, Figs. 5.13(b) and 5.13(c) show the examples when MaxShift and GBbBShift

methods, respectively, are applied to the Hi-SET coder.

5.4.2 Application in other image compression fields

The usage of ROI coded images depends on an specific application, but in some fields

such as manipulation and transmission of images is important to enhance the image

quality of some areas and to reduce it in others(7, 15). In Telemedicine or in Remote

Sensing (RS) it is desirable to maintain the best quality of the ROI area, preserving

relevant information of BG, namely the most perceptual frequencies.

Thus, in medical applications an image is by itself a ROIφ area of the human body,

a mammography is an area of chest, for instance. That is why, it is important to

know where is this ROIφ located, in order to ease the interpretation of a given ROI
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(a) MaxShift method in JPEG2000 coder,

0.42 bpp

(b) MaxShift method in Hi-SET coder, 0.42 bpp.

(c) GBbBShift method in Hi-SET coder,

0.42 bpp.

(d) ρGBbBShift method in Hi-SET coder,

0.42 bpp

Figure 5.10: 512×512 pixel Image 1600 from CSIQ image database with 8 bits per pixel.
ROI is a patch at the center of the image, whose size is 1/16 of the image. Decoded images
at 0.42 bpp using ϕ = 8 for MaxShift method (a) in JPEG2000 coder and (b) in Hi-SET
coder, and BPmask = 1111000110110000 for (c) GBbBShift and (d) ρGBbBShift methods
in Hi-SET coder.
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(a) PSNR gray-scale (b) CwPSNR gray-scale

(c) PSNR color (d) CwPSNR color

Figure 5.11: Comparison among MaxShift(Blue Function), GBbBShift(Green Function)
and ρGBbBShift(Red Function) methods applied to Hi-SET coder. 512× 512 pixel Image
Lenna with (a-b) 8 and (c-d) 24 bits per pixel are employed for this experiment. ROI is a
patch at the center of the image, whose size is 1/16 of the image. The overall image quality
of decoded images at different bits per pixel are contrasted both (a and c) objectively and
(b and d) subjectively.

coded image. In addition, according Federal laws in some countries, ROI areas must

be lossless areas(62). ρGBbBShiftis able to accomplish these two features.

Figure 5.14 shows an example of medical application. A rectangular ROI of the Im-

age mdb202 from PEIPA image database(37) , coordinates [120 440 376 696], is coded

at 0.12 bpp by JPEG2000 and Hi-SET, employing MaxShift and ρGBbBShift methods,

respectively. The overall image quality measured by PSNR in Figure 5.14(a) (MaxShift

method applied to JPEG2000) is 37.21 dB, while in Figure 5.14(c) (ρGBbBShift method

applied to Hi-SET) is 36.76 dB. Again, PSNR does not reflect perceptual differences
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(a) PSNR gray-scale (b) CwPSNR gray-scale

(c) PSNR color (d) CwPSNR color

Figure 5.12: Comparison between MaxShift method applied to JPEG2000 coder and
ρGBbBShift applied to Hi-SET coder. 512×512 pixel Image Lenna with (a-b) 8 and (c-d)
24 bits per pixel are employed for this experiment. ROI is a patch at the center of the
image, whose size is 1/16 of the image. The overall image quality of decoded images at
different bits per pixel are contrasted both (a and c) objectively and (b and d)subjectively.

between images (Figures 5.14(b) and 5.14(d)). When perceptual metrics assess the im-

age quality of the ρGBbBShift coded image, for example, VIFP=0.6359, WSNR=34.24

and CwPSNR=40.88, while for MaxShift coded image VIFP=0.3561, WSNR=31.34

and CwPSNR=37.18. Thus, these metrics predicts that there is an important percep-

tual difference between ROI methods, being ρGBbBShift method better than MaxShift

method.

Remote Sensing Images (RSI) are widely used in agriculture, mapping, water con-

servancy, etc. An RSI database is usually very huge in size, since the saved images have

abundant details. Thus, an important goal for compressing RSI is to code the images
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(a) MaxShift method in JPEG2000 coder,

0.34 bpp.

(b) MaxShift method in Hi-SET coder, 0.34 bpp.

(c) GBbBShift method in Hi-SET coder,

0.34 bpp.

(d) ρGBbBShift method in Hi-SET coder,

0.34 bpp.

Figure 5.13: 512 × 512 pixel Image Lenna from CMU image database with 8 bits per
pixel. ROI is a patch at the center of the image, whose size is 1/16 of the image. Decoded
images at 0.34 bpp using ϕ = 8 for MaxShift method (a) in JPEG2000 coder and (b) in
Hi-SET coder, and BPmask = 1111000110110000 for (c) GBbBShift and (d) ρGBbBShift
methods in Hi-SET coder.
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(a) MaxShift method in JPEG2000 coder,

0.12 bpp

(b) Patch of (a) portrayed both ROI and BG ar-

eas.

(c) ρGBbBShift method in Hi-SET coder,

0.12 bpp

(d) Patch of (c) portrayed both ROI and BG ar-

eas.

Figure 5.14: Example of a medical application. 1024 × 1024 pixel Image mdb202 from
PEIPA image database. ROI is a patch with coordinates [120 440 376 696], whose size is
1/16 of the image. Decoded images at 0.12 bpp using MaxShift method ((a-b) ϕ = 8) in
JPEG2000 coder and ρGBbBShift method ((c-d)BPmask = 1111000110110000) in Hi-SET
coder.
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in advance, in order to transfer them and store them. However, only a small part of

the image is useful and therefore some regions are only sketched(63).

Figure 5.15 shows an example of the application of ROI in Remote Sensing. Image

2.1.05, from Volumen 2: aerials of USC-SIPI image database 8 bits per pixel(2), is

compressed at 0.42 bpp. MaxShift method spends all the bit-ratio for coding ROI,

located at [159 260 384 460], while ρGBbBShift balances a perceptually lossless ROI

area with an acceptable representation of the BG. Hence, the overall image quality

measured by PSNR in Figure 5.15(a) is 16.06 dB, while in Figure 5.15(b) is 24.28 dB.

When perceptual metrics assess the image quality of the ρGBbBShift coded image,

for example, VIFP=0.4982, WSNR=24.8469 and CwPSNR=27.07, while for MaxShift

coded image VIFP=0.2368, WSNR=11.33 and CwPSNR=16.72. Thus, for this exam-

ple, both PSNR and these subjective metrics reflect important perceptual differences

between ROI methods, being ρGBbBShift method better than MaxShift method..

(a) MaxShift in JPEG2000 coder, 0.42 bpp (b) ρGBbBShift method in Hi-SET coder,

0.42 bpp

Figure 5.15: Example of a remote sensing application. 512 × 512 pixel Image 2.1.05
from Volumen 2: aerials of USC-SIPI image database at 8 bits per pixel. ROI is a patch
with coordinates [159 260 384 460], whose size is 225 × 200 pixels. Decoded images at
0.42 bpp using MaxShift method ((a) ϕ = 8) in JPEG2000 coder and ρGBbBShift method
((b)BPmask = 1111000110110000) in Hi-SET coder.

93



5. PERCEPTUAL GENERALIZED BITPLANE-BY-BITPLANE SHIFT

5.5 Conclusions

A perceptual implementation of the Region of Interest, ρGBbBShift(), is proposed,

which is a generalized method that can be applied to any wavelet-based compressor.

We introduced ρGBbBShift method to the Hi-SET coder and it visually improves the

results obtained by previous methods like MaxShift and GBbBShift. Our experiments

show that ρGBbBShift into Hi-SET provides an important perceptual difference regard-

ing the MaxShift method into JPEG2000, when it is applied not only to conventional

images like Lenna or Barbara, but also to another image compression fields such as

Telemedicine or Remote Sensing.
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Chapter 6

Conclusions and Future work

The main goal of this thesis was to introduce perceptual criteria on two aspects of the

image compression process. One the one hand, perceptual criteria was used on image

quality estimation. On the other hand, these perceptual criteria were used to identify

and to remove non-perceptual information of an image. These two aspects were used

to propose a perceptual image compression system and an image quality assessment.

Additionally, a new coder based on Hilbert Scanning (Hi-SET) is also presented.

6.1 Conclusions

In Chapter 2, we present a new metric for full-reference image quality based on per-

ceptual weighting of PSNR by using a perceptual low-level model of the Human Visual

System (CIWaM model). The proposed CwPSNR metrics is based on three concepts.

First, the Relative Energy Ratio, measured at the point where an observer can better

perceive differences among images, e.g. εR (nP), Sec. 2.3.2.1. This is a good enough

approximation to image quality when different distorted versions of the same image

are evaluated. Second, the distance D where the observer cannot perceive differences

between the energies of distorted and reference images. The shorter it is, the better

the quality of the distorted image. It is a good approximation to image quality when

the same distortion is applied to several images. Finally, the generalization to any im-

age and for JPEG and JPEG2000 distortions is performed by measuring the objective

numerical quality (i.e. the PSNR) of the perceptual images predicted by CIWaM at D

cm.

95
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The CwPSNR assessment was tested in four well-known image databases such as

TID2008, LIVE, CSIQ and IVC. It is the best-ranked image quality method in these

databases for JPEG and JPEG2000 distortions when compared to several state-of-

the-art metrics. Concretely, it is 2.5% and 1.5% better that MSSIM (the second best

performing method) for JPEG and JPEG2000 distortions, respectively. CwPSNR sig-

nificantly improves the correlation of PSNR with perceived image quality. On average,

when CwPSNR is applied on the same distortion, it improves the results obtained by

PSNR and MSE by 14% and 11.5%,respectively.

The Hi-SET coder, presented in Chapter 3, is based on Hilbert scanning of embed-

ded quadTrees. It has low computational complexity and some important properties of

modern image coders such as embedding and progressive transmission. This is achieved

by using the principle of partial sorting by magnitude when a sequence of thresholds

decreases. The desired compression rate can be controlled just by chunking the stream

at the desired file length. When compared to other algorithms that use Hilbert scan-

ning for pixel ordering, Hi-SET improves image quality by around 6.20 dB. Hi-SET

achieves higher compression rates than JPEG2000 coder not only for high and medium

resolution images but also for low resolution ones where it is difficult to find redundan-

cies among spatial frequencies. Table 6.1 summarize the average improvements when

compressing the TID2008 Image Database.

Table 6.1: Average PSNR(dB) improvement of Hi-SET in front of JPEG2000 for TID2008
image database.

Components Y Y CbCr

Resolution Low Medium Low Medium

Compression
Ratio (bpp) 0.55 0.17 0.93 0.33

Image
Quality (dB) 1.84 0.43 1.79 1.06

The Hi-SET coder improves the image quality of the JPEG2000 coder around

PSNR=1.16 dB for gray-scale images and 1.43 dB for color ones. Furthermore, it saves

around 0.245 bpp for high resolution gray-scale Bicycle images. We extended our exper-

iments to another four image database such as CMU, CSIQ, IVC and LIVE. Thus,the

results across these databases resulted Hi-SET improved the results of JPEG2000 not
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6.2 Contributions

only objectively but also metrics like MSSIM, UQI or VIF, which are perceptual indi-

cators.

In Chapter 4 we defined both forward (F-ρSQ) and inverse (I-ρSQ) perceptual

quantizer using CIWaM. We incorporated it to Hi-SET, proposing the perceptual im-

age compression system ΦSET. In order to measure the effectiveness of the perceptual

quantization, a performance analysis is done using thirteen assessments such as PSNR,

MSSIM, VIF, WSNR or CwPSNR, for instance, which measured the image quality be-

tween reconstructed and original images. The experimental results show that the solely

usage of the Forward Perceptual Quantization improves the JPEG2000 compression and

image perceptual quality. In addition, when both Forward and Inverse Quantization

are applied into Hi-SET, it significatively improves the results regarding the JPEG2000

compression.

In Chapter 5, we propose a perceptual implementation of the Region of Interest,

ρGBbBShift(), which is a generalized method that can be applied to any wavelet-based

compressor. We introduced ρGBbBShift method to the Hi-SET coder and it visually

improves the results obtained by previous methods like MaxShift and GBbBShift. Our

experiments show that ρGBbBShift into Hi-SET provides an important perceptual

difference regarding the MaxShift method into JPEG2000, when it is applied not only

to conventional images like Lenna or Barbara, but also to another image compression

fields such as Telemedicine or Remote Sensing.

6.2 Contributions

The main contribution od this Ph.D thesis are:

• Definition of a metrics that uses the loss of perceptual energy as a tool of assessing

image quality. This indicator can be considered as a set of three gauges, which

can be used for different purposes.

• Development of a image coder, which is a serious alternative of JPEG2000 ex-

ploiting the recursion of fractal, avoiding the massive storage of pixel coordinates.

• Development of a perceptual quantizer algorithm , unlike the JPEG2000 global

Frequency weighting, our method quantizes locally, that is pixel-by-pixel. Simi-

larly JPEG2000, it is not necessary to store the applied weighting for inverse quan-
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tizing, this is because CIWaM properties permits to predict perceptual weighting

a posteriori.

• Proposal of a new method for coding of Region of Interest areas, which can be

applied to any wavelet based compression scheme.

These contributions show that CIWaM is a perceptual low-level model of HVS that

helps in some areas of image compression field.

6.3 Future Work

CwPSNR is mainly developed for estimation of perceptual image quality, but its usage

can be extended to other applications such as image quantization in image compression

algorithms, optimizing the perceptual error under the constraint of a limited bit-budget.

Since the CIWaM algorithm applies a perceptual weighting to every wavelet coefficient,

it can quantize a particular coefficient during the bit allocation procedure, allowing to

define a perceptual bit allocation algorithm. Hence, CwPSNR can be incorporated into

embedded compression schemes such as EZW(44), SPIHT(41), JPEG2000 (48) and

Hi-SET (26).

We are currently exploring extensions of CwPSNR to non-referenced or blind image

quality assessment and perceptual rate allocation for the Hi-SET coder.

In addition to propose a image compression algorithm that makes use of a threshold

based on the e-CSF properties, namely a threshold based on the perceptual importance

of a coefficient, regardless of its numerical value.
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Appendix A

Image Databases

A.1 Image and Video-Communication Image Database

IVC Database includes 10 original images (Fig. A.1) with 4 different distortions (JPEG,

JPEG2000, LAR coding and Blurring) and 5 distortion degrees, that is, there are 50

degraded images by distortion(23).

Figure A.1: Tested 512 × 512 pixel 24-bit color images, belonging to the IVC Image
database.

A.2 Tampere Image Database

TID2008 Database contains 25 original images (Fig. A.2). They are distorted by 17

different types of distortions, and each distortion has 4 degrees of intensity, that is,
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there are 68 distorted versions for every original image (38, 39).

Figure A.2: Tested 512 × 384 pixel 24-bit color images, belonging to the Tampere test
set.
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A.3 Image Database of the Laboratory for Image and Video Engineering

A.3 Image Database of the Laboratory for Image and

Video Engineering

LIVE Database contains 29 original images (Fig. A.3), with 26 to 29 altered versions

for every original image. LIVE includes 234 and 228 distorted images for JPEG and

JPEG2000 compression degradation, respectively(46).

Figure A.3: Set of 29 tested images of 24-bit color, belonging to the LIVE Image database.
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A. IMAGE DATABASES

A.4 Categorical Subjective Image Quality Image Database

CSIQ Database includes 30 original images (Fig. A.4), which are distorted by 6 different

types of distortions at 4 or 5 degrees. CSIQ Database has 5000 perceptual evaluations

of 25 observers(22).

Figure A.4: Tested 512 × 512 pixel 24-bit color images, belonging to the CSIQ Image
database.
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A.5 University of Southern California Image Database

A.5 University of Southern California Image Database

The University of Southern California Image Data Base, Miscellaneous volume(2). The

database contains eight 256× 256 pixel images (Figure A.5) and eight 512× 512 pixel

images (Figure A.6)(2).

Figure A.5: Tested 256× 256 pixel 24-bit Color Images, obtained from the University of
Southern California Image Data Base.

Figure A.6: Tested 512× 512 pixel 24-bit Color Images, obtained from the University of
Southern California Image Data Base.
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Appendix B

JPEG2000 vs Hi-SET:

Complementary Results of

Chapter 3

B.1 University of Southern California Image Database
B.1.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images vs Image Quality Assessment. Green functions rep-

resent results obtained by Hi-SET coder, while blue functions by JPEG2000 coder(Kakadu

Implementation(50)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.1: Gray-Scale CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

105



B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.2: Gray-Scale CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.3: Gray-Scale CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
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B.1 University of Southern California Image Database

B.1.2 Color Images

Compression of Color Images vs Image Quality Assessment. Green functions represent

results obtained by Hi-SET coder, while blue functions by JPEG2000 coder (Kakadu

Implementation(50)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.4: Color CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.5: Color CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.

107



B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.6: Color CMU Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.

B.2 Categorical Subjective Image Quality Image Database

B.2.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images vs Image Quality Assessment. Green functions

represent results obtained by Hi-SET coder, while blue functions by JPEG2000 coder

(JJ2000 Implementation(40)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.7: Gray-Scale CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.
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B.2 Categorical Subjective Image Quality Image Database

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.8: Gray-Scale CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.9: Gray-Scale CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

B.2.2 Color Images

Compression of Color Images (bits-per-pixel) vs Image Quality Assessment. Green func-

tions represent results obtained by Hi-SET coder, while blue functions by JPEG2000

coder (JJ2000 Implementation(40)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.10: Color CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.11: Color CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.
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B.3 Image and Video-Communication Image Database

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.12: Color CSIQ Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.

B.3 Image and Video-Communication Image Database

B.3.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images (bits-per-pixel) vs Image Quality Assessment. Green

functions represent results obtained by Hi-SET coder, while blue functions by JPEG2000

coder (JJ2000 Implementation(40)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.13: Gray-Scale IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.14: Gray-Scale IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.15: Gray-Scale IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
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B.3 Image and Video-Communication Image Database

B.3.2 Color Images

Compression of Color Images (bits-per-pixel) vs Image Quality Assessment. Green func-

tions represent results obtained by Hi-SET coder, while blue functions by JPEG2000

coder (JJ2000 Implementation(40)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.16: Color IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.17: Color IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.18: Color IVC Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
————————————————————————

B.4 Image Database of the Laboratory for Image and

Video Engineering
B.4.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images (bits-per-pixel) vs Image Quality Assessment. Green

functions represent results obtained by Hi-SET coder, while blue functions by JPEG2000

coder (Kakadu Implementation(50)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.19: Gray-Scale LIVE Image Database: JPEG2000 vs Hi-SET. Metrics em-
ployed: IFC, MSE, MSSIM and NQM.
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B.4 Image Database of the Laboratory for Image and Video Engineering

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.20: Gray-Scale LIVE Image Database: JPEG2000 vs Hi-SET. Metrics em-
ployed: PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.21: Gray-Scale LIVE Image Database: JPEG2000 vs Hi-SET. Metrics em-
ployed: VIF, VIFP, VSNR and WSNR.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

B.4.2 Color Images

Compression of Color Images (bits-per-pixel) vs Image Quality Assessment. Green func-

tions represent results obtained by Hi-SET coder, while blue functions by JPEG2000

coder (Kakadu Implementation(50)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.22: Color LIVE Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.23: Color LIVE Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.
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B.5 Tampere Image Database

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.24: Color LIVE Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.

B.5 Tampere Image Database
B.5.1 Gray-Scale (Y Channel)

Compression of Gray-Scale Images (bits-per-pixel) vs Image Quality Assessment. Green

functions represent results obtained by Hi-SET coder, while blue functions by JPEG2000

coder (JJ2000 Implementation(40)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.25: Gray-Scale TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics
employed: IFC, MSE, MSSIM and NQM.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.26: Gray-Scale TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics
employed: PSNR, SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.27: Gray-Scale TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics
employed: VIF, VIFP, VSNR and WSNR.
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B.5 Tampere Image Database

B.5.2 Color Images

Compression of Color Images (bits-per-pixel) vs Image Quality Assessment. Green func-

tions represent results obtained by Hi-SET coder, while blue functions by JPEG2000

coder (JJ2000 Implementation(40)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure B.28: Color TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics employed:
IFC, MSE, MSSIM and NQM.

(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure B.29: Color TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics employed:
PSNR, SNR, SSIM and UQI.
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B. JPEG2000 VS Hi-SET: COMPLEMENTARY RESULTS OF
CHAPTER 3

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure B.30: Color TID2008 Image Database: JPEG2000 vs Hi-SET. Metrics employed:
VIF, VIFP, VSNR and WSNR.
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Appendix C

Complementary Results of

Chapter 4

C.1 Correlation between α(ν, r) and α̂(ν, r).

Green functions denoted as F-ρSQ are the quality metrics of forward perceptual quan-

tized images after applying α(ν, r), while blue functions denoted as I-ρSQ are the quality

metrics of recovered images after applying α̂(ν, r).

C.1.1 Categorical Subjective Image Quality Image Database

Results obtained in the CSIQ (Fig. A.4) image database.

(a) PSNR (b) MSSIM

Figure C.1: Compression of Gray-scale Images (Y Channel) of the CSIQ image database.
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(a) PSNR (b) MSSIM

Figure C.2: Perceptual Quantization of Color Images of the CSIQ image database.

C.1.2 Image and Video-Communication Image Database

Results obtained in the IVC (Fig. A.1) image database.

(a) PSNR (b) MSSIM

Figure C.3: Perceptual Quantization of Gray-scale Images (Y Channel) of the IVC image
database.
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C.2 JPEG2000 vs ΦSET

(a) PSNR (b) MSSIM

Figure C.4: Perceptual Quantization of Color Images of the IVC image database.

C.2 JPEG2000 vs ΦSET

C.2.1 University of Southern California Image Database

Compression of Color Images (bits-per-pixel) vs Image Quality Assessment. Green

functions represent results obtained by ΦSET coder, while blue functions by JPEG2000

coder (Kakadu Implementation(50)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure C.5: Color CMU Image Database: JPEG2000 vs ΦSET. Metrics employed: IFC,
MSE, MSSIM and NQM.
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(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure C.6: Color CMU Image Database: JPEG2000 vs ΦSET. Metrics employed: PSNR,
SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure C.7: Color CMU Image Database: JPEG2000 vs ΦSET. Metrics employed: VIF,
VIFP, VSNR and WSNR.
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C.2 JPEG2000 vs ΦSET

C.2.2 Image and Video-Communication Image Database

Compression of Color Images (bits-per-pixel) vs Image Quality Assessment. Green

functions represent results obtained by ΦSET coder, while blue functions by JPEG2000

coder (JJ2000 Implementation(40)).

(a) IFC (b) MSE

(c) MSSIM (d) NQM

Figure C.8: Color IVC Image Database: JPEG2000 vs ΦSET. Metrics employed: IFC,
MSE, MSSIM and NQM.
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(a) PSNR (b) SNR

(c) SSIM (d) UQI

Figure C.9: Color IVC Image Database: JPEG2000 vs ΦSET. Metrics employed: PSNR,
SNR, SSIM and UQI.

(a) VIF (b) VIFP

(c) VSNR (d) WSNR

Figure C.10: Color IVC Image Database: JPEG2000 vs ΦSET. Metrics employed: VIF,
VIFP, VSNR and WSNR.
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[16] David Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück.
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