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Abstract

Title of the dissertation:
Shock capturing with Discontinuous Galerkin methods

Eva Casoni

This thesis proposes shock-capturing methods for high-order Discontinuous Galerkin

(DG) formulations providing highly accurate solutions for compressible flows.

In the last decades, research in DG methods has been very active. The success of

DG in hyperbolic problems has driven many studies for nonlinear conservation laws

and convection-dominated problems. Among all the advantages of DG, their inherent

stability and local conservation properties are relevant. Moreover, DG methods are

naturally suited for high-order approximations. Actually, in recent years it has been

shown that convection-dominated problems are no longer restricted to low-order ele-

ments. In fact, highly accurate numerical models for High-Fidelity predictions in CFD

are necessary. Under this rationale, two shock-capturing techniques are presented and

discussed.

First, a novel and simple technique based on on the introduction of a new basis of

shape functions is presented. It has the ability to change locally between a continu-

ous or discontinuous interpolation depending on the smoothness of the approximated

function. In the presence of shocks, the new discontinuities inside an element intro-

duce the required stabilization thanks to the numerical fluxes, thus exploiting DG

inherent properties. Large high-order elements can therefore be used and shocks are

captured within a single element, avoiding adaptive mesh refinement and preserving

the locality and compactness of the DG scheme.

Second, a classical and, apparently simple, technique is advocated: the introduc-

tion of articial viscosity. First, a one-dimensional study is perfomed. Viscosity of

the order O(hk) with 1 ≤ k ≤ p is obtained, hence inducing a shock width of the

same order. Second, the study extends the accurate one-dimensional viscosity to tri-

angular multidimensional meshes. The extension is based on the projection of the



one-dimensional viscosity into some characteristic spatial directions within the ele-

ments. It is consistently shown that the introduced viscosity scales, at most, with the

DG resolutions length scales, h/p. The method is especially reliable for high-order

DG approximations, say p ≥ 3.

A wide range of different numerical tests validate both methodologies. In some

examples the proposed methods allow to reduce by an order of magnitude the num-

ber of degrees of freedom necessary to accurately capture the shocks, compared to

standard low order h-adaptive approaches.
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Chapter 1

Introduction

The increase in computational power over recent years enables the simulation of mul-

tiple engineering problems involving complex physical processes. Among them, Com-

putational Fluid Dynamics (CFD) is a clear example in which high-fidelity simulations

are mandatory. CFD is the branch of fluid mechanics that, by means of numerical

methods and algorithms, solves flow problems. Nowadays it is an essential tool for

engineering design and analysis. It is impossible to imagine, for instance, in the aero-

dynamic or automotive industries a design process without a computer aid. Today

CFD is used as a viable alternative and complement to experimental measurements,

offering advantages in terms of cost, time and data acquisition.

1.1 Motivation

Computer simulation of flow phenomena covers a wide range of applications, such

as aircraft designs, blood flow simulations, external car aerodynamics, indoor and

outdoor air simulations and combustion, among many others. Although young, the

field of CFD has matured enough to effectively solve problems involving complicated

geometries and complex features. However, far from being a closed field, CFD deals

with many challenging problems. Consider, for instance, the motion of a compressible

fluid under the effect of an explosion: the extremely large velocities, usually greater

than the speed of sound, and the abrupt changes of the physical quantities occur in

3
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a very short period of time and different space scales. Currently there is a lack of

general robust and accurate numerical schemes to attack these kind of problems and

obtain high-fidelity solutions.

In problems where high-accuracy is needed spectral methods, based on Fourier

expansions, are usually applied. This contrasts with the polynomial approximations,

almost universally accepted for numerical simulations, and shows the particular char-

acter of these problems. For a review of these techniques see for example the works

developed by Mavriplis (1994) and Gottlieb and Hesthaven (2001). Spectral methods

are able to achieve very high-accuracy, but its use on complex geometries, requiring

unstructured meshes common in CFD simulations, is still an open problem. In this

context, high-order polynomials appears as one viable alternative, see Silvester (1969)

or Hesthaven and Warburton (2002).

Shock waves are characterized by an abrupt, nearly discontinuous change in the

characteristics of the medium. It is a common fact in compressible flow models the

existence of shocks waves and choked flow (which is associated to the Venturi effect,

and only limits the velocity of the mass flow rate). Mathematically both effects are

modeled as discontinuities, hence becoming a serious handicap in high-order methods.

In fact, for problems involving both, strong shocks and also smooth flow, the shocks

can limit the order of accuracy in a significant region surrounding the shock.

The dichotomy between high-order and shock-capturing is the main focus of this

thesis. High-order accuracy and shock-capturing presents as contradictory ideas.

Shock waves can only be captured with first-order schemes, as stated by Godunov

(1954) and Harten (1983). The use of high-order will cause the appearance of spu-

rious oscillations that will lead the solution to be unstable. On the contrary, low

order approximations produce an excessive smearing of the solution, leading to phys-

ically unacceptable results. Hence, a compromise should be taken between high-order

accuracy and shock-capturing.
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1.2 Objectives

The objective of this PhD thesis is the development of robust shock-capturing methods

for high-order Discontinuous Galerkin (DG) finite element method and apply them

to model problems in compressible flow, for transonic and supersonic flows.

For this purpose, the following partial goals are considered:

1. To preserve high-order approximations. The main drawback of actual

shock-capturing methods is the loss of high-order. In fact, the actual tendency

is to use low-order approximations combined with mesh adaptivity. However,

changes in shock strength, cell size and orientation usually introduce errors that

can convect downstream and pollute the solution also far away of the shock.

Hence, the global accuracy is reduced to first order, not only in the shock area,

where low degree approximations are used, but also in a large part of the do-

main. One of the main goals of this thesis is to overcome this drawback. First,

the method presented in Chapter 2 allows to use large high-order elements,

preserving the locality and compactness of the method. Numerical tests con-

sistently show that the high-order degree is kept in the large majority of the

domain and only in the elements where the shock is contained the solution is

approximated with a combination of piecewise-constant and continuous shape

functions. Second, in Chapter 3 an artificial diffusion method for high-order DG

is presented. In the vicinity of shocks the approximation is not systematically

reduced to first order, in fact, is kept as high as possible .

2. To permit the use of large high-order element without h-adaption As

pointed out, the most obvious and standard methodology to capture shocks is

to reduce the order of the approximation in the vicinity of shocks. However,

to preserve high-accuracy it is necessary to adaptively refine that region by

locally decreasing the mesh size, h. In this work the goal is to maintain high-

order accuracy without h-adaptive process, hence reducing the computational

overhead of mesh adaptivity, especially relevant for DG (recall that DG methods

duplicate nodes). As it will be shown in the numerical tests, sub-cell resolution
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is obtained and the different scales of the flow are captured without changing

the topology of the mesh.

3. To obtain shock width less than the element size. The resolution given by

a polynomial of order p scales like h/p. This means that the amount of viscosity

required to resolve a shock profile is only O(h/p). When very large high-order

elements are used an accurate solution requires the shock to be contained within

a single element without smearing. In Chapter 3 an artificial diffusion method

is presented. The introduced viscosity scales like ε ∼ O(hk) for some 1 ≤ k ≤ p,

hence obtaining a shock width thinner than h/p, as numerical tests consistently

show.

4. To obtain a robust method easily extensible to multiple dimensions.

Many effective shock-capturing methods have been defined for one-dimensional

problems, providing stable and accurate solutions, see for example Cockburn

and Shu (1989), Biswas et al. (1994) or Krivodonova (2007). However, their

extension to higher dimensions involves several difficulties, such as the direc-

tionality, the introduction of problem-dependent parameters, the necessity of

an structured mesh or the loss of high-order, among many others. In Chapter 2

a simple shock-capturing method based on the modification of shape functions

is presented. The approach is simple, based only on a single parameter which

automatically modifies the approximation depending on the smoothness of the

solution. Results show the robustness of the method, which only depends on

a linear function α that takes value from 0 to 1, depending on the smoothness

of the solution. Same function is used with independence of the test to be

solved. Numerical tests demonstrate that small modifications on the value α

do no have a major consequence in the overall solution. The artificial diffusion

method defined in Chapter 3 appears as a robust technique since it does not

require any parameter. It can also be extended to higher dimensions for any

degree of approximation and any complex geometry. The extension is based on

the one-dimensional projection of the solution along some characteristic direc-
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tions, and hence, it can be generalized for any spatial dimension. However, in

this work only the two-dimensional case is considered.

5. To develop a code for solving compressible flows with high-order DG.

When highly accurate simulations are needed, computational costs using current

techniques imply the use of very fine meshes or very high-order approximations,

or even both. The number of total amount of degrees of freedom increases dra-

matically. Moreover, the use of specific techniques that are required to ensure

the stability of the scheme avoiding spurious oscillations, also implies more in-

volved computations with an increase in computational cost, in terms of time

and memory requirements. A code for standard high-order DG methods incor-

porating both, the continuous-discontinuous shock-capturing method of Chapter

2 and the artificial diffusion scheme of Chapter 3, has been developed also in

the context of this thesis. The code has been implemented in Matlab and later

translated to C language, due to the excessive CPU time of the steady state

simulations to converge. Efficient strategies for the element-by-element formu-

lation and face integrals have been use, also including ordering algorithms for

the optimal treatment of nodes and elements. For comparison purposes, the

slope limiting techniques by Biswas et al. (1994) and a classical FV method, see

for instance LeVeque (2002), have been also implemented.

6. To verify the method with different sets of equations: convection-

dominated problems and Euler equations. Several problems of different

nature, steady and unsteady, have been tested with the two approaches pre-

sented in this thesis. In both cases the methods provide stable and highly

accurate results, maintaining the properties and goals described above. Both

techniques can be used to solve any compressible problem or either convection-

diffusion equation, since they do not involve any problem-dependent parame-

ter. Both methods are compared, through numerical tests, with classical shock-

capturing approaches, such as the slope limiting techniques and the Finite Vol-

ume method with h-adaption.
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1.3 Sate of the Art

1.3.1 Discontinuous Galerkin methods

In the last decades Discontinuous Galerkin finite element methods have centered many

studies for the simulation of CFD. The DG method combines in an optimal manner

the high-order discretization tools of the general Galerkin finite elements and the

local conservation properties typical of Finite Volume (FV) technology, which has

been successful in the simulation of flows with discontinuities, see for instance the

work by Barth (1994) or the monograph by LeVeque (2002). The essential idea of

DG is to use element-by-element discontinuous approximations, enforcing continuity

across the elements in a weak form by means of the numerical fluxes.

Thanks to its attractive properties, DG appears as a good solution for the de-

velopment of high-order accurate methods, using structured and unstructured grids.

First, high-order approximations can be easily built, just by increasing the order of the

approximating polynomial within each element. The element-by-element formulation

makes these methods well-suited for p-adaptive discretizations on both, structured

and unstructured meshes, providing also a compact scheme. Second, the introduction

of fluxes at the discontinuous element boundaries allows the elementwise coupling,

but it also provides an inherent stabilization of the method. However, in the context

of discontinuous solutions and non-linearities, this natural stabilization is not enough

for high-order (p ≥ 2) approximations.

The DG method was first introduced by Reed and Hill (1973) for solving the

neutron transport equation. One year later, Lasaint and Raviart (1974) presented the

first numerical analysis of the method for a linear advection equation. Johnson and

Pitkäranta (1986) extended the analysis for general triangulations, improving the error

estimate to O(hp+1/2). This result was later confirmed numerically by Peterson (1991)

to be optimal. For structured non-Cartesian grids, Richter (1988) also improved the

estimate to O(hp+1).

The first extension to nonlinear problems was carried out by Chavent and Salzano

(1982), by using the Godunov’s Riemann solver to evaluate the flux across element
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boundaries. Riemann solvers are common in FV methods, see Toro (1999); LeVeque

(2002). Since their apparition, there has been a rapid proliferation of new DG tech-

niques as well as many analyses and applications. The work developed by Cockburn,

Shu and co-authors in the decade of the 90’s, see the series of papers Chavent and

Cockburn (1989); Cockburn and Shu (1989); Cockburn et al. (1989, 1990); Cockburn

and Shu (1998a), serves as a point of reference for the DG community in nonlinear

problems. They introduce the Runge-Kutta Discontinuous Galerkin (RKDG) method

for nonlinear hyperbolic problems, which was initially designed for Finite Difference

(FD) and FV methods, see Shu and Osher (1988) and LeVeque (1992), to ensure Total

Variation Diminishing (TVD) approximations. This method was later generalized to

be high-order accurate in time as well as space, see Shu (1988) and Spiteri and Ruuth

(2002).

DG methods originally were intended for purely hyperbolic problems. The ex-

cellent results obtained led its extension for convection-diffusion problems. The first

attempt was made by Arnold (1982) in his PhD thesis, proposing an interior penalty

method with Discontinuous finite elements. Since then a great effort was put in the

construction of different schemes for the discretization of viscous terms. For instance,

Bassi and Rebay (1997a, 2001) demonstrated the capabilities of DG for the Navier-

Stokes equations and Baumann and Oden (1999) proposed a discontinuous hp method

for general convection-diffusion equations. Cockburn and Shu (1998b) introduced the

Local Discontinuous Galerkin (LDG) formulation, which has been successfully ana-

lyzed and generalized to many equations, see for instance the work by Sherwin et al.

(2006) devoted to reduce the stencil of LDG. It is of particular interest the work by

Brezzi et al. (2000) and Arnold et al. (2001) that makes an effort to summarize all

the different techniques. Recently, based on LDG, some methods arise with the aim

of providing a more compact stencil: the Compact Discontinuous Galerkin (CDG),

introduced by Peraire and Persson (2008) and more recently, the Hybridizable Dis-

continous Galerkin (HDG) by Cockburn et al. (2009), which is focusing researchers’

attention.
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1.3.2 Shock-capturing

One of the biggest challenges of using high-order unstructured solvers is their inability

to handle flow discontinuities. A considerable development of shock-capturing tech-

niques have emerged during the last 40 years. The following is a brief overview with

an historical perspective.

Artificial diffusion

The key of shock-capturing schemes is dissipation. In fact, artificial diffusion was

already proposed in the 50’s by Von Neumann and Richtmyer (1950). It consists on

explicitly adding viscous terms to the governing partial differential equation. Lapidus

(1967) followed the same idea and presented another early artificial diffusion method

for FD. However, reincorporating the relevant physics in nonlinear hyperbolic conser-

vation is not trivial, see for instance Cockburn (2001). Following the idea of Streamline

Upwind Petrov-Galerkin (SUPG) methods for Finite Elements, proposed by Hughes

et al. (1986); Hughes and Mallet (1986a,b), several authors introduced an artificial

diffusion term based on residual quantities and applied it to the solution of Euler

and Navier-Stokes equations, see for instance the relevant works by Bassi and Rebay

(1997b), Bassi and Rebay (1997a) and Hartmann (2006). However, the inherent dif-

ficulties in determining where and how much viscosity must be introduced without

causing unnecessary smearing have deterred the extensive use of the artificial diffusion

approach.

Persson and Peraire (2006) presented an artificial viscosity term based on the

mesh size, h, and the degree of the interpolating polynomial, p. The idea behind the

method is to spread the discontinuity over a length scale so that it can be resolved

in the space of interpolating functions. Introducing artificial viscosity that scales like

h/p gives a shock of width δ = Ch/p, for some C ≥ 1. Based on the same idea, Barter

and Darmolfal (2007) propose a smoother representation of articial viscosity, rather

than the piecewise constant approach of Persson and Peraire. Both approaches are

complemented with a shock detection algorithm which is based on the rate of decay
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of the expansion coefficients of the solution.

Limiting

Another older and successful approach for shock-capturing methods is limiting tech-

niques. These methods were initially designed in the context of FD and FV and

induced a Total Variation Diminishing scheme, which was introduced by the series

of papers by van Leer (1974, 1977a,b, 1979). A general overview of these methods is

given by LeVeque (1992). Slope limiting for DG was extended by Cockburn and Shu

(1989),Cockburn and Shu (1998a) and Cockburn and Shu (2001), commonly known

as RKDG methods. They combine approximate Riemann solvers and nonlinear op-

erators (i.e. slope limiters) in order to satisfy Total Variation Bounded in the means

(TVBM). This approach has become one of the more popular techniques for shock-

capturing in DG, see for instance the high-order extensions by Biswas et al. (1994)

and Krivodonova (2007). Despite yielding satisfactory solutions, the main drawback

of these techniques lies in the fact that they drastically reduce the order of the ap-

proximations in the vicinity of shock. Thus, mesh adaption (refinement) procedures

are needed. In fact, reducing the order of the interpolating polynomial is equivalent

to add diffusion of the order of the mesh size, h. Moreover, the extension to multi-

dimensional problems is not straightforward. On one hand, Goodman and LeVeque

(1985) proved that, except in very especial cases, any method that is TVD in two space

dimensions is at most first order accurate. On the other hand, recall that adaption

should incorporate mesh directionality because shocks are lower dimensional struc-

tures. Several approaches, based on Cockburn’s work, have been proposed, see for

instance the interesting works by Burbeau et al. (2001) and Kuzmin (2010). However,

nowadays high-order limiters still need further improvement.

ENO and WENO reconstruction methods

Lately, high-order non-oscillatory reconstruction methods, known as (weighted) es-

sentially non-oscillatory (ENO or WENO) approaches, are focusing researchers’ at-
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tention. These methods were first proposed by Harten et al. (1987) and Harten and

Osher (1987) with the idea of keeping high-order approximations. With that pur-

pose, they use additional degrees of freedom to resolve sharp profiles, also preserving

nonlinear stability. They were first used in the context of FD, see for instance the

extensive work by Shu and Osher (1988, 1989), but later extended to FV, see Casper

and Atkins (1993) and Abgrall et al. (1999). However, despite their attractive fea-

tures, these techniques have some important drawbacks that preclude their extensive

use. For instance, their computational overhead is excessive for high-order approxima-

tions, they require structured grids, they may loose robustness for high-order schemes,

and to date their extension to multiples dimensions has not yet been demonstrated.

Nonetheless, a considerable progress has been done in this direction (Luo et al. (2007);

Zhu et al. (2008)), and nowadays this is an active area of research.

Non-polynomial approximations: vanishing spectral viscosity

High-accuracy is directly related to spectral methods, see Gottlieb and Hesthaven

(2001). As in many other numerical methods, the formation of Gibbs phenomenon due

to spontaneous shock discontinuities in the solution is one of its greatest challenges.

In the context of spectral methods, stabilization is carried out by adding viscosity to

the different spectral scales of the solution, commonly known as vanishing viscosity.

Vanishing viscosity was mainly developed by Tadmor (1990) and Maday et al. (1993)

in the early 90’s. However, since it is a spectral method, it suffers from the main

drawback of these techniques: since date they have not yet been demonstrated in

the practical unstructured mesh context. Recently, Liu et al. (2006) proposed the

Spectral Difference (SD) method, which is an efficient high-order approach based on

differential form of the governing equation. In their work they show very promising

results on triangular grids. Premasuthan et al. (2010) also proposed an artificial

viscosity approach to the SD method for high-order computation of compressible

fluid flows with discontinuities.
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1.4 Discontinuous Galerkin discretization and the

Compressible Euler equations

1.4.1 Compressible Euler equations

Euler equations of gas dynamics express the conservation of mass, momentum and

energy in a compressible, inviscid and non-conducting fluid. The strong form of these

conservation laws is

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ρv

∂t
+ ∇ · (ρv ⊗ v + pI) = ρb (1.1)

∂ρE

∂t
+ ∇ · ((ρE + p)v) = v · ρb

where ρ is the density, ρv is the momentum, ρE is the total energy per unit volume

of the fluid, p is the pressure and ρb is the external volume force per unit volume, see

Donea and Huerta (2003) for more details.

An equation of state, relating the internal energy e = E − 1

2
‖ v ‖2 to pressure

p and density ρ is needed to complete the system of nonlinear hyperbolic equations.

For a perfect polytropic gas, the equation of state is

p = (γ − 1)ρ
(
E − 1

2
‖ v ‖2

)
where γ is the ratio of specific heat coefficients (specific heat at constant pressure, cp,

over specific heat at constant volume, cυ), with value γ = 1.4 for air.

The speed of sound, c, is also common in this formulation. It enters the definition

of the Mach number

M =
‖ v ‖
c

,

and it is given by c =
√
γp/ρ.
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The system of nonlinear hyperbolic equations (1.1) can be rewritten in vector form

as
∂U

∂t
+
∂Fk(U)

∂xk
= B, k = 1, . . . , nsd, (1.2)

where U is the vector of conservation variables, Fk are the associated flux vectors for

each spatial dimension, with nsd the number of spatial dimensions, and B is a source

term. They are defined as follows:

U =


ρ

ρv

ρE

 , Fk(U) =


ρυk

ρvυk + ekp

(ρE + p)υk

 , k = 1, . . . , nsd, and B =


0

ρb

v · ρb


where ek is the unitary vector in the xk direction.

The chain rule yields an equivalent quasi-linear formulation by rewriting the flux

components as

Fk(U) = Ak(U)U,

where Ak(U) = ∂Fk/∂U, for k = 1, . . . , nsd, are the Jacobian matrices. Due to

the hyperbolicity of the Euler equations, any linear combination of the Jacobians is

diagonalizable with real eigenvalues. However, by considering an arbitrary direction

j = (j1, . . . , jnsd
) of the space, the projection of Jacobian matrices along this direction

admits the following factorization

Aj =

nsd∑
s=1

jsAs = RΛ(j)R−1 (1.3)

where R is the matrix of right eigenvectors and Λ(j) is the diagonal matrix of eigen-

values.

For the rest of the thesis, the homogeneous form of the Euler equations will be

considered, that is b = 0 in Equation (1.1). For a detailed presentation of the Euler

equations see classical text books such as Anderson (1984) and Hirsch (1990).
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Boundary conditions

The treatment of boundary conditions of the Euler equations is an issue of relevance.

Its influence on the existence and uniqueness of solutions and also on the simulation

results should not be underestimated.

In general, Euler equations are defined over a computational domain Ω delimited

by an external boundary. The number of boundary conditions to be imposed at

the boundary depends on the pattern of wave propagation. A proper control of

characteristic variables is typically sufficient to determine the incoming and outcoming

waves in the boundary. By a linearized Riemann analysis in the direction of the

outward normal to the contour, the system (1.2) is transformed into its canonical

form, which consists on ncomp decoupled convection equations

∂ωk
∂t

+ λk
∂ωk
∂x

= 0, k = 1, . . . , ncomp (1.4)

where ncomp is the number of components of the solution U, ωk are the characteristic

variables, also called Riemann invariants, and λk are the eigenvalues of the jacobian

matrix of (1.3). Note that the eigenvalues depend on the selected direction. It fol-

lows that the evolution of the characteristic variables is described by simple waves

propagating independently of one another along the outward normal, with velocities

λk = υn, υn± c. Here, υn = v ·n stands for the normal velocity. For a pure convection

equation, boundary conditions are required only at the inlet (incoming information).

Hence, the number of boundary conditions to be prescribed correspond to the number

of negative eigenvalues, that is λk < 0. Since λk depends on the normal velocity υn

and the speed of sound c, the direction of wave propagation depends directly on the

local Mach number M = |υn|/c. According to the range of values of Mach number dif-

ferent categories of flow regime may be described, see Anderson (1984). However, for

the treatment of boundary conditions only two relevant cases have to be considered:

supersonic and subsonic flow.

Supersonic flow is considered when the local Mach number is such that M =

(|υn|/c) ≥ 1
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• Supersonic inflow boundary

At the inlet υn < 0 and all λk are negative; the values of all characteristic

variables must be specified.

• Supersonic outflow boundary

At the outlet υn > 0 and all λk are positive; no physical boundary conditions

may be imposed.

Analogously, subsonic flow is considered when M = (|υn|/c) < 1

• Subsonic inflow boundary

At the inlet υn < 0 so that only the velocity associated to the last characteristic

variable, λnsd+2 = υn + c is positive; the first nsd + 1 Riemann invariants must

be specified.

• Subsonic outflow boundary

At the outlet υn > 0 and only the first eigenvalue λ1 = υn − c is negative; just

one condition is to be prescribed.

Finally, at solid wall boundary, which corresponds to the case of υn = 0, all

eigenvalues, except the first one, λ1 = −c, are nonnegative; thus, only the first char-

acteristic variable must be specified. The constraint υn = 0 is nothing than a free slip

condition, imposing that there is no convective flux through the boundary.

1.4.2 Discontinuous Galerkin Finite Elements

In order to apply the DG method the computational domain Ω is partitioned into nel

disjoint subdomains with characteristic size h, that is

Ω̄ =

nel⋃
e=1

Ω̄e such that Ωe ∩ Ωl = ∅ for e 6= l (1.5)
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Also, define a vector-valued function space of discontinuous, piecewise-polynomials of

degree p,

Vh = {v ∈ L2(Ω)| v|Ωe
∈ Pp(Ωe), ∀Ωe}

where Pp(Ωe) is the space of polynomial functions of degree at most p in Ωe.

Consider test functions W ∈ [Vh]ncomp . Recall that ncomp is the number of com-

ponents of the solution U. For Euler equations, ncomp = nsd + 2. An approximation

Uh ∈ [Vh]ncomp to the solution of (1.2) is obtained if, for all W ∈ [Vh]ncomp ,

∫
Ωe

WT ∂Uh

∂t
dΩ−

∫
Ωe

∂WT

∂xk
Fk(Uh) dΩ +

∫
∂Ωe

WTFne(Uh) dΓ = 0,

where ne is the outward unit normal vector on ∂Ωe and Fne(Uh) is the normal flux

function, defined as

Fne(Uh) = Fk(Uh)nk k = 1, . . . , nsd (1.6)

with nk the kth component of ne. In these expressions Einstein summation convention

is used. As standard in DG methods, in order to take into account the discontinuous

nature of the approximation, the flux function F(Uh) is not uniquely defined in the

interfaces ∂Ωe that are not boundaries (∂Ωe 6= ∂Ω). The normal flux function at the

elements boundary is replaced by a numerical one, F̂ne(Uh,U
out
h ) , which is evaluated

in terms of the solution in the current element Ωe, Uh, and the solution at neighboring

elements,

Uout
h = lim

ε→0+
Uh(x+ εne) for x ∈ ∂Ωe

This interface flux function, F̂ne is determined using any of the standard Riemann

solvers of Finite Volume methods, see Toro (1999). Introducing the numerical flux,

the resulting DG formulation for element Ωe becomes: find Uh ∈ [Vh]ncomp such that,
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for all W ∈ [Vh]ncomp ,

∫
Ωe

WT ∂Uh

∂t
dΩ−

∫
Ωe

∂WT

∂xk
Fk(Uh) dΩ +

∫
∂Ωe

WT F̂ne(Uh,U
out
h ) dΓ = 0, (1.7)

Boundary conditions are enforced weakly, by appropriately setting F̂ne when ∂Ωe

coincides with ∂Ω. By assembling all the elemental contributions, this induces a

system of ordinary differential equations (ODEs) of the form

M
dUh

dt
+ R(Uh) = 0 (1.8)

where Uh is the vector of approximation coefficients, M is the mass matrix, which is

block diagonal, and R(Uh) is the discrete spatial residual vector. The ODE system

(1.8) can be solved with any time integration scheme. For the examples presented in

this thesis an explicit Runge-Kutta method is used, see Donea and Huerta (2003). The

time-step is determined by the stability condition which limits the Courant number

as follows

CFL = |λmax|
∆t

h
≤ 1

2p+ 1

where h is the element size and p the degree of the functional approximation. The

scalar value λmax is the maximum eigenvalue of the Jacobi matrix of the flux, see

factorization (1.3).



Chapter 2

A continuous-discontinuous DG
method

In this chapter a novel shock-capturing technique for the Discontinuous Galerkin

method is presented, see Casoni et al. (2011a). This is the first of the two methods

presented in this thesis. The method is inspired in the Finite Volume technology,

in the sense of possessing inherent stabilizing properties, but it also maintains the

advantages of high-order methods.

The inherent structure of standard DG methods seems to suggest that they are

specially adapted to capture shocks because of the numerical fluxes based on suitable

Riemann solver, which, in practice, introduces some stabilization, see Chavent and

Cockburn (1989). However, the usual numerical fluxes are not sufficient to stabilize

the solution in the presence of shocks for large high-order elements.

Here, a new basis of shape functions is introduced. A new approximation space is

defined in Section 2.1. In particular, the basis of shape functions, which is a convex

combination between piecewise constant shape functions and continuous standard

ones of Lagrange type, is defined in detail. This basis allows to switch from a piecewise

constant to a continuous representation of the solution within each element. Many

alternative representations are possible in order to define constant shape functions,

see for instance the standard Finite Volume approaches by Godunov (1959) or the

monograph by LeVeque (2002). Here, they are defined to ensure a conservative scheme

(LeVeque (1992)). Here, they are defined such that a conservative scheme is ensured,

19
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LeVeque (1992).

The exact form of the basis is governed by a discontinuity control parameter,

which, in turn, depends linearly on a discontinuity sensor. Here the discontinuity

sensor by Persson and Peraire (2006) is used. The sensor has been proven to be es-

pecially reliable for high-order approximations. Finally, numerical examples show the

applicability and accuracy of the proposed method, enhancing the sub-cell resolution.

2.1 Definition of the approximating space

2.1.1 From continuous to discontinuous

Consider the general form of a system of hyperbolic conservation laws in two-space

dimensions,

∂U

∂t
+
∂Fk(U)

∂xk
= 0 (2.1)

where k ranges from 1 to nsd (here, nsd = 2), U is the vector of conservation variables,

and Fk(U) is the flux vector for each spatial dimension xk. Recall the system of the

compressible Euler equations defined in Chapter 1. A DG formulation is used for the

discretization of the problem.

In the bounded domain Ω, a partition of nel disjoint elements Ω̄ =

nel⋃
e=1

Ω̄e is as-

sumed, such that Ωe ∩ Ωf = ∅ for e 6= f . Then, an element by element discontinuous

approximation is considered. The strong form is multiplied by a vector of test func-

tions W ∈ [Pp(Ωe)]
ncomp , with Pp(Ωe) being the space of polynomials of total degree

≤ p defined over Ωe.

The resulting DG formulation for element Ωe (e = 1, . . . , nel) becomes find Uh ∈
[Pp(Ωe)]

ncomp such that, for all W ∈ [Pp(Ωe)]
ncomp ,

∫
Ωe

WT ∂Uh

∂t
dΩ−

∫
Ωe

∂W

∂xk

T

Fk(U
h) dΩ +

∫
∂Ωe

WT F̂ne(U
h,Uh

out) dΓ = 0, (2.2)
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where ne is the outward unit normal vector on ∂Ωe and F̂ne(U
h,Uh

out) is the normal

flux function. See Section 1.4.2 in Chapter 1 for the details.

The solution Uh of equation (2.2) is sought in [Pp(Ωe)]
ncomp which is characterized

by a complete basis of polynomials; that is,

Pp(Ωe) = span{N1(x), N2(x), . . . , Nnen(p)(x)} for x ∈ Ωe

where nen(p) is the number of element nodes (i.e, the number of degrees of freedom

for each element), which depends on the degree p of the basis.

Here, in order to capture discontinuities, the polynomial space is modified. The

new shape functions, N̄i(x;α) , are defined as a convex combination of standard

polynomials, Ni(x) , and a set of piecewise constant functions within each sub-cell of

the element, φi(x) . That is, the approximation is now characterized by

Uh =

nen(p)∑
i=1

N̄i(x;α) Uh
i for x ∈ Ωe,

and the shape functions are defined as follows

N̄i(x;α) := αNi(x) + (1− α)φi(x) for i = 1, . . . , nen(p) (2.3)

where α ∈ [0, 1] is a parameter that depends on the smoothness of the solution.

In order to determine the piecewise constant functions φi(x) each element Ωe is

arbitrarily partitioned into a set of nen(p) non-overlapping sub-cells

Ω̄e =

nen(p)⋃
k

Ω̄k
e such that Ωl

e ∩ Ωm
e = ∅ for l 6= m

where each sub-cell Ωk
e contains only one elemental node. Figure 2.1 depicts typ-

ical partitions for a first order and second order element. Notice that the cell in-

terfaces form a non-structured mesh. Given the sub-cell partition, each function
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Figure 2.1: Cell partition of Ωe, p = 1 (left) and p = 2 (right). Circle marks correspond
to node positions and square marks are the sub-cell vertices.

φi(x) : Ωe −→ R is defined as piecewise constant over each sub-cell. That is,

∀x ∈ Ωe φi(x) = φki = cst if x ∈ Ωk
e , for k = 1, . . . , nen(p) (2.4)

where φki are defined in the next subsection.

Remark 2.1. The partition of Ωe into control volumes is not unique. Here, a simple

procedure is considered: given a triangulation of the element, obtained by joining its

nodes, the centroid of each subtriangle and the midpoints of the edges form a set of

nen(p) polygons such that each of them contains only one elemental node.

A major advantage of DG methods is the intrinsic stabilization introduced by

numerical fluxes, see for instance Chavent and Cockburn (1989) or Cockburn and Shu

(2001). For values of α ∈ [0, 1[ the proposed basis of approximation functions, namely

span{N̄1(x;α), N̄2(x;α), . . . , N̄nen(p)(x;α)} for x ∈ Ωe,

introduces interelement discontinuities due to the piecewise constant contribution of

each φi(x). Thus numerical fluxes are accounted for inside the elements and their



2.1 Definition of the approximating space 23

(a) α = 0 (b) α = 1

(c) α = 0.25 (d) α = 0.5 (e) α = 0.85

Figure 2.2: Shape function of degree p = 3 for different values of α.

influence on stability will preclude spurious oscillations. Obviously, the order of the

approximation is reduced to one in the element when α ∈ [0, 1[ and, as described

below, the shock resolution is O(h/p). Whereas high-accuracy, of order hp, is retained

in the elements with α = 1, which define the large majority of the domain as it will

be shown in the examples.

Figure 2.2 shows a typical third order shape function N̄i for different values of α.

The particular cases N̄i = φi and N̄i = Ni correspond to Figures 2.2(a) and 2.2(b),

respectively .

Parameter α can vary in space and time depending on the regularity of the solution.

Consequently, although the number of degrees of freedom and the topology of the mesh

is unchanged the interpolation is adapted (in space and time) to the smoothness of

the solution by means of α and its influence in the approximation basis, see (2.3).
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2.1.2 Piecewise constant sub-cell shape functions

In the limit case of α = 0 the discontinuous functions φi induce a standard Finite Vol-

ume approach over the sub-cells van Leer (1979), LeVeque (2002) or Cueto-Felgueroso

and Colominas (2008). Thus, conservation is also imposed for each sub-cell for any

value of α. Thus, to design functions φi standard zero-order reproducibility is im-

posed. Namely,
nen(p)∑
i=1

φki = 1 for each k = 1, . . . , nen(p). (2.5)

Recalling that
nen(p)∑
i=1

Ni(x) = 1 ∀x ∈ Ωe,

equation (2.5) implies

nen(p)∑
i=1

N̄i(x;α) = 1 ∀x ∈ Ωe and ∀α ∈ [0, 1].

There are several options to define φki in order to satisfy Eq. (2.5), but it is

important to recall that piecewise discontinuous functions are sought. Thus, although

φki = 1/nen(p) for all k = 1, . . . , nen(p) complies with Eq. (2.5), it is not valid. An

obvious choice is to impose φki = δik, but it is independent of the sub-cell size. Here,

the following definition is imposed

φki =
1

meas(Ωk
e)

∫
Ωk

e

Ni(x) dΩ for every i and k = 1, . . . , nen(p). (2.6)

Note that with this definition the contribution to node xi of the piecewise constant

shape function φi(x) from sub-cell Ωk
e is equivalent to the contribution of the standard

shape function Ni(x).
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2.1.3 Construction of the basis functions

A major advantage of DG methods is their flexibility in modifying the approximation

space element by element. In steady state problems such as the ones studied here,

the value of α is adapted to adequately capture the different discontinuities in the

solution. Moreover, in transient problems, also studied here, the parameter α adapts

its value in space and in time to accurately capture strong variations of the solution.

Thus without modifying the mesh topology, nor the number of degrees of freedom,

nor the node position, nor the structure of the matrices, in a very simple manner

(a linear variation) the space of approximations is adapted in space and time to the

regularity of the solution.

It is clear from Eq. (2.3) that extreme values of α (α = 0 or 1) give the well-known

cases of a Finite Volume approximation and a standard continuous DG approximation,

respectively. For intermediate values of α, the shape functions introduce jumps of

different magnitude across the subelement interfaces. The jump size on the sub-cell

interface is controlled by α. Thus, α allows to calibrate the amount of stabilization

introduced by the Riemann solvers inside the element. Therefore, α is a function of

a discontinuity sensor proposed by Persson and Peraire (2006) and briefly recall in

multi-dimensions in the next section.

The parameter α can take many forms. The first simplest choice is to model

it as a switch function. That is, α = 1 if the discontinuity sensor does not detect

a discontinuity and α = 0 when a discontinuity is detected. Thus, functions N̄i

are prescribed to be either piecewise constant or smooth pth-order approximations.

Despite the fact that this option combines perfectly a pth-order DG method with a

Finite Volume approximation where needed, it is not proposed here. The discontinuity

sensor used here is very accurate and efficient but it does not have the precision to

switch drastically from DG to Finite Volumes. Moreover, Barth and Jespersen (1989)

and Venkatakrishnan (1995) discuss the use of discontinuous functions can severely

hamper the convergence of Euler and Navier-Stokes codes to steady state.

In fact, a linear variation is proposed. This improves convergence to steady state

and also introduces a smooth transition between DG and Finite Volumes. In this
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Figure 2.3: Variation of parameter α with the discontinuity sensor.

manner when the discontinuity sensor clearly detects a discontinuity α = 0 and when

the solution is clearly smooth α = 1. In between a linear variation progressively

introduces larger discontinuities. Note however, that a pth-order approximation is

only recovered for values of α = 1. Figure 2.3 shows both choices.

2.2 Discontinuity sensor

The discontinuity sensor defined element by element to determine the parameter α,

is proposed by Persson and Peraire (2006) and Nguyen et al. (2007). It only depends

on a physical quantity, the Mach number appears to be a reliable sensing variable

compared to other physical quantities like the entropy or density, as suggested by

Persson and Peraire (2006) and Krivodonova (2007). Obviously, other choices are

possible. It is an element-based projection leading to a single, scalar measure of the

smoothness of the numerical approximation. This indicator is a non-linear operator

Se(s) : Ωe −→ R, depending on the sensing variable s, which here is the Mach number,

i.e. s = M =‖ v ‖ /c.

In order to determine a suitable sensor for discontinuities, the solution is written

within each element in terms of a hierarchical family of orthonormal polynomials.

In 1D, orthonormal Legendre polynomials are used, whereas in 2D, an orthonormal
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Koornwinder (1992) basis is employed. For simplicity the sensor is first presented in

1D before it is generalized to higher dimensions. Let {Pi, i = 1, . . . , p + 1} be the

set of orthonormal Legendre polynomials of degree p. The sensing variable s on a 1D

element Ωe is approximated with this basis as

s(x) =

nen(p)∑
i=1

siPi(x).

A truncation of the same sensor on Ωe to order p− 1 in this hierarchical basis is given

by

ŝ(x) =

nen(p−1)∑
i=1

siPi(x).

For element Ωe, the following smoothness indicator is defined (in 1D),

Se(s) = 2 log10

(
‖ s− ŝ ‖2 / ‖ s ‖2

)
(2.7)

where ‖ · ‖2 is the standard L2(Ωe) norm. Note that, in the above expression

(s− ŝ) ∈ Pp(Ωe) \ Pp−1(Ωe) (2.8)

and it is a measure of the highest frequencies in the polynomial approximation; in

fact, it only contains the higher-order terms of the expansion of s(x).

In what follows the orthonormality of the basis is exploited to simplify Eq. (2.7)

and to further obtain an expression generalizable to multiple dimensions. Note that

because of the orthonormality of the Legendre polynomials, the L2(Ωe) norm of s(x)

becomes ‖ s ‖2=
√

sT s, where vector s is defined by the coefficients of the polynomial

expansion, i.e. sT = (s1, . . . , snen(p)). Thus, given the hierarchy of the polynomial

basis, Eq. (2.7) can be rewritten as

Se(s) = log10

(
s2

nen(p)/s
T s
)

(2.9)
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The discontinuity sensor in higher dimensions works analogously. The orthonormal

Legendre basis is replaced by the orthonormal Koornwinder one. As noted previously,

see (2.8), (s− ŝ) is the projection of the high-order approximation s(x) on the space of

monomials of degree equal to p. Thus Eq. (2.7), or equivalently the multidimensional

generalization of (2.9), becomes

Se(s) = log10

(
sTPH s/sT s

)
(2.10)

where PH is an orthogonal projection matrix onto the space of monomials of degree

p. If the orthonormal Koornwinder basis is properly ordered

PH = diag(

nL︷ ︸︸ ︷
0 · · · 0

nH︷ ︸︸ ︷
1 · · · 1),

where nL is the number of lower modes, i.e. the number of degrees of freedom for

polynomials of degree p − 1 (ex.: nL = p(p + 1)/2 in 2D), and nH is the number of

remaining high order modes, i.e. the number of monomials of degree p (ex.: nH = p+1

in 2D). See Remark 2.2 if, instead of an orthonormal basis, a more usual nodal basis

is used.

This indicator, either Eq. (2.9) for the 1D case or Eq. (2.10) in multi-dimensions,

treats higher-order solution as thought it were comprised of a sequence of Fourier

modes. For smooth flows, the coefficients of increasing Fourier modes are expected

to decay very quickly, according to 1/p2. However, a slower rate of decay indicates

the presence of a non-smooth solution feature. This idea is strongly related to the

error indicators used in spectral hp-methods, see Mavriplis (1994). Moreover, the

strength of the discontinuity dictates the rate of decay of the expansion coefficients,

see for instance Gottlieb and Hesthaven (2001). Figure 2.4 shows the decay rate of

the expansion coefficients for functions a step function and a smooth one, namely:

f(x) = sin(x+ y) for (x, y) ∈ [−π, π]× [−π, π].

In fact, the expected decay defines the threshold for non-smooth solutions. If the

decay of consecutive orders is larger then 1/p2, i.e. if Se(s) > S0 = −4 log10(p), the
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Figure 2.4: Decay rate of the expansion coefficients for a step and a smooth 2D
functions and thresholds S1 = log10(1/p8) and S0 = log10(1/p4).

solution is assumed non-smooth and α = 0. When the decay is clearly below the

theoretical one, i.e. if Se(s) < S1 = −4C log10(p), the solution is assumed smooth and

α = 1. When C = 1 a switch α-function is used, see Figure 2.3. If a linear variation

between α = 1 and α = 0 is sought C is chosen larger than one. Since results are very

robust for small variations of C, in practice, i.e. for the all examples shown, C = 2 is

imposed with good results. These two thresholds are also depicted in Figure 2.4 .

Finally, it must be noticed, that this discontinuity sensor, originally proposed by

Persson and Peraire (2006), has been found to be extremely reliable for the Euler

equations and medium to high orders of approximation (i.e. p ≥ 2).

Remark 2.2. Nodal basis are usually implemented in computer codes (Lagrange poly-

nomials). If this is the case, equation (2.10) is simply

Se(s) = log10

(
sTV−TPHV−1s

sTV−TV−1s

)
,

where V is the Vandermonde matrix whose inverse maps the Lagrange basis onto the

orthonormal one. See Section 3.1 by Sevilla et al. (2008) and references therein for a
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detailed discussion on these transformations.

2.3 Numerical tests

This section presents several numerical examples of compressible flow for both, tran-

sonic and supersonic flow regimes as well as transient and steady-state problems. In

order to assess the performance of the proposed methodology coarse meshes and high-

order approximations are used. Moreover, the locality of this approach is also shown.

All the tests are performed with triangular meshes and with an explicit Runge-Kutta

time integration scheme. For steady-state solutions, the relative L2 norm of the den-

sity residual is taken as a criterion to test convergence.

2.3.1 One-dimensional tests

The one-dimensional Burgers’ equation

The classical non-linear inviscid Burgers’ equation with periodic boundary conditions

is first presented.

ut + fx(u) = 0 in [0, 1], t > 0,

u(x, 0) = 1
2

+ sin(2πx).

The solution of this problem forms a shock at time t = 0.25 that moves to the right.

Solutions are computed over a uniform grid of 10 element and shown at time t = 0.5,

when the shock is fully formed.

In order to analyze the diffusive effect of the piecewise constant shape functions

the solution is computed setting α = 0 in all the elements and with α varying between

0 and 1 as a function of the discontinuity sensor. Recall that shape functions with

α < 1 introduce jumps within the element. The complete basis of shape functions

corresponding to α = 0 for degree p = 5 is shown in Figure 2.5. Note that, the

oscillating character of continuous standard shape functions is damped.
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Figure 2.5: Fifth order shape functions for α = 1 (dashed line) and α = 0 (continuous
line).

Figures 2.6 show a comparison between the approximations with α = 0 and α

variable, with degrees p = 5 (left) and p = 10 (right). The dissipative effect of the

piecewise constant approximation is clearly enhanced not only along the shock front

but also in the surrounding elements. It is especially highlighted the peak of the

shock around x = 0.7, which decreases significantly. Moreover, the piecewise constant

approximation also introduces an important dispersion error. This dispersion error is

not sensitive to the number of subcells of the piecewise constant functions, since it

is not reduced by increasing p from 5 to 10. The value of parameter α within each

element is also plotted in Figures 2.7 for each approximation. Notice that despite using

a discontinuous basis in the element containing the shock, the solution is continuous

within it, providing a smooth but sharp profile.
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Figure 2.6: Burgers’ equation at time t = 0.5 for degree p = 5 (left) and p = 10
(right).

Figure 2.7: Value of α within each element.

The shock tube problem

The classical shock tube problem proposed in Sod (1978), for which there exists an

exact solution to the 1D Euler equations, is next proposed to validate the method.

The problem involves a shock wave, a contact discontinuity and an expansion fan.

The problem is solved in a 2D setting with a computational domain of dimensions

Ω =]0, 1[×]0, 0.4[. The following initial data are used:

0 <x1 ≤ 1/2 1/2 < x1 ≤ 1

ρ = 1.0 ρ = 0.125

ρv = 0.0 ρv = 0.0

ρE = 2.5 ρE = 0.25
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Figure 2.8: Shock tube problem, α functions tested.

The initial density and pressure difference are maintained by a diaphragm which is

ruptured at t = 0. A uniform mesh with p = 6 and equilateral triangles of char-

acteristic size h = 1/10 is used. As noted earlier, this is a coarse high-order mesh,

which results in less degrees of freedom compared to other computations using linear

elements of characteristic size as low as h = 1/200, see for instance Burbeau et al.

(2001) or Krivodonova (2007).

The purpose of this example is to demonstrate applicability of this method in a

transient problem and to show the advantages of the linear variation of parameter

α. The evolution of the solution is computed upto t = 0.2 when the shock wave,

the contact discontinuity and the expansion fan are clearly developped. Note that

in a transient problem, such as this example, the elements where α 6= 1 evolve with

time. Capturing the correct wave speeds shows a good performance of this technique.

Moreover, this is done for three different choices of the variation of α with respect to

the discontinuity sensor. Figure 2.8 shows the three different choices, namely, a linear

variation between S0 and S1,

α0(S) =


1 if S < S1,

(S0 − S)/(S0 − S1) if S1 ≤ S < S0,

0 if S0 ≤ S,

(2.11)
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and two switch functions,

α1(S) =

1 if S < S0,

0 if S0 ≤ S,
and α2(S) =

1 if S < S1,

0 if S1 ≤ S.
(2.12)

To analyze the results density and pressure are shown along a section following

the flow direction (i.e. projecting the solution on the plane x2 and the corresponding

variable). Figures 2.9 to 2.11 show the results for the different choices of the α-

function. Velocity and energy results produce similar conclusions.

These figures show that the position of the flow discontinuities is well predicted in

the three cases. Nevertheless, the α2 switch, see Eq. (2.12), clearly introduces exces-

sive numerical diffusion, see Figure 2.11. Whereas oscillations in Figure 2.10 clearly

indicate that the α1 switch, on the contrary, is under-diffusive. These oscillations are

more obvious in the x1 component of the velocity, see Figure 2.12.

In order to better compare the impact of the approaches on the solution, Figure

2.13 displays the maximum local error for the continuous α-function and the switch 2

(that is, the more restrictive) for density (left) and velocity (right). Errors for switch

1 are not computed because of the lack of physical meaning of the solution. Errors

for the rest of the variables have the same behavior. As expected, the error obtained

with the continuous approach of α is smaller in all the domain. Let’s just enhance

the peak around x = 0.9 in the velocity profile, consequence of the excessive smearing

in the shock wave. For a detailed error analysis between the different switches, see

Casoni et al. (2011b).

In summary, imposing piecewise constant approximations when the decay in the

last polynomial order is not below 1/p4, introduces excessive numerical diffusion.

While oscillations are present when a p-th order continuous approximation is assumed

if the decay is just 1/p2 or larger. The linear variation determined by α0, see Eq. (2.11),

induces accurate results as shown in Figure 2.9. It is important to recall in that these

solutions are obtained with a coarse (h = 1/10) high-order (p = 6) mesh.
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Figure 2.9: Shock tube profiles for α0.
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Figure 2.10: Shock tube profiles for the first switch: α1.
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Figure 2.11: Shock tube profiles for the second switch: α2.
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Figure 2.12: Shock tube v1 profile for the first switch: α1.
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Figure 2.13: Shock tube maximum errors of the density (left) and velocity (right),
between the continuous approach of α and the restrictive switch.

2.3.2 Multi-dimensional problems

Supersonic flow past a bump

This is a well-known benchmark test for steady-state simulation at different Mach

numbers, see for instance Moukalled and Darwish (2001), Doleǰśı (2004) or Luo et al.

(2007). It consists of inviscid flow in a channel with a 4% thick circular bump on the

bottom. The channel is 3 units length and 1 unit height. The bump is located in

the middle of the channel with chord length equal to 1. Inflow boundary condition

is applied on the left, and outflow boundary condition on the right. At the top and

bottom of the domain, solid wall boundary conditions are considered. The inlet Mach
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Figure 2.14: Supersonic flow past a bump with M = 1.4: computational meshes. On
the right, a fine mesh of 1 452 elements and on the left a coarse one of 588 elements.

number is M = 1.4. In this case the steady-state solution is characterized by two

stagnation points and a change in the direction of the shock due to the reflexion on

the right boundary.

Common approaches use FV schemes combined with an adaptive unstructured

mesh refinement (Moukalled and Darwish (2001)). Here, in order to show the appli-

cability of the proposed methodology, high-order approximations with relative coarse,

uniform and structured meshes are used. The first approximation is computed over a

fine computational mesh of 1 452 elements and degree p = 3 (total number of degrees

of freedom –dof– 58 080) and the second one is computed over a coarse mesh of 588

elements with degree p = 5 (total number of dof 49 392). Both meshes are depicted

in Figure 2.14.

Figures 2.15 and 2.16 depict the Mach number obtained with both discretizations,

respectively. Qualitatively, the solutions are similar, showing stable approximations

with sharp shock profiles free of spurious oscillations. A detail of the oblique shock

behind the duct is also shown in order to show that shocks are captured essentially

inside one element, with independence of the mesh geometry. This is specially relevant

for the fifth order approximation, where the element size doubles the size of the third

order mesh and the shock is not aligned with edges. Moreover, in this case, it is clear

that the shock width is far more thinner than the element size.

In order to compare the different solutions in more detail, an horizontal section

along y = 0.4 is shown in Figure 2.17. The solutions for p = 3 and p = 5 are

also compared with a linear approximation on a very fine mesh. The linear mesh

requires 14 000 elements, i.e. triple number of degrees of freedom, to obtain similar

accuracy of the p = 5 mesh. The comparison reveals that a sharper profile is obtained
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Figure 2.15: Supersonic flow past a bump with M = 1.4: Mach number for p = 3 and
1 452 elements.

Figure 2.16: Supersonic flow past a bump with M = 1.4: Mach number for p = 5 and
588 elements.

with the high-order solution of degree p = 5 and a coarse mesh than with the low-

order one of p = 3 and fine mesh. Hence, using large elements and increasing the

degree of approximation (not the number of degrees of freedom) accuracy is improved.

Compared to other high-order techniques that also use coarse meshes, see for instance

Premasuthan et al. (2010), the present approximation is able to obtain accurate results

with uniform coarse meshes and less degrees of freedom, avoiding adaptativity of the

mesh along the shock regions.

The distribution of parameter α at steady-state is shown in Figure 2.18 . Elements

in blue correspond to α 6= 1 and consequently elements where accuracy is reduced
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Figure 2.17: Supersonic flow past a bump with M = 1.4: distribution of the Mach
number along section y = 0.4.

Figure 2.18: Supersonic flow past a bump with M = 1.4: distribution of α for p = 3
and 1 452 elements (left) and p = 5 and 588 elements, yellow for α = 1, blue for
0 < α < 1, and red for α = 0

to order h/p. Note that these areas coincide, as expected, with sharp gradients in

Mach number; that is, along the shock front. Notice that in contrast with standard

approaches, the mesh is not modified neither refined along the shock region. Hence,

the computational cost of recomputing the mesh within each iteration is avoided.

Transonic flow in a converging-diverging nozzle

The converging-diverging nozzle is another standard benchmark test involving flow of

inviscid non-heat-conducting air through a nozzle, see Anderson (1984) or Demirdzic

et al. (1993). Here the 2D (planar) case proposed by Hartmann and Houston (2002)
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Figure 2.19: Transonic nozzle: Mach number for a solution computed with p = 3 and
a mesh of 916 elements. Detail of the shock on the right.

is considered. The computational domain Ω is in ]0, 3[×]0, 1[ and presents a variable

section defined by a sinusoidal profile. Inviscid wall boundary conditions are imposed

on the lower and upper edges of the domain. Inflow conditions impose the Mach

number, M = 0.5, density and pressure, both equal to 1. At the supersonic outflow a

pressure condition, the ratio between the stagnation and the free-stream pressure is

prescribed equal to 0.67. Under these circumstances supersonic flow with a normal

shock in the diffusing section is created.

Two different discretizations are considered: 916 elements and degree p = 3 (36 640

dof) and 278 elements with degree p = 5 (23 352 dof). Note that both discretizations

use uniform meshes and a reduced number of degrees of freedom, for instance an order

of magnitude lower than the mesh used by Hartmann and Houston (2002).

Figure 2.19 depicts Mach number for the third order approximation. In spite

of the coarse approximation and the uniform mesh steady state is reached and the

shock is captured avoiding spurious oscillations. However, a closer look reveals some

lack of accuracy: the shock loses its typical bow shape and it is influenced by the

discretization.

Obviously, mesh adaption near the shock would alleviate this inaccuracies. How-

ever, high-order approaches may also be an alternative thanks to the discontinuous

basis proposed here. In fact, the solution with p = 5, shown in Figure 2.20, presents

accurate results and a clearly defined bow shock independent of the discretization.
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Figure 2.20: Transonic nozzle: Mach number for a solution computed with p = 5 and
a mesh of 278 elements. Detail of the shock on the right.

The shock is clearly captured inside the elements and with thickness less than the

element size. Note also, that the higher order approach requires a reduced number of

dof.

In Figures 2.21 and 2.22 the Mach number distributions along an horizontal (at y =

0.5) and vertical (at x = 2) section are depicted. Moreover, the high-order solutions

are further compared with a FV computation. In order to do a fair comparison a

uniform mesh is also employed for the FV case. More than twice the number of dof

has been used (19 200 elements, i.e. 76 800 number of dof) and as shown they are

not sufficient. Figure 2.21 clearly shows that the p = 5 solution, which is the one

with lower dof, presents the sharpest shock. The FV and p = 3 solutions are rather

coincident, but the p = 3 solution presents a small oscillation behind the shock.

However, Figure 2.22 reveals interesting conclusions. The FV approximation results

in non-physical variations of the Mach number, although the transversal shock profile

was smooth, the p = 3 solution has lost its symmetry, and the p = 5 results are the

expected ones.

The forward-facing step problem

A challenging test for computing unsteady shock waves is the numerical simulation of

a wind tunnel with a flat faced step, originally introduced by Emery (1968) to compare
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Figure 2.21: Transonic nozzle: Mach number profiles along y = 0.5 for p = 0, 3 and 5
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Figure 2.22: Transonic nozzle: Mach number profiles along x = 2 for p = 0, 3 and 5

several difference schemes in classical fluid dynamics. It is now a standard numerical

benchmark used by several authors, see among others Woodward and Colella (1984),

Holden et al. (1999), Cockburn and Shu (2001), Zhu et al. (2008) or Xu and Liu

(2011). The problem under consideration is a Mach 3 flow in a wind tunnel of 3 units

long and 1 unit wide. The step is 0.2 units high and it is located at 0.6 units from
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Figure 2.23: Forward-facing step with Mach 3: computational meshes of 10 677 ele-
ments (left) and 1 728 elements (rigth).

the left-hand end of the tunnel. Initially the tunnel is filled with a gas, with adiabatic

coefficient γ = 1.4, which everywhere has density ρ = 1.4, pressure p = 1, and velocity

v = (3, 0)T . Solutions are shown at time t = 4 of the computations, where a special

and complicated shock configuration is showed.

An inflow boundary condition is applied at the left end of the computational do-

main and outflow boundary condition at the right end. Along the walls of the tunnel,

as well as on the boundary marked by the step, inviscid wall boundary conditions

are applied. The corner of the step is the center of a rarefaction fan and, thus, a

singular point of the flow. It is well known that this singularity leads to an erroneous

entropy layer at the downstream bottom wall, as well as spurious Mach oscillations

at the top wall next to the Mach stem. Unlike Woodward and Colella (1984) and

many other references, here the scheme is not modified near the corner, neither the

mesh is refined. This will allow to see the influence of large elements with high-order

approximation in the entropy layer. Note that results are very reasonable although

no modification near this corner is introduced.

Two meshes with different approximations are compared: a very fine mesh of

10 677 elements and p = 2, and a coarse mesh of 1 728 elements and degree p = 6.

Both meshes are depicted in Figure 2.23. Notice that both are uniform with no special

refinement around the corner or at the shocks.

Figure 2.24 shows the computed density profiles at time t = 4 for both meshes.

The location and shape of the shocks are consistent in both computations. The shocks

and the rarefaction fan, which is created around the corner, are well-captured without

generating relevant noise. This is specially remarkable around the upper slip line from

the triple point and behind the Mach stem, compared to other results, for instance
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Figure 2.24: Forward-facing step with Mach 3: density profile for p = 2 and 10 677
elements (left) and p = 6 and 1 728 elements (rigth).

Figure 2.25: Forward-facing step with Mach 3: α values for p = 2 and 10 677 elements
(left) and p = 6 and 1 728 elements (rigth), yellow for α = 1, blue for 0 < α < 1, and
red for α = 0.

Cockburn and Shu (2001) or Zhu et al. (2008). The contact discontinuity arising from

the triple point is slightly better resolved with the high-order approximation despite

less degrees of freedom are involved.

Figure 2.25 shows the map of α, which controls the discontinuities inside each

element, for each element and both approximations. Again, the results are consistent:

the detection is aligned with the major shocks and clearly identifies the sharp λ-type

shock. Since the elements in the p = 6 mesh are coarser than the p = 2 mesh, the

thickness of the detected region is bigger for the high-order approximation. This fact

is consequence of the element-by-element behavior of the sensor and the parameter

α. Nevertheless, as shown next, this does not imply that the shock width is larger for

the coarser mesh (p = 6).

In order to better compare both solutions as well as their accuracy, density along

y = 0.2 is shown in Figure 2.26. Both cases locate the bow shock at x = 0.3 approx-

imately. However, a sharper front is observed for p = 6; that is, although the p = 6

has a coarser mesh size the shock profile is thinner. Moreover, the p = 6 solution



2.3 Numerical tests 45

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

x

De
ns

ity
 s

ec
tio

n

 

 
N=10677, p=2
N=1728, p=6

Figure 2.26: Forward-facing step with Mach 3: section along y = 0.2 of the density
profile.

does not present oscillations, while the p = 2 shows small oscillations near the outflow

boundary and bigger ones just after the shock, at x = 0.6, where the density drops

by a factor of 5.

The entropy production in the vicinity of the step corner, caused by the singular

point is a clear indicator of the noise introduced by the scheme and also its ability

to deal with singularities. In order to obtain more accurate solutions (with less en-

tropy production) several authors use adaptive refinement near the singular point,

see Cockburn and Shu (2001) or Holden et al. (1999). Other alternatives are possible

using a specific numerical treatment on the singular point, see Woodward and Colella

(1984). Here, in order to see the influence of high-order approaches no adaptivity or

entropy manipulation is done. The adiabatic constant, A = p/ργ , which is a function

of entropy, is plotted in Figure 2.27. Note that the amount of entropy generation

along the downstream boundary is not excessive and moreover that it is drastically

reduced for p = 6.

To get a better inside in the performance of the proposed method, solutions with

a sequence of four uniform meshes, shown in Figure 2.28, are computed with the same

order of approximation, p = 4. Figure 2.29 shows density along y = 0.2. Obviously,
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Figure 2.27: Forward-facing step with Mach 3: contours of adiabatic constant A =
p/ργ for p = 2 and 10 677 elements (left) and p = 6 and 1 728 elements (rigth).

Figure 2.28: Forward-facing step with Mach 3: computational meshes. From left to
right and top to bottom: 915, 1 728, 3 457 and 6 286 elements.

accuracy improves as the mesh is refined and a sharper shock is obtained with finer

meshes. Nevertheless, even for the coarse mesh results are reasonable. But it is

important to note that results converge as the mesh is refined.

Supersonic NACA0012

The next test case is the inviscid solution of a NACA 0012 airfoil with a freestream

Mach number of M = 1.2 at an angle of attach β = 0◦. The inflow is specified by the

total temperature, total pressure and flow angle and the outflow is specified to be the

atmospheric static pressure. A fourth order approximation, p = 4, is performed over

an unstructured mesh of 450 elements, with only 14 elements describing the airfoil

surface. The mesh is depicted in Figure 2.30.

The Mach number profile is shown in Figure 2.31 (left). A detail around the airfoil

is also shown with the mesh (right) in order to enhance sub-cell resolution. Note that
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Figure 2.29: Forward-facing step with Mach 3: section along y = 0.2 of the density
profile and detail of the first shock.

Figure 2.30: Supersonic flow past a NACA 0012 airfoil: computational mesh of 450
elements.

a very coarse mesh (except at the tip of the airfoil) is used, and any h-adaptation

procedure around the shock has been applied. Although the coarseness of the mesh

(compare with other approaches that use meshes of two orders of magnitude bigger,

see for instance Arias et al. (2007)), the shock is well-resolved within a single element.

Figure 2.32 depicts the distribution of parameter α. The sensor remains inactive

in almost the whole domain, in contrast with other methods, where not only the

elements containing the shock are detected, but also their neighbors, see Persson and

Peraire (2006) and Nogueira et al. (2009). Notice that only at the tip of the airfoil
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Figure 2.31: Supersonic flow past a NACA 0012 airfoil: Mach number for p = 4 and
450 elements.

Figure 2.32: Supersonic flow past a NACA 0012 airfoil: distribution of α, yellow for
α = 1, blue for 0 < α < 1 and red for α = 0

.

α takes the limit value equal to 0 (that is, piecewise constant shape functions within

each sub-cell), since that point is an stagnation point.

Since no analytical solution is available, solution with a very refined mesh and the

Finite Volume method is also presented in order to validate the results. A mesh of

46 131 elements (i.e, 184 524 total number of dof) is used. Note that the number

of degrees of freedom with the p = 4 and 450 elements was only 27 000. A detail of

the tip and the tail of the airfoil is plotted in Figure 2.33. The shock is well-resolved
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Figure 2.33: Supersonic flow past a NACA 0012 airfoil: Mach number detail on the
tip and on the tail of the airfoil, for FV approximation.

.

but it is specially highlighted the extremely smaller element size required in order to

achieve high accuracy in the shock regions.

Finally, the pressure coefficient along the surface of the airfoil is shown in Figure

2.34. This coefficient is a reliable measure to validate the accuracy of the method.

Both shapes are in good agreement except at the center of the airfoil where the DG

method slightly loses the curvature.
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Figure 2.34: Supersonic flow past a NACA 0012 airfoil: pressure coefficient along the
airfoil.



Chapter 3

The artificial diffusion method

Two shock-capturing approaches for Discontinuous Galerkin methods have been ex-

plored in this thesis: the continuous-discontinuous shape function approach, intro-

duced in Chapter 2, and a high-order artificial diffusion method. This chapter de-

scribes the artificial diffusion approach, first developed for the one-dimensional case

by Casoni et al. (2009) and later extended to higher dimensions.

Early methods for the numerical treatment of shocks and other flow discontinu-

ities consist on adding dissipation to near sharp solution gradients to obtain stable

solutions. The goal of this technique is to produce a local smoothing of the solutions

by introducing a suitable amount of artificial diffusion. However, reincorporating the

relevant physics of dissipation (Cockburn (2001)) in nonlinear hyperbolic conserva-

tion is not trivial. That is, the inherent difficulties in determining where and how

much viscosity must be introduced to avoid oscillations without causing unnecessary

smearing have deterred the extensive use of this approach.

Limiting techniques have emerged as an alternative for stabilizing high-order DG

approximations, for instance, Runge-Kutta Discontinuous Galerkin (RKDG) meth-

ods, see Cockburn and Shu (2001). They are a special class of explicit RK schemes,

see for instance Shu (1988); Shu and Osher (1988) and Gottlieb et al. (2001), that

combine with approximate Riemann solvers and nonlinear operators to satisfy stabil-

ity.

Here, the extensive experience in limiting techniques is used to define an artificial

diffusion method. The introduction of dissipation in the equation does not hinder the

51
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use of high-order and implicit schemes, in contrast with RKDG methods. Introducing

an artificial viscosity that scales with the DG resolution length scales, h/p, makes the

shock width also scale in the same manner. In this chapter an highly accurate artificial

diffusion method is presented. The viscosity scales like hk for some 1 ≤ k ≤ p, which

in general is smaller than h/p, as numerical tests consistently show. The necessary

background regarding limiting techniques is explained in Appendix A.

The introduction of artificial viscosity term requires the discretization of second

order derivatives with DG methods. Here, for simplicity, the Local Discontinuous

Galerkin (LDG) approach by Cockburn and Shu (1998a) is used, but other methods

can also be employed, see for instance Peraire and Persson (2008). Particular formu-

lation for the one-dimensional case, applied to a scalar hyperbolic conservation law

with artificial viscosity, is exposed in this chapter. The method is complemented with

the general formulation and technical details in Appendix B.

Shock width is directly related to the resolution length scale of the mesh. Keeping

h fixed, the higher the degree of the approximation, the thinner the shock. However,

for very large elements, where the real shock width is far more thinner than the element

size, the introduction of constant viscosity within the element results in an oversized

viscosity footprint, which, in turn, doesn’t make any qualitative improvement to the

solution, as Barter and Darmolfal (2007) shows. To overcome this shortcoming and

exploit sub-cell resolution, an extension of the artificial viscosity to sub-cells is pro-

posed. The extension is focused on the sub-cell detection of the shock. Thus piecewise

constant viscosity within regular partitions of the element can be defined, reducing

the total area of viscosity amplitude.

The extension of the artificial diffusion to two-dimensions in triangular meshes

is presented in Section 3.2. In contrast with the one-dimensional approach, multi-

dimensional diffusion can no longer rely on slope limiters, since the extension of slope

limiters in triangular meshes doesn’t ensure high-order reconstructions, see for in-

stance Cockburn and Shu (1998b) or Burbeau et al. (2001). The contribution of the

procedure here presented is inspired by the computation of multi-dimensional limiters

for rectangular elements, see for instance the extension by Biswas et al. (1994), where
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the one-dimensional limiter is applied over each cartesian direction. Here, three char-

acteristic directions on the triangle are defined and the solution is projected over each

one of them in order to apply the one-dimensional artificial diffusion. In the following

sections the formulation for the one-dimensional and two-dimensional artificial viscos-

ity is developed, the main properties are highlighted and a couple of numerical tests

for the scalar convection equation and for the Euler equations of gas dynamics are

presented in order to illustrate the applicability of the method.

A particular problem of interest is the transport of solute through an homogeneous

and highly adsorbent media. This problem is modeled with a convection-diffusion

equation, which also includes a reaction term. The equation is coupled with a system

of ODEs, giving rise to a possibly highly nonlinear PDE. Relationships between the

physical parameters involved lead to different behaviors of the equation, depending

on the dominant term. Under this rationale, shocks may arise from three different

situations. First, because of a purely convective equation that transports sharp fronts.

Second, because of non-linear convection terms. And third, because of the presence of

reaction terms, which may be also highly non-linear. Standard discretization methods

are not able to deal with these situations and hence, simplifications of the model are

required in order to simulate all the cases, obtaining physically acceptable solutions,

see Pérez-Foguet and Huerta (2005).

Here, artificial diffusion method is proposed to overcome these difficulties. The

applicability of the method for problems involving discontinuities and shocks of dif-

ferent nature is hence demonstrated, avoiding the use of simplified formulations of the

adsorption model. Consequently, an extensive analysis on adsorption modeling can

be developed. This issue is addressed in detail in Appendix D, following the work

started by Pérez-Foguet and Huerta (2005).
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3.1 One-dimensional artificial viscosity

3.1.1 The Basics of LDG in 1D

Consider a scalar conservation law

ut + fx(u) = 0, x ∈]0, 1[, t > 0 (3.1)

and introduce a dissipative term, the artificial viscosity, of the form

ut + fx(u)− (ε(u)ux)x = 0, x ∈]0, 1[, t > 0. (3.2)

Here, ε(u) is a non-negative quantity which models the artificial diffusion as a non-

linear coefficient depending on the solution u. Notice that adding viscosity to the

original equations introduces second order derivatives, which require special attention

in discontinuous approximations. Several methods have been proposed to deal with

this situation; here, the Local Discontinuous Galerkin method (LDG) by Cockburn

and Shu (1998a) has been used.

In order to apply the LDG method, eq. (3.2) is written as a system of first order

hyperbolic equations, typical of mixed methods

ut + fx(u)− σx = 0, x ∈]0, 1[, t > 0 (3.3a)

σ − ε(u)ux = 0, x ∈]0, 1[. (3.3b)

where the auxiliary variable σ has been introduced. In order to simplify the develop-

ments and following Cockburn and Shu (1998a) the new variable g(u) =
∫ u

ε(s) ds is

introduced, directly relate to σ; note, that using Leibniz rule it is easily demonstrated

that σ = gx(u).

Let {Ie}e=1,...,nel
with Ie =]xe, xe+1[ be a partition of the interval ]0, 1[ into nel subin-

tervals (or elements), with 0 = x1 < x2 < · · · < xnel+1 = 1. The weak formulation of
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problem (3.3) is

∫
Ie

utv dx−
∫
Ie

(
f(u)− σ

)
vx dx+

[
f̂e+1v(x−e+1)− f̂ev(x+

e )
]
−[

σ̂e+1v(x−e+1)− σ̂ev(x+
e )
]

= 0 (3.4a)∫
Ie

στ dx+

∫
Ie

g(u)τx dx−
[
ĝe+1τ(x−e+1)− ĝeτ(x+

e )
]

= 0 (3.4b)

for every element e = 1, . . . , nel and t > 0.

As standard in DG methods, the nonlinear flux f(u) has been replaced by numer-

ical one f̂ = f̂(u) which it is typically chosen as the Roe or Lax-Friedrichs flux. For

implementation details see Cockburn and Shu (2001). There are two other fluxes due

to LDG methods, σ̂ and ĝ, which can be seen as approximations of the numerical

traces of σ and g(u) on the boundaries. Standard numerical fluxes are used here, see

Cockburn and Shu (1998a). Note that at interfaces the following notation is used:

x±e = lim
ε−→0

xe ± ε

It is usual to assume ε(u) constant element by element, see Persson and Peraire

(2006). Here the same assumption is used and, thus, for element e, g(u) = εeu; that

is, eq. (3.4b) becomes

∫
Ie

στ dx+

∫
Ie

εeuτx dx− εe
[
ûe+1τ(x−e+1)− ûeτ(x+

e )
]

= 0

Remark 3.1. Other assumptions for the distribution of ε(u) are possible. In particu-

lar, assuming continuous ε(u) precludes incoherences in (3.2) due to a discontinuous

diffusion. For instance, assuming that only one shock is present per element an at-

tractive numerical diffusion can be

ε(u) = C
[
1− tanh2

(u−∆/2

ν

)]
, i.e. g(u) = Cν tanh

(u−∆/2

ν

)
,



56 The artificial diffusion method

where ∆ is the average of u at left and right of the shock. Note that ν localizes more

or less the artificial diffusion around the area where u = ∆/2.

3.1.2 Proposed approach for the artificial diffusion

The computation of the amount of artificial viscosity is performed combining the ideas

of slope limiters and shock-capturing methods. The popular RKDG method (Cock-

burn and Shu (2001)) and the generalization of the classical slope limiter (Cockburn

and Shu (1989)), ΛΠh , proposed by Biswas et al. (1994) provide a frame of reference

for the present work. The objective of this section is, first, to briefly describe the

construction of RKDG method, and second, to explain in detail how to compute the

amount of artificial diffusion to introduce in (3.2).

RKDG methods

RKDG methods provide stable and high-order accurate schemes for nonlinear convection-

dominated problems. The DG space discretization, the special strong stability pre-

serving Runge-Kutta time discretizations (SSP-RK time discretizations) and the gen-

eralized slope limiters ΛΠh are intertwined just in the right way to achieve nonlinear

stability. Note that h is a characteristic measure of the elements.

Consider the conservation law (3.1) and approximate −fx(u) by a DG space dis-

cretization. A system of ordinary differential equations of the form ut = L(u) is

obtained. The Total Variation Dimininish RK (TVD RK) time discretization scheme

introduced by Shu (1988) is used to integrate the ODE system in time. Let {tn}n=0,...,N

be a partition of [0, T ]. The general form for an m-stage scheme reads as:

• Set u0 = ΛΠh(u0), where u0 is the initial data for (3.1).

• For n = 0, . . . , N − 1 compute un+1 from un as:

– Set u(0) = un
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– For ` = 1, . . . ,m compute the intermediate functions:

u(`) = ΛΠh(u
n+k`), un+k` =

`−1∑
i=0

α`iw
`i, w`i = u(i) +

β`i
α`i

L(u(i))

• Set un+1 = u(m)

where the coefficients α`i and β`i must satisfy typical RK conditions. This is the

general form of the RKDG methods. They are stable under a CFL condition, see

Cockburn and Shu (2001), in the seminorm |·|TV . That is, |ūn+1|TV ≤ |ūn|TV where

|ū|TV =
∑
e

|ūe+1 − ūe|, with ū being the average of u in the element.

Notice that limiting techniques are implemented in two steps for each stage of the

RKDG scheme. First, the conservation law (3.1) is solved, and second, the limiting

operator ΛΠh is applied.

Assuming time integration under enough regularity, the weak formulation for the

k`−stage can also be symbolically written as

∫
Ie

un+k`v dx =

∫
Ie

unv dx+∫ tn+k`

tn

{∫
Ie

f(u)vx dx−
[
f̂e+1v(x−e+1)− f̂ev(x+

e )
]}
dt

(3.5a)

and the limiting step is then applied

u(`) = ΛΠh

(
un+k`

)
(3.5b)

for all e = 1, . . . , nel and t > 0.

The nonlinear limiting operator

Slope limiting techniques rely on the construction of a nonlinear local projection

operator ΛΠh whose aim is to enforce nonlinear stability of the approximate solution.
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For simplicity the approximate solution is expanded in terms of orthogonal Legendre

polynomial, within each element Ie (for all e = 1, . . . , nel) the approximation of u may

be written as

ue(x, t) =

p∑
i=0

cei (t) Pi(x) (3.6)

where the Pi are the Legendre polynomials, normalized such that Pi(1) = 1, and the

degrees of freedom cei are the so called modal coefficients.

Biswas et al. (1994) define a high-order slope limiter relying on the TVDM version

of the generalized one proposed by Cockburn and Shu (1989), which is designed for

linear approximations, i.e. p = 1. It is explained in detail in Appendix A. The idea is to

limit the solution by limiting its coefficients. Beginning with the coefficient associated

with the highest polynomial degree (i.e. for i = p, p − 1, . . . , 1), the coefficient cei of

(3.6) is replaced by

c̃ei = minmod
(
cei , (c

e+1
i−1 − cei−1)/(2i− 1), (cei−1 − ce−1

i−1 )/(2i− 1)
)
,

with the usual definition of minmod function, see Appendix A for details. The limiter

is active when c̃ei 6= cei for any i. Thus, the reconstructed coefficient c̃ei limits cei ,

which, in the absence of discontinuities, is proportional to the ith derivative of the

approximation. Obviously, to preclude spurious oscillations higher order derivatives

are limited first. The reconstructed solution has typically the following structure

ΛΠh(u
e)(x, t) =

k∑
i=0

cei (t) Pi(x) +

p∑
i=k+1

c̃ei (t) Pi(x). (3.7)

A major improvement of this reconstruction is that rarely k is as low as 0, which is

the default value for the limiter proposed by Cockburn and Shu (1989).

In the next section the proposed artificial viscosity approach is presented. Note

that, the superscript e indicating the element number is dropped to simplify the pre-

sentation. The nonlinear convection-diffusion equation, see (3.2), is solved instead of

applying slope limiters to the numerical solution of the nonlinear hyperbolic equation,
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see (3.1). The heuristics behind the construction of approximate Riemann solvers and

slope limiters described by Cockburn (2001) are the guiding lines to determine an ex-

plicit expression for the artificial diffusion term. A relation between the artificial

viscosity ε(u) in (3.2) and the limited solution, see (3.7), of (3.1) is established.

Artificial diffusion

Denote by uε the exact solution of (3.2). The weak form of this convection-diffusion

equation is

∫
Ie

uεtv dx−
∫
Ie

(f(uε)− ε(uε)uεx)vx dx+
[
(f(uε)− ε(uε)uεx)v

]xe+1

xe
= 0 (3.8)

where the same partition proposed in Section 3.1.1 is used.

It is well known, see for instance LeVeque (1992) or Cockburn (2001), that for

physical reasons, the correct solution, called the entropy solution is obtained when

viscosity tends to zero, that is ε → 0. Therefore the entropy solution at a given

instant t is defined by ∫
Ie

uv dx = lim
ε→0

∫
Ie

uεv dx

and analogously the numerical flux, typical of DG methods, is

f̂e = lim
ε→0

[
f(uε(xe, t))− ε(uε)uεx(xe, t)

]
. (3.9)

Taking the limit as ε goes to zero in (3.8) and following the procedures developed

by Cockburn (2001) the following weak formulation is obtained:

∫
Ie

utv dx−
∫
Ie

f(u) vx dx+
[
f̂e+1 v(x−e+1)− f̂e v(x+

e )
]
+

∫
Ie

ε̂(u)uxvx dx = 0 (3.10)

where the last term in (3.8) has been replaced by
[
f̂e+1 v(x−e+1)− f̂e v(x+

e )
]
. The term
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containing the artificial viscosity coefficient ε̂(u) is the so-called shock-capturing term,

and it is determined in what follows.

Remark 3.2. The numerical flux f̂ given by (3.9) can be reduced to an E-flux of

the form f̂e = f(u(xe, t)) like the Godunov flux, the Enquist-Osher flux or the Lax-

Friedrichs flux for ∆t small enough. For a justification see Osher (1984).

Assuming again time integration under enough regularity the weak formulation is

then rewritten as

∫
Ie

u(`)v dx =

∫
Ie

unv dx+

∫ tn+k`

tn

∫
Ie

f(u) vx dxdt−∫ tn+k`

tn

[
f̂e+1 v(x−e+1)− f̂e v(x+

e )
]
dt−

∫ tn+k`

tn

∫
Ie

ε̂(u)uxvx dxdt (3.11)

In order to determine the shock-capturing term the RKDG scheme described by

(3.5a) and (3.5b) in replaced into (3.11) to obtain

∫
Ie

ΛΠh(u
n+k`)v dx =

∫
Ie

un+k`v dx−
∫ tn+k`

tn

∫
Ie

ε̂(u)uxvx dxdt (3.12)

Assuming ε̂ constant for x ∈ Ie and t ∈ [tn, tn+k` ] an explicit expression for the

artificial diffusion coefficient is obtained

ε̂ =
(∫

Ie

(
un+k` − ΛΠh(u

n+k`)
)
v dx

) / (∫ tn+k`

tn

∫
Ie

uxvx dxdt
)

(3.13)

where un+k` is the standard DG solution (not limited) obtained from (3.5a) and

ΛΠh(u
n+k`) is the reconstructed solution (3.5b), whose structure is described in (3.7).

In fact, for each Legendre polynomial v = Pi, i = 1, . . . , p, a viscosity is obtained,

say {ε̂i}i=1,...,p. Thus each viscosity ε̂i contains information of the reconstructed mo-

ment c̃i. Of course, from (3.7) and (3.13) it is obvious that ε̂i = 0 for i = 0, . . . , k.

Notice that ε̂0 = 0 since ce0 = c̃e0 (conservation of mean value within the element).
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Using the orthogonality and hierarchy of Legendre polynomials in (3.13), viscosi-

ties are readily computed

ε̂i =
h2(cei − c̃ei )
2(2i+ 1)

[ ∫ tn+k`

tn

∫ 1

−1

uξ
dPi
dξ

dξdt
]−1

for i = k + 1, . . . , p, (3.14)

where h is the element size and ξ are the local coordinate in the reference element

[−1, 1].

Only the maximum viscosity is retained, because it corresponds to the lower-order

reconstructed moment

ε̂ = max{ε̂k+1, ..., ε̂p} = ε̂min{i|c̃ei 6=cei } (3.15)

Roughly speaking, a bigger amount of viscosity is required to impose monotone lower-

order derivatives than higher-order ones.

Order of the introduced diffusion

There are two key points to ensure the success of a shock-capturing method. First, it

is crucial to preserve accuracy in smooth regions and second, it is required to obtain

sharp shock profiles, not directly proportional to the element size.

Assuming sufficient regularity in (3.13) and (3.15), the order of the introduced

artificial diffusion can be infered by a simple analysis based on modal coefficients of

the approximation.

In fact, the degrees of freedom cej(t) of an approximation of the form (3.6) are

of order O(hj) for j = 0, . . . , p. Using basic orthogonality properties of Legendre

polynomials and assuming cj(t) constant on ]tn, tn+kl [, a Taylor analysis of (3.13)

demonstrates that the introduced viscosity scales like

ε̂ ∼

O
(
hk+1/∆t

)
if k is even

O
(
hk+2/∆t

)
if k is odd
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where k is the last non reconstructed moment in (3.7). Note that the time step ∆t

is chosen to satisfy the CFL condition in every step of the TVD-RKDG methods; in

fact, ∆t ∼ O(h), see Cockburn and Shu (2001).

In contrast with the more standard approaches by Cockburn and Shu (1989) which

introduce a shock profile of O(h), the proposed diffusion scales as O(hk) for 1 ≤ k ≤ p.

Numerical examples indicate that, in general, k > 1. Thus accuracy is usually higher

than one in the shock regions. Compared to other artificial diffusion techniques ,

Persson and Peraire (2006) or Barter and Darmolfal (2007), where diffusion scales

like ε̂ ∼ O(h/p), the proposed artificial diffusion is in general smaller when relatively

coarse meshes and high degree of approximation are used. Numerical tests corroborate

this issue.

Extension to a system of equations

The extension to nonlinear system of equation, for instance the Euler equations (1.1),

is standard: the artificial viscosity is applied to the characteristic variables i.e, Rie-

mann variables, see Section 1.4.1 or Donea and Huerta (2003). In one space dimension,

the system of Euler equations in conserved variables can be written as

Ut + F (U)x = 0 (3.16)

where U = (ρ, ρv, ρE)T and F (U) = (ρv, ρv2 + p, (ρE + p)v)T .

The system of characteristic variables is obtained multiplying (3.16) by the inverse

of the matrix of right eigenvectors of the Jacobian of the flux F (U), namely R−1, that

is,

R−1
(
Ut + F (U)x

)
= 0

Recall from Section 1.4.1 that a diagonal system of equations is obtained. In-

troducing the characteristic variable W = R−1U , a system of 3 decoupled equations

is obtained, see equation (1.4). Then, the computation is straightforward: a single

viscosity for each characteristic variable is obtained by using the method proposed
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here. Due to the diagonalization, each viscosity is computed independently from one

another. The result is mapped back into the conserved variables space by multiplica-

tion with the matrix of right eigenvectors, obtaining a non-constant artificial viscosity

tensor for the system of conserved quantities.

Shock detection

Introducing just the necessary diffusion is important but it is also crucial to do it

where it is needed. The smoothness indicator proposed by Persson and Peraire (2006)

and explained in detail in Section 2.2 is again used here.

Recall that the sensor is expressed as one simple non-linear equation, Se(s), that

detects spurious numerical oscillations within each element. It has been consistently

proven that the sensor is very efficient in the presence of high-order elements, which

are standard in DG. Moreover, the use of orthogonal and hierarchical polynomial basis

simplifies computations, see (2.9).

3.1.3 Sub-cell extension for the artificial diffusion method

In this setting the discontinuity sensor Se(s) is an element-based integral and ε(u)

takes constant value within each element. However, from (3.2) one can think that

the discrete approximation generated by the numerical scheme is an exact solution

to a slightly perturbed PDE of the original conservation law (3.1). According to

this, the ideal diffusion should be a continuous function, not only depending on the

solution, but also pointwise defined, that is ε(u(x)). However, the shock location

for a given flow field is rarely known a priori and the artificial viscosity cannot be

a pre-determined function in space. Moreover, a pointwise switch, based on purely

local quantities, is not yet a dependable option at higher-order interpolations due to

the severe numerical noise in the shock layer.

Nevertheless, constant artificial viscosity within each element may have some draw-

backs. Specifically, for large elements where the shock width is far more thinner than

the element size, a more local diffusion may be beneficial, especially in terms of accu-
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racy.

Keeping in mind these shortcomings, an extension of the proposed artificial dif-

fusion into a division of sub-cells within each element is described in the following

section.

Sub-cell shock detection

First, it is necessary to identify more precisely the shock within the element. With this

purpose, the computational element Ie is divided into small patches of size h/p, namely

sub-cells, and the usual discontinuity sensor Se(s) is applied over each one of them.

This procedure is only perfmored in those elements identified by the elementwise

sensor.

Here, for simplicity, the sub-cells are a uniform partition of each element Ie = [xk, xk+1].

For an approximation of degree p ≥ 2 the interior nodes of the high-order mesh de-

fine the subdivision. Hence, each element is divided into a set of p non-overlapping

intervals, that is,

Ie =

p⋃
l=1

I le with I le = [xk, xk+1/p, ...., xk+1] (3.17)

Projecting the elemental solution u(x, t) of Ie over each sub-cell an approximation

of degree p is obtained within each subinterval I le. If element Ie has been detected

for the sensor as an element containing numerical oscillations the subsensor is applied

within each of the sub-cells I le for l = 1, . . . , p. Hence, the computational overhead

of recomputing the sensor within the element is only reduced to a few number of

elements. It is worth noting that the subdivision (3.17) is only considered with the

purpose of applying the sensor to a more local entity, i.e, the computational mesh is

not refined and hence, this procedure does not increase the computational cost. The

solution is still defined as a pth order approximation within the element Ie.

This procedure would, at best, increase the accuracy of the shock location, which

will be limited to a region of width h/p, rather than h. At worst, the size of the
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detected area will still remain as the element size, h. To increase p also improves the

accuracy of this adaptive procedure, as numerical tests consistently show.

Sub-cell viscosity

Following this idea the artificial diffusion could be defined within each element as

a piecewise function, providing then a closer approximation to the ideal pointwise

viscosity.

Here, piecewise constant viscosity within each sub-cell is computed, by means

of (3.13) and (3.15). However, other approaches may be considered. For instance,

a gaussian function centered at the detected region with deviation equal to the to-

tal length of the detected sub-cells is suggested by Barter and Darmolfal (2007) for

elementwise viscosity.

To illustrate the gaussian viscosity, consider for instance the following function

u(x) = xe−λ
(1− e−λ)erf

(
1

2
√

2ε

)
erf
(

1√
2ε

) .

with λ = 2 and ε = 0.00025, which consists on a step gradient centered at x = 0.

Figure 3.1 shows a possible distribution of gaussian artificial viscosity centered at the

step gradient of the domain. Grid lines correspond to computational elements. Note

that the elementwise sensor will identify elements 4 and 5 (with coordinates [0.4, 0.5]

and [0.5, 0.6], respectively). The amplitude of the gaussian must be determined de-

pending on several parameters, such as the width of the detected are and oscillations

which may appear in vicinities of the shock. Continuity of the viscosity within the

element will preclude possible oscillations in the derivative ux of the function, which

may be beneficial in terms of error estimates, for instance. Further research on this

topic can be found by Barter (2008).
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Figure 3.1: Distribution of gaussian artificial viscosity over a function with high gra-
dient.

3.2 Multi-dimensional artificial viscosity

This section presents the extension to general triangular meshes of the one-dimensional

artificial diffusion method described by Casoni et al. (2009).

Given an approximate solution within each element, u(x, y), obtained with the

DG method, the essential idea is to compute the solution along each spatial direc-

tion of the two-dimensional space and apply the one-dimensional viscosity model to

each direction. However, for general triangular meshes this extension is not trivial:

directions x and y are coupled in the expansion of the solution. Moreover, cartesian

coordinates do not seem to be the natural choice for triangular meshes. Instead, tri-

angular coordinates, also known as barycentric coordinates, provide a more practical

approach for triangles.

3.2.1 From cartesian to barycentric coordinates

Barycentric coordinates is a coordinate system corresponding to masses placed at

the vertices of a reference simplex. Consider the general triangle of vertices ABC,

displayed in Figure 3.2 (left). In a triangle, barycentric coordinates are also known
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as area coordinates, because the coordinates of an arbitrary point P with respect to

the triangle ABC are proportional to the signed areas of PBC,PCA and PAB. In

particular, the barycentric coordinates are defined by the triple of numbers (α, β, γ)

such that each coordinate is defined as the ratio between the triangular subdomain

formed by point P and two vertices and the whole triangle, as shown in Figure 3.2

(right).

P AT

AT

AT

AT

P

A B

C

Figure 3.2: Area coordinates.

Formally, given a triangle of vertices (xi, yi) for i = 1, 2, 3, the barycentric coordi-

nates (α, β, γ) are defined by a linear relation between them and the cartesian ones,

which is given by the following system:

x = αx1 + βx2 + γx3

y = αy1 + βy2 + γy3

1 = α + β + γ

(3.18)

Each coordinate takes value equal to zero along one edge and equal to 1 at the opposite

vertex. For instance, vertex A = (x1, y1) has barycentric coordinates (1, 0, 0) with

α = 1 and β = γ = 0.

Relation (3.18) implies that α contours are straight lines equally spaced and par-

allel to edge βγ, in which α = 0, see Figure 3.3. Analogous relation is accomplished

for β and γ, with edges γα and αβ respectively.

Remark 3.3. Any function defined in a triangle may be expressed either in cartesian
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Figure 3.3: Barycentric coordinates.

or triangular coordinates. Explicitly, a simple manipulation of Equation (3.18) shows

that, for a general triangle of vertices (xi, yi) for i = 1, 2, 3, the barycentric coordinates

of an arbitrary point (x, y) wtihin the triangle are

α =
(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y

2∆

β =
(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y

2∆

γ =
(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y

2∆

(3.19)

with

∆ =
1

2
det

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
In the Finite Element community it is usual to consider a reference triangle, ex-
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pressed in local coordinates, to simplify computations. Hence, given a general triangle

of straight sides in cartesian coordinates, a standard linear mapping, see Figure 3.4,

between this triangle and the reference one of vertices (0, 0), (1, 0), (0, 1) is used to

pass from the physical domain to the reference element. Tus, barycentric coordinates

in terms of this reference triangle in local coordinates (ξ, η) are defined by

α = 1− ξ − η

β = ξ

γ = η.

(3.20)

Figure 3.4: Two dimensional domain transformation.

3.2.2 From 2D to 1D

The computation of one-dimensional approximations within the triangle is assessed

in this section. The goal is to obtain one-dimensional projections of the approximate

solution u(x, y) in order to apply the viscosity model defined in Section 3.1.2. In

particular, the solution u(x, y) is projected along three directions within the triangular

element.
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m

normal direction

Figure 3.5: Possible directions of projection.

A question which arises from the elaboration of the one-dimensional approxima-

tions for triangular meshes is concerned with the choice of the directions to project

the solution. Two natural choices can be considered: first, for each barycentric coor-

dinate the normal direction to its contours is proposed, see Figure 3.5 (right). Despite

this option appears to be the natural one, it has been ruled out since for degenerate

triangles this direction may not be contained within the computational element. Sec-

ond option is to consider the direction defined by the medians of the triangle, that

is, the direction given by joining each vertex with the midpoint of its opposite edge,

see Figure 3.5 (left). In this case, the projection will be always contained within the

element. For instance, the direction associated to coordinate α is given by the me-

dian αmα, where mα denotes the midpoint of the opposite face to the vertex, that is

the midpoint of edge βγ, following the notation introduced in the previous section.

In contrast with the multi-dimensional slope limiter techniques, see Cockburn et al.

(1990) and Burbeau et al. (2001), this approach leads to a scheme which does not

depend on the mesh geometry and can be defined for any triangular element.

Once the directions are defined, consider then the approximate solution u(x, y)

of order p in an arbitrary element Ωe. Using the linear mapping from cartesian to

local coordinates, see Figure 3.4, the approximation is written in local coordinates,
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u(ξ(x, y), η(x, y)). The projection along the median αmα is given by

uα(α) = u
(1− α

2
,
1− α

2

)
.

The justification for this projection is outlined in what follows.

Since any point of the median αmα satisfies β = γ, it has barycentric coordinates

(α, 1
2
, 1

2
). Using this relation and replacing it into (3.20), any pair of coordinates (ξ, η),

may be parameterized with a single parameter, say α, as

ξ =
1− α

2
, η =

1− α
2

. (3.21)

An analogous procedure with coordinates β and γ gives similar relations. Projec-

tions along each coordinate are given then by the following expressions

uα(α) = u
(1− α

2
,
1− α

2

)
uβ(β) = u

(
β,

1− β
2

)
uγ(γ) = u

(1− γ
2

, γ
)

Note that each expression is a polynomial of degree p within each variable, α, β and

γ, respectively. This is obvious since the approximation u(x, y) is a polynomial of

degree p in (x, y). That is, for all x, y ∈ R,

u(x, y) =
∑
|i+j|≤p

aijx
iyj

with aij ∈ R.

Remark 3.4. It is also possible to work with cartesian coordinates and find the param-

eterization uα(α(x, y)) instead of (3.21) just by considering the relation (3.19) and the

midpoints of the edges in cartesian coordinates, that is mα =
(x2 + x3

2
,
y2 + y3

2

)
. mβ



72 The artificial diffusion method

and mγ have the same expression but with cyclic permutation of indices. Nevertheless,

expressions and computations in cartesian coordinates become more involved.

Remark 3.5. In (3.21) the median has been chosen as the direction of projection in

order to obtain one-dimensional polynomial approximation of degree p. However, the

choice is not unique: any direction obtained by joining a vertex of the triangle with

an arbitrary point P of the opposite edge gives a polynomial of degree p within the

barycentric coordinate associated to the vertex. For instance, consider the vertex α

and a point Pα = (0, k, 1−k) of edge βγ, with 0 < k < 1. Any point Q of the segment

αPα may be written as Q = Pαt+α(1− t), for t ∈ (0, 1). By writing this expression in

local coordinates (ξ, η) it is easily demonstrated that β/γ = k/(1− k). By reproducing

the procedure of the projection over the median, the following parameterization for

any pair (ξ, η) of the triangle is obtained

ξ =
1− α

(1 + k
1−k )

, η =
1− α

(1 + k
1−k )

for 0 < k < 1.

3.2.3 Definition of artificial diffusion in the element

In order to define de artificial viscosity, the one-dimensional method presented in-

Section 3.1.2 is recalled. Consider the single-parameter approximations, uα, uβ, uγ,

obtained by the projection detailed in the previous section. The limited solutions

ΛΠh(uα),ΛΠh(uβ),ΛΠh(uγ) are then easily computed by following the high-order

limiting procedures by Biswas et al. (1994). Recall that, by limiting the solution

coefficients, this method retains as high an order as possible, and does not auto-

matically reduce accuracy to first order. However, although the approximations are

one-dimensional polynomials, the computational element is a two-dimensional struc-
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ture and hence, standard limiting procedures in 1D should be modified in some way.

Consider the two adjacent elements Ωe and Ωf and the projections ueα(α) and ufα(α)

along αmα for each one, see Figure 3.5 (left). For simplicity the projections are ex-

panded in terms of orthogonal Legendre polynomial, within each element uα may be

written as

ueα =

p∑
i=0

aei (t)Pi(α) ufα =

p∑
i=0

afi (t)Pi(α)

where the expansion coefficients of each element are emphasized with superscripts

e and f and the Pi are the Legendre polynomials. As usual, beginning with the

coefficient associated with the highest polynomial degree (i.e for i = p, p − 1, . . . , 1)

the coefficient aei is replaced by

ãei = minmod(aei , (a
e
i−1 − a

f
i−1)/2i− 3)

Analogous procedure is repeated for uβ and uγ. Note that, in contrast with the

standard one-dimensional limiting techniques (Cockburn and Shu (1989), Biswas et al.

(1994) and Krivodonova (2007)), the minmod function acts over two values, instead

of three, due to the geometrical approach of the limiting directions.

Getting to this point, the computation of the artificial diffusion for each barycentric

coordinate is straightforward, following Section 3.1.2. Three artificial viscosities, say

εα, εβ and εγ, are then obtained for each triangular element. With the purpose to

obtain a single-valued viscosity within the element several options can be considered.

For simplicity, here a scalar viscosity is computed by linearly combining the three

values. Thus, artificial diffusion within the element is defined by

εe = (εα + εβ + εγ)/|Ωe|. (3.22)

As numerical tests show, this approach, although requiring further research, seems

promising. However it is worth to be investigated: for instance, tensorial viscosity

might be beneficial in order to take into account the directionality of the shock.
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3.3 Numerical Examples

A variety of numerical examples are now considered to show the capacity of the

method to preserve the accuracy and to capture sharp shock profiles. An analysis

of the introduced viscosity, where and how much, is also performed in the examples.

Comparisons with classical methods in one-dimension, say slope limiters, are deeply

analyzed. The novel shock-capturing method presented in Chapter 2, and the multi-

dimensional artificial diffusion are also compared.

Appendix D presents a real application for the method, consisting on the modeling

of highly adsorbent media. As pointed out, the application shows that the method

can handle nonlinearities of different nature, such as nonlinear reaction terms.

3.3.1 One-dimensional tests

Linear advection

Here two linear tests are proposed. First, transport of a sinus wave shows that the

proposed methodology does not affect the optimal order of convergence of high-order

DG methods. Second, a more involved test convecting pulses and Gaussian functions

is computed. Both examples are linear initial value problems with periodic boundary

conditions and can be defined as

ut + ux = 0, −1 ≤ x < 1, t > 0

u(x, 0) = u0(x).

Transport of a sinus wave.

Table 3.1 shows error in the L1 norm for the initial condition u0(x) = sin(πx) at time

t = 2 for p = 1, 2, 3, 4 on uniform meshes having 16, 32, 64, 128 and 256 elements. As

expected, the optimal rate of convergence is obtained. Moreover, these errors are least

one order of magnitud smaller compared to those presented by Krivodonova (2007)

with high-order limiters.
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Table 3.1: Transport of a sinus wave: errors in L1 norm and rate of convergence.

N p = 1 p = 2 p = 3 p = 4
16 1.64e-02 2.78e-04 4.70e-06 9.10e-08
32 4.10e-03 2.0023 3.46e-05 3.0036 2.92e-07 4.0044 2.83e-09 5.0050
64 1.03e-03 2.0006 4.32e-06 3.0009 1.83e-08 4.0011 8.85e-11 5.0013

128 2.56e-04 2.0001 5.40e-07 3.0002 1.15e-09 4.0003 2.76e-12 5.0003
256 6.40e-05 2.0000 6.75e-08 3.0001 7.13e-11 4.0001 8.63e-14 5.0004

Transport of a combination of Gaussians and pulses.

The same linear advection problem is solved with the initial condition

u0(x)=



1
6

(
G(x, β, z−δ) +G(x, β, z+δ) + 4G(x, β, z)

)
if x ∈ [−0.8,−0.6],

1 if x ∈ [−0.4,−0.2],

1− |10(x− 0.1)| if x ∈ [0, 0.2],

1
6

(
F (x, α, a− δ) +G(x, α, a+ δ) + 4G(x, α, a)

)
if x ∈ [0.4, 0.6],

0 otherwise.

where G(x, β, z) = exp(−β(x− z)2), F (x, α, a) =
√

max(1− α2(x− α)2, 0), a = 0.5,

z = −0.7, δ = 0.005, α = 10, and β = log 2/(36δ2)

The solution contains a combination of smooth but narrow Gaussian, a square

pulse, a sharp triangle, and a combination of half-ellipses. Moreover, to further ac-

centuate the dissipation introduced by slope-limiter or artificial diffusion techniques,

the solution is computed after a long time, namely t = 8.

Figure 3.6 compares the artificial diffusion technique proposed here with the high-

order limiter proposed by Krivodonova (2007) (described as “moments” in the figures).

Comparisons between these two techniques are always performed with the same num-

ber of degrees of freedom. In Figure 3.6(a) 400 degrees of freedom are employed; a

mesh of 200 elements with p = 1 and one of 50 elements with p = 7 are used to

compare these techniques. Figure 3.6(b) corresponds to a mesh of 200 elements with

p = 2 and one of 50 elements and p = 11.
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(a) 400 dof: 200 elements with p = 1 (left) and 50 elements with p = 7 (right)
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(b) 600 dof: 200 elements with p = 2 (left) and 50 elements with p = 11 (right)

Figure 3.6: Combination of Gaussians and pulses: comparison between high-order
slope limiter (“moments”) and artificial diffusion

In general the artificial diffusion techniques outperform the high-order limiting

scheme. This is obvious for high-order elements, which is the natural tendency in DG

methods. Large high-order elements allow with the artificial diffusion technique to

resolve accurately the solution extrema. In contrast, high-order limiting requires, as

expected, smaller and low-order elements to capture the features of the transported

functions. In other words, it requires h-refinement.

Overshoots near discontinuities in u for the square pulse are observed for the

artificial diffusion technique. These overshoots, which should be expected in artificial
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Figure 3.7: Combination of Gaussians and pulses: no discontinuity sensor for 200
elements with p = 2 (left) and 50 elements with p = 7 (right)

diffusion methods, are almost negligible for high-order approximations. Low-order

polynomial approximations present clear localized oscillations in the pulse, see Figure

3.6.

Since the amount of artificial diffusion is directly proportional to the limited co-

efficients, in principle, one could guess that there is no need for any discontinuity

sensor. If no limiting is necessary, the artificial diffusion is zero. Thus, in a sense the

proposed approach already incorporates a discontinuity sensor. Figure 3.7 compares

the artificial diffusion scheme with and without the discontinuity sensor for 200 and

50 elements. It is clear that such an approach is over-diffusive. Two key aspects

contribute to this over-diffusion: constant element-by-element artificial diffusion and

the proposed algorithm which always take the maximum computed diffusion. Note,

as previously shown, that using the discontinuity sensor allows both to preclude an

over-diffusive method and reduce the computation overhead only to the detected ele-

ments.
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A steady-state convection-diffusion problem

Next, a linear convection-diffusion example is studied,


ut + ux − νuxx = 1 in [0, 1], t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = 0.

For high Peclet numbers the solution of this problem develops a boundary layer

at the end of the domain. Results are presented at t = 1.2 when the solution can be

considered in steady state. All the computations are performed with ν = 0.001 and

discretizations are chosen such that Peclet is equal to 10.

As in the previous example, numerical tests show that the artificial diffusion

method outperforms the high-order limiting technique and, in particular, it improves

accuracy when coarse meshes and high-order approximations are used. Discretiza-

tions from p = 1 to p = 12 and number of elements such that the number of degrees

of freedom is the same order for all of them have been tested. Figure 3.8 shows the

results for a discretization with low order (p = 3) and a fine grid of 17 elements and a

discretization with high order (p = 11) and a coarse grid of 5 elements. Note, for in-

stance, that limiting techniques are not able to capture the boundary layer. Artificial

diffusion method provides a more accurate solution than slope limiting techniques,

especially when the order of the approximation is increased. It also ensures a major

control of interelement jumps.

Moreover, in order to show that the proposed viscosity is sufficient to capture

sharp shock profiles and non-oscillatory solutions, two artificial viscosity approaches

are compared. The proposed artificial diffusion, denoted by ε, is compared with a

technique that adds constant artificial viscosity of order h/p, here denoted by εh/p , as

suggested by Persson and Peraire (2006). Results for the same previous discretizations

are shown in Figure 3.9, for p = 3 on the top plots and p = 11 on the bottom. Al-

though similar solution profiles are obtained with both viscosities, numerical evidence
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(a) 17 elements and p = 3
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(b) 5 elements and p = 11

Figure 3.8: Steady-state convection-diffusion problem: figures on the right show the
detail around the boundary layer.

indicates, for different degrees of approximation, that the viscosity computed with the

approach proposed here is always smaller than the value h/p. Hence, higher accuracy

is also expected. In fact, Figure 3.10 shows the amount of diffusion introduced in the

last element at each time step for both cases, clearly demonstrating this fact.

To further differentiate the artificial diffusion solutions the L∞ and L1-norm are

computed in the region containing the shock, that is {x ∈ [0, 1]|x > 0.8}. Both

errors are also computed for the limited solutions. The L1 error is also computed

for the solution obtained with the high-order limiter. The L∞ error is not shown for

the slope limiting technique because the lack of resolution at the boundary makes
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Figure 3.9: Steady-state convection-diffusion problem: comparison between a diffusion
of order h/p and the proposed technique.
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Figure 3.10: Steady-state convection-diffusion problem: evolution of artificial diffusion
with time; the order h/p viscosity is filled in grey and the proposed diffusion as a solid
black line, left p = 3 and right p = 11.
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this computation unreliable. The proposed methodology always presents the smallest

errors, as shown in Table 3.2. For instance, it is reduced by one order of magnitude

with respect to the limiters. In addition, note that the improvement is more relevant

as the degree of approximation increases.

Table 3.2: Steady-state convection-diffusion problem: errors in L1 and L∞ norms in
the region of the shock x > 0.8 for different discretizations.

L1 error L∞ error
p = 3 p = 5 p = 8 p = 11 p = 3 p = 5 p = 8 p = 11

Limiter 0.0061 0.0154 0.0334 0.0438
ε = h/p 0.0184 0.0111 0.0086 0.0062 0.8115 0.7721 0.7214 0.7493

ε proposed 0.0133 0.0080 0.0070 0.0047 0.7437 0.7719 0.7001 0.6487

Despite the proposed approach gives good results for any degree of approximation,

adding constant artificial diffusion in the whole element seems excessive when the

shock width is far more thinner than the element size. For these situations, it may

be beneficial to just add diffusion in a small region of the element, where the solution

profile develops large gradients. Figure 3.11 shows the approximation of degree p = 11

over the mesh of 5 elements with the sub-cell artificial diffusion technique. A detail

of the last two elements is also shown. The constant element-by-element artificial

diffusion approach imposes a finite viscosity on [0.8, 1], which is far more bigger than

the shock width. But, with the sub-cell approach the artificial diffusion is only added

in a region ten times smaller, i.e, h/(p− 1), obtaining a sharp shock free of spurious

oscillations.

Burgers’ equation

In order to generalize the previous conclusions also for nonlinear problems the inviscid

Burgers’ equation with periodic boundary conditions and smooth initial condition is

solved ut + fx(u) = 0 in [0, 1], t > 0,

u(x, 0) = 1
2

+ sin(2πx).
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Figure 3.11: Steady-state convection-diffusion problem: the left figure shows the re-
gion detected by the subsensor is filled in grey, and the right one a detail is plotted.

Recall from Section 2.3.1 that a shock is completely formed at time t = 0.5.

Figure 3.12 shows a comparison between high-order slope limiting procedures and

the artificial diffusion. The problem is solved on a mesh of 10 elements with p = 5 and

p = 10 (left and right plots, respectively). Note that the high-order limiter proposed

by Biswas et al. (1994) gives, in this case, the same results for p = 5 and p = 10.

With the artificial diffusion method accuracy is improved as the degree is increased

and also a sharper shock, free of oscillations, is obtained, see the detail of the shock

in Figure 3.13.

Next, the proposed approach is compared with a constant artificial viscosity of

order h/p, denoted by εh/p, as suggested in Persson and Peraire (2006). Figure 3.14

shows the obtained solution for p = 3, 5, 8 and 11 (from left to right and top to

bottom) on a 10 element mesh. Both techniques produce similar shock profiles, in

particular, as the order of the approximation is increased beyond 5. Note, however,

that the proposed viscosity is notably smaller than the one of order h/p.

In order to better compare both approaches as well as their accuracy, the total

amount of viscosity is computed. In contrast to the previous example, where the

boundary layer is always located at the right boundary, here the formed shock evolves

in time and hence, it may change from one element to another along the computation.

Hence, in order to make a fair comparison, the total viscosity footprint is computed
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Figure 3.12: Burgers’ equation: comparison between high-order slope limiter and
proposed method for approximations of degree p = 5 (left) and p = 10 (right).
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Figure 3.13: Burgers’ equation: comparison between approximations of degree p = 5
and p = 10 for the artificial diffusion approach on a mesh of 10 elements, a detail is
presented on the right.

as

εt =

nel∑
e=1

∫
Ωe

ε dx for each ti ∈ [0, t]. (3.23)

Figure 3.15 shows the evolution of the added diffusion for a discretization of degree

p = 8 and a mesh of 10 elements for both methods. Similar results are obtained for

the different discretizations. The viscosity proposed here is always smaller than the
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Figure 3.14: Burgers’ equation: comparison between a diffusion of order h/p and the
proposed technique for a 10 element mesh with p = 3, 5, 8 and 11 form left to right
and top to bottom.

theoretical value h/p. The mean value of the viscosity along all the process is also

computed. That is,

ε̄ =
nt∑
i=0

εti

for a discretization in time 0 = t0 < t1 < . . . < tnt = t. In Figure 3.16 it is compared

for both approaches and different degrees of approximation. Note that the amount of

viscosity required decreases as the degree of approximation p increases.

In Figure 3.17 solution computed applying local viscosity on a mesh of 10 elements

and degree p = 8 is shown. Dashed grid lines indicate the computational elements.

Left figure shows the moving shock at time t = 0.25, when the shock is crossing
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Figure 3.15: Burgers’ equation: evolution of the viscosity for p = 8. Artificial diffusion
of order h/p (grey) and proposed diffusion (solid black line)
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Figure 3.16: Burgers’ equation: comparison of the mean value of the introduced
viscosity along all the process for p = 3, 5, 8 and 11.

two elements. Notice that the sub-cell detection just identifies a small region within

the two elements containing the shock. In contrast, an elementwise detection would

identify the two elements sharing the shock (that is, a region of size 2h), see for

instance the approach by Persson and Peraire (2006). At time t = 0.5 the shock

is contained within a single element. Again, the sub-cell detection gives a smaller

viscosity footprint that the elementwise one. Hence, for both situations, when the

shock in contained within a single element and also when it crosses the elements, the

amplitude of the introduced viscosity is notably reduced.

The total amount of viscosity added along the computation is computed again

following (3.13). Figure 3.18. clearly shows that the sub-cell viscosity improves accu-



86 The artificial diffusion method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

Figure 3.17: Burgers’ equation: solution at time t = 0.25 (left) and t = 0.5 (right).
The amplitude footprint of the detection is filled in grey.
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Figure 3.18: Burgers’ equation: evolution of the viscosity for p = 8. Artificial diffusion
of order h/p (grey), elementwise diffusion (continuous line) and sub-cell diffusion
(dashed line)

racy: along all the simulation, the total amount of viscosity is reduced, in comparison

with the elementwise approaches. Just at the end of the computation both values are

comparable.

To sum up, the use of large high-order elements does not imply a bigger amount of

artificial viscosity. Although the sub-cell viscosity gives qualitatively similar profiles

to the shock, a smaller viscosity footprint is obtained.
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The shock tube problem

The system of Euler equations is now considered. This test shows that the method

can handle with nonlinear systems of conservations equations which develop solutions

with more complicated structures and several shocks. Consider the classical Sods

problem, described by LeVeque (2002), subject to the initial conditions

~U = (ρ, ρv, ρE)T , ~F (~U) = (ρv, ρv2 + p, (ρE + p)v)T

(ρ, v, p) =

(3, 0, 3) if 0 ≤ x ≤ 0.5,

(1, 0, 1) if 0.5 < x ≤ 1.

with γ = 1.4. This test is deeply analyze by LeVeque (2002). Solutions profiles at

time t = 0.2 of the density, velocity and pressure are reported in the following figures.

Similarly, high-order limiting techniques are compared with the artificial diffusion

approach introduced here. Figure 3.19 demonstrate again the superiority of the pro-

posed approach. The left column shows the limiter solution obtained with 300 degrees

of freedom (mesh of 100 elements with p = 2). The right column corresponds to the

proposed technique with only 132 degrees of freedom (12 elements with p = 10). The

plots are obvious. The smeared limited solution is clearly improved with sharper fronts

for the artificial diffusion technique with less than half degrees of freedom. Note that

in the proposed method sharp shock profiles are obtained which are far more thinner

that the element size. Shocks are captured essentially in one element without produc-

tion of spurious oscillations. This is particulary noticeably for the density variable,

where only one element is needed to capture a discontinuity.

3.3.2 Two-dimensional tests

Linear advection

The following example is addressed to demonstrate the well-behavior of the artificial

diffusion method for the transport of shocks and sharp gradients. Consider the linear
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Figure 3.19: Euler equations. Comparison between high-order limiters with 300 de-
grees of freedom (left) and artificial diffusion method with 132 degrees of freedom
(right).
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advection problem on a square Ω = [−1, 1] × [−1, 1] with a profile consisting on

a cone and a square pulse rotating clock-wise around the origin with velocity v =

(2πy,−2πx). The initial conditions are given by

u0(x)=


cos2(2πr) if r ≤ 0.25,

1 if x ∈ [0.1, 0.6], y ∈ [−0.25, 0.25]

0 otherwise.

where r = (x+ 0.5)2 + y2. Dirichlet boundary conditions equal to 0 are set.

Two different discretizations are considered: a mesh of 40 by 40 element and degree

p = 3 (32 000 dof) and a mesh of 18 by 18 elements with degree p = 8 (29 160 dof).

Both discretizations use uniform meshes and a reduced number of degrees of freedom,

for instance compare with the mesh used by Krivodonova (2007).

To further accentuate the dissipation introduced by the artificial diffusion method,

the solution is computed after four periods of time, namely t = 4. Figure 3.20 shows

an intermediate solution at t = 2.6. There is no visual change in the shape of the

solution between the approximations. Both shapes are transported without a trace

in the domain. Figure 3.21 depicts the results obtained after four periods. A two-

dimensional view of the solution is shown with the purpose to better compare the loss

of accuracy at the contours along the simulation. Both solutions are in good agreement

with the initial profiles, but the third order approximation presents smoother contours,

especially in the square.

A more accurate analysis is obtained in Figure 3.22, which shows a cross section

along y = 0 and compares both solutions with the exact one. The comparison reveals

again the superiority of the higher order solution p = 8, showing sharper profiles. The

maximum discrepancy is observed for the third order approximation between the cone

and the square, due to the smearing along high gradients. However, in both cases the

method prevails overshoots in the solution, thus indicating that artificial diffusion and

high-order approximations might be beneficial for long-time simulations.

Next, same linear advection problem is solved but with a more involved configura-
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Figure 3.20: Linear advection: solution at time t = 2.6.

Figure 3.21: Linear advection: solution at time t = 4.

tion. The solid body is modeled with a scalar density function that has three shapes:

a slotted cylinder, a cone and a sinusoidal hump. The problem is defined on the square

domain Ω = [0, 1]× [0, 1], with constant angular velocity v = (0.5− y, x− 0.5). The

initial conditions are given by:

u0(x, y) = H(R− ‖ r− r1 ‖2)[1− H(0.025− |x− x1|)H(0.85− y)] + 1−

−min
(‖ r− r2 ‖2

R
, 1
)

+
1

4

[
1 + cos

(
πmin

( |r− r3|2
R

, 1
))]
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Figure 3.22: Linear advection: section across y = 0

with R = 0.15, r = (x, y), r1 = (0.5, 0.75), r2 = (0.5, 0.25), r3 = (0.25, 0.5) and H(x)

is the Heaviside function defined by

H(y) =
1 + sgn(y)

2
=

0 if y < 0,

1 if y > 0.

Dirichlet boundary conditions equal to zero are again imposed. Under the consid-

ered velocity field the initial solution completes a full revolution in 2π seconds. The

numerical solution is showed here after four revolutions, that is, t = 8π.

Two discretizations are considered: first, a regular mesh of size h = 0.035 and

1 370 elements with degree p = 3 (13 700 number of dof) and, second, a coarse mesh

of size of size h = 0.075 and 493 elements with degree p = 6 (13 804 dof). Note that

again, both discretizations reduce the number of degrees of freedom up to one order

of magnitude, for instance than Kuzmin (2010) and Nadukandi (2011).

Figure 3.23 shows both approximations after four periods. The mesh is also plot-

ted with the purpose of enhancing the sub-cell resolution of the method. Note that,

although having comparable number of degrees of freedom, the higher order approxi-

mation is less diffuse at the contours. This is specially highlighted around the slotted
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cylinder.

Figure 3.23: Linear advection of 3 body rotation: solution at time t = 8π.

The errors in L2 norm within each element are displayed in Figure 3.24. As ex-

pected, the highest errors are concentrated on the areas where u reaches its maximum

value. The accuracy of the method is highlighted providing errors below 10−6.

Figure 3.24: Linear advection of 3 body rotation: L2-error within each element.

Cross and vertical sections along y = 0.75 and x = 0.5 are depicted in Figure

3.25 for both approximations. The exact solution of the problem is also plotted. The

comparison on the cross section reveals some oscillations with the lower order ap-

proximation on both sides of the slotted cylinder. However, these small oscillations
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typically arise in artificial diffusion methods and low order approximations, as pointed

out in the one dimensional example of the transport of pulses, in Section 3.3.1. How-

ever, an excessive smearing in between both pulses (i.e, in the slotted cylinder) is also

noticeable in this plot. In contrast, the high-order solution of degree p = 6 shows

sharp profiles without propagating oscillations in the vicinity of the surface of the

bodies, i.e, the high-gradients. Comparing the vertical section plot, the dissipative

effect in the contours of the body is also highlighted for the third order approximation.

Nonetheless, the contours of the cone match perfectly with the exact solution. Sixth

order approximation overlaps the exact solution along the whole section.

An interesting result is observed by comparing the exact solution with respect the

approximations between both sections. Whereas for the vertical section the profiles

for the high-order approximation and the exact one clearly overlap, in the horizontal

section slightly retardation effect between the exact and the approximated solutions,

both for p = 3 and p = 6, is noticed. This dispersion error is not evident in the first

period, but it increases as the solution advances in time. The explanation lies in the

dissipative character of the upwind numerical fluxes along the streamlines, since at

the vertical x = 0.5 the flow is only transported in the x-direction.

To sum up, on one hand this example again illustrates the good behavior of the

method for simulating the advection of sharp profiles on unsteady problems. And

on the other hand, it has been demonstrated that refined meshes are not always

mandatory to obtain accurate results.

Supersonic flow past a bump

The next test considers the supersonic flow over a circular duct at free stream Mach

number M = 1.4. This test has been introduced previously in Section 2.3.2. Same

discretizations are proposed: a mesh of 1 452 elements with degree p = 3 and a mesh

of 588 elements and degree p = 5, both structured and uniform, see Figure 2.14 of

Chapter 2.

Figures 3.26 and 3.27 show the Mach number for the third and fifth order approx-

imations, respectively. Both solutions are indistinguishable, even in the vicinity of
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Figure 3.25: Linear advection of 3 body rotation: Section y = 0.75 (left) and x = 0.5
(right).

Figure 3.26: Supersonic flow past a bump with M = 1.4: Mach number for p = 3 and
1 452 elements.

the shocks. The shocks are well-resolved without significant dissipative effects and,

as can be noticed in the zoomed section around the reflected shock, they also cross

the elements maintaining its sharp profile.

More interesting conclusions can be extracted from the plot of artificial viscosity,

depicted in Figure 3.28. First, excellent agreement between the artificial diffusion

footprints and the α-values distribution of Section 2.3.2 are obtained for both dis-

cretizations. Secondly, regarding the amount of viscosity introduced, never reaches

the theoretical value h/p for any of the discretizations (h/p is equal to 0.0214 for

the discretization of 1 452 elements and p = 3 and 0.0201 for the discretization of

588 elements and p = 5). In addition, it is important to stress that, as expected
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Figure 3.27: Supersonic flow past a bump with M = 1.4: Mach number for p = 5 and
588 elements.

Figure 3.28: Supersonic flow past a bump with M = 1.4: amount of viscosity within
each element.

and according to the one-dimensional results, high-order approximations require less

amount of viscosity than lower-order ones.

In Figure 3.29 the Mach number distribution along an horizontal section (y = 0.4)

is depicted for the approximation of degree p = 5. Moreover, the solution is compared

with the solution obtained with the continuous-discontinuous shape function method

presented in Chapter 2 for the same discretization. Both approaches give nearly

coincident profiles with sharp shock profiles free of spurious oscillations. The only

visible discrepancy is located at x = 2.5 where a slightly small perturbation in the

artificial diffusion method arises. To further analyze the behavior of this method and

compare it with the artificial diffusion one, an unsteady example is taken in the next

section.
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Figure 3.29: Supersonic flow past a bump with M = 1.4: section along y = 0.4 for
approximations of degree p = 5 and a mesh of 588 elements.

The forward-facing step problem

The following test is a classical example for testing the accuracy of numerical schemes

for computing unsteady shock waves, see Emery (1968) and Woodward and Colella

(1984), which was also introduced in Chapter 2, Section 2.3.2. It consists on a wind

tunnel with a flat faced step at the bottom wall. Recall that this is an unsteady test.

Solutions are shown at time t = 4 of the computations, where a special and com-

plicated shock configuration is showed. Again, as with the continuous-discontinuous

shape function method, no modification of the scheme, neither h-adaptation is applied

towards the singular point of the problem, located at the corner of the step.

In order to analyze the influence of the approximation degree in the artificial

viscosity method, solutions are computed with a uniform mesh of 1 728 elements and

degrees p = 4 and p = 5. The mesh is depicted in Figure 3.30. Note that the number

of degrees of freedom is significantly reduced upto one order of magnitude with respect

to other classical approaches, like FV or DG with slope limiters (Luo et al. (2007) or

Cockburn and Shu (1998b)).

Figure 3.31 shows the density profile for both approximations. The shock width

of the fifth order approximation (bottom) is slightly thinner than the fourth order
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Figure 3.30: Forward Facing step Mach 3: computational mesh.

Figure 3.31: Forward Facing step Mach 3: density contours for p = 4 (top) and p = 5
(bottom) for a mesh of 1 728 elements.

one (top), as expected. Nonetheless, it can be noticed that in both cases the shock is

captured inside the elements, showing thickness less than the element size. In order

to emphasize this effect, a zoom of the bow shock is also depicted.

The map of the artificial viscosity added within each element is depicted in Figure

3.32 for both approximations. This example again confirms the fact that increasing

the approximation degree, the amount of required viscosity decreases, since the value

of the viscosity for the fifth order approximation is smaller the fourth order one. In
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Figure 3.32: Forward Facing step Mach 3: artificial viscosity for p = 4 (top) and p = 5
(bottom) for a mesh of 1 728 elements.

both cases the amount of diffusion never reaches the theoretical value h/p, which

for the p = 4 approximation is 0.0028 and for the p = 5 approximation is 0.0022.

However, note that the degree of the approximation does not have influence in the

effect of the sensor for high enough degrees of approximations, say p ≥ 3, because

the trace of the sensor for both discretizations approximately the same. Despite in

some cases it is necessary the addition of viscosity across several elements through the

shock, the shock profile remains thinner that the detected area. In other words, the

footprint of the added viscosity is bigger than the shock width. The transition can

occur within a single element, enhancing then the sub-cell resolution of higher-order

artificial viscosity method. See for instance the strong bow shock in previous figure.

A comparison with the continuous-discontinuous method is studied next. The

solution is now computed with the method described in Chapter 2 for the same dis-

cretizations (p = 4 and p = 5 and a mesh of 1 728 elements). First, the map of α values

is depicted in Figures 3.33. Again, it coincides with the artificial diffusion map: in

general, the elements with positive artificial diffusion agree with the elements in which

α < 1. However, since artificial diffusion decreases with the degree of approximation,

there is no appreciable difference between the map of α values for the fourth order

approximation and the one for the fifth order. The amount of diffusion introduced

by the continuous-discontinuous shape function method comes from the interelement

jumps, which are not easily measurable.

Finally, to get a more accurate comparison of both methods, a section of the
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Figure 3.33: Forward Facing step Mach 3: α values for p = 4 and p = 5 for 1 728
elements, yellow for α = 1, blue for 0 < α < 1, and red for α = 0.

density distribution along y = 0.2 is plotted in Figure 3.34, with the fifth order

approximations for both methods. There are almost no significative differences, ex-

cept for the outflow boundary, where the solution is slightly more diffuse for the

continuous-discontinuous shape functions method. The discontinuous nature of the

approximation in elements where α < 1 is the reason of this behavior. Recall that the

accuracy in these elements is of the order h/p, while the artificial diffusion method

reaches values below the theoretical h/p.
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Figure 3.34: Forward Facing step Mach 3: section along y = 0.2 of the density profile.





Chapter 4

Summary and future developments

This thesis has presented two shock-capturing methods for high-order (p > 1) Dis-

continuous Galerkin methods. In the framework of high-order approximations for

high-fidelity computations mesh adaptivity is almost mandatory to obtain highly ac-

curate results. This recourse implies an important computational overhead, since DG

methods duplicate nodes. The two methods try to overcome this problem and enhance

the use of large high-order elements.

4.1 Summary and contributions

Two shock-capturing methods for high-order Discontinuous Galerkin have been pre-

sented in this thesis.

The first method exploits the stability introduced by numerical fluxes: it is based

on one parameter which automatically modifies shape functions from continuous high-

order ones to discontinuous ones, depending on the smoothness of the solutions. Dis-

continuous functions introduce jumps within the element. In these elements accuracy

is reduced to order one, but shock width is of order h/p (where h the characteristic

size of the elements and p the order of the approximation). This novel approach does

not require mesh adaption and does not increase the number of degrees of freedom.

The method is highly robust: first, the parameter does not require tuning and basis

functions within the element are chosen automatically. Second, it has been consis-
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tently proved that small changes of the parameter don’t affect the overall accuracy

of the method. Extension of the method to three dimensions is straightforward. Two

key ingredients are only required: the definition of constant shape functions basis and

a general partition of the tetrahedra. For instance, standard FV shape functions and

a Delaunay partition can be considered, respectively.

The second method is based on the classical techniques of introducing artificial

viscosity to the original equations. The introduced viscosity is automatically adjusted

for any pair h, p, with independence of the problem, neither the topology of the mesh.

The main contribution of the method is that viscosity of the order hk, with 1 ≤ k ≤ p

is obtained. For high-order approximations this value is usually smaller than h/p.

Locality of the method is highlighted: in general, artificial diffusion is only applied

to the element containing the shock. Extension to higher dimensions is carried out

by projection of the one-dimensional viscosity into characteristic directions within the

triangle. Thus, it is easily computed for any mesh and any problem, with minimum

computational overhead.

Both methods show that high-order elements require less degrees of freedom com-

pared to low-order approximations when high accuracy is necessary. In both tech-

niques, the obtained accuracy outperforms the order h of slope limiting techniques

and FV. Shocks thinner than the element size are obtained. Moreover, they can be

implemented in the framework of either implicit, or explicit integrators.

Classical one and two-dimensional examples show the efficiency and accuracy of the

methods. Although the bulk of this thesis focus on the compressible Euler equations,

long time simulations of very sharp profiles are also highlighted.

Finally, artificial diffusion method is applied to a particular physical problem:

the characterization of Homogeneus Surface Diffuson Model (HSDM) in 1D, which

is defined by a set of convection-diffusion-reaction equations. This problem has been

studied by many authors, see for instance Aizinger et al. (2000), Pérez-Foguet and

Huerta (2005) and Sperlich et al. (2008), among others. The problem is highly non-

linear and the different flow regimes, as well as the physical parameters involved, make

the analysis of the model behavior specially complicated. Appendix D is devoted to
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analyze the behavior of the model within a wide range of dimensionless numbers and

absorbers.

4.2 Future developments

This thesis has focused on the development of shock-capturing methods for high-order

Discontinuous Galerkin methods. Although the examples show that both methods

have proven to be well-suited for compressible flows and demonstrate high-accuracy

on the results, there is still much work to do in order to exploit both methodologies

and apply them to real engineering problems:

1. Adaptivity. Given a simple error estimation technique and under a high-order

approximation rationale, p-adaptivity is easily implemented in Discontinuous

Galerkin methods. p-adaption drastically reduces the number of degrees of

freedom in the discontinuous scheme by means of p-refining only where more

precision is needed. This procedure will result in accurate computations and

uniform error distributions.

2. 3D extension. The next task to be fulfilled is the 3D implementation of the

methods. This will allow to simulate compressible flow in more complex physical

situations, as would be for instance the design of airfoil wings. Actually, a 3D

code for hyperbolic conservation laws (Euler equations) has been developed

within the LaCàN (Laboratori de Càlcul Numèic) research group. The actual

code solves the set of Euler equations in a subsonic flow.

3. Development of implicit time integration schemes. Incorporating im-

plicit time integration schemes is a necessary step for 3D simulations. On one

hand, an implicit scheme is preferred in order to solve multiple spatial scales,

typical in compressible flow, without having to decrease dramatically the time

step. On the other hand, implicit time integration schemes allow the possibility

to achieve higher-order unconditionally stable methods.
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4. Parallelization of the code. 3D simulations naturally turn into more involved

computations, but also into an important increase of memory requirements and

computational time. Actually this is still one of the most important computa-

tional overheads of numerical methods for simulating real problems. Paralleliza-

tion will exploit the computational power of DG formulations, also permitting

the use of meshes with an important number of degrees of freedom (either by in-

creasing the number of elements or by increasing the degree of approximation).

Parallelization can be dealt easily with OpenMP directions.

5. Improvement of the sub-cell artificial viscosity. An adaptive shock-

capturing methodology for high-order Discontinuous Galerkin methods based

on adding articial viscosity is presented in Chapter 3. The proposed method

is able to capture sharp gradients and to preserve high-order accuracy. In the

vicinity of shocks the approximation is not systematically reduced to first order,

in fact, it is kept as high as possible. This is crucial because no adaption is

required. An extension of the method allows to locate the shock within the

element with a precision of order h/p, less than the element size. Piecewise

constant viscosity within the element is then possible. Very preliminary results

show that this approach might be beneficial. However further research is needed,

considering also a smooth artificial viscosity, localized within the detected shock

area.

6. Introduction of the directionality in the artificial viscosity method.

The artificial viscosity in two dimensions is obtained by a linear combination

of the viscosities. Each viscosity is obtained by projecting the two-dimensional

elemental approximation along a direction within the triangle. A scalar value

for the viscosity is considered in this thesis. However, a more sophisticated

option consists on obtaining a tensorial viscosity, and hence, take into account

the directionality of the shock. This option must be carefully studied. First

ideas are given in the following discussion.

The natural way to introduce artificial diffusion in two-dimensions is to consider
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a diffusivity tensor ε, consisting on a symmetric positive definite matrix which

may vary in space, i.e.

ε =

(
ε11 ε12

ε21 ε22

)

with ε12 = ε21. Hence, symmetry requirement simplifies the problem to define

only three values: ε11, ε12 and ε22. Notice that in this way the complexity of

the problem is reduced, since the number of unknowns equals the number of

data (recall that for each element three viscosities, εα, εβ and εγ, have been

computed by the one-dimensional approach). Note that if the diffusivity tensor

has the simplified form ε = εI where ε is constant, then the artificial viscosity

is just a single scalar value within each element. This approximation is the one

used in this thesis, but due to the rude approach, it can be over-diffusive.

In order to introduce the directional behavior of the shock in the diffusivity

tensor and assign the correct amount of artificial viscosity along each direction,

the viscosity tensor is projected along each triangular direction, see Section 3.2.1.

Viscosity along direction ~dα must be equal to the one-dimensional viscosity

computed for projection uα, namely εα. The following restrictions are obtained:

ε ~dα = εα ~dα

ε ~dβ = εβ ~dβ

ε ~dγ = εγ ~dγ

(4.1)

Define an error function associated to these restrictions:

err =‖ ε ~di − εi ~di ‖2=
∑

i={α,β,γ}

(ε ~di − εi ~di)
2 (4.2)

Numerically, solving the system of equations (4.1) is equivalent to minimize the

error functions, adding the restriction of positivity of the diffusive matrix. Thus,
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defining f(ε11, ε22, ε12) =
∑

i={α,β,γ}

(ε ~di − εi ~di)
2, formally, the problem is stated

as follows:

min
ε11,ε22,ε12

f(ε11, ε22, ε12)

ε11ε22 − ε2
12 ≥ 0

(4.3)

which is nothing than a minimization problem with nonlinear restrictions.

7. Application to other sets of equations. The tests cases contained in

this thesis were limited to the compressible set of Euler equations and scalar

convection-dominated problems for long time simulations. However, complex

hypersonic flow cases, compressible Navier-Stokes equations, considering also

the introduction of turbulent flows, need to be explored.



Appendix A

Slope limiting techniques

One of the older and more successful classes of shock capturing methods is the Total

Variation Diminishing (TVD) approach. The concept of TVD was introduced by

Harten (1983) by means of non-linear operators, called either flux limiters or slope

limiters. Godunov (1954) also established that any linear TVD scheme can be first-

order accurate. However, this statement does not exclude the possibility of having

nonlinear TVD shcemes that are second order accurate. Actually, these schemes

were first introduced by van Leer (1974, 1977a,b, 1979) for the Finite Difference

and Finite Folume method with the aim of improving stability properties. Basically,

Total Variation Diminishing and Total Variation Bounded (TVB) methods prevent

the creation of local extrema in the solution and hence, the creation of non-physical

oscillations. To accomplish it the introduction of flux limiters or slope limiters is

required. The term flux limiter is used when the limiter acts on system fluxes, and

slope limiter is used when the limiter acts on system states. However they both have

the same mathematical form, and both have the effect of limiting the solution gradient

near shocks or discontinuities. The main drawback of these schemes is that they are,

at most, second-order accurate.

For DG, Cockburn and Shu (1989); Cockburn et al. (1989, 1990); Cockburn and

Shu (1998b) developed TVD and TVB schemes for Discontinuous Galerkin methods.

The method is based on a Runge-Kutta type discretization in time in combination

with slope limiters that maintain the formal accuracy of the scheme. This method is

commonly referred to as RKDG and it has become popular in the DG community,
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see for instance Biswas et al. (1994), Burbeau et al. (2001) or Hoteit et al. (2002).

This appendix details the classical generalized slope limiter by Cockburn and Shu

(2001) for the one-dimensional and multidimensional case. The extension by Biswas

et al. (1994) introduced in Chapter 3 relies on the limiter here detailed.

A.1 The one-dimensional limiting operator

The TVD Runge-Kutta Disconinuous Galerkin method (Cockburn and Shu (1989))

ensures stable solutions for a general nonlinear hyperbolic conservation law. One of

the key ingredients of the method is the construction of a nonlinear operator, namely

the slope limiter ΛΠh, whose aim is to enforce nonlinear stability by preventing the

approximate solution at any point within the element from having local extrema.

For simplicity, the approximate solution is expanded in terms of orthogonal Leg-

endre polynomial, within each element Ie (for all e = 1, . . . , nel) the approximation of

u may be written as

ue(x, t) =

p∑
i=0

cei (t) Pi(x) (A.1)

where the Pi are the Legendre polynomials, normalized such that Pi(1) = 1, and the

degrees of freedom cei are the so called modal coefficients.

The limiter is initially designed for linear approximations, i.e, p = 1. The idea is

to decrease the gradient of the approximate solution such that at any point within the

element the value of the solution is kept within the range spanned by the neighboring

solution averages. Mean value within the element is conserved. Figure A.1 illustrates

the limiting.

The coefficient ce1 of (A.1) is replaced by

c̃e1 = minmod
(
ce1, c

e+1
0 − ce0, ce0 − ce−1

i−1

)
,
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Figure A.1: Illustration of one-dimensional slope limiter.

with the usual definition:

minmod
(
a1, a2, a3

)
=


s min

1≤n≤3
|an| if s = sign(a1) = sign(a2) = sign(a3),

0 otherwise.

Since conservation of mass is imposed within each element, coefficient ce0 is kept

constant, that is, ce0 = c̃e0.

It is possible to obtain a Total Variation Bounded scheme by modifying the

minmod function to obtain second-order accurate solution at local extrema. The

modification consists on introducing a a constant M which is an upper bound of the

absolute value of the second-order derivative of the solution at local extrema. Then,

the minmod function is modified in the following way,

m̃
(
a1, a2, a3

)
=

a1 if |a1| ≤M(∆x)2,

minmod
(
a1, a2, a3

)
otherwise.

For high-order approximations, say p ≥ 2, Cockburn and Shu (1989) suggest to set

cei = 0 for i = 2, . . . , nen(p). In other words, in elements where limiting is necessary,

the solution is locally truncated and the order of the approximation is reduced to

a linear one. While preventing spurious oscillations, this procedure tends to flatten

excessively the solution. Higher-order limiters have been proposed to overcome this

drawbacks, see for instance the interesting approaches by Biswas et al. (1994) or
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Krivodonova (2007).

A.2 The multi-dimensional slope limiter

The adaptation of the method to multi-dimensional meshes is a bit more involved.

The main problem is referred to stability, which is not yet demonstrated for higher

dimensions. Unstructured meshes also raise numerous problems. In fact, for general

triangular meshes slope-limiting operators are only constructed on piecewise linear

functions. Along this section, in order to simplify the exposition and understating of

the technique, the notation proposed by Cockburn and Shu (1998a) is used.

Guided by the theoretical studies of the one-dimensional slope limiter, the multi-

dimensional extension of the operator ΛΠh proposed by Cockburn and Shu (1998a)

rely on the assumption that spurious oscillations are present in a polynomial approx-

imation only if they are present in its linear part, which is obtained by projecting

the approximation into the space of piecewise linear functions. Thus, to compute

the multidimensional slope limiter, it is first necessary to compute the projection of

any polynomial approximation of degree p over the space of linear polynomials. If

no limiting is necessary, then ΛΠh(U
e) = Ue remains a pth degree approximation.

Otherwise, the higher order part of the expansion of the numerical approximation is

chopped off and hence, the high-order approximation is reduced to a linear one and

the limiting operator is applied.

Remark A.1. The assumption that oscillations are only present in the linear part

of the approximation is only based on numerical results. A theoretical justification is

still an open problem.

Let Th be a triangulation of the computational domain Ω such that

Ω̄ =

nel⋃
e=1

Ω̄e such that Ωe

⋂
Ωl = ∅ for e 6= l
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and Ue the approximate solution in element Ωe. Then, the nonlinear slope limiter

ΛΠh satisfies the following properties:

1. Accuracy: If Ue is linear then ΛΠh(U
e) = Ue.

2. Conservation of mass: for every element Ωe of the triangulation Th, it is satisfied

∫
Ωe

ΛΠh(U
e) dΩ =

∫
Ωe

Ue dΩ.

3. Slope limiting: on each element Ωe of Th, the gradient of ΛΠh(U
e) is not bigger

than that of Ue.

Despite the choice of basis and degrees of freedom does not affect the algorithm, a

suitable choice may simplify the implementation and calculation. An approximation

of degree p, Ue ∈
[
Pp(Ωe)

]nsd

, is expressed in terms of the hierarchical and orthogonal

Koornwinder basis function, see Koornwinder (1992), as

Ue(x, t) =

nen(p)∑
i=1

U e
i (t)ϕi(x) (A.2)

where nen(p) is the number of element nodes (i.e, the number of degrees of freedom)

for an approximation of degree equal to p. For this set of basis functions, the mean

value of Ue on the element Ωe is reduced to the degree of of freedom associated with

the first function of the basis, that is

U e
1 = Ūe =

1

meas(Ωe)

∫
Ωe

Ue dΩ

To construct the multidimensional slope limiter the following geometrical property

is advocated:

Consider a triangle Ωe with neighbors Ωe,j and barycenter denoted by b0, see Figure

A.2. The midpoint of edge Γj = Ω̄e

⋂
Ω̄e,j is denoted by mj and the barycenter of
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Figure A.2: Notations and illustration of multi-dimensional slope limiter.

triangle Ωe,j is denoted by bj for j = 1, 2, 3. There exist nonnegative coefficients αj

and βj for j = 1, 2, 3 such that

m1 − b0 = α1(b1 − b0) + β1(b2 − b0)

m2 − b0 = α2(b2 − b0) + β2(b3 − b0)

m3 − b0 = α3(b3 − b0) + β3(b1 − b0)

Since in an arbitrary element Ωe,l the mean value of an approximation Ue can be

computed by evaluating it at the barycenter of the triangle, that is, Ūe,l = Ue,l(bl),

for any linear approximation Ue it is satisfied:

Ue(m1)− Ūe = α1(Ūe,1 − Ūe) + β1(Ūe,2 − Ūe)

Ue(m2)− Ūe = α2(Ūe,2 − Ūe) + β2(Ūe,3 − Ūe)

Ue(m2)− Ūe = α3(Ūe,3 − Ūe) + β3(Ūe,1 − Ūe)
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The purpose of limiting is to obtain a solution Ue such that

min(Ūe, Ūe,1, Ūe,2, Ūe,3) ≤ Ue(x) ≤ max(Ūe, Ūe,1, Ūe,2, Ūe,3)

Keeping this concept in mind, the following quantities are defined:

∆1 = minmod
(
Ue(m1)− Ūe, ν(α1(Ūe,1 − Ūe) + β1(Ūe,2 − Ūe))

)
∆2 = minmod

(
Ue(m2)− Ūe, ν(α2(Ūe,2 − Ūe) + β2(Ūe,3 − Ūe))

)
∆3 = minmod

(
Ue(m3)− Ūe, ν(α3(Ūe,3 − Ūe) + β3(Ūe,1 − Ūe))

)
where ν > 1 (Cockburn and Shu (1998b) set ν = 1.5 in their numerical experiments).

For simplicities on the procedure, a modification of (A.2) is introduced,

Ũe(x, t) =
3∑
i=1

Ũ
e

i (t)ϕi(x)− Ūe

Then, the limited solution is defined as

ΛΠh(U
e)(x, t) = (U e

1(t) + Ũ
e

1(t))ϕ1(x) + Ũ
e

2(t)ϕ2(x) + Ũ
e

3(t)ϕ3(x)

with

Ũ 1 =
1

3
(∆1 + ∆2 + ∆3)

Ũ 2 = −1

3
(2∆1 −∆2 −∆3)

Ũ 3 =
1

2
(∆2 −∆3)

In order to preserve conservation of mass within each element, ∆i quantities must
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satisfy
3∑
i=1

∆i = 0. Otherwise, the following modification on ∆i must be performed:

∆̂i = θ+ max(0,∆i)− θ−max(0,−∆i) for i = 1, 2, 3

with

θ+ = min
(

1,
3∑
i=1

max(0,−∆i)
/ 3∑

i=1

max(0,∆i)
)

θ− = min
(

1,
3∑
i=1

max(0,∆i)
/ 3∑

i=1

max(0,−∆i)
)



Appendix B

The Local Discontinuous Galerkin
method

For the sake of simplicity, the LDG method is described for a general scalar hyperbolic

conservation law. Consider the following boundary value problem

∂u

∂t
+ ∇ · F(u)−∇ · (ν∇u) = 0 in Ω, t > 0

u = uD on ∂ΩD

(ν∇u) · n = h on ∂ΩN

(B.1)

where Ω is a bounded domain in Rnsd with boundary ∂Ω = ∂ΩD ∪ ∂ΩN and ν is the

viscosity. Here, for simplicity on the notation, the viscosity ν is considered constant

in space and time.

Introducing the variable σ = ∇u the previous problem may be rewritten as a

system of first-order equations:

∂u

∂t
+ ∇ · F(u)−∇ · σ = 0 in Ω, t > 0

σ − ν∇u = 0 in Ω, t > 0

u = uD on ∂ΩD

σ · n = h on ∂ΩN

115
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where n is the outward unit normal to the boundary of Ω.

Recall the function space Vh defined in Section 1.4.2 and introduce a new space

Σh, namely

Vh = {v ∈ L2(Ω)| v|Ωe ∈ Pp(Ωe), ∀Ωe}

Σh = {τ ∈ [L2(Ω)]nsd| τ |Ωe ∈ [Pp(Ωe)]
nsd , ∀Ωe}

Consider the general triangulation (1.5) of the domain Ω. The LDG formulation

in an arbitrary element Ωe reads: find uh ∈ Vh and σh ∈ Σh such that for all v ∈ Vh

and τ ∈ Σh

∫
Ωe

v
∂uh
∂t

dΩ−
∫

Ωe

∇v · F(uh) dΩ +

∫
∂Ωe

vF̂ne dΓ+∫
Ωe

∇v · σh dΩ−
∫
∂Ωe

v (σ̂h · n) dΓ = 0 (B.4a)∫
Ωe

τ · σh dΩ +

∫
Ωe

(∇ · τ )uh dΩ−
∫
∂Ωe

τ · (ûn) dΓ = 0 (B.4b)

for every element e = 1, . . . , nel and t > 0.

The LDG formulation introduces two additional numerical fluxes σ̂h and û to the

DG discretization. They can be seen as approximations of numerical traces of σh

and g(uh) on the boundary of element Ωe. To complete LDG formulation it remains

to specify these numerical fluxes and the boundary conditions. Some definitions and

notation are first introduced: consider two adjacent elements, Ωe and Ωl such that

Γ = Ωe ∩ Ωl. The jump J·K and mean {·} operators are defined along the interface

Γ using values from the elements to the left and to the right of the interface and are

also extended along the exterior boundary, namely

JunK =

uene + ulnl on Γ

un on ∂Ω
{u} =

keue + klul on Γ

u on ∂Ω
for scalars
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Jσ·nK =

σe · ne + σl · nl on Γ

σ · n on ∂Ω
{σ} =

keσe + klσl on Γ

σ on ∂Ω
for vectors

Usually ke = kl = 1/2 but, in general, these two scalars are only required to

verify ke + kl = 1, see Hansbo and Hansbo (2004). Other definitions of the jump

operator have been proposed in the literature. For instance, Arnold et al. (2001)

define JuK = uene + ulnl for scalars, and JσK = σe · ne + σl · nl for vectors. Notice

that this definition requires different spaces for the input and the output: the jump

of a scalar is a vector, and the jump of a vector is a scalar. Other definitions, like

the one proposed by Cockburn and Shu (1998b), require the selection of a privilege

normal and define JuK = ue − ul for scalars and JσK = σe − σl for vectors, assuming

n = ne. In this thesis, the proposed definition is not dependent on the selection of a

normal sign, and it is coherent with the input and output spaces, avoiding ambiguous

notations. For extension to tensor products see Montlaur et al. (2008).

With these definitions, the numerical fluxes σ̂h and ûh are defined as:

σ̂h = {σh}+ C12Jσh · nK− C11JuhnK

ûh = {uh} −C12 · JuhnK

for the interior faces, and

σ̂h =

σh − C11(uh − uD)n on ∂ΩD,

hn, on ∂ΩN

û =

uD on ∂ΩD,

uh on ∂ΩN

for the boundary faces.

Note that definition of the LDG method involves two parameters, C11 and C12.

The former, C11, is a non-negative constant and it acts as a penalty parameter .

The latter, C12 is a vector of Rnsd which is determined for each interior face. An
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appropriate selection of C12 provides a near local stencil, see Sherwin et al. (2006).

In this thesis, C12 is chosen following this local approach and C11 = 0 in order to

avoid extra stabilization.



Appendix C

Shock-capturing with B-Splines

This chapter is devoted to investigate the use of B-splines basis functions for shock-

capturing problems. Excellent references are available with presentations of B-splines,

see for instance Piegl et al. (1995) and Sevilla et al. (2008).

C.1 Motivation for the use of B-splines

For many years there has been an important research pursuing the relation between

monotonicity and high-order methods, see LeVeque (1992) for a review of these meth-

ods. However, it is well known by the Godunov’s order barrier theorem, Godunov

(1954) that monotone methods are only first-order accurate. Here the idea of Hughes

et al. (2005) is recovered. In their work, they investigate the ability of the isogeo-

metric approach, in conjunction with some stabilizing technique, to solve problems

involving high gradients and shocks. The artificial diffusion technique proposed in of

Chapter 3 is used as stabilization approach, but employing the basis function defined

by B-splines instead of the standard Lagrange.

B-spline polynomials have some distinctive properties that could be relevant in

the application of shock-capturing problems. In particular, they possess the varia-

tion diminishing property, which ensures that the approximation with B-splines of a

monotone function is still monotone. One of the goals of this chapter is to exploit

this property. Moreover, the knot insertion procedure, also typical of B-splines, pro-

119
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vides a tool to enrich the solution space by increasing the number of functions of the

basis, but without changing the order of the approximation. The flexibility between

elements of DG methods permits just to enrich with extra knots the elements where

more resolution is needed.

In the next sections basic concepts on B-splines and a preliminary approach to the

approximation of shocks are first introduced. Then the modification of the artificial

diffusion method withB-splines basis functions is explained in detail. Finally, some

standard numerical tests in one-dimension are discussed and also compared with the

use of standard Lagrangian basis functions.

C.2 Basic concepts on B-splines

Following Sevilla (2009), a pth-degree B-spline curve (or approximation) is a piecewise

rational function defined in parametric form as

u(λ) =

ncp+1∑
i=1

Ci,p(λ)Pi 0 ≤ λ ≤ 1 (C.1)

where {Pi} are the coordinates of the ncp + 1 degrees of freedom or control points

and {Ci,p(λ)} are the normalized B-spline basis functions of degree p. The definition

of these basis functions is recursive in k. For degree equal to 0, functions Ci,0 are

piecewise constant functions,

Ci,0(λ) =

1 ifλ ∈ [λi, λi+1[

0 elsewhere,

and for k = 1 . . . p,

Ci,k(λ) =
λ− λi
λi+k − λi

Ci,k−1(λ) +
λi+k+1 − λ
λi+k+1 − λi+1

Ci+1,k−1(λ)
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where λi, for i = 0 . . . nk, are the knots or breakpoints, which are assumed ordered

0 ≤ λi ≤ λi+1 ≤ 1. They form the so called knot vector

Λ = {0, . . . , 0︸ ︷︷ ︸
p+1

, λp+1, . . . , λnk−p−1, 1, . . . 1︸ ︷︷ ︸
p+1

},

which uniquely describes the B-spline basis functions. A number of coinciding knots

is referred to as multiplicity of the knot. The multiplicity is directly related to the

number of continuous derivatives of the basis functions: in general,basis functions of

order p have p− 1 continuous derivatives. If a knot is has multiplicity of order m (i.e,

it is repeated m times in the knot vector), then the number of continuous derivatives

decreases by m. Control points ncp + 1, and knots, nk + 1, are related to the degree

of the parametrization, p, by the relation nk = ncp + p+ 1. See Piegl et al. (1995) for

more details.

C.2.1 Basic properties of B-splines

Important properties of B-splines basis functions are:

1. Ci,p(λ) = 0 outside the interval [λi, λi+p+1) (local support property).

2. They constitute a partition of unity. That is: ∀λ,
∑ncp

i=1Ci,p(λ) = 1

3. Ci,p(λ) ≥ 0, ∀i, p and λ (nonnegativity).

among many others.

The next properties of an approximation with B-splines are derived from the def-

inition of the basis and from the previous properties:

1. The approximation (C.2) has derivatives of order p−1 in the absence of repeated

knots or control points. At a knot, Ci,p, is p−m times continuously differentiable,

where m is the multiplicity of the knot (here, multiplicity is the number of times

that the knot appears in the knot vector), decreasing also the global continuity

of the approximation.
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2. If the function to be approximated is monotone the approximation with B-

splines will be monotone as wll (variation diminishing). Moreover, it satisfies

∣∣∣ np+1∑
i=1

Ci,p(λ)Pi

∣∣∣ ≤ max
i
|Pi|

3. Affine transformations of the approximation are obtaining only by applying the

transformation to the control points (affine covariance).

4. u(λ1) = P1 and u(λnk+1) = Pncp+1 (end-point interpolation)

5. Between knots, the approximation is C∞, whereas at knots, continuity decreases

upto Cp−m, where m is the multiplicity of the knots.

These properties motivate the use of B-splines for shock-capturing problems with

DG methods.

C.3 B-splines for solving shock-capturing problems

In Chapter 3 a shock-capturing method based on the introduction of artificial viscosity

is presented. Despite the method gives excellent results, it is well-known that high-

order methods are non monotone. Therefore, small oscillations due to the Gibbs

effect inside one element could still arise when discontinuities or high-gradients are

simulated.

The motivation for using B-splines as a tool for shock-capturing problems relies in

their variation diminishing property. The goal here is to check if the use of B-splines

in conjunction with artificial diffusion method provides accurate solutions free of spu-

rious oscillations, also ensuring monotone solutions. This work is motivated by the

investigations by Hughes et al. (2005), that propose the use of B-splines in combina-

tion with the SUPG method for solving convection-diffusion problems. Further steps

are here taken, in the sense that the use of B-splines is applied to purely convection
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problems and non-linear ones, which involve more involved features, as discontinuities

and shocks.

C.3.1 The variation-diminishing property of the knot inser-

tion

The insertion of knots for a B-spline approximation is a tool to increase the number

of degrees of freedom of an approximation without changing the polynomial degree of

the basis function.

Given a knot vector Λ = {λ1, . . . , λnk+1
} the insertion of the knot λ̂ ∈ [λk, λk+1]

does not modify the approximation. Moreover the base of B-splines corresponding to

the knot vector Λ̂ = {λ1, . . . , λ̂, . . . , λnk+1
} can be easily obtained from the previous

without computing again the full set of basis functions (see Piegl et al. (1995) for the

details). This property also gives computational advantage to the knot insertion and

knot removal processes.

Remark C.1. The insertion of knots can be compared with the h-refinement of a

mesh in finite elements when the inserted knot has multiplicity p.

The knot insertion procedure also preserves the variation diminishing property

of B-splines. That is: if u(λ) =

ncp+1∑
i=1

Ci,p(λ)Pi and u(λ) =

ncp+2∑
i=1

Ci,p(λ)P̂i are the

respective approximations obtained with the knot vectors Λ and Λ̂, then

S[P̂] ≤ S[P] (C.2)

. where the function S[v] is defined as the number of sign changes in the sequence

defined by the vector v. P̂ and P are the vectors corresponding to the control points

of each approximation. This property can be seen as a powerful tool to obtain high

accurate approximations in the areas where the solution is not well-resolved, as it is

shown next.
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C.3.2 First assessments of approximation with B-splines

To get an intuitive idea of the behavior of B-splines in functions containing discon-

tinuities of high-gradients, a first preliminary test consists on approximating step

functions or functions containing high-gradients using a B-spline basis. For this pur-

pose consider the hyperbolic tangent function, f(x) = tanh(10(2x− 1)) for x ∈ [0, 1].

This function contains a high-gradient located at x = 0.5, which facilitates the cur-

rent study, since the location of the shock is known a priori. Figure C.1 showsvthe

approximation using a B-spline basis of fifth order with the Lagrange basis, using

least-square approach. Gibbs oscillations, typical of high-order methods arise in the

approximation. The solution computed with Lagrange basis gives identical results.

The sequence of next figures shows the same approximation but inserting two

interior knots at x = 0.4 and x = 0.6, enclosing the gradient. A consecutive increasing

of the multiplicity of the interior knots is considered, from multiplicity equal to 1 to

multiplicity equal to 3. Since the increasing in the multiplicity produces also an

increasing of the degrees of freedom, to make a fair comparison, the degree of the

lagrange basis functions is increased such that the number of dof is equal for both

approximations. For instance, a fifth order B-spline basis function with two interior

knots of multiplicity equal to one, is compared with a seventh order Lagrange basis

function. Note that, even having the same number of degrees of freedom, the increase

in of multiplicity in the insertion of knots prevails the approximation of showing

spurious Gibbs type oscillations.

C.3.3 The subcell detection procedure in the knot insertion

process

From the computational point of view, increasing the number of degrees of freedom

may also lead to an increase of the computational cost of the process, also making the

method more involved. However, a better resolution of the solution is only needed in

some specific regions, where shock and strong gradients are present. The flexibility

of the DG method to compute the solution element-by-element is crucial, since it
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Figure C.1: Fifth order B-spline approximation with knot insertion: B-spline basis
of fifth order (left) and least square approximations with B-splines of the hyperbolic
tangent (right).

allows the use of different basis functions within each element. As a consequence,

the accurate detection of the location of the shock plays an important role in this

procedure.

For this purpose he subsensor strategy described in Section 3.1.3 is used. The

subsensor is able to locate the shock with, at least, h/p accuracy within the element.

In the worst of cases the accuracy equals the accuracy of the default elementwise

sensor (see Section 3.1.2 or Persson and Peraire (2006)) that is, it detects the shock

in the whole element of size h.

The strategy here proposed consists on the insertion of knots only in the region

detected by the subsensor and only at the instants of the simulation in which the

element is marked by the sensor to contain the shock. Thus, the process of inserting

and removing knots a dynamic procedure. The local insertion of knots will not sig-

nificantly influence the total cost of the procedure while, in principle, it is expected

to provide a better resolution of the shock.

C.3.4 Proposed methodology

Then proposed strategy is briefly described as follows:

• The initial approximation is computed with a p-th degree B-spline basis func-
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Figure C.2: Fifth order B-spline approximation with knot insertion of different mul-
tiplicity: B-spline basis (left) and comparison with a Lagrange basis functions for the
same number of dof (right).
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tions and p+1 degrees of freedom. This corresponds to select the following knot

vector Λ = {0 . . . 0︸ ︷︷ ︸
p+1

1 . . . 1︸ ︷︷ ︸
p+1

}.

• Apply the artificial diffusion scheme proposed in Chapter3.

• Activate the subsensor algorithm in those elements detected by the shock-sensor.

• Insert two knots, one at each extreme of the detected subregion of the element.

Notice also that this procedure is dynamic in the sense that knots are inserted

and removed depending on the subsensor detection. As a consequence the number

of degrees of freedom may vary for every element and every time step. However, the

degree of the approximation is kept constant along all the simulation.

C.4 Examples

The application of the proposed methodology is illustrated using two numerical exam-

ples: a long-time advection of sharp profiles and the inviscid Burgers’ equation. The

obtained solutions with B-splines are also compared with the approximation using

standard Lagrange basis functions and constant number of degrees of freedom.

C.4.1 Linear advection. Transport of a combination of Gaus-

sians and pulses.

The first example is the linear transport of a combination of Gaussians and pulses,

standard in long-time simulations, Krivodonova (2007). For the setup of this problem

see Section 3.3.1.

A mesh of 100 elements and degree of interpolation p = 3 (400 number of degrees of

freedom) has been used. At each time step the sub-cell detection is used and two extra

knots are inserted in the detected region. Figures C.3 show the comparison using B-

splines and the knot insertion approach and standard artificial diffusion method with
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Lagrange basis and constant number of dof. A detail of the square pulse is also shown.

Overshoots near discontinuities in the pulse are observed for the artificial diffusion

method. Recall that, with the artificial diffusion method, “low” order approximations

may suffer from some oscillations. In contrast, the approximation with B-splines

removes the overshoots in the corners of the square pulse, but it also provides a

smeared profile of the solution, not only around the high-gradients of the pulse, but

also reducing the height of the gaussians. However, as expected by theoretical results,

the approximation with B-splines look monotone.
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Figure C.3: Combination of Gaussians and pulses: approximations with p = 3 and
100 elements.

As the natural tendency of DG methods is the use of high-order elements, a mesh

of 40 elements and degree of approximation p = 6 is now considered. Results for both

methods are shown in Figure C.4. Now the situation is different: the solution with

B-splines shows a more diffusive character, specially highlighted at the peaks of the

cones and contours of the gradients. A detail look to the square pulse reveals that the

solution with Lagrange basis functions provides a sharper profile, free of oscillations.

Thus, for long-time simulations and high-order approximations B-splines don’t seem

to provide a major improvement.
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Figure C.4: Combination of Gaussians and pulses: approximations with p = 6 and 40
elements.

C.4.2 Burgers equation

The second example is the classical inviscid Burgers’ equation with smooth initial

condition, introduced in Section 2.3.1. The problem is solved using a mesh of 10

elements and interpolation degree p = 3. Solutions are displayed at time t = 0.50,

when the shock is fully formed.

Figure C.5 depicts the solutions computed with the knot insertion and Bsplines

and the solution computed with standard Lagrange basis functions, both with artificial

diffusion. Right figure depicts the control points for the B-spline approximation and

the region detected by the sub-sensor, which is filled in grey. Recall that the process is

dynamic, in the sense that knots are inserted and removed from one step to another.

Hence, the number of control points is not constant. Computational elements are also

represented with dashed lines. Both approximations are almost undistinguishable,

capturing the shock without spurious oscillations. The solution with B-splines seems

to be monotone, but right Figure reveals that this is no longer the case. Control points,

marked with black dots, demonstrate that the sign condition (C.3.1) is not verified

along the shock. Thus, since both approximations are almost equal and any of them

guarantee monotonicity of the solution, first conclusion is that computations with

B-splines do not seem to provide benefices in front of classical Lagrange polynomials.

Moreover, they have an extra computational overhead because of the procedure of
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Figure C.5: Burgers’ equation: third order approximations with 10 elements (left)
and control points (right).

inserting and removing knots.

C.5 Conclusions

The use of B-splines for shock-capturing problems does not seem to provide significant

improvements. On one hand, the use of B-splines does not hinder the necessity of

stabilization techniques, that is, B-splines by themselves are not a robust tool for

capturing discontinuities, and they have to be combined with some other potential

shock-capturing technique. On the other hand, numerical tests prove that, although

possessing the variation diminishing property, the solutions might not be monotone

anymore, since monotonicity is only kept with respect to control points, and only if

the initial data is also monotone. Therefore, the variation diminishing property of

B-splines is not exploited.

As the natural tendency of DG is the use of high-order elements, and for this cases

the solution with B-pslines does not provide a significant improvement, it is conclude

that, despite the use of B-splines is a powerful tool to be exploited, for the case of

shock-capturing problems it does not provide a major advantage.



Appendix D

A physical application to
convection-diffusion-reaction
equations: dimensionless analysis
of HSDM and application to
simulations of Breakthrough curves
of GFH

Homogeneous Surface Diffusion Model (HSDM) is widely used for adsorption modeling

of aqueous dissolutions. This appendix is devoted to the dimensionless analysis of

HSDM and the characterization of the model behavior. The artificial diffusion DG

method presented in Chapter 3 is proposed as a numerical technique for dealing with

the different flow regimes of the solution.

D.1 Introduction

Homogeneus Surface Diffusion Model is a dual resistance model which includes in-

fluence on adsorption of film mass transfer (of the adsorbate diluted in intersticial

fluid into the adsorbent particles) and of intraparticle diffusion (of the solid phase

adsorbate inside the adsorbent particles), see the schematic Figure D.1. Weber and

Smith (1986, 1987), Crittenden et al. (1987) and Brusseau and Gillham (1989), among
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Figure D.1: Interparticle porosity (left) and intraparticle porosity (right).

others, present a general description of HSDM and different practical applications, es-

pecially related with wastewater treatment.

HSDM behavior has been characterized in terms of the Biot number, Bi, by several

authors, see for instance Lee et al. (1983), Hand et al. (1983, 1984) or Traegner and

Suidan (1989b). The Biot number is the ratio between the film mass transfer rate

and the intraparticle surface diffusion and it is usually used to characterize model

behavior. Three regions with different relative importance of both processes have been

reported. When Bi � 1, film mass transfer dominates, while for Bi � 102 surface

diffusion does. In between, both have significant influence on the results. These

limits can be found referenced in several works dealing with homogeneous problems,

see Hand et al. (1983) and Traegner and Suidan (1989a,b), referenced subsequently

by Roy et al. (1993), Flora et al. (1998), Baup et al. (2000), Chang et al. (2004) and

Badruzzaman et al. (2004). More recently, Sonetaka et al. (2009b,a) propose similar

limits to characterize generic adsorbents using shallow bed reactors. HSDM is also

widely used in heterogeneous problems, see Oimstead and Weber (1990),Smith (1996)

and Rahman et al. (2003). However, in these problems characterization of HSDM with

the Biot number is less frequent. One example are plug-flow tests, see for instance

Lee et al. (1983), Hand et al. (1984), Brattebo and Odegaard (1986), Sperlich et al.

(2005, 2008) and Genz et al. (2008).
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Although HSDM has been widely used, model behavior has not been completely

characterized yet. Relationships between the limit behaviors of the model and the

values of key dimensionless numbers need further analysis. When designing fixed-

bed adsorbers, model selection based only on Biot number is not enough. The need

of complementing Bi limits has been explicitly highlighted by Sperlich et al. (2008),

when simulating breakthrough curves, BTC (the concentration outlet of a plug-flow

fix-bed test), with Granular Ferric Hydroxide (GFH). The Stanton number, St, which

is the ratio between film mass transfer rate and flow velocity, has been proposed to

complement Bi for characterization of HSDM results, also by Sperlich et al. (2008).

Here, a dimensionless analysis of HSDM has confirmed that both Bi and St have

influence in BTC, as indicated by Sperlich et al. (2008). Additional interesting results

have been found: BTC depend on St for small values of Bi, but on Ed = St/Bi (Ed is

the surface diffusivity modulus) for large values of Bi. In both cases, i.e. for small or

large values of Bi, BTC are independent of Bi values; BTC depend only on St or Ed,

respectively. In between, both Bi and St (or Ed) have influence on BTC.

These results have been obtained with a new and efficient HSDM solver: the in-

traparticle diffusion equation is reduced to a system of two ordinary differential equa-

tions (ODE) using a Galerkin approximation with two polynomials as base functions.

This system of ODE is coupled with the partial differential equation representing

transport–reaction. This coupling may give rise to a nonlinear convection-diffusion-

reaction PDE, which is discretized spatially with the artificial diffusion Discontinuous

Galerkin scheme described in Chapter 3 (see also Casoni et al. (2009)). As discussed in

Chapter 3 formation of shocks may come from different ways. For instance, non-linear

adsorption isotherms develop shocks. Also, purely convective problems are charac-

terized by the transport of a sharp front. It is well-known that standard numerical

methods are not sufficient by themselves for simulating these kind of problems, unless

specific numerical techniques are used. On one hand, standard high-order methods do

not preclude spurious oscillations and, on the other hand, low-order (p = 0) methods

are overdiffusive (unless very small meshes are used) and, consequently, tend to flatten

the solution excessively, losing also its physical meaning.
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The approach has been applied to simulation of breakthrough curves of GFH, with

real physical cases of different adsorbers. Published experimental data by Sperlich

et al. (2008) has been adequately simulated.

D.2 Mathematical model

HSDM involves two partial differential equations, representing physical processes at

two different scales: The macroscale, which is a porous media with a fluid in movement

throughout a matrix of adsorbent particles, and the microscale, which represents the

adsorbent particles, assumed spherical and also a porous media themselves. The ve-

locity field of the macroscale flow is considered given. Flow and adsorption/desorption

are considered uncoupled, hypothesis equivalent to consider the fluid density constant.

The first partial differential equation is an unsteady transport–reaction one. It

is written on the macroscale coordinates. It takes into account convection, diffusion

and adsorption/desorption of components diluted in the interparticle fluid into the

adsorbent particles. The second partial differential equation is an unsteady diffusion

equation expressed in terms of the radius of a spherical microscale particle. The intra-

particle diffusion equation takes into account the phase change, fluid–solid, and the

solid diffusion of adsorbed mass inside the particles. Isothermal equilibrium between

solid and fluid phases is considered, with a functional relationship between diluted

and adsorbed mass. Both partial differential equations are coupled through the ad-

sorption/desorption term of transport–reaction equation and the external boundary

condition of intraparticle diffusion equation.

For the sake of simplicity on the analysis, the dimensionless form of the macroscale

equation is considered.

The problem can be expressed in a dimensionless form, by introducing the follow-

ing dimensionless variables x = x′/L and t = V t′/L, and the field v = v′/V , with

L and V reference values of length and velocity, and x′, t′ and v′ equal to, respec-

tively, time, standard spatial coordinates and flow velocity in the macroscale porous

media. Unknowns are c(x, t) = c′(x′, t′)/cref and q̄(x, t) = q̄′(x′, t′)/qref, with c′ and
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q̄′ equal to, respectively, concentration of adsorbate in porous media fluid and the

mean value of adsorbed mass in the adsorbent particles. Parameters cref and qref are

the corresponding reference values of both unknowns.

Dimensionless numbers of the model are the following:

Pe =
V L

D
, rεp =

1− εf

εf

εp , Dg =
qrefρp(1− εf)

crefεf

, Bi =
kfRcref

Dsqrefρp

,

St =
kfL(1− εf)

V Rεf

, Ed =
DgDsL

V R2
=

St

Bi

, L(q̄) =
q̄′1/n

A1/n
, A = A′

cnref

qref

,

(D.1)

with Pe the Peclet number, D the interparticle diffusion, rεp the porosity ratio, εf and

εp the inter e intraparticle porosities, Dg solute distribution parameter (defined as

the ratio of the adsorbed mass and the interparticular diluted mass, in steady state

conditions and equilibrium), ρp the density of clean particles, kf the film mass transfer

coefficient, R the particle radius, Ds the intraparticle superficial diffusion, and L(q̄)

the Freundlich isotherm function, which depends on parametres A′ and n.

With this notation in mind, the dimensionless macroscale equation can be written

as
∂c

∂t
= ∇ ·

(
∇c

Pe

)
− v ·∇c −

(
Dg + rεp

∂L(q̄)

∂q̄

)
∂q̄

∂t
(D.2)

where ∇ is the Gradient with respect to x. Highly adsorbent media are characterized

by large values of Dg. In these cases, second part of reaction term can be neglected

(that proportional to rεp , which represents mass diluted in intraparticle porosity),

hence simplifying equation (D.2).

The dimensionless intraparticle diffusion equation is given in radial coordinates

and it can be expressed as

Dg
∂q

∂t
= Ed

1

r2

∂

∂r

(
r2∂q

∂r

)
(D.3)

with q(r, t;x) the dimensionless adsorbed mass profile inside the particle, which de-

pends on r and t, but also on x.

Equation (D.3) is complemented with symmetry and Robin–type boundary con-
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Figure D.2: Radial surface diffusion.

ditions for the center of the particle and for the particle surface, respectively

∂q

∂r

∣∣∣
r=0

= 0 and
∂q

∂r

∣∣∣
r=1

= Bi ( c(x, t)− L(qR) ) . (D.4)

with qR(x, t) = q(1, t;x) = q′R(x′, t′)/qref and q′R the value of adsorbed mass in particle

external surfaces, see Figure D.2

Ideally, equations (D.3–D.4) are a boundary value problem in r which has to be

solved for each x. Homogeneous tests, as the uniform batch test, can be simulated by

imposing c(x, t) = 1 in equation (D.4) and discarding the transport–reaction equation

(D.2).

D.3 Numerical approach

The system of partial differential equations (D.2) and (D.3–D.4) defines the HSDM

model. Several approaches have been proposed to solve numerically the model, mainly

finite differences schemes for both equations (Weber and Crittenden (1975); Oimstead
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and Weber (1990); Smith (1991); Sun et al. (1996); Başağaoğlu et al. (2000); Sper-

lich et al. (2008); Sonetaka et al. (2009b,a)), or mixed methods: finite differences

schemes for the transport–reaction equation and orthogonal collocation schemes for

the intraparticle difussion equation (Baup et al. (2000)), or Laplace transformation

and orthogonal collocation schemes (Roy et al. (1993)). A novel approach is proposed

in this work. Intraparticle diffusion equation is reduced to a system of two Ordinary

Differential Equations (ODE), transport–reaction equation is discretized with a Dis-

continuous Galerkin method, and the overall system evolution is integrated with a

time-marching scheme.

In order to simplify equations (D.3–D.4) into an ODE system, a Galerkin spa-

tial discretization is applied. Intraparticle diffusion q(r, t;x) is approximated by a

polynomial of degree m ≥ 2 in r:

q(r, t;x) = q̄(x, t)
3 +m

m
(1− rm) + qR(x, t)

1

m
((3 +m)rm − 3) . (D.5)

Unknown of equations (D.3–D.4) changes from q(r, t;x) to the couple of variables

q̄(x, t) and qR(x, t).

After some arithmetical operations, the following system of two coupled ODE is

found:

Dg
∂q̄

∂t
= 3St(c− L(qR))

Dg
∂qR

∂t
= (2m+ 6)St(c− L(qR)) +

3m3 + 15m2 + 36m+ 27

2m+ 1
Ed(q̄− qR) .

(D.6)

Equations (D.6) are explicitly coupled with transport–reaction equation (D.2) through

c(x, t), and q̄(x, t). The overall system, equations (D.2) and (D.6), is linear for linear

isotherms, n = 1.

Note that a polynomial of degreem has been used to simplify intraparticle diffusion

equation in reducing the microscale model by Galerkin approximation. It is well

established that second order approximation, m = 2, works fine in many situations,

but some works have analyzed different contexts and models and conclude proposing
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degrees higher than two, see for instance Li and Yang (1999), Sircar and Hufton (2000),

Başağaoğlu et al. (2000) or Gadre et al. (2005). In order to obtain a more accurate

approximation, here, a variable value of m, function of ξ= log(Ed) = log(St/Bi), is

proposed: m = 2 for ξ ≥ 0 (or equivalently St ≥ Bi), and following expression for

ξ ≤ 0 (St ≤ Bi):

m(ξ) = 0.389 · ξ4 − 0.336 · ξ3 + 1.275 · ξ2 + 2 . (D.7)

Following values are given by equation (D.7): m(0) = 2, m(−1) = 3, m(−2) ≈ 16,

m(−3) ≈ 54. Expression of m(ξ) has been defined imposing dm
dξ
|ξ=0 = 0, in order to

present a smooth transition at ξ = 0.

Equation (D.7) has been adjusted comparing results of the reduced model, equa-

tions (D.6), with those of the full intraparticle model, equations (D.3–D.4). A uniform

batch test (with final time equal to Dg) is used for comparison. Both problems have

been solved numerically with very high precision. The evolution of mean adsorved

mass, q̄, has been used to measure goodness of the aproximation. Best m values have

been chosen for each set of dimensionless numbers. The proposed expresion of m,

equation (D.7), captures main findings of the adjustment process. Proposal is inde-

pendent of Bi, thus it should be applied for all Bi. However, it has been tested that

with values of Bi ≤ 10, the problem can be adecuately simulated with m = 2 also

with St ≤ Bi.

The spatial discretization of transport–reaction equation is performed with the Lo-

cal Discontinuous Galerkin (LDG) scheme, see Appendix B. Nevertheless, non-linear

isotherms and a range of values of dimensionless numbers (for instance large values of

Bi and small ones of Ed) lead the approximate solution, either of the concentration c

and q̄, to contain sharp shock profiles. To deal with the simulation of shocks as well

as the advection of sharp fronts the artificial diffusion method of Chapter 3 is used.

The method can handle the shocks, solved with accuracy and also transported along

the time, even for very long time simulations, at the correct speed without flattening

the profile, as shown, for instance in the examples of Section 3.3.1. Dispersion an
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Figure D.3: Breakthrough curves, BTC, of c, q̄ and qR − q̄ with Dg from 2 to 103, Bi

= 10 and St = 102. Results for n = 1, left, and n = 0.2, right.

dissionpative errors, typical of problems with the advection of a sharp front, are also

controlled. Since the method is parameter-independent, the diffusion is computed

with independence to the dimensionless parameters and also to the discretization.

The sensing variable of the discontinuity sensor, see Section 2.2, is now the unknown

c, i.e, the concentration of adsorbate, which is the variable transported in porous me-

dia. Note, however, that shocks may also appear in other variables, such q̄, i.e, the

concentration of the adsorbed mass in the particles.

All the simulations in this work have been performed with a mesh of one-hundred

elements and degree equal to one (linear approximations). In following sections, it

is shown that this is more than enough for usual applications of numerical results.

However, higher degrees are also possible. Time integration of the overall system is

done with the Forward Euler method. Higher order methods can also be applied.
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D.4 Results

The HSDM formulation presented in previous Sections is used here to simulate Break-

through Curves, BTC, and to characterize limit behaviors of the model. Influence on

BTC of Dg, n, Ed, Bi and St are assessed with detail in next subsections.

Following values define the reference problem: L = 1, V = 1, cref = 1, qref = L(cref)

(therefore, A = 1), a constant flow velocity field v=1, and rεp = 0, coherently with

hypothesis of highly absorbent media, Dg � 1. A large value is imposed to Pe, 105,

that is, the viscosity effect is almost neglected.

D.4.1 Dg and n influences

The influences of Dg and n in BTC are assessed in this subsection. Values of both

parameters established here are used in following analysis.

Figure D.3 presents BTC obtained with Dg from 2 to 103, n equal to 1 and 0.2,

and fixed values Bi = 10 and St = 102. BTC of c (the standard ones, concentration

outlet), but also of q̄ (adsorbed mass at the end of the fix-bed) and the difference

qR − q̄ (also at the end) are shown until a final time equal to 2Dg. The difference

qR − q̄ is a measure of uniformity distribution of adsorbed mass inside particles.

In all cases of Figure D.3, adsorption is much faster than convection. In fact, St =

102 indicates that film mass transfer is two orders of magnitude faster than convection,

and Bi = 10 indicates that internal diffusion is just one order of magnitude slower

than film mass transfer (and therefore, one faster than convection). Fast adsorption

can be identified in Figure D.3. c and q̄ BTC are undistinguishable. Coherently, the

difference qR − q̄ is close to zero in all cases.

Values of Dg can be very large in highly adsorbent media, up to 105. Since final

simulating time is proportional to Dg, simulation of highly adsorbent media can be

expected to imply large computational time. As can be checked in Figure D.3, solution

of fast adsorption processes are smooth waves traveling at constant velocity equal to

1/(1 + Dg), which, for large Dg, is approximately D−1
g . BTC of Dg = 100 and 1000 in

Figure D.3 are undistinguishable. In this work, except explicitly indicated, Dg = 103
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Figure D.4: Uniform batch test. Adsorbed mass inside particles at final time equal
to Dg.

is considered. Wave front position computed with this value will present an additional

delay of 0.001, as maximum, with respect results computed with higher values of Dg.

On the other hand, influence of n is reduced to BTC shape, as Figure D.3 shows.

Usually, values of n range from 0.1 to 1. Although it has a relevant influence on

BTC, it has not in general conclusions of this section. As n = 1 makes the problem

linear, this value is used if not explicitely indicated. Nonlinearity do not change

overall dimensionless behavior of the model, although BTC shapes are very different,

specially due to the presence of shocks. However, the numerical solver here proposed

it’s not influenced by the value of n, since the artificial diffusion is automatically

computed and parameter-free.
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Figure D.5: Breakthrough Curves of c, q̄ and qR − q̄ for Bi = 100.

Figure D.6: Breakthrough Curves of c, q̄ and qR − q̄ for Bi = 10−1.

Figure D.7: Differences between Breakthrough Curves (c and q̄) computed with Bi =
100 (Figure D.5) and Bi = 10−1 (Figure D.6) for common values of St.
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Figure D.8: Breakthrough Curves of c, q̄ and qR − q̄ for Bi = 102.

Figure D.9: Breakthrough Curves of c, q̄ and qR − q̄ for Bi = 103.

Figure D.10: Differences between Breakthrough Curves (c and q̄) computed with Bi

= 103 (Figure D.9) and Bi = 102 (Figure D.8), for same values of Ed = St/Bi.



144 Dimensionless analysis of HSDM

Figure D.11: Differences between Breakthrough Curves (c and q̄) computed with Bi

= 104 and Bi = 103 (Figure D.9), for same values of Ed.

D.4.2 Ed influence

The influence of Ed in HSDM appears clearly in a standard uniform batch test. Ad-

sorbed mass inside particles at final time equal to Dg (for wide ranges of values

of Ed and Bi) are presented in Figure D.4. Final adsorbed mass is close to one

in all cases with Bi ≤ 100 (higher internal diffusion than film mass transfer) and

EdBi = St ≥ 100 (higher film mass transfer than intraparticle velocity), as well as,

Bi ≥ 100 and Ed ≥ 100 (higher film mass transfer than internal diffusion and internal

diffusion than intraparticle velocity). Keeping the Bi value fixed, larger is the value of

Ed and faster is adsorption, and, therefore, more part of adsorption capacity is used

during the time scale given by Dg. In the oppossite direction, lower is the value of Ed

and less relevant is adsorption at Dg time scale. Just part of the adsorption capacity

is used in these cases (check Ed ≤ 10−2 in Figure D.4).
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D.4.3 Bi and St influences

In this subsection, solutions for a wide range of Bi and St are presented and analyzed.

All cases are computed with Dg = 103, n = 1, and until a final time equal to 2Dg.

Figure D.5 shows BTC of cases Bi = 100 and St = 10−2 to 103. Large values of St

implies fast adsorption, and both c and q̄ BC show a front traveling at velocity D−1
g

(as in Figure D.3). Small values of St imply a smoothed wavefront and, also, that just

part of the medium is fully functional (filled of adsorbent) at this time scale. In the

limit case of no-adsorption, St = 0, a wavefront traveling at velocity one (much faster

than D−1
g )) is obtained. It corresponds to a pure convection problem. This behavior

can be identified in Figure D.5, with the lowest values of St. A sharp front is found

just at the beginning of the BTC, at time equals to one.

Figure D.6 shows BTC of cases Bi = 10−1 and same St range of Figure D.5. Same

behavior as before is found with Bi = 10−1, except for the values of q̄− qR, that are

one order of magnitude lower than in Bi = 100 case. With Bi = 10−1, adsorption

retardation is mainly due to film mass transfer (values of q̄ and qR are almost the

same all time), intraparticle diffusion does not influence adsorption.

In order to compare both sets of results, Figure D.7 shows results obtained with

Bi = 100 (Figure D.5) minus those obtained with Bi = 10−1 (Figure D.6); with same

values of St in both cases. Errors are less than 4% in all cases and time, and less

than 2% in most of them. Differences between results obtained with Bi values lower

than 10−1, keeping same St, are lower than those obtained between Bi = 100 and

Bi = 10−1. Therefore, a limit behaviour is found with Bi ≤ 100. In this limit case,

BTC depend only on St, which covers from instantaneus adsorption St ≥ 103 to pure

convection (and, therefore, no adsorption at this time scale) St ≤ 10−2.

On the other hand, large values of Bi imply that film mass transfer is higher

than internal diffusion and hence, value of surface diffusion dominates behavior of

the model. Figure D.8 shows results of Bi = 102 and St = 10−2 to 103. Although

same limit behaviors for St values as in previous cases (Figures D.5 and D.6) are

identified, intermediate values have different behavior. A smooth step is identified

at an early stage of BTC of c (concentration outlet). Adsorbed mass q̄ presents a
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smoother profile, that tends to zero for small values of St, highlighting the convective

character of the process for this range of values.

Figure D.9 shows results for Bi = 103 and same range of Ed than in Figure D.8,

from 10−4 to 101. Note that the offset in values of Ed with respect to St is due to

the definition Ed = St/Bi. Similar BTC are obtained for same Ed but larger values

of St, that is, fast adsorption process. Note that for these values, which corresponds

to Ed = 100 and Ed = 101 (i.e, St = 103 and 104, respectively) curves c and q̄ are

indistinguishable (i.e, q̄− qR is almost zero, which means that intraparticle diffusion

is neglected in the adsorption process).

Figure D.10 presents results obtained with Bi = 103 minus those with Bi = 102

(Figures D.8 and D.9), for same values of Ed. The overall difference is zero along

all the process except in front position, where differences of 10% can be appreciate.

This difference corresponds to the initial steep profile, which is more accentuated for

Bi = 103. In order to further study the limit case Bi = 103, differences between results

obtained with Bi = 104 minus those with Bi = 103 are shown in Figure D.11, also for

same Ed. Again, differences are reduced at all time, except at an early stage of the

simulations, where punctual errors up to 10% are detected, enhancing again the fact

that for very large values of Bi, the value of St does not longer characterize by itself

the global behavior.

To sum up, it can be considered that there is a limit behaviour for Bi ≥ 103,

where BTC depend only on Ed. In this limit case, analogously to the first analysis

for Bi ≤ 100, Ed covers from instantaneous adsorption Ed ≥ 101 to pure convection

(no adsorption at this time scale) Ed ≤ 10−4.

Table D.1: GFH data for HSDM simulations. From Sperlich et al. (2008), except (*),
from this work.

Bi St Ed Dg n R
Salicylic Acid 16.3 6.9 0.4233 4 155 0.52 0.39

DOC 23.3 3.9 0.1673 8 140 0.62 0.39
Phosphate 102.1 10 0.0979 20 323 0.19 0.45
Arsenate 182.5 9.7 0.0532 24 617 0.19 0.45

Arsenate (*) 91.25 4.5 0.0532 1000 0.19 0.45
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Figure D.12: Experimental data Sperlich et al. (2008) and HSDM simulations for
salycilic acid, DOC, phosphate and arsenate (from left to right and up to down),
using values of the Table D.1.

D.5 GFH characterization with HSDM

Experimental adsorption results for different adsorbates in GFH have been reproduced

with the HSDM in Sperlich et al. (2008). Characteristic dimensionless numbers of

these cases are: Large values of Dg, from 103 to 105, non-linear isotherms, n < 1,

values of Bi from 101 to 103, and Ed = St/Bi from 10−2 - 100. Thus, the HSDM

behavior is close to the limit detected for high Bi, and with intermediate values of Ed.

BTC with similar shape to those of Figures D.8 and D.9 are expected.

Figure D.12 shows the BTC of four adsorbates (salycilic acid, DOC, phosphate
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and arsenate) computed with the HSDM model presented here, together with the

experimental data and the simulation results presented by Sperlich et al. (2008).

Table D.1 summarizes parameters that define these examples. Computations have

been done with parameters of Table D.1, except Dg, limited to 1000 in all cases.

In three of the four cases, as expected, similar results are obtanied with the HSDM

formulation presented here and that proposed by Sperlich et al. (2008). However, in

the case of arsenate, differences are very significant. This is provably due to the

over-diffusive character of the numerical solver used in previous computations (finite

diferences), instead of the high-order degree approximation of the interparticle diffu-

sion equation and the DG scheme for transport applied here. Moreover, the artificial

diffusion method also has been proven to be much more accurate than other stabiliza-

tion techniques, avoiding an extra smearing of the solution. Hence, the peak observed

in the arsenate curve is produced because of the accurate numerical technique here

proposed.

An additional simulation is presented for arsenate, with Bi (and St) halved with

respect to values proposed by Sperlich et al. (2008). This case adjusts much better

exerimental data, and therefore the results presented in Sperlich et al. (2008), than

the other simulation computed here but with values proposed by Sperlich et al. (2008).

In fact, halving both, Bi and St does not vary the global shape of BTC, since for large

values of Bi the breakthrough curve only depends on Ed, whose value is kept constant

(recall that Ed = St/Bi). Note that this agrees with the results found in previous

section (see Figures D.8 and D.9), which showed that the behavior of the limit case

Bi ≥ 102 only depends on Ed.

D.6 Concluding remarks

Modeling and numerical conclusions are extracted for the simulation of this particular

problem. Both are summarized here below.

A full characterization of HSDM model, detailing its limits behaviors, has been

established in this work. Here, previous limits with Bi are confirmed, but they are
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also complemented with the influence of St or Ed. An extensive analysis based on

breakthrough experiments with linear isoterms is presented. Interesting results have

been found: For low values of the Biot number, Bi ≤ 100, BTC depends on St, within

the range from 10−2 to 103. However, for high values of Biot, Bi ≥ 102, results depend

on Ed, within the range from 10−4 to 103. In both cases, immediately adsorption is

found with high values of St (correspondingly, of Ed) and, on the contrary, a pure

convection problem (that is, no adsorption) is found with lower values of both (St

and Ed). A step is formed at an early stage of BTC of concentration outlet for

intermediate values, 10−2 to 10−1, due to high values of film mass transfer and low

values of intraparticle diffusion. With lower values of Ed, this step collapses with

convective transport at the begining of BTC, since St values are also low.

The proposed HSDM model shows able to characterize a wide range of adsorption

processes. Prediction of BTC for several adsorbates onto GFH are shown. The simu-

lations with HSDM reproduce the experimental data and, also agreeing with previous

results published in the literature Sperlich et al. (2008). Same characteristic dimen-

sionless numbers are used, except for high Biot numbers, where the dimensionless

numbers Bi and St need to be modified in order to better adjust the data, but Ed

number is kept constant. As numerical results show, keeping Ed constant does not

vary the behavior of BTC curves, since the limit behavior found for high Bi numbers

does not depend on St, neither Bi. Hence, GFH simulations agree with the expected

results, confirming the full characterization of the model here proposed.

Regarding the numerical approach, the artificial diffusion method, this example

demonstrates that the artificial diffusion method is applicable not only for hyperbolic

conservations laws, but also to general convection-diffusion-reaction equation. It can

handle with shocks and nonlinearities of different nature, either from the convective

part or from a highly nonlinear reaction term. The obtained wave travels at the

correct speed without dispersion errors. It is especially highlighted that the artificial

diffusion term does not depend on the form of the equation, neither the behavior of

the solution, in the sense that it is parameter-free and it is automatically computed

for any problem and discretizacion.
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Başağaoğlu, H., T. Ginn, J. McCoy, and M. Mariño (2000). Linear driving force
approximation to a radial diffusive model. AIChE Journal 46 (10), 2097–2105.

Badruzzaman, M., P. Westerhoff, and D. Knappe (2004). Intraparticle diffusion and
adsorption of arsenate onto granular ferric hydroxide (GFH). Water Research 38,
4002–4012.

Barter, G. and D. Darmolfal (2007). Shock capturing with higher-order, PDE-based
artificial viscosity. In Proc. of the 18th AIAA Computational Fluid Dynamics Con-
ference, Miami, FL. AIAA-2007-3823.

Barter, G. E. (2008). Shock capturing with PDE-based artificial viscosity for an adap-
tive, higher-order discontinuous Galerkin finite element method. Ph. D. thesis,
Massachusetts Institute of Technology, Boston, USA.

151



152 Bibliography

Barth, T. (1994). Aspects of unstructured grids and Finite Volume solvers for the
Euler and Navier-Stokes equations.

Barth, T. J. and D. C. Jespersen (1989). The design and application of upwind
schemes on unstructured meshes. In Proc. of the 27th AIAA Aerospace Sciences
Meeting, Reno, NV. AIAA-89-0366.

Bassi, F. and S. Rebay (1997a). A high-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier-Stokes equations. J.
Comput. Phys. 131 (2), 267–279.

Bassi, F. and S. Rebay (1997b). High-order accurate discontinuous finite element
solution of the 2D Euler equations. J. Comput. Phys. 138 (2), 251 – 285.

Bassi, F. and S. Rebay (2001). Numerical evaluation of two discontinuous Galerkin
methods for the compressible Navier-Stokes equations. Int. J. Numer. Methods
Eng. 40 (10), 197–207.

Baumann, C. E. and J. T. Oden (1999). A discontinuous hp finite element method
for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (3-4),
311–341.

Baup, S., C. Jaffre, D. Wolbert, and A. Laplanche (2000). Adsorption of pesticides
onto granular activated carbon: Determination of surface diffusivities using simple
batch experiments. Adsorption 6, 219–228.

Biswas, R., K. D. Devine, and J. E. Flaherty (1994). Parallel, adaptive finite element
methods for conservation laws. Appl. Numer. Math. 14 (1-3), 255–283.

Brattebo, H. and H. Odegaard (1986). Phosphorus removal by granular activated
alumina. Water Research 20 (8), 977–986.

Brezzi, F., G. Manzini, D. Marini, P. Pietra, and A. Russo (2000). Discontinuous
Galerkin approximations for elliptic problems. Numer. Methods Partial Differential
Equations 16 (4), 365–378.

Brusseau, M. and P. R. R. W. Gillham (1989). Sorption nonideality during organic
contaminant transport in porous media. Critical Reviews in Environmental Science
and Technology 19 (1), 33–99.

Burbeau, A., P. Sagaut, and C.-H. Bruneau (2001). A problem-independent limiter for
high-order Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 169 (1),
111–150.



Bibliography 153

Casoni, E., J. Peraire, and A. Huerta (2009). One-Dimensional Shock-Capturing for
High-Order discontinuous Galerkin Methods, Volume 14 of ECCOMAS Multidisci-
plinary Jubilee Symposium. Computational Methods in Applied Sciences. Springer
Netherlands.

Casoni, E., J. Peraire, and A. Huerta (2011a). A simple shock-capturing technique
for high-order discontinuous Galerkin methods. to appear in International Journal
of Numerical Methods in Fluids .

Casoni, E., J. Peraire, and A. Huerta (2011b). Un método de captura de choques
basado en las funciones de forma para Galerkin discontinuo en alto orden. to appear
in Revista Internacional de Métodos Numéricos en Ingenieŕıa.

Casper, J. and H. L. Atkins (1993). A Finite-Volume high-order ENO scheme for
two-dimensional hyperbolic systems. J. Comput. Phys. 106 (1), 62–76.

Chang, S., T. Waite, P. Ong, A. Schfer, and A. Fane (2004). Assessment of trace
estrogenic contaminants removal by coagulant addition, powdered activated car-
bon adsorption and powdered activated carbonmicrofiltration processes. Journal of
Environmental Engineering 130 (7), 736–742.

Chavent, G. and B. Cockburn (1989). The local projection P 0P 1-discontinuous-
Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math.
Anal. Numér. 23 (4), 565–592.

Chavent, G. and G. Salzano (1982). A finite-element method for the 1-D water flooding
problem with gravity. J. Comput. Phys. 45 (3), 307–344.

Cockburn, B. (2001). Devising discontinuous Galerkin methods for non-linear hyper-
bolic conservation laws. J. Comput. Appl. Math. 128 (1-2), 187 – 204.

Cockburn, B., J. Gopalakrishnan, and R. Lazarov (2009). Unified hybridization of
discontinuous Galerkin, mixed, and continuous Galerkin methods for second order
elliptic problems. SIAM J. Numer. Anal. 47 (2), 1319–1365.

Cockburn, B., S. Hou, and C.-W. Shu (1990). The Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws. IV. The mul-
tidimensional case. Math. Comp. 54 (190), 545–581.

Cockburn, B., S. Y. Lin, and C.-W. Shu (1989). TVB Runge-Kutta local projec-
tion discontinuous Galerkin finite element method for conservation laws. III. One-
dimensional systems. J. Comput. Phys. 84 (1), 90–113.



154 Bibliography

Cockburn, B. and C.-W. Shu (1989). TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws. II. General framework. Math.
Comp. 52 (186), 411–435.

Cockburn, B. and C.-W. Shu (1998a). The local discontinuous Galerkin method for
time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (6), 2440–
2463.

Cockburn, B. and C.-W. Shu (1998b). The Runge-Kutta discontinuous Galerkin
method for conservation laws. V. Multidimensional systems. J. Comput.
Phys. 141 (2), 199–224.

Cockburn, B. and C.-W. Shu (2001). Runge-Kutta discontinuous Galerkin methods
for convection-dominated problems. J. Sci. Comput. 16 (3), 173–261.

Crittenden, J., J. Berrigan, D. Hand, and B. Lykins (1987). Design of rapid fixed-bed
adsorption tests for nonconstant diffusivities. Journal of Environmental Engineer-
ing 113 (2), 243–259.

Cueto-Felgueroso, L. and I. Colominas (2008). High-order Finite Volume methods and
multiresolution reproducing kernels. Arch. Comput. Methods Eng. 15 (2), 185–228.

Demirdzic, I., Z. Lilek, and M. Peric (1993). A collocated Finite Volume method for
predicting flows at all speeds. Int. J Numerical Methods in Fluids 17, 1029–1050.
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