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Abstract

Recent progress in analytical chemistry instrumentation has increased the amount
of data available for analysis. This progress has been encompassed by com-
putational improvements, that have enabled new possibilities to analyze larger
amounts of data. These two factors have allowed to analyze more complex sam-
ples in multiple life science fields, such as biology, medicine, pharmacology, or
food science.

One of the techniques that has benefited from these improvements is Gas Chro-
matography - Ion Mobility Spectrometry (GC-IMS). This technique is useful for
the detection of Volatile Organic Compounds (VOCs) in complex samples. Ion
Mobility Spectrometry is an analytical technique for characterizing chemical sub-
stances based on the velocity of gas-phase ions in an electric field. It is able to
detect trace levels of volatile chemicals reaching for some analytes ppb concentra-
tions. While the instrument has moderate selectivity it is very fast in the analysis,
as an ion mobility spectrum can be acquired in tenths of milliseconds. As it oper-
ates at ambient pressure, it is found not only as laboratory instrumentation but
also in-site, to perform screening applications. For instance it is often used in
airports for the detection of drugs and explosives. To enhance the selectivity of
the IMS, especially for the analysis of complex samples, a gas chromatograph can
be used for sample pre-separation at the expense of the length of the analysis.

While there is better instrumentation and more computational power, better
algorithms are still needed to exploit and extract all the information present in
the samples. In particular, GC-IMS has not received much attention compared
to other analytical techniques. In this work we address some of the data analysis
issues for GC-IMS: With respect to the pre-processing, we explore several baseline
estimation methods and we suggest a variation of Asymmetric Least Squares, a
popular baseline estimation technique, that is able to cope with signals that
present large peaks or large dynamic range. This baseline estimation method is
used in Gas Chromatography - Mass Spectrometry signals as well, as it suits both
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techniques. Furthermore, we also characterize spectral misalignments in a several
months long study, and propose an alignment method based on monotonic cubic
splines for its correction. Based on the misalignment characterization we propose
an optimal time span between consecutive calibrant samples.

We the explore the usage of Multivariate Curve Resolution methods for the de-
convolution of overlapped peaks and their extraction into pure components. We
propose the use of a sliding window in the retention time axis to extract the pure
components from smaller windows. The pure components are tracked through
the windows. This approach is able to extract analytes with lower response with
respect to MCR, compounds that have a low variance in the overall matrix

Finally we apply some of these developments to real world applications, on a
dataset for the prevention of fraud and quality control in the classification of
olive oils, measured with GC-IMS, and on data for biomarker discovery of prostate
cancer by analyzing the headspace of urine samples with a GC-MS instrument.
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Chapter 1

Introduction

1.1 Motivation

The aim of this thesis is the development of algorithms for the analysis of complex
gas-phase samples using hyphenated instrumentation, in particular Gas Chro-
matography — Ion Mobility Spectrometry (GC-IMS).

The development of algorithms to extract information from analytical chemistry
instrumentation has existed since the 1970s, under the name of chemometrics.
Chemometrics data typically has been obtained from UV /visible spectroscopy,
chromatography, mass spectrometry, nuclear magnetic resonance, and atomic
emission/absorption experiments, using multivariate data analysis techniques.
While IMS and GC-IMS have received some attention, recent reviews (Hauschild
et al., 2012) highlight the need for better algorithms and tailored data analysis
methods. In the last decade, the rise of *omics fields has partially absorbed the
chemometrics area (Geladi and Hopke, 2008) as indeed most of the multivariate
data analysis methods traditionally used by chemometricians are now also used
in *omics applications.

This thesis will explore the existing techniques for data analysis both in GC-
IMS instrumentation and in other similar analytical techniques, and propose
enhancements, modifications and adaptations of those algorithms to suit better
the needs of GC-IMS. Currently, most statistical analysis of GC-IMS data rely on
the use of either closed source software provided by the instrument manufacturer
or a third party vendor (e.g. VisualNow!), or the use of techniques scattered

Thttp://www.bs-analytik.de/en/products/software-vocan-visualnow.htm
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among several packages and articles. The algorithms developed in this thesis will
be published under a modular open source toolbox that hopefully can be freely
extended and reused by the community.

Ion Mobility Spectrometry as an analytical tool has been useful in several fields:
On the security industry, IMS is being used on a daily basis in airports for the
detection of drugs and explosives (Eiceman et al., 2013). On the pharmaceu-
tical industry, IMS is used in cleaning validations, to ensure that there is no
carryover effect or cleaning agents left between consecutive batches of a pharma-
ceutical product (O’Donnell et al., 2008). It is used as well for the detection of
triacetone triperoxide (TATP) in air in the industry (Rédsénen et al., 2008). Tt
is more and more being used as a research tool for the analysis of life sciences
samples, in particular for the analysis of Volatile Organic Compounds (VOC).

The analysis of VOCs from life sciences samples is having increasing relevance in
medical and food quality applications. Recent studies on VOCs, not only with
GC-IMS but also with other analytical instrumentation, show their potential for
the diagnostic of medical conditions and for food quality control.

For instance, medically, several research groups have shown that breath sam-
ples contain biomarkers for multiple conditions, such as: pulmonary tuberculosis
(Phillips et al., 2010), breast cancer (Phillips et al., 2006), lung cancer (Buszewski
et al., 2012, Fuchs et al. (2010)) or chronic obstructive pulmonary disease (West-
hoff et al., 2010). Urine volatiles have been reported to possibly contribute to the
diagnosis of prostate cancer (Cornu et al., 2011), (Khalid et al., 2015) and volatiles
in vaginal discharge fluids are being used for diagnosing vaginosis (Karpas et al.,
2012a).

In food quality control applications, wine volatiles have shown potential to be
used for the detection of “tainted wine” (Karpas et al., 2012b, Marquez-Sillero
et al. (2011)), beer volatiles can be used for fermentation control (Vautz et al.,
2006a) and olive oil volatiles can help in the prevention of olive oil quality fraud
(Garrido-Delgado et al., 2012), among other applications (Karpas, 2013).

The analysis of these complex samples relies on the recent advances in hyphen-
ated instrumentation (Sarker and Nahar, 2012). While typically ion mobility
spectrometry is not adequate for the analysis of complex samples due to its lack
of selectivity, a pre-separation using gas chromatography overcomes that limita-
tion at the expense of both portability and speed of analysis. Additionally, the
pre-separation information can be used as well for analyte identification. The
larger amount of data generated by the hyphenated instrument requires a set of
specific algorithms to extract all the sample information.

In order to provide a solid ground base for the description of the proposed algo-
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rithms, in this introduction we will briefly describe typical life sciences samples
of interest for GC-IMS applications. We will continue exploring the analytical
instrumentation, focusing on the main instruments of interest (IMS and GC-IMS)
but also with some details in Gas Chromatography — Mass Spectrometry, as some
of the algorithms developed are also suitable and have been tested with data ob-
tained from those instruments. Finally, we will explore the state of the art in the
data analysis workflows for GC-IMS spectra and describe the goals of this work.

1.2 Life Sciences samples

1.2.1 The Human Volatolome

The analysis of VOCs in human fluids and the understanding of their role in
the metabolic pathways is an important step for the early diagnosis of many
medical conditions. Recent reports (de Lacy Costello et al., 2014) aim to provide
a compendium of VOCs in human body fluids, giving an initial description of
what is called the human volatolome. A summary of the number of VOC in the
volatolome per type of fluid is given in table 1.1. The complexity of the samples,
with hundreds of compounds per body fluid is clear.

Table 1.1: Number of VOCs per body fluid, as reported in (de Lacy Costello et al.,
2014). The compendium is built from samples belonging to healthy subjects. It
should be noted that this is not by far the total number of existing VOCs, as
for instance the high number of VOCs reported for skin secretions is due to
the larger number of existing sample preparation methods, and the low number
of urine VOCs (compared to e.g. faeces) is reported to be related to the low
concentrations of those VOCs in urine, not to the fact that they are missing.

Body fluid Number of VOCs
Breath 872
Saliva 359
Blood 154
Milk 256
Skin secretions 532
Urine 279
Faeces 381

The complexity and variability of these samples is not only due to the high num-
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ber of VOCs. For instance, if we focus on human breath samples, the VOCs come
from the alveolar breath, that participates in the gas exchange process with the
blood, in concentrations of the range of ppm or even ppb. In this case, the num-
ber of VOCs ranges in the high hundreds, but only a small number of them are
common to everyone (Mukhopadhyay, 2004). Some reasons for this variability
are that some of these VOCs are exogenous and come from the environment,
for instance from pollution, trees or cleaning products. Other VOCs are endoge-
nous and related to the physiology of the subject, and may highlight a medical
condition of some sort. This complexity and variability is not specific of breath
samples, on the contrary it is known to be common to all body fluids.

The analysis of the volatolome is far from complete, and there still are several
concerns and open problems that need to be addressed if we aim to improve
the translation of the research results to clinics. The major concern for this
translation to succeed is the low reproducibility in pre-medical studies (Begley
and Toannidis, 2015). Therefore we need reliable data analysis tools that follow
best practices for the discovery of biomarkers. There are calls in the scientific
community that aim to remind and encourage the commitment to those best
practices (Broadhurst and Kell, 2007) and this thesis aims to follow that direction,
by providing reliable data analysis tools. Other concerns are the improvement
of sample acquisition protocols, VOC extraction methods and instrumentation,
that can provide new ways to for instance normalize samples, reducing subject
variability.

In this thesis we will see the application of data processing algorithms to a GC-MS
dataset of urine volatiles, with the aim of discovering prostate cancer biomarkers.

1.2.2 Food quality control and fraud prevention

The food industry is another field that benefits from the analysis of VOCs. Having
fast and reliable methods for the discovery of food spoilage issues, to control food
and beverage production or to assess the quality of raw ingredients and materials
is desirable not only because of the economical savings, but also and more impor-
tantly because it can prevent food waste. Typically, headspace analyses require
enrichment of the sample air and further lab analysis using spectroscopic methods
(Conte et al., 1999). The most common standard analytical techniques (atomic
absorption spectroscopy, gas chromatography, mass spectrometry) require sam-
ple preparation, are time consuming, and expensive (Vautz et al., 2006c). In
the last decade there has been an increase of alternative methods to address or
complement by screening methods some of these issues. As it has already been
mentioned, there are reports of the use of Ion Mobility Spectrometry in food
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freshness and spoilage (Raatikainen et al., 2005), process control in the beer in-
dustry (Vautz et al., 2006b), wine quality (Karpas et al., 2012b) and olive oil
fraud prevention (Garrido-Delgado et al., 2012).

In this thesis we will see how the developed algorithms are applied to a GC-IMS
dataset of olive oils, with the aim of classifying them according to their quality.

1.3 Instrumentation

1.3.1 Ton Mobility Spectrometry

Ion Mobility Spectrometry (IMS) is an analytical technique for characterizing
chemical substances based on the velocity of gas-phase ions in an electric field
(Eiceman et al., 2013). IMS technology is able to detect trace levels of volatile
chemicals, reaching for some analytes ppb concentrations. The analysis is fast
(one spectrum is acquired in tenths of milliseconds) and the instrument has mod-
erate selectivity.

IMS started gaining popularity in the 1970s, coined under the “Plasma Chro-
matography” term. It was first used for explosives and chemical warfare agents
detection in military applications (Karasek and Denney, 1974), (Ewing, 2001).
However, over the past twenty years, IMS fields of application have widened and
it is currently being used in a wide range of applications (Armenta et al., 2011)
such as environmental (Karpas et al., 1991), (Baumbach et al., 1993); industrial
(Budde, 1995); biomedical studies (Westhoff et al., 2010), (Baumbach, 2009);
drug detection (Eatherton et al., 1986), (Nanji et al., 1987); security applications
(Cline and Hobbs, 1972), food quality (Vautz et al., 2006¢), (Garrido-Delgado
et al., 2012); cosmetics (Zamora et al., 2011); and fraud detection (Alonso et al.,
2008). The use of IMS for explosive and drugs detection has now a large market,
as nowadays many international airports are using the technology on a day-to-day
basis.

1.3.1.1 Operating Principle

The ion mobility spectrometer is divided in the ionization region, the shutter grid,
and the drift region. As shown in figure 1.1, the sample enters into the ionization
region where an ionization source is responsible for ionizing the molecules in the
sample at ambient pressure. The ionized samples enter the drift region when a
shutter grid opens and travel through the drift tube, that typically consists of a
stack made of metallic rings. These rings are set to a decreasing range of electrical
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Figure 1.1: Ton Mobility Spectrometer diagram

potential creating a constant electrical field. The ions will be accelerated by this
electrical field and their acceleration will depend on their mass and charge. The
ions will be colliding with the neutral molecules of the drift gas (usually air or
N3) that flows in the opposite direction. The number of collisions will depend on
the cross section of the ions and the gas, with typical mean free path distances
between collisions of 10~ 7m (Eiceman et al., 2013). The different ions will be
separated in the drift tube by their electrical mobility, that depends on their
mass, shape and charge among other factors, reaching a detector at the end of
the drift tube (typically made of a Faraday plate). The time it takes for an ion
to travel through the drift tube is the drift time of the ion. If the ratio of the
electrical field with respect to the drift gas density is small E/N, the high number
of collisions with the drift gas dissipate the energy acquired from the electrical
field. This leads to a linear relation between the mean speed of the ion in the
drift tube and the applied electrical field v4 = K E. This proportion K is known
as electrical mobility and mainly depends on the reduced mass of the drift gas
and the ion, the ion charge, the cross section, and the temperature.

To make sure the drift time is measured properly, ions are kept at the shutter grid
before entering the drift tube. This grid is opened with a pulse of a short period
of time, of the order of 100 — 500 us. Shorter pulses let pass less ions on an IMS
scan reducing the sensitivity of the IMS. Longer pulses let pass more ions leading
to more ion-ion repulsions that broaden the peaks. Knowing how the shape of
the peaks is affected by the shutter grid is important in order to diagnose and
understand instrumental issues.

While the drift time the ions take to travel through the drift tube t; is the
magnitude measured, the electrical mobility K is much more practical to work
with, as it accounts for both the electrical field applied E and the length of the
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drift tube L as shown in (1.1).

Vd L
K=-%=_—" 1.1
E FEt, (1.1)

Even more practical than the electrical mobility is the reduced electrical mobility,
that also considers the pressure and temperature conditions so ease the compar-
ison between experiments. The expression for the reduced mobility is given at
(1.2), with the temperature expressed in Kelvin and the pressure in Torr (Eiceman
et al., 2013).

273 P

Ko= K222~ 1.2
0 T 760 (1.2)

Still, even if the reduced mobility compensates for the electrical field and the tube
length, and normalizes temperature and pressure variations, it does not account
for all changes that can happen due to influences of temperature, pressure and
gas composition on the ion identities and cross sections (Berant et al., 1989).

Depending on the IMS instrument, the pressure and temperature information
may or may not be directly available. It is important to measure them if they
are not available, as they can be used to control spectral misalignments as we
will see later in the introduction 1.4.1.3.

TIonization sources

Even if the separation of the sample components happens in the drift tube, the
ionization source has a fundamental role in the IMS, as the choice of the ionization
source can determine what ions can be formed. The most common for IMS are
radioactive, corona discharge, photodischarge lamps and laser ionization sources
(Eiceman et al., 2013).

Radioactive sources (typically beta-emitting 63Nickel, beta-emitting Tritium or
alpha-emitting Americium) are the most common source types, as they have ad-
vantages in terms of portability (no need of additional power sources and low
maintenance). The beta radiation from Nickel of 67 keV ionizes the supporting
atmosphere of the sample producing reactant ions. These ions generate more
secondary electrons, and this process happens until generated ions lack the en-
ergy to ionize the supporting atmosphere. Compared to 63Nickel sources, Tritium
sources have less energy (18 keV) being less hazardous, while Americium is prefer-
able when smaller volumes are required due to their short effective range. The
main drawbacks of the use of radioactive sources are their environmental impact
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the associated regulations on the use of radioactive instrumentation, that require
specific permissions and controls.

Corona discharge sources are typically built with a sharp needle or wire separated
few mm from a metal plate. A voltage difference of few kV is established between
the plate and needle and when the discharge happens ions are formed in the
gap between them. The formed ions are similar to those of a radioactive source
and they contribute in further reactions with the sample. The main advantages
of corona discharge sources are its simple design, no radioactivity and high ion
currents. Its main disadvantages are the need of a high voltage power supply
and a high maintenance due to the corrosion and erosion of the components.
Specifically the corrosion of the needle degrades the stability of the source.

Both the radioactive and the corona discharge ionization sources use forms of
indirect ionization, where the supporting atmosphere is ionized first and sub-
sequent reactions ionize the sample. Photoionization lamps and lasers, on the
contrary, use direct ionization. A photoionization lamp will emit photons from
the excitation of its internal gas. These photons will impact with the sample
molecules and, if the energy/frequency of the photon is right it will form cations
of the sample molecules by removing the valence electron. Further reactions in
the sample may happen but the reaction mechanisms for the ionization are not
yet fully understood. The main advantage of photoionization is that by choosing
the right internal gas in the lamp one can select the energy of the emitted photons
ensuring some selectivity of the instrument. The main disadvantages are the need
of an external power supply and the need of replacing the lamps periodically, as
their lifespan is limited. Their ionization efficiency is also limited, as it depends
on the cross-section for photoabsortion.

There are many other types of ionization sources, some of them have advantages
in the sample introduction techniques. For instance MALDI allows to desorbe,
vaporize and ionize solid samples directly, and ESI eases the analysis of liquid
samples with the IMS.

1.3.1.2 IMS signal characteristics

Reactant ion peak, proton affinity and charge competition

When an indirect ionization source (such as radioactive or corona discharge) is
used, the reactant ions generated from the supporting atmosphere will travel
alongside the sample ions through the drift tube. If no sample has been intro-
duced, reactant ions will travel alone. These ions (typically hydronium H3OT or
ammonia N H, ", depending on the supporting atmosphere) appear as one or two
peaks in the IMS spectrum. Figure 1.2 shows two IMS spectra measured with



1.3. INSTRUMENTATION 9

a radioactive IMS. The blank sample shows the Reactant Ion Peak (RIP), while
the other sample (consisting of a mixture of acetone and ethanol) shows several
peaks corresponding to reactant ions and to the sample ions.
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Figure 1.2: IMS spectra measured with a 63 Nickel radioactive source of a blank
and a mixture of ethanol and acetone.

The ion formation mechanisms are not yet fully understood. The general idea in
a common water-chemistry scenario is that beta radiation ionizes water molecules
forming the reactant ions H* (H20),, and O3 (H20),,. In positive ionization mode,
the analytes with higher proton affinity than water will compete to get protons
transferred to them according to reactions like the one shown at equation (1.3)
(Eiceman et al., 2013). Similarly, in negative ionization mode the analytes will
compete depending on their electronegativity.

H*(Hy0), + A — AH(H,0),,_, + 2H,0. (1.3)

The amount of reactant ions available is limited, so in presence of multiple ana-
lytes those with lower proton affinity will not be ionized. This charge competition
effect causes important non-linearities in complex mixture scenarios, as the sensi-
tivity of the IMS to a specific analyte will decrease if that analyte is mixed with
another analyte of higher proton affinity. Looking at the bright side, the use of
reagent gases and dopants in the supporting atmosphere brings many possibilities
to interfere with the ionization chemistry and to control the ion mobility of the
formed ions. More information on this topic is available at (Puton et al., 2008).

Adduct formation and IMS non-linearities

Another characteristic of the IMS that introduces non-linearities is the adduct
formation in the form of protonated monomers and dimers. We have seen how
equation (1.3) controls the formation of ion protonated monomers of a given
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analyte. When the vapor concentration of the analyte increases, a protonated
dimer appears following equation (1.4), at the expense of both the RIP and the
monomer peaks.

AHT(H;0),, + A — A,HT (H,0),,_, + xH20 (1.4)

Equations (1.3) and (1.4) show the relations between the RIP the monomer and
the dimer peaks. The evolution of the intensities of an analyte that increases and
decreases its concentration is illustrated schematically on figure 1.3. When the
analyte concentration increases, the monomer intensity increases at the expense
of the RIP, up to the point that dimer clusters start to form. At this time, the
dimer intensity starts increasing at the expense of both the monomer and the RIP.
When the concentration of the analyte starts decreasing the dimer will decrease
as well, the monomer may briefly increase to decrease again and the RIP will
recover its initial intensity.

Concentration

Peak
Dimer
=== Monomer

RIP

Intensity (a.u.)
y

Time of analysis

Figure 1.3: IMS RIP/monomer/dimer peak intensities example

If the concentration of the analyte is too high, the RIP may deplete. This is
not desirable, as any quantitative calibration of the analyte in RIP depletion
conditions will not hold. Moreover, such high concentrations of analyte in the
ionization region can lead to diffusion of neutral molecules in the drift region.
In these conditions, product ions form cluster ions with neutral adducts. These
cluster ions have very short spans as they are easily broken in the drift tube.
The formation and breakage of cluster ions in the drift tube is problematic as
it increases the variability in the time it takes for the molecules to reach the
detector. This produces broader peaks in the spectrum, centered on drift times
that correspond to the weighted average of the times of all the cluster ions.
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In summary, there are two causes of non-linearities in the IMS response, namely:

¢ Finite number of reactant ions that cause charge competition, when indirect
ionization sources are used.

e Monomer and dimer formations that require multivariate non-linear meth-
ods for calibration of the concentration of analytes, even without sample
mixtures.

Even if the high sensitivity and speed of analysis make IMS interesting for the
analysis and detection of VOCs, the non-linearity issues present in the analysis
of complex mixtures put IMS in a very challenging position for the analysis of
biological samples. To overcome this, hyphenated analysis techniques are used
to pre-separate analytes in mixtures, and avoid charge competition effects.

1.3.1.3 Other IMS variants

We have seen the operating principle of the most common type of ion mobility
spectrometry and the main characteristics of their signals. It is worth mention-
ing that apart of the most conventional drift tube ion mobility analyzer there
are other also common IMS technologies. For instance, there is the Field Asym-
metric Ton Mobility Spectrometer (FAIMS) that applies higher electrical fields
(10kV/cm) in a periodic asymmetric shape perpendicular to the ion movement.
This wave makes ions drift and oscillate in an asymmetric way. FAIMS relies on
the fact that ion mobilities are not constant in high electric fields to drag ions
towards the lateral plates. As ions have different mobilities and different varia-
tions of mobility, by applying a compensation voltage on top of the drift wave
we can achieve ion selectivity. A sweep on the compensation voltages will allow
us to obtain a compensation voltage spectrum.

There is ongoing research interest in IMS miniaturization (Cumeras et al., 2012),
(Kaye and Stimac, 2015) and even some miniaturized versions of FAIMS exist?.
The interest in IMS miniaturization is related to the possibilities of coupling
IMS with other analytical instrumentation. While in this thesis we will focus on
Gas Chromatography — Ion Mobility Spectrometry, other hyphenated techniques
such as Mass Spectrometry have been coupled to IMS. In a IMS-MS setup the
IMS is used as a separation technique before further analyte identification, as
recently reviewed in (Lapthorn et al., 2013). Some more complex setups of GC-
IMS-MS hyphenations have been used in explosive detection scenarios (Marr and
Groves, 2003), although this triple hyphenation does not seem to be common in
the literature.

2https:/ /www.owlstonemedical.com/products/ultraFaims/
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1.3.2 Gas chromatography

Our interest in Gas Chromatography (GC) as an analytical technique emerges
when we use it as a pre-separation technique for IMS, to palliate the selectivity
issues and charge competition effects IMS has. We will describe the basics of the
GC and briefly discuss GC-MS and GC-IMS hyphenations before moving to data
analysis techniques.

Sample

/ injector
Flow controller ——| J-/\—

Waste

N

Detector

Carrier gas Column oven

Figure 1.4: Gas Chromatograph schema. Wikimedia Commons / Public Domain

Figure 1.4 shows a simple diagram of a Gas Chromatography (GC) system. GC
is the most common analytical technique for the separation of components in
volatile gas-phase samples. As in all chromatographies, the sample is dissolved
in a mobile phase that carries it through a different material called the station-
ary phase. The speed at which the analytes of the sample travel through the
stationary phase depends on the physical and chemical properties of the analytes
thus achieving the separation of components according to the time they need
to pass through the stationary phase, the retention time. In GC, the sample is
diluted in an inert or nonreactive gas (helium, hydrogen) that acts as the mo-
bile phase. This is injected into a capillary column that is a typically long tube
coated in the inside with a microscopic layer of a liquid or polymer. The analytes
in the sample interact with the coating, eluting from the column at different
retention times. Multiple parameters affect the performance of the separation,
among them the selection of the carrier gas and flow, choosing the right coating
of the column, the sample injection technique, and the column temperature. The
chromatographic column is placed inside an oven of controlled temperature. At
higher temperatures analytes elute faster and chromatographies take less time,
however the separation of the analytes in the chromatographic spectrum is also
lower. There is therefore a trade-off in the election of the temperature program,
having the length of an experiment on one end versus the ability to discriminate
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more analytes in the other end.

The GC as a separation method requires a detector at the output of the column.
Flame Ionization Detectors (FID) are the most common, as well as Thermal Con-
ductivity Detector (TCD) and Electron Capture Detectors (ECD). FID is suit-
able for the analysis of life sciences samples as it detects all organic compounds.
Details on these and other detectors are available at (McNair and Miller, 2009,
ch. 7).

Gas Chromatography offers good separation and high peak resolution so in some
situations it can help in analyte identification. Towards that end and in order to
standardize the differences between chromatographic column compositions and
methods, Kovats Retention Indices or simply Retention Indices (RI) are often
used to help identify organic compounds. The RI of an analyte that eluted at a
given retention time is the result of applying a simple transformation with respect
to the retention times of n-alkanes (that need to be analyzed). Further details
are given in (Kovéts, 1958) and (Ni¢ et al., 2009).

When further identification is required, GC is coupled with Mass Spectrometry as
a detector, that gives further analyte identification information. When a GC-MS
hyphenated setup is used, the output of the chromatogram is represented by the
Total Ton Count (TIC), that consists of the addition of all the mass fragments
detected.

The TIC of the headspace of a human urine sample is shown in figure 1.5, revealing
hundreds of compounds detected. This particular TIC shows a prominent base-
line that increases at larger retention times. This baseline needs to be corrected,
as it indicates some contamination from stationary phase in the chromatogram.
The dynamic range of the peaks of the chromatogram ranges in 3 to 5 orders of
magnitude, so precise detection of peaks even close to the noise level is required.

While GC offers good sample separation and large dynamic range, its combination
with mass spectrometry allows us to obtain a fingerprint of the fragmentation
of each of those peaks, making feasible the identification of the compounds in
complex biological samples.

1.3.2.1 Gas chromatography — Mass Spectrometry

When further identification of the compounds in the sample is required, the use
of mass spectrometry (MS) as a companion to gas chromatography is a golden
standard for VOC analysis.

As analytes elute from the chromatographic column they reach the mass spec-
trometer. The mass spectrometer consists of an ion source, a mass analyzer, and
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Figure 1.5: Total Ion Chromatogram of the headspace of a human urine sample.
It presents a significant baseline and a large dynamic range.

a detector. While for liquid and solid samples ElectroSpray Ionization (ESI) and
Matrix-Assisted Laser Desorption/Ionization (MALDI) are often used, for gas-
phase samples Electron Ionization and Chemical Ionization are the most common.
Tons are selected according to their mass/charge ratio (m/z) in the mass analyzer.
These mass analyzers can be based on several principles, such as a simple time of
flight measurement under an electrical field, a quadrupole mass analyzer (where
oscillating electrical fields are used to select the ion paths that will be detected),
or Orbitrap (where ions are trapped in the orbit of a spindle shaped electrode
that confines the ion and oscillate along the spindle axis. The frequency of the
oscillation is recorded and it is related to the mass charge ratio of the ion so by
Fourier transformation of the raw signal the mass spectrum is obtained).

Finally, the ions reach a detector that can be an electron multiplier based detec-
tor.

The range of prices and resolutions of Mass Spectrometry instrumentation are
very broad. Several definitions of resolution are used in mass spectrometry. The
TUPAC offers several definitions for MS resolution:

e 10% valley criteria: Given two adjacent peaks of equal height, compute the
ratio x-, where m is the m/z of the second peak and Am is given as the
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Figure 1.6: GC-MS of the headspace of a human urine sample.

distance between the two peaks, given that there valley between the two
peaks reaches 10% of the peak intensity

o Peak width definition: Given a peak found at m/z m, the resolution can be
given as R = x—, where Am is defined as the width of the peak measured
at a specific fraction of the peak height, that must be reported. Usual values
for the fraction are 50% (that gives the ‘Full Width at Half Maximum’ or
FWHM), 5% (that provides a definition technically equivalent as the 10%

valley criteria) or 0.5%.

Another definition of the mass spectrometer resolution that is used but not con-
sidered by IUPAC is simply “unit resolution”. This is used in some quadrupole
mass spectrometers to describe the ability to separate two consecutive integer
masses.

There is a wide range of resolutions in mass spectrometers. Low resolution mass
spectrometers (e.g. Thermo Fisher DSQ-II?) have a resolution of 1 m/z unit in
the 1-1000 m/z range, while high resolution mass spectrometers have resolutions
of R = 50000 (FWHM, measured at 272 m/z) (Exactive GC Orbitrap GC-MS
System?). Doing a rough comparison, DSQ-II would be able to distinguish mass
272 from mass 271 while the Orbitrap would be able to distinguish mass 272 from
mass 271.99456, being more than a hundred times more precise. Therefore, high

3http://www.thermo.com.cn/Resources/200802/productPDF_ 26943.pdf
4https://www.thermofisher.com/order/catalog/product,/0725510


http://www.thermo.com.cn/Resources/200802/productPDF_26943.pdf
https://www.thermofisher.com/order/catalog/product/0725510

16 CHAPTER 1. INTRODUCTION

resolution mass spectrometers offer the possibility of determining the exact mass
of the fragment ions of the molecules, providing better molecule discrimination
and identification.

1.3.2.2 Gas chromatography — Ion Mobility Spectrometry
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Figure 1.7: Gas Chromatography — Ion Mobility Spectrometer diagram

As we have already mentioned, the use of IMS for the analysis of complex sam-
ples requires some sort of sample pre-separation. The combination of GC with
IMS as detector would ideally produce pure or nearly pure fractions of sample
analytes and analyze each sample fraction separately. In reality, the high sample
flow requirements of the IMS and its dynamics, as well as the desire for hav-
ing fast chromatographies (as speed of analysis is one of the advantages of IMS)
leads to the use of Multicapillar Columns (MCC). These columns are able to
provide moderate separation in few minutes with higher sample flows, as they
are made of multiple individual capillaries placed in parallel (Eiceman and Feng,
2009). The data obtained with MCC-IMS setups is characterized by broader
peaks with higher degrees of coelution, that can separate simple mixtures but
require advanced signal processing techniques for the analysis of more complex
samples.

The pre-separation step provided by the MCC (a) helps discriminating analytes
with similar IMS drift times if they present different elution times and (b) reduces
the number of analytes simultaneously present in the ionization region, reducing
the described charge competition effects.

Figure 1.8 shows an MCC-IMS sample of the headspace of olive oil. The peaks
of this sample are much broader than the peaks of the TIC seen at figure 1.5
and there are several of them eluting at the same retention time. At a drift time
close to 6ms one can see the RIP along the retention time and check that when
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compound elutes from the column and gives a peak the RIP decreases accordingly.
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Figure 1.8: Region of a MCC-IMS olive oil sample. The Reactant Ion Peak (RIP)
is observed at 6 ms. Multiple peaks on the same retention time indicate a strong
co-elution.

In an equivalent way to how the Total Ion Count is computed on figure 1.5,
MCC-IMS and GC-IMS two-dimensional samples can be projected to a single
retention time axis. Instead of summing the intensities of all drift times for a
given retention time, we can compute the RIP area and subtract it from the
maximum, obtaining a non-selective figure of merit of the amount of charge that
has been transferred to other ions throughout the retention time. This figure of
merit is called the “Reverse RIP” and an example of it is shown on figure 1.9.
The reverse RIP, compared to the TIC, presents much wider peak shapes and
less selectivity, but it is useful for visualizing alignment results and in feature
extraction techniques.

Similar MCC-IMS setups have been applied in the detection of gasoline compo-
nents (Baumbach et al., 2003), determination of odd-flavors in foods (Mérquez-
Sillero et al., 2014) and bio-marker discovery applications in breath (Bodeker
et al., 2008).

We are interested in the development of algorithms for MCC-IMS spectra because
MCC-IMS can provide faster chromatographies than conventional GC-MS setups.
Additionally, as MCC-IMS setups operate at ambient pressure, it is much easier
to use them in out of the lab environments, such as point of care medical setups
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Figure 1.9: Reverse RIP. Analytes eluting from the column will show as a peak
in the reverse RIP. The RIP is computed as the integral (from 6.26 to 6.6 ms)
of each IMS spectrum and it represents the charge that has not been transferred
to other analytes at a given retention time. The RIP’s maximum represents the
total charge available. By subtracting the charge that has not transferred to the
total charge, the reverse RIP is obtained.

and industries. This feature is concomitant to the lower cost of an MCC-IMS
instrument compared to GC-MS instrumentation.

1.4 Data analysis for IMS and hyphenated in-
strumentation

With an overview on the kind of life sciences samples we want to focus on, and
with the overview of the analytical instrumentation in the field, we have a solid
base for the discussion on the existing algorithms for data analysis of hyphenated
data, and its application to GC-IMS data. In this section we introduce the main
data analysis techniques and challenges for IMS and hyphenated instrumentation,
while in the following chapters these techniques are studied in more detail.

1.4.1 Preprocessing

Data preprocessing is the enhancement of raw data by the use of filters and in
general signal processing techniques in order to remove noise and artifacts from
the data and correct instrumental drift and baseline variations. The goal is to
go from “raw data” (as it comes from the instrument) to “clean data”, ready
for data analysis and modelling. The increase of quantity and complexity of raw
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data makes it necessary to devote more time and efforts into data preprocessing
to make sure that the information extracted from the samples later on in the
data analysis pipeline is meaningful and of high quality. If preprocessing is not
done carefully, artifacts and unwanted variations can be added to the raw data
(instead of removed!) that can mislead further analyses (Engel et al., 2013).

Preprocessing is also necessary in order to be able to compare data measured
from different measurements (for instance from two IMS), as well as to compare
data from different laboratories. Choosing a preprocessing workflow is in general
problem dependent, as it often depends on the experimental design to account for
the confounding factors in the analysis. For instance, if an experimental design
consists of several analysis batches, the preprocessing methodology used should
account for that, reporting if batch effects are present or even trying to correct
or minimize those batch effects in the cleaned data.

For IMS and GC-IMS data, the main problems that need treatment are random
noise in the measurements, RIP detailing, baseline offsets, spectral misalignments
and normalization.

1.4.1.1 Denoising methods

IMS spectra as captured by the detector are typically noisy. The simplest denois-
ing method usually applied is spectral averaging. This technique, consisting on
simply averaging several spectra, is sometimes implemented at a firmware level
in some devices, letting the user tune the number of spectra to average. This
method is often applied in blocks, reducing the spectral sampling frequency by a
factor of the number of spectra to average: For instance, if 32 spectra are being
averaged and each spectrum is acquired in 21 ms, we will obtain an averaged
spectrum every 672 ms. When this method is used in a GC-IMS instrument, this
averaging is the limiting factor in the retention time sampling frequency.

This averaging technique is often combined with other preprocessing methods,
such as digital filters or wavelets. The Savitzky-Golay filter (Savitzky and Golay,
1964) is often used for denoising. It is fast and simple to implement and can
preserve the peak shape and area.

Another technique quite common is wavelet based denoising (Bader et al., 2008).
This technique can be used to remove the noise and compress the signal by
eliminating the first wavelet scales (removing high frequency components) and
removing amplitude components below a threshold in the transformed space.
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1.4.1.2 Baseline estimation methods

Baseline estimation techniques are often used to correct long term instrument
contamination or degradation, as well as to correct for RIP detailing. They are
essential for accurate peak area integration.

A simple and conventional way to estimate the baseline of a peak before the inte-
gration of its area consists of determining all the peak boundaries in a spectrum
and fitting a soft curve to those points. That curve is the baseline. While the
manual selection of peak boundaries and then fitting a curve to them to estimate
the baseline of each peak is not an uncommon procedure, it is very expensive
when the number of peaks in the signal increases (such as in complex biological
samples) or when there is a large number of signals to analyse. Moreover, the an-
alyst adds a subjective component to peak identification that depends on her/his
expertise. For these cases, an automatic baseline estimation method is needed.

There are many automatic baseline estimation methods published, such as
methods based on polynomial fitting (Salit and Turk, 1998), methods based on
weighted least squares (Eilers, 2003), (Zhang et al., 2010), (Peng et al., 2010) or
methods based on wavelets (Shao et al., 2003). Some of the methods require the
user to define in advance regions without peaks to estimate the baseline. Other
methods approach the baseline estimation iteratively, trying to detect and reject
the regions with peaks that should not be part of the baseline.

The proposed method in this work consists of a modification of the Asymmetric
Least Squares (ALS) baseline removal technique developed at (Eilers Paul H. C.,
2005). We found that ALS technique suffers from bias in the presence of intense
peaks (in relation to the noise level). These intense peaks are often found in
GC-MS samples, as well as GC-IMS samples.

In chapter 2.2, a modification (named psalsa) to the asymmetry weights of the
original ALS method is proposed to better reject large peaks above the baseline.
Our method will be compared to several versions of the ALS algorithm using
synthetic and real gas chromatography signals.

1.4.1.3 Alignment methods

After the sample noise has been reduced and the baseline removed from the data,
alignment is the one major data preprocessing step left. Spectral alignment issues
affect both IMS and GC instrumentation, as well as other analytical chemistry
instruments (e.g. Nuclear Magnetic Resonance, Near InfraRed spectroscopy...)
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Here we will focus on the description of the IMS and GC alignment issues, and
several possible strategies to overcome them.

As described in section 1.3.1.1, on an IMS spectrum, minor changes to pressure
and temperature conditions can cause variations of the ion mobilities, that shift
peak positions in the spectra. These pressure and temperature changes can be
partially corrected by converting the drift time to reduced ion mobilities. How-
ever, the correction is not perfect as flow variations and impurities can affect as
well the mobility of the ions travelling through the drift tube.

As the reduced ion mobility is the main feature the IMS provides for analyte
identification, these shifts in the peak positions need to be corrected in order to
be able to compare spectra from several samples.

The GC misalignments have different causes: As mentioned in section 1.3.2, the
chromatographic column degradation, as well as temperature and pressure vari-
ations affect the retention time at which molecules elute from the column. In
order to compare several sample injections and be able to ensure that the re-
tention times of two peaks correspond to the same analyte, these retention time
variations need to be compensated.

In general, the alignment methods for spectral data can be divided in two groups,
according to two possible strategies to follow: Peak matching and Spectral warp-
ing.

Peak matching is the approach used in LC-MS and GC-MS data analysis tools,
such as MZMine (Pluskal et al., 2010) or PyMS (O’Callaghan et al., 2012). It
consists on extracting features first from the samples (usually using a peak de-
tection and a peak integration technique) and forming a list of peak tables, one
table for each sample. This “peak picking” approach is followed by the “peak
matching”, where all the peak tables are merged into a single table. In this peak
matching, peaks from different samples corresponding to the same analyte are
matched, and missing or noise values are used when a peak is not present in a
specific sample.

Spectral warping keeps the whole spectra in further analyses. With this strategy,
the retention time and/or drift time axes are warped in order to align the spectra
from different samples so all the spectra are comparable. These techniques are
often seen in spectroscopic data, such as Nuclear Magnetic Resonance, where
the warp function is applied to the chemical shift axis to correct for pH fluctu-
ations, among other issues. Many algorithms have been developed to warp in
specific ways the axis according to instrumental knowledge, being icoshift (Savo-
rani et al., 2010), (Tomasi et al., 2011), Parametric Time Warping (Bloemberg
et al., 2010) and Correlation Optimized Warping (Nielsen et al., 1998) the most
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popular techniques.

Both strategies have both advantages and disadvantages. Peak matching tech-
niques require to keep a minimal amount of data from each sample (typically a
list of peak positions and peak areas) making further data analysis faster and
requiring less memory. However, they are very sensitive to peak detection and
integration limitations: undetected peaks will end up being discarded, and par-
tially overlapping peaks may be merged into a single peak with an erroneous peak
area value. The peak matching algorithm must be properly validated, to prevent
that peaks from different samples corresponding to different analytes are treated
as a single analyte (peak merging error) or the opposite, that a single analyte
appearing in multiple samples is not properly merged (peak splitting).

On the other hand, spectra profiling techniques keep the whole spectra for further
data analysis. This strategy ensures that no feature or peak is discarded, no
matter how small it is, and avoids the peak merging issue of the peak picking
approach as there is no area integration. However, this strategy has a higher
computational cost and it is very sensitive to the spectral alignment process: The
warping functions used for the alignment of the spectra may introduce artifacts
in the signal or may align mismatched peaks. These alignment issues are similar
in nature to the ones found with the peak picking approach.

Conventional data acquisition software for GC-IMS data (e.g. LAV®) provides
manual alignment methods, limited to linear distortions of the retention time
and drift time axes. For each pair of samples (one of them being the reference),
the user needs to select for the retention time axis and the drift time axis two coef-
ficients corresponding to a linear relation as given by (1.5). This linear correction
applied to the drift time axis is able to compensate for pressure and temperature
variations, but it is unable to correct for non-linearities. Moreover, this approach
is also time consuming and dependent on the skills and criteria of the user.

t/ret = a1trer +ap (1 5)
tarirt = bitarife + bo

More complex techniques exist, which are able to warp the spectra either by
compressing or expanding them, inserting or removing spectra segments, either
processing each spectra as a whole or by pieces. Usually these techniques aim to
maximize the correlation between the spectra, subject to constraints related to
how (and how much) can the spectra be distorted.

Shttp://www.gas-dortmund.de/index-gas.php?lan=1&spath=463
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In 2.3 we will discuss alignment strategies and their corrections both in the re-
tention time axis and in drift time axis, proposing a protocol for the correction
of the retention time in GC-IMS samples across a several months long study.

1.4.1.4 Normalization

Sample normalization techniques are used to compensate two effects that present
similar consequences (a) variations in the instrument sensitivity and (b) variations
in sample weight, volume or concentration. These effects need to be considered on
each study, and are fundamental in order to compare data from several studies.

If an instrument presents fluctuations in its sensitivity, and the samples are not
properly randomized in the experimental design, there is a danger that samples
representing a specific condition present larger/smaller values due to the instru-
ment fluctuations, confounding the results. One or more internal standard ana-
lytes, not expected to be found in the sample, and spiked before the analysis can
be used to compensate for those variations in instrument sensitivity (Sysi-Aho
et al., 2007). External standards, measured in samples interleaved in the experi-
mental design can be used to monitor the instrument sensitivity across the study.
On the other hand, unwanted variations in sample concentration are also suscep-
tible of being corrected through normalization. For instance in a urine analysis,
the urine concentration can vary from subject to subject according to the amount
of water they have drunk. A traditional and simple approach to compensate for
this effect is to use data scaling methods, such as total area normalization where
each sample is normalized to present the same total area under the assumption
that the overall concentration of all the analytes should be similar. When this
approach is used, any artifact peak coming from the instrument can distort the
total area, and therefore distort all the peak areas after the normalization, un-
less they are specifically excluded (Shellie et al., 2005). An alternative to this
coarse normalization method is to use a fine grained approach and normalize to a
specific analyte or a small number of analytes known to present a low variability.

While this thesis does not focus on normalization methods, a research article
with related discussion has been published at (Cominetti et al., 2016), where
the proteins of human plasma samples were analyzed. In that work, a bovine
protein was used as internal standard for quality control of the instrumental
variability and we discussed what human plasma proteins are good candidates to
be considered cross-study protein standards.

The use of specific analytes for normalization purposes is platform dependent
and domain dependent, being in most cases an open problem without a widely
adopted consensus, despite the efforts.
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1.4.2 Feature extraction: Peak deconvolution

One of the issues of the peak picking approach described previously is that the
determination of peak boundaries may be hindered by the partial overlapping of
peaks corresponding to the same analyte. This happens often in IMS spectra,
where the broad shape of the peaks makes it likely for several analytes to be
at least partially overlapped in the spectra. When an MCC-IMS instrument
is used, the peak overlapping is present as well in the retention time axis, as
the co-elution is a prevalent phenomenon in MCC, as described in (Eiceman
et al., 1995), (Baumbach, 2009) and (Eiceman and Feng, 2009). To overcome
this instrumental limitation, there are Blind Source Separation techniques (BSS)
also named in chemometrics “resolution techniques”. These techniques commonly
applied to data from hyphenated methods, for their capability to deconvolve a
matrix of spectra into a matrix of pure components (or pure spectra) and their
concentration profiles.

In IMS samples, the compounds’ original concentration profiles and pure spectra
can be deconvolved from the sample using BSS techniques, being the family
of Multivariate Curve Resolution methods the most popular (Pomareda et al.,
2010). In this thesis, we propose a blind source separation technique for MCC-
IMS data. Direct application of MCR techniques to full MCC-IMS data typically
fails to resolve co-elution due to the complexity of the data and to the global
noise, which hinders the detection of weak but significant peaks. The typical
approach in this case is the manual selection of the retention time window where
the co-elution appears and the application of MCR in this data subset. However,
few individual peaks can be isolated in the total chromatogram and mostly very
broad peaks are observed. To deal with this complexity, we propose an automatic
manner to investigate co-elution across the whole chromatographic axis.

The proposed method is able to detect and recover compounds in adverse co-
elution conditions and reject spurious spectra with no physical meaning in an
unsupervised manner. This is described in detail in chapter 3 and it is imple-
mented in the developed toolbox.

1.4.3 Outlier detection and lab quality control

During a whole study, ranging from the sampling collection to the data analysis,
many things can go wrong. Data analysis techniques must do their best to
detect and prevent errors from spreading and damaging the whole study. This
is specially relevant in biomarker discovery applications, where one of the major
current issues is the poor translation of prediction models to clinical practice,
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due to lack of reproducibility in the studies among other factors as mentioned
in (Toannidis and Khoury, 2011) and (Xia et al., 2013). The detection of outlier
samples and confounding batch effects as well as their rejection is important in
order to avoid undesired confounding factors that may lead to false discoveries.
As described in (Toannidis and Khoury, 2011), this issue applies not only to
metabolomic studies but in general to biomarker discovery studies in -omics.

A sample can be an outlier for several reasons, usually either due to a biological
condition or a problem in the sample acquisition (for instance having a urine
sample excessively concentrated or diluted, or with a patient not complying with
the experimental protocol), or instrumental issues (for instance injection malfunc-
tions, chromatographic column contamination, strong spectral misalignments). A
desirable data analysis protocol will include methods to detect outliers and reject
them as well as to study their distribution across typical confounding variables,
such as the sample collection day, the laboratory injection order, or the plate were
the samples were stored. A large number of outliers on a given day or plate may
suggest that the whole day or plate should be discarded or if possible corrected,
and further investigations may tell the reasons behind the issue.

Apart from rejecting the outlier samples from a study, an unsupervised explo-
ration of the samples can reveal an intrinsic structure, such as samples grouped
in clusters. These clusters can be desired (e.g. if they are related to a condition
or feature we want to discriminate) or undesired (e.g. related to an instrumental
drift). In some cases clusters are unavoidable (e.g. gender or age differences in a
biomedical study).

As an example, work in the characterization and quality control measures of a
biomedical study can be seen in (Cominetti et al., 2016), where we presented a
workflow for proteomic biomarker discovery in human plasma samples. In that
work, the impact of instrumental confounders, such as the plate or collection
center is assessed, as well as common standard clinical variables that typically
affect results.

1.4.4 Classification and Regression

Once either a) a table of peak areas, b) deconvolved concentration profiles or
c) clean spectra profiles are obtained, common statistical tools or machine learn-
ing algorithms can be used to characterize or build a model able to answer the
hypothesis under test.

If we aim for the prediction of a class (for instance a medical condition or whether
or not the quality of the sample is acceptable), a classifier will be used. On the
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other hand, if we aim for the prediction of a continuous feature, for instance a
concentration of some analyte, we will train a regression model. In any case, all
these techniques are based on assumptions of the underlying data, such as data
normality, linearity, or the parameters that need to be set in order to train the
model, and have their own limitations and requirements.

For instance in classification problems, both linear and quadratic discriminant
analysis classifiers (LDA, QDA) assume that the underlying sample distribution
is a multivariate Gaussian and easily overfit when the number of features is
larger or even in the order of magnitude of the number of samples. For this
reason they are often combined with a Principal Component Analysis to reduce
dimensionality (Garrido-Delgado et al., 2012). Other methods such as Partial
Least Squares - Discriminant Analysis are able to cope with a larger number
of features, as they work by projecting the samples into a linear subspace of
latent variables that maximize the covariance of the data with the class. This
dimensionality reduction makes it very suitable for full spectra profile processing,
typical of spectroscopic data (Worley and Powers, 2012), (Griffin, 2003).

In the applications chapter (section 4.1), we will show how a PLS-DA can be used
to discriminate qualities of olive oil and how to validate the model to prevent
overfitting.

1.4.5 Validation

As it has been mentioned before, one of the main issues with -omics studies is
often a poor reproducibility of the results, that hinders the translation to the
clinics. A way to overcome this is to use strict validation standards able to
minimize the chances of false positives in the results.

A typical cause for the poor reproducibility is the overfitting of the model to
the dataset used for training it, or in other words, that the trained model is not
able to generalize to new samples. The classification and regression models have
parameters that control their complexity. A too simple model won’t be able to
fit the data properly while a too complex model will fit both the data and the
noise, and won’t be able to generalize to new samples properly.

Internal validation techniques — such as K-Fold, Random Subsampling, or Leave
One out — can be used in combination with a metric of the performance of the
model — such as the classification rate, the area under the receiver operating
characteristic curve, or the root mean square error — to estimate the optimal
model parameters. The operating principle behind those techniques is the same:
the dataset is partitioned into a training subset and an internal validation subset,
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then the model is trained with the former and tested on the latter, sweeping
through the model parameters. This procedure is repeated with several partitions,
and the model with the best average score is chosen as the optimal one.

Finally, external “blind” samples that have not been used to train the model
should then be used to assess the actual performance of the optimal model.

This procedure can be repeated multiple times, obtaining multiple “final” models.
This approach is called “double cross-validation” and it is described at (Smit et al.,
2007). Each of the “final” models will provide an estimation of its performance
that can give us an idea of the distribution of the performance of the models to
solve our problem. Ideally, the models should report similar performances and,
if a model similarity metric can be defined, be similar among them.

Additionally, to discard that the results could have been obtained by chance, it is
possible to repeat the analysis multiple times with permuted labels, obtaining a
distribution of null performances. We should ensure that the performance of our
trained model is significantly higher than the randomly obtained performances.

This thesis follows these validation procedures to ensure that the results are
reliable and offers this validation techniques in the developed toolbox.

1.5 Objectives

This thesis focuses on data analysis methods for processing samples, measured
using Ton Mobility Spectrometry (IMS) as detector with Gas Chromatograph as
a pre-separation technique.

More specifically, this thesis aims to:

e Study algorithms and techniques for data processing of analytical instru-
mentation, with a special focus on hyphenated instrumentation and includ-
ing IMS, GC-MS and GC-IMS.

e Adapt and develop algorithms for preprocessing GC-IMS samples. In par-
ticular reliable baseline estimation methods. This is addressed in section
2.2, where a baseline estimation method is proposed and benchmarked to
state of the art alternatives using both simulated and real data.

o Characterize with a study the misalignments of GC-IMS samples, both in
retention time and drift time, proposing a method based on monotonic
cubic splines to correct it. This is addressed in section 2.3.

e Provide a feature extraction algorithm for GC-IMS data. This algorithm
is based on the application of Multivariate Curve Resolution — Alternating
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Least Squares in a sliding window across the chromatographic retention
time and is described in Chapter 3.

Apply the explored techniques in biological complex data, such as olive oil
headspace samples (for quality control and fraud prevention applications)
measured with GC-IMS, and urine headspace samples (for biomarker dis-
covery applications), measured with GC-MS. This is described in Chapter
4.

Offer the algorithms developed in an open source toolbox, that leverages on
existing machine learning algorithms for further flexibility, gathers common
techniques, and can provide a complete solution for the data analysis and
improving the ecosystem of open source data analysis resources.



Chapter 2

Preprocessing

As explained in the introduction, data preprocessing techniques are used for en-
hancing raw data, removing noise and artifacts so further extracted information
is as clean as possible and has nice properties for data modelling methods, that
take care of building classification or regression models.

Both IMS and GC-IMS, as most analytical techniques, need preprocessing before
further peak extraction, especially when dealing with analytes in low concentra-
tion, close to the detection limits. While there are many data processing resources
for preprocessing analytical chemistry instrumentation — XCMS (Smith et al.,
2006), MZMine (Pluskal et al., 2010).. — the number of open source tools for
IMS and GC-IMS data preprocessing remains limited (IPHex (Bunkowski, 2012))
and not widely used, as it is common to rely on privative solutions provided by
instrument manufacturers, such as VisualNow!) or LAV?2. These tools work well
with data from their instruments, but have limited possibilities for being extended
with new algorithms.

In this chapter, we will deal with denoising, baseline correction and spectral
alignment. Among this issues, more emphasis is given to the last two, as it is
where some of this thesis contributions are made.

Lhttp://www.bs-analytik.de/en/products/software-vocan-visualnow.htm
2http://www.gas-dortmund.de/index-gas.php?lan=1&spath=463
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2.1 Denoising

Noise removal algorithms are often needed in analytical instrumentation analysis,
with both very simple and effective solutions as well as more complex ones.

Often, instrument firmware has the ability to perform some denoising, for in-
stance by averaging a number of consecutive samples. This approach can reduce
the noise in the samples at the expense of reducing the sampling frequency of
the instrument. For instance, the Gas Detector Array (GDA) IMS instrument
from Airsense reports the median of several spectra, and the GC-IMS instrument
from FlavourSpec offers the user to tune how many spectra should be used for
averaging. If a single IMS spectra is acquired in 21 ms and the instrument is
averaging 32 spectra, the sampling period in retention time will be of 672 ms.
Increasing the number of spectra averaged will further reduce the resolution in
retention time, while reducing that number will provide more spectra but noisier.

Besides the denoising used in instrument firmware, signal processing filters are
often used to enhance the signal to noise ratio, as well as filters applied in domain
transformations such as Fourier transforms or more recently Wavelet transforms
(Wentzell and Brown, 2000).

For IMS and GC-IMS data, (Bader et al., 2008) recently used a Daubechies 8
wavelet transformation for compressing and denoising GC-IMS chromatograms,
removing components with either high-frequency or small-amplitudes. This ap-
proach was also used in (Szymarska et al., 2015), where they combine the wavelet
denoising with a mask selection, that discards from further analysis regions with-
out information. Previously, this wavelet approach was formally presented by
(Donoho and Johnstone, 1994) and optimized for chemometrics applications by
(Pasti et al., 1999).

Digital filters are the other typical approach for denoising IMS and GC-IMS
samples as used in (Karpas et al., 2012b) or (Bunkowski, 2012). This approach
is common as well in other analytical techniques such as GC-MS (Hoffmann
and Stoye, 2012). The most common digital filters used for denoising are either
median or average moving filters sometimes followed by a Savitzky-Golay filter
(Savitzky and Golay, 1964). In (Guaméan Novillo, 2015), more complex solutions
are developed for specific IMS instruments with very low signal to noise ratio with
some overimposed periodic noise components. These more complex solutions
used either Principal Component Analysis (PCA) or Independent Component
Analysis (ICA) to remove the components associated to undesired noise. While
those complex strategies were proven to significantly increase the signal to noise
ratio, they are not vital, assuming proper electronic insulation of the instrument.
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This thesis uses the existing denoising methods, as they cover the denoising needs
for cleaning noise from GC-IMS and IMS samples.

2.2 Baseline estimation

As mentioned in the introduction, baseline estimation techniques are required
to correct long term instrument contamination or degradation, and for accurate
peak area integration.

There are many ways to correct baseline issues. The most rudimentary one is
to manually select the peak boundaries and fit a curve to them to estimate the
baseline of each peak. However manual baseline estimation is very expensive when
the number of peaks in the signal increases (such as in complex biological samples)
or when there is a large number of signals to analyse. Moreover, the analyst adds
a subjective component to peak boundary identification that depends on her/his
expertise. For this cases, automated baseline estimation methods are needed.
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Figure 2.1: Region of GC spectra with manual peak boundaries marked

There are a wide range of methods for baseline estimation. Some methods are
based on simple polynomial fitting (Salit and Turk, 1998). Other methods esti-
mate the baseline iteratively, trying to ignore peaks which do not belong to the
baseline (Gan et al., 2006). There are also tailored methods, for instance those
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designed to perform well with samples that present a sparse number of peaks,
where most of the intensities have baseline values, and use a low quantile of
the intensity distribution to estimate the baseline (Bunkowski, 2012). There are
also baseline estimation methods based on simple non-parametric techniques such
as Asymmetric Least Squares (ALS) that have been recently gaining popularity
(Eilers, 2003), (Zhang et al., 2010), (Peng et al., 2010).

In this section, we explore several baseline estimation methods. We focus on
Asymmetric Least Squares, and some of its derivations, and we propose a modifi-
cation of ALS tailored for spectral-like data, like GC, IMS and GC- IMS samples.
We show how the ALS technique suffers from bias in presence of intense peaks
(high intensity compared to the baseline). Our method, named psalsa and pre-
sented at (Oller-Moreno et al., 2014), improves the rejection of those large peaks,
by modifying the asymmetry weights of the original ALS method. We bench-
mark its performance with respect to other methods, using both synthetic and
real chromatographic data. Our proposal improves existing solutions both by
providing more accurate baseline estimations and by being more robust to pa-
rameter variations (so less parameter tuning is required). The psalsa method is
applied in chapter 4 (Applications), both in GC-IMS and GC-MS samples.

2.2.1 Data description

Two Gas Chromatography datasets are used to compare the different methods:
On the one hand, a synthetic dataset offers the possibility to objectively assess the
performance of the different methods, as we know the real baseline added to the
synthetic signal and therefore we can compute the error of the different baseline
estimations. On the other hand, a real dataset lets us check how the different
methods perform on real world samples, which inevitably are more complex than
synthetic chromatograms.

2.2.1.1 Synthetic dataset

A dataset with Ngynen = 100 samples was generated. Each synthetic chro-
matogram lasted 30 minutes long with a sampling frequency of 2 Hz. Each sample
was the combination of three components: a baseline, some random noise and
a signal made from the addition of several peaks. Figure 2.2 shows an example
of one of those synthetic chromatograms.

Each of the components of the synthetic chromatograms was designed to obtain
chromatograms similar to the ones found on the real dataset (described below).
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Figure 2.2: Synthetic chromatogram

The chosen criteria described below is also similar to the criteria followed by the
NIST, in their chromatogram simulator?.

Peak model

In order to generate the signal, several peaks are generated and placed ran-
domly on the signal. A peak density of 0.25peaks/s is chosen giving a total
of 450 peaks/sample.

Peaks are modeled following a Generalized Exponential (GEX) function. The
generalized exponential function (Felinger, 1998) is an empirical peak model that
has been used successfully to describe chromatographic peaks (Vaidya and Hester,
1984), taking into account factors such as peak shape and peak asymmetry.

The GEX model is represented in figure 2.3 is given by:

-8 "  h () e

with @ > 0 and b > 1 are constants, h is the peak height, ¢,, is the location
of peak maximum and ty is the time where the peak starts emerging from the
baseline.

Peak model parameters are sampled from different probability distributions, with
parameters in empirically reasonable values to obtain a synthetic dataset similar

Shttps://www.nist.gov /services-resources/software/simulated-chromatographic-data
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Generalized exponential peak shape
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Figure 2.3: Generalized exponential peaks

to the real dataset:

e a: Uniform distribution with min = 0.5 and max = 2.

e b: Uniform distribution with min = 5 and max = 8.

o h: LogNormal distribution with 1 = log(400) and o = log(200).
e to: Uniform distribution in the retention time range.

o t,: to+ 2 + Poisson distribution of A\ =4

Baseline model

The baseline is generated following a combination of several contributions. The
ArcTan factor contributes to the baseline by increasing it at larger retention times,
in a similar way to slight column bleeds. The Linear and sinusoidal contributions
simulate slower fluctuations.

b(t) = ArcTan(t) + Linear(t) + Sinusoidal(t)
2(Anigh — Atow i
ArcTan(t) = Ajow + M . arctan M
™ tr (2.2)
Linear(t) = mt +n
(

Sinusoidal(t) = Asin(27f - t + ¢)
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The parameters for each baseline contribution are chosen from random uniform
distributions in the following ranges:

o ArcTan: Apw € [2,3] - 10°, Apign € [1,1.5] - 10%, ¢, € [1100,1300], ¢, €
(300, 700]

o Linear: m € [3.5,6] - 105, n € [4,7] - 10°

o Sinusoidal: A € [5,30]-10%, f €[0.9,1.4] - 1073, ¢ € [, 7]

Noise model

Gaussian noise with A = 100 4 200¢, 4 = 0 and ¢ = 400 has been added to the
signal. The amplitude increases with the retention time to simulate the fact that
the end of the chromatogram is more noisy than the beginning.

2.2.1.2 Real samples

Chromatograms from a GC-MS dataset of human urine headspace samples were
used to test the proposed algorithm. Figure 2.4 shows samples from this dataset,
notice the large dynamic range on the y axis showing peaks orders of magnitude
larger than the rest of the signal.

Samples were analysed at the PCB (Barcelona Scientific Park) premises, using a
gas chromatograph — mass spectrometer (Focus GC-DSQ II) from Thermo Sci-
entific equipped with a quadrupole analyser and an electron multiplier detector.
The capillary column used was DB-624 (60m x 0.32mm i.d.) coated with 6 %
cyanopropylphenyl 94 % dimethylpolysiloxane (film thickness 1.8 um). The tem-
perature program of the chromatographic oven began at 60 °C (2min) ramped
to 220 °C at 8 °C min~! and held for 5min. The injection port was maintained
at 220 °C throughout the experiments.

2.2.2 Baseline estimation method description

In (Newey and Powell, 1987) Asymmetric Least Squares (ALS) was introduced
in order to construct statistical tests for homoskedasticity, applying them to
Econometrics. Much later, Eilers et al. applied ALS for baseline estimation in
connection to Parametric Time Warping alignment (Eilers, 2004), and presented
it in detail (Eilers Paul H. C., 2005). Recently, a modification of the ALS algo-
rithm named airPLS was presented (Zhang et al., 2010), improving the weights
of the original ALS method. Additionally, J Peng et al. (Peng et al., 2010) pre-
sented a different improvement to the original ALS method focusing on baseline
estimation with multiple samples.
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6 Real GC-MS urine samples
16 : : : :

14r

12r

10

AU

Intensity (

il \L PR

0 5 10 15 20 25 30 35
Retention time (min)

Figure 2.4: Real urine samples

2.2.2.1 Original Asymmetric Least Squares

Given a signal y of length m, ALS aims to estimate a signal z smoother than y
but still similar to it. ALS proposes a model-free cost function given by:

S=3"E+ 1Y (A%)° (2.3)

where d; = y; — z; are the residuals of the estimation and A%z; = z; —22;_1 + 2 _s.

The first term in S accounts for the fidelity from z to y, while the second term
imposes smoothness to z. Smoothness is controlled by parameter A, usually cho-
sen between 102 < X < 10°. The cost function can be generalized by introducing
weights w:

S=Y w2 +AY (A%)° (2.4)

These weights w are introduced so as, if properly defined, will be able to reject
penalizations to the cost function produced by regions where the signal is above
the estimated baseline (i.e. peaked regions).
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The proposed definition of w is based on a parameter p which is usually chosen
as 0.001 <p <0.1:

ifd; >0

w; =1{F i (2.5)
1—p otherwise

As one can see from the definition of w; and the values of p, regions where the

signal is placed above the baseline will have a much smaller contribution to the

penalty.

Minimization of equation (A.2) leads to:

(W +AD'D)z =Wy (2.6)

where W = diag(w) and D being the difference matrix: Dz = A2?z. As there
is no model imposed on z, there will be m equations forming a sparse system,
where only the diagonal end two sub-diagonals above and below it are non-zero.

A solution to eq. (A.2) can be found by iterating. Given an initial set of weights
w; = 1, an initial estimation for z; can be computed. From z;, weights are
computed and used to get a new estimation for z. Less than 20 iterations are
needed for a proper estimation of z.

According to (Eilers Paul H. C., 2005), a proper value for p may be validated
by considering the histogram of the residuals d, so as the noise components are
normally distributed near zero and peaks are represented in the histogram as a
positive asymmetric component. The right value for p will produce a baseline
that cuts the noise instead of fitting below or above it.

One limitation of the ALS method appears when the chromatogram presents
a large dynamic range, with peaks of very large intensity. In this case, the
estimation of the baseline given by ALS will not converge to the actual baseline.
If the ALS algorithm converged to the actual baseline, the d? term below peaks
with large intensity would be very large as well. In order to have a minimum in the
cost function (convergence), either (a) p is chosen small enough to compensate for
the large d? or (b) the smoothness term is so large that the lack of fidelity driven
by the d? penalty is not relevant in that area (i.e. a large value of \ is chosen). In
the case of (a), outside of the large peak areas, the small p values would force the
convergence of the baseline to be below the noise, instead of crossing through the
noise. Therefore, the rest of the peak areas will not be properly estimated. In the
second case, the large value of A would not allow the baseline to fit to baseline
variations properly. Often, the best election of p and A in these cases requires a
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trade-off between a proper fitting of the larger peaks or fitting the smaller peaks.
The result is a baseline estimation that penetrates inside the larger peaks. The
baseline obtained in several iterations in one of such cases is seen in figure 2.5.

—— Urine sample
—ALS (it:1)
——ALS (it:3)
—ALS (it:5)
(it:7)
(it:9)

—ALS (it:7
—ALS (it:9

. Tntensity (3 v )

05 -
16 1 2 2 E3 =

Retention time (min)

Figure 2.5: ALS fit in successive iterations. The final iteration still penetrates
inside the large peak located at 19 min while it is fitted below the noise level
(and not crossing it) in the rest of the chromatogram.

2.2.2.2 airPLS correction

In (Zhang et al., 2010), the authors proposed an improvement to the definition of
w with two objectives: To remove the parameter p, simplifying the usage of the
algorithm; and to improve the quality of the estimation by adapting the weights
depending on the distance from the signal to the baseline.

The definition of the weight vector w for airPLS is as follows:

0 ifd; >0

i = —t-|d; . 2.7
v exp (Z,jl%) otherwise (2.7)

where t is the current iteration. With this definition of weights, regions of the
signal where the signal is above the estimated baseline are ignored at the next
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iteration. For the rest of the weights, the further the signal is from the baseline
the least it contributes to the penalty.

Having the current iteration ¢ in the exponent forces the weights to be smaller
on each iteration, making more significant the smoothness term as iterations go
on.

The criteria set by airPLS to stop iterating is given by either a maximum number
of 20 iterations or by:

> Jdi| < 0.001) |y (2.8)
Vi

d; <0

The featured airPLS version 2.0 for MATLAB was used as the reference imple-
mentation. In this version, a p value is used to set the weights of points found
at the beginning and at the end of the spectra as the adaptation of the weights
does not give good estimates close to the signal limits.

2.2.2.3 Proposed method: psalsa

We propose a different definition for the weights much more similar to the original
ALS algorithm. However, we define an adaptive value for the weights depending
on the residuals as follows:

i .
wi:{p-ek ifd; >0

(2.9)
1—p otherwise

The difference with respect to the original ALS method is on the positive residuals,
where p is pondered by exp (—%) Peak regions will show large residuals getting
smaller weights, whereas noise regions will present small residuals and weights
close to p. This approach gives an additional parameter named k that controls
the exponential decay of the weights. This parameter can be set to 5% of the
maximum intensity value. Note that by taking the limit £k — oo we recover the
traditional ALS method.

As the original ALS method does, the criteria used by psalsa to stop iterating
is given by either a maximum number of iterations (usually 10) or when the
residuals do not change of sign with respect to the previous iteration.
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2.2.3 Results

2.2.3.1 Synthetic chromatograms

The three described methods were applied to the synthetic chromatograms, to
obtain an objective evaluation of the baseline estimation. A sample of the optimal
fitting results is shown at figure 2.6.

5
x10

15 TTTT T T T T T T
— Simulated chromatogram “

— Simulated baseline

— ALS estimation

H—airPLS estimation

—_
o

— psalsa estimation

Intensity (a.u.)
o

Retention time (min)

Figure 2.6: Region of a synthetic sample showing different baseline estimations.

In order to estimate the best parameters for each method, the parameter space
was swept. For each sweep, the root mean square error (RMSE) was used as a
figure of merit (defined in (2.10)). The RMSE values were averaged across sam-
ples, obtaining a global RMSE. The optimal parameter values for the synthetic
database were chosen as the parameters with the smallest global RMSE.

m 2
RMSE = W (2.10)

In equation (2.10), z; refers to the estimated baseline and b; to the simulated
baseline. m is the signal length.

In order to compare the three algorithms, figure 2.7 shows a boxplot of the RMSE
distribution for the different methods in their optimal settings. As we had already
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seen in 2.6, while the airPLS method is able to improve the ALS approach, our
psalsa performs better.

10
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Figure 2.7: Comparison of the three methods for synthetic chromatograms

The main easy to argue weakness of the psalsa algorithm is the addition of a
parameter that needs to be tuned. Figure 2.8 shows how the RMSE changes
according to the value of k£ used. While we recover the performance of ALS and
airPLS in the worst cases, in a range of three orders of magnitude the psalsa
performance is better.

2.2.3.2 Real samples

Finally, we subjectively checked the baselines on urine samples from the real
dataset. The three methods were applied to real samples. Figure 2.9 and figure
2.10 show the estimated baselines on different regions of a real urine sample. The
first figure shows a region with large peaks. To avoid the effect present in ALS
and shown in figure 2.5 where the baseline penetrated in the large peaks, a lower
value of p had to be used. This is why the ALS baseline is always fitted below
the noise level.
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Figure 2.8: Performance comparison of different exponents for psalsa. ALS and
airPLS optimal results are shown for comparison
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Figure 2.9: Comparison of the baseline corrections applied to real samples
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Figure 2.10: Detailed region of the comparison of the baseline corrections methods
on real samples

2.2.4 Discussion and remarks

As mentioned, the original ALS algorithm was not designed specifically to fit
signals with peaks several orders of magnitude above the baseline. Considering
eq. (A.2), even though a small value for w; is given for d; > 0, given a large
enough d;, its contribution to S may still be dominant, producing an estimation
of the baseline which contains part of the peak area. This forces us to choose
a value for p so as the baseline is does not penetrate in the peaks, instead of
choosing p to cut through the noise as suggested in (Eilers Paul H. C., 2005).
The value for p will then be smaller, leading to baseline estimations below the
real baseline. Given that the estimation is below the baseline, a flexible baseline
will be easier to adapt to the real baseline whenever possible, that is the reason
why A values are smaller in the ALS method with respect to the other methods.

Therefore, on the analysed signals, the parameters which minimize the RMSE on
the ALS method are chosen to be able to properly fit the large peaks, instead of
according to their theoretical purpose.

On the other hand, the airPLS algorithm is able to cope with large peaks, as it
gives w; = 0 for d; > 0. Unfortunately, that approach again leads to baselines
fitted below the noise level instead of cutting through it. The airPLS algorithm
was designed with the aim of removing the p parameter, and indeed p contribution
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is less relevant to the final estimation than the contribution of p at the original
ALS algorithm, as it is only used at the boundaries of the signal.

Finally, psalsa algorithm does not suffer the issues of the original ALS method,
as the exponential modulation reduces the contribution to S of the large peaks.
This makes it possible to use p to enforce that the baseline crosses the noise level,
instead of fitting below it. p value is not comparable directly to the ALS method,
as its contribution is modulated by the exponential. Even though psalsa requires
an additional parameter (k) to control the exponential decay of the weights, figure
2.8 shows that the RMSE value is smaller on psalsa on a range of three orders of
magnitude, making it easy to provide a value for k that improves ALS results.

When applying the three methods on real samples, we can confirm how psalsa
is able to estimate a baseline cutting through the noise, instead of being under-
fitted as happens with the other two methods.

In chapter 4 (Applications), we will see how this method is applied to both GC-
IMS samples and GC-MS samples. Here we will continue with the preprocessing
techniques, discussing the alignment issues of GC-IMS samples.

2.3 Alignment

Spectral misalignments are a major concern of most spectroscopy and analytical
chemistry instrumentation. Peaks of different samples corresponding to the same
analyte should, in ideal conditions, appear in the same spectral position. How-
ever in many cases, we have to shift or warp the spectra to achieve that. This
procedure is called alignment.

As mentioned in the introduction (see 1.4.1.3), there are two general strategies for
spectral alignment: Peak matching and Spectral warping. Peak matching strate-
gies are quite common in LC-MS and GC-MS data analysis and very common
if tandem MS setups are used. The reason for choosing this strategy in those
cases is that the samples are characterized by narrow sparse peaks, and therefore
the approach of integrate peaks and then match them is much more computa-
tionally effective than looking for correlations in the whole spectra. Examples of
peak matching strategies are found for instance in MzMine (Pluskal et al., 2010)
where they use the RANdom SAmpler Consensus alignment technique, or PyMS
(O’Callaghan et al., 2012) where they use a dynamic programming approach
based on the Needleman-Wunsch algorithm (Robinson et al., 2007) for sequence
alignment. In XCMS (Smith et al., 2006), the authors use a non linear method
based on the clustering of peaks already identified by their mass spectrum.
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On the other hand spectral warping is more often used in spectroscopy and in
chromatography (either without further mass spectrometry fragmentation or ap-
plied to the total ion chromatogram). In metabolomics applications, Nuclear
Magnetic Resonance (NMR) is one of the golden standard techniques where spec-
tral warping techniques are common. A recent review by (Vu and Laukens, 2013)
summarizes alignment methods applicable to NMR data and their main features.
They describe 18 alignment methods, 6 of them using a peak picking based ap-
proach and 12 of them using spectral warping techniques. The spectral warping
techniques can be classified according to the correction they apply (either shifting
spectra, a polynomial correction, stretching, compressing...), the figure of merit
or criteria used to determine the right alignment (Pearson correlation, FFT cross-
correlation...) and whether or not the alignment technique is applied in segments
or to the whole spectra at once. Among these techniques, icoshift (Savorani et al.,
2010), (Tomasi et al., 2011), Parametric Time Warping (Bloemberg et al., 2010)
and Correlation Optimized Warping (Nielsen et al., 1998) have gained popularity
thanks to their simplicity and availability of their implementations.

Even though many methods exist, conventional data acquisition software for GC-
IMS data processing (e.g. LAV%, from GAS Dortmund) often provides simple
and/or manual alignment methods, sometimes limited to linear distortions of the
retention time and drift time axes. With these methods it is not possible to
fully align the spectra, as for instance retention time variations are typically non
linear.

Misalignments in retention time are produced by instrumental drift related to
column degradation, as well as variations in temperature, pressure or flow. Each
of these misalignments is characterized by a different time scale. Column degra-
dation affects the measurements on a monthly time scale, while flow variations
can happen between measurements or during a measurement.

In this section we characterize the misalignments of GC-IMS samples in a more
than 10 months long study, using external calibrants. This characterization
shows the feasability of the sample alignment even with samples measured several
months apart, and allows us to discuss how often is it worth analyzing external
calibrant samples in a GC-IMS study. Based on the results, we discuss the use-
fulness of measuring external calibrant samples and its limitations. To perform
the retention time alignment, both a linear method and a non-linear method are
used to highlight the advantage of the non-linear method, based on monotonic
cubic splines.

4http://www.gas-dortmund.de/index-gas.php?lan=1&spath=463
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2.3.1 Dataset

For the alignment analysis presented in this section, we used calibrant samples.
These samples are a mixture of six ketones (2-butanone, 2-pentanone, 2-hexanone,
2-heptanone, 2-octanone, and 2-nonanone), measured in 15 days. These 15 days
span in an irregular pattern across 10 months. The experimental distribution
allows us to explore both the short term (same-day, few days apart) and long
term (weeks, months) misalignments.

The samples were analyzed by Dr. Lourdes Arce’s research group at the
Department of Analytical Chemistry from the Universidad de Cérdoba.
The analytical protocol summarized here is explained at (Garrido-Delgado
et al., 2015). The GC-IMS instrument is a commercial FlavourSpec® model
from Gesellschaft fiir Analytische Sensorysteme mbH (G.A.S., Dortmund,
Germany) with a 30 m long x 0.25 mm (inner diameter) chromatographic
column filled with 0.5 ym film thickness of methyl, phenyl and vinylsiloxane
from CS-Chromatographie Service GmbH (Diirem, Germany) in a 94 : 5 : 1
proportion. The injection rate was 100 uL/s, and the carrier flow rate was
set to b5mL/s. The column was operated under isothermal conditions at
40 °C. The spectrometer was equipped with a heated splitless injector with
2mm inner diameter, 6.5 mm outer diameter x 78.5 mm fused quartz glass. This
enabled direct sampling of the headspace from the samples by using a 2.5mL
Hamilton syringe furnished with a 51 mm needle of 23 gauge from CTC Analytics
AG (Zwingen, Switzerland). The inlet septa injector used was 11 mm in diameter
and supplied by Agilent Technologies (Santa Clara, CA, United States). The
instrument was also coupled to an autosampler unit from CTC Analytics AG
(Zwingen, Switzerland).

For analysis, the ketones mixture was prepared in a 20 mL vial that was closed
with magnetic caps. After 8 min of incubation at 60 °C, 200 uL of sample
headspace was automatically injected by means of a heated syringe (80 °C) into
the heated injector (80 °C) of the GC-IMS equipment. After injection, the ni-
trogen gas used as carrier gas, with inlet pressure of 4 bars, passed through the
injector inserting the sample into the gas column, which was heated at 40 °C for
timely separation. Then, the analytes were eluted in the isothermal mode and
driven into the ionization chamber for ionization, prior to spectrometric detec-
tion. Molecules were ionized using a Tritium source (6.5 keV) and the resulting
ions driven to the drift region via a shutter grid (Bradbury and Nielson design),
set at a pulse width of 100 us. The drift tube was 5cm long and operated at
a constant voltage of 400 Vem ™!, a temperature of 45 °C, and a drift gas flow
rate of 250 mL min~! (Nitrogen). Data were acquired in the positive ion mode.
The detector offered a sampling frequency of 150kHz in the drift time axis. A
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full ion mobility spectrum was acquired every 21 ms, and the firmware was set
to record the average of 32 spectra for noise reduction purposes, leading to a
sampling period in the retention time axis of 672 ms.

Table 2.1: Time distribution of 44 calibrant samples

Date Time since previous Number of Samples
2015-03-16 1
2015-03-20 4 days 1
2015-03-23 3 days 1
2015-03-31 8 days 1
2015-04-06 6 days 1
2015-04-14 8 days 1

2015-05-06 >3 weeks 1
2015-05-14 8 days 1
2015-12-03 >6 months 5
2015-12-09 6 days 5
2015-12-10 1 days 5
2015-12-14 4 days 4
2015-12-16 2 days 5
2016-01-11 >3 weeks 7
2016-01-14 3 days 5

During the time of the analysis, the instrument was operated regularly, analyzing
the headspace of olive oil samples so conventional instrument degradation and
fluctuations are to be expected. Table 2.1 shows the distribution of the calibrant
samples, as well as the gap with respect to the previous calibrant analysis.

2.3.2 Methodology

The data analysis strategy is represented in figure 2.11. As explained in previous
sections, samples were denoised using a second order Savitzky-Golay filter with
a 19 point window (0.12ms), applied to each IMS spectra, and the baseline was
removed using the presented psalsa algorithm (A = 105, p = 0.005). Peaks were
easily detected based on the position of the maximum in the regions where each
of the ketones were expected to appear. Some of the ketones presented two
ion clusters, as a monomer and a dimer and in those cases they are reported
independently. At this point, a table with (sample, ketone, cluster, retention
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time, drift time) was built, where all the retention times and drift times for a
given peak were expected to be the same under ideal conditions. The warping
functions to align the spectra in both axis were based on the alignment of these
ketone peak positions.

Raw samples # Preprocessing #

Figure 2.11: Data analysis flow chart for the alignment study

Retention time

calibrant peaks correction correction

Detection of # Drift time

Drift time: The drift times were compensated using a multiplicative correction.
The multiplicative correction is a simple and linear approach to correct the drift
time. It assumes a warping function of the drift time based on a linear relation
t' = kt, where the k has to be estimated. The estimation of the right k in the
linear transformation was based on the position of the Reactant Ion Peak, so all
the reactant ion peaks were properly aligned. This correction is compatible with
the conversion from drift times to reduced mobilities explained on section 1.3.1.1.
From equations (1.1) and (1.2), we can derive the reduced mobility as:

L 273 P 2T3LP 1

°= B, T 760 T60ETt,

(2.11)

Equation (2.11) shows how the conversion from drift time to reduced mobility is
mathematically equivalent to a linear transformation of the drift time axis.

Retention time: To align the retention times, a monotonic cubic spline inter-
polation method was used. To the best of our knowledge, the use of monotonic
cubic splines for the alignment of GC-IMS data has not been used in the past,
however in chromatography applications the most similar work we were able to
find was reported by (Halang et al., 1978), where natural cubic splines are used
for the alignment of retention indices. More recently (Eilers, 2004), highlight the
non-uniform retention time distortions reported at (Gong et al., 2004) on a High
Pressure Liquid Chromatography - Diode Array Detection (HPLC-DAD) instru-
ment, and suggest as a possible alignment strategy the use of p-splines (penalized
B-splines).

Given that we know the retention time of each of the ketones for each sample, it
would be desirable that the warping function is flexible enough to fit those vari-
ations. Also, the elution order is not expected to change (as cross-over retention
time effects (Mehran et al., 1991) are not expected in these calibrants), so it is
feasible to impose in this case the monotonic assumption. Finally, changes to the
retention time must be “smooth” as rough transitions would severely distort our



2.3. ALIGNMENT 49

spectra and “local” meaning that the warping corrections done on a retention
time region should be mainly influenced by points in the vicinity of that region
and not by calibrants of analytes eluting at distant retention times.

Linear or polynomial models do not have enough flexibility to fit the retention
time variations, and they have limited locality. The locality can be increased
by using piecewise linear models or piecewise polynomial models, but piecewise
warping functions are not necessarily differentiable at the edges. This is a gen-
eral problem of all the alignment algorithms based on segments: On the segment
boundaries artifacts occur due to the non differentiability of the warping func-
tion. For instance, the popular icoshift algorithm (Tomasi et al., 2011) resorts to
providing missing values on segment edges to prevent the appearance of artifacts.
Monotonic cubic splines as provided by (Hyman, 1983) fulfill all the conditions.
They are continuous and differentiable and at the same time they are able to
fit the calibrant points that we use as support. The splinefun function of the
stats R package, provides an easy to use implementation as well.

2.3.3 Results and Discussion

After peak detection, it is easy to visualize the position of the unaligned peaks of
the calibrant samples. Figure 2.12 shows how the most important misalignments
appear in the retention time axis, while the drift time axis has smaller fluctuations.
The Reactant Ion Peaks are shown as a straight vertical line around 6.5 ms and
present a dispersion comparable to the ketone peaks. The mean position of the
ketone peaks as well as their dispersion, represented with the standard deviation
is shown on table 2.2.

Table 2.2: Raw peak positions

Name Cluster Drift time (ms) Retention Time (s)
2-butanone Dimer 8.58 £ 0.11 92 +£ 11
2-pentanone Dimer 9.44 + 0.11 124 + 15
2-hexanone  Dimer 10.35 + 0.12 212 + 27
2-heptanone  Dimer 11.24 £ 0.13 401 + 33
2-heptanone Monomer 8.66 + 0.11 406 + 32
2-octanone Dimer 12.12 + 0.13 584 + 36
2-octanone Monomer 9.15 4+ 0.11 590 £ 36
2-nonanone  Dimer 12.96 £+ 0.13 1052 £ 88

2-nonanone  Monomer 9.65 £ 0.11 1053 £ 87
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Figure 2.12: Peak positions for the 44 calibrants, both in retention time and drift
time. On the left, there is a band of misaligned RIPs.

As expected, smaller ketones had shorter drift times, as they can travel faster
through the drift tube. Similarly they also elute faster from the chromatographic
column. With respect to the monomer/dimer differences, apart from the obvious
shorter drift times in monomer ions, in some cases the monomer was detected a
bit earlier than the dimer. This is the normal and expected behavior described
at section 1.3.1.2.

Considering instrumental drift, the retention time axis shows a long term drift
behavior. This can be seen at figure 2.12, where there is a clear drift of each
cluster of points towards larger retention times that is correlated with the day
of the analysis. This drift also exists in the drift time axis, albeit with a major
random contribution.

2.3.3.1 Drift time correction

Figure 2.13 represents the peak positions after the drift time alignment. The RIP
of all the samples is overlapped, as it is the reference peak used for the estimation
of k in the linear distortion. The drift time dispersion is greatly reduced. Table
2.3 shows how the standard deviation of all the clusters is reduced by almost an
order of magnitude in the drift time axis after the correction.
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Figure 2.13: Peak positions for the 44 calibrants, both in retention time and drift
time. The drift time axis is aligned, and RIPs match.

Table 2.3: Peak positions after drift time correction

Name Cluster Drift time (ms) Drift time (corr.) (ms)
2-butanone  Dimer 8.58 + 0.11 8.46 + 0.02
2-pentanone  Dimer 9.44 £+ 0.11 9.3 + 0.02

2-hexanone Dimer 10.35 + 0.12 10.19 4+ 0.03
2-heptanone  Dimer 11.24 £+ 0.13 11.07 + 0.04
2-heptanone Monomer 8.66 + 0.11 8.53 £ 0.01
2-octanone Dimer 12.12 £+ 0.13 11.94 + 0.05
2-octanone Monomer 9.15 £+ 0.11 9.02 + 0.02
2-nonanone  Dimer 12.96 + 0.13 12.76 + 0.05
2-nonanone  Monomer 9.65 £ 0.11 9.51 + 0.03

Finally, figure 2.14 shows the estimated correction factor k for each of the anal-
ysis, sorted and colored by day. The correction factor is between 0.97 and 1.03
in all cases, meaning that the distortion is below £3% under normal working
conditions. It is worth mentioning that samples analyzed on the same day tend
to cluster together in the correction factor estimation indicating that drift time
misalignments in the same day are smaller than in different days.
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Figure 2.14: Correction factor for the drift time alignment

2.3.3.2 Retention time correction

After the alignment on drift time it is time we proceed to align the retention
times. We will compare a simple linear regression warping with the monotonic
cubic splines. The linear regression as a basis for the comparison is chosen for
its availability in commercial GC-IMS data analysis software and because of its
simplicity. If the linear regression warping provides a first order alignment cor-
rection, then the monotonic cubic splines should improve the alignment thanks to
the extra flexibility that the splines can give, but in any case should be a second
order improvement to the linear regression. Having these two methods makes it
easy to understand where and how monotonic cubic splines improve the linear
regression warping.

One of the concerns of using splines (an interpolation method) instead of fitting
a linear model is the risk of overfitting. With great freedom comes great respon-
sibility, and having more degrees of freedom to adjust the splines requires the
responsibility to validate the alignment in a fair way. To this end, the following
procedure was chosen to ensure a fair validation of the algorithm:

e The oldest sample was chosen as a reference

o A warping function w(t) was estimated for the first sample of each batch
with respect to the chosen reference

e The warping function was applied to the rest of the samples in the batch.
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e Validation: The procedure was repeated excluding one of the ketones from
the analysis and predicting its position.

The first result of applying the methodology using a linear model and using mono-
tonic cubic splines is the comparison of the appearance of the warping functions.
Figure 2.15 shows on the left the linear warping functions for all the samples while
on the right there is the monotonic cubic splines interpolation solution. While
both methods provide similar warping functions, it can be seen how the mono-
tonic cubic splines have more flexibility and provide second order corrections to
the alignment, especially around ¢,, = 200s and around ¢, = 750s.
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Figure 2.15: Warping functions for linear and cubic retention time corrections

The next figure to consider is what happens to the retention time estimations if
we leave a ketone out. By leaving a ketone out we are in practical terms trying to
align a peak that is far from the calibrants. Table 2.4 shows the comparison of the
estimation of the excluded ketones. Note that the 2-butanone and 2-nonanone
were not left out because they were the calibrant extremes of the analysis. This
table shows the limitation of the linear model when trying to fit any of the peaks.
The average predicted retention times for the linear correction method presents
a much larger bias than the monotonic cubic splines method. This is more clear
in the case of the 2-octanone. One explanation for this is that the 2-octanone is
a point with a lot of leverage in the linear model and therefore the linear model
suffers more to predict its position when it is missing. On the other hand, the
flexibility of the splines model allows to have less bias in the prediction of the
ketones position. For the monotonic cubic splines model, the dispersion is similar
to the linear model, because of the leverage of the 2-octanone peaks.
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Table 2.4: Comparison of the estimated retention times

Peak left out Reference (s) Linear (s) Splines (s)

2-pentanone 95 98 + 4 94 £+ 3

2-hexanone 165 178 £ 8 169 + 5
2-heptanone 343 345 £ 10 342 £ 11
2-octanone 927 502 £ 16 531 £ 21

One way to visualize the effect of the retention time alignment is through the
reverse RIP, described in section 1.3.2.2. Figure 2.16 shows the reverse RIP for
each of the samples. On the left column, a large retention time region is shown,
while a more detailed retention time region is represented on the right. From top
to bottom, there are the three described scenarios: before the correction, using a
linear model and using monotonic cubic splines. The advantage of the monotonic
cubic splines is remarkable, especially for larger retention times.

Having assessed the performance of the monotonic cubic splines and compared
it to a linear model, the final question to be answered is if we can make a rec-
ommendation for a recommended time lapse between the analysis of an external
calibrant. The answer to this questions boils down to answering “For how long
can we use the same calibrant in order to align the future samples to the same
reference?”. If the answer to this question is “hours”, then it may be useful to
sample a calibrant at the beginning and at the end of each analysis day. On the
other hand, if the answer is “months”, then doing several calibrant analysis per
day is simply a waste of time.

To answer this question we used our dataset of calibrant samples, we computed
a warping function between a reference sample and a mapping sample and we
applied the warping function to future samples measured that same day, the next
day, etc. By measuring the error in the prediction of the retention times, we are
able to represent in figure 2.17 the relative error in the retention time estimation
with respect to the number of days elapsed between the date when the sample
that was used to calculate the warping function was measured and the date when
the corrected spectra was measured.

The figure shows a bias starting from the second day, indicating that measuring
one calibrant every one or two days is enough to be able to compensate for the
instrumental drift. Having more than one calibrant sample per day is not very
useful, as the random fluctuations between consecutive samples are larger than
the intra-day variability. On the other hand, if we only take one calibrant sample
at the beginning of each month we won’t be able to fully correct the retention
time drifts by using calibrants.
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Figure 2.16: Reverse RIP alignment result across multiple samples.
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Splines Correction
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Figure 2.17: Relative prediction error depending on how old is the calibrant
sample used to train the model.

This analysis has contributed to characterize both the drift time and the retention
time misalignments. The use of monotonic cubic splines for the retention time
alignment of GC-IMS samples has been presented, showing that it offers a simple
improvement over the often used spectral shifts and linear corrections. We also
suggested a reasonable time span of two days as the optimal period for the analysis
of two consecutive external calibrant samples. A clear limitation of this study is
the lack of exploration of internal calibrants for sample alignment. The use of
internal calibrants makes the alignment problem easier, as all samples share the
same set of calibrant analytes. However, the use of internal calibrants is often
more complex, as there is the need for choosing a calibrant that does not interfere
with the sample under study or its matrix. While this is much easier on targeted
studies (where peaks are expected at some specific positions, and calibrants can
be selected to avoid interference with those positions), on untargeted studies
those “free” regions may not be as easily defined, especially on the ion mobility
axis, that presents wider peaks and non-linear effects with mixtures due to charge
competition.
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Sliding Window
Multivariate Curve
Resolution for GC-IMS data

Blind Source Separation (BSS) techniques aim to extract a set of source signals
from a measured mixture in an unsupervised manner. In the chemical instrumen-
tation domain, source signals typically refer to time-varying analyte concentra-
tions, while the measured mixture is the set of observed spectra. Several tech-
niques exist to perform BSS on Ion Mobility Spectrometry, being Simple-to-use
interactive self-modeling mixture analysis (SIMPLISMA) and Multivariate Curve
Resolution (MCR) the most commonly used. The addition of a multi-capillary
gas chromatography column using the ion mobility spectrometer as detector has
been proposed in the past to increase chemical resolution. Short chromatography
times lead to high levels of co-elution, and ion mobility spectra are key to resolve
them. In this chapter, BSS techniques are used to deconvolve samples of the
gas chromatography - ion mobility spectrometry tandem. We propose a method
to extract spectra and concentration profiles based on the application of MCR,
in a sliding window. Our results provide clear concentration profiles and pure
spectra, resolving peaks that were not detected by the conventional use of MCR.
The proposed technique could also be applied to other hyphenated instruments
with similar strong co-elutions.

57
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3.1 Introduction

BSS techniques, also named in chemometrics “resolution techniques”, are com-
monly applied to hyphenated analytical techniques that provide second order
data. In IMS samples, the compounds’ original concentration profiles and pure
spectra can be deconvolved from the sample using BSS techniques (Pomareda
et al., 2010). For the first time, we propose a blind source separation technique
in MCC-IMS data. Direct application of MCR, techniques to full MCC-IMS data
typically fails to resolve co-elution due to the complexity of the data and to the
global noise which hinders the detection of weak but significant peaks. The typ-
ical approach in this case is the manual selection of the retention time window
where the co-elution appears and the application of MCR in this data subset.
However, in MCC-IMS chromatography conditions, co-elution is a prevalent phe-
nomenon (Eiceman et al., 1995), (Baumbach, 2009). Few individual peaks can
be isolated in the total chromatogram and mostly very broad peaks are observed.
To deal with this complexity, we propose an automatic manner to investigate
co-elution across the whole chromatographic axis. The proposed method is able
to detect and recover compounds in adverse co-elution conditions and reject spu-
rious spectra with no physical meaning in an unsupervised manner.

The method is applied to real data corresponding to olive oil headspace analysis,
with the aim to extract accurate concentration profiles and pure spectra for each
sample. The extracted information can be used later on to discriminate among
different regulated olive oil qualities in fraud prevention applications.

3.1.1 Blind Source Separation techniques

Blind source/signal separation techniques are the collection of algorithms de-
signed to estimate a set of source signals from measured mixtures. As mentioned
in (Cardoso, 1998), techniques are blind because a) the source signals are not
observed directly, b) the mixing matrix is unknown and c) no information is avail-
able about the composition of the mixture, not even the number of source signals
present. These techniques are commonly used in signal processing (Cichocki and
Amari, 2002) and are increasingly being used in chemical instrumentation appli-
cations (Duarte et al., 2014), such as the analysis of nuclear magnetic resonance
data (Nuzillard and Nuszillard, 1998), chemical reaction monitoring (Carteret
et al., 2009) and Raman spectroscopy (Miron et al., 2011). BSS has been recently
used to enhance information extraction from temperature-modulated metal oxide
gas sensors (Montoliu et al., 2010) and to separate interferences from ion activity
in ion-sensitive field-effect transistors (Bermejo et al., 2006).
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As deconvolution problems are under-determined by definition, constraints are
required to narrow the space of solutions. For many applications, Independent
Component Analysis (ICA) (Hyvérinen et al., 2001) is an appropriate and suc-
cessful technique if mixing models can be assumed to be linear and source signals
to be statistically independent. However, in chemical analysis and specifically in
IMS, statistical independence of compounds is not necessarily fulfilled (Pomareda
et al., 2010). Therefore other approaches are used to constrain the range of pos-
sible solutions (Duarte et al., 2014) being Non-negative Matrix Factorization
(NMF) techniques (Cichocki et al., 2006) and in particular Multivariate Curve
Resolution (MCR) methods (Lawton and Sylvestre, 1971) common alternatives.

In MCC-IMS applications, BSS techniques are helpful when several analytes elute
at the same time from the MCC and they are detected by the IMS. If some of the
co-eluting analytes present larger proton affinities (or electronegativities), they
can mask and hide the rest of the analytes due to the charge competition effect
described on section 1.3.1.2. In this case, no posterior data analysis technique
(BSS or other that we know of) will be able to detect them.

3.1.2 Multivariate Curve Resolution Alternating Least
Squares

Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) (Tauler,
1995) assumes a linear decomposition of the mixing matrix, which can be written
as shown in Eq. (3.1).

D=CS"+E (3.1)

e D (MxN) is the measured mixing matrix, with M spectra of length N.

o C (MxK) is the abundances or concentrations matrix, that contains the
proportions of each unmixed spectrum in the measured matrix and,

o S (NxK) is the pure (or unmixed) spectra matrix that contains the K pure
spectra of length N. E is a matrix of residuals (MxN).

Given an initial estimation of K pure spectra, MCR-ALS proceeds as follows:

1. Filter noise from the mixing matrix: First, compute PCA scores and load-
ings from the D mixing matrix. Then reconstruct a filtered version of D,
named D*, using the first K principal components of the computed scores
and loadings.

2. Estimate the concentration profiles using least squares:
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C = argming | D« —CST|)? (3.2)
3. Impose constraints on the concentration profiles

4. Estimate the pure spectra using least squares:

2
S = argming || D x —CSTH (3.3)

5. Impose constraints on the pure spectra

6. Iterate steps 2-5 until convergence.

The key to obtaining reliable concentration profiles and pure spectra depends on
the estimation of the number of components in the mixture, the initialization of
the pure spectra and the imposition of constraints.

The number of components for each window can be estimated with several meth-
ods such as (Buxton and Harrington, 2001), (Windig et al., 2005), (Gourvénec
et al., 2002). However, a simpler approach described in (Diewok et al., 2003)
is commonly used: the number of components is determined as the number of
singular values of the matrix above a given threshold, representative of the noise
in the sample.

There are multiple ways of obtaining an initial estimation of the pure spectra,
being SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA)
(Windig and Guilment, 1991) and Evolving Factor Analysis (EFA) (Maeder, 1987)
the most common ones. Although EFA works well on samples presenting uni-
modal concentration profiles, on IMS this condition does not necessarily hold,
making SIMPLISMA the most common alternative in this field (Pomareda et al.,
2010), (Harrington et al., 1997).

Many constraints can be imposed on the concentration profiles and pure spectra
depending on the prior knowledge of our particular problem: On IMS spectra,
non-negativity can be imposed on both concentration profiles and spectra. More-
over, as the ionization process consists in a charge transfer from the RIP to the
compounds, charge conservation can be imposed on the concentration profiles
(closure on C). Unimodality constraints are not suitable for concentration pro-
files, but can be imposed to the resolved spectra shapes. Finally, selectivity
constraints to the concentration profiles can also be imposed if some components
are known to appear at a particular retention time range.

The MCR-ALS algorithm is based on a least squares minimization of the global
error of the factorization. As it is shown in our results, local peaks with low
intensities appearing in regions with strong co-elution may pass unnoticed by
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MCR-ALS, as they present a contribution to the error comparable to or smaller
than the global noise of the sample. In these cases, increasing the estimated
number of components in the mixture leads to extracting spurious compounds
with no physical meaning instead of the desired local compounds.

3.1.3 Proposed technique: Sliding Window Multivariate-
Curve Resolution

In order to overcome the limitation in resolving low intensity peaks when the con-
ventional MCR-ALS is applied to the whole MCC-IMS data matrix, we propose
to apply MCR in short partially overlapped windows, slicing the matrix in the
retention time axis. In addition, window overlap is imposed to avoid splitting
peaks on window borders and to avoid detecting spurious compounds inconsistent
across windows.

First, the initial estimations of pure spectra and concentration profiles are ob-
tained by applying SIMPLISMA to each window. By using SIMPLISMA in this
fashion, we can extract local peaks with low intensities, as they have compara-
tively higher peak purity within a single window. The number of components
for each window is estimated using the threshold on singular values previously
described in Section 3.1.2. To select the threshold, the singular values were plot-
ted in decreasing order (plot not shown), presenting the typical elbow-like shape.
The threshold was selected when the singular values begin to stabilize. Given the
initial estimations, we use MCR-ALS to extract a set of concentration profiles
and pure spectra for each window.

Finally, the results from all the windows are merged into a single set of concentra-
tion profiles and spectra representative of the whole sample. To do so, compounds
are tracked through consecutive windows based on the similarity of their spectra.
The angle between two pure spectra s; and s; is computed as shown in Eq. (3.4).

6, ; = arccos (Sisj ) (3.4)

silllls;]l

Figure 3.1 shows a diagram with an example of four compounds being tracked
along three windows. The link between two spectra of consecutive windows is
formed only if their angle is below a given threshold. In this figure, compounds
C1 and C2 are being tracked along all the windows (N to N+2) while compound
C3 disappears on window N+1 because no link can be established on window
N+2. Compound C4 does not appear until the N+1 window. The last spectrum
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in window N+1 does not establish any link, thus it is considered spurious and is
rejected from the final set of tracked compounds.

Window N Window N+1 Window N+2
/R ) / \
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Figure 3.1: Diagram of the tracking of spectra through three windows. Links
between spectra are established if their angle is lower than a given threshold.

Windows are highly overlapped to guarantee that if no link can be established
for a spectrum, then it can be safely considered as spurious and rejected from the
final set. The final estimation of the pure spectra for each compound is computed
as the mean of all the tracked spectra. The standard deviation of the mean is
used as its error estimation. Averaging and computing the standard deviation
are used likewise to obtain the final estimation of the concentration profiles.

3.2 Materials and Methods

3.2.1 Description of the samples

The proposed technique was applied to the olive oil dataset described in (Garrido-
Delgado et al., 2012). Current regulations in the European Union classify olive
oils in three different categories according to their quality, namely Extra Virgin
Olive Oil (EVOO), Virgin Olive Oil (VOO) and Lampante Olive Oil (LOO), being
EVOO the category of highest quality and LOO the lowest one. This classification
is based on several chemical parameters (free acidity, peroxide value and Ultra-
violet absorbance) and a sensorial analysis. A proper control of olive oil qualities
is crucial, not only because of the difference in price but also because LOO is not
suitable for human consumption without being previously refined.

Ninety-eight olive oil samples from different qualities (27 samples of LOO, 28
samples of VOO and 43 samples of EVOO) were obtained from the Agrarian
Laboratory of Junta de Andalucia and an oil press from Cérdoba (Spain) during
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the 2009-2010 and 2010-2011 harvests. In order to keep the organoleptic features
of the samples, they were stored at 4°C until their analysis.

3.2.2 Analytical methods

Samples were analyzed with a MCC-IMS instrument (FlavourSpec®) from
Gesellschaft fiir Analytische Sensorysteme mbH (G.A.S), Dortmund (Germany).
The olive oil headspace was directly sampled with a heated splitless injector,
and the instrument was coupled to an automatic sampler unit (CTC-PAL, CTC
Analytics AG, Zwingen, Switzerland) to improve reproducibility.

One gram of sample was placed in a 20-mL vial that was closed with magnetic
caps. Samples were incubated at 60°C for 10 minutes and 100 L of sample
headspace was automatically injected into the injector (80°C) of the MCC-IMS.

The carrier gas going through the injector inserted the sample into the chro-
matograph, previously heated to 30°C for pre-separation on a non-polar OV-5
MCC (20 cm long, ~1000 parallel glass capillaries, filled with 5% diphenyl and
95% dimethylpolysiloxane). The analytes were eluted in an isothermal mode and
driven into the IMS.

Inside the IMS, the ionization was produced with a Tritium source (6.5 keV).
Tons entered the 6 cm long drift tube operating at a constant electric field of 350
V/cm and at a temperature of 60°C. Spectra were acquired in the positive ion
mode, generating each spectrum with the average of 32 scans, using a grid pulse
width of 100 s. The IMS sampled at 150 kHz and each scan lasted 20 ms. Each
spectrum is 3000 points long.

Each sample was analyzed for 15 minutes, obtaining a complete IMS spectrum
every 0.7 seconds. Compounds only eluted during the first 4 minutes of the
retention time, leading to 340 spectra with information per sample. Each sample
can be represented by a 340x3000 matrix.

3.2.3 Pre-processing

Noise present in each spectrum of the sample was filtered using a second order
Savitzky-Golay filter (Savitzky and Golay, 1964) with a window size of 13 data
points. The window size was selected assessing that the RIP height distortion
caused by the filter was smaller than 1% of its non-filtered maximum value.

Next, a baseline was estimated and subtracted from the spectrum: the estimation
of the baseline was computed by fitting a 4th order polynomial to two non-peaked
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(empty) regions in the spectrum found in the regions 1-5 ms and 14.7-18.7 ms.

Finally, only the drift time region from 4 ms to 14.65 ms (1600 sampled points)
contained information, so irrelevant regions were cropped out. Each sample was
therefore reduced to a 340x1600 matrix.

3.2.4 Sliding Window MCR

The proposed Sliding Window MCR, (SW-MCR) technique is applied to the sam-
ple, using a window length of ten spectra (7 seconds) and a window shift of a
single spectrum (0.7 seconds). The window length was selected based on the
typical width of a peak in the chromatogram, computed as the median full width
at half maximum (FWHM) of ten representative peaks in the sample.

Larger window sizes and smaller window overlaps may be used to reduce the
computational cost of the method. A larger window size would imply that more
compounds can be found in the same window. If the window is too large we will
face the same problem than with conventional MCR-~ALS application: we may
fail to detect local peaks with low intensities. Regarding the window overlap, if
the window overlap is too small this would increase our chances of splitting peaks
in window borders and would hinder our ability to distinguish spurious solutions
from actual compounds, as actual compounds would not have to necessarily ap-
pear among consecutive windows anymore.

After inspecting the distribution of singular values along the windows, we set a
threshold to determine the number of components. Data not represented by the
selected components was discarded using a PCA filter.

Regarding the MCR~ALS configuration, we initialized the pure spectra and the
concentration profiles for each window using SIMPLISMA. We imposed the fol-
lowing constraints: 1) non-negativity to both concentration profiles and pure
spectra via fast non-negative least squares, 2) closure to the concentration pro-
files and 3) unimodality to the resolved spectra. Additionally, we imposed a
selectivity constraint to improve the RIP pure spectrum estimation: given that
at the end of the sample (high retention times) no compounds elute from the col-
umn, the only compound present in the latest spectra is the RIP. From a blind
source separation perspective, this information is very valuable, as an accurate
estimate of the RIP pure spectrum can be easily obtained.

Finally, in order to track the resolved spectra through the windows, an angle
threshold of 15 degrees was used. This angle was chosen after inspecting the
angle distribution of the pairwise comparison of the spectra.
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3.3 Results and Discussion

A selected informative region of an olive oil sample can be seen in figure 3.2.
The Reactant Ion Peak can be seen close to 6 ms in drift time along all the
retention time range. There are multiple peaks in the same retention time range,
indicating a strong co-elution of the components. As peaks are created by the
transference charge from the reactant ions, the RIP intensity decreases at the
retention time when other peaks appear in the ion mobility spectrum. At higher
retention times the RIP recovers all the charge returning to a constant intensity
as no more compounds elute.
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Figure 3.2: Region of a MCC-IMS olive oil sample. The RIP is observed at 6
ms. Multiple peaks on the same retention time indicate a strong co-elution. Note
that both axes are reversed to prevent high intensity peaks from hiding the low
intensity ones.

The intensity of the RIP can be used as a non-selective measure of the global elu-
tion of compounds. Integrating the RIP (from 6.26 ms to 6.6 ms) and subtracting
it from the maximum intensity, we obtain the charge that has been transferred
to other compounds throughout the retention time. This figure of merit is called
the “Reverse RIP” and it is analogous to a total ion chromatogram in gas chro-
matography - mass spectrometry samples. Fig. 3 shows the reverse RIP of an
olive oil sample. The reverse RIP shows a continuous elution of compounds along
approximately the first minute of the sample.
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Figure 3.3: Reverse RIP. Analytes eluting from the column will show as a peak
in the reverse RIP. The RIP is computed as the integral (from 6.26 to 6.6 ms)
of each IMS spectrum and it represents the charge that has not been transferred
to other analytes at a given retention time. The RIP’s maximum represents the
total charge available. By subtracting the charge that has not transferred to the
total charge, the reverse RIP is obtained.

The performance of the proposed SW-MCR method has been assessed by compar-
ing the extracted concentration profiles and pure spectra with the ones resolved
using conventional MCR-~ALS on the whole sample, using the same described pre-
processing and imposing the same constraints. Regions with strong co-elution are
of particular interest, as for those regions conventional MCR-ALS is not able to
resolve all compounds, especially the smallest ones. 22 peaks of the first 100
seconds of the sample were randomly selected (covering higher and lower peak
intensities) and we checked the retention time range where each peak had been
detected by each method. Table 3.1 shows the actual retention time range of
the sample and the one obtained by each method. When the peaks are detected,
there is considerable agreement between both methods; however MCR-ALS failed
to detect 9/22 of the analyzed peaks.

Figure 3.4 shows a sample region with co-elution and peak intensities of different
magnitudes: at retention time 40 s two peaks appear: a peak of 2200 intensity
units at drift time 10 ms and a less intense peak of 650 intensity units at 7.8
ms. Close to 50 s a third peak of 230 intensity units appears at 8.7 ms. Given
the intensity and large tailing shape of the 10 ms peak, it is reasonable to think
that the smaller 8.7 ms peak was co-eluting before its detection, but was being
masked by the largest peak due to the charge competition effect. Nevertheless,
the difference of the peak intensities detected by the IMS is almost of one order
of magnitude.
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Table 3.1: Localization of 22 randomly selected peaks from the sample, on MCR-
ALS and on SW-MCR deconvolution. The retention time ranges are in agreement
on the detected peaks, however MCR-ALS was unable to extract 9/22 peaks.

Retention time range (s)

Peak #  Drift time (ms) Max. intensity (a.u.) Sample MCR.ALS SW-MCR

1 6.45 (RIP) 3951 All All All

2 7.30 3936 1-4 0-10 0-4

3 7.60 1002 37 27 3-9

4 7.75 400 4-10 NF 4-9

5 8.30 782 5-9 48 4-10
6 9.10 177 5-12 NF 4-10
7 8.10 695 4-9 0-20 4-10
8 8.78 731 5-12 4-12 5-12
9 8.60 623 4-12 4-7 5-13
10 7.15 474 413 3-7 5-15
11 8.90 2100 8-13 8-12 8-13
12 8.10 425 11-19 NF 12-20
13 6.75 490 11-23 NF 12-23
14 10.30 1190 20-27 22-27 21-27
15 7.20 188 21-29 NF 21-28
16 8.20 481 21-32 NF 21-31
17 8.50 390 30-38 30-35 30-37
18 7.80 317 28-40 NF 30-40
19 7.30 445 31-40 NF 32-40
20 9.90 2200 40-55 40-60 40-50
21 8.70 220 50-63 NF 50-56
22 7.65 650 45-80 50-80 55-80
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Figure 3.4: MCC-IMS region (contour plot). This region shows co-elution of
different compounds: a section of the RIP found at 6.4 ms and three other com-
pounds appear 7.8 ms, 8.6 ms (less intensely) and 10 ms.

Using MCR-ALS in the whole sample, the resolved pure spectra and concentra-
tion profiles on the described region are shown in figure 3.5. The only meaningful
compound extracted at that retention time region apart from the RIP is the most
intense one, found at 10 ms and marked using a wider line. Other compounds
appear, some of them can be interpreted as tails or replicas of the 10 ms peak,
but they provide no particular meaning so they must be discarded as spurious
compounds. Additionally, the concentration profile for the resolved peak shows
non-zero concentration in the 20-40 second retention time region, before the com-
pound has eluted.

When using SW-MCR, the pure spectra and concentration profiles for the three
peaks on the described region are extracted (see figure 3.6). The computed error
bars of the pure spectra and concentration profiles show a high consistency among
different window estimations. As expected, the concentration of the largest peak
(at 10 ms) is similar to the concentration resolved using MCR-ALS. The peak
with lowest intensity (at 8.7 ms) is well resolved too, with a concentration profile
one order of magnitude smaller than the largest peak, as expected. The medium
intensity peak (at 7.8 ms) is also detected, although its tracking is interrupted
in the 47-53 seconds range. This shows a limitation of the proposed technique:
Peaks with a constant intensity in the whole window cannot be detected by



3.3. RESULTS AND DISCUSSION 69

0.035 12

0.03

0.025

0.02

Intensity (a.u.)

0.015

Concentration (a.u.)

0.01

0.005 N

Q
6 8 10 12 20 30 40 50 60 70
Drift time (ms) Retention time (s)

Figure 3.5: Pure spectra and concentration profiles resolved by MCR-ALS. Thick

line: main peak resolved. Dashed lines: tails and replicas of the resolved peak.
Thin lines: spurious compounds.

SIMPLISMA because the standard deviation of the peak maximum along the
window is zero leading to zero purity values. However, the peak is tracked again
in further windows once the intensity varies again. As expected, neither MCR-
ALS nor SW-MCR were able to deconvolve the 8.7ms peak when it was being
completely masked by the 10ms peak.

The SW-MCR technique allows extracting detailed information of the co-elution
present in the sample. Figure 3.7 shows the distribution of the resolved com-
pounds along the retention time. Each row represents a tracked compound, show-
ing the retention time region in which it has been detected and deconvolved. For
instance, the first row represents the RIP, which is tracked along all the chro-
matogram. Figures 3.2 and 3.3 showed multiple compounds co-eluting from the
column on the first seconds of the analysis. Figure 3.7 confirms that SW-MCR
is able to detect them, resolving more than 6 compounds on a single window.
As the retention time increases, figure 3.2 shows less peaks co-eluting, and this
is reflected on figure 3.7 as the compound overlap decreases. On the first 100
seconds of the sample, SW-MCR was able to track up to 46 compounds revealing
the richness of information present in the MCC-IMS samples.

The estimated concentration profile of the RIP is shown on figure 3.8. Retention
time regions with lower RIP concentrations indicate regions with intense peaks,
or regions with multiple peaks detected, where (almost) all the charge has al-
ready been transferred. The recovered concentration profile for the RIP can be
compared with the extracted reverse RIP shown in figure 3.3. Figure 3.8 peaks
can be matched with figure 3.3 valleys, proving the consistency of our technique.
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Figure 3.6: Pure spectra and concentration profiles resolved by SW-MCR, decon-
volving three co-eluting spectra. The small size of the error bars shows a high
consistency among the tracked windows.
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Figure 3.7: Tracked compounds along several windows. Each row represents a
different pure spectrum. The first one is the RIP, which is being tracked along
all the windows. This plot shows how co-elution of three and more components
can be resolved at several retention times.
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Figure 3.8: The extracted Reactant Ion Peak using SW-MCR. The reverse shape
of the concentration profile is comparable to the reverse RIP shown in Fig. 3.3.

The angle threshold used for tracking the compounds rejects spurious peaks that
appear on a single window. Figure 3.9 shows the estimated number of compo-
nents using singular value decomposition (SVD) and the actual number of tracked
components for a particular window. Regarding the number of tracked compo-
nents, all windows are able to track the RIP and therefore the number of tracked
components is always greater than or equal to one compound. Most of the win-
dows had none or one spurious compound, although some windows had up to five
spurious components which were rejected. This rejection allows us to use lower
thresholds on the SVD, as overestimations in the number of components of a
window are regulated in the peak tracking step. Lower thresholds on the singular
values allow us to detect peaks close to the noise level, as they are consistent
across different windows and are not rejected.

Regarding the computational cost of the technique, most of the computing time
is spent on the MCR-ALS optimization, as it is an iterative algorithm. For the
conventional MCR-ALS, up to 30 iterations are required to reach convergence.
For the proposed SW-MCR a maximum of 10 iterations per window were used
although for most of the windows 5 iterations were enough for MCR-ALS to con-
verge. In any case, the most expensive part is the (non-negative) least squares
estimation required on each concentration profile and pure spectrum estimation.
On a 2013 workstation computer with an Intel i7 processor, the conventional
MCR-ALS method takes 4.5 minutes to extract the concentration profiles and
pure spectra from the sample. This process cannot be parallelized due to its iter-
ative nature. The proposed SW-MCR method requires 1.75 seconds per window.
Given that there is a strong window overlap, the overall cost per sample sums up
to 22 minutes. Even though the global time is higher, the SW-MCR method is
well suited for parallelization, as each window is independent from the others. For



72 CHAPTER 3. SLIDING WINDOW MCR FOR GC-IMS DATA

our case, with a window shift of 0.7 seconds, three CPU cores would be needed
for a real time application, unfeasible with the conventional algorithm.

[ ]Sing. Value estimation
8 Il Tracked components

Number of components

0 10 20 30 40 5 60 70
Retention time of each window (midpoint) (s)
Figure 3.9: Rejection of spurious compounds. In black: the number of tracked
compounds for each window. In white: the initial estimation of the number of
components using SVD. The difference of both black and white values is the
number of rejected spurious compounds.

In summary, a novel technique for improved chemometric resolution of GC-IMS
samples has been presented, showing that blind peak deconvolution techniques
can be successfully applied to this analytical hyphenated instrument in order
to extract features and resolve coelution even when conventional MCR-ALS is
unable to discriminate lower intensities from the sample noise.



Chapter 4

Applications

This chapter shows two applications of some of the described techniques to real
complex samples. The first application shows a classification problem olive oil
samples according to their quality measuring their headspace using GC-IMS. The
second application focuses on the analysis using GC-MS of the headspace of
human urine samples, for trying to discover prostate cancer biomarkers. These
two applications from fairly different fields and with different instrumentation
highlight the versatility of some of the techniques developed. Even though the
instrumentation and the field of application may be different, there is a shared
ground for data analysis. While the “one shoe fits all” approach to use the
same methodology in all cases is far too generic given the existing differences,
exploring data analysis methodologies on different instrumentation can lead to a
better understanding of those data analysis methods and provide ideas to better
adapt them to specific needs.

4.1 Olive oil quality analysis with GC-IMS

The first application is related to fraud prevention in food. Different types of
olive oil have different organoleptic characteristics, and therefore different value
in the market. Simple and accurate classification of olive oil types is desirable for
the industry to reduce costs and prevent fraud. Olive oil can be categorized into
“extra virgin” olive oil (EVOO), “virgin” olive oil (VOO) and “lampante” olive
oil (LOO), according to their quality.

We are not necessarily interested on a specific peak or analyte that characterizes

73
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each of the classes. Even if that is a possible solution we are looking for a
multivariate pattern or fingerprint able to discriminate among the different olive
oil categories based on a MCC-IMS analysis of the olive oil headspace.

In contrast to common approaches that reduce the dimensionality of chro-
matograms into a vector of peak descriptors that serves as input to the
multivariate models, in this application we use 2D intensity maps directly for
modelling. With this methodology we avoid peak picking methods that may
yield errors due to previous peak area definitions, that happen more often when
there are high degrees of coelution. Peak mismatching errors and the need to
impute missing values in peak tables are also issues avoided, as full-spectra
alignment techniques are used instead.

The complete data matrix is carried until the model is built, reducing the complex-
ity of data pre-processing and therefore minimising the possibility of introducing
artifacts in the analysis. The workflow for preprocessing and processing MCC-
IMS data along with an example of data acquired to differentiate between olive
oil categories is given in this section.

4.1.1 Experimental Protocol

We used a set of olive oil samples of three different categories. Each sample
was analyzed twice, resulting in a set of 216 MCC-IMS chromatograms that
corresponded to 3 different types of olive oil: 92 chromatograms were extracted
from “extra virgin” olive oil (EVOQ) samples, 64 from “virgin” olive oil (VOO),
and 60 from “lampante virgin” olive oil (LVOO).

Software LAV version 1.5.2 beta from G.A.S was used for data acquisition, col-
lecting spectra in positive ion mode. More information on the sample protocol
can be found in ref (Garrido-Delgado et al., 2012).

The samples were stored at 4 °C in opaque glass containers and then analyzed
by means of a MCC-IMS instrument (FlavourSpec®) from Gesellschaft fiir ana-
lytische Sensorysteme mbH (G.A.S.), Dortmund (Germany) according to (Com-
mission and others, 1991). The instrument was equipped with an autosampler
device (CTC-PAL, CTC Analytics AG, Zwingen, Switzerland). An aliquot of 1g
of olive oil sample was placed in a 20 ml glass vial and it was hermetically closed
with a magnetic cap. Then, each sample was heated at 60 °C during 10 min in
order to generate a headspace into the vial. After this, 100 uL of gaseous sample
from headspace were injected by the autosampler device into the heated splitless
injector (80 °C) of the MCC-IMS instrument.

After injection, gaseous sample was dragged to a non-polar OV-5 MCC (20
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cm long, consisting of approx. 1,000 parallel glass capillaries) which was ther-
mostated at 30 °C. Into the MCC, analytes of the sample were separated and
subsequently carried to the ion mobility spectrometer for its detection and quan-
tification. In the spectrometer, analytes were delivered into the ionization cham-
ber for ionization by a Tritium source (6.5keV, 300 MBq). Subsequently the
ions were introduced to the drift tube (6 cm of length) with a grid pulse width
of 100 us where they traveled under a constant electrical field (350 V/cm) and
constant temperature (60 °C) to reach the detector. For noise removal purposes,
the instrument was set to record a spectrum every 32 scans, that were averaged.
One scan was acquired every 21 ms, leading to an effective sampling period in
the retention time of 672ms. The sampling frequency in the drift time axis was
of 150 kHz.

Given the short amount of time the ion shutter is open with respect to the time
a spectrum acquisition lasts, only a small percentage of the ions produced are ac-
tually measured (Karpas, 2000), and there is a reservoir of ions remaining in the
ionization region, that appear in subsequent scans. This causes a characteristic
peak broadening effect in retention time that does not appear on other conven-
tional chromatographies. While reducing the number of scans used for averaging
would increase the retention time sampling frequency, the obtained peaks would
not be thinner but the signal to noise ratio would be smaller, due to the lack of
averaging.

4.1.2 Data analysis methodology

Raw Baseline Double
Denoising Alignment Unfolding PLS-DA Cross-
samples removal s a
Validation

Figure 4.1: Data analysis flow chart for olive oil discrimination

Figure 4.1 shows the steps of the MCC-IMS data processing workflow presented
in this chapter. The procedure begins with the described acquisition of MCC-IMS
data from different olive oil samples and corresponding metadata (time of analysis
and olive oil category). Next, samples are preprocessed to reduce noise, correct
baseline, and align spectra. The preprocessed spectra are unfolded and passed to
a Partial Least Squares - Discriminant Analysis model, with the corresponding
labels for each sample (EVOO, VOO or LVOO). The number of latent variables
of the PLS-DA model is chosen using internal validation, and the performance is
evaluated with external validation.
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For preprocessing, the Savitzky Golay filter and the psalsa baseline estima-
tion methods described in chapter 2 are used. For the spectral alignment, the
multiplicative correction of the drift time was aligning well the RIP peaks, but
other peaks in the spectra needed further correction. To align completely the
spectra, the alignment was refined using a warping alignment method based on
the compression and expansion of peaks named Correlation Optimized Warping
(COW) (Tomasi et al., 2004). It is based on a lineal warping of the drift time
of spectra segments, to maximize the correlation between the reference and the
sample to align. As this dataset did not have any internal standard nor calibrant,
a simple linear model was used to align the retention times.

Regarding the classification, a Partial Least Squares Discriminant Analysis
(PLS-DA) model was used. PLS-DA is a widespread supervised classification
technique that aims to reduce the dimensionality of the input data (the MCC-
IMS spectra) into a linear subspace of much smaller dimension (to be optimized).
This subspace is chosen such as it maximizes the variance of the spectra and its
covariance with the class labels. A linear regression of the input subspace versus
the class labels is estimated, and prediction of classes on new samples can easily
be computed using a linear projection.

Dataset: 216 samples
(00000000 -00000000 |

(Random splitx)
S
Train: 150 samples Ext. Valid: 66 samp.

.
5x {L k-Fold split
Calib: 120 Int. Val: 30
=~ h
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PLS-DA
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# Latent C
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Figure 4.2: We performed double cross-validation to evaluate the classification
accuracy of the model. The complete dataset was randomly divided in training
(150) and test samples (66). Internal validation was carried out by means of
5-fold cross-validation and external validation was evaluated with test samples.
The process was repeated 10 times to provide error of the accuracy

To validate the model and to estimate its performance, double cross-validation
was used. The methodology is represented in Figure 4.2. The average model
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performance is estimated as the mean of the performances of several (10) models,
where each of them has been trained with a random split of the data, using 150
samples for training and 66 samples for test. The samples in the training subset
are split into five folds and a k-fold approach is used to estimate the optimal
dimensionality of the PLS subspace, using four folds for model calibration and
the remaining fold for internal testing, choosing the number of latent variables.
The dimensionality of the linear subspace is known as the “number of latent
variables” of the model, as each dimension of this subspace combines common
variability correlated with the labels. For each of the k-folds, we explored the
range from one to twenty latent variables, using the classification rate of the
internal-validation samples as a figure of merit for model performance. A higher
number of latent variables also means higher model complexity that can hinder
model interpretation and be more prone to overfitting. A model with too few
latent variables may not be able to capture the different sources of correlation
(typically several analytes) offering bad prediction capabilities.

4.1.3 Results
4.1.3.1 Preprocessing

Figure 4.3 shows as an example an IMS spectrum extracted at retention time
2min20s. The Savitzky-Golay filter used for denoising has a window length of
0.1ms. Compared to the full width at half maximum of 0.15ms of the IMS
peaks, the chosen window length is large enough to reduce noise but still small
enough to prevent the distortion of peak shapes. After removing high frequency
noise, we estimate and compensate the baseline: The psalsa algorithm is set to
A =100 000, p = 0.01 and the default k = 5% max(I) of the maximum intensity
in the spectra. psalsa converges rapidly, allowing to estimate the baseline just
after five iterations. A manual supervision of few representative spectra is useful
to check that the election of parameters is robust throughout the dataset.

The effect of the drift time alignment is represented in figure 4.4, the reactant
ion peaks are located at the same drift time while other peaks (e.g. at 7.4 ms or
at 8.1ms) are also properly aligned.

On the other axis, the result of the linear retention time alignment is represented
in figure 4.5. While more flexible retention time corrections have been presented
in previous chapters, these corrections required the use of calibrants that were
not available in this study.

A flexible alignment technique is able to cope with all the non-linear changes and
provide a better fit to each of the peaks if they are well detected. However, it
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Figure 4.3: Denoised IMS spectrum using a Savitzky-Golay filter and its esti-
mated baseline (using the psalsa algorithm)

is also easier to mismatch peaks with flexible techniques. A reasonable midpoint
consists of starting with more rigid alignment techniques, finding a coarse solution
and then apply a more flexible technique, with constraints that minimize possibly
unwanted distortions.

4.1.3.2 Model training and accuracy

The preprocessed spectra were used to train and test the PLS-DA models as
described in 4.1.2. Figure 4.6 shows the classification accuracy in internal vali-
dation data as a function of the number of latent variables. The accuracy of the
model increases with the number of latent variables until it reaches a plateau. If
the number of latent variables kept increasing, the model would start to overfit
the training data and this would have resulted in accuracy decay when evalu-
ated with the internal validation data. To provide further details of the impact
of the preprocessing in this dataset, we explored how each of the preprocessing
steps affected the classification accuracy of the models. The whole analysis was
repeated, removing one of the preprocessing steps on every repetition. Figure 4.6
also shows how, for this particular dataset the baseline correction had significant
impact on the final accuracy, the alignment correction had a minor but still rele-
vant impact and the noise reduction did not contribute to any improvement for
this dataset.

The models, built with 6 latent variables, were finally evaluated with the external
validation samples, resulting in an accuracy of 85% + 5%.
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Figure 4.4: RIP alignment multiplicative correction for three spectra measured
at retention time 1 min, on three samples one of each class. The correction factor
was less than 2% in all cases.
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Figure 4.5: Retention time alignment for olive oil samples
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Figure 4.6: Classification rate vs model complexity. The number of latent vari-
ables was selected evaluating the classification accuracy in internal validation

An in-depth look at the PLS-DA models provides information on the relevant
areas of the MCC-IMS samples for their correct classification. Figure 4.7 shows
data samples reduced to only two latent variables. Training samples were used
to obtain the directions of the first two latent variables. When test samples are
superimposed on the same plot one can conclude that the model exhibits good
generalization since both sets (training and test) cover the same regions of the
new space for the different type of olive oils. Additionally, one can observe that
LOO samples appear further apart than EVOO and VOO, indicating that the
identification of LOO is easier than the classification of the other two types of
samples. This is particularly important since, unlike the other two types, LOO
is not certified for human consumption and has lower market value. Finally,
EVOO samples tend to exhibit higher scores on the first latent variable. When
exploring the loadings for the first latent variable (see Figure 4.8) the relevant
areas to identify EVOO can be identified. Samples with higher intensities than
the mean in the purple regions or lower than the mean in the red regions will
likely correspond to EVOO.

This exemplification of a methodology for the analysis of MCC-IMS samples
using multivariate methods does not depend on peak integration techniques. The
methodology has a strict validation scheme to prevent overfitting the model to
calibration data, to optimize the model metaparameters and to estimate the
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Figure 4.8: Loadings for the first latent variable. Samples with higher (lower)
values than the mean in purple (red) areas will appear with high values for the
first latent variable.
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performance of the classification.

By applying this methodology to a specific olive oil analysis dataset, we have been
able to explore the impact of each of the preprocessing steps on the final classifi-
cation. For this specific problem, we have shown that proper baseline estimation
and alignment are relevant for the improvement of the predictive accuracy of the
model, however denoising was not a key issue in this scenario.

4.2 Prostate cancer biomarker discovery

The second highlighted application is focused on the analysis of the headspace of
human urine samples, using Gas Chromatography - Mass Spectrometry, with the
goal of detecting biomarkers able to discriminate subjects suffering of a prostate
cancer.

Prostate cancer diagnosis is nowadays confirmed through a prostate biopsy. Biop-
sies are invasive and uncomfortable for the patient, as well as expensive. Biopsies
are performed typically after a positive result of the Prostate Specific Antigen
(PSA) blood test that acts as a screening method for the prostate cancer diagno-
sis. However PSA is a controversial test due to the high number of false positives
results, mainly related to non-cancerous conditions such as the Benign Prostatic
Hyperplasia (Thompson et al., 2004). Having only a positive result in 30% of the
biopsies indicates that the other 70% were not necessary, and therefore that find-
ing specific non-invasive biomarkers for prostate cancer would reduce the number
of biopsies performed, saving patient discomfort, time and resources.

The analysis of Volatile Organic Compounds in urine had in (Mills and Walker,
2001) one of its major contributions, listing 103 compounds. More recent reviews
(de Lacy Costello et al., 2014), report up to 279 VOCs for urine, stating that this
number is not larger due to the low concentrations of VOCs in urine (see table
1.1 from chapter 1). In (Cornu et al., 2011), the authors reported progress in
the detection of prostate cancer using dogs sniffing urine. A bit later, in (Khalid
et al., 2015), the authors have reported the detection of potential biomarkers,
with a classification accuracy between 60% and 70%.

4.2.1 Methods

The urine samples were provided by the Vall d’Hebron hospital and stored at
-80 °C. Each sample was analyzed using Gas Chromatography - Mass Spectrom-
etry. The chromatograph was a Trace GC Ultra from Thermo Fisher, equipped
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with an autosampler device. An aliquot of 3ml of urine, either in a neutral or
a basic pH medium was was placed in a 20 ml glass vial and it was hermetically
closed. The injector was set to 220 °C. The analysis lasted 27 min, with a tem-
perature ramp from to °C. The GC was connected to a single quadrupole MS
through a transfer line at 260 °C. The MS was set to scan the mass range from
28 to 350 m/z.

Samples were randomized before analysis to prevent a date/condition confound-
ing factor. The dataset included a blank sample every 4 analysis, to assess that
there was no cross-sample contamination. External calibrants (diethyleter, etyhl
decanoate and bromoform) were also sampled after each blank sample, and used
as references in retention time alignment to correct any possible experimental
drift. These particular calibrants were chosen because they presented different
retention times at 5, 14 and 24 minutes allowing us to detect drifts on the begin-
ning, the centre and the end of the chromatograms respectively.

4.2.2 Data analysis

The preprocessing of the urine samples consisted of the following steps:

o Blank subtraction

o DBaseline removal, using the psalsa algorithm.

e Denoising, using a Savitzky-Golay filtering.

o Peak extraction and Peak integration, using the Bieller-Biemann deconvo-
lution.

o Alignment, using the Robinson-Souza algorithm (Robinson et al., 2007).

These steps were integrated with the PyMS toolbox (O’Callaghan et al., 2012),
customizing the denoising and baseline correction steps to integrate the Savitzky-
Golay filtering and the psalsa baseline estimation method.

Right after the sample was binarised in a matrix, its associated blank was sub-
tracted from it, in order to remove the effects of the compounds present in
blank samples, coming from column or contamination. After blank substrac-
tion, the baseline of the samples was substracted using psalsa, with A = 100000
and p = 0.01. The effect of the baseline removal on the whole sample is shown
on figure 4.9. After the baseline removal a Savitzky-Golay filter of 7 points long
and second order was used to remove noise.

A peak is represented by a retention time, an intensity and a mass spectrum.
From each sample, a list of peaks was compiled using the Biller—Biemann al-
gorithm using 5 points and 10 scans for the deconvolution. Peak areas were
integrated using only the top most common ions, as marginal ions account for
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Figure 4.9: Baseline subtraction effect. On the left: sample before the subtraction.
On the right: the same sample after baseline subtraction.

sample noise. To avoid false positives in peak detection, a threshold was imposed
to ignore small peaks corresponding to noise. The results of the peak detection
are represented over the Total Ion Chromatogram on figure 4.10.

The final step to obtain a matrix of features is to compare the extracted peaks
among the different samples, and cluster the peaks according to their similarity
so peaks from different samples corresponding to the same analyte are clustered.
The algorithm to perform the peak alignment is the Robinson-Souza method
described at (Robinson et al., 2007). In summary, a similarity score between two
peaks i and j is defined as:

Pli.g) = Sti.d)exw (-5 ) (1.1)

where S(,7) is the dot product of the respective mass spectra and ¢; and t;
are the retention times of the respective peaks. D is a retention time tolerance
parameter that was set to 5s.

Peak lists from different samples are pairwise compared using the similarity score
and are aligned using dynamic programming with the Needleman-Wunch algo-
rithm, similarly as done in sequence alignment. A gap penalty of 0.35 was used.

All the peaks from different samples that are clustered together belong to the
same compound. A mass spectrum representative of that compound is computed
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Figure 4.10: Peak detection in GC-MS samples. Fragment of a retention time
with the detected peaks highlighted.

as the average mass spectrum of the peaks in the cluster. Figure 4.11 gives an
example of a comparison between the the representative mass spectrum of each
of the compounds with the mass spectrum of methanethiol, extracted from the
NIST reference library, showing how methanethiol has been successfully extracted
and clustered from the samples. The alignment procedure creates a final matrix
for further data analysis with as many rows as samples are analysed and as many
columns as peak clusters have been formed. If a particular sample does not have
a compound, then a NaN (Not a Number) value is imputed in the matrix.

After discarding compounds present in less than 60% of the samples, 74 and
71 compounds were found at urine samples in a basic pH and in a neutral pH
respectively.

The matrix of peaks and samples can be used for further data analysis. To start,
we opted for applying a Wilcoxon test (Bauer, 1972) and a Rank Products test
(Breitling et al., 2004). This univariate analysis did not reveal any compound
as significant, indicating that there is not an individual biomarker able to dis-
criminate between cancer and control patients. Nevertheless, figure 4.12 shows
a boxplot for the peaks with larger differences between both groups. This lack
of finding was discouraging, and further multivariate analysis were tried without
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Figure 4.11: Angle between methanethiol mass spectrum extracted from the
NIST and each of the compounds automatically extracted from the samples. An-
gle is above 70 degrees for all the compounds except for the actual methanethiol,
where the angle decreases below 10°.

luck.

To further assess that the problem was not found in our data analysis method-
ology, and for the sake of curiosity, a master student was put to work on data
analysis for GC-MS using this same dataset. His approach, based on other tools
such as XCMS (Smith et al., 2006) and MzMine (Pluskal et al., 2010), obtaining
similar results reported at (Macfas, 2017).

We therefore assume that the problem must be either in our instrumentation,
in our methodology, or in the reproducibility of the analysis. Besides this, this
application shows some of the tools we described in the thesis and it is a sample
of how hard getting reproducible results can be in this field.
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Chapter 5

Conclusions

This thesis studies data analysis tools and algorithms for hyphenated analyti-
cal chemistry instrumentation, focusing on Gas Chromatography - Ion Mobility
Spectrometry.

o The study in section 2.2 of several baseline estimation methods for GC-MS
and GC-IMS samples has exposed a limitation of the Asymmetric Least
Squares technique for the baseline correction of samples with large dynamic
range. The modification of the weights in the ALS algorithm so they de-
pend on the magnitude of the residual has been effective to overcome the
described limitation, improving the baseline estimation both in synthetic
and real samples.

e The characterization of the misalignments from section 2.3 performed on a
GC-IMS dataset that spans more than 10 months has shown that first order
drift time misalignments can be corrected with a linear warping, having a
slope correction factor smaller than 3%. The correction factor, as seen on
figure 2.14 is clustered by the day of the analysis indicating a correlation
of intra-day misalignments in drift time. However, retention time misalign-
ments benefit more from non-linear corrections, so we have explored how
monotonic cubic splines improve linear warping methods thanks to their
flexibility. Based on those results, we have suggested an optimal time span
between two consecutive external calibrant measurements of two days. In
spite of the proposed correction based on external calibrants, the use of in-
ternal calibrants is still convenient for the correction of retention times, in
order to reliably align each sample, covering for not systematic intra-sample
variations.
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A novel technique for improved chemometric resolution of gas chromatog-
raphy ion mobility spectrometry samples has been presented, showing for
the first time that blind peak deconvolution techniques can be successfully
applied to MCC- IMS instrumentation.

The SW-MCR technique has been tested on olive oil headspace samples.
The samples analyzed present a strong co-elution of the individual chemi-
cal components, as shown by the wide peaks in the reverse RIP ion chro-
matogram. Coeluting peaks are not properly resolved using conventional
MCR-ALS methods, as peaks of lower intensities cannot be discriminated
from the sample noise. Additionally, spurious compounds appear requiring
supervision of the results.

Using the proposed SW-MCR method, we were able to deconvolve the pure
spectra and concentration profiles of most of the peaks, even the ones with
lower intensities, rejecting spurious solutions automatically.

Further work in the SW-MCR area can be oriented to improve the initial
estimation of the concentration profiles and pure spectra, in order to over-
come the limitations in SIMPLISMA to resolve peaks of constant intensity
along the entire window.

The computational cost of the SW-MCR, technique is higher than the cost
of the conventional MCR-~ALS method, mainly because of the higher win-
dow overlap. However, our method can be easily parallelized, making our
method more scalable and even suitable for real time applications: with
our SW-MCR the retention time windows can be analyzed as they are ac-
quired from the instrument, while the whole sample matrix is needed if a
full matrix deconvolution with MCR-~ALS is done.

We have shown the application of some of these signal processing tools to
the classification of olive oil samples according to their quality, using some
of the described preprocessing methods to extract the chemical fingerprints
and train a classifier, using state of the art validation techniques.

Some of the developed methods were also applied to GC-MS data, looking
for prostate cancer biomarkers in urine volatiles. Even though we identified
analytes with potential of being biomarkers according to the literature, we
did not obtain good prediction capabilities.

We hope that the implementation of these techniques in an open source repository
will facilitate its adoption and benchmarking by others.



Appendix A

Resum de la tesi

A.1 Introduccid

L’objectiu d’aquesta tesi és el desenvolupament d’algoritmes per l’analisi de
mostres complexes en fase gasosa fent s d’instrumentaci6 acoblada, en particular
de Cromatografia de Gasos - Espectrometria de Mobilitat d’ions (GC-IMS) i la
seva aplicacié en mostres complexes reals.

Explorarem les tecniques existents per ’analisi de dades tant per GC-IMS com
per altres tecniques similars o properes, i proposarem millores modificacions i
adaptacions d’algoritmes existents per tal que s’ajustin millor a les caracteris-
tiques del GC-IMS. Avui dia, bona part de les analisi estadistiques de dades de
GC-IMS es fonamenten en 1'Gs de sistemes propietaris tancats, proporcionats pel
fabricant de l'instrument o per una tercera part (p.ex. VisualNow!), o fan ts
de técniques escampades a multiples paquets de programari i articles. Els algo-
ritmes desenvolupats en aquesta tesi seran publicats en una caixa d’eines oberta
i modular, que podra estendre’s i ser reutilitzada per la comunitat.

L’espectrometria de mobilitat d’ions és una eina analitica utilitzada cada cop en
més camps: En 'ambit de la seguretat, 'IMS s’utilitza a diari en aeroports per
la deteccié de drogues i explosius (Eiceman et al., 2013). Si bé inicialment els
usos de I'IMS estaven centrats principalment en la deteccié d’agents de guerra
quimica, explosius... avui dia han proliferat d’altres aplicacions (Armenta et al.,
2011) com ambientals (Karpas et al., 1991), (Baumbach et al., 1993); industrials
(Budde, 1995); estudis biomedics (Westhoff et al., 2010), (Baumbach, 2009); o

Thttp://www.bs-analytik.de/en/products/software-vocan-visualnow.htm
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qualitat alimentaria (Vautz et al., 2006¢), (Garrido-Delgado et al., 2012) entre
d’altres. El seu s com a eina de recerca per I’analisi de mostres biologiques o de
ciencies de la vida, en particular per la deteccié de compostos organics volatils

(VOC).

L’analisi de mostres complexes requereix de fer s de progressos recents en in-
strumentacié acoblada (Sarker and Nahar, 2012). Si bé 'IMS no seria una eina
adequada per I'analisi d’aquest tipus de mostres a causa de la seva poca selectivi-
tat, una pre-separacié dels analits de la mostra fent s de cromatografia de gasos
permet superar aquesta limitacid, a costa de sacrificar portabilitat i velocitat
d’analisi. A més, la pre-separacié dels analits aporta informacié que pot ser ttil
per la identificacié dels analits de la mostra. Al generar una quantitat de dades
més grans i més complexa amb aquest instrument acoblat cal fer Gs d’algoritmes
especifics capacos d’extreure tota la informacié de la mostra.

Per tal de proporcionar una bona base per a la descripcié dels algoritmes pro-
posats, aquesta introduccié descriura breument mostres tipiques complexes que
son rellevants en aplicacions de GC-IMS. Seguirem explorant la instrumentacio
analitica, enfocant-nos en els instruments d’interes (IMS, GC-IMS).

Pel que fa les mostres tipiques dels ambits de ciencies de la vida, en el camp
biomedic es treballa amb el que s’anomena ’analisi del “volatoloma huma”. El
volatoloma consisteix en el conjunt de compostos volatils que emanen dels difer-
ents fluids del cos huma. (de Lacy Costello et al., 2014) donen un compendi de
la quantitat de compostos organics volatils que s’han arribat a comptar en la
literatura, mostrant la complexitat inherent a les mostres, resumit a la taula A.1.

Table A.1: Nombre de VOCs per fluid corporal, segons (de Lacy Costello et al.,
2014). Cal deixar clar que no és el nombre total de VOCs existents, ja que per
exemple a la orina se sap que n’hi ha més per identificar, presents en molt baixes
concentracions

Fluid corporal Nombre de VOCs
Ale 872
Saliva 359
Sang 154
Llet 256
Secrecions de la pell 532
Orina 279

Fems 381
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L’analisi del volatoloma no esta complet, i hi ha problemes oberts que cal resoldre
per transferir els resultats de la recerca a la clinica, entre ells un problema de
poca reproducibilitat en estudis pre-meédics (Begley and Ioannidis, 2015). Dis-
posar d’eines d’analisi de dades que segueixin les millors practiques (Broadhurst
and Kell, 2007) és un pas per tal de millorar aquesta reproducibilitat, i aquesta
tesi segueix aquest cami. Aixi, en aquesta tesi veurem l’aplicaci6 d’alguns dels
algoritmes desenvolupats a un conjunt de dades de volatils d’orina mesurats amb
GC-MS, amb I’anim de descobrir biomarcadors de cancer de prostata.

Un altre camp que es beneficia de I'analisi de compostos volatils és el de la
indtstria alimentaria, on diferents analisi son habituals pel control de qualitat
d’aliments i per detectar aliments en un estat de conservaci6 deteriorat. Si bé les
eines analitiques habituals requereixen preparacié de la mostra, temps i son cares
(Vautz et al., 2006¢), en la darrera década han aparegut meétodes alternatius que
complementen aquestes tecniques o les poden reemplagar. Per exemple, 1'is de
IMS per detectar si el menjar es fa malbé (Raatikainen et al., 2005), el control
de qualitat de vins (Karpas et al., 2012b) i la prevencié de frau en oli d’oliva
(Garrido-Delgado et al., 2012) en sén algunes aplicacions.

Aquesta tesi mostra aplicacié d’alguns dels algoritmes desenvolupats a un con-
junt de dades de GC-IMS de I'analisi d’olis d’oliva, per la seva classificacié d’acord
amb la seva qualitat

A.1.1 Instrumentacio

L’espectrometria de mobilitat d’ions és una teécnica analitica per caracteritzar
substancies quimiques basant-se en la velocitat d’ions en fase gasosa en un camp
electric (Eiceman et al., 2013). Es capac de detectar traces d’alguns compostos
volatils, arribant a concentracions del rang de ppb. L’analisi és rapid (un espectre
s’adquireix en desenes de milisegons) i I'instrument té una selectivitat moderada.

I’IMS es divideix en una regié d’ionitzacid, una graella d’obturacié i la regié de
deriva. Tal i com es mostra a la figura A.1, la mostra entra a la regi6é d’ionitzaci6
(en aquest cas després d’haver passat per un cromatograf). Les molécules de
la mostra s’ionitzen i aquests ions passen a la regié de deriva quan la graella
d’obturacio6 s’obre, viatjant a través del tub de deriva, que consisteix habitualment
d’una serie d’anells metal - lics que creen un camp electric constant. Els ions
viatgen pel tub de deriva impulsats per una forca que depén de la seva massa
i carrega, col - lisionant amb les molécules neutres del gas de deriva (aire o Na
habitualment) que flueix en la direccié oposada. Depenent de la seccid eficag
entre els ions i el gas, hi haura més o menys col - lisions afectant al temps que
trigara cada molécula a recérrer el tub de deriva. Aixi els ions se separen d’acord
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Figure A.1: Diagrama d’un cromatograf de gasos acoblat amb un IMS

a la seva mobilitat electrica, que depen de la seva massa, forma i carrega d’entre
altres factors, arribant a un detector al final del tub de deriva. El temps que
triga un i6 a travessar el tub es coneix com a temps de deriva. La relacié per a
baixos camps electrics entre la velocitat mitjana de ’i6 i el camp electric aplicat és
lineal vg = KFE, on K és la mobilitat electrica. D’aquesta mobilitat electrica pot
derivar-se la mobilitat electrica reduida, que en compensa les variacions causades
per la temperatura i la pressio.

L’ts de determinades fonts d’ionitzacié genera uns ions reactants (habitualment
ions hidroni H30% o ions amoni N H,") que s6n els que interactuen amb la mostra.
En cas d’abséncia de mostra, els ions reactants viatgen sols pel tub de deriva
donant lloc al pic (o pics) dels ions reactants (RIP). Aquest pic és especialment
atil per les analisi en tant que com veurem pot fer-se servir de referéncia per
alinear els diferents espectres. La quantitat d’ions reactants disponible és finita,
cosa que fa que en barreges complexes només els compostos que tinguin més
afinitat amb els ions reactants hi reaccionin, donant lloc a un efecte de competicié
per la carrega d’aquests ions i per tant a no linealitats.

Per tal de millorar la selectivitat de 'IMS, i també per reduir el nombre de
compostos presents al mateix temps a ’area d’ionitzacid, és possible acoblar-ne
a l'entrada un cromatograf de gasos, que permet separar els compostos d’una
mostra en funcié de la seva afinitat i capacitat de ser retinguts per una columna
cromatografica. Per la capacitat de fer cromatografies rapides i per poder pro-
porcionar fluxos elevats, habitualment s’utilitzen unes columnes multicapil - lars
(MCC) que a diferéncia de les columnes habituals estan formades per un paquet
de capil - lars en paral - lel. En una cromatografia el temps que triga un compost
a travessar la columna i eluir-ne s’anomena temps de retencio.

La figura A.2 mostra una mostra de MCC-IMS d’oli d’oliva. Els pics d’MCC-
IMS s6mn més amples que els tipics pics de cromatografia i se’'n poden veure uns
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quants eluint al mateix temps de retencié, fenomen conegut com co-elucié. El
RIP descrit anteriorment es pot veure al llarg dels temps de retencié a un temps
de deriva proper als 6ms. Veiem també com al eluir altres compostos la intensitat
del RIP decreix.
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Figure A.2: Regié d’'una mostra MCC-IMS d’oli d’oliva. El pic d’ions reactants
(RIP) s’observa als 6ms aixi com es pot veure també el fenomen de la coelucié.

Havent vist el tipus de mostres amb les quals treballarem i la instrumentacio
existent, tenim una base per la discussi6 dels algoritmes existents per 'analisi de
dades més adient.

A.2 Preprocessat

El preprocessat és la millora de les dades en cru donades per l'instrument fent s
de filtres i de técniques de processat de senyal per eliminar soroll i artefactes de les
dades, corregint derives instrumentals i variacions de la linia de base. L’objectiu
és anar de les “dades en cru” a “dades netes”, llestes per fer analisi de dades i
modelat. L’increment de la quantitat i complexitat de les dades en cru fa més
necessari dedicar-hi més temps i esforcos a netejar-la, per assegurar-nos que la in-
formaci6 extreta posteriorment té sentit i és d’alta qualitat. Si el preprocessat no
es fa amb cura poden apareixer artefactes i variacions no desitjades (en comptes
de ser eliminades!) i aixd pot afectar a les analisi posteriors (Engel et al., 2013).
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Per les dades de GC-IMS, els principals problemes que han de ser tractats son el
soroll de les mesures, la linia de base, els desalineaments i la normalitzacié. De
tots aquests, en aquest resum ens centrarem en la linia de base i I’alineament,
que sén els dos camps on s’han fet les contribucions més rellevants.

A.2.1 Correccid de la linia de base

Les tecniques d’estimacioé de la linia de base s’utilitzen habitualment per corregir
els efectes a llarg termini de contaminacié o de degradacié instrumental i sén
essencials per poder fer una integracié acurada de l’area dels pics de la mostra.

Existeixen moltes tecniques per estimar la linia de base i corregir-la, com per
exemple metodes basats en ajustos polinomials (Salit and Turk, 1998), en minims
quadrats pesats (Eilers, 2003), (Zhang et al., 2010), (Peng et al., 2010) o métodes
basats en wavelets (Shao et al., 2003). Alguns dels meétodes requereixen que
I'usuari defineixi regions sense pics per estimar la linia de base. Altres metodes
aproximen la linia de base de forma iterativa, mirant de detectar i rebutjar les
regions amb pics que no pertanyen a la linia de base

En aquest treball es proposa una modificacié del metode de minims quadrats
asimétrics (ALS) proposat a (Eilers Paul H. C., 2005). Hem trobat que ALS té
un comportament esbiaixat en la preséncia de pics intensos (en relacié al nivell
de soroll). Aquests pics intensos es troben habitualment a mostres de GC-MS i
també GC-IMS.

A (Newey and Powell, 1987). ALS va ser presentat per tal de construir tests
estadistics en I’ambit de la econometria. Més tard, va ser utilitzat per estimar la
linia de base, en connexié amb 'algoritme d’alineat “Parametric Time Warping’
(Eilers, 2004), i va ser presentat amb més detalls a (Eilers Paul H. C., 2005). Re-
centment, una modificacié de I’algoritme ALS anomenada airPLS es va presentar
(Zhang et al., 2010), millorant els pesos del métode ALS original.

i

El metode ALS es basa en estimar una linia de base z donat un espectre y. z ha
de ser més suau que y, pero similar, de manera que ALS proposa minimitzar una
funcié cost inicialment donada per:

S=3"E+2Y (A%)° (A.1)

on d; = y; — z; sén els residus de Pestimacié i A%z; = z; — 22i_1 + 2i—9.

El primer terme de S és el terme de fidelitat de z a y, mentre que el segon terme
imposa la suavitat de z. La suavitat es controla pel parametre A, habitualment
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en el rang 102 < X < 10%. Aquesta funcié de cost cal que es generalitzi introduint
pesos w:

S=Swd? + 1) (A%) (A.2)

Aquests pesos w s’introdueixen per tal de rebutjar penalitzacions a la funcié de
cost produides per regions on el senyal es troba per sobra la linia de base, és a
dir regions amb pics. Aixi, el metode ALS defineix w basant-se en un parametre
p habitualment en el rang 0.001 < p < 0.1. Aixi, s’aconsegueix que en les regions
on no hi ha pics la linia de base travessi el soroll, mentre que en les regions on hi
ha pics la linia de base es mantingui per sota el senyal.

ifd; >0

w; =1{F i (A.3)
1 —p altrament

Com pot veure’s, les regions on el senyal es troba per sobre la linia de base

tindran una penalitzacié molt més petita. Iterativament pot minimitzar-se S,

trobant solucions convergents en menys de 20 iteracions habitualment.

Una limitacié del meétode ALS es presenta en mostres de gran rang dinamic, amb
pics d’intensitats elevades. En aquest cas, ’estimacié de la linia de base donada
per ALS no convergira a la linia de base real i o bé part de la linia de base
penetrara dins els pics més intensos o bé la linia de base s’ajustara per sota el
soroll i no travessant-lo.

La millora d’ALS anomenada airPLS i proposada a (Zhang et al., 2010), es fa
amb dos objectius: Eliminar el parametre p, simplificant 1'is de ’algoritme i per
millorar la qualitat de 'estimaci6 fent servir pesos adaptats a la distancia amb
la linia de base segons:

w; = —tldy] (A4)
exp <Zdi<0 |di|> altrament

on t és la iteracié actual. Aixi, les regions on el senyal esta per sobre la linia de
base estimada sén ignorades a la iteracié segiient.

Nosaltres proposem una modificacié anomenada psalsa (algoritme ALS per
senyals amb pics) amb una definicié diferent per aquests pesos, molt més similar
a la original de ALS:
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di .
w = P iHdi>0 (A.5)
1—p otherwise

La diferéncia amb el metode original ALS és en els residus positius, on p es
pondera per exp (—%) Les regions amb pics més elevats mostraran residus més
grans, tenint pesos més petits, mentre que regions de soroll tindran residus petits
i pesos semblants a p. Aquesta aproximacié introdueix un nou parametre k, que
controla com cauen els pesos. Aquest parametre es pot configurar a 5% de la
intensitat maxima. Cal notar com si fem & — oo recuperem el metode ALS
original. En unes 5-10 iteracions psalsa és capag de convergir correctament.

Una comparativa dels diferents metodes d’estimacié de linia de base es troba a
A.3. També es mostra a la tesi com el valor del parametre k no és critic per
I'estimacié de la linia de base. A la figura A.4 es mostren uns cromatogrames de
mostres reals, amb les linies de base estimades per cada metode. Es pot veure
com psalsa és capag de travessar els pics creuant el soroll, i no passant-hi per
sota.

10
A=5.0E+03, A=5.0E+08,
p=5.0E-08 p=1.0E~04 A=1.0E+07,
o 6 p=5.0E-01,
210°; : k=1.0E+05
o
E ° [ ]
5 b °
2 = !
2 s - 1
=10 ¢ E
>
® |
S |
L — Q
g 4 s
g 10°F ]
10° : — ‘
ALS airPLS psalsa

Baseline estimation method

Figure A.3: Comparacié de tres metodes per cromatogrames sintetics
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Figure A.4: Comparacié de I'estimacié de la linia de base en mostres reals

A.2.2 Alineat

Variacions menors de la temperatura i pressié en una mesura poden afectar les
mobilitats dels ions, que mouran les posicions dels pics a l'espectre IMS. Varia-
cions en fluxos, temperatures i la degradacié de la columna cromatografica poden
fer moure també les posicions dels pics en temps de retencié. Per aquest motiu
és necessari I'is d’eines d’alineament que corregeixin aquestes derives.

En aquesta tesi hem fet una caracteritzacié dels problemes d’alineament de
mostres en un estudi al llarg de més de 10 mesos. Fent s de calibrants ex-
terns hem vist la distribuci6 dels desalineaments, resumida en les dispersions de
la taula A.2.

Table A.2: Posicions originals dels pics

Nom Cluster Temps de deriva (ms) Temps de retencié (s)
2-butanone  Dimer 8.58 £ 0.11 92 £ 11

2-pentanone Dimer 9.44 £ 0.11 124 + 15

2-hexanone  Dimer 10.35 £ 0.12 212 + 27
2-heptanone Dimer 11.24 £ 0.13 401 £ 33
2-heptanone Monomer 8.66 + 0.11 406 + 32

2-octanone Dimer 12.12 + 0.13 584 + 36
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Table A.2: Posicions originals dels pics

Nom Cluster Temps de deriva (ms) Temps de retenci6 (s)
2-octanone Monomer 9.15 £ 0.11 590 + 36

2-nonanone  Dimer 12.96 £ 0.13 1052 4+ 88
2-nonanone  Monomer 9.65 £+ 0.11 1053 £+ 87

La correccié del temps de deriva s’ha fet mitjancant una correccié multiplicativa.
Aquest és un meétode simple i lineal. Assumeix un canvi d’eix en temps de deriva
de l'estil ¢ = kt, on k ha de ser estimat. La manera més habitual d’estimar
k és fent servir el RIP, de manera que quedi ben alineat. Aquesta correccié és
equivalent a la conversié de temps de deriva a mobilitats reduides.

Amb una correccié lineal dels temps de deriva, ajustada per tal que el RIP quedi
alineat, ja es pot reduir en un ordre de magnitud els desalineaments en temps de
deriva, com mostra la taula A.3.

Table A.3: Peak positions after drift time correction

Name Cluster Drift time (ms) Drift time (corr.) (ms)
2-butanone  Dimer 8.58 £ 0.11 8.46 £+ 0.02
2-pentanone Dimer 9.44 £ 0.11 9.3 £ 0.02

2-hexanone  Dimer 10.35 + 0.12 10.19 + 0.03
2-heptanone Dimer 11.24 + 0.13 11.07 £+ 0.04
2-heptanone Monomer 8.66 + 0.11 8.53 + 0.01
2-octanone Dimer 12.12 + 0.13 11.94 + 0.05
2-octanone Monomer 9.15 £ 0.11 9.02 £+ 0.02
2-nonanone  Dimer 12.96 £ 0.13 12.76 + 0.05
2-nonanone  Monomer 9.65 + 0.11 9.51 + 0.03

Pel que fa el temps de retencié, hem fet servir splines ciibics monotonics per
alinear-los. Fins a on podem saber, els splines ctibics monotonics no s’havien fet
servir anteriorment per alinear dades de GC-IMS. Tanmateix, en aplicacions de
cromatografia, la feina més similar va ser documentada per (Halang et al., 1978),
on splines ciibics naturals s’utilitzen per ’alineat d’indexs de retencié. Més recent-
ment, (Eilers, 2004), remarca les distorsions no uniformes dels temps de retenci6
observades a (Gong et al., 2004) en un instrument de cromatografia liquida d’alta
pressié amb un detector de matriu de diodes (HPLC-DAD) i suggereix com una
estrategia viable d’alineat 1'is de p-splines.
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Els splines ctibics monotonics sén adients perque poden adaptar-se a variacions lo-
cals, tenen un comportament suau i preserven l'ordre d’elucié (no esperem canvis
en l'ordre d’elucié en les mostres analitzades). En comparativa, els models lineals
o polinomials no tenen la flexibilitat suficient per ajustar-se a les variacions del
temps de retencio i la seva flexibilitat local és més limitada. Si bé és cert que 1'ts
de models lineals a trossos és possible, els models d’alineat a trossos no acostu-
men a estar ben comportats en els limits dels segments. Per exemple, el popular
algoritme icoshift (Tomasi et al., 2011) ha de deixar valors buits a les vores dels
segments per evitar que apareguin artefactes. Els splines ctiibics monotonics, tal
i com van descrits per (Hyman, 1983) compleixen totes les condicions descrites.

La taula A.4 mostra com queden alineats els temps de retenci6 fent una correccié
lineal i una correccié mitjancant splines.

La correcci6 lineal té biaixos més elevats que la correccié amb splines perqué no
té la flexibilitat suficient per copsar amb els canvis no-lineals.

Table A.4: Comparativa dels temps de retenci6 estimats

Pic de prova Referéncia (s) Linear (s) Splines (s)

2-pentanone 95 98 + 4 94 £+ 3
2-hexanone 165 178 £ 8 169 £ 5
2-heptanone 343 345 + 10 342 + 11
2-octanone 527 502 £ 16 531 + 21

Aquesta analisi ha contribuit a caracteritzar els desalineaments tant en temps de
retencié com en temps de deriva. L’is de splins ctibics monotonics per ’alineacié
del temps de retencié en mostres de GC-IMS ofereix una millora senzilla sobre
les correccions lineals i desplagaments habituals. A la tesi també se suggereix en
base als resultats obtinguts un interval de dos dies per analitzar dues mostres de
calibrants consecutives.

A.3 Resolucié multivariant de corbes en finestra

mobil (SW-MCR)

Les técniques de separacié cega de fonts (BSS) tenen per objectiu extreure de
forma no supervisada un conjunt de senyals d’una mescla. Aquestes técniques
son 1tils en situacions amb una alta coelucié, en les que la columna cromatografica
és incapac de separar completament els components de la mescla.
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Una de les técniques més esteses en I’ambit de la quimiometria és la resolucié mul-
tivariant de corbes amb minims quadrats alternats (MCR-ALS) (Tauler, 1995).
Aquesta técnica es basa en fer una descomposicié bilineal, on d’una banda tenim
les concentracions de cada analit de la mostra i de I’altra ’espectre pur de ’analit
corresponent, com es mostra a ’equacié (A.6).

D=CST+E (A.6)

on:

e D (MxN) és la matriu mesurada, amb un espectre per fila

o C (MxK) s6n les abundancies o concentracions de cada espectre per cada
espectre pur

e S (NxK) so6n els espectres purs

e E és la matriu dels residus

Per tal de fer aquesta descomposicié, MCR-~ALS es basa en un procés iteratiu de
minims quadrats i en ’aplicaci6 de restriccions de caire fisic 0 quimic per obtenir
una descomposicid interpretable, seguint els passos segiients:

1. Eliminar soroll de D. Per eliminar el soroll es fa una descomposicié PCA
amb K components principals i es reconstrueix la matriu a partir dels scores

i els loadings del PCA.

2. Estimar els perfils de concentracié per minims quadrats:

C = argming || D —C’STH2 (A7)
3. Imposar restriccions sobre els perfils de concentracio

4. Estimar els espectres purs fent servir minims quadrats:

. 2
S = argming HD * —CSTH (A.8)
5. Imposar restriccions sobre els espectres purs
6. Iterar els passos 2-5 fins a convergir

La clau doncs per obtenir bons perfils de concentracio6 i espectres purs depen en
I’estimacié del nombre de components de la mescla, la inicialitzacié dels espec-
tres purs i la imposici6 de restriccions que assegurin solucions fisica i quimicament
raonables. Detalls sobre els metodes per inicialitzar i les restriccions més habitu-
als es donen a la tesi.
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MCR-ALS es basa en una minimitzacié per minims quadrats de I’error global de la
factoritzacié. Com mostren els resultats de la tesi, els pics locals amb intensitats
més baixes que apareixen en regions amb més co-eluci6 no sén detectats per MCR-
ALS correctament, a causa que comprenen una contribucié a I’error comparable o
fins i tot inferior que el soroll global de la mostra. En aquests casos, incrementar el
nombre de components de la mostra porta a extreure també compostos “espuris”,
no desitjats i sense significat fisic en comptes d’aquests compostos locals.

Per tal de superar la limitacié descrita, proposem aplicar MCR-ALS en finestres
petites i parcialment solapades, fent llesques de la matriu de la mostra en ’eix
de temps de retencié. A més, les finestres es fan parcialment solapades per evitar
partir els pics a les vores de la finestra, i per rebutjar els compostos espuris que
puguin apareixer esporadicament en alguna finestra.

Primer, les estimacions inicials d’espectres purs i perfils de concentracié s’obtenen
a cada finestra. El nombre de components per cada finestra s’estima fent servir
un llindar en els valors singulars. Donades les estimacions inicials, apliquem
MCR-ALS a cada finestra, i n’extraiem un conjunt de perfils de concentracié i
espectres purs per cada finestra.

Finalment, els resultats de totes les finestres es combinen en un unic conjunt de
perfils de concentracié i espectres purs, representatius de tota la mostra. Per
fer-ho, els compostos es segueixen al llarg de finestres consecutives, en base a una
figura de similitud d’espectres. L’angle entre dos espectres purs s; i s; es calcula
segons (A.9).

6; ; = arccos (slsj) (A.9)

lsilllls;

La figure A.5 mostra un diagrama amb un exemple de quatre compostos detectats
en tres finestres. L’enllac entre dos espectres de finestres consecutives es forma
només si el seu angle es troba per sota un llindar. En aquesta figura, els compostos
C1 1 C2 se segueixen al llarg de les finestres N a N+2, mentre que el compost C3
desapareix a la finestra N+1 perque no s’hi pot establir cap enllag amb la darrera
finestra. El compost C4 no apareix fins a la finestra N+1. El darrer espectre
de la finestra N+1 no estableix cap enllag amb cap altra finestra, i per tant es
considera espuri i es descarta del conjunt de compostos finals.

La metodologia s’ha aplicat a mostres d’oli d’oliva mesurades amb MCC-IMS,
imposant les restriccions de no-negativitat a espectres i concentracions, sistema
tancat en els perfils de concentracié i unimodalitat dels espectres purs. L’angle
entre els compostos ha de ser inferior a 15 graus per tal que es considerin el
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Figure A.5: Diagrama del seguiment dels espectres al llarg de tres finestres. Els
enllagos entre espectres s’estableixen si el seu angle es troba per sota d’un llindar.

mateix compost. Aplicant aquesta metodologia, SW-MCR, és capag d’extreure
més compostos, com es mostra a la taula A.5.

Aixi, hem presentat una técnica nova per la millora de la resolucié multivariant de
corbes de mostres de GC-IMS, mostrant que la deconvolucié cega de pics es pot
aplicar amb exit a aquest instrument analitic per tal d’extreure caracteristiques
i resoldre coelucions fins i tot quan 1'ts convencional de MCR-ALS és incapag de
discriminar les intensitats més baixes del soroll de la mostra.

A.4 Aplicacions

A.4.1 Analisi de qualitat d’oli d’oliva mitjancant GC-IMS

La primera aplicacié esta relacionada amb la prevencié de frau en alimentacio.
Diferents tipus d’oli d’oliva tenen caracteristiques organoléptiques diferents i per
tant diferent preu de mercat. Una classificacié simple i acurada dels tipus d’oli
d’oliva és desitjable, en tant que la industria de 1’oli pot reduir despeses i prevenir
el frau. L’oli d’oliva pot categoritzar-se en tres grups d’acord amb la seva qualitat:
“Verge extra”, “Verge” i “Llampant”.

En aquesta aplicacié utilitzem algunes de les técniques de processat de dades
descrites anteriorment, combinades amb PLS-DA, un classificador lineal, i doble
validacié creuada. La metodologia pel modelat de les dades ve descrita a la figura

AL6.

Un resum dels resultats queda plasmat a la figura A.7. A la part esquerra pot
apreciar-se les mostres d’entrenament i de test a l’espai format per les dues
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Table A.5: Localitzacié de 22 pics triats aleatoriament de la mostra, en la de-
convoluci6 MCR~ALS i en la deconvoluci6 SW-MCR. Els rangs dels temps de
retencié sén consistents amb els pics detectats, tot i que MCR-ALS no ha estat
capag d’extreure 9/22 pics.

Rang de temps de retencié (s)

# Pic  Temps de deriva (ms) Int. max. (a.u.) Mostra MCR-ALS SW-MCR

1 6.45 (RIP) 3951 Sempre Sempre Sempre
2 7.30 3936 1-4 0-10 0-4
3 7.60 1002 3-7 2-7 3-9
4 7.75 400 4-10 NF 4-9
5 8.30 782 5-9 4-8 4-10
6 9.10 177 5-12 NF 4-10
7 8.10 695 4-9 0-20 4-10
8 8.78 731 5-12 4-12 5-12
9 8.60 623 4-12 4-7 5-13
10 7.15 474 4-13 3-7 5-15
11 8.90 2100 8-13 8-12 8-13
12 8.10 425 11-19 NF 12-20
13 6.75 490 11-23 NF 12-23
14 10.30 1190 20-27 22-27 21-27
15 7.20 188 21-29 NF 21-28
16 8.20 481 21-32 NF 21-31
17 8.50 390 30-38 30-35 30-37
18 7.80 317 28-40 NF 30-40
19 7.30 445 31-40 NF 32-40
20 9.90 2200 40-55 40-60 40-50
21 8.70 220 50-63 NF 50-56
22 7.65 650 45-80 50-80 55-80
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Figure A.6: Doble validacié creuada per avaluar la classificacié del model. Divisi6
en entrenament i test, validacié interna tipus k-fold, k¥ = 5. El procés va repetir-

se 10 vegades per poder obtenir una estimaci6 de la incertesa de la taxa d’encert
del model.

primeres variables latents del model PLS-DA. La separaci6 entre les categories
d’oli verge extra i llampant és forca clara, mentre que la d’oliva verge mostra certa
confusi6. Tanmateix, les variables latents seglients (no representades) milloren
la separaci6. A la part dreta de la figura es mostra el loading corresponent a la
primera variable latent. Les mostres amb valors més elevats que la mitjana en
les zones liles tindran un score més elevat a la primera variable latent i per tant
segons els scores sera més probable que siguin mostres d’oli verge extra. Els mod-
els, entrenats amb 6 variables latents, sén avaluats amb les mostres de validaci
externa, resultant en una taxa d’encert del 85% =+ 5%.

A.4.2 Cerca de biomarcadors de cancer de prostata en els
volatils de la orina

La segona aplicacié s’enfoca en ’analisi dels volatils en mostres d’orina humana
fent servir cromatografia de gasos espectrometria de masses, amb 1’objectiu de
detectar biomarcadors capacos de discriminar individus que pateixen cancer de
prostata.

El diagnostic del cancer de prostata es confirma avui dia mitjangant una biopsia.
Les biopsies son invasives i incomodes pels pacients, a més de suposar un cost
significatiu. Acostumen a fer-se després d’un resultat positiu en el test sanguini
PSA (Prostate Specific Antigen) que actua com a filtre previ. Tanmateix, PSA
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Figure A.7: Scores per les dues primeres variables latents del model i loadings de
la primera variable latent.

és un test amb controversia a causa de ’elevat nombre de falsos positius que
dona, principalment relacionats amb condicions no cancerigenes com la hiper-
plasia benigna de prostata (Thompson et al., 2004). Tenint un resultat positiu
en només el 30% de les bidpsies fetes indica que el 70% de biopsies que es fan sén
innecessaries, i que per tant trobar altres biomarcadors no invasius i especifics del
cancer de prostata reduiria el nombre de biopsies fetes, estalviant incomoditats
als pacients, temps i recursos.

Estudis recents confirmen progressos en la deteccié de cancer de prostata fent
servir gossos que oloren orina (Cornu et al., 2011). A (Khalid et al., 2015), els
autors informe de la deteccié de potencials biomarcadors, amb una classificacid,
d’entre el 60% i el 70%, no gaire superior al PSA.

Després de fer ’analisi de mostres d’orina de pacients, la linia de base és cor-
regida fent ts de psalsa, se'n redueix el soroll i s’extreuen els pics mitjangant una
deconvolucié de Bieller - Biemann. El resultat de la deteccié de pics es mostra a
la figura A.8. Després d’aplicar 1’algoritme descrit a (Robinson et al., 2007) per
agrupar els pics corresponents al mateix analit de diferents mostres, vam aplicar
un test de Wilcoxon sobre la taula de pics, sense obtenir diferéncies significatives
en cap dels compostos detectats. La figura A.9 mostra els pics amb diferéncies
més grans en les medianes, i es pot veure com no hi ha diferéencies clares.

Després de validar que l'error no es troba en la metodologia d’analisi (repetint
lanalisi amb altres técniques, veure (Macias, 2017)), entenem que el problema
ha de ser o a la nostra instrumentacié, o al protocol experimental o en la repro-
ducibilitat de les analisi. Més enlla d’aixo, aquesta aplicacié mostra algunes de
les eines descrites a la tesi, i és una mostra de com dificil pot ser obtenir resultats
reproduibles en aquest camp.
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Figure A.8: Detecci6 de pics a mostres GC-MS.
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Figure A.9: Boxplot dels pics amb diferéncies més grans en les medianes de les
arees per pacients de cancer i control.
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Conclusions

Aquesta tesi estudia eines i algoritmes per ’analisi de dades d’instrumentacié
quimica acoblada, enfocant-se en cromatografia de gasos - espectrometria de mo-
bilitat d’ions.

o L’estudi a la seccid 2.2 de diverses técniques d’estimacié de la linia de base
per mostres de GC-MS i GC-IMS ha mostrat una limitacié de la técnica
de minims quadrats asimeétrics (ALS) per aquelles mostres que tenen pics
intensos o un rang dinamic gran. La modificacié dels pesos de ’algoritme
ALS per tal que depenguin de la magnitud del residu ha mostrat ser efectiva
per superar la limitacié descrita, millorant ’estimacié de la linia de base
tant en mostres sintétiques com reals.

o La caracteritzaci6 dels desalineaments de la seccié 2.3 elaborada a un con-
junt de dades de GC-IMS que s’estén més de 10 mesos ha mostrat que les
correccions a un primer ordre del temps de deriva poden corregir-se amb
una transformacio lineal tenint un factor de correccié inferior al 3%. A més,
aquest factor de correccié com es mostra a la figura 2.14 esta agrupat pel
dia de l'analisi, indicant una correlacié de desalineaments intra-dia en el
temps de deriva. Tanmateix, els desalineaments en temps de retencié es
beneficien més de correccions no lineals, de manera que hem explorat com
els splines ciibics monotonics milloren les correccions lineals gracies a la seva
flexibilitat. Basant-nos en aquests resultats hem suggerit un temps optim
entre dues mesures consecutives de calibrants de dos dies. Tot i la correccié
proposada, basada en calibrants externs, creiem que 1'is de calibrants in-
terns encara és convenient per la correccié dels temps de retencié, per tal de
tenir més seguretat en ’alineament i cobrir les variacions no sistematiques.
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APPENDIX B. CONCLUSIONS

Una nova tecnica per millorar la resolucié quimiometrica de mostres de GC-
IMS ha estat presentada mostrant per primer cop que aquestes técniques
sén també adequades per aquesta instrumentacié.

La tecnica SW-MCR ha estat provada en mostres d’oli d’oliva, que pre-
senten una important coelucié de components, tal i com es mostra en
lamplitud dels pics del RIP invers. Els pics en coelucié no es resolen
correctament utilitzant metodes MCR-ALS convencionals, ja que els pics
de menor intensitat no poden ser discriminats del soroll de la mostra. A
més, els resultats de MCR-ALS requereixen supervisié per l'aparicié de
compostos espuris.

Per contra, utilitzant el metode SW-MCR, proposat, hem estat capacos de
deconvolucionar els espectres purs i els perfils de concentracié de la majoria
de pics, fins i tot els d’intensitats menors, rebutjant pics espuris de manera
automatica.

Hem mostrat ’aplicacié d’aquestes eines a la classificacié d’olis d’oliva
d’acord amb la seva qualitat entrenant un classificador i utilitzant metodolo-
gies de validacié recomanades.

També hem aplicat alguns dels métodes treballats a mostres de GC-MS,
buscant biomarcadors de cancer en volatils d’orina, identificant compostos
que tot i tenir potencial de ser biomarcadors segons la literatura, no han
donat bones capacitats de prediccio.

Esperem que la implementacié d’aquestes técniques en un repositori obert faciliti
la seva adopcié i la comparativa per altres investigadors.



Appendix C

Publications

C.1 Contributions to open source packages

During the development of this thesis, I have put effort in improving the ecosys-
tem of data analysis tools, fixing bugs and offering feature improvements to
widespread R packages like readr, dplyr, readxl, xlsx, plotly, scales or
broom that belong to the Top 100 most downloaded packages in CRAN, the
Comprenhensive R Archive Network. I have offered fixes and improvements to
other popular packages like rmarkdown, htmlTable, or shinyFiles and I have
submitted my own R package condformat.

In python, my major contribution has been a package to make parallellization
easier, that so far has been used in astrophysics, for simulations in the dynamics
of spinning black-hole binaries (Gerosa and Kesden, 2016), in deep learning, to
train generative adversarial networks (Isola et al., 2016) and in epigenetics on
research related to chronic lymphocytic leukaemia (Rendeiro et al., 2016).

C.2 Publications

e S. Oller-Moreno, O. Cominetti, A. Nufez Galindo, I. Irincheeva, J.
Corthésy, A. Astrup, W. H.M. Saris, J. Hager, M. Kussmann, L. Dayon
The differential plasma proteome of obese and overweight individuals under-

going a nutritional weight loss and maintenance intervention Proteomics:
Clinical Applications 2017 DOI: 10.1002/prca.201600150
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e O. Cominetti, A. Nufiez Galindo, J. Corthésy, S. Oller-Moreno, I.

Irincheeva, A. Valsesia, A. Astrup, W. Saris, J. Hager, M. Kuss-
mann, L. Dayon Proteomic Biomarker Discovery in 1000 Human
Plasma Samples with Mass Spectrometry J. Proteome Res, 2016 DOI:
10.1021/acs.jproteome.5b00901

S. Oller-Moreno, G.Singla-Buxarrais, J.M. Jiménez-Soto, A.Pardo,
R.Garrido-Delgado, L.Arce, S.Marco Sliding window multi-curve resolu-
tion: Application to gas chromatography—ion mobility spectrometry Sensors
and Actuators B: Chemical, 2015 DOI: 10.1016/j.snb.2015.02.108

C.3 Oral Presentations in conferences

Oller-Moreno, M. Padilla, J.M. Jiménez-Soto, A. Pardo, S. Marco Graph-
ical User Interface for IMS and GC-IMS data preprocessing. Example of
application, 25th Intl. Conf. on Ion Mobility Spectrometry, Boston, 2016
S. Oller-Moreno, J. Fonollosa, J.M. Jiménez-Soto, R. Garrido-Delgado, L.
Arce, A. Pardo, S. Marco Spectra Alignment Characterization and Correc-
tion in Gas-Chromatography — Ion Mobility Spectrometry, XVI Chemomet-
rics in Analytical Chemistry Conference, Barcelona 2016

S. Oller-Moreno, S. Rica, J.M. Jiménez-Soto, J. Xaubet, A. Pardo, S.Marco,
Toolbox for MCC-IMS and IMS data analysis, Intl. Conf. on Ion Mobility
Spectrometry, Cordoba 2015.

S. Oller-Moreno, A. Pardo, JM Jiménez-Soto, J. Samitier, S. Marco
Adaptive Asymmetric Least Squares baseline estimation for analytical
instruments Proc. Intl. Conf. on Communication and Signal Processing,
Castelldefels 2014

C.4 Posters

e S. Marco, G.Singla-Buxarrais, S.Oller-Moreno, JM Jiménez-Soto, A. Pardo,

R.Delgado-Garrido, L.Arce Chemometric Resolution for hyphenated Gas
Chromatography Ion Mobility Spectrometry, Proc. 15th Intl. Meeting on
Chemical Sensors Buenos Aires, 2014.

S.Oller-Moreno, A.Pardo , S.Marco, J.Samitier Preprocessing techniques for
GC-MS metabolomics data, Proc. 6th IBEC Symposium, 2013

S. Oller-Moreno, R.Garrido-Delgado, L. Arce, M. Valcarcel, A.Pardo,
S.Marco Multivariate Curve Resolution - Alternating Least Squares
applied to GC-IMS olive oil measurements, Proc. XIII - Chemometrics in
Analytical Chemistry, Budapest 2012
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