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Knowing is not enough; we must apply.  

Willing is not enough; we must do. 
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Abstract 
 
At the present time, there is no clinically accepted available 

intervention to ameliorate intellectual disability (ID) in individuals 

with Down syndrome (DS), that has been, until recently, considered 

as a permanent and intractable hallmark of the disorder. However, 

extensive research along the last years has identified a number of 

altered molecular pathways, and neurobiological processes 

putatively involved with ID in DS that could be targeted to 

intervention for the improvement of brain and cognitive function in 

this population. One of the most critical neuronal mechanisms 

underlying ID are the defects in brain neuroplasticity, the ability of 

neurons and neuronal networks to change structurally and 

functionally in response to the environment and experience, which 

is intimately associated to learning and memory capabilities. So far, 

non-pharmacological interventions aimed at enhancing intellectual 

capacities in people with DS, such as special education programs, 

have shown limited although positive outcomes. Accordingly, it has 

been suggested that a reduced remodelling neuroplasticity potential 

could explain the little impact of cognitive stimulation and 

experience on DS brains and cognition. Therefore, normalizing 

neuroplasticity in DS could improve the neurobiological interplay 

between environmental experience, and learning and memory. 

Accumulative evidence has shown that in DS, among the 

approximately 500 triplicated genes located on Hsa21, there is a 

reduced number of dosage-sensitive candidate genes that play a 

critical role in the pathogenesis of the disorder. Two of these genes 

encode the dual specificity tyrosine-phosphorylation regulated 

kinase 1A (Dyrk1A) and the amyloid precursor protein (APP), 

which are tightly involved in the altered neuroplasticity and 

neurodegeneration processes that take place in DS.        

In this Thesis we have examined the effects of a multimodal therapy 

consisting of the use of (-)-Epigallocatechin-3-gallate (EGCG), a 

catechin found in green tea, which inhibits the kinase activity of 

Dyrk1A and modulates the proteolytic processing of APP, in 
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combination with environmental cognitive stimulation. We have 

used a translational research approach  involving preclinical studies, 

in a DS mouse model, and clinical trials, with DS humans.  

Our preclinical studies showed positive effects of combined 

environmental enrichment (EE) with EGCG treatment on 

visuospatial learning and memory deficits, both in young and 

middle-age Ts65Dn mice, suggesting its efficacy despite the age-

dependent cognitive impairments and their underlying 

pathophysiological mechanisms. An additional improvement in 

contextual learning was detected in EE-EGCG treated middle-age 

Ts65Dn mice. Histological and molecular experiments revealed that 

combined EE-EGCG treatment promotes hippocampal 

neuroplasticity changes by increasing dendritic spine density in 

CA1 and restoring the balance between excitatory and inhibitory 

synaptic proteins in CA1 and DG.  

Our clinical trials showed that EGCG treatment is safe in young 

adult individuals with DS and induces a memory improvement 

when administered alone for a short period. Administration for a 

longer period of combined treatment with cognitive training and 

EGCG, improved memory and adaptive behavior, increased 

functional connectivity as measured by fMRI and normalized 

excitability in TMS studies, in a more efficient way than cognitive 

training combined with placebo. 

Altogether our results show, for the first time, that a multimodal 

therapy consisting of combined environmental cognitive stimulation 

and EGCG significantly ameliorates cognitive deficits in Ts65Dn 

mice and young adult individuals with DS, by modifying neuronal 

network structure and function.  
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Resumen  
 
En la actualidad, no hay disponible ninguna intervención 

terapéutica para tratar la discapacidad intelectual (DI) en personas 

con síndrome de Down (SD), y hasta hace poco, esta se consideraba 

una característica permanente e intratable de la enfermedad. Sin 

embargo, diversas investigaciones a lo largo de los últimos años han 

identificado alteraciones en una serie de vías moleculares y 

procesos neurobiológicos, posiblemente involucrados con la DI en 

el SD, que podrían ser sometidos a intervención, para la mejora de 

las funciones cerebrales y cognitivas en esta población. Uno de los 

mecanismos neuronales subyacentes más críticos se basa en 

defectos en la neuroplasticidad cerebral, que es la capacidad de las 

neuronas y redes neuronales de cambiar estructuralmente y 

funcionalmente en respuesta al medio ambiente y la experiencia, y 

está íntimamente asociada a las capacidades de aprendizaje y 

memoria. Hasta ahora, las intervenciones no farmacológicas 

destinadas a mejorar capacidades intelectuales en personas con SD 

a través de programas de educación especial, han mostrado 

resultados limitados, aunque positivos. Por consiguiente, se ha 

sugerido que una reducción en el potencial neuroplástico de 

remodelación podría explicar el limitado impacto de la estimulación 

cognitiva y la experiencia sobre el cerebro y la cognición en SD. 

Por lo tanto, la normalización de la neuroplasticidad en el SD podría 

mejorar la interacción neurobiológica entre la experiencia y el 

ambiente, y el aprendizaje y la memoria. Numerosas evidencias 

sugieren que, entre los aproximadamente 500 genes localizados en  

Hsa21, que están triplicados en SD, hay un número reducido de 

genes candidatos dosis-sensible que juegan un papel crítico en la 

patogénesis de la enfermedad. Dos de estos genes codifican la 

quinasa de especificidad dual, regulada por autofosforilación de 

tirosina (Dyrk1A) y la proteína precursora del amiloide (APP), que 

están estrechamente implicados con alteraciones en procesos de 

neuroplasticidad y neurodegeneración que tienen lugar en el SD.  
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En esta Tesis se han examinado los efectos de una terapia 

multimodal que consiste en el uso de la (-)-Epigalocatequina-3-

galato (EGCG), una catequina encontrada en el té verde, que inhibe 

la actividad quinasa de Dyrk1A y modula el procesamiento 

proteolítico de APP, en combinación con estimulación cognitiva. 

Hemos utilizado un enfoque de investigación traslacional que 

implica la realización de estudios preclínicos, un modelo murino de 

SD, y ensayos clínicos, con personas con SD. 

Nuestros estudios preclínicos demostraron efectos positivos del 

tratamiento combinado con enriquecimiento ambiental (EE) y 

EGCG en los déficits de aprendizaje y memoria visuoespacial, tanto 

en ratones Ts65Dn jóvenes y de mediana edad, lo que sugiere su 

eficacia a pesar de las deficiencias cognitivas dependientes de la 

edad y de los distintos mecanismos fisiopatológicos subyacentes. 

En ratones Ts65Dn de mediana edad tratados con EE-EGCG hemos 

detectado adicionalmente una mejora  en el aprendizaje contextual.. 

Nuestros experimentos histológicos y moleculares demostraron que 

el tratamiento combinado EE-EGCG promueve cambios 

neuroplásticos en el hipocampo, aumentando la densidad de espinas 

dendríticas en CA1 y restableciendo el equilibrio entre proteínas 

sinápticas excitatorias e inhibitorias en CA1 y DG.  

Nuestros ensayos clínicos demostraron que el tratamiento único con 

EGCG es seguro en individuos adultos jóvenes con SD e induce una 

mejora en la memoria, cuando se administra durante un período 

corto. La administración del tratamiento combinado con 

estimulación cognitiva y EGCG, durante un período más largo, 

promovió una mejora en memoria y en conducta adaptativa, 

aumentó la conectividad funcional en estudios de fMRI y normalizó 

patrones de excitabilidad en estudios de TMS, de una manera más 

eficiente que la estimulación cognitiva combinada con placebo. 

En resumen, nuestros resultados muestran, por primera vez, que una 

terapia multimodal que consiste en la estimulación cognitiva 

ambiental combinado y EGCG mejora los déficits cognitivos 

significativamente en ratones Ts65Dn y jóvenes individuos adultos 
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con DS, mediante la modificación de la estructura de red neuronal y 

función. 
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Preface 
 
This Thesis emanates from the main interest of the Cellular and 

Systems Neurobiology Group at the Center for Genomic Regulation 

that is understanding the neuropathological basis of intellectual 

disability (ID) and developing new possible therapeutic avenues to 

ameliorate cognition in those disorders. In the last years we have 

made important contributions demonstrating that despite the broad 

spectrum of genetic and environmental aetiologies, alterations in 

neural plasticity are a common neuropathological finding in ID 

disorders that underlines overlapping molecular networks and 

correlates with cognitive impairments. Over time, abnormal 

neuroplasticity leads to a cognitive impairment regardless of the 

particular molecular cause. Neural plasticity is an umbrella term 

that includes structural and functional changes in neural systems, 

that have been consistently related to learning and memory abilities. 

Alterations in the physical structure and the functional efficiency of 

communication elements such as dendrites and spines would be 

expected to adversely affect the information storage capacity of 

neural networks by reducing the number of potential sites for 

plasticity to occur. Consistent with this idea and the observed 

deficits in cognition associated with Down syndrome (DS), 

examination of postmortem brain tissue from DS individuals reveals 

profound alterations in dendritic and neuronal densities and 

morphology across many regions of the brain beginning in utero 

and persisting throughout life. 

Our hypothesis is that drugs targeting core molecules in 

neuroplasticity cascades will set the brain in a favourable state for 

cognitive function and will be disease-modifying treatments in 

individuals with ID, and specifically in DS. Therefore, we have 

explored a novel systems approach that combines non-

pharmacological therapeutic strategies, such as cognitive 

stimulations, that would induce physiological activity-dependent 

plasticity, in combination with a pharmacological tool that enables 

plasticity-related cascades. The aim of this Thesis project was to 
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assess the effects of a combined therapy, consisting of an 

environmental cognitive enhancing intervention and the coadjuvant 

administration of the green tea catechin (-)-epigallocatechin-3-

gallate (EGCG). The rationale is that these two treatments enhance 

neuroplasticity through common molecular mechanisms including 

the modulation of two Hsa21 candidate genes, the dual specificity 

tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and the 

amyloid precursor protein (APP), that play a major role in DS 

pathogenesis across lifetime and thus represent strategic targets for 

intervention. The concept behind was that normalizing DYRK1A 

kinase activity and APP proteolytic pathway, would enable 

cognitive stimulation to more stably and potently affect neural 

circuit reconfiguration. 

The work I present here explores to what extent a combined therapy 

with environmental enrichment (EE) and EGCG can ameliorate 

cognitive deficits in DS mouse models and humans, focusing on 

their hippocampal-dependent functional and structural alterations. 

Given the truly translational nature of our approach, during my 

Thesis work, I have managed a plethora of frameworks and 

theoretical perspectives keeping in mind the challenge of using 

consistent cross-species terms and concepts, one over another.  

In Chapter I, I present in vivo preclinical studies aimed at examining 

the effects of a combined relatively chronic/ long-term treatment 

with EE-EGCG on learning deficits and structural alterations of a 

partial trisomic DS mouse model (Ts65Dn). Specifically, we 

investigated whether a combined EE-EGCG treatment had 

differential effects at different ages characterized by distinct 

pathophysiological processes. Beyond the behavioral experiments, 

we aimed at addressing questions regarding specific treatment 

effects in precise brain regions that are compromised both in mouse 

models and humans with DS but cannot be tackled in clinical 

populations. All the behavioral experiments and treatments were 

carried out in the PRBB animal facility, and the histology and 

molecular biology approaches in the Cellular and Systems 
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Neurobiology lab of the CRG. Those studies are presented in three 

papers (see below) on which I am the first author.  

In Chapter II, I present the results of two clinical trials (phase I and 

phase II) in which I had the privilege to participate, that were 

carried out by the TESDAD study group coordinated by Dr. Rafael 

de la Torre at the Institut Hospital del Mar d'Investigacions 

Mèdiques (IMIM). These clinical trials involved young adult 

individuals with DS (14-30 years in the phase I and II) and were 

aimed at evaluating the effects of EGCG alone (phase I) and the 

combination of cognitive training with EGCG (phase II), on 

different clinically relevant parameters including cognitive abilities, 

neurophysiological and neuroanatomical measures, every-day 

adaptive functionality and quality of life. My specific contribution 

involved the performance of longitudinal neuropsychological 

assessments of the volunteers using a new standardized clinical trial 

battery that was developed in the context of the TESDAD clinical 

trial but can also be used in future clinical trials with individuals 

with DS. The work in humans, even if having a different framework 

and challenges, has greatly profited from the outcomes of the 

preclinical studies. As such, a bidirectional interplay between 

human and mouse studies guided the directions towards which the 

preclinical studies should be oriented in order to be relevant to the 

clinical trials. 

The results presented here have provided pivotal data in the field of 

ID that will certainly promote the development of a novel 

therapeutic framework for intervention in people with DS. Further 

investigation in a multicenter (phase III) study will be needed 

including a larger sample of individuals and different ages. 

Additionally, the outcomes of this Thesis have set the basis for 

further research lines in Dierssen´s lab involving mechanistic 

studies that will address the molecular effects of the treatments at a 

connectomic, proteomic and epigenetic levels. 



 

During my Thesis I have co-authored seven papers, related to 

different aspects of my work. From those, three of them are original 

contributions from the preclinical work of which I am first author 

(one is already published in Frontiers Behavioral Neuroscience in 

2015, one is under revision in E-neuro and one will be submited to  

Neurobiology of Disease in September 2016), three  are 

contributions to the clinical trials, in which I am among the main 

authors (the phase I study, De la Torre et al., 2014, a 

methodological paper, De Sola et al., 2015 and the phase II study  

De la Torre et al., 2016), and a review paper (Lepeta et al., 2016). In 

this Thesis I only present original pieces of work in which my 

contribution has been principal. 

 

List of published articles (in backwards chronological order): 

 

1. Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, 

Banerjee P, Catuara-Solarz S, de La Fuente Revenga M, 

Guillem AM, Haidar M, Ijomone OM, Nadorp B, Qi L, Perera 

ND, Refsgaard LK, Reid KM, Sabbar M, Sahoo A, Schafer N, 

Sheean RK, Suska A, Verma R, Vicidomini C, Wright D, Zhang 

XD, Seidenbecher C. Synaptopathies: synaptic dysfunction in 

neurological disorders. J Neurochem. 2016 Jun 22. doi: 

10.1111/jnc.13713. Review. PMID: 27333343 

 

2. De la Torre R, De Sola S, Hernandez G, Farré M, Pujol J, 

Rodriguez J, Espadaler JM, Langohr K, Cuenca-Royo A, 

Principe A, Xicota L, Janel N, Catuara-Solarz S, Sanchez-

Benavides G, Bléhaut H, Dueñas-Espín I, Del Hoyo L, Benejam 

B, Blanco-Hinojo L, Videla S, Fitó M, Delabar JM, Dierssen M 

Safety and efficacy of cognitive training plus epigallocatechin-

3-gallate in young adults with Down's syndrome (TESDAD): a 

double-blind, randomised, placebo-controlled, phase 2 trial. The 

Lancet Neurology 2016 Volume 15, No. 8, p801–810 DOI: 

http://dx.doi.org/10.1016/S1474-4422(16)30034-5 

 



 xxi 

3. Catuara-Solarz S, Espinosa-Carrasco J, Erb I, Langohr K, 

Notredame C, Gonzalez JR, Dierssen M. Principal 

Component Analysis of the Effects of Environmental 

Enrichment and (-)-epigallocatechin-3-gallate on Age-

Associated Learning Deficits in a Mouse Model of Down 

Syndrome. Front Behav Neurosci. 2015 Dec 11;9:330. 

PMID: 26696850 

 

4. De Sola S, De la Torre R, Sanchez-Benavides G, Benejam B, 

Cuenca-Royo A, Del Hoyo L, Rodriguez J, Catuara-Solarz 

S, Sanchez-Gutiérrez J, Dueñas-Espin I, Hernandez G, Peña-

Casanova J, Langohr K, Videla S, Bléhaut H, Farré M, 

Dierssen M and the TESDAD Study Group. A new cognitive 

evaluation battery for Down syndrome and its relevance for 

clinical trials. Front. Psychol. 2015 doi: 

10.3389/fpsyg.2015.00708  

 

5. De la Torre R, De Sola S, Pons M, Duchon A, de Lagran 

MM, Farré M, Fitó M, Benejam B, Langohr K, Rodriguez J, 

Pujadas M, Bizot JC, Cuenca A, Janel N, Catuara S, Covas 

MI, Blehaut H, Herault Y, Delabar JM, Dierssen M. 

Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues 

cognitive deficits in Down syndrome mouse models and in 

humans. Mol Nutr Food Res. 2014 58(2):278-88. doi: 

10.1002/mnfr.201300325.  

 

 

Google scholar h index =  2



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xxiii 

Contents 

 Pag. 

Abstract................................................................................... xi 

Resumen................................................................................. 

Preface.................................................................................... 

xiii 

xvii 

  

1. INTRODUCTION............................................................... 1 

1.1 Intellectual disability as neuroplasticity disorders…........ 1 

1.2 Down syndrome intellectual disability and 

neuropathology........................................................................ 

 

3 

1.2.1 Intellectual disability in DS............................................ 3 

1.2.2 Neuropathology in DS.................................................... 5 

1.3 Mouse models to study DS and elucidate targets for 

intervention.............................................................................. 

 

14 

1.3.1 The Ts65Dn mouse model of DS................................... 15 

1.4 Candidate genes to explain the neurological and 

cognitive phenotypes in DS..................................................... 

 

22 

1.4.1 Dyrk1A gene..................................................................     23 

1.4.2 APP gene........................................................................ 26 

1.5 Towards a therapeutic intervention for DS....................... 

1.5.1 Non-pharmacological interventions in DS..................... 

28 

    29 

1.5.2 Pharmacological interventions in DS............................. 

1.5.2.1 (-)-Epigallocatechin-3-gallate (EGCG)....................... 

1.5.3 Multimodal therapies as an approach for multifactorial  

disorders.................................................................................. 

2. HYPOTHESIS and OBJECTIVES..................................... 

2.1 Hypothesis......................................................................... 

2.2 Objectives.......................................................................... 

3. CHAPTER I: PRECLINICAL STUDIES........................... 

3.1 Preface............................................................................... 

3.2 Paper I: Combined treatment with environmental 

enrichment and (-)-epigallocatechin-3-gallate ameliorates 

learning deficits and hippocampal alterations in a young 

adult mouse model of Down syndrome................................... 

3.3 Paper II: Principal Component Analysis of the Effects of 

Environmental Enrichment and (-)-epigallocatechin-3-

gallate on Age-Associated Learning Deficits in a Mouse 

Model of Down Syndrome...................................................... 

    32 

    35 

     

    40 

43   

  43 

44  

45 

45   

  

   

 

47   

  

 

 

95 



 xxiv 

 

 

 

3.4 Paper III: Combined therapy with environmental 

enrichment and (-)-epigallocatechin-gallate (EGCG) 

mitigates long-term contextual memory deficits in a mouse 

model of DS at the age of initiation of cognitive decline....... 

3.5 Unpublished observations................................................. 

3.5.1 Age-dependent spatial learning and memory deficits in 

Ts65Dn mice in the Morris water maze (MWM)................... 

3.5.2 EE-EGCG treatment effects on young and middle-age 

Ts65Dn mice performance in the MWM................................ 

4. CHAPTER II: CLINICAL STUDIES................................. 

4.1 Preface............................................................................... 

4.2 Paper I: Epigallocatechin-3-gallate, a DYRK1A 

inhibitor, rescues cognitive deficits in Down syndrome 

mouse models and in humans................................................. 

4.3 Paper II: A new cognitive evaluation battery for Down 

syndrome and its relevance for clinical trials.......................... 

4.4 Paper III: Safety and efficacy of cognitive training plus 

epigallocatechin-3-gallate for cognitive improvement in 

young adults with Down’s syndrome (TESDAD): a double-

blind, randomised controlled, phase II trial............................ 

5. DISCUSSION..................................................................... 

5.1 Bridging preclinical and clinical results............................ 

5.1.1 Cognitive phenotype of mice and humans with DS: a 

matter of face validity and cognitive assessment tools........... 

5.1.2 Cognitive improvements derived from combined EE-

EGCG treatment on mice and humans with DS..................... 

5.1.3 Neuro-structural and functional correlates of cognitive 

improvements derived from the treatment in mice and 

humans with DS...................................................................... 

5.2 Clinical studies: learned lessons........................................  

5.3 Environmental enrichment (EE) in mice and cognitive 

training (CT) in humans: similarities and limitations............. 

5.4 Future perspectives on evidence-based clinical 

translational research in Neuroscience.................................... 

6. CONCLUSIONS................................................................. 

7. Bibliography........................................................................ 

 

 

 

 

 

 

 

111 

  137   

   

138 

   

  142 

147 

147 

   

   

149 

   

163 

   

 

 

179 

  191 

  192 

 

192 

 

  195 

 

   

198 

201 

 

204 

 

208 

211 

213 

  



 

 1 

1. INTRODUCTION 

1.1 Intellectual disability as neuroplasticity 
disorders 

Intellectual disability (ID) is the term used to define developmental 

disorders characterized by both cognitive and adaptive functioning 

deficits. This term replaced the use of “mental retardation” in the 

Diagnostic and Statistical Manual of Mental Disorders, Fifth 

Edition (DSM-V). There are currently 4.2 million individuals 

affected by ID in Europe (Wittchen et al., 2011). IDs are highly 

prevalent, chronic non-communicable diseases that severely 

compromise quality of life and that are associated to higher rates of 

comorbidities such as dementia, depression, autism or epilepsy than 

the general population, carrying a huge medical, social, and 

educational burdens.  

Recently, a new approach for the classification of mental disorders 

emerged. It is called the Research Domain Criteria (RDoC) project 

and attempts to transform diagnosis by building on the findings of 

Neuroscience and Cognitive Science, rather than relying solely on 

symptoms, as in the past century (Cuthbert and Insel, 2013). 

According to this new approach, mental disorders are now 

addressed as brain disorders, or more specifically as brain circuit 

disorders. In the case of neurodevelopmental anomalies such as IDs, 

they are not limited to cognitive systems, but rather affect widely 

distributed neural networks involved in a broad range of behaviors. 

One important implication of the RDoC conceptualization is that it 

encourages the examination of differences (of nature or degree) in 

common neural circuit disruptions and the study of developmental, 

environmental, and epigenetic factors underlying phenotypic 

differences among neurodevelopmental disorders (Borsboom, 

2008).  

Our group has contributed to the notion that despite the broad 

spectrum of genetic and environmental aetiologies of ID disorders, 

there are common neuropathological alterations affecting different 
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cognitive domains across ID conditions that converge on 

overlapping underlying molecular networks. We proposed that ID is 

the consequence of both abnormal postnatal neurodevelopment and 

incorrect remodeling of the brain circuitry, being neuroplasticity 

dysfunction the critical underlying cause of those alterations 

(Dierssen et al., 2003; Dierssen and Ramakers, 2006). 

Neuroplasticity is the capacity of neurons and neuronal networks to 

change structurally and functionally in response to the environment 

and experience. These changes include modifications in the strength 

of synaptic function, and can induce both transient fluctuations in 

the efficacy of neurotransmission or long-term changes in the 

morphology and number of synapses. Different forms of 

neuroplasticity include, but are not limited to, neurogenesis, 

synaptogenesis, changes in dendritic arborization and complexity. 

In multiple ID conditions, dendritic pathology is a common and 

consistent feature that has been linked to abnormal neuroplasticity. 

It consists of different alterations affecting dendritic complexity and 

morphology, and spine density and shape in brain regions such as 

cerebral cortex and the hippocampus (Kaufmann and Moser, 2000; 

Dierssen and Ramakers, 2006). These disruptions lead to a 

suboptimal number of efficient synaptic connections associated to 

information processing and storage, giving rise to ID.  

Accumulative studies have revealed that a large number of genes, 

that contribute to ID, encode proteins that play an important role in 

synaptic protein synthesis and neuronal network development 

signaling pathways (Ramakers, 2000, 2002; Chelly and Mandel, 

2001) suggesting that different aetiological factors converge in a 

common pathogenetic mechanism affecting the communication 

systems in the brain in IDs. Therefore, we have proposed that 

neuroplasticity-targeted pharmacologic interventions that increase 

the brain responsiveness to environment and experience, could exert 

a significantly favorable biologic effect in different forms of IDs 

(Benavides-Piccione et al., 2004). 
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Given that disorders with ID, are lifelong conditions, even relatively 

small improvements in functional abilities or reductions in co-

morbidities such as dementia, would have a significant impact on 

the well-being of these individuals and the associated care burden 

and sanitary costs.  

1.2 Down syndrome intellectual disability and 
neuropathology 

1.2.1 Intellectual disability in DS. 

Down syndrome (DS) is the most common genetic aneuploidy 

leading to ID. DS results from an extra (full or partial) copy of 

chromosome 21 (HSA21), which produces the abnormal expression 

of hundreds of genes and a global genetic imbalance in the brain, 

leading to suboptimal intellectual functioning.  

Virtually all individuals with DS present intellectual disability, 

although the severity of the cognitive deficits varies from mild to 

severe, among the DS population (Nadel, 2003). In fact, intellectual 

quotient (IQ) in people with DS usually falls in the moderate to 

severe range (IQ = 30–70) (Chapman and Hesketh, 2000; Vicari, 

2004; Liogier d’Ardhuy et al., 2015). However, the cognitive 

deficits in DS are not constant during life but rather appear during 

early childhood, as a result of maldevelopment, and become more 

pronounced in adolescence and adulthood, due to cognitive decline 

(Brown et al., 1990; Carr and Carr, 1995; Vicari, 2004). 

Indeed, 3-month-old-infants with DS show contingencies learning 

abilities equivalent to euploid infants (Ohr and Fagen 1991, 1993), 

but during early childhood their cognitive capacities go through a 

linear deceleration associated to developmental delay. Specifically, 

children with DS exhibit incomplete and delayed acquisition of 

motor, linguistic, cognitive, and adaptive functions, compared with 

typically developing children of the same mental age (Hesketh and 

Chapman, 1998; Chapman and Hesketh, 2001; Silverman, 2007). 

Although some of these developmental impairments may only 

reflect delays that are compensated with time, others will affect DS 
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adults. The cognitive symptoms in adulthood could also be the 

consequence of malfunction of specific molecular cascades, since 

gene overexpression is maintained throughout life.  

Language ability shows special weaknesses in both children and 

adults with DS, affecting morphosyntax, explicit verbal working, 

short-term and long-term memory, although some individuals 

present rather good vocabulary skills (Tager-Flusberg et al., 1990; 

Fidler et al., 2005; Dykens et al., 2006; Lott and Dierssen, 2010).  

In relation to the memory profile, several studies have reported that 

children and adults with DS show rather preserved visuospatial 

working memory (by Corsi block span) as opposed to verbal 

working memory (by digit span) (Edgin et al., 2010; Conners et al., 

2011). This has been attributed to a specific deficiency in the 

capacity to process verbal information, possibly related to 

alterations in the phonological loop (short-term phonological store 

or articulatory rehearsal component) while preserving a rather intact 

visuospatial sketchpad (Laws 2002). However, during the recent 

years, the strength of visuospatial memory abilities in DS has been 

called to question (Yang et al., 2014). 

Beyond immediate memory, children and adults with DS also show 

deficits in their ability to create and retain new lasting memories for 

facts and events (declarative memory) including visuospatial and 

contextual information (Carlesimo et al., 1997; Pennington et al., 

2003; Visu-Petra et al., 2007; Lavenex et al., 2015). Difficulties in 

both the acquisition of information (learning), and the long-term 

storage and retrieval of information (memory) are a critical part of 

the phenotype in DS (Nadel, 2003). These deficits are critically 

incapacitating in everyday life as it is involved with a large number 

of activities from self-care to socialization and independent 

functioning. Neuropsychological assessment tools operationalize 

these memory deficits in individuals with DS, through the use of 

standardized tests in which striking difficulties are specifically 

shown for example in in immediate memory for patterns (CANTAB 

Pattern Recognition Memory, PRM) and paired associative learning 

of object and location (CANTAB PAL). The deficits on these tasks 
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have been linked to the function of the medial temporal lobe (MTL) 

including brain structures adjacent to the hippocampus (Heuer and 

Bachevalier, 2011a, 2011b).  

In addition to the characteristic cognitive impairment during 

development and early adult life, individuals with DS present a 

higher incidence and earlier onset of Alzheimer's disease (AD)-like 

cognitive decline and dementia than the general population (Ballard 

et al., 2016). Despite the striking difficulties in diagnosing dementia 

in people with premorbid ID, several studies have reported that 

individuals with DS older than 40 years show a rapid and 

progressive cognitive decline resembling the cognitive profile found 

in sporadic AD. Individuals with DS aged 40–49 years present a 

particularly marked cognitive impairment, with a prevalence of up 

to 55%, while in people aged 60–69 years, prevalence raises up to 

77% and virtually all individuals aged 70 years or older (Hartley et 

al., 2014; Ballard et al., 2016). The age-associated symptoms 

include specific decays in attention, recall, explicit memory and 

receptive language, confusion, visuospatial disorganization and 

disorientation. Further non-cognitive symptoms affect personality 

and behavioral traits and involve apathy, lack of motivation, 

stubbornness, impulsivity, and executive dysfunction (Holland et 

al., 1998, 2000; Wiseman et al., 2015). These over-imposing 

cognitive and behavioral deficits result in additive difficulties in 

their self-management or in complete dependency on their 

caregivers (Visser et al., 1997; Holland et al., 1998, 2000; Coppus 

et al., 2006; Lott and Dierssen, 2010).  

1.2.2  Neuropathology in DS  

The underlying neurobiological alterations that give rise to 

cognitive impairment in people with DS are diverse and while some 

aspects are present throughout the lifespan, others appear at specific 

temporal windows. 

During the gestation period, early neurodevelopmental alterations 

include reductions in brain size that are already present in 4–5 

month old DS fetuses (Guihard-Costa et al., 2006). Additional 
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disruptions in late gestational stages comprise reductions in 

neurogenesis, defects in neuronal maturation and migration 

associated to defective neocortical lamination, abnormalities in 

neurotransmitter systems, mitochondrial function and protein 

expression (Bar-Peled et al., 1991; Golden and Hyman, 1994; 

Busciglio et al., 1995; Contestabile et al., 2007).  

Despite those early neurodevelopmental defects, at the time of birth 

gross neuroanatomical and neuroarchitectural aspects, such as brain 

shape and weight, proportion between cerebral lobes, size of 

cerebellum and brainstem, and neuronal dendritic branching, are 

relatively indistinguishable between DS and euploid brains 

(Takashima et al., 1981; Wisniewski, 1990; Vuksić et al., 2002). In 

fact, even greater dendritic branching has been reported in newborn 

babies (younger than 6 months of age) (Becker et al., 1986). 

However, as early as 3-5 months of age clear alterations start 

appearing in DS brains involving brachycephaly (shorter antero-

posterior diameter and broader parietal lobe), myelination delay, 

reduction in neocortical neuronal densities, synaptic density 

distribution and synaptic length (Wisniewski 1990). During early 

development and childhood, DS brains show a steady reduction in 

neuronal dendritic number, dendritic branching complexity and 

dendritic spine density below euploid levels in the cortex and the 

hippocampus (Marin-Padilla, 1976; Suetsugu and Mehraein, 1980; 

Becker et al., 1986; Schulz and Scholz, 1992). The development of 

dendritic abnormalities follow a complex temporal sequence, being 

acquired at early stages and progressively increasing with age 

towards a more pronounced dendritic simplification of density and 

morphology (Takashima et al., 1989, 1994; Ferrer and Gullotta, 

1990). Due to the rather (although not completely) normal brain 

phenotype in DS at birth, and the subsequent accumulation of brain 

alterations with age, some researchers have claimed that DS main 

dysfunctions are due to alterations in the postnatal development 

(Sheppard, 1987) or to a premature neurodegenerative process 

(Hardy and Selkoe, 2002) in systems such as the prefrontal cortex, 

the hippocampus and the cerebellum. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Wisniewski%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=2149962
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The dendritic atrophy seen in DS is of particular importance since 

dendrites, and especially dendritic spines, represent the main 

receptive structures of neurons and constitute the postsynaptic site 

for glutamatergic neuronal contacts. These are essential structures 

for brain connectivity and experience-dependent neuroplasticity and 

play a critical role in learning and memory processes (Sorra and 

Harris, 2000; Kasai et al., 2003; Newpher and Ehlers, 2009).  

The characteristic memory deficits found in individuals with DS 

have been particularly associated to disruptions of the functional 

integrity of the hippocampus and related structures of the medial 

temporal lobe (MTL) across their whole lifespan. These brain areas 

have been long known to be responsible of processes that involve 

information acquisition, encoding, and retrieved (Burgess et al., 

2002). Once information has been processed by the hippocampus, it 

is transferred to neocortical association areas for further processing 

and permanent storage (Kandel et al., 2014). The hippocampus is 

extensively innervated by diverse modulatory inputs that originate 

in several neuronal populations including basal forebrain 

cholinergic neurons (BFCNs), norepinephrine (NE)–containing 

neurons of the locus coeruleus (LC), serotoninergic neurons of the 

raphe nuclei, and calretinin-positive neurons of the 

supramammillary area. In DS brain, neuroimaging studies using 

structural magnetic resonance imaging (MRI) have revealed 

disproportionately smaller volumes in temporal areas with specific 

decrease in the size of the hippocampus and a converse increase in 

the parahippocampal gyrus (i.e., perirhinal and entorhinal cortices) 

(Kesslak et al., 1994; Raz et al., 1995; Aylward et al., 1999; Pinter 

et al., 2001; Teipel et al., 2003; White et al., 2003). The reduced 

hippocampal volumes are associated to decreased neuronal densities 

and less dendritic branching, length, and spine densities within the 

hippocampus (Suetsugu and Mehraein, 1980; Guidi et al., 2008). 

Recently, functional MRI studies have reported additional 

disruptions in neuronal network synchrony in DS brains (Anderson 

et al., 2013) that may also affect the functional connectivity of the 

hippocampus with other brain regions. 
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Fig. 1 Structures involved in dysfunction in individuals with DS (Lott and 

Dierssen, 2010) 

 

Furthermore, widespread alterations in various neurotransmitter 

systems have been found in DS brains, including the serotonergic, 

noradrenergic, cholinergic, glutamatergic and GABAergic systems, 

suggesting the existence of profound alterations of neuronal 

network activity (Mann et al., 1985; Yates et al., 1986; Godridge et 

al., 1987; Risser et al., 1997; Whittle et al., 2007). During the recent 

years special attention has been devoted to the excitatory-inhibitory 

systems, since cumulative data suggest that disruptions in their 

balance in different brain regions can be associated to alterations in 

neuroplasticity and lead to cognitive impairment in different forms 

of ID including DS (Baroncelli et al., 2011). The fact that 

individuals with DS present increased seizure activity supports the 
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idea that the excitatory-inhibitory systems (Menéndez, 2005; De 

Simone et al., 2010). At the molecular level reduced γ-aminobutyric 

acid (GABA) levels in fetal frontal cortex (Whittle et al., 2007) and 

in temporal lobes of children with DS (Śmigielska-Kuzia et al., 

2010) have been reported. Such decreased GABA levels have also 

been detected in postmortem adult brain studies along with 

reductions in the number of calbindin and parvalbumin interneurons 

in the cerebral cortex (Reynolds and Warner, 1988; Kobayashi et 

al., 1990; Seidl et al., 2001). Additionally, an in vitro study with 

human neural progenitor cells found increased α2 and decreased α5 

and β3 GABAAR-subunit expression (Bhattacharyya et al., 2009). 

Regarding the levels of glutamate and other excitatory 

neurotransmitters, findings appear to show a decrease in adult DS 

brains although with some inconsistencies in different subregions 

and at different ages (Yates et al., 1986; Risser et al., 1997; Seidl et 

al., 2001; Tan et al., 2014). Thus, it has been hypothesized that DS 

brains bear general alteration in excitatory-inhibitory signaling, 

although it is not clear yet whether this alteration is due to a 

decrease or an increase in glutamatergic or GABAergic 

transmission in different brain regions or a dynamic imbalance 

between both systems.  

This hypothesis is sustained by data coming from the AD field that 

suggest that increased oxidative stress can lead to excessive 

glutamatergic tone inducing glutamate-mediated excitotoxicity, 

which can contribute to neuronal loss in AD (Rissman and Mobley, 

2011). In DS the overdosage of the HSA21 gene that encodes the 

Cu/Zn superoxide dismutase (SOD1) leads to oxidative stress, 

which is the imbalance between the production and elimination of 

toxic species of free oxygen and nitrogen radicals and their reactive 

metabolites. In conditions of oxidative stress the excessive reactive 

metabolites lead to the oxidation of biomolecules such as lipids, 

proteins and nucleic acids, resulting in the damage or change of the 

function of different cells in the organism. Indeed prenatal DS 

brains present higher levels of reactive oxygen species accompanied 

by consequent cellular damage (Lott, 1982, 2012; Busciglio et al., 
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1995; Muchová et al., 2014). The increased activity of SOD1 leads 

not only to excessive production of hydrogen peroxide but also to 

an imbalance in the concentration of metal ions, especially Cu and 

Zn. Mitochondria are critically susceptible to oxidative stress, since 

they contain enzymes for ATP production, calcium homeostasis, 

and apoptotic signaling, and, in fact, different DS cell types have 

shown mitochondrial dysfunction both at early in life and during the 

AD-like aging process (Valenti et al., 2011; Coskun and Busciglio, 

2012). Therefore, increased oxidative stress is a relevant phenotype 

in DS and involves a currently open field of investigation in the 

search for genotype–phenotype correlations for this disorder (Tiano 

and Busciglio, 2011.; Perluigi et al., 2011; Helguera et al., 2013; 

Butterfield et al., 2014; Valenti et al., 2014). 

 

Most of the above brain alterations, are present across the whole life 

span of DS individuals, but they also present a number of lesions 

and molecular disruptions, including the development and 

accumulation of amyloid-β plaques and neurofibrillary tangles 

(NFTs), that resemble the neuropathology found in AD patients. 

These lesions become more pronounced as individuals age and are 

associated to the characteristic progressive cognitive decline 

displayed by aged people with DS. The Hsa21 gene encoding for 

the amyloid precursor protein (APP) is thought to play a key role in 

the development of these neuropathological alterations by 

increasing the levels of amyloid-β (Aβ), a cleavage product of APP, 

that misfolds and accumulates in the brain of both people with DS 

and AD (Prasher et al., 1998; Selkoe, 2001). However this 

accumulation occurs much earlier in DS. As early as 21 weeks of 

gestational age, soluble Aβ42 is detected in DS brains (Teller et al., 

1996) while during childhood, diffuse deposits of Aβ are already 

displayed (Lemere et al., 1996). In adult DS patients, plasma levels 

of Aβ42 are increased  (Schupf et al., 2007) and approximately by 

the age of 30-40, all DS subjects present amyloid-β plaques and 

neurofibrillary tangles (NFTs) (Wiseman et al., 2015). Intraneuronal 

amyloid-β can be detected by radiolabelled Pittsburgh compound-B 
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(PiB) through positron emission tomography (PET) neuroimaging 

neuroimaging (Handen et al., 2012). As in AD, its toxic 

accumulation could trigger a cascade of neurodegeneration by 

increasing the generation of free radicals which expands the burden 

of oxidative stress, disrupting calcium homeostasis, which 

contributes to the phosphorylation of tau protein and the formation 

of NFT, and eventually leading to neuronal death (Hardy and 

Higgins, 1992; Hardy and Selkoe, 2002; Zigman and Lott, 2007). 

The formation of amyloid-β requires APP to be cleaved by the two 

proteases β- and ɣ-secretase. A third protease, ɑ-secretase, 

contributes to the non-amyloidogenic processing of APP by 

cleaving APP within the amyloid-β domain thus avoiding amyloid-β 

generation, and by generating an inhibitor of ɣ-secretase (Tian et 

al., 2010). The activity of ɑ-secretase is mediated by ADAM10 

(Kuhn et al., 2010), whose overexpression has shown to induce 

increased the cortical synaptogenesis (Prinzen et al., 2009). 

Therefore, an increase in ɑ-secretase activity has been proposed as 

therapeutic strategy for DS and AD (Lichtenthaler, 2011). Some 

gene polymorphisms have been shown to modulate the risk for AD 

neuropathology and dementia, such as the gene encoding for 

apolipoprotein E (APOE), which is a lipid and cholesterol 

transporter (Herz and Beffert, 2000). The APOE ε4 allele is 

associated with greater Aβ deposition, as well as with earlier onset 

and increased risk of AD dementia both in the general population 

and in individuals with DS, whereas the APOE ε2 allele leads to 

reduced Aβ deposition and a lower risk of disease (Herz and 

Beffert, 2000; Schupf and Sergievsky, 2002; Wiseman et al., 2015).  

Additionally, aged individuals with DS show a superimposing 

dendritic atrophy that increases the pre-existing developmental 

dendritic abnormalities (Takashima et al., 1989, 1994; Ferrer and 

Gullotta, 1990; Teipel and Hampel, 2006). Indeed, dystrophic 

neurites have been found in the hippocampus among other brain 

regions (Iyer et al., 2013).  

A gross neuroanatomical reduction has also been reported by MRI 

studies in aged non-demented DS patients showing volume loss of 
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the medial temporal lobe, including hippocampus amygdala 

(Kesslak et al., 1994; Krasuski et al., 2002; Teipel et al., 2004; 

Haier et al., 2008; Beacher et al., 2010) and neocortical areas such 

as corpus callosum, parietal, frontal and occipital cortices (Teipel et 

al., 2003, 2004), consistent with prodromal stages of Alzheimer-

type pathology (Teipel and Hampel, 2006). Similarly to the 

neurodegenerative profile in AD, brains from demented individuals 

with DS have shown a considerable atrophy in total brain and a 

greater volume loss specifically in hippocampus, orbitofrontal 

cortex and the parietal cortex, accompanied by an enlargement of 

the ventricles (Kesslak et al., 1994; Koran et al., 2014). 

Additionally, detection of fluorodeoxyglucose (FDG), a marker for 

glucose uptake, by PET has also demonstrated a global decrease in 

cerebral glucose utilization and parietal hypometabolism in 

demented individuals with DS (Devinsky, 1990).Furthermore, 

despite the fact that brains from young children with DS display no 

alterations in cholinergic enzymes (such as choline-

acetyltransferase and acetylcholinesterase) (Becker et al., 1991; 

Lubec et al., 2001), during late adolescence and adulthood the basal 

forebrain cholinergic neurons (BFCN) that project to the 

hippocampus, become susceptible to atrophy and degeneration, 

along with a decreased activity of choline-acetyltransferase (ChAT), 

as happens in AD (Yates et al., 1983; Casanova et al., 1985; Mann 

et al., 1985; Mufson et al., 2003; Contestabile et al., 2008). As 

acetylcholine is involved in attention, learning, and synaptic 

plasticity (Everitt and Robbins, 1997; Hasselmo, 2006; Micheau 

and Marighetto, 2011), the degeneration of BFCN is thought to 

critically contribute to cognitive decline and memory deficits in 

both DS and AD, since it leads to the withdrawal of cholinergic 

input to the hippocampus, disrupting its neuromodulation. 

Accordingly, different interventions targeting the cholinergic 

system, such as acetylcholinesterase inhibitors, have been used for 

the development of cognitive enhancers to combat dementia in 

individuals with DS and AD and also in cases of sporadic AD (De 

la Torre and Dierssen, 2012). 
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Fig. 2: Hypothetical model for amyloid changes, tau pathology, and appearance 

of biomarkers on volumetric MRI and fluorodeoxyglucose (FDG), and 

development of cognitive decline and dementia in people with DS. Of note, the 

occurrence of these symptoms is dramatically earlier that in sporadic AD (Ballard 

et al., 2016). 

Altogether, DS encompasses the emergence of multiple cognitive 

and neuropathological alterations presented in a complex temporal 

sequence with distinct dynamics starting at the initiation of 

development and continuing throughout life (illustrated in Figs 1 

and 2). 
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1.3 Mouse models to study DS and elucidate 
targets for intervention  

Initially, the predominant research strategy in the field of DS was to 

analyze postmortem human tissue, or biochemical indicators in 

blood. This approach only provided a snapshot of the problem with 

with no opportunity to manipulate the system. Subsequently, the 

generation of mouse models with genetic triplications of different 

length of murine chromosomal regions homologous to Hsa21 

(shown in Table 1), and also transgenic mice overexpressing 

specific candidate genes enabled the study of genotype-phenotype 

relationships and putative pathogenic mechanisms of the disorder. 

The sequencing of mouse and human genomes by the beginning of 

the 21st century confirmed syntenic conservation between mouse 

and human, and revealed that Hsa21 is homologous to three 

different regions of the mouse genome, in three different 

chromosomes (Mmu16, Mmu17, and Mmu10).  

   

Table 1: Mouse models of Down syndrome and descriptions of their genetic 

alterations (Edgin et al., 2012) 
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These models mimic specific aspects of the disease and their 

genetic dependency, enabling to evaluate the phenotypic and 

mechanistic similarity to humans with DS. However, none of them 

fully reproduce the human disorder. 

 

1.3.1 The Ts65Dn mouse model of DS  

In the early 1990s, Murien Davisson created the first genetic mouse 

model for DS, the Ts65Dn strain. A radiation-induced chromosomal 

rearrangement generated a spontaneous and unplanned reciprocal 

translocation of the telomere proximal region of Mmu16 to the 

centromere and pericentromeric region of Mmu17 (1716). Thereafter 

missegregation of this translocated chromosome in female mice 

gave rise to partial trisomic pups carrying the extra 1716 

chromosome (Davisson et al., 1990; Reeves et al., 1995). It 

demonstrated that a similar trisomy in mouse and human provides 

similar structural and functional outcomes (Reeves et al., 1995). 

The Ts65Dn mouse bears segmental trisomy for a distal region of 

Mmu16 that contains approximately 55% of Hsa21 conserved genes 

(Davisson et al., 1990) (illustrated in Fig. 3).  
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Fig. 3: Comparative genetic maps of degree of conservation between Hsa21 and 

Mmu 16, 17 and 10 (Adapted from Antonarakis et al., 2004). 
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However, this model is also trisomic for approximately 60 Mmu17 

genes that are non-orthologous to Hsa21 (Duchon et al., 2011) and 

lacks a number of Hsa21 orthologous genes from Mmu10 and 

Mmu17, which has questioned its construct validity1. Additionally, 

as males are sterile, mice are generated from Ts65Dn dams which 

causes problems in the pups due to inadequate fostering, 

independently of pups genotype. Being aware of its limitations, the 

Ts65Dn mouse model is still a highly valuable tool both for the 

investigation of genotype-phenotype relationships and for the 

identification of potential therapeutic interventions for DS, and its 

behavioral and structural phenotype has been thoroughly described 

along the last decades, with special emphasis on learning and 

memory.  

Extensive research has demonstrated its face validity2. Like DS 

individuals, Ts65Dn mice present early learning and memory 

impairment and age-related cognitive decline associated to 

cholinergic neurodegeneration that arises approximately at the age 

of 6-8 months. Young adult Ts65Dn mice have shown impaired 

performance in a behavioral test for hippocampal-dependent spatial 

learning and long-term spatial memory in rodents, the Morris water 

maze (MWM), both during the learning phase and in the recall test 

(Escorihuela et al., 1995; Reeves et al., 1995; Holtzman et al., 

1996). Young Ts65Dn also present spatial working and reference 

memory impairment in the radial arm maze (RAM), a task that 

requires both working memory (WM) when retaining information 

for a very short time and reference memory when retaining memory 

for longer times. This task takes place in complex spatial 

environment and animal performances are measured by counting 

                                                
1 Construct validity points to the degree of similarity between the 

mechanisms underlying behavior in the model and that underlying the 

behavior in the condition, which is being modeled. 

 
2 Face validity is the degree of descriptive similarity between, for example, the 

behavioral dysfunction seen in an animal model and in the human affected by a 

particular neurobehavioral disorder. 
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errors. Ts65Dn mice make fewer correct choices than WT mice and 

perform at (or near) chance levels (Demas et al., 1996). In the 

passive avoidance test, a one trial fear-motivated avoidance task in 

which the mouse learns to refrain from stepping down from a 

platform or stepping through a door to an apparently safer but 

previously punished dark compartment, Ts65Dn mice are able to 

learn the task (Coussons-Read and Crnic, 1996; Holtzman et al., 

1996), although this strain presents a high variability among 

individual mice (Holtzman et al., 1996). Between 4 and 8 months of 

age, Ts65Dn mice show a decrease in performance in spatial 

learning and reversal, but not visual discrimination learning and 

reversal (Granholm et al., 2000a; Hunter et al., 2003), and at 6 

months old they exhibited impairments in working and reference 

memory as assessed on a water radial-arm maze (Bimonte-Nelson 

et al., 2003; Hunter et al., 2003). 

Accumulative data indicates that these cognitive deficits in Ts65Dn 

are associated with a number of neuro-morphological and synaptic 

alterations in learning and memory brain regions, which are trisomy 

driven. At the macroscopic level, Ts65Dn mice show craniofacial 

dysmorphology and brachycephaly (Richtsmeier et al., 2000; 

Reeves et al., 2001). Reduced volumes have been reported in 

regions similar to those affected in DS, such as the cerebellum, but 

other regions are preserved. For example, Ts65Dn mice present 

normal total hippocampal volume (Insausti et al., 1998; Lorenzi and 

Reeves, 2006). However, they show an age-dependent reduction in 

CA23, the hilus and granule cellular layer of DG4 (Insausti et al., 

1998; Lorenzi and Reeves, 2006; Contestabile et al., 2007). 

                                                
3 Cornus Ammonis 2 is a relatively small area between CA3 and CA1 that forms 

the nexus of the disynaptic circuit linking EC input with CA1 output. Recent data 

suggest the it is involved with social memory (Hitti and Siegelbaum, 2014) 

 
4 Dentate Gyrus (DG) plays a key reole in spatial memory participating in pattern 

completion and separation processes. It encompasses granule cells that receive 

input from the entorhinal cortex and project their axons to CA3 forming the the 

mossy fibers (Deng et al., 2010).  
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 Neuronal density is also compromised, being increased in CA35 

and decreased in CA16 and DG (Insausti et al., 1998; Kurt et al., 

2004). Despite the rather intact hippocampal volume at initial 

stages, the neuro-architecture is altered both in hippocampal and 

neocortical pyramidal and granule neurons in Ts65Dn mice. 

Specifically, these neurons display shorter and less branched 

dendrites and reduced spine density and increased spine size, which 

is paralleled by an increased size of presynaptic terminals (Dierssen 

et al., 2003; Belichenko et al., 2004, 2007). CA3 hippocampal 

region shows a hyperconnectivity of active associational 

connections (Hanson et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 4. Diagram of the neural circuitry in the rodent hippocampus depicting the 

performant pathway, including the trisynaptic flux of information [entorhinal 

                                                
5 Cornus Ammonis 3 is thought to encode the memory trace through its auto-

associative networks. It relays information to CA1 pyramidal neurons through 

Schaffer collaterals (Deng et al., 2010). 

 
6 Cornus ammonis 1 pyramidal neurons send back-projections into deep-layer 

neurons of the entorhinal cortex (EC) and receives direct input from EC layer III 

neurons, through the temporoammonic pathway (Deng et al., 2010) 
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cortex (EC)–dentate gyrus (DG)–CA3–CA1–EC] and the temporoammonic 

pathway [EC layer III–CA1–EC layer V, VI] (Deng et al., 2010). 

 

These alterations at the neuromorphological and connectivity levels, 

possibly lead to dysfunctions in the flow of information (Fig. 4) and 

in computational processes required for learning and memory, such 

as pattern completion and separation7. In agreement with that, 

Ts65Dn also display disruptions in experience-dependent structural 

neuroplasticity, suggesting a compromise in the flexibility of 

neuronal and behavioral shaping as a function of varying 

environments (Martínez-Cué et al., 2002; Dierssen et al., 2003). 

Those microstructural defects in Ts65Dn mice are accompanied by 

alterations in the proportion of excitatory-inhibitory synapses, being 

the density of asymmetric (excitatory) synapses reduced in DG, 

CA1 and CA3 regions, while the symmetric (inhibitory) synapses 

are decreased only in the DG (Kurt et al., 2004). Also the synaptic 

apposition length in symmetric (inhibitory) synapses in the DG is 

increased, suggesting enhancement of inhibition in specific brain 

regions (Belichenko et al., 2009), that seems partially in 

contradiction with the findings in humans described above. 

However, it has to be considered that human studies are mainly in 

neocortical regions, while the Ts65Dn has been mainly studied at 

the hippocampal level that may explain the discrepancies. The 

above imbalance in excitatory-inhibitory synapses has functional 

consequences at the  electrophysiological level, that affect 

GABAergic and glutamatergic transmission, and lead to defects in 

long-term potentiation (LTP) and long-term depression (LTD) 

(Siarey et al., 1999; Kleschevnikov et al., 2004; Costa and Grybko, 

2005).  

                                                
7 Pattern separation and completion are complementary processes that have been 

proposed to take place in the hippocampus and other brain regions in order to 

encode and retrieve information in the form of memories or engrams. The system 

encodes similar input patterns into separated orthogonal representations, so that 

unique non-overlapping memories are created. At the time of retrieval, 

completion enables to recall stored activity patterns from partial or degraded cues 

(Hunsaker and Kesner, 2013; Josselyn et al., 2015). 
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In addition, the activity levels of reactive oxygen species (ROS) are 

increased in the cortex from male 7,5 months old Ts65Dn mice and 

correlate with working memory deficits observed in the  MWM 

(Lockrow et al., 2009), and adult Ts65Dn hippocampal neural 

progenitor cells (NPCs) present alterations in the mitochondrial 

biogenesis and bioenergetics (respiration and ATP production) 

leading to a reduced cell energy status (Valenti et al., 2016). This 

highlights the role of oxidative stress and mitochondrial dysfunction 

in the memory decline in the Ts65Dn mouse. 

 

Furthermore, like in humans with DS and AD, Ts65Dn mice show 

age-dependent cognitive decline (Granholm et al., 2000b; Hyde and 

Crnic, 2001) that is linked to abnormal neuronal processes such as 

enlarged early endosomes (Cataldo et al., 2003), dysfunction of 

retrograde transport of neural growth factor (NGF) from the 

hippocampus to the basal forebrain (BF) (Salehi et al., 2006), and 

gradual cholinergic neuronal loss in the basal forebrain (Holtzman 

et al., 1996; Granholm et al., 2000b; Cooper et al., 2001; Seo and 

Isacson, 2005). BFCN degeneration that is initiated at 5-6 months of 

age and progress up to 20 months of age (Holtzman et al., 1996; 

Granholm et al., 2000a; Hunter et al., 2004; Lockrow et al., 2009). 

As a compensatory mechanism of this loss of BFCN 10-month old 

Ts65Dn mice show increased ChAT activity in the cortex and 

hippocampus (Cooper et al., 2001; Seo and Isacson, 2005; 

Contestabile et al., 2006; Chen et al., 2009).  

 

Due to the large overlap of features between Ts65Dn mouse model 

and humans with DS (as partially shown in Fig. 5), this mouse is, at 

the moment, the only model used in preclinical studies to assess 

therapies for DS (Gardiner, 2015). 
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Fig 5: Comparison of altered cellular and anatomical alterations observed in 
prenatal brain from Ts65Dn mouse model and postnatal human DS brain (Haydar 

and Reeves, 2012). 

 

1.4 Candidate genes to explain the neurological 
and cognitive phenotypes in DS 

Over the last years substantial research has revealed the biological 

relevance of specific Hsa21 genes that play a fundamental role in 
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the pathogenesis of neurological and cognitive phenotypes of DS 

across life, which have been proposed as targets for therapeutic 

intervention for the disorder. Two of these genes encode the dual 

specificity tyrosine-phosphorylation regulated kinase 1A (Dyrk1A) 

and the amyloid precursor protein (APP).  

1.4.1 Dyrk1A gene 

Dyrk1A gene is located in the long arm of Hsa21 (Guimerá et al., 

1996; Song et al., 1996) and is orthologous to the drosophila 

minibrain (MNB) gene. DYRK1A is a kinase that catalyzes both its 

autophosphorylation on a tyrosine residue in the activation loop 

(Himpel et al., 2001) and the phosphorylation of serine and 

threonine residues in its substrates (Kentrup et al., 1996; Becker et 

al., 1998). Through the phosphorylation of multiple targets 

DYRK1A is implicated in diverse biological processes that are 

critical in DS and AD such as neurodevelopment, neuroplasticity 

and neurodegeneration. In fact, Dyrk1A expression and activity are 

increased in cerebral cortex, white matter and hippocampus in both 

individuals with DS and sporadic AD, and also in other 

neurodegenerative diseases including Parkinson’s, Huntington’s, 

and Pick’s disease (Ferrer et al., 2005; Dowjat et al., 2007; Kimura 

et al., 2007; Ryoo et al., 2007; Liu et al., 2008; Wegiel et al., 2011). 

In the euploid human brain, DYRK1A is expressed both in the 

nucleus and in the cytoplasm of neurons and astrocytes with a 

reduction across life (Wegiel et al., 2004; Kida et al., 2011). In 

vertebrates DYRK1A is expressed since prenatal brain development 

in a specific sequence of distinct temporal and subcellular patterns 

starting in neural progenitor cells and finishing in neuronal dendritic 

tree and synapses (Hämmerle et al., 2008). During neuronal 

differentiation DYRK1A expression translocates from the neuronal 

cytoplasm to the nucleus and differential expression of Dyrk1A is 

also found across the cell cycle, suggesting its involvement in 

neuronal differentiation. Indeed, DYRK1A modulates different 

signaling pathways by phosphorylating substrates that trigger 

effects in cell proliferation, cell cycle progression of progenitor 
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cells and neuronal differentiation (Tejedor and Hämmerle, 2011). 

For instance DYRK1A regulates the transcriptional activity of 

glioma-associated oncogene 1, a major effector of sonic hedgehog 

(SHH) signaling, which is a key pathway in the regulation of 

proliferation during vertebrate central nervous system development 

(Ruiz i Altaba et al., 2002). In addition, DYRK1A phosphorylates 

REST/NRSF chromatin remodeling complex and NOTCH receptor, 

contributing to cell fate definition of pluripotent embryonic stem 

cells and neuronal progenitors (Canzonetta et al., 2008; Fernandez-

Martinez et al., 2009). 

DYRK1A also plays a key role in  structural and synaptic plasticity 

processes such as neurite formation, dendritic growth and synaptic 

vesicle trafficking through the phosphorylation of proteins such as 

the transcription factor cAMP responsive element binding (CREB) 

(Yang et al., 2001), cytoskeleton-related proteins, MAP1B, GSK3β, 

N-WASP and β-tubulin (Scales et al., 2009; Park et al., 2012; Ori-

McKenney et al., 2016), and components of the endocytic protein 

complex machinery, amphiphysin, dynamin 1, endophilin 1 and 

synaptojanin 1 (Chen-Hwang et al., 2002; Hammerle et al., 2003; 

Murakami et al., 2006, 2009).  

The role of Dyrk1A in neuronal differentiation and neuroplasticity 

is supported by the fact the truncation of its sequence in humans 

causes microcephaly (Møller et al., 2008) while Dyrk1A knockout 

mice are embryonically lethal, and Dyrk1A heterozygous mice 

show decreased viability and region-specific reductions in brain 

size. In addition, cortical pyramidal neurons from both Dyrk1A 

heterozygous and transgenic mice overexpressing Dyrk1A 

(TgDyrk1A) are smaller, less branched and have a reduced number 

of spines than control littermates suggesting its dosage-dependent 

function (Altafaj et al., 2001; Benavides-Piccione et al., 2005; 

Martinez de Lagran et al., 2012). Furthermore, TgDyrk1A mice 

exhibit altered hippocampal LTP and LTD associated with learning 

and memory defects (Ahn et al., 2006). Interestingly, inhibition of 

DYRK1A activity using harmine rescues the neurite outgrowth 
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impairment in TgDyk1A primary cortical cultures (Martínez de 

Lagran et al 2012). 

Furthermore, DYRK1A is involved with neurodegenerative 

processes through its participation in the phosphorylation and 

alternative splicing regulation of key AD-associated proteins such 

as tau and APP. DYRK1A directly contributes to NFT formation by 

the phosphorylation of tau (Woods et al., 2001) and also has an 

indirect role through the promotion of GSK-3β activity upon tau 

(Liu et al., 2008; Azorsa et al., 2010). Moreover, Dyrk1A 

phosphorylates RCAN1 (regulator of calcineurin-1) thereby 

enhancing its ability to inhibit the phosphatase activity of 

calcineurin (Caln), leading to reduced NFAT transcriptional activity 

and enhanced tau phosphorylation (Jung et al., 2011). DYRK1A 

also regulates tau alternative splicing through the phosphorylation 

of alternative splicing factor (ASF) which controls splicing of many 

transcripts. Accordingly, when Dyrk1A is overexpressed it can lead 

to disruptions in splicing, which causes an imbalance between 3R 

and 4R isoforms of tau and promotes NFT formation, as seen in AD 

(Deshpande et al., 2008; Toiber et al., 2010). This is supported by 

the several-fold increases in the number of DYRK1A-positive and 

3R-tau-positive NFTs in DS (Wegiel et al., 2011). On the other 

hand, DYRK1A phosphorylates APP (Ryoo et al., 2008) and 

presenilin 1 (PS1), a key component of the ɣ-secretase (Ryu et al., 

2010) contributing to increases in the proteolytic cleavage of 

amyloid precursor protein (APP) and elevated Aβ40 and Aβ42 in 

DS and AD. Additional research suggests a positive feedback 

mechanism through which Aβ stimulates the expression of 

DYRK1A, thereby further accelerating the synthesis of neurotoxic 

Aβ peptides (Ryu et al., 2010).  

Extensive research has repeatedly associated the overexpression of 

DYRK1A with cognitive deficits in both people with DS and AD. 

In mouse models, Dyrk1A overdosage is sufficient to recapitulate 

learning and memory deficits found in individuals with DS (Altafaj 

et al., 2001). Accordingly, normalization of Dyrk1A expression 

levels by genetic engineering rescues motor and learning and 
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memory phenotypes in both TgDyrk1A and Ts65Dn mice (Ortiz-

Abalia et al., 2008; Altafaj et al., 2013). In addition, environmental 

enrichment, an intervention boosting “physiological” plasticity, 

modulates Dyrk1A expression and activity in TgDyrk1A and 

Ts65Dn mice (Golabek et al., 2011; Pons-Espinal et al., 2013), 

suggesting that Dyrk1A is involved in activity-dependent 

neuroplasticity.  

As a result, DYRK1A inhibitors may provide a therapeutically 

exploitable venue to ameliorate neurodevelopmental, 

neuroplasticity-related and neurodegenerative phenotypes in DS.  

1.4.2 APP gene 

APP gene is located in Hsa21 and encodes the core protein of the 

amyloid cascade hypothesis of AD (Glenner and Wong, 1984; 

Hardy and Higgins, 1992; Hardy and Selkoe, 2002). This is 

currently the most widely accepted paradigm of AD pathogenesis 

and suggests that abnormal APP metabolism triggers a set of 

sequential events that result in Aβ accumulation in extracellular 

amyloid plaques, formation of intracellular NFTs and eventually 

loss of synapses and neuronal death (Selkoe and Hardy, 2016). 

These sequential events are initiated by the processing of APP by 

several (ɑ-, β-, and ɣ-) secretases that lead to the generation of 

different carboxyl-terminal fragments (CTFs): C83, C99, and APP-

intracellular carboxyl domain (AICD) and N-terminal soluble 

peptides. APP is thus metabolized by two distinct pathways. The 

major pathway is driven by the ɑ- secretase cleavage, performed by 

two disintegrin metalloproteases (ADAM 10 and ADAM 17), 

which release the soluble N-terminal ectodomain (sAPPα) (Vincent 

and Govitrapong, 2011). Both DS and AD, this proteolytic pathway 

is attenuated as shown by a reduced co-expression of ADAM10 

and/or ADAM17 with nardilysin, which is a peptidase that enhances 

α-secreatase activity (Bernstein et al., 2009). The alternative 

pathway, generates Aβ through the sequential APP cleavage by β-

secretase and then ɣ-secretase in a complex with presenilin. 
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Cleavage by β- and ɣ- secretases generates the soluble APP-β 

protein (sAPPβ) that gives rise to toxic soluble amyloid-β peptides 

(Aβ40/42) that oligomerize and aggregate (Selkoe et al., 1996). In 

DS, the increased gene dose of APP leads to accelerated 

accumulation of C99, C83, AICD, and Aβ40/42, in addition to the 

full length APP protein (Choong et al., 2015; Wiseman et al., 2015).  

The role of APP in DS and AD neurodegeneration is supported by 

the fact that mouse models with APP mutations present dysfunction 

of BFCN, and changes at the synaptic and behavioral levels 

(Yamaguchi et al., 1991; Moran et al., 1995; Mucke et al., 2000), 

although overexpression of wild-type APP is not sufficient to cause 

AD neuropathology in mice (Balducci and Forloni, 2011). 

Conversely, humans with rare hereditary duplications of small 

regions of Hsa21 including APP gene (Dup-APP) develop early 

onset AD (Sleegers et al., 2006; Kasuga et al., 2009; McNaughton 

et al., 2012), while exceptional cases of partial trisomies excluding 

APP do not show neuropathology or dementia (Prasher et al., 1998; 

Korbel et al., 2009). 

The dyshomeostasis of APP has been linked to degeneration of 

BFCN in DS and Ts65Dn mice. In both DS and AD, Aβ peptides 

are accumulated in neuronal early endosomes that appear enlarged 

(Cataldo et al., 2000, 2004; Nixon, 2005) and which has been 

shown in Ts65Dn mice to interfere with the retrograde transport of 

neural growth factor (NGF) from the hippocampus to the BFCN 

somas (Cooper et al., 2001; Salehi et al., 2006, 2007), thus 

contributing to their degeneration. Interestingly, interventions aimed 

at lowering amyloid-β levels in the Ts65Dn mouse, such as genetic 

engineering (APP deletion), γ-secretase inhibitors (DAPT) and 

antibody delivery, correct learning deficits and revert BFCN 

atrophy (Salehi et al., 2006; Netzer et al., 2010; Belichenko et al., 

2016). Nevertheless, several in vitro studies have shown that 

drugs/compounds that specifically target and inhibit the ɣ-secretase 

have a negative impact such as accumulation of ɣ-secretase 

cleavage-dependent peptides, inhibition of cell-cell aggregation and 

migration in neuroblastoma cells and ovary cells wound healing 
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assay (Lee et al., 2002; Kim et al., 2005; Yagishita et al., 2006). The 

fact that ɣ-secretase processes many other signaling molecules such 

as receptors (e.g., VEGFR-1, Notch, ErbB-4, IGFI-R) (Wolfe, 

2008; Xia, 2008; Guardia-Laguarta et al., 2010; Haapasalo and 

Kovacs, 2011) could lead to undesired effects of its inhibition. On 

the other hand, Aβ production is not deleterious per se. Aβ 

monomers share similar properties with sAPPɑ, the soluble 

proteolytic product of ɑ-secretase. These include neurotrophic and 

neuroprotective functions, as well as stimulation of neural-

progenitor proliferation, suggesting beneficial effects of the 

promotion of the non-amyloidogenic proteolytic pathway of APP 

(Chasseigneaux and Allinquant, 2012). Indeed, sAPPɑ has been 

shown to increase both synaptic density, LTP and, learning and 

memory in mice, indicating its role in synaptic plasticity (Meziane 

et al., 1998; Taylor et al., 2008; Klevanski et al., 2015). 

Additionally, sAPPɑ has exerts potent neuroprotective actions 

against glutamate neurotoxicity, Aβ peptide-induced oxidative 

injury, glucose deprivation or UV irradiation (Mattson et al., 1993; 

Goodman and Mattson, 1994; Copanaki et al., 2010).  

However, increasing sAPPɑ levels could shift proliferating cells 

towards tumorigenesis and lead to neurotoxicity (Hansel et al., 

2003; Takayama et al., 2009). Additionally, the  expression of non-

amyloidogenic peptides (Aβ9–42 and Aβ17–42) in human cortical 

neurons have been reported to form toxic mobile ion channels that 

allow calcium uptake possibly inducing neurite degeneration in DS 

and AD (Jang et al., 2010). 

 

Therefore, the therapeutic modulation of APP proteolysis is an 

intricate although promising approach to target neuropathology in 

DS and AD.  

1.5 Towards a therapeutic intervention for DS 

As DS is caused by a full or partial extra copy of a chromosome 

including hundreds of genes, it is generally viewed as a too complex 

genetic perturbation to be amenable to postnatal interventions. 
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Thus, until relatively recently,  DS was considered an “incurable” 

disease by most people and, what is more, it was viewed as a 

disorder that hindered individuals from acquiring education (Smith 

et al., 1976). However, a number of therapies of different nature 

have been implemented or examined in the attempt to attenuate the 

cognitive impairments in individuals with DS.   

1.5.1 Non-pharmacological interventions in DS 

The only available therapy at the moment for DS consists on non-

pharmacological early intervention programs that are primarily 

focused on infants and young individuals. Early intervention 

programs were developed rather recently, as fifty years ago there 

were no formalized interventions of any type, and were initially 

based on experimental programs, impulsed by the advocacy of 

parents and researchers (Rondal et al., 2011). They are aimed at 

providing cognitive stimulation and special education to promote 

children´s development of skills and support them to fully 

participate in family, school and community life (Odom and 

Diamond, 1998).  They consist on specific programs that emphasize 

education and training, targeted to cognitive domains that are 

especially affected in individuals with DS, such as speech, language 

and nonverbal communication, motor and problem-solving skills, 

attention, learning and memory. Training strategies involve 

reinforcement principles and stimulus-response learning models and 

behavior modification in relevant aspects for self-development, peer 

interactions and integration in society. 

Several studies have shown that early intervention programs induce 

beneficial effects on children with DS, including acceleration of 

skill acquisition, prevention of abnormal patterns of functioning, 

promotion of better parent-child interactions and encouragement of 

inclusion (Bailey et al.,1997; Meisels and Shonkoff, 1990; 

Guralnick, 1997, 2001; Rondal et al., 2011; Engevik et al., 2016). 

Additionally, cognitive and physical exercise programs improved 

health status and wellbeing in adults with DS (Moni and Jobling, 

2001; Heller et al., 2004b). However, although these improvements 
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made a huge impact in the way individuals with DS are integrated 

in society, they are limited since the learnt skills through these 

programs are rarely generalized to everyday situations (Moni and 

Jobling, 2001; Mahoney et al., 2006; Bonnier, 2008), suggesting 

that intervention programs are still insufficient to mitigate cognitive 

impairment and provide only moderate relief in DS.  

In the healthy elderly population and patients with mild-to-moderate 

AD, cognitive therapies, consisting of activities enhancing cognitive 

and social functioning, have also shown some improvements and 

attenuation of risk for cognitive decline (Buschert et al., 2010). For 

instance, the SIMA (Maintaining and supporting Independent 

Living in old Age) study demonstrated that a combination of 

memory and psychomotor training significantly improved cognitive 

status in healthy elderly people (75–89 years) after 1 year of 

training (Oswald et al., 1996). In addition,  the ACTIVE (Advanced 

Cognitive Training for Independent and vital Elderly) study showed 

that 2 years of cognitive intervention therapy promoted significant 

improvements in memory, reasoning, problem solving and speed of 

processing in all participants (aged 65–94 years) (Ball et al., 2002). 

In patients with mild cognitive impairment (MCI) and dementia 

associated to AD, cognitive training interventions alone or in 

combination with medication, have shown to be efficient to delay 

cognitive decline (Spector et al., 2003; Requena et al., 2004; 

Bottino et al., 2005; Belleville, 2008; Troyer et al., 2008; Buschert 

et al., 2010).  

The observed beneficial effects of cognitive training are in 

agreement with the brain reserve hypothesis. This hypothesis is 

based on the observation that, in the general population, individuals 

with higher levels of education and/or more-active social and 

intellectual lifestyles have a lower risk of developing dementia as 

they preserve brain’s ability to adequately perform cognitive tasks 

despite neuropathological damage (Stern, 2012). However, this 

hypothesis not only predicts that highly cognitively active 

individuals would be protected from cognitive decline but also that 

individuals with more-severe premorbid cognitive impairment, as 
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the case of DS, will have an increased risk of developing dementia. 

The underlying mechanisms of cognitive therapy both in DS and 

AD may be related to the regular activation of brain neuronal 

networks by cognitive stimulation, which trigger neuroplasticity 

processes that contribute to brain health and cognitive status.  

 

From the biological perspective environmental cognitive 

stimulation was initially studied in the context of availability of 

sensory information and its effects on brains from kittens. Pivotal 

studies from Hubel and Wiesel on the visual system demonstrated 

that modifications in the availability of visual inputs were able to 

modify the synaptic organization of the visual cortex during certain 

critical periods in postnatal early life (Hubel and Wiesel, 1970). 

After that, multiple studies mainly in rodents but also in humans 

have strengthen the idea that experience is able to regulate the 

structure and function of different areas of brain both in young and 

adult individuals (Watanabe et al., 1992; Maguire et al., 2000; 

Bermudez et al., 2009; May, 2011). 

Along the past fifty years the preponderant paradigm to study the 

effects of experience and environmental stimulation in experimental 

settings with rodents has been called environmental enrichment 

(EE), which consists of housing conditions involving a complex 

combination of social, cognitive, and physical stimulation. In a 

classical study by Hebb (1947), housing rodents in EE comprising a 

large cage with varying sets of toys, such as balls, tunnels, and 

ladders, improved learning and memory (Ghassemzadeh et al., 

2013). Beneficial effects of EE on behavior and brain function have 

ever since been reported in a multitude of studies using rodent 

spatial memory, neuroanatomical, cellular, and molecular assays 

(Greenough et al., 1973; Rosenzweig and Bennett, 1996). In 

particular, changes such as increased brain weight, neurotransmitter 

content, gliogenesis, synaptic plasticity, and dendritic spine growth, 

as well as upregulation of neuronal signaling molecules, 

neurotrophin levels, and adult hippocampal neurogenesis have been 

associated with cognitive enhancement (for reviews  Praag et al., 
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2000; Nithianantharajah and Hannan, 2006; Baroncelli et al., 2010; 

Voss et al., 2013).  

The experimental setting of EE provided a powerful tool for the 

study of cognitive stimulation in mouse models of different 

neurological disorders including intellectual disabilities and 

neurodegenerative diseases.  

 

1.5.2 Pharmacological interventions in DS 

 

The other approach that has been used in the attempt to mitigate 

intellectual disability and cognitive decline in DS involves 

pharmacological treatments. So far, pharmacological interventions 

have been mainly targeted to restore the neurotransmitter imbalance 

found in the disorder.  

Due to the high prevalence of AD-like neuropathology in DS 

subjects, and the overlapping molecular pathways between DS and 

AD, most of the therapies tried in the DS population have 

repurposed drugs, currently in use as AD therapeutics. Some of 

these drugs include acetylcholinesterase inhibitors, such as 

donepezil and rivastigmine (Heller et al., 2004a, 2010; Prasher and 

Ad, 2004; Spiridigliozzi et al., 2007; Kishnani et al., 2010), nicotine 

(Seidl et al., 2000), Acetyl-L-carnitine (Pueschel, 2006) and N-

methyl-D-aspartate (NMDA) receptor antagonist memantine, 

(Hanney et al., 2012).  

In addition, the potential of diverse compounds, vitamins and 

mineral supplements, has been assessed to ameliorate DS 

symptoms. For instance, different antioxidants have been addressed 

to counteract increased oxidative stress resulting from the 

overactivity of CuZnSOD1. Also folate supplementation has been 

used to try to normalize the folate deficiency derived from 

Cystathionine b-synthase (Ellis et al., 2008). Although some of 

these interventions promoted positive outcomes for some singular 

participants, most of them have yielded a big disappointment due to 



 

 33 

their limited efficacy or complete failure to provide improvement in 

DS cognition (reviewed in detail in de la Torre and Dierssen, 2012). 

  

As a result, in order to develop novel and more efficient therapies, 

another approach has been the translation of scientific evidence 

from mouse preclinical studies into the clinical practice. The 

translational research approach consists of two main “translational 

blocks” (Fig. 6). The first block comprises the transfer of new 

understandings of disease mechanisms gained from basic science 

into the development of new therapies and their first testing in 

humans. In this process, the transition from the late preclinical 

phases to phase II and III clinical trials is the most critical step since 

only 10–15% of therapeutic agents eventually become approved 

products (Lesko, 2007). The optimal execution of this stage implies 

a large bidirectional interplay between the laboratory and the clinic 

and multidisciplinary research. The second block consists of the 

translation of results from clinical studies into everyday clinical 

practice (Woolf, 2008; Rubio et al., 2010).  

 

Fig. 6: The classic T0-T4 translational pathway (adapted from Blumberg et al., 

2012). 

All the preclinical studies carried out in order to address the effects 

of potential therapeutic interventions for DS have been performed 

in the Ts65Dn mouse. Over the last few years, multiple studies have 
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shown that more than 20 drugs/small molecules are able to 

successfully rescue learning and memory deficits and hippocampal 

defects in adult Ts65Dn mice (reviewed in Gardiner, 2015).  

These efficient pharmacological interventions comprise diverse 

drugs with multiple targets and mechanisms. Many of them have 

been examined on the basis of their beneficial effect in other mouse 

models on a relevant phenotype for Ts65Dn impairments (eg, 

neurodegeneration in an AD mouse model). Most of these drugs 

tackle specific altered processes in DS. Concretely, neuroplasticity 

deficits have been addressed by serotonin reuptake inhibitor 

(fluoxetine) and lithium to increase neurogenesis (Clark et al., 2006; 

Bianchi et al., 2010; Contestabile et al., 2013), by sonic hedgehog 

agonist to revert neurodevelopmental alterations (Roper et al., 2006) 

and by β-adrenergic receptor agonists (L-DOPS and xamoterol) to 

normalize norepinephrine input from the Locus Coeruleus to the 

hippocampus (Salehi et al., 2009). On the other hand, 

excitation/inhibition imbalance has been targeted through GABAA 

receptor antagonists (picrotoxin, bilobalide, and pentylenetetrazole) 

or uncompetitive antagonist of the N-methyl-d-aspartate (NMDA) 

(memantine) (Fernandez et al., 2007; Costa et al., 2008; Rueda et 

al., 2008; Braudeau et al., 2011; Lockrow et al., 2011; Colas et al., 

2013). Neurodegeneration has also been tackled in the Ts65Dn 

mouse by the use of acetylcholinesterase and γ-secretase inhibitors, 

and acetylcholine precursors among other agents (Chang and Gold, 

2008; Netzer et al., 2010; de Souza et al., 2011; Ash et al., 2014). 

Therefore, it seems that many different drugs converging on related 

pathways that contribute to overlapping biological processes can 

rescue behavioral and structural defects in the Ts65Dn mouse. The 

problem about these drugs is that most of them can have secondary 

undesirable effects, such as promoting increased risk for epilepsy 

and mood instability among others.  
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1.5.2.1 (-)-Epigallocatechin-3-gallate (EGCG) 

In the last decades, (-)-Epigallocatechin-3-gallate (EGCG), the most 

abundant catechin found in green tea (Camellia sinensis) has gained 

a lot of attention because in the early 2000 it was discovered that it 

is a potent inhibitor of DYRK1A kinase activity with in vitro IC50 

of 0.33 μM (Bain et al., 2003) as recently confirmed (Wang et al., 

2012a). A study in mouse embryonic fibroblast immortalized NIH-

3T3 cells, showed that the mechanism by which EGCG acts on 

DYRK1A kinase activity involves a non-competitive inhibition 

against ATP binding site (Adayev et al., 2006). As DYRK1A had 

been shown to be a good candidate gene for many DS related 

phenotypes, considerable interest grew around the therapeutic 

potential of EGCG as it provided the means to rescue DS 

phenotypic features with a natural and apparently safe polyphenolic 

compound.  

The effects of EGCG on Ts65Dn mice were initially studied in 

hippocampal slices and demonstrated that pre-incubation with 10 

μM EGCG induced a normalization of long-term potentiation (LTP) 

in Schaffer collaterals-CA1 synapses (CA3-CA1 LTP), after a high 

frequency stimulation (HFS) protocol, but did not alter the degree 

of paired-pulse inhibition (PPI) suggesting a synaptic plasticity 

mechanism other than the attenuation of GABAergic inhibitory 

circuit (Xie et al., 2008). Another in vitro study showed that in 

hippocampal neuronal cultures derived from Dyrk1A 

overexpressing mice (bacterial artificial chromosome 

BACTgDyrk1A) presented a slower rate of synaptic vesicle 

endocytosis, which was reverted by EGCG treatment (Kim et al., 

2010). Additional neuroplasticity effects of EGCG were also shown 

in euploid conditions, increasing neurogenesis in adult hippocampal 

neural progenitor cell (NPC) cultures and in the DG of adult mice 

(Wang et al., 2012). 

As EGCG had been reported to be able to cross both the blood brain 

barrier in conscious and freely moving rats (Lin et al., 2007) and the 

placental barrier in gestating rats (Chu et al., 2007), subsequent 



 

 36 

studies examined the effects of EGCG on neurodevelopment by its 

administration to pregnant mice bearing a small Hsa21 region 

duplication containing Dyrk1A (human Yeast Artificial 

Chromosome YACTg152F7) and their litters up to adult age. The 

results showed that oral treatment with EGCG (50 mg/Kg), 

beginning prenatally and through adulthood, rescued brain volume 

alterations assessed by in vivo MRI, cognitive deficits in the object 

recognition test, and reductions in hippocampal levels of  BDNF 

neurotrophin and its plasma membrane receptor TRKB in their 

offspring (Guedj et al., 2009).  

Our group also assessed the effects of one month oral treatment 

with EGCG (30 mg/Kg) on post-weaning TgDyrk1A mice and 

found a normalization of the excessive proliferating cells and their 

accelerated cell cycle exit in the granular cellular layer of the DG, a 

phenotype that possibly contributes to deficient spatial learning and 

memory in these mice (Pons-Espinal et al., 2013). These changes 

were accompanied by a normalization of hippocampal DYRK1A 

kinase activity levels (Pons-Espinal et al., 2013), suggesting a 

potential pharmacological role of EGCG to tackle DS altered 

neurodevelopment and neuronal differentiation, at least partially 

due to its ability to normalize DYRK1A kinase activity. The 

procedure used to assess DYRK1A kinase activity involved first 

immunoprecipitating hippocampal DYRK1A protein and 

subsequently measuring DYRK1A catalytic activity through the 

quantification of the incorporation of radiolabeled 32P to an artificial 

DYRK1A substrate (DYRKtyde) (Himpel et al., 2000). This 

method implies that the inhibitory effects of EGCG on DYRK1A 

remains after protein isolation, which may suggest an additional 

mechanism to the previously described non-competitive inhibition 

against ATP binding site (Adayev et al., 2006). This alternative 

mechanism would possibly involve a modification of the molecular 

structure of DYRK1A protein that may be reversible or not.  

A more recent study by Souchet and colleagues (2015) showed that 

the oral administration of EGCG to BACTgDyrk1A and Ts65Dn 

mice had beneficial effects on both GABAergic and glutamatergic 
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components in different brain regions. Both BACTgDyrk1A and 

Ts65Dn mice presented increased levels of GABAergic markers 

(GAD67,GAD65 and VGAT) and decreased levels of glutamatergic 

markers (GLUR1, NR1, NR2a, and VGLUT1) in the cortex, 

hippocampus, and cerebellum, (with the exception of hippocampal 

VGLUT1 levels which were increased in BACTgDyrk1A, and 

hippocampal GLUR1 and GLUR2 levels that were unchanged in 

Ts65Dn). EGCG (60 mg/Kg) treatment reverted the altered 

GABAergic and glutamatergic levels in both BACTgDyrk1A and 

Ts65Dn mouse models, mainly in the cortex and the hippocampus 

(except for VGLUT1 in the hippocampus which remained increased 

in BACTgDyrk1A and decreased in Ts65Dn), while the correction 

was weaker in the cerebellum. Moreover, EGCG treatment rescued 

behavioral deficits in short-term spatial working memory in both 

mouse models (Souchet et al., 2015). 

Additionally, a recent work showed that treatment with EGCG (∼9 

mg/Kg/day) in post-weaning Ts65Dn mice improves some skeletal 

abnormalities such as femoral bone mineral density (BMD) by 

reducing femoral bone-associated DYRK1A kinase activity (Blazek 

et al., 2015). However both the dose and composition of 

supplements containing EGCG can affect its ability to improve 

skeletal deficits in Ts65Dn mice (Abeysekera et al., 2016). 

In most of the above studies, EGCG was delivered orally, hence it 

can either be absorbed directly into the bloodstream or go through 

metabolic transformations, such as formation of glucuronide, sulfate 

and methyl derivatives, which can have different physical and 

chemical properties than the parent compound (Lotito and Frei, 

2006; Lambert et al., 2007). Additionally, it has been shown that 

EGCG displays a low bioavailability and is rapidly cleared from the 

blood with an elimination half-life of 2.0–3.5 h (Zini et al., 2006; 

Yang et al., 2009). Therefore, further research is still needed to fully 

understand the in vivo mechanisms of EGCG when administered 

orally.  
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Collectively, the above data indicate that EGCG exerts effects on 

synaptic neuroplasticity, brain and skeletal development, neuronal 

cell cycle and differentiation and, hippocampal and cortical 

excitation/inhibition balance, at least partially through the 

modulation of DYRK1A kinase activity. However, it is rather 

unlikely that the benefits of EGCG treatment in Ts65Dn mice are 

limited to the inhibition of DYRK1A kinase activity. As pointed by 

Gardiner (2014), the reduction of DYRK1A kinase activity by 

EGCG occurs in the Ts65Dn mouse in a context of elevated 

expression of other multiple Hsa21 genes.  Among those other 

overexpressed Hsa21 genes, some proteins are phosphorylation 

substrates of DYRK1A, such as APP, SYNJ1 (a phosphoinositide 

phosphatase), and RCAN1. Thus, if EGCG optimally and 

specifically normalized DYRK1A activity in the context of elevated 

expression of those Hsa21-encoded substrates, additional 

imbalances relevant to DS phenotypic features could arise.  

EGCG, is a pleiotropic agent and participates in multiple signaling 

pathways that could contribute to the beneficial effects observed in 

Ts65Dn mice. For instance, EGCG has been shown to reduce Aβ 

generation in neuroblastoma N2a cells overexpressing Swedish 

mutant APP (SweAPP N2a) (Rezai-Zadeh et al., 2005) by 

promoting the non-amyloidogenic enzymatic processing of APP via 

ADAM10 activation, inducing α-secretase proteolytic function 

(Obregon et al., 2006). It was shown that EGCG-mediated 

enhancement of APP non-amyloidogenic processing is mediated by 

an estrogen receptor-ɑ (ERɑ)/phosphoinositide 3-kinase 

(PI3K)/Protein kinase B (AKT)- dependent signaling pathway 

(Fernandez et al., 2010). Another mechanism found regarding the 

reduction of Aβ accumulation induced by EGCG, involves the 

enhancement of Aβ clearance through increasing the expression of 

Aβ-degrading peptidase neprilysin (NEP) (Iwata et al., 2000; Chang 

et al., 2015). Additionally, in the human neuroblastoma cell line 

SH-SY5Y, EGCG was shown to induce a neuroprotective effect by 

the down-regulation of Bad protein levels mediated by rapid PKC-

dependent mechanism (Kalfon et al., 2007). In several mouse 
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models of AD and accelerated senescence, EGCG reduced brain Aβ 

levels, resulting in mitigation of cerebral amyloidosis, and promoted 

other beneficial effects involving reduction in oxidative stress, 

prevention of neuroinflammation and neurodegeneration (Rezai-

Zadeh et al., 2008; Li et al., 2009b; Biasibetti et al., 2013; Lee et al., 

2013; Chang et al., 2015). The activity of EGCG over 

neurodegenerative phenotypes is also relevant for DS as to prevent 

the progression to AD. 

Moreover, EGCG as a polyphenol, is a potent natural antioxidant 

able to augment endogenous antioxidant defense systems and 

improve the oxidative stress linked to the triplicated gene 

CuZnSOD1. It was demonstrated that the administration of EGCG 

(20 μM) in human DS lymphoblast and fibroblast cultures, was 

efficient to counteract oxidative stress and restoring mitochondrial 

energy deficit by promoting mitochondrial biogenesis and rescuing 

mitochondrial complex I and ATP synthase catalytic activities 

(Valenti et al., 2013). Besides, a recent case study showed that 

combined nutraceutical supplementation with EGCG (10 

mg/Kg/day) and fish oil omega-3 fatty acids (8 mg/Kg/day) in a 10-

year and 3-month-old child with DS, was safe, counteracts deficits 

in mitochondrial respiratory chain (MRC) complex activities in 

lymphocytes from peripheral blood and improved scores in 

neuropsychological evaluation for ADHD, including auditory 

attention and verbal strategic tests (Vacca and Valenti, 2015). 

Furthermore, in hippocampal neural progenitor cells (NPCs) from 

Ts65Dn mice, EGCG (20 μM) improved NPCs proliferation, and 

restored mitochondrial biogenesis and ATP production (Valenti et 

al., 2016). Conversely, it has been shown that EGCG has also a pro-

oxidant role in some cellular contexts. Indeed, in the presence of Fe 

(III), treatment with high concentrations (>50 μM) of EGCG results 

in production of hydrogen peroxide and hydroxyl radicals, 

contributing to cytotoxicity (Nakagawa et al., 2002, 2004). This 

highlights that EGCG has dosage-dependent pro-oxidant and anti-

oxidant effects (Kim et al., 2014), which must be accounted for the 

development of potential therapies for DS. 



 

 40 

The elucidation of the exact underlying mechanisms of EGCG will 

be complex due to its multifactorial pharmacology, involving the 

modulation of a plethora of proteins participating in diverse 

biochemical pathways (for a detailed review Xicota et al., 2015).  

1.5.3 Multimodal therapies as an approach for 

multifactorial disorders 

In the last years, multimodal therapy approaches, are being 

considered as a potential way to enhance clinical outcomes for 

patients with different nervous system disorders. They consist on 

the combination of different interventions, for example, a prescribed 

drug or dietary supplement along with a device, cognitive 

intervention or lifestyle adjustment, aimed at modifying distinct 

aspects of disease. There are still important open questions and 

challenges regarding whether these interventions are more efficient 

than monotherapies, how these interventions will interact, how they 

should be used, in what type of patients they should be applied 

(with which nervous system disorder, age, gender), when it would 

be best to start the intervention (e.g., earlier versus later in disease 

progression) and for how long. In cancer and viral infections 

therapy, a similar approach, using cocktails of different drugs is 

becoming common (Honda et al., 2013; Jaynes et al., 2013) but this 

type of therapies have not been applied yet for nervous system 

disorders.  

Multimodal therapy approaches have already been recommended 

for sporadic AD since, so far, monotherapies using agents targeting 

single pathogenic factors (Aβ/NFT production or clearance) have 

led to disappointment in clinical trials. It has been proposed that 

early intervention with combinations of safe and inexpensive 

pleiotropic agents, may be effective even to prevent later stages 

symptoms of AD (Frautschy and Cole, 2010). 

In the case of DS, multimodal therapies would be particularly useful 

as it is a disorder that affects several systems with a specific 

temporal dynamics and pronounced deficits in neuroplasticity-

related processes that impair proper brain and behavioral 
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modifications driven by environment. A multimodal therapy 

combining environmental and pharmacological interventions 

targeting neuroplasticity and neurodegeneration may thus provide 

the means to simultaneously counteract several of the altered 

processes in DS. 
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2. HYPOTHESIS and OBJECTIVES 

2.1  Hypothesis 
 
A growing number of studies have consistently linked intellectual 

disability in Down syndrome (DS) with alterations in brain 

morphology, synaptic connectivity, activity-dependent 

neuroplasticity, excitation-inhibition balance and Alzheimer disease 

(AD)-like age-related neurodegeneration. Accumulating data 

indicate that cognitive stimulation, through early intervention  

programmes in humans or by environmental enrichment (EE) in 

mice, induces multiple beneficial effects on cognition. However, 

these effects are limited and temporary, possibly due to inadequate 

neuroplasticity mechanisms responsible for the translation of 

transient changes into more stable memory traces. A number of 

Hsa21 dosage-sensitive genes, among which, the dual specificity 

tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) gene and 

the gene encoding the amyloid precursor protein (APP), have been 

proposed to play a role in the failure of those neuroplasticity 

mechanisms and represent good targets for intervention in DS.  

During the recent years several studies have demonstrated 

overlapping molecular mechanisms of EE and specific drug 

treatments such as (-)-epigallocatechin-3-gallate (EGCG), a 

catechin found in green tea. Those include the promotion of 

neuroplasticity and neuroprotection, antioxidant activity, anti-

inflammatory function, enhancement of the non-amyloidogenic 

proteolytic pathway of APP and inhibition of the kinase activity of 

Dyrk1A.   

The working hypothesis in this Thesis is that pharmacologically 

targeting neuroplasticity and neurodegeneration-related molecules 

by EGCG may enhance the beneficial effects of EE and thus 

improve physiological learning and neuroprotection in DS. The 

secondary hypothesis is that these effects could be beneficial across 

different life stages. 
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2.2 Objectives 

 

The main objective of this Thesis is to assess the potential ability of 

combined EE-EGCG treatment to ameliorate two distinct 

pathophysiological processes that give rise to cognitive impairment 

in mouse models and humans with DS and occur in specific 

timeframes across the lifespan: 1) the cognitive deficits associated 

to impaired hippocampal neuroplasticity and excitation-inhibition 

imbalance, and 2) the AD-like age-associated cognitive decline 

related to hippocampal dysfunction and cholinergic 

neurodegenerative process in the basal forebrain in Ts65Dn mice. 

Additionally, we aimed to translate our findings to clinical trials 

with DS individuals. 

 

Specific objectives: 

Preclinical studies  

1. To examine the effect of combined EE and EGCG treatment on 

spatial learning and memory, and hippocampal structural 

neuroplasticity and excitation-inhibition balance in young adult 

Ts65Dn mice. 

 

2. To assess the effect of EE, EGCG and combined EE and EGCG 

treatments on spatial learning and memory, recent and long-

term associative memory, and basal forebrain cholinergic 

neurodegeneration in middle age adult Ts65Dn mice, at the age 

of the onset of cognitive decline. 

Clinical trials 

3. To evaluate the effects of combined cognitive training and 

EGCG treatment on cognitive ability, adaptive functionality and 

quality of life of young adults with DS and on prodromal 

dementia signs. 
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3. CHAPTER I. PRECLINICAL STUDIES 

3.1 Preface  

This chapter comprises the preclinical studies in mice that represent 

the core of my PhD Thesis. 

Since previous data of the lab had already indicated that both EE 

and green tea extract containing EGCG had beneficial effects on 

young adult Ts65Dn mice, the first experiments (Article I), 

specifically addressed the effects of the combined EE-EGCG 

treatment at this age. This work studied the spatial learning and 

memory deficits, hippocampal structural neuroplasticity and 

excitation/inhibition imbalance. We focused on these aspects 

because, like DS individuals, Ts65Dn mice show disruptions in 

dendritic complexity and dendritic spines in brain regions involved 

in learning and memory. These are partially due to developmental 

abnormalities but also to alterations in experience-dependent 

neuronal shaping. Furthermore, accumulating evidence suggest that 

intellectual disability in DS is tightly associated with a disruption of 

the excitation-inhibition balance. Both of these aspects are 

modulated by EE and Dyrk1A overexpression thus we expected to 

see changes with the combined EE-EGCG treatment.  

At the age of the onset of cognitive decline, there were no previous 

data about the effects of these treatments on DS. Thus, the second 

set of experiments (Articles II and III) addressed the effects of the 

treatments (EE, EGCG, combined EE-EGCG) on Ts65Dn mice at 

six months of age. We investigated the effects of the treatments on 

spatial learning and memory deficits and cholinergic 

neurodegeneration at the basal forebrain because they represent the 

anatomic substrates of memory and attention, and Ts65Dn mice 

present a gradual atrophy and loss of these population of neurons 

which is associated to the onset of cognitive decline, as happens in 

DS and AD humans. This cholinergic neurodegeneration has been 

linked to the abnormal expression of APP (full length and 

proteolytic derivatives) and the abnormal retrograde transport of 
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neural growth factor (NGF) from the hippocampus to the BFCN 

somas. Both APP proteolytic processing and neurotrophins 

secretion have been shown to be modulated by EE, EGCG and 

Dyrk1A through different mechanisms. Therefore, we predicted to 

detect changes with the EE-EGCG treatment. 

Collectively, the results of this preclinical studies showed that 

combined EE-EGCG treatment induced an amelioration in spatial 

learning deficits in young and middle-age Ts65Dn mice. This 

cognitive improvement was accompanied in young mice by a rescue 

of  dendritic spine density in CA1 and a normalization in the density 

and size of excitatory and inhibitory synaptic puncta in DG and 

CA1, while in middle-age mice it was associated by a moderate 

although not significant restoration of cholinergic neuronal density 

in the medial septum of the basal forebrain. 
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3.2 Paper I: Combined treatment with 

environmental enrichment and (-)-
epigallocatechin-3-gallate ameliorates learning 
deficits and hippocampal alterations in a young 
adult mouse model of Down syndrome 

 

In this work we examined the effects of combined EE-EGCG 

treatment on hippocampal-dependent visuo-spatial learning and 

memory deficits in young adult Ts65Dn mice using the Morris 

water maze (MWM). One of the added values of this work, is the 

analysis we proposed. The cognitive effects of the treatment were 

first examined by a standard single-variate analysis of the 

behavioral data. However, this type of analysis provides a 

fragmented vision of the behavioral effects of the treatment. Thus, 

we performed a novel multidimensional analysis of the data based 

on principal component analysis (PCA) which enabled us to better 

discriminate the global treatment effects on mice behavioral 

response along the different sessions of the test. Principal 

component analysis is a variable reduction procedure. It is useful 

when dealing with a number of variables with some degree of 

correlation among them, as happens in the MWM. Because of this 

correlation, it is possible to reduce the number of variables into a 

smaller number of principal components (artificial variables) that 

account for most of the variance. Indeed, in our analysis the two 

obtained principal components, contributed by learning-related and 

unrelated variables accounted for most of the between group 

variability. Furthermore, we addressed the treatment effects on 

hippocampal alterations by studying dendritic spine density, and 

excitatory and inhibitory synaptic molecules in order to shed light 

on the possible underlying mechanisms of the treatment.  

This work was performed in collaboration with Jose Antonio 

Espinosa-Carrasco and Ionas Erb from the Comparative 

Bioinformatics lab (Cedric Notredame CRG), Klaus Langohr from 

Rafael de la Torre lab (IMIM) and Juan Ramón González 
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(CREAL). My specific contribution consisted in performing all the 

experiments including the administration of the treatments to the 

mice, the behavioral tests, contributing to the single-variate analysis 

of the behavioral data, the design and execution and analysis of 

neuronal and synaptic experiments and the elaboration of the 

manuscript. 



Catuara-Solarz S, Espinosa-Carrasco J, Erb I, Langohr K, Gonzalez JR, 
Notredame C, et al. Combined Treatment With Environmental Enrichment 
and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and 
Hippocampal Alterations in a Mouse Model of Down Syndrome. eNeuro. 
2016 Nov 10;3(5). DOI: 10.1523/ENEURO.0103-16.2016

http://www.eneuro.org/content/3/5/ENEURO.0103-16.2016
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3.3 Paper II: Principal Component Analysis of the 
Effects of Environmental Enrichment and (-)-
epigallocatechin-3-gallate on Age-Associated 
Learning Deficits in a Mouse Model of Down 
Syndrome 

The following work,  was  aimed at examining the effects of 

treatments with EE, EGCG and combined EE-EGCG treatment  on 

the performance of Ts65Dn and WT mice on the MWM, at the age 

of onset of cognitive decline previously reported in trisomic mice. 

Again, the cognitive effects of the treatments were analyzed by a 

classical single-variate analysis of the behavioral data and a 

multidimensional analysis of the data based on principal component 

analysis (PCA).  

As for Paper I, this work was performed in collaboration with Jose 

Antonio Espinosa-Carrasco and Ionas Erb from Cedric Notredame 

lab (CRG), Klaus Langohr from Rafael de la Torre group (IMIM) 

and Juan Ramón González (CREAL). My specific contribution 

consisted in performing all the experiments including the 

administration of the treatments to the mice, the behavioral tests, 

contributing to the single-variate analysis of the behavioral data, 

and the elaboration of the manuscript. 

http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00330/full
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00330/full
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00330/full
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00330/full
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Catuara-Solarz S, Espinosa-Carrasco J, Erb I, Langohr K, Notredame C, 
Gonzalez JR, et al. Principal Component Analysis of the Effects of 
Environmental Enrichment and (-)-epigallocatechin-3-gallate on Age-
Associated Learning Deficits in a Mouse Model of Down Syndrome. Front 
Behav Neurosci. 2015 Dec 11;9:330. DOI: 10.3389/fnbeh.2015.00330

https://www.frontiersin.org/articles/10.3389/fnbeh.2015.00330/full
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3.4 Paper III: Combined therapy with 
environmental enrichment and (-)-

epigallocatechin-gallate (EGCG) mitigates long-
term contextual memory deficits in a mouse 
model of DS at the age of initiation of cognitive 
decline 

As we had previously demonstrated that combined EE-EGCG 

treatment ameliorated spatial learning and memory deficits more 

efficiently than EE or EGCG in Ts65Dn mice at the age of the 

initiation of cognitive decline (Paper II), we hypothesized that this 

therapy would also have effects on cholinergic-dependent memory 

and on the degenerative process that occurs in the basal forebrain 

cholinergic neurons. 

This work extends the assessment of the effects of EE, EGCG and 

combined EE-EGCG treatments on recent and long-term associative 

memory, and on the cholinergic neuronal degeneration that takes 

place within the medial septum of the basal forebrain in Ts65Dn 

mice. The treatments effects were addressed by the step-down 

passive avoidance test and by unbiased stereological quantifications 

of medial septum cholinergic neurons. 

Catuara-Solarz S, Ayala-Ruiz C, Langohr K, Dierssen M. 

Combined therapy with environmental enrichment and (-)-

epigallocatechin-gallate (EGCG) mitigates long-term memory 

deficits in a mouse model of DS at the age of initiation of cognitive 

decline. (Manuscript in preparation) 
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 3.5 Unpublished observations  

In the preclinical studies presented here, we examined, among other 

phenotypes, the spatial learning and memory ability of young adult 

(2-3 months old) and middle age (6-7 months old) Ts65Dn female 

mice by the Morris water maze (MWM) and the potential 

therapeutic effects of combined treatment with EE and EGCG. 

Our results confirmed previous work showing that Ts65Dn mice 

present significant learning and memory impairments in the MWM 

at both ages tested. However, we did not compare Ts65Dn learning 

and memory deficits between ages, since each timeframe was 

examined in separate pieces of work. Furthermore, we showed that 

combined EE-EGCG treatment ameliorates spatial learning deficits 

in middle-age Ts65Dn mice more efficiently than EE or EGCG 

alone, and also mitigates spatial deficits and hippocampal 

alterations in younger Ts65Dn mice.  

These aspects, regarding age-associated phenotype and treatment 

effects, are particularly important in the context of translational 

research because they could be informative about both the 

underlying pathophysiological processes occurring across the 

lifespan and the putative modification by the treatment at each 

timeframe. As such, having insights about these aspects may shed 

light about a potential therapeutic window in which interventions 

would be optimal to treat intellectual disability in humans with DS. 

Therefore, as the conditions were practically identical between 

experiments, it is worthwhile to make here some qualitative 

observations about the cognitive impairments and the differential 

effects of EE-EGCG treatment at each timeframe.  
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3.5.1 Age-dependent spatial learning and 

memory deficits in Ts65Dn mice in the Morris 

water maze (MWM) 

In the MWM, a number of learning and memory processes need to 

be executed to successfully navigate and locate the hidden platform 

to escape. During the acquisition sessions, efficient learning reflects 

the ability of mice to progressively create explicit operant-like 

associative memory of the spatial configuration of the visual extra-

maze cues and their relation to the position of the platform. To 

display effective reference memory at the probe test, the previously 

learnt spatial information needs to be consolidated, retained, and 

retrieved. It has been known for long that the acquisition, storage 

and retrieval of spatial information is highly dependent on the 

dorsal hippocampus (Tolman, 1948; Nadel, 1991; Josselyn et al., 

2015), being the neuronal populations within CA1 and DG 

subregions particularly important for these cognitive processes 

(Tsien et al., 1996; Deng et al., 2010).  

When comparing the results accross different ages, younger mice 

regardless of the genotype, showed less efficient learning and 

cognitive flexibility than middle-age mice (Fig. 7). These results are 

in line with previous findings from Seo and collaborators (2005) 

that showed that 1 month old Ts65Dn and WT mice showed longer 

escape latencies compared to their 4 and 12 months old counterparts 

(Seo and Isacson, 2005). Hyde and colleagues (2001) also reported 

a developmental delay in Ts65Dn mice younger than 3 months of 

age, affecting context discrimination (Hyde and Crnic, 2001). They 

show that these deficits disappeared during a period spanning 

between 3 and 5 months of age, and were present again after 5 

months of age. In our results, at both ages Ts65Dn mice showed 

thigmotactic behavior (swimming next to the wall of the pool doing 

circles), but in younger mice thigmotaxis was more pronounced, 

contributing to the increased learning and cognitive flexibility 

impairment (Fig. 7). Some authors have argued that thigmotactic 
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behavior is due to the use of inefficient learning strategies (non-

searching or non-spatial) (Shichiri et al., 2011; Altafaj et al., 2013; 

García-Cerro et al., 2014) while others propose that it reflects 

sensorimotor and/or emotional issues that are independent from 

spatial learning and memory deficits (Simon et al., 1994; Holmes et 

al., 2002; Vorhees and Williams, 2014). This tendency to peripheral 

swimming is also present in transgenic mice overexpressing 

Dyrk1A, suggesting that Dyrk1A may contribute in the 

development of thigmotactic behavior (Altafaj et al., 2001). One 

possible explanation for the more pronounced cognitive impairment 

in younger Ts65Dn mice is that they have a delayed developmental 

maturation, as happens in individuals with DS (Takashima et al., 

1994). Consistent with this interpretation, Seo et al (2005) found 

that, in comparison to older mice,  1–2 months old Ts65Dn mice 

presented higher levels of hippocampal NGF, which is a critical 

neurotrophin for both neurodevelopment and adult neuronal 

maintenance, that appears to be abnormally regulated throughout 

the lifespan in both mice and humans with DS (Sofroniew et al., 

2001; Iulita et al., 2014). On the other hand, younger WT learning 

performance was also less efficient and presented higher 

thigmotaxis than that of their older counterparts. This has been 

attributed to developmental consequence from abnormal Ts65Dn 

maternal fostering (Liu et al., 2000). 

In the probe session, there was a clear improvement in WT mice 

with age, but this age-associated progress does not take place in 

Ts65Dn mice (Fig 7). Younger and middle age Ts65Dn mice 

showed a similar level of impairment in specific reference memory 

parameters, such as the average distance to the platform (Gallagher 

index) and the time spent in the target quadrant. The fact that both 

younger and middle-age Ts65Dn mice presented an impairment in 

the acquisition and retrieval of spatial information suggests a 

disruption in the hippocampal processes needed for encoding and 

consolidation of associative memory. These disruptions could arise 

from developmental delay in younger mice or basal forebrain 

cholinergic neurodegeneration in middle-age mice.  
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Fig 7. Visuospatial learning, reference memory and cognitive flexibility in 

the MWM in young (2-3 months old) and middle-age (6-7 months old) WT 

and Ts65Dn mice. For the visuospatial learning and cognitive flexibility phases, 

the mean ± SEM of the variables latency (s) to reach the escape platform, 
Gallagher index (mean distance to the goal in cm) and thigmotaxis (percentage of 

time spent on the periphery) are presented during the sessions. For the reference 

memory session (probe trial), boxplots of the distribution of the Gallagher index 

and the time spent in the target quadrant of the four experimental groups are 

presented, being the dots the values of each individual mouse. The purpose of 

showing this data is to make qualitative observations. 

Additionally, our multidimensional analysis using PCA revealed 

that the act of learning in the MWM induced an increment in 

within-group behavioral heterogeneity in both young and middle-

age mice. Middle-age mice showed a higher behavioral variability 

before and after learning in comparison to younger mice, regardless 

of the genotype (Fig. 8). This highlights an increased phenotypic 
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variability induced by experience and learning, even in a relatively 

isogenic population of mice.  

Fig. 8: Learning induces within group behavioral heterogeneity. Density 

distribution of young and middle-age WT (A-B) and Ts65Dn (C-D) groups for 

PC1 (learning composite variable) and PC2 (mainly swimming speed) at the first 

and the last acquisition learning sessions of the MWM. 

Noteworthy, given the fact that we used female mice to perform the 

experiments, since in males EE produces a shift towards a more 

territorial organization increasing stress and aggressiveness 

(Haemisch and Gärtner, 1997; Martínez-Cué et al., 2002), and that 

female Ts65Dn mice showed a more pronounced visuo-spatial 

learning impairment compared to male Ts65Dn mice (Martinez-Cué 

st al., 2002), all the visuo-spatial learning data presented here 

should be considered gender-specific. 
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3.5.2 EE-EGCG treatment effects on young and 
middle-age Ts65Dn mice performance in the 
MWM  

When comparing the EE-EGCG treatment effects at each ages, 

while the treatment resulted in learning improvement in Ts65Dn 

mice at both ages, middle-age mice were more benefited from the 

treatment than younger mice (Fig 9). The combined treatment had a 

stronger impact on reference memory in middle-age mice than in 

younger mice (Fig 9).  

The fact that younger mice were less benefitted by the EE-EGCG 

treatment than middle-age mice suggests that the molecular 

pathways triggered by the treatment may not be able to fully reverse 

their developmental delay. However, if EE-EGCG treatment was 

able to reverse, at least partially, the developmental delay in young 

Ts65Dn mice, potentially their cognitive impairment later in life 

would also be ameliorated. On the other hand, despite the fact that 

middle-age Ts65Dn mice have already gone through the initiation 

of cholinergic neurodegeneration and cognitive decline, EE-EGCG 

treatment was fairly beneficial, which may suggest its ability to 

slow down the neurodegenerative process.  

Conversely, according to the statistical analysis shown in the papers 

presented above, EE-EGCG treatment improved cognitive 

flexibility in younger mice but not in middle-age mice. During the 

reversal sessions, mice have to extinguish their initial learning of 

the platform position and acquire new spatial information regarding 

the current location of the platform. It is considered a measure of 

executive function and cognitive flexibility and depends both on the 

prefrontal cortex and the prefrontal functional integrity (de Bruin et 

al., 1994). The fact that EE-EGCG partially restored cognitive 

flexibility in younger mice may suggest that it can enhance the 

functionality of the prefrontal cortex despite their developmental 

delay.    



 

 143 

 

Fig 9. EE-EGCG treatment effects on visuospatial learning, reference 

memory and cognitive flexibility in the MWM in young (2-3 months old) and 

middle-age (6-7 months old) Ts65Dn mice. For the visuospatial learning and 

cognitive flexibility phases, the mean ± SEM of the variables latency (s) to reach 

the escape platform, Gallagher index (mean distance to the goal in cm) and 

thigmotaxis (percentage of time spent on the periphery) are presented during the 

sessions. For the reference memory session, boxplots of the distribution of the 

Gallagher index and the time spent in the target quadrant of the four experimental 

groups are presented, being the dots the values of each individual mouse. The 

purpose of showing this data is to make qualitative observations. 

 

In fact, this could be explained by the EE-EGCG treatment 

modulation of Dyrk1A activity, as its overexpression has been 

shown to play a role in prefrontal cortex dysfunction by altering 

NMDAR-mediated long term potentiation, increasing oblique 

dendrites spine density and enlarging miniature EPSCs (Thomazeau 

et al., 2014), and also by disrupting gamma frequency power and 
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inducing a selective disinhibition of interneurons (Ruiz-Mejias et 

al., 2016). On the other hand, the finding that EE-EGCG treatment 

failed to improve cognitive flexibility in middle age mice is 

consistent with findings from Granholm et al (2000) that show an 

increasing impairment in behavioral flexibility in Ts65Dn mice over 

6 months of age. Inflexibility of learning is an early feature of AD 

dementia (Albert, 1996; Traykov et al., 2007) and thus perhaps 

cognitive flexibility is more vulnerable than learning, and the 

prefrontal cortex may not be modulated by the treatment at this age 

due to AD-like degeneration.  

Additionally, multidimensional analysis showed that the learning-

dependent heterogeneity was higher in middle-age untreated WT 

and EE-EGCG treated Ts65Dn mice (Fig. 10). Among Ts65Dn 

mice, some extent of genetic variability is expected because they 

are maintained as F1 hybrids of female C57BL/6JEi and male 

C3H/HeSnJ (Davisson 1993) and thus, the three alleles of the 

trisomic segment in each mouse may all derive from C57BL/6JEi or 

be combinations of C57BL/6JEi and C3H/HeSnJ (Gardiner 2004). 

Therefore, different sources of the behavioral variability that we 

found in both untreated WT and treated Ts65Dn mice, may include 

this allelic variation in trisomic and euploid genes in the case of 

Ts65Dn mice, and other stochastic or environmental factors, in 

mice of both genotypes. The higher behavioral variability in EE-

EGCG treated middle-age Ts65Dn mice could be attributed to the 

interaction between allelic variations, age and EE-EGCG treatment, 

giving rise to differential behavioral responses. The reasons of this 

behavioral heterogeneity are still uncertain however this could have 

clinical consequences since DS population may as well have 

heterogeneous outcomes after EE-EGCG treatment. 
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Fig 10: EE-EGCG treatment effects on learning-dependent behavioral 

heterogeneity in young and middle age WT and Ts65Dn mice. Density 

distribution of untreated and EE-EGCG treated WT and Ts65Dn mice at 2-3 and 
6-7 months of age, for PC1 (learning composite variable) and PC2 (mainly 

swimming speed) at the first and the last acquisition learning sessions of the 

MWM. 
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Collectively, our results suggest that spatial learning and memory 

impairment is more pronounced in younger in comparison to 

middle-age Ts65Dn mice, possibly due to a developmental delay. 

We also found that in all mice learning induced an increment in 

behavioral heterogeneity. Regarding the effects of the combined 

EE-EGCG treatment our data suggest that middle-age Ts65Dn mice 

showed a stronger improvement in learning and memmory than 

younger mice and presented a greater heterogeneity after learning, 

meaning that some mice were more benefited by treatment than 

others. However, EE-EGCG treatment improved cognitive 

flexibility in younger but not in middle age Ts65Dn mice, 

suggesting a different effect of the treatment in prefrontal cortex 

accross different ages.     
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4. CHAPTER II. CLINICAL STUDIES

4.1 Preface 

During my PhD studies I participated in the performance of two 

clinical trials (phase I and II) that I present in this chapter. 

The first work (clinical trial phase I) includes the study of the 

effects of the oral administration of green tea extract containing 

EGCG in both animal models and young adult individuals with DS. 

Studies with mice were focused on the effects of EGCG on 

cognitive performance, hippocampal Dyrk1A kinase activity and 

plasma homocysteine (Hcy) levels as an efficacy biomarker of 

Dyrk1A normalization. In the pilot clinical study in humans, the 

main aspects that were addressed were the safety and toxicity of the 

EGCG compound, its effects on prefrontal and hippocampal-

dependent cognitive function, plasma Hcy levels and quality of life. 

The dosage of the EGCG compound was matched between mice 

and humans studies. However, humans with DS only received a 

short-term EGCG treatment in the clinical trial since the most 

important outcome measure was safety. This implies a relevant 

difference between the duration and administration type of the 

EGCG treatment in the mouse preclinical studies and the human 

clinical studies, being relatively chronic/ long-term in the former 

and acute/ short-term (3 months) in the latter. The results from this 

pilot clinical trial were promising, showing that, besides being safe, 

EGCG treatment was able to promote improvements in cognitive 

function in both animal models and individuals with DS, and that 

these cognitive effects were accompanied by a transient 

normalization of Dyrk1A kinase activity.  

We then hypothesized that EGCG treatment would potentially be 

more beneficial if paired with interventions that also increase 

neuroplasticity, such as cognitive stimulation. The second work 

(clinical trial phase II) was aimed at testing the hypothesis elicited 

by the pilot clinical trial. Besides safety, it primarily addressed the 
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efficacy of the combined treatment with EGCG and cognitive 

training vs. cognitive training with placebo, and consisted of a much 

longer longitudinal study (13 months) with a larger population of 

individuals with DS. The effects of the treatments were examined 

on cognitive ability, neurophysiological measures of brain function 

and quality of life. The results showed that the combined treatment 

significantly improved memory, executive functions and adaptive 

behaviour. Additionally, neuroimaging and neurophysiology 

showed increased functional connectivity and normalized cortical 

excitability. Interestingly, the positive effects of EGCG and 

cognitive training on memory and executive functions persisted 6 

months after treatment discontinuation. 
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4.2 Paper I. Epigallocatechin-3-gallate, a DYRK1A 
inhibitor, rescues cognitive deficits in Down 
syndrome mouse models and in humans 

The results from this work, published in the journal of Molecular 

Nutrition and Food Research in 2014, settled an inflection point and 

represented the grounds for the rest of the evidence-based 

translational study presented in this Thesis.  

In this paper we combined mouse and human experiments to 

demonstrate that EGCG produces its cognitive effects, at least 

partially, through inhibition of DYRK1A kinase activity in the 

hippocampus. Furthermore,  we validated the use of and plasma 

homocysteine (Hcy) levels as an efficacy biomarker of Dyrk1A 

activity normalization. 

My specific contribution consisted on the performance of 

preclinical behavioral experiments comparing the effects of two 

different formulas of green tea extracts containing 45% EGCG 

(Mega green tea extract, Life Extension) or 94.2% EGCG 

(Teavigo).  

http://onlinelibrary.wiley.com/doi/10.1002/mnfr.201300325/abstract
http://onlinelibrary.wiley.com/doi/10.1002/mnfr.201300325/abstract
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Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in 
Down syndrome mouse models and in humans. Mol Nutr Food Res. 2014 
Feb;58(2):278–88. DOI: 10.1002/mnfr.201300325

https://onlinelibrary.wiley.com/doi/10.1002/mnfr.201300325
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4.3 Paper II. A new cognitive evaluation battery 
for Down syndrome and its relevance for clinical 
trials 

In this paper we propose a new neuropsychological assessment tool, 

the TESDAD battery, designed to evaluate DS therapies in the 

context of clinical trials, and we provide the baseline scores of the 

volunteers that participated in the phase II clinical trial.  

The main advantage of the method of the TESDAD battery is that 

instead of comparing DS individuals to matched healthy controls of 

the same mental age, as it has been traditionally done, it relates 

performance of DS individuals to age-matched typically developed 

adults. As a result it confers a clear definition of the cognitive gap 

that is addressed by therapies aiming at restoring intellectual and 

adaptive functioning in individuals with DS.  

My specific contribution to this work was involved with the 

performance of the neuropsychological assessment of the volunteers 

and the interviews with the care-givers of the volunteers. 

http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00708/full
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00708/full


164 

De Sola S, de la Torre R, Sánchez-Benavides G, Benejam B, Cuenca-Royo A, Del 
Hoyo L, et al. A new cognitive evaluation battery for Down syndrome and its 
relevance for clinical trials. Front Psychol. 2015 Jun 4;6:708. DOI: 10.3389/
fpsyg.2015.00708

https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00708/full
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4.4 Paper III. Safety and efficacy of cognitive 
training plus epigallocatechin-3-gallate for 
cognitive improvement in young adults with 
Down’s syndrome (TESDAD): a double-blind, 
randomised controlled, phase II trial 

This work is the first long-term randomized controlled clinical trial 

using a dietary supplement (green tea extract containing 45% of 

EGCG) combined with a computerized cognitive training in a 

population of young adults with DS. 

My specific contribution was involved in the performance of the 

longitudinal neuropsychological assessment of the volunteers using 

the TESDAD battery and the performance of interviews with 

parents or caregivers to gather information of their perception of the 

volunteers’ progress along the clinical trial. 

http://www.thelancet.com/journals/laneur/article/PIIS1474-4422(16)30034-5/abstract
http://www.thelancet.com/journals/laneur/article/PIIS1474-4422(16)30034-5/abstract
http://www.thelancet.com/journals/laneur/article/PIIS1474-4422(16)30034-5/abstract
http://www.thelancet.com/journals/laneur/article/PIIS1474-4422(16)30034-5/abstract
http://dx.doi.org/10.1016/S1474-4422(16)30034-5
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Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in 
young adults with Down’s syndrome (TESDAD): a double-blind, 
randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016 
Jul;15(8):801–10. DOI: 10.1016/S1474-4422(16)30034-5

http://www.thelancet.com/journals/laneur/article/PIIS1474-4422(16)30034-5/fulltext
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5. DISCUSSION

Until few years ago, intellectual disability associated with DS was 

considered a permanent and intractable hallmark of the disorder. As 

such, during decades, DS had been relegated as a disease orphan of 

treatment, since a trisomy was considered a too complex scenario 

for granting pharmacological intervention. This derived in 

improvements in general health in individuals with DS that were not 

accompanied by the amelioration of their cognitive impairment and 

its related clinical, social and economic burden. Along the last 

years, extensive preclinical research has identified a number of 

altered molecular pathways, and neurobiological processes that may 

be involved in the cognitive deficits of DS. Increasing available 

evidence in preclinical models has shown the likelihood of 

improving cognitive deficits and mitigating structural and 

functional brain alterations in DS through the administration of 

diverse therapies targeting altered neurodevelopment and 

neuroplasticity, excitation–inhibition imbalance and 

neurodegeneration. Nevertheless, at the present time, only some of 

those possibilities are being tested in individuals with DS.   

In this Thesis preclinical and clinical studies have validated the first 

therapeutic intervention to improve cognitive performance in DS. 

The results reported here show, for the first time, that combined 

environmental cognitive stimulation and EGCG therapy 

significantly ameliorates cognitive deficits in Ts65Dn mice and 

young adult individuals with DS, by modifying neuronal network 

structure and function. 

The preclinical studies showed that the treatment is effective in both 

in young and middle-age Ts65Dn mice, despite the disparities 

underlying pathophysiological mechanisms in age-dependent 

cognitive impairments. However, the behavioral experiments also 

showed that phenotypic heterogeneity, which is a typical feature in 

DS, increases after learning and upon treatment in both Ts65Dn and 

WT mice. This was observable in both young and aged adults, and 

could reflect environmental and developmental differences that may 
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also account for the inter-subject variability of treatment efficacy. 

Histological and molecular experiments revealed that combined 

environmental enrichment (EE)-EGCG treatment promotes 

hippocampal structural and synaptic neuroplasticity changes, by 

increasing dendritic spine density in CA1 and restoring the balance 

between excitatory and inhibitory synaptic proteins in CA1 and DG. 

These preclinical data shed some light on the underlying 

mechanisms of the treatment and the best timing for its 

administration.  

The main findings of the clinical trials showed that EGCG treatment 

is safe in young adult individuals with DS and induces a cognitive 

improvement when administered alone for a short period of time. 

Moreover, the administration, for a longer period, of combined 

treatment with cognitive training and EGCG, improved cognitive 

function by modifying patterns of brain functional connectivity and 

excitability, in a more efficient way than cognitive training as a 

monotherapy. These effects had a significant impact in adaptive 

behavior. 

Besides the discussion of the specific results that is provided in each 

of the paper, here I provide a more general view including also 

aspects that were not addressed before. 

5.1 Bridging preclinical and clinical results 

5.1.1 Cognitive phenotype of mice and humans with 

DS: a matter of face validity and cognitive assessment 

tools 

In the past decades, a remarkable progress has been made on the 

understanding of DS cognitive function. We now know that the 

cognitive profile of humans with DS primarily comprises deficits in 

learning, memory, language and executive functions, reflecting 

alterations on aspects of medial temporal lobe, cerebellar and 

prefrontal function (Pennington et al., 2003; Fidler and Nadel, 2007; 

Vicari et al., 2007). The study of cognitive deficits in DS has 
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benefitted substantially from the use of mouse models, which have 

provided data highlighting the neural mechanisms that may 

underscore cognitive difficulties. Beyond offering testable 

mechanisms of drug treatment in this population, mouse models that 

prove sensitive to the same treatment as humans may also help us 

understand the reasons for treatment success, the projected time-

course of treatment effects, and in the identification of biomarkers 

to establish treatment efficacy. However, it is still challenging to 

assess equivalent cognitive capabilities in mouse models and 

humans, to be able to directly translate the findings from one to 

another.  

The preclinical studies presented here confirmed a strong deficit in 

hippocampal-dependent visuospatial learning and memory in 

Ts65Dn mice, as shown by the Morris water maze (MWM). The 

experimental procedure of the MWM ensures that, in order to 

efficiently perform the test, mice have to create a coordinate map 

holding the relationships among the location of the cues and the 

platform. These representations are independent of the mice 

position since each trial is initiated from random sites around the 

pool. The deficits in this task were shown to be more pronounced in 

Ts65Dn mice at 2-3 months than at 6-7 months of age, possibly due 

to maturational delay, as discussed in the unpublished observations 

section. Within the hippocampus, the dentate gyrus and CA3 are 

involved in memory tasks that require spatial pattern separation 

(Bakker et al., 2008) and the CA1 and the subiculum have been 

shown to be involved in novelty detection and spatial navigation 

(Kesner and Goodrich-Hunsaker, 2010). 

Conversely, in both the phase I and II clinical trials, the basal 

cognitive profile of the volunteers with DS presented clear deficits 

in language and executive functions but, although clinically 

relevant, the deficits in spatial memory (spatial span, SSP, forward 

recall, CANTAB) were not so robust, suggesting a better 

preservation of hippocampal-dependent memory processes 

compared to frontal-mediated processes (De la Torre et al., 2014; 

De Sola et al., 2015). These results are in agreement with early 
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studies showing that individuals with DS perform at the level of 

mental age matched controls on tasks requiring immediate memory 

for spatial locations (Corsi block-tapping task) (Wang and Bellugi, 

1994; Jarrold et al., 1999; Numminen et al., 2001; Laws, 2002), 

which may have been somewhat hastily interpreted as a rather 

spared visuospatial memory capacities. In fact, in early studies of 

the visual-spatial processing of global and local elements of a visual 

display, Wang et al., (1995) presented data suggesting individuals 

with DS had an abnormal tendency towards globally oriented visual 

perception. In addition, Pennington et al. (2003) and Visu-Petra et 

al (2007) reported deficits on binding between object and location 

(CANTAB PAL) and spatial memory through navigation learning 

(a virtual MWM). These findings suggest deficits on tasks 

dependent on medial temporal lobe (MTL) structures adjacent to the 

hippocampus. Indeed, MRI studies showed consistent evidence for 

reductions in gray matter density in the hippocampus in children 

and young adults with DS (Pinter et al., 2001; Menghini et al., 

2011). Alterations in MTL microstructure are also apparent, with 

levels of dendritic branching in the temporal cortex, CA1, CA2 and 

CA3 in the hippocampus particularly affected in patients with DS 

(Ferrer and Gullotta, 1990). White et al., (2003) also found 

reductions in gray matter density in non-demented adults with DS, 

including specific reductions in CA2 and CA3.   

Thus the discrepancy between preclinical and clinical studies may 

reflect the fact that the neuropsychological tests used in the clinical 

trial to measure spatial memory, involving the spatial location of 2D 

objects are not the optimal tools to measure hippocampal-dependent 

function. In fact, these tests can be solved using egocentric (view-

point dependent) strategies and do not require allocentric (view-

point independent) learning and memory representations, which 

depend on the functional integrity of the hippocampus. In support of 

this argument, meta-analysis of previous neuropsychological data 

and also recent studies implementing more sophisticated assessment 

tools with 3D spatial tasks and real-world orientation, have found 
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alterations in hippocampal-dependent spatial memory in individuals 

with DS (Yang et al., 2014; Lavenex et al., 2015).  

By this observation we do not intend to assume that the visuospatial 

impairments in mice and humans with DS would be fully 

equivalent. In fact, cross-species differences may involve still 

unknown particularities in the way spatial information is processed 

and which could be differently affected by aneuploidy. This 

discussion highlights the importance of the sensitivity of the 

behavioral and neuropsychological methods used in preclinical and 

clinical populations and how different approaches in their design 

could lead to divergent conclusions about the nature of intellectual 

disabilities. 

5.1.2 Cognitive improvements derived from combined 

EE-EGCG treatment on mice and humans with DS 

We have to take into account the previous discussion on the 

experimental tools when comparing the effects of the treatments in 

mice and humans. The results from mouse studies showed that 

combined EE-EGCG improved spatial learning in the MWM, and 

long-term contextual memory in the step-down “passive” avoidance 

test (PAT), both being cognitive functions contributed by the 

hippocampus. Even though a direct comparison to humans has to be 

taken with caution, these results are consistent with those obtained 

in the clinical trial showing that both EGCG alone, and combined 

cognitive training with EGCG specifically improved visual episodic 

memory (pattern recognition memory-immediate recall, PRM, 

CANTAB), which depends on hippocampus but also the 

surrounding entorhinal, perirhinal, and parahippocampal cortices. 

Moreover, the combined EE-EGCG therapy improved cognitive 

flexibility (reversal learning) observed in young adult Ts65Dn mice, 

which is in line with the improvements in executive function in 

humans that received cognitive training and EGCG treatment, as 

shown by the “cats and dogs” inhibitory control test. 
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Interestingly, in the phase I clinical trial, the cognitive effects of 

EGCG were temporary but, on the phase II clinical trial, the 

improvements on memory and executive function by the combined 

cognitive training and EGCG lasted longer and persisted after 

treatment discontinuation. In the preclinical studies, we did not 

examine the duration of the treatments effects at the behavioral and 

cellular levels or whether they persisted after intervention 

withdrawal. Noteworthy, while the length of the treatment in 

preclinical studies was 1 month (which accounts as a relatively 

chronic/ long-term treatment considering the mouse lifespan), in the 

phase I study the length of EGCG treatment was only 3 months 

whereas in the phase II clinical trial the combined treatment lasted 

13 months (accounting as short-term interventions). The fact that 

the effects of the combined treatment (and not EGCG alone) 

persisted after discontinuation suggests that the combined treatment 

could have intrinsically different effects, potentially translating 

transient changes into more long-lasting structural modifications 

and thus persist over time.  In fact both the preclinical histology and 

the clinical fMRI studies suggest structural plasticity related 

changes that in humans were long-lasting.  

 Finally, the determination of the most appropriate age for treatment 

administration and the most suitable treatment length is a very 

relevant aspect that could be advised by preclinical studies. In fact, 

qualitative comparison between the preclinical studies in young (2-3 

months) and middle-age (6-7 months) mice suggest that the effects 

of the combined EE-EGCG treatment were more robust in middle-

age mice (see Chapter I: Unpublished Observations).  

However, our preclinical and the clinical studies presented subtle 

differences in the age of mice and humans. The age of the 

volunteers with DS that participated in the clinical trials (14-30 

years old) corresponded to an intermediate stage between the 

groups of mice of the preclinical studies (2-3 and 6-7 months old) 

considering the approximation by Flurkey and colleagues (2007) 

(Fig. 11) (De la Torre et al., 2016).  
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Fig 11. Representative age ranges for mature life history stages in C57BL/6J 

mice; comparison to human beings. (Adapted from Flurkey, 2007) 

Thus, unfortunately, these issues still remain to be defined. 

Considering the substantial evidence that the cognitive profile in 

individuals with DS evolves across the lifespan, with periods of 

developmental delay and cognitive decline, these aspects will 

possibly be of crucial importance for the achievement of the 

maximum effectiveness of the treatment and will be essential for the 

potential standardization of combined cognitive training with 

EGCG as a therapy for DS. The expectation is that the best 

timeframe to start a neuroplasticity-targeted treatment is the earliest 

possible, since at earlier stages of life, neuroplasticity potential is at 

a higher peak enabling maximum effects of therapy (Bartesaghi et 

al., 2015; Stagni et al., 2015). 
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5.1.3 Neuro-structural and functional correlates of 

cognitive improvements derived from the treatment in 

mice and humans with DS 

The pattern of findings of brain dysfunction in DS is suggestive of 

compromised development and function in late-developing systems. 

The prefrontal cortex, hippocampus and cerebellum are regions 

with relatively protracted neural development, including post-natal 

generation of neurons and synapses, and myelination of the tracts 

connecting these regions and the rest of the brain persisting into 

later childhood and early adulthood. Recent evidence suggests that 

there may be dissociations in the developmental trajectory of 

functional subregions within these structures as well, and that the 

later developing components are again at greatest risk. Why having 

an extra copy of Hsa21 differentially affects late-developing 

structures remains unclear, but the pattern of differences in brain 

structure and function observed in these regions seems relatively 

well established in both humans and mouse models, and would 

possibly be a relevant target for therapy.  

 

The phase II clinical trial showed that the cognitive improvement 

associated to the combined cognitive training and EGCG was at 

least partially mediated by an increase in connectivity in the frontal, 

somatosensory, and occipito-temporal cortices, as shown by a 

marked enhancement in the functional integration of distributed 

networks in these cortical and subcortical regions, through resting 

state functional MRI (fMRI). This is in line with the results at the 

neuro-morphological level from young Ts65Dn mice studies 

showing that EE-EGCG treatment induced a partial recovery in 

structural neuroplasticity, as shown by an increment in dendritic 

spine density at CA1 region, but not in DG, in the hippocampus. 

Even being local, it could be speculated that the region-dependent 

structural neuroplasticity changes detected in the preclinical studies 

may have consequences in the functionality of more global neuronal 
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networks, as shown in the large-scale results from the clinical 

studies. Some of the mechanisms that may underlie the observed 

neuroplasticity changes induced by the combined treatment both in 

humans and mice include increases in BDNF expression (Young et 

al., 1999; Li et al., 2009a, 2009b), increased phosphorylation of 

CREB and Akt (Jia et al., 2013; Ramírez-Rodríguez et al., 2014; 

Ortiz-López et al., 2016) and also a reduction of Dyrk1A kinase 

activity (Bain et al., 2003; Golabek et al., 2011; Pons-Espinal et al., 

2013). However, further studies will be needed to elucidate the 

exact signaling pathways responsible for the effects of the 

combined treatment. 

On the other hand, in the clinical trial we detected intracortical 

facilitation by transcranial magnetic stimulation (TMS) in our DS 

population. This increased facilitation is in agreement with previous 

findings showing higher frequency of seizures and epilepsy in DS 

population (Menéndez, 2005; De Simone et al., 2010), suggesting 

an overall hyperexcitability. However, it is difficult to reconcile 

with previous results from Ts65Dn mice that have suggested over-

inhibition in hippocampal circuitry as shown by reductions in the 

number of asymmetric (excitatory) synapses along with 

enlargement of symmetric (inhibitory) synaptic active zones in 

cortex and hippocampus (Kurt et al., 2000, 2004; Belichenko et al., 

2009), increased immunoreactivity of inhibitory synaptic proteins 

(Belichenko et al., 2009), increment of inhibitory inputs onto spine 

necks (Belichenko et al., 2007), decrease in LTP which is revered 

by GABAA and GABAB receptors antagonists (Kleschevnikov et al., 

2004, 2012; Martinez-Cue et al., 2013). In fact, our results from 

young Ts65Dn mice showed an increment in the density with a 

reduction in the size of excitatory (Vglut1) puncta while inhibitory 

(Vgat) puncta remained the same or was increased in size in 

hippocampal DG and in CA1 regions, likely affecting probability of 

neurotransmitters release. Interestingly, a recent work by Deidda 

and colleagues (2015) found that GABAA receptor signaling exerted 

excitatory rather than inhibitory function in adult Ts65Dn 

hippocampus and neocortex, suggesting that GABA 
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neurotransmitter may induce neuronal depolarization. This shift in 

neurotransmitter effects could account for synaptic plasticity 

defects, including a lower threshold for action-potential generation 

that contribute to cognitive impairment in DS.  

Of course these data in mouse and human cannot be directly 

compared since in humans the hyperexcitability is detected at the 

medial temporal and motor cortices, the mouse studies are directed 

to the hippocampal areas. It may well be that different regions could 

have differential excitation-inhibition disbalance or that species 

differences account for the observed discrepancies. 

Interestingly, the combined EE-EGCG treatment induced a 

restoration of the excitatory and inhibitory balance in both mice and 

humans. In mice, EE-EGCG treatment normalized the density and 

size of excitatory (Vglut1) puncta in DG and in CA1 regions. This 

is in agreement with previous data showing that EE and EGCG 

alone can partially restore excitation/inhibition imbalance in the 

cortex and the hippocampus of Ts65Dn mice, either by reversing 

the decreased expression levels of glutamatergic markers and the 

increased expression levels of GABAergic markers (Souchet et al., 

2015) or by reducing GABAergic release (Begenisic et al., 2011). 

In our clinical trial, the combined treatment promoted normalization 

in the hyperexcitability of the motor cortex after 12 months of 

treatment. 

The restoration of excitation-inhibition imbalance by the EE-EGCG 

treatment may be mediated partially by the reduction of Dyrk1A 

kinase activity, since it has been previously reported that Dyrk1A 

overexpression contributes to the excitation-inhibition imbalance by 

regulating NMDA receptors through phosphorylation of GluN2A 

subunit (Grau et al., 2014), disrupting NMDAR-mediated LTP and 

increasing pyramidal neurons spine density in prefrontal cortex 

(Thomazeau et al., 2014), increasing the number and signal 

intensity of GAD67 positive hippocampal neurons (Souchet et al., 

2014), and reducing inhibitory-inhibitory contacts circuits leading 

to increased inhibition in prefrontal cortex (Ruiz-Mejias et al., 
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2016). However, other mechanisms could not be discarded 

considering the pleiotropic effects of both EE and EGCG. 

Additionally, EE-EGCG treatments showed a cognitive 

improvement in middle-age Ts65Dn mice accompanied by a 

moderate neuroprotective (although not statistically significant) 

effect on basal forebrain cholinergic neurodegeneration which 

suggests that combined therapy with CT and EGCG could 

contribute also be beneficial in older DS individuals that present 

age-associated Alzheimer disease (AD)-like cognitive decline.  

Collectively, the work presented here supports the possibility that 

intellectual disability in Down syndrome can be ameliorated by 

multimodal interventions, still when administered in adulthood, and 

specifically that a combined therapy consisting of cognitive 

stimulation and EGCG is able to modulate several altered systems, 

improving cognitive, structural and functional brain parameters both 

in mouse models and people with DS.  

5.2 Clinical studies: learned lessons  

There are some aspects that need to be considered in the context of 

the clinical trials presented here and also for future clinical trials 

that attempt to explore the effects of novel therapies for intellectual 

disability in DS. Since this has been the first clinical trial performed 

in a randomized double-blind placebo controlled manner, we faced 

important challenges: 1/ even though we knew that our treatment 

targeted neuroplasticity, and thus, the pediatric population would 

have been the best for an efficacy study, the trial had to be first 

performed in young adults, a period with limited plasticity. 2/ There 

is no reference treatment in Down syndrome. 3/ There are no 

reference (normative) values for some explorations (neuroimaging, 

neurophysiology). 4/ We had to define “treatment efficacy”: does it 

mean increases in IQ?  Does it mean cognitive changes that 

translate into functional changes? Those aspect were not previously 

defined and thus our study had to provide a framework for 

advancing the field. 
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A very important issue that we encountered is the sensitivity of the 

neuropsychological assessment tools to evaluate the impact of 

treatments on cognitive and functional abilities in DS individuals. 

Since the individuals with DS present a highly heterogeneous range 

of severity in the impaired cognitive domains, it is still a great 

challenge to develop a methodological tool sensitive enough to be 

able to evaluate subtle cognitive functioning changes. Additionally, 

despite that the trajectory of cognitive decline followed by DS is 

very similar to the one in AD, current neuropsychological 

evaluation tools still lack the power to accurately detect cognitive 

decline and dementia in DS population due also to the highly 

variable pre-existing intellectual disabilities. Accordingly, current 

methods also have limitations to address the potential effects of 

therapies aimed at the prevention of age-dependent cognitive 

decline. Considering that in DS individuals, some aspects such as 

morpho-syntax, allocentric visuospatial memory, and explicit long-

term memory, are more affected than others (like visual-spatial 

short term memory, associative learning, and implicit long term 

memory) (Lott and Dierssen, 2010), the optimal neuropsychological 

assessment methods should take into account the baseline 

variability in the capacities across cognitive domains. Besides they 

should consider the different factors that could modulate the 

cognitive enhancing effects of a certain treatment, such as basal 

intellectual quotient, age, gender, socio-cultural background, 

lifestyle factors like diet and exercise, etc.  

In the clinical studies presented here, the TESDAD battery, a 

customized neuropsychological assessment tool suitable for clinical 

trials, was developed and used to address the effects of the 

treatments. It compares individual's performance with typically 

developed controls in order to define the gap among them, which is 

the target of the intervention. The analysis of the data provided by 

the TESDAD battery was designed to address the different factors 

that could modulate the cognitive effects of the treatments. 

However, there are still limitations that the method could not 
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overcome like the phenotypic variability in the DS population and 

the potential practice effect (test-retest) across the longitudinal 

study. Another aspect that represents a drawback is the use of 

parent/caregiver-proxy measures for obtaining relevant information 

about the individual's quality of life and adaptive functionality. 

These measures, although valuable, are based on subjective 

perceptions and thus could be biased, potentially having 

consequences on the final clinical trial outcomes.  

Regarding the use of EGCG as a co-adjuvant nutraceutical 

intervention for DS, despite that previous (in vitro and in vivo) 

studies and also the clinical studies presented here, have shown its 

safety and tolerability (Isbrucker et al., 2006; De la Torre et al., 

2014; 2016), the pharmacology data still awaits. Indeed, a full 

characterization of EGCG half-life still remains to be done which 

will be relevant to better understand EGCG metabolism and 

therapeutic mechanisms.  

In relation with this subject we detected that cognitive training and 

EGCG induced an increase in plasma levels of homocysteine that 

vanished after 6 months of treatment discontinuation, suggesting 

that the treatment modulates DYRK1A activity. However we are 

aware that the composition of green tea compounds, and especially 

the concentration of EGCG content, can slightly vary in the 

commercial supplements used in the clinical trials presented here, 

which may represent an issue for future replication studies. On the 

other hand, available data from a case study suggests that the 

application of EGCG in combination with other supplements, such 

as Omega 3 fatty acids, could also have beneficial effects (Vacca 

and Valenti, 2015), opening new potential research opportunities. 

Accordingly, we have advised in the development of a compound 

that can overcome the dosification difficulties while also improving 

the organoleptic properties, such as purified EGCG in the form of a 

milkshake with polyunsaturated fatty acids. Certainly, further 

studies using purified EGCG compounds, will be an important next 

step in translating their employment into the clinical practice. 
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5.3 Environmental enrichment (EE) in mice and 

cognitive training (CT) in humans: similarities 

and limitations 

The environmental enrichment paradigm, providing a complex 

combination of social, cognitive, and physical stimulation, has been 

extensively used for the study of experience-dependent 

neuroplasticity in rodents (Rosenzweig and Bennett, 1969; 

Kempermann et al., 1997; Nithianantharajah and Hannan, 2006; 

Sale et al., 2014). Many studies have shown that EE enhances 

learning and memory through the induction of biochemical, 

morphological and functional changes in the adult brain. However, 

some authors have argued that experimental environmental 

enrichment promotes simply a normalization of the natural 

stimulatory conditions in wildlife, which are generally lacking in 

the environmentally impoverished standard laboratory settings 

(Cummins et al., 1977; Praag et al., 2000). In the preclinical studies 

presented here, control groups with standard housing were not in 

isolation, but in groups of 2-3 mice. Nevertheless, it could be 

claimed that they were environmentally impoverished as they had 

no stimulatory input apart from food and water and a few cage-

mates. Therefore, we need to be cautious in the interpretation of our 

results as we are comparing extreme conditions that are not 

completely equivalent to real world conditions with humans. Most 

likely, the optimal degree of environmental enrichment for both 

mice and humans will achieve an equilibrium of social and 

sensorimotor stimulation, otherwise deviations would probably 

affect the organism either through impoverishment or stress.  

It has been proposed that the physical exercise component of EE 

alone, can elicit many of the changes induced by full EE, such as 

increases in hippocampal neurogenesis, spine density, synaptic 

plasticity, neurotrophin levels, and spatial memory function in mice 

(van Praag, 2008; Voss et al., 2013). In fact, Llorens-Martín et al.  

(2010) showed that long-term running in 10–12 months old Ts65Dn 

male mice improved performance in the MWM, without rescuing 

altered hippocampal neurogenesis. Additionally, Kida et al. (2013) 
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found that long-term running starting after weaning and at 

adulthood has beneficial effects on both cognition and motor skills 

in Ts65Dn females accompanied by changes in the expression 

levels of some proteins in the brain. In post-weaning runner Ts65Dn 

mice, SOD1 levels were increased and total APP levels were 

decreased, while adult runner Ts65Dn mice showed moderately 

lower levels of α-cleaved C-terminal fragment of APP. However, 

they detected no changes on Dyrk1A expression upon running. 

Given that full EE with social, cognitive and sensorimotor 

components has shown to regulate the expression and kinase 

activity of Dyrk1A (Golabek et al., 2011, Pons-Espinal et al., 2013), 

it appears that these combined components of EE are intrinsically 

different than physical exercise alone, they may play a relevant role 

in the effects on Dyrk1A, and thus likely in neuroplasticity and 

cognition in Ts65Dn mice.  

In the context of human research, we cannot control the whole 

environment of individuals, and thus the most equivalent 

experimental setting of EE in mouse is a CT intervention. In this 

field, over the last decades, a growing number of non-

pharmacological recommendations and interventions aimed at 

modifying brain function, sharpen cognitive skills and improving 

mental capacities both for healthy individuals and for people with 

cognitive impairment, have emerged. They range from physical 

exercise to computerized CT by electronic games, devices and 

applications, such as the online exercise platform (Feskits) that was 

used in the phase II clinical trial presented in this Thesis.  

In the recent years computerized CT programs have been targeted to 

diverse cognitive capabilities such as memory (Mahncke et al., 

2006; Schmiedek et al., 2010; Zelinski et al., 2011; Clemenson and 

Stark, 2015), attention (Smith et al., 2009), executive function, and 

processing speed (Nouchi et al., 2012; Subramaniam et al., 2012), 

especially in elderly people, but recently working memory has 

gained particular attention since it strongly correlates with global 

intelligence and thus its improvements could be translated into 

augmentation in general cognitive capacities also in young people 
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(Jaeggi et al., 2008; Borella et al., 2010). From a biological 

perspective CT could be compared to some extent to cognitive 

demanding environments or everyday experience, since both 

stimulate activity-dependent neuroplasticity through learning and 

practice and are expected to improve cognitive abilities. However, 

despite the fact that numerous studies have reported benefits from 

CT in healthy and aging populations (for a review Kueider et al., 

2012; for meta-analysis Karbach and Verhaeghen, 2014; Au et al., 

2015), there are still some inconclusive evidence about their 

effectiveness (Owen et al., 2010; Redick et al., 2013; Melby-Lervåg 

and Hulme, 2016). One of the main issues of CT refers to the 

concept of “distance transfer”, which is related to the degree of 

transferability of the learnt skills into meaningful, real-world 

increase in cognitive capabilities (Noack et al., 2014). In fact, due to 

the growing number of companies and advertisements offering CT 

“brain games” to promote intellectual improvements and prevention 

of cognitive decline to the general public, a group of cognitive 

psychologists and neuroscientists from the Stanford Center for 

Longevity and Berlin Max Planck Institute for Human Development 

recently published a consensus letter warning that there is a lack of 

conclusive research showing effectiveness of this type of 

interventions (http://longevity3.stanford.edu/blog/2014/10/15/the-

consensus-on-the-brain-training-industry-from-the-scientific-

community/). The authors claim that many popular computerized 

training programs only induce a gain in the trained task with limited 

skill transfer to real life activities due to a strategy-based training as 

opposed to a “core” CT (Morrison and Chein, 2011).  

This emphasizes the relevance of the fact that, in the phase II 

clinical trial presented here, the combined treatment with CT and 

EGCG showed significant effects in the outcome measures of 

adaptive functionality and quality of life, as reported by the parents 

and caregivers of the individuals with DS. This measures may not 

accurately reflect global cognitive functioning as intellectual 

quotient (IQ) but would represent a valuable proxy of transferability 

http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-on-the-brain-training-industry-from-the-scientific-community/
http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-on-the-brain-training-industry-from-the-scientific-community/
http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-on-the-brain-training-industry-from-the-scientific-community/
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of learnt skills to real life situations as opposed to a mere 

improvement in the performance of exercises provided by Feskits. 

In this regard, whether cognitive training programs have the same 

(or different) effects on healthy people than in individuals with 

intellectual disability, still remains an open question since different 

studies have shown promising results (Van der Molen et al., 2010; 

Söderqvist et al., 2012; Ottersen and Grill, 2015). However, in the 

phase II clinical trial presented here, the group with cognitive 

training and placebo showed no significant positive cognitive or 

functional effects suggesting that it was the interaction between the 

cognitive training and EGCG, which promoted synergistic effects 

that lead to cognitive improvements. 

In the attempt to make the maximum efficiency in a potential 

combined therapy of CT with EGCG, there are still some aspects, 

regarding the best CT program that could be optimized. For 

example there is no criteria to define the best type of cognitive 

exercises regime regarding the cognitive domains of the tasks, the 

frequency and the length of the sessions to ensure full potential 

beneficial effects. Furthermore, as DS individuals present a high 

variability in the severity of the symptoms, the best CT would 

possibly be implemented as a personalized intervention specifically 

tailored according to individual skills strengths and needs but 

current methods are still not sufficiently adapted to each person.  

Additionally, it is still an open question whether it would be more 

beneficial to include physical exercise as part of the cognitive 

enhancing intervention in DS. Although physical exercise programs 

have shown some improvements in working performance variables 

in individuals with DS, so far cognitive improvement has not been 

demonstrated as a result of physical exercise in this population 

(Andriolo et al., 2010; Shields et al., 2010). 
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5.4 Future perspectives on evidence-based 
clinical translational research in Neuroscience 

During the last decades, the field of Neuroscience has undergone a 

period of explosive growth in the development of major technical 

and conceptual breakthroughs in Genetics, and Cellular and 

Molecular Neurobiology that have led to the progress of 

Neuroscience basic knowledge (Insel and Landis, 2013). However, 

the extraordinary progress in basic Neuroscience over the past 

decades does not reflect a proportional progress in clinical research 

and clinical care for people with brain disorders associated to 

cognitive impairment such as DS. In fact, many neurological 

disorders including intellectual disability and neurodegenerative 

diseases among others, still have not met efficient therapeutic 

interventions (Insel and Landis, 2013; Pankevich et al., 2014). Basic 

Neuroscience has proposed several new molecular targets that have 

become the basis of new therapies, like the one of the focus of this 

Thesis project. Nevertheless, to fully understand and optimally treat 

these brain disorders and especially neurodevelopmental disorders 

like DS, we still need a deeper knowledge of how the genetic 

alterations perturb the brain. This knowledge will be achieved by 

the use of new technical methods and strategies in the clinical 

translational process.  

So far, the use of mouse models has brought significant information 

although sometimes spatially and temporally fragmented. Even if 

mouse models of disease have represented a critically valuable tool 

in the study of the pathophysiology of brain disorders, there are a 

number of species-associated neural and cognitive differences that 

could be obstacles in the way to clinical translation (Ericsson et al., 

n.d.; Insel, 2007). Accordingly, modern Neuroscience is evolving to 

the use of other approaches that can complement or add new types 

of brain information. These approaches include the use of 

computational neuroscience in silico models of brain function 

(Kotaleski and Blackwell, 2010; Deco et al., 2015; Markram et al., 

2015), tools for more precise monitoring and manipulation of 
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neuronal networks in awake behaving animals (Harris and Thiele, 

2011; Boyden, 2015; Hamel et al., 2015; Yuste, 2015), techniques 

for the structural and molecular examination of intact biological 

systems (Chung et al., 2013) and methods for the analysis of single 

cells within a population (Usoskin et al., 2014; Henikoff, 2015; 

Tasic et al., 2016). Furthermore, some authors have claimed that 

nowadays humans are the best model organism (Brenner, 2003) 

since current progress in technologies, enhanced by the BRAIN 

Initiative in the U.S. and  Human Brain Project in Europe, enables 

to directly study human samples or subjects preventing the cross-

species bridge. New cell reprogramming techniques, such as 

induced pluripotent stem (iPS) cells from fibroblasts, allows the use 

of human cellular models as platforms for screening potential 

mechanisms and therapies for specific brain disorders (Yu et al., 

2013). Additionally, neuroimaging and neurophysiology techniques 

such as functional and structural Magnetic Resonance Imaging 

(MRI), Diffusion Tensor Imaging (DTI) Transcranial Magnetic 

Stimulation (TMS) are gaining more resolution and giving insights 

into brain circuits’ organization and function (Deco and 

Kringelbach, 2014; Fritz, 2014; Fornito et al., 2015). On the other 

hand, the assessment of patients during ongoing translational 

clinical trials will soon be optimized and enhanced by wearable 

monitoring devices that will provide data that may be useful to 

understand the clinical outcomes and the factors underlying inter-

subject response variability.  

Future Neuroscience thus holds the promise of a more integrative 

perspective, able to encompass data from different levels of analysis 

to provide a more global and solid picture of brain structure and 

function. Most likely, the future approach in translational 

neuroscience research will integrate human, animal and in silico 

data (Stam, 2014; Ritchie et al., 2015) in an interactive process with 

feedback loops within and across levels, and will be more efficient 

and productive on the route towards the development of therapies 

for brain disorders.  
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6. CONCLUSIONS 

1. Combined treatment with EE and EGCG ameliorates 

hippocampal-dependent spatial learning and cognitive 

flexibility deficits in young adult Ts65Dn mice.  

 

2. The cognitive improvement in young Ts65Dn mice is 

accompanied by a mitigation of structural hippocampal 

alterations, as shown by an increase in dendritic spine 

density in CA1, and a restoration of the balance between 

excitatory and inhibitory synaptic puncta in CA1 and DG. 

 

3. In young WT mice the combined treatment with EE and 

EGCG did not affect spatial learning but reduced dendritic 

spine density, and induced an imbalance between excitatory 

and inhibitory synaptic puncta in CA1 and DG. 

 

4. Combined treatment with EE and EGCG is more efficient 

than EE or EGCG alone to improve hippocampal-dependent 

spatial learning in middle-age Ts65Dn mice. 

 

5. Both EE alone and combined treatment with EE and EGCG 

improve long-term associative memory in middle-age 

Ts65Dn and WT mice. 

 

6. The cognitive improvement in middle-age Ts65Dn mice is 

accompanied by a moderate effect on medial septum 

cholinergic neurons from the basal forebrain.  

 

7. Short-term treatment with EGCG in young adult individuals 

with DS is safe and induces transient improvement in 

memory and quality of life. 

  

8. Longer-term combined treatment with CT and EGCG in 

young adult individuals with DS is more efficient than CT 
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alone to ameliorate cognitive function, functional 

adaptability and quality of life, having persisting effects 

after treatment discontinuation. 

 

9. The cognitive improvements by the combined treatment 

with CT and EGCG in young adult individuals with DS is 

accompanied by increases in functional connectivity and a 

normalization of cortical excitability shown by fMRI and 

TMS measures.   
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