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Abstract 
 
RNA splicing is the process of removal of introns from pre-mRNAs. It 

is carried out by the spliceosome, composed of five small nuclear 

ribonucleoproteins (snRNPs). Several small molecules with antitumor 

properties target SF3B1, a U2 snRNP component frequently mutated in 

cancer that helps U2 snRNP recruitment to Branch Point (BP) 

sequences required for splicing catalysis. 

Together with collaborators from the University of Barcelona, we 

describe a new drug variant with improved splicing inhibitory and 

antiproliferative activities, as well as the novel concept of drug-antisense 

oligonucleotide conjugates. 

We report that 3' splice site sensitivity to drugs is finely tuned by other 

BP and BP-like sequences 5' of the BP and by the strength of the 

polypyrimidine tract 3' of the BP.  

We also show that different drug variants display both similarities and 

differences in alternative splicing modulation. 

Collectively, our results reveal substantial plasticity in the effects of U2 

snRNP-targeting drugs in alternative splicing. 
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Resumen 
 
ARN splicing consiste en la eliminación de intrones de moléculas de 

pre-mARN. Es llevado a cabo por el spliceosoma, compuesto por cinco 

ribonucleoproteínas nucleares pequeñas (snRNPs). Varios compuestos 

con propiedades antitumorales tienen como diana SF3B1, un 

componente de U2 snRNP frecuentemente mutado en cáncer que 

ayuda al reclutamiento de U2 snRNP a secuencias branch point (BP) 

necesarias para la catálisis. 

Junto a colaboradores de la Universidad de Barcelona, describimos una 

nueva variante de estos compuestos con mayor actividad de inhibición 

de splicing y anti-proliferativa, así como el nuevo concepto de  

conjugados fármaco-oligonucleótido. 

Observamos que la sensibilidad de los sitios 3' de splicing a estos 

compuestos está moduladas por la presencia de otras secuencias 

similares a BP situadas 5' del BP, así como por la fortaleza del tramo de 

polipirimidina situado 3' del BP.  

También mostramos que diferentes variantes de compuestos tienen 

actividades similares y diferentes en la modulación de distintos eventos 

de splicing alternativo. 

En conjunto, nuestros resultados revelan un elevado grado de 

plasticidad en los efectos sobre splicing alternativo de compuestos que 

tienen como diana U2 snRNP. 
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Preface 
 
The activity of the splicing machinery can confer therapeutic 

vulnerability to some types of cancer (Hsu et al., 2015) and splicing 

inhibitors displaying antitumor properties are emerging as a potential 

new class of therapeutics for cancer (Bonnal et al., 2012). In addition, 

new cancer-related mutations within splicing factors are increasingly 

found. Thus, the investigation of the spliceosome’s role in cancer 

development and associated therapeutic opportunities is experiencing a 

boost in recent years. Not only clinical research in the field is greatly 

expanding, but also basic studies are needed to understand the 

mechanistic consequences of splicing modulation by splicing-targeting 

drugs and to identify the cause of their selective cytotoxicity for cancer 

cells and even for sub-classes of cancer cells. 

The work of this thesis aimed at the generation of new drug variants to 

test their structural requirements and improve their activities and at the 

possibility of gaining improved specificity by conjugating them with 

antisense oligonucleotides. Our studies also investigated the reasons 

why different transcripts display higher or lower sensitivity to the 

splicing inhibitory effects of the drugs, as well as the differences in 

alternative splicing regulation induced by two related compounds. 

Our results can contribute to the rational design of splicing regulatory 

molecules with improved activity and specificity. 
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Introduction 
 

1. RNA Splicing 

 

1.1. Central dogma of biology and RNA splicing 

Gene regulation at a first glance 

 

The information to build an organism is stored in the inheritable 

genetic material, typically DNA: linear sequences of four different 

nucleotides drive the synthesis of proteins, the cell’s functional 

elements. Nevertheless, an intermediate molecule is necessary in the 

flow of information from DNA to proteins: the RNA. This principle 

is known as the central dogma of biology: DNA sequences are 

transcribed into RNA sequences that are finally translated into 

proteins, which exert key structural and enzymatic functions within 

cells and organisms (Crick, 1970). Although research of the last 60 

years has added many more details that add complexity to it, the flow 

“DNA  RNA  protein” is still the fundament of molecular 

biology.  

The process by which RNA is copied from one of the two DNA 

strands is called transcription (and for this reason transcribed RNA 

molecules are also called transcripts). RNA polymerases are the 

enzymes dedicated to transcribe the DNA. On the other hand, 

translation is the process of converting the information from 

“messenger” RNA molecules into proteins. Ribosomes are the 
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ribonucleoprotein complexes (i.e. complexes of nuclear proteins and 

RNA molecules) running this cellular function.  

The genome is the complete set of genetic material of an organism. It 

consists of DNA comprising genes that carry the information to make 

different proteins and intergenic regions, originally thought to be 

devoid of functional elements but today recognized as essential for 

regulating gene expression as well as for generating transcripts that are 

not being translated into proteins. 

The information is subject to several modifications at each step of the 

flow. Indeed, eukaryotic genes encompass coding and non-coding 

sequences (i.e. sequences that will or will not be translated into 

protein). Coding and non-coding sequences alternate in most of the 

genes and are known as exons and introns: while the first ones are 

present in mature messenger RNAs (mRNAs) that are translated into 

proteins, the second ones are only present in premature messenger 

RNAs (pre-mRNAs) and need to be removed to allow mRNA 

translation into proteins (Crick, 1979; Gilbert, 1978).  

The process by which introns are excised and exons joined together is 

known as pre-mRNA splicing. Splicing is one of the major steps of 

pre-mRNA processing. It takes place within the nucleus of every 

eukaryotic cell and it is carried out by the spliceosome, a very dynamic 

and complex ribonucleoparticle (Wahl et al., 2009).  

Decades of research have shown and keep expanding the fascinating 

functions that lie behind the need to remove parts of the primary 

transcripts. Although the origin of introns is still a matter of 

controversy (Irimia and Roy, 2014), several reasons can be put 
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forward for splicing to exist. Undoubtedly, the possibility of 

sophisticated regulation is one of the key advantages of this 

mechanism: for example, many noncoding RNAs with regulatory 

function, like snoRNAs or miRNAs (i.e. small nucleolar and micro 

RNAs) derive from removed introns (Hesselberth, 2013). 

A new intriguing class of RNAs, circular RNAs, can also be processed 

from intronic sequences and be associated to biologically relevant 

functions (Hesselberth, 2013; Lasda and Parker, 2014). Moreover, it 

has also been proposed that one of the advantages of RNA splicing is 

the defense from parasitic nucleic acids without optimal splicing 

signals that would lead to spliceosomes stalling and degradation 

(Madhani, 2013). 

 

1.2. Alternative splicing (AS) 

A further step within gene regulation 
 

In higher eukaryotes, entire exons or part of them can be included or 

not within the mature mRNAs, meaning that RNA splicing can occur 

in alternative ways: this mechanism is known as alternative splicing 

(Early et al., 1980) (Figure 1). As a consequence, different mature 

transcripts can be generated from the same gene. Eukaryotic genomes 

get a key advantage from this additional layer of gene regulation in the 

variety of proteins that can be produced from the same genome, 

greatly expanding its information content (Nilsen and Graveley, 

2010). Functional differences between proteins encoded by 

alternatively spliced transcripts (isoforms) include the presence or 
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absence of protein domains as well as unstructured polypeptide 

regions that are important for protein-protein interactions (Buljan et 

al., 2013; Ellis et al., 2012a; Yang et al., 2016). 

Nevertheless, in some cases alternative splicing does not cause a 

difference at the protein level, but rather different stability of the 

alternative transcripts. For instance, alternative splicing can be 

coupled to NMD (nonsense-mediated decay) such that transcripts 

with premature stop codons included in alternatively spliced RNAs 

are degraded after the first round of translation. In other cases, the 

functional difference between isoforms is dictated by differential 

binding of RNA-binding proteins (RBPs) that control other aspects of 

RNA metabolism, including mRNA stability or translation efficiency. 

Collectively, these examples illustrate that alternative splicing 

constitutes a complex and sophisticated step of gene regulation with a 

variety of implications for the cell's function (Braunschweig et al., 

2013).  

These include the different needs of cells belonging to distinct tissues 

or distinct stages of development: these needs not only require the 

activation or repression of different genes through transcription 

regulation, but also a different balance of RNA and protein isoforms, 

i.e. different transcripts or proteins generated from the same gene 

(Kalsotra and Cooper, 2011; Ye and Blelloch, 2014). Indeed, even if 

all the cells of a complex organism share the same genome, their 

transcriptome and proteome can be substantially different, and this 

variation is contributed by both transcriptional and post-

transcriptional mechanisms. 
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Alternative splicing seems to have played a key role during evolution. 

As an example, even if human and C. elegans worms genomes have 

quite similar numbers of genes (around 20’000), the higher human 

complexity can be partially attributed to the increased incidence of 

alternative splicing (Nilsen and Graveley, 2010). Indeed, more than 

95% of human genes can undergo alternative splicing (Pan et al., 

2008; Wang et al., 2008) (Figure 1). 

 

Figure 1. Types of alternative splicing. Splicing of a region is considered 
constitutive when it follows the same pattern in every cell: introns that are 
always spliced and exons that are always included in the mature transcripts 
are therefore known as constitutive. In contrast, alternative splicing 
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originates from the possibility of generating different splicing variants: 
alternative splice sites can be used (both 5’ and 3’), exons can be skipped 
(and the events are named either cassette exon or exon skipping events), 
introns can be retained in the mature transcripts or exons can be mutually 
exclusive. Combinations of the different types of events are also possible, 
giving rise to complex events. Alternative splice sites that are only used in 
specific non-physiological conditions are often referred to as cryptic splice 
sites (adapted from Dvinge et al., 2016).  

 

1.3. Evolution of splicing  

From prokaryotic self-catalytic introns to a highly regulated mechanism 

conferring diversity among eukaryotes 

 

Although splicing was first described for viral sequences (Berget et al., 

1977; Chow et al., 1977), its complexity mainly developed during 

eukaryotic evolution. But where do introns come from? Spliceosomal 

introns (i.e. introns that are removed by the spliceosome machinery 

within the nucleus of eukaryotic cells) share high similarity with group 

II self-splicing introns (i.e. introns whose removal is catalyzed by the 

RNA molecule itself). While the first are exclusive for eukaryotic 

genomes, the second are found in bacteria, mitochondria and 

chloroplasts. Due to their extremely similar chemical steps, it is well 

accepted that spliceosomal introns evolved from self-splicing introns 

(Irimia and Roy, 2014). Indeed, comparisons of the detailed 

requirements for splicing catalysis revealed the highly similar 

arrangement of RNAs and magnesium ions at their catalytic cores 

(Papasaikas and Valcarcel, 2015; Robart et al., 2014; Yan et al., 2015). 

It has been proposed that eukaryotic introns actually originated 

concomitantly with the integration of mitochondria in eukaryotic cells 
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and their presence imposed the need for cellular 

compartmentalization to avoid translation of pre-mRNAs before 

intron removal. Thus, the nucleus may have originated to separate the 

slow process of pre-mRNA splicing from the very efficient translation 

process, avoiding cotranscriptional translation of precursor mRNAs 

(Martin and Koonin, 2006).  

Once "imported" into the eukaryotic system, splicing might have 

played a key role during evolution. Indeed, tissues diversity within an 

organism is largely due to different patterns of gene expression (in 

terms of the levels of transcripts coming from the same gene in each 

cell of the tissue, without considering different isoforms) and 

alternative splicing (i.e the level of expression of different splicing 

isoforms coming from the same gene). Interestingly, gene expression 

is much more conserved than alternative splicing when comparing 

transcriptomic profiles among the same organs from different 

organisms (Barbosa-Morais et al., 2012; Merkin et al., 2012). This 

observation highlights the fundamental role of alternative splicing for 

evolution and complexity. 

The most widespread usage of alternative splicing occurs in the brain 

tissue, with alternative isoforms more conserved across organisms in 

this organ (Raj and Blencowe, 2015). Microexons form a recently 

discovered class of brain-specific exons: they are shorter than 21 nt 

(while the medium size of conventional exons is around 150 nt), 

highly conserved and regulated in a switch-like manner (Irimia et al., 

2014). In addition, alternative isoforms of specific transcripts are 

finely regulated at the level of synapses, conferring plasticity to shape 

cell to cell connections within the brain (Raj and Blencowe, 2015). 
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Thus, the possibilities for regulation can be viewed as one of the keys 

to understand the reasons why evolution took advantage of the 

"intron invasion" to generate high complexity in gene expression and 

a fascinating variety of features among organisms. 

 

1.4. The spliceosome 

Components and structure of a dynamic regulatory tool 
 

Splicing catalysis occurs in two steps (Figure 2). First, the nucleotide 

at the 5' end of the intron is covalently bound through a 2’-5’ 

phosphodiester bond to the branch adenosine located within the 

branch point (BP) sequence, generating a free 5’ exon and a lariat 

intron (Padgett et al., 1984; Ruskin et al., 1984). In the second step, 

the free 5’ exon is ligated to the 3’ exon and the lariat is excised. Each 

step consists in a trans-esterification reaction involving the breaking 

and forming of phosphodiester bonds: one electron donor oxygen 

carries out a nucleophilic attack on a phosphate within the RNA 

backbone (Fica et al., 2013; Papasaikas and Valcarcel, 2016; Scotti and 

Swanson, 2016). 

 

Figure 2. The two steps of splicing catalysis. During the first step, the 
5’ss and branch adenosine are joined by a 2’-5’ nucleophilic attack, leading to 
the formation of a lariat structure and a free upstream exon. The second 
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step consists in the 3’-5’ nucleophilic bond between the free exon and the 
3’ss (adapted from Scotti et al., 2016). 

 
The molecular machinery responsible for RNA splicing is known as 

the spliceosome (Brody and Abelson, 1985; Grabowski et al., 1985). 

This is a very dynamic and complex group of non-coding RNAs and 

proteins with the unique feature of assembling on a step-wise manner 

on each intron prior to splicing. The splicing machinery is composed 

of five snRNPs (small nuclear ribonucleoproteins: U1, U2, U4, U5 

and U6 snRNPs), each one containing one specific RNA molecule 

(U1, U2, U4, U5 and U6 snRNAs because of their U-rich sequence) 

and several polypeptides, some of which (Sm core) are common to all 

spliceosomal snRNPs expect for U6, and other proteins are specific 

of each complex. The machinery can assemble on each intron through 

recognition of specific sequence signals: a GURAGU consensus at the 

intronic 5’ boundary (the 5’ splice site, or 5’ss) and three elements at 

the 3’ boundary (the 3’ splice site, or 3’ss): a branch point sequence 

(or BP, with a degenerated YUNAY consensus in higher eukaryotes, 

where Y= pyrimidine, N= A,G,C or U), a stretch of pyrimidines 

(polypyrimidine tract, or Py-tract) and an AG dinucleotide at the 3' 

end of each intron (Wahl et al., 2009) (Figure 3). 

In the first steps of spliceosome assembly, 5’ splice site sequences are 

recognized by U1 snRNP through base-pairing interactions involving 

the 5' end of U1 snRNA and the 5' ss sequence, while the proteins 

SF1, U2AF65 (or U2AF2) and U2AF35 (or U2AF1) recognize the BP 

sequence, the polypyrimidine tract and the AG dinucleotide, 

respectively. The cooperative binding of these proteins leads to the 

formation of the early spliceosomal complex E (Figure 3) and helps to 

recruit U2 snRNP at the level of the BP sequence (Papasaikas and 
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Valcarcel, 2016; Wahl et al., 2009). The regulation of the recruitment 

of U1 and U2 snRNPs is important for alternative splicing 

(Braunschweig et al., 2013; Scotti and Swanson, 2016). 

U2 snRNP assembly involves base-pairing interactions between the 

U2 snRNA component of the snRNP and nucleotides of the BP 

sequence (Parker et al., 1987). Once the U1 and U2 snRNPs have 

been recruited and SF1 is displaced, the complex A is formed (Figure 

3). Subsequently, the tri-snRNP (composed by the U4, U5 and U6 

snRNPs preassembled together) joins the complex, leading to B 

complex formation. When U1 and U4 snRNPs are destabilized and 

leave the complex, the activated B complex (Bact) is formed and gets 

catalytically activated (B*). The spliceosome reaches the C complex 

conformation after the first step (Figure 3) and the post-splicing P 

complex at the end of the whole reaction, before being finally 

disassembled (Papasaikas and Valcarcel, 2016; Wahl et al., 2009).  

With some possibilities of variation, these steps seem to operate for 

the removal of most eukaryotic introns. The complexity and dynamics 

of the spliceosome (among the most elaborate molecular machineries 

of the cell) open numerous possibilities for regulation at several levels 

during its assembly.  
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Figure 3 (previous page). Spliceosome assembly and catalysis of 
intron removal. Represented at the top is a typical precursor mRNA (pre-
mRNA) with intronic sequences (thin line) and exonic sequences (coloured 
boxes), with the consensus sequences at the intron 5’ and 3’ ends (Y 
represents pyrimidines, N represents any nucleotide and (n) represents an 
undefined number of pyrimidines). The BP adenosine is represented in bold. 
The splicing factors represented in the box assemble on the pre-mRNA in a 
sequential manner, forming the indicated complexes (E, A and B). 
Conformational rearrangements within the assembled spliceosome 
(complexes Bact and C) lead to splicing catalysis, generating a mature 
mRNA and releasing the intron in a lariat configuration. U2 small nuclear 
ribonucleoprotein (snRNP) binding involves base-pairing interactions 
between U2 small nuclear RNA (snRNA) and nucleotides flanking the BP, 
as well as contacts between the U2 snRNP proteins splicing factor 3B 
subunit 1 (SF3B1) and p14 and the pre-mRNA. BPRS, BP Recognition 
Sequence; SF1, splicing factor 1; ss, splice site; U2AF, U2 snRNP auxiliary 
factor. 

 

During spliceosome assembly, a large number of protein-protein, 

protein-RNA and RNA-RNA interactions are orchestrated to 

facilitate compositional and conformational rearrangements. 

Important changes occur in U2 snRNA (Figure 4). The latter ones 

(Figure 5) are coordinated by important helicases and are necessary to 

bring the 5’ss and the branch sequence close to each other for splicing 

catalysis (Matera and Wang, 2014; Patel and Steitz, 2003; Wahl et al., 

2009). The structure of the yeast catalytically activated spliceosome 

has recently been solved, elucidating the details of these interactions 

at the core of catalysis (Rauhut et al., 2016; Yan et al., 2016). 
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Figure 4. Secondary structure of U2 snRNA. The Sm-binding sites is 
shaded in light brown, the green box indicates interactions with the branch 
site and the blue box U2–U6 interactions. Stem-loop structures are indicated 
by roman numbers (adapted from Patel and Steitz, 2003). Stem-loops IIa 
and IIb and the BP recognition sequence undergo several remodelling steps 
during spliceosome assembly (Perriman and Ares, 2010; Perriman and Ares, 
2007). Base-pairing between the pre-mRNA BP and the BP recognition 
sequence of the U2 snRNA (BPRS) leads to the branch adenosine 
protrusion from the pre-mRNA (as shown in the box). 

 
 

 

Figure 5. Remodelling of RNA-RNA interactions during spliceosome 
assembly. During the stepwise spliceosome assembly, RNA-RNA 
interactions are precisely coordinated to create the catalytic centre. In the 
complex A (left panel), U1 and U2 snRNAs base-pair with the 5’ss and the 
BP region, respectively. In the B complex (mid panel), U5 snRNA binds to 
exonic sequences close to the 5’ss and U6 to the U2 snRNA. U4 has some 
regions of base-pairing with the U6 snRNA. Thanks to precise helicase 
activities, U4 and U6 binding is unwound, U4 and U1 leave the spliceosome 
and U6 extends its base-pairing with the U2 snRNA and contacts the 5’ss as 
well. This conformation corresponds to the catalytically active Bact 
spliceosome (right panel), in which the branch adenosine and the 5’ss are 
brought close to each other, ready for the nucleophilic attack (adapted from 
Matera and Wang, 2014).  

DÖNMEZ G et al. RNA 2004;10:1925-1933 

I IIa 

IIb 

III 

YNYUR Y  BP (5‘-3‘) 
| ||| |  
AUGAU G  BPRS (3‘-5‘) 

A 
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1.5. Regulation of alternative splicing 

The role of splicing factors, chromatin and transcription 

 

Alternative splicing can mainly manifest as exon skipping, intron 

retention, alternative 5' or 3' splice site usage and mutual exclusion of 

exons (Figure 1). These choices appear to be achieved through 

sophisticated regulation of the different steps of spliceosome 

assembly, especially in the early phases of intron recognition 

(Braunschweig et al., 2013). 

Specific exonic and intronic sequence elements act as enhancers or 

silencers, favouring or disfavouring spliceosome assembly on specific 

intron boundaries. They are known as ESE (exonic splicing 

enhancers), ESS (exonic splicing silencers), ISE (intronic splicing 

enhancers) and ISS (intronic splicing silencers) (Figure 6). Generally, 

their effect in cis (i.e. within the same molecule, on the transcript they 

belong to) is mediated through the binding of trans-acting splicing 

factors (i.e. acting in trans, on molecules others than their own). These 

proteins work as accessory splicing factors, not strictly required for 

spliceosome assembly and splicing catalysis and therefore they do not 

belong to the core splicing machinery (that is the set of essential 

spliceosomal components), but they can influence its binding to 

specific introns by synergistic or antagonistic interactions 

(Braunschweig et al., 2013; Scotti and Swanson, 2016; Wahl et al., 

2009). Given these combinatorial effects, the relative abundance of 

these regulators seems to be carefully controlled in different cell types; 

interestingly, alternative splicing is one of the ways in which splicing 

factors are regulated (Lareau and Brenner, 2015). 
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Figure 6. Representation of splicing silencers and enhancers. Thanks 
to the binding of mediator proteins, intronic splicing silencers and enhancers 
(ISE and ISS) can affect negatively or positively the binding of U2 or U1 
snRNPs. A similar role is played by exonic silencers or enhancers (ESS and 
ESE). hnRNP and SR protein families are the best known RNA binding 
proteins recognizing these regulatory elements and leading to alternative 
splicing modulation. Different regulatory sequences within the same region 
display combinatorial effects. Thus, the abundance of the regulators is also a 
critical parameter to determine the splicing outcome (adapted from Scotti et 
al., 2016). 

 
Current understanding of the role of primary sequences made it 

possible to predict, to a reasonable extent, broad tissue-specific or 

disease-related alternative splicing based on transcripts sequences and 

mutations affecting possible regulatory sequence motifs (Barash et al., 

2010; Rosenberg et al., 2015; Xiong et al., 2015).  

In addition to accessory splicing factors and regulatory sequences, the 

abundance of core spliceosomal proteins themselves can influence 

splicing and alternative splicing choices (Papasaikas et al., 2015; 

Saltzman et al., 2011; Wong et al., 2013). On the other hand, an 

important cross-talk with chromatin and transcription has been 

described (Iannone and Valcarcel, 2013; Kornblihtt et al., 2013). 

Indeed, although for a long time splicing has been considered -and it 

is still often classified as- a post-transcriptional mechanism of RNA 

processing, it is nowadays clear that most of splicing occurs 

cotranscriptionally, i.e. while RNA pol II is still transcribing the DNA 
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sequence into a pre-mRNA molecule (Beyer and Osheim, 1988; 

Nojima et al., 2015; Tilgner et al., 2012). The coupling of the two 

processes is so efficient that at least some introns can be spliced as 

soon as the 3’ splice site is transcribed (Carrillo Oesterreich et al., 

2016). Thus, it appears that there is a strong interplay between 

different layers of gene expression, with transcription kinetics, 

chromatin status and splicing choices influencing each other (Iannone 

and Valcarcel, 2013; Kornblihtt et al., 2013). In particular, it was 

shown in yeast that 3’ splice site recognition causes RNA pol II 

stalling at intronic 3’ ends, suggesting the existence of a checkpoint 

associated with cotranscriptional splicing (Alexander et al., 2010; 

Chathoth et al., 2014).  
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2. The spliceosome in disease and cancer 

 

2.1. Splicing and genetic disease 

Splicing defects are responsible for multiple genetic diseases 

 

Being splicing a key cellular mechanism, it seems likely that its 

alteration has pathological consequences. Indeed, several mutations 

leading to disease reside within regulatory sequences important for 

splicing, or within genes coding for splicing factors. In both cases, the 

resulting misregulation of a subset of transcripts will determine a 

specific molecular defect and pathological manifestation (Daguenet et 

al., 2015).  

One paradigmatic splicing-related disease is Spinal Muscular Atrophy 

(SMA), the leading genetic cause of infant mortality. This degenerative 

pathology is due to the loss-of-function of SMN1 gene, coding for 

SMN protein, which is critical for snRNPs assembly. The 

homologous SMN2 gene is not able to compensate for pathological 

mutations in SMN1 because a nucleotide difference within SMN2 

exon 7 induces skipping of this exon and leads to the production of a 

truncated and unstable version of the SMN protein (Lefebvre et al., 

1995; Lorson et al., 1999). It is still not clear why deficiency in this 

factor leads to a motor neuron-specific defect, but tissue-specificity is 

also associated to several other splicing-related diseases (Daguenet et 

al., 2015).  

Interestingly, two main therapeutic approaches are being developed 

for SMA, and they are paradigmatic to summarize the current tools 
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for alternative splicing modulation. On one side, antisense 

oligonucleotides complementary to specific SMN2 intronic silencer 

sequences are able to increase exon 7 inclusion and restore motor 

neuron function (Hua et al., 2010); on the other, small molecules have 

been found to have similar effects, with considerable specificity 

(Naryshkin et al., 2014; Palacino et al., 2015).  

Among other splicing-related diseases, Duchenne Muscular 

Dystrophy (DMD) is induced by frame-shift mutations within the 

dystrophin gene, generating truncated proteins that are not able to 

maintain the integrity of muscular fibers and giving rise to the 

pathological condition. Antisense oligonucleotides approaches have 

been used to induce skipping of specific exons, in order to restore the 

coding frame. Because of the repetitive domains present in the large 

dystrophin protein, in-frame deletions caused by exon skipping 

generate proteins that can provide at least partial function and 

therefore therapeutic effects (Kole et al., 2012). 

Finally, retinitis pigmentosa is a genetic disease consisting in 

progressive retina degeneration. It is caused by mutations within 

splicing factors genes, mainly PRPF8 (Scotti and Swanson, 2016). 

This is the largest and most conserved spliceosomal protein, which 

plays a key function during splicing catalysis (Daguenet et al., 2015; 

Papasaikas and Valcarcel, 2016; Wahl et al., 2009; Yan et al., 2015).  

The tissue-specific effects of splicing factor mutations are remarkable 

and still poorly understood. Even more striking is the fact the 

mutations within other spliceosomal components also cause 

pathological conditions restricted to specific but different organs. For 

example, SF3B4 mutations are associated to Nager syndrome, 
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characterized by craniofacial and limb malformations (Bernier et al., 

2012), while mutations in one of the mouse multicopy U2 snRNA 

genes lead to splicing alterations associated with ataxia and 

neurodegeneration (Jia et al., 2012). A deeper understanding of 

splicing-related diseases is one of the current challenges in the field.  

 

2.2. Alternative splicing and cancer 

Splicing isoforms are heavily altered in cancer 
 

Tumor cells often display an altered balance of alternative isoforms 

that play relevant roles in preventing apoptosis or promoting 

proliferation and invasion (David and Manley, 2010).  

FAS exon 6 skipping is among the most studied alternative splicing 

events. Full-length FAS (or CD95) is a membrane protein able to 

activate the apoptotic cascade when bound from the FAS ligand, 

FASL. Exon 6 skipping leads to the production of FAS short isoform, 

that is lacking the transmembrane domain and is secreted outside the 

cell, where it will be able to sequester FASL and therefore inhibit the 

apoptotic process (Figure 7). Several tumors switch FAS splicing 

towards the antiapoptotic isoform in order to escape apoptotic stimuli 

(Cheng et al., 1994). Recent high throughput screenings highlighted 

the dependence of this switch not only on splicing factors abundance 

but also on iron metabolism (Papasaikas et al., 2015; Tejedor et al., 

2015). 

Similarly, MCL1 (Myeloid Cell Leukemia 1) transcript also encodes an 

apoptosis regulator whose function depends on alternative splicing 
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choices. MCL1 belongs to the Bcl-2 class of proteins, which regulate 

apoptosis by controlling mitochondrial outer membrane 

permeabilization. MCL1 displays antiapoptotic functions through its 

full-length isoform, usually predominant in abundance. Skipping of 

exon 2 gives rise to a protein isoform that misses trans-membrane 

domain and Bcl-like domains BH1 and BH2, only keeping the BH3 

domain. This isoform exerts pro-apoptotic functions by losing 

interactions with MCL1 usual partners and sequestering the full-

length protein (Bae et al., 2000) (Figure 7). Due to the involvement of 

MCL1 in the cancer and drug resistance processes, high throughput 

screenings have been performed to study its alternative splicing 

regulation (Moore et al., 2010; Papasaikas et al., 2015).  

In other cases, alternative splicing can alter cellular metabolism of 

tumor cells: this is the case for example for PKM, which encodes the 

metabolic enzyme pyruvate kinase M. Two PKM isoforms with 

mutually exclusive exons can be generated: one is usually present in 

embryonic tissues, while the other is present in adult cells. Several 

tumor cells re-establish expression of the embryonic isoform, which 

favors aerobic glycolysis (Figure 7). This change is responsible for the 

so-called Warburg effect, namely the reactivation of aerobic glycolysis 

in tumor cells, which confers a growth advantage (Christofk et al., 

2008). 
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Figure 7. Examples of regulated alternative splicing events relevant 
for cancer progression. Alternative regions of the precursor mRNA are 
represented as green boxes and constitutive exons are shown in blue. The 
numbers correspond to the exons involved in the alternative splicing event 
for each of the indicated genes. The examples also illustrate the diverse 
functional outcomes of the encoded alternative protein products.  

 
Interestingly, recent analyses documented that synonymous mutations 

are often acting as driver mutations in cancer. In several cases, this 

phenomenon could be related to a difference in regulatory sequences 

generating different splicing preferences in tumor cells. As a result, 

oncogenes and tumor suppressors can have their activity increased or 

inhibited through changes in splicing (Supek et al., 2014). 

Many other examples have been reported so far, including the impact 

of signaling pathways activated in cancer cells on splicing aberrations, 

and how these splicing aberrations can control a variety of 
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mechanisms, including metastasis, angiogenesis and cell cycle (Bonnal 

et al., 2012; David and Manley, 2010). 

 

2.3. Splicing factors and cancer 

Several splicing factors are mutated in tumor cells 
 

While cancer-related aberrant splicing has been known for long, 

mutations in splicing factors are only starting to be disclosed by large 

cancer sequencing efforts. Interestingly, several mutated proteins play 

a role in early steps of spliceosome assembly and more precisely in 

3’ss recognition, suggesting that this level of regulation is somehow 

linked to cell proliferation control or other aspects of tumor 

progression. Also, most of the mutations are heterozygous and 

mutually exclusive, suggesting that different factors could have some 

common consequences and that complete loss of the wild-type 

versions of these factors is deleterious (Yoshida and Ogawa, 2014). 

At first, U2AF35, ZRSR2, SRSF2 and SF3B1 mutations were found 

to be associated to myelodisplastic disorders (Yoshida et al., 2011). 

Strikingly, SF3B1 mutations highly correlate with the presence of ring 

sideroblasts (RS), i.e. erythroblasts (erythrocyte precursors) with 

mitochondrial iron deposits forming perinuclear granules 

(Papaemmanuil et al., 2011). Mutations in this factor were then 

described for chronic lymphocytic leukemia (CLL) (Quesada et al., 

2012) and solid tumors, including uveal melanoma (Furney et al., 

2013). A flurry of clinical observations has followed these first 
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publications, associating the mutations with clear prognostic 

indicators (Bonnal et al., 2012; Yoshida and Ogawa, 2014).  

Even if splicing is required for every gene to be expressed, relatively 

few transcripts have been found to be altered in mutant samples 

(Yoshida and Ogawa, 2014). Strikingly, sequence differences within 

affected transcripts are partially explaining the splicing alterations 

associated to SF3B1, SRSF2 and U2AF1 mutations.  

In the case of U2AF1, mutations were described in hematological 

malignancies, lung cancer and other solid tumors (Dvinge et al., 2016). 

This splicing factor is involved in 3’ss recognition (Figure 3) and S34 

mutation leads to a preference 3’ss where the AG is preceded by C or 

A rather than T, while Q157 mutation favors introns starting with G 

rather than A (Ilagan et al., 2015; Okeyo-Owuor et al., 2015; 

Przychodzen et al., 2013; Shirai et al., 2015).  

On the other hand, SRSF2 is a regulatory SR protein binding to 

exonic splicing enhancers (ESEs) (Figure 6). Pathological mutations 

induce a change in its RNA recognition motif (RRM), leading to a 

difference sequence preference: mutant SRSF2 binds more efficiently 

to CCNG rather than GGNG motifs, while the wt protein can 

efficiently recognize both (Kim et al., 2015; Lee et al., 2016; Zhang et 

al., 2015).  

Collectively, these observations show that the RNA affinity of 

mutated splicing factors is altered and that differential RNA binding 

can cause sequence-dependent alternative splicing changes, some of 

which can partially explain the pathologic phenotype (Dvinge et al., 

2016). Nevertheless, also processes other than alternative splicing can 
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be affected and partially contribute to tumor progression, like 

described for the autophagy regulator ATG7, whose 3’ end processing 

is altered in presence of U2AF1 mutations (Park et al., 2016). 

Although research in the field is progressing very fast, many 

mechanistic questions remain to be answered in order to be able to 

translate this knowledge into therapy. 

 

2.4. Splicing inhibitors: a novel class of drugs 

Small molecules targeting the spliceosome have antitumor properties 
 

Several small molecules regulating splicing efficiency in a general or 

event-specific way have been identified (Berg et al., 2012; Naryshkin 

et al., 2014; O'Brien et al., 2008; Palacino et al., 2015; Zaharieva et al., 

2012). Due to the increasing interest on such compounds, high 

throughput systems have been established to screen drugs libraries 

and find splicing modulators (Berg et al., 2012; Effenberger et al., 

2015; Naryshkin et al., 2014; O'Brien et al., 2008; Palacino et al., 2015; 

Pawellek et al., 2014). Nevertheless, a direct interaction between the 

small molecule and core spliceosome components is known only for a 

few of them. Intriguingly, several of them have as common target the 

SF3B (splicing factor 3B) complex (Bonnal et al., 2012; Effenberger et 

al., 2016a; Zaharieva et al., 2012).  

Screenings for antitumor candidates within bacterial Pseudomonas and 

Streptomyces plateniensis fermentation products lead to the discovery of 

FR901464, Pladienolides, GEX1A or Herboxidiene and 

Thailanstatines (Liu et al., 2013; Miller-Wideman et al., 1992; 
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Nakajima et al., 1996b; Sakai et al., 2004; Sakai et al., 2002b). These 

compounds display cytotoxic effects against multiple tumor cell lines, 

where they cause a cell cycle arrest in G1 and G2/M phases (Mizui et 

al., 2004; Nakajima et al., 1996a; Sakai et al., 2002b). Strong in vivo 

antitumor effects were also observed (Mizui et al., 2004; Nakajima et 

al., 1996b). The drugs' unique behavior compared to known 

antitumor drugs drew great interest and the involvement of a novel 

antitumor mechanism was hypothesized. Furthermore, the detection 

of Cdc25a and Cdc2 short isoforms in GEX1-treated cells suggested 

that splicing could be critical for the effects of the drugs on cell 

proliferation control (Sakai et al., 2002a) . 

The confirmation came a few years later, when a potent derivative of 

FR901464 was found to inhibit splicing by targeting SF3B complex 

and was therefore named as Spliceostatin A (Kaida et al., 2007). The 

same effect was observed for Pladienolide B (Kotake et al., 2007) and, 

more recently, for GEX1A (Hasegawa et al., 2011). These 

biochemical studies were consolidated by genetic results showing that 

a novel SF3B1 mutation reverts both splicing and proliferation 

inhibition induced by Pladienolide B by suppressing the drug's 

binding to SF3B complex (Yokoi et al., 2011). Interestingly, drug-

resistant mutation R1074H is located in very close proximity with the 

branch adenosine (Rauhut et al., 2016). Nevertheless, the detailed 

structural characterization of drug-target interactions has not yet been 

achieved for any of these compounds. 

The high chirality and low solubility of the natural drugs restrict their 

use in in vitro and in vivo studies. To address these issues, FR901464 

derivatives have been synthesized. Meayamycin and Meayamycin B 
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display more stability, potency and solubility (Albert et al., 2009; 

Osman et al., 2010), while Sudemycins are easier to synthesize 

chemically and recapitulate the hypothesized common 

pharmacophore shared by FR901464 and Pladienolides (Fan et al., 

2011; Lagisetti et al., 2009; Lagisetti et al., 2008). 

Indeed, the interest on the spliceosome as a therapeutic target and on 

the therapeutic potential of these molecules is expanding, with the 

double expectation that they could provide powerful tools for therapy 

as well as for the study of spliceosomal mechanisms (Disney, 2008; 

Jurica, 2008; Schneider-Poetsch et al., 2010). As antibiotics revealed to 

be extremely powerful tools for the study of the ribosome, small 

molecules targeting the spliceosome would definitely help to improve 

our knowledge of the most complex and dynamic ribonucleoproteic 

machine of the cell (Schneider-Poetsch et al., 2010; Wahl et al., 2009). 



Introduction 

 
 

27 

 

Figure 8. Antitumor compounds targeting SF3B1. General chemical 
structures of the main families of drugs are illustrated. Important groups for 
their function include the conjugated diene (*), the oxycarbonyl moiety (‡) 
and the epoxide (§). Synthetic analogues derived from natural products are 
represented in the right column, with arrows indicating the parental 
compound. GEX1 molecules are also known as Herboxidienes (Sakai et al., 
2002a; Sakai et al., 2002b). FR901463-5-related variants of natural 
compounds were recently described as Thailanstatins (Liu et al., 2013). FD-
895 is a Pladienolide-related compound, whose carbohydrate derivative was 
shown to have improved stability (Dhar et al., 2016). “R” indicates side 
groups that differ among variants of the same family of compounds (Bonnal 
et al., 2012; Effenberger et al., 2016a). The most active variants of each 
group and their side moieties correspond to the following: FR901464 (R1: 
OH; R2: H; R3: epoxide; R4: H); GEX1A (R1: OH; R2: H; R3: CH3; R4: H; R5: 
OCH3); Pladienolide B (R1: COCH3; R2: H; R3; H; R4: H; R5: OH); 
Spliceostatin A (R1: OCH3; R2: CH3), Meayamycin (R1: CH3; R2: CH3); 

Meayamycin B (R1: CH3; R2: ); Sudemycin C1 (R: CH(CH3)2; X: CH2); 
Sudemycin D1 (R: N(CH3)2; X: CH2); Sudemycin D6 (R: NHCH3; X: CH2). 
  

N O
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3. SF3B1: function and dysfunction 

 

3.1. U2 snRNP function and components 

3’ splice site binding and initial spliceosome assembly 
 

The U2 snRNP complex is very dynamic and includes U2 snRNA and 

different protein complexes, including the complexes Splicing Factor 

3A and 3B (SF3A and SF3B). SF3A is composed of three subunits 

(SF3A1, SF3A2 and SF3A3, also known as SF3a120, SF3a66 and 

SF3a60 based on their molecular weight), while SF3B encompasses at 

least eight subunits of 155, 145, 130, 49, 10, 14a (or p14), 14b and 125 

kDa (also named on their molecular weight or SF3B1, SF3B2, SF3B3, 

SF3B4, SF3B5, SF3B6, SF3B7 and SF3B8). The precise function of 

most of these proteins is still unclear (Wahl et al., 2009; Will and 

Luhrmann, 2011).  

The key role of U2 snRNP in the splicing process is the binding to 

the intronic 3’ss region after formation of an early spliceosome 

(complex E), leading to the pre-spliceosomal complex A (Figure 3). 

Regulation of the recruitment of U2 snRNP is believed to be one key 

way to regulate alternative splicing (Graveley et al., 2001; Graveley 

and Maniatis, 1998; Guth et al., 1999; Guth et al., 2001; Valcarcel et 

al., 1993). 

Sequence-independent binding of conserved U2 snRNP proteins 

upstream of the branch site is required for assembly of complex A. 

This region was named “anchoring site” and it crosslinks with the 

SF3A and SF3B subunits in the apparent 5’ to 3’ linear order SF3B4, 
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SF3A1, SF3A3, SF3B2, SF3A2 and SF3B1, apparently in a sequence 

non-specific manner (Gozani et al., 1996). Interestingly, blocking the 

anchoring site with antisense oligonucleotides was found to switch BP 

selection in a model pre-mRNA containing duplicated BPs (Dominski 

and Kole, 1994).  

Remarkably, some U2 snRNP components (the three members of 

SF3A complex and five of SF3B ones) are conserved also in 

Cyanidioschyzon merolae, a red algae with very few introns and with a 

very reduced spliceosome. Although missing many protein 

components, this spliceosomal machinery contains most of the 

proteins involved in BP recognition, suggesting that this is one of the 

most critical steps of the reaction (Hudson et al., 2015; Stark et al., 

2015).  

In addition to the conventional “major” spliceosome, several 

eukaryotic organisms contain also the “minor spliceosome”. This 

machinery processes a subset of introns with different canonical splice 

site sequences, named U12-introns because they are bound by U12 

snRNP, in contrast with conventional U2-introns, bound by U2 

snRNP. Interestingly, the minor spliceosome only shares few protein 

components with the major one: among these, members of SF3B (but 

not of SF3A) (Will and Luhrmann, 2005). This additional evidence 

highlights the importance of SF3B components across several classes 

of spliceosome machineries.  
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3.2. SF3B1 protein 

A persistent player of the spliceosome and beyond 

 

The correct recognition of the BP by base-pairing interactions with 

U2 snRNA is a key step for the splicing process. Indeed, base-pairing 

between the pre-mRNA BP region and the BP recognition sequence 

(BPRS) in U2 snRNA occurs in such a fashion that the BP adenosine 

is bulged out of the helix, a configuration that is important for the 

first catalytic reaction that leads to the formation of a phosphodiester 

bond between 5’ splice site and branch adenosine (Figure 5) (Parker et 

al., 1987). p14 subunit of SF3B complex interacts with the branch 

adenosine and with the SF3B1 (also known as SF3b155) subunit 

(Schellenberg et al., 2011). The latter also interacts with U2AF65 and 

sequences upstream and downstream of the BP (Gozani et al., 1998).  

SF3B1 is highly conserved across eukaryotes and its function is 

fundamental for stabilizing U2 snRNP recruitment (Wahl et al., 2009; 

Corrionero et al., 2011). This protein is persistent within the 

spliceosome throughout its whole assembly and catalytic function 

(Rauhut et al., 2016; Wahl et al., 2009; Yan et al., 2016).  

SF3B1 encompasses an unstructured N-terminal domain involved in 

protein-protein interactions and 22 carboxy-terminal HEAT 

(huntingtin, elongation factor 3, protein phosphatase 2A, target of 

rapamycin 1) repeats (Figure 10). HEAT repeats consist of 37–47 

aminoacid residues forming two antiparallel α-helices and two turns, 

with conserved aspartic and arginine residues and short flexible 

linkers between repeats (Groves and Barford, 1999; Xing et al., 2006). 



Introduction 

 
 

31 

The architecture of SF3B1 HEAT-repeats results in a cavity 

surrounding the p14 protein: unknown conformational changes from 

a more open structure are required to allow the RNAs duplex and p14 

to integrate within the shell, and HEAT-repeats curvature may play a 

role in it (Golas et al., 2003). These interactions play a key role to 

allow further spliceosome rearrangements. 

SF3B1 undergoes several phosphorylation reactions on different 

residues of the N-terminal domain just before the catalytic step 

(Bessonov et al., 2010), but the function of these modifications has 

not been explained. Nevertheless, NIPP1 protein has been found to 

interact with SF3B1 depending on its phosphorylation status, which is 

highly increased during mitosis (Boudrez et al., 2002). 

SF3B1’s N-terminal 450 amino acid unstructured domain interacts 

with U2AF65 and with p14, that induces a folding transition 

(Spadaccini et al., 2006), while the C-terminal domain encompasses 22 

tandem HEAT-repeats (Golas et al., 2003). Recently, enormous 

advances in the structural description of the yeast spliceosome have 

been achieved. The structure of SF3B1’s homolog Hsh155 within this 

complex highlights its key role for catalysis. Sequences immediately 

downstream of the branch adenosine enter the HEAT-repeats cavity, 

which has a positively charged surface. Prp2 interacts with Hsh155, 

possibly promoting the exposure of the branch adenosine for splicing 

catalysis (Yan et al., 2016) that is otherwise masked by Hsh155 HEAT 

repeats to prevent premature catalytic activation (Rauhut et al., 2016). 

In this context, Prp2 moves along the pre-mRNA and induces 

Hsh155 HEAT repeats remodeling to make the adenosine accessible 

for catalysis (Rauhut et al., 2016).  
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SF3B1 was found to crosslink upstream and downstream of the BP 

and to interact with U2AF65 and U2AF35 (Gozani et al., 1998). It 

was observed that the distance between the BP and the Py-tract is 

important for efficient complex A formation and that among multiple 

BPs, the downstream is used if it is not too close to the Py-tract 

(Gozani et al., 1998). 

Apart from being a key but still enigmatic component of the 

spliceosome, SF3B1 is also involved in other functions. On one hand, 

it plays a role in mouse development as a component of the 

epigenetic repressor Polycomb complex (Isono et al., 2005). On the 

other, it was found to interact with chromatin and proposed to 

participate as such in alternative splicing regulation (Kfir et al., 2015). 

SF3B1 binds nucleosomes located on GC rich exons, flanked by long 

introns. It was proposed that it "jumps" from chromatin to the 3’ss of 

nascent RNAs of lowly expressed genes in order to facilitate splice 

site recognition (Kfir et al., 2015). The association of SF3B1 with 

several cellular processes keeps expanding and it sheds light on the 

importance of this factor for cell physiology. 

 

3.3. Consequences of SF3B1 mutations 

A role in disease progression and in branch point choice 

 

Mutations in SF3B1, as well as in other 3’ splice site-recognizing 

factors, are recurrent in cancer (Bonnal et al., 2012; Yoshida and 

Ogawa, 2014). SF3B1 mutations are particularly frequent in 

Myelodysplastic Syndromes with Refractory Anemia and Ring 
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Sideroblasts (RARS) (Papaemmanuil et al., 2011; Yoshida et al., 2011) 

and in chronic lymphocytic leukemia (CLL) (Quesada et al., 2012; 

Rossi et al., 2011; Wang et al., 2011), but also in uveal melanoma 

(Furney et al., 2013; Harbour et al., 2013), mesothelioma (Bueno et al., 

2016), breast, ovary and pancreas cancers (Ellis et al., 2012b; 

Pleasance et al., 2010; Wood et al., 2007). SF3B1 mutations are 

prevalently missense, leading to single residues substitutions (Figure 

9). 

 

 

Figure 9. Distribution of SF3B1 mutations from the COSMIC 
Database. The frequency of the different types of mutation for SF3B1 in 
tumor samples is shown (from COSMIC database, 
http://cancer.sanger.ac.uk/cosmic/). 

 

Intriguingly, most mutations are located in hotspots within specific 

SF3B1 HEAT repeats (Bueno et al., 2016; Darman et al., 2015; 

Harbour et al., 2013; Quesada et al., 2012; Rossi et al., 2011) (Figure 
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10). Depending from the disease, these mutations can be related to 

either a better or poorer prognosis (Malcovati et al., 2011; 

Papaemmanuil et al., 2011; Visconte et al., 2012; Wang et al., 2011). 

It was recently shown that most of the alternative splicing events 

related to the presence of SF3B1 mutation are cryptic 3’ss, whose 

activation is sequence-dependent (Alsafadi et al., 2016; Bueno et al., 

2016; Darman et al., 2015; DeBoever et al., 2015; Ferreira et al., 2014; 

Kesarwani et al., 2016). 

A first hypotheses was that cryptic splice site activation was due to a 

shift in the steric protection of sequences downstream of the BP by 

SF3B1: in presence of SF3B1 mutation, the protection would be less 

tight and AG dinucleotides proximal to the BP would be used as 

splice sites (DeBoever et al., 2015). In contrast, follow up functional 

studies revealed that the usage of alternative 3’ ss is also associated to 

a change in BP usage in the presence of SF3B1 hotspots mutations 

but not in the presence of rarer mutations (Alsafadi et al., 2016; 

Darman et al., 2015). These changes require the canonical Py-tract 

and BP to be intact and they have been related to a change of charge 

induced by the hotspot mutations within the HEAT repeats (Darman 

et al., 2015), which can be interpreted as alterations in electrostatic 

interactions with the RNA according to the recent cryo-EM structure 

of the yeast spliceosome (Rauhut et al., 2016; Yan et al., 2016). More 

than displaying a loss- or gain- of- function, SF3B1 mutations would 

therefore have a change-of-function, where higher preference to 

strong BP sequences would be manifested (Alsafadi et al., 2016). 

Recent results also show that cryptic 3’ss are generally inaccessible 

because of RNA secondary structures and they get activated in a 



Introduction 

 
 

35 

mutation-dependent manner (Kesarwani et al., 2016). 

An interesting observation came from the comparison of the splicing 

alterations induced by SF3B1 mutations in human and mouse cells: 

sequence features associated with cryptic splice sites usage are similar 

in both organisms (i.e. presence of short and weak Py-tracts and 

enrichment of As), but affected junctions have minimum overlap, due 

to low intronic sequence conservation (Darman et al., 2015; Mupo et 

al., 2016; Obeng et al., 2016). This evidence suggests that the 

phenotype might depend on global effects linked to splicing 

disruption rather than on specific alternative splicing events (Mupo et 

al., 2016). For example, recent studies related SF3B1 function to 

epigenetic regulation (Kfir et al., 2015), or its mutation and inhibition 

to DNA damage (Te Raa et al., 2015; Wan et al., 2015) and these 

pathways may contribute to cancer phenotypes. 

 

Figure 10. Structure of yeast SF3B1 and position of mutated residues. 
Intronic sequences around the BP are recognized by SF3B1 (yeast Hsh155) 
and SF3B7 (yeast Rds3) (left panel), due to electrostatic interactions with 
their positively charged surface (mid panel). Most of the residues mutated in 
human cancers map to the 3rd and 4th HEAT-repeats, corresponding to a 
surface with positive charge that bind to pyrimidine-rich sequences 
downstream of the BP (adapted from Yan et al., 2016). Yeast Hsh155: 
human SF3B1 (or SF3B155); yeast Rds3: human SF3B7 (or SF3B14B or 
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PHF5A); yeast Cus1: human SF3B2 (or SF3B145); yeast Prp11: human 
SF3A2 (or SF3A66). 

 

3.4. Mechanistic consequences of SF3B inhibition  

Troubled branch point recognition and binding 

 

In cultured cells Spliceostatin A induces a similar splicing inhibition to 

those induced by morpholinos that deplete U2 snRNA (Kaida et al., 

2010) or by SF3B1 knockdown (Corrionero et al., 2011). Early studies 

on Spliceostatin A showed that it blocks early stages of spliceosome 

assembly (Roybal and Jurica, 2010). It was then described that the 

drug binds SF3B1 and prevents its interaction with the pre-mRNA, 

leading to the recruitment of U2 snRNA to “decoy” sequences 

upstream to its real binding site, the BP sequence (Corrionero et al., 

2011). On the other hand, the Pladienolide-derivative E7107 alters the 

balance between alternative U2 snRNA conformations, implying a 

role for SF3B in ATP-dependent remodelling of the U2 snRNA 

structure (Folco et al., 2011). This structural switch depends on Prp5 

helicase activity and it involves the region base-pairing with the BP: 

drug treatment disfavours the conformation required for stable 

spliceosome assembly (Folco et al., 2011; Perriman and Ares, 2010). 

Thus, SF3B1 seems to be involved in multiple interactions important 

for U2 snRNP binding at early steps of spliceosome assembly (Figure 

11).  

More recently it was shown that non-active and active drugs can 

compete with each other for binding to their target, suggesting that 

binding is not the only requisite for inhibition but rather that the 
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active ones induce a specific conformational change. Also, if added at 

late spliceosome steps, drugs can inhibit exon ligation, highlighting a 

role of SF3B complex and U2 snRNA also at late steps of 

spliceosome assembly (Effenberger et al., 2016b). 

Apart from a direct effect on spliceosome dynamics, SF3B1 inhibition 

has been related also to cotranscriptional and epigenetic mechanisms. 

Indeed, it was shown that Sudemycin E binds SF3B1 and induces 

dissociation of U2 snRNPs and a decrease in their interaction with 

nucleosomes, resulting in a short-term reversible modulation of 

alternative splicing and in a long-term persistent regulation of gene 

expression as a consequence of epigenetic effects. It has been 

proposed that Sudemycin E interferes with the ability of U2 snRNP 

to maintain an H3K36me3 modification in actively transcribed genes 

(Convertini et al., 2014). Distribution of this epigenetic mark is indeed 

heavily altered by drug treatment (Kim et al., 2011). In addition, 

splicing inhibition results in a reduction of Ser2 phosphorylation in 

RNA pol II CTD (C-terminal repeat domain). This mark is important 

for transcription elongation and it induces a premature release of 

RNA pol II from some transcripts, in a gene-specific manner (Koga 

et al., 2015), although it was suggested that general RNA pol II 

elongation rate and snRNPs recruitment are not affected by drug 

treatment (Brody et al., 2011; Schmidt et al., 2011). 

Spliceostatin A treatment affects the association of RNA pol II with 

the template after poly(A) addition and abrogates a quality control 

mechanisms that constrains unprocessed RNAs at the transcription 

site (Martins et al., 2011).  
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Overall, it is clear that SF3B inhibitors cause very diverse effect in 

treated cells. Assuming that they only target SF3B complex, this could 

be due to SF3B’s multifaceted activities also outside the core 

spliceosome, or to the strict coupling of several gene expression 

processes (Moore and Proudfoot, 2009). 

 

3.5. Functional consequences of SF3B inhibition 

Targeting spliceosome-dependent cancer cells 

 

SF3B-targeting drugs induce a cell cycle arrest in G1 and G2/M 

phases (Mizui et al., 2004; Nakajima et al., 1996a; Sakai et al., 2002a), 

displaying low nanomolar in vitro activity and significant antitumor 

effects in animal models (Mizui et al., 2004; Nakajima et al., 1996b; 

Sakai et al., 2002a; Sakai et al., 2002b). Furthermore, toxicity is 

generally higher in cancer cells (Albert et al., 2009; Fan et al., 2011; 

Kaida et al., 2007; Kotake et al., 2007), even in cases of multidrug-

resistance (Albert et al., 2009). Thus, substantial interest was raised on 

these drugs as potential novel anti-cancer therapeutics, although 

clinical trials with E7107 (a Pladienolide variant) were stopped for 

visual side effects in a subset of patients (Dvinge et al., 2016). Clinical 

studies with H3B-8800 are being started to specifically target cancer 

cells with mutations in SF3B1 (Chakradhar, 2016). 

What would be the physiological drug targets for these effects? Short 

isoforms of cell division-related proteins (including p27, Cdc25a and 

Cdc2) accumulate in cells treated with Spliceostatin A (SSA) (Kaida et 

al., 2007) or GEX-1 (Sakai et al., 2002a). At least in some cases, 
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production of truncated proteins affecting cell cycle derives from 

leakage of unspliced pre-mRNAs to the cytoplasm (Kaida et al., 2007; 

Kanada et al., 2007; Satoh and Kaida, 2016) (Figure 11). 

SF3B1 inhibition induces abundant intron retention, with some genes 

being particularly sensitive. For example, intron retention and 

downregulation of vascular endothelial growth factor (VEGF) 

mRNA expression by Pladienolide (Mizui et al., 2004) and SSA 

(Furumai et al., 2010) could contribute to the drugs’ anti-angiogenic 

and tumor regression effects. SSA was observed to affect alternative 

splicing as well, leading mostly to exon skipping. Some of the induced 

isoforms contain premature stop codons and are degraded by 

Nonsense Mediated Decay (NMD). Consequently, some cell cycle 

control genes might be downregulated (Corrionero et al., 2011) 

(Figure 11). In the case of MDM2, a negative regulator of p53, SSA 

and Sudemycin C1 induce short isoforms with reduced activity (Fan et 

al., 2011). Consistently, splicing disruption activates p53 pathway 

(Allende-Vega et al., 2013). 

Regarding the specific effects of SF3B inhibitors in tumor cells, 

studies in chronic lymphocytic leukemia (CLL) indicated that drugs 

induce more apoptosis in CLL cells than in healthy lymphocytes 

(Kashyap et al., 2015; Xargay-Torrent et al., 2015). Selectivity for 

leukemia stem cell maintenance was found also in acute myeloid 

leukemia (AML) cells (Crews et al., 2016). MCL1 splicing modulation, 

previously reported for this class of drugs (Gao and Koide, 2013; 

Papasaikas et al., 2015), was also found to be important in CLL and 

AML cells and possibly mediate the main cytotoxic effects of the 

drugs (Crews et al., 2016; Larrayoz et al., 2016; Xargay-Torrent et al., 
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2015). In these contexts, cells with SF3B1 mutations appear to be 

more sensitive to SF3B1 pharmacological inhibition than wild type 

cells (Obeng et al., 2016; Xargay-Torrent et al., 2015). 

In mesothelioma models, in contrast, SSA treatment affects more the 

SF3B1 wild-type NCI-H2803 than the SF3B1-mutated NCI-H2595 

cell line. Of potential relevance, gene expression but not alternative 

splicing changes are induced by the drug in both cell lines (Bueno et 

al., 2016), consistently with previous studies reporting drug-related 

gene expression alterations (Convertini et al., 2014; Lee et al., 2016). 

Promising results were obtained also in melanoma cells: an intronic 

mutation induces exon skipping (with predicted redundant BPs 

playing a role in the mutant sequence), resulting in vemurafenib-

resistance. SF3B1 inhibitors prevent the splicing change, reverting the 

vemurafenib-resistant phenotype (Salton et al., 2015).  

Interestingly, overexpression of cMYC oncogene makes tumour cells 

more sensitive to SF3B inhibition (Hsu et al., 2015; Hubert et al., 

2013), suggesting that cMYC-induced transcriptional activation 

generates the need of maintaining high levels of splicing activity and 

therefore higher sensitivity to splicing inhibitors. As a consequence, 

the spliceosome may confer a therapeutic vulnerability for a subset of 

cancers (Hsu et al., 2015). In conclusion, interfering with the 

spliceosome machinery in conditions where splicing becomes rate-

limiting (because of increased transcription, mutations in pre-mRNA 

sequences or in splicing factors) has more dramatic consequences for 

the cell. This brings up the concept of synthetic lethality that was also 

suggested to explain the lack of evidence for coexistence of splicing 

factor mutations (Dvinge et al., 2016). 
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Figure 11 (previous page). Molecular effects of SF3B-targeting drugs 
on 3’ splice site recognition and other steps of gene expression. (A) 
Effects of the drugs on 3’ splice site recognition. U2 small nuclear 
ribonucleoprotein (snRNP) assembly involves base-pairing interactions 
between the BP recognition sequence (BPRS) in U2 small nuclear RNA 
(snRNA) and nucleotides flanking the BP adenosine, with the adenosine 
bulged out from the base-paired region. In addition, splicing factor 3B 
subunit 1 (SF3B1) crosslinks both 5’ and 3’ to the BP, and another SF3B 
protein, p14, contacts the BP adenosine. Spliceostatin A (SSA) prevents 
SF3B1–precursor RNA (pre-mRNA) interactions and induces base-pairing 
of U2 snRNA with decoy sequences upstream to the BP sequence. E7107 
favours a conformation of U2 snRNA that establishes initial interactions 
with the BP while preventing an alternative conformation that allows stable 
U2 snRNP assembly. This stabilized initial conformation is known as BP-
interacting stem-loop and its disruption is dictated by Prp5 helicase activity 
(Perriman and Ares, 2010). (B) Downstream effects of the drugs on gene 
expression. The splicing inhibitory effects of the drugs result in intron 
retention or exon skipping. Unprocessed or incorrectly processed mRNAs 
can leak to the cytoplasm and be translated or be subject to nonsense-
mediated decay (NMD). One consequence of these effects is arrest in 
phases G1 and G2/M of the cell cycle. Exons are shown as blue or green 
boxes. 
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Objectives 
 

Given the potential relevance of small molecules for understanding a) 

the complex process of spliceosome assembly and differential intron 

removal, and b) the properties of these compounds to control cancer 

cell proliferation, we set up the following goals for this thesis: 

1) Exploring the key structural features of these compounds impacting 

on their effects on spliceosome assembly, alternative splicing 

modulation and cancer cell proliferation, as well as generating and 

functionally testing novel drug variants that could expand the chemical 

space of the backbone of Sudemycins: analysis of structure-activity 

relationship for SF3B-targeting drug variants (part I.A). 

2) Exploring the possibility of achieving splice site-specific inhibition of 

splicing by conjugating SF3B-targeting drugs to antisense 

oligonucleotides (ASOs), with the goal of targeting the drugs and 

making them act at concentrations typical of ASOs, thus potentially 

improving the efficiency and selectivity of their function. Applications 

could include the specific modulation of cancer-related splicing events, 

limiting the collateral general inhibition potentially harmful for non 

cancer cells: analysis of the activity of drugs-ASO conjugates (part 

I.B). 

3) Exploring the reasons why drugs targeting SF3B components, which 

would in principle affect general steps in 3’ splice site recognition, can 

produce inhibitory effects specific of particular introns/splice sites and 

specifically affect cell growth of cancer cells. Our hypothesis is that 
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some sequence elements are critical for the transcripts’ sensitivity to the 

drug and that they are present in genes that play key roles in cell 

proliferation regulation, thus potentially explaining the effects of these 

compounds as anti-proliferative reagents: identification of sequence 

elements determining alternative splicing sensitivity to 

pharmacological inhibition of SF3B1 (part II).  

4) Exploring whether structurally similar -but not identical- drugs cause 

distinct effects on alternative splicing and, if so, what are the molecular 

basis for these differences: comparison of the effects of different 

drug variants on alternative splicing modulation (part III). 
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Results 

 

Part I.A. Analysis of structure-activity relationship for SF3B-

targeting drug variants 
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Part I.B. Analysis of the activity of drug-antisense oligonucleotide 

conjugates 

Collaborative project with Clément Paris, Kamil Makowski, 

Mercedes Álvarez and Enrique Pedroso (University of Barcelona) 

Introduction 

Antisense oligonucleotides (ASOs) complementary to sequences within 

the pre-mRNA are efficiently used to modulate alternative splicing 

events for either research or clinical purposes. Their therapeutic effects 

are promising for several pathologies, with SMA on top of the list 

(Daguenet et al., 2015; Havens and Hastings, 2016; Hua et al., 2010; 

Kole et al., 2012). 

In contrast with pharmacological treatments, ASOs target specific 

transcripts, since their effect is based on the steric blockage of the 

access of proteins and complexes to the specific RNA region they are 

complementary to. On the other hand, drugs targeting the activity of 

splicing factors provide unique tools to modify the function of the 

spliceosome, but they may affect multiple transcripts within the cell and 

therefore their use in therapy may be limited by possible side effects. 

Intriguingly, recent studies identified pharmacological compounds 

targeting SMN2 splicing and displaying a satisfying specificity, without 

extensive affects on other RNAs (Naryshkin et al., 2014; Palacino et al., 
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2015), although trials were paused because of collateral effects on 

primates’ eyes (Chakradhar, 2016).  

While considering advantages and disadvantages of each of these 

approaches, we came up with the possibility to combine the power of 

splicing inhibiting drugs with the specificity provided by ASOs. The 

main concept behind this approach would be to direct the inhibitory 

effects of the drugs to specific transcripts, such that the drugs could be 

used at concentrations at which ASOs work, which are several order of 

magnitude lower.  

Conjugation of ASOs with different chemical moieties has been 

extensively studied with the aim of increasing their cell specificity 

(Havens and Hastings, 2016). A conjugation strategy has been recently 

proposed for improving the potency for SMN2 modulation by linking 

SMN2-specific oligonucleotides to a known PP1 phosphatase inhibitor. 

This approach was expected to increase splicing factor Tra2β 

phosphorylation in the proximity of SMN2 transcripts to favour exon 

inclusion. Unfortunately, conjugated molecules produced only limited 

gain in SMN2 splicing modulation compared to unconjugated ASOs 

(Kwiatkowski et al., 2016). 

Here we report the conjugation of Sudemycin drugs with ASOs and the 

evaluation of their effects to repress U2 snRNP assembly in vitro: a 

Sudemycin variant suitable for chemical conjugation was generated, 

coupled with an ASO complementary to the sequence 5' of the branch 

point (BP) region of Adenovirus Major Late promoter intron 1 and the 

activity of the conjugate tested in biochemical assays. The results 

indicate that this strategy can be used to enhance the splicing inhibitory 
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effects of ASOs, but that the distance range at which these conjugates 

can work is limited, constraining the applicability of this approach. 

Results 

The azide Sudemycin N retains splicing inhibitory activity 

The replacement of two methyl groups associated to the ester side 

group of Sudemycin C1 by an azide (-N3+) led to the generation of a 

new Sudemycin variant, Sudemycin N, which is suitable for conjugation 

with ASOs. The activity of this compound was initially characterized by 

in vitro A3’ complex formation, cytotoxicity and MCL1 alternative 

splicing modulation assays in HeLa cells, as for previous compounds 

(Part I.A). The results showed that the compound retains activity in the 

three assays, although at concentrations over 100-fold higher than 

Sudemycin K (Figure I.B.1 and Table I.B.1). Nevertheless, we 

considered that the possibility of conjugation made the drug potentially 

useful for targeted splice site inhibition. 
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Figure I.B.1. Relative activity of novel Sudemycins N and K. (A) 
Chemical structure of Sudemycin N. (B) Cytotoxicity assays: cell viability was 
measured using Resazurin assays 72 h after drug exposure. Graphs indicate 
fraction of living cells compared to control DMSO treatment. All treatments 
were performed in triplicate and standard deviations are shown. (C) 
Representative Phosphorimager pictures of electrophoretic separation of H 
and A3' complexes assembled on Adenovirus Major Late promoter intron 1 3' 
splice site region in the presence of the indicated amounts of drug. All the 
reactions were treated with heparin. (D) Quantification of the results reported 
in C. The assays were repeated for a minimum of three times and statistically 
evaluated using a t-test (***: p-value < 0.0001; n.s.: p-value > 0.01). Different 
concentrations for the two drugs were adjusted to provide approximately 50% 
inhibition in complex formation. (E) Capillary electrophoresis profiles of RT-
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PCR amplification of MCL1 alternatively spliced products from RNA isolated 
3 h after drug exposure. One representative example per condition is shown. 
(F) Quantification of data shown in E for duplicate experiments. Sudemycin N 
was synthetized by Kamil Makowski. 
 

 

DRUG 
In vitro A3’ 
complex 

formation – 

IC50 (nM) 

MCL1 
alternative 

splicing 
regulation – 
IC50 (nM) 

 

Cytotoxicity 
in HeLa cells 
– IC50 (nM) 

Sud K  ≈250 ≈15 2,3 ± 0,81 

Sud N ≈30000 ≈3700 1890 ± 574 

 

Table I.B.1. Summary of activities of Sudemycins N and K. IC50 values 

corresponding to in vitro inhibition of A3' complex formation, MCL1 

alternative splicing regulation and cytotoxicity in HeLa cells are indicated. 

 

Conjugates of antisense oligonucleotides with Sudemycin N 

display increased inhibitory activity iinn  vvii tt rroo  

Sudemycin N was conjugated or not to the 5’ end of an ASO 

complementary to the region immediately 5' of Adenovirus Major Later 

promoter (AdML) branch point (BP), in order to bring the drug in close 

proximity of the BP sequence (Figure I.B.2). A control sequence not 

predicted to be complementary to any target was also synthetized and 

conjugated or not with Sudemycin N. All ASOs were 2’-O-methyl-

phosphorothioate modified to improve their stability and RNA binding 

(Kole et al., 2012). 
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Figure I.B.2. Scheme of the conjugation strategy and the targeted 
region. The aim of the ASO-drug conjugation was to take advantage of the 
specificity conferred by base pairing interactions afforded by the ASO with the 
splicing inhibitory effects of the drug, thus obtaining a synergistic effect (upper 
panel). Lower panel: sequence of the 3' end of AdML intron 1 transcript and 
ASOs (BPup: specifically targeting the sequence 5' of the BP -in green-, CTR: 
control oligonucleotide). The BP adenosine is indicated in red. 

 

In vitro A3’ complex formation assays indicated that the inhibitory 

activity of the ASO complementary to the region 5' of the BP can be 

enhanced by conjugation with Sudemycin N (Figures I.B.3A and I.B.3B, 

compare lanes 6-8 with 12-14, corresponding to ASO alone and ASO-

Sudemycin N conjugate respectively). The control ASO, conjugated or 

not with the drug, did not display any effect in these assays (Figures 

I.B.3A and I.B.3B, lanes 3-5 and 9-11). While the conjugated 

oligonucleotides displayed effects at 10-100 fold excess over the target 

RNAs (i.e. at 1 or 10 nM concentration), the non-conjugated Sudemycin 

N displayed inhibitory effects only at much higher (100 µM) drug 

concentrations (Figures I.B.3A and I.B.3B, compare lanes 15 and 16-

17).  

Sudemycin N ASO 

5’-BP 

BP 

[…]caggGTTTCCTTGATGATGTCATACTtatcctgtcccttttttttccacag  AdML  

Sequence of BPup ASO:  
5’AGUAUGACAUCAUCAAGGAAAC3’ 
Sequence of CTR ASO: 
5’UAAAAACAAUGGGGUAUAGUUUCUA3’ 
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Figure I.B.3. IInn  vv ii tt rroo   effects of ASO-Sudemycin N conjugates. (A) 
Phosphorimager picture of electrophoretic separation of H and A complexes 
assembled on AdML full length construct in the presence of non-conjugated 
ASOs (BPup and CTR) or conjugated ASOs (BPup-Sud and CTR-Sud), or 
non-conjugated drugs Sud N and Sud C1 (used as internal control). ASOs 
were added at 100, 10 or 1 molar ratio relative to the target RNA, while drug 
treatments were 100 µM (i.e. 100’000 molar ratio with the RNA). A control 
without ATP (-ATP) was included to document the migration of H complex 
and the lack of formation of A complex. All reactions were treated with 
heparin. (B) Quantification of the results for two independent experiments 
with full length or 3’ intron 1 and exon 2 of AdML. t-test: (* and **: p-value < 
0.01 and 0.001; n.s.: p-value > 0.01). ASOs and conjugates were synthetized by 
Clément Paris. 

 

At a concentration that is highly effective for conjugates (100 nM), the 

drug alone does not induce detectable inhibition of A3’ complex 

formation (Figure I.B.4A). As a confirmation that the synergistic effect 

is due to the conjugation and not to the co-presence of both ASO and 

drug, we cotreated the assembly reactions with the ASO (CTR or BPup) 

and DMSO or Sud N. Only BPup ASO is associated to the reduction of 
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A3’ complex formation, without a detectable difference upon addition 

of DMSO or Sud N (Figure I.B.4B), confirming the hypothesis. 

Targeting specificity was studied by replacing the natural sequence 

complementary to the BPup ASO by the sequence complementary to 

the CTR ASO: under these conditions, inhibition was detected with 

CTR but not BPup ASO (Figure I.B.4C, lanes 3 and 5 versus lanes 4 

and 6). Nevertheless, the conjugate did not display increased activity 

compared to the free ASO (Figure I.B.4C, lane 3 versus lane 5). In 

order to preserve the BP sequence intact, the distance between the 5' 

end of the ASO and the BP was increased by 4 nucleotides in this 

mutant (Figure I.B.4D: the mutation brings the ASO to a 6 nt distance 

from the BP in the CTR -6 mutant, while in wt AdML the ASO BPup’s 

target is 2 nt apart from the BP). We checked the consequences of 

increasing the distance also between BPup complementary sequence 

and the BP (Figure I.B.4E, BPup -6 mutant) and we observed once 

again comparable activities between free ASOs and conjugates (Figure 

I.B.4D, lanes 10 and 12), meaning that the distance increase (and not 

the sequence difference) reduced the inhibitory activity of the conjugate. 

Hence, proper positioning of the drug relative to the BP is critical for 

the efficiency of this strategy. 
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Figure I.B.4. IInn  vv ii tt rroo   effects of ASO-drug cotreatment and of ASO-BP 
increased distance. (A) Phosphorimager picture of A3' complexes assembled 
on AdML 3’ construct in the presence of DMSO, 100 µM or 100 nM Sud N. 
Effects are not detectable at 100 nM, which is the highest concentration tested 
for the conjugates in Figure 3. (B) A3' complexes assembled on AdML 3’ 
construct upon cotreatment with 100 nM ASOs (CTR or BPup) and 100 nM 
Sud N (or same volume of DMSO control). Heparin was added to all the 
reactions. (C) A3' complexes assembled on CTR -6 or BPup -6 mutants upon 
addition of 100 nM ASOs or conjugates. Controls without ATP (-ATP) or 
with water were also performed. All the reactions were treated with heparin. 
(D) Detailed sequence of intronic 3’ end of wt AdML or CTR -6 and BPup -6 
mutants used for Figure 4C. The regions targeted by BPup and CTR oligos are 
shown in green and blue, respectively. The BP position is highlighted in red. 
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Inhibition of AdML intron 1 was also tested in cells transfected with a 

minigene containing AdML pre-mRNA under a CMV promoter. 

However, no effects on splicing of these transcripts were detectable, 

suggesting either poor cell penetration or limited stability of these 

reagents in viable cells.  

While these issues may limit the effectiveness of drug-ASO conjugates, 

our results illustrate the principle that conjugation can enhance the 

splicing inhibitory activity of ASOs if properly positioned relative to key 

splicing signals. More work will be required to test the general 

applicability of the approach and improve its efficiency. 

	
Appendix – Drug-ASO conjugation strategy  

RNAs were synthesized in an automatic oligonucleotide synthesizer 

using phosphoramidite chemistry. The synthesized RNAs were fully 

modified with 2'-OMe groups and phophorothioate internucleotide 

linkages. The RNAs were also derivatized with an alkyne functional 

group at their 5' terminal position to allow conjugation with the azide-

derivatized Sudemycin through click Huisgen cycloaddition. The crudes 

of the conjugation reactions were immediately purified by reverse-phase 

HPLC, aliquoted and directly freeze-dried to prevent their degradation. 

Synthetic procedures were optimized and performed by Clément Paris 

(University of Barcelona). 
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Results 

Part II. Identification of sequence elements determining 

alternative splicing sensitivity to pharmacological inhibition of 

SF3B1 

Key role for MMCCLL11  alternative splicing on cell viability 

MCL1 (Myeloid Cell Leukemia 1) is a protein with anti-apoptotic 

function, often overexpressed in tumors and considered a good target 

for cancer therapy (Glaser et al., 2012; Opferman, 2016; Tiedemann et 

al., 2012; Wei et al., 2012). Due to its rapid turnover both at the protein 

and RNA levels, MCL1 levels are highly affected by transcription and 

translation inhibitors, with toxic effects for tumor cells depending on 

Bclx levels and activity (Wei et al., 2012). MCL1 exon 2 skipping 

generates a pro-apoptotic isoform and therefore promoting this 

alternative splicing event could be a valid strategy to enhance tumor cell 

death (Bae et al., 2000).  

Interestingly, individual depletion of several splicing factors, including 

SF3B1, induces MCL1 exon 2 skipping (Laetsch et al., 2014; Moore et 

al., 2010; Papasaikas et al., 2015). A similar regulation towards the pro-

apoptotic isoform was also reported for SF3B-targeting drugs: indeed, it 

has been proposed that Spliceostatin A induces apoptosis in chronic 

lymphocytic leukemia (CLL) cells mainly through MCL1 

downregulation (Larrayoz et al., 2016), and cell lines resistant to the Bcl-

XL inhibitor ABT-737 reacquire sensitivity when treated with 
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Meayamycin, due to MCL1 splicing regulation and reduction of anti-

apoptotic MCL1 levels (Gao and Koide, 2013). 

Among a panel of alternative splicing events involved in proliferation 

and apoptosis control, several splicing inhibitors most prominently 

affect MCL1 (Papasaikas et al., 2015) (Figure II.1A). While Meayamycin, 

Spliceostain A and Sudemycin C1 share SF3B1 as their cellular target 

(Bonnal et al., 2012), Isoginkgetin’s a splicing inhibitor with antitumor 

effects thought to target a tri-snRNP component and inhibit A to B 

complex transition (O'Brien et al., 2008), also prominently affects 

MCL1 splicing among the selected events (Figure II.1A). In contrast, 

other alternative splicing regulators, like TG003 (CLK kinases inhibitor) 

(Muraki et al., 2004) and Cyclosporin (cyclophillins inhibitor) (Horowitz 

et al., 2002) cause a different and more moderate spectrum of splicing 

changes (Figure II.1A).  

Previous biochemical assays with Adenovirus Major Late promoter 

transcripts showed that Spliceostatin A (SSA) destabilizes A3’ complex 

(i.e. A complex lacking U1 snRNP, since RNAs used for this assay lack 

the 5’ss). The destabilizing effects were detected only in the presence of 

heparin, which, due to the repetitive negative charge of the polymer, can 

mimic the phosphate backbone of RNAs and therefore displace weak 

complexes assembled on RNA (Corrionero et al, 2011).  

In vitro A3’ complex formation assays confirmed that while Sudemycin 

C1 inhibits A3' complex assembly on AdML intron 1 3' splice site 

region in the presence of heparin (as previously reported for 

Spliceostatin A), Isoginkgetin does not inhibit this step, even when high 

amounts of drug and heparin are used in the assays (Figure II.1B). This 
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result is concordant with its role at later stages of spliceosome assembly 

(O'Brien et al., 2008).  

Consistent with the importance of MCL1 levels for cell viability, and 

with the control of MCL1 by alternative splicing, SF3B1 and MCL1 

knockdowns or treatment with Sudemycin C1 resulted in reduced cell 

viability, measured using Resazurin/Alamar Blue assays (O'Brien et al., 

2000) (Figure II.2). Interestingly, even a pulse of as short as 3 h with 

Sudemycin C1 was sufficient to compromise cell's long-term viability 

(Figure II.2, compare upper and lower right panels). This could be 

explained indirectly by induction of irreversible changes in chromatin 

environment by the drug (Convertini et al., 2014) and other splicing 

regulators. It can also mean that, once internalized, Sudemycin C1 is 

persistent in the cells, although this is not concordant with reports 

relative to short cell stability of related drug variants (Convertini et al., 

2014). 

Collectively, these results highlight the sensitivity of MCL1 alternative 

splicing to different types of splicing inhibition (Figure II.1) and the 

importance of this event, as well as SF3B1 activity, for normal 

proliferation of human cells (Figure II.2), but the reason of its strong 

regulation by splicing inhibition is not clear. 
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Figure II.1. Antitumor splicing inhibitors strongly affect MCL1 
alternative splicing. (A) Splicing perturbation profiles of different splicing 
inhibitors. Changes toward inclusion (>0) or skipping (<0) are represented, 
quantified as a robust Z score (Papasaikas et al., 2015), which is considered 
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significant if ≥|2|. Drug treatments were performed in HeLa cells (Sudemycin 
C1: 20 µM, 8 h; Spliceostatin A: 260 nM, 3 h; Meayamycin: 20 nM, 8 h; 
Isoginkgetin: 20 µM, 8 h; Cyclosporin A: 100 µM, 8 h; TG003: 10 µM, 8 h). 
(B) Distinct mechanisms of splicing inhibition by Sudemycin C1 and 
Isoginketin. In vitro A3’ complex formation assay for AdML RNA with the 
indicated concentrations of Isoginketin or Sudemycin C1 and increasing 
concentrations of heparin. Meayamycin and Spliceostatin A were kindly 
provided by Drs Kazunori Koide (University of Pittsburgh) and Minoru 
Yoshida (RIKEN Institute), respectively. 
 

 

 

Figure II.2. MCL1 levels are important to maintain cell viability.  
Viability of HeLa cells was measured using Resazurin assays (O'Brien et al., 
2000) upon MCL1 or SF3B1 knock down by RNAi, using the indicated 
concentrations of siRNAs (left panels) or upon treatment with the indicated 
concentrations of Scudemycin C1, 24, 48 and 72 hours after the different 
treatments. CTRL: scrambled siRNA. 
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Sequence elements 5' of the Branch Point repress drug inhibition 

 

SF3B1 inhibitors Spliceostatin A and E7107 were described to alter the 

balance between alternative U2 snRNA conformations and/or to 

induce interactions of U2 snRNA with non-functional “decoy” 

sequences located 5' of the Brach Point (BP) (Corrionero et al., 2011; 

Folco et al., 2011).  

To further investigate the hypothesis that alternative splicing regulation 

induced by SF3B1-targeting drugs is influenced by the sequence 

environment around the BP sequence, we selected two model 

alternative splicing events: MCL1 exon 2 skipping, based on its strong 

regulation by splicing inhibitors and its important regulatory function 

for cell viability (Figures II.1 and II.2), and PDCD10 exon 7 skipping, 

which is only weakly affected by the drug (Corrionero et al., 2011) 

(Figure II.3A).  

To facilitate the study of sequences that modulate drug sensitivity, we 

used minigene assays in which alternatively spliced genomic sequences 

are expressed under the control of a Cytomegalovirus (CMV) promoter. 

Minigene-specific patterns of splicing are distinguished by RT-PCR 

using oligonucleotides complementary to vector-specific sequences 

present in the primary transcripts. RNAs expressed from these 

minigenes recapitulate the different sensitivity to the drug of the 

endogenous MCL1 and PDCD10 transcripts (Figures II.3C and 4A).  

Recapitulation of PDCD10’s low drug sensitivity (Figure II.3C) occurs 

despite the fact that, in endogenous transcripts, exon 7 skipping causes 

a frameshift that could lead to RNA degradation by Nonsense-Mediated 
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Decay, while NMD cannot play a role for minigene-derived transcripts 

because of the absence of a natural ORF in these RNAs. 

To explore the role of sequences 5' of the BP in Sudemycin C1 effects, 

we first generated three mutants that progressively delete sequences 

upstream of PDCD10 putative BP (Figure II.3B). Each of these 

deletions increased the transcripts’ sensitivity to Sudemycin C1, detected 

as a progressive increment in exon skipping in the presence of the drug 

(Figure II.3C). These results confirm that sequences 5' of the BP can 

strongly influence drug responses and display additive effects.  

We performed A3’ complex formation assays by incubating radioactive 

wt and mutant PDCD10 sequences with HeLa nuclear extracts, in the 

absence or presence of Sudemycin C1 and heparin. Upon heparin 

addition, two complexes formed on the wt transcript (Figure II.3D, 

compare lanes 3 and 4). However, upon drug treatment only the lower 

band is formed, suggesting that alternative complexes can be formed on 

the transcript and only one of them (the upper one) is sensitive to the 

drug (Figure II.3D, compare lanes 4 and 6). On the other hand, 

Sudemycin C1 induces a clear inhibition of the only complex formed on 

PDCD10 transcripts lacking E sequence elements (PDCD10 

ΔE1-E2-E3) in the presence of heparin (Figure II.3D, compare lanes 10 

and 12). This result is compatible with the concept that transcripts 

lacking E elements are more sensitive to Sudemycin C1, as documented 

in Figure II.3C. The results also suggest that the reduced drug sensitivity 

conferred by the E sequence elements is largely due to one of the two 

distinct complexes that can form on these RNAs. 

Examining the sequence of these regions, we noticed that each of them 

includes a sequence motif that resembles the consensus BP “YUNAY” 
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(Gao et al., 2008) followed by a stretch of nucleotides rich in 

pyrimidines (Figure II.3B). These elements are similar to the 

configuration of 3' splice sites, except that they are not followed by the 

AG dinucleotide that marks the 3' end of introns. It was therefore 

possible that the additional BP consensus and/or the pyrimidine-rich 

sequences, repress the effects of the drug. To address these issues, we 

next tested whether the effects of these elements could be transferred to 

other transcripts.  

 

 

 

Figure II.3 (next page). Mapping of sequence elements 5' of the BP that 
repress Sudemycin C1 effects on PPDDCCDD1100  alternative splicing. (A) 
Regulation of endogenous MCL1 exon 3 skipping and PDCD10 exon 7 
skipping by Sudemycin C1 treatment (20 µM for 8 h) in HeLa cells. PDCD10: 
Programmed Cell Death 10, associated to apoptosis regulation. (B) PDCD10 
sequence elements upstream of exon 7. Possible Branch Point (BP) consensus 
sequences are highlighted in bold. (C) PDCD10 sequence elements E1, E2 and 
E3 repress the drug effects in an additive manner (HeLa cells treated with 20 
µM Sudemycin C1 for 8 h, 16 h after transfection). *; **; ***: t-test p-value < 
0.01, 0.001 and 0.0001, respectively. A minimum of three replicates was used 
for each condition. “//” in the scheme indicates the deletion of part of 
PDCD10 intron 6 (since the intron is 7902 nt long, only the first 290 and the 
last 250 were inserted in the minigene, for ease of cloning and efficiency of 
expression). The short bar after the third exon indicates that additional 20 nt 
of the downstream intron were included in the minigene. (D) A3’ complex 
assembly assay using radioactive RNAs encompassing the 3’ end of PDCD10 
intron 6, the whole exon 7 and the first 25 nt of the downstream intron. RNAs 
were incubated under standard splicing conditions with HeLa nuclear extracts 
and reactions were separated on a native gel to detect A3’ and H complexes. 
Sudemycin C1 was added at 5 µM concentration or an equivalent volume of 
DMSO was added as control. Sudemycin C1 used for these and the following 
experiments was kindly provided by Dr. Thomas Webb (St. Jude's Children 
Hospital).  



Results – Part II 

	
	

91 

 

 

  

C 

PDCD10 wt 

% Exon inclusion 
(endogenous transcript) 

BP 

E1 E3 E2 

E1 

E2 

E3 

0 20 40 60 80 100 120 

MCL1 

PDCD10 

1 2 3

1 3

1 2 3
+

6 7 8

6 8

6 7 8
+

*** 

*** 

DMSO 
Sudemycin C1 

% Exon inclusion  
(minigene)

0 20 40 60 80 100 120 

PDCD10 WT 

PDCD10  E1 

PDCD10  E1-E2 

PDCD10  E1-E2-E3 

* 

DMSO 
Sudemycin C1

** 
*** 

TACTTAATTTCTTTCAAATGTAG

BP 

BP 

BP 

 

BP 

 

A B 

CTGATGTTCTTTTCT

CTCACAAATTTCTTTCAAATGT

BP Y-rich
DM

SO
 

-   +   -   + 

Su
d 

C1
5 

µM
 

-A
TP

 

Wt 
PDCD10 

DM
SO

 

-  +   -   + 

Su
d 

C1
5 

µM
 

-A
TP

 

PDCD10 
∆ E1-E2-E3 

A 3’ complex 

H complex 

-A
TP

, 4
°C

 

-A
TP

, 4
°C

 Treatment 

Heparin (5 µg/µl) 

BP BP 

 
D 



Results – Part II 

	

92 

Repressive elements are transferable and resemble BP sequences 

In order to test the relevance of PDCD10 repressive E1-E2-E3 

sequence elements outside of their endogenous context, we inserted 

them 5' of the BP of intron 1 of the highly responsive MCL1 minigene, 

replacing a sequence of similar length located at an equivalent position 

in the RNA. We first verified that deletion of this MCL1 sequence did 

not significantly alter the response to the drug (Figure II.4A, compare 

constructs MCL1 wt vs MCL1 Δ, top two rows) and that insertion in 

this deletion mutant of another sequence further upstream from 

PDCD10 intron 6 did not affect it either (Figure II.4A, compare 

constructs MCL1 vs MCL1 Δ + upstream PDCD10, 2nd and 3th row). In 

sharp contrast, insertion of the E1-E2-E3 element resulted in strong 

inhibition of the MCL1 exon 2 skipping effects of Sudemycin C1 

(Figure II.4A, compare MCL1 vs MCL1 Δ + E3-E2-E1, 1st and 4th row), 

confirming that these sequence elements are necessary and can be 

sufficient to inhibit the effects of the drug on alternative splicing.  

To further dissect the contribution of sequence elements within “E” 

regions, we separately tested the potential effects of BP consensus and 

Pyrimidine-rich sequences discussed above. Remarkably, insertion of a 

BP consensus (CTCTCAC) led to inhibition of the effects of the drug 

almost as strong as the insertion of the E3-E2-E1 elements (Figure 

II.4A, compare MCL1 vs MCL Δ + BP vs MCL1 Δ + E3-E2-E1, 1st, 4th 

and 5th rows). Importantly, deletion of the adenosine in this sequence 

element, which can potentially work as the BP residue for 2'-5' 

phosphodiester bond formation after the first catalytic step, completely 

abrogated this effect (Figure II.4A, compare MCL1 Δ + BP vs MCL1 Δ 

+ decoy, 5th and 6th rows). This result argues that a fully functional BP is 
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required to prevent the effect of the drug, because a non-functional 

decoy BP sequence (able to base-pair with U2 snRNA but inactive for 

splicing) does not prevent (and possibly facilitates) the effects of the 

drug.  

Interestingly, insertion of the sequence TTTCTTTCAAATG also 

resulted in reduced drug effects (Figure II.4A, compare MCL1 Δ with 

MCL1 Δ + Y rich seq, 2nd and 7th rows). The combination of the 

pyrimidine-rich element and the BP consensus (even in a non-natural 

order) resulted in full inhibition of the effects of the drug (Figure II.4A, 

MCL1 Δ + Y rich seq + BP, 8th row), arguing that these elements can 

work in a cooperative fashion to prevent U2 snRNP inhibition by 

Sudemycin C1.  

To further dissect the contribution of the pyrimidine-rich element, we 

noticed that E3 and E1 contain an identical stretch of pyrimidines 

(TTTCTTTC) followed by an identical AAATG sequence (while E2 

contains only a related pyrimidine tract, TTCTTTTC). While insertion 

of a TTTCTTTCT sequence did not inhibit the effect of the drug, 

insertion of a AAATGT sequence did (Figure II.4B, compare MCL1 Δ 

+ TTTCTTTCT vs MCL1 Δ + AAATGT, 2nd and 3th rows). 

Conversely, deletion of this sequence in the PDCD10 minigene leads to 

a significant gain in drug sensitivity (compare PDCD10 wt in Figure 1C 

with PDCD10 Δ CAATGTAG in Figure II.4B), similar to the deletion 

of the complete E1 element (Figure II.3), confirming that this sequence 

does play an important role in limiting drug responses.  

The AAATGT sequence potentially acts as a back-up BP and thus 

contributes to drug resistance. Therefore, we speculate that the role of 
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this sequence is to offer alternative BP sites for efficient splicing of the 

intron even in presence of SF3B-targeting drugs. 

 
 
 
Figure II.4. Drug effects can be attenuated by sequences 5' of the BP 
identified in drug-resistant 3' splice sites. (A) Mapping of sequence 
elements from PDCD10 that inhibit the effects of Sudemycin C1 on MCL1 
alternative splicing. The structure of the transcripts derived from the MCL1 
minigene variants is represented on the left, while the % of exon inclusion of 
minigene transcripts expressed in HeLa cells in presence of 20 µM Sudemycin 
C1 or DMSO control (8 h of treatment, 16 h after minigene transfection) is 
quantified on the right for a minimum of three independent biological replicas. 
Statistical significance refers to results of t-test comparison between 
Sudemycin C1-treated mutated minigenes vs Sudemycin C1-treated wt 
minigenes *; **; ***, n.s.: p-value < 0.01, 0.001, 0.0001 or > 0.01, respectively. 
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MCL1 minigenes carry the complete sequence of the two introns and the 
alternative exon, but only part of exon 1 (i.e. the last 114 bp out of the total 
896 bp) and exon 3 (i.e. the first 97 bp out of 2941 bp), for ease of cloning and 
efficient expression. (B) Minigenes experiments where the second part of E1 
element was deleted (PDCD10 ∆ CAATGTAG, with the putative regulatory 
element highlighted in green). MCL1 minigenes where the sequence upstream 
of the BP was replaced either with the Y-rich sequence from E1 (highlighted 
in italics) or with the A-rich sequence element (highlighted in green) (MCL1 ∆ 
+ TTTCTTTCT and MCL1 ∆ + AAATGT). *, **, ** and n.s.: t-test 
comparison between treated and non-treated minigenes or between mutant 
minigenes vs wt minigenes with the same treatment with p-value < 0.01, 0.001, 
0.0001 or > 0.01, respectively; n = 3. HeLa cells treated with 20 µM 
Sudemycin C1 for 8 h, 16 h after transfection. 
 
 

BP mapping reveals degenerate BP usage and weak BP 

sequences as the basis of MMCCLL11  drug sensitivity  

Given that SF3B1 (i.e. Sudemycin’s target) binds to the pre-mRNA in 

the proximity of the BP (Corrionero et al., 2011; Gozani et al., 1996) 

and that sequences upstream of the BP (which resemble BPs) affect the 

response to Sudemycin C1 (Figures II.3 and II.4), it became important 

to unambiguously determine the sequences in PDCD10 and MCL1 that 

serve as BPs. With this aim we undertook two approaches: i) 

amplification of lariat RNAs derived from splicing of the endogenous 

transcripts in cells, and ii) analysis of the effects of mutation of the 

predicted positions in minigenes. 

For the first approach we isolated total RNA from HeLa cells and 

carried out RT-PCR assays using oligonucleotides annealing 3' of the 5' 

splice site and 5' of the putative BP region, which exploit the capacity of 

reverse-transcriptase to retro-transcribe through a 2'-5' phosphodiester 

bond to generate PCR amplification products specific of lariat RNAs 

that join together the 5' splice site with the BP region (Figure II.5A) 
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(Vogel et al., 1997). The position of the BP can therefore be determined 

by sequencing of the amplification product (Figure II.5A). Because of 

imprecision in reverse transcription through the 2'-5' phosphodiester 

bond, ambiguity of 1-2 nucleotides and mis-incorporation of 

nucleotides in the location of the BP (usually T for the branch A) is 

common using this technique (Conklin et al., 2005; Vogel et al., 1997). 

Using this method, we could confirm Adenosine -25 as the most likely 

BP in PDCD10 intron 6 in K562 cells (a cell line known to accumulate 

lariat RNAs), as predicted from its close resemblance to the BP 

consensus (http://regulatorygenomics.upf.edu/Software/SVM_BP/) 

(Corvelo et al., 2010) and its location relative to the polypyrimidine tract 

/ 3' splice site AG (Figure 5B), while Adenosine -23 seemed to be used 

in HeLa cells, despite the lower base-pairing potential of its surrounding 

sequence with U2 snRNA (Figure II.3B). These PCR products could 

even correspond to a BP in -25 position, with a short insertion due to 

nucleotides mis-incorporation. The BP of this intron had not been 

reported previously. 

In contrast, several potential BPs in the region -19 to -33 of MCL1 

intron 1 were identified in HeLa cells using this technology (Figure 5C), 

possibly including non-adenosine residues, as previously proposed by 

the results of a genome-wide BP mapping approach (Mercer et al., 

2015) and annotated in circbase (a database of circular RNAs, some of 

which are intronic lariats) (Jeck et al., 2013).  

Importantly, no difference in BP utilization was observed in the absence 

or presence of Sudemycin C1 treatment for either PDCD10 or MCL1.  
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Figure II.5. BP mapping of PPDDCCDD1100  and MMCCLL11  transcripts by across 
the lariat RT-PCR. (A) Scheme of the position of oligonucleotides for RT-
PCR assays and expected amplification products (Vogel et al., 1997): external 
primers are represented as blue arrow, nested primers as orange arrows. The 
branch A is often mutated in this assay (as indicated by an asterisk in the 
scheme). (B) BP mapping of PDCD10 intron 6 lariats using two different cell 
lines. Representative electropherograms of different clones of the 
amplification products are shown. 5' terminal GT sequences corresponding to 
the intron 5' end are shown in blue. Vertical bars indicate split between 
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sequences at the 3' end of the intron and the 5' splice site; the split should be 
diagnostic of the position of the BP, with 1-2 nucleotide resolution (Gao et al., 
2008; Mercer et al., 2015). The cell line, the numerical positions of the putative 
BPs (nearest adenosine to the split position), the number of sequenced 
products and the treatment condition are indicated on the right of each result. 
Schemes of base-pairing complementarity with U2 snRNA corresponding to 
the potential BPs are also indicated. siCTRL and siSF3B1: HeLa cells 
transfected with scrambled and SF3B1 siRNAs. (C) BP mapping of MCL1 
intron 1 lariats, carried out in HeLa cells as in (B). Various potential BPs were 
detected, suggesting degenerate BP usage, consistent with a previous report 
(Mercer et al., 2015). The most probable computationally inferred BPs within 
the last 60 nt of the intron are shown (Corvelo et al., 2010): PDCD10 BP 
scoring value svm_scr is 1.34, MCL1 BP scoring value svm_scr is -0.34, 
highlighting the weakness of MCL1 intron 1 BPs. At the bottom of the figure, 
base-pairing with U2 snRNA are shown for positions previously mapped 
(Mercer et al., 2015) and predicted by SVM_BP (Corvelo et al., 2010). A 
mapped BP from a circular RNAs database (http://www.circbase.org/) (Jeck 
et al., 2013) is also shown for MCL1 (hsa_circ_0002364 annotated circular 
RNA). 
 
 
Next we carried out mutational analysis of the predicted BP sequences. 

Adenosine at position -26 of MCL1 intron 1 was found as one of the 

possible BPs (Mercer et al., 2015), but mutation to cytosine affected 

exon inclusion only slightly, consistent with the idea that multiple BPs 

can function at this 3' splice site region (Figure II.5C); the mutation did 

not affect drug sensitivity (Figure II.6, compare MCL1 wt vs MCL1 -26 

mut). In contrast, replacement of the nucleotides around adenosine -26 

by a consensus BP sequence (TACTAAC, known to be the optimal BP 

functional sequence from yeast to mammals) (Zhuang et al., 1989) 

resulted in efficient exon 2 inclusion and, importantly, complete 

resistance to the effects of the drug (Figure II.6, compare MCL1 wt vs 

MCL1 -26 TACTAAC, where the wt CCGTGAG sequence was 

replaced with TACTAAC consensus -BP A is underscored-). These 

results argue that the strength of the BP sequence is a determinant of 

drug response and, consequently, that the presence of multiple, rather 
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weak BPs sequences in MCL1 intron 1 confers sensitivity to Sudemycin 

C1 treatment.   

Several potential BPs were mapped by our RT-PCR approach and by 

previous work (Mercer et al., 2015) to a ACCTGCA sequence element 

located between positions -23 and -17 from the 3’ss (Figure II.5C). 

Interestingly, deletion of this entire sequence element significantly 

reduced the levels of exon inclusion even in control conditions (Figure 

II.6A), concomitantly with activation of a cryptic 3' splice site at 

position +150 within exon 2 (Figure II.6B). This result argues that these 

sequences play an important role in the efficient splicing of MCL1 

intron 1, possibly acting as the main BPs for the formation of lariats 

during its excision. Sudemycin C1 treatment resulted in further 

reduction of exon 2 inclusion, arguing that the drug efficiently inhibits 

both the mutated 3' splice site (using alternative BPs) as well as the 

cryptic 3' splice site activated by the mutation (Figure II.6B). 

MCL1 resistance to drug-induced skipping was mainly induced by an 

optimal BP consensus sequence (TACTAAC, Figure II.6A), but also by 

a BP consensus from PDCD10 E1 element (CTCTCAC, Figure II.4A). 

Deletion of the possible branch Adenosine in this element rescued the 

effects (CTCTCC, Figure II.4A), consistently with a role of this 

Adenosine in splicing catalysis. Moreover, the repression of the effect 

was even stronger if this last consensus was preceded by the second half 

of E1 sequence, switching the two sequence elements 

(TTTCTTTCAAATGT, Figure II.4A). This result indicates that the 

latter might display a synergistic repressive role together with the BP 

consensus for the drug effects. To investigate more in details this effect 

and validate the usage of upstream functional BP sequences in presence 
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of the drug, we focused first on PDCD10 transcript again. Surprisingly, 

the deletion of the mapped BP in position -25 from the 3’ss (which 

would affect also the sequence for a BP in position -23) did not affect 

pre-mRNA splicing, as observed by almost complete exon inclusion, 

independently from drug-treatment (∆ BP-25, Figure II.6D). The same 

was observed by deleting the putative branch adenosine in the first half 

of E1 element (∆ BP-49, with the adenosine highlighted in red in E1 

sequence), consistent with a more prominent role for the downstream 

A-rich sequence AAATGT (Figure II.6D, Figure II.4B). Therefore, 

both MCL1 and PDCD10 cases reveal flexibility for BP selection. 

 

 

 

Figure II.6 (next page). Mutation of MMCCLL11  and  PPDDCCDD1100  BP 
sequences reveals flexibility in BP selection. (A) Percentage of exon 
inclusion of the indicated MCL1 minigenes in the absence or presence of 
Sudemycin C1, as in previous Figures. MCL1 -26 mut indicates A at position -
26 mutated to C; MCL1 -26 TACTAAC indicates substitution of residues 
around A -26 by the BP consensus sequence; MCL1 Δ ACCTGCA indicates 
deletion of residues -23/-17. *** and n.s.: t-test comparison of mutant 
minigenes vs wt minigenes with the same treatment (DMSO or Sud C1) with 
p-value < 0.01, 0.001, 0.0001 or > 0.01, respectively; n = 3. (HeLa cells treated 
with 20 µM Sudemycin C1 for 8 h, 16 h after transfection). (B) Representative 
capillary electrophoresis profile of MCL1 transcript isoforms from a minigene 
lacking the -23/-17 ACCTGCA sequence. Activation of an exonic cryptic 3’ss 
(at position +150 from the conventional one) was observed and confirmed by 
Sanger sequencing (data not shown). (C) 3’ss sequence of the cryptic 3’ss 
reported in B), with the AG dinucleotide highlighted and the computationally 
predicted BP in red (BP scoring value svm_scr: 1.54) (Corvelo et al., 2010), 
suggesting that the BP is stronger than the ones of the conventional 3’ss, 
which scores below 0 (Figure II.5). (D) Minigenes experiments where 
PDCD10 BP A in position -25 or the A within E1 element were deleted 
(PDCD10 ∆ BP-25 and ∆ -49, with the deleted A highlighted in red in E1 
sequence). 
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Comparison between mouse and human MMCCLL11  regulation reveals 

a role for polypyrimidine tracts in modulating drug response 

A relevant insight came from the realization that MCL1 exon 2 is not 

known to be alternatively spliced in mouse cells. Although mouse 

MCL1 transcripts use alternative splice sites within exon 1 (Kojima et 

al., 2010), to date, no exon 2 skipping was annotated in Genome 

Browsers and alternative isoform databases, including UCSC Genome 

Browser: https://genome.ucsc.edu/ (Kent et al., 2002); Ensembl 

Genome Browser: http://www.ensembl.org/ (Stalker et al., 2004); AS-

ALPS: http://as-alps.nagahama-i-bio.ac.jp/ (Shionyu et al., 2009); 

ExonMine: http://www.imm.fm.ul.pt/exonmine/ (Mollet et al., 2010). 

Exon 2 from mouse MCL1 is also absent in lists of exons that are 

alternative across a variety of species and of species-classifying events 

(Barbosa-Morais et al., 2012; Merkin et al., 2012). To explore this 

further, patterns of MCL1 splicing in the absence or presence of 

Sudemycin C1 were investigated using minigenes carrying the relevant 

human or mouse genomic sequences (part of exons 1 and 3, introns 1 

and 2 and exon 2). The analyses were carried out both in human HeLa 

cells as well as in mouse 3T3 cells, to explore the possibility that species-

specific differences in MCL1 alternative splicing regulation were due to 

differences in the splicing machinery of mouse and human cells, rather 

than to differences in cis-acting regulatory sequences.  

The results of these experiments indicate that mouse MCL1 transcripts 

are refractory to the exon skipping effects induced by Sudemycin C1 in 

human MCL1 (Figures II.7A and II.7B). The results were similar in 

human and in murine cells, although the effects of the drug on human 

transcripts were slightly weaker in murine cells (Figures II.7A and 
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II.7B), possibly due to different drug sensitivity among cell lines, or 

among different organisms.  

Next we generated chimeric minigenes where either the region 5' of the 

putative BP (from -104 to -29 bp from the 3’ss, being the putative BP at 

-23 bp) or the entire 3' splice site region (from -104 to the 3’ss, 

including putative BP and polypyrimidine tract) of the mouse transcript 

were replaced by equivalent sequences of the human MCL1 gene. While 

replacement of the region 5' of the BP did not confer drug sensitivity to 

the mouse minigene-derived transcripts, replacement of the 3' splice site 

region did (Figures II.7A and II.7B, compare m-hMCL1 chimeras 1 and 

2).  

To get further insights into the determinants of the drug sensitivity of 

human MCL1 transcripts, we compared the 3' splice site regions of the 

mouse and human genes (Figure II.7C). Three main noticeable 

differences include: a) a longer polypyrimidine tract in the mouse intron, 

b) absence of the ACCTGCA sequence that includes several potential 

BP sequences (as mapped by our and previous work) (Mercer et al., 

2015), and c) a single nucleotide difference at position -29 of the human 

sequence, where a guanosine is replaced by adenosine in the mouse.  

Mutation of G -29 to A in the human minigene resulted in some 

decrease in the effect of Sudemycin C1 treatment (Figure II.7D, 

compare hMCL1 G-29A vs hMCL1 wt in 7A), but the reverse mutation 

(A to G) at the equivalent position of the mouse 3' splice site region did 

not affect drug resistance of the mouse minigene (Figure II.7D, mMCL1 

A-26G).  
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Strikingly, replacement of the polypyrimidine tract of the human 

sequence (Figure II.7C, underlined residues in hMCL1) by the longer 

polypyrimidine tract sequence of the mouse sequence (Figure II.7C, 

underlined residues in mMCL1) conferred strong resistance to the drug 

effects (Figure II.7D, compare hMCL1 mPY with hMCL1 wt in Figure 

7A). Resistance to the drug was maintained even after deletion of the -

23/-17 ACCTGCA sequence (Figure II.7D, hMCL1 mPY Δ 

ACCTGCA), suggesting that the presence of the longer polypyrimidine 

tract suppresses the effects of the drugs in the absence of a cluster of 

BPs found important for the function of the human 3' splice site, 

further arguing for a role of polypyrimidine tract length and/or 

sequence in conferring drug resistance. 

As an additional confirmation of this hypothesis, we took advantage of 

the observation that inclusion of the alternative exon EDB of 

Fibronectin 1 (FN1EDB) was not repressed, but actually enhanced, by 

SF3B1 knock down (Papasaikas et al., 2015). Consistently, Sudemycin 

C1 treatment induces very limited skipping of this exon compared to 

the DMSO control (Figure II.7E). When the 3' splice site region of 

MCL1 intron 1 was replaced by the equivalent region of the intron 

preceding the FN1EDB exon, the chimeric RNA was unresponsive to 

Sudemycin 1 treatment (Figure II.7F). As shown in Figure II.7G, 

FN1EDB is preceded by a very long polypyrimidine tract that positions 

the BP relatively far from the 3’ss, further suggesting that a strong 

polypyrimidine tract confers resistance to SF3B1-inhibitors. 

Collectively, our results indicate that the strength and degeneracy of 

BPs, as well as the length/strength of the polypyrimidine tract are 

determinants of the sensitivity of 3' splice sites to treatment with 
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SF3B1-targeting drugs. Furthermore, the presence of decoy or bona fide 

BP mimics, located 5' of the functional BP, can also modulate drug 

response. Taken together, our results demonstrate that a variety of 

sequence features determine the differential sensitivity of 3' splice sites 

to anti-cancer drugs targeting the spliceosome, to the point that a single 

nucleotide difference can significantly alter their response to these 

compounds. These observations provide the basis to explain why 

splicing inhibitory drugs can have effects on cell proliferation without 

totally blocking the splicing process. 
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Figure II.7. Comparison between mouse and human transcripts 
regulation reveals a role for polypyrimidine tracts in modulating drug 
response. (A and B) Analysis of MCL1 exon 2 inclusion in transcripts derived 
from human (hMCL1) or mouse (mMCL1) minigenes, tested in human (HeLa, 
A) or mouse (3T3, B) cell lines. In chimeric constructs, mouse sequences
where replaced by the equivalent human ones, either 5' of the BP (chimera 1,
positions -104 to -29 from the AG of the mouse minigene were replaced with
sequences -103 to -28 of the human one), or the 3' splice site region (chimera
2, where all the last 103 nt of the intron were replaced with the human one,
adding also the human BP and polypyrimidine tract apart from the whole
sequence added in chimera 1). Cells were treated with DMSO or with 20 µM
Sudemycin C1 for 8 h, 16 h after transfection. **; ***, n.s.: t-test comparison
of Sudemycin C1-treated vs DMSO-treated minigenes with p-value < 0.001,
0.0001 or > 0.01, respectively; n = 3. (C) Comparison of 3’ end sequences of
human and mouse MCL1 intron 1. Underlined residues indicate the
polypyrimidine tracts, G/A difference in the 5' part of the region is indicated
in green and residues indicated in red correspond to the predicted BP (for
mouse MCL1) and mapped BPs (for human MLC1). (D) Polypyrimidine tract
length/sequence contributes to drug sensitivity. Assays as in (A) were carried
out for the indicated mutant constructs: hMCL1 G-29A: human construct
replacing G -29 by A; mMCL1 A-26G: mouse construct replacing the A at the
equivalent position -XX by G; hMCL1-mPy: human construct replacing its
polypyrimidine tract (underscored in C) by the corresponding polypyrimidine
tract in the mouse 3' splice site (also underscored in C); hMCL1; hMCL1 mPy
Δ ACCTGCA: same construct but with deletion of residues -23/-17 of the
wild type human sequence. E) Effects of Sudemycin C1 treatment (20 µM for
8 h) on alternative splicing of endogenous Fibronectin 1 FN1EDB exon. F)
Lack of effects of Sudemycin C1 treatment on MCL1-FN1EDB chimera
minigene in which the 3' 119 bp of MCL1 intron 1 were substituted by the 3'
119 bp of the intron preceding FN1EDB exon Experimental conditions and
analysis of results were carried out as in (A).
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RNA-Seq of Sudemycin C1-treated cells reveals extensive splicing 

and gene expression alterations 

In order to expand the study of sequence features influencing 

Sudemycin C1-induced regulation to a genome-wide level, we 

performed both splicing sensitive microarrays (presented in the 

following section) and RNA-Seq analyses on Sudemycin C1-treated 

samples. Cultured HeLa cells were co-treated with 10 µM Sudemycin C1 

and 2 mM 5-Bromouridine (BrU) for 3 hours. This modified nucleotide 

gets incorporated during transcription and a specific antibody allows the 

isolation of BrU-containing (i.e. recently transcribed) transcripts by 

immunoprecipitation (IP) (Paulsen et al., 2014). Both total RNA and 

BrU-RNA were isolated and deeply sequenced, revealing widespread 

alternative splicing regulation and intron retention (Figure II.8A), as 

well as extensive gene expression changes (Figure II.8C). The number 

of detected changes was lower in BrU-IP RNA, most likely because of 

the lower yield and coverage of RNA-Seq. The majority of transcripts 

with splicing changes displayed changes in a single splicing event (Figure 

II.8B), supporting the idea that specific sequence features confer 

differential sensitivity to the drugs, even for introns from the same 

transcriptional unit. 

Gene ontology analysis (GO) revealed that genes displaying splicing 

changes (Figure II.9) and gene expression changes (Figure II.10) are 

involved in various processes, including cytoskeleton organization, 

macromolecule metabolism, cell cycle and proliferation, transcription 

and RNA processing, pointing towards a relevant role of SF3B1 in the 

control of vital functions.  
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Figure II.8. Summary of RNA-Seq results. (A) Summary of different types 
of splicing changes detected by SANJUAN pipeline (dark blue) and the 
corresponding genes (light blue) in BrU-RNA and total RNA. Alternative 
splicing category includes alternative 3’ss and 5’ss, mutually exclusive exons 
and composite events. (B) Distribution of the number of occurrences (single 
or multiple events per gene) for intron retention and alternative splicing 
changes in BrU-RNA and total RNA. Instances of several retention events in 
the same transcript occur in genes with more than 30 introns, like PLEC 
(coding for structural protein Plectin), FASN (coding for fatty acid synthase) 
and FLNA (coding for actin-binding filamin A protein). (C) Summary of gene 
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expression changes in the two sequencing experiments. Alternative splicing 
analysis was performed with SANJUAN, setting a medium confidence 
threshold (p-value <0.01, Delta PSI > 10%). Gene expression analysis was 
performed with Cuffdiff with a q-value ≤ 0.01 and FPKM ≥ 1 as thresholds. 
 

 
 
Figure II.9. Gene ontology analysis of genes displaying splicing 
changes upon Sudemycin C1 treatment. Only intron retention and exon 
skipping changes were considered for performing GOrilla gene ontology 
analysis using the set of all expressed genes as control list (thresholds: FPKM 
≥ 1, “ok” status). The top 15 categories of enriched processes are shown. 
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Figure II.10. Gene ontology analysis of genes displaying gene 
expression changes upon Sudemycin C1 treatment. Cuffidiff genes with 
FPKM ≥ 1, “ok” status and q-value ≤ 0.01 were considered for performing 
GOrilla gene ontology analysis against the list of all expressed genes (i.e. with 
FPKM ≥ 1 and “ok” status). The top 15 categories of enriched processes are 
shown.  
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Sudemycin C1-induced splicing alterations correlate with 

sequence content and BP features rather than expression levels 

Connections between transcription and splicing are tight and recent 

studies reported that elevated cMYC levels increase the sensitivity of 

cancer cells to splicing inhibition (Hsu et al., 2015; Hubert et al., 2013), 

pointing at the possibility that high levels of transcription require high 

levels of splicing and therefore could be one of the main reasons of 

sensitivity to splicing inhibition. We therefore analyzed whether there 

was a correlation between the levels of gene expression and the 

inhibitory effects of Sudemycin C1 on splicing events within that gene 

(distinguishing between intron retention and other alternative splicing 

categories). Results show that the correlation is very low with both the 

expression levels in DMSO (Figure II.11A) and the change in 

expression among treated and control (Figure II.11B). The same result 

was obtained from total and recently transcribed BrU-labeled RNA 

(Figures II.11A and II.11B), further supporting the concept that 

transcript-specific sequence features are the main determinants of drug 

sensitivity. 

Figure II.11 (next page). Absence of correlation between drug-induced 
splicing effects and gene expression levels. (A) Cuffdiff and SANJUAN 
outputs were merged to calculate the correlation coefficient R (shown in every 
plot) between splicing changes and expression levels of the gene 
corresponding to each altered splicing event. Splicing changes were measured 
as LogRatio (natural logarithm of the ratio among retention levels in treated vs 
control samples) for intron retention (RIs) and as absolute Delta PSI 
(difference in “Percentage of Spliced In” among treated and control) for 
alternative splicing events (AS). Expression levels were measured in DMSO-
treated cells (control dataset) in FPKM units, but similar results were obtained 
in Sudemycin C1-treated cells (all coefficients |R| < 0.2). (B) Same analysis of 
panel (A), but showing correlations with the absolute difference in expression 
between drug- and control- treated cells (|Delta FPKM|), measured as log10. 
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In order to study the role of intronic sequence content for alternative 

splicing regulation upon drug treatment, we first focused on the region 

around the BP that is contacted by SF3B1 (Gozani et al., 1998; Rauhut 

et al., 2016; Yan et al., 2016). We took advantage of two available tools: 

an algorithm for scoring BP and Py-tracts (Corvelo et al., 2010) and a 

list of human BPs mapped in cultured cells (Mercer et al., 2015). We 

focused on the more abundant classes of affected events (i.e. retained 

introns and skipped exons; Figure II.8A), and overlapped them with the 

information about mapped and scored BPs.  

For statistical analysis of affected exon skipping events, we considered 

the upstream introns as the regulated dataset and the downstream ones 

(containing 3’ss that successfully compete for U2 snRNP binding with 

the 3’ss affected by the drug) as the control dataset. For intron retention 

analysis, we compared more retained introns versus all the introns 

within expressed genes (FPKM ≥1) once the regulated introns were 

removed.  

Mapped BPs are only available for a subset of annotated introns. Of the 

56176 mapped BPs (Mercer et al., 2015), about half of them (28672 

BPs, belonging to 25687 different introns) correspond to 

computationally predicted BPs (Corvelo et al., 2010) and could 

therefore be scored (the other half of the mapped BPs could not be 

bioinformatically predicted mainly because they are non-A BPs, they 

belong to non-consensus motifs or they are above the 200 nt distance 

threshold set for the analysis). Therefore, focusing only on sequences 

with mapped and scored BPs reduced the total number of affected cases 

to be considered, as reported in Figure II.12A (to be compared to 

Figure II.8A). However, this selection was important to focus on 
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accurately scored functional BPs and make the downstream analysis 

more robust.  

By comparing the sequence content around mapped BPs (from 30 nt 

upstream to 19 nt downstream of the BP), clear differences between 

affected and non-affected RNA regions were detected (Figure II.12A), 

mainly corresponding to a reduction of T nucleotides upstream and 

downstream of the BP in retained introns (and more moderately in 

introns preceding skipped exons) in BrU-RNA, consistent with our 

previous results arguing that weak Py-tracts are more susceptible to 

drug inhibition (Figure II.5). Similar -albeit less pronounced- differences 

can be detected in total RNA data (Figure II.12B).  
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Figure II.12. Sequence content around mapped BPs for Sudemycin C1-
affected and non-affected RNA regions. (A) Number of sequences with 
mapped and scored BPs used for the analyses in Figures II.12B and II.13A. (B) 
Two sample logos (Vacic et al., 2006) showing changes in nucleotides 
frequencies around mapped and scored BPs between retained introns and 
control datasets, or introns preceding skipped cassette exons and the 
downstream intron, in recently transcribed, BrU-labeled RNA. Positions for 
which the t-test gives p-values < 0.05 are shown above the line if enriched, 
below the line if depleted. The size of the residues is proportional to the 
enrichment/depletion. Consensus nucleotides (i.e. the branch A and the T two 
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nucleotides upstream of it) are represented between the two horizontal axes. A 
black box highlights the position of the BP consensus sequence.  

Consistently, scores corresponding to Py-tract strength, BP sequence 

score and global BP strength, defined by the SVM score (Corvelo et al., 

2010), are generally lower in affected versus non-affected 3'ss regions in 

both retained introns and skipped exons from total RNA-Seq data 

(Figure II.13A). The statistical significance of the differences varies, 

however, probably because the number of sequences analyzed is 

relatively limited, particularly for BrU-RNA, which may be the reason 

why BP scores of 3' ss of retained introns appear to be stronger in Br-

U-labeled RNAs (Figure II.13A).  

The difference in BP strength would be compatible with the presence of 

weaker, possibly rather promiscuous BPs contributing to drug 

sensitivity (like in the MCL1 case, Figures II.3 and II.4), while drug-

resistant sequences could be associated with multiple strong BPs (like in 

the PDCD10 case, Figures II.3 and II.4). We therefore explored the 

possible correlation between the presence of multiple BPs and drug 

sensitivity, but the results were inconclusive (data not shown).  

Collectively, genome-wide and minigenes analyses support the 

hypothesis that BP and Py-tract strength influences 3' ss sensitivity to 

SF3B1 inhibition. These differential effects may be at the basis of the 

antitumor effects of these inhibitors, as supported by GO analyses 

(Figures II.9 and II.10). Consistent with this, GO analysis of genes 

expressed in HeLa cells, ranked according to BP strength (from weakest 

to strongest based on their SVM score), shows that genes containing 

weak BPs are enriched in functional categories related to RNA 

processing, cell cycle, organelle organization, cell adhesion and several 

other vital functions (Figure II.13B). Thus, evolution might have 
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favored the presence of weak BPs in some regulatory transcripts to 

increase the possibility of regulation and/or detecting alterations of the 

splicing machinery (e.g. to induce apoptosis) in particular cell contexts, 

including tumoral transformation (Crews et al., 2016; Hsu et al., 2015). 

 

 

 

 

 

 

 

 

Figure II.13 (next page). Weak BPs and Py-tracts are associated with 
drug sensitivity and are enriched in genes related to RNA processing 
and cell cycle control. (A) Scores corresponding to Py-tract sequence, BP 
sequence and overall BP strength (SVM score). RIs: retained introns (affected 
and control sets in orange and blue, respectively). CEs: cassette exons (introns 
upstream of the regulated exon in orange or downstream control set, in blue). 
N.s.: non-significant t-test (p-value > 0.05); *: p-value <0.01; **: p-value 
<0.001; ***: p-value <0.0001. Borderline p-values (between 0.05 and 0.01) are 
specified. (B) Gene ontology (GO) analysis of genes containing weak BPs. BP 
information was available for around 26000 mapped BPs (Mercer et al., 2015) 
that could be scored by the SVM scoring system (Corvelo et al., 2010). These 
BPs belong to 6800 different expressed genes (FPKM ≥ 1 in DMSO total 
RNA-Seq). BPs were ranked based on their SVM scores and corresponding 
genes were subject to ranked GOrilla GO analysis. Top 15 enriched processes 
are shown.  
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GC content and transcript length differ between Sudemycin C1-

retained and non-retained introns  

The analyses presented above revealed interesting sequence features 

linked to drug sensitivity and prompted us to carry out a second 

approach to have an independent confirmation of the results. RNA-Seq 

data were therefore reanalyzed using a combination of VAST-TOOLS 

software (Braunschweig et al., 2014) and Matt, a toolkit developed by 

André Gohr in Manuel Irimia's group and our group, which was used 

for the analysis of retained introns.  

BP and Py-tracts were scored again with the SVM algorithm (Corvelo et 

al., 2010) and SF1/BBP binding sites (the first step in BP recognition) 

within the 3' 150 intronic nucleotides were also used as a measure of 

potential BP strength (Corioni et al., 2011). All the analyzed features are 

predicted to be weaker in drug-retained introns, which also display a 

tendency for having fewer predictable BPs with score > 0, both in BrU 

RNA (Figure II.14A) and in total RNA (Figure II.15B). These results 

are in agreement with our previous minigene and genome-wide analyses 

(Figures II.3, II.4, II.6 and II.13A). Of notice, several other sequence 

properties (including 5’ and 3’ss strengths) were also found to be 

significantly different, e.g. with weaker splice sites generally correlating 

with higher drug sensitivity (data not shown).  

The analyses also revealed a clear tendency for retained introns and 

neighboring exons being shorter and more GC-rich in both BrU-RNA 

(Figure II.14B) and in total RNA (Figure II.15A). Previous studies 

reported lower nucleosome occupancy for exons neighboring short and 

GC-rich introns. The latter are prone to intron retention, also in 

association with lower recruitment of nucleosomes-associated SF3B1 
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(Amit et al., 2012; Kfir et al., 2015). A different configuration of BPs 

and Py-tracts was also proposed to be linked to GC-content, with C-

rich Py-tracts in GC-rich introns and preferential CUNAN motif for the 

BP (Mercer et al., 2015).  

In general, drug-retained introns also occurred in transcripts with lower 

number of introns (Figure II.14A), suggesting that shorter genes may be 

more susceptible to drug inhibition. Two examples are shown in Figure 

II.14C: PIM1 (Pim-1 Proto-Oncogene, Serine/Threonine Kinase) 

belongs to a known class of short-lived oncogenes, along with MCL1, 

cMYC, cyclin D1 (Schatz and Wendel, 2011), while RRP8 (Ribosomal 

RNA Processing 8 Methyltransferase Homolog) contains one of the top 

regulated introns detected in the analysis. While the first displays higher 

intron retention for very short introns, the second displays more 

widespread intron retention across the transcript, which is more 

prominent in BrU-labeled RNA (partly due -as expected- to the 

isolation of nascent RNA that still has to be fully spliced, as revealed by 

the higher intronic signal in the DMSO control). These examples 

illustrate how drug-induced intron retention can occur in transcripts 

with high biological relevance for cancer cells, as supported also by the 

gene ontology analyses (Figures II.9 and II.10), and how different 

ranges of effects can be achieved within a general tendency for 

retention. 

Our genome-wide data also reveal that SF3B1 inhibition affects other 

categories of transcripts, including a small proportion of snoRNAs (data 

not shown), whose processing is linked to splicing (Hirose et al., 2006), 

and some U12 introns, suggesting that SF3B1 can be affected by the 

drugs also when is part of the U12 snRNP (although indirect effects or 
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crosstalk between U2 and U12 introns cannot be ruled out at this 

point). In any case, the prevalence of intron retention and exon skipping 

upon drug treatment is clear from both the RNA-Seq analysis 

(presented in this section) and the microarray analysis (presented in the 

next section). Collectively, our data support an important role for 

intronic features in Sudemycin C1-induced regulation, with relevant 

consequences for proliferation and apoptosis control. 

 

 

 

 

 

Figure II.14 (next page). Analysis of drug-induced intron retention in 
BrU-RNA reveals anti-correlation with BP and Py-tract strength, and 
roles for GC content and transcript length. (A) Boxplots corresponding to 
the indicated features are shown, with median values shown by the black line 
and mean values by the red dot. Outliers were discarded. RIs: retained introns, 
CTR: non-differentially spliced introns, with absolute PSI difference < 2.5%. 
BP features and SF1 binding motif were analyzed in the 3' 150 nucleotides of 
each intron (introns shorter than 150 nt were not considered), obtaining 3759 
RIs and 5564 CTR. (B) Boxplots corresponding to the indicated features. 
Upstream and downstream exon length: median value of all possible 
upstream/downstream exons. Number of RIs: 4581; number of CTR: 6197 
introns. Statistical significance was evaluated by permutation tests with 100’000 
iterations. ***: p-value < 0.001. Because of the low sequencing coverage, reads 
from the two replicates were merged into one single dataset for the analysis. 
(C) Examples of short transcripts with short affected introns: PIM1 (Pim-1 
Proto-Oncogene, Serine/Threonine Kinase) is a known short-lived 
oncoprotein (Schatz and Wendel, 2011) and RPM8 (Ribosomal RNA 
Processing 8 Methyltransferase Homolog) is among the top differentially 
retained introns detected in the analysis. A zoomed figure for the first three 
introns of PIM1 is also shown. 
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Figure II.15. Analysis of intron retention in total RNA also reveals anti-
correlation with BP and Py-tract strength and roles for GC content and 
transcript length. (A) Boxplots corresponding to the indicated features are 
shown, with median values shown by the black line and mean values by the 
red dot. Outliers were discarded. RIs: retained introns, CTR: non-differentially 
spliced introns, with absolute PSI difference < 2.5%. BP features and SF1 
binding motif were analyzed in the 3' 150 nucleotides of each intron (introns 
shorter than 150 nt were not considered), obtaining 628 RIs and 4568 CTR 
sequences (from a downscaled sample of 5000). (B) Boxplots corresponding to 
the indicated features. Upstream and downstream exon length: median value 
of all possible upstream/downstream exons. Number of RIs: 827; number of 
CTR: 43885 introns, down-samples to 5000. Statistical significance was 
evaluated by permutation tests with 100’000 iterations. ***: p-value < 0.001. 
Because of the high sequencing coverage, reads from the two replicates were 
kept separated and a conservative approach was followed by only considering 
introns passing the threshold for every cross-comparison. 
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Annexed Table II.1. Summary of minigenes results presented in Part II.	
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Results 

 

Part III. Comparison of the effects of different drug variants on 

alternative splicing modulation 

	
 
Similar biochemical mechanism of spliceosome inhibition by 

Spliceostatin A and Sudemycin C1 

 

Spliceostatin A and Sudemycin C1 have related structures, but they 

differ in several chemical groups (Figure III.1A). The two drugs require 

different concentrations to reach comparable effects, as previously 

described for MDM2 splicing modulation (Fan et al., 2011). A 

difference in inhibitory concentrations affecting cultured cells viability 

was also observed (Figure III.1B). 

Previous work showed that Spliceostatin A (SSA) can destabilize 

complex A formation on 3' splice sites observed as an inhibitory effect 

in formation of this complex in biochemical assays which was detected 

only in the presence of heparin (Corrionero et al, 2011). To test whether 

Sudemycin C1 (Sud C1) operates by a similar mechanism, a 

radioactively labeled RNA corresponding to the 3' end of Adenovirus 

Major Later (AdML) promoter intron 1 and second exon was incubated 

in HeLa nuclear extracts in the absence or presence of Sudemycin C1. 

The drug inhibited A3' complex formation only in the presence of 

heparin (Figure 1C: the intensity of Sudemycin C1 A3’ complex is 

comparable to DMSO control in absence of heparin and reduced in 

presence of heparin), as observed for Spliceostatin A (Corrionero et al., 
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2011). Biochemical assays with both drugs in parallel confirmed the 

results of viability assays: Sudemycin C1 inhibitory concentration is at 

least 100-fold higher than for Spliceostatin A (Figure III.1D). Given 

that different concentrations are required for achieving similar 

inhibitory effects both in biochemical assays and in cultured cells, these 

results suggest that small chemical differences in drug structure 

significantly modify the activity of these compounds, as also 

investigated in Part I.A.  

 

Figure III.1. Cytotoxicity and A3’ complex inhibition by Sudemycin C1 
and Spliceostatin A. (A) Chemical formulas of Spliceostatin A and 
Sudemycin C1. (B) Viability assay in HeLa cells after 72 h of incubation with 
the indicated amounts of drug. (C) Spliceosome assembly assay on AdML 
RNA containing the 3' 40 nucleotides of intron 1 and exon 2. H complex: 
heterogeneous ribonucleoprotein complexes. A3' complex: U2 snRNP 
complex on 3’ AdML RNA. DMSO was used as negative control for the 
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treatments. 5 µg/µl heparin were added to the indicated reactions, an 
equivalent volume of water was added to the others. Sudemycin C1 was added 
at 5 µM concentration or an equivalent volume of DMSO was added as 
control. (D) Same assay as in (C), where both drugs were tested in parallel and 
5 µg/µl heparin were added to all the reactions. Sudemycin C1 used for these 
and following experiments was kindly provided by Dr. Thomas Webb (St. 
Jude's Children Hospital) or Kamil Makowski and Mercedes Alvarez 
(University of Barcelona), while Spliceostatin A by Dr. Melissa Jurica (UCSC). 
 

Evidence of differential alternative splicing modulation by 

Sudemycin C1 and Spliceostatin A 

Alternative splicing regulation upon SSA treatment or SF3B1 depletion 

was previously reported (Corrionero et al., 2011). Consistently, our lab 

and others showed that reduced levels or activity of core spliceosome 

components affects alternative splicing without completely blocking 

constitutive RNA splicing (Papasaikas et al., 2015; Park et al., 2004; 

Pleiss et al., 2007; Saltzman et al., 2011; Wong et al., 2013).  

In order to obtain a global picture of alternative splicing regulation 

induced by SSA and Sudemycin C1, we carried out splicing-sensitive 

microarray analyses of RNAs isolated from HeLa cells treated with the 

drugs using the HJAY Affymetrix platform. We compared these results 

with those corresponding to depletion of SF3B1 using two different 

siRNAs  (Corrionero et al., 2011). The two SF3B1 depletion conditions 

(siRNA3 and siRNA5) resulted in very similar gene expression (60-70% 

overlap) and splicing changes (around 70% overlap).  

The array analysis detected around 10’000 gene expression changes 

upon SF3B1 knockdown, 7’000 upon Sudemycin C1 treatment and 

4’000 upon SSA treatment (Figure III.2A, left panels). While around 

2’100 alternative splicing changes were found to be induced by SF3B1 



Results - Part III 

	
	

130 

knockdown and 1’500 upon Sudemycin C1 treatment, only 282 were 

observed upon SSA treatment (Figure III.2A, right panels). Therefore, 

under these experimental conditions, SSA induced a more limited 

spectrum of gene expression and -particularly- splicing alterations 

compared to Sudemycin C1. 

Around 57% of the alternative splicing changes detected upon 

Sudemycin C1 treatment were also detected upon SF3B1 knockdown 

(Figure III.2B), while only 33% of SSA-induced changes were also 

observed upon SF3B1 knockdown (Figure III.2B). Remarkably, despite 

the structural similarity between SSA and Sudemycin C1 (Figure III.1A) 

and their similar biochemical mechanism of action (Figure III.1D), only 

28% of the alternative splicing changes induced by SSA were also 

observed upon Sudemycin C1 and, similarly, only 5% of the events 

affected by Sudemycin C1 treatment were also observed upon SSA 

treatment (Figure III.2B). These results argue that structurally similar 

drugs can elicit a very different landscape of alternative splicing 

alterations.  

Analysis of genes with alternative splicing changes and gene expression 

changes revealed a limited overlap between the two categories (Figure 

III.2C), consistent with the possibility that the drugs affect at least two 

different aspects of gene regulation, either as indirect consequences of 

the splicing changes or in independent ways, as previously reported 

(Convertini et al., 2014). At last, pathways analysis shows that SF3B 

inhibition induces alterations of cancer-related processes, including p53 

signaling, RNA metabolism, apoptosis, cell cycle the spliceosome itself, 

among several affected ones (Figure III.2D), highlighting a potential 

role of these processes in the antitumor effects of the drugs. 
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Figure III.2 (previous page). Evidence of differential Alternative 
Splicing regulation by Sudemycin C1 and Spliceostatin A. (A) Summary 
of Gene Expression (GE) and Alternative Splicing (AS) changes detected by 
hybridizing HJAY microarrays platforms with the different samples. Events 
were categorized in different classes of confidence, based on the concordance 
of different probes and their p-values. All events are summarized here, 
including high, medium and low confidence. Events with higher inclusion 
were generally of low confidence and prone to be artifacts, sometimes due to 
retention of neighboring introns rather than increased exon inclusion. Total 
numbers of events detectable with the HJAY microarray platform are also 
indicated. (B) Venn diagram showing the overlap of alternative splicing 
changes induced by Sud C1 (20 µM, 8 h), SSA (260 nM, 3 h) or SF3B1 
depletion (60 nM siRNA, 72 h) in HeLa cells. The union of the changes 
induced by the two SF3B1 siRNAs was considered for this comparison. The 
diagram refers to all the splicing changes types detected by the platform, 
without considering the direction and the intensity of the change. Exons 
affected by more than one type of event were counted just once for this 
analysis, so that total numbers of changes are a bit lower than in panel A. (C) 
Overlap of genes with AS changes and GE changes. The total refers to genes 
with detected splicing changes, of which some are also up- or down-regulated, 
and some have no change at the level of gene expression. (D) KEGG 
pathways analysis on genes affected at AS level in at least two different 
conditions among SSA, Sud C1 and SF3B1 k.d. Top 15 pathways are shown. 
Differential events were not sufficient to get differential pathways 
enrichments. 

 

Validation of differential alternative splicing modulation by the 

two drugs 

To validate the important conclusion that SSA and Sudemycin C1 can 

display both similar and distinct effects on alternative splicing, we 

carried out RT-PCR assays focusing on events predicted to display 

differences in each category. Thus, we could validate that skipping of 

MCL1 exon 2 was similarly induced by the two drugs (Figures III.3A-B, 

top upper panel), while skipping of PDCD10 exon 7 was more affected 

by Sudemycin C1 (Figures III.3A-B second panel from top), skipping of 

ARRDC3 exon 3 was significantly more affected by SSA (Figures 
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III.3A-B, third panel from top), and in the case of OGT exon 7, SSA 

induced an apparent increase in exon inclusion while Sudemycin C1 

induced exon skipping (Figures III.3A-B, lower panel). While MCL1, 

OGT and ARRDC3 alternative splicing events were selected from 

changes detected with the microarrays, PDCD10 was selected as 

previously reported target of SSA (Corrionero et al., 2011), further 

studied in Part II (although many other events with stronger response 

to Sudemycin C1 could be validated).  

Taken together, the results of Figures III.1 to III.3 reveal that, despite 

their structural similarities and similar biochemical properties, SSA and 

Sudemycin C1 display a distinct profile of splicing effects, both in terms 

of the number of splicing changes elicited and in terms of the relatively 

limited overlap in their targets. 

 

Figure 3. Validation of comparable and differential alternative splicing  
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events induced by SSA and Sudemycin C1. (A) RT-PCR products of a 
common target of Sud C1 and SSA (MCL1) and three differential ones 
(PDCD10, ARRDC3 and OGT), run in polyacrylamide gel. (B) RT-PCR 
products were quantified by Image J. 

 

Some drug differences are maintained in recently transcribed 

RNA 

Considering that regulation of splicing isoforms in living cells is 

complex and their steady-state levels can be influenced by indirect 

effects (e.g. splicing-related changes in expression of splicing, mRNA 

transport or stability factors) as well as by effects of the drugs on 

various mechanisms of gene expression, we focused on the analysis of 

splicing effects in recently transcribed RNA. This was achieved by 

feeding cells with 5-Bromouridine (BrU) for the time of drug treatment 

(3 hours), isolating BrU-containing RNAs by IP (immunoprecipitation) 

with specific antibodies against this modified nucleotide and analyzing 

patterns of alternative splicing in this recently-transcribed RNAs by RT-

PCR. Treatment concentrations were optimized to give a similar extent 

of MCL1 alternative splicing regulation in 3 h, using this event as 

reference for calibrating the treatments (Figure III.4).  

The results indicate that drug-induced MCL1 exon 2 skipping is more 

pronounced in BrU pulse-labeled RNA than in steady state (Figure 

III.4), arguing that the drugs directly modulate MCL1 splice site choice, 

at a comparable extent (Figure III.4).  

With these treatment conditions, skipping of OGT exon 7 was induced 

by Sudemycin C1, but no change was detected with SSA (Figure III.4), 

while PDCD10 transcript behaved similarly in both treatments (Figure 
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III.4). This result, contrasting with Figure III.3, suggests that some 

events (like OGT and PDCD10) might be very sensitive to drug 

concentration or influenced by other confounding factors. Indeed, 

several of these alternatively spliced isoforms (including those from 

PDCD10, ARRDC3 and OGT) may undergo Nonsense-Mediated-

Decay, which can contribute to differential stability of RNA isoforms. 

Nevertheless, differences in ARRDC3 regulation by Sudemycin C1 and 

Spliceostatin A are consistent among several experimental conditions 

and titration experiments and are confirmed also by BrU-IP (Figure 

III.4). 

 

Figure III.4. Some drug differences are kept in recently transcribed 
RNA. RT-PCR of total RNA (Input) and recently transcribed RNA isolated 
by BrU RNA IP, run and quantified by capillary electrophoresis (Labchip). 
Treatments: 5 nM SSA, 10 µM Sud C1 for 3 h in HeLa cells. Conditions were 
optimized to obtain a similar condition to start with, as seen by considering 
MCL1 alternative splicing as reference event.  
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RNA-Seq analyses reveal distinct profiles of intron retention 

induced by different drugs  

Given the restriction of splicing sensitive-microarrays to annotated 

alternative splicing patterns and the very limited detection of intron 

retention events, we analyzed drug-treated samples by RNA-Seq. In 

addition to the analysis of Spliceostatin A and Sudemycin C1, we also 

included Sudemycin K, the highly active structural variant described in 

Part IA. 

Both total RNA and BrU-RNA were sequenced at a depth of 150 and 

30 million reads/sample respectively and a list of retained introns was 

generated using VAST-TOOLS analysis software (Braunschweig et al., 

2014). Heatmaps reflecting the extent of intron retention for each 

intron in at least one condition show clear clustering of Sudemycin C1 

and Sudemycin K, while Spliceostatin A induces a higher number of 

changes, which are often clearly distinct to those induced by the other 

two drugs. Similar results are observed for BrU-RNA (Figure III.5A) 

and total RNA (Figure III.5B). Indeed, in both analyses, clusters of 

introns retained upon treatment with each of the drugs, as well as 

introns retained predominantly upon SSA treatment, are visible. The 

converse category (intron retention upon Sudemycin C1 and K and 

efficient splicing upon SSA treatment) is less prevalent but also detected 

(see heatmaps for each condition in Figure III.6). 

The higher prevalence of intron retention detected with SSA might 

suggest that the treatment conditions with this drug were more drastic 

than for the other two drugs. It is important to point out, however, that 

each drug treatment was optimized to induce comparable effects in 

MCL1 alternative splicing regulation and also similar cytotoxicity and 
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biochemical activities. Furthermore, the three drugs induced a similar 

number of exon skipping events (SANJUAN analysis detected around 

4000 events for total RNA and 200-300 for BrU-RNA, with numbers 

coming from Sudemycin C1 or K treatments slightly higher than the 

ones corresponding to SSA). 

Next, we compared sequence features of introns retained upon each 

treatment, or features of introns commonly retained by each of the 

three drugs (by Matt pipeline, as already employed in Part II). The 

results confirmed that retained introns are generally shorter, more GC-

rich and contain weaker BPs compared to non-retained introns (Figure 

III.7), as reported in Part II for Sudemycin C1. However, these 

tendencies are less marked for SSA-regulated introns (Figure III.7), 

consistent with the more prevalent and extensive intron retention 

observed upon treatment with this drug. In contrast to Sudemycins C1 

and K, SSA may simply display higher affinity for SF3B1 or induce a 

different conformation in the protein, less sensitive to the influence of 

neighboring sequences. 

Taken together, these results support the idea that structural differences 

between drugs lead to distinct effects on the splicing machinery and 

consequently different splicing regulation outcomes. Consistent with 

this concept, Sudemycin K and Sudemycin C1, which differ exclusively 

in the replacement of an oxygen (ester -COO-) by a nitrogen-hydrogen 

(amide -CONH-) display far more similar effects than Spliceostiatin A, 

which differs from Sudemycins by the presence of an oxygen in the 

ciclohexane moiety, two hydroxyl groups and by the presence of a 

number of additional chiral groups (Figure III.6C).  
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Figure III.5. Distinct profiles of drug-induced intron retention events by 
Spliceostatin A and Sudemycins C1 and K. Only introns with Delta PSI ≥ 
25% in at least one condition were considered for the analysis. Drug 
treatments: 5 nM SSA, 10 µM Sud C1 and 2 µM Sud K. All treatments were 
performed in parallel and lasted 3 h. (A) Heatmap from BrU-RNA data. Only 
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one value of intron retention per treatment is presented because the low 
coverage forced us to merge reads from duplicates. Categories of introns 
behaving similarly (“ALL”) or with distinct response to specific drugs (“SSA” 
or “C1/K”) are indicated to the right of the heatmaps. (B) Heatmap as in (A) 
for total RNA data. Intron retention changes involving different cross-
comparisons between drug-treated replicas and control replicas are shown.  

 

Figure III.6. Examples of distinct effects of Spliceostatin A vs 
Sudemycins on intron retention. Heatmaps corresponding to introns 
retained upon treatment with Sud K and Sud C1 and less affected upon 
treatment with SSA (with Delta PSI ≥ 25% upon Sud K/C1 treatment and < 
25% upon SSA treatment) are shown for BrU-RNA (A) and for total RNA 
(B). (C) Comparison of drugs’ structures. 
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Figure III.7. Analysis of sequence features of drug-retained introns in 
BrU-RNA and total RNA using VAST-TOOLS and Matt. Boxplots 
corresponding to the indicated features are shown, with median values 
indicated by the black line and mean values by the red dot. Outliers were 
discarded. Introns retained upon each of the different treatments (“SSA”, 
“Sud C1” or “Sud K”) or in all of the treatments (“ALL”) were considered for 
the analysis. RIs: retained introns, with PSI difference ≥ 25%, CTR: non-
differentially spliced introns, with absolute PSI difference < 2.5% (or 5% for 
“ALL” in BrU-RNA analysis). BP features and SF1 binding motif were 
analyzed in the 3' 150 nucleotides of each intron (introns shorter than 150 nt 
were not considered). Statistical significance was evaluated by permutation 
tests with 100.000 iterations. ***: p-value < 0.001; **: p-value < 0.01; n.s.: p-
value > 0.05. Because of the low sequencing coverage, reads from the two 
replicates were merged into one single dataset for the analysis of BrU-RNA. 
Number of retained introns from total RNA: 609, 3367, 827, 1424 from all 
treatments, SSA, Sud C1, Sud K respectively (454, 2744, 628 and 1114 for BP 
analysis); number of control introns from total RNA: 26462, 32526, 43885, 
42862 for the four categories, down-sampled to 5000 (obtaining 4597, 4605, 
4568 and 4574 introns for BP analysis). Number of retained introns from 
BrU-RNA: 2137, 11311, 4581 and 3862 from all treatments, SSA, Sud C1, Sud 
K respectively (1714, 9791, 3759 and 3196 for BP analysis); number of control 
introns from total RNA: 2098, 2999, 6197 and 7252 for the four categories 
(1860, 2671, 5564 and 6486 for BP analysis). 
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Materials and Methods 

 

Drug treatments 

Meayamycin was kindly provided by Dr. Kazunori Koide (University of 
Pittsburgh) Spliceostatin A by Dr. Melissa Jurica (UCSC), Sudemycins 
C1, E and F by Dr. Thomas Webb (St Jude's Children Hospital). These 
and other Sudemycin variants were also synthesized and provided by 
our collaborators Drs. Kamil Makowski, Fernando Albericio and 
Mercedes Álvarez (Universidad de Barcelona). TG003 and Cyclosporin 
A were purchased from Sigma (T5575 and 30024) and Isoginkgetin 
from Millipore (416154). Drugs were dissolved in DMSO and added in 
the culture medium or in the reaction mixes at the concentrations and 
times indicated for each experiment. 

Cell culture 

HeLa and NIH-3T3 cells were cultured in Glutamax Dulbecco’s 
modified Eagle’s medium supplemented with 10% fetal bovine serum 
and penicillin/streptomycin antibiotics (500 u/ml penicillin; 0.5 mg/ml 
streptomycin). Cells were maintained at 37°C in BINDER incubators 
under 5% CO2.  
According to the experimental needs, different seeding conditions were 
followed. In general, HeLa and NIH-3T3 cells were plated the day 
before the experiment in the following amounts: 800’000 in 6 cm 
dishes, 250’000-300’000/well in 6-wells plates, 80’000/well in 24-wells 
plates, 30’000/well 48-wells plates, 10’000/well in 96-wells plates for 
HeLa cells and 400’000/well in 6-well plates, 100’000/well in 24-wells 
plates for NIH-3T3 cells. 

siRNA and plasmids transfection 

For RNA silencing experiments, cells were reverse transfected with 
specific siRNAs. Briefly, cells were added to a previously incubated 
mixture containing the siRNA of interest (for SF3B1 depletion: 60 nM 
stealth siRNA #3, 5’-GACAGCAGAUUUGCUGGAUACGUGA-3’ 
or stealth siRNA #5, 5’-CCCUGUGGCAUUGCUUAAUGAUAU-3’ 
from Invitrogen; for MCL1 depletion: 50 nM Mission siRNA 
SASI_Hs01_00162657-5’-GUGUUAAGAGAAGCACUAA[dT][dT]-3’ 
from Sigma-Aldrich) and Lipofectamine RNAiMAX (Life 
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Technologies) following the manufacturer’s recommendations.  
Plasmids were reverse transfected following a similar procedure, but 
using Lipofectamine 2000 reagent (Life Technologies). RNA was 
extracted 72 and 24 h post-transfection, respectively. Before samples 
collection, cells were washed once with PBS and frozen. 

RNA extraction and RT-PCR 

mRNA was extracted using oligo-dT-coated 96-well plates (mRNA 
catcher PLUS, Life Technologies) and total RNA using Maxwell 
RNAeasy kit (Promega), following the manufacturers’ instructions.  
One third of purified poly(A) mRNAs was reverse transcribed in a 40 µl 
volume with 0.25 µl of Superscript III (LifeTechnologies), while 100 ng 
of total RNA were reverse transcribed in a 20 µl volume and 0.5 µl of 
Superscript III. Reverse transcription was carried out with 2.5 µM oligo-
dT (Sigma-Aldrich) and 250 ng of random primers (Life Technologies) 
following the manufacturer’s recommendations. 
PCR reactions were carried out using GoTaq enzyme (Promega) in 25 
µl reactions with 1-5 µl of previously synthesized cDNA and 30-40 
cycles of amplification (final reactions contain 1X GoTaq Green 
Reaction buffer, 1.75 mM MgCl2, 1 µM primers, 100 µM dNTPs, 0.5 u 
of enzyme). PCR cycling was performed in Dyad 2 thermal cyclers (Bio-
Rad) with the following parameters: initial incubation at 95°C (3’), 30-40 
cycles of 95°C (30”), 60°C (30”), 72°C (60-90”) and a final incubation at 
72°C (1’). 
Primers for semi-quantitative RT-PCR amplification were designed to 
have a melting temperature around 60°C and to amplify endogenous 
targets in a range between 120 and 700 bp (primers are listed in Table 
1). They were designed to anneal to constitutive exons flanking the 
alternative one. For amplification of minigene-specific transcripts, 
oligonucleotide primers complementary to transcribed regions within 
the vector were used (PT1 and PT2, specified in the primers list). In 
these cases, specific amplification of endogenous transcripts was 
achieved using primers complementary to regions not included within 
the minigene (e.g. constitutive exons adjacent to the sequence included 
in the minigene). 

Cytotoxicity assays 

1’000 or 2’500 HeLa cells/well were seeded in 96-wells transparent 
plates the day before treatment with drugs, control vehicle or any other 
experimental condition to be tested. 20, 44 and 68 h after treatment, cell 
medium was replaced with medium containing 10 µM Resazurin and 
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cells were incubated at 37°C for 4 h. Fluorescence was measured with 
an Infinite 200 PRO series multi-plate reader (TECAN) with 530 nm 
and 590 nm, as fluorescence excitation and emission wavelengths, 
respectively. Measurements were taken from the bottom of the plate, 
with an optimal gain and one value per well. 
IC50 values were calculated from the dose-response curve analysis using 
GraphPad Prism 6.01 by interpolation of 50% viability values. 

Minigene transfection assays 

Genomic sequences of interest were cloned under a Cytomegalovirus 
Promoter in a pCMV56 expression vector (Clontech) between KpnI 
and NotI restriction sites. Inserts span the whole regulated cassette 
(upstream exon and intron, regulated exon, downstream intron and 
exon and possibly 25 additional intronic nucleotides) flanked by two 
specific sequences (PT1 upstream of the cassette and PT2 reverse 
complement downstream), which serve to amplify minigene-specific 
transcripts with PT1 and PT2 primers because they do not amplify any 
sequence from the mammalian cells lines used. The middle part of very 
long introns was deleted for improving cloning efficiency.  
Mutations were introduced by Gibson cloning (Gibson et al., 2009), 
following the instructions from Gibson Assembly Master Mix kit 
(NEB). In short, overlapping PCR amplicons containing the mutation 
at their boundaries (which was included as a mismatch in the 
amplification primers) were inserted into a vector prepared by 
restriction enzyme digestion or by PCR, containing overlapping flanking 
sequences. Gibson reaction master mixes, provided by the CRG Protein 
Technologies Unit, were then used: briefly, 50-100 ng of vector and 1-5 
µl of DpnI-digested, unpurified PCR-products were mixed with 10 µl of 
2X Gibson mix to get a final reaction volume of 20 µl. Reactions were 
incubated for 1 h at 50°C, shortly frozen and transformed in XL1-Blue 
competent bacteria. Assays were performed using HeLa cells seeded in 
48-wells plates (30’000 cells/well) or 96-wells plates (10’000 cells/well) 
and transfected with 3 or 1.5 ng of minigene/well and 0.2 or 0.1 
Lipofectamine 2000/well in 200 or 100 µl Opti-MEM/well, 
respectively. 100 ng/well of pBluescript plasmid were co-transfected 
with the minigenes to increase transfection efficiency. NIH-3T3 cells, 
were transfected in 24-wells plates (with 25 ng of minigene, 500 ng of 
pBluescript and 0.5 µl of Lipofectamine 2000 per well). Drug treatments 
were performed after ON transfection in 200, 100 or 50 µl of total 
medium for 24-, 48- ad 96-wells plates respectively. 
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Polyacrylamide gel electrophoresis (PAGE) and capillary 
electrophoresis 

PCR products were resolved by vertical electrophoresis in 6% non-
denaturing polyacrylamide gels (gels size: 8.3 x 7.3 x 0.075 cm) run in 
1X TBE (89 mM Tris base, 89 mM Boric acid, 2 mM EDTA) at 200 V 
for 25’. Gels were stained with 1X GelRed stain (Biotium) and 
visualized with a GelDoc transilluminator (Bio-Rad). Band intensities 
were quantified using ImageJ software (https://imagej.nih.gov/ij/) and 
subtracted of the blank value coming from an empty part of the image. 
Alternatively, high throughput capillary electrophoresis measurements 
for the different splicing isoforms were performed using a Labchip GX 
Caliper workstation (Caliper, Perkin Elmer) and a HT DNA 5K 
LabChip chip (Perkin Elmer). Briefly, PCR products were diluted in a 
minimum of 40 µl in twin.tec 96-wells plates (Eppendorf) and separated 
with high sensitivity and resolution in a semi-automatized way. In this 
case, bands were quantified based on estimation of their nanomolar 
content with LabChip GX software (version 3.0). 

IInn  VViittrroo  Transcription  

DNA templates for in vitro transcription were generated by PCR, 
separated in 1.5% agarose gels containing 1X GelRed (run in TBE 1X 
at 100 V for 45’) and gel-purified with QIAquick Gel Extraction Kit 
(Qiagen). PCR forward primers contain a T7 promoter followed by 
three Gs to enhance transcription efficiency at the beginning of the 
transcript (gctaatacgactcactataggg), followed by the transcript-specific 
forward primer sequence (primers are listed in Table 1). 
Radiolabeled RNAs were transcribed using T7 RNA Polymerase 
(Promega) under the following conditions: 4 µl 5X Transcription 
Buffer, 2 µl DTT, 0,5 µl (20 u) RNase inhibitor RNasin (Promega), 4 µl 
2,5 mM ATP/GTP/CTP, 2,4 µl 100 µM UTP, 200 ng template DNA, 1 
µl enzyme (20 u) and 1-5 µl of radiolabeled alpha-32P-UTP. Reactions 
were performed in a final volume of 20 µl and incubated at 37°C for 2 
h. RNAs were purified by gel filtration using Sephadex G-50 columns 
(GE Healthcare). 
After quantifying the cpm/µl using a liquid scintillator (Beckman beta 
counter), the RNA specific activity was calculated using the following 
formula: 
cpm/fmol = (µCi/pmol) x ([radioactive UTP]/[cold UTP]) x (number 
of Us), where the (µCi/pmol) is the specific activity of the radionuclide 
used and the cpm were estimated to correspond approximately to 1 
million per µCi. 
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Non-labeled RNAs were transcribed similarly but with 4 µl of 2.5 mM 
mix of the four NTPs. 
Products were mixed with a 2X loading dye (95% formamide, 0.025% 
xylene cyanol, 0.025% bromophenol blue, 18 mM EDTA, and 0.025% 
SDS) and boiled for 1’ at 90°C.  
Products up to 500 nt were checked in denaturing 8% urea-
polyacrylamide vertical gels (gels size: 8.3 x 7.3 x 0.075 cm) run in 1X 
TBE at 180 V for 30’. Larger products were separated in 1% agarose gel 
(run in TBE 1X at 100 V for 45’). Cold transcripts were visualized by 
GelRed staining, while radioactive transcripts were visualized by 
Phosphorimager screens (after a drying step for agarose gels). 

Spliceosome A3' complex formation assay 

This assay was carried out as previously described (Corrionero et al., 
2011). Each splicing reaction contained 1 µl of RNA mix (premix for 10 
reactions: 100 fmol RNA (corresponding to transcripts covering the 3' 
end of intronic regions and some nucleotides of the downstream exon), 
4 µl creatine phosphate 0.5M, 1 µl ATP 100 mM, 1 µl MgCl2 270 mM, 
up to 10 µl with Buffer D with 0.1M KCl and 1mM DTT (freshly 
added), 3 µL of HeLa nuclear extracts (Cilbiotech), 1µl of drug or 
DMSO, 2 µl of 15% polyvynil alcohol, prewarmed at 30°C, and Buffer 
D 0.1M KCl up to 9 µl, to obtain standard splicing conditions (3 mM 
MgCl2, 1.1 mM ATP, 22 mM creatine phosphate, 1.67%polyvinyl 
alcohol). ATP and creatine phosphate were replaced with Buffer D 0.1 
M KCl for the –ATP control.  
Buffer D contains 20 mM HEPES-KOH pH 7.9; 0.2 mM EDTA, 20% 
glycerol, 1 mM DTT, 0.01% NP40, complemented with 0.1 M KCl and 
1 mM DTT (freshly added). 
The reactions were set up in a 48-wells microplates and incubated at 
30°C for 15’. Subsequently, 5 mg/ml heparin and 2.2 µl of 6x DNA 
loading dye (20 mM Tris-HCl at pH 7.5, 0.25% bromophenol blue, 
0.25% xylene cyanol, 30% glycerol) were added and the reactions were 
incubated for 10’ at room temperature. The products were subsequently 
loaded on a 1.5% low-melting agarose (Invitrogen) gel in 50 mM Tris 
base and 50 mM glycine buffer for 90’ at 4°C and run at 75 V. Gels 
were fixed in 10% methanol and 10% acetic acid for 10’ at room 
temperature, dried for at least 3 h at 50°C and exposed overnight to a 
Phosphorimager screen. The intensity of the band corresponding to 
complex A3' over the signal of the whole well was measured by ImageJ 
and normalized to the control condition (after subtracting the 
background signal from each measurement).  
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Microarray analyses 

Quality control by Bioanalyzer (Agilent) was performed to ensure that 
the RNA integrity number (RIN) was higher than 7.6. RNAs from 
triplicates of each condition were hybridized to Affymetrix Human 
Exon Junction Arrays (HJAY). These platforms carry 5’235’274 probes 
gathered in 315’137 exon probesets and 260’488 junction probesets. 
They cover 13’150 cassette exons, 6’506 alternative 5'/3'ss, 1’145 
mutually exclusive exons. RNA hybridization and data analysis were 
performed by GenoSplice (Paris). 
 

BrU-IP and RNA-Seq analysis 

HeLa cells (0.8 million in a 6 cm plate) were co-treated with 2 mM BrU 
(5-Bromouridine, Sigma-Aldrich) and 10 µM Sudemycin C1 for 3 hours. 
RNA was extracted with the Maxwell RNAeasy kit (Promega). Total 
RNA was kept as input and for standard RNA sequencing. 10 µg of it 
were immunoprecipitated with a specific anti-BrU mouse antibody 
(B2531, Sigma), as previously described (Lin et al., 2008) but without 
tRNA addition.  
Briefly, 2 µl of antibody were nutated with 20 µl Protein G Dynabeads 
(Invitrogen) per sample for 1 h at 4°C in 1 ml RSB-100 buffer (10 mM 
Tris-HCl, pH 7.4, 100 mM NaCl, 2.5 mM MgCl2 and 0.4% (v/v) Triton 
X-100). After three washes of the beads with 1 ml of RSB-100 buffer, 
beads were resuspended in 150 µl RSB-100 with 40 U RNasin 
(Promega). RNA was incubater for 1’ at 80°C, added to the beads and 
nutated for 1 h at 4°C. After three washes with 1 ml of RSB-100 buffer, 
the RNA bound to the beads was eluted by direct addition of 300 µl 
RLT buffer (Qiagen RNeasy mini kit). The mix was heated at 80°C for 
10’ and the supernatant was purified with the RNeasy mini kit (Qiagen).  
RNA-Seq was performed at CRG Genomics Unit by Illumina HiSeq. 
Stranded mRNA-seq libraries were prepared and 2 samples/lane were 
sequenced with 2x125 bp paired-end reads (to get around 150 million 
read pairs per sample). Duplicates were sequenced for each condition. 
For BrU-IP RNA, no poly(A) selection was performed before library 
preparation and the 8 samples were run in the same sequencing lane 
with 2x125 bp paired-end reads (to get around 30 million read pairs per 
sample). Duplicates were sequenced for each condition. 
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Bioinformatic analyses 

Overlap representations and Venn diagrams were obtained through R 
(VennDiagram package) or with the online Venny tool: 
http://bioinfogp.cnb.csic.es/tools/venny/index.html. 
Splicing analyses of RNA-Seq data were performed using SANJUAN 
(Splicing Analysis & Junction Annotation tool) developed in our group. 
Unlike other splicing analysis tools, this pipeline is not limited by 
existing annotation and can identify novel events absent from transcript 
structure databases, improving the analysis of conditions that cause 
widespread aberrant splicing: 
https://github.com/ppapasaikas/SANJUAN. 
SANJUAN thresholds are the following for MC (medium confidence) 
and HC (high confidence) analyses for alternative splicing analysis, 
which is based on junction reads: 
     HC MC 
Minimum delta PSI    15 10 
Minimum number of junction reads  7 5 
Minimum ratio neighbor reads/junction reads:  0.05 0.01 
Minimum ratio junction reads/neighbor reads:  0.004 0.002 
Maximum length of junction:   100’000 100’000 
Minimum length of junction:   50 50 
Minimum ln of reads fold change:  0.1 0.05 
Maximum p-value of Hypergeometric test: 0.001 0.01 
 
Intron retention analysis is based on the amount of intronic reads 
compared to neighboring regions and corroborated by a concordant 
change in the corresponding junction. Threshod is set to 0.92 ln fold 
change (corresponding to a 2.5 fold change). 
 
As independent approach, splicing analysis was performed with VAST-
TOOLS (Vertebrate Alternative Splicing and Transcription Tools): 
https://github.com/vastgroup/vast-tools (Braunschweig et al., 2014) 
and downstream analyzed with Matt, a toolkit for analyzing biological 
sequences and alternative splicing events being developed from André 
Gohr (CRG). 
Gene expression analyses of RNA-Seq data were performed with 
Cuffdiff (Trapnell et al., 2013). 
Gene Ontology analyses were performed using GOrilla (Gene Ontology 
enRIchment anaLysis and visuaLizAtion tool) (Eden et al., 2009): 
http://cbl-gorilla.cs.technion.ac.il/. 
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Branch point sequence prediction and scoring were performed using the 
SVM-BPfinder tool (Corvelo et al., 2010): 
https://github.com/RegulatoryGenomicsUPF/svm-bpfinder. 
Splice Sites strengths were evaluated using MaxEntScan tools for 3’ and 
5’ splice sites scoring (Yeo and Burge, 2004): 
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq_acc.ht
ml; 
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html. 
Sequence logos, intersections and overlaps of genomic regions (e.g. 
between mapped BPs and affected regions) were performed through 
Galaxy platform (https://usegalaxy.org/) (Afgan et al., 2016), WebLogo 
(http://weblogo.berkeley.edu/logo.cgi) (Crooks et al., 2004) and Two 
Sample Logos (http://www.twosamplelogo.org/index.html) (Vacic et 
al., 2006). 
Heatmaps were obtained through heatmap.2 function from R package 
gplots. 

Branch point Mapping from total RNA 

The method was adapted from previous descriptions of branch point 
(BP) mapping using RT-PCR across the intronic lariat (Conklin et al., 
2005; Vogel et al., 1997). cDNA was synthetized using 500 ng - 1 µg of 
total cellular RNA with random hexamers and Superscript III reverse 
transcriptase. PCR amplification was performed using a forward primer 
annealing towards the 3' end of the intron (but 5' of potential BPs) and 
a reverse primer complementary to the 5' end of the intron, in order to 
get products only if amplification occurs across the 2'-5' lariat structure 
(primers are listed in Table 1). 30 cycles of PCR were performed with 2 
µl of cDNA and 15” of elongation time. Products were diluted 1:500, 
re-amplified with nested primers (following the same PCR conditions) 
and loaded on 6% polyacrylamide gels. Bands of interest were excised 
from the gel, eluted by adding 20 µl of water and shaking at 50°C for 
30’. Supernatant was used for sequencing reactions using BigDye mix 
and the primers of the second PCR (nested primers). Results were 
analyzed with CLC Main Workbench software. 
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Table MM.1. List of primers used in this study. For minigene experiments, 
endogenous-specific primers are designed to anneal to regions that are not 
included in the minigene. PT1 and PT2 primers are used for minigenes-
specific PCRs, with the exception of mMCL1, for which PT1 is combined with 
a primer complementary to mMCL1 exon 3 to avoid aspecific bands. Primers 
for amplification of templates for in vitro transcription contain a T7 promoter 
sequence followed by two Gs at their 5’ end (underlined in the table). 

Target Aim of the 
Primer Pair 

ARRDC3 Exon skipping 
assay

OGT Exon skipping 
assay

PDCD10 Exon skipping 
assay

FN1 Exon skipping 
assay

MCL1 Exon skipping 
assay

Forward primer Reverse primer Products 
size (bp)

AATTCCGAAGAAGGCTTCCA GTATAGCCCTTCCTTTCAAT 320 - 172

ATGTCTTGAAAGAGGCACGC TACGATACAAGCGAACTGCCT 357 - 161

CCTAAACGAAAAGGCACGAG CAGAGTATCACTGAAACTTTTGG 229 - 150

GGCCTGGAGTACAATGTCAGT CATGGTGTCTGGACCAATGT 405 - 132

AGACCTTACGACGGGTTGG ACCAGCTCCTACTCCAGCAA 401 - 153

MCL1 - 
minigene Minigene AS

MCL1 - 
endogenous

Endogenous AS in 
minigenes assay

mMCL1 - 
minigene Minigene AS

PDCD10 - 
minigene Minigene AS

PDCD10 - 
endogenous

Endogenous AS in 
minigenes assay

PDCD10 3' T7 template for in 
vitro  transcription

AdML 3' T7 template for in 
vitro  transcription

AdML full length T7 template for in 
vitro  transcription

MCL1 - external 
primers BP mapping

MCL1 - nested 
primers BP mapping

PDCD10 - 
external primers BP mapping

PDCD10 - 
nested primers BP mapping

GTCGACGACACTTGCTCAAC AAGCTTGCATCGAATCAGTAG 488 - 230

ATCTGGTAATAACACCAGTACGGAC ACCAGCTCCTACTCCAGCAA 586 - 338

GTCGACGACACTTGCTCAAC AAAGCCAGCAGCACATTTCT 641 - 393

GTCGACGACACTTGCTCAAC AAGCTTGCATCGAATCAGTAG 350 - 271

CTTCGTATGGCAGCTGATGA CAGAGTATCACTGAAACTTTTGG 294 - 215

GCTAATACGACTCACTATAGGGGC
GCTTAACATAATTAAGAGTGT

CTAGCAAGGCTTCTACTAAACGTAC
C

238 (wt), 157 
(ΔE1-E2-E3)

GCTAATACGACTCACTATAGGGTGA
TGATGTCATACTTATC CCCACTGGAAAGACCGCGAAGA 81

GCTAATACGACTCACTATAGGGAAT
ACACGGAATTCGAGCTCG CCCACTGGAAAGACCGCGAAGA 219

TTTTGGAAATGGCAGCTCTT GTGAGTCCGGGGAGAGATG <239

AGGGTGGGATGTCAATTTCA AAAAAGGGAGTGAGGCCTTG <183

TAAAATCCCCACTCCAACCA TCTGAAACCAAACGCCATAA <355

TGCGCTTAACATAATTAAGAGTG TCGGAAGTACTTTTAAGAAAAGAAG
AA <183
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Discussion 

1.A. Structural requirements of SF3B-targeting drugs

In collaboration with Kamil Makowski, Fernando Albericio and 

Mercedes Álvarez (University of Barcelona), we performed structure-

activity studies of new Sudemycin variants, with the aim of expanding 

the current understanding of their pharmacophore and identifying 

active compounds that might be easily conjugated with other chemical 

moieties. 

We found that some structural flexibility in the stereochemistry of the 

conjugated diene is allowed. While at significant cost in activity, ZEZ 

stereoisomers provide ample possibilities for further modification 

through Diels-Alder reactions. Most important, derivatives replacing the 

key pharmacophore oxycarbonyl by an amide display improved activity 

compared to previously reported Sudemycins, both in biochemical as 

well as in cellular assays. While the source of the observed differences 

requires further studies, improved drug solubility and stability -by 

resistance to diesterases known to be important for determining the half 

life of this class of compounds (Laizure et al., 2013)- are likely to 

contribute, as discussed in Part IA. Higher activity in biochemical assays 

also suggests improved affinity for the target and/or improved capacity 

to affect conformational changes in the target (Effenberger et al., 2016c) 

(Part IA, Figure 2).  

Our findings can pave the way to the synthesis of other variants with 

improved activities as well as to more refined drug-target interaction 

studies (that were so far technically limited because of the lack of robust 
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experimental set-ups). Advances in the structural understanding of 

SF3B complex (Rauhut et al., 2016; Yan et al., 2016) will be also 

instrumental to provide rational basis for the design of compounds with 

improved activity and selectivity, by modulating the affinity as well as 

different ways of interacting with SF3B1, as we speculate in Part III. 

1.B. Drug-ASO conjugates 

The interesting observation that drug-ASO conjugates have increased 

effects in vitro confirms the hypothesis that sequence-specific delivery of 

splicing inhibitors is achievable. While several studies aim at the 

identification of transcript-specific molecules (Naryshkin et al., 2014; 

Palacino et al., 2015), our results suggest that the specificity of general 

inhibitors can be greatly improved by conjugation, and dictated by the 

sequence of the conjugated ASO. This idea was recently explored for 

modulating SMN2 splicing by conjugating ASOs with a phosphatase 

inhibitor (Kwiatkowski et al., 2016), but results showed limited efficacy. 

Possibly, the strategy of regulating a phosphatase involved in splicing 

regulation (Kwiatkowski et al., 2016) may be less direct and therefore 

less efficient than targeting a core spliceosome component (like we tested 

in Part IB). We cannot exclude, however, that conjugation of a small 

molecule to the ASO in the proximity of the BP can enhance inhibition 

simply by steric obstruction of U2 snRNP recruitment, without the 

need of any pharmacological specificity for its components. 

Conjugation with inactive or unrelated compounds would be an 

appropriate control for ruling out this point. 

In any case, our initial results argue that careful design is required, 

because the distance between BP and ASO-complementary region 
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greatly affects the conjugates' efficiency. Based on this, it seems 

advisable to test several alternative options, including the conjugation of 

the drug at the 3’ end of the ASO instead of at the 5’ (as we tested). In 

this case, the ASO sequence would target the region downstream of the 

BP, so that the 3’ conjugation would bring the drug in proximity of the 

BP. This approach may have the advantage of targeting additional 

contacts of SF3B1 with the pre-mRNA (Gozani et al., 1998; Rauhut et 

al., 2016; Yan et al., 2016), as well as of targeting an important cis-acting 

splicing signal like the Py-tract, but the reduced sequence diversity of 

these sequences may complicate the design of ASOs of unique 

specificity.  

It is even conceivable that the conjugation of SF3B inhibitors with 

RNA molecules would facilitate or expand drug-target interactions, for 

example if the drugs target positively charged residues within SF3B1 

HEAT repeats that play an important role in protein-RNA contacts 

(Rauhut et al., 2016; Yan et al., 2016). On the basis of these recent 

structural findings, it can even be speculated that adding a 20 nucleotide 

RNA sequence to a SF3B1 inhibitor could contribute to increase 

inhibitory effects.  

Finally, improving compounds’ stability and pharmacokinetics remains a 

key goal to improve and facilitate in vivo assays.  

Although we focused on the model Adenovirus Major Late promoter as 

a proof of principle, the strategy should be tested for cancer-related 

targets within the human transcriptome. For example, NUMB-

regulating ASOs affect lung cancer cell proliferation (Bechara et al., 

2013) and NUMB alternative splicing is affected by SF3B-targeting 

drugs as well (Papasaikas et al., 2015) (Figure 5, Part II), making this 
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event an interesting candidate to target using this strategy. MCL1 could 

also be an interesting event to test, based on its strong response to 

SF3B1 inhibition (Papasaikas et al., 2015) (investigated in Part II) and its 

important role in cancer cells (Larrayoz et al., 2016; Opferman, 2016).  

Finally, similar conjugation strategies could possibly be applied to other 

molecules and mechanisms, including other RNA processing 

mechanisms for which inhibitors are available, that could also be 

modulated in a transcript-specific fashion by ASO-drug conjugation. 

2. Sudemycin-responsive and Sudemycin-resistant sequences

Several studies have used SF3B-targeting drugs as general splicing 

inhibitors and have reported increased intron retention events (Kaida et 

al., 2010; Martin et al., 2016; Martins et al., 2011; Nojima et al., 2015). 

Nevertheless, results presented in this thesis suggest that at low drug 

concentrations, splicing inhibition does not cause a general shut down 

of splicing (that would lead to retention of every newly transcribed 

intron). Instead, SF3B inhibition can be associated with alternative 

splicing regulation, as previously reported (Convertini et al., 2014; 

Corrionero et al., 2011), although it seems likely that certain level of 

intron retention coexists with differential effects in splice site selection. 

These observations are consistent with the hypothesis that a partial 

inhibition of SF3B complex regulates alternative splicing of some 

transcripts more than others, and our goal was to evaluate whether 

primary RNA sequence can be responsible for these differential effects. 

Our findings show that specific sequence elements can determine the 

relative sensitivity of transcripts to drug treatment, with dramatic 
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differences associated with even single (or few) nucleotide changes. In 

particular, we correlate drug resistance with the presence of possible 

alternative functional BP sequences located 5' of the branch site. 

Previous results from our group and others argued for drug-dependent 

destabilization of U2 snRNP recruitment and drug-induced allowance 

to recognize sequences 5' of the branch site by U2 snRNA base-pairing 

leading to formation of splicing non-productive complexes at BP decoy 

sites (Corrionero et al., 2011; Folco et al., 2011). It is conceivable that 

the drug occupies a space within the SF3B complex and induces a 

conformation that might favor contacts with sequences upstream of the 

normal branch site, as reported for Spliceostatin A (Corrionero et al., 

2011). The presence of more than one sequence with base-pairing 

potential with U2 snRNA that could serve as a functional branch site 5' 

of the normal one could warrant a functional interactions even if the 

drug causes ambiguity in BP recognition (Figure D.1).  

Similarly, mutations in SF3B1 induce the usage of upstream BPs with 

A-rich motifs, associated with splicing to upstream cryptic 3’ss (Alsafadi 

et al., 2016; Darman et al., 2015). Although the consequences of drug 

treatment and SF3B1 mutation seem to be different, both situations 

may have in common the disabling of proofreading functions that 

ensure U2 snRNP recruitment to the normal BP under standard 

conditions.  

Another relevant observation is that weak BPs increase the sensitivity of 

a 3'ss to the drug (Figure D.1), indicating that the extent of base-pairing 

between U2 snRNA and the BP region is an important determinant of 

the efficacy with which the drug alters BP recognition. Indeed, drug 

sensitivity of a highly sensitive substrate was lost when replacing its BP 
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by a consensus (yeast-like) BP, able to establish all possible base-pairs 

with the BP recognition sequence in U2 snRNA (Figure II.6). 

Sequences around the BP could also influence the regulation, as they 

play a role in U2 snRNP recruitment through better or worse 

interaction with SF3B proteins, which are known to bind the anchoring 

site 5' of the BP and/or to interact with U2AF65. Indeed, a strong Py-

tract also contributes to decrease drug effects, as shown by comparing 

the responses to the drug of the human and mouse MCL1 (Figures II.7, 

II.13, II.14 and II.15). U2AF65’s more stable binding to strong Py-tracts 

may therefore help in the recruitment of drug-destabilized U2 snRNPs, 

since SF3B1 directly interacts with U2AF65 (Gozani et al., 1998). 

Figure D.1. Model of U2 snRNP recruitment upon Sudemycin C1 
treatment. Sequences around the BP can influence the sensitivity of 
transcripts to the treatment: “decoy” BP-like sequences sequester U2 snRNA 
from functional interactions and lead to increased inhibition, multiple BP 
consensus sequences favour functional U2 snRNA–BP interactions and 
therefore decrease the inhibitor effects, while weak BPs disfavour the 
interactions and increase the inhibitor's effects. 

 
Once again, structural studies -which may become possible in the near 

future thanks to recent progress in Cryo-electron microscopy (Rauhut et 

al., 2016; Yan et al., 2016)- may be instrumental to define the molecular 
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basis for the relative contributions of the multiple interactions that 

occur during U2 snRNP assembly and how they are affected by drug 

binding. 

Interestingly, recent evidence argues for a role of pseudouridines within 

U2 snRNA in modulating the activity of Prp5 helicase and BP 

recognition (Wu et al., 2016). Prp5 was already hypothesized to be an 

important factor involved in the drug effects (Corrionero et al., 2011; 

Folco et al., 2011) and these results highlight the interest of further 

exploring the mutual influence between this helicase and SF3B1 and the 

possible interplay with the drugs. 

Our conclusions are also consistent with some observations reported by 

other groups. For example, a mutually exclusive exon event affects the 

ketohexokinase (KHK) gene, involved in fructose metabolism. Recent 

evidence described that hypoxia can induce SF3B1 overexpression in 

cardiomyocites, leading to a change in KHK mutually exclusive isoforms 

and therefore in cells' metabolism, with relevant consequences for heart 

disease (Mirtschink et al., 2015). The SF3B1-induced isoform has a 

stronger BP than the competing one, suggesting that alternative splice 

site choice can be determined by the levels of SF3B1 in the cell, such 

that the interplay between limiting factors for U2 snRNP recruitment is 

changed under different cellular conditions, with consequences for 

alternative splice site utilization. 

Moreover, in vitro splicing assays showed a different sensitivity of 

different transcripts to SF3B1 pharmacological inhibition: although the 

strength of BP and Py-tract were not found to correlate with sensitivity 

to Spliceostatin, titration of Pladienolide did have a different effect on 

model RNAs containing different BPs, with weaker ones being more 
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sensitive and stronger ones more resistant to the effects of the drug 

(Effenberger et al., 2016c), consistent with our observations using 

Sudemycin C1. Taken together, these results argue that different drugs 

differentially alter the balance between factors and interactions involved 

in complex A formation, leading to diverse effects in splice site selection 

and alternative splicing outcomes.  

We cannot exclude that other features, like RNA stability or the more or 

less efficient export from the nucleus to the cytoplasm can also play an 

important role in determining the steady state accumulation of splicing 

isoforms, and even differential protein stability can influence the 

biological effects. For example, MCL1 is very sensitive to translation 

and transcription inhibition because of its fast turnover (Wei et al., 

2012). We also observed defective splicing for other short-lived small 

oncoproteins, possibly related to the higher toxicity of splicing 

inhibitors in tumor cells versus normal cells. 

Even other factors, like chromatin environment during transcription, 

may influence the differential effects of the drugs. Indeed, the Ast 

group observed that SF3B1 is positioned on nucleosomes on top of 

GC-rich exons flanked by long introns (Kfir et al., 2015). We report that 

drug-induced intron retention is more frequent for GC-rich, short 

introns: this observation would be compatible with a model in which 

the lower recruitment of SF3B1 to chromatin around these regions 

would make introns more susceptible to drug inhibition. Also relevant 

to these points, interplay between SF3B-targeting drugs and H3K36 

methylation marks has been reported (Convertini et al., 2014; Kim et al., 

2011) and SF3B complex components were found to associate to the 

epigenetic complexes Polycomb and SAGA (Isono et al., 2005; 
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Martinez et al., 2001; Stegeman et al., 2016). Finally, splicing of MCL1 

itself has been linked to H3K4 methylation (Khan et al., 2014; Khan et 

al., 2016), further supporting the interconnection between different 

layers of gene regulation. Although with our minigenes analyses we 

found clear sequence-dependent effects, it is possible that drug-induced 

changes in transcription kinetics and chromatin modifications also 

contribute to regulation of the endogenous human MCL1 gene. 

Another well-established link is the interplay within transcription 

kinetics and splicing (Kornblihtt et al., 2013), whereby elongation rates 

determine the temporal frame in which competing splice sites commit 

themselves for the splicing process with other splice sites. The relevance 

of these aspects is further enhanced by recent evidence that splicing can 

take place as soon as the 3’ss exits from RNA pol II exit tunnel (Carrillo 

Oesterreich et al., 2016). It is interesting, in this regard, that SF3B 

pharmacological inhibition leads to defects in RNA pol II Ser2 

phosphorylation, 3’ end processing and transcripts release (Koga et al., 

2015; Koga et al., 2014; Martins et al., 2011), suggesting that 

mechanisms of drug effects should be also considered within the frame 

of co-transcriptional splicing choices. It has been reported that 

constitutive splicing tends to be co-transcriptional, while alternative 

splicing can be often post-transcriptional, and weakening the Py-tract 

induces a switch from co- to post- transcriptional splicing (Vargas et al., 

2011). It will be interesting in the future to study the extent to which 

SF3B1 inhibition affects co- and post- transcriptional splicing. 

Drug treatment has been also associated with enlargement of speckles 

(considered splicing factor storage sites) and pre-mRNA leakage to the 

cytoplasm (Girard et al., 2012; Kaida et al., 2007; Kotake et al., 2007), 
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which may be linked to the overload of unspliced RNAs in drug-treated 

cells.  

In conclusion, 3’ss recognition is a very complex and sensitive process 

that can be regulated at several steps of U2 snRNP assembly and 

through the interplay between spliceosome assembly and transcription. 

These molecular events can severely affect cell viability and apoptosis. 

3. Similarities and differences in drugs' activities as alternative

splicing modulators

So far, a relatively small number of splicing inhibitors have been 

reported (Bonnal et al., 2012; Salton and Misteli, 2016; Zaharieva et al., 

2012) and compounds targeting SF3B complex have often been 

considered as a homogeneous group of drugs sharing a common 

pharmacophore, in spite of their structural diversity (Bonnal et al., 2012; 

Effenberger et al., 2016c; Lagisetti et al., 2008; Lee and Abdel-Wahab, 

2016). Nevertheless, our results highlight that related drugs sharing the 

same target are not completely equivalent because they can induce a 

different spectrum of splicing changes. This possibility has to be 

considered carefully when drugs are developed and studied across a 

variety of pharmacophores, and not only in the splicing field, since 

structure variability can have significant implications for drug activity, 

toxicity, secondary effects, etc. 

We speculate that in the case of SSA and Sudemycin C1, their different 

effects on particular targets may be due to their slightly different 

interactions with the SF3B complex, which might thus differentially 

affect spliceosome assembly depending on specific configurations of 
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splicing signals and nearby sequences. We cannot exclude that also 

other intracellular mechanisms, like NMD, RNA stability or export 

might be differentially affected by the two drugs, although we favor the 

direct explanation involving the splicing machinery itself, rather than 

indirect effects on related processes. 

These considerations lead to the speculation that AS event-specific 

drugs can be discovered. Indeed, recent studies described compounds 

with a therapeutic potential for SMA (Spinal Muscular Atrophy) that 

selectively influence SMN2 alternative splicing and only few other 

targets in the cell (Naryshkin et al., 2014; Palacino et al., 2015). One of 

these drugs enhances U1 snRNA base-pairing with a small subset of 5’ 

splice sites in a sequence-dependent manner, including SMN2 intron 7 

5’ss (Palacino et al., 2015). Consistent with this possibility, results 

presented in Part II and recent publications on splicing factor mutants 

also revealed sequence-specific effects of core spliceosomal components 

on alternative splicing (Alsafadi et al., 2016; Darman et al., 2015; Kim et 

al., 2015; Shirai et al., 2015), further supporting the possibility that the 

core splicing machinery displays sophisticated mechanisms of regulation 

by fine-tuning of splice site selection. 

The structural dissection of drug-target interactions will be key to 

compare different drug variants. So far, competition assays showed that 

different small molecules are likely to affect similarly SF3B complex 

conformations in order to exert their inhibitory activity. In contrast, 

inactive drugs can bind but not modulate SF3B activity (Effenberger et 

al., 2016c), suggesting a single binding site but that occupancy of a 

binding pocket is not sufficient to elicit drug effects. Few cases of 
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different intron retention regulation by different drugs have been 

reported (Kumar et al., 2016). 

SF3B complex was shown to have a shell-like structure closing around 

its component p14, the small protein contacting the BP (Golas et al., 

2003). Because of their tight structure, SF3B1 HEAT repeats were 

hypothesized to undergo a structural remodeling between more open 

and more closed conformations, in order to allow BP recognition by U2 

snRNA (possibly within the internal cavity of the shell) and 

consequently splicing catalysis (Golas et al., 2003). This model is 

supported by cryo-EM studies of fission yeast spliceosome (Rauhut et 

al., 2016; Yan et al., 2016). It is therefore conceivable that different 

small molecules, in spite of being able to compete with each other for 

SF3B1 binding (Effenberger et al., 2016c), could find a slightly different 

accommodation within SF3B complex that could in some cases lead to 

different target-specific modulation. While it is still not demonstrated 

that these inhibitors bind within the inner surface of SF3B complex 

shell, it was postulated that they might act at the interface between 

SF3B1 and SF3B3, where the drug-resistant SF3B1 mutation R1074H is 

thought to be located (Yokoi et al., 2011). Intriguingly, recent structural 

advances show that this residue is very proximal to the branch 

adenosine in activated spliceosomes (Rauhut et al., 2016).  

4. General considerations and future perspectives 

It is interesting to remark that SF3B inhibition in general leads to 

alterations of AS in genes related to the regulation of apoptosis and cell 

cycle, cancer-related genes and genes encoding RNA processing factors, 

among others (Figure III.2D). This suggests that SF3B may play a 
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pivotal role in the control of cell division and cancer progression, an 

area in need of more functional and clinically relevant data. For 

example, similarly to recent studies on MYC-driven cancer (Hsu et al., 

2015), screenings for factors increasing or decreasing sensitivity to SF3B 

inhibitors may lead to the discovery of important SF3B interactors and 

downstream effectors with a possible role in cancer and also possible 

targets for antitumor activities. The concept that splicing modulation 

may have synthetic lethal interactions with other cancer-relevant 

processes opens a very interesting area of research with both basic and 

clinical implications. 

Another interesting observation made in various experiments is the 

quantitative (but not qualitative) dependence of drugs’ effects on cell 

densities and status, which can be relevant to explain variability across 

experiments. This observation is compatible with the cell cycle status 

influencing the splicing inhibition effects of the drugs. Indeed, 

alternative splicing and cell cycle are clearly connected (Dominguez et 

al., 2016; Welch et al., 2016). Moreover, splicing inhibitors have 

antitumor effects and they target preferentially tumor cells, especially if 

hyperproliferation is driven by the Myc oncogene (Hsu et al., 2015; 

Hubert et al., 2013). Hence, the relationship between cell status and 

response to splicing inhibition is likely to be tight and understanding its 

molecular basis will be important to understand drug effects. 

Results of MCL1 regulation show that this is a prominent target of 

splicing inhibitors in cancer (Gao and Koide, 2013; Larrayoz et al., 

2016; Wei et al., 2012). This apoptotic suppressor is often 

overexpressed in tumor cells and associated with multidrug resistance 

and therefore significant efforts are made to identify new ways to target 
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it (Opferman, 2016). Interestingly, AS of MCL1 seems to occur in 

human, but not mouse cells. Although a careful analysis is needed to 

assess the presence of AS transcripts in other organisms, it seems likely 

that evolution has favored new ways of regulating the apoptotic 

pathway and in this context MCL1 may have evolved as a very 

responsive sensor to physiological alterations, which has adopted AS as 

a prominent regulatory mechanism. Figure D.2 represents the sequence 

similarity of MCL1 along evolution. Sequence differences among 

mMCL1 and hMCL1 were instrumental for finding a role for Py-tracts 

in Sudemycin-induced regulation. However, if MCL1 acts as prominent 

target in human cells (Gao and Koide, 2013; Larrayoz et al., 2016), its 

lack of response in mouse cells reveals that other targets (even non 

conserved among organisms) can also play an important role in the 

drugs' antitumoral effects, as recently proposed (Lee et al., 2016).  

 

Figure 12. Sequence conservation of MCL1 gene. Peaks' size is proportional 
to the sequence similarity with the human gene. UTRs are represented in 
yellow, coding exons in blue, introns in salmon. The information was retrieved 
from https://ecrbrowser.dcode.org/ (Ovcharenko et al., 2004). 
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Mechanistic and physiological understanding of the effects of these 

drugs, with its basic and translational implications, will likely require the 

combination of a variety of emerging technologies.  

It is not clear to which extent SF3B inhibitors might affect U2 snRNP 

recruitment in relation to chromatin environment. SF3B1-ChIP profiles 

with and without drugs may greatly help to understand if some of the 

effects are due to presence or absence of SF3B1 on exonic 

nucleosomes, as reported in recent publications (Kfir et al., 2015). A 

possibly complementary approach would be to assess whether the 

activity of SF3B1 in Polycomb complex (Isono et al., 2005) can be 

influenced by SF3B inhibitors. 

The comparison of iCLIP profiles of SF3A and SF3B subunits in the 

presence and absence of the drug will allow a detailed dissection of the 

changes in RNA-protein contacts afforded by the drug, as suggested by 

previous in vitro experiments showing that SF3B1 interactions with the 

pre-mRNA are lost in presence of Spliceostatin, while SF3A1 and 

SF3A3 interactions are either not affected or even apparently stabilized 

(Corrionero et al., 2011). 

Importantly, drug-target interaction studies have been limited so far by 

the lack of SF3B1 structures, a deficiency attenuated by the reports 

from S. cerevisiae disclosing important details of SF3B complex (Rauhut 

et al., 2016; Yan et al., 2016). However, even if SF3B1 is the most 

conserved SF3B protein (Wang et al., 1998), it is not known to which 

extent budding yeast S. cerevisiae spliceosome is affected by splicing 

inhibitors, while fission yeast S. pombe is known to be affected (Lo et al., 

2007). Structures of mammalian spliceosome will help to elucidate the 

more complex interactions occurring in these organisms. SF3B1 
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R1074H mutation confers drug resistance (Lee et al., 2016; Rauhut et 

al., 2016; Yan et al., 2016; Yokoi et al., 2011) and it is located in very 

close proximity to the branch adenosine in budding yeast activated 

spliceosome (Rauhut et al., 2016). This information may already be 

interpreted in more depth and allow a much deeper understanding of 

the interactions affected by the drug and the discovery and even design 

of more specific drug variants. It is not unlikely that such drugs could 

be designed in silico to target with reasonable specificity the splicing of 

selected transcripts. 

Transcriptome-wide techniques also allowing to study RNA-RNA 

interactions in large-scale or for selected RNAs of interest (Engreitz et 

al., 2014; Sharma et al., 2016). These approaches may also prove of great 

importance to elucidate the mechanism of actions of these compounds 

by finely mapping the U2 snRNA-BP base-pairings most altered by the 

drugs. 

Finally, a fascinating question remains: what is the reason for several 

bacterial species to produce compounds targeting a key mechanism of 

eukaryotic gene expression like splicing? (Bonnal et al., 2012; Webb et 

al., 2013). This phenomenon could be related to the fact that a specific 

portion of SF3B1 HEAT repeats exerts toxicity for E. coli (Wang et al., 

1998). It is conceivable that bacteria have developed these compounds 

to target a process essential for their natural eukaryotic competitors or 

predators like fungi. Since SF3B1 is present in major, minor and 

reduced spliceosomes (Hudson et al., 2015; Stark et al., 2015; Will and 

Luhrmann, 2005), it will be interesting to check to which extent all of 

these machineries are affected by SF3B1 inhibitors. 
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Conclusions 

Part I.A. 

 An amide derivative of Sudemycin that replaces the 

pharmacophore's oxycarbonyl moiety displays improved activity 

in vitro and ex vivo. This derivative (Sudemycin K) offers novel 

opportunities for further modification. 

 A conjugated triene and a conjugated diene in ZEZ 

configuration decrease but do not completely suppress 

Sudemycin activity. 

 Replacement of cyclohexane or dioxane rings by piperazine, or 

replacement of conjugated diene by a single double bond 

completely suppress Sudemycins' splicing inhibitory activity. 

Part I.B. 

 Sudemycin-ASO conjugates display enhanced splicing inhibitory 

effects compared to unconjugated ASOs. 

Part II. 

 Multiple BP-like sequences 5' of BPs attenuate Sudemycin C1-

induced exon skipping.  

 Optimal BP sequences also repress the drug-induced exon 

skipping effects.  

 Strong polypyrimidine tracts attenuate the sensitivity of a 3' 

splice site to the drugs. 

 Intron retention preferentially occurs in short, GC-rich introns. 
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Part III. 

 Spliceostatin A and Sudemycin C1 display both similarities and 

differences in their alternative splicing modulation activities. 
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