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High enstrophy eddies 

Eat small enstrophy eddies 

But sometimes 

Little eddies crowd up 

And make up 

A really high enstrophy eddies 

Till the size of the planet 

Or the Hurricane or the Tornado 

Or in internal or inertial waves 

Saves from destruction the little 3D 

Richardson’s and Kraichnan’s Cascades 
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CHAPTER 1 

Introduction 
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1.1. Introduction 

 

Turbulence is one of the most ubiquitous phenomena in the discipline of fluid 

mechanics and of far reaching influence in the atmosphere and ocean likewise. 

Regarding the latter the interplay between the ocean stratification and the diffusive 

turbulent motions is often crucial in determining the structure of the environment. 

Again, the response of the ocean to large-scale wind and thermal disturbances and the 

development of ocean currents is dependent on the transfer of matter, momentum and 

energy by irregular smaller scale motions of one kind or another. 

Not all of the random motions found in the ocean, however, can be properly 

described as turbulence. The characteristic properties of turbulent motions are that they 

possess a random distribution of vorticity in which there is no unique relation between 

the frequency and wave number of the Fourier modes; that they are diffusive and 

dissipative. A distinction is drawn between turbulence in a stably stratified fluid on the 

one hand and random field of internal gravity waves on the other. This differentiation is 

useful, not only conceptually but also observationally since the mechanisms of energy 

transfer (in both physical and Fourier space) are essentially different. 

The effect of the atmosphere on the ocean is also important. When the wind blows 

across the surface of the water, a tangential surface stress is developed both directly 

from the interfacial stress, and indirectly by the rate of momentum loss from the surface 

waves by such processes as wave breaking. Below the surface, a turbulent mixed layer 

develops. In case the underlying region is statically stable or neutral, the interface 

between turbulent and non-turbulent fluid is very sharp, and remains so as the 

turbulence erodes the lower fluid by entrainment. The temperature and salinity in the 

mixed layer are virtually uniform as a result of turbulent diffusion. Also, the continued 

erosion results in an increasing contrast between the properties of the water in the mixed 

layer and the layer immediately below. In this way, a thermocline develops. If, on the 

other hand, there is substantial surface cooling, there may be a region below the mixed 

layer in which the density decreases with depth and which is statically unstable. 

Convective motions can develop and, particularly in polar waters, can extend to 

considerable depths, forming the important buoyancy driven ocean-wide circulation. 
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Examples of turbulence in the Atmosphere, Ocean and real life: 

 Smoke rising from a cigarette. For the first few centimetres, the flow remains 

laminar, and then becomes unstable and turbulent as the rising hot air accelerates 

upwards. Similarly, the dispersion of pollutants in the atmosphere is governed by 

turbulent processes. 

 Flow over a golf ball. If the golf ball had a smooth surface, the boundary layer 

flow over the front of the sphere would be laminar at typical conditions. However, 

the boundary layer would separate early, as the pressure gradient switched from 

favourable (pressure decreasing in the flow direction) to unfavourable (pressure 

increasing in the flow direction), creating a large region of low pressure behind the 

ball that creates high form drag. 

 The mixing of warm and cold air in the atmosphere by wind, which causes clear-

air turbulence experienced during airplane flight, as well as poor astronomical 

seeing (the blurring of images seen through the atmosphere.) 

 Most of the terrestrial atmospheric circulation. 

 The oceanic and atmospheric mixed layers and intense oceanic currents. 

 The flow conditions in many industrial equipment (such as pipes, ducts, 

precipitators, gas scrubbers, dynamic scraped surface heat exchangers, etc.) and 

machines (for instance, internal combustion engines and gas turbines). 

 The external flow over all kind of vehicles such as cars, airplanes, ships and 

submarines. 

 The motions of matter in stellar atmospheres. 

 A jet exhausting from a nozzle into a quiescent fluid. As the flow emerges into 

this external fluid, shear layers originating at the lips of the nozzle are created. 

These layers separate the fast moving jet from the external fluid, and at a certain 

critical Reynolds number they become unstable and break down to turbulence. 
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Figure 1.1: Effect of turbulent flow in the world that was observed from 

Mount St. Hellens on May 18, 1980. It is a power full example of turbulent 

dispersion of small particles as the pumice and ash erupting. (Matulka 2003). 

 

The motion of particles in a turbulent flow is an issue of crucial importance. In 

technological processes one often wants to mix fluids in a short time, with the 

combustion chamber of the internal combustion engine being a familiar example. In 

addition, as we become increasingly concerned about environmental problems, it is 

critical that we understand how turbulence in our atmosphere or the oceans transports 

dust and pollutants. Another example would be the understanding of cloud formation 

which is very important for climate modeling. We can see a powerful example of 

turbulent dispersion of small particles at figure 1.1. Here we can observe the pumice and 

ash erupting from St Hellens Mount on 18th May of 1980. 

Natural and man-made distributions of tensioactive substance concentrations in 

the sea surface features exhibit self-similarity at all radar reflectivity levels when 
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illuminated by SAR. This allows the investigation of the traces produced by vortices 

and other features in the ocean surface. Most mixing processes in the ocean depend both 

on advection and diffusion characteristics with energetic inputs at many different scales, 

the topology of tracers in the ocean surface probable depends on the local characteristics 

of the turbulent cascades. For examples, in the detected vortices in the ocean, local 

shear will transform slicks in the surface to align and follow the local flow so the 

resulting pattern is spiral as show by Munk 2001. The first spiral eddies were seen on 

the Apollo Mission 30 years ago. They have since been recorded on SAR missions and 

in the infrared. The spirals are globally distributed, 10-25 km in size. On SAR images 

the streaks are always dark, indicating a reduced scattering cross-section and for this 

spirals are visible. 

Despite the importance and abundance of turbulent flows, the community of 

scientists as Reynolds (1883) or Richardson (1922, 1929) has encountered many 

difficulties in developing satisfactory scientific descriptions of them. One of the most 

important steps in our understanding came in 1941 when Kolmogorov developed his 

theory (K41) about how the energy that is put into large turbulent motions cascades 

down to very small scales where it is converted into heat by viscosity. 

Over the past 50 years measurements have allowed to test various aspects of K41 

theory. For example, by putting small heated wires in the flow, researchers have 

measured many properties of the turbulent velocity in a fixed reference frame. These 

measurements have found that Kolmogorov's theory is useful in predicting the essential 

phenomena, although it fails to account for some of the subtleties, such as intermittency. 

But there are other aspects of Kolmogorov's theory that have proven to be much 

more difficult to test experimentally. When his ideas are applied to the properties of 

turbulence as seen by a small particle moving with the fluid (for example a snowflake or 

dust particle), they yield predictions about the statistics of the particle accelerations and 

velocities that are needed in calculating turbulent transport such as the dispersal of 

pollutants. These predictions have not been tested and there are constants in the theory 

that have never been accurately measured. 

Turbulent mixing, and especially turbulent mixing in a density stratified fluid, and 

in rotating fluids is a considerable problem in geophysical fluid mechanics, as well as in 

environmental and industrial studies. Of particular interest is the mixing in the vicinity 

of relatively sharp density interfaces in the oceans, lakes, reservoirs, and in the 
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atmosphere with regard to many applications of environmental fluid mechanics, both at 

large and at small scales. 

Laboratory experiments on turbulent mixing in a stratified rotating fluid are 

essential for the development of computer models of geophysical phenomena, for, if 

better predictions are to be made, the distributions of potential and kinetic energy have 

to be correctly assessed for each process under study. Oceanic and atmospheric flows 

due to this high Reynolds number may be considered as turbulent motions under the 

constraints of geometry, stratification and rotation. At large scales these flows tend to be 

along isopycnal surfaces due to the combined effects of the very low aspect ratio of the 

flows (the motion is mostly confined to thin layers of fluid) and the existence of stable 

density stratification. The effect of the Earth's rotation is to reduce the vertical shear in 

these almost planar flows. The combined effects of these constraints are to produce 

approximately two-dimensional turbulent flows termed as geophysical turbulence. 

In a strictly two-dimensional flow with weak dissipation, energy input at a given 

scale is transferred to larger scales, because these constraints stop vortex lines being 

stretched or twisted. Physically, this upscale energy transfer occurs by merging of  

vortices and leads to the production of coherent structures in the flow that contain the 

energy the appearance of order from chaos, Flor et al. (1996). This scenario is an 

attractive model for geophysical flows which are known to contain very energetic 

vortices, mesoscale oceanic eddies and atmospheric highs and lows such as those 

depicted in figure 1.2 that show the dominant length scale at the Rossby deformation 

Radius. The upscale transfer of energy is inhibited at the Rossby deformation scale by 

baroclinic instability at larger scales, which accounts for the dominant observed size of 

geophysical vortices. 

Recent advances in laboratory techniques Dalziel and Redondo et al. (2007) and 

Fraunie et al. (2008) allow nowadays investigating in detail the velocity of the turbulent 

flow. This is also true for remote sensing observation at the environment (Gade & 

Redondo 1999). So we will use laboratory experiments and field observation to 

investigate environmental turbulence. 
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Figure 1.2: Structure of Ocean vortices. The picture is taken over Greenland 

on 10th July, 1992. (Matulka 2003). 

 

Previous work on annulus flow, pioneered by Hide et al. (1958) and Fultz (1959) 

where the flow is driven in a rotating annulus by differential heating of the lateral walls 

of the annulus, or by internal heating of the fluid has long been used to simulate 

planetary circulation. A horizontal temperature gradient is established which drives a 

zonal flow via the 'thermal wind' balance. For certain values of the parameters this flow 

is unstable to baroclinic modes that feed on the energy in the temperature field. At finite 

amplitude the instabilities can lead to large amplitude waves and vortex structures. 

Many features have been identified with structures and phenomena observed in the 

annulus experiments, and understanding of atmospheric and ocean dynamics has 

become significantly advanced. The experiments have provided new insights about the 

dynamics and revealed a wide range of nonlinear behaviour. Experiments performed by 

Boubnov et al. (1994) and Linden et al. (1996) showed the effect of mixing from the 

edge on a rotating stratified system. When the instability is caused by differential 
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heating or by buoyancy there seems to be a range of very different dynamic regimes, 

including as in many experiments: The zonally-symmetric circulation (ZC), 

anticyclonic gap-scale vortices (AGV), azimuthal wave/vacillation regimes (WR), and 

geostrophic turbulence regimes (GT). This complexity of the interactions between the 

different forcing is even more evident when the turbulent cascades are simultaneously 

affected by rotation and stable stratification. 

Turbulence or quasi-geostrophic turbulence has been the focus of numerous 

mathematics and physics papers during the past fifty years. In a landmark paper 

Onsager (1949) studied an ensemble of point vortices and argued that they cluster into a 

coherent large-scale vortex in the negative temperature regime corresponding to 

sufficiently large kinetic energies. The quantitative aspects of the point vortex model 

and subsequently predictions were compared with direct numerical simulations of the 

end state of freely decaying turbulence. Another approach by Kraichnan (1975), called 

the energy-enstrophy model, was based on spectral truncation of the underlying fluid 

dynamics equations, leading to the two dimensional turbulent energy-enstrophy 

cascades as an extension of Kolmogorov’s K41 and K62 theories. 

Many experimental and theoretical studies have been devoted to the understanding 

of non-homogeneous turbulent dynamics. Activity in this area intensified when the 

basic self-similar theory was extended to two-dimensional or quasi 2D turbulent flows 

such as those appearing in the environment, that seem to control ocean mixing in coastal 

areas, the synoptic atmospheric flows and many other layered and/or rotating flows. The 

statistical description and the dynamics of these geophysical flows depend strongly on 

the distribution of long lived organized (coherent) structures. These flows show a 

complex topology, but their basic structure may be subdivided and quantified in terms 

of strongly elliptical domains (high vorticity regions), strong hyperbolic domains 

(deformation cells with high energy condensations) and the background turbulent field 

of moderate elliptic and hyperbolic characteristics. It is of fundamental importance to 

investigate the different influence of these topological diverse regions on the eddy 

diffusivity. The scalar concentration of pollutants (tracers) within the flow can also be 

analyzed in the same fashion, as the advection takes place in a self-similar, fractal way, 

so that tracers shed relevant information on the velocity and vorticity dynamics. 

Large-scale atmospheric models rely on small scale parameterisation of vertical 

mixing, and the ability to identify the local processes, which determine mixing, is very 

important in order to increase the accuracy of forecasting. To highlight the role of small 
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scale stratification we just have to look at atmospheric inversions, which often reduce 

drastically the dilution of contaminants, so that in order to reduce local atmospheric 

pollution, we have to take into account the changing mixing efficiency of the process 

with regard to industrial emissions. In many cases the thermal stratification affects the 

dilution rates, even if the pollutants themselves are not denser than air. 

Sharp density interfaces are commonly found in the ocean and transport through 

them is very important in determining the residence times of deep water. The dynamics 

of the thermocline is controlled by the mixing through many different processes. Also, 

benthic boundary layer results from mixing near the bottom of the sea. These processes 

merge near coastal regions, where tides often produce fronts. Sometimes exchanges 

between two different masses of water are locally controlled by interfacial mixing. The 

same is true in estuaries and river basins where fresh river water is mixed with all 

seawater. 
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1.2. Description of the Thesis 

 

The present work is divided in 10 chapters and 6 appendices. After this 

introductory chapter, in chapter 2, some basic theory of turbulence that will be used 

throughout this thesis is presented and discussed, such as the general concepts about 

scaling, the basic theories of Richardson and Kolomgorov (K41 and K62) and the basic 

role of external body forces that lead to the many relevant dimensionless numbers for 

stratified and rotating flows. The aim of this chapter is to give a quick review of 

turbulence, of the standard accepted theories, on the state of art of the subject and to 

understand basic concepts and new criticisms relevant to non-homogeneous flows. 

In chapters 3 and 4 is shown the understanding of stratified and rotating fluids, 

theirs basic equations, internal and inertial waves. Also turbulence vorticity in 2D and 

3D flows is presented for further analysis in this part. 

In chapter 5 basic concepts about fractal and multifractal analysis are presented 

together with some applications on environmental turbulence, including scaling and 

dimensional analysis, different scales and turbulent cascades. 

Chapter 6 presents detailed experimental configuration with experimental 

methodology setup, image processing system – DigiFlow and complete process of the 

laboratory experiments in stratified and rotating fluids. 

All experiments results are given in chapter 7. There are different sub chapters for 

analysis with and without stratification, rotating and no – stratified flows, or rotating 

and stratified fluids. There are made some analysis of decay and merging of vortices 

and general parameterization of presented results. 

In chapter 8 we concentrate on observations of vortices in the ocean by mean of 

satellites, where a new technique has proved very powerful because of the irrelevance of 

cloud. Covering and solar position is the use of SAR images. We are able to perform a 

statistical analysis and a description of vortices. 

The discussion and conclusions are described and presented in chapters 9 and 10, 

as future proposal for upcoming investigations. 

There are six appendices dealing with specific issues, both experimental and 

theoretical but marginal to the main issue at this thesis. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

Theory of Turbulence 
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2.1. Turbulent Flows 

 

In fluid dynamics, turbulence or turbulent flow is a fluid regime characterized by 

chaotic, stochastic property changes. This includes low momentum diffusion, high 

momentum convection, and rapid variation of pressure and velocity in space and time. 

Flow that is not turbulent is called laminar flow. The (dimensionless) Reynolds number 

characterizes whether flow conditions lead to laminar or turbulent flow; e.g. for pipe 

flow, a Reynolds number above about 4000 (A Reynolds number between 2100 and 

4000 is known as transitional flow) will be turbulent. At very low speeds the flow is 

laminar, i.e., the flow is smooth (though it may involve vortices on a large scale). As the 

speed increases, at some point the transition is made to turbulent flow. In turbulent flow, 

unsteady vortices appear on many scales and interact with each other. Drag due to 

boundary layer skin friction increases. The structure and location of boundary layer 

separation often changes, sometimes resulting in a reduction of overall drag. Because 

laminar-turbulent transition is governed by Reynolds number, the same transition occurs 

if the size of the object is gradually increased, or the viscosity of the fluid is decreased, 

or if the density of the fluid is increased. 

Turbulence causes the formation of eddies of many different length scales. Most 

of the kinetic energy of the turbulent motion is contained in the large scale structures. 

The energy "cascades" from these large scale structures to smaller scale structures 

change by an inertial and essentially inviscid mechanism. This process continues, 

creating smaller and smaller structures which produces a hierarchy of eddies. Eventually 

this process creates structures that are small enough that molecular diffusion becomes 

important and viscous dissipation of energy finally takes place. The scale at which this 

happens is the Kolmogorov length scale. 

It is really difficult to define turbulence and Tennekes et al. (1972) proposed a list 

of some basic characteristics of turbulent flows like: 

 Irregularity or randomness – The turbulent flow is unpredictable, irregular, and 

chaotic and these force us to use statistical methods. 

 Diffusivity – Due to the macroscopic mixing of fluid particles and that 

turbulence generates a large diffusivity, the turbulent flow is characterized by 

diffusion of momentum, heat, salinity, contaminants and mass transfer. If there 
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doesn’t exist an increase of diffusivity, the flow isn’t turbulent, although it may 

be irregular or chaotic. 

 High Reynolds number – Laminar flows become turbulent when increase the 

Reynolds number. 

 Three-Dimensional vorticity fluctuations – Turbulence is rotational and three-

dimensional, and is characterized by big high levels of fluctuating vorticity. 

 Dissipation – Turbulent flows are always dissipative. To keep the flow turbulent, 

it needs a continuous supply of energy because viscosity acts in efficient way 

over small whirls. Richardson et al. (1922) described that the energy come from 

big whirls to small whirls, and from small whirls to lesser whirls, and so on to 

viscosity and that expound the cascade theory of energy proposed by 

Kolmogorov in 1941. This energy cascade we can observe in figure 2.1. 

 

 
Figure 2.1: Cascade of energy by Kolmogorov. The energy comes from big to 

small whirls and without any source of energy, turbulence decay quickly. 

 

The inverse energy cascade (shown at figure 2.2.) in two-dimensional Navier-

Stokes turbulence over which kinetic energy is transferred from small to large length 

scales (as can be approximated in the atmosphere or ocean) is one of the most important 

phenomena in fluid dynamics. In agreement with Kraichnan (1967) the energy and 

enstrophy conservation make that energy actually flow to larger scales and this is a 

basic difference between 2D and 3D turbulence, where energy flows toward small 

scales in a direct cascade. Almost forty years ago Kraichnan predicted an inverse 

cascade of energy in two-dimensional fluid turbulence and proposed an inertial range 
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with a  35k  power-law energy spectrum, just as in three-dimensional turbulence, but 

with a flux of energy from small to large scales rather than the reverse. 

 

 

Figure 2.2: The inverse energy cascade characterized by  35k  in the power 

spectrum. 

 

Turbulent diffusion is usually described by a turbulent diffusion coefficient. This 

turbulent diffusion coefficient is defined in a phenomenological sense, by analogy with 

the molecular diffusivities, but it does not have a true physical meaning, being 

dependent on the flow conditions, and not a property of the fluid itself. In addition, the 

turbulent diffusivity concept assumes a constitutive relation between a turbulent flux 

and the gradient of a mean variable similar to the relation between flux and gradient that 

exists for molecular transport. In the best case, this assumption is only an 

approximation. Nevertheless, the turbulent diffusivity is the simplest approach for the 

quantitative analysis of turbulent flows, and many models have been postulated to 

calculate it. 3k  
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2.1.1. Kolmogorov 1941 Theory 

 

Richardson's notion of turbulence was that a turbulent flow is composed by 

"eddies" of different sizes as shown conceptually in figure 2.3. The sizes define a 

characteristic length scale for eddies, which are also characterized by velocity scales 

and time scales (turnover time) dependent on the length scale. The large eddies are 

unstable in 3D flows and eventually break up originating smaller eddies, and the kinetic 

energy of the initial large eddy is divided into the smaller eddies that stemmed from 

them. These smaller eddies undergo the same process, giving rise to even smaller eddies 

which inherit the energy of their predecessor eddy, and so on. In this way, the energy is 

passed down from the large scales of the motion to smaller scales until reaching a 

sufficiently small length scale so that the viscosity of the fluid can effectively dissipate 

kinetic energy into internal energy. 

 

 
Figure 2.3: The Richardson idea of energy cascade, where the energy is 

transferred to small scales in steps. At eddies of size L energy is injected, then 

energy is transmitted to smaller and smaller eddies, until it is dissipated into 

heat at smallest eddies of size k . (Mahjoub et al. 2000). 

 

In his original theory of 1941, Kolmogorov postulated that for very high Reynolds 

number, the small scale turbulent motions are statistically isotropic (i.e. no preferential 

spatial direction could be discerned). In general, the large scales of a flow are not 

isotropic, since they are determined by the particular geometrical features of the 
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boundaries (the size characterizing the large scales will be denoted as L). Kolmogorov's 

idea was that in the Richardson's energy cascade this geometrical and directional 

information is lost, while the scale is reduced, so that the statistics of the small scales 

have universal character: they are the same for all turbulent flows when the Reynolds 

number is sufficiently high. 

Thus, Kolmogorov introduced a second hypothesis: for very high Reynolds 

numbers the statistics of small scales are universally and uniquely determined by the 

viscosity (ν) and the rate of energy dissipation (). With only these two parameters, the 

unique length that can be formed by dimensional analysis is the equation 2.1 today 

known as the Kolmogorov length scale: 

 

413












 k      (2.1) 

 

A turbulent flow is characterized by a hierarchy of scales through which the 

energy cascade takes place. Dissipation of kinetic energy takes place at scales of the 

order of Kolmogorov length k , while the input of energy into the cascade comes from 

the decay of the large scales, of order L (as we can observe in figure 2.3). These two 

scales at the extremes of the cascade can differ by several orders of magnitude at high 

Reynolds numbers. In between there is a range of scales (each one with its own 

characteristic length l) formed at the expense of the energy of the large ones. These 

scales are very large compared with the Kolmogorov length, but still very small 

compared with the large scale of the flow (i.e. Llk  ). Since eddies in this range are 

much larger than the dissipative eddies that exist at Kolmogorov scales, kinetic energy 

is essentially not dissipated in this range, but merely transferred to smaller scales until 

viscous effects become important as the order of the Kolmogorov scale is approached. 

Within this range inertial effects are still much larger than viscous effects, and it is 

possible to assume that viscosity does not play a role in their internal dynamics (for this 

reason this range is called "inertial range”). In figure 2.4 we can observe the energy 

spectrum in function of Kolmogorov scale. 
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Figure 2.4: The energy spectrum in function of Kolmogorov scale. The 
minimum corresponds to Kolmogorov scale and the maximum is related with 
Reynolds number. 

 

Hence, a third hypothesis of Kolmogorov was that at very high Reynolds number 

the statistics of scales in the range Llk   are universally kln and  uniquely 

determined by the scale l and the rate of energy dissipation . 

The way kinetic energy is distributed over the multiplicity of scales is a 

fundamental characterization of a turbulent flow. For homogeneous turbulence this is 

usually studied by means of the energy spectrum function  kE , where k is the modulus 

of the wave vector corresponding to some harmonics in a Fourier representation of the 

flow velocity field u(x): 

 

    
3

3ˆ
R

xki kdekuxu    (2.2) 

 

where  kû  is the Fourier transform of the velocity field. Thus,  dkkE  represents the 

contribution to the kinetic energy from all the Fourier modes with dkkkk  , and 

therefore: 

 

 



0

dkkEenergykineticTotal    (2.3) 
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The wavenumber k corresponding to length scale l is lk 2 . Therefore, by 

dimensional analysis, the only possible form for the energy spectrum function according 

with third Kolmogorov´s hypothesis is (see in appendix 4 a detailed description of 

Kolmogorov theory; he only used the structure function analysis): 

 

  3532  kCkE      (2.4) 

 

where C is a constant whose value can depend on the dimensionality and  kE  is 

defined so that the mean kinetic energy per unit mass. Kolmogorov’s K41 theory 

implicitly assumes that the turbulence is statistically self-similar at different scales. This 

essentially means that the statistics are scale-invariant in the inertial range. A usual way 

of studying turbulent velocity fields is by means of the so called structure functions, 

namely the moments of order p of the velocity increments lu : 

 

        q
l

q

q uxulxulS    (2.5) 

 

where u is the velocity component parallel to the separation l, in the case of longitudinal 

structure function. These powers of the velocity differences are very useful to determine 

the type of the flow and refer to the amplitude of the typical turbulent fluctuations of the 

velocity field. The statistical scale-invariance implies that the scaling of velocity 

increments should occur with a unique scaling exponent q  of the structure function of 

order q, as: 

 

3

q
q        (2.6) 

 

Mahjoub et al. (2000), following Benzi et al. (1992) and Frisch et al. (1995) 

described that the scaling exponents of structure function of order q are scale-

independent and universal quantities for the Kolmogorov K41 theory. From this fact, it 

follows that the structure functions in turbulence should scale as (see appendix 4): 

 

    333 q

q
qq

q
q

l lClCu      (2.7) 
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where the brackets denote the statistical average, and the qC  are universal constants. 

There is considerable evidence that turbulent flows deviate from this behaviour. The 

scaling exponents deviate from the q/3 value predicted by the theory, becoming a non-

linear function of the order p of the structure function. For low orders the discrepancy 

with the Kolmogorov q/3 value is very small, which explain the success of Kolmogorov 

theory with regard to low order statistical moments. In particular, it can be shown that 

when the energy spectrum follows a power law 

 

  pkkE  ,     (2.8) 

 

with 31  p  and 
3

1
q

p  , the second order structure function has also a power law, 

with the form 

 

   12  pllu .    (2.9) 

 

Since the experimental values obtained for the second order structure function 

only deviate slightly from the 2/3 value predicted by Kolmogorov theory the value for p 

is very near to 5/3. Thus the "Kolmogorov -5/3 spectrum" is generally observed in 

turbulence. However, for high order structure functions the difference with the 

Kolmogorov scaling is significant, and the breakdown of the statistical self-similarity is 

clear. This behaviour and the lack of universality of the Cq constants are related to the 

phenomenon of intermittency in turbulence. Kolmogorov microscales are the smallest 

scales in turbulent flow, defined by Table 2.1 where   the average rate of energy 

dissipation per unit mass is, and   is the kinetic viscosity of the fluid. 
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Table 2.1: Kolmogorov microscales in turbulent flow. 

Kolmogorov length scale 
413












k  

Kolmogorov time scale 
21









k

 

Kolmogorov velocity scale   41 
k

u  

 

In fully developed turbulence at scale l, Kolmogorov’s local similarity theory K41 

assumed that all statistically averaged quantities depend only on the mean dissipation 

rate  and l, where l is located in the inertial sub-range. 
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2.1.2. Kolmogorov 1962 Theory 

 

Kolmogorov (1941) suggested local similarity theory for locally homogeneous, 

isotropic and stationary turbulence, using velocity structure function. In 1962 

Kolmogorov and Obuhkov introduced very important modification to K41 theory and 

found experimental and numerical results that deviate from the 3q  law. This was so-

called intermittency correction to K41 in the framework of Kolmogorov’s K62 theory. 

Mahjoub and Redondo et al. (1998) studied the variation of the absolute scaling 

exponents q  as a function of distance from the source of turbulence, and they found 

that these exponents depend on the location of the flow and that deviations from the 

K41 scaling were related to the intermittency. 

Kolmogorov (1962) introduced a hypothesis relating the moments of the PDF of 

velocity increments lu  to the moments of l , taking into consideration only 

intermittency. The velocity differences lu  depend on the length scale l and the scaling 

exponents of the q-order is given by 

 

qllu qq
l

q
l

 ~~ 33    (2.10) 

 

Assuming that: 

 

3~3 qlq
l

      (2.11) 

 

the scaling exponents are defined as: 

 

33 qq q        (2.12) 

 

where l  is the locally defined energy dissipation per unit mass over a volume of size l, 

3q  is the scaling exponent of 3q
l . This relation assures the basic result 13   for 

locally homogenous, isotropic turbulence and stationary energy cascade and the 

correction 3q  for 3q  in equation 2.12 caused by intermittency. In the original K62 

theory, the scale-dependency of the energy transfer rate l  is proposed as stemming 
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from a multiplicative cascade process, with local random transfer, leading to a 

lognormal distribution. 
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2.1.3. The Taylor Microscale 

 

The Taylor microscale T  is a length scale which may be defined even if 

Kolmgorov (K41 and K62) hypothesis are not met. It is used to characterize a turbulent 

flow and may be considered the largest length scale at which fluid viscosity affects the 

dynamics of turbulent eddies in the flow. This microscale is characterized by being in 

the middle of a typical Kolmogorov spectrum of velocity fluctuations, normally near to 

the dissipative scale. There exist length scales, referred to inertial range larger than the 

Taylor microscale, such as the integral scale l which is not strongly affected by 

viscosity. Below the Taylor microscale, in the dissipation range, there are shorter length 

scale displacements and the turbulent motion is there subject to strong viscous forces 

and most of the kinetic energy is dissipated into heat. 

Thus we have 

 

kTl        (2.13) 

 

Turbulence is dissipative and can’t exist without any supply of energy. When 

turbulence is stable (i.e. stationary) the turbulent energy production at any scale has to 

equal to the viscosity dissipation at small scales. 

 

P       (2.14) 

 

where P  is production of turbulent energy by shear, hydrostatic pressure or any another 

mechanism and   the viscosity dissipation of energy. If turbulence is isotropic at small 

scale (local isotropy), in according to the equation energy, that 

 

ijji SuuP       (2.15) 

 

ijij ss 2      (2.16) 

 

when 
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is a mean velocity of deformation or mean shear and 
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     (2.18) 

 

is a deformation velocity or shear produced by velocity fluctuation in the flow (bars 

indicate temporary and spatial means). Interpreting dimensionally these terms lusij  S 

and 2uuu ji  , and being u and l mean shear scales that produce turbulence (it can’t be 

confuse with flow mean scales L and V) nevertheless scales that affect ijS  should be 

much smaller. Equalizing and substituting the production and dissipation of turbulent 

energy and substituting characteristics scales 

 

ijijijij sscSSul 2      (2.19) 

 

being c an order one constant. As the Reynolds number ul  is generally high: 

 

ijijijij ssSS       (2.20) 

 

That it is common to define a length scale T  such than as 
T

ij
uS   and we have 

 

l
l

uu
T

T

 
 2

2

2

2

     (2.21) 
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Figure 2.5: The energy spectrum in function of Taylor microscale. 

 

This convenient scale is called the Taylor microscale and is associated to the 

curvature of the spatial correlations of velocity, and is connected with Kolmogorov 

theory for the turbulence spectrum, but may be defined independently at the existence of 

an inertial subrange, as indicated in figure 2.5, which may be compared with figure 2.4. 
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2.2. Dimensionless Numbers and Boussinesq approximation (Buoyancy) 
 

In order to compare results between different experiments, dimensionless 

parameters must be used. In this Thesis many dimensionless numbers exist, and some of 

them are described below. The Richardson number that describes effects of stratification 

in stable situation; the Reynolds number that controls if the flow is turbulent or laminar; 

the Froude number which is used to describe the effect of gravity and described 

hydraulic flow patterns over an obstacle; and the Rossby and Ekman numbers used to 

describe the effects of rotation. 

In fluid dynamics, the Boussinesq approximation is used in the field of buoyancy-

driven flow (also known as natural convection or in stratification). It states that density 

differences are sufficiently small to be neglected, except where they appear in terms 

multiplied by g, the acceleration due to gravity. The essence of the Boussinesq 

approximation is that the difference in inertia is negligible but gravity is sufficiently 

strong to make the specific weight appreciably different between the two fluids. Sound 

waves are impossible when the Boussinesq approximation is used since sound waves 

move via inertial density variations. 

Boussinesq flows are common in nature (such as atmospheric fronts, oceanic 

circulation, katabatic winds1), industry (dense gas dispersion, fume cupboard 

ventilation), and the built environment (natural ventilation, central heating). The 

approximation is extremely accurate for many of such flows, and makes the 

mathematics and physics simpler. The approximation's advantage arises because when 

considering a flow of, say, warm and cold water of density ρ1 and ρ2 one needs only to 

consider a single average density  : the difference 21    is negligible compared 

with  . Dimensional analysis shows that, under these circumstances, the only sensible 

way that acceleration due to gravity g should enter into the equations of motions as the 

reduce gravity g’ where 

 


 21  gg      (2.22) 

 

                                                 
1 Is the technical name for a drainage wind, a wind that carries high density air from a higher elevation down a slope 
under the force of gravity. Such winds are sometimes also called fall winds. 
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An equivalent (save for a factor at 2) method is to use the Atwood number 

 

21

21







A      (2.23) 

 

and then, as 
2

21 



  we have also Agg 2' . 

The role of buoyancy depends strongly on whether the stratification is stable or 

unstable. In the first case it is a sink of energy and in the second case it is a source of 

energy, but the contribution to the vorticity or enstrophy is not that clear due to the 

presence of the baroclinic term and the non-linear effects of internal waves. 
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2.2.1. Richardson Number and Gradient Richardson Number 

 

The basic non-dimensional parameters that describe effects of stratification in a 

sheared stable situation is the Richardson number, Ri, described as a gradient or as a 

flux that relates buoyancy flux to turbulent production by shear or the other causes. The 

Richardson number is often used to indicate the stability of the shear flows (Turner 

1973). It is the main variable that controls the mixing at a density interface (Redondo 

1990). 

The characteristic properties of turbulent motions are that they possess a random 

distribution of vorticity in which there is no unique relation between the frequency and 

wave number of the Fourier modes; this means that turbulent related mixing is diffusive 

and dissipative. A distinction is drawn between turbulence in a stably stratified fluid on 

the one hand and random field of internal gravity waves on the other. This 

differentiation is useful, not only conceptually but also observationally since the 

mechanisms of energy transfer (in both physical and Fourier space) are essentially 

different. The stratification may be sufficiently important so that the Richardson number 

is large enough to prevent the onset of dynamical instability everywhere. 

The likelihood of Kelvin-Helmholtz instability can be evaluated by means of the 

Richardson's number (Ri), the ratio of the static stability (N2) to the square of the wind 

shear (dU/dz): 

 

 2

2

dzdU

N
Ri     (2.24) 

 

where 

 

   dzdgN  2      (2.25) 

 

here U is the wind speed, g the gravitational acceleration (about 9.8 m/s2),   density 

and z height. N is called the Brunt-Väisälä frequency or static stability parameter: the 

higher N, the more stable the flow. In case the 2N  is positive there is a stable 
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stratification, while, in the negative case the stratification is unstable. Both stability and 

wind shear are calculated locally, and Ri  may vary rapidly across a sheared boundary, 

such as on top of the stable nocturnal boundary layer. Even under these statically stable 

conditions, instability is possible when the wind shear is strong enough to break up the 

stable layer and produce breaking waves. This occurs when 25.0Ri  for linear 2D 

instabilities but the non-linear processes when rotation and stratification act together are 

far from clear, Redondo (2002). 

The Gradient Richardson Number is the basic non dimensional parameter that 

describes the effects of stratification in stable situation is the Richardson number. It can 

be described as a gradient Richardson (Rig) or as flux Richardson (Rif) numbers. The 

Flux Richardson number relates buoyancy flux to turbulent production by shear or the 

other causes. While a gradient Richardson number parameterization of the effects of 

buoyancy; is often used to indicate the stability of the shear flows, it relates the 

variables that control the mixing at interface as follow: 

 

 2zu

zg
Rig








    (2.26) 

 

The relationship between the flux Richardson number, that may be considered as a 

mixing efficiency, and different, local as global forms of the gradient Richardson 

number may be explained directly from the turbulent energy equation. This 

dimensionless parameter represents the ratio between the potential energy required for 

vertical mixing W and the turbulent kinetic energy cE  available in the flow for mixing: 

 

cE

W

dz
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    (2.27) 

 

with 
2

2l

dz

d
gVW


  and 
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2

2

1






 l

dz

du
VEc      (2.28) 

 

where cE  is the kinetic energy, associated to the vertical motion of fluid parcel of 

density and volume V. 
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2.2.2. Reynolds Number 

 

The Reynolds number Re is a dimensionless number that gives a measure of the 

ratio of inertial forces to viscous forces and it quantifies the relative importance of these 

two types of forces for given flow conditions. At small values of Re above 2000 the 

flow exhibits small instabilities. At values of about 4000 we can say that the flow is 

truly turbulent. Over the past 100 years many experiments have shown this phenomenon 

of limits of Re for many different Newtonian fluids - including gases. We can define 

Reynolds number with the Navier-Stokes equation. In order to make some progress in 

understanding the possible solutions, it is useful to do some dimensional analysis and to 

make a couple of estimates. For this purpose, we want to compare the inertial terms on 

the left hand side to the viscous terms on the right hand side. Let's assume that the flow 

is steady, so that 0



t

V
. Let U be a characteristic speed of the flow (usually taken to be 

the free-stream speed far from the object), and let L be some characteristic dimension of 

the flow (the typical size of an object in the fluid, say). Then for the inertial term, 

 

 
L

U
VV

2

~
      (2.29) 

 

For the viscous term, 

 

2
2 ~

L

U
V

       (2.30) 

 

Both of these quantities have the same dimension, so we can define a 

dimensionless number, the Reynolds number Re, by taking the ratio: 
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with 

   the kinematics viscosity. 

Here, L is the characteristic flow scale, U the wind speed,  the air density, and ν 

the kinematics viscosity. The ratio Re is proportional to the wind speed; viscous forces 

dominate at low speeds, so that Re is small, whilst inertia is great at high speeds, 

making Re large. It is observed that fluid flow becomes turbulent when Re exceeds 

about 2300. This can be seen in cigarette smoke, which accelerates upwards from the 

burning tip, eventually reaching a speed at which the rising filament breaks into 

turbulence. Re is important in aeronautical sciences (the airflow around a wing) and in a 

variety of engineering applications. For instance, an oil pipeline needs to be designed so 

that Re>1, otherwise frictional retardation gains the upper hand. The viscosity increases 

as temperature decreases. In other words, when the inertial forces dominate over the 

viscous forces (when the fluid is flowing faster and Re is larger) then the flow is 

turbulent. On the other hand, when the viscous forces are dominant (slow flow, low Re) 

they are sufficient enough to keep all the fluid particles in line and then the flow is 

laminar. 

In a turbulent flow, there is a range of time-varying scales of fluid motion. The 

size of the largest scales of fluid motion (called eddies) are set by the overall geometry 

of the flow. For instance, in an industrial smoke stack, the largest scales of fluid motion 

are as big as the diameter of the stack itself. The size of the smallest scales is set by the 

Reynolds number. As the Reynolds number increases, smaller and smaller scales of the 

flow are visible. In a smoke stack, the smoke may appear to have many very small 

velocity perturbations or eddies, in addition to large bulky eddies. In this sense, the 

Reynolds number is an indicator of the range of scales in the flow. The higher Reynolds 

number the greater range of scales. The largest eddies, determined by the geometry of 

the flow, will always be the same size, while the smallest eddies are determined by the 

Reynolds number. A large Reynolds number indicates that viscous forces are not 

important at large scales of the flow. With a strong predominance of inertial forces over 

viscous forces, the largest scales of fluid motion are undamped and there is not enough 

viscosity to dissipate their motions. The kinetic energy must "cascade" from these large 
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scales to progressively smaller scales until a level is reached for which the scale is small 

enough for viscosity to become important (that is, viscous forces become of the order of 

inertial ones). It is at these small scales that the dissipation of energy by viscous action 

finally takes place. The Reynolds number indicates at what scale this viscous dissipation 

occurs. Therefore, since the largest eddies are dictated by the flow geometry and the 

smallest scales are dictated by the viscosity, the Reynolds number defines the ratio of 

the largest scales of the turbulent motion to the smallest scales. It is easy to show that: 

 

4
3

Rec
L

k




     (2.32) 

 

with c as a constant. 
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2.2.3. Froude Number 

 

Another non-dimensional number is the Froude number (Fr) which is used to 

describe the flow pattern over an obstacle. In the case of airflow over a mountain ridge 

(or water over a weir), the current may change accelerate and thin, and then suddenly 

decelerate, thereby producing a hydraulic jump (figure 2.6). This jump is sometimes 

visible as a rotor cloud in the atmosphere but always visible in water, as a bore. Fr is the 

ratio of the flow speed (U) to the speed of shallow water waves. If Fr > 1, the flow is 

supercritical: the current is strong and the water shallow. Waves do not travel upstream 

and the flow thickens when crossing an obstacle. If Fr < 1, the flow is subcritical: it 

thins when it approaches an obstacle. 

 

 

Figure 2.6: A hydraulic jump, i.e. a discontinuous transition from supercritical 

flow (left) to subcritical flow (right). 

 

The speed of linear shallow water waves is ghc , where h is the depth of the 

flow, or, equivalently, the amplitude of the waves (i.e. the height of the obstacle L that 

triggered the waves). In the case of surface waves, the restoring force is the gravity g, 

but for waves internal to the atmosphere, the restoring force is the reduced gravity g' 
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where N is the Brunt-Väisälä frequency. Therefore NLc , and the Fr can be expressed 

as 

 

NL

U

gL

U
Fr 1     (2.34) 

 

where U is the speed of open channel flow, g is gravity, and L is the length scale (at this 

example the height of the mountain). This is the first Froude number, which is the 

dimensionless parameter. If Fr<<1, i.e. when the airflow is slow, stably stratified, 

and/or the mountain high, the air will flow around the mountain, not over it (if the 

mountain is too wide, the flow will be blocked). If however Fr>>1, the air readily flows 

over the mountain with very little lateral displacement. The second Froude number is 

defined as the ratio of inertial force to gravitational force. It therefore applies to wave 

and surface behavior, and is defined by 

 

gL

U
Fr

2

2       (2.35) 

 

i.e., the square of 1Fr . 

Finally, we can say that Froude number is proportional to inertial force divide by 

gravitational force and is used in momentum transfer in general and open channel flow 

and wave and surface behavior calculations in particular. We can write as 

 

gL

U
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2

      (2.36) 
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2.2.4. Rossby Number and Ekman Number 

 

The basic non-dimensional parameter used to describe the effects of rotation is the 

Rossby number defined as the ratio of the local fluid induced vorticity to the part of the 

absolute vorticity induced by the overall internal rotation 

 

f
Ro


      (2.37) 

 

where  , is the vorticity in small scale and f, is the coriolis parameter defined as 

2f . Furthermore we can define the Rossby number which characterizes the 

external rotation as  LTURoT
1  but in case of balance between the acceleration and 

the Coriolis force we can write as: 

 

L

U
Ro 

      (2.38) 

 

Ekman number is used to describe effect in oceans and atmosphere phenomena. 

Formally is described as: 

 

2Lf

v
Ek       (2.39) 

 

where ν is the kinematic eddy viscosity, f is the coriolis parameter and L is the relevant 

eddy length scale. The same for the Eckman number with external rotation we can write 

as: 

 

2L

v
Ek


      (2.40) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

Stratified Fluids 
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3.1. Basic concepts 

 

The name stratified flow is applied to a flow primarily in the horizontal direction 

that is affected by a vertical variation of the density. Such flows are of considerable 

importance in geophysical fluid mechanics. The obvious case of the effect of vertical 

temperature variations on the wind near the ground is only one of a number of examples 

in the atmosphere, and the effects of both temperature and salinity variations play an 

important role in many aspects of dynamical oceanography. 

The density may, in general, either increase or decrease with height. The former 

case gives rise to an interaction between the mean flow and the convection that would 

occur in the absence of mean flow. One example is the alignment of Benard cells by a 

mean shear, Tritton 1999, illustrated in the laboratory by figure 3.1. This shows an 

illuminated cross-section, perpendicular to the flow, of an air channel with heated 

bottom and cooled top; the smoke has been introduced a long way upstream and so the 

pattern indicates the occurrence of regular rolls with their axes along the flow. 

 

 
Figure 3.1: Cross section of convection cells in channel flow; Ra = 4.16x103, 

Re = 8.3. (Tritton 1999). 

 

However, in this chapter we are primarily concerned with the case of stable 

stratification, that is to say the density decreases with height. Vertical motions then tend 

to carry heavier fluid upwards and lighter fluid downwards, and are thus inhibited. This 

inhibition may take the form of modifying the pattern of the laminar motion or of 

preventing or modifying its instability. 

We require a quantitative criterion for this to be a strong effect. Since most of the 

experiments on stratified flows have used salt rather than heat as the stratifying agent 

we shall retain the density variations explicitly, rather than relating them to temperature 

variations. We consider the case of flow outside boundary layers at high Reynolds and 
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Peclet1 numbers, so that both viscous and diffusive processes are negligible. Thus we 

write the momentum and density equations (for steady flow) 

 

gpuu       (3.1) 

 

0 u      (3.2) 

 

We take z vertically upwards and suppose that the basic stratification consists of a 

uniform density gradient dzd o . Because o  does not vary horizontally, the balance 

between go  and the hydrostatic pressure can be subtracted out from equation 3.1 just 

as for an entirely uniform density. 

We now consider, superimposed on this basic configuration, a flow with length 

and velocity scales L and U, produced, for example, by moving an obstacle of size L 

horizontally through the fluid at speed U. This will produce a modification of the 

density field which we denote by ´ , related to the stratification by equation 3.2 in the 

form 

 

0´  dzdwu o    (3.3) 

 

In order of magnitude 

 

dz

d

U

WL o ~'      (3.4) 

 

W is constant, and restricted by the fact the flow cannot produce buoyancy forces 

associated with ´  that are larger forces involved. Since the buoyancy force does not 

contribute directly to the horizontal component of equation 3.1 it is convenient to work 

in terms of the vorticity form of this equation: 

 

                                                 
1 For brevity, we retain the names, Peclet number and (subsequently) Prandtl number, although, when salt is the 

stratifying agent these now refer to DUL  and D  (the Schmidt number), where D  is the diffusivity of 

the salt. 
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Since the order of magnitude of  is U/L this indicates that the order of magnitude 

of ´  must remain not greater than 

 

LgUo
2~´      (3.6) 

 

Comparison of this with (3.4) indicates that 

 

 2
internal

22~ Fr
dz

d
gLUUW o

o 



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

 
    (3.7) 

 

When  2
internalFr  is small the horizontal motion has only weaker vertical motion 

associated with it. internalFr  is called the internal Froude number: when, as at present, 

there is no danger of confusion with the Froude number associated with free surface 

effects, it is simply called the Froude number.  2
internal1 Fr  is sometimes known as the 

Richardson number. 

Similar analysis can be given for flows in which viscous and/or diffusive effects 

are strong. This is a matter of some complexity, since different detailed treatments are 

appropriate for low, intermediate and high Prandtl number. Thus we do not consider it 

here; when we talk below of low Froude number flows, it is assumed that any other 

criterion for the flow to be strongly constrained by stratification is also fulfilled. 

Often low Froude number motion can be considered to be entirely two-

dimensional in horizontal planes. For example, in the relative moment between a 

spherical obstacle and a stratified fluid, nearly all the fluid is deflected to the sides of 

the sphere, sligthly above and below it. Thus the flow pattern in a horizontal plane has a 

closer resemblance to unstratified flow past a cylinder than to unstratified flow past a 

sphere. 

Geophysical problems of interest frequently involve horizontal and vertical scales, 

L and d, of very different sizes; e.g. flow of a stratified ocean of depth d over 

topography of horizontal scale L, with L>>d. It is therefore worth pointing out 

parenthetically that, in these circumstances, the relative importance of stratification is 
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determined by the Froude number based on the vertical scale. In the above analysis, the 

relevant length scale is L at all points of the argument, except that the order of 

magnitude of  is U/d. Hence, (3.7) becomes 

 









dz

d
dgLUUW o

o


 2~     (3.8) 

 

However, even without stratification, the geometry (via the continuity equation) 

constrains W/U to be of order d/L. Stratification is important when it provides a 

constraint at least as strong as this; i.e. when 

 

12 







dz

d
dgU o

o


     (3.9) 
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3.2. Internal Waves 

 

An important associated parameter may be introduced (and its physical 

significance illustrated) by considering first the behavior of a small fluid particle that is 

vertically displaced. Suppose its density, which it conserves, is  0o . If it is displaced 

a distance z upwards, the density of the fluid surrounding it is   dzdz oo /0    and 

the net gravitational force on it is dzdzg o / . Hence, its motion is governed by the 

equation 

 

z
dz

d
g

dt

zd o
o 

 


2

2

    (3.10) 

 

and it oscillates about its original position with an angular frequency 
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N o

o




    (3.11) 

 

( dzd o  being negative). N  is called the Brunt-Väisälä frequency for stratified flows 

(see § 2.25). When the density variations are due to temperature variations, 

 

  21dzdTgN o     (3.12) 

 

When, in addition, the adiabatic temperature gradient is significant, 
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The above analysis does not describe any actual fluid dynamical situation. For that 

we must turn to the full equations of motion. We consider a wave of small amplitude in 

an inviscid, non-diffusive fluid. Hence, we require the equations of unsteady motion, 

but we omit the non-linear terms on the basis that these must be negligible when the 

amplitude is small enough: 
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  gptuo /    (3.14) 

 

0 u     (3.15) 

 

0//  dzdwt o    (3.16) 

 

where   is the departure of the density from its basic distribution,  zo , and p is the 

corresponding departure from the hydrostatic pressure. We note that, although the 

problem is linearized, the term u  in the density equation still enters through the 

interaction between the vertical velocity component and the basic stratification. 

We look for wavelike solutions, periodic in both space and time: 

 

 zkykxktiUu zyx  exp    (3.17) 

 

 zkykxktiPp zyx  exp    (3.18) 

 

 zkykxktiQ zyx   exp    (3.19) 

 

where zyx kkk ,,  are wave numbers in three directions x, y, z (where, the real parts 

correspond to the physical quantities). Substitution of these into equations (3.14) - 

(3.16) gives 

 

PikUi xo       (3.20) 

 

PikVi yo       (3.21) 

 

gQPikWi zo      (3.22) 

 

0 WikVikUik zyx    (3.23) 
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0 W
dz

d
Qi o     (3.24) 

 

were (U, V, W) are the components of U. Elimination of U, V, W, P and Q from these 

homogeneous equations shows that they are consistent when and only when 
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which may also be written 

 

  kkkN z /
2122      (3.26) 

 

or 

 

 sinN      (3.27) 

 

where  is the inclination to the vertical of the vertical wave number zyx kzkykxk ˆˆˆ   

and kk  . 

Thus waves exist for any value of the angular frequency from zero up to the 

Brunt-Väisälä frequency2 N . Above N there are no wavelike solutions (since, in an 

unstratified fluid, 0N , this gives confirmation that the waves are essentially a 

consequence of the stratification.). When 0zk , corresponding to a wave pattern 

without vertical variation, N ; an array of vertical columns, with the velocity 

varying in the horizontal direction, oscillates at the Brunt-Väisälä frequency, as might 

be expected from its simple derivation above. When 0 yx kk , corresponding to a 

wave pattern without horizontal variation, 0 . The phase velocity of the waves is in 

the direction of k and has /k. 

Of greater physical importance is the group velocity, indicating the speed and 

direction with which kinetic and potential energy are transmitted through the fluid. The 
                                                 
2 Also called the buoyancy frequency, isthe frequency at which a vertically displaced parcel will oscillate within a 
statically stable environment. 
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waves are dispersive in a rather unusual way; the frequency does not depend on the 

magnitude of the wave number but it does depend on its direction. The standard result 

that for a wave in one dimension the group velocity is dkd  may be extended to three 

dimensions giving 
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For the present situation 

 

 
  22

21223
ˆˆˆ zzyzx

z

z
g kkzkkykkx

kkk

kN
c 


   (3.29) 

 

Since the properties of the waves are obviously axisymmetric about the vertical in 

case of no variation in the y – direction that is 0yk  then 

 

 
sinˆcosˆ

cos
zx

k

N
cg     (3.30) 

 

This is perpendicular to the wave number 

 

  cosˆsinˆ zxkk      (3.31) 

 

and thus to the phase velocity. Energy is thus transmitted along lines in the planes of the 

wave fronts. This is what gives the waves their rather unfamiliar character, analogous to 

waves occurring in a rotating fluid. 

The other interesting direction in providing an understanding of the structure of 

the wave motion is the direction of motion of the fluid particles. Equation (3.23), which 

may be written 

 

0 kU      (3.32) 

 

shows that this motion is always perpendicular to the wave number. The waves are 
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essentially transverse. Moreover, since when 0yk , then 0V  (equation 3.21), the 

motion is along the same line as the group velocity. 

No prediction about the wave numbers present is given by the theory. For a single 

, all values of k are possible and all transmit in the same direction. In the experiments, 

there will have been a range of wave numbers present that Fourier synthesize to give the 

narrow rays with undisturbed fluid elsewhere. The detailed structure depends on the 

motion in the immediate vicinity of the oscillating cylinder. 
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3.3. The Entrainment E 

 

Several mechanisms exist that produce mixing across density interfaces; it 

depends on the rate of transfer from kinetic to potential energy, elevating the center of 

gravity of the initially stratified flow. The Prandtl number 





 




Pr  is also important 

relating the momentum diffusivity and the mass  and the mass diffusivity , which 

effect is the general entrainment law, Redondo et al. 1996, as 

 

   Pr,
'

Pr RinRiC
u

Ve
E     (3.33) 

 

For oscillating grid experiments, Turner et al. 1973, proposed that the entrainment 

velocity Ve  defined as dtdDVe , where D is the depth of the turbulent layer, is given 

by a simple law of the form 

 

nRiE       (3.34) 

 

where E, the entrainment rate is defined as VVeE  , V being some global or local 

reference velocity. The Richardson number, Ri , measures the relative importance of 

buoyancy forces which usually act so as to stabilize the flow, and velocity fluctuations 

which tends to destabilize it. A global Richardson number (equivalent to the inverse 

square of the Froude numb, internalFr ) can be defined as '
'

2-
internal g

V

Dg
FrRio   being the 

reduced gravity gg



'  where   is the density difference producing the buoyancy 

effects. The Richardson number can be used in various ways as defined in § 2.2.1., here 

we consider appropriate definitions for each of the experimental situations investigated 

such as in grid generated turbulence. Turner 1973, defined a global Richardson number 

in terms of local turbulent parameters as: 
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      (3.35) 

 

where   is the buoyancy jump across a density interface, 'u  is the turbulent velocity 

and l  is an integral length scale of the turbulence defined as the area under the cross-

correlation coefficient curve for the parallel velocity components. 

In general 
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
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 dRl      (3.36) 

 

when  is the distance between the density or velocity probes and  R  is the cross 

correlation coefficient 
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The relationship between the integral length scale and the Taylor microscale 

define in §2.1.3 is seen in figure 3.2. 

 

 
Figure 3.2: The relationship between the integral length scale and the Taylor 

microscale. 

 

Turner 1973 and Redondo et al. 1996, found that the value of n in equation 3.34 
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was 3/2 when the stratification was due to salt, and 5/3 when was due to sugar, but the 

density-stratification resulted from a temperature gradient, the value of n was found to 

be close to 1. Turner also suggested that viscosity differences cannot be used to explain 

the different values of n, and proposed that the differences in Ve  that occur when using 

salt and heat as the stratifying agents can only be explained by consideration of the 

molecular diffusion of mass and heat as defined by the appropriate diffusivity , and 

proposed that the entrainment velocity would be a function of both a Richardson 

number and the Peclet number 


lu
Pe

'

 . Turner initially suggested that 1RiE , which 

he found for temperature stratification was the basic entrainment law, but he also found 

23RiE , for salt stratification, showing the influence of the molecular diffusivity on 

turbulent transport. This experiment studies the horizontal characteristics of a larger 

scale mixing front both in a stratified and in a homogeneous flow, modeling the coastal 

stirring associated to a coastal current and based on the work by Carrillo et al. (2001). 

The entrainment as a function of the Richardson number confirms the Turner 

(1973) and Redondo et al. (1987) results, shown in figure 3.3 showing power law 

dependence with 23n  for large range of Ri  values. It is apparent that there are more 

than 3 decades of variation in the values of entrainment which are reflected in a similar 

range of variation for the mixing efficiency. For salty interfaces the relationship 

between the mixing efficiency and the local Richardson number ( Ri ) is a function of 

entrainment as 

 

nRiRiE  1     (3.38) 

 

This is a non lineal effect that can be explained by the complex resonances 

between waves and turbulence (Linden 1980, Redondo et al. 1995, Redondo et al. 

2001). 
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Figure 3.3: Entrainment versus Richardson Number for oscillating grid 

turbulent mixing. Redondo (1987), Turner (1973) Results for salt are indicated 

as black dots. 
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3.4. Previous related results and comparative analysis 

 

The Entrainment law is modified, provided there is a close boundary layer as 

demonstrated by Redondo (1990) as seen in figure 3.4, however to our knowledge, no 

experiments have been performed measuring Entrainment with grid stirred turbulence 

on a rotating frame in non homogenous-turbulence. 

 

 
Figure 3.4: Changes in Entrainment due to a boundary Layer, x and ● - 

experiments by Redondo (1990), ○ - experiments by Turner (1973). 

 

The preliminary results from the Trondheim Rotating Stratified flow experiments 

lead to the expectation that both stratification and rotation produce changes in the 

spectra of both the velocity components and of the density at the centre of the interface. 

The density also shows a marked skewness as we move away from the centre as seen in 

figure 3.5. The Kurthosis also increases strongly as a function of the Richardson number 

as seen in figure 3.6 so an important feature of the experimental analysis of this thesis 

will be to consider measurements, long enough to be able to calculate not only turbulent 

velocities and densities and their RMS, but also their higher order moments. The ESS 

technique will be used Babiano (2002) to calculate Structure functions with enough 

accuracy, using the Mahjoub et al. (1998, 2001) technique. 
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Figure 3.5: Density fluctuations at the centre of an interface, note the 

skeweness. a) 1cm below the interface, b) 0.5cm below the interface, c) at the 

average interface, d), e) and f) above the interface. 

 

 

 

Figure 3.6: Kurthosis of the density fluctuations measured at the centre of a 

density interface in oscillating grid turbulence, Redondo et al. (1988) [Rev. de 

Geophisc]. 
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Figure 3.7: Fractal dimension 
1

2
D , as a function of the Richardson number. 

 

It was shown by Redondo (1990) (see figures 3.7 and 3.8) that density interfaces 

may be distinguished by their Fractal dimension 2D  and their thickness and both are 

functions of the Richardson number. The same analysis will be extended to Rotating 

flows using the Rossby number to parameterize the geometrical changes. 

 

 
Figure 3.8: Vertical length scale versus Ri, different symbols correspond to 

different distance between an oscillating grid and a sharp density interface. 
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Figure 3.9: Mixedness contours as a function of Richardson number. 

 

In figure 3.9 the parameterization of the Mixedness with Ri and z/l, which may be 

considered as the grid action or Reynolds number per unit viscosity shows a region of 

resonance due to internal waves. The extension of these measures to a rotating flow 

would also introduce the inertial waves and the Coriolis parameter creating more 

complex resonances. From top views such as that shown in figure 3.10 of tracer 

evolution in the surface, the vortex structure on a stratified-rotating flow may be 

analyzed and the Rossby deformation radius and the fractal dimension calculated in a 

similar way as the satellite images both from the atmosphere and ocean. 
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Figure 3.10: Example of ERS-2 SAR images (left) with a recent, but distorted, 

oil spill in the North Western Mediterranean near Barcelona. The image’s box 

size is approximately 100 Km (other similar images are available in chapter 8 

and appendix 3). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

Rotating Fluids and Vorticity 
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4.1. Flow in Rotating Fluids 

4.1.1. Introduction 

 

This chapter is concerned with the dynamic of fluids in rotating systems. This 

branch of fluids mechanics has developed rapidly in recent years as an obvious 

consequence of interest in geophysical flow problems. Evaluation of the parameters 

shows that the motions, particularly on the large scale, of the Earth’s atmosphere, 

oceans, and core and of stars and galaxies will all exhibit the effects discussed in this 

chapter. The rotation gives rise to a range of new phenomena; here we consider a small 

selection of these. For the most part of this introduction we consider constant density 

flows, but further on we will consider the coupled effect of rotation and stratification 

specially when discussing the rotating stratification experiments (see chapter 9 and 

appendix 5). The whole subject could be formulated as seen by an observer external to 

the rotation. Since, however, all boundary conditions will be specified in terms of the 

rotating frame of reference it is easier to modify the equations of motion so that they 

apply in such a frame. 

To consider how rotation forces the flow topology characteristics, let us consider a 

body of fluid and rotate its boundaries at a constant angular velocity Ω, then at any time 

sufficiently long after starting the rotation, the whole body is rotating with this angular 

velocity, moving as if it were a rigid body. There are then no viscous stresses acting 

within the fluid. Any disturbance – i.e. anything that would produce a motion in a non-

rotating system – will produce motion relative to this rigid body rotation. This relative 

motion can be considered as the flow pattern; it is the pattern that will be observed by 

an observer fixed to the rotating boundaries (Tritton 1999). 

The Taylor-Proudman theorem has simple and striking consequences, illustrating 

the fact that rotating fluids exhibit a range of phenomena not found in non-rotating 

fluids. The principal of these is the formation of ‘Taylor columns’ that lead to a 2D like 

structure. These occur when there is relative motion between an obstacle and the fluid in 

a strongly rotating system. We consider first the case in which this motion is 

perpendicular to the axis of rotation (giving what is called a transverse Taylor column). 

The fluid is deflected past the obstacle. Since the flow must be two-dimensional this 

deflection also occurs above and below the obstacle (visualizing the axis of rotation as 

vertical). There are thus columns of fluid, extending parallel to the axis from the 
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obstacle, round which the fluid is deflected just as if the solid walls themselves 

extended there. 
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4.1.2. Centrifugal and Coriolis forces 

 

The basic non-dimensional parameter used to describe the effects of rotation is the 

Rossby number considered as the ratio of the local fluid induced vorticity to the part of 

the absolute vorticity induced by the overall external rotation and is shown in 2.2.4. A 

small Rossby number signifies a system which is strongly affected by Coriolis forces, 

and a large Rossby number signifies a system in which inertial and centrifugal forces 

dominate. 

The effect of using a rotating frame of reference is well known from the 

mechanics of solid systems; there are accelerations associated with the use of a non-

inertial frame that can be taken into account by introducing centrifugal Coriolis forces. 

That statement may be expressed in a form appropriate to fluid systems by 
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The subscripts I and R refer to inertial and rotating frames of reference.  IDtDu  

is the acceleration relative to the rotating frame and can thus be expanded in the usual 

way: 
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Dropping the subscript R, as all velocities will be referred to the rotating frame 

throughout the rest of this chapter, the equation of motion is 
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u 22
1
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  (4.3) 

 

The second and third terms on the right-hand side of (4.1) are, of course, 

respectively the centrifugal and Coriolis forces. In many problems the centrifugal force 

is unimportant. This is because it can be expressed as the gradient of a scalar quantity, 
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  


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
  22 '

2

1
rr     (4.4) 

 

where ´r  is the distance from the axis of rotation (figure 4.1). Hence replacing the 

pressure by 





  22 '

2

1
rp   reduces the problem to one that is identical except that the 

centrifugal force is absent. This is entirely analogous to the procedure of subtracting out 

the hydrostatic pressure to remove the effect of gravitational forces. The centrifugal 

force is balanced by a radial pressure gradient, which is present, whether or not there is 

any flow relative to the rotating frame and which does not interact with any such flow. 

The limitations to this statement are just the same as for the gravitational case. First, the 

pressure must not appear explicitly in the boundary conditions. Second (since  has 

been taken through ), the density must be constant; centrifugal forces variations 

associated with density variations do give rise to body forces that can alter or even 

cause a flow. 

It should be emphasized that the centrifugal force under discussion here is 

associated with the rotation of the frame of reference as a whole. In the other contexts it 

is sometimes convenient to talk about the centrifugal force associated with circular 

motion relative to the frame of reference (either inertial or rotating). This is then a way 

of discussing physically effects that are contained mathematically in one or both of 

 uu   and the Coriolis term. 

 

 

Figure 4.1: Definition sketch. 
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4.1.3. Intrinsic stability and inertial waves 

 

Rotating fluids have an intrinsic stability, in the sense that if a fluid particle is 

displaced there is a tendency for it to return in a way that would not occur in a non-

rotating fluid. Consider an isolated particle of unit mass, which, as a result of some 

disturbance, moves with a speed u in any direction perpendicular to the axis of rotation. 

(We are not considering here a genuine fluid motion or even a particular physical 

situation, but merely illustrating a general feature in the simplest way). A Coriolis force 

of magnitude u2  acts on it, always at right angles to its direction of motion. It thus 

moves on a circular path of radius r given by 

 

uru 22      (4.5) 

 

that is 

 

 2ur      (4.6) 

 

It goes once round the circle in a time 

 

  urT 2     (4.7) 

 

independent of u. It thus returns to its original position periodically, twice during every 

revolution of the fluid. It is thus often said that a rotating fluid has an intrinsic angular 

frequency, T2 . 

In a complete system, the effect of this constraining tendency acting on every fluid 

particle is that rotating fluids can support wave motions, known as inertial waves that 

would not arise in the absence of rotation. Inertial waves are in many ways closely 

similar to internal waves in a stratified fluid. Just as internal waves occur with values of 

the angular frequency from zero up to the Brunt-Väisälä frequency, so inertial waves 

occur with the values from zero up to 2 : 

 

 cos2      (4.8) 
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where  is now the angle between the wave number vector and the rotation axis. Again 

the frequency is related to the orientation and not the magnitude of the wave number. 

Consequently, the property of the group velocity being perpendicular to the phase 

velocity is also exhibited by inertial waves. We can thus allow the analogy between 

inertial and internal waves (§ 3.2) to indicate the nature of inertial waves without the 

need of a separate detailed analysis of them. 
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4.2. Internal and Inertial waves 

 

In stratified-rotating fluids, both types of moments act at the same time. The linear 

internal waves propagate at an angle  with a dispersion relationship given by 

 sin22 N  that propagate at an angle among a layered stratified structure as shown 

in figure 4.2. On the other hand rotating structures dissipate energy through inertial 

waves limited by the coriolis parameter f. That process is a powerful mechanism for the 

radiation of energy away from the mixing front or density produced by the local 

velocity gradient  zu  . 

 

 
Figure 4.2: Internal and Inertial wave propagation cones. 

 

The quasi-bidimensional (2D) approximations can not be applied directly to the 

mesoscale dynamic, dominated by stable stratification and rotation. In spite of 

numerical tools and theories for lineal approximations; high resolution direct numeric 

simulation and non-linear theories as wave turbulence for 3D predictions. Those tools 

can be used to compare with results at laboratories experiments and are adapted to well 

defined problems such as the quantification of elongated or flat eddy structures by an 

extended range of parameters like N or f (characteristic frequency of stratification and 

Coriolis respectively). 

Any solenoidal two-dimensional motion satisfies the geostrophic equations. The 
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Taylor-Proudman theorem1 for fast rotation is the limit of the information to be obtained 

in this way. Both the Rossby number ( LURo  ) and the Ekman number 

( 2LEk  ) increase as the length scale is decreased. So, if therefore there are 

regions in which the flow parameters vary over a distance small compared with the 

imposed length scales, then inertia forces and/or viscous forces may be locally 

important. Then, there may be local violations of the Taylor-Proudman theorem. An 

obvious place for such a development to occur is between the two flows which, 

according to the theorem, do not interact, that is at the edge of the Taylor column. Thin 

shear layers are observed here. The whole structure of the detailed flow in the Taylor 

column is determined by these shears layers together with the boundary layer on the 

obstacle's surface. Because the two regions are separated by a layer in which the Taylor-

Proudman theorem does not apply, there is in fact some interchange of fluid between 

the integer and the exterior of a transverse Taylor column. It is the shear layers that also 

govern the length of a Taylor column (either transverse or longitudinal) so that, 

although it is long at low Rossby and Ekman numbers, it does not extend to infinity as 

predicted by the Taylor-Proudman theorem. A flow in a rotating fluid in which viscous 

forces are important but which is much simpler than the shear layers mentioned above. 

This is the Ekman layer, the boundary layer between a geostrophic flow and a solid 

boundary at which the no-slip condition applies. This turns out to be actually simpler 

than the corresponding problem in a non-rotating fluid. The results have the added 

interest of direct application to the atmosphere and the oceans. 

Several kinds of experiments developed with jet induced turbulence Boubnov et 

al. (1994), Linden et al. (1995) and Dalziel et al. (1995), or with grid stirred turbulence 

show a slow front advance adverted by the presence of a steady general circulation on 

the tank (Carrillo et al. 2001). 

 

                                                 
1 States that when a solid body is moved slowly within a fluid that is steadily rotated with a high Ω, the fluid velocity 
will be uniform along any line parallel to the axis of rotation. Ω must be relatively large compared to the movement 
of the solid body in order to make the coriolis force large compared to the acceleration terms. 
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4.3. Vorticity in 3D/2D flows 

 

Vorticity as a mathematical concept is used in fluid dynamics. It can be related to 

the amount of "circulation" or "rotation" (or more strictly, the local angular rate of 

rotation) in a fluid. Vorticity we can write in vector form as: 

 

v


      (4.9) 

 

being   ,,  and  wvuv ,,  vorticity and velocity vectors respectively. 

In fluid dynamics, vorticity is the curl of the fluid velocity. It can also be 

considered as the circulation per unit area at a point in a fluid flow field. It is a vector 

quantity, whose direction is along the axis of the fluid's rotation. For a two-dimensional 

flow, the vorticity vector is perpendicular to the plane. For a fluid having locally a "rigid 

rotation" around an axis, vorticity is twice the angular velocity of a fluid element. 

In general, vorticity is an especially powerful concept, in case viscosity is low (i.e. 

high Reynolds number). In such cases, even when the velocity field is relatively 

complicated, the vorticity field can be well approximated as zero nearly everywhere 

except in a small region in space. This is clearly true in the case of 2D potential flow 

(i.e. 2D zero viscosity flow), in which case the flow field can be identified with the 

complex plane, and questions about those sorts of flows can be posed as questions in 

complex analysis which can often be solved analytically. 

Even for real flows (3D and finite Re), the idea of viewing things in terms of 

vorticity is still very powerful. In particular, one restricts attention to the vortex 

dynamics, which presumes that the vorticity field can be well modelled in terms of 

discrete vortices. In general, the presence of viscosity causes a diffusion of vorticity 

away from these small regions into the general flow field. This can be seen by the 

diffusion term in the vorticity transport equation. Thus, in cases of very viscous flows, 

the vorticity will be diffused throughout the flow field and it is probably simpler to look 

at the velocity field rather than to look at the vorticity field. One of the advantage of 

using the vorticity equation is that pressure term are avoided in homogeneous flows 

( .cte ) because 0 p . In 2D flows    0,,0,, vuyx  the vertical vector is 

reduced to the vertical component   ,0,0  and it may be treated as a scalar. 
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4.3.1. Basic Equations in environmental flows 

 

The basic equations are the continuity and momentum equations using Boussinesq 

approximation2, and will be used to show some aspects at the scale to scale energy 

transfer in a 2D flow. For an incompressible fluid the continuity equation reduces to 

 

0 u      (4.10) 

 

The equation of motion of an incompressible, homogeneous geophysical fluid 

with constant viscosity is: 

 

uvup
x

u
u

t

u

i
i

22
1







 


  (4.11) 

 

where p is the pressure,  the gravitational potential,  the angular velocity of Earth and 

  kinematic viscosity. If the motion is primarily horizontal, then the flow is 

approximately two-dimensional i.e. )0,,( vuu   where u and v are independent of depth. 

In a strictly 2D flow of this form there is only one non-zero component of 

vorticity (the vertical) and ),0,0(    in the absence of dissipation vorticity is 

conserved (Kelvin’s Law) 

 

0
Dt

D
     (4.12) 

 

Note that this is true away from the boundaries that act as sources of vorticity. 

 

                                                 
2 Boussinesq approximation neglects variations in density except to calculate buoyancy forces. It is often used in free 
convection problems where density changes are small (see chapter 2). 
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Figure 4.4: Comparison of a Turbulent Jet in a Stratified (left) and a Neutral 

(right) environment, showing the formation of a stable 2D vortex dipole. 

 

So we may define a stream function , such that 

 





2

0,,
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



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
xy

u
     (4.13) 
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The intensification of vertical vorticity can be seen in a stratified fluid such as that 

seen at the left of figure 4.4. The use of the vorticity and the stream function calculated 

experimentally such as the plot of figure 4.5 can be used to distinguish between the 

different coherent structures in the 2D turbulent flows (Flor et al. 1996). 

 

 

Figure 4.5: Vorticity-Stream function plot for a dipole structure. 

 

Then, using ω and ψ, the equation of vorticity conservation becomes 

 

  0, 

 

J
t

     (4.14) 

 

where ψ is the  1s stream function as defined previously and J denotes the Jacobian. 

So that in 2D flows with no dissipation we have conservation of (observed in figure 4.6) 

 

 Energy    



0

2 , dktkEu      (4.15) 

 Enstrophy   



0

22 , dktkEk      (4.16) 
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These simple relations, will be revised in the case of non-local dominant vortices 

(Cano et al. 2008), in the discussion chapter. 

 

 

Figure 4.6: Energy peak shifts to larger scales (inverse energy cascade). Low 

rates of energy dissipation. 

 

Conservation of enstrophy results from conservation of vorticity  (no stretching 

or twisting). In a 2D flow with weak dissipation the above results hold approximately, 

when the 2D flow is not strict, but rotation and stratification force some form of 

laminarization as column structure, energy and enstrophy transfers are much more 

complicated, Cambon (2000). 
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4.3.2. Basic instabilities compare to Average Turbulent Continuity Reynolds 

Equations (RANS) 

 

Each time a flow changes as a result of an instability, the ability to predict the 

details of the motion is reduced. The flow is turbulent, in case successive instabilities 

have reduced the level of predictability so much that it is appropriate to describe a flow 

statistically rather than in every detail. This implies that random features of the flow are 

dominant. One cannot however say that a turbulent flow is 'completely random’; to do 

so would define turbulence out of existences. 

This approach seems likely to leave a 'grey area' of flows that one might or might 

not choose to call turbulent. It is in fact a moot point whether one would expect to be 

able to classify all flows as either turbulent or non-turbulent, equivalently, whether 

during transition to turbulence one should be able to designate the point at which 

turbulent motion begins. 

The notion of loss of predictability is better understood through an example. 

Consider the motion in a Kármán vortex street3 in the wake of an obstacle. The velocity 

at a point fixed relative to the obstacle varies periodically and roughly sinusoidally. The 

phase of this variation is arbitrary, depending on the small disturbances at the time the 

flow commenced. If, therefore, a prediction of the instantaneous velocity should be 

conducted, without making any observation, it cannot be given within certain limits. 

The degree of unpredictability is small. Only a single observation indicating the phase 

of the fluctuations is required for all the details of the flow to be determined. When, 

with increasing Reynolds number, a further instability causes loss of regularity in the 

array of vortices, the unpredictability is increased. 

There is every reason to suppose that this loss of predictability occurs as a 

property of the Navier-Stokes and continuity equations, although these equations 

contain the determinism of classical mechanics. In the meantime, it is useful to illustrate 

the essential reason why a deterministic treatment of turbulent flows is not possible.  

Static instability in the atmosphere leads to spontaneous vertical mixing 

(convection) in the form of thermals and possibly cumulus clouds. Vertical mixing may 

occur in a stable environment, in particular in the form of breaking waves. These 

breaking waves are a major cause of turbulence aloft, especially just above the planetary 

                                                 
3 Is a term used for a repeating pattern of swirling vortices caused by the unsteady separation of flow of a fluid over 
bluff bodies. 
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boundary layer or near the jet stream, where they often produce clear-air turbulence 

dreaded by aviators. The evolution of these breaking waves has been described 

mathematically by Kelvin and Helmholtz, hence the term Kelvin-Helmholtz billows, the 

evolution of which is shown in figure 4.7. 

 

 
Figure 4.7: Idealized evolution of a Kelvin-Helmholtz billow when Ri < 0.25. 

 

The likelihood of Kelvin-Helmholtz instability4 can be evaluated by means of the 

Richardson's number, Ri, but other parameters may modify the flow topology. 

The first analysis of shear instabilities was made by Kelvin (1898) and Helmholtz 

(1887). Richardson (1922) introduced the numbers named after him; although Taylor 

(1932) shows that he had derived similar parameters in 1914. Taylor published his 

results at the same time as Goldstein (1931). Analysing the stability of a piecewise 

stratified shear layer, they introduced what is now called the Taylor-Goldstein equation 
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by applying normal modes to a homogenous inviscid two dimensional flow in the x-

direction, and vertical density and velocity variations. The mean velocity is only 

allowed to vary in the vertical direction, but in the case of very weak acceleration or 

deceleration of the flow, or span-wise non uniformities of the mean velocity, which can 

be ignored, 
z

U




may be used instead of 
dz

dU
. The Taylor-Goldstein equation is reduced 

to the Rayleigh equation 

 

                                                 
4 Can occur when velocity shear is present within a continuous fluid or, when there is sufficient velocity difference 
across the interface between two fluids. One example is a wind blowing over a water surface, where the wind causes 
the relative motion between the stratified layers (i.e. water and air). 



 68

  w
dz

d
cUw

zd

d








 2

2

2

2

2

     (4.18) 

 

The basic instabilities that the N-S equation can sustain, that depend mostly on the 

geometry (or topology) of the forcing and on the body forces such as buoyancy, rotation 

or magnetic fields. Unfortunately this “coherent structure” information is partly lost 

when we perform a statistical analysis on the equation for large Reynolds numbers. This 

procedure is called Reynolds averaging (RANS) and provides the average effect of the 

turbulent fluctuations on the average flow5. 

With the velocity divided into its mean and fluctuating parts, the continuity 

equation for incompressible fluids is 

 

  0uUdiv      (4.19) 

 

that is 

 

  0 iii xuU     (4.20) 

 

Averaging this equation, 

 

0 ii xU      (4.21) 

 

Subtracting this result from the original equation, we have 

 

0 ii xu      (4.22) 

 

The mean and fluctuating parts of the velocity field thus individually satisfy the 

usual form of the continuity equation. The same division applied to the Navier-Stokes 

equation gives 

                                                 
5 New techniques that allow to sample only selected parts of the flow (VITA) or to model directly the 
large eddies (LES), or use averages of different size are very usefull (CHASSAIGN 2002, Redondo 
1987). 
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Carrying out the averaging process throughout this equation gives 
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   (4.24) 

 

which, with the help of the continuity equation (4.19), may be rewritten 
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This equation for the mean velocity iU  differs from the laminar flow equation by 

the addition of the last term. This term represents the action of the velocity fluctuations 

on the mean flow arising from the non-linearity of the Navier-Stokes equation. It is 

frequently large compared with the viscous term, with the result that the mean velocity 

distribution is very different from the corresponding laminar flow. 

The character of this interaction between the mean flow and the fluctuations can 

more simply see in the context of a flow for which the two-dimensional boundary layer 

approximation applies. The turbulent fluctuations are always three-dimensional, but if 

the imposed conditions are two-dimensional, there is no variation of mean quantities in 

the third direction and terms such as   zuw   are zero. Omitting such terms and terms 

that are small on the boundary layer approximation6 in equation (4.25) gives 
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   (4.26) 

 

This equation is applied to turbulent boundary layers, jets, wakes, etc. 

                                                 
6 The boundary layer approximation is used here to its fullest extent. In studies of turbulent flows, some further terms 

(e.g.   xu  2
) are retained because measurements indicate that they are not so very small. Trinitron (1999). 
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Writing the last two terms of (4.26) as 
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shows that the velocity fluctuations produce a stress on the mean flow. A gradient of 

this produces a net acceleration of the fluid in the same way as a gradient of the viscous 

stress. The quantity  uv , and more generally the quantity  ji vu , is called a 

Reynolds stress. 

The Reynolds stress arises from the correlation of two components of the velocity 

fluctuation at the same point. A non-zero value of this correlation implies that the two 

components are not independent of one another. For example, if uv  is negative, then at 

moments at which u is positive,  is more likely to be negative than positive; conversely 

when u is negative. Putting 

 

    22 '' uvvvuu     (4.28) 

 

gives 
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Figure 4.8 shows the geometrical significance of this. 

 

 

Figure 4.8: Geometrical interpretation of Reynolds stress if patterns of 

velocity fluctuations shown in (a) and (b) occur more frequently than those in 

(c) and (d), giving negative uv , then 
2'v  is larger than 

2'u  as indicated by 

(e), Tritton (1999). 
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One can readily see how a correlation of this kind can arise in a mean shear flow. 

We may consider the case of positive yU   as shown in figure 4.8. A fluid particle 

with positive  is being carried by the turbulence in the positive y-direction. It is coming 

from a region where the mean velocity is smaller and it is thus likely to be moving 

downstream more slowly than its new environment, i.e. it is more likely to have 

negative u than positive. Similarly negative v is more likely to be associated with 

positive u. The analogy has led to the definition of a quantity T  such that 

 

yUuv T       (4.30) 

 

T  is called the eddy viscosity. It is important to realize that T  is a representation of 

the action of the turbulence on the mean flow and not a property of the fluid. It is 

moreover a representation that simplifies the dynamics of that action, because of the 

large-scale coherent motions. The Reynolds stress (shown in figure 4.9) at any point 

depends on the whole velocity profile, not just on the local gradient. Although it is 

sometimes useful for approximate calculations to suppose that T  is an (empirical) 

constant, in general (equation 4.30) should be regarded as the defining equation of T  

rather than an equation for uv . 

 

 

Figure 4.9: To illustrate the generation of a Reynolds stress in a mean velocity 

gradient. 
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4.3.3. Turbulent Energy and Transport Equations 

 

Further understanding of the interaction between the mean flow and the 

fluctuations is obtained from the equation for the kinetic energy of the turbulence. 

Subtracting equation (4.24) from equation (4.23) to investigate just the velocity 

fluctuation gives 
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  (4.31) 

 

Multiplying this by iu  and averaging 
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(where the rearrangement of terms has made use of the continuity equation 4.19). Since 

the summation convention is being applied, the mathematics involves multiplying each 

component of the dynamical equation (4.31) by the corresponding velocity component 

and then adding the three resulting equations. For steady mean conditions the first term 

of equation (4.32) is zero, but it indicates the physical significance of the equation, in 

view of the summation convention 
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and so each term in the equation represents some process tending to increase or decrease 

the kinetic energy of the turbulence. 

With the boundary layer approximation applied to a flow, which is steady and 

two-dimensional in the mean, with just horizontal shear 
dy

dV
 equation (4.32) becomes 
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The left-hand side and the second term on the right-hand side are terms that show 

the interaction between the turbulent kinetic energy and the mean flow  0,,vu  and 

become zero when integrated over the whole flow. They represent the transfer of energy 

from place to place, respectively transfer by the mean motion and transfer by the 

turbulence itself. As in a laminar flow, the viscous term can be divided into two parts: 

one is essentially negative and thus represents viscous dissipation; the other (usually 

small) integrates to zero and so is another energy transfer process. The input of energy 

to compensate for the dissipation must be provided by the only remaining term, 

 yUuv  . We have seen that uv  is likely to be negative where yU   is positive, 

giving this term the required sign. Although local regions of positive  yUuv   can 

occur, they cannot occupy the majority of the flow or the turbulence cannot be 

maintained. 

The equation for the energy of the mean flow contains a corresponding term of the 

opposite sign. The term thus represents a transfer of energy from the mean flow to the 

turbulence. One can therefore say that the Reynolds stress works against the mean 

velocity gradient to remove energy from the mean flow, just as the viscous stress works 

against the velocity gradient. However, the energy removed by the latter process is 

directly dissipated, reappearing as beat, whereas the action of the Reynolds stress 

provides energy for the turbulence. This energy is ultimately dissipated by the action of 

viscosity on the turbulent fluctuations. Frequently, the loss of mean flow energy to 

turbulence is large compared with the direct viscous dissipation. 

The more general transport equations are obtained for each of the term of the 

correlation ''
ji uu . After manipulating the product of each component at the velocity 

time the Navier-Stokes equation applies to the other component in the following 

fashion: 

 

   ''''
ijji uNSuuNSu      (4.35) 

 

we obtain the following equations: 
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where the meaning of each of the term (shown in figure 4.10) is: the first term at right of 

equality corresponds to the creation by mean shear (1), the second to the return to 

isotropy by action of pressure fluctuation p’ (2), the third to the transport of fluctuations 

(of correlations) (3), the fourth to the pressure transport (4), fifth to the viscosity 

destruction and transport by    (5), and the sixth to the generation or destruction by 

massive forces ( f if is rotation and g if is gravitation – stratification) (6). 

 

 
Figure 4.10: The generation and destruction of energy. 
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4.4. Turbulence Vorticity in 3D flows 

 

Vorticity is the rotation of air around a vertical axis. Relative and absolute 

vorticity are defined as the z-components of the curls of relative (i.e., in relation to 

Earth's surface) and absolute wind velocity, respectively. 

This gives: 
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for relative vorticity and 
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for absolute vorticity, where u and  are the zonal (x direction) and meridian (y 

direction) components of wind velocity. The absolute vorticity at a point can also be 

expressed as the sum of the relative vorticity at that point and the Coriolis parameter at 

that latitude. 

A useful related quantity is potential vorticity. The absolute vorticity of an air 

mass will change if the air mass is stretched (or compressed) in the z direction. But if 

the absolute vorticity is divided by the vertical spacing between levels of constant 

entropy (or potential temperature), the result is a conserved quantity of adiabatic flow, 

termed potential vorticity. 

Cano et al. (2008) recaptures the hypothesis developed by Reynolds and Taylor 

(1932) and decomposes the flow in mean and fluctuations and applies it to the vorticity 

vector for turbulent flow as: 

 

'       (4.39) 

 

being   the vorticity vector,   the average vorticity vector and '  the turbulent 

perturbation of the vorticity vector. From this moment   is interpreted as the average 

rotation at which a turbulent eddy would be developed.   is the rotation imposed by 
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turbulent flow for each of flowing volume elements that constitute. Therefore '  is the 

difference between the actual and the average rotation of the eddy. Using this kind of 

decomposition to different components of vorticity vortex is obtained: 

 

 ',','      (4.40) 

 

where   ,,  are the three components mentioned on the (x,y,z) axes respectively. 

Using the corresponding algebra to average values and derivatives it is possible to prove 

easily the relations among the average and perturbed components of the vorticity vector 

and the corresponding velocity vector components (for the average components 

equation 4.41 and for the fluctuating ones 4.42): 
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Considering an isotropic turbulent flow is easy to obtain the following condition 

for the three perturbed components of the vorticity vector: 

 

''' wvu       (4.43) 
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This condition can take place in a geophysical, Ocean or Atmospheric flow, only 

far from thermal generators or mechanical turbulence. Using this isotropy expression is 

deduced: 
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   (4.44) 

 

and further is shown a new characteristic of perturbed components of vorticity vector in 

isotropy without any body forces: 

 

'''0'''       (4.45) 

 

Applying the rotational operator to the Navier-Stokes equation, the vorticity 

equation with no body forces is obtained: 
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The new form of the motion equation of the kinetic energy and vorticity is: 
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Considering the O. Reynolds decomposition applied this time to vorticity: 
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where , ,u v w  are the three components of velocity vector;  ,,  are the three 

components of the average vorticity vector; cE  the average kinetic energy of motion; 

', ', 'u v w  the three perturbed components of velocity vector; ',','   the three 

perturbed components of vorticity vector; '
cE  the average of the perturbed kinetic 

energy, that is to say  2 2 21
' ' '

2
u v w   and P the pressure. Considering steady mean 

flow and such coordinates system than  0,0,uv  this system is simplified to: 

 

   

   

   
z

p
uuvE

z
E

z

y

p
wuuE

y
E

y

x

p
vwE

x
E

x

cc

cc

cc











































1
'''''

1
'''''

1
'''''

  (4.49) 

 

in the same way, using  ,u u y z  in a 3D coordinate system, we obtain: 
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finally, it can be written in vector form as: 
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or 
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From equation 4.52 it is possible to obtain a sample equation with the non-linear 

terms and similar flow conditions and coordinate system  0,0,uv  as: 
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using the corresponding components of vectors (Cano et al. 2008) obtain the following 

system, that avoid pressure fluctuation ( PP ) and baroclinic terms. 
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If we suppose that for the small scales this system admits the local isotropic 

hypothesis, we may then use: 

 

'''''''''''' wuwvvvwwvuuu     (4.55) 

 

Therefore, equation (4.54) may be simplified to: 
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and we also have for the average pressure: 
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Finally through the turbulent vorticity components the following system of 

equations is proposed to relate velocity, vorticity components and pressure: 
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This system indeed does not consider body forces, nor the anisotropy induced by 

them, but assuming that small scales are not affected as much as the large scales and 

force a vertical squashing in case of stable buoyancy, or a vertical elongation in case of 

the fast rotation. 

It is important to investigate the topology of the flow, especially when non-

homogeneous turbulence is produced by one or several body forces like buoyancy, 

rotation or magnetic fields. The role of internal or inertial waves could affect the 

locality of the cascade processes and these effects will be discussed after the 

presentation of the experimental results in chapter 7. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

Fractal and Multifractal Analysis in Environmental 

Turbulence 
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5.1. Dimensional Analysis and Scales 

 

In order to compare scales of molecular and turbulent diffusion, we first take an 

imposed length scale to compare times and next an imposed time scale to compare 

lengths. Take as an example the diffusion of a gas in a room with dimension L. From 

the diffusion equation one may estimate the order of magnitude 
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
      (5.1) 

 

where C is a concentration difference, which will be reached by molecular diffusion at 

distance L after time Tm. If the velocity of the major eddies in the room is u, the 

corresponding time scale Tt becomes 
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L
Tt       (5.2) 

 

The ratio of both times may be expressed as 
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where it was used that the diffusion coefficient D for air and kinematics viscosity for air 

 are of the same order of magnitude. The interesting point is that turbulent transport 

usually is much quicker than molecular diffusion, for instance, we can smell a cigar 10 

metres away after few minutes. 

If we focus in the smallest eddies, the rate of energy dissipation  per unit of mass 

has the dimension of m2s-3. The dynamic factor governing this dissipation must be the 

kinematic viscosity  with a dimension of m2s-1. It is now possible to identify the 

Kolmogorov scales for length k , time  and velocity u as 
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The Reynolds number on this scale becomes 

 

1Re 
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     (5.5) 

 

which illustrates that viscosity dominates the processes on this scale. The basic 

assumption, which agrees with observation, is that large eddies with length and velocity 

scales l and u lose their energy when they have travelled a distance of the order of l. The 

associated time is u
l . The kinetic energy of a unit of mass is of the order u2, so the 

energy a unit of mass is losing per second becomes l
u 3

. On average this should be 

equal to the rate  with the smallest eddies are dissipating their kinetic energy into head, 
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Then the relation between the sizes of small and large eddies become (already 

mentioned in chapter 1): 
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With Reynolds numbers in the order of Re  104, length scales differ by an order 

of 103. Numerical grids to perform calculations should describe both eddies at the same 

time, which is computationally out of reach nowadays. This illustrates the need for 

physically sensible approximations. A similar relation holds for the time scales: 
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The angular velocities in eddies are inversely proportional to the time scales. 

Therefore, they will be the largest for the smallest eddies. 

This observation is also related to the notion that there is more energy dissipation 

  at the smallest scales. The experimental observation that the scaling laws in 

turbulence depended on size led to the fractal (Mandelbrot 1985) and multifractal 

models of turbulence (Frisch 1995). It was only natural to relate the physical and 

spectral (in Fourier space) approaches in the study of turbulence and to relate fractal 

(geometrical aspects) to the concept of intermittency. 
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5.2. Fractal analysis and turbulent cascades 

 

The analysis of convoluted surfaces and its application to turbulence was followed 

by a rapid expansion mostly due to the works of Mandelbrot 1985 who gave practical 

definitions of fractal dimensions of real objects. Fractal objects, as they are called, 

display self-similarity over a range. The Hausdorff dimension can be used to describe 

them for physical objects. In general, there is a limited range where self-similarity 

applies. In turbulence this range is found between the largest scale and the 

Kolomogorow scale. A practical definition of the fractal dimension, iD  can be given as 
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where N is the number of self-similar parts or covering boxes at size . An extension of 

the fractal dimension to a set where different isolines have different fractal dimensions 

may be done using multifractals. For a fractal curve, its measured length L will have a 

power law dependence on the measuring yardstick as: 

 

iDL  1      (5.10) 

 

The exponent Di is called the fractal dimension of the curve and is a measure of 

the roughness of fragmentation of the curve and have the subindex i  represents the 

Euclidean dimension of the embedding space  ni ,.....3,2,1 . The fractal convolutions 

of turbulent interfaces will increase the area between different marked regions of the 

flow. In similar way as above we can express the area determined by the fractal set as 

 

22 DA        (5.11) 

 

If the range of scales where self-similarity is exhibited is limited by, say, a large 

scale l and a small scale, say the Kolomogorow length scale k , then the increase in 

area of a turbulent interface due to the fractal behaviour, which at scales comparable to l 

measures Al, is 
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This increase in contact area needs to be taken into account when mixing through 

density interfaces is discussed. This geometrical descriptor is useful in different 

circumstances as higher fractal dimensions generally indicate more flow convolutions. 

Multifractal analysis will aid in the parameterizations of the different mixing 

efficiencies produced by the different basic instabilities. 

For example if we perform a box-counting algorithm count to the different energy 

and vorticity contours in decaying turbulence on the wake of an interface (Redondo et 

al. (2009)). We realize that the flow is dominated by less and less vortices considered as 

coherent structures and at the same time, as the spectra becomes more non-local (i.e. 

steeper), the fractal dimension decreases as first realised by Redondo (1990) and 

Vassilicos et al. (1991). 
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5.3. Ima – Calc – The Box counting Method 

 

The software Ima-Calc will be used here to calculate the fractal dimension of 

images through a Box-counting algorithm. Furthermore, it includes simple processing 

tools and images analysis. Consider putting the fractal on a sheet of graph paper, where 

the side of each box is size h. Instead of finding the exact size of the fractal we count the 

number of boxes that are not empty. Let this number be n. Making the boxes smaller 

gives you more detail, which is the same as increasing the magnification. In fact, the 

magnification, e, is equal to 1/h. The formula for fractal dimension is enDi loglog , 

or, equivalently:  hnDi 1loglog . If h is smaller, the dimension will be more 

accurate. For 3-D2 fractals we can do the same with cubes instead of squares, and for 1-

D1 fractals we can use line segments. For example, we can calculate the fractal 

dimension of an object using the Box-Counting Fractal method (see in figure 5.1) by 

counting numerically all boxes that intersect a certain value of the scalar value of the 

image. 

 

 

Figure 5.1: The Box-counting method for a fractal set. 

 

It is very interesting to relate the fractal dimension iD  to the frequency spectrum 

or to the spatial spectra obtained from the Fourier transform of the time or spatial 

correlation functions usual in studies of turbulence. The reason is that from such 

frequency spectrum the corresponding fractal dimension may be derived, if the tracer 

scalar is passively adverted by a turbulent flow. Then the fractal dimension might be 

related to the energy of the turbulence with a certain spatial or temporal dependence, 

and then the frequency spectrum exponent, provided an inertial subrange exists, is a 

function of the box-counting fractal dimension as demonstrated by Redondo (1990). 
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Figure 5.2: Relationship between the spectral slope and the signal. 

 

If we assume that the frequency spectrum has a well defined shape over a 

significant range of frequencies, similar to (   pkkE  ) 

 

  pffS       (5.13) 

 

In figure 5.2 we can see the dependence between the structure of the signal and its 

furrier power spectra, the three signals would correspond to noise (top), fractional 

Brownian motion (centre) which is close to a turbulent measurement and Brownian 

motion (bottom), which is much smoother. Even steeper spectra are dominated by the 

low wavenumber (large) structures and tend to be non-local. 

Using the variance of the signal (t) defined from: 

 

      2tTtTV       (5.14) 

 

where  denotes the average over the entire period, T and the dependence for fractal 

time series   HTTV 2  (Voss 1985, 1988). Using fT 1  and the description of the 

spectral density function,  fS , we have equivalently 
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  pTfS       (5.15) 

 

and 

 

  
T

ift TVdtetTS
0

2     (5.16) 

 

so we can relate 

 

  DEH uTTTVfS 21212      (5.17) 

 

so the relationship between the exponent of the spectral density function and the fractal 

dimension is: 

 

2

1
212

p
EDDEp uEEu uu


   (5.18) 

 

These geometrical-dynamical equivalences may be used to check different 

methodologies of fractal dimension calculations. The multifractal analysis gives even 

more information on the scaling of the different intensity levels of the image. Each set 

of values of an image property, which in the case of SAR image is the level of 

reflectivity indicating surface roughness, of the temperature in case of Atmospheric 

infrared images, or concentration in a laboratory experiment, etc. has a certain fractal 

dimension, 
uED  embedded in a space of Euclidian dimension uE , which expresses the 

level of self-similarity in space. This topological property may be studied. To calculate 

the single or maximum fractal dimension, as discussed above, the Box-Counting 

method used produces coverage of the object and the simplest method is to characterize 

it with boxes of side e. For the plane, these boxes will be square and for an object in 

space they will be cubes. The distribution of the boxes is accomplished systematically; 

the intersection of these with the object shows that we have n  boxes with a non void 

intersection. 
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For each one of the possible ranges of intensity in the selected images, we can 

apply in an iterative fashion, the usual fractal dimension calculation with the box-

counting method and we will obtain a corresponding fractal dimension for each 

intensity level. The result of the process will be a set of dimension values, function of 

the local intensity relating the coverage of uE  sized boxes with their number as 

 

)(ln

),(ln
)(

ie

ien
iD

uE      (5.19) 

 

 

Figure 5.3: Description of a typical analysis of the multifractal structure of a 

vortex with the Imacalc program showing the screen display and options. 

 

By means of this methodology we have for each Laboratory or Satellite image 

intensity level, the corresponding value of the fractal dimension for different groupings 

of the levels that allow a multi-fractal characterisation of the feature under study. In 

figure 5.3 a typical analysis of the multifractal structure of a vortex is shown in the 

Imacalc program, dialog box, Grau et al. (2005). 
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5.4. Theory of Multi-Fractal measurements 

 

The measurement of multifractals is mainly the measurement of a statistic 

distribution which is why the results yield useful information even if the underlying 

structure does not show a self similar or self affine behaviour as shown by Plotnick et 

al. (1996). For a mono-fractal object, as mentioned above, the number n of features of a 

certain size   varies as 

 

  0Dn   ,    (5.20) 

 

where the fractal dimension D0 
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     (5.21) 

 

can be measured by counting the number n of boxes needed to cover the object under 

investigation for increasing box sizes   and estimating the slope of a log-log plot. 

There are several methods for implementing multifractal analysis; in this section 

the moment method is explained. This method use mainly three functions:  q , called 

the mass exponent function,  ,which is known as the coarse Hölder exponent, and 

finally the function  f , or multifractal spectrum. For a measure (or field) defined in a 

two-dimensional support of the LL  pixels image,   (may be considered as the grey 

tone from 0 to 255 in a normal 8 bit image), it could be spatially decomposed in terms 

of infinitely many intertwined sets of fractal dimensions. If that is the case, one fractal 

dimension cannot characterize all the complexity and several fractal dimensions will be 

estimated depending on the position. 

Applying box counting “up-scaling” partitioning process we can get the partition 

function   ,q  defined as: 
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Where m is the mass of the measure, q is the mass exponent,   is the length size 

of the box and  n  is the number of boxes in which 0im . Based on this, the mass 

exponent function  q  shows how the moments of the measure scales with the box 

size: 
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  (5.23) 

 

where <> represents statistical moment of the measure   i  defined on a group of non 

overlapping boxes of the same size partitioning the area studied. qD  are related as 

    qDqq  1 . 

This characterization of multifractal measures is the concept of generalized 

dimensions qD , which corresponds to the scaling exponents for the qth  moment of the 

measure. Based on the work of Rényi (1955) they are defined as: 
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    (5.24) 

 

The singularity index    can be determined by Legendre transformation of the 

 q  curve as: 
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    (5.25) 

 

The number of cells of size  with the same ,  n , is related to the cell size as 

   
  fn  , where  f  is a scaling exponent of the cells with common  . 

Parameter  f  can be calculated as: 

 

 )()()( qqqf     (5.26) 
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Multifractal spectrum (MFS), a graph of   vs.  f , quantitatively characterizes 

variability of the measure studied with asymmetry to the right and left indicating 

domination of small and large values respectively. The width of the MF spectrum 

indicates overall variability. 

MFA in 2-D images involves partitioning the plane into boxes to construct 

samples with multiple scales. The box-counting method combines pixels to form larger 

mutually exclusive boxes each containing different set of pixels. If we have an image of 

LL  pixels and a partitioned process is applied with a box size    then the number 

of boxes with linear size   (  k ) will follow the proportion: 
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     (5.27) 

 

The larger is   the larger the number of samples needed to carry out a convergent 

statistical analysis. 
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5.5. Symmetries of the Navier-Stokes equation 

 

Even turbulent flows are considered to be correctly modelled by Direct Numerical 

Simulation (DNS) from the Navier-Stokes (NS) and continuity equations, which are 

simplification of Newton Laws applied to a fluid. Indeed they contain spatio-temporal 

symmetries that are not evident at a first glance. We may write the NS equation in a 

general way as: 

 

Fvpvvvt  21 


   (5.28) 

 

where v  is the velocity, p  denote the pressure, F  the body forces,   the density and 

  the kinematic viscosity. If we introduce a scaling factor   raised to the scaling 

exponent H  (that we call the Hölder factor or the Hurst exponent) in the velocity field 

we can study the behaviour of the system under the following transformations arising 

from a simple change in scale 

 

'vv H      (5.29) 

 

'1 Tt H       (5.30) 

 

'rr       (5.31) 

 

'2 pp H      (5.32) 

 

'12 FF H        (5.33) 

 

By simple mathematics we can see that, if we consider 0v  in equation 5.29, the 

scaling of coordinates in an inviscid flow (Euler’s equation) brings to: 

 

  012  pvvvT
H     (5.34) 
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That is: the Euler equation behaves in the same way at scales as Re  and 

viscosity tends to zero. To see whether this symmetry is conserved when viscosity is 

present, we can study the following hypothesis: 

 

A)  1 H : the viscosity scales with other variables, good for LES. 

B) const : the viscosity remains constant at every scale, good for DNS. 

 

Hypothesis A) satisfies the scale invariance for every value of H , while 

hypothesis B) holds only for 1H . This symmetry is due to the law of conservation 

of the circulation of the velocity field. According to the self-similarity principle of the 

NS equation, we can claim that there is an energy flux from one scale to another until 

the Kolmogorov scale is reached; the Kolmogorov scale is the length scale at which the 

viscous dissipation is equal to the dissipation of energy and is the lower bound for the 

energy transfer. We can study the NS equation applying projection operators which 

function is that of a high/low pass filter. In this way a scale-by-scale energy budget 

equation is obtained and we can write the most important terms this way: 

 

injectionenergy  enstrophy  flux energy  iation Energy var   

 

it can be interpreted as follows: the rate of change of energy at scales down to a certain 

length, is equal to the energy injected at such scale by a force minus the energy 

dissipated at such scales minus the flux of energy to smaller scales. This last term is due 

to nonlinear interactions between scales arising from the nonlinear term in the NS 

equation. As a matter of fact this nonlinear term is responsible of the unpredictable 

behaviour of turbulent flows. 

We may also treat in this way the scalar ( ) detection - diffusion equation and the 

vorticity equation so assuming G  is the scalar production term, and J  the baroclinic 

vorticity production term: 

 

   2



DuG
t

    (5.35) 

 

and 
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with pJ  
 2

1
 the baroclinic source of vorticity. We can derive the following 

scaling 
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     (5.37) 

 

But for the scaling of vorticity we have to consider also the hypothesis A) and B) 

mentioned previously, and generalize slightly the similarity laws to include the 

possibility, say that the derivatives, or integrals, or in general the higher order moments 

scale in a different way, so using the definition of the order q , structures 

functions(equation 2.5) now in time       q

q tutuzS    so that 

 

   q
qq CzS      (5.38) 

 

The generalized Hurst exponent  qH  for order q  is defined as: 

 

   
q

q
qH


      (5.39) 

 

Because, of course, the second order structure function, like the correlation scale 

like the variance of equation 5.14 we have 
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)2(2Hu       (5.40) 

 

and for the poer exponent 

 

1)2(2  Hp     (5.41) 

 

as mentioned in equations 5.16 and 5.17, because a relationship holds between vorticity 

and velocity: 

 

u      (5.42) 

 

its behaviour is not that of a passive scales (Zauri and Babiano 1994) and its scaling will 

not be the same as ''

 H  nor 'uu H . 

In the simplest case using that   1 T  with constant    

 

'1  H      (5.43) 

 

If we want to apply these scaling to, say the vortex size evolution, it would be 

interesting to compare the spectra with the Hurst exponent of second order. We know 

(Tarquis et al. 2009) that if 
3

1
)2( H , (Kolmogorov, 3D scaling) then the power 

exponent is 
3

5
p  in a similar way for Kraichnan´s 2D enstrophy cascade region where 

3p  then   122 DH . 

If we use the maximum fractal dimension like Redondo (1990, 1996) then from 

equation 5.18 

 

uEu DEp 212      (5.44) 

 

so for 3D flows 327 Dp   and for 2D flows 225 Dp  . So if 
3

5
p  in a fully 3D 

flow 66.23 D  and if 3p  then 12 D . If a Kolomogorov spectra at 
3

5
p  appears 
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in a 2D flow then 66.12 D . Both types of flows can co-exist both in the Atmosphere 

and the Ocean as indicated by Platonov et al. (2008). The role of intermittency would 

give other values. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

Methodology and Laboratory experimental setup 
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6.1. Experimental Methodology 

 

The laboratory experiments on mixing tend to fall into four categories: Those 

where the turbulence is generated by oscillating grid and hence exhibits no mean shear; 

those produced by a sudden energy release, as in the dropping of grid, where the 

turbulence is decaying in time; those where the mixed layer is driven over the non-

turbulent layer thus creating a mean velocity shear: and those where the turbulence is 

generated by convective heating or cooling at a surface. All of these experiments may 

also be performed in a rotating frame of reference (i.e. Rotating Table) where Coriolis 

forces are also important in a certain parameter space, mostly at low Rossby number. 

The role of stratification has been parametrized using the Richardson number, 

while the Reynolds number is used to compare cascade processes at different size. The 

evolution and behavior of all experiments was studied using several techniques. 

Shadowgraph was also used taking advantage of the change in the refractive index to 

detect the interface. In other experiments the change in the refractive index was 

corrected with alcohol to prevent the distortions of the image and then the interface was 

observed by putting dye in the turbulent layer. But this technique presents some 

problems related with the shadowgraph, namely the image obtained is integrate of the 

whole width of the tank where the flow takes place. Laser Induced Fluorescence was 

used to make a Thin Lit Layer, by adding fluorescent to the mixed layer. 

Several experiments show the dramatic effect that a strong density interface has 

both on vertical and horizontal mixing. The effect of density interfaces also tend to 

spread further the non-homogeneous lateral mixing akin to that taking place near the 

coastline. An intrusion spreading along the initially sharp interface generates strong 

vertical vorticity and may be used to define the limit of a coastal mixing front, like the 

study of Carrillo at al. (2001). 

All the experiments (see § 6.3) were videotaped, then digitized and analyzed with 

the fluid mechanics packages DigImage, DigiFlow and ImaCalc. Filter, contouring and 

some other geometrical operations were applied using the facilities provided by the 

software to measure the advance of the turbulent interface as described in Redondo et 

al. 1996. Plastic particles of plyolite that previously had been treated in salty water to 

have neutral buoyancy were placed on the liquid in order to observe the behaviour of 

water motions as lateral mixing takes place. The image was recorded by a video camera 

with the experimental set up seen in figure 6.1; the signal is then also digitalized by a 
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DT - 2861 data translation frame grabber and a personal computer with DigImage. 

Figure 6.2 shows in a flux diagram the image analysis configuration shown in real time 

on both TV and monitor where the processed images allow visualizing the particle 

streaks and the interface. 

 

 
Figure 6.1: Experimental vertical tank set up, film camera and light position. 

In the case of LIF the laser or light source was positioned in one side only. 

Lateral view of the experimental tank 1x1m. A density interface was created 

with 5 cm of salty water and 5 cm of clean water. Carefully a third layer of 

plastic plyolite particles was placed in the middle of the salty and clean water. 

 

The software DigImage, ImaCalc and Digiflow are used at UPC to analyze the 

Laboratory experiments in a quantitative way. DigiFlow offers the same characteristics 

from digital image sequences and ImaCalc is able to perform multiscale and Fractal 

analysis on Image sequences. These programs used currently at UPC and at DAMTP at 

Cambridge University result of a continuous program of development, enhancement and 

support. 
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Figure 6.2: Image process with the DigImage software. It allows processing 

and visualizing images on both the monitor and the TV monitor in real time. 

 

Through this on-going effort they have remained at the forefront of image 

processing for fluid dynamics for the past ten years. The unique combination of particle 

tracking, PIV, optical thickness, refractive index analysis, LIF enhancement, time series 

generation, and many more capabilities enable greatly enhanced visualisations and 

allows previously qualitative experiments to yield accurate quantitative data. Efficient 

and easy to use, they are employed by an increasing number of research laboratories 

world wide for qualitative and quantitative analyses. Up to date technical details 

describing the abilities and requirements along with sample output are available for this 

research. 

The image analysis configuration is shown in real time on both TV and monitor 

where the processed images allow visualizing the particle streaks and the interface. 

Figure 6.3 is an Eulerian interpolation of the Lagrangian data produced from the 

tracking of neutral particles at the interface. For heat stratified experiments, on the other 

hand the mixing efficiency does not seem to depend on Richardson number as shown in 

Redondo (2002) in the case of steady input (for example in the grid stirred 

experiments). 
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Figure 6.3: Example of Image processing by DigImage of a grid stirred flow. 

(top) Particle paths, (bottom) Velocity Vectors and vertical vorticity. 

 

In figure 6.3 we can observe an example of image processing by DigImage of a 

grid stirred flow. At the top it is shown the particle paths as particle tracking and at the 

bottom the velocity field as velocity vectors. Colors (red and blue) and vectors indicate 

positive (anticlockwise) and negative (clockwise) vortices. 
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Figure 6.4: Evolution of the structure of a surface 2D flow in a Laboratory 

tank 1mx1m, pliolite beads show streaks comparable to SAR ocean 

observations. 

 

The evolution of the structure of a 2D flow in a laboratory tank 1m x 1m and 

pliolite beads particle tracking results are shown in figures 6.4. This is an example of 

particle tracking in the experimental tank. Clearly we can observe vortices at different 

times in the picture. 
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6.1.1. Image processing for fluid dynamics – DigiFlow and DigImage 

 

DigiFlow-DigImage is much more than just an image processing system; it is a 

video sequence processing system. For fluid flows time is just as important as the 

spatial dimensions. In this sense, DigFlow offers unrivalled functionality for extracting 

temporal as well as spatial information; it includes both standard image processing 

techniques and specialised techniques tailored specifically for analysing fluid flows. No 

other system offers the breadth of functionality for a broad range of laboratory and 

observational measurements. 

 

  

  
Figure 6.5: Example of particle tracking near a density interface 

 

Efficient and easy to use, DigImage and DigiFlow are employed by an increasing 

number of research laboratories world wide for qualitative and quantitative analyses. To 

obtain the necessary performance of image processing on desktop computers, DigImage 

required a framegrabber card to be installed to provide not only image capture, but also 
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image display and some of the processing. While this close coupling allowed efficient 

real-time processing and frame-accurate control of a video recorder, it ultimately 

restricted the development and deployment of the technology. 

The continuation of DigImage is Digiflow. Digiflow provides a range of image 

processing features designed specifically for analysing fluid flows. The package is 

designed to be easy to use, yet flexible and efficient. Whereas most image processing 

systems are intended for analysing or processing single images, Digiflow is designed 

from the start for dealing with sequences or collections of images (see on figure 6.5) in 

a straightforward manner. DigiFlow retains the potential DigImage released by the 

control of a frame grabber. Not only does this greatly simplify the process of running 

experiments, acquiring images, processing them, extracting and plotting data, but it also 

enables real-time processing of particle streaks and synthetic schlieren. 

 

 
Figure 6.6: Pliolite particles and its traces 10 s after the passage of the Grid 

perpendicularly to the centre of a sharp density interface. 

 

The main aim of this research is to understand and describe key aspects of the 

structure of non-homogeneous turbulence affected by stratification and rotation, in 

particular turbulent jets and plumes and their interaction with coherent structures such 

as vortices. Other effects connected with non-homogeneity are presented. Most 

predictive models fail when forcing at the Rossby deformation Radius is important and 

a large range of scales have to be taken into account. Figures 6.6 and 6.7 are examples 

of particle tracking from DigImage the first 6.6 shows the evolution of the density 
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interface, pliolite particles and its traces 10 sec after the passage of the Grid 

perpendicularly to the center of a sharp density interface and the second 6.7 shows an 

example of technique that is used to track the pliolite particles and produce the velocity 

and vorticity plots used to calculate temporal and spatial correlations vortex topology 

and spectra, side view. 

 

 
Figure 6.7: Example of particle tracking near a density interface, side view. 
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6.2. Mixing Efficiency 

 

Studies of mixing in the laboratory and in the environment have been made using 

the non-dimensional parameters discussed in chapter 2 as well as relevant spatial and 

temporal scales. These depend on the relevant body forces that act on the fluid. 

Examples are the Rossby Deformation radius: fNhRD  , when both buoyancy and 

rotation act together; the Rossby number flURo   and  the flux or gradient Richardson 

numbers induced by the relevant velocity U, the Coriolis parameter f, the buoyancy 

frequency N, the lateral L, and vertical, h scales. In order to describe the structure of 

density interfaces, fronts and their hydrodynamic behavior, different mixing processes 

near density interfaces where analyzed in laboratory conditions to investigate 

experimentally the structure of these interfaces. 

The observation of the dynamics of fluids near densities interfaces is important in 

order to model how local mixing affects pollutant or biological organism dispersion 

under different environmental conditions. These complex non-homogenous 

environmental mixing processes are obviously responsible for the maintenance of the 

ecosystems in areas like estuaries, lagoons and costal systems where both lateral and 

vertical mixing occurs. 

Horizontal circulation takes place with a great dynamic effect, often coupled with 

the presence of recirculation patrons, natural river discharges, internal waves and their 

influences as water mixes. Depending on the rank of detected scales and their spectral 

shape, bi-dimensional or three-dimensional turbulence features detected as vortices are 

good indicators of the dynamic processes taking place. 

The mixing efficiency    is defined as the ratio between the gain of potential 

energy  PE  and the kinetic energy input  KE  during the mixing process. It is 

equivalent to the Richardson flux number as 

 

KE

PE
R f 


      (6.1) 

 

The gain in potential energy is calculated from the advance of the interface 







  'Eu

dt

dD
 and the kinetic energy is estimated from the work done by the grid as 
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discussed by Turner (1973), Linden (1980), Redondo and Cantalapiedra (1993). 

The values of the mixing efficiency are comparable with other experiments, 

Redondo (2002), but further work is needed to investigate the effect of intermittency on 

the mixing process. The sequence shown in figure 6.4 shows the generation of the 

coastal mixing front from the experiment on Jet injection and extraction reported in 

Matulka (2003). 

When mixing of reactants or pollutants has to be accounted, the range of scales 

spans from hundreds of kilometres to the Bachelor or Kolmogorov sub millimetre 

scales. Effect of intermittent eddies and non-homogeneity of diffusion is also an 

important issue in the environment because both stratification and rotation body forces 

are important and cause anisotropy/non-homogeneity. These problems need further 

approaches and we maximize the relevant geometrical fractal information in order to 

understand and therefore predict these complex environmental dispersive flows. The 

present thesis is based principally on laboratory experiments producing turbulence by 

means of wakes. We aim at comparing the different series of detailed experiments that 

have been performed in the Laboratory of Fluid Dynamics of UPC and in Trondheim on 

wake generated turbulence and its decay. Measurements of the 3 components of 

turbulent velocity and their spatial multifractal and Fourier spectra will also be used in 

order to obtain a basic understanding on local diffusion, mixing and mass transport. A 

detailed definition of the mixing efficiency and recent discussion on available kinetic 

(AKE) and potential energy (APE) is presented in appendix 6. 
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6.3. The Laboratory non-rotating stratified Experiments 

 

The set of non-rotating experiments were performed on a square tank of 

dimensions mm 11  . Inside of this tank (figure 6.8) OHkg 2100  were arranged in two 

layers: cm5  bottom layer of salty water (brine) of different concentration with density 

between 3087.1000.1 cmgr  and cm5  of fresh water  3000.1 cmgr . 

Between these two layers, a thin layer of plastic particles of pliolite was seeded, 

marking the separation layer between salty and fresh water. In order to mix these two 

layers, a traversing grid (figure 6.8) was used, which was built from thick pipe sections 

(pipes were located every cm10 , their length were cm30  and diameter cm5.3 ). This 

configuration ensured strong vorticity produced by the Karman vortices of the round 

pipe array. 

 

 

Figure 6.8: Plan view of a stirred grid experimental set up to generate 

turbulence with density stratification in 1x1m tank. Where a traversing grid of 

30cm with bars of 3.5cm of diameter, separated 10cm, moved from A to B at 

time t. 

 

This experiment had five sub sets arranged in terms of different initial density 

interface before experiments started. In each one, the measurements of the densities lead 

to profiles obtained from point measurements at heights chosen as cm10,9,8,7,5,3,1  

inside the tank. Every experiment was made at different salinity in the brine fresh water 

interface. All measurements used calibrated conductivity probes and refractometer on a 

small drawn sample to be able to check on mass conservation. The precision of the 
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refractometer, that was oscillated against densmeter was at 35105 cmgx  . All small 

scale measures had seven or eight profiles between the different passages of the grid. 

 

 
Figure 6.9: The laboratory experiments after DigiFlow analysis (example of 

particle tracking near a density interface). Experiment time series from Left 

3a and Right 3b, at times 2, 10, 50 and 100 seconds. Note the evolution of the 

size of the vortex from small at the beginning to large at the end. Matulka et 

al. (2008) 
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Figure 6.9 presents a time series of density profiles from laboratory experiments 

showing the evolution of structures at 2, 10, 50 and 100 seconds, and a sequence of 

pliolite particles showing tracks after the horizontal traverse of the grid across the sharp 

density interface is seen. 

 

 

 
Figure 6.10: The experiment results from DigImage. Examples of the vorticity 

(up) and velocity (bottom) evolution in stratified fluids. One of the 

characteristics of the flow is the development of strong vertical structures. 

 

One of the most important role of stratification and in general in all body forces, 

including magnetic fields, is to modify the slope of the spectral energy cascade. In the 



 111

following part of this PhD thesis results of the PIV laboratory experiments will be 

presented. They will allow calculating velocity spectra, the velocity and vorticity PDFs 

and the evolution of the structure of stratified decaying (and steady flows) as shown in 

figure 6.10. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7 

Experimental Results 
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7.1. Introduction 

 

In this chapter, the main new experimental results will be presented using the 

techniques described in previous chapters. We will focus here on the results from the 

decaying non-rotating stratified experiments, the rotating experiments, done in 

collaboration under the TMR European Hidralab III project in Trondheim will be 

discussed further in the chapter of discussions and in appendix, because the experiments 

were performed as member of a larger international research team. 

The set of turbulence decaying experiments have been performed, with the aim of 

focusing on the flow in the middle of a strongly stratified density interface. These 

experiments have been done under one condition: Stirring (Non-Rotating) Decaying 2D 

Turbulence experiments and were performed in a 1x1m tank. This set of experiments is 

a compilation of five series of grid wake mixing experiments; their classification will 

depend on the initial interfacial Richardson number as criteria for the varying role of 

buoyancy on the decay process. The Total time of mixing for the experiment sub sets 

was between 53 and 72 minutes, so diffusive molecular mixing of salt was negligible in 

all cases. The density of the brine in the bottom layer used in the experiment before total 

mixing took place between 0001.1  and 3082.1 cmg . These differences were due to the 

fact that the experiments had different initial densities, in all cases mass conservation 

was ensured by calculating it from the average density profiles. These differences in 

initial density profiles and in grid forcing (18-24 cm/s) produced a wide range of mixing 

efficiencies, the study of the relationship between flow topology and molecular mixing 

and diffusion is also an aim of this thesis. 

In tables 7.1, 7.2, 7.3, 7.4 and 7.5 we present some relevant information on the 

initial conditions from all of the experiments; we denote   the characteristic length 

scale, initial  the initial interface density difference, U is the horizontal velocity of the 

grid,   is the initial bottom layer density, Rig is the Gradient Richardson numbers, Re 

the dimensionless Reynolds numbers, N  the Brunt-Väisälä frequency and T  is the 

temperature in Celsius degrees. Figures from 7.1 to 7.5 show the density profile for the 

5 different sets of experiments with different initial conditions, the five sequences, 

starting from a sharp density interface. Here as examples of the evolution of the density 

profiles after each passage of the grid in the laboratory experiments, we can see that an 
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elevation of the centre of gravity takes place due to the irreversible molecular mixing of 

the salt. 
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Figure 7.1: Stratified experiments. Total mixing experiments with NaCl 
from 1a with a lower layer =1029, throughout 1a, 1b… until 1h.The 
totally mixed density in this experiment was for =1070. 

 

Table 7.1: Initial conditions from the first set of stirring experiments where U is velocity, N Brunt-Väisälä 

frequency, Re dimensionless Reynolds number, Rig Gradient Richardson numbers etc. 

Experiment 
Number 

1a 1b 1c 1d 1e 1f 1g 1h 

  [cm] 2 2 10 10 10 10 10 10 

initial  

[g/cm3] 
0,078 0,078 0,078 0,078 0,078 0,078 0,078 0,078 

z  

[g/cm4] 
0,03 0,025 0,007 0,005 0,0035 0,0022 0,0009 0,0002 

U [cm/s] 18 19 19 20 20 21 22 22 

  [g/cm3] 1,03 1,03 1,03 1,03 1,03 1,03 1,03 1,03 

Rig  8,8 6,58 1,84 1,189 0,83 0,47 0,17 0,039 

Re  18 x 103 19 x 103 19 x 103 20 x 103 20 x 103 21 x 103 22 x 103 22 x 103 

  [g/cm3] 0,061 0,05 0,07 0,05 0,035 0,022 0,009 0,002 

N  [s-1] 3,778 3,449 0,816 0,690 0,577 0,458 0,293 0,138 

T  [oC] 19 
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Experiment 2
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Figure 7.2: Stratified experiments. Total mixing experiments with NaCl 
from 2a with =1035, throughout 2a, 2b… until 2i. The totally mixed 
density in this experiment was for =1060. 

 

Table 7.2: Initial conditions from second stirred experiments where u is velocity, N Brunt-Väisälä 

frequency, Re dimensionless number Reynolds, Rig Gradient Richardson numbers etc. 

Experiment 
Number 

2a 2b 2c 2d 2e 2f 2g 2h 2i 

  [cm] 2 2 3 3 10 10 10 10 10 

initial  

[g/cm3] 
0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 

z  

[g/cm4] 
0,028 0,029 0,0133 0,00967 0,0041 0,0031 0,002 0,0014 0,0002 

U [cm/s] 19 19 19 21 22 22 23 23 24 

  [g/cm3] 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98 

Rig  7,756 8,033 3,68 2,17 0,847 0,64 0,378 0,264 0,347 

Re  19 x 103 19 x 103 19 x 103 21 x 103 22 x 103 22 x 103 22 x 103 23 x 103 24 x 103 

  [g/cm3] 0,056 0,058 0,04 0,029 0,041 0,031 0,02 0,014 0,002 

N  [s-1] 3,742 3,808 2,106 1,795 0,64 0,557 0,447 0,374 0,141 

T  [oC] 19 
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Experiment 3
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Figure 7.3: Stratified experiments. Total mixing experiments with NaCl 
from 3a with =1060, throughout 3b, 3c, 3d… until 3h. The totally 
mixed density in this experiment was for =1026. 

 

Table 7.3: Initial conditions from third stirred experiments where u is velocity, N Brunt-Väisälä 

frequency, Re dimensionless number Reynolds, Rig Gradient Richardson numbers etc. 

 

Experiment 
Number 

3a 3b 3c 3d 3e 3f 3g 3h 

  [cm] 2 2 10 10 10 10 10 10 

initial  

[g/cm3] 
0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 

z  

[g/cm4] 
0,0275 0,0215 0,005 0,0038 0,0022 0,0014 0,0008 0,0005 

U [cm/s] 20 20 20 20 20 20 20 20 

  [g/cm3] 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82 

Rig  8,21 6,42 1,49 1,13 0,65 0,42 0,24 0,15 

Re  20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 
  [g/cm3] 0,055 0,043 0,05 0,038 0,022 0,014 0,008 0,005 

N  [s-1] 5,732 5,069 2,443 2,131 1,622 1,292 0,975 0,768 

T  [oC] 21 
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Experiment 4
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Figure 7.4: Stratified experiments. Total mixing experiments with NaCl 
from 4a with =1065, throughout 4b, 4c, 4d… until 4h. The totally 
mixed density in this experiment was for =1028. 

 

Table 7.4: Initial conditions from forth stirred experiments where u is velocity, N Brunt-Väisälä 

frequency, Re dimensionless number Reynolds, Rig Gradient Richardson numbers etc. 

Experiment 
Number 

4a 4b 4c 4d 4e 4f 4g 4h 

  [cm] 4 10 10 10 10 10 10 10 

initial  

[g/cm3] 
0,065 0,065 0,065 0,065 0,065 0,065 0,065 0,065 

z  

[g/cm4] 
0,016 0,0062 0,0058 0,004 0,0031 0,0017 0,0009 0,0001 

U [cm/s] 20 20 20 20 20 20 20 20 

  [g/cm3] 0,87 0,87 0,87 0,87 0,87 0,87 0,87 0,87 

Rig  4,5 1,74 1,63 1,13 0,87 0,48 0,25 0,028 

Re  20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 
  [g/cm3] 0,065 0,062 0,058 0,04 0,031 0,017 0,009 0,001 

N  [s-1] 4,243 2,642 2,555 2,121 1,868 1,382 1,005 0,332 

T  [oC] 21 
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Experiment 5
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Figure 7.5: Stratified experiments. Total mixing experiments with NaCl 
from 5a with =1075 throughout 5b, 5c, 5d… until 5i. The totally 
mixed density in this experiment was for fifth =1037. 

 

Table 7.5: Initial conditions from fifth stirred experiments where u is velocity, N Brunt-Väisälä 

frequency, Re dimensionless number Reynolds, Rig Gradient Richardson numbers etc. 

Experiment 
Number 

5a 5b 5c 5d 5s 5f 5g 5h 5i 

  [cm] 10 10 10 10 10 10 10 10 10 

initial  

[g/cm3] 
0,075 0,075 0,075 0,075 0,075 0,075 0,075 0,075 0,075 

z  

[g/cm4] 
0,008 0,0073 0,006 0,0053 0,004 0,0034 0,002 0,0007 0,0002 

U [cm/s] 20 20 20 20 20 20 20 20 20 

  [g/cm3] 0,83 0,83 0,83 0,83 0,83 0,83 0,83 0,83 0,83 

Rig  2,36 2,14 1,77 1,56 1,18 1 0,59 0,206 0,059 

Re  20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 20 x 103 

  [g/cm3] 0,075 0,073 0,06 0,053 0,04 0,034 0,02 0,007 0,002 

N  [s-1] 3,072 2,936 2,661 2,500 2,173 2,002 1,536 0,906 0,480 

T  [oC] 22 
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When the density profiles are vertical, after several passages of the grid, then these 

two layers are completely mixed. As the mixing takes place, the Richardson number at 

the interface decreases until we have a homogeneous layer. In further sections of this 

chapter we present different chosen analysis that aid to the understanding of the ensuing 

grid decay stratified flow and its mixing. 

In table 7.6 we can see dimensionless numbers Rig  and Re  for all analysed 

experiments. 

 

Table 7.6: Dimensionless numbers; Re Reynolds and Rig Gradient Richardson numbers for all 

experiments. 

Experiment 
Number 

Rig Re 
Experiment 

Number 
Rig Re 

1a 8,8 18 x 103 3e 0,65 20 x 103 

1b 6,58 19 x 103 3f 0,42 20 x 103 

1c 1,84 19 x 103 3g 0,24 20 x 103 

1d 1,189 20 x 103 3h 0,15 20 x 103 

1e 0,83 20 x 103 4a 4,50 20 x 103 

1f 0,47 21 x 103 4b 1,74 20 x 103 

1g 0,17 22 x 103 4c 1,63 20 x 103 

1h 0,039 22 x 103 4d 1,13 20 x 103 

2a 7,756 19 x 103 4e 0,87 20 x 103 

2b 8,033 19 x 103 4f 0,48 20 x 103 

2c 3,68 19 x 103 4g 0,25 20 x 103 

2d 2,17 21 x 103 4h 0,028 20 x 103 

2e 0,847 22 x 103 5a 2,36 20 x 103 

2f 0,64 22 x 103 5b 2,14 20 x 103 

2g 0,378 22 x 103 5c 1,77 20 x 103 

2h 0,264 23 x 103 5d 1,56 20 x 103 

2i 0,347 24 x 103 5e 1,18 20 x 103 

3a 8,21 20 x 103 5f 1 20 x 103 

3b 6,42 20 x 103 5g 0,59 20 x 103 

3c 1,49 20 x 103 5h 0,206 20 x 103 

3d 1,13 20 x 103 5i 0,059 20 x 103 
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7.2. Results without significant stratification (low Richardson number) 

 

7.2.1. Interfacial Flows 

 

At first we present the analysis of experiments without buoyant effect or with 

weak buoyancy, inducted by low Richardson numbers. One interesting way to analyse 

the evolution of the vorticity is to visualize different graphics which they can give us an 

idea by the colour scale and the shape of the vorticity and velocity fields that generate 

it. In figure 7.6 as sequence is shown in time of the evolution of the velocity field, the 

evolution of a plane 2D vorticity false colour map, where white is positive vorticity and 

black negative. Finally it is very useful to generate a 3D vorticity plot as well as an 

integrated side view profile of vorticity, where the peaks, both positive and negative 

can be easily measured and counted. These  four different plots for the low Richardson 

number 039.0Rig experiment at different times selected to be almost equally spaced 

in a logarithmic time sequence such as: 2, 5, 10, 20, 50 and 100 seconds. 
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Figure 7.6: The evolution of velocity field, 2D vorticity field, 3D vorticity and 

profiles of vorticity 3D for experiment 1h at times 2, 5, 10, 20, 50 and 100 

seconds, with small Richardson number 039.0Rig . 

 

The behaviour of vortices in other cases without stratification is quite similar to 

this with a weak stratification, and low Richardson number. In the evolution graphs we 

may observe a slight change of tendency between 20 and 50 seconds two last cases (50 

and 100 seconds), both with very little vorticity, and large horizontal scales. Besides, it 

can be noticed a quite strong decrease in the vorticity between 2 and 5 seconds. This 

decrease is visualised well in the 2D vorticity maps. 
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7.3. Results with significant (strong and medium) stratification 

 

In this section, the comparative analysis of the vorticity evolution is presented. 

One interesting way to analyse the vorticity evolution is to visualise different graphics 

which they can give an idea of the scale and the shape of vorticity and velocity fields. 

Here we analyse the evolution of different experiments and we try to explain the 

behaviour related to observed changes with different types of visualizations and their 

presented graphics. 

The parameter ranges for the stratified flows are presented, in all experiments PIV 

and particle tracking on horizontal planes video taped from above were used to evaluate 

the velocity and vorticity fields. 

Below we present columns with temporal evolution with four different figures in 

every line, corresponding to the velocity maps, bidimensional vorticity maps, 

threedimensional vorticity maps and the vortices profiles. 

Figures 7.7, 7.8, 7.9 and 7.10 show the flow structure from experiments at time 2, 

5, 10, 20, 50 and 100 seconds. It is interesting to notice in the graph of vorticity 

evolution how the vorticity does not vary much in the weakly stratified cases but it 

decreases strongly (see section 7.3.4) in the high Rig  experiments as clearly seen in the 

last image of the figure 7.8. Close to the end of the experiment, this is even more 

evident in the bidimensional and one line vorticity maps. We observe that precisely, the 

behaviour of vorticity of strong stratification is quite different than in the other cases 

and also very different to the pure 2D flows (Bracco et al. 2004). 

Also it can be detected one certain background of vorticity in the profiles graphs, 

which theory define as hardly active and is maintaining as the base during all process. 

With profiles graphs we can make general idea about the real size of vorticity peaks. In 

the threedimensional figures it can be displayed as well as the progressive increase of 

vorticity scale, especially in this with high energy and with tendency to merge. The 

velocity graphs show the velocity distribution associated to vortices, and permit the 

identification of vortices with high energy and their scale approximation. 
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Figure 7.7: The evolution of velocity field, 2D vorticity field, 3D vorticity and 

profiles of vorticity 3D for experiment 1a with 8.8Rig  at times 2, 5, 10, 

20, 50 and 100 seconds. 
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Figure 7.8: The evolution of velocity field, vorticity 2D field, vorticity 3D and 

profiles of vorticity 3D for experiment 1b with 58.6Rig  at times 2, 5, 10, 

20, 50 and 100 seconds. 
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Figure 7.9: The evolution of velocity field, vorticity 2D field, vorticity 3D and 

profiles of vorticity 3D for experiment 2a with 03.8Rig  at times 2, 5, 10, 

20, 50 and 100 seconds. 
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Figure 7.10: The evolution of velocity field, vorticity 2D field, vorticity 3D 

and profiles of vorticity 3D for experiment 2b with 68.3Rig  at times 2, 

5, 10, 20, 50 and 100 seconds. 

 

In figures 7.11, 7.12, 7.13 and 7.14 the same type of results mentioned above are 

shown for experiments with moderate stratification, with the mean Richardson number 

( 0.40.1 Rig ). Again we have a good indicator of the behaviour of the vorticity, 

maintaining the same standard visual aspect in the bidimensional (2D) and 

threedimensional (3D) vorticity maps during the six times chosen for comparison in a 

logarithmic time scale  100,50,20,10,5,2t . In all of the experiments for different 

Richardson number the number of vortices decreases in time until at time s10050   
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and after that time there are only one or two large vortices which begin to be affected 

by the sides of the experimental tank, so all scales are smaller than 1m, the size of the 

square tank. 

 

 
Figure 7.11: The evolution of velocity field, vorticity 2D field, vorticity 3D 

and profiles of vorticity 3D for experiment 1c with 84.1Rig  at times 2, 5, 

10, 20, 50 and 100 seconds. 

 

Comparing the qualitative behaviour of the strongest vortices for the different 

Richardson number experiments, we may notice that for the more stratified experiments 
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after 50s the large coherent vortices are very dominant, this is quite clear for 2Rig . 

On the other hand for lower Richardson number (weak stratification) this merging 

mechanism is not so evident ( 8.0Rig ). For example in figure 7.15, even at time 

st 100 , there are many disorganized small vortices, which in contrast for a strong 

density interface with 0.8Rig  as shown in figure 7.10 we notice a large dominant 

vortex dipole at time st 100 . 

 

 
Figure 7.12: The evolution of velocity field, vorticity 2D field, vorticity 3D 

and profiles of vorticity 3D for experiment 1d with 19.1Rig  at times 2, 5, 

10, 20, 50 and 100 seconds. 
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Figure 7.13: The evolution of velocity field, vorticity 2D field, vorticity 3D 

and profiles of vorticity 3D for experiment 2c with 68.3Rig  at times 2, 5, 

10, 20, 50 and 100 seconds. 
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Figure 7.14: The evolution of velocity field, vorticity 2D field, vorticity 3D 

and profiles of vorticity 3D for experiment 2d with 17.2Rig  at times 2, 

5, 10, 20, 50 and 100 seconds. 

 

In the following figures 7.15, 7.16 and 7.17 we can observe the structure of the 

flow for weak stratification experiments, with low Richardson number ( 0.16.0  Rig ). 

The behaviour is quite similar to cases without stratification, and shows evident 

changes with the previous more stratified cases. It can be easily identified in the 

evolution graphs that there exist an obvious change of the tendency between 20s and 

50s (two last graphs in all figures), both with little vorticity. Besides, it can be noticed 
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in the three first graphs there the vorticity change is quite strong. It is well visualised in 

the bidimensional vorticity maps, even more so in higher resolution visualizations. 

 

 
Figure 7.15: The evolution of velocity field, vorticity 2D field, vorticity 3D 

and profiles of vorticity 3D for experiment 1e with 83.0Rig  at times 2, 5, 

10, 20, 50 and 100 seconds. 
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Figure 7.16: The evolution of velocity field, vorticity 2D field, vorticity 3D 

and profiles of vorticity 3D for experiment 2e with 85.0Rig  at times 2, 5, 

10, 20, 50 and 100 seconds. 

 

In figure 7.18 we can see the example of the velocity field of a high resolution 

experiment with high Richardson number 756,7Rig . Here the wave and vortices 

were detected with PIV and later were taken through the analysis process. The non-

local interactions are clearly detected trough a combination of waves and vortices. In 

figure 7.19 we present examples of 2D velocity local zooms showing the velocity in the 
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PIV illuminated horizontal plane. At left we can see a locally dominant vortex structure 

and at right a strong shear region. 

 

 
Figure 7.17: The evolution of velocity field, vorticity 2D field, vorticity 3D 

and profiles of vorticity 3D for experiment 2f 64.0Rig  at times 2, 5, 10, 

20, 50 and 100 seconds. 
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Figure 7.18: Example of a high resolution velocity mal in false colour for 

experiment with a high Richardson number 756,7Rig , where waves and 

vortices may be detected with PIV and showing non-local interactions trough 

a combination of waves and vortices. 

 

Further results on the topological analysis of the decaying stratified 

flows may be seen in Matulka et al. (2009) and in discussion. 

 

  
Figure 7.19: Example of 2D velocity local zooms showing the velocity in the 

PIV illuminated horizontal plane, (left) a locally dominant vortex structure, 

(right) a strong shear region. 
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7.3.1. The evolution of the positive (anticlockwise) and negative (clockwise) vorticity 

in time 

 

Using DigiFlow program it was possible to use sequences of pairs of video frames 

in order to obtain the velocity and vorticity fields for all experiments in chosen times. 

The velocity and vorticity fields depend on the principal characteristics of experiments 

like temperature, grid velocity, salinity etc. Once chosen some consecutive frames in 

time we were able to plot in detail the vorticity values and to calculate their PDF´s. 

With these vorticity 2D fields it  was  also possible to see how the vorticity changes in 

time (
t


) comparing graph sequences, and also to calculate the different areas covered 

with either positive or negative vorticity and we compared, both the values and the area 

covered by these vortices as well as their ratio (   AA ). The positive and negative 

vorticity regions in the images were obtained using the ImaCalc program. 
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Figure 7.20: The evolution of positive vorticity area in time, comparison of 

experiments 1d ( 19.1Rig ), 1e ( 83.0Rig ) and 1h ( 04.0Rig ) for different 

Richardson numbers. 

 

In figures 7.20 and 7.21 we can observe the evolution of the positive 

vorticity in different experiments. We can see that the flow is clearly 
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oscillatory. It is clear that the experiment with the lowest Richardson 

number shows the largest overall decrease in vorticity at 21.0 



s
t


. 
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Figure 7.21: The evolution of positive vorticity area in time, comparison of 

experiments 2a through 2b … to 2i, from high to small Richardson numbers 

( 039.076.7 Rig ). 

 

In figures 7.22 and 7.23 we can observe and compare the evolution of 

the negative vorticity in different experiments. We can also see that the flow 

is clearly oscillatory. 
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Figure 7.22: The evolution of negative vorticity area in time, comparison of 

experiments 1d ( 19.1Rig ), 1e ( 83.0Rig ) and 1h ( 04.0Rig ) for different 

(average to low) Richardson numbers. 
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Figure 7.23: The evolution of negative vorticity area in time, comparison of 

experiments 2a through 2b … to 2i, from high to small Richardson numbers. 

 

The flow is clearly oscillatory in nature, for all stratified experiments in contrast to 

what theoretical values of pure homogeneous 2D vorticity predicted for different 
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theories (LaCasce 2008). This will be discussed further when measuring in detail the 

number of vortices and discussed in chapter 9. Our main hypothesis is that this 

oscillatory behaviour is due to the presence of an internal wave field that increases the 

non-linear interactions between vortices, both of similar and opposite sign. This effect 

can be also valued by plotting the ratio of the area covered by positive (anticlockwise) 

vorticity, to the area covered by negative (clockwise) vorticity. This results are 

presented as it evolves in logarithmic time in figure 7.24 for medium-low experiments 

1d, 1e and 1h and in figure 7.25 for a wide range of Richardson number 

( 039.076.7 Rig ) experiments from 2a, 2b to 2i. 
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Figure 7.24: The ratio of positive to negative vorticity dominated areas in time 

for experiments 1d, 1e and 1h with different Richardson numbers. 

 

What is also clearly noticed in all plots is that the period of vorticity 

area oscillation increase in time. This behaviour has to be compared with the 

evolution of the mean vorticity in time as well as on the detailed behaviours 

at the number and size at the individual vortices. 

In the discussion, some theoretical arguments will lead to use the 

WKB method to predict vorticity evolution. (see appendix 6) 
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Figure 7.25: The ratio of positive to negative vorticity dominated areas in time 

for experiments from 2a to 2i with different Richardson numbers. 
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7.3.2. The evolution of vorticity and enstrophy in one line for different experiments 

 

In this section we present about the evolution of vorticity and enstrophy in one 

line for different experiments following the numerical research of Dubos & Babiano 

(2003) and Dubos (2001). In figure 7.26 we can see the evolution of vorticity for 

experiment 2a with high Richardson number 756,7Rig in different times. We can 

observe that in time 2 seconds the peaks of vorticity were bigger, stronger that for peaks 

in time 100 seconds that have decreased considerably and are almost plane. 
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Figure 7.26: The evolution of vorticity in time for experiment 2a in one line 

with high Richardson number 756,7Rig  for different times. 

 

In figure 7.27 is presented the evolution of vorticity in time for the experiment 1c 

with average Richardson number 84,1Rig  in different times and in figure 7.28 we can 

see the same evolution but for case with low Richardson number 64,0Rig . In case of 

small Richardson number experiments it is not so clear to detect the difference between 

peaks of the vorticity at different times. The vorticity at 2 seconds is not as strong as in 

the cases at high Richardson numbers. 
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Figure 7.27: The evolution of vorticity in time for experiment 1c in one line 

with medium Richardson number 84,1Rig  for different times. 
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Figure 7.28: The evolution of vorticity in time for experiment 2f in one line 

with low Richardson number 64,0Rig  for different times. 

 

In figure 7.29 we show an example of the enstrophy spatial distribution in time for 

experiment 2a with high Richardson number. We can observe like in the case of the 
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vorticity evolution that at earlier times, the peaks of vorticity are large, and easy to 

count, but closer to the end of the experiments the vortices are only marginally larger 

than the noise, so it is not possible to keep the accuracy of the count. A detailed study 

on the number of vortices in decaying stratified turbulence will be presented and 

discussed below, comparing our stratified situation with a theoretical perfect 2D 

situation. 
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Figure 7.29: The Enstrophy spectra in time for experiment 2a in one line with 

high Richardson number 756,7Rig  for different times. 

 

In comparison to the previous case with high Richardson number we can see in 

figures 7.30 and 7.31 with medium and low Richardson number that the difference 

between the 2 seconds and 100 seconds is not so obvious. We can observe in figure 7.30 

that the enstrophy is visible in 2 and 5 seconds, but during the experiments it is 

decreasing and it is not possible to see clearly the difference between 50 and 100 

seconds. And in the case with low Richardson number in figure 7.31, we can see only 

clear enstrophy peaks in 2 and 5 seconds, and it is difficult to distinguish the peaks after 

10 seconds till the end of the experiment. 
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Figure 7.30: The Enstrophy spectra in time for experiment 1c in one line with 

medium Richardson number 84,1Rig  for different times. 
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Figure 7.31: The Enstrophy spectra in time for experiment 1c in one line with 

low Richardson number 64,0Rig  for different times. 
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It is also noticed that most of the largest vortices formed still remain some traces 

of the vortices that were merged and have also an inner structure; this is seen looking at 

the enstrophy oscillations within the largest size vortices. 

Taking into account the number of vortices measured in experiments 1c, 2a and 2f 

we can find a more convenient dimensionless expression    ooo tNtN  for their 

comparison. In figure 7.32 we can compare the evolution of this non-dimensional 

vortex number in time for different Richardson numbers (in a single line), with an error 

of 5%. The tendency line is exponential, such that 

 

  t
ooo eCtNtN /)(      (7.1) 

 

where C is a constant or variable that might depend on buoyancy. The decay factor  is 

a new line decay exponent, which should be half of the plane exponent. We can observe 
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Figure 7.32: Dimensionless expression of the vortex number evolution in time 

for experiments 2a, 1c and 2f of    ooo tNtN  and ott  with high, 

medium and low Richardson numbers 756,7Rig  (experiment 2a), 

84,1Rig  (experiment 1c) and 64,0Rig  (experiment 2f) in single line, 

with an evaluation of r.m.s. error of 5%. 
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that this exponent varies from 0.0327 for 1c (high Richardson number), 0.02 for 2a 

(medium Richardson number) and 0.0162 for 2f (low Richardson number). The 

advantage of this line indicator is that it is much easier to calculate than the one 

described below, and that it also allows us to investigate directional anisotropy. 

In figure 7.33 we show the evolution of positive vortex number in non 

dimensional way for experiments 1c, 2a and 2f of    
ooo tNtN  with an error of 5%. 

We can observe here the tendency line as exponential with exponent for 1c 0.0402, for 

2a 0.097 and for 2f 0.0285. 
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Figure 7.33: The evolution of positive vortices in time for experiments 2a, 1c 

and 2f of    
ooo tNtN  and ott with high, medium and low 

Richardson numbers 756,7Rig , 84,1Rig  and 64,0Rig  in one 

line, with an evaluation of r.m.s. error of 5%. 

 

In figure 7.34 we present the evolution of the negative vortex number for 

experiments 1c, 2a and 2f of    
ooo tNtN  with an error of 5%. The tendency line is 

as in previous cases is exponential with the exponential rate for 1c as 0.0254, for 2a as 

0.0078 and for 2f as 0.0285. 
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Figure 7.34: The evolution of negative vortices in time for experiments 2a, 1c 

and 2f of    
ooo tNtN  and ott  with high, medium and low 

Richardson numbers 756,7Rig , 84,1Rig  and 64,0Rig  in one 

line, with an evaluation of r.m.s. error of 5%. 

 

In figure 7.35 is observed the evolution of the enstrophy in time for three different 

experiments 1c, 2a and 2f with low, medium and high Richardson number of 

   ooo tNtN 22  with an error of 5%. The tendency line is exponential with rate for 1c 

0.043, for 2a 0.0029 and for 0.027. 
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Figure 7.35: The enstrophy in time for experiments 2a, 1c and 2f of 

   ooo tNtN 22  and ott with high, medium and low Richardson 

numbers 756,7Rig , 84,1Rig  and 64,0Rig  in one line, with an 

evaluation of r.m.s. error of 5%. 

 

We can see that there is a complex non-linear and non-monotonic relationship 

between the stratification parameterize by Richardson number and the vortex decay. 

The decay rate of the number of vortices does not vary much in the highest Richardson 

number experiment. On the other hand for intermediate Richardson numbers the decay 

of the vortex number reaches maximum and for small Richardson number there is again 

a decrease in the vortex number rate. In all cases the difference between the tendency 

rates for different Richardson numbers does not vary much, indicating the importance 

of the grid forcing, in time the differences are more and more important. When Rig  

was 7.756 the exponential rate   was between 0.0029 and 0.016, when Rig  was 1.84 

then   0.043 to 0.0254 and finally when the Richardson number was quite small 

64.0Rig  then   was between 0.0156 and 0.0285. 

At the begging is much better for all vortices, because taking separately positive 

and negative vortices, the dispersion of data is much higher. In all cases it is clear that 

the highest decay of the number of vortices takes place with intermediate Rig, this 

means that stratification produces a highest vortex decay, probably through internal 
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wave interaction, which produces an additional dissipation, in the situation of 

maximum mixing efficiency (as described by Redondo 1990 and Fraunie et al. 2008). 

This effect will be modelled in several ways in chapter 9, due to its complexity. 

 



 148

7.3.3. The evolution of integral scale in time 

 

As the stratification produces a complex interaction between the vertical vorticity 

produced by the collapse of the eddies and the horizontal vorticity produced by breaking 

internal waves with strong local vertical displacements at the density interface the 

homogeneous 2D turbulence decay power law is not going to followed, even in the 

strongly stratified situations. For the very weakly stratified flows we expect that the 

integral scale, or length scale where most kinetic energy resides, will not decay as fast 

and follow a 3D decay. We have to choose between different forcing and internal 

parameters to construct the dimensionless number that we are looking for, so we may 

distinguish different scaling effects during the whole mixing process. For example, we 

may compare similar behaviours under different conditions, characterized by different 

scales that may be useful in order to compare between natural large-scale and 

experimental (small-scale laboratory) flows. In chapter 8 we will compare the 

characteristic sizes for well defined vortices in the ocean surface. 
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Figure 7.36: Evolution of the integral scale for experiments 1a to 1h with 

different Richardson numbers and different characteristic scales L[cm] 

according to the time T [s]. 
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Here we will explore the relationship Time  T  – Integral length scale  L , scaled 

both with the grid forcing time scale and with the internal wave frequency time scale 

N1 . On the one hand, figures 7.36 and 7.37 present a dimensionless relationship only 

for the size using the mesh size and time as: MLT  , where M is the characteristic 

grid scale equal to 10 cm. These figures show the evolution of integral scale of the plane 

flow in time for experiments 1a, 1b to 1h and 2a, 2b to 2i. Note that in this case T may 

be adimensionalised in two ways: 1) T times the Brunt -Väisälä frequency  N  and 2) T 

times the characteristic velocity u divided by M. In both cases the dominant relationship 

is proportional to 53T . But the kink in the growth law is a clear sign of the interactions 

between the dominant vortices and the internal waves. Note also that because the 

motions can also be vertical faster flowing crests of the internal waves are detected in 

the flow visualizations. The velocity at the plane intersecting several times a set 

halocline does not have to comply with the continuity equation. 
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Figure 7.37: Evolution of the integral scale for experiments 2a to 2i with 

different Richardson numbers and the different characteristic scales L[cm] 

according to the time T [s]. 
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Figure 7.38: Evolution of the integral scale in non dimensional form for 

experiments 1a to 1h with different Richardson numbers, the dimensionless 

expression of ML  and NT  where M is the characteristic grid length scale 

(10 cm). 

 

Figures 7.38 and 7.39 show the evolution in time of the integral scale of the plane 

flow in a dimensionless form of ML  and NT  where M is the characteristic grid 

length scale (10 cm) and N the Brunt - Väisälä frequency. These two figures are for two 

different experiments from 1a, 1b to 1h and from 2a, 2b to 2i. 

 



 151

0,1

1

10

0 1 10 100 1000

TN

L
/M

2a

2b

2c

2d

2e

2f

2g

2h

2i

T(^3/5)

 
Figure 7.39: Evolution of the integral scale for experiments 2a to 2i with 

different Richardson numbers, the dimensionless expression of ML  and 

NT  where M is the characteristic grid length scale (10 cm). 
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Figure 7.40: Evolution of the integral scale for experiments 1a to 1h with 

different Richardson numbers, the dimensionless expression of ML  and 

MTu  where M and u are the characteristic grid length scale (10 cm) and 

velocity respectively. 



 152

In figures 7.40 and 7.41 we can see the evolution in time of the integral scale of 

the plane flow in a dimensionless form for experiments from 1a to 1h and from 2a to 2i 

in the way as ML  and MTu  where M and u are the characteristic grid length and the 

velocity respectively. 
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Figure 7.41: Evolution of the integral scale for experiments 2a to 2i with 

different Richardson numbers, the dimensionless expression of ML  and 

MTu  where M and u are the characteristic grid length scale (10 cm) and 

velocity respectively. 

 

It is easy to see that there is a strong influence at the internal waves between 

83~ NT , specially for the highest Rig experiments 
51T . 

From the much better scaling with the forcing time, it is evident that this effect is 

responsible for the initial growth of the eddies, only after 50 to 100 mesh sizes at the 

grid speed the flow really is dominated by buoyancy. This interval is shorter for the 

highest Richardson numbers.  
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7.3.4. The histograms of local vorticity measured by PIV 

 

A detailed analysis of the PDF and histograms of the different vorticity fields in 

time are presented in this section. We observed that the vorticity field is different in all 

experiments, and depends also on the grid velocity besides of its role as part of the 

Richardson number, so at least a 2D parameter space will be needed. Following figures 

7.42 to 7.46 show the evolution of the vorticity PDF’s in time for different experiments 

during 100 seconds (every line correspond to different point in time as 2, 5, 10, 20, 50 

and 100 sec). 
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Figure 7.42: The histogram of local vorticity measured by PIV in experiment 

1d with 19.1Rig  for different times. 

 

It can be observed that in experiment 2a the vorticity field histogram is increasing 

with time and it is mean that the area of vortices at the beginning is bigger that in the 

final part of the experiment. In figure 7.45 we can see how is decreasing the area of 

vortices from 2 seconds that occupy almost all grey level and in 100 seconds only 50 % 

or less. In other cases this is not so obvious because histograms are not so clear that in 

experiment 2a. In experiment 2b the histogram is decreasing and in 1d and 1e is almost 

the same during all experiment. 
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Figure 7.43: The histogram of local vorticity measured by PIV in experiment 

1e with 83.0Rig  for different times. 
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Figure 7.44: The histogram of local vorticity measured by PIV in experiment 

1h with 039.0Rig  for different times. 
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Figure 7.45: The histogram of local vorticity measured by PIV in experiment 

2a with 756.7Rig  for different times. 

 

0

1500

3000

4500

0 50 100 150 200 250

grey level

p
ix

e
ls

2seg

5seg

10seg

20seg

50seg

100seg

 
Figure 7.46: The histogram of local vorticity measured by PIV in experiment 

2b with 033.8Rig  for different times. 
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Figure 7.47: The histogram of local vorticity measured by PIV in experiment 

2g with 378.0Rig  for different times. 
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Figure 7.48: The histogram of local vorticity measured by PIV in experiment 

2h with 264.0Rig  for different times. 
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Figure 7.49: The histogram of local vorticity measured by PIV in experiment 

2i with 347.0Rig  for different times. 

 

Taking maximum value from histograms we can construct other graph and we can 

see the difference between all experiments, figure 7.50. Here is too easy to notice that 

the line for experiment 2a is increasing in time with exponential tendency. For 

experiment 2b is in the other way, is decreasing in time also with exponential tendency. 

For experiments 1d and 1e we are not able to see the tendency, it is almost constant. 

It is apparent that in most cases there is a slight increase in vorticity (note that we 

only measure vertical vorticity) and this is more evident in the highest Richardson 

number experiments. This is probably due to the fact that the strong internal waves are 

really tilting the isopycnal surface and the sidewise components of the vorticity are 

much larger initially. After 5-10 seconds the plane and isopycnal surfaces tend to align, 

and the vorticity decay at all positive and negative levels is apparent. Because only the 

central section of the tank, away from the walls is analysed, in some cases the final large 

dipole is shifted away from the observation region, and as shown in figure 7.46 a 

skewness of the measured PDF is produced. There is no apparent cyclonic or anti-

cyclonic asymmetry. 
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Figure 7.50: The presentation of maximum vorticity level for experiments 1d 

( 19.1Rig ), 1e ( 83.0Rig ), 2a ( 756.7Rig ) and 2b ( 033.8Rig ) 

in time for different Richardson number. 
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7.4. Decay and merging of vortices with stratification 

 

The next step was the vorticity evolution analysis in decaying turbulence. Here we 

present in some detail the study of the laws that dominate coherent structures created in 

the stratified turbulent flow. This behaviour of isolated vortices has been amply studied 

in a pure two dimensional flow (Tabeling 2002) but in these experiments we may focus 

on the role of buoyancy on the flow. As was commented above effect of the 

stratification most evident, stronger the buoyancy, higher the effective confinement in 

the vertical scale. Under standard theories of the evolution of vortices (Kraichnan 1975) 

in a bidimensional state (2D) we have specific energy and enstrophy conservation laws. 

Under stratified turbulence a simple energy argument shows that no vertical motions 

larger than the Ozmidov length scale oL  may hold where 
3N

Lo


  being   the 

dissipation and N is the Brunt - Väisälä frequency. This overall behaviour is similar to 

what happens in a topological two dimensional flow (2D). We analyse the behaviour of 

vertical structures through time and specific study the vortex number and changes of 

new vortices that merge. In the pure bidimensional state an interesting effect in the 

energy exchange between scales, allows the energy flow towards large scales to allow 

the effective small cascade scale of the enstrophy. In this case, we can observe two 

types of inverse energy cascade defined in § 2.1 and § 4.3.1 the effect of decay that 

affects more the dissipation scales and the proper topological 2D effects. 

The experimental analysis performed was the careful measuring of bidimensional 

and a computer generated threedimensional vorticity images  yx,, . The 

measurement process consisted in the visual identification of vortices in the vorticity 

field, defined by a layer sheet at the interface centre. Measures at their range in the 

study area, and the compilation of a vortex number as the relative area to total that they 

occupy, everything in percentage. In figure 7.51 we can see the threedimensional 

vorticity field with a multicoloured scale from experiment 1h with low Richardson 

number, and we can count peaks of vortices. The figure shows a snapshot of the 

evolution of the vertical vorticity scalar field as the turbulence decays after passage of 

the grid in this case in a weakly stratified interface. 
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Figure 7.51: The vorticity 3D field with multicoloured scale in time t=2seg for 

experiment 1h and small Richardson number 039.0Rig . 

 

This process was done for six chosen measurement times in every experiment 

with stratification, in a logarithmic way. How we can see later the laws are potentials, 

therefore it seems interesting, in view of complexity of this visual analysis, to reduce 

measurements, maintaining the objectivity of analysis, it was checked that there times 

were enough to deduce the decay law. 

Besides, here we make an analysis for two different levels of enstrophy of 

vortices, this is the power of the vorticity that they have. It seems suitable to make it in 

this way, as we can compare separately tendencies, and check if the decay is similar for 

all vortex strengths. The procedure guarantees the best precision at least in the vortices 

of high energy. It is easy to see that, when the vorticity limit is smaller, then we force to 

count many more vortices. Then a greater error will committed for lesser vortices. It 

results more difficult to distinguish vortices in the turbulent area where there are a 

greater number of them. Accordingly, we will count vortices for the high and mean 

energy as we can detail in figure 7.52 as an example where we show the high and mean 

enstrophy vorticity limits and the turbulent area or the background level of vorticity 

called sometimes the turbulent swamp (Dubos and Babiano 2002). 
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Figure 7.52: Vision limits of high and mean enstrophy. 

 

The obtain data after visual inspection analysis, identification of vortices, their 

counting and area estimation (means calculation as area etc.) is presented in the 

following table 7.7 for 1a, 1c, 2a and 2f experiments with weak, moderate and strong 

stratification. 

From the vortex number and the percentage area in every moment (from the frame 

pair PIV analysis), we can determine the new fundamental data for our analysis, the 

mean area of vortices in one certain moment of time. This value is received dividing the 

relative area of vortices by the counted vortex number as we can see below: 

 

o

rel
m N

A
A      (7.2) 

 

where mA  is the mean area, relA  the relative area and oN  the vortex number. With this 

method it is easy to obtain the values exposed in tables 7.8. These values can be 

analysed and compare with different theories and other experiment results. 
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Table 7.7: Visual data with high (8,8 – 7,756) and moderate (1,84) Richardson number obtained from 

experiments 1a, 1c and 2a. 

Enstrophy Levels 

Exp 1a High Mean High Mean 

sec. Area % Vortex number 

2 50 30 31 36
5 45 25 26 30

10 37 20 15 24
20 30 20 11 19
50 25 15 7 12

100 20 15 5 8
 

Enstrophy Levels 

Exp 1c High Mean High Mean 

Sec. Area % Vortex number 

2 45 35 32 37
5 40 30 26 31

10 28 24 20 25
20 25 20 16 21
50 15 15 8 14

100 10 15 5 9
 

Enstrophy 
Exp 2a High Mean High Mean 
Sec. Area % Vortex number 

2 50 40 40 43
5 45 35 28 35

10 30 30 26 32
20 25 30 20 24
50 15 20 17 20

100 10 15 13 16
 

Enstrophy 
Exp 2f High Mean High Mean 
Sec. Area % Vortex number 

2 30 25 24 34
5 23 25 18 27

10 17 25 12 20
20 13 20 8 15
50 10 15 6 12

100 7 15 4 8
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Table 7.8: The mean area data calculated for different levels of enstrophy (high, mean and total) for 

experiments 1a, 1c, 2a and 2f. 

Experiment 1a with high Richardson number 

Mean Area Total 

High Mean relA  oN  mA  

1,61 0,83 80 67 1,19 
1,73 0,83 70 56 1,25 
2,47 0,83 57 39 1,46 
2,73 1,05 50 30 1,67 
3,57 1,25 40 19 2,11 
4,00 1,88 35 13 2,69 

Experiment 1c with moderate Richardson number 

Mean Area Total 

High Mean relA  oN  mA  

1,41 0,95 80 69 1,16 
1,54 0,97 70 57 1,23 
1,40 0,96 52 45 1,16 
1,56 0,95 45 37 1,22 
1,88 1,07 30 22 1,36 
2,00 1,67 25 14 1,79 

Experiment 2a with high Richardson number 

Mean Area Total 

High Mean relA  oN  mA  

1,2500 0,9302 90 83 1,0843
1,6071 1,0000 80 63 1,2698
1,1538 0,9375 60 58 1,0345
1,2500 1,2500 55 44 1,2500
0,8824 1,0000 35 37 0,9459
0,7692 0,9375 25 29 0,8621

Experiment 2f with low Richardson number 

Mean Area Total 

High Mean relA  oN  mA  

1,2500 0,7353 55 58 0,9483
1,2778 0,9259 48 45 1,0667
1,4167 1,2500 42 32 1,3125
1,6250 1,3333 33 23 1,4348
1,6667 1,2500 25 18 1,3889
1,7500 1,8750 22 12 1,8333

 

The basic theory about Kolmogorov scale and his extension to the problem of 

vortices structure (Tabeling 2002, Platonov et al. 2009), starts from some suggested 

hypothesis applied to the dynamics of process observed experimentally. Here we exhibit 

some power law dependencies (Babiano 2002): 

1. The vorticity in the turbulent area that shows low vorticity or background does 

not have any influence in the analyzed processes; it means that the background 
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vorticity is essentially passive. The present data shows certain turbulence with a 

low intensity into which there are located well formed vortices with more 

intensity. This turbulence background can be avoided but a decision has to be 

taken about the levels of the mean and high energy to analyse the dominant 

vortices. 

2. The energy and enstrophy are dominated by vorticity. The previous point and 

the absence of existence of energy interfaces of other type permit to analyse 

vortices as the only factor in equations. 

3. The merging process of vorticity is assumed initially not to destroy energy, to 

check this we can apply the law of energy conservation. 

 

If we apply laws of energy conservation to the set of vortices (i.e. merges conserve 

energy and also conserves peak vorticity), knowing that these are the principal and only 

factors with influences in vorticity and energy in an homogenous flow, we can start 

from the law of conservation and from the theory of Kolmogorov enforcing a local scale 

oL  transport (as we know that the energy only travel to the superior scales) and from 

expression of the kinetic energy that refer the decay energy with the vortex number and 

mean area of vortices ( ). 

 

2 o
i

i NeE     (7.3) 

 

with the definition   as  dl  and where the total energy of vortices is 

proportional to the square mean area that we calculated. If we consider that the vortex 

number is decreasing with the law of type  tNo  then we have: 

 

2tAm      (7.4) 

 

where  2  and therefore the mean area has to increase with 2t , where   is the 

vortex decay exponent, rate of vortex number of decadency in the logarithmic space. 

Many authors tried to find out this rate from different analytics theories, as Pomeau et 

al. 1966, Sire and Chavanis 2000 and Ywayama et al 1997 from theory about vortices in 

the mean field, Carnevale et al. 1990, Trizac and Hansen 1996 and Trizac 1998 from the 
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ballistic aggregation and Huber and Astrom et al. 1993 based on the Coulomb gas, and 

their obtained different values of decay exponent with limit from 0.67 (Ywayoma et al. 

1997) to 1 (Carnavale et al. 1990 and Sire and Chavanis 2000). Sire and Chavanis 2000 

introduced a numerical procedure which allows very long-time simulations of the 

Kirchhoff vortex dynamics in a two dimensional decaying fluid and they found a long-

time asymptotic decay with 1 . Trizac et al. 1998 proposed a ballistic coalescence 

model mimicking the fusion of vortices in freely decaying bidimensional turbulence. A 

temporal scaling behaviour was reached where the vortex density evolves like t . A 

mean analytical argument was shown to overestimate the decay exponent   whereas 

give 01.071.0  , in agreement with laboratory experiments and simulations of 

Navier-Stokes equation (Tabeling 2002). 

Some other approximations are presented from different laboratories experiments 

and numerical models, although with a wide range of values of the decay exponent 

between 1.044.0   to 1. Benzi et al. (1992) showed that after a transient period, the 

number of vortices  tNo  is decreasing in time as t  with 05.06.0  . By direct 

numerical simulation of two dimensional Navier-Stokes equations, Mc Williams et al. 

1990 found   7.0 ttNo  in a case where vortices with the same where presented in the 

initial condition. The results obtained by Mc Williams confirmed that the peak vorticity 

inside vortex cores is roughly conserved and that the number of vortices as a function of 

time decreases as a power law, as Bracco et al. (2000) discussed. They studied the 

behaviour of two-dimensional turbulence due to the interest as a simple conceptual 

model of vortex-dominated large-scale planetary flows. The evolution of vortex 

statistics in freely decaying bidimensional turbulence at very large Reynolds number 

has also practical application. After the vortices have been generated and the system has 

become dominated by vortex dynamics the situation changes and at least square fit 

estimate of vortex decay rate gives 03.076.0  . Weiss & Mc William 1993 analysed 

the temporal scaling behaviour of the flow using scaling theory, a long-time integration 

of the fluid equations, and a dissipative, modified point-vortex model that represents the 

turbulences as a system of interacting coherent structures. Their presented results from 

both systems and it shows excellent agreement in a number of aspects, both with each 

other and with the mean-vortex scaling theory: the evolution of average vortex 

properties and low-order moments displays self-similar evolution with the same scaling 

form. Furthermore, the two systems gave the same value of the scaling exponent 



 166

72.0 . Cardoso et al. (1994) on the other hand, compared their results to the 

theoretical predictions and did not observed the predicted exponents by Batchelor 

theory, where t is supposed to be 2t  and whereas their found 1.044.0 t . 

It can be observed the big variety of exponents. Nevertheless, nowadays exists a 

general theory that predicts the behaviour in experiments with pure bidimensional (2D) 

topology and, under some hypothesis determine realistic values for  . The new 

hypothesis is that merger rate depends on the dispersion rate with diffusivity D  defined 

as: 

 

2

2

1
X

dt

d
D     (7.5) 

 

where 2X  is dispersion  20
2 xxX   (same dispersion rate in all experiments). 

Dimensionally, could correspond to the velocity by the longitude scale, units of TL2 , 

in the way that ulD . From the definition of kinetic energy and considering 

hypothesis of the vortex theory applied in this chapter, we have: 

 

22

2

1
  oic NedAuE    (7.6) 

 

and from here, we can define u  in a proportional way so that the model implies: 

 





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


 2

12
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
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o

A

N
u    (7.7) 

 

where   is a parameter defined the vortex number density as 1 mrelo AAN  

(diffusivity exponent) is defined and with scale 2
121

mAl    we obtain: 

 

   2121
mAulD      (7.8) 
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We can see that the diffusivity then depends on the internal vorticity over a 

lengthscale i.e. the circulation  . Experimentally it was determined that the diffusivity, 

in any case, has this type of law: 

 

3
1

tD      (7.9) 

 

If energy is conserved, then constNo  2  so: 

 

3222   tDNo     (7.10) 

 

We have one theoretical value based on the experimental ratio that set the   the 

decay exponent in approximately 67.0 . This theory is incomplete, because still we do 

not know why it seems that the dispersion is proportional to the mean vertical area. No 

attempt has been made here to include the effect of internal or inertial waves as energy 

sinks or as vorticity generators through the Baroclinic torque. 

Here we present results with high Richardson number, with strong stratification, 

and we can observe that results have indeed a potential fit in the logarithmic plots 7.44, 

7.45, and 7.46. We can see the good line fits showing precisely the number of vortices 

in a plane by means of the decay exponent  . Comparing the decay factor   to the   

factor of equation 7.4 we immediately deduce that 

 

 2      (7.11) 

 

All directional influence of   is lost when the entire plane is considered. 

It interesting to notice, that we have, initially, the expected tendencies 

theoretically. The vortex number adjusts well in the logarithmic space and downward 

slope as seen in figures 7.53, 7.54 and 7.55. Also, as expected from 2D theory, the mean 

area of the vortices increases with time, adjusting also to a straight line in logarithmic 

space. These results show how the merging of vortices is the basic physical process, in 

which the basic vortex number tends to decrease and generate vortices of large scales. 
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Figure 7.53: The evolution of vortex number and mean area for experiment 1a 

with high Richardson number 8,8Rig . 

 

As we want to investigate the role of stratification on the vortex decay process, we 

start the analysis with a very strong stratification case, with the highest Richardson 

number for all experiments 1a 8.8Rig  and for 2a also, almost as large, 756.7Rig , 

because these cases should be more similar to pure (2D) bidimensional theories which 

we described previously. Checking the value of the slopes in figure 7.53, we see that the 

value of decay exponent   according to the number vortex slope for high energy is 

0.49. According to the low energy vortices, is 0.38, even further away from the pure 2D 

values. The values of mean area are in accordance with the value of high energy 

vortices. If we notice, 0.25 in the first case and 0.20 in second, approximately 
3


. So 

the proposed theoretical pure 2D flow law is not clearly upheld. It is clear that the 

results of decay of the vortices number are not explained by the theory for pure 2D 

experiments. With strong stratification values 0.25 and 0.20 are too small compared 

with the expected 2D values. It is possible that experimental errors due to the difficulty 

that involves counting and the estimation of the vortices areas are 5% to 10%. The 

numbers of vortices with high energy give us better results, with an easier count because 

of their high energy and easier determination of area. Those with an average energy 

result more complicated to separate from the turbulent background and it can lead to a 
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larger error. This is one of causes why the separation of high energy vortices is 

recommended, as it presents the decay laws clearly. 

The same happens in results from experiments 2a, shown in figure 7.54 where the 

value of the decay exponent   according to the number vortex slope for high energy is 

0.27 and for the mean energy 0.25. In the both cases the values are much lower. The 

values for the mean area are in accordance with the vortices value of high energy: 0.15 

in the first case and 0.01 in the second. 
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Figure 7.54: The evolution of vortex number and mean area for experiment 2a 

with high Richardson number 756,7Rig . 

 

Nevertheless, the show fits are good and it is not insignificant that we observe the 

slope change. Despite that we can have a certain error. We must mention of the 

smoother tendency that shows decay of the vortices, and the slope of the evolution of 

the mean area, reaches up to 
5

4
. It seems that different hypothesis area needed to 

explain the vortex decay of the mean energy and a different one for the every strong 

vortices. For these vortices, according to this tendency, their number could decrease 

slowly, and their mean area could increase faster. This area increase could come from 

some interaction between the associated area to the vortices with the average energy and 

the internal wave field. The relative area decays very slowly and, added to the slow 
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decadency of vortex number; it causes a fast increase of the mean energy. It seems very 

clear that the cause of the difference of the real stratified flow that we have analysed 

with respect to a pure 2D bidimensional theory which we applied to predict their 

behaviour. Given that there exist in reality processes associated to the vertical scale; it is 

quite possible that we have an energy transition from the largest scales towards the 

smallest scales in a 3D fashion. The high energy vortices could behave slightly more in 

a pure 2D environment, but with an additional 3D energy cascade towards the smallest 

scales that feed firmly from the vorticity at mean scale, and change their behaviour. 
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Figure 7.55: The evolution of vortex number and mean area for experiment 1c 

with medium Richardson number 84,1Rig . 

 

For the experiment 1c with mean stratification (figure 7.55), and Richardson 

number 84,1Rig  we observe again the same behaviour as in previous cases. In this 

case, the slopes are higher: 0.48 for vortices of high energy and 0.35 for mean energy. 

Both cases are not well explained with the theory, and do not upheld the described laws. 

The values of the mean are increase, again, for the high energy is 0.09, and different that 

awaited for these with mean energy, 0.11. It is interesting to notice that this relation 

repeats itself in this experiment; again we can add some reinforcement to the hypothesis 

of a real tendency change, eliminating the possibility of systematic error in the counting 

method and or of the area estimation. 
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The calculation of the turbulent integral scale, presented above confirms 

independently the importance of the buoyancy on the vortex decay, especially after a 

few Brunt - Väisälä periods. From the previous analysis we could extract one important 

detail in the calculation of non dimensional numbers, the horizontal scale of vortices. 

For this, we use the total sum of vortices and areas, considering that the sum is of all 

significant vortices, and therefore is more adequate for the extraction of the average 

horizontal scale. We want to check, anyway, that this scale follows a power increase in 

time, generating one graph and extracting one rate of lineal increase, for each 

experiment. 

Based on the vortex number and relevant area, we have the global study for every 

experiment. In the following figures: 7.56, 7.57 and 7.58 we present the total number of 

horizontal vortices in time for experiments 1a, 1c and 2a with high and medium 

Richardson number. 
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Figure 7.56: The evolution of total vortex number and total mean area for 

experiment 1a with high Richardson number 8,8Rig . 
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Figure 7.57: The evolution of total vortex number and total mean area for 

experiment 2a with high Richardson number 756,7Rig . 
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Figure 7.58: The evolution of total vortex number and total mean area for 

experiment 1c with medium Richardson number 84,1Rig . 

 

With this data, and considering the area of a perfect circular vortex, it is possible 

to obtain the characteristic scale of vortices at every moment in time and it helps to 
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evaluate independently how the horizontal scale increases as well as other useful 

information such as the vortex density or the packing ratio and several other 

geometrical and topological descriptors used by other authors (Bracco et al. 2004, 

LaCasce 2008). In figure 7.59 we can see the representation of this horizontal scale for 

experiment 1 with different rates for all measurements, from 0.0005 to 0.0016. Than in 

figure 7.61 are presented results from experiment 2, and the horizontal scale is 

increasing with rates from 5.09.0 E  to 0.0012. It confirms a power increase. 
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Figure 7.59: Integral scale l in time for experiments 1a, 1b to 1e with different 

Richardson numbers. 

 

In figures 7.60 and 7.62 we can see the evolution of integral scale for the first and 

second experiment with a potential approximation. In figure 7.60 we can see that the 

horizontal scale is increasing with rates from 0.09 to 0.26 and in figure 7.62 the 

increasing rate vary between 0.03 and 0.15. For experiment 2a we observe decreasing 

rate which is -0.06. 
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Figure 7.60: Integral scale l in time for experiments 1a, 1b to 1e with different 

Richardson numbers and with potential fits. 
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Figure 7.61: Integral scale l in time for experiments 2a, 2b to 2f with different 

Richardson numbers and linear fits. 
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Figure 7.62: Integral scale l in time for experiments 2a, 2b to 2f with different 

Richardson numbers and with potential approximation. 

 

The scaling theory by Carnevale et al. 1990 provides predictions on the evolution 

of the mean vortex properties and the lower statistical moments of the vorticity field, 

assuming that vorticity is concentrated inside coherent structures. The vortex number 

oN  term describes the statistical properties of the vortex population. The time evolution 

of the vortex number is assumed to have a power law form 
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where oN  is the vortex number and   is a certain exponent. As a hypothesis, it is 

assumed that the time evolution of the vortex number properties is self-similar. 
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Figure 7.63: Dimensionless expression for experiments 1a to 1e of 

   ooo tNtN  and ottN  where oN  is the vortex number and N  is the 

Brunt - Väisälä frequency. 

 

In figure 7.63 we present the dimensionless expression for experiments 1a to 1e 

for the vortex number. The tendency line in every experiments is potential, and with this 

we can find the rate  . We can observe the variety of this rate, which varies between -

1.86 and -2.35. The same for experiments 2a, 2b, 2c etc, the exponent   is between -

1.19 and .3.76, shown in figure 7.64. 
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Figure 7.64: Dimensionless expression for experiments 2a to 2f of 

   ooo tNtN  and ottN  where oN  is the vortex number and N  is the 

Brunt - Väisälä frequency. 
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7.5. Decay and merging of vortices without significant stratification (with 

low Richardson number) 

 

In this section some results of the decay and merging of vortices in an experiment 

with very weak stratification and low Richardson number are presented. 
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Figure 7.65: The evolution of vortex number and mean area for experiment 1h 

with low Richardson number 039.0Rig . 

 

In these cases values of the rate   are acceptable, with experimental values of the 

decay parameters 0.59 and 0.49 in figure 7.65. The values are close to the 3
2  2D 

theoretical value for the vortex number decay law in the case of high energy coherent 

structures but slightly lower that we expect for lower energy. Still, it can be noticed in 

this case a certain rapprochement between both behaviours. The weak stratification 

does not affect so much the high energy vortices, putting in time at the same level the 

vortex decay behaviour in both high and low energy structures. 

Taking everything into a consideration, we can say that the study and analysis of 

the number of the vortices and the structure of the quasi 2D flow in our experiments 

does give a limit to the rate   around the value 0.67, 3
2  and for the limit 0Rig . 
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Figure 7.66: The evolution of total vortex number and total mean area for 

experiment 1h with low Richardson number 039.0Rig . 

 

From the previous analysis, we can extract one important fact; the horizontal scale 

of vortices grows in time until the size of the container is reached. We want to confirm, 

besides, that this follows lineal increase in time after an initial period, creating one 

graph and extracting a rate of the lineal increase of the average vortex size. In figure 

7.66 we can see the evolution of the total vortex number until the vortices are 

indistinguishable from the background level and total mean area for weak stratification 

and low Richardson number. With this data, and considering the area of vortices as the 

perfect circular, it is obtain the characteristic scale of vortices in every moment in time. 

In figure 7.67 we can observe the horizontal scale with rate of 0.217 for 

experiment 1h and 0.221 for 2h. The Richardson number of experiment 1h is much 

smaller than 2h, and we can see that for Richardson number 039.0Rig  the 

stratification almost does not exist or is very weak. It is confirms the behaviour of a 

smooth lineal increase after an initial power law. 
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Figure 7.67: Integral scale in time for experiments 1h and 2h with low 

Richardson number 039.0Rig  and 264.0Rig . 

 

In figure 7.68 we show a dimensionless expression for experiments 1h and 2h for 

the vortex number and for the weak stratification. The tendency line in every 

experiment is potential, and with this we can find the rate  . We can observe that this 

rate for experiment 1h is 0.46 and for experiment 2h is 0.50. We can notice that the rate 

is similar in both of cases it is due to low Richardson number. 
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Figure 7.68: Dimensionless expression of )()( ooo tNtN  and ottN  

where oN  is the vortex number and N  is the Brunt - Väisälä frequency for 

experiments 1h with 039.0Rig  and 2h with 264.0Rig . 
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Figure 7.69: Exponent   in function of Richardson number for different 

experiments in high and mean energy. 
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In plots 7.69 and 7.70 we show the relationship  Rig  and  Rig  

for all available experiments. 
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Figure 7.70: Exponent   in function of Richardson number for different 

experiments in high and mean energy. 

 

We may see that the increased dispersion of   is due to the directional 

anisotropy, probable due to the internal wave number influence. 

In figure 7.71 we can observe de dependence of exponents   and   

in the logarithmic plot for total vortex number, high and mean energy for 

different experiments. 
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Figure 7.71: Exponent   in function of exponent   for different 

experiments in high and mean energy and for total vortex number. 
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7.6. Mixing Efficiency – Entrainment 

 

The mixing efficiency was measured between passages and related with the 

increase of potential energy and the decay process considering how long and how many 

grid passages were necessary for these two layers to be totally mixed. To consider 

individual turbulent decay processes, in order to study the mixing process, the grid was 

driven through the interface with the bars parallel to the interface and then we waited 

until all motions stopped. After this, densities were measured in seven points. We 

repeated the whole procedure again until the density in the entire tank was the same, 

thus the two layers were totally mixed. We use the definition on entrainment and mixing 

efficiency described in § 3.3. Here in figures 7.72 and 7.73 we present results of mixing 

efficiency in function of time for experiments 1 and 2 in a logarithmic plot. It is noticed 

that the mixing efficiency decreases with time as expected. 
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Figure 7.72: The mixing efficiency in function of time in logarithmic scale for 

experiments 1a – 1e. 
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Figure 7.73: The mixing efficiency in function of time in logarithmic scale for 

experiments 2a – 2i. 

 

In figure 7.74 we can see the mixing efficiency in function of Richardson number 

in logarithmic scale for all experiments 1a–1e and 2a–2i, showing a wide range of 

stabilities. The behaviour is clearly non-linear and very similar to that at a vertical grid 

drop at Linden (1980) and Redondo (2002). The critical Richardson number showing 

maximum   is 2Rig . 
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Figure 7.74: The mixing efficiency  Rig  in function of Richardson 

number in a logarithmic plot for experiment sets 1 and 2. 
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7.7. General parameterization of stratified non rotating flows 

 

The experimental domain related to dimensionless numbers is very important to 

relate experimental results with natural and numerical models. Richardson and 

Reynolds numbers are summarized in table 7.6. Dimensionless numbers are related to 

the balance of the different forces implicated in the flows. 
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Figure 7.75: Parametric domain in stratified decaying 2D turbulence 

experiments performed in the tank with dimensions mm 11  . ReRig  

 

Results from all experiments are shown in figure 7.75 in the plane ReRig . The 

set of stratified experiments presented dependence between both Re and Rig, where if 

Richardson number is decreasing then Reynolds number is increasing. For experiments 

3, 4 and 5 the Reynolds number is constant, so it is impossible to observe the decrease 

of the Richardson number. 

Taking values of exponents   and   from figures 7.63 and 7.64 we obtain 

following graphs, where we can see the   rate in function of Richardson and Reynolds 

numbers and the   rate in function of Reynolds number. In figure 7.76 we can observe 

the dependence of exponent in dimensional Richardson number and in 7.77, 7.78 and 

7.79 the dependence in Reynolds number. 



 188

0,1

1

0,01 0,1 1 10

Rig

Exp 1

Exp 2

 
Figure 7.76: Exponent   in function of Richardson number for experiments 

1 and 2. 
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Figure 7.77: Exponent   in function of Reynolds number for experiments 1 

and 2. 
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Figure 7.78: Exponent   in function of Reynolds number for different 

experiments in high and mean energy and for total vortex number. 

 

0,01

0,1

1

10000 100000

Re

Total Am

Am - High Energy

Am - Mean Energy

 

Figure 7.79: Exponent   in function of Reynolds number for different 

experiments in high and mean energy and for total vortex number. 

 

In figures 7.80 and 7.81 we show the exponent B , which indicated the vortex 

decay as an exponential fit measured in a line within the 2D interface, different fits from 
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positive  , negative  , total vorticity   and enstrophy 2  are presented as a 

function of both Richardson and Reynolds numbers from experiment 1c, 2a and 2f (with 

low, medium and high Richardson numbers). The exponent B  is obtained directly from 

the fits of figures 7.32, 7.33, 7.34 and 7.35. We can see in figure 7.74 that the exponent 

B  is quite similar in all cases with low, medium and high Richardson number. Figure 

7.81 presents the relation between the Reynolds number and the exponents B  for 

positive, negative and total vorticity and enstrophy in logarithmic terms. We can see 

that for experiments 1c and 2a the Reynolds number is the same, but there is certain 

difference between B  exponents for both cases reinforcing the role of the buoyancy on 

the decay process, unfortunately, the Reynolds number was not varied systematically 

and other processes related to the spectral gap between the forcing and the dissipation 

may be relevant, In order to investigate at a totally different range of larger scales, we 

investigate the detection and role of surface vortices in the ocean using image analysis 

from satellite observations. 
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Figure 7.80: The exponent B  from  ,  ,   and 2  in function of 

Richardson number, in logarithmic term, for experiments with low, medium 

and high Richardson number, 64,0Rig , 84,1Rig  and 756,7Rig . 
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Figure 7.81: The exponent B  from ,  ,   and 2 in function of 

Reynolds number, in logarithmic term, for experiments with low, medium and 

high Richardson number, 64,0Rig , 84,1Rig  and 756,7Rig . 

 

Figure 7.82 shows the complex relationship between the Richardson 

number and the overall decay exponent of the number of vortices, so being 

evident that for the non-stratified experiments the three dimensional effects 

dominate and produce an extra dissipation effect on the vorticity by shifting 

vertical vorticity to horizontal three dimensional vorticity. It can also be 

observed that there is a non linear relationship between vortex decay and 

highest Richardson numbers. The hint of a maximum, meaning more 

dissipation, or more mixing at intermediate Richardson numbers agrees with 

the detected maximum in mixing efficiency for intermediate Richardson 

numbers detected first by Linden 1980, in grid decaying experiments. 

 



 192

0,1

1

0,1 1 10

Rig

 
Figure 7.82: Decay exponents as a function of Richardson number. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 8 

Satellite observations of vortices in the Ocean 
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8.1. Use of SAR images in ocean studies 

 

The Synthetic Aperture Radar (SAR) is a useful tool that may be used to study 

both marine water dynamics and its pollution. Oil spills and natural slicks may be 

detected and processed with advanced computer techniques to reveal vortex dynamics 

and turbulence spectral characteristics of the complex eddy and current interaction in 

the ocean surface. In the framework of the European Union contract Clean Seas, more 

than 300 SAR images of the North-west Mediterranean Sea area taken between 

December 1996 and December 1998 were analyzed. 255 eddies can be detected under 

certain conditions and we analyzed statistically the appearance, size and position of 

vortices in the test area. It is shown that the maximum size of the eddies detected near 

the coast is limited by the Rossby deformation radius and that there is a decrease in size 

in the coastal waters in the direction of the Liguro-Provenzal current with the largest 

eddies occurring near the cape of Rosas. The role of submarine canyons in the vortex 

generation is indicated by the asymmetry of their distribution with respect to the 

thalwegs. It is demonstrated that useful information of a geometrical nature obtained by 

SAR satellite images may be used to estimate relevant dynamical parameters of coastal 

flows. Natural and man made distributions of tensioactive substance concentrations in 

the sea surface features exhibit self-similarity at all radar reflectivity levels when 

illuminated by SAR. This allows the investigation of the traces produced by vortices 

and other features in the ocean surface. The man-made oil spills besides often 

presenting some linear axis of the pollutant concentration produced by moving ships 

also show their artificial production in the sea surface by the reduced range of scales, 

which widens as time measured in terms of the local eddy diffusivity, distorts the shape 

of the oil spills. Thanks to this, multi-fractal analysis of the different backscattered 

intensity levels in SAR imagery can be used to distinguish between natural and man-

made sea surface features due to their distinct self-similar properties. The differences 

are detected using the multi-fractal box counting algorithm on different sets of SAR 

images giving also information on the age of the spills. Different multifractal algorithms 

are compared presenting the differences in scaling as a function of some physical 

generating process such as the locality or the spectral energy cascade. 
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8.2. Introduction 

 
The Synthetic Aperture Radar SAR its active radar which emits its energy in the 

centimetre frequencies range during a very short time period and it is able to receive the 

echoes. Due to the large orbital velocity of the satellite (7,5 km/s) approximately, its 

SAR antenna itself may be converted as a virtual antenna of a much larger size. The 

SAR instrument may be installed on a plane, on a helicopter or on board a satellite. The 

SAR emits short EM waves in the range of centimetres. The radar backscattering 

depends on the roughness of the small scale surface. When the surface is rougher 

(mostly due to capillary waves in the ocean surface) the intensity of the receiving signal 

is stronger due to Bragg resonant dispersion (Gade and Alpers 1999). In consequence a 

white zone is observed in the image when the surface is very rough. The dark areas are 

visible when there is a concentration of tensioactive products such as oil. Other 

phenomenon which has a strong significance in the use of the SAR images to monitor 

the sea surface is the Langmuir circulation (Sole at el. 2000). It is related to the surface 

particle concentration on the convergence zone between two vertical cells at sea. Algae, 

zoo-plankton, products of the marine life or waste from industries, spillage from 

tankers, hazardous waters, dregs at suspension, etc. accumulate on the convergence 

surface strips between two cells as seen in figure 8.1. It is precisely there that they form 

the high concentration tensioactive wakes or strips which we can observe clearly in the 

SAR images. Due to this phenomenon, the SAR images may detect many different 

oceanic dynamic meso-scale processes, such as internal waves, marine surface currents, 

hydrographic fronts, vortices and bathymetric characteristics of the sea bottom at coastal 

areas (Gade and Redondo 1999). The meteorological phenomena as cyclones, 

atmospheric fronts, surface wind, atmospheric internal waves and rains are also detected 

by the SAR images due to their effect on the sea surface roughness. 
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Figure 8.1: Dynamic features on sea surface near the Ebro delta. ERS-2 SAR 

100Km x 100Km image on 27.08.97 at 10:30 UTC. 
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8.3. Image analysis and descriptions 

 

Figure 8.2 shows the position, the shape and the spatial direction of the 255 

elliptical vortices clearly detected in the different SAR images during two years of 

observations. In order to better visualize the bathymetrical structure of the marine 

bottom, the "thalwegs" of the submarine canyons have been marked with lines. 

Most of the vortices are located in a relatively nearby maritime band near to the 

continental shelf. It is worthwhile to note the correlation between the spatial positions of 

the vortices and the submarine canyons: most of the vortices are located towards the left 

side of the submarine canyons. The spatial direction of the ellipses adjusted to the 

vortices was determined through the angle between the North direction and the direction 

of their mayor axis. The other region of concentration of the vortices is situated in the 

centre of the marine test area. There seem to be two main sources of the big eddies in 

the Gulf of Leon, as discussed by Redondo & Platonov (2001). 

The analysis of the direction of rotation of the vortices shows that 76 have an 

anticyclonic character and 179 correspond to cyclonic (anticlockwise). 
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Figure 8.2: Submarine canyons and the detected vortices in the period 

between 1996 and 1998 in the NW Mediterranean 

 



 198

8.4. Statistical analysis of vortices 

 

The extension of most of the SAR detected vortices (63 %) is less than 100 Km2. 

33% of vortices occupy an area between 100 to 500 Km2 and only 4% of the vortices 

possess a large area between 500 and 1200 Km2 (figure 8.3). About a 93% of vortices 

have a diameter less than 20 Km. The greatest part of the vortices (79%) have an 

elipliticity (relation between big and little diameter) near 1.125 – 1.625 that shows that 

this form is more stable (figure 8.4), in agreement with Saffman (1995). 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Size of vortces (km2)

0

5

10

15

20

%

 
Figure 8.3: Histogram of the detected vortices in function of their areas 

 

As mentioned above, the vortices near the Barcelona marine area (Redondo and 

Platonov, 2001) are due to a bi-normal distribution of the vortices and they considered 

that there exist two main types of mechanisms, detected by an angular dependence, 

related to their orientation: 

 Dynamical, due to the influence of the Liguro-Provenzal current (about 

50% of the detected vortices have direction angles between 250 and 750, 

figure 8.5). 

 Bathymetrical, due to the influence of the submarine canyons situated 

mostly perpendicularly to the coast line (25% of the cases the detected 

vortices have azimuth angles between 1250 and 1450). 
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Figure 8.4: Histogram of the elipcity of the detected vortices (a/b) 

 

In the present analysis of the 255 detected vortices, the figure 8.5 shows that the 

general orientation of the vortices is direction between NW and NE.  
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Figure 8.5: Histogram of the vortices function of the angles (between the 

North and the direction of their greater axis; clockwise direction is positive). 
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Figure 8.6 shows an enhanced SAR image with two marked typical examples of 

regular and irregular surface flows. A combination of oil spills and natural slicks are 

present, in figure 8.7 the same information given by the spatial distribution of SAR 

intensity pixels (about 4 x 104 m2 per pixel) in a 3D representation, with the third 

coordinate indicating the actual local value of the reflected SAR intensity, which is a 

measure of ocean surface rugosity. 

 

 

Figure 8.6: SAR ERS-2 images of the area near Barcelona 24.08.97, marked 

squares show the regions of image enhancement (oil spill (left) and self-

similar vertical surface feature (right)). 
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Figure 8.7: Analyzed by DigImage the results in a 3D view of the structure of 

the false colour derived from intensity of SAR signals that reflect surface 

roughness: oil spill and slicks (left) and self-similar vertical surface feature 

(right). 

 

To calculate the fractal dimension of the images, as discussed in chapter 5, the 

Box-Counting method used produces coverage of the object. For the plane these boxes 

will be square and for an object in space they will be cubes. The distribution of the 

boxes is accomplished systematically, the intersection of these with the object produces 

a systematic measure that we have N boxes with a non void intersection, but as they are 

not exactly the result of the best coverage possible if a single scale is used, so we apply 

the concept of self-similarity and the basic covering is accomplished repeating the 

process for many different possible diminishing observation scales, and presenting the 

best power fit for all scales. 

When we work with real images they do not have generally some perfectly 

defined contours, but we have some quite wide ranges of scalar intensity values to 

process. If we group the available data and describe them by a single larger set and 

calculate the fractal dimension we then lose the corresponding single intensity value 

information due to the intensity variation. 

It is also possible to accomplish a segmentation in many intervals that contains 

each one a very well defined intensity range. For each one of these ranges we applied 

the usual fractal dimension calculation with the box-counting method and we obtain the 

corresponding fractal dimension for each intensity level. The result of the process is a 
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set of dimension values, function of the intensity, and this measure will not need to rely 

on the evaluation of a limit neither to the smallest nor to the largest scales. An 

advantage of this straight-forward method is that the best fit to calculate D may be 

performed choosing freely the scale, the scale interval and the number of pixel values 

that will be used, this multi-fractal method has some advantages with respect of the 

 f  spectra described in chapter 5. 

The fractal dimension  D  is then a function of pixel intensity, (we may relate μ 

to ρ) and may be calculated using 

 




log

)(log
)(

N
D      (8.1) 

 

where  N  is the number of boxes of size  needed to cover the SAR contour of 

intensity . 

The box - counting algorithm divides the embedding Euclidean plane in smaller 

and smaller boxes (e.g., by dividing the initial length 0 by n, which is the recurrence 

level of the iteration). For each box of size 0/n it is then decided if the convoluted line, 

which is analyzed, is intersecting that box. Finally, is plotted N versus 0 /n (i.e., the 

size of the box e) in a log-log plot, and the slope of that curve, within reasonable 

experimental limits, gives the fractal dimension. This method of box-counting is used in 

ImaCalc software (Grau et al. 2005) that we applied to detect the self-similar 

characteristics for different SAR image grey intensity levels  and to identify different 

sea surface dynamic processes. Each of the intensity values may reflect different 

physical processes and lead to a different value of its fractal dimension; this whole 

entity can be either fractal or not fractal but exhibits a range of values 0-2 for all 

intensity. 

The program ImaCalc (Grau et al. 2005, Platonov et al. 2008, and Redondo et al. 

3008) performs interactively most of the multi-fractal box counting methods as well as 

the spectral ones. Different regions may be equalized depending on their intensity 

histogram distribution. 

Using the traditional energy spectra used in turbulence studies characterized by a 

single power law within the inertial sub-range (defined as the range of scales where 

production and dissipation of energy,  are in local balance) we use a theoretical 
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relationship between the turbulence spectral slope and the fractal dimension, we are 

now able to apply it to a spatial spectrum as described in chapter 5, and define a global 

fractal dimension using directly the spectral analysis on the radial distribution of 

intensity values of a SAR image 

With this methodology a unique value is obtained that characterizes the overall 

spatial fractal dimension of the system. The steps are described as follows (Vassilicos et 

al. 1991): make an image segmentation to obtain the interest region ( mn , m and n are 

the x-y discrete coordinates). Compute the FT (Fourier Transform) to obtain the 

frequency spectrum representation. ( uvl , u and v are the frequency discrete coordinates). 

Compute the square of the signal intensity or energy uvS  with: 
2

uvuvS  . Obtain the 

radial representation, as the radial distribution of uvS  and finally find the exponent p 

from p
r rS  . Using the radius as an isotropic length scale . 

With a linear fit from a log-log representation of rS  we may obtain the spatial 

spectral value of the set of all SAR image intensities, which we assume is also p and 

using as the Euclidean dimension 3uE  and the fractal dimension relationship we 

have: 

 

2

7 p
D


      (8.2) 

 

And thus we also have a global, indirect measure of the average fractal dimension 

from the radial spectral energy, note that only if the scalar used corresponds to velocity 

component energy will have the correct physical dimension; otherwise the energy 

spectrum will just indicate the square of the physical signal used. 
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8.5. Results on vortex multifractal measurements of the ocean 

 

The measurement of multi-fractals is mainly the measurement of a statistic 

distribution which is why the results yield useful information even if the underlying 

structure does not show a clear self-similar or self-affine behaviour. For a monofractal 

object, the number n of features of a certain size   varies as can be measured by 

counting the number n of boxes needed to cover the object under investigation for 

increasing box sizes   and estimating the slope of a log–log plot. For multifractal 

measurements, a probability distribution is measured. In practice, using the box 

counting method, for every box i the probability of “containing the object”, or in this 

application, the values of a certain SAR reflectivity, is also called the partition function, 

which may be obtained for different moments q which can vary from -8 to +8 . Both 

methods described above may be used to extract useful information about the age of the 

oil spills as well as about other mixing processes in the ocean surface. 

Thus it is possible to define iD  as described above. The well known multifractal 

function  f  may be seen as the fractal dimension of the set of intervals that 

corresponds to a singularity a, and a graph of a vs.  f  is called the multifractal 

spectrum of the measure. A measure is multifractal when its multifractal spectrum exists 

and has the shape of an inverted parabola. A generally equivalent way to describe a 

multifractal scaling is by considering the scaling laws of the moments of the measure. 

In practice, the object density is taken to the respective power of q, summed for all i, 

and plotted versus the box size in a log–log coordinate system. From the slope, which is 

also called the mass exponent t, the generalized dimensions are estimated as 

     qqtqD  1 . 

Images can be pre-processed using any image processor, e.g. to convert from 

colour/grey images to black-and-white using different types of algorithms, to invert 

background and foreground, to extract boundaries. With SAR images from the ocean 

surface we cannot rely strictly on theoretically limit for the calculation of the fractal, 

non- fractal or multifractal behaviour, because they have a finite size, and we have 

assigned a fixed range of values to the different SAR reflectivity intensity. The range of 

scale boundaries are defined by the image resolution, and we use numerical log/log fits 

(which tend to straighten any curve) to obtain the Rényi dimensions. Generalized 

dimensions  qD  can be obtained with the method of moments for any image and box 
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size described. In order to compare the two multifractal analysis procedures involving 

either a single fractal measure for each of the intensity levels (or grouped in sets) with 

the moment calculation for the generalized dimensions, we checked the numerical 

values at each algorithm step. Outside of this scale range, the theoretical values of  qD  

are calculated as the limit when   approaches zero and the numerical values of  qD  

are calculated from the regression fits. They are still very close if we select the range of 

scale and a grid matching the theoretical generation pattern. We applied this for a range 

of oil spill images. 

The study of the structured distribution in the space such that at any resolution the 

set is the union of similar subsets to the whole will indicate the same fractal dimension 

for every intensity value. But the scale factor at different parts of the set is not the same 

for most SAR images. If more than one dimension is needed, then the measure 

considered is characterized by the union of fractal sets, each one with a different fractal 

dimension. 
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Figure 8.8:Multi-fractal set of Dimensions  qD  obtained for a recent 

oil spill (dots), showing the low values between 0.1 and 0.4 of the 

normalized SAR intensity. A natural spill is more convoluted (squares) 

and shows a more uniform parabolic type of  qD  functions. 

 

Figure 8.8 shows the comparison of the function  qD  for a natural slick, that 

shows a smoother parabolic shape (squares) and a recent oil spill (dots) against a 
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normalized SAR intensity, calculated by averaging over the background intensity 

values. 

The SAR images exhibited a large variation of natural features produced by 

winds, internal waves, the bathymetric distribution, by thermal or solute convection by 

rain, etc as all of these produce variations in the sea surface roughness. 

If we suppose that the surface currents are responsible (at least partly ) for the 

spatial distribution of the ocean roughness for two main reasons, first the slope at both 

sides of an eddy is very different at producing radar backscatter from a side (as happens 

with ERS-1/2 and also ENVISAT) the other reason is that the surface tensioactives 

natural or man produced will be advected by the current lines relating the scalar and the 

vorticity distribution within the complex mesoscale ocean surface topology. Figure 8.9 

shows an example of detected vortices using SAR. From the observations of four year 

period it is possible to improve on the data from figure 8.2 and map the positions, sizes 

orientations and shapes of a certain area as shown in figure 8.10 for the NW 

Mediterranean. 

 

 
Figure 8.9: Examples of 4 vortices detected by SAR in the ocean surface 

 

The satellite-borne SAR seems to be a good system to detect man-made oil spills 

and oil slicks, the dynamic feature detection gives information over the surface motions 

at different scales. It is also a convenient tool to investigate the eddy structures of a 
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certain area, such as the cases where the effect of bathymetry and local currents are 

important in describing the ocean surface behaviour. 

 

 
Figure 8.10: The example of the observation of four year period of size 

orientation and shapes of a certain area for the Gulf of Lyon region. 

 

In this example presented near Barcelona and Marselle, the maximum eddy size 

agrees remarkably well with the limit imposed by the local Rossby deformation radius 

using the usual thermocline induced stratification. With the measured data, the average 

Rossby deformation radius of the area, Rd is about 20 Km. It is interesting to use this 

information to define the coastal flows (Matulka et al. 2009). 
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8.6. Other Geometrical and Topological Fractal measurements 

 

Fractals are geometric entities that present self-similarity and they are often the 

result of iterative processes such as turbulence. The self-similarity implies that if we 

have observations from different scales the results are similar, although in natural 

systems it is enough to have only a certain statistical similarity. These natural entities 

have usually anisotropic nature and then there may be different scaling laws for the 

different directions. Examples of these are the surface topography and the clouds, where 

the vertical coordinate has a smaller magnitude that horizontal coordinates due to 

stratification Grau (2003) and Redondo (2008). Fractal analysis is a very useful tool to 

characterize these objects in which an additional possibility is the calculation of the 

corresponding fractal dimension along the different coordinates so it may also reflect 

the anisotropic scaling. The eddies can also be detected from SAR as well as from 

infrared or colour images the local self-similarity (Snaith…). 

 

 
Figure 8.11: Complex eddy patterns detected by SAR in the NW 

Mediterranean sea and example of oil spills and river plumes a) affected by a 

local vortex south of Barcelona SAR ENVISAT frame, b) detail at higher 

resolution, c) eddy structure. 

 

Figure 8.11 show the type of measurements that allow comparing the local 

topology of the flows with Direct Numerical simulations (Castilla et al. 2007) such as 

that shown in figure 8.12. The laboratory experiments and field simulations may be 

used to estimate the evolution of the fractal dimension of a spill model in non-

dimensional time discussed in next section. 
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Figure 8.12: D.N.S. of a 2D equilibrium vorticity pattern, where the structure 

of the flow is revealed. 

 

 

 

Figure 8.13: Multifractal  qD  curves for different features in SAR images 

a) and b) spills, c) convection, d) eddy, e) rain. 

 

In figure 8.13, we may observe the very different topological characteristics of 

natural slicks and oil spills and advanced flow visualization techniques aid the 

identification of vortices or of Langmuir cells. The different causes of the slicks as 

shown in figure 8.13 are also reflected in the  qD  plots discussed above and used first 

by Gade and Redondo (1998). Other multifractal measurements can also be related to 
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physical mechanisms that affect in a different fashion the different scalar intensities 

used to identify the flows, as in Platonov et al. (2008) and Redondo et al. (2007) where 

stratification is shown to affect clearly the maximum fractal dimension. 

The correlations of intensity values and the radial integral of these, indicates the 

spatial scale l where the SAR intensities are well correlated. If we suppose that the 

surface currents are responsible (at least partly) for the spatial distribution of the ocean 

roughness for two main reasons, first the slope at both sides of an eddy is very different 

at producing radar backscatter from a side (as happens with ERS-1/2 and also 

ENVISAT and RADARSAT) 

 

 
Figure 8.14: a) ASAR higher resolution image of a wethered oil spill; b) 

evolution of  qD  in time. 

 

For example, the oil spill shown in figure 8.14 a), at a higher resolution using 

ASAR would correspond to a range of non- dimensional times Toil between 0.7 and 0.8 

matching the fractal dimension of 1.3-1.4 evolution seen in 8.14 b). There are other 

indications that may be useful from the SAR observations, such as the low local wind at 

the time the image was taken. There is a consistent pattern that distinguishes the recent 

oil spills and the natural slicks that have adapted to the multi-scale turbulent flow of the 

ocean surface. Figure 8.15 shows some of the differences between recent, characterized 

by the low fractal dimension of low SAR reflectivity values, and weathered oil spills or 

slicks, which exhibit parabolic behaviour of the curve  qD . 
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Figure 8.15: Normalized multifractal patterns exhibited by natural slicks 

(above) and oil spills (below), Redondo & Platanov (2009). 

 

Several uses of these new techniques are proposed  taking advantage of Zipf’s 

Law, both for anthropogenic oil spills and other features, it is possible to predict the 

likely probability of oil spill accidents of different sizes, as well as the local eddy 

characteristics that strongly influence the turbulent horizontal diffusivity, K(x,y).As an 

example from Jolly et al (2000), figure 8.16 shows a map of local average diffusivities 

derived from SAR observations near Barcelona, of course Richardson’s law  has to be 

applied and different sizes of spills will comply with the 4/3 law. Both numerical 

simulations as see in 8.13 and laboratory experiments confirm the conditions for 

hyperdiffusion (  NfntcD ,2   with   3, Nfn  to exist, as well as the trapping 

associated with coherent structures and vortices in the ocean, which are well detected 

under the Weilburn distribution of prevailing winds in the NW Mediterranean Sea.. 
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Figure 8.16: 2D map of Eddy diffusivity values derived from local estimates 

of the integral scale from SAR images. 
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8.8. Summary and conclusions 

 

This scenario is an appropriate model for geophysical flows which are known to 

contain very energetic vortices mesoscale oceanic eddies and atmospheric highs and 

lows. This upscale transfer of energy is inhibited at the Rossby deformation radius: The 

energy limitation is caused by baroclinic instability at larger scales, which accounts for 

the dominant observed size of geophysical vortices. Laboratory experiments on annulus 

flow, where the flow is driven in a rotating annulus by differential heating of the lateral 

walls of the annulus, or by internal heating of the fluid. A horizontal temperature 

gradient is established which drives a zonal flow via the 'thermal wind' balance. For 

certain values of the parameters this flow is unstable to baroclinic modes that feed on 

the energy in the temperature or density fields. 

Many features have been identified with structures and phenomena observed in 

several experiments, and understanding of atmospheric and ocean dynamics has been 

significantly advanced. The experiments have provided new insights about the 

dynamics and have revealed a wide range of nonlinear behaviour. 

Experiments performed by Linden et al. 1996 showed the effect of mixing from 

the edge on a rotating stratified system. When the instability is caused by differential 

heating or by buoyancy there seems to be a range of very different dynamic regimes, 

including as in many experiments. Work by Carrillo et al. 2001 has revealed the 

complex interactions possible between lateral (or coastal) stirring and the rotating-

stratified flow dynamics. 

The investigation of such strongly non-homogeneous flow, which leads to 

intermittent two dimensional turbulence, is believed very important if correct 

parameterizations of pollutant dispersion (such as Oil spills) in coastal areas are to be 

made. The availability of a large scale flow allows both to measure Eulerian velocities 

with precision as well as Lagrangian flows using particle tracking as well as local 

measurements of diffusivity by video recording the dispersion of neutral tracers. A 

possible oil spill prediction technique, involves the releasing of hundreds of small and 

inexpensive tracer (GPS) Lagrangian buoys near an accident to aid the predictions of 

coastal currents. 

Recent man-made oil spills in the sea surface are characterized by the low fractal 

dimension values ( 2.12 D ) over the region of low reflectivity in SAR images; on the 
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other hand natural oil slicks show a typical parabolic shape with maximum of 5.12 D . 

Most of the SAR images analyzed were obtained during 1996-1998 (near 900 images 

with 300 in the North-western Mediterranean Sea area) but SAR and ASAR images 

from ENVISAR have also been used. One of the problems in order to identify oil spills 

is the possibility of confusion with natural tensioactive spills, which may be due to 

plankton, algae or even wind pattern reflections on the ocean surface, one of the 

possibilities is to use the scaling properties of the turbulence that adverts and diffuses 

the tracers. 

By using the multifractal “Box counting Algorithm” as a function of the SAR 

intensity and a suitable non dimensional Damkholer time, based on the local dissipation 

in the ocean surface, it is possible to distinguish between recent oil spills and natural 

slicks and to relate certain patterns to physical processes on the ocean surface. The 

routine observations also help to identify pollution patterns and to predict possible 

accidents. It is also possible to estimate the local values of horizontal eddy diffusivity 

and to deduce the persistence of oil spills and slicks in the ocean. The eddy structure 

and local characteristics are invaluable when a prediction of tracer or surfactant path has 

to be made. In current numerical models that do not account for the strong spectral 

content at R= N h/f, with N the Brunt-Väisälä frequency and f the Coriolis parameter, 

only Gaussian order predictions are available, on the other hand intermittency and 

higher order dose and persistency predictions are needed for practical remedial 

situations. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 9 

Discussion 
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9.1. General Discussion 

 

As was mentioned before, one of the most important role of stratification and 

rotation in environmental turbulence, and in general of all body forces, including 

magnetic fields; is to modify the slope of the spectral energy cascade. 

Another experimental and numerical observation is that while the anisotropy of 

the Reynolds stresses is obviously linked with the non-homogeneity taking the vertical 

axis (in stratified flows) and the rotation axis (in rotating flows). Scalar behaviour in 

such flows has non-linear mixing properties Redondo (2002). There are similar effects 

that depart from Kolmogorov’s K41 and also for K62 theories, not just in second order 

structure functions (and related spectra) for spatial non-homogeneity, for anisotropy and 

for spatial and temporal intermittency. 

The directions of gravity, rotation axis and magnetic field act as principal axes and 

play dominant roles in the two dimensional due to body forces. These forces are 

dominant of the entropy cascade over the direct energy cascade, but it is important to 

realize that both direct and inverse cascades may not be in equilibrium at the same time. 

The intermittency coupled with the non-homogeneity and anisotropy act 

indistinguishably to modify the dispersion within the flow; here the role of coherent 

structures is also relevant as described in Babiano (2002). 

The results of this thesis and then discussion are based mostly on the role of 

buoyancy but also show the extent of the available data within the HIDRALAB II 

project analysed with new methods of PIV and conditional sampling in stratified and 

rotating flows published in Matulka et al. (2009) and Redondo et al. (2004), that have 

been developed and are available for further exploration of the different parametric 

regions. For instance, processing velocity data of the grid experiments both the 

decaying grid wakes and quasi steady oscillating grid experiments also gives spectral 

information. 

In the cases where the experimental initial conditions were spread out across all 

the parametric fields they obeyed to the fact that we specifically looked for the largest 

possible variability in the range of parameters. In other cases, such as the non-rotating 

experiments from chapter 7, the range of experimental initial conditions was also 

performed for a wide parametric range. The Richardson number varied mostly when the 

density difference was changed. 
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The set of rotating stratified experiments may be classified in regions dominated 

by one or several dominant instabilities such as those appearing in the non-rotating case 

internal waves, Holmobe instability, Kelvin-Helmholtz billows, non-linear pairing and 

fully developed turbulence, described first by Redondo (1989, 1990). In the case of 

rotating stratified flows, instead of using the Burger number, because the equilibrium 

between rotation and stratification is attained when 1RoRi , we may use the diagonal 

to conditionally sample the different scales of the Rossby deformation radius 

fNhRD   when DR  are stable. A new parameter map to be used as a general frame of 

reference with Rig , Ro1  and Re  presents important advantages when comparing 

different experiments and field data, and simplifies the complicated relationship 

between these dimensionless numbers. 

The analyzed non-rotating experiments were performed under the initial 

conditions from 31024Re   and 31022 ; 03.0Rig  and 8.8; and 13.0N  and 

5.73. The relationships LT  , MLTN   and MLMuT   were proportional to 53T  

in the non-rotating experiments. In the rotating experiments (Appendix 3), analysis 

within a 3D parametric space show dependence between Re  and Rig  proportional to 

43Re  different from that reported from natural conditions without rotation where the 

values were proportional to 23Re . The parameter analysis showed non-dependence 

between the rest of the dimensionless numbers and its values spread out across the 

values of Re  from 2500 to 6106.1   and Rig  from 0 to 5106.1  . 

The expected sample dependence between Rig and Re is found eliminating the 

velocity. Between Ri  and Re , cannot be applied because of the modification of the 

vertical length scale due to both stratification and rotation. This stresses the need of 

measuring the relevant length scale during the experiments. 

As seen in the non-rotating experiments, there is a clear interaction between the 

internal wave field and the domain size of the horizontal vortices for non-dimensional 

times 5NT . The final growth of the size of the decaying stratified vortices is controlled 

by the size of the experimental domain. When there is an external imposed length scale, 

it can be shown, applying a simple equilibrium model as described in Matulka et al. 

(2008), that showed that the energy decays as   2 cttK , but the role of the initial 

conditions and the influence of the stratification, which would include an extra 

buoyancy term with a dependence of 1t , this modifies the decay of kinetic energy as 
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well as the evolution of  the  ratio of turbulence kinetic energy to potential energy, as 

well as the vorticity. 

The role of Coriolis-induced inertial waves as well as the buoyancy-induced 

internal waves is expected to influence most the inertial decay phase of the flow. So in 

order to modify global parameters as the mixing efficiency, the control of the initial 

conditions seems much more important than previously thought. The changes in local 

mixing efficiency in rotating and stratified affects the global behaviour of a whole 

estuary as shown by Munk (2001), Kraichnan (1967) and Platonov (2002), knowing the 

basic instabilities as a function of the position in parametric space ( Re , Rig , Ro1 ) is 

important for environmental applications. 
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9.2. New aspect of the research 

 

Previous studies have focussed on the simplest cases, attempting from steady and 

spatially homogeneous flows to generate parameterizations of mixing that can then be 

applied more generally. However, real processes are both time and space-dependent, 

and it is an unsubstantiated assumption that steady parameterizations are useful in such 

situations. 

New tools are available to investigate the significance of spatial and temporal 

variations, theoretical, numerical and experimental techniques can all be brought to 

bear. The thesis also aims to identify how important temporal and spatial intermittency 

is for both the absolute and relative efficiency of mixing. The laboratory experiments in 

stratified (chapter 7) and rotating flows such as grid driven turbulence with periodic or 

non-monotonic forcing, and periodic or non-monotonic shear layers. 

One of the core ideas will be to identify when intermittency can be ignored, and 

when it must be retained at the core of the modelling. As there is a suspicion that a time-

scale and length-scale driven are important and we expect that the insightful ideas of 

“fossil” turbulence may play a valuable role. 

The eddy diffusivities in the ocean exhibit a large variation and show a marked 

anisotropy, not only horizontal values are much larger than vertical ones but there is a 

strong dependence on the spatial extent of the tracer dye or pollutant and at larger scales 

the topology of the basic flow is very important. In the case of oil spills, these are 

strongly influenced by the buoyancy and horizontal diffusion depends on ambient 

factors such as wave activity, wind and currents (These ocean surface analyses are 

presented in chapter 8). 

Several methods of deriving eddy diffusivity maps from image information should 

give more realistic estimates of the spatial/temporal non-homogeneities (and 

intermittencies in the Kolmogorov K62 sense obtained as spatial correlations of the 

turbulent dissipation, or from structure functions) and these values may be used to 

parameterise either sea surface turbulence or atmospheric turbulence at a variety of 

scales. It is possible that different fractal dimensions may be due to different levels of 

intermittency (and thus different spectra, which are not necessarily inertial nor in 

equilibrium). These techniques are helpful in providing more realistic estimates of 

spatial and temporal variations of the horizontal dispersion in the environment; which 
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reflect the influence of spectral energy distribution on local diffusivity in terms of a 

Generalized Richardson’s Law by Castilla (2001). From a practical point of view, we 

consider that a fractal and multi-fractal analysis is useful as a link between laboratory 

experiments visualization and Satellite Remote sensing observations of the Earth. 

A complex Parameter Space Using Ri , Ro , Re  has been used to fit experimental 

and numerical observations on the Structure (and Topology) of the Stratified Rotating 

Flows. The Spectra change appreciable with slopes from 1.1 to 4, but relevant to 

dispersion, not only the Spectral slope is important (Generalised Richardson’s Law) but 

the initial topology of the initial release (in Elliptical, Vortex core or Hyperbolic 

Regions dominated by shear). Using fractal geometry as well, we can establish now a 

theoretical baseline pattern for the turbulence behaviour that is reflected in the different 

descriptors (volume fraction, velocity and vorticity we can thus obtain a certain 

classification relating D3 and the sum (integral) of the different fractal dimensions D2 for 

different levels of scalar (volume fraction intensity or temperature). Vorticity evolution 

is smooth and quite different than that of volume fraction or density. The correlation 

between the local Ri  and the fractal dimension detected from volume fraction, energy 

or entropy is good. Using multi-fractal geometry we can also establish certain regions of 

higher local activity used to establish the geometry of the turbulence mixing. 

A taxonomy of changes in the equilibrium (or not) cascade may lead to more 

physically realistic (and understandable) models to parameterize the sub-grid scaling 

that has a important role be taken when interpreting the direct 3D Kolmogorov cascade 

and the Inverse 2D Kraichnan Cascade. 
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9.3. Discussion on energy decay in stratified flows 

 

Previous studies have only assumed pure 2D turbulence and vortex conservation 

measuring the number of vortices as well as the area increase only on the simplest 

hypothesis; here we extend the arguments and results to spatially non-homogeneous 

flows with varying buoyancy. The parameterization of mixing is assumed also to affect 

the dominant vortex distribution, more information may be found in Peco (2009). 

Using the spectral relationship from (Kolmogorov 1941) we have: 
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We may relate kinetic energy and dissipation as: 
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So integrating the equation we obtain: 
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which gives decay with both linear and quadratic terms that strongly depends on initial 

conditions, in particular with ok . 

On the one hand, from the stable stratification case; the aim is to explain and 

model the flat structure dynamics by the zigzag instabilities as precursors of quasi 2D or 

under the horizontal and vertical shear conservation arguments. This field is open to an 

anisotropy and non-linear statistic theory of ‘wave-vortex’, supported by the direct 

numerical simulations. Recent results of Lagrangian dispersion by passive tracers 

(couples) showed that diffusion looks dominated by the linear modes of movement, 

essentially anisotropic dispersive waves and the quasi-geostrophic modes. While the 

organized eddies from non-linear interactions play a minor role in the tracer trapping. 

Those results are found into other domains in the environment. Paradoxically the 

measurement of eddy structures is easy to visualize than the more elusive wave 

manifestations. A possible new research (for high Reynolds, low initial pair separation) 
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must allow to quantify the portion of organized eddies into the dispersion. Those studies 

would also give information on the force and time scales of the organized eddy 

structures and the specific promoter instabilities. 

The values of the mixing efficiency are comparable with other experiments, but 

further work is needed to investigate the effect of intermittency on the mixing process. 

This is still in progress (Zouari and Babiano 1994, Linden et al. 1996, Carrillo et al. 

2001 and Chen et al. 1996). 

 

  

Figure 9.1: Example of particle tracking, following the pliolite tracers. 

 

Here we want to understand and describe key aspects of the structure of the non-

homogeneous turbulence affected by stratification and rotation, in particular to study the 

evolution of the background vorticity and their interaction with the dominant coherent 

structures such as the dominant vortices. Other effects connected with non-homogeneity 

(for example boundary layer - vortex interactions) are also studied. Figures 9.1 shows 

particle traces detected at the density interface from above. There are several techniques 

that are used to track the pliolite particles and produce the velocity and vorticity plots 

used to calculate spatial correlations and spectra (Zouari and Babiano 1994). Figure 9.2 

shows the evolution of the vorticity scalar field as the turbulence decays after the 

passage of the grid in the strongly stratified interface. The dominant vortices can be 

studied as they interact, merge or break up. 
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Figure 9.2: Example of 3D vorticity maps in false colour, the behaviour of the 

dominant vortices, seems much more complex than previously thought, 

showing non-local interactions. 

 

As seen in non rotating experiments (Chapter 7), there is a clear interaction 

between the internal wave field and the domain size of the horizontal vortices for non 

dimensional times 5NT . The growth in size of the decaying stratified vortices is 

controlled by the size of the experimental domain. When there is an external imposed 

length scale, it can be shown applying a simple equilibrium model with constant 

dissipation such as equation 9.2. That the energy decays as   2 cttK , but the role of 

the initial conditions and the influence of the stratification, which would include an 

extra buoyancy term, which modifies the evolution of both, the turbulence kinetic 

energy and the domain scales. 

The role of coriolis induced inertial waves, as well as the buoyancy induced 

internal waves, are expected to influence most the inertial decay phase of the flow. So in 

order to modify global parameters as the mixing efficiency, the control of the inertial 

conditions seems much more important than the previous thought (Turner 1973). 

The energy spectrum for two-dimensional N-point vortex systems is also 

estimated. The system in an infinite plane is considered. We focus our attention on the 

energy spectrum of the system “in equilibrium” in the grid oscillating experiments and 

“in a transient state” in the stratified decay of turbulence at a sharp density interface. For 

like-sign point vortex systems in a plane determined by the PIV system, we have 

succeeded in deriving a scaling law of the energy spectrum   pkkE ~  for the 

intermediate k  regime, via the 2-point correlation function  rR2 . However, the 
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applicability of the derived scaling law is limited by the validity of the asymptotic 

expansion used. By a direct numerical simulation, we have obtained (Liechtenstein et al 

2006, Redondo et al. 2009) various powers 19.311.2 p  for transient states. With the 

quasi-equilibrium state hypothesis we find that the energy spectrum in the intermediate 

regime does not obey a power law. It is concluded that for point vortex systems in a 

plane, the scaling law of the energy spectrum in equilibrium and in the transient state 

depends on the system parameters, and does not seem universal. 

The stated features are seen in the simple non-rotating uniform experiments, and 

further work will investigate multifractal and scaling behaviour of the vortices in 

stratified flows with and without rotation as well as implementing more realistic 

boundary conditions in the experiments. 

There is a relationship between the length scales l as the integral length of the 

turbulence at the stirred side of the tank or its thickness and the local Ri  and the vertical 

extent of the interface  I as: 

 

2
3

RilcI       (9.4) 

 

with c  being a constant of order unity (Redondo 1987). 

Even when there is no rotation, the collapse of turbulence due to buoyancy forces 

generates horizontal vortices (for more information see Hopfinger and van Heijst 1993 

and Fernando 1991) for discussions on rotating and stratified flows. We present results 

on experiments where stirring in a stratified fluid takes place non-uniformly and 

vortices are formed as a result of a transfer of horizontal to vertical vorticity. 

The eddy diffusivities in geophysical flows exhibit a large variation and show a 

marked anisotropy, not only horizontal values are much larger than vertical ones but 

there is a strong dependence on the spatial extent of the tracer dye or pollutant and at 

larger scales the topology of the basic flow is very important. 

Those features are seen in the simple non-rotating uniform experiments, and 

further work will investigate multifractal and scaling behaviour of the vortices in 

stratified flows with and without rotation as well as to implement more realistic 

boundary conditions in the experiments like grid and jet stirring from the sides. 

A sequence of pliolite particles showing tracks after the horizontal traverse of the 

grid across the sharp density interface is seen in figure 9.1. Several parameters may be 
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calculated, such as the turbulent energy dissipation  , that also depends on the length 

scale, introducing the notion of intermittency  , as it varies from approximately 0.2 to 

0.7, even in different homogeneous and stationary experiments. The new energy spectra 

 kE , needs a correction term in its power of 35: k  becomes 935  , thus, the 

global form of the spectra is   pkkE ~ . An interesting approach, relating the Fractal 

dimension, the intermittency and the spectral exponent is to find relationships that may 

be used to parameterise the sub-grid turbulence in terms of generalized diffusivities that 

take into account the topology and the self-similarity of the mixing and dispersive 

flows. Relationships between the diffusivity, the spectral exponent p, the intermittency 

 , and  qD , may be found for the volume fraction or the concentration, at the same 

time other locally measured parameters such as the Enstrophy or the gradient alignment 

as well as their multi-fractal structures seem to be physically relevant indicators of the 

local turbulence and the mixing. 

The structure of non-homogeneous turbulence affected by stratification and 

rotation is investigated both by means of laboratory and numerical experiments. The 

experiments are used to quantify the different types of dominant instability and the 

topological aspects of the turbulent cascades detected both horizontally and vertically. 

Grid turbulence in a rotating stratified two layer system is measured with PIV and sonic 

anemometry. Observations of the horizontal velocity energy spectra as well as structure 

functions are used to estimate local intermittency and tracer dispersion. Numerical 

experiments using both Direct Numerical Simulations (DNS) and Kinematic 

Simulations (KS) are used to interpret some results in the context of a generalised 

Richardson’s Law affected both by intermittency and by coherent structures (see figure 

9.3), which in the experiments scale with the Rossby deformation Radius. 
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Figure 9.3: Comparison of a KS and a DNS with similar spectra (Castilla et al. 2007) 

 

The decay and interaction of grid wakes affected by stratification (and rotation) 

generates a combination of eddies and straining regions that grow in time and with 

distance from the turbulence source, but a change in decay law is observed when 

internal (or inertial) waves set in at 43Nt  which reach maximum complexity and 

local mixing efficiency before the front reaches the end walls. There are much possible 

instability that may modify the cascade process and the energy redistribution among 

different eddy sizes. Normally both inverse and direct energy and enstrophy cascades 

take place at the same time, with a dominant inverse cascade in 2D flows. Both cases 

are studied analyzing mixedness, as well as the third order structure functions, that 

indicate strong inverse cascades towards the large scales producing spectral variations. 

The mixing processes are compared by mapping the different intermittency and the 

multifractal scaling in the vortex and tendril arrays. 

New interest has emerged concerning the scaling properties of non-homogeneous 

turbulence flows and their relation to mixing and dispersion. They are reflected in the 

scale invariance of Navier-Stokes equations, both in two dimensions (2D) and three 

dimensions (3D).The statistical behaviour of two-dimensional and three-dimensional 

fully developed turbulence has been intensively investigated in the homogeneous cases. 

A common way to approach the study of energy scale to scale transfer is through the 

velocity structure functions. Usually studies the scaling properties of moments of 

velocity differences at the scale r, if  rL , where the L  is the integral scale,   is the 

dissipative (Kolmogorov K41) scale, with the dissipation calculated in the usual way. 
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Figure 9.4: Particle tracking revealing the structure of the flow 

 

In general, one can define the scaling exponents of the structure functions in the 

inertial range as seen above, that predicts that the statistical properties of the velocity 

depend only on   and the local scale, it then follows by dimensional analysis that the 

scaling exponents are linear 3qq  , but in many experimental and numerical 

simulation at very high Re , has show that Kolmogorov scaling is violated and that the 

scaling exponents are nonlinear function of q. From a practical point of view, the 

inertial range is defined by the range of scales where the third-order structure function 

follows the K41 law, It is precisely in this region where a fractal behaviour or either the 

velocity or of any adverted scalar should be detected clearly. 

 

 

Figure 9.5: (left) Energy spectra of the simulations. (right) Particle tracer 

separation in time showed as the slope of the Richardson time exponent. ( 

Castilla and Babiano 2007) 
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9.4. Topology of the Vortex Interaction 

 

When the Reynolds number is larger, the inertial range is broader but for the low 

to moderate Reynolds numbers accessible to direct numerical resolution, this range is 

often very narrow. In these cases we may apply The Extended Self- Similarity ESS as a 

property of velocity structure functions in turbulence (Benzi et al. (1992, 1995) and 

Mahjoub et al 1989). It states that when the moments are plotted against another, then 

the scaling is much more pronounced. In the other words, the ratio of two scaling 

exponents stays constant for a wider range of scales than each of them does when taken 

separately. The ESS scaling comprises not only the inertial range, but also reaches as far 

down as few Kolmogorov scales, so we may compute the scaling exponents with much 

higher accuracy even at relatively moderate Reynolds numbers. It is important to 

compute higher order moments of the flow velocity because spectra do not reflect 

structure. Figure 9.6 shows vorticity and shear 2D turbulence maps obtained by KS and 

DNS, and have similar spectra shown in figure 9.5 (left) and although the structures 

have similar sizes they are very different. It can be numerically shown that the spectral 

slope strongly affects Richardson’s dispersion Law (Richardson (1926) and Castilla et 

al. (2009)). 

 

 

Figure 9.6: Different topological structures that characterize dispersion (left to 

right) Quadripole structure, Wave-Vortex interaction, Isolated Eddy. And 

Dipolar shear front. (See Appendix 3) 

 

Another important feature of ESS is that it provides information in terms of the 

relative scaling exponents, which are more universal in that they remain valid also in a 

2D case. But this kind of scaling universality often disappears if the flow is non-

homogeneous, The scaling exponents of up to 6th order are calculated, details on the 

procedure is shown for different experiments in Mahjoub et al.(1998). In this case, for 

vertical flows under non-homogeneous conditions, we are able to obtain a better 
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quantification of the intermittency using ESS in a 2D section of the flow. The 

relationship between intermittency and the fractal dimension of the structures is 

obtained using the sixth order structure function using:   632  i  even if 13  , in 

a similar way, the fourth order structure function may also be used ( 432   ). The 

Anomalous dispersion detected in figure 9.5 (right) numerically is often associated to 

coherent structures as those particle tracking in figure 9.6. Fractal measurements of the 

vorticity and scalar tracers can also be used to map intermittency in a simpler way and 

also relate these spectral measures to the maximum fractal dimension as shown in 

chapter 5. 
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9.5. Models of Vortex Evolution 

 

If we use a diffusion-reaction equation with two terms indicating the diffusion of 

the number of vortices and theirs destruction due to merging, annihilation as other 

causes related to internal or inertial wave interaction as: 
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with  Re  a vortex diffusivity and  oRRic ,  as term indicating the “catalytic” effect 

of body forces on vortex-vortex merging. It is easy to see that we may apply this 

equation to either isolated vortices or to vortex dipoles at point zero circulation  . For a 

single vortex, even a point one.   May be expressed as  2r  (Baumert 2009) 

with r  the size and   the vorticity. A special family of vortices which comply with 

222 ru   are called vorticons so that their energy is finite and
r

u
 . With three 

conditions we can define the total energy k  and enstrophy 2  as: 
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and 
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The average or effective radius R  is defined as: 
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It is interesting to introduce the Van Karman constant 



2

1
  relating vortices 

  and angular period or turn over time T  as 
T2

1


   and then the dissipation can be 

estimated as 
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If we use a mean free path for the vortex motion:  , and a time between vortex 

mergers or destruction, z , then the vortex eddy diffusivity us 



 
 2
  with 

u
   

and the speed is ku 2 . 

We now assume that the mean free path of the vortices before interacting is 

proportional to their radius initially but will also depend on the Brunt – Väisälä 

frequency (as the Richardson number) as time evolves and   is larger as oN  decreases 

as  tNo  as shown in § 7.4 then  R  so: 
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The number of vortices will evolve in time but will both help to converse energy 

and vorticity so 
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if  oRRic ,  is constant both for energy and vorticity (i.e. no interaction between waves 

and vortices), then 
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and 
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with solutions   1 ttk . This is not realistic because we have seen that 
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even in an homogenous flow so at least it is necessary to keep both kinetic energy 

diffusion and vorticity/enstrophy diffusion. This effective diffusion, following Baumert 

(2009) will be considered to be the same for the energy k  and for enstrophy 2  so 

 

KTk         (9.15) 

 

leading to a set of equations similar to the k  model of Wilcox (et al. 2006) 
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being s  the local shear 
k

jiuu

dx

du
s



''

  for oN , k  and   the above equations lead to 

power laws which would have a complex spatial dependence on the flow topology 

 yxs . ,  yx,  and also on the levels of buoyancy ( Ri ) and on Rotation ( oR ). It is 

clear that an inverse cascade exists as the energy decay and the vortex length scales 

increase as both the energy and the vorticity decrease. 

Comparing the simple quadratic homogenous model: 
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with 
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described in Matulka et al. (2008) and above, having used that 
L

k 2
3
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Using variable separation and integrating 
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We may model in a simple way the effect of internal waves on the vortex and 

energy decay. Probably function  tRRic o ,,'  will have a non-linear dependence in time, 

especially after 5Nt , when grid turbulence begins to collapse (Fraunie et al. 2008). 

But let as consider two cases: 

 

a) indicating that the decay increase in time due only to internal waves 
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and 

 

b) indicating that internal waves dye out and stop affecting energy 
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case a) leads to 
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while assumption b) leads to 
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Both of these functions fit the strong decay of the number of vortices presented in 

chapter 7, but care is needed with the values of the initial energy and a virtual time to 

avoid the singularities when the denominator is zero. 

The behaviour of the number of vortices can be modelled using an Onsager type 

(Onsager 1949, Redondo 2003) equation such as 
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If we use the wave equation on the vortex number assuming a strong interaction 

between the point-like vortices and the internal waves moving along the density 

interface as 
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we can solve a non-linear damped oscillation type of equation such as 
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where  
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The above equation solution will depend on the relative values of   and o . We 

will discuss some of the possible types of solution using an analogy with a damped 

oscillation with a variable natural frequency  tNo oo 2 . The three basic types of 

solution are: 

 

a) If  tNc o2  there will be a critical experiential decay such that 

 

   
   

 1

2
1

2,,














tetNtN
t

tNVtRRic

oo

ooo

    (9.29) 

 

b) When   2tNo o  then a damped oscillation could occur providing the oscillation 

takes place around the average number of vortices  tNo  such that 
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This type of solution is sketched in figure 9.7. 

 



 235

 

Figure 9.7: Possible type of oscillatory decaying solution for the number of vortices 

 

In the final stages of the decay when  tNo  is very low, t then the only possible 

solution is a strong exponential decay. 

 

c) When   2tNo o  the solution is 
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with b  dependent on initial conditions. 

It is also interesting to investigate the separate behaviour of the larger and smaller 

vortices within the decaying flow. If we consider only the interval where the total 

number of vortices is very large and we denote  tN1  the t  large vortices and  tN 2  the 

smaller vortices we have      tNtNtNo 21   and assuming that vortex viscosity is 

small then 
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we can again consider a W.K.B. type of approximation, like assuming oo Nc2  in the 

oscillating case and use a generalised Volterra-Lotke equation (Volterra et al. 1931) 

given by Kolmogorov (et al. 1936) as 
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where  211 , NNK  and  212 , NNK  are empirical functions based on the topological 

interactions between large and small vortices which are modulated or coupled in a non-

local fashion by the internal wave field. More detailed observation and analysis is 

needed on the taxonomy of the different vortex-wave interaction, a possible solution is 

sketched in figure 9.8, with different coefficients indicating that vortices of different 

sizes merge in very different ways, for example if a big vortex interacts with several 

small closeby vortices much more enegetically (i.e. faster) than a small vortex with 

several large vortices. It seems from the detail analysis of the experimental evolutions of 

the stratified non rotating flows of chapter 7 (as well as in the rotating stratified 

experiments) that it is easier for a large vortex to absorb a small one that the other way 

round. Just like in the bio-taxonomical interactions where “A big fish eats the smaller 

ones”. 

 

 

Figure 9.8: Oscillations in the numbers of big and small vortices as they follow a general oscillatory 

decay in a stratified and/or rotating flow. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 10 

Conclusions 



 237

10.1. General Conclusions 

 

Laboratory experiments on mixing in a rotating stratified fluid are essential for the 

development of computer models of geophysical phenomena, because, if better 

predictions are to be made, the distributions of potential and kinetic energy have to be 

correctly assessed for each process under study. Oceanic and atmospheric flows due to 

their high Reynolds numbers, may be considered as turbulent motions under the 

constraints of geometry, stratification and rotation. At large scales these flows tend to be 

along isopycnal surfaces due to the combined effects of the very low aspect ratio of the 

flows (the motion is mostly confined to thin layers of fluid) and the existence of stable 

density stratification. The effect of the Earth's rotation is to reduce the vertical shear in 

these almost planar flows. The combined effects of these constraints produces 

approximately two-dimensional turbulent flows termed also as geophysical turbulence. 

In a strictly two-dimensional flow with weak dissipation, energy input at a given 

scale is transferred to larger scales, because these constraints stop vortex lines being 

stretched or twisted. Physically this upscale energy transfer occurs by merging of 

vortices and leads to the production of coherent structures in the flow that contain most 

of the energy. This process seems to lead to the appearance of order from chaos. This 

scenario is an attractive model for geophysical flows which are known to contain very 

energetic vortices; these are often the source of helical instabilities that lead to tornados 

and hurricanes. The mesoscale oceanic eddies and atmospheric highs and lows typical 

of the weather patterns show an accumulation of energy at the dominant length scale 

given by their equilibrium Rossby deformation Radius. This scale marks where and 

when the rotation induced Coriolis forces are in equilibrium with the effect of 

buoyancy. The upscale transfer of energy is inhibited at the Rossby deformation scale 

by baroclynic instability at larger scales, which accounts for the dominant observed size 

of geophysical vortices. Different regions of the parameter space based on the local 

versions of the Reynolds number, the Richardson number and the Rossby number are 

used to compare both laboratory observations and field data. 

The main goal of the presented work was to show the differences in topology due 

to buoyancy (and also to rotation) in the structure of complex realistic flows in the 

laboratory and in the environment  such as those presented in chapter 8 detected by 

SAR satellite images in the ocean. The experimental results and the theory presented 
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about 2D turbulence needs to be modified because we shoe clearly that the experiments 

in chapter 7 do not agree with “pure” 2D flows. Different new theories are as discussed 

in chapter 9. We detect also clear differences between the decay process in stratified 

fluids and rotating fluids. 

In a rotating fluid the frequency 2  and in a stratified fluids the buoyancy 

frequency N , play analogous roles. Both can be shown by a crude argument to be the 

angular frequency with which a displaced particle oscillates; and both are the upper 

limit of the angular frequency range for which waves can occur. The relationship 

between the role of the Rossby number in a rotating fluid and that of the Froude number 

in a stratified fluid is known if we write the latter in the form (Froude number, which is 

defined in chapter 2) 

 

LNUFr   

 

When both stratification and rotation are present, their relative importance is 

indicated by the parameter 

 

12 NS  

 

A value of S around 1 indicates that stratification and rotation have comparable 

influences; when S is small, one is dealing with a rotating flow modified by 

stratification, and when S is large it is the other way round. 

It is very interesting that the spectral measurements in both stratified and rotating 

flows are close to the 3D value p= 5/3 but as either stratification or rotation dominates, 

then in both cases the flow becomes more non-local, in the sense that the flow in a plane 

horizontal flow becomes more and more dominated by either “blini” or “pancake” 

shapes in the case of stratification and ¨columnar vortices¨ in the case of strong rotation. 

We show in figures 10.1, 10.2 and 10.3 numerical results of the evolution of a 

decaying stratified and rotating flow as a function of the parameter described above   

results from the thesis of Liechenstein (2006) and Cambon et al. (2004). 
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Fig. 10.1: final structure of the decay of a rotating-stratified flow in a box for 

different values of  . 

 

 
Fig. 10.2: Evolution of the structure of the decay of a stratified flow for 

different values of  . 

 

Figures 10.2 and 10.3 show the evolution of the integral length scales in vertical 

and horizontal planes and the structure of the flow for different non-dimensional times. 
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Fig. 10.3: final structure of the decay of a rotating-stratified flow for different 

values of  . 

 

We have also seen in the experiments made without rotation the dramatic effect 

that a strong density interface has both on vertical and horizontal mixing. The effect of 

density interfaces also tends to spread further the non-homogeneous lateral mixing akin 

to that taking place near the coastline. An intrusion spreading along the initially sharp 

interface generates strong vertical vorticity. Matulka (2003) 

The evolution of such non-homogeneous mixing has been discussed in Redondo et 

al. (1995). Even when there is an overall large scale coastal type of current as in the 

experiments of Carrillo et al. (2001), the front grows in time as shown in chapter 7 and 

in appendix 6 and may even destroy the overall large scale circulation creating a new 

pattern of eddies of multiple sizes. 

Several methods of deriving eddy diffusivity maps from image information should 

give more realistic estimates of the spatial/temporal non-homogeneities (and 

intermittencies in the Kolmogorov 62 sense obtained as spatial correlations of the 

turbulent dissipation, or from structure functions) and these values may be used to 

parameterize either sea surface turbulence or atmospheric turbulence at a variety of 

scales. It is possible that different fractal dimensions may be due to different levels of 

intermittency (and thus different spectra, which are not necessarily inertial nor in 

equilibrium). These techniques of visual evolution of the structure functions of velocity 



 241

differences and of fractal dimension evaluation, are helpful in providing more realistic 

estimates of spatial and temporal variations of the horizontal dispersion in the 

environment; which reflect the influence of spectral energy distribution on local 

diffusivity in terms of a Generalized Richardson’s Law. 

A complex Parameter Space using Ri , Ro , Re  may be used to fit experimental 

and numerical observations on the Structure (and Topology) of the Stratified Rotating 

Flows (Matulka et al. 2009). The Spectra change appreciable with slopes from 1.1 to 4, 

but relevant to dispersion, not only the Spectral slope is important (Generalized 

Richardson’s Law) but the initial topology of the initial release (in Elliptical, Vortex 

core or Hyperbolic Regions dominated by shear). Using fractal geometry as well, we 

can establish now a theoretical baseline pattern for the turbulence behavior that is 

reflected in the different descriptors (volume fraction, velocity and vorticity  we can 

thus obtain a certain classification relating D3 and the sum (integral) of the different 

fractal dimensions D2 for different levels of scalar (volume fraction intensity or 

temperature). Vorticity evolution is smooth and quite different than that of volume 

fraction or density. The correlation between the local Ri and the fractal dimension 

detected from volume fraction, energy or entropy is good. Using multi-fractal geometry 

we can also establish certain regions of higher local activity used to establish the 

geometry of the turbulence mixing. 

In figure 10.4 we plot in a log-log parameter space of  RiRo ,1  some of the 

experiments performed at the Trondheim Rotating table, the size of the cross is 

proportional to the measured Rossby deformation Radius. 
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Figure 10.4: Parameter map of the experiments done in the Trondheim 

Rotating Table. The crosses are proportional to the Rossby Deformation 

Radius, when  1RiRo  than buoyancy and Coriolis forces are in 

equilibrium. 

 

To incorporate most of the previous experiments performed in sheared and zero-

mean flow turbulence Redondo (1990) and Redondo (2004), we plot in a 3D parameter 

space the different regions with their most common instabilities (figure 10.5). For 

different Reynolds numbers the diagonal of the Richardson and inverse Rossby number 

indicates when stratification and rotation are in equilibrium. This has been seen in small 

scale experiments and the results of chapter 8 of large vortices in the ocean surface 

indicate that similar behavior could be extrapolated in the three dimensional plot 

towards largest Reynolds number, on the other hand the behavior on non-rotating 

mixing experiments shows an intermediate parameter range which is dominated by 

Holmboe type of instabilities, while for smaller Richardson number Kelvin Helmoltz 

billows dominate with a higher mixing efficiency. For very high Richardson number 

internal waves dominate the flow. There is a large unexplored region in this parameter 

space when both Richardson and Reynolds numbers are large but the Rossby number is 

small. 
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Figure 10.5: Three dimensional, complex parameter space of the appearance 

of the dominant instabilities that lead to mixing for rotating-stratified flows at 

different scales, the non-rotating parameter space (Re, Ri) is described in 

Fraunie et al. (2008). 

 

A taxonomy of changes in the equilibrium (or not) cascade may lead to more 

physically realistic (and understandable) models to parameterize the sub-grid scaling 

that has a important role be taken when interpreting the direct 3D Kolmogorov cascade 

and the Inverse 2D Kraichnan Cascade. 

The experiments, whose results are shown in chapter 7, are mostly non-rotating, 

the rotating experiments discussed in the publications and annexes and the observations 

of vortices and other features in the ocean surface have in common their non-

homogeneous and non steady behavior (decay) and we describe and highlight some of 

the experimental and theoretical results of this thesis and the conclusions in the several 

specific issues investigated. More information is available in annexes and in the 

published and submitted papers. 
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10.2. Conclusions on the vortex structure and evolution 

 

As described in chapter 7 and 9 the decay of vortices in a stratified media is quite 

different to that of a pure 2D flow. The decay of vorticity PDF’s and the oscillations in 

the area covered by either positive or negative vorticity show clearly that the frequency 

increases in time. Another important new observation is that the decay process is 

different for vortices with different levels of maximum vorticity. For very stratified 

flows identified by their high Richardson number, the decrease in peak vorticity 

decreases much faster than in the non stratified flows. 

By comparing both the evolution of the vorticity and enstrophy PDF’s in time, we 

have noticed that the period of the oscillations caused by buoyancy increases in time as 

it also exhibits decay. This decay has been shown to be much more complex in flows 

affected by body forces than in pure, theoretical 2D flows. It has been observed, and 

validated recently by Lacasce (2008) that the number of vortices and their areas are 

related, but that the conditions depends strongly on the type of dissipation in the vortex 

number equation. The vorticity decay, in a similar way as the energy decay has a 

modified KWB type of damped oscillator equation. 

We derive two types of simple models, to predict the vorticity decay and the 

observed oscillations, both agree with certain aspects of the experimental observations. 

Depending on the role of the decay constant that depends strongly on the body forces, 

and the particularity of the internal frequency for stratified flows (or on the inertial 

frequency for rotating flows), the behaviour of the decay may be either over damped, 

critical or under damped, oscillating flow. There are clear instances of resonances 

between the inertial frequency and the oscillating behaviour observed. 

The dominant power law decay in time is quadratic, but the initial conditions, and 

in particular the initial kinetic energy reinforces a linear term. 
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Figure 10.6: Relationship between non-dimensional number of vortices and 

time. 

 

The decay of vortices in stratified turbulence is much complex than previously 

thought because although greater stratifications produce a quasi 2D behaviour, the 

reduction in buoyancy produces a topologically very different decay process, which is 

much more three dimensional. This can be seen in figures 10.6 and 10.7, where in 

general the highest decay rates correspond to the least stratified situations. The 

relationship agrees with a power low, and not with an exponential decay as seen in the 

lack of fit of the exponential curve for 76.7Rig . 
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Figure 10.7: Power decay exponents versus gradient Richardson number. 

 

Figure 10.7 shows the complex behaviour of the interaction between vortex decay 

and buoyancy. The possible minimum at intermediate numbers would be consistent with 

a maximum in mixing efficiency at intermediate Richardson number, the value at 

100Rig  just indicates the theoretical value for a pure 2D decay flow. The role of the 

rotation in the stratified rotating situation would also produce a complex reduction in 

the decay rate indicating the non linear effect of coupled internal and inertial waves. 
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10.3. Conclusions on the Kinetic Energy decay 

 

We have shown the important role of the initial conditions on the decay of even 

pure 2D flows; more so, the effects of buoyancy and rotation modify the simple 

quadratic decay law. We also show the oscillations due to the exchange between kinetic 

and potential energy, this has profound influence on the mixing efficiency of these 

flows as discussed in appendix 6. 

As with the vorticity behaviour, the dominant decay term is quadratic, but the 

linear decay may be important, by comparing two different sets of experiments at 

different Reynolds numbers, we show that for medium-low Re the type of behaviour is 

the same. 

The role of the initial kinetic energy has been shown to be much more important 

than previously thought. 

This also affects the conversion of kinetic to potential energy and controls mixing 

efficiency, thus finding a possible explanation to the long memory exhibited in some 

mixing flows (Gonzalez-Nieto et al. 2008). The discussion on mixing efficiency of 

appendix 6 also leads the way to confirm the higher mixing efficiencies, probably due to 

parameter resonances, of intermediate Richardson numbers, see also 10.5. 
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Figure 10.8: Horizontal Energy decay in a stratified interface turbulent decay 

experiment for low Reynolds number experiments (Peco 2009). 
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In section 9.3 we use simple energy decay model to interpret the experimental 

research such as those in figures 10.8 and 10.9. 

We have used two different homogenous models such as: 

 

  0,, 2'  ktRoRic
dt

dk
  and    0,, 2

3
 ktRoRic

dt

dk
 

 

described in chapter 9. 

Modelling in a simple way the effect of internal and inertial waves on the energy 

decay with a non-linear dependence in time of the wave-vortex interaction, especially 

after 5Nt , when grid turbulence begins to collapse (Fraunie et al. 2008). The type of 

solution depends on the time dependence of the coefficients 'c  and c  such as: 
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depending on the assumption on time dependence of coefficients 'c  and c . 

In figure 10.8 we see that for the least stratified case we have almost an 

exponential decay while for intermediate and strong stratification the presence of 

oscillations is detected in a similar way as for vorticity oscillation. These experiments 

were performed by Peco (2009) in a small size version on the experiments described in 

chapter 7. The larger Reynolds number experiments show similar behaviour in figure 

10.9 with the oscillatory behaviour corresponding to the largest Richardson number 

experiments. We confirmed also the importance of the initial conditions and the 

complex relationship between kinetic energy, vorticity and mixing efficiency (see 

appendix 6). 

 



 249

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90 100

time

K
in

et
ic

 E
n

er
g

y

2a

2c

2e

 
Figure 10.9: Horizontal Energy decay in a stratified interface turbulent decay 

experiment for high Reynolds number experiments. 
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10.4. Conclusions on the Number of Vortices and their interactions 

 

The results of Chapter 7 and the theoretical derivations in chapter 9 show clearly a 

oscillatory behaviour of the number of vortices in selected parameter ranges. It is also 

possible to trace the behaviour of vortices of different level of enstrophy and in many 

cases a non-local behaviour is detected, in the sense that the topology of vortex 

interactions is very wide. To name a few; these possibilities occur: 

a) Rupture of a vortex in two 

b) Merge of two vortices in a single one 

c) Rupture of a vortex dipole in four vortices 

d) Merge of two vortex dipoles into a larger one 

e) Sudden break of a large vortex into many smaller ones 

f) Merge of several small vortices in a complex large vortex 

g) Interaction of a single  vortex and a internal wave 

h) Interaction of several vortices and several internal waves 

 

The measurements of the decay rate of the vortex number in time has been very 

revealing, and the relationship between the exponent of decay χ with the exponent of 

area increase  . 

The vortex number oN  term describes the statistical properties of the vortex 

population. The time evolution of the vortex number is assumed to have a power law 

form as    












o
ooo t

t
tNtN  and the area corresponding to the vortices will have like 

   












o
omm t

t
tAtA  where oN  is the vortex number, mA  is area occupied by the 

vortices,   is a certain exponent of the vortex decay and   is the time increase in 

vortex area. The relationship between   and   has been explained in chapter nine, so 

that in a pure 2D flow it only depends on the type of vortex dissipation as described by 

Lacasce (2008). In figure 10.10 we compare the stratified experimental decay of the 

stratified experiments with the different types of dissipation. This confirms the complex 

non-linear interaction between the vorticity, the area and the mixing efficiency. 
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Figure 10.10: Relationship between the vortex decay rate and the vortex area 

decrease. The open symbols correspond to the numerical simulation of 

Lacasce (2008) for different types of dissipation (Spectral, Bilharmonic or 

Harmonic). The filled symbols correspond to vortices of high and low 

vorticity and the total number of vortices which were discussed in figure 

10.7. 
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10.5. Conclusions on Mixing in Stratified Flows 

 

There is strong asymmetry in the distribution of the vortices sizes as shown in 

Matulka (2003) which were caused by the interaction of a mixing front and a coastal 

current. Those features are seen in the non-rotating decay experiments in Chapter 7 at 

the passage of a vertical bar grid that moves horizontally, in these experiments the non-

homogeneity can be related to the non-homogeneity relating the distance from the grid 

to the time times the grid velocity. These experiments agree with the previous 

observations showing an increase in vortex size as the grid wake grows. The effect of 

buoyancy is twofold, first it produces a collapse in the turbulence and further work is in 

progress to implement more realistic boundary conditions in the experiments. 

We can see that after totally mixing the two initial layers the flow becomes fully 

3D and then the results are very different of the theoretical 2D predictions. Only for 

surface flows, where an equivalent Richardson number at the density difference 

between air and water of several thousand, the coefficients of vortex decay, and area 

increase give values of 2/3 and 1/3. Mixing efficiency is maximum for intermediate 

Richardson numbers. This effect is possibly due to wave-vortex resonances of the type 

described by Cano et al. 2008. 
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10.6. Conclusions on Satellite observation of the environment 

 

The use of routine satellite information by SAR or other sensor types may be of 

great interest to build a seasonal database of the dynamic conditions of the mesoscale 

turbulence in the ocean, after several years of observations the dominant patterns and 

the causes for different topological characterizations might be understood better. In the 

simplified conditions described above the maximum size of stable vortices can be 

characterized directly by the Rossby deformation radio RD depending on the square 

root on the depth on the local thermocline h. There is self-similar scaling at a very large 

range of scales and a linear dependence between the RD and the frequency of Brunt-

Väisälä in the condition of a fixed h , this may be used to forecast and to check from 

satellite routine observations many of the dynamic characteristics of a certain area. The 

strong vertical stratification of the surface water aids the development of the largest 

vortices. As the frequency N strongly depends on the seasonal thermal balance, the 

wave mixing activity and other local bathymetry induced processes that affect the water 

column, the range and spatial distribution of detected vortices is very useful in the 

predictive behavior of a marine zone. In such a manner, more sophisticated data 

analysis such as the evaluation of integral length scales or local fractal dimensions of 

the sea surface appearance, together with the detailed information of the position and 

sizes of the mesoscale dominant eddies of size about DR  provides useful information on 

the mesoscale ocean turbulence. 

A large collection of more than 900 SAR images obtained from three European 

coastal areas (Baltic Sea, North Sea and NW Mediterranean) by the ERS-1 and ERS-2 

were analyzed and compared with other Satellite images. The research was done in the 

frame work of the CLEAN SEAS European Union project and more information is 

available in Platonov et al (2008) 

The use of routine satellite information by SAR or other sensor types may be of 

great interest to build a seasonal database of the dynamic conditions of the mesoscale 

turbulence in the ocean, after several years of observations the dominant patterns and 

the causes for different topological characterizations might be understood. It is 

important to characterize the types and structure of the main vortices detected as well as 

the spectral cascade processes that take place, these may be investigated by using fractal 

methods on images of the area as well as with models of the turbulent cascade and field 
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measurements of diffusion. 

The different multifractal formalisms can be used to discriminate between 

different physical processes that, despite being similar, have different transport 

mechanisms for the different scales, or in time. From the comparison of the multifractal 

plots of the well defined SAR detected vortices with those of convective cells, vortices 

show a maximum complexity for the low reflectivity values, while convection, probably 

because the basic instability happens everywhere at the same time, exhibits almost the 

same fractal dimension for a wide range of intermediate SAR reflectivity. The analysis 

of recent versus more convoluted oil spills is also interesting both in the formalisms 

presented for the fractal measures, which on the long run, they tend to be those of the 

turbulent environment, and initially for low SAR reflectivity the generalized dimensions 

are low but in time they increase to a limit of 1.5–1.6. 
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10.7. Further Work 

 

Further comparison and analysis of the effects of stratification and rotation are 

possible, and to extend the experiments in the parameter space (Ri, Ro, Re) seems very 

important. In order to fill the parameter space a new set of experiments in a larger 

rotating table should be done (Coriolis platform in Grenoble of 13 m in diameter). The 

study of the different topological regions, following the Okubo-Weiss parameter and 

distinguishing the energy, enstrophy and palinstrophy in shear dominated regions 

(hyperbolic) and vertical (elliptical) regions would also be important to describe the 

effect of buoyancy and rotation on the flow structure. In the same way future work 

should include the study of the structure functions of several orders. It has been 

speculated Tabeling (2002) that many different conservation laws of weaker effect are 

present for higher order velocity (energy) and vorticity (enstrophy), but probably the 

role of internal waves of frequency N and inertial waves of frequency f=2Ω, would 

affect different order structures in a different way. Fractal analysis would be also useful 

in the study of the different spatial fillingness of different q values. It would be 

interesting to perform the same vortex number analysis for the rotating stratified 

experiments. The fractal tool used in SAR ocean images may also be used in the 

laboratory experiments (Matulka et al. 2009). In the same way intermittency and higher 

order structure function of the velocity and vorticity flows should be investigates as a 

function of Richardson and Rossby numbers. 
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APPENDIX 1 

Basic Review of Remote Sensing 
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A1.1. The digital processing of the satellite images 

 

We can define remote sensing as technique that allows us to retrieve the 

information about objects situated at the Earth’s surface from a distance. In order to 

make remote observation possible there has to be some kind of interaction between the 

object and a sensor. The principal elements from any system of remote sensing are 

sensor, observed object and energy flow (reflection, emission or emission-reflection) 

that permit to put both in the relation. Remote sensing techniques constitute one 

instrument to obtain atmospheric and meteorological variables which are based on a 

satellite image analysis. 
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A1.1.1. Satellite type 

 

For obtaining the atmospheric and meteorological relevant variables from remote 

sensing, meteorological satellites are used. A meteorological satellite is one space 

platform of remote sensing, that carries on board four collections of highly sensible 

instruments. These satellites are equipped with a sensor which retrieved reflected 

(visual) and emitted (infrared) radiation from the electromagnetic spectrum. 

Regarding the satellite type, there exist in general: the geostationary satellites and 

the synchronous satellites. The geostationary satellites normally provide, in accordance 

with the satellite type used, the information in three bands, one in the visible (VIS), one 

in the mid infrared and one in the thermal infrared (IR). They have in general low space 

resolution (5 km) and high temporal resolution (one image, every 30 min.). Besides 

owing to their large distance from the Earth, one geostationary satellite can provide 

images from most of Earth’s disk (both hemispheres). For this reason they are mainly 

directed to the research of large scale and planetary phenomena. Rossby Waves, 

Weather fronts, Stream Jets, etc. 

The Meteosat satellite is one of the geostationary satellite series controlled by the 

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). 

The first Meteosat was launched on November of 1977, and the last one on September 

of 1997 as a satellite to be called Meteosat 7. The Meteosat system is able to take the 

images every half an hour which is a good temporal resolution for the monitoring of the 

meteorological phenomena, as for example the distribution and deviation of clouds. Is 

possible to obtain three images each one designated in visible (VIS), thermal infrared 

(IR) and water vapour infrared (VA) corresponds to three sensors that are on board of 

the satellite. Every sensor collects the electromagnetic radiation in the rank of the 

wavelength different for each one, which permits to interpret images in the function of 

various characteristics of the observed objects. Their space resolution range is from 2.5 

km in visible to 5 km in infrared. The function of Meteosat is to collect the information 

for to deduce the sea surface temperature, direction of the motion clouds, temperature 

and the maxim altitude of clouds, the top atmosphere humidity. 

The Meteosat Second Generation (MSG) is the most advanced satellite from the 

group of Meteosat and was launched on August of 2002. The MSG space resolution is 

from 1 km in visible spectrum and obtain images every 15 min, and in the thermal 

infrared to 3 km. Its observation system has 12 channels (not like Meteosat which has 
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only three) and is available to obtain information about winds, surface temperatures and 

atmospheric humidity. 

Contribute the Geostationary Earth Radiation Budget (GERB) instrument which 

observes the balance between the solar radiations which come to the Earth and is 

reflected by her to the space. 

Nowadays EUMETSAT is considering thinking about the Meteosat Third 

Generation (MTG), which will be launched between years 2015-2025. The MTG will 

have five different observation missions at the Earth: The High Resolution Fast Imagery 

(HRFI), The Full Disk High Spectral Resolution Imagery (FDHSI), The Lightning 

Imagery (LI), The Infrared Sounding (IRS) and The UV/Visible Sounding (UVS) and 

will have the temporal resolution to 5 min and space resolution to 0.5-1.0 km. 

The synchronous satellites provide the information in the major number of the 

bands. They have normally at least one band in visible and the other in the near, mid, 

thermal and far infrared. They have one high space resolution to 1 km (NOAA) and one 

low temporal resolution, between 6 hours (NOAA) to 16 days (LANDSAT). 

The Television Infra-Red Observation Satellite (TIROS), which is named as The 

National Oceanic and Atmospheric Administration (NOAA), is the North America’s 

polar orbit operated by NOAA. It also forms one part of the Polar Operational 

Environment Satellite program (POES) developed by the National Aeronautics and 

Space Administration (NASA) in the cooperation with the NOAA agency. The measure 

object of these satellites is the temperature and atmospheric humidity, the land surface 

temperature, the sea surface temperature, identify snow and ice. 

The other synchronous satellite is the Environmental Satellite (ENVISAT), a land 

surface observation satellite constructed by the European Space Agency (ESA) and 

launched on 1st of March 2002. The ENVISAT mission involves a major contribution 

for the ESA and is equipped with 10 instruments designed for retrieve data about the 

atmosphere, oceans, terrestrial areas and polar regions. The ENVISAT satellite is 

present at the synchronous orbit. It offers the global cover of the Earth with one period 

of 35 days, however for the majority of the instruments this period is only 2 or 3 days. 

The European Remote Sensing Satellites (ERS-1 and ERS-2) under the 

management of the ESA were constructed by the European industry. These satellites 

were launched in 1991 and 1995 respectively. They provide by one active microwave 

system that can retrieve data crossing the thick cloudy mass and during the night. One 

of the instruments measures the wind direction and speed over the oceans, the other 



 278

sensor, the altimeter can measure the waves altitude. In the ERS-2 is installed one 

passive traditional scanner A long-Track scanning Radiometer (ATSR) with seven 

canals in the visible range, near and thermal infrared. The ERS-2 is also equipped with 

the global cartography of the ozone layer. 

The Quick Scatterometer (QuikSCAT) operated by NASA was launched on 19 

June 1999. The QuikSCAT mission is used the radar that was designed to measure the 

wind velocity and direction over the ocean surface. This instrument helps to improve 

the knowledge about the mechanism of the climate change. 

In this way, studies about geostationary and synchronous satellites for extracting 

the information of the meteorological and atmospheric data as aerosols, CO2, NO2, 

ozone etc. were realized. In case of the geostationary satellites we have: Meteosat 

(Paronis et al., 1998; Hamanou et al., 1998; Dulac et al., 2001, Ourtirane et al., 2002). 

In case of the synchronous we have exclusively the NOAA (Dammann et al., 2002; 

Flores et al., 2002; Wang et al., 2002; Morales et al., 2002; Iino et al., 2004, Ginzburg et 

al., 2004). 
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A1.1.2. Sensor type 

 

There are many and various sensors available for the satellites, but actually, 

sensors with visible and no visible radiations that record the radiometric information 

digitally are used. More usual sensors are The Multi Spectral Scanner (MSS), The 

Advanced Very High Resolution Radiometer (AVHRR), The Visible Infrared Spin Scan 

Radiometer (VISSR), respectively they are installed at the satellites LANDSAT, 

NOAA, METEOSAT. The sensors in the accordance of the spectra region where they 

operate they can be qualifying like microwaves, visible and infrared sensors. 
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A1.1.2.1. Microwaves sensors 

 

Many microwaves sensors exist. Often used is the scatterometer in the high 

frequency of microwave. This radar is designed to measure the wind velocity and 

direction over the ocean surface. The impulse of the short pulse is transmitted and the 

power of the reflected echo from the surface at the variety of the incidence angle is 

measured. Principally answers to surface bumpy texture, but in the minor measure are 

influence by the foam and spray, which put the superior limit level of resolution at the 

high wind velocities. This instrument explores the row from 1800 km of wide and his 

space resolution is 25 km. These sensors were launched on board of the ERS-2 and 

QuikSCAT. 
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A1.1.2.2. Visible and Infrared sensors 

 

The remote perception of the ocean with visible and infrared sensors has the 

inheritance quite old. For example the NOAA satellite from 1978 uses the Advanced 

Very High Resolution Radiometer (AVHRR). Following, we have the visible and 

infrared sensors which are installed on board of satellites: 

 The AVHRR sensor launched on board of the NOAA satellite detects the 

radiation in the visible, near, mid and far infrared, with a very high resolution to 

1.1. km. (Dammann et al., 2002; Flores et al., 2002; Wang et al., 2002; Morales 

et al., 2002; Takeuchi et al., 2003; Iino et al., 2004, Ginzburg et al., 2004) 

 The Spinning Enhanced Visible and Infrared Imager (SEVIRI) provides the 

images in 12 channels (4 in visible and near infrared and 8 in thermal infrared) 

every 15 minutes (high temporal resolution). Has the space resolution of 3 km in 

infrared and 1 km in one of the visible band. The future program of Meteosat 

comes as the introduction of this new tool, for observe the ozone on board of the 

MSG satellite. The new channel of the SEVIRI in the wave longitude close to 

9.7 microns gives the opportunity to observe ozone without precedents in the 

time and in the space resolution, from the geostationary orbit. (Dash et al., 2003) 

 The European Meteosat satellite owns the visible and Infrared Spin Scan 

Radiometer (VISSR) sensor, which registers visible disk over the Earth every 30 

min, offered images in the visible spectrum and thermal infrared. This sensor 

offers the information about three spectrum bands: 0.4 to 1.1 m (visible), 5.7 to 

7.1 m (water vapour channel) and 10.5 to 12.5 m (thermal infrared). In the 

visible channel. The space resolution is 1.25 km and in the infrared and water 

vapour channel is 5 km. (Iino et al., 2004) 

 The Along Track Scanning Radiometer (ATSR), on board of two satellites ERS-

1 and ERS-2, and advanced ATSR system, on board of the ENVISAT, are two 

sensors with the middle resolution which provide the information in the visible, 

near and thermal infrared of the short wave. The thermal infrared channel is 

especially useful to conduct cartography of the sea surface temperature. The 

visible, near to infrared channels can be used for make global maps of the 

vegetation with the space resolution of 1 km. (Noyes et al., 2002) 
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 The Advanced Along Track Scanning Radiometer (AATSR) is one radiometer 

of high quality of images in the visible and thermal infrared, this which 

measures Sea Surface Temperature (SST). AATSR is the third sensor of the 

ATSR series on board of the ENVISAT satellite of the ESA. The objective of 

AATSR is study of the Land and Sea Surface Temperature and the climate 

investigation. 

 

Table A1.1. The Summary of the existing satellites with sensors, operators, objectives and 

operation period. 

Satellite Sensor Operator Objective Launch Date 

METEOSAT 
MSS 

VISSR 
ESA 

to collect the information from the sea 

surface, the direction of the clouds motion, 

the temperature and the maximum altitude 

of the clouds, humidity at the top 

troposphere 

November 1977 (first) 

October 1997 (last) 

MSG SEVIRI ESA 
winds, the land surface temperatures, 

atmospheric humidity 
August 2002 

MTG   ESA 

atmospheric vectors of motion at high 

altitudes, troposphere humidity at the 

middle and high levels, the Atlantic surface 

temperature 

2015 - 2025 

TRIOS-NOAA 

(series 14-17) 
AVHRR NOAA 

measurement of the temperature and 

atmospheric humidity, the Land Surface 

Temperature, the Sea Surface 

Temperature 

May 1994 (first) 

June 2002 (last) 

ENVISAT 

ATSR 

AATSR 

GOMOS 

MIPAS 

SCIAMACH 

MERIS 

ESA 

measurement of the concentration of 

greenhouse gases like ozone, CO2, N2O, 

NO2 etc. 

March 2002 

ERS-1/ERS-2 
ATSR 

Scatterometer 
ESA 

measurement of the wind direction and 

velocity over the ocean, cartography o f the 

ozone layer  

ERS-1 July 1999-2000 

ERS-2 April 1995 

QuikSCAT Scatterometer NASA 
measurement of the wind velocity and 

direction over the ocean surface 
June 1999 
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A1.1.3. Band type 

 

If we consider that the region of the electromagnetic spectrum in which we work, 

the satellites and sensors can be put into three categories: 

 techniques in visible and near infrared (embrace to the sensor that measure the 

intensity of the solar radiation reflected by the Earth in the interval of 0.4 to 2.5 

m) 

 techniques in thermal infrared (sensors that register the emitted radiance by the 

radiant system in the interval of 3-5 m and 8-14 m) 

 techniques in microwaves (measure the intensity and polarization of the 

centimetres waves, between 0.1 to 100 cm) 

 

Table A1.2: The electromagnetic spectrum with wavelengths. 

  Wavelength (m) 

Visible 0.38 - 0.78 µm 

Near Infrared 0.78 - 2.5 µm 

Mid Infrared 2.5 - 50 µm 

Thermal Infrared 50 - 1000 µm 

Microwave 0.1- 30 cm 

 

In case of the solar spectrum (visible) we have: Meteosat (Paronis et al., 1998; 

Hamanou et al., 1998; Dulac et al., 2001; Ourtirane et al., 2002), NOAA (Dammann et 

al., 2002; Flores et al., 2002; Takeuchi et al., 2003). In case of the infrared: Meteosat 

(Ourtirane et al., 2002; Noyes et al., 2002; Dash et al., 2003), NOAA (Göttsche et al., 

2002; Wang et al., 2002; Morales et al., 2002; Iino et al., 2004). In the bibliography we 

can not find too much the information about the techniques in microwaves: NOAA-10 

(Chedin et al., 2003). 
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A1.1.3.1. Techniques in the visible and near infrared 

 

a) Aerosols 

 

The aerosol term or particle, sometimes without distinction, is defined like 

dispersion of solid substance or liquids in the air. The properties of aerosols that affect 

more at the process of the atmospheric contamination are the particle size, the form and 

chemical composition. The particle size oscillate between 1 and 1000 micros, although 

there exist some different ones outside of theses limits. In the atmosphere, the particles 

of the lower size than 1 micro perform the movements to chance, producing collisions 

between them. 

The particles with sizes between 1 and 10 micro form mechanically stable 

suspensions in the air. They are called the suspend particle matter (SPM), which can be 

transported at the big distances by the winds. The particles grater than 10 micros remain 

in the suspension in the air during the relatively shorts periods, they are called sediment 

able matter. 

 

b) Greenhouse gases 

 

The greenhouse gases absorb and reflect preferentially one fraction of the solar 

energy, in one specific range in accordance with wavelength received. For example the 

ozone absorbs radiant energy in the zone of the ultraviolet spectrum (between the ranges 

of 0 to 0.28) and the water vapour (between 0.7-7). 

The ozone is one substance that has two roles totally different to make, depends 

where is fined in the stratosphere and troposphere. 

The stratospheric ozone that exists in the stratosphere (from 10 to 50 km) is essential for 

maintaining the life of the planet surface because absorb the lethal radiations of 

ultraviolet that come to us from the Sun. 

The troposphere ozone that exists in troposphere, together with the Earth surface, 

is very important secondary pollutant. It exists very close to the surface is formed by the 

solar light in which participate, principally, the nitric oxide and hydrocarbon presented 

in the air. This component is more harmful that the photochemical smog and causes 

important damages to health, when it is in high concentrations, and stopped growth 

plants and trees. 
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Recently, Paronis at el. (1998) present the Aerosol Optical Thickness (AOT) 

observation in the Mediterranean. The proposal work is to characterize the aerosol of 

the marine bottom and to improve the recovery of the dust over the Mediterranean with 

the Meteosat satellite. The algorithm for the AOT over the Atlantic and Mediterranean 

from the visible channel of Meteosat consider two models for different components of 

aerosols: the aerosol from the sea bottom and aerosol from the desert. 

Hamanou et al. (1998) realize one observation of the vertical structure of the dust 

transport in Africa that occurred over the Mediterranean between the 1 of January and 

30 of June of 1997. This development was identified with visible images of Meteosat. 

The vertical observation of aerosol was interpreted in the European project MEDUSE 

(Hamanou et al., 1997). 

Dulac et al. (2001) utilize the visible channel of Meteosat for observe the space-

temporal variation of the AOT. They documented for the first time the vertical 

distribution of the aerosols during one situation of a typical winter. They found that the 

highest extinction of the aerosol is happened between 600 and 1400 meters in the 

altitude of the layer in the dry air over the Atmospheric Marine Boundary Layer (MBL). 

The results show that more than 90% of the dust is transported over the MBL. 

Dammann et al. (2002) present a study of the aerosol impact over the Heat 

Radiation Budget (ERB) with satellite data. They use the existed data of 

NOAA/AVHRR satellite without support of geostationary ERG experimented on board 

of MSG, to detect the parameter of the optical aerosol. 

Flores et al. (2002) employ one statistic model for determination of the global 

solar radiation from the surface of the Balearic Islands from the images of 

NOAA/AVHRR, which present wide cover, with one adequate space resolution. This 

model was checked for 12 months of 1998 and received the determination coefficient 

upper than 0.98 in all cases, with a mean square error between 9.7% and 15.9%, and 

with a bias error that varied between -9.8% and 1.2%. The results retrieved by satellites 

are more precise that obtained by interpolation data at the surface if the measurements 

stations have the distance between them more than 30 km. 
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A1.1.3.2. Infrared 

 

Noyes et al. (2002) compare the Meteosat-7 and (A)ATSR that use the Earth data. 

Meteosat is one geostationary satellite with one channel in thermal infrared, which is 

used to retrieve the Land Surface Temperature (LST). Consequently, data from the IR 

channel of Meteosat is very similar to the bands of (A)ATSR. 

Wang et al. (2002) present the split-window algorithm to calculate the Land 

Surface Temperature (LST) from the NOAA/AVHRR in one big scale. The results 

indicate that (1) LST increased during 10 years (1982-1992), (2) the space variation of 

LST in China was constant, (3) from the beginning of the 1980 till principle of the 1990 

different regions present different changes of the temperature, in some areas increased 

in others decreased. The article indicates that this is the viable way to study the change 

of LST using thermal infrared bands of NOAA/AVHRR. 

Morales et al (2002) show one method to estimate the surface temperature of 

South America from images of NOAA/AVHRR. This was one project conducted 

together with the National Centres for Environmental Prediction (NCEP) and the 

National Centre for Atmospheric Research (NCAR). The proposed method was based 

on the images correction from the atmospheric effect and from the emissivity, in two 

thermal channels. The atmospheric profiles were obtained monthly from the 

climatologically data from the reanalysis. The proposed model was based on the 

radiative transference equation. 

Dash et al. (2003) use data from the first SEVIRI launched on board of MSG over 

the major part of the Earth (Schmetz et al., 2002) to estimate the Land Surface 

Temperature (LST). The Thermal Infrared Spectral Indices method (TISI) was adapted 

to the SEVIRI channels. This method was resistant for the surface type and covered the 

wide range of the emissions. Also, it was applied to data of AVHRR for most of Central 

Europe, for this region was planned the LST estimation. 

Iino et al. (2004) use the meteorological data of NOAA/AVHRR and GMS-

5/VISSR satellites to investigate the dust intrusion from China towards the Pacific 

Ocean close to Japan during the period of 2000-2002. They analyse the dust events, 

focused on advection of the shown images from the satellites, which are classified in 

three types like: ‘dry slot’, ‘high-pressure wedge’ and ‘travelling high’. The results are 

compared with concentrations of suspend particle matter (SPM). The ‘high –pressure 

wedge’ type is seen more clear at the images than ‘travelling high’ type, but SPM 
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concentrations are similar in both, owing to the differences in the vertical distribution of 

dust and in the observed conditions. 

 

Table A1.3: Summary of the Bibliographic Revision. 

  Satellite Sensor Band References 

LST 

Meteosat-7 

NOAA 

MSG 

ATSR 

AVHRR 

SEVIRI 

IR 

Mito et al. 2002 

Wan et al. 2002 

Gottsche et al. 2002 

Noyes et al. 2002 

Wang et al. 2002 

Morales et al. 2002 

Dash et al. 2002 

SST NOAA AVHRR IR Ginzburg et al. 2004 

RS NOAA AVHRR VIS Flores et al. 2002 

Aerosols 

ENVISAT 

METEOSAT 

NOAA 

MSG 

AVHRR 

GOMOS 
VIS, IR 

Paronis et al. 1998 

Dulac et al. 2001 

Dammann et al. 2002 

Ourtirane et al. 2002 

Kyrola et al. 2004 

Ozone ENVISAT 
GOMOS 

MIPAS 
VIS Verronen et al. 2005 

Dust 

SPM 

METEOSAT 

NOAA 

AVHRR 

VISSR 
VIS, IR 

Hamanou et al. 1998 

Iino et al. 2004 

LST Land Surface Temperature   

SST Sea Surface Temperature  

RS Solar Radiation   

SPM Particular Matter   

IR Thermal Infrared   

VIS Visible   

 

Ginzburg et al. (2004) use the measurement of data from the night time weekly 

Multichannel Sea Surface Temperature (MCSST) based on NOAA/AVHRR, to 

investigate the seasonal and year-on-year variability of the Sea Surface Temperature 

(SST) on the Black Sea during the period of November of 1981 till December of 2000. 

Calculate and compare fields of SST for the central months of tour hydrological seasons 

(February, May, April and November) with fields of SST corresponding to in-situ 
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measurements. The minimum picks for summer of SST are observed in 1982, 1984 and 

1985, and maximum values in 1991, 1992, 1998 y 1999. 

Many Features are dominated by vertical structures such as the Jovian storm or a 

hurricane in the Atmosphere as shown in figure 10.1. 

 

 

Figure A1.1: (left) Jupiter’s Storm, (right) Katrina Hurricane. 
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APPENDIX 2 

Descriptive plots of a High Richardson number experiment 
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We will present here as an example an evolution of several parameters in time 

obtained from the 2D vorticity maps estimated by PIV, the times will be chosen 

following an almost equally spaced logarithmic sequence as 1, 2, 5, 10, 

20,50,100,200,500 some of the velocity, vorticity and different visualizations where the 

number and structure of the vortices are shown as a function of the initial Richardson 

numbers, the main results are presented in chapter 7 for all experiments but we will 

show here more details and different types of visualisation used, that would, if shown 

for all data add a couple of thousand pages to this thesis. 

In figure A2.1 we present a typical medium resolution vorticity 2D plot in false 

colour used to investigate the structure of the flow, this was obtained by PIV (see 

appendix 3) of two frames separated 0.1 seconds of the experimental sequence. It was 

checked that provided that the interrogation region was small enough 6-10 pixels and 

the local velocities were not too high. The results were independent of the time and 

spatial resolution within the limits used. For consistency the same resolution was used 

in most of the results presented in chapter 7, but higher resolutions both in space and 

time are possible as shown below. 

 

 
Figure A2.1: False colour vorticity map for high Richardson number 

8.8Ri  at time 1t  sec or Nt8.3 . 
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The same information can be depicted in different ways, and it was found to be 

very useful when examining the evolution of the flow and counting the different types 

of vortices (Positive, negative, large and small, etc.) to use a 3D rendering plot, the false 

colours are just a matter of choice. The vorticity coloured map is presented in figure 

A2.2 for time 1t  sec and 8.8Ri  just as in figure A2.1. 

 

 
Figure A2.2: False colour 3D vorticity map for high Richardson number 

8.8Ri  at time 1t  sec or Nt8.3 . 

 

The same information may be viewed from different angles, view points or 

resolution, this dynamical procedure was sometimes needed when counting the different 

levels of vorticity described in chapter 7. 
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Figure A2.3: False colour 3D vorticity map viewed from the side for high 

Richardson number 8.8Ri  at time 1t  sec or Nt8.3 . 

An alternative plot for the vorticity, showing the region of low turbulence in white 

is presented in figures A2.3 and A2.4 viewed from different view points. (red is 

negative vorticity, while blue-violet indicates positive vorticity. 

 

 
Figure A2.4: False colour 3D vorticity map for high Richardson number 

8.8Ri , viewed from below to identify better the negative (clockwise) 

vortices at time 1t  sec or Nt8.3 . 

 

The values of vorticity for each of the points of the analysis plane, which was a 

region in the centre of the 1mx1m Perspex box of 90cm x 50cm at a resolution of 352 

pixels in x and 288 pixels in y. so the average precision of the spatial coordinates were 

1.7 mm in the vertical and 2.5 mm in the horizontal. All of the 103377 points are plotted 

with their interpolated vorticity values as a sequence line by line in figure A2.5. 

The values of enstrophy for each of the points are plotted also as a sequence line 

by line in figure A2.6, these plots are very useful to check the range of values at each 
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time and to calculate the PDF`s and spectra of the different descriptors, i.e. velocity, 

velocity components, vorticity, shear, stream function, dissipation etc. 

 

 
Figure A2.5: Line by line vorticity squared or enstrophy values from a 2D plot 

for high Richardson number 8.8Ri  at time 1t  sec or Nt8.3 . 

 

The values of an estimate of the local dissipation calculated as the square of the 

local derivatives of the vorticity for each of the points are plotted as a sequence line by 

line in figure A2.6. 

 

 



 297

Figure A2.6: Line by line values of dissipation estimated from vorticity 

derivates squared for high Richardson number 8.8Ri  at time 1t  sec or 

Nt8.3 . 

 

The enstrophy was calculated directly squaring the vorticity point by point. A 

measure of dissipation could be easily calculated by finding for each point, except for 

the lower and right row and column of data the following expression: 
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In what follows a sequence of vorticity and velocity 2D plots for a high 

Richardson number, 8.8Ri  will be shown, for different times 2t , until 500 

seconds. Different types of plots used will be shown as examples of the use of 

DigImage and DigiFlow fluid analysis programes. 

 

 
Figure A2.7: False colour 3D vorticity map for a high Richardson number 

8.8Ri , viewed from below to identify better the negative (clockwise) 

vortices at time 1t  sec or Nt8.3 . 
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Figure A2.8: False colour 3D vorticity map for a high Richardson number 

8.8Ri , viewed from below to identify better the negative (clockwise) 

vortices at time 1t  sec or Nt8.3 . 

 

 
Figure A2.9: False colour vorticity map for a high Richardson number 

8.8Ri , for a side view of a density interface at time 1t  sec or Nt8.3 . 
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Figure A2.10: A side view of the velocity plot of a stratified density interface. 

 

 
Figure A2.11: False colour vorticity and velocity plots. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 3 

Examples of DigiFlow analysis 
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Here we show some alternative visualization and analysis tools used on the image 

processing used to map the centre-plane at the maximum Brunt-Väisällä frequency in 

the stratified rotating experiments described in this thesis. The video used was either a 

standard VHS or a Super VHS at a sampling rate of 50 Hz, the camera was a Cohu high 

resolution black and white CCD. Faster camera speeds in digital format up to 100 Hz 

did not improve the resolution. 

 

 
Fig A3.1: Pair of velocity and vorticity images in a lateral grid stirred flow in 

the Trondheim rotating facility, Ro =0.7 and Ri = 3.2. 
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Fig A3.2: Pair of velocity and vorticity images in a lateral grid stirred flow in 

the Trondheim rotating facility, Ro =0.7 and Ri = 3.2 separated 88 frames i.e. 

1.76 s 
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Fig A3.3: Pair of 3D vorticity maps of the images presented at A3.1 lateral 

grid stirred flow in the Trondheim rotating facility, Ro =0.7 and Ri = 3.2. 
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Fig A3.4: Pair of 3D vorticity maps of the images presented at A3.2 in a 

lateral grid stirred flow in the Trondheim rotating facility, Ro =0.7 and Ri = 

3.2. 
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Fig A3.5: High resolution velocity map of a vertical grid stirred decaying flow 

in the Trondheim rotating facility, Ro =1.3 and Ri = 0.002 at 2 seconds after 

the grid drop. 
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Fig A3.6: High resolution velocity map of a vertical grid stirred decaying flow 

in the Trondheim rotating facility, Ro =1.3 and Ri = 0.002  at 25 seconds after 

the grid drop. 
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Fig A3.7: High resolution velocity map of a vertical grid stirred decaying flow 

in the Trondheim rotating facility, Ro =1.3 and Ri = 0.002 at 200 seconds 

after the grid drop. 
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Fig A3.8: Vorticity maps of a vertical grid stirred decaying flow in the 

Trondheim rotating facility, Ro =1.3, for the three velocity plots seen in 

figures A3.5, a) A3.6 b) and A3.7 c). The multiscale features were 

investigated with multifractal analysis (see Chapter 5)  
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Fig A3.9: Pliolite particle sequences, separated 8 frames at 50 Hz of a) 

vertical grid stirred decaying flow in the Trondheim rotating facility, Ro =1.3 

and Ri = 0.65. b) Non rotating flow in a 1mx1m tank (experiment 2b at 2 

seconds after the grid passage. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 4 

The Local structure of turbulence for large Reynolds 

Numbers (Based on Kolmogorov 1941 and Monin and 

Yaglom 1975) 
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From a more theoretical view point it is usual to denote 

 

,,,α,t),      ,x,x(xu(P)u αα 321321      (A4.1) 

 

The (turbulent) components of velocity at time t and at point P given in Cartesian 

rectangular coordinates ),x,x(x 321 . Considering turbulence, as a complex random 

process it is natural to assume the components of velocity  Puα  at each point 

,t),x,x(xP 321  of a four dimensional space/time dominium, ,t),x,xG(x 321  are aleatory 

variables in the sense of probability theory. 

Denoting as Ā the mathematical expectation of the random variable A, it is 

supposed that the variations are smooth, and well behaved, so 

 

 22 /  dxduyu
     (A4.2)

 

 

are finite and bounded in each sub-dominium within G. 

Introducing in the four dimensional space ,t),x,x(x 321  new normalised coordinates 

as: 

 











,

),)((
)0(

)0()()0(

tts

ttPuxxy o


    (A4.3)

 

 

where 

 

),,,( )0(
3

)0(
2

)0(
1

)0( txxxP      (A4.4) 

 

is a point within space G. We note that coordinates yα of any point P depend randomly 

on variables   0Pu so they are also random. The velocity in terms of the new 

coordinates is: 

 

)()()( )0(PuPuPw       (A4.5) 
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We also suppose that the   0Pu  for all P(k), k = 1,2, …,n, with coordinates )(ky  

y )(ks  lie within dominium G. Then we may define a PDF distribution in a 3n-

dimensional space of the probabilities Fn for each 

 

,...,n,,;     k,,),     α(Pww (k)
α

(k)
α 21321     (A4.6) 

 

where )( )0()0( Puu    are known. 

The distribution of the Fn will depend on parameters .,,,, )()()0()0()0( kk syutx   

 

Definition 1: 

Turbulence is locally homogenous in domain G, if for each fix n, )(ky  y s(k) the 

distribution Fn is independent of )0()0( , tx  y )0(
u  if all points P(k) are situated en G. 

 

Definition 2: Turbulence is locally isotropic in domain G, if it is homogenous and also 

the distribution law is invariant with respect to rotations and reflexions of the system of 

coordinates (x1,x2,x3). 

 

Comparing with the notion of isotropic turbulence, introduced by Taylor (1932), 

this definition is more restrictive in the sense that Fn needs to be regular since t(0), i.e the 

regularity in time is wider because the restrictions are imposed on distribution  laws of 

velocity differences and not on velocity. 

We assume that in a turbulent flow with sufficiently large Reynolds number 


LU

R 
.
. The hypothesis of local isotropy is observed in small domains G of the four 

dimensional space (x1,x2,x3,t) where the spatial size is small in comparison with 

dimensions L for space and in a time given as: 
L

U
T 

. 

Denoting y as the vector with components y1,y2,y3, the variables 

 

).,,,(),,,(),,()( 321332211321 txxxutyxyxyxuyyywyw    (A4.7) 
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are random and assuming local isotropy means that the distribution law is independent 

of x1,x2,x3, y t. so 

 

.0)( yw      (A4.8) 

 

and considering the second order moments 
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 (A4.9) 

 

and then for Bαβ(y,y) we have 
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where 
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for r = 0, we have 
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These equations were derived without the assumption of incompressibility. If we 

also make this assumption then 
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so we may express Bnn from Bdd. Then it follows that .2 22 aan   It is easier (assuming 

incompressibility) to evaluate the dissipation of energy per unit time and per unit mass 

as: 
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with the transformation of coordinates 
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the velocities, kinematic viscosity and the average dispersion of energy are expressed in 

this new coordinate system as: 
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The basis hypothesis used by Kolmogorov were first hypothesis of similarity is locally 

isotropic for turbulence, the distributions Fn are fixed only by properties ν and  . So we 

have 
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Being common to assume v' = 1,   = 1. With the similarity hypothesis the 

functions  
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should be equal for all cases of locally isotropic turbulence, so we have 
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the second moment Bαβ(y
(1),y(2)) is then expressed only in terms of v,  and the universal 

function dd . To determine the behaviour of )'(rdd for large distances r' Kolmogorov 

introduced another hypothesis, called The second hypothesis of similarity where: if the 

modulus of vectors y(k) and their differences y(k)-y(k') (where k ≠ k') are large compared 

with λ, Then the distribution laws Fn  are only determined by   and do not depend on 

viscosity v because 
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where y'α y s' are determined by the above equations, because 1'''  k , for large r' in 

comparison with λ' = 1 the hypothesis seems valid 
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and we have 
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so for large r' 

),'()/'( 23 rBkkrB dddd
    (A4.24) 

 

Deducing that 
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where C is claimed to be an universal constant. So we have for large r compared with λ 
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and also 
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On the other hand for small r compared with λ, the relation 
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is then obtained. 
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A4.1. Dissipation of energy in locally isotropic turbulence 

 

Kolmogorov introduced 
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where r denotes distance between points M and M', )(Mud  and )'(Mud  being the 

components of velocity in the direction 'MM  in points M y M', and )(Mun  y )'(Mun  

are the components of the velocity in any direction, perpendicular to MM'. So we will 

need the third order moments 
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and for turbulence, which is locally isotropic and incompressible, then we have equation 
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similar to Karman equation for isotropic turbulence. Herein E  denotes the dissipation 

of energy averaged per unit mass. The above equation may be written as 
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and because of condition (d/dr) ddB (0) = dddB (0) = 0, we have 
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For small r we have: 
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so that 
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so the second term or the left side is comparable with the first one for small r 

(infinitesimal), but for large values of r, the first term may be ignored en comparison 

with the second one so: 
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which is the famous 4/5 Kolmogorov law. 

It is natural to assume for large r the ratio 
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2
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In Kolmogorov (1941), this relation was deduced slightly differently, and 
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supposing that 

 



 317











,)/()()(

,)/()()(

knnnn

kdddd

rBEvrB

rBEvrB





    (A4.40)

 

 

where ddB  and nnB  are universal functions, so that for small kr    
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and for large ρ 
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In isotropic turbulence in the Taylor sense the distances have to be smaller than 

the integral lengthscale L of the turbulence, and the correlation coefficients are 
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being b the average of the square of velocity components, which are related with the 

structure functions Bdd(r) y Bnn(r) by 
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and we have for r small with respect to L, 
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If r is small compared with L, but big with respect to λ, then we obtain: 
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determining the constant C from experimental data which were performed for 

correlations Rdd y Rnn by Dryden, using the above equations in the following form. 
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which is named as Dryden equation. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 5 

Horizontal non-homogeneous flow: coastal mixing 
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We present here a series of experimental results linked to the lateral non 

homogeneous stirring in surface flows and in stratified rotating flows that may be used 

to model coastal mixing, this is based on Matulka (2003), Matulka et al. (2008), Carrillo 

et al. (2001) and Redondo et al. (2004). 

The sequence shown in figure A5.1 shows the generation of the coastal mixing 

front from the experiment described in Carrillo et al. (2001) where jets were used to stir 

a surface flows at one of the sides of the 1m x 1m tank described in chapter 2. 

 

 
Figure A5.1: Time series from the advance of turbulent horizontal front in the 
one pump jet experiments. It shows frames during 15 seconds at times 0, 1, 3, 
5, 7, 9, 11, 13 and 15 seconds after a steady state had been reached. 

 

The two kinds of experiments developed with coastal current show a slow front 

advance adverted by the presence of a steady general circulation on the tank. From 

images such as the sequence shown in figure A5.1 we show the evolution of the front in 

figure A5.2. 
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Figure A5.2: Advance of the front on the experiments with a lateral current in 
the two pump jet experiments, each series shows the average advance at time 
+: 0, ◊: 10, □: 20, o: 30 and 40:  seconds. 

 

An interesting example of confined circulation, where both stratification and 

rotation are important is the ocean, and more so in confined seas and in non-

homogeneous coastal regions. Okubo (1971), Okubo and Ozmidov et al. (1980) and 

Ozmidov (1990) performed numerous experiments measuring effective sea surface 

diffusivities with dye and buoy releases and found the important role of coastal large 

eddies and coherent structures. In the Black sea there is also a quasi-permanent coastal 

vortex circulation; these types of coastal flows may be analyzed by satellite images as 

discussed in chapter 8 by means of different satellite sensors (SAR, Visible, Infrared, 

Chlorophyll color, Altimetry etc. Benjamin et al. 1999 and Platonov et al. 2005). We 

show in figure A5.3 from Afanasyev et al. (2003) a combination of in situ ship 

measurements together with satellite images that exhibits a complex upper layer general 

distribution, showing some characteristic eddies. In the same way Font (1998) found 

that in the north Africa Mediterranean Sea similar strong eddy structures were detected 

in this area. The appearance of distinctive eddies in the NW Mediterranean mostly 

generated or induced by coastal features and stirring indicates the practical need to 

investigate in detail these strongly non-homogeneous stratified rotating flows. 
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Figure A5.3: The main features of the upper layer general circulation, dashed 

and solid lines indicate recurrent features and eddies detected in the Black sea. 

From Afanasyev et al (2003). 

 
Figure A5.4 shows a direct comparison of the size distribution of the coastal 

induced vortices in the NW Mediterranean in the two pump experiments described by 

Matulka (2003) and Carillo et al. (2001). 

We have seen in this experiment the dramatic effect that a strong density interface 

has both on vertical and horizontal mixing. The effect of density interfaces also tend to 

spread further the non-homogeneous lateral mixing akin to that taking place near the 

coastline. An intrusion spreading along the initially sharp interface generates strong 

vertical vorticity and may be used to define the limit of a coastal mixing front. 

The evolution of such coastal mixing, even when there is an overall large scale 

coastal current may be seen in the sequence of particle tracking streaks. This front 

grows in time as shown in figure A5.2 and may even destroy the overall large scale 

circulation creating a new pattern of eddies of multiple sizes. 
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Figure A5.4: top) Histogram of the size distribution of the vortices with 
respect to the coastal length from Cape Begur during 1997 – 1998. bottom) 
The same distribution of vortex sizes from the experimental 1 x 1 m tank in 
the x, y axis, with x the jet stirred side. 

 

There is strong asymmetry in the distribution of the vortices sizes which are 

caused by the interaction of a mixing front and a coastal current. Those features are seen 

in the simple non-rotating uniform experiments. The distribution of vortices shown in 

chapter 8 has to be very carefully parameterized with respect to the relevant non-

dimensional numbers; mainly the Reynolds number, the Richardson number and the 

Rossby number (Redondo et al. 2001, 2006 and 2008) such as shown in figure A5.5. 
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Figure A5.5: Experimental 3D parametric field from Ro, Re and Rig from the 

rotational experiments performed in the Coriolis table at the SINTEF 

laboratory. 

 

Further work was performed at the Trondheim Corriolis platform to implement 

more realistic boundary conditions in the experiments using this time an oscillating grid, 

some results are presented in Cano et al.(2008). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 6 

Molecular mixing and mixing efficiency 
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From the general equation of turbulent velocity autocorrelations discussed in 

chapter 2, where the dissipation of energy is derived and the main effect of body forces 

acting on the bulk of the fluid if : 
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 (A6.1) 

 

with the usual notation, and leaving a general viscous dissipation term f() that extracts 

energy due to molecular viscosity on turbulence. The mass forces (body forces), even 

applying Boussinesq approximation with low inertia are dependent strongly on density 

fluctuations as well as the possible fluctuations of the actual applied forces, while these 

effects are considered negligible (i.e. variations of gravity, magnetic fields or rotation). 

If we only consider density fluctuations then 
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that for gravity corresponds to vertical mixing. 

If density diminishes with height, then 0
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z  so if w’ is positive, the 

 has to be negative and vice versa, so their correlation will be 

negative. Therefore the stable stratification acts as energy sink. When stratification is 

unstable and the fluid is top heavy then  0


z
  and then the mixing of densities acts as 

an energy source. En a situation of negligible diffusion and body forces then turbulent 

production will balance dissipation. 
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with both production and dissipation with dimensions of L2T-3 and we may use 
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Relating the Reynolds stresses and a characteristic length scale to dissipation and 

applying to Navier Stokes equations to the correlation tensor as described in chapter 2 

operating as jiji 'NS'u'u'NS   leads to the transport equations: 
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where the terms were explained in figure 4.10: Generation by shear (1), return to small 

scale isotropy by means of pressure fluctuations p’ (2), The third rhs term of triple 

correlations produces transport due to the induced turbulence fluctuations (3). The 

fourth rhs term is pressure transport (4). The fifth is viscous, irreversible energy drain if 

the fluid is Newtonian, and the last term is the generation or destruction of turbulent 

kinetic energy TKE due to body forces, we will use the notation (f for rotation as the 

Coriolis parameter, g = gk for gravity and B for magnetic induced vector forces) (6) 

If we restrict the flow to a zero mean flow, where only turbulence fluctuations 

produce mixing in a gravitation field. The equation of energy and significant change of 

fluctuations in the vertical axis, such as that of an oscillating grid flow (Redondo 1990), 

we have a new production term due to the local turbulent oscillations: 
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If the flow is steady and the vertical transport (second term of the lhs) is balanced, 

then we can simplify and balance directly local production of TKE, and different 

sources of dissipation, so: 
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which may be interpreted in a simple way in diagram A6.1; separating the contributions 

from internal wave radiation, irreversible local molecular mixing and viscous 

dissipation producing heat. 

 

 

Figure A6.1: Distribution of energy during mixing. 

 

The most variable term will be  NfW   as a strong function of the internal 

wave frequency and its non-linearity, being N the Brunt-Väisällä frequency 
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N . This term controls mixing efficiency as a key that regulates the 

amount of energy available for mixing EAM and the dissipated energy that goes directly 

into heat. It is important to realize that the different types of dissipation will have 

different relevant length scales li 
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A6.1. Definition of Mixing Efficiency 

 

From the turbulent kinetic energy equation, comparing buoyancy with the 

production term 
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We obtain the Flux Richardson number considered as a local mixing efficiency in 

stably stratified flows Linden (1979, 1980), in an unstably stratified flow the sign will 

be negative as described in the review by Fernando (1999) 
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and the gradient and flux Richardson numbers are related by the ratio of the momentum 

and scalar turbulent diffusivities, given as a turbulent Prandtl or Schmidt number, Prturb 

so that  Rf= η = Ri / Prturb is the mixing efficiency, Turner (1973). 

The mixing efficiency may also be calculated per unit base area in a practical 

experimental manner by evaluating the ratio of the gain in potential energy divided by 

the amount of kinetic energy provided to the fluid during the mixing. It has to be 

stressed that mixing is a transient process and turbulent structure only occurs between 

the initial simple structure (two separate fluids) and the final mixed structure 

(homogeneous, well mixed flow) or linear profile. Most of the interface geometrical 

descriptors are calculated as averages over the centre region of the interfacial region 

leaving buffer regions to the sides of the experimental box to avoid lateral influences 

from the walls. The potential energy at a set time may be evaluated with the following 

integral (Linden 1979, Redondo 1987): 
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where S the base surface, h is the fluid layer height and  tz,  is the vertical density 

profile at time t.  

Some results of experiments in a top-heavy situation, where the TKE is initially 

due to the initial potential energy PE, but there is only a maximum available potential 

energy available for mixing (APE) through a process of conversion first to TKE 

described fully in Gonzalez-Nieto et al. (2008), Gonzalez-Nieto et al. (2004) and Yague 

(1992) for convective flows evaluating the overall mixing efficiency calculated from the 

initial (top heavy) and the final density profiles. The later may be neutral (well mixed), 

stable with a density step (no mixing) or linearly stratified. 

Sometimes instead of using a negative Richardson number, the Atwood number is 

used. In these experiments a viscous gel was used to modify the available mixing 

energy AME as a function of a physical parameter, several other geometrical parameters 

defining the initial conditions, such as the viscoelastic gel viscosity and the separation 

between the dense layer and the gel were varied. The expression for the mixing 

efficiency of the top heavy initial profile is based in (Linden & Redondo 1991; Redondo 

and Linden (1993), Linden, Redondo & Youngs 1994) is both applicable to cases with 

complete or partial mixing: 
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where W indicates work,  PARTIALEp  the increase in potential energy for the 

incomplete mixing situation and  NoMixEp  the potential energy change in case of no 

mixing. After describing some of the situations forced by the viscoelastic layer 

separating initially the dense and light fluids, the evolution of the density front thickness 

and the overall mixing efficiencies definitions are discussed. 

The mixing efficiency of the overall convective process is particularly simple 

when the two layers containing the dense and light fluids are of the same height H/2, 

then if the heavy fluid, initially on top has density ρ1 = ρ2 + Δρ, with ρ2  the lighter fluid, 

there are two limiting cases that will give the maximum and minimum mixing 
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efficiencies, i.e. when the final profile is constant in height  with density  ρ2 + Δρ/2, and 

when there is no molecular mixing and the top and bottom layers just exchange 

positions. 

There are two possible ways to calculate the mixing efficiency assuming that all 

the kinetic energy used for mixing the flow comes from the available potential energy, 

so calculating from the integral expression for the potential energy per unit area, the 

initial potential energy is: 
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and the final potential energy if complete mixing has occurred is 
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while if no mixing has taken place, the final  potential energy is 
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Similar expressions may be found for other configurations and for unequal depths 

of the light and heavy fluid. Now there are two different possible definitions of the 

mixing efficiency: 

if the mixing efficiency is defined as 
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then, the maximum mixing efficiency is ½ as discussed in Linden and Redondo (1991), 

but if the definition is made considering the actual potential energy used in the process, 

then the range of mixing efficiency is 0-1 using 
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A simple relationship may be found between these two alternative definitions as 

  2 , and seen in Figure A6.2, with a practical maximum mixing efficiency of 

0.33. 

 

 

Figure A6.2: Description of the mixing efficiency relationship. 

 

Energetic and thermodynamics of turbulent molecular diffusive mixing can begin 

to be much more complicated if we include the heat equation and the scalar or solute 

equation, then it is important to separate the potential energy GPE and internal energy 

IE) into its available (APE = AGPE+AIE) and non-available (PEr = GPEr + IEr) 

components, with the IE component being neglected for a Boussinesq fluid, which was 

the case considered by Winters et al. (1995). 

The usefulness of such an decomposition is due to the fact that the background 

reference state is by construction only affected by adiabatic and/or irreversible 
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processes, so that understanding how the reference state evolves provides insight into 

how much mixing takes place in the flow. 

In the case of a freely-decaying turbulent Boussinesq stratified fluid with an 

equation of state linear in temperature, referred to as the Linear-Boussinesq model, 

Winters et al. (1995) showed that the evolution n equations for KE, APE = AGPE, and 

GPE take a more complicated form (Tailleux 2009) so that: 
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where C(APE;KE) is the so-called  buoyancy flux measuring the reversible conversion 

between KE and APE, D(APE) is the diffusive dissipation of APE, which is related to 

the dissipation of temperature variance, e.g. Holloway (1986); Zilitinkevich et al. 

(2008), while Wrmixing is the rate of change in GPEr induced by molecular diffusion, 

which is commonly decomposed into a laminar Wrlaminar and turbulent Wrturbulent 

contribution. All these terms are explicitly defined in Tailleux 2009. 

For the Linear-Boussinesq model, as well for a Boussinesq fluid whose thermal 

expansion increases with temperature, called the NL-Boussinesq model. It is possible to 

further generalize the corresponding expressions for the fully compressible Navier-

Stokes equations with an arbitrary nonlinear equation of state. 

Of particular interest in turbulent mixing studies is the behavior of Wrturbulent the 

turbulent rate of increase in GPEr which so far has been mostly discussed in the context 

of the Linear-Boussinesq model, for which an important result is: Wr;turbulent = D(APE) 

which states the equality between the APE dissipation rate and Wr; turbulent. This 

result is important, because from the known properties of D(APE), it makes it clear that 

enhanced diapycnal mixing rates fundamentally require: 

A) finite values of APE, since D(APE) = 0 when APE = 0; 

B) an APE cascade transferring the spectral energy of the temperature (density) 

field to the small scales at which molecular diffusion is the most efficient at smoothing 

out temperature gradients. The discussion of the APE cascade, which is closely related 

to that of the temperature variance, has an extensive literature related to explaining the 

k-3 spectra in the so-called buoyancy subrange, both in the atmosphere, e.g. Lindborg 

(2006) and in the oceans, e.g. Holloway (1986); Bouruet- Aubertot et al. (1996). Note 
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that because APE is a globally defined scalar quantity, evaluation of APE cascades 

requires the introduction of the so-called APE density, for which a spectral description 

is possible, e.g. Holliday & McIntyre (1981); Roullet & Klein (2009); Molemaker & 

McWilliams (2009). 

This model exhibits only one type of reversible conversion, namely the buoyancy 

flux associated with the APE=KE conversion, and three irreversible conversions, viz., 

D(KE), D(APE), and Wr;mixing, the first one caused by molecular viscous processes, and 

the latter two caused by molecular diffusive processes. A primary goal of turbulence 

theory is to understand how the reversible C(APE;KE) conversion and irreversible 

D(KE), D(APE), Wrmixing are all inter-related. Turbulent diffusive mixing, for the 

understanding of viscous dissipation constitutes somehow a separate issue with its own 

problems, e.g. Gregg (1987). The nature of these links is usually explored by estimating 

the energy budget of a turbulent mixing event, defined as a sudden period of intense 

mixing preceded and followed by laminar conditions, for which there is a vast literature 

of observational, theoretical, and numerical studies. 

Integrating the above energy equations over the duration of the turbulent mixing 

events thus yields: 
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where S and the overbar denote respectively the net variation and the time-integral of a 

quantity over the mixing event. Summing the KE and APE equation yields the 

important available mechanical energy equation: 

 

     0 APEDKEDAPEKE     (A6.20) 

 

which states that the total available mechanical energy ME = KE+APE undergoes a net 

decrease over the mixing event as the result of the viscous and diffusive dissipation of 

KE and APE respectively. A schematic of the APE dissipation process, which provides 

a diffusive route to KE dissipation, is illustrated in figure A6.3. 

For mixing efficiency in turbulent stratified fluids it is clear that turbulent 

diapycnal mixing (through D(APE)) participates in the total dissipation of available 
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mechanical energy ME = KE+APE. Since D(APE) is non-zero only if APE is non-zero, 

turbulent diapycnal mixing therefore requires having as much of ME in the form of 

APE as possible. The classical concept of \mixing efficiency, reviewed above, seeks to 

provide a number quantifying the ability of a particular turbulent mixing event in 

dissipating ME = KE +APE preferentially diffusively rather than viscously. From a 

theoretical viewpoint, it is useful to separate turbulent mixing events into two main 

archetypal categories, corresponding to the two cases where ME is initially entirely 

either in KE or APE form. These two cases are treated separately, before providing a 

synthesis addressing the general case. 

At a fundamental level, quantifying the mixing efficiency of a turbulent mixing 

event requires two numbers, one to measure how much of ME is viscously dissipated, 

the other to measure how much of ME is dissipated by turbulent mixing. While 

everybody seems to agree that D(KE) is the natural measure of viscous dissipation, it is 

the buoyancy flux C(APE;KE), rather than D(APE), that has been historically thought 

to be the relevant measure of how much of ME is dissipated by turbulent mixing, since 

it is the term in Eq. (A6.1) that seems to be removing KE along with viscous 

dissipation. For mechanically-driven turbulent mixing events, it is easy to see that APE 

= 0 and ME = KE, the efficiency of mixing has been classically quantified by means of 

two important numbers. The first one is the so-called flux Richardson number Rf, by 

Linden (1979) defined above as the fraction of the change in available kinetic energy 

which appears as the potential energy of the stratification as defined above. 

Energetic and thermodynamics of turbulent molecular diffusive mixing e.g., 

Osborn (1980), and the second one is the so-called mixing parameter as: 
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It is now recognized, however, that the buoyancy flux represents only an indirect 

measure of irreversible mixing, since it physically represents a reversible conversion 

between KE and APE, while furthermore appearing to be difficult to interpret 

empirically, e.g. see Barry & al. (2001) and references therein. Recognizing this 

difficulty, Caulfield and Peltier (2000) and Staquet (2000) suggested to replace 

C(KE;APE) by a more direct measure of irreversible mixing in the above definitions of 

Rf and mixing. Since turbulent diapycnal mixing is often diagnosed empirically from 
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measuring the net changes in GPEr over a mixing event, e.g. McEwan (1983a,b); Barry 

et al. (2001); Dalziel and al (2008), a natural choice is to use Wrturbulent as a direct 

measure of irreversible mixing, which leads to theoretical  new possible definitions 

justified from the fact that in the Linear-Boussinesq model, the following equality 

holds: 

 

    turbulentWrAPEDKEAPEC ;     (A2.22) 

 

when APE = 0 and only mechanical mixing is initially available. 

When buoyancy is the source of mixing, the modified flux Richardson number 

RGPEr used by Tailleaux 2009 may also be used as discussed above. Rayleigh-Taylor 

instability has the peculiar property that GPEr; max, the maximum possible increase in 

GPEr achieved for the fully homogenized state, is only half the initial amount of APE, 

e.g. Linden and Redondo (1991); Dalziel et al (2008) (at least when Rf = 1, i.e., in the 

context of the L-Boussinesq model). 

Physically, it means that less than 50 % of the initial APE can actually contribute 

to turbulent diapycnal mixing, and hence that at least 50 % of it must be eventually 

viscously dissipated. 

Experimentally, Linden and Redondo (1991) reported values of Rf=0.3-0.4, while 

Dalziel et al (2008) reported experiments in which the maximum possible value Rf = 

0.5 was reached. Owing to the peculiarity of the Rayleigh-Taylor instability, however, 

one should refrain from concluding that mixing is perfect or that in general Rf = 0.5 

represent the maximum possible values for mixing and Rf in turbulent stratified fluids. 

To reach a general conclusions about mixing and Rf, more general examples of 

buoyancy-driven turbulent mixing events should be studied. It would be of interest, for 

instance, to study the mixing efficiency of a modified Rayleigh-Taylor instability such 

that the unstable stratification occupies only half or less of the spatial domain, as in 

Gonzalez-Nieto et al. (2008) so that  GPEr;max > APEj. In this case, all of the initial 

APE could in principle be dissipated by molecular diffusion, which would correspond to 

the limits Rf = 1 and mixing = +1. Of course, such limits cannot be reached, as it is 

impossible to prevent part of the APE to be converted into KE, part of which will 

necessarily be dissipated viscously, but they are nevertheless important in suggesting 
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that values of mixing > 1 can in principle be reached, which sets an interesting goal for 

future research, specially the roles of waves on mixing efficiency. 

 

 

Figure A6.3: Idealized depiction of the diffusive route for 
kinetic energy dissipation. (I) represents the laminar state 
possessing initially no AGPE and AIE, but some amount of KE. 
(II) represents the state obtained by the reversible adiabatic 
conversion of some kinetic energy into APE, which increases 
APE but leaves the background GPEr and IEr unchanged; (III) 
represents the state obtained by letting the horizontal part of 
molecular diffusion smooth out the isothermal surfaces until all 
the APE in (II) has been converted into background PEr = GPEr 
+ IEr. be fundamentally correlated because they are both 
controlled by molecular diffusion (Tailleux 2009). 
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Figure A6.4: The energetics of freely decaying turbulence for 

the classical regime (top panel), the Fofonoff regime (middle) 

panel, and a synthesis of both regimes obtained by subsuming 

AGPE and AIE into APE alone (Tailleux 2009). 

 

Figures A6.4 to A6.6 present different possible mixing routes proposed by 

Tailleux (2009) in the different mixing situations. 

 



 337

 
Figure A6.5: Energy flowchart for a mechanically - and 

buoyancy – driven thermally-stratified fluid, where 

coolingheatingnet QQQ  . At leading order, the “dynamics” (the 

rexergy GPEIE /  system). The dynamics/thermodynamic coupling 

occurs through the correlation between  APED  and mixingrW , , as 

well as through the correlation between  APEG  and forcingrW ,  

(Tailleux 2009). 

 

Turbulent flow consists of a superposition of eddies of every size. The rate at 

which the turbulent kinetic energy is transfer from bigger eddies to smaller eddies is 

called the dissipation ε. The energy cascade, however, can not be extended infinitely 

because of the viscous forces. The smaller an eddy, the greater the velocity gradient 

inside the eddy and the greater the viscous stress that counteracts the eddying motion. 

Consequently, there is a statistical lower limit of smallest eddy size that corresponds to 

a minimum scale of turbulence and maximum frequency in the turbulent motion. At this 

limit this kinetic energy of the major part of the turbulent kinetic energy is contained in 

the large but not the largest eddies. The large eddies are, therefore, often called energy 

containing eddies. The length and time scale of those eddies are further important 

scales. The size of energy containing eddies depends on the geometry of a spatial 

domain and on the local intensity of turbulence. This size can be related (it is not 

exactly the same) to the integral turbulent length scale that can be determined from the 

two-point spatial correlation functionfor statistical steady (time independent) 
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turbulence. Here, Lij denotes the length scale tensor. For homogenous isotropic 

turbulence the integral length scale is independent of the direction. 

 

 
Figure A6.6: Successive refinements of the energetics of a 

forced/dissipated stratified fluid. Panel (I): rPEAPEKE //  

representation. Panel (II): Decomposition of rPE  into 

rr GPEIE  . Panel (III): Decomposition of rIE  into a dead part 

0IE  and exergy part 0IEIEIE rexergy  . Panel (IV): 

Decomposition of APE  into AIE  and AGPE , revealing the 

link between  APEKEC ,  to the density flux W  and work of 

expansion/contraction B  (Tailleux 2009). 

 

This two-point velocity correlation function for homogenous isotropic turbulence 

and the corresponding integral turbulent length scale are schematically shown in Figure 

A6.7. Two-point velocity correlation functions versus the distance between two points 

Δx for homogenous isotropic turbulence. Lij  is a measure for the correlation of velocity 

fluctuation at the point x and x + Δx , thereby indicating to which degree the turbulent 

proportion of two points with distance Δx influence each other. lI is located where the 
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shaded areas above and below the two-point velocity correlation are of equal size. 

Hence the integral length scale l can be interpreted as the length scale from which point 

on the velocity fluctuation are predominantly uncorrelated. The corresponding time 

scale can be determined from the known time correlation function Qualitatively the 

integral turbulent time scale can be interpreted as an averaged inverse rotational 

frequency of the typical big eddy appearing in the spatial location x. 

Though turbulence in practical flows is neither isotropic nor homogenous, the 

idealized integral length scale provides at least coarse quantitative information about 

spatial correlation and sizes of typical energy containing eddies in turbulent flows. 

Quantitatively the integral turbulent length scale can be interpreted as an averaged 

radius of typical big eddy appearing in the spatial location. 

 

 

Figure A6.7: Definition sketch of the integral scale 

 

Other widely used length scales are Taylor microscale defined in chapter 2 which 

can be determined by autocorrelation functions near the origin. In terms of the 

longitudinal autocorrelation function Rf(r,t) and the transversal autocorrelation function 

two corresponding quantities can be defined at the Taylor microscale level as the 

longitudinal Taylor microscale and the transversal Taylor microscale. A Taylor-time 

microscale can also be defined analogously. 

The turbulent kinetic energy spectrum obtained from the Fourier transfer of the 

spatial isotropic two-point correlation Lij R function is schematically plotted in Figure 

A6.8 the ordinate indicates kinetic energy density per wave number k or the inverse 

turbulent length scale. The maximal value of log E(k) corresponds to the energy 

containing scale that related to the turbulent integral length scale l=LI. The eddies of 
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size smaller than the energy containing eddied build the inertial sub-range, where 

Taylor microscale is located between LI and LK, according to LKLT Re . As it was 

shown by (Kolmogorov 1941), the energy transfer from the large to small scale within 

the inertial subrange is independent on the scale size  
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A6.2. Scales of Turbulent Mixing 

 

In many physical situations one encounters a scalar φ advected by turbulent flow 

fields like temperature and pollutants in air and water. Similar to the velocity field, there 

is a statistical lower limit of smallest scale of turbulent mixing and maximum frequency 

in mixing processes. Such smallest scale is called Batchelor scale B Lφ and defined in 

terms of the Kolmogorov scale and Schmidt number, Sc, Like the Kolmogorov scale in 

a turbulent flow, the Bachelor scale characterizes the smallest scalar eddies wherein 

molecular diffusion is balanced by turbulent mixing. For most gases, the Schmidt is 

number is approximately one, so the smallest scalar lengths are approximately equal to 

Kolmogorov scale. For liquids, Sc can be on the order of 103 or greater, so that the 

scalar field contains much more fine-structures than the velocity field. The scales at 

which diffusion is occurring are much smaller. Then computational requirements to 

numerically solve these scales and thus accurately describe the mixing process are 

correspondingly increased. For scalar eddies much larger than the Batchelor scalar, 

molecular diffusion is negligible. Thus, initially premixed scale fields will remain 

segregated at scales larger than the Batchelor scale. 

 

 
Figure A6.8: Schematic turbulent kinetic energy spectrum. 

 
This has important consequences for turbulent reaction flows because it implies 

that the chemical source term will be strongly coupled to turbulent mixing for many 

chemical reactions of practical importance. At high Reynolds numbers, the small scales 
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of scalar field are usually assumed to be nearly isotropic (Kang & Meneveau 2001 

showed that scalar fields at small level are not so isotropic as assumed.) and will evolve 

on a time scale that is much smaller than that of the large scales. Moreover, for a 

passive scalar, the characteristic time scales for mixing at length scales above the 

Batchelor scale will be determined solely by turbulent flow. The largest structures in the 

scalar field is also named as scalar integral scale, and is primarily determined by two 

processes: (1) initial condition of the scalar field can be initialized with a characteristic I 

Lφ that is completely independent of turbulence field, and (2) turbulent mixing  where 

the energy containing range of a turbulent flow will create “scalar eddies” with 

characteristic integral scales  calculated for a scalar φ in the same way as for the 

velocity spatial correlation function and then integrating. The scalar spatial correlation 

function provides the length scale information about the underlying scalar field. For 

homogenous scalar fields, the scalar spectrum is related to the scalar spatial correlation 

function also through the Fourier transform. Figure A6.9 is an example of scalar energy 

spectrum for a range of Schmidt numbers plotted for Re=500 [84]. The schematic 

velocity spectrum is included in the figure for comparison. Analogous to the velocity 

field, the scalar mixing in inertial convective sub-range can be interpreted as a cascade 

process. The inertial sub-range exhibits the same profile (~5/3) similar to velocity field 

for moderate Schmidt numbers. For low Schmidt number, the scale spectrum falls off 

much faster than the velocity spectrum. For high Schmidt number, viscous 

convective/diffusive sub-range (Batchelor spectrum) with (~1) scaling is evident 

 

 
Figure A6.9. Different power spectra as a function of the Schmidt number. 

 


