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Chapter 1

Multigraded rings

In this chapter we collect some basic definitions and facts of the theory of
multigraded rings which we will need in the next chapters. We also state
the multigraded versions of some well-known results in the category of graded

rings. Rings are always assumed to be noetherian.

1.1 Multigraded rings and modules

The general theory of multigraded rings and modules is analogous to that of
graded rings and modules. We first recall some basic definitions. The main
sources are [BH1], [HHR} and [GW1].

We use the following multi-index notation. For n = (n!,...,n") € Z7, we
set |n| = n' +...4+n", and for n,m € Z", we define their sum n +m =
(n* +m!,...,n"+m"), and we set n < m (n < m) if nt < m? (n* < m?) for

every 1.

A Z"-graded ring (or r-graded ring) is a ring S endowed with a direct
sum decomposition S = @Bz Sn, such that SpSm C Snim for all n,m €
77. An r-graded S-module is an S-module M endowed with a decomposition
M = @pnezr Mn, such that SnMm C Mnym for all n,m € Z". We shall
call My, the homogeneous component of M of degree n. An element z € M
is homogeneous of degree n if z € My. The degree of z is then denoted by
degx. For any r-graded S-module M, we define the support of M to be the
set suppM = {n € Z" | My # 0}.
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For a given r-graded ring S, we may consider the category of r-graded
S-modules M"(S). Its objects are the r-graded S-modules, and a morphism
f:M — N in M"(S) is an S-module morphism such that f(My) C Ny for
alln € Z".

Given an r-graded S-module M, an r-graded submodule is a submodule
N C M such that N = @peyr N N My, equivalently, N is generated by
homogeneous elements. The r-graded submodules of S are called homogeneous
ideals. For an arbitrary ideal I of S, the homogeneous ideal I* is defined to

be the ideal generated by all the homogeneous elements of 1.

As a first example of r-graded ring we have the polynomial ring S =
A[X1,...,X,] defined over an arbitrary ring A. For every choice of elements
di,...,d, € Z", we have a unique r-grading on S such that deg X; = d; and
dega =0 for all ¢ € A.

For an r-graded S-module M and k € Z", then M (k) denotes the S-module
M with the grading given by M (k)n = My, y.

If M, N are r-graded S-modules, we denote by Homg(M, N)o the abelian
group of all the homomorphisms of r-graded S-modules from M into N. We
set Homg(M,N) = @Ppezr Homg(M, N(n))o. Note that Homg(M, N)y is
nothing but the abelian group of S-module homomorphisms f : M — N such
that f(Mn) C Npyk for all n € Z". The derived functors of Homg( , ) are
Exty(, ), withi € N.

1.2 Multigraded cohomology

Next we are going to introduce the local cohomology functor in the category
of multigraded modules, mainly following [HHR]. The basic results are the
multigraded version of the Local Duality Theorem and the good behaviour of

the local cohomology modules under a change of grading.

From now on in this chapter, we assume that S = @,,cyr Sn is an r-graded
ring defined over a local ring S; = A. Then S has a unique homogeneous
maximal ideal M = m ® (@ypo Sn), where m is the maximal ideal of A. Set
d=dimS.

If I C S is a homogeneous ideal and M is an r-graded S-module, we denote
by HY(M) = T';(M) = {& € M : I*z = 0 for some k > 0}. Note that HY(M)
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is an r-graded submodule of M. The local cohomology functors H:() are the
right derived functors of I'y( ) in the category of r-graded S-modules. If no
confusion, we will usually denote them by H ().

An r-graded S-module Kg is called a canonical module of S if
Ks ®a A = Homg(H%,(5),Es (k) ,

where k is the residue field of A and Eg(k) is the injective envelope of k
in the category of r-graded S-modules. The injective envelope Eg(k) of k
is Hom 4 (S, Ea(k)), where A is thought as an r-graded ring concentrated in
degree 0, and both S and E4 (k) are considered as r-graded A-modules. There-

fore, we have
Ks ®4 A = Hom 4 (HL,(S), B4(k)) = €@ Hom a([H{(S)]-n, Ba(k)).
nez”

If a canonical module exists, it is finitely generated and unique up to an
isomorphism. In the particular case where A = k is a field, the canonical

module of S exists and
Kg = Homk(ﬂdM(S),k).

The next results are the extension to the r-graded case of two of the main
properties of the canonical module, well-known for the graded case (see [GW2,
Theorem 2.2.2}).

Theorem 1.2.1 (Local Duality) Let S be an r-graded ring defined over a
complete local ring A. Let M be the homogeneous mazimal ideal of S. Then

S is Cohen-Macaulay if and only if every finitely generated r-graded S-module
M satisfies

EQ@—S(E:LAA(M)a—E—S(k)) = E&%_Z(]VLKS) ) 1= 07- . 7d-

Corollary 1.2.2 Let S be a Cohen-Macaulay r-graded ring with canonical
module Kg. Let T be an r-graded ring defined over a local Ting such that there
caists a finite r-graded ring morphism S — T'. Then T has canonical module

Kp = Eﬁ%‘(T7 KS') )

where e = dim S — dimT'.
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Often we are going to consider the ring S endowed with a different grading
obtained in the following way: given a group morphism ¢ : Z" — Z9 such that
@(supp S) C N?, we can define the N?-graded ring

5= D (P S

meN? o(n)=m

Similarly, given an r-graded S-module M, we may define the g-graded S¢-

module M¥ as
M?:= P ( P M)
mez? p(n)=m
Then ( )¥ : M7(S) — M9(5%) is an exact functor. By considering ¢, : Z" — 7
the projection on the j-component, that is, p;(n) = n’, we denote by S; = S%i
and by M; = M¥i. Note that S; is just the ring S graded by the j-th partial

degree.

The next lemma shows that the local cohomology modules behave well

under a change of grading.

Lemma 1.2.3 [HHR, Lemma 1.1] Let S be an r-graded ring defined over a
local ring. Let M be the homogeneous mazimal ideal of S. Let ¢ : Z" — 7.9
be a morphism such that o(supp S) C N?. For every r-graded S-module L, we

have
(Hiu(D)? = Hiye(L?), Vi.

1.3 Multigraded a-invariants

We begin this section by extending the definition of the a-invariants of a graded
module to the multigraded case. After that, under some mild assumptions,
we relate the multigraded a-invariants of a multigraded module to the shifts
which appear in its multigraded minimal free resolution. This result will be
essential in the next chapters. In the graded case, a similar result can be found
in [BH1, Example 3.6.15] for Cohen-Macaulay modules.

Let S be a d-dimensional N'-graded ring defined over a local ring. For
each 1 =0, ..., d, the multigraded a;-invariant of S is a;(S) = (a}(9), ..., al (S)),

7 7

where

al(S) = max{m € Z | In € Z" : p;(n) = m, [H((S)]n # 0}

7
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o

if H%,(S) # 0 and al(8) = —co otherwise. We will denote by a(S) = aq($5).
Note that by Lemma 1.2.3
a](S) = max {m € 2 | [H, (S)lm # 0} = ai(S})-

K3

TFollowing N.V. Trung [Tr2], the multigraded a-invariant of S is defined as
a.(S) = (al(8), ..., al(S)), where al($) = max{a)($),...,a}(S)}. Similarly,
for any finitely generated r-graded S-module M we may define the a-invariants
a;(M) of M and the a,-invariant a.(M) of M.

Observe that if there exists K¢ the canonical module of S, then

a(S) = a&(S) = —min{m € Z | In € Z" : p;(n) = m,[Ksln # 0}.

If S has a canonical module Kg, S is said to be quasi-Gorenstein if there
exists an r-graded isomorphism Kg & S(a(S)), and Gorenstein if in addition

S is Cohen-Macaulay.

From now on in this section we assume that S is a noetherian N'-graded
algebra defined over a field k, and let M be its homogeneous maximal ideal.
Our main purpose is then to compute the multigraded a-invariants of a finitely
generated r-graded S-module M from an r-graded minimal finite free resolu-
tion of M over S, whenever it exists and S is Cohen-Macaulay. To begin with,
let us consider

.= D= ... Dy =Dy =0

an exact sequence of finitely generated r-graded S-modules such that
Im(Dpq1) C MDy, for all p > 0. Let us denote by {vpe} the set of de-
pree vectors of a minimal homogeneous system of generators of D,. Note
that this set is uniquely determined because it can be obtained as the ho-
mogeneous components of the vector space Dy, ®s k which are not zero. We
st mp = ming, {Vpe} and My = max<,,,{ Vpg}, where <je; is the lexi-
cographic order. Let us denote by n% = ming{v},}, t = maxq{vj,}, where
Vg = (Upgs -+ Upg), and np = (g, s np), tp = (5, .., tp)- Let us also consider
< the partial order in Z" defined coefficientwise. Then we have

Lemma 1.3.1 (i) np, <nyy1.

(i1) my <pep Mpi1
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Proof. Let C, = Coker(Dpy1 — Dp), ¥p > 1. Then there are short exact
sequences
0— Cpgo = Dpy1 — Cpyp1 — 0, ¥p >0,

Applying the functor — Qg k, we get exact sequences
Cpt2/MCpig = Dpy1/MDpy1 = Cpy1 /[MCpy — 0, ¥p > 0.

Since Cpya C MDp11, then the first map is the zero morphism. Therefore we

get isomorphisms
Dpy1/MDpi — Cpt1/MCpys.

Let us denote by { epy} a minimal homogeneous system of generators of D,
with deg(epg) = vpg, and let f be the map from Dpyq to Dy, From the
isomorphism it follows that f(ep41,4) # 0, for all ¢. Now let us fix g. We
can write f(epy1,4) = 2.; Aiept, where \; are homogeneous elements of M. Set
deg (\) = (A\},..., A7) € N and note that deg(\;) # 0 if A, # 0. Looking at

the j-th gomponent of the degree, we get vy, , > min{ v),} = nj, and so
ni .,y > for all j.
To obtain (), it is enough to prove that vy41,4 >eq my for all g. We have

at ol Ll L —anl Tl . ,
already shown that v,y , > min{ vy} = my. I v,y > my, we are done.

o
Otherwise, U;+1,q = mzlj and so A} = 0 for each [ such that \; # 0. Then we

2
P

get the result since there exist [, j such that )\{ >0. 0O

2 : 2 T iy : :
have v,y , 2 ming{ Vpy ] U = mp} = mZ. By repeating this argument, we

Let S be a d-dimensional r-graded Cohen-Macaulay k-algebra. Assume

that M is a finitely generated r-graded S-module with a finite minimal 7-

graded free resolution over S
0—-D—=...=Dy—=Dy—> M =0,

with D, = @, S(apg, - ap,). Set m = dimM, p = depthM. Note that
[ = d— p by the graded Auslander-Buchsbaum formula. Next we are going to
study the shifts which appear in this resolution.

Note that, with the notation introduced before,

nj, = minq{—aéq},

t) = maxq{—aj,},

my, = minc, { (—a},q, e —agq)},
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M, = max<,{ (—azl,q, oy =D )}

We will also denote by t{,(M) =, (M) = max{té,...,t{}, t.(M) =
(tL(M),...,t2(M)). From Lemma 1.3.1, we have np < np41, My <jep Mp1-

Furthermore,
Lemma 1.3.2 (1) Mgy <jee M1 <iez =+ <iex Migem-1 <tez Mg—m.-
(ii) to < t1 < -+ <tgom-1 < tgom-

Proof. Let Kg be the canonical module of 5. Note that it exists because
S is a finitely generated k-algebra. By setting Cp = Coker(Dpy1 — D) for

p > 0, we get short exact sequences
0— Cpy1 = Dp = Cp =0,
for 0 < p <1 —1, where Co = M, C; = D;. For any p < d —m — 1, we have
Ext}(Cp, Ks) = Extd(Cpy, Ksg) = -+ = Ext%™ (M, Kg) =0

by Theorem 1.2.1. Therefore, by applying the functor ( )* = Homg( , Kg) to
the sequences above for p < d —m — 1, we get exact sequences

0—C, — Dy = Cpy1 =0, forp<d—m—2,
0= Ch o1 = Din1 = Ciy = HE(M)Y =0,
where ( )V = Hom,( , k). By gluing these exact sequences, we get the r-graded
exact sequence
0= D} —...2Di_ 1= Chpy = HE(M)Y — 0.

Observe that Dy = @, Kg(—a})q, <oy —0pg). One can also check that Im(Dy) C
MDy ., for allp <d—m—2.

Let {b1,...,bg} be the set of degree vectors of a minimal homogeneous
system of generators of Kg. If we denote by apq = (a},q,...,agq), then the
vectors a,q+b; are the degrees of a minimal homogeneous system of generators
of D. Forp < d —m — 1, let us consider

mi, = ming,,, { & +bi} = —M, + ming,, {bi} ,
= minq,i{ a{;q + bz} = -—tg) -+ mini{ bz} .

=]
Ty

According to Lemma 1.3.1, we have ﬁ;ﬂrl < ﬁ% and Mp41 <jeg Mp, SO




MULTIGRADED a-INVARIANTS 8

170 < 171 < S td—m—2 S td—m—l

Mo <pez M1 <pez  <iex Mi—m-2 <iexz Mgom_1.

Next we want to show that My_,, >1ep My 1. To this end, let us
study the morphism Dy_,, — Dg_yy—1 and for that denote by v : Cy_,,, —
Dy_p—1. Assume that there is an element u in the basis of Dy_,,_1 of de-
gree My ;-1 >ieg Mg_s,. If g is a homogeneous minimal generator of Cy_,,,
then g has trivial terms in u: Otherwise, we would have that Mg_,,_1 <jex
deg g <jex My—m because Cy_ry C MDg_p_1. Let b = mine,_{by,..., b},
and let us take ¢ € [Kglp, ¢ # 0. Let w : Dy 1 — Kg defined by
w(u):= ¢, w(v) = 0 for any v # u homogeneous element in the basis of
Dg-m—1. Thenv*: D} | — CJ_, satisfles v*(w) = 0, hence v* is not a
monomorphism in degree degw = degw(u)—deg(u) = b—My_,,_;. Therefore
Ci_m_1lb-M,_,,_, #0, and then (D} _—alb—M,_._, # 0, so there exists a
shift a = (a',...,a") in Dy_,,_y such that —a >, My ,,_;. So we obtain
My_m—9 Z1ez My_p—1 which is a contradiction.

Furthermore, note that the first component of M, is t;. Therefore, we have
th 1 Sty since My g1 <jez My_p,. The inequalities tﬂ_m_l < tfl—m
for j =2,...,r follow directly from the next remark. O

Remark 1.3.3 Given a permutation o of {I1,...,7}, we may define <, to be
the order in Z" defined by

(ul,...,ur) <s (1)1,...,’1)7«) =8 (ug(l),...,u(,(w)) <lex (va(l),...,vg(r)).

Then Lemmas 1.3.1 and 1.3.2 also hold if we define

mg = nglin{ (_a’;l)qa sy _a’;q)}>
M7 = H%%X{ (—azl,q, vy =Gpg) }

The following result gives a formula for the multigraded a,-invariant of M
by means of the shifts which arise in its resolution over S (see [BH1, Example
3.6.15] for the case of a Z-graded Cohen-Macaulay module).

Theorem 1.3.4 For each j =1,...,r, we have

(i) @} _,(M) S (M) +a?(8), ford—m <p <d—p.
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(ii) Assume that for some p there exists o s.t. o(1) = j and My >5 M7 ;.
Then aﬂi_p(M) = t%(M) +a?(9).

(iii) al(M) = tJ(M) + o’ (S). That is, a,(M) = t.(M) + a(S).
Proof. From the minimal r-graded free resolution of M over S
0=-D—...>Dy—M—=0,
by setting Cp = Coker(Dpy1 — Dp), we have short exact sequences
0— Cpy1 = Dp — Cp, = 0,

for 0 < p < | —1. By Theorem 1.2.1, if we apply the functor () =
Homg( ,Kg) to the sequences above we get exact sequences

(1) 0D = ... = D5 — Ci_ = HH(M)Y =0,
and
(2) 0= C; = Dy —= Cpyy — 0, forp <d-—m—2,
(8) 0= Ciy = Dj_y = Cy = HyP(M)Y =0, forp>d—m,

where ( )V = Hom,( ,k). Note that for d —m < p < d — p we have monomor-
phisms
* * 1
0=C,—D,= @KS(—CLM, s = pg),
q
and so [Cy]_; = 0 for any i such that it > t}) + a*(S). Now from the epimor-

phisms
O — HeP(M)Y =0,

we get Hj;p(M)i =0if ' > 15+ a'(S), and therefore a(li_p(M) < b (M) +
a'(S). This proves (i) for the case j = 1.

Assume now that there exists p with My >jez Mpy1 (then p > d —m
according to Lemma, 1.3.2). Let b = (b',...,b") be the minimum with respect
to the lexicographic order such that [Ks]p # 0. Note that bt = —al(S). Let
i =M, —b. Since [D;,]; = 0 because My >1eg Mp41, we have [C}4]; =0

by (3), and so [C}]_; = [Dy]-; also by (3). Then, denoting by f : Dy — Dp_1,

we get an exact sequence

(D] B (D] = (HGP (M) — 0.
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Let ey,...,es be the elements of the canonical basis of Dy with degree My,
and let v1,..., v, be the canonical basis of D,_;. Since f*(D;EI) C MD;y
and [D]] ; = [Kslpel @ ... ® [Kglpel, we have that [Kglpe! ¢ Imf*. In
particular, f* is not an epimorphism, and so [Hﬁp (M)); # 0. Therefore,
ag_ (M) > ' = My —b' = tL(M) +a'(S). This proves (i) for the case j = 1,
o = Id.

Let p be the greatest integer such that M, = max<,  {My,...,M;}. Then,
Myi1 <iez M, so a}i_p(M) = tL(M) + a'(S) by (i3). Therefore, al(M) =
to(M) + o' (S) and we have (444) for j = 1. The proof of the statement for
j=2,..,r follows from Remark 1.3.3. O

1.4 Scheme associated to a multigraded ring

Let S be a noetherian N'-graded ring. We call S standard if § may be gener-
ated over Sp by elements in degrees (1,0,...,0),...,(0,...,0, 1). Similarly to
the graded case, we may associate to such a ring a multigraded scheme in a
natural way (see [Hy]). Our purpose is to extend this construction to a more
general class of multigraded rings, which will recover the standard case as well
as the Rees algebra of any homogeneous ideal in a graded k-algebra.

Let S be a noetherian N'-graded ring finitely generated over S, by

homogeneous elements zi1,...,Z1k,,. .-, Tr1,... » Trk, of degrees deg(z;;) =
(d}j, o ,dzj‘l, 1,0,...,0), where déj are non-negative integers, and set di =

maxj{déj}. This class of rings includes for instance any standard N'-graded
ring by taking déj = 0. For every i = 1,...,r, let I; be the ideal of S gen-
erated by the homogeneous components of S of degree n = (n1,...,n.) such
that n; > 0,141 = ... = n, = 0. Then we define the irrelevant ideal of S as
Sy = Iy---1,. We are going to associate a scheme to S in the following way.
A homogeneous prime ideal P of S is said to be relevant if P does not contain
St Then we define the set Proj "(S) to be the set of all relevant homogeneous
prime ideals P. It is easy to check that dim S/P > r for any relevant prime
ideal (see the proof of Lemma 1.4.1). Following [STV] (where the standard
bigraded case was studied), we define the relevant dimension of S as

r—1 if Proj "(S) =0
5

L.dim § =
resdim {max{dimS/P]PEProj "(S)} if Proj "(S) #
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If I is a homogeneous ideal of S, we define the subset Vi (I) := {P €
Proj "(S) | I € P}. We can define a topology on Proj "(S) by taking as
closed subsets the subsets of the form Vi (I). Next, to define a sheaf of rings
O in Proj "(S), we first consider for each P € Proj "(S) the homogeneous
localization by P

S(P):{%|sgzp, 4,5 € Sn, n €L }.

For any open subset U C Proj "(S), we define O(U) to be the set of functions
t: U = Upey S(py such that for each P € U, t(P) € Spy and ¢ is locally a
quotient of elements of S. Then, O is a sheaf of rings. We call Proj "(5) the
r-projective scheme associated to S. Defining for any homogeneous f € Sy
the set D, (f) = {P € Proj "(S) | f ¢ P} we have an open cover of Proj "(5),

and for each such open set we have an isomorphism of locally ringed spaces

(D+(f), OID1(f)) = Spec(S(y))-

Moreover, Op = S(py for any relevant prime ideal P, hence Proj "(S) is a
scheme in a natural way. This construction extends the usual one given in the

standard case (see [Hy]).

The next lemma computes the dimension of Proj "(S). Its proof follows

the same arguments as in [Hy, Lemma 1.2], but we include it for completeness.
Lemma 1.4.1 dimProj "(S) = rel.dim§ —r.

Proof. We may assume that Proj"(S) # 0 (otherwise the result
is trivial). Let P € Proj"(5) be a closed point. Since the projection
Proj "(S) — Spec(Sp) is proper, we have that Py = P N5y is a closed point
of Spec(Sy), so (S/P)o = So/Fs is a field. Let us denote by T' = S/P,
and note that dimProj "(T) = 0. For j = 1,...,r, let J; be the ideal of
T generated by the homogeneous components of T' of degree n such that
nj > 0,nj41 = ... = n, = 0. We have a maximal chain of homogeneous prime
ideals
Ocd.cJpa+JrC...Chi+...+Jp

so dimT = 7 because T is a catenary ring. On the other hand, for a given
minimal prime Qo € Proj "(S), we have a chain of homogeneous prime ideals
of type Qo C ... C Qs C ... C Qs4r, with Q, a closed point of Proj "(S).
Therefore,
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dim Proj "(S) =sup{ht Q : Q € Proj "(S)}
= sup {dim S/Q : Q € Proj "(S)} — r
=reldim S — r.O

Next we are going to define the diagonal functor. Given ey,..., e, positive
integers, the set
A= {(eis,...,e;8) | s €7}

is called the (eq, ..., e,)-diagonal of Z". We may then define the diagonal of
S along A as the graded ring Sa = P,y S(ers,...ers)- Similarly, given an
r-graded S-module M we define the diagonal of M along A as the graded
Sa-module Ma := @,; Mieys,....eps)- Then we have an exact functor

(Ja: M"(S) = M (Sa),

called diagonal functor.

Let us denote by X = Proj "(5), and for each A, let Xa = Proj (Sa). By
considering diagonals A = (ey,...,e,) such that e, > 0, e,_y > dl 7 e, ...,
e; > dey + ... + dle,, then the sheaf of ideals £ = (Ster,..er)) Ox defines an
isomorphism X — Xa. In particular, this isomorphism allows us to compute
the dimension of Sa, extending [STV, Proposition 2.3] where this dimension

was computed for bigraded standard k-algebras.

Lemma 1.4.2 Assume that Sy is an artinian local ring. Then dim Sy =
rel.dim S—r+1, for any A = (e1,...,e.) withe, >0, ;-1 > dl ey, ..., e1 >
d%eg+...+d}e,-. '

Proof. From the isomorphism X = XA, we have that rel.dimSx =
rel.dim S —7+1 by Lemma 1.4.1. Moreover, since Sy is artinian, any minimal

prime ideal of Sa is relevant, and so rel.dim Sp = dim SA. O

Classically, S is the multihomogeneous coordinate ring of a multiprojective
variety V' contained in some multiprojective space Prt X ... X P.". By taking
the (1,...,1)-diagonal, Sa is then the homogeneous coordinate ring of the
image of V' via the Segre embedding P;' x ... x P — PY, where N =
(ni+1)...(n, +1) - 1.
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1.5 Hilbert polynomial of multigraded modules

Let S = @penr Sn be an r-graded ring defined over an artinian local ring So =
A. If S is standard, then we have that the Hilbert function of any finitely gen-
erated r-graded S-module L, H(L,n) = lengtha (Ln), is a polynomial function;
that is, there exists a polynomial Pr(t1,...,%) € Q[t1,...,t ], called Hilbert
polynomial of L, such that for any n > 0, Pr(n1,...,n,) = length 4 (Ln) (see
[HHRT], [KMV]). In this section we are going to extend the existence of such
a polynomial for the larger class of finitely generated r-graded modules de-
fined over the multigraded rings introduced in Section 1.4. Furthermore, we
will state a formula for the difference between the Hilbert polynomial and the
Hilbert function of any finitely generated r-graded module analogous to the

one known in the graded case.

Let S be a noetherian N -graded ring generated over S; = A by ho-
mogeneous elements Ti1,..., %1k .-, Trl,- -, Trk, 10 degrees deg(zi;) =
(dzlj, e ,dﬁj_l, 1,0,...,0), where dij > 0. Set d' = man{déj}.

Given a finitely generated r-graded S-module L, let us define its homo-
geneous support as Supp, (L) = {P € Proj"(S) | Lp # 0}. Note that
Supp, (L) = Vi (Ann L) is a closed subset of Proj "(5). We define the rele-
vant dimension of L as
r—1 if Supp (L) =0
max{ dim S/P | P € Supp (L)} if Supp4(L) #0

One can check that rel.dim L = dim Supp L + r.

rel.dim L = {

From now on in this section we will assume that A is an artinian local ring.
Given a finitely generated r-graded S-module L, its homogeneous components
Ly are finitely generated A-modules, and hence have finite length. The nu-
merical function H(L, - ) : Z" — Z with H(L,n) = lengtha (Ly) is the Hilbert
function of L. Next result shows the existence of the Hilbert polynomial for
any finitely generated r-graded S-module.

Proposition 1.5.1 Let L be a finitely generated r-graded S-module of relevant
dimension 6. Then there exists a polynomial Pp(t1,...,t,) € Qt1,...,t] of
total degree § — r such that H(L,iy,...,%) = Pr(i1,... 1) for iy > dyis +
oA diy, o ey > AU Ny, 1 > 0. Moreover,

ty — dite — ... —dt te_1 —di7 )\ [
Pty otr) = Y an<1 = ><1n ")
T— T

nj<é—r
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where an € Z, an > 0 if |n] =6 —r.

Proof. Given a finitely generated r-graded S-module L, first note that there

is a chain
O=ILyClyC...CLg=1L

of r-graded submodules of L such that for each ¢ > 1, L;/L;_; = (S/F;)(m,),
where P; € Supp L is a homogeneous prime ideal and m; € Z". Indeed, we may
assume L # 0. Choose Py € Ass L. Then P; is a homogeneous prime ideal,
and there exists an r-graded submodule L; C L such that Ly = (S/Py;)(my). If
Ly # L, by repeating the procedure with L/L; we get an r-graded submodule
Ly ¢ L such that Lo/Ly = (S/P,)(my). Since L is noetherian, this process
finishes after a finite number of steps. From this chain, we obtain

8§
H(L,n) =) H(S/P;,n+my).
i=1
So it is enough to prove the result for the rings 7' = S/P, with P a homoge-
neous prime ideal. To this end, we will reduce the problem to the standard
case where the result is already known.
Set B = Ty. Let us consider T C T the B-algebra generated by the

homogeneous elements of T' of degree (eg,...,e,) such that

€1 2 d:_ler
-9 _
er—g = d:_ler—l +d; 261"

er > d%eg+...+d,¥er.

Then one has Ty, = Ty, for each n € N satisfying the inequalities before. Let

us consider the morphism

(VAN A — z"
(1,...,2p) = (21 —dimg—--- — diTp, ... Tpy — di -z, x,)

Note that ¥ (suppT) C N, so T is again a N'-graded ring. Furthermore, we
have rel.dim7" = reldimT = rel.dimT = 6. If T" is standard, by [HHRT,
Theorem 4.1] there exists a polynomial Q(¢1,...,%) € Qty,...,%] of total
degree § —r
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with ap € Z, an > 0 if |n| = § — 7 such that for i > 0
Qir, ... ,ir) = lengthp[ T" Ji1yenin)

Then, by defining P(t1,...,t,) = Q(t1 — dsta — ... iy, ... byt — dL 7 My, 1),
let us observe that for i1 > dbis + ... + dlip, ... ir—1 > dh 7 Y, dp 3> 0, we

have

P(i1,...,i) = lengthp [‘Tﬂp]

. . . . N
(i1 —d%lz—...—dll.lr,...,lr__l—d; irir)

= lengthp [_'I‘—](il,...,ir)
= lengtha [Tg;,. 1)

so we get the statement.

T is standard or, equivalently, that T -

Therefore we only have to prove that
can be generated over B by homogeneous elements in degrees (e1,...,er) such
that e;4y1 = ... = e =0,¢ =1, ;.1 = dﬁ_lei, €j_o9 = df:%eij + dﬁﬁQei,

., el = dses + ...+ dle;. Assume that T is generated over B by
homogeneous elements 211, ..., 21k, --»%rl,- -1 %k, 0 degrees deg (z15) =
(d%j, .. ,déj_l, 1,0,...,0). Let us take a homogeneous element z in T, with
degz = (a1,...,q;). Let j besuch that aj #0, a1 =... =, =0 (jis 0 if
z € B). We are going to prove by induction on j that z can be generated over
B by the homogeneous elements whose degrees satisfy the equalities before.
If § = 0, there is nothing to prove. If j = 1, then deg z = (1,0,...,0) and
we can write z as a linear combination with coefficients in B of products of
oy elements among 211, ..., %1k, S0 the result is trivial. Assume now that
4 > 1. By forgetting the first component of the degree, we have by induction
hypothesis that z can be written as a sum of terms of the type Aw; ... w; with
X\ € Blz11, - - -, 21k, ), and the degree of the elements w; satisfying the r —1 first
equalities. Set degw; = (s;, ey 8%), deg A = (5,0, ,0). We will finish if we
prove that

!
a > Z(d%s? +...+ d,lnsg).
Jj=1

But note that a; > diag + ... +diey = Y5 djs? +... +dis}. O

Our next aim will be to study for a given finitely generated r-graded S-
module L, the A-modules Hngr(L)n for 1 > 0, n € Z". We need two previous

lemmas.
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Lemma 1.5.2 Let L be a finitely generated r-graded S-module such that

(S UL = 0 for an integer u. Then there exits m = (mq,...,m,) € Z" such
that

Ln == O,
for n = (ny,...,n,) such that ny > d%nz + ..+ d}.nr +ma, o, Mot >

d;:hlnr + My—1;, Ny > M.

Proof. Since there exists u € Z such that (S )“L = 0, we have Supp (L) =
Vi(Ann L) C Vi (S4) =0, so rel.dim L = r — 1. Then the result follows from
Proposition 1.5.1. O

Lemma 1.5.3 (Homogeneous Prime Avoidance) Let Pi,. .., Py, € Proj "(S).
If T is any homogeneous ideal of S such that I ¢ F; fori = 1,...,m, then
there 1is a homogeneous element a such that a € I, a € Py U ... U Pp,.

Proof. We may assume that P; ¢ P; for ¢ # j, so for a given ¢, we have
that for any j # ¢ there exists a homogeneous element p;; € P, pi; ¢ L.
Then p; = [[, pi; satisfies that p; ¢ F;, but p; € P; for all j # 4. Next
we may take homogeneous elements a; € I, a; & F; for i = 1,...,m. Set
dega;p; = (41, .., q4). Since Sy ¢ P;, there exists an element of the type
Tij - .- Zrj, € P;. So multiplying each a;p; by a power of the corresponding
Tpj, We can assume that oy, = ... = @y = ap. Then, multiplying by suitable
powers of each z,_1;._, we may also assume that @y ,—1 = ... = Qmer—1 =
«,_1. By repeating this procedure as many times as necessary, we can assume
at the end that deg(aip1) = ... = deglampm) = (a1,...,0). Now a =
a1p1 + ... + GmPm 18 homogeneous and a € I, a & P U... U P, O

Now we are ready to prove that if L is a finitely generated r-graded S-
module, then the A-modules Hngr(L)n are finitely generated for all n € Z",
1 > 0, and vanish for all sufficiently large n. Here, the artinian assumption
on A is not necessary. In the graded case, this is a classical result due to J.P.

Serre.
Proposition 1.5.4 Let L be a finitely generated r-graded S-module. Then
(i) For alli >0, n € Z", the A-module H§+(L)n is finitely generated.

(11) There exits m = (mq,...,m;) € Z" such that Hngr(L)n = 0 for all
i >0, n=(ng,...,ns) such that ny > ding + ... + din, + my, ...,

Np—1 > d;_ln"r + Myp—1, Ny > M.
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Proof. We will follow the same lines as the proof of the graded version in
[BroSha, Proposition 15.1.5]. We will prove by induction on ¢ that HngL)n
is a finitely generated A-module for all n € Z’, and that it is zero for all
sufficiently large values of n. This proves the statement because H §+ (L)=0
for all ¢ greater than the minimal number of generators of 5.

Assume ¢ = 0. Then Hg+ (L) is a finitely generated r-graded S-module
since it is a submodule of L, and so Hng (L)y is a finitely generated A-module
and there exists u € N such that (S+)”Hg+(L) = 0. Then, according to
Lemma 1.5.2 there exists m € Z" such that Hg+(L)n = 0 for ny > ding +
A din,ﬂ + My ey Tl > di7tng + me_t, Ny > M.

Now let us assume 4 > 0. From the r-graded isomorphism H§+(L) =
I—.i’ngr(L/Hg+ (L)), we may replace L by L/Hg+(L) and then assume that
Hg+ (L) = 0. Then Sy ¢ P for all P € Ass(L), and so by the Prime -
Avoidance Lemma there exists a homogeneous element z € S, of degree
k = (ki,...,ky) such that z ¢ P for all P € Ass(L). Looking at the proof of
the Prime Avoidance Lemma, notice that we can choose « such that k satisfies
ki > diky 4 - +diky, .., kp—1 > di 7'k, Then we get an r-graded exact
sequence

0 — L(-k) =% L — L/zL — 0,

which induces for all n € Z” the exact sequence of A-modules
HE N LjoL)n = Hy, (Ln-x = Hg, (D -

By the induction hypothesis, there exists m € Z" such that Hg‘;l(L JxL)n =
for all n = (ny,...,n,) such that ny > d%ng + ...+ d}nr ST, ey Nl >
dr=tn, + mMp_1, ny > M. Now let n verifying these inequalities. Then note

that for any s > 1, n + sk also satifies them, and so we have exact sequences
0 — H, (L)n_x = Hs, (L)nt(s-1k -

Since H§, (L) is Sy-torsion and z € Sy, we have Hj, (L)p-x = 0. Therefore,
by taking m = ™ — k, we obtain Hg (L)n = 0 for all n such that n; >
d%ng + ..+ dinr + My, ey Tl > di_lm + M1,y Ny > M.

Now let us ix n € Z7. If ng > ding + ... + diny + ma, ..., npoy >
dr~'n, + my_1, ny > m;, we have that Hngr(L)n = 0, and so it is a finitely
generated A-module. Otherwise, let us take y € Sy such that y ¢ Upcassn) P
with degree 1 = (I1,...,l,) such that n +1 satisfies the previous inequalities
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(we can find such a y by the Prime Avoidance Lemma). Then we have the

graded exact sequence
HE (L/yD)ng1 = Hy, (D)n = Hi, (L)ng1 =0,

and from the induction hypothesis we also have that Hfgjrl (L/yL)ny1 is a
finitely generated A-module, and so Hg, (L)n. O

We have already shown that the Hilbert function of any finitely generated
r-graded S-module is a polynomial function for large n. Our next result
precises the difference between the Hilbert function and the Hilbert polynomial

for any n.

Proposition 1.5.5 Let L be a finitely generated r-graded S-module. Then for
alnez”
H(L,n) — Pr(n) = (1) lengtha (HY, (L)n).
q
Proof. We will follow the proof of the graded version from [BH1, Theorem
4.3.5]. For an arbitrary finitely generated r-graded S-module L, let us define

the series
H (u1, ... ur) = Yonegr(H(L,n) — Pp(n))u”
Hg(uh ce )UT) = ZnEZT( Eq(_l)(] lengthA(Hg+ (L)n) )un’

We will prove the statement by induction on § = rel.dim L. If § =r — 1,
then Supp, L = 0, and so there exists m such that ST C Ann(L). Therefore
Hg+(L) = L, and hence the result is trivial. Assume now ¢ > r, and let
us consider L = L/Hg, (L). Since HY (L) is a finitely generated r-graded
S-module which is vanished by some power of S, there are integers 41,...,1r
such that Hg+(L)n = 0forng > dins+.. Ading iy, o ey > di i,
ny > ir. So we have Pp(t) = Pz(t), and it is enough to prove the result for L

because then, for all n = (ng,...,n;)
H(L,n) — Pr(n) = H(L,n) + lengthA(H(S)+(L)n) — Py(n)
= Zq(-l)qlengthA(Hg+(f)n) + lengtha (H%Jr (L)n)
= 3,(~1)%lengtha (HE, (L)n)-

So let us assume Hg+ (L) = 0. Then Sy ¢ P for all P € Ass(L), and so by

the Prime Avoidance Lemma, there exists a homogeneous element z € Sy of
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depree k = (ki, ..., k) such that = ¢ P for all P € Ass(L). Then we have the

r-praded exact sequence
0— L(-k) = L— L/zL —0,

with rel.dim I /z L < rel.dim L. Note that H(L/zL,n) = H(L,n)—H(L,n-k)
for all n, and so Pp/pr(t) = Pr(t) — Pr(t — k). We conclude H}J/mL(u) =
(1 —uX)HY (u). From the long exact sequence of local cohomology, we also get
]EI’}f/mL(u) = (1—u¥)H/(u). By the induction hypothesis, we have H’L/xL(u) =
I;’/%[(u) and so Hf(u) = Hf(u). O
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