Universitat
de Barcelona

On the diagonals of a Rees algebra

Olga Lavila Vidal

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a I'acceptacié de les seglients condicions d's: La difusié
d’aquesta tesi per mitja del servei TDX (www.tdx.cat) ha estat autoritzada pels titulars dels drets de propietat intel-lectual
unicament per a usos privats emmarcats en activitats d’investigacio i docéncia. No s’autoritza la seva reproduccié amb
finalitats de lucre ni la seva difusio i posada a disposicié des d’'un lloc alié al servei TDX. No s’autoritza la presentaci6 del
seu contingut en una finestra o marc alie¢ a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentacio
de la tesi com als seus continguts. En la utilitzaci6 o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes condiciones de uso: La
difusiéon de esta tesis por medio del servicio TDR (www.tdx.cat) ha sido autorizada por los titulares de los derechos de
propiedad intelectual Unicamente para usos privados enmarcados en actividades de investigacion y docencia. No se
autoriza su reproduccién con finalidades de lucro ni su difusién y puesta a disposicion desde un sitio ajeno al servicio
TDR. No se autoriza la presentacién de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de
derechos afecta tanto al resumen de presentacién de la tesis como a sus contenidos. En la utilizaciéon o cita de partes de
la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the
TDX (www.tdx.cat) service has been authorized by the titular of the intellectual property rights only for private uses placed
in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading and
availability from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the TDX service is
not authorized (framing). This rights affect to the presentation summary of the thesis as well as to its contents. In the using
or citation of parts of the thesis it's obliged to indicate the name of the author.




UNIVERSITAT DE BARCELONA

Departament d’/\lgebra i Geometria

ON THE DIAGONALS OF A REES ALGEBRA

Olga Lavila Vidal



Chapter 2

The diagonals of a bigraded

module

'I'hroughout this chapter we will study in more detail the diagonal functor in
the category of bigraded S-modules, where S = k[X7,..., X, Y1,...,Y;] is the
polynomial ring in n+r variables with the bigrading given by deg(X;) = (1,0),
deg(Y;) = (dj,1), and dy,...,d, > 0. This category includes any standard
bigraded k-algebra, by taking d; = ... =d, = 0, as well as the Rees ring and
the form ring of a homogeneous ideal in a graded k-algebra, when those rings
are endowed with an appropiate bigrading (see Section 2.3).

For a given ¢, e positive integers, let A be the (c,e)-diagonal of Z% Our
purpose is to study the exact functor ( )a : M2(S) — M*(Sa) (see Chapter
I, Section 4). We are mainly interested in studying how the arithmetic proper-
Lies of a bigraded S-module L and its diagonals L are related. Most of these
properties, like the Cohen-Macaulayness or the Gorenstein property, can be
characterized by means of the local cohomology modules. So it would be very
useful to relate the local cohomology modules of L with the local cohomology
modules of its diagonals. This has been done by A. Conca et al. in [CHTV]
from the study of the bigraded minimal free resolution of L over S, after devel-
oping a theory of generalized Segre products of bigraded algebras. In Section
2.1 we are going to present their results by a different and somewhat easier
approach. In addition, this approach will provide more detailed information
about several problems concerning to the behaviour of the local cohomology
when taking diagonals.

In Section 2.2 we focus our study on standard bigraded k-algebras. For
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a such k-algebra R, let R1 = @y LBi0), R2 = DjenLo,5)- In this case,
we give a characterization for R to have a good resolution in terms of the
as-invariants of Ry and Ro which, in particular, provides a criterion for the
Cohen-Macaulayness of its diagonals. We also find necessary and sufficient
conditions on the local cohomology of R and Ry for the existence of Cohen-
Macaulay diagonals of R, whenever R is Cohen-Macaulay.

Given a homogeneous ideal I in a graded k-algebra A, the Rees algebra
Ru(I) = @y,50 1™ of I can be endowed with the bigrading Ra (1) ;) = (I7):.
The last section of the chapter is devoted to study the diagonals of the Rees
algebra. In the case where A is the polynomial ring, we will show that if
the Rees algebra is Cohen-Macaulay then there exists some diagonal with this
property, thus proving a conjecture stated in [CHTV]. Furthermore, we will
give necessary and sufficient conditions on the ring A for the existence of a

Cohen-Macaulay diagonal of a Cohen-Macaulay Rees algebra.

2.1 The diagonal functor on the category of bi-

graded modules

Let S = k[X1,...,X,,Y1,...,Y;] be the polynomial ring in n + r variables
over a field k& with the bigrading given by deg(X;) = (1,0), deg(Y;) = (d;, 1),
where di,...,d, > 0. Set d = max{ds,...,dr}, u = >]7_yd;. Let us denote
by M the homogeneous maximal ideal of §. Note that the irrelevant ideal S
of S is the ideal generated by the products X;Yj, fori=1,...,n,5=1,...,7.

Given c,e positive integers, let A be the (c,e)-diagonal of Z% For any
bigraded S-module L, let us recall that the diagonal of L along A is defined
as La = @sez Lics,es), which is a graded module over the graded ring Sa =
Ds>0 Ses,es)- Our first lemma computes the dimension of the diagonals of a
ﬁnit_ely generated bigraded S-module.

Lemma 2.1.1 Let L be a finitely generated bigraded S-module. For A = (c,e)
with ¢ > de + 1, dim LA = rel.dim L — 1.

Proof. The proof follows the same lines as the one given for the bigraded
standard case by A. Simis et al. in [STV, Proposition 2.3]. Set § = rel.dim L.
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According to Proposition 1.5.1, there is a polynomial P(s,t) € Q[s,t] of total
degree 0 — 2 of the type

s—dt\ [t
P(s,t) = E a )
(1) k4+1<d—2 kl< k ><l>

with ag; > 0 for any k,l verifying k + 1 = 8 — 2 such that for : > dj, j > 0,
P’(i,§) = dimy L ;). For any ¢ = de + 1, let us consider the polynomial
()(u) = P(cu,eu) € Quj. Then Q(u) = dimg Ly en) = dimg (LA )y for u large
enough and deg Q(u) = 6 — 2. Therefore dim La = §—1.0

IFrom now on in the chapter we will always consider diagonals A = (c,e)
with ¢ > de + 1. The next two propositions are inspired in some results and
techniques used by E. Hyry in [Hy]. The first one shows how the local coho-
mology modules of L with respect to S are related to the local cohomology

modules of La with respect to Ma.

Proposition 2.1.2 Let L be a finitely generated bigraded S-module. Then

there are graded isomorphisms

Proof. Let A be the ideal of S generated by Ma. Observe that V5r = VN,
so we immediately get a bigraded isomorphism Hg+(L) ~ Hi (L), Yqg > 0.
Deuoting by g1, . .,9s & k-basis of S(c,e)s We have that A can be generated
DY g1,.--,0s- S0 We may compute the local cohomology modules of L with

respect to A from the Céch complex built up from these elements

C: 00" Ct—...=2C =0,

i
C - @ Lgilgiz'“git’

1<y <ip<..<i¢<s

with the differentation dt : C* — C**! defined on the component

Lgil Gig -9ty Lghgj2'“gjtgjt+1

to be the homomorpEsm (=)™ 'nat : Lg gi)ogi, — (Lgi, giy9iy ) 9im 1L
livy .o it} = {41y« s Jmy -2 41}, and O otherwise. Then H},(L) = HY(C).
We can also consider the Céch complex associated to La built up from

J15-+39s
D:0sD'>D'—... D=0,
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t_
D" = @ (La)giy gig.01,
1<i1 <ip<...<i<s

with the differentation % : D* — D't defined on the component

(LA)gil Gig 91y — (LA)gjl 9ia-95¢ 9541

to be the homomorphism (—1)" Inat : (La)giygig9i = (La)gi im0, ) gm
if {iq,...,%} = {jl,...,j{;,...,jt+1}, and 0 otherwise. Then Hj{AA(LA) =
HY(D’). Note that d'|D* = ', so we have (Kerd')p = Kerd’, (Imdi)p =
Im ¢*. Therefore we may conclude H{(L)a = H},, (La). O

Now, let 57,5 be the bigraded subalgebras of S defined by S =
kX, ..., Xy], So = k[Y1,...,Y;], and note that the ideals m; = (X1,..., X;,)
and mg = (Y¥7,...,Y,) are the homogeneous maximal ideals of S; and Sy re-
spectively. Then let us define M; to be the ideal of S generated by m; and
Moy to be the ideal of S generated by my. Note that My + My = M and
M1 N My = Sy. Therefore we have

Proposition 2.1.3 Let L be a finitely generated bigraded S-module. There is

a naturael graded exact sequence
(Pq
o= Hi(L)a — HY, (D)a & Hi, (L)a — Hi (La) =2 H{(L)a — ...

Proof. We get the result by applying the diagonal functor to the Mayer-
Vietoris sequence associated to Mj, My and by then using Proposition 2.1.2.
|

As a first consequence we may recover the following result by A. Conca et

al. in [CHTV).

Corollary 2.1.4 [CHTV, Theorem 8.6] Let L be a finitely generated bigraded

S-module. For all ¢ > 0, there exists a canonical graded homomorphism
1
(PqL : H}\AA(LA) = Hjl\j(— (L)A7
which is an isomorphism for ¢ > max{n,r}.
Proof. Since M; is generated by n elements, we have that Hj, (L) = 0 for

any ¢ > n. Similarly, HLZ(L) = 0 for any ¢ > r. Now, the corollary follows
from Proposition 2.1.3. O

Moreover, let us also notice that Proposition 2.1.3 precises the obstructions
for ¢} to be isomorphism. Denote by [¢? ], : H}J\AA(LA)S — Hj{:{l(L)(cs’es) the
component of degree s of the map ¢%. Then we have
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Corollary 2.1.5 Let L be a finitely generated bigraded S-module. For a given
s € 7, the following are equivalent

(i) [p%]s is an isomorphism, for all ¢ > 0.

(i) Hjl\/{l (L)(cs,es) = H,;]\/lz (L)(cs,es) =0, for all ¢ > 0.

In particular, ¢% is an isomorphism for all ¢ > 0 if and only if H/q\,tl(L)A =
1Y, (L)a =0 for all ¢ > 0.

Therefore, the obstructions for the maps ¢? to be isomorphisms are located
in the vanishing of the local cohomology modules with respect to M and M.
So our next goal will be to study these local cohomology modules. For that,
let us consider
0—-Di——=D1—>Dy—=L—=0

the Z?-graded minimal free resolution of L over S. For every p, D, is a finite
direct sum of S-modules of the type S(a, b). If we apply the diagonal functor to
this resolution, we get a resolution of La by means of the modules S(a,b)A.
Let us begin by studying the local cohomology modules of the bigraded S-
modules obtained by shifting S with degree (a, b).

First, let us fix some notations. For o = (ai,...,a) € Z", and § =
(f1,...,B,) € Z7, we write X for the monomial X7 --- X2 and Y? for
the monomial Ylﬁ1 .- YP. Note that deg(X®) = (X o,0), deg(Y?) =
(S diBiy Soiq Bi). We will write @ < 0 (or > 0) if all the components of

«v satisfy this condition, and the same for #. Then we have:

Proposition 2.1.6 Let a,b € Z.

(i) q (0 fq#n
0500 = (g, ppgbxer ) 0
(ii) 0 ifg#r
Hi, (S(a, b)) = { (@az0,p<0 kXYP)(ab) ifg=r

Proof. Since S(a,b) is a free Si-module with basis the monomials in

the variables Yi,...,Y,, we have that Hj, (S(a,b)) = 0 for all ¢ # n, and
/‘13(/11(5(@,[?)) = (@ﬂonﬁl(Sl)Yﬁ)(a,b) = (@a<0,ﬂ20 anYﬁ)(%b)- By




THE DIAGONAL FUNCTOR 26

taking into account that S(a,b) is a free Sp-module with basis the mono-
mials in the variables Xi,..., Xy, we also get H}, (S(a,b)) = 0 for all g # r,
and I, (S(0,5) = (@uzo B (52)X2)(0,8) = (Bazop<o KXY P)(a,b). O

ma

Corollary 2.1.7 Let a,b € Z.

()
smm<Hhxsmw»A>={?8€Z,%Qgsgg%%%} e
(i)
Supp(Hjl\/[z(S(a,b))A):{?Sezl%ﬂgsg “bor) Zgi:

Proof. From Proposition 2.1.6, a straightforward computation gives the
support by taking into account that a monomial XY B in H%y (S(a,b)) has
degree (p,q) with p = Y7y oy + 571 djfj—a and ¢ = 35—y B; —b. Similarly
one gets (44). O

For a real number z, let us denote by [z] = max{n € Z | n < z} the integral
part of z. The following corollary gives necessary and sufficient numerical
conditions for S(a,b)a to be Cohen-Macaulay in terms of the diagonal A and
the shift (a,b). In particular, notice that’Sa is Cohen-Macaulay for any A.

Corollary 2.1.8 [CHTV, Proposition 3.4] Assumen,r > 2. For anya,b € Z,

S(a,b)a is a Cohen-Macaulay Sa-module if and only if [bdc%"giﬁ] < %b and
[—b~r] < (b+r)d—u—a
e c—ed ’

Proof. Since S is a domain, we have that rel.dim S(a,b) = rel.dim S =
dimS = n+r, and so dim S(a,b)a = n+r — 1 by Lemma 2.1.1. Therefore,
S(a,b)a is Cohen-Macaulay if and only if Hy, (S(a,b)a) = 0 for any ¢ <
n +r — 1. By Proposition 2.1.3, note that for ¢ < n +r — 1 we have that

HY,, (S(a,b)a) & H, (S(a,0)a ® H,, (S(a,0))a.

Since n,r > 2, we get n +r —2 > n,r, and then the result follows from
Corollary 2.1.7. O

Remark 2.1.9 Note that if n = r = 1, the proof above shows that S(a,b)a is
always Cohen-Macaulay. In the case where n > 2, r = 1, we get that S(a,b)a

is Cohen-Macaulay if and only if [_be”] < (b+TC)iie_du_a, whileifn =1, r > 2,

S(a,b)a is Cohen-Macaulay if and only if [2-252] < =t

c—ed
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I'or simplicity, from now on we will assume n,r > 2. Now, let L be a
finitely penerated bigraded S-module. For any p > 0, let us denote by 2,1
the set of shifts (a,b) which appear in the place p of its bigraded minimal free
resolution, and €, the union of all these sets. Often we will write £y, € if
there is not danger of confusion with respect to the module L. The next result
relates the local cohomology of the diagonals La of L to the local cohomology
of the diagonals S(a,b)a of the modules S(a, b) which arise in its minimal free

resolution.

Proposition 2.1.10 Let L be a finitely generated bigraded S-module. Then

(i) 1f H.(/]\/ll(L)(cs es) # 0, then there exists a shift (a,b) € Qp_q,1 such that
H7y (S(a,6)) (espesy # 0, and s0 b g boemn,

c—€e

W) If HY es,es) 7 0, then there ewists a shift (a,b) € Qp_q,1 such that
M (L) (ese )
Hiy, (S(a:0)) (cs,e) £ 0, and so Q’—ﬂ—@—u <s< b r,

Proof. To prove (i), let 0 — Dy = ... = Do = L =0 be the bigraded
minimal free resolution of L over S. By considering Cp = Coker(Dp.1 — Dp)

for p > 0, this yields the short exact sequences
0 — Cpt1 — Dp = Cp =0, Vp 0.

It HY, (L) # 0, then ¢ < m because M is generated by n elements. In the
case g = n, from the short exact sequence 0 — Cy = Dy — L — 0, weobtain a
bigraded epimorphism H%,, (Do) — Hjy, (L). Therefore, if H} (L)(cs,es) # 0
then HMI(DO)(CS es) 7 0, so by Corollary 2.1.7 there exists a shift (a,b) € Qg
such that = ? <5< bdc_“e nIf ¢ < n, since Hyy, (Dp ) =0 for any v # n, we

have bigraded isomorphisms
HY, (L) = HGNG) = H(Co) = . = HH(Cug),
a bigraded monomorphism
0— HJ\LAZI (Cp—g-1) = Hjs, (Cn—g),
and a bigraded epimorphism
H7y, (Dn—gq) = Hjiy, (Crg) = 0.

Therefore, szwl(L) (cs,es) 7 0 implies H7y, (Dn—g)(es,es) # 0, and we are done
by Corollary 2.1.7. Similarly one can prove (i7). O
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Remark 2.1.11 Given a finitely generated bigraded S-module L, for each
diagonal A = (¢, e) let us consider the sets of integers

x2= |J supp(H},(S(ab)a),

(a,b)er,L
vA= U supp(H,(S(a,b))a),
(a>b)€Qp,L
where X2 = Y2 = 0 if p < 0. Let X2 = |, X5, Y2 = U, Y. Then,

Proposition 2.1.10 jointly with Proposition 2.1.3 says that if s ¢ X5  UY,2 |
then [p?]; is a monomorphism and [(p%_l] s 1s an epimorphism. In particular,
for dn integer s ¢ X2 U Y2 then [p?], is an isomorphism for any ¢. (In fact,

it is enough to define X2 = <, X5 and Y2 = Uy, V).

Note that the set of integers s satisfying that —_éQ < s < % and
gbj’%_;lﬂ <s< _be_r is empty or it only contains the integer 0 for suitable
¢, e, that is, the sets X2 and Y2 are contained in {0} for those A = (c,¢). So

we immediately get:

Corollary 2.1.12 Let L be a finitely generated bigraded S-module. There
exist positive integers ep,« such that for any e > eg, ¢ > de + «, we have
isomorphisms [@1]s : Hji, (La)s = Hﬂrl(L)(cs’es) for all g > 0 and s # 0.

Proof. It is enough to take eg > max{b,—b — 1 : (a,b) € Qr} and a >
max{bd —a —n,u+a—(b+r)d: (a,b) € Q}. O
A similar result has been obtained in [CHTV, Lemma 3.8]. Therefore, we

have that for diagonals large enough the only obstruction for the map ¢? to

be an isomorphism is located in the component of degree 0.
Definition 2.1.13 Let L be a finitely generated bigraded S-module and let
0—=+Dy— =D —-Dyg—=L—=0

be the bigraded minimal free resolution of L over S. Let A be a diagonal.
We say that the resolution is good for A if all the modules (Dp)a are Cohen-
Macaulay, that is, X® = Y2 = (. We say that the resolution is good if there

exists A such that the resolution is good for A.

From Remark 2.1.11, we immediately get that if L has a good resolution

for A then the corresponding maps ¢ are isomorphisms.
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Corollary 2.1.14 Let L be a finitely generated bigraded S-module whose res-

olution is good for A. Then we have graded isomorphisms

¢l HY, (La) = HIN (L) A, Vg > 0.

Our next goal is to study the existence of diagonals A for which the bi-
praded minimal free resolution of L is good for A. To this end, following
[CHTV] we define:

Definition 2.1.15 We say that a property holds for ¢ >> 0 relatively to e > 0
il there exists eg such that for all e > eg there exists a positive integer c(e)
(depending on e) such that this property holds for all (c,e) with ¢ > c(e).
We will often write ¢ 3> e > 0. In fact, in the statements we will prove we
could replace the condition ¢ 3> e > 0 by the stronger one that there exist
positive integers eg, o such that the property holds for e > eg, ¢ > de + .
IFor simplicity, we will keep the notation and definition of ¢ > e > 0 from
|CHTV].

Next result provides necessary and sufficient numerical conditions for the

Cohen-Macaulayness of S(a,b)a for ¢>> e > 0. Namely,

Proposition 2.1.16 [CHTV, Corollary 3.5 Let a,b € Z. Then S(a,b)a is a
Cohen-Macaulay module for ¢ > e > 0 if and only if a,b satisfy one of the

following conditions:
(i) b< —rand (b+r)d—u—a>0,
(i) —r < b <0,

(iii) b >0 and bd —a —n <O0.

Proof. From Proposition 2.1.3, we have that S(a,b)a is Cohen-Macaulay
for ¢ > e > 0 if and only if 0 & supp (H}, (S(a,b))a) Usupp (Hjy,(S(a,0))a)
for ¢ > e > 0. Then the result follows from Corollary 2.1.7. O

Notice that, for a given diagonal A, we have that S(a, b)a is Cohen-
Macaulay if and only if the corresponding maps (pqs(a,b) are isomorphisms for
all ¢ > 0. On the other hand, from the proof of Proposition 2.1.16, observe
that if (a, b) does not satisfy any of the conditions above then S(a,b)a is never
Cohen-Macaulay. Therefore, we can not hope to extend Corollary 2.1.12 to
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the component of degree 0 of the maps ¢?. In fact, the proof of Proposition
2.1.3 shows that [p?]o does not depend on the diagonal A.

Furthermore, note that the proof of Proposition 2.1.16 also shows that if
there exists A such that S(a,b)a is Cohen-Macaulay then S(a,b)a is Cohen-
Macaulay for ¢ > e > 0. Therefore, if a finitely generated bigraded S-
module L has a good resolution, then the resolution of L is good for diagonals
A = (c¢,e) with ¢ > e > 0.

Up to now we have related the vanishing of the local cohomology with
respect to M; and My of a bigraded S-module L with the vanishing of the
local cohomology with respect to M; and My of the modules S(a,b) which
arise in the bigraded minimal free resolution of L over S. This study has
led us to get sufficient conditions on the shifts (a,b) in order to ol to be
isomorphisms. In the rest of the section we shall deal with the computation of
the local cohomology modules of a bigraded S-module L with respect to the
ideals M1 and My by themselves.

In Corollary 2.1.14 we have given sufficient conditions on the shifts in Qj,
to get that the maps ¢} are isomorphisms for large diagonals. Next we give
necessary and sufficient conditions for the maps ¢? to be isomorphisms in
terms of the local cohomology modules of L with respect to M; and M,.
Namely,

Proposition 2.1.17 Let L be a finitely generated bigraded S-module. Then

the following are equivalent:
(i) There exists A such that ¢ is an isomorphism for all qg>0.
(ii) For large diagonals A, o} is an isomorphism for all ¢ > 0.
(i) Hjy, (D)0,0) = Hiy, (L)) = 0 for all ¢ > 0.
For an integer e and a bigraded S-module L, let us define the graded S;-
module L® = @iezl(; ). Then we have an exact functor ( )¢ : M?(S) —

M?(S1). The bigraded initial degree of a bigraded S-module L is defined by
indeg(L) = (indeg; (L), indeg, (L)), where

indeg, (L) = min{i | 3j s.t. Ly; j # 0},
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Proposition 2.1.18 Let L be a finitely generated bigraded S-module. Then:

(i) H (L)) = HE,(L)i . In particular, Hi, (L)) =0 for i > aq (L)
or j < indegy(L).

('/7:7:) Hj\AZ(L)(i,j) =0 forj> az(L).

Proof. As Si-module, L is the direct sum of the modules L = @;L; )
Since My is the ideal of S generated by m; = (X1,...,X5), we have that
1%, (L) = @;HY, (I7), and so we get (i).

Now let 0 — D, — --- = D1 — Dy — L — 0 be the bigraded minimal free
resolution of L over S, where D, = @, p)eq, S(a,b). By taking short exact
sequences as in Proposition 2.1.10, it is just enough to prove that if j > al(L)
then HY, (S(a,b))i,) = 0 for any (a,b) € 2 and ¢ > 0. The case ¢ # T
is trivial. From Proposition 2.1.6, we may deduce that H},, (S(a,b)) ) = 0
for j > —b — r. This finishes the proof because, according to Theorem 1.3.4,
a2(L) > —b—r for any (a,b) € . O

In the particular case di = ... = dr = d, S can be thought as a stan-
dard bigraded k-algebra by a change of grading. If we consider the morphism
©(p,q) = (p — dq,q), observe that p(supp S) C N2, s0 S is a N?-graded ring
with [S?](p.q) = S(p+dg,q)- Noting that deg(X;) = (1,0) for ¢ = 1,...,n, and
deg(Y;) = (0,1) for j = 1,...,7 as elements of 5%, we have that 5% is stan-
dard. For a bigraded S-module L, let us recall that the S¥-module L¥ is the
S-module L with the grading defined by [L¥],.¢) = Lptdg,q)-

Furthermore, in this case, given an integer e we can define an exact functor
(Ve : M?(S) — M*'(S3) in the following way: For any bigraded S-module L,
we define L, to be the graded Sy-module L, = @ ¢z L(etaj,j)- Then we have

Proposition 2.1.19 Assume that dy = ... =d, = d. For any finitely gener-
ated bigraded S-module L, we have

(i) H (L)) =0 fori>dj + al(L¥).

(ir) HY (L)) = Hb,(Li—g); - In particular, Hiy, (L)) = 0 for j >
ag(Li-gj)-

Proof. Let 0 — D; = ---— Dy — Dy — L — 0 be the bigraded minimal

free resolution of L over S. Observe that

S(a,b)? = D s 5(a,0)(i+4j,)
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= D j) Slatitdip+)
= DBi5) S(a—db+itd(b+5),b+7)
— §%(a — db,b),

so in particular S(a,b)¥ is a free §¥-module. Therefore, by applying the exact
functor ( )¥ to the resolution of L we get that

0—=Df —...—»Df =LY =0

is a bigraded minimal free resolution of L¥ over S¥. Since a'(S¥®) = —n, from
Theorem 1.3.4 it follows that

al(L¥) = max{db—a| (a,b) € QL} —n.

Tf i, are such that ¢ > dj + ai(L¥), then we have that ¢ > dj +db—a—n
for any shift (a,b) € €, and so from Proposition 2.1.6 we have that
Hf, (S(a,b))(y = 0 for any ¢ > 0. By taking short exact sequences as in
Proposition 2.1.18, we then obtain H;q\Al(L)(i,j) =0forq>0,i>dj+al(L?).

To prove (ii), note that since d; = ... = dr = d we may decompose
I, as the direct sum of the S;-modules L;. Then, by using that My is the
ideal of S generated by my = (Y1,...,Y;), we obtain H{, (L) = @; Hi,(L:).
Noting that deg (Y1) = ... = deg (¥;) = (d, 1), we finally get HY (L)) =
Hi,(Livgj)j. O

2.2 Case study: Standard bigraded k-algebras

Our aim in this section is to particularize and improve for standard bigraded k-
algebras several results proved in Section 2.1. So let R be a standard bigraded
k-algebra generated by homogeneous elements z1,...,%n, Y1, -, Yr in degrees
deg (z;) = (1,0), i = 1,...,n, deg(y;) = 0,1), 7 = 1,...,r. By taking
the polynomial ring S = k[X1,..., X, Y1,..., Y] with the bigrading given
by deg(X;) = (1,0), deg(Y;) = (0,1), we have that R is a finitely generated
bigraded S-module in a natural way.

Tn this case, denote by Ry = RO = Dien R(m), Ry = Ry = EB]-GN R )-
Observe that R, and R are graded k-algebras, and denote by my and mp
their homogeneous maximal ideals. Given e € Z, we may define the graded
Ri-module R® = @izl .y and the graded Ro-module R, = @jezR(c 5. By
a straightforward application of Proposition 2.1.3, we get
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i*roposition 2.2.1 There is a natural graded ezact sequence
a ol
s 1 (R)a = Hig, (B)a ® By, (R)a = Hiy, (Ra) 25 HOT(R)a =
i+ purticular, given s € Z, the following are equivalent:
(i) |¢%)s is isomorphism, Vg > 0.

(ii) H

my

(R%)es = 0 and HY,(Res)es =0, ¥ 2 0.

m9

*roof. 1t follows from Proposition 2.1.3, Proposition 2.1.138 and Proposition
21,19, 0

As a direct consequence of Proposition 2.2.1 we have:
Corollary 2.2.2 ¢% is an isomorphism for q > max{dim R1,dim R}

Proof. Set di = dimRy, d2 = dim R,. It is enough to prove that HY, (R%) =
14, (R,) = 0 for any e € 7, q > max{dy,dz}. But note that R® is a graded
1-module, so HE (R*) =0 for ¢ > dy. Similarly, H{ (Re) = 0 for ¢ > do

mi mo

and we are done. O

lrom Proposition 2.2.1 we can also determine a set of integers s, depending
on the diagonal A, for which [%]s is an isomorphism for all ¢ > 0. More

explicitly,
Corollary 2.2.3 (i) [pks s isomorphism for s <0.

(ii) [%)s is isomorphism for s > max{ay(R)/c, a?(R)/e}. In particular,
4, (Ra) < max{ al(R)/c,ai(R)/e}.

Proof. It is a direct consequence of Proposition 2.2.1, Proposition 2.1.18

and Proposition 2.1.19. O

We have shown that [p%]s is an isomorphism for any s < 0. Moreover,
note that if ¢ > al(R) and e > a2(R), then [p}]s is an isomorphism for any
4+ - 0. We may ensure that [p%]o is an isomorphism for any ¢ if R has a good
rosolution. Next we study the existence of a such resolution. The following
rosult provides a useful characterization for a standard bigraded k-algebra R

L0 have a good resolution by means of the a,-invariants of Ry and Ra. Namely,

i’roposition 2.2.4 The following are equivalent:
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(i) R has a good resolution.
(17) ax(R1) <0, ax(R2) < 0.
Proof. Let us consider
D:0—-Di— - =Dy —-Dyg=S—-R—=0

the bigraded minimal free resolution of R over S, where Dy = @, p)eq, S(a,b).
Note that a, b are non-positive integers. So, by Proposition 2.1.16 the resolu-
tion is good if and only if all the shifts (a,b) satisfy one of the three following

conditions
(i) —r<b<o0.
(ii) b =0 and —n < a.
(iii) b < —r and a < 0.

It is not hard to check that these conditions are equivalent to that for any shift
(a,0) € Qg we have a > —n, and for any shift (0,b) € 2 we have b > —r.
Observe that

§(a,0)° = ) Satsp) =

{O itb <0
J

Si(a) ifb=0

So by applying the functor ( )° to the resolution of R we obtain a graded free

resolution of Ry over Si:
F:0F— 2 —>F=5—->R—0,

where F, = (D,)? = Ducy, S1(a), and v, = {a € Z: (a,0) € Qp} (F, =0
if 4, = 0). Furthermore, we have that Im(F,) C mF,_; for all p = 1,...,¢.
Hence this resolution is in fact the graded minimal free resolution of Ry over

S1. Then we can use Theorem 1.3.4 to compute a.(R1) :
ax(R1) = max{—a|a € Upyp} +a(S1) =
= max{—a | (¢,0) € Qr} —n.

Therefore, any shift (a,0) € Qg satisfies a > —n if and only if a,(R;) < 0.
Similarly, any shift (0,b) € Qg satisfies b > —r if and only if a,(R2) < 0. O

As an immediate consequence we get a criterion for the existence of Cohen-
Macaulay diagonals of a standard bigraded k-algebra which extends [CHTV,
Corollary 3.12]. More explicitly,



STANDARD BIGRADED k-ALGEBRAS 35

Corollary 2.2.5 Let R be a standard bigraded k-algebra with ax(R1) < 0,
a,(Ry) < 0. Then depthRa > depth R — 1 for large A. In particular, if R is
('ohen-Macaulay, then so Ra for large A.

For a standard bigraded ring R defined over a local ring with
o' (R),a?(R) < 0, it has been shown in [Hy, Theorem 2.5] that if R is Cohen-
Macaulay, then its (1,1)-diagonal inherits this property. This result can be
oxtended to any diagonal of a standard bigraded k-algebra.

Proposition 2.2.6 Let R be a standard bigraded Cohen-Macaulay k-algebra
with a*(R),a?(R) < 0. Then Ra is Cohen-Macaulay for any diagonal A.

Proof. The bigraded standard k-algebra R has a presentation as a quotient
of the polynomial ring S = k[X1,... X, Y1,...,Y,] bigraded by deg(X;) =
(1,0), deg(Y;) = (0,1). According to Theorem 1.3.4, for any shift (a,b) € g
we have that

0< —a<a'(R)—a'(S)<n
0< —b<a*(R)—a*(S) <.

"Then note that for any diagonal A = (c,e) with c,e >0,

x4= {sEZijgsg—a—n}z(b
e c
(G‘:b)EQR
A —a —b—r
= 7] —<s< =
Y U {se ]C <s<— } =10,

((L,b)EQR

4o the resolution is good for any A. Now, by Corollary 2.1.14 we have
34, (Ra) = H/q\j[l(R)A — 0 for g < dim R — 1, so we are done. U

We finish this section by giving necessary and sufficient conditions on the
local cohomology of Rq and Ry for the existence of a Cohen-Macaulay diagonal
of a standard bigraded Cohen-Macaulay k-algebra R. Namely,

Proposition 2.2.7 Let R be a standard bigraded Cohen-Macaulay k-algebra
of relevant dimension 6. Then there exists A\ such that R is Cohen-Macaulay
if and only if HL, (Ri)o = H} (Ra)o =0 for any ¢ <4 —1.

mo

Proof. According to Lemma 2.1.1, we have that dim R = 6 — 1 for any
A. By taking into account Corollary 2.1.12, there exists A such that Ra is
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Cohen-Macaulay if and only if there exists A such that H/‘{AA(RA)O = 0 for
any g < 6 — 1. But from Proposition 2.2.1, for any ¢ < § — 1 we have

Hi,, (Ra)o = HE (Ri)o ® HL,(Ra2)o.

mi

This finishes the proof. O

2.3 Case study: Rees algebras

Let A be a noetherian graded algebra generated in degree 1 over a field k.
Then A has a presentation A = k[Xy,...,X,]/K = k[z1,...,2n], where K
is a homogeneous ideal of the polynomial ring k[X1,..., X,] with the usual
grading. Let m be the graded maximal ideal of A. For a homogeneous ideal I

of A, let us consider the Rees algebra
R=Ru(I) = I"t" C Alt]
n>0

of I endowed with the natural bigrading given by
R = (I)s,

introduced by A. Simis et al. in [STV]. If I is generated by forms f1,..., fr
in degrees dy, ..., d, respectively, note that R is a k-algebra finitely generated
by Z1,...,Zn, f1t, ..., frt with deg(z;) = (1,0), deg(f;t) = (d;,1), and that
it has a unique homogeneous maximal ideal M = (z1,...,Zy, f1t,...., [rt).
By considering the polynomial ring S = k[X1,...,X,,Y1,...,Y;] with the
grading determined by setting deg(X;) = (1,0) and deg(Y;) = (d;, 1), we have
a bigraded epimorphism:

S — R
Xi — T
}/j — fjf,

so that R has a natural structure as finitely generated bigraded S-module. Set
d = max{dy,...,d,}. For any ¢ > de + 1, the A = (c, ¢)-diagonal of the Rees
algebra, is

Ral)a = @(Ies)cs = k[(I%)c).

§>0
Note that k[(I¢).] is a graded k-algebra with a unique homogeneous maximal

ideal m = Ma. The interest of these algebras k[(I¢).] is, as we will show in
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ilie next chapter, that for any ¢ > de + 1 there is a projective embedding of
the blow-up X of Proj (A) along I so that X = Proj (k[(I¢)c])-

dot i = dim A. The next lemma computes the dimension of the rings
ki017),] extending [CHTV, Lemma 1.3] where the case A = k[ X1,...,Xn] was

atudied.

Lemma 2.3.1 Assume I ¢ p, for all p € Ass(A). Then dim k[(I¢)e] = 7 for
all ¢ 2 de + 1.

i"vroof. Since I is not contained in any associated prime of A, we have that
miy associated prime ideal of the Rees algebra R is relevant. So rel.dim R =
dim Jt. Turthermore, dim R = 7 + 1 by [BHI, Exercise 4.4.12]. So we may
conclude dim k[(I¢)e] = 7 by Lemma 2.1.1. O

[om now on we will always assume that I ¢y, for all p € Ass (A).
The following result relates the local cohomology of the graded k-algebras
k|(1°)] to the local cohomology of the Rees algebra. By setting n = (It) =
(Jily .., frt) C k[It] = k[f1t,. .. , frt], we have

Proposition 2.3.2 Let I be an ideal of A generated by forms of degree < d.
Jior any diagonal A = (c,e) with ¢ 2 de + 1, there is a natural graded ezact

fa‘ifl['ll,(f’ll,(,’(ﬂ
q
o HY(R)a — Hep(R)a @ Hip(R)a = HE (k[(I9))) 22 H (R)a = -

Proof. It is clear that H%, (R) = Hjz(R) and HY,,(R) = Hip(R). Then
(he result follows immediately by applying Proposition 2.1.3 to the Rees alge-
Iwa IR of 1.O

In Corollary 2.1.4 we proved that the maps ¢! become isomorphisms for
¢ max{n,7r}. This bound was refined for standard bigraded k-algebras in
Corollary 2.2.2. Next we want to consider the case of the Rees algebras. To
(his end, we are going to study the vanishing of the local cohomology modules
ol I with respect to nR. For any ideal T of A, the fiber cone of I is defined
as the graded k-algebra F = Fu(I) = @nx0 I /mI™. The analytic spread 1(I)
of I is then the dimension of the fiber cone, that is, I(I) = dim F. Note that
il 1 is generated by forms of the same degree d, the fiber cone is nothing but
1" (1) = k[Ig]. The following lemma shows the known result that the local
cohomology modules of R with respect to nR vanish in order g > I(I), but not
in order I[(I). We include the proof for the sake of completeness.
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Lemma 2.3.3 Let I be a homogeneous ideal of A. Set 1 = I(I). Then
H.(R) =0,Yg > 1 and H\z(R) # 0.

Proof. We may assume that the field & is infinite. Then there exists an ideal
J C I generated by [ = [(I) elements of A such that I"™ = JI™ 1 for m > 0,
that is, there exists a reduction J of I generated by [ elements (see [BHL,
Proposition 4.6.8]). Note that IR and JR are ideals with the same radical, so
HI(R) = Hip(R) = Hjz(R) = 0,Yq > I. Moreover, from the presentation
R — R/mR = F,(I) we get the epimorphism

so Hlp(R) #0. O

As a consequence, we get:

Corollary 2.3.4 Let I be an ideal of A generated by forms of degree < d. For

any A, we have a graded epimorphism
HE(K[(I°).]) 22 HE ' (R)a.

From Proposition 2.3.2 we may also deduce that for diagonals large enough
the positive components of the local cohomology of the diagonals of the Rees
algebra coincide with the positive components of the local cohomology of the

powers of the ideal. Namely,

Corollary 2.3.5 Let I be an ideal generated by forms of degree < d. For any
c>de+1, e >a2(R), s >0, there are isomorphisms

Hgn(k[(Ie)c])s = H (Ies)cs , Vg > 0.

m

Proof.  Let ¢,e be integers such that ¢ > de +1, e > a2(R). For any
s > 0, we have that HY (R)(cses) = HE(I*)es and HS, (R)(cs,es) = 0 by
Proposition 2.1.18. Thus from Proposition 2.3.2 we get the isomorphisms
HE(K[(I€)e])s = HE(I*)es.0

In the case where I is generated by forms in the same degree d (that is, I
is equigenerated) the Rees algebra is a standard bigraded k-algebra by setting

Ra(D)jy = (I)iras-
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Then we may apply the results in Section 2.2 to these Rees algebras. From
Lonnma 2.2.4, we get a useful characterization for the Rees algebra to have a
pgood resolution by means of the a,-invariants of the ring A and the fiber cone

of /. Namely,

Proposition 2.3.6 Let T be an ideal of A generated by forms in degree d.

The following are equivalent:
(i) The Rees algebra Ra(I) has a good resolution.
(i1) a.(A) <0, asx(Fu(I)) <0.

PProof. We have already noted that the Rees algebra is a standard bigraded
ving by means of B 5 = (I7)i14;- With this degree, notice that Ry = A and
Ry = kL) = Ful ). Then the result follows from Lemma 2.2.4. O

To apply Proposition 2.3.6, we need to know the a,-invariant of the fiber
cone. The next two lemmas bound it. The first one gives a lower bound by
means of the reduction number of (compare with [Tr1], [Sch2]), while the
second one gives an upper bound by means of the a,-invariant of the Rees

alpebra.

L,emma 2.3.7 Let (A,m) be a local noetherian ring with an infinite residue
Jield. Let I Cm be an arbitrary ideal of A, J a minimal reduction of I and l

the analytic spread of I. Then
aFo(D) +1<rs(I) < max{a;(Fu(I)) + 4} = reg (Fu(I)).

iroof. Let aj,...,a; be a minimal system of generators of J. For a € I,
dunote by a® the class of a in I/ml. Then af,...,a) are a (homogeneous)
system of parameters of F.(I) (see [HIO, Proposition 10.17]). According to
[H10, Lemma 45.1], we have

F.(I) )
a(Fu(D) +1 < max{n | [m] 0} < max{ai(Ba(D) + i}

On the other side,
r;(I) = min{n | = JIt}

In—}-l . JIn+mIn+1 }
mirtt — T mIntt

= min{ n | {—{f—@%—} =0}
n+1

= min{ n |

(al,...,al)
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F\“
= max{ n | (@0l

_JLL?QO}_

This concludes the lemma. O

The next lemma bounds the a,-invariant of the fiber cone by means of the

a,-invariant of the Rees algebra. Namely,

Lemma 2.3.8 Let I be an equigenerated homogeneous ideal of A. Then
a.(Fy(I)) < aZ(Ra(I))-

Proof. Let
D:0-Di—- =D —-Dy=S—-R=Rs(I)—0

be the bigraded minimal free resolution of the Rees algebra R over S, where
Dy = D(apen, S(a,b). Note that a,b are non-positive integers with a < db.
Therefore, we have that

S(a,b)o = B Satajpti) =

{0 if a < db
j

So(b) ifa=db

Then by applying the functor ( )¢ to the resolution D, we get a graded free
resolution of Ry = Fi(I) over Sy:

F:00F— - —>F—>F=5S—F->0,

where F, = (Dp)o = Diey, S2(b), and yp = {b € 7Z: (db,b) € Qp}. Moreover,
for any p = 1,...,t we have that Im(F}) C mpFp_1, s0 F, is in fact the graded
minimal free resolution of F,(I) over Sz. Then by Theorem 1.3.4 we have:

ax(F) = max{—=b| b € Upy} + a(Ss)
< max{—b| (a,b) € Qr} + a(S2)
=a?(R). O
Now we are ready to exhibit some families of ideals such that the diagonal

functor and the local cohomology functor commute whenever we take diagonals

large enough.

Example 2.3.9 Let I be an equigenerated ideal in a ring A with a.(A) <0
(for instance, we may take A = k[X1,..., X,]). Set r(I) the reduction number
of I and assume that F,,(I) is Cohen-Macaulay with negative a-invariant. Note
that a(F) < 0 is equivalent to r(I) < I(I) by Lemma 2.3.7. This class of ideals

includes:
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(i) ideals I with reduction number r(I) = 0 (for instance, complete inter-

soction ideals and ideals of linear type).

(i) m-primary ideals with r(I)<1<I(I)ina Cohen-Macaulay ring A (see
[H1S])

(iii) equimultiple ideals with r(I) < 1 < I(I) in a Cohen-Macaulay ring A
(sce [Shal).

(iv) generically complete intersection ideals with ad(I) =1, 7(I) <1< I{I)
‘1 a Cohen-Macaulay ring A (see [CZ]).

Ior all these families of ideals, we have that the Rees algebra has a good

ronolution according to Lemma 2.3.6. Then we have graded isomorphisms
H(K[(19)]) = Hip (R)a,

for ¢ 5 e > 0 by Corollary 2.1.14. Therefore, we have that for large diagonals
of the Rees algebra depth(k[(I®)c]) = depth(R) — 1. In particular, if the
[tees algebra is Cohen-Macaulay then its large diagonals will be also Cohen-

Macaulay.

{temark 2.3.10 Recall that the form ring G(I) of an ideal I in A is
G=GuI) =PI/ = Ra(I)/IRA(I).
n>0

If / is a homogeneous ideal, the form ring has a natural bigrading by means
ol Gagy = (I’ J[+Y);. We can get for the form ring similar results to the
oness obtained for the Rees algebra. For instance, for an equigenerated ideal
| we have that Ga(I) bas a good resolution if and only if a.(4/I) < G,
. (17, (1)) < 0 and it holds ax(Fy (1)) < a2(G a(1))-

jtemark 2.3.11 For an equigenerated ideal [ of A, note that we can recover
seyoral relationships between 7 (1), I(I) and a?(G) proved with more generality
m |AHT]. By applying the diagonal functor to the minimal bigraded free
cesolution of Ra(I) or Ga(I), we obtain the minimal graded free resolution
of 1°,(I) = k[I4), and so ax(Fu(D)) < a2(Ra(I)) and a:(Fo (D)) < a2(G a(I)).
Mow, according to Lemma 2.3.7, given J an arbitrary minimal reduction of
| we have rp(I) —I(I) < a2(Ra(I)) and the same formula for GA(I). In
particular, if Ra(1) is CM we get ry(I) < W) +a*(Ra(l)) < I(I)—1. We can
also obtain that if R4(I) is CM then reltype(I) < (1) — 1.




