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Chapter 5

The a-invariants of the

powers of an ideal

Our aim in this chapter is to study in more detail the bigraded a-invariant
and the bigraded regularity of any finitely generated bigraded S-module L,
for S = k[X1,..., Xn,Y1,..- ,Y,] the polynomial ring with deg(X;) = (1,0),
deg(¥;) = (0,1).

In Section 5.1 we will give a new description of the as-invariant a. (L)
of I and the regularity reg(L) of L by means of the a.-invariants and the
regularities of the graded S;-modules L¢ and the graded Sp-modules Le.

This result is used in Section 5.2 to study the behaviour of the a.-invariant
of the powers of a homogeneous ideal in the polynomial ring. In particular,
we will bound it for several families of ideals such as equimultiple ideals and
strongly Cohen-Macaulay ideals. Those results will be then applied to deter-
mine Cohen-Macaulay diagonals of their Rees algebras.

The last section is devoted to study the regularity of homogeneous ideals T
in the polynomial ring S. First, we will provide a bigraded version of the well-
known Bayer-Stillman’s Theorem characterizing the regularity of I in terms of
generic forms. After that, similarly to the graded case, we define the bigraded
generic initial ideal ginJ of I and we establish its basic properties. In the
graded case, a classical result due to D. Bayer and M. Stillman states the
existence of an order such that for any homogeneous ideal I it holds reg I =

reg (gin I). We will show that the analogous bigraded statement is not true.
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a-INVARIANT OF A STANDARD BIGRADED ALGEBRA 88

We finish the chapter by explaining how these results can be used to study
the Koszulness of the diagonals £[(1¢).].

5.1 The a-invariant of a standard bigraded algebra

Let S = k[X1,...,X,,Y1,...,Y;] be the polynomial ring over a field & in
n +r variables with deg(X;) = (1,0), deg(Y;) = (0,1), and let us distinguish
two bigraded subalgebras: S = k[X1,...,X,], So = k[V1,... , Y], with ho-
mogeneous maximal ideals my = (Xi,..., Xy,), mg = (¥1,...,Y;) respectively.
Given e € Z and a bigraded S-module L, recall that we may define the graded
Si-module L® = @, L(;¢y and the graded S;-module L, = Djez Lie,j)-

The first result shows how to compute the bigraded a,-invariant of any
finitely generated bigraded S-module L by means of the a,-invariants of the
graded Si-modules L¢ and the graded Se-modules L.. Namely,

Theorem 5.1.1 Let L be a finitely generated bigraded S-module. Then :
(i) ai(L) = max.{a.(L¢)} = max.{a.(L) | e < a(L) +r}.

(i) a2(L) = maxe{a:(Le)} = max.{a.(L.) | e < aX(L) + n}.

Proof. Let us consider
0—=Dy— ... Dy —+Dy—-L—=0

the minimal bigraded free resolution of L over S, where D, = @(a’b)egp S(a, b).
We have al(L) = max{—a | (a,b) € Q1} —n by Theorem 1.3.4.

*
Let us denote by ﬁ = (f1,...,5;) € N and | B |= B+ -+ 6. By
applying the functor ( )¢ to the resolution note that

S(aa b)e = @iez S(CL, b)(i,e) = @iez S(a—H’,b—l—e)
= Dicz €]9|g|:b+e[51](1+1'Y1ﬁ1 LY
= Sl (a)pgb
for certain p, € Z (p%, = 0 if b+ e < 0). In this way, we have obtained a

graded free resolution of L€ over S;

0—=Df—...=»Df—=D§— L -0,




a-INVARIANT OF A STANDARD BIGRADED ALGEBRA 89

with Df = @ p)en, Sy (a)fabr. The minimal graded free resolution of L¢ may
be obtained by picking out some terms [Eis, Exercise 20.1]. Therefore,

ax(L%) < max{—a| (a,b) € Qr}—n= al(L).

Now let @ = max{—a | (a,b) € Qr}. Let p be the first place in the
resolution of I with a shift of the form (—a, b), and let 8 be one of these —0’s.
We are done if we prove that —c is a shift which appears in the place p of the
minimal graded free resolution of LA. Note that it is enough to show that

Torg(S/mlS,L)(a,ﬂ) = Torﬁl(k, LAY #0.

Let us consider
Dyy1 5 D, 5 D,y

the differential maps appearing in the resolution of L. Tensorazing by S/myS,

we have the sequence

¥ 0
Dyi1/miDpp1 =5 Dy/miDp =2 Dp_1/miDp_y .
Now let us take v € D, one of the elements of the homogeneous basis of Dy,
as free S-module with deg(v) = (o, 8). If wi, ..., ws is the homogeneous basis

of Dp_1, we can write
8
Pp(v) = Z AjWs,
J=1

with A; € M homogeneous. Set deg(w;) = (ay, B;). By taking into account
the way we have choosen « and p, we have o > o for any 7. Therefore the
first component of the degree of \; is positive, so A; € m1S. We conclude
Ep(v) = 0, that is, v € Ker Ep. Furthermore, notice that v ¢ ImZﬁpH because
Im Epﬂ C M(Dp/m1Dy). Sowv € Torg(S/mlS, L)(a,p), v # 0. By symmetry,
we get (i1). O

Next we are going to consider the bigraded regularity of a finitely generated
bigraded S-module L. Assume that

0—=Dy— ...~ Dy —Dy—L—0,

with Dp = @, peq, S(a,b), is the minimal bigraded free resolution of L over
S. The bigraded regularity of L is defined by reg(L) = (reg1L,reg2L), where

reg L = mlz)ix{—a ~p:(a,b) € Qp}
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regol = m;xx{—b —p:(a,b) € Qp}.

Let A = k[Xy,...,X,] be the polynomial ring with the usual grading. For
any finitely generated graded A-module L, it is well known that

reg (L) = max {t,(L) — p} = max {a,(L) +p}.

This equality does not hold in the bigraded case. For instance, let us consider
f1,-.., fr € Aaregular sequence of forms in degree d, and I = (f1,..., fr). Let
S =k[X1,...,Xp,Y1,...,Y;] be the polynomial bigraded by setting deg(X;) =
(1,0), deg(Y;) = (d, 1), and let R be the Rees algebra of I. Since R is Cohen-
Macaulay, we im&lediately get a2 ((R) = -1, a2(R) = 0 for i # n + 1.
Furthermore, the Eagon-Northcott complex gives the bigraded minimal free

resolution of R over S:
0—=Drg—>...5Dy=5—R—0,
with D, = @2 _, S(—(p + 1)d,—m) (i) for p > 1. Therefore,

2 — =
max { £p(R) —p} =0

2 _
max { (L) +p} =mn,
which are different.

The following result shows that the regularity of I can also be described
by means of the regularity of the graded Si-modules L¢ and the graded Ss-

modules L.. Namely,

Theorem 5.1.2 Let L be a finitely generated bigraded S-module. Then :
(i) reg1(L) = max.{reg (L®)} = max{reg (L°) | e < a2(L) +r}.
(ii) rego(L) = max.{reg (L.)} = max.{reg (L.) | e < a}(L) +n}.

Proof. The proof follows the same lines as Theorem 5.1.1. By applying the
functor ()¢ to the minimal bigraded free resolution of L over S, we obtain a

graded free resolution of ¢ over S

0—=Df{—...—>Df— Di—L°*—=0,
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with Df = B (ap)eq, S1(a)Peb. Since the minimal graded free resolution of L¢
is then obtained by picking out some terms, we have

reg (L°) < mgx{—a —p|{a,b) € Qy} =regL.

Hence maxc{reg (L°)} < regiL. To prove the equality, let us take (a,b) € Qp
such that reg1L = —a — p, and set & = —a, § = —b. We are done if we prove
a € Q, s, that is, a is a shift which appears in the place p of the minimal
graded free resolution of LA. So we want to show that

Torg(S/nuS, L)(a,p) = Torgl(k,Lﬂ)a # 0.

TLet us consider
Dys 28 D, 5 D,y

the differential maps appearing in the resolution of L. Tensorazing by S/myS,

we have the sequence

0] V.
Dp+1/m1Dp+1 -p—+>1 Dp/mle '—p) Dp,,l/mle_l.
Now let v € D, be an element of the homogeneous basis of Dy as free S-module
with deg(v) = (a, B). If w1, ..., w, is the homogeneous basis of Dy, we can

write

Php(v) = D Ajuwj,
j=1

with \; € M homogeneous. Set deg(w;) = (o, B5). Since a—p > aj — (p—1)
for any j, we have that o > «;, and so the first component of the degree of
)j is positive. Therefore A; € myS, and we can conclude _@Ep(v) = 0, that is,
v € Ker ¢,,. It is clear that v ¢ Im,,; because Im 1 C M(Dp/miDy).
Sow € Torf(S’/mlS, L)(ap), v # 0. We get (i) by symmetry. O

5.2 The a-invariants of the powers of an ideal

Let A = k[X1,...,X5) be the usual polynomial ring over a field &, and let
I be a homogeneous ideal in A. Recently, the question of how the regularity
changes with the powers of I has been studied by many authors. L Swanson
in [Swa) proved that there exists an integer B such that reg(I*) < Be for all
e. The problem is then to make B explicit.
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For ideals such that dim(A/I) = 1, A. Geramita, A. Gimigliano and Y.
Pitteloud [GGP] and K. Chandler [Cha] had shown that reg (I¢) < reg(I)e;
and this bound also holds for Borel-fixed monomial ideals by using the Eliahou-

Kervaire resolution [EK].

Another kind of bound is given by R. Sjogren [Sjo]: If I is an ideal generated
by forms in degree < d with dim(A4/I) < 1, then reg (I°) < (n—1)de. Also A.
Bertram, L. Ein and R. Lazarsfeld [BEL] gave a bound for the regularity of the
powers of an ideal in terms of the degrees of its generators. More explicitly, if
I'is the ideal of a smooth complex subvariety X in P2 of codimension ¢ and
1 is generated bz forms in degrees di > dy > ... > d, , then

HY(PEHTk) =0, ¥i> 1, ¥k > ed; +do + ... +d, — (n—1).

This result has been improved by A. Bertram [Ber] for some determinantal

varieties.

Recently, work by S.D. Cutkosky, J. Herzog and N.V. Trung [CHT], V.
Kodiyalam [Ko2] and O. Lavila-~Vidal (see Theorem 3.4.6) provides by differ-
ent methods bounds for arbitrary graded ideals by means of the degrees of
the generators similar to the ones given in [Sjo] and [BEL]. Namely, if I is a
graded ideal generated by forms in degree < d, then there exists 8 such that

reg (I°) < de + 3, Ve.

We are also interested in the behaviour of the as-invariant of the powers
of I, which can be used to apply the criteria seen in Chapter 3 for the Cohen-
Macaulayness of the diagonals. We have already proved in Theorem 3.4.6 the
existence of an integer o such that a,(1¢) < de+ « for all e. Our first purpose
will be to find for any graded ideal an explicit o Furthermore, for equigener-
ated ideals we will compute the best o we can take in terms of an appropiate
a-invariant of the Rees algebra. After that, these results will be applied to
give bounds for the a,-invariant of the powers of several families of ideals such
as equimultiple ideals and strongly Cohen-Macaulay ideals. Finally, we will
use those bounds to study the Cohen-Macaulay property of the diagonals of
the Rees algebra.

Let k£ be a field, A a standard noetherian graded k-algebra, @ = dim A.
Then A has a presentation A = k[X7, ... y Xnl/K = k[z1,...,3,], where K is
a homogeneous ideal and each X; has degree 1. Let I be a homogeneous ideal
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in A generated by forms of degree < d. From Theorem 3.4.6, there exists «
such that
a.(I%) < de+ «a, Ve.

Now let us assume that I is generated by forms in degree d. By defining
©(p,q) = (p — dgq,q), we have that R? is a standard bigraded k-algebra with
[R?)(p.0) = R(p+dg,q)- The next result precises the best « we can take.

Theorem 5.2.1 Let I be a homogeneous ideal of A generated by forms in
degree d. Set = 1(I). Then

(i) a:(R?) = max.{ a.(I®) — de} = max{ a,(I¢) — de | e < a2(R) +1}.
(ii) reg1(R¥) = max.{reg (I°) — de} = max{ reg (I°) — de | e < a2(R) +1}.

Proof. We may assume that k is infinite (tensorazing by E(T)). Then
there exists a minimal reduction J of I generated by I forms in degree d.
By considering the polynomial ring S = k[Xy,..., X, Y1,..., Y], we have a
natural epimorhism S — R4(J). Then R4(J) is a finitely generated bigraded
S-module, and so R = Ra(I) because it is a finitely generated R A(J)-module.
Note that S% is standard and R is a finitely generated bigraded S¥-module,

so according to Theorem 5.1.1
a}(R?) = max{a.([R¥)*)} = max{a.([R*]") | e < a3 (R?) +1}.

First, observe that a?(R¥) = a2(R) by Lemma 1.2.3. Moreover, for each
e > 0, we have [R?]® = @;(I%)itde = (I¢)¥, where ¢ : Z — Z is defined by
¥(j) = j — de. From Lemma 1.2.3 we have ax((I9)¥) = a.(I¢) — de, and then
we obtain (i). The proof of (i) follows the same lines. U

Remark 5.2.2 Let I be a homogeneous ideal in A generated by forms in

degree d. By repeating the previous arguments for the form ring, we also get
(i) al(G¥) = maxe{a.(I¢/I°t") — de}
= maxe{ a.(I¢/I¢™) —de| e < a(G) +1}.
(ii) reg1(G¥) = max.{reg (Ie/I°t1) — de}
= max.{ reg (I¢/I°*!) — de | e < a2(@) +1}.
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Example 5.2.3 Let ] ¢ A4 = k[Xl,Xg,X3,X4] be the defining ideal of the
twisted cubic in P}, that is,

I'=(X1Xy ~ X2 X3, X5 — X1 X3, X2 — X2 Xy).
It is well known that I is the ideal of the Veronese embedding of P} in P} :

1 ) 3
]Pk Pk

(u:iv) — (v uw?od) .

I is licci because it is linked to J = (X1, X2) by the regular sequence ¢ =
X3 - X1X3, X2 — X0 X, [Ul, Example 2.3], so I is a strongly Cohen-Macaulay
ideal [Hul, Theotem 1.14]. Since I is a prime ideal, we easily get 1(I,) < ht (p)
for any prime ideal p D I. Therefore R4(I) is Cohen-Macaulay by [HSV1,
Theorem 2.6], so in particular a?(R4(I)) = —1. On the other hand, I is an
ideal generated by forms of degree 2 with [(I) = u(I) = 3. By using CoCoa
[CNR], we have that the minimal graded free resolutions of I and I2 are:

0= A(=3)2 > A(-2 5T =0,
0— A(=6) = A(=5)° — A(-4) 5 2 > 0,

so according to Theorem 1.3.4 we have a,(I) = —1, a+(I?) = 2. By Theorem
5.2.1 we get '
ax(1°) < 2(e — 1), Ve.

Furthermore, notice that since reg (1) = 2, reg (I%) = 4 we also get
reg (I%) < 2e, Ve.

Therefore, we have that I¢ has a linear resolution for any e > 1. This has
already been proved by A. Conca [Con] by different methods.

Remark 5.2.4 Let S = k[Xy,..., X, V1,... ,Y;] be the polynomial ring bi-
graded by setting deg(X;) = (1,0), deg(Y;) = (d;,1), with dy,...,d, € Zy.
For a finitely generated bigraded S-module L, let us consider the minimal

bigraded free resolution of L over S
O—>Dt—>...—>D1—>D0~>L—>0,
where D, = D(ap)en, S(a,b). By applying the functor ( )¢, note that

S{a,b)¢ = @ Sila—dify — ...~ d,.5,),

1B=b-+e
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where 8 = (61,...,06r) € N and | B|= 1+ + B So we get a graded free

resolution of L® over Sy
0— D¢~ ...— Df = Dj— L =0,

with Dj = @ ane, Dig=bte Si(a —dify — ... — drf3;). The minimal graded
free resolution is then obtained by picking out some terms. Therefore, for any

7 < n we have that
a;(L°) < max{dif1 +...+ defr —a | (a,0) € Qi | Bl=0+ e} —n

< de — n+ max{db—a | (a,0) € Qn_;}.

Therefore, a.(L¢) < de—n-+max{db—a | (a,b) € Q1) < d(e—indegyL)+ay(L).
In particular, for any homogeneous ideal I of A we have

a.(I¢) < de + ay(R).

5.2.1 Explicit bounds for some families of ideals

The next purpose is to get explicit bounds for the ay-invariant of the powers of
an ideal, and we will focus our attention to the case of ideals in the polynomial
ring. Throughout the rest of this section, A = k[Xy,...,Xy] will denote the
usual polynomial ring in n variables over a field k and I will be a homogeneous
ideal in A. First of all, for equigenerated ideals whose Rees algebra is Cohen-

Macaulay we have

Proposition 5.2.5 Let I be a homogeneous ideal generated by forms in degree
d whose Rees algebra is Cohen-Macaulay. Set | = I(I). Then

—n+d(-a*(G)-1) < r£1>a(>)({a* (I¢) — de} < —n+d(l - 1).

Proof. As in the proof of Theorem 5.2.1, we may assume that k is infinite.
By considering then the polynomial ring S = k[X1,...,Xn,Y1,..., Y]], we
have that R4(I) is a finitely generated bigraded S-module in a natural way.
Then let

0—-Dy—...+D;—=Dyg—+R—0

be the minimal bigraded free resolution of the Rees algebra R over S, with
Dy = D(ap)en, S(a,b). The shifts (a,b) € Qr, (a,b) # (0,0), satisfy b < —1
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and —a < dl +n+a'(R) < dl by Lemma 3.4.7. Therefore, we have q, (I¢) <
de +d(l — 1) — n by Remark 5.2.4.
Let Ry, = @(i,j),j>0 R; ;- From the bigraded exact sequences

0—=Riy >R— A0,

0—=FRiy(0,1) 5 R— G =0,

we get the following exact sequences of local cohomology

0= Hi(A)u ) — H}\1/1+1(R++)(z’,j) - H}\l/—li_l(R)(i,j) =0 (%),

m

0= Hjiy (G, ) — HEI(R++)(2‘,J'+1) - H}\Zjl(R)(i,j) =0 (k).

Since ¢*(R) = —1, from the above exact sequences we have a%(G) < —1.
If ¢*(G) = ~1, the lower bound is obvious by considering e = 0. So we
may assume a*(G) < —1, and by Theorem 5.2.1 we must prove a!(R®) >
—n—d(a?(G)+1). The local cohomology modules behave well under a change
of grading by Lemma 1.2.3, hence we have

Hy (R?) ) = Hﬁl(R)‘(@,q) - HX/tH(R)(pﬂqu,tI%

so al(R¥) = max{p | 3 ¢ s.t. H}fjl(R)(erdq’q) # 0}. Since HE(A)(—poy #0
we have Hj\le(R++)(_n70) # 0 from the exact sequence (x). As a*(@) < —1,
from the second exact sequence (x*) we get H}fjl(R)(_n,ﬁl) # 0, and by using
once more (%) we have Hj\bjl(R++)(_n)_1) # 0. Note that we can repeat
this procedure while the second component of the degree be greater than
a*(@), and finally we get ijl(R)(_MZ(G)H) # 0. In particular, o!(R¥) >
—n—d(a*(G@) +1). O ‘

Remark 5.2.6 Let I be an ideal generated by forms of degree d in a general
standard graded noetherian k-algebra A. By setting [ = I(I), one can similarly
prove that if the Rees algebra is Cohen-Macaulay then

a(A) +d(—d*(G) - 1) < max{a.(I1°) — de} < a(A) + dl.

For non-equigenerated ideals, we can also give an upper bound. A similar
result for the regularity was already proved in [CHT, Corollary 2.6].

Remark 5.2.7 Let I be a homogeneous ideal generated by forms f1,..., f.
in degrees d; < ... < dr = d whose Rees algebra is Cohen-Macaulay. Set
U =351 di. Then a,(I¢) < d(e —1) +u —n.
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Proof. By considering the bigraded minimal free resolution of R over S =
E[X1,...,Xn,Y1,...,Y,), we have that any shift (a,b) € §) withp > 1 satisfies
b < —1 and —a < u by Lemma 3.4.10 and € only contains the shift (0,0).
Therefore, a,(I¢) < d(e — 1) + u —n by Remark 5.2.4. O

The a,-invariant of the powers of an ideal can be computed for complete
intersection ideals (see the proof of Proposition 3.4.5), and then we have that
the inequalities in Proposition 5.2.5 and Remark 5.2.7 are sharp. Next we are
going to compute explicitly maxe>o{a+(I¢) ~de} = a'(R¥) for several families

of ideals. First we consider the case of equimultiple ideals.

Proposition 5.2.8 Let I be an equimultiple ideal generated in degree d. Set
h = ht (I) > 1. If the Rees algebra is Cohen-Macaulay,

(i) a(1¢/1¢%Y) = de + a(A/I). In particular, a'(G¥) = a(A/I).
(i) ap-ny1(1¢) = d(e —1) + a(A/I). In particular, a'(R¥) = a(A/I) — d.

Proof. We may assume that k is infinite. Then there exist f1,... s frn €
A of degree 1 such that Fiseoos fon € A/I is a homogeneous system of
parameters. Denoting by f* the initial form of f € A in G, let us consider
G =G/(ff,...,fr_1). Since rad ((ff,..., fi_j)G) = rad (mG), we have that
a system of parameters of Fi,(I) is also a system of parameters of G. As
F.(I) is a bigraded k-algebra generated by forms in degree (d, 1), there exist
Fy,... Fy €I of degree d such that F1,...,Fj is a system of parameters of
Fo(I). Then ff,..., fr_,, Ff,..., Fj is a homogeneous system of parameters
of G, and so algebraically independent over k. Therefore, there is a finite
extension
T=k[UL,...,Un, Vi, ..., Vor] = G,

where T is a polynomial ring with deg (U;) = (d,1) , deg(V;) = (1,0) for
i=1,...,h,j=1,...,n—h. Since G is Cohen-Macaulay and T' is regular, we
have that G is a free T-module, that is, G = @4 p)en T'(@,b), where A C 72 is
a finite set. Let us denote by Ty = k[Vi,..., Van), m = (V1,...,Va_p), and
for a given 8 = (f1,.--,0n) € N, let | B|=p1+ -+ Bp. Note that

T(a, b)¢ =P T(a, b)(i,e) =, T(a+i,b+e)
= @i @lg|:b+e[T1]a+i—d(b+e) Uigl T Uiljh
=T (a — db — de)"s,
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with pf € Nand pf =0ifb+e < 0. Therefore,

/I =G = P Ti(a—db—de)s,
(a,b)eA
and by taking local cohomology

HIYh(re /o4ty = P HEMTi(a-db - de))?s.
(a,b)eA

Hence a.(1°/1¢7') = q(I¢/1¢t1) = max{—(n—h) —a+db+de: —b < e}.
In particular, a(4/I) = max{—(n — h) —a+db:b =0}, and so we get
a(I¢/I°t) > de + a(A/I) for all e. On the other hand, since the mod-
ules 7¢/I°! are A/I-modules of maximal dimension, we have an epimorhism
D A/I(—de) — I¢/I*"} and we may deduce that a(I¢/I°t") < de + a(A/1)
for all e. To get (i1), it is just enough to consider the short exact sequences

0= It 5 1° 5 re/ett g ,

and then the result follows from (¢) by induction on e. O

Next we study equigenerated ideals whose form ring is Gorenstein. In this

case, we prove that the lower bound given in Proposition 5.2.5 is sharp.

Proposition 5.2.9 Let T be q homogeneous ideal equigenerated in degree d
whose form ring is Gorenstein. Set | = I(I). Then

(i) maxeso{a. (%) — de} = d(—a*(G) — 1) - n.

(ii) For e > a?(G) — a(F), depth(4/I°) = n —1 and a,(I%) = an_l(A/F) =
dle — a?(G) — 1) — n.

Proof. We may assume that the field k is infinite. Since I is generated by
forms in degree d, there exists a minimal reduction J of I generated by forms
g1,---,g; of degree d. By considering § = Xy, ., X, Y, , Y] bigraded
by setting deg (X;) = (1,0), deg (Yj) = (d, 1), we have a bigraded epimorphism
S — Ra(J). Suppose that ™! = JI™ Then R4(I) is finitely generated over
R4(J) by the generators of A, I, ..., I'" so in particular by homogeneous
elements in degree (di,d) for ¢ = 0,...,m. Then we have an epimorphism
' — R4(I), where F is a finite free S-module with a basis of elements in

degrees (di,t) for i = 0,...,m.
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Let us consider the minimal bigraded free resolution of G over .S
0—=D;— ...~ Dy —Dy—G—0,
where Dy = @, e, S(a,b). From Remark 5.2.4, for all e > 0 we have
a,(I°/1¢Y) < de — n + max{db — a | (a,b) € Q¢}.

Assume we prove that the maximum is accomplished for a shift (a,b) € Q.
Denoting by ( )* = Homg( , Ks), then

0— Di — ... — Djf = Ext(G,Ks) = Kg — 0

is the minimal bigraded free resolution of the canonical module K¢g of G over
S. Since G is Gorenstein, according to Corollary 4.1.7 there is a bigraded
isomorphism

K¢ = G(—n,d*(Q)).

Now the shifts (a,b) € € are of the type (di,i — a*(@)) for certain integers 1,
so we get a.(1¢/I¢7Y) < de —n + max; {d(i — a*(G)) — di} = d(e— a®(G@)) —n.
From Remark 5.2.5 we have a!(G¥) = max {a. (I¢/1°") —de} < —n—da*(G),
and a*(R®) < —n—da?(G) —d. Observe that Proposition 5.2.5 gives the other
inequality, so we obtain a!(R?) = d(—a?(G) — 1) —n.

Now let us prove that the maximum for the differences db — a is taken for
(a,b) € Q. Let us consider ¢ : 7.2 — 7 defined by ¢(1,7) =i — dj. Note that
X; € S? has degree 1 and Yj € 5% has degree 0, and

0= Df —...=Df =G =0

is a graded free resolution of G?% over S?. Since S(a,b)? = S?(a — db), it is
clear that

min{db — a | (a,b) € Qpy1} > min{db —a| (a,b) € Qp}.
Applying the same argument for the resolution of K¢, one gets that
max{db — a | (a,b) € Qpt1} > max{db—a | (a,b) € Qp},

so (4) is already proved.
To prove the rest of the statement, we will use that proj.dim 4(I¢/I¢*1) =1
if and only if e > a2(G)—a(F) (see Proposition 6.3.2). By applying the functor

( )¢ to the resolution of G over S we obtain a free resolution of I¢/I¢*! as
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A-module, and the shifts appearing in the place p of these resolutions of the
type a — db — de, with (a,b) € Q,. Therefore, ¢,(I¢/I*t1) < de — da?(G) for
any p, and for e > a?(G) — a(F) we have t(I¢/I°t) = de — da?(@). Now,
since proj.dimy I < [—1 by Proposition 6.3.2, from the short exact sequences

0— It — 18— o/1¢H1 5 0

we get 4y_1(1°) > d(e — a®(G) — 1) for e > a%(G) — a(F). On the other hand,
we have #;_1(1°) < £,(I°) = a.(I®) + n < d(e — a(G) ~ 1), so we get the
equality. We finally obtain a,_;(A4/I°) = a,_;,,(I¢) = dle ~a*(G) — 1) —n
for e > a?(G) — a(F) by Theorem 1.3.4. O

Example 5.2.10 Let X = (X;;) be a d x n generic matrix, with 1 <4 < d,
I1<j<nandd<mn,andlet A = k[X] be the polynomial ring in the entries
of X. Let I = I4(X) be the ideal generated by the maximal minors of X. We
are going to apply to this example the different bounds we have found.

 The Rees algebra of I is Cohen-Macaulay, so by applying Remark 5.2.7

we get

a.(I¢) < d(e—1) + (Z)d —nd.

(a similar bound for the regularity of the powers has been given in [CHT,
Example 2.7]).

 Note that F,(I) = k[lg] is the coordinate ring of the Grassmannian
G(d,n), so we have that the analytic spread of I is I{I)=d(n—d)+1.
Therefore by Proposition 5.2.5 we get the bound

a(I°) < de + d*(n — d) — nd.

* Since G4(I) is Gorenstein with a?(G4(I)) = —ht (I)=—=(n—d+1), by
using Proposition 5.2.9 we get the better bound

as(I°) < d(e+n —d) —nd = de — d°.

Furthermore, the a-invariant of F is —n by [BH2, Corollary 1.4]. So we
also obtain a4 (1¢) = de — d? for any e > d — 1.

K. Akin et al. [ABW] have constructed resolutions for the powers of I, in
particular showing that all the powers of I have linear resolutions. Note that
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this fact also allows to prove the last bound: According to Proposition 6.3.2
and Theorem 1.3.4, for any e > a?(G) — a(F) we have a.(I°) = ang—i+1(1%) =
t_1(I¢) —nd = (de+1~1) —nd = de - d2.

We may also use Proposition 5.2.9 to study the a-invariant of the powers of
a strongly Cohen-Macaulay ideal. Let I be an ideal of A, andlet f = f1,..., fr
be a system of generators of I. Recall that I is a strongly Cohen-Macaulay
ideal if for any p > 0 the Koszul homology Hp(K(f )) is a Cohen-Macaulay
A/I-module.

Corollary 5.2.11 Let I be a strongly Cohen-Macaulay ideal generated in de-
gree d such that p(I,) < ht(p) for any prime ideal p 2 I. Let h = ht(I),
I =1(I). Then

(i) a.(I°) <d(e+h—1)—n, Ve.

(ii) For e > 1 — h, depth(4/I¢) = n — 1 and a.(I¢) = an—i(A/I°) = d(e +
h—1)—n.

Proof. In this situation, G4(I) is Gorenstein and I is an ideal of linear
type by [HSV1, Theorem 2.6}, so a(F(I)) = —1. Furthermore, according to
[HRZ, Proposition 2.5] we have a2(G 4(I)) = —h. Then the result follows from
Proposition 5.2.9.0

Example 5.2.12 Let I C A = k[X1, Xo, X3, X4] be the defining ideal of
the twisted cubic in P3. From Example 5.2.3, recall that I is a strongly
Cohen-Macaulay ideal generated in degree 2 with ht(I) =2, (I) = pu(l) = 3.
Now, by Corollary 5.2.11, for any e > 1 we have that depth(A/I¢) = 1,
a1(A/I¢) = 2e — 2 and az(A/I°) < 2¢ — 2. In the case e = 1, since I is linked
to J = (X1, X2) by the regular sequence a = X2 — X1 X3, X2 — X9 X4, we have
that A/I is Cohen-Macaulay and there is a graded isomorphism K 45 = J/(a).
In particular, a(A/I) = —1.

In trying to extend the bounds in Proposition 5.2.9 to the non-
equigenerated case many difficulties appear. Next we will use approximation

complexes to do this for strongly Cohen-Macaulay ideals.

Let I be a homogeneous ideal in the polynomial ring A =k[Xy,...,Xp]and
f=f-fra homogeneous system of generators of I, with d; =deg(f;), and
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let us consider the graded Koszul complex K (f) of A with respect to /. Denote
by § = A[Y3,...,Y,] with the bigrading deg(X;) = (1,0), deg(Y;) = (dj,1).
Then the approximation complex of I is

M(i):O—)MT—)...—)Ml—>M0—>0,

with My, = H,(K(f))®45(0, —p), and the differential maps are homogeneous.
Assume that I is a strongly Cohen-Macaulay ideal with ht (I) > 1 such that
for any prime ideal p D I, ©(Iy) < ht(p). Then M f) is exact and provides
a resolution of Symy, (1/1?) = G4(I) [HSV1, Theorem 2.6). We will use it to
get a bound for the a-invariants of the powers of these ideals.

Proposition 5.2.13 Let I be a strongly Cohen-Macaulay ideal such that for
any prime ideal p D I, u(1,) < ht(p). Assume that I is minimally generated
by forms fu,..., fr of degree d =dj > ... > dy, and set h="ht (I), t =r — h.
Then:

(1) alHpn(f) < —n+di+ ...+ dyym, for all m < t.
(i) If 1 <e<t, depth(A/I¢) >n—h—e+1 and for any 0 <m < e -1,
A pg1-m(1®) < —n+di+...+ dpym +d(e —m —1).
(i) If e > ¢, depth(A/I¢) =n — r and Jor any 0 <m < ¢,
Un-h1-m(1®) < —n+di + ...+ dppp, + d(e —m —1).

Proof. Recall that H, = Hp(K(f)) =0for all p > t. So the resolution of G
given by the approximation complex is

0> M — ... My—G—0,

with My, = H, ®4 S(0,~p). Let us denote by 8 = (f1,...,8,) € N', and
| B|= pr1+"--+B;. Applying the functor ()€ to the modules of this resolution:

G¢ = @; i) = I°/ 11,

M:lc; = 691 HP[Yla R Yr](i,e_p)
0 ife<yp
- {@lglze—p Hy(~dipy — ... —doB,) ife>p.

So we get graded exact sequences

0= Mg — ... = M§— I°/1°t - 0,
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with ¢ = min{e,¢}. Since I is a strongly Cohen-Macaulay ideal, we have that
M is a maximal CM A/I-module for any p < ¢q. By taking short exact
sequences, we obtain that if e < t, depth(I¢/I¢*!) > n—h —eand if e >,
depth(I¢/I¢*t1) > n — h —t =n —r. On the other hand, by Proposition 6.3.2
we also have that depth(I¢/I¢T!) = n—r if and only if e > t. Furthermore, we
get an_p-m(I%/1¢t) < a(MS,) = a(Hp) +d(e—m) for all 0 <m < min{e, t}.

From the exact sequences
0 — I¢/I¢T — AJI°H — AJI° — 0,

we have now

(a) depth(A/I¢) >n—-h—e+1ifl1<e<t

(b) depth(A4/I¢) =n—rife>1

(€) ann—m(A/I¢) < maxo<j<e—1{an-h-m(I’/PT)} < a(Hp)+d(e—m—1),
for 0 < m < min{e — 1,t}.

So, if we prove the bound for the a-invariant of the Koszul homology we have
finished. Let us assume that among the forms fi,...,fr we can choose a
regular sequence of length h. Let g1 = fj,...,9n = fj, be this sequence, and
g1, ... g, the minimal system of generators of I.

Let us consider the morphism from A to A/(g1). By [Hu2, Lemma 1.1],

there is a graded exact sequence
0 — Hp(I; A) = Hin(1/(91); A/(91)) = Hm-1(I; A) (= deg g1) = 0

for all m > 1, where H,,(I/(g1); A/(g1)) denotes the Koszul homology of
the elements 0,3,,...,9, € A/(g1). From this exact sequence, we have in
particular a(Hn, (I; A)) < a(Hm(I/(g1); A/(g1)). Denote by 7" the morphism
from Ato A= A/(g1,-..,9n—1)- Repeating h—1 times the previous procedure,
we get a(Hp(I; A)) < a(Hy(T; A)) for all m > 1. But now T is a height one
ideal in the CM ring A. Let us denote the Koszul complex of I by K =
K (T; A), and the differential from Kpq1 to Kom by dmg1. Set Z,, = Ker(dy,),
By = Im(dmy1), Hm = Hp(I; A). Then there are exact sequences

0= Bpm— Zm — Hp — 0,

0 = Zms1 = Bmy1 — Bm — 0.
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By [Hul, Lemma, 1.6] H,, are CM modules for all m, and then by [Hul, Lemma
1.8], Z,, and By, are maximal CM modules for 4. The exact sequences imply
now a(Hpm) < a(Bm) < a(Kpmy1). Denoting by 6; =deg(g;),

a(K i) = a(A) + max{d;, +oo b, A< < <ipg < r}
:a(A)+51—|-...+5;L_1+max{5i1+...+5¢m+1 [h<ip <. .. <ipmy <r}
S—n—i—dl-i-...—f—d}H_m.

So we are done if we prove the following lemma. O

Lemma 5.2.14 Let A = klt1,...,t5] be a CM graded algebra over an infinite
¥

field k, with deg(t;) = 1. For any homogeneous ideal I, there exists a mini-

mal homogeneous system of generators gi,...g, of I such that gi,---9n 15 a

mazimal reqular sequence in I.

Proof. Set r = pu(I), h =ht(I). Let fi,..., f, be a minimal homogeneous
system of generators of I, with d; = deg(f;), d, < ... < d, = d. We are going
to prove the statement by induction on h. If A = 0 there is nothing to prove.
Assume h > 1. Then I ¢ z(A) = Upeass(ay b, and so Iy ¢ p, Vp € Ass (A)
(otherwise, we would have f¢ € p for all i, and then I C p). Since k is infinite,
we get Iy ¢ UpeASS(A)p N Aqg, and so there exists g € I; such that g € p
for all p € Ass(A). Note that I, is a k-vector space generated by the forms
fi1s++, [ in degree d and the forms M f;, with dj < d and M a monomial in
t1,...,ts of degree d — d;. Now we can write

g=Mfp+ o F NS+ uimMf,

with A1,..., A, iar € k. If there exists p such that Ap # 0, we can replace
Jjp by g in the minimal system of generators of I. Otherwise, we have an
element g in the ideal generated by the forms in I of degree d’ = d,._; with the
property that g & p, Vp € Ass(A4). We can repeat the arguments for Iy, and
finally we will replace one of the forms fj by g. By considering A = A/(g),
the ideal I = I/(g) has u(I) =7 —1, ht (T) = h — 1. Then we get the result
by induction. O
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5.2.2 Applications to the study of the diagonals of the Rees
algebra

Next we are going to apply the results about the a-invariant of the powers of
an ideal to study the Cohen-Macaulay property of the diagonals of the Rees
algebra. If the Rees algebra is Cohen-Macaulay, according to Theorem 3.4.13
there exists a € Z such that k[(I¢)] is Cohen-Macaulay for any ¢ > de + «
and e > 0. For equigenerated ideals, we obtained o = d(I — 1) as upper bound.

The following result precises the best a.

Proposition 5.2.15 Let I be an ideal in A = k[Xi,..., Xy generated by
forms in degree d whose Rees algebra is Cohen-Macaulay. Set ! = 1(I). For

a > 0, the following are equivalent
(i) For all ¢ > de+ a, k[(1°)c] is CM.
(ii) a;(I¢) < de+ a, Vi, Ve.
(iii) a;(1¢) < de+a, Vi, Ve <1 —1.
(iv) H (Ra(D))(pg) = 0, VP >dg+a, that s, o = a'(R?).

(v) The minimal bigraded free resolution of Ra(I) is good for any diagonal
A = (c,e) such that ¢ > de + o

Proof. If k[(I¢).] is CM for ¢ > de + « then we have H! (1%), = 0 for any
i < n and ¢ > de + o by Proposition 3.4.1, so a.(I¢) < de + a, Ve. The
converse follows similarly, and we get the equivalence between (i) and (41).

Since the Rees algebra R of I is Cohen-Macaulay, we have af(R) = a*(R) =
—1. Then, conditions (i) and (i) are equivalent to a'(R¥) = al(R¥) < a by
Theorem 5.2.1.

Finally, we want to prove the equivalence to (v). If the resolution of R is
good for diagonals A = (¢, e) such that ¢ > de-+a, then we have HE (k[(I)]) =
Hﬂ'l(R)A = 0 for ¢ < n by Corollary 2.1.14, so k[(I°)] is Cohen-Macaulay
for any ¢ > de + o and we obtain (¢). Now assume that a*(R¥) < @, and let
us consider the minimal bigraded free resolution of R over S

0—D;—=...—> Dy =Dy —R—Q0,
with Dy = @ (ap)eq, S(a,b). By applying the functor ( )*, we have that

0—Df —...—Dj = R*—0
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is the bigraded minimal free resolution of R¥ over S¥, with Dy =
DBapyen, S¥(a — db,b). Therefore, according to Theorem 1.3.4, for any
(a,b) € Qr we have db —a — n < «. Then the sets X2 Y2 introduced
in Remark 2.1.11 are empty for diagonals A = (¢, e) with ¢ > de + @, 8o the
resolution is good for these A. O

If the form ring is Gorenstein, we can express this criterion by means of

the second a-invariant of the form ring. Namely,

Corollary 5.2.16 Let I be an ideal in A = k[X1,...,Xy] generated by forms
>

of degree d whose form ring is Gorenstein. For «
&

0, the following are

equivalent
(i) For all ¢ > de + «, k[(I¢).] is CM.
(i) o> d(—a?*(G) — 1) — n.

Proof. By Proposition 5.2.9, a'(R?) = d(~a*(G) — 1) — n. Then the result
follows from Proposition 5.2.15. O

Let I be an equigenerated ideal in A. If the Rees algebra is Cohen-
Macaulay, it can happen that some of its diagonals are not Cohen-Macaulay.
Now, by taking o = 0 in Proposition 5.2.15 we have a criterion to decide when
all the diagonals of a Cohen-Macaulay Rees algebra are Cohen-Macaulay.

Corollary 5.2.17 Let I be an ideal in A = k[X1,...,X,] generated by forms
in degree d whose Rees algebra is Cohen-Macaulay. Set | = I(I). Then the

following are equivalent
(i) For all ¢ > de + 1, k[(I¢).] is CM.
(ii) a;(1¢) < de, Vi, Ve <1 —1 .
(1)) Hyf"(Ra(I)) g =0, Vp>dqg.
(i) The minimal bigraded free resolution of R4(I) is good for any A.
Assuming that G 4(I) is Gorenstein, these conditions are also equivalent to

(v) —a?(@) < 2+ 1
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Example 5.2.18 We may recover Corollary 3.4.2 as an easy application of
Corollary 5.2.17. Let {L;;} be a set of d x (d 4+ 1) homogeneous linear forms
in a polynomial ring A = k[X1,...,X,], and let M be the matrix (L;;). Let
I;(M) be the ideal generated by the ¢ x ¢ minors of M and assume that
ht(L;(M)) >d—t+2for 1 <t <d. SetI=1I4(M). Theideal I is generated
by d + 1 forms of degree d, and we have a presentation of the Rees algebra of

the form
RA(I) = k[Xq,..., Xn, Y1, ., Yau1l/(é1,. .., da)s

with deg(Y;) = (d,1), deg(¢;) = (d + 1,1), such that ¢1,...,¢q is a regular
sequence. Therefore Ra(I) is Gorenstein, and so a?(Ga(I)) = —2. Since
d < n—1, we have that —a?(G) < %+1. Therefore k[(I¢).] is Cohen-Macaulay
for any ¢ > de + 1.

Next, we are going to use the bounds of the a-invariants of the families of
ideals considered in Subsection 5.3.1 to study the Cohen-Macaulayness of the
diagonals of their Rees algebras. First we recall a well-known result about the

vanishing of the graded pieces of the local cohomology modules.

Lemma 5.2.19 Let A be a standard noetherian graded k-algebra with graded
mazimal ideal m. Let L be a finitely generated graded A-module with d =
dim L > 0. Then

HE(L); #0, ¥j < a(L).

0

m

(L) = 0 because otherwise by

Proof. Since d > 0, we can assume H

considering L = L/H(L) we have HS(L) = 0 and H(L) = HZ(L). We may

also assume that the field & is infinite. Then there exists z € A such that

z & z4(L), and the exact sequence
0— L(-1) % L~ L/zL -0
induces the graded exact sequence of local cohomology modules

HEYL/oL) — HY(L)(~1) —» HE(L) = 0.

m m

From this exact sequence, we have that HE(L), = 0 implies H&(L); = 0 for

m

j > s, so we are done. O

Proposition 5.2.20 Let I be an equimultiple ideal in A generated in degree
d whose Rees algebra is Cohen-Macaulay. For any ¢ > de + 1, k[(I¢).] is
Cohen-Macaulay if and only if ¢ > d(e — 1) + a(A/I).
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Proof. We have proved in Proposition 5.2.8 that a'(R?) = a(A/I) ~
d. Therefore, k[(1°).] is Cohen-Macaulay for any ¢ > d(e — 1) +a(A/I) by
Proposition 5.2.15.

On the other hand, since an—p(I¢/1°7Y) = de + a(A/I) by Proposition
5.2.8, we have HI=M(T¢/I¢t1), £ 0 for all s < de + a(A/I) according to
Lemma 5.2.19. By considering the short exact sequences

0— I = 1o 1o/1e%t g,

and by induction on e, we get HE=hH1(1e)s £ 0 for all s < dle —1) +a(A/I).
Now, if k[(I¢).] is Cohen-Macaulay then HL(I%) ey =0 fori <mnand s> 0
by Proposition 3.4.1. In particular, it holds H2="*1(7¢), = 0, and so ¢ >
d(e — 1) + a(A/I). This proves the converse. O

Proposition 5.2.21 Let [ be q strongly Cohen-Macaulay ideal such that
p(L,) < ht(p) for any prime ideal p 2 I. Assume that I is minimally gen-
erated by r forms of degree d = d > ... >d, and let h = ht (I). For
c>dle—1)+di+... +dy —n, k[(1°)c] is Cohen-Macaulay.

Proof. According to Corollary 3.4.4, for a given ¢ 2> de + 1 we have that
k[(I°)c] is Cohen-Macaulay if and only if HL(I%)es =0, for i < m, s > 0, and
Hi(I57h ) =0, for 1<i<mn, s>0. '

From Proposition 5.2.13, note that ax(I°) < (e=1)d+dy+ ...+ dy, —n.
Therefore, to get the vanishing of the cohomology modules it suffices to see
that cs > (es—1)d+d;+...4+dy,—n and cs—n > (es—h)d+di+...+dj~n for
any s > 1. The first condition is equivalent to (c—de)s >di+...+dy—d—n
for s > 1, that is, c—de > dy + ... + dp, —d —n. The second one is equivalent
to (c—de)s > dy +...4+dp —dh for s > 1, that is, c— de > d; +...+dy —dh;
and this always holds because d; + ... + dp —dh < 0.0

To finish, let us consider the case that the Rees algebra has rational sin-
gularities. Then all the diagonals k[(I°)c] have rational singularities by [Bou],
s0 in particular the Rees algebra and its diagonals are Cohen-Macaulay. By
Proposition 3.4.1, we get immediately

Proposition 5.2.22 Let I be g homogeneous ideal in A = k[X1,...,X,] gen-
erated by forms of degree < d, where k is a field with chark = 0. If Ra(I) has
rational singularities, then a,(I°) < de for all e.
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Example 5.2.23 Let X = (X;;) be an m x n matrix of indeterminates, with
1<i<m,1<j<nandm<n. Let A= k[X] be the polynomial ring with
variables the entries in X, where k is a field with char £ =0 and k = k. Let
I = I;(X) be the ideal generated by the d-minors of X, 1 <d <m.

By [Bru, Theorem 3.2}, R4(I) has rational singularities. So we have
a.(I¢) < de, for all e. This also holds for ideals generated by minors of
symmetric generic matrices and ideals generated by pfaffians of alternating
generic matrices by [Bru, Remark 3.4]. The defining ideals of the varieties
considered by A. Bertram in [Ber] are:

(a) I(X), with X a generic matrix, for the defining ideals of the products
Py x Pj.

(b) I(X), with X a generic symmetric matrix, for the defining ideals of '

quadratic Veronese embeddings of I},

(¢) Pfo(X), the ideal generated by the pfaffians of a generic alternating
matrix, for the defining ideal of the Pliicker embedding of G(2,7).

In these cases we get a,(I¢) < 2e, for all e. A. Bertram gets the following
bounds for M = max;>2{a;(1)} :

(a) M <2e—4.
(b) M < 2e—3.
(c) M <2e—6.

5.3 Bayer—Stillman Theorem

Let S = k[X1,...,Xn,Y1,...,Y;] be the polynomial ring in n + r variables
with the bigrading given by deg(X;) = (1,0), deg(Y;) = (0,1), so that S
is a standard bigraded k-algebra. For a homogeneous ideal I in S, we have
already defined in Section 5.1 the bigraded regularity reg(l) of I. The aim of
this section is to give a new description of the regularity of I analogous to the
one given by D. Bayer and M. Stillman [BaSt] in the graded case. To this end,
we are going to prove several technical lemmas which are the bigraded version
of the ones in [BaSt]. To state them, we need to introduce the saturations of I
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with respect to the variables X and ¥ (7*! and I*?), and the generic forms for
I with respect to X and Y. Furthermore, Theorem 5.1.1 and Theorem 5.1.9
will be needed to prove some of these lemmas. We will include all the proofs
for the completeness.

For a given finitely generated bigraded S-module L, we say that L is (m, -)-
regular if reg;1L < m. Similarly, L is (-,m)-regular if regsL < m. Denote
by M; and My the ideals of S generated by m; = (X1,..,Xp) and my =
(Y1,...,Y;) respectively. Then we have

Proposition 5.3.1 Let L be a finitely generated bigraded S-module. Then the
following are equivalent:

(t) L is (m,-)-regular.

(#1) My, (L)) =0 for alli, g, p>m—i+1.

Proof. By Theorem 5.1.2, L is (m, -)-regular if and only if reg (L?) < m for
(L), =0for all 4, g and p > m — i + 1. Now the result
follows from Proposition 2.1.18. O

any q, that is, H?

my

Given a homogeneous ideal I, let us define I*! and I*? to be the homoge-

neous ideals
IM'={fesS:3kst. Mi*f I},

I ={fe8:3kst MFfCI).
Lemma 5.3.2 Assume k infinite, and let s = max{i | H'y (S/I) # 0}. Then,
(i) Ifs=0, "' = S.
(11) If s > 0, there exists h € S(1,0y such that (I** : h) = I*1,

Proof. First note that
H (S/)={fe€S/T|Fkst. Mi*FT=0) =
={feS|Ikst. Mi* fcI}/I=1"/].

If s = 0, we have HY ((S/I)%), = Hj\,h(S/I)(p)q) = 0 for any p, ¢, 2 > 0, so
(S/1)7 has dimension 0 as graded S;-module, and then HY ((S/D)7) = (S/1)e.
Therefore, H3, (S/I) = S/I, and we get I*! = §.

If s > 0, note that I*! # S because otherwise HY, (S/I) = S/I
and then we would have HﬂAl(S/I) = 0 for all #+ > 0. Now consider
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S = §/I*', and denote by T = 5 = Sy /(I*1)°, my = miT. We have
that HY, (S) = (I*')*!/I*" = 0, and so HY (S") = 0 for all g. Therefore,
my & Uy Ass 7(8%). On the other hand, according to [HIO, Proposition 23.6]
we have that J, Ass T(gq) is a finite set. Since k is infinite, we can find h € 51
of degree 1 such that h ¢ zp(87) for all g. Then h € S(1 ) satisfies that

h ¢ zs,(S/I*Y). Therefore, (I** : h) = I*". O

From now on in this section we will assume that the field & is infinite.
Let s = max{i | Hiy, (S/I) #0}. If s >0, h € S(1,0) is generic for I if
h ¢ zg,(S/I*!), that is, (I*': h) = I*L. If s = 0, we say that any h € 5¢10) I8
generic for I. Given j > 0, we define Ujl (I) to be the set

{(h1,...,hy) € Sgl,o) | hy is generic for (I, hy,. .., hi-1),1 <4< Jt
Lemma 5.3.3 Let h € S(10y. The following are equivalent:

(‘Z) (I . h)(p,q) = I(p,q) fO?“p Z m.

(ii) h is generic for I and (I*Np.g) = Lipygy for p 2 m.
Proof. First, let us notice that for p > a;(S/I) we have

(I D)y = Hoy (S/T)(pg) = Hip ((S/1))p = 0

by Theorem 5.1.1. Therefore, for p large enough it holds I pg) = L) Va-

Now let us assume that (¢) holds, and let f € I*! be a homogeneous element
not in I such that deg; f is maximum. Then hf € I*' has degy (hf) > deg; [,
so hf € I. Hence deg; f < m, and (I (p,q) = L(p,q) for any p = m. To show
that h is generic for I, we may assume that s = max{é | H'y, (S/I) #0} >0
(if not, any element in S(; o) is generic for [ ). Then we want to prove h ¢
25, (S/I*1). Otherwise, there exists a homogeneous element f ¢ I*! such that
hf € I*'. By Lemma 5.3.2, there exists g € S(1,0) such that g & 25, (S/I*1).
Then, for any s > 0 we have ¢°f ¢ I and hg®f € T*%, so (I*' = h)pqg) #
(I*l)(p,q) for all p > 0. But note that for any p > m,

(I By = T W) g = Lpg) = I s

and we get a contradiction.

Now assuming (i1), we have that for p > m

(I h)(p,q) = (I*l : h)(m) = (I*l)(m) = I(pq)- B
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Lemma 5.3.4 Let h € 510y be generic for I. The following are equivalent:
(1) I is (m,-)-regular.
(i) (I,h) is (m,-)-regular and (I*') o = Itp.q) for all p > m.

Proof. If I is (m,-)-regular, then S/I is (m — 1,-)-regular. Then for any i, ¢
and p > m —14, we have Hj\Al (S/1)(p,q = 0 by Proposition 5.3.1. In particular,
forp>m

0= Hthl(S/I)(p,q) = (I*l/I)(p,q)’

and so (I*})(p,g) = I(p,q) for p > m.

Let us consider Q := (I : h)/I. In the assumptions of (i) or (i), observe
that for p 2 m, (I : h)pg) = (I B)pg) = (I"p0) = Lp,gr 50 Qpg) = 0
for p > m. Therefore Hj\,ll(Q) =0 for all i >0 and HY, (Q) = Q. From the

bigraded exact sequence
O0=I—=(I:h)—Q—=0,
the long exact sequence of local cohomology gives
Hit (Dipgy = Hin, (T2 R)pg) ,Virp > m—i+ 1.

Assume first (7). We have already shown that (I*l-)(p,q) = I(pq) for all
p > m. Since I is (m,)-regular, we have H}\AI((I : h))(p,g) = 0 for all 4,

p > m — 1+ 1. By considering the exact sequence
O0—=INMh)={T:hh=(I:h)(-1,0)=I&h) — (k) =0,

we get Hf\Al((I, h))(p,q) = 0 for all 4, p > m —i+ 1, s0 (I, h) is (m,-)-regular.

Now by assuming (i), from the previous exact sequence we obtain that
Hey (T h)porg) = Hiy,(Dpgy for p>m—i+2 Forp>m—i+1, we
then have that Hj, (I)(pq) = Hiy, (I 2 2) g = Hiy, (D (pr1,9- Therefore
i (1

(pg) =0 for p >m —i+1, s0 I is (m,-)-regular. O

Lemma 5.3.5 Let I be an ideal generated by forms in deg; < m and h €
Sa0y. If (I, ) is (m,-)-regular, then (I : h) is generated by forms in deg; < m.

Proof. Let fi,..., fu,hfus1s..-,fy be a minimal system of homogeneous
generators for I, where fi,..., fy,h is a minimal system of generators for
(I,h). If f € (I : h), then

hf=agfi+...+gufu+ h(gu+1fu+1 +... ‘l‘gva),
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for g1,...,9v € S. Thus

(f _gu+1fu+1 _---_gva)h_glfl - ---_gufu = 0.

The first map in the bigraded minimal free resolution of (I,h) is

Se® Ser®...»Se, — (I,h)

e — h
€ — J;
and we have that
(f - gu-l—lfu—H e gva)e —gier — .- — Gulu

is a first syzygy of (I,h). Conversely, ifle+ljer+...+ luey is a first syzygy of
(I,h) then Ih+ I fi + ...+ lufu =0, 80 Ih€ (fi,..., fu) CI,and 1 € (I : h).
Because (I,h) is (m,-)-regular, each first syzygy of (I,h) can be expressed in
terms of syzygies of (I,h) in deg; < m+ 1. Then

(f’gu-l-lfu—l—l_- . ~"gva)e_glel — .. Guey = Z >\i(7ie+7ilel+- . -+7iu€u)7

(3

with degy(vie +viier +...+ Yiweu) <m+1. 5o

f = guitfurr F oot Gufo D X%
i

with v; € (I : h), degyvi < m. Since fuits- .- fo also belong to (I : 1) and
have deg; < m, we finally obtain that (I : h) can be generated by elements in
deg; <m. O

We are now ready to prove a bigraded version of the Bayer-Stillman’s
Theorem characterizing the regularity of a homogeneous ideal in terms of

generic forms.

Theorem 5.3.6 Let I be a homogeneous ideal in S generated by forms in
deg, < m. Then the following are equivalent:

(i) I is (m,-)-regular.
(ii) There exist hi, ... hy € Sy for some j > 0 such that
((L,h1,--. Jhic1) e hi)(m,q) = (I,h1,.-. ah’i——l)(m,q)a Vg, 1 <1< 7.

(I, b,y hi)imag) = S(ma) V4
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(ii) Let s = max{i | Hy, (S/I) # 0}. For all (hy,..., hs) € UNI), p>m,
(k1o hicr) t hi)pgy = (L by hict)(pgy, Vg, 1 <0 <os.
(I>h17' .. 7h'5)(p,q) = S(p,q)) Vq

Proof. Note that (444) = (i1) is obvious. Now we are going to show that
(i1) = () by induction on j. If j = 0, we have that Ttm,g) = Stm,q) for all g,
80 I(p,q) = S(p,q) for all ¢ and p > m. Therefore,

Z. 0 ifi>0
Hia /D= gi1 g0

In particular, we have that ijl (S/I)(p,q) =0foralls,gand p > m—1,s0 I is

P

(m,-)-regular. If j > 0, we have that (I, ;) is (m,-)-regular by the induction
hypothesis. Since I is generated by forms in deg; < m, we have that (I : hy) is
generated by forms in deg; < m by Lemma 5.3.5. As (I : hl)(mﬂ) = I(m,q), We
then conclude (I : h1)(pq) = I(p,q for all p > m. According to Lemma 5.3.3,
we have that hy is generic for I and (I*l)(p,q) = Iy for all p > m. Then I is
(m, -)-regular by Lemma 5.3.4.

Now let us prove (i) = (éit) by induction on s. If s = 0, since I is (m, -)-
regular we have H%I(S/I)(p,q) = (I*l/I)(p’q) =0 for p > m, and I*' = S by
Lemma 5.3.2. Therefore, I(, ) = (I*l)(p,q) = S(p,q) for p > m. Assume now
s > 0. Since [ is (m,-)-regular and h; is generic for I, we get that (I,h;)
is (m,-)-regular and (I*1),, y = I for all p > m by Lemma 5.3.4. As
(h2,.. ., hs) € U{_1((I,h1)), by the induction assumption it is just enough to
show (I : h1)p.q) = I(p,q) for p > m, which is satisfied by Lemma 5.3.3. O

We are going to use this criterion to compute the bigraded regular-
ity of the generic initial ideal of a homogeneous ideal I in S. Let § =
E[X1,...,Xpn,Y1,...,Y,] be the polynomial ring over an infinite field k& with
the bigrading given by deg(X;) = (1,0), deg(Y;) = (0,1). Let < be an order
on the monomials of S. Let us denote by G = G; x Gy, with G; = GL(n,k),
Gy = GL(r,k). Given an element g = (f,h) € G, where f = (fijhi<ij<n and
h = (hij)i1<ij<r, g acts on S by acting on the variables in the following way

n T
Xy > fuXi Y > hyYi
i=1 =1

We will denote by B = By x By, where By, By are the Borel subgroups of Gy, Go
consisting of upper triangular matrices, and by B’ = B} x Bj, where B}, B} are
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the Borel subgroups of G1, Gy consisting of lower triangular matrices. We will
denote by U = Uy x Uy, where U, Uy are the unipotent matrices. By bigrading
the proof of [Eis, Theorem 15.18], we get

Theorem 5.3.7 (Galligo, Bayer-Stillman) Let I C S be a homogeneous ideal.
There ezists a non-empty Zariski open U = B'U C G, UNU # Id, and a
monomial ideal J such that

in(gl) =J, Vg e U.

We call J the (bi)graded generic initial ideal of I, written J = gin([).
Given a homogeneous ideal I C S, we say that I is Borel-fix if gI = I for any
g € B. It was proved that the generic initial ideal of a graded ideal is Borel
fix. By bigrading the proof of [Eis, Theorem 15.20], we easily obtain that the

generic initial ideal is Borel-fix.
Theorem 5.3.8 Let I C S be a homogeneous ideal. For any g € B,

g9(gin(I)) = gin(J).

Let p > 0. Given s,t € N, we define s <, t <= (i) # 0 (rmodp). We also
can give an equivalent characterization of the Borel-fix bihomogeneous ideals

analogous to the one in the graded case [Eis, Theorem 15.23]. Namely,

Theorem 5.3.9 Let I be a homogeneous ideal of S. Let p = chark > 0. Then
(i) I is diagonal-fiz iff I is monomial.

(i) I is Borel-fix iff I is generated by monomials m such that satisfy the

following conditions

~ If m is divisible by th but by no higher power of X;, then
(Xi/X;)’mel, Vi<jg, s<pt.

~ If m s divisible by th but by mo higher power of Y;, then
(Yi/Y;)Pmel, Vi<j,s<pt.

For a homogeneous ideal I, let us denote by d1(I) the maximum first
component of the degree in a minimal system of generators of I. In a similar

way, we may define d2(I). Then we have
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Proposition 5.3.10 Let I C S be a Borel-fiz ideal. If chark =0, then
reg1(I) = 61(1),
regg(I) = 52([)

Proof. Set m = d;(I). From the definition of the regularity it is clear that
reg1(I) > m. According to Theorem 5.3.6, to prove the equality it is enough

to show that for p > m, i <n, we have
((I,Xn, e 7Xi+1) : Xi)(p,q) = (I,Xn, e aXH—l)(p,q)'

Let f € (I, Xn,...,Xis1) : Xi) be a monomial with deg, f > m. If there
exists k > i + 1 such that Xy|f, we immediately have f € (I, Xp, -, Xit1)-
Otherwise,

Xif = XYP(X4YP),
where XAYB € I, deg; X4 < m, deg; X* > 1. It X;| X%, we then easily get
f € I. If not, by taking k <1 such that X|X®, we can write

X X5
= YPA(LEXAYB).

f= YT
Since I is Borel-fix, we have that f{f: XAYB € I by Theorem 5.3.9, and so
felc(l,Xy,...,Xit1). O

This result has been proved independently by A. Aramova et al. [ACD]
by other methods.

Tn the graded case, it was proved by D. Bayer and M. Stillman [BaSt] that
there exists an order in A = k[X1,...,X,] (the reverse lexicographic order)
with the property that reg (I) = reg (gin/) for any homogeneous ideal I in A.
We may wonder if the analogous bigraded result also holds, that is, if there
exists an order in the polynomial ring S such that reg(l) = reg(gin ) for any
homogeneous ideal J. We show that this is not true by giving a homogeneous
ideal in S such that reg(I) # reg(ginI) for any order on 5.

Example 5.3.11 Let us consider the polynomial ring S = k[X1, X9, Y1,Y2),
with deg(X1) = deg(Xa) = (1,0), deg(¥1) = deg(Y3) = (0,1). Let > be a

term order in S, that is, an order satisfying

(i) X > Xo, Y1 > Y.
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(i) For monomials m, m1, M2 in S, if my > mg then mm; > mms.

Let I be the homogeneous ideal in S generated by the forms f1 = XYy and
fo = X1Y2+ XY in degree (1,1). Note that f1, fo is a regular sequence, SO the
Koszul complex of these forms provides the minimal bigraded free resolution
of I
0 — §(~2,-2) = S(-1,-1)> = I = 0.

Then the regularity of I is reg(l) = (1,1). Note that X1Y; > X1Ys, XoY7 >
X5Y5. Therefore, if we want to define an order on the monomials of S we only
must decide if X1Ya > XoY7 or X3¥s < X,Y; in degree (1,1). Assume first
that X1Ys > XoY7. Recall that g € GL(2,k) x GL(2,k), with

un-((3)3 1)

operates in S by means of

X, — aXp+bXo
Xy +— X1+ dXy
Y, — oY+ GYs
Y, — Y1+ pY2

Since dimy, gin(I) ¢ ;) = dimg I, for any (4, ), we have that gin(l)(,;) =
0 for (3,5) € {(0,0),(1,0),(0,1)}. Indegree (1,1), the forms f1, f2 are a k-basis
of I(3,1)- By computing g(f1 A fa), we get

g(f1 A fo) = a*{ap = pY)Xai A Xa Yo+

so gin(I)q,1) is the k-vector space generated by X1Y1, X1Ya. If gin(l) =
(X1Y7, X 1Y), then dimy, gin(I)12) = 3 because X1Y?, X1Y1Y3, X\ Y2 is a
k-basis, which is a contradiction because dimy, {12y = 4 Therefore, gin(l)
has minimal generators with deg, > 2 or deg, > 2, so regi(gin I) > 2or
rego(ginI) > 2. In the case XYy < XoY1, it can be proved that reg(ginl) #
(1,1) by similar arguments. Therefore, we get reg(l) # reg(ginl) for any

order in S.

Finally, note that these results can be applied to study the Koszul property
of the diagonals of a bigraded standard k-algebra. By using [ERT, Theorem
18], and following the same lines as [ERT, Theorem 2] in the graded case, it
can be proved that that for a homogeneous ideal I of S, (S/I)a has a Grobner
basis of quadrics for ¢ 3> 0, e > 0 (see also [ACD]).
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