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Chapter 6

Asymptotic behaviour of the

powers of an ideal

Let A = k[X4,...,X,] be a polynomial ring over a field %k, and let I be a
homogeneous ideal in A. In this chapter we are concerned with the asymptotic
behaviour of the powers of I. We will use the bigraded structure of the Rees
algebra to get information about the Hilbert polynomials, the Hilbert series

and the graded minimal free resolutions of the powers of I.

In Section 6.1 we show that the Hilbert polynomials of the powers of the
ideal I have a uniform behaviour. In particular, the Hilbert polynomials of a
finite set of these powers allow to compute the Hilbert polynomials of its Rees
algebra and its form ring, without needing an explicit presentation of these
algebras. In Section 6.2, similar results are stated for the Hilbert series of the

powers of I.

The last section begins by studying the projective dimension of the powers
of I. The approach to this question by means of the bigrading of the Rees
algebra allows to recover some classical results as the constant asymptotic
value for the projective dimension, as well as to determine the powers of the
ideal which take the asymptotic value whenever the form ring is Gorenstein.
After that, we study the graded minimal free resolutions of the powers of an
ideal. In the equigenerated case, it is proved that the shifts are given by linear
functions asymptotically and the graded Betti numbers of these resolutions
are given by polynomials asymptotically. This result is then applied to guess
the resolutions of the powers of some families of ideals from a finite set of these

resolutions.

119
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6.1 Hilbert polynomial of the powers of an ideal

First of all, let us recall some standard definitions and notations referred to
the Hilbert polynomial (see for instance [BHL]). Let A = k[Xy,...,X,] be
the polynomial ring over a field &, and let M be a finitely generated graded

A-module. The numerical function
HM, ):Z-—1Z
ji—)dhnkA@
is the Hilbert function of M. Denoting by d = dim M, there exists an unique
polynomial Pas(%s) € Q[s], of degree d — 1, for which H(M, j) = Pus(j) for all
7> 0. We can write

d-1
Pu(s) = > (1) Feq 1y, <S Z k)»

k=0
with eg,...,eq_1 € Z. Pp(s) is called the Hilbert polynomial of M.

Our first result shows the uniform behaviour of the Hilbert polynomial of

the powers of any homogeneous ideal in a polynomial ring.

Theorem 6.1.1 Let I be a homogeneous ideal in A. Set c = a?(Ra(I)),
h =ht (I). Then there are polynomials ey(7), ..., en—n—1(j) with integer values
such that for all 7 > c+1

n—h—1
Pyri(s)= > (=)™ " Pepi1k()) <8 Z k)

k=0

Furthermore, degep_n_1-x(j) <n—k—1 for all k.

Proof. Assume that I is generated by forms fi,..., fr in degrees d; < ... <
d, = d respectively. Then the Rees algebra R = R4(I) of I can be endowed
with the bigrading given by R, jy = (I7);, so that R is a bigraded S-module,
for S = k[Xy,...,Xpn,Y1,...,Y;] the polynomial ring with deg(X;) = (1,0),
deg(Y;) = (d;,1). Since R is a domain, it has relevant dimension n + 1. Then
by Proposition 1.5.1 and Proposition 1.5.5 there exists a polynomial Pg(s,?)

of degree n — 1 such that for all (7, 5)

dimy, R;.jy — Pr(i,5) = > _(=1)7dimy Hf (R)( ),
g
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where R, is the ideal generated by the products X; fitfor 1 <i<n, 1<
J < r. By faking in S the homogeneous ideals M; = (X1,...,X,)S and
Mz = (Y1,...,Y.)S, the Mayer-Vietoris long exact sequence gives then

co = Hy, (R) @ HYy, (R) = HY (R) > HU'(R) — -

Notice that for j > ¢ we have H},(R); ;) = 0 for all 4,q. Then, by Propo-
sition 2.1.18 we also get Hy, (R);j; = 0 for j > ¢, for all 4,q. Further-
more, Hi, (R)q ;) = HE(I?); for any j > 0 by Proposition 2.1.18. There-
fore, for any j > c there exists an integer 49 = a.(I’) (depending on j) such
that H}Y%+ (R = H§+ (R)iy) = HL(I7); = 0 for all ¢ and i > ig. Hence
P(i,7) = dimy, R; jy = dimy(I7); for any j > c and i > 4.

Now, by defining P;(s) = (":le) — P(s,7), for 7 > ¢, s > 0 we have
that P;(s) = dimg(A/I7)s. Hence P;(s) is the Hilbert polynomial of A

Furthermore, we can write
Pi(s) = ("y°7") = P(s,5)
= ("7 = it am () (2)
= TS k) (1),
with by (j) polynomials in j. Since deg Pj(s) =n —h —1 for any j > ¢, we

have by(j) =0for k> n—~h and 7 > ¢, so by(j) =0 for k > n — h. Then we

may write

n—h-1
Pj(s): Z (—l)n_h_luken—h——l—k(]’) <S_/:k>a

k=0
for j > c. Moreover, since Pr(s,t) has total degree n — 1 and Pg(s,t) =

-1
("2

) — Py(s), we easily obtain that dege, _1_1(j) <n—k—1. O

Remark 6.1.2 We have seen that dege,_,_1_x(j) <n—k — 1 for all k, so
in particular the polynomial eg(j) which gives the multiplicity of A/I7 has
degree < h. By Nagata’s formula,
eo(d) = e(A/Ij) = Z length( Ap/Ig)e(A/p),
pEAssh(A/I)

with Assh(A/I) = {p € Ass(A/I) | dimA/p = dim A/I}. Note that for all
those p, we have that dim A, = h and then

length( A,/I7) = e(IA4,, Ay) < +j> + polynomial in j of degree lower than h.
J
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Therefore e(j) has degree h, so let us write

eo(7) = Ay <2) + polynomial in j of degree lower than A.

We can give an upper bound for the leading coefficient A\,. According to [HS,
Corollary 3.8], we have

eo(j) < <reg (Ij)}:r h= 1) |

Assume that I is generated by forms in degree < d. Then there exists a positive
integer « such that reg(I) < dj + a by Theorem 3.4.6, and so A\, < d".
In Proposition@ 6.1.4 we will show that A, and, more generally, the leading
coefficients of the polynomials e,,_j,—1-x(J) play an important role in the mixed
multiplicities of the Rees algebra and the form ring.

Now let us consider a homogeneous ideal I generated by forms in degree d.
Let us take the Hilbert polynomial Pg(s,t) of its Rees algebra with the usual

bigrading, and let us write

PR(S + dt, t) = Z Alm, <Z> (:;) .

ktm<n—1
Following [HHRT], we call ¢;(R) = a;,—1—; the mixed multiplicity of R of
type s for i = 0,...,n — 1. According to Proposition 1.5.1 we have e;(R) > 0,
and then e(R) = 3.7 ¢;(R) by [HHRT, Theorem 4.3]. Next we are going to
study the multiplicity of the Rees ring and to relate it to the multiplicity of
the form ring. First, we need to compute the relevant dimension of the form

ring.

Lemma 6.1.3 Let I be a homogeneous ideal in A generated by forms in degree

d. Then the relevant dimension of G is n if and only if I is not m-primary.

Proof. If I is m-primary, then G4 C P for all P € Proj 2(G) because Ga,0)
is nilpotent, and so rel.dimG = 1 < dimG = n. If I is not m-primary, for
k=0,...,n—h—1 let us write

en—h-1-k(J) = A—k—1 <n ; B 1) + polynomial in j of lower degree.

Then for s > 0, t > 0, we have
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Pg(s + dt, t) = PA/[t+1 (s + dt) — PA/I"(S + dt)
En h— 1( )n—-h—l—k(en_h_l_k (t + 1) o 6n—h~1—k(t))(s+(§:+k)

= Y Rb(-1 1) T (s s = (b D CTER) +

+ polynomial in s,¢ of lower total degree

k
_ Zn h— 1( )n_h_lhk)\n—k—l (n_]tc_z) (S_I;:llt) +

+ polynomial in s,t of lower total degree

= S S D A a2 0,5 +
+ polynomial in s, ¢ of lower total degree

In particular, Ay is the coefficient of (, 7 ,)(,*,) which is not zero by
Remark 6.1.2. So the total degree of the Hilbert polynomial of the form ring
is n — 2, and then the relevant dimension of G is n by Proposition 1.5.1. O

If I is a homogeneous ideal generated by forms in degree d which is not
m-primary, let us consider the Hilbert polynomial of its form ring

Po(s+dt,t) = 3 bim <Z> <§1>

k+m<n—2
We call ¢;(G) = bjy_2—; > 0 the mixed multiplicity of G of type 7 for i =
0,...,m—2. Then (@) = Y777 ¢;(G) again by [HHRT, Theorem 4.3].

Now we can give the mixed multiplicities of the Rees algebra and the
form ring of an equigenerated ideal by means of the leading coefficients of
the polynomials e, _j1_x(j) given by Theorem 6.1.1, and to relate the mixed
multiplicities of both rings.

Proposition 6.1.4 Let I be a homogeneous ideal generated in degree d which
is not m-primary. Set h = ht(I), | =I(I). For each k, let us write

en—h-1-k(J) = Ap_k— 1< B ; _ 1) + polynomial in j of lower degree.

Then

(i) (G)=04fi>n—hori<n—1[—2. For eachn —1—-2<i<n-—h,
we have

n—h—1

—h_1-— i —2—13
61(G) = Z (_1)77. hod k)\n—k—ldk <nk—’i Z)-

k=i
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(ii) ei(R) =0 if i <n—1—1. For eachi >n—1—1, we have

qr—1—1 'Lf?, >n—~h

(R) = ) . ,
61( ) {dn—l—z . Zz;zfz—l(_l)n—h—1~k/\n_khldk—z (n;iz—z) otherwise

(iii) e;(G) = dejr1(R) — e;(R), fori =0,...,n — 2. In particular, we have
e;(R) < dejr1(R), for i =0,...,n— 2. Purthermore,

a) = (d=1e(R) +1 ifl<n-—1
el )_{(d—l)e(R)+1—deo(R) ifl =n

Proof. Let us fix j > a2(@). Then we have that for s > 0,

&

: g . s\ (7
dim (—'—) :PG(S‘l—dj,j) = § b >< 3
P\ stdj b tmn2 Ak ) \m

so P (s +dj, ) is the Hilbert polynomial of the A/I-module I7/I7+! for large

J. Hence by, = 0 for any k > n — h, so in particular ¢;(G) = 0 for i > n — A.
Let us fix now 4 > al(G¥). Then we have that H3 (@) (itas )

Hj, (G)(iyaj,5) = 0 for all ¢ and j by Remark 5.2.2. From the Mayer-Vietoris

long exact sequence, we have that for ¢ >> 0,

: It . i [t
dimy, ( T +1)i+dt = Pg(i+dt,t) = ngbkm <k> <m>

Therefore, we have that Pg(i+ dt,t) is the Hilbert polynomial of the F,, (1) =
k[lg)-module E; = @jzo(fj/IjH)de. Hence bg,, = 0 for m > [. Then the
first part of (4) is proved, and for the rest it suffices to notice that for s,¢ >> 0,
Pg(s +dt,t) = Pyjperi (s + dt) — Paype(s + dt).

To get (iz) and (éit), it is just enough to take into account that for s, ¢ >> 0
we have

PR(S + dt,t) = PA(S + dt) - PA/It(S + dt),

Po(s +dt,t) = Pp(s + dt,t) — Pr(s+dt,t+1). O

Remark 6.1.5 Let (A,m, k) be a local ring, and I # A an ideal. Set n =
dim A, I = I(I), b = ht (I). Let us denote by G = G,(G(A4)) bigraded by

means of . 4
_ mild 4 [+l
() = Ritips T it
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Since G is a standard bigraded k-algebra, we may consider its Hilbert polyno-

= ()2
k+m<n—2

and let us denote by ¢;(G) = Ci—1m—1—; for 1 <4 <n —1. R. Achilles and M.
Manaresi [AM] show that ¢;(G) = 0 if ¢ > dim A/ or i < n — I.

‘This definition and the results proved in [AM] can be extended to the
graded case, and then we get that ¢;(G) = 0ifi>n—hori < n—1. For
a homogenous ideal I in A = k[X1,..., X,,] generated by forms of degree d,
note that

mial

— Vel

Glig) = ( p‘Tl)H v Glitdj ),
s0 ¢;(G) = ¢;41(G), and we get part of (i) of the previous proposition. In fact,
the idea for proving this part of (1) is similar to [AM].

Remark 6.1.6 If T is a complete intersection ideal then [ — h, and from
Lemma 6.1.4 (i) we have e;(R) = 0ifi < n—1—1, and e;(R) = d"=1-% if
¢t 2 n — . This result was proved in [STV, Theorem 3.6].

Corollary 6.1.7 For a homogeneous ideal T generated by forms in degree d
of height h, we have

(i) e(R) > 1+d+...+d"1.

(i4) If I is equimultiple, e(R) =1 +d+ ... +d" 1. Assume further that I is
not a m-primary ideal. Then e(GQ) = e,_p_1(G) =\, = d".

(i11) Assume that I is not a m-primary ideal. If AJI7 is Cohen-Macaulay for
7> 0 (or Buchsbaum), e,_,_1(G) = d". Therefore, e(G) > dr.

Proof. (i) and (#) are trivial. If we assume (4i), according to [HRTZ,
Proposition 2.3] for j >> 0 we have that e(4/17) > (=2, and so A, > d".
Furthermore, A, < d" because en-h-1(R) = d"— X, > 0 by Lemma 6.1.4. We
conclude e,_;_1(G) = A, = d*, and so e(G) > epp_1(G) =d". O

Notice that as a consequence of Theorem 6.1.1 we have that with the
Hilbert polynomials of a finite set of the powers of an ideal we can compute
the Hilbert polynomials of its Rees algebra and its form ring, without needing
an explicit presentation of these bigraded algebras. For equigenerated ideals,
we may also compute the multiplicities of the Rees algebras and the form ring.
Namely,
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Corollary 6.1.8 Let I be a homogeneous ideal in A. Set ¢ = a2(Ra(I)),
h =ht (I). Then the Hilbert polynomials of I/ for c+1 < j < ¢+n determine

(i) The polynomials ep—_p—1-x(j) for k=0,...,n—h—1.
(ii) The Hilbert polynomials of AJI for j > c+n.

(iii) The Hilbert polynomial of the Rees algebra of I and the Hilbert polyno-
mial of the form ring of I.

(iv) If I is equigenerated and not m-primary, the multiplicity of the Rees
algebra of I and the multiplicity of the form ring of L

We describe all these computations by means of an explicit example.

Example 6.1.9 Let us consider I C A = k[X, X9, X3, X4] the defining ideal
of the twisted cubic in P. Recall from Example 5.2.3 that the Rees algebra of
I is Cohen-Macaulay, and so a?(R4(I)) = —1. Moreover, I is an ideal of height
2 generated by forms in degree 2. Then, according to Corollary 6.1.8 we can
get the Hilbert polynomials of A/I7 for j > 3 from the Hilbert polynomials of
I, I? and I®. By using CoCoa, we have

PA/](S) =3s5+1

PA/I2(8) =9s—7

Pyyra(s) = 18s — 34

By imposing ep(0) = 0, eg(1) = 3 and ¢¢(2) = 9, we get the multiplicity

function eg(t) = 3t(¢t + 1). Similarly, one gets e1(¢) = 5¢(¢ + 1)(t — 2). Then
the Hilbert polynomial of A/I7 is

Pyyri(s) = eold) <8 Jlr 1) —e1(4)

and the Hilbert polynomial of the Rees algebra R of I is

Pr(s,t) = (;3) (1) <J{1> Leid).

In this case Ay = 3, A3 = 10, so by Lemma 6.1.4 we have e3(R) = 1, e3(R) = 2,
e1(R) =1, eg(R) = 0, and e3(G) = 0, e1(G) = 3, eo(G) = 2. Therefore, the
multiplicity of the Rees algebra is e(R) = 3°2_o e;(R) = 4 and the multiplicity
of the form ring is e(G) = 2, &;(G) = 5.
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6.2 Hilbert series of the powers of an ideal

Let A = k[Xy,...,X,] be the polynomial ring over a field & in n variables.
For any finitely generated graded A-module M, recall that the Hilbert series
of M is defined as

Hpy(s) = ZH(M,j)sj = Zdimk M;s? € z[s]).

JEZ JEZ

Following A. Conca and G. Valla [CV], for a given class C of homogeneous
ideals in A, we say that C has rigid powers if for any ideals I ,J in C such that
Hyyr(s) = Hyyy(s) then Hy1i(s) = Hyyyi(s) for all j. For example, the class
of complete intersection ideals has rigid powers. The class of the homogeneous
ideals in A which are Cohen-Macaulay of codimension 2 and the class of the
homogeneous ideals in A which are Gorenstein of codimension 3 do not have
rigid powers, but their subclasses consisting of the ideals of linear type have
this property as it has been proved in [CV].

Our first aim in this section is to show that for an equigenerated ideal I we
can compute the Hilbert series of A/I7 for j > 1 from a finite set among these
Hilbert series, and so we can also compute the bigraded Hilbert series of its
Rees algebra. This fact will be a direct consequence of the noetherian property
of the Rees algebra, and the finite set of Hilbert series will be found thanks to
the bounds for the shifts of the bigraded minimal free resolution of the Rees
algebra given by Theorem 1.3.4. In particular, we will have that if the Hilbert
series of the powers of two ideals I, J coincide for certain exponents then all

the Hilbert series of the powers of I and J must coincide.

Theorem 6.2.1 Let I be an equigenerated homogeneous ideal. Set | = I(I),
¢ = a?(Ra(I)). The Hilbert series of I7 forc+1 < j <c+1 determine the
Hilbert series of I7 for § > ¢+ 1.

Proof. Let us assume that I is generated by forms in degree d. Then we have
that R = Ra(I) is a finitely generated bigraded S-module in a natural way,
for 5 = k[Xi,...,X,,Y1,...,Y]] the polynomial ring with deg(X;) = (1,0),
deg(Yj) = (d,1). Let Hg(s,t) be the bigraded Hilbert series of R, that is

2 1,J

Hp(s,t) = > _dimg R st = 3" dimg (I9); s = 37 Hy, (s)87.
J
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By considering the bigraded minimal free resolution of R as S-module
0—=Dy— ... =5 Dyg— R—0,

with D, = @4 p)eq, S(a,b), we can write

Q(s,t)
(1—s)(1 —sdt)t 7’

with Q(s,t) = ZZ:O(—l)p 22 (ah)E, s797% € Z[s,t]. Now let us fix a € Z>o.
Denoting by ,Bg = dimy Tor;‘(lc, Ij)a+dj, then

Zp(—l)pﬂi = [(1 —s)"Hp;(s) ]deg s=a+dj

HR(S7 t) =

! =[O —s)Hplst)]
degt =
4]
(1—-s%t)! degs = a4+ dj

degt =

Let us write Q(s,t) = 3 mgs®t9¢k + Q(s,t), with Q(s,t) containing
all the monomials of the type s#t%¢% for any 8 # « and any k. The pairs
(—a — dk, —k) are shifts in the bigraded minimal free resolution of R as S-
module, so k < t2(R) = a?(R) + 1 = kg by Theorem 1.3.4. Then we have that
for any 7 > kg,

(=18 = [(Sheo CHT s ) (Shtgmesriey |

degt =j

=mo(TT1) 4 mg, (TR0
— Pa(j)'

It is easy to prove that this equality holds for § > kg — [ + 1 = a2(R) + 1.
So we have found a polynomial P,(j) of degree < [ — 1 such that P,(j) =
> (1)@ for any j > af(R) + 1. Hence the Hilbert series of the powers I/
for a2(R) + 1 < j < a?(R) + | will determine the Hilbert series of I’ for any
j>a?(R)+1. O

Corollary 6.2.2 Let I be an equigenerated homogeneous ideal whose Rees
algebra is Cohen-Macaulay, and | = I(I). Then the Hilbert series of I7 for
J <1 —1 determine the bigraded Hilbert series of the Rees algebra of I.
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Recent papers by A. M. Bigatti, A. Capani, G. Niesi and L. Robbiano
[BCNR] and L. Robbiano and G. Valla [RV] treat the problem of computing
the Hilbert series of the powers of a homogeneous ideal I in the polynomial
ring A = k[X1,...,X,]. The strategy followed there to solve this problem is
to compute the Rees algebra R4(I) of I and then a Grébner basis of it, from
which one can get easily the bigraded Hilbert series of the Rees algebra, and
so the Hilbert series of all the powers of I. Notice that we can use Theorem
6.2.1 to give another approach to this problem: To get the Hilbert series of
the powers of an equigenerated ideal I it suffices to compute the Hilbert series
of I(I) of its powers. Next we apply this procedure to the following example
studied by A. Bigatti et al. [BCNR, Example 5.4].

Example 6.2.3 Let us consider the ideal I generated by the 2 by 2 minors /

of the generic symmetric 3 by 3 matrix

X1 Xy X3
M = X2 X4 X5
X3 X5 Xe

The Rees algebra of I is Cohen-Macaulay, so a?(R) = —1. Therefore, the
Hilbert series of I7 for § < 5 will determine the rest of the Hilbert series. By

using CoCoa, we obtain:
_ 6528534354
HI(S) - (1=5)° )

2184 —455° 43855 —1857+658 —5°
HI2( ) (1—5)8 )

565% 15057416558 —1005°+36510 —6s!
HI3( ) (1=s)® )

_ 1265838559 +486510— 33osll+125312 21513
Hia(s) = (T=s)8 )

H () 252510~8405“+1155312~840513+330514+56515
158 (1-s5)°

Then the polynomials P,(j) defined in the proof of Theorem 6.2.1 are
Py(j)=0fora#0,...,5,
Po(j) = 1+ 505+ §4° + 515° + g4 + 504°,
83,2 53,3 _13.4 _ 1.5

Pl(j)z—zj“_zp? T og4) T 9g) T agd%

Py(j) = =35 + 852+ B5° + Lyt + L5,
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Py(j) =i+ 17° - 87° - 4 — &7,

Py(j) =17 — 353" + 533° + 535" + 20"

Ps(5) = 557 + 325° = 219° — 219" — 79"
and the Hilbert series of I7 is

Py(5)s™ + Pi(j)s™* + Pa(f)s™+2 + Pa(5)s™™*? + Py(5) s + Py (5)s¥*°
(1—s)° '

Next we also compute the Hilbert series of the powers of the ideal of the

twisted cubic 1% ]P‘% studied in the previous section.

Example 6.2.4 Let I C A = k[X1, X9, X3, X4] be the defining ideal of the
twisted cubic in P%. From Example 5.2.3, let us recall that 7 is generated
by quadrics with I(I) = u(I) = 3 and R4(I) is Cohen-Macaulay. Therefore,
according to Theorem 6.2.1, we can get the Hilbert series of I for j > 2 from
the Hilbert series of I and I?. By using CoCoa, we have

Hy(s) = %5,

Hp(s) = —684——7——(;23“6.

Then the polynomials P,(j) defined in the proof of Theorem 6.2.1 are
Py(j) =0, foraa#0,1,2,
Po(j) =3+ 1) +2),
() =-jG+1),
Py(5) = 5i(G = 1),
and the Hilbert series of I7 is then

Py(j)s¥ + Pi(j) s + Py(j) s +?
(1-s)* '

Hyj(s) =

Now, the bigraded Hilbert series of its Rees algebra is

; 1 — 2% + s5¢2
Hpg(s,t) = ZHU(SW T =91 = 528
M)




HILBERT SERIES OF THE POWERS OF AN IDEAL 131

Remark 6.2.5 Similarly we can prove the following statement for the Hilbert
series of the form ring of an equigenerated ideal I: If [ = [(I) and e =
a2(G4(I))), then the Hilbert series of I7/I7+! for e+ 1 < j < e + | deter-
mine the Hilbert series of I//I*! for j > e +1. In fact, for any a > e the
Hilbert series of Ij/Iijl for a +1 < 7 < a+1 determine the rest.

For any m > 0, let us define Cy, to be the class of equigenerated homoge-
neous ideals I in A such that a?(Ga(I)) + I(I) < m. Note that C, contains
the class of complete intersection ideals, and we have the chain

CocCiC---CCpCCpyp C---
As a corollary, we get
Corollary 6.2.6 Let I,J € C, be such that
Hyijrivi(s) = Hyipgsrr(s), form —1+1 <5 <m.

Then Hiyjjrivi(s) = Hyiygii(s), Vi. Therefore Hpi(s) = Hyi(s), for all j,

and in particular Cy has rigid powers.

For an arbitrary homogeneous ideal I in A, we can also show that a finite
set of Hilbert series of the powers of I determine the rest. But in this case,

the bound we get is worse.

Proposition 6.2.7 Let I be a homogeneous ideal in A. Set r = u(I), ¢ =
aZ(Ra(I)). The Hilbert series of I’ for j < ¢+ determine the Hilbert series
of IV for j >c+r.

Proof. Assume that I is minimally generated by forms f1,...,f, of degrees
di,...,d, respectively. Then let us consider the presentation of the Rees alge-
bra R of I as a quotient of the polynomial ring S = k[X3,...,X,,Y1,... , Yr,
with deg(X;) = (1,0), deg(Y;) = (d;,1). From the bigraded minimal free res-
olution of R as S-module, we have that there is a polynomial Q(s,t) € Z]s, t]
such that

Qs t)
(1—-s8)"(1—sht)...(1~sht)

HR(S, t) =
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According to Theorem 1.3.4 we can write Q(s,t) = >i%, Qs(s)tt, with
m = a?(R) +r. Since Hg(s,t) = 22i>0 H;i(s)t?, we have
Qls,t) = (1 —8)™(1 —s¥t)... (1 - sd"t)(z Hyi(s)t),
Jj=0

and then the result follows immediately. O

6.3 Minimal graded free resolutions of the powers

of an ideal
The results about the Hilbert series of the powers of a homogeneous ideal
imply in some particular cases the estability (in a meaning which we will
precise immediately) of the minimal graded free resolutions of the powers of
the ideal. For instance,

Proposition 6.3.1 Let I be an ideal generated in degree d with [(I) = 2 whose
Rees algebra is Cohen-Macaulay. Then the minimal graded free resolution of
I determines the minimal graded free resolutions of all its powers. Namely, if

the minimal graded free resolution of I is
0= A~ —d)P @ ... © A(=ap, — d)P N A(=d)P =T =0,
then for any j > 1 the minimal graded free resolution of I is
0= Al—ay — &) & ... & Al—ay, — dj)PmI — A(—dj)P~I+ 5 7 0.

Proof. TFirst, note that for any 5 > 1 we have that proj.dim I/ <I(I) -2 =
1 because R is Cohen-Macaulay (see Proposition 6.3.2). Therefore, we can
conclude that proj.dim 417 = 1 for any 5. On the other hand, since R is Cohen-
Macaulay, we have a(R) = —1, so the Hilbert series of I7 for j <l —1=1

determine the Hilbert series of I/ for j > 1 according to Theorem 6.2.1. The
polynomials Py, (j) defined there are

P,(j) =0, fora & {0,a1,...,am},
Po(j) = (B-1)j +1,
P,.(j) =—-pBij, fori e {0,...,m}.

Then the Hilbert series of IV is
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P4 o +tdj
Hyy(s) = ZeapeD™?

so the minimal graded free resolution of I must be
0= A(—ay —dj) 1 D@ @ A(—ay, —dj) Pem D) 5 A(—dj)Po0) 5 7 5 .
0

This result leads to the question of when a finite number of minimal graded
free resolutions of the powers of I determine the rest (and, in this case, which

set of resolutions determine the others).

Let us begin by studying the behaviour of the projective dimension of the
powers of I. It is well-known that these projective dimensions are asymptoti-
cally constant (see [Bro, Theorem 2]), but not for which powers of the ideal the
projective dimension takes the asymptotic value. We will precise these powers
for ideals whose form ring is Gorenstein by considering the Koszul homology
of the Rees algebra R of I with respect to X1,...,X,. This also provides
new proofs of well-known results as the Burch’s inequality or the constant

asymptotic value for the depth.

Proposition 6.3.2 Let I be a homogencous ideal in A, and set | = II).
Then:

(1) proj.dim,(I’) < n — depthy,,p)(R) for all §, and the equality holds for
7> 0. So, inf;>o{depth(A/I/)} =n — 1 — (ht (mR) — depthy,,py(R)).

(1) If R is Cohen-Macaulay, proj.dimy(IY) < 1 — 1 for any j and
proj.dim,(I7) =1 —1 for j > 0. Furthermore, proj.dimy(I7) =1—1
implies proj.dim 4 (/1) =1 — 1,

(ii1) If G is Gorenstein, proj.dimyI? =1 —1 if and only if 5 > a?(G) — a(F),
and proj.dim, I/ /II+ = 1 — 1 if and only if j > 6*(G) — a(F).

Proof. Let us consider the Koszul complex K.(X,R) = K.(X1,... y Xn, R)
of the Rees algebra R with respect to X = X;,..., X,,. We have the natural
bigrading in the Rees algebra R by means of R ;) = (I7);, and then the
modules Kp(X, R) of the Koszul complex are also bigraded in a natural way.
Denoting by F' = F,,(I), we have that for any p the Koszul homology module
H, = Hg (X; R) is a finitely generated bigraded F-module. Moreover, since
Kp(X, R) 5 = Kp(X, I7); we have

HY (X, R = HAX, ), = Tor 2 (k, I7); ,
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so the Koszul homology modules H, contain all the information about the
graded minimal free resolutions of the powers of I.

Now set s = n—depth(,g)(R). Recall that H), is zero for any p > s, and so
proj.dim4(I?) < s for any j. Moreover, since Hy is a F-module of dimension
[ [Hu2, Remark 1.5] we can find for any 5 > 0 an integer 4 (depending on
j) such that [H]; ;) # 0. Therefore we obtain that proj.dimy(7) = s for
j > 0. By the graded Auslander-Buchsbaum formula, proj.dim,(17) = n —
depth A/I7 — 1, and noting that depth,gy(R) < ht(mR) = n +1 —1 we get

To prove (i), let us denote by ¢ = depth(,,z)(R) = n-+ 1~ 1. We may
assume that & ig infinite, and then there exists a homogeneous regular sequence
bi,...,b € mR of degree (1,0). Then

(b1, b0t (Kiye o, X
(b1,...,by)

Note that s = [ — 1 because R is CM. Now, observe that proj.dim 4(I7) =
[ — 1 implies that there exists 4 such that [H;]; ;) # 0; so let us take f €
[Hslg,g), f # 0. For a positively graded ring A = @D;>04;, let us denote by

H, =

(t —n,0).

Ay = @js04j, and in the following let us consider the fiber cone F' and the
Rees algebra R graded by means of F; = IV /ml’, R; = I’. If F, f = 0, then
I™f C (by,...,b) for any m > 1. So, denoting by R = R/(by,...,b;), we
have that By C Ann(f) C p € Ass(R) and so ht(Ry) = 0. But ht(R,) =
dim R — dimR/Ry = 1. As a consequence, (Fy)1f # 0 and so there exists d
such that [H](yq,j41) 7 0 and we have (i7).

Finally, we are going to determine the powers of I whose projective dimen-
sion is {—1 if G is Gorenstein. To this end, let us consider the Koszul homology
modules of the form ring G with respect to X, which will be also denoted by
Hy. Set s = n — depth,,)(G) =1, t = depth(,,)(G). As before, H, is zero
for p > s and there exists a homogeneous regular sequence by,...,b; € mG of
degree (1,0), such that

biy.. ) (X, Xy)
(b1, by)

On the other hand, from the natural bigraded epimorphism G — G/mG = F,

Hl:(

(t —n,0).

we can compute the canonical module of the fiber cone F' by using Corollary
1.2.2:
Kp = Extg |(F, Kg).
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Since G is Gorenstein, we have a bigraded isomorphism K¢g = G(—n,a) with
a = a*(G) by Corollary 4.1.7. Therefore,

KF = MZ_Z(F, G)(—Tl, CL)

= Homq (F,G/(b1,..., b)) (—n + t,a)

b1, b)) X1, Xp
= Bhopdlan) (i 1 ¢ )

= H;(0,a).

Now, observe that proj.dim4(I?/I*1) = [ if and only if there exists 7 such
that [H)]; ;) # 0 if and only if there exists 4 such that [KFl(i,j—a) # 0, that is,

J > a—a(F). From the exact sequences
0P 5 /Pt 50,

it is then easy to check that proj.dim,(I’) = —1 if and only if j > a — a(F),

and so we are done.O

Example 6.3.3 Let I be a strongly Cohen-Macaulay ideal such that w(l,) <
ht (p) for any prime ideal p D I. Set I = I(I), h =ht(I). Recall from Corollary
5.2.11 that G4(I) is Gorenstein, a*(G4(I)) = —h and a(F,(I)) = —I. So, by
Proposition 6.3.2 we have depth(4/I) = n — [ if and only if j > [ — h.

Example 6.3.4 Let X = (X;;) be a generic matrix, with 1 <1 <d,1<j <
nand d <n. Let I C A = k[X] be the ideal generated by the maximal minors
of X. Recall from Example 5.2.10 that the Rees algebra R is Cohen-Macaulay
and the form ring G is Gorenstein with a?(G) = —~ht(I) = —(n — d + 1).
Furthermore, {(I) = d(n — d) + 1 and a(F) = —n. Now by Proposition 6.3.2,
we get that depth(4/I7) = d?—1 ifand only if j > d—1. In the case n — d+1,
this was proved in [BV, Example 9.27).

Example 6.3.5 Let X = (X;;) be a generic skew-symmetric matrix, with
1 <4<j<n,andnodd Let I C A= k[X] be the ideal generated by
the (n — 1)-pfaffians of X, where k is a field. In this case, the form ring G is
Gorenstein [CD] and I(I) = n, a(F(I)) = —n [Hu3]. So depth(A4/17) takes
the asymptotic value @ —n for some j < n, and by Proposition 6.3.2 for
all 7 > n.

G. Boffi and R. Sénchez [BoSa] have constructed a family of complexes
which give a resolution for all the powers I7, for j > 1, in particular proving
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that proj.dim4(A/I7) = n if and only if j > n — 2. Then Proposition 6.3.2
shows that a?(G4(I)) = —3.

Our next aim is to study the graded minimal free resolutions of the powers
of an equigenerated ideal by doing a deeper study of the Koszul homology of
the Rees algebra with respect to X1, ..., X,. The general case will be studied
later by different methods.

6.3.1 Case study : Equigenerated ideals

First of all, we show that the shifts in the graded minimal free resolutions of the
powers of an equigenerated ideal are given by linear functions asymptotically
and the graded Betti numbers of these resolutions are given by polynomials

asymptotically.

Proposition 6.3.6 Let I be an ideal generated by forms in degree d. Set
I =1(I), s =n — depthy, g (R). Then there is a finite set of integers

{opi |0<p<s,1<i<kp}t
and polynomials of degree <[ —1
{Qun) [0 p < 5,1 ST < ky)
such that the graded minimal free resolution of IV for § large enough is
0=Di—...-Dl-I -0,
with DJ = @; A(—api — &) and Bl = Qa(5).

Proof. Let us consider again the Koszul homology of the Rees algebra R of
I with respect to X = Xj,..., Xy, and let us denote by ' = ;> I’ /mI7 the
fiber cone of I and by Fy = @;~¢ IJ/mI9. For every p < s, Hp = HPS(X; R)
is a finitely generated bigraded F-module. Let g be a homogeneous generator
of H, with deg(g) = (a,b), and set o = a — db. If Fy C rad (Ann(g)), there
exists 7 such that Fj_g = 0, and so F;g = 0 for all j > 0. Otherwise, there
exists a homogeneous element f € F of degree d such that f ¢ rad (Ann (g)).
Then f/g # 0 for all j, and so we have [Hp]ayaj5) 7 0 for all 7 > 0. Let
g1, .., gm be the homogeneous generators of H, with this property, and set
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deg(g:) = (a3, b;), oy = a; — db;. Then, for j large enough we have that
[Hpl(a,jy # 0 if, and only if, there exists i € {1,...,m} such that a = o; + dj.
Since [Hpl(a;+4j,5) = Tor?(k,[j)aﬁdj, we obtain that «; + dj, for 1 <i < m,
are the only shifts in the place p of the graded minimal free resolution of I’
for 7 > 0.

For o € {a1,...,am}, let us define Hy = @,;[Hp|(a+dj,j)- Notice that
dim HY < dim H), = [ by [Hu2, Remark 1.5]. Since I is a finitely generated
graded F-module, there exists a polynomial Q4 (j) of degree dim Hy —1 < 1—1
such that for j large enough

Qa(j) = dimg[H); = dimy, Tor ;' (k, I ataj,

50 Qq(7) is the Betti number of I/ corresponding to a + dj in the place p. O

Example 6.3.7 Let I be a Cohen-Macaulay homogeneous ideal of codimen-

sion two in the polynomial ring A = k[X7,..., X,] such that:

(i) The entries of the Hilbert-Burch matrix of I are linear forms.

(ii) I verifies Gy,

(i) (1) < .

This example has been studied by A. Conca and G. Valla in [CV]. Set
r=pul),d=r—-1,85=AY1,...,Y;]. Then

Ra(I) = Symy(I) = S/(Fy, ..., Fry),

with Fy,..., Fr._1 a regular sequence of degree (d,1). So the Koszul complex
of § with respect to Fy,..., F,_1 gives the bigraded minimal free resolution of
R4(I). From this resolution one can get the minimal graded free resolutions
of I, for all § > 0. Namely, proj.dim,(I’) = min{j,7 —~ 1} and the minimal

free resolution of IV is
0=D! ,—...oDl—-I—0,

with DJ = A(—p — dj)%, B = (") (1271,

Remark 6.3.8 Let (A, m, k) be a noetherian local ring, and let I C A be an
ideal. Set [ = I(I), = pu(I). Denote by R the Rees algebra of I graded by
R;j = I, andlet S = A[Y},...,Y;] be a polynomial ring over A with deg¥; = 1
so that R is a finitely generated graded S-module. As above, we can prove
that there are polynomials Qp(7) of degree <! —1, the Hilbert polynomials of
Torg (S/mS, R), such that the minimal free resolutions of I7 for j > 0 are

o AP0 5 AQ0) 5,
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This result was proved by V. Kodiyalam in [Kol]. If A is regular, let z be a
regular sequence generating m. Since Torf(S/mS, R) = H,(z, R), the module
Tor{,‘(k, R) has dimension [ if it is not zero. Therefore, the polynomial Q,(5)
has degree | — 1 if Q,(j) # 0. This answers affirmatively [Kol, Question 13]
for any regular ring A.

Observe that Proposition 6.3.6 says that we can compute the graded min-
imal free resolution of any power of an equigenerated ideal from a finite set
among these resolutions. Now we consider the problem of determining this
finite set of resolugions. To begin with, let us study the asymptotic shifts of

Proposition 6.3.6. '

Lemma 6.3.9 Let I be o homogeneous ideal generated in degree d and let
R=Ra(I). Then

(i) For all p and i, there exists (a,b) € Qp g such that op; = db — a.
(#i) For each o, let
p=min{q|3bs.t.(a+dbb) € Qyr},

and let
by = max{b ‘ (Ol + db, b) S Qp,R}-

Then o + dby € Qp’f—bo, that is, a + dbg is a shift that appears in the

graded minimal free resolution of I7% at the place p.

Proof. Let 0 - D,, — ... = Dy — R — 0 be the bigraded minimal free
resolution of R over S = k[Xy,...,Xn, Y1,...,Y;]. By applying the functor
()7 to this resolution, we get a graded free resolution of I’ over A

0o D) —... DI -Dl I =0,

with Dg = D(ap)en, r Ala —db — dj)ﬂib, for some péb € Z. ‘This resolution
is the direct sum of the minimal graded free resolution of I’ and the trivial
complex [Eis, Exercise 20.1], so we obtain that for j > 0

{opi + dj}pi C{db—a+dj|(a,b) € Qyr},

and so () is already shown.
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Now let « be such that there exists b with (« + db,b) € Q2. Let p be the
first integer such that (o + db,b) € Q, g, and let by be the maximum of these
b’s. We must show that

TOYE(S/mSa R)(—a—dbo,—bo) = Tor;zf)x(ka Iﬁbo)—or—dbo 7é 0.
We will proceed as in Theorem 5.1.1: Let
Dys1 28 D, 5 D, 4

be the differential maps appearing in the resolution of R. Tensorazing by
®g5/mS, we have the sequence

Dyi1/mDysr "5 DyjmDy 2 Dyt /mDy 1.
Now let v € D, be an element of the homogeneous basis of D, as free S-module

with deg(v) = (—a—dbg, —bp). If wy, ..., w; is the basis of D)1, we can write
8§
Pp(v) = Z Ajws,
j=1

with \; € M homogeneous. Set deg(w;) = (—ay — dbj, —b;). By looking at
the degree of the elements, we have that A; must be zero for all j such that
—b; > —bg. For the integers j such that —b; = —bg, we have that \; € mS
necessarily. Finally, for j such that —b; < —by we also have \; € mS because
aj # a. We may conclude Ep(fu) = 0, that is, v € Ker{[z—p. It is clear that
v & Imp,,; because Im Ypr1 € MDy. Sow € Torf(S/mS’, L) (Z adbo,~bo) s
v # 0 and we are done. O

As a consequence of this lemma we have that all the differences a — db for
(a,b) € Qg appear in the minimal graded free resolution of some power [ 7 of
I for j < a?(R)+1(I). The problem is to distinguish which of these shifts will
appear asymptotically, and the place from where on the resolutions are stable.
We can solve this problem for ideals with a very particular nice behaviour.

For instance, we get

Proposition 6.3.10 Let I be an equigenerated homogeneous ideal, and set
b = a2(Ra(I)) + I(I). If the graded minimal free resolutions of I,I%,...,1°
are linear, then the graded minimal free resolutions of I7 are also linear for
any j. Furthermore, the minimal free resolutions of I, I?, ..., I determine the

minimal graded free resolutions of I/ for any j.
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Proof. Assume that I is generated by forms in degree d and set s =
sup;—; . p{proj.dimyI?}. According to Lemma 6.3.9, we have that the shifts
in (g are of the type (p + db,b) with 0 < p < s. Furthermore, there exists
bo such that (p + dbo,bo) € Qp g, but for any b, ¢ < p, (p + db,b) ¢ Qq.r.
Therefore, £y, g has only shifts of the form (a+ db,b) for 0 < a < p. Again by
Lemma 6.3.9, we get

{O[pi}i C {0, ce ,p}.

Finally, since min{—f: 8 € Q,,; ;} > min{-4: 8 € 2, 15}, we have that
min{—-0:f6¢ Q,1i} > p+dj. Therefore I/ must have a linear minimal free
resolution.

Moreover, by Theorem 6.2.1 we also have that for p = 0, ..., s there exists
a polynomial Qp(j) of degree <[ — 1 such that

Qp(5) = dimy, Tor Mk, 1)y 47,

for j > a2(R) + 1. So, if we know the minimal graded free resolutions of

J6=tHL T%, we may determine the polynomials @p(7), and then the minimal

graded free resolution of 17 for j > 5.0

Remark 6.3.11 The first part of Proposition 6.3.10 can be also obtained
from Theorem 5.2.1 (i7).

Remark 6.3.12 Given an equigenerated homogeneous ideal I with a linear
minimal free resolution, it can happen that 72 has a non linear minimal free
resolution (see [Con, Remark 3}). We have shown in Proposition 6.3.10 that
if certain powers of I have linear resolution, then the rest of the powers have

this property too.

We may apply this result to guess the minimal graded free resolutions of
the powers of the ideal defining the twisted cubic in IP’,?;.

Example 6.3.13 Let I C A = k[X1, X9, X3,X4] be the defining ideal of
the twisted cubic in }P’,%, and let us study the graded minimal free resolutions
of its powers. [ is generated by forms in degree 2 with I(I) = 3 and b =
a?(R)+[(I) = 2. The minimal resolutions of I and I? (computed with CoCoa)

are:
0— A(=3)? = A(-2) 5T =0,

0— A(—6) = A(=5)® = A(—4)* - I > 0.
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Since these resolutions are linear, we have that the minimal graded free res-
olutions of I7 for j > 2 are also linear by Proposition 6.3.10, and we may
compute them:

0 — A(=2—25)@20) o5 A(=1—2/)9 ) 5 A(=2/)PW) 3 0,

with Qo(f) = 3(7 + 1)(j +2), Q1(j) = 7(j + 1) and Q2(j) = 35 (j — 1).
Similarly, one can prove the following statement.

Proposition 6.3.14 Let I be an ideal generated in degree d, and set b =
aZ2(Ra(I)) + I(I). Assume that there are integers v, ..., s such that the

graded minimal free resolutions of I,12,... 1Y take the form
0—=Di—...» Dl Dj—I =0,

witthg = A(—ap—dj)ﬁlé, for ,Bg > 0. Then the graded minimal free resolutions
of I are of this type too. Furthermore, the minimal graded free resolutions of

I,1%,...,I° determine the minimal graded free resolutions of I’ for any j.

The following example does not belong to the family of ideals considered
in the previous propositions, but we can also guess the asymptotic resolution

of its powers.

Example 6.3.15 Let [ = (X7,Y", X%V + X2Y®) C A = k[X,Y]. Note that
I is a m-primary ideal generated by forms of degree 7 with [(I) = 2. Since
proj.dim,I7 = 1 for any j > 1, we have that the shifts in the place 0 and 1
of the resolution of I/ can not coincide. Then, according to Theorem 6.2.1 we
have that for any o # 0 there is a polynomial P,(j) of degree < 1 such that

Py (j) = dimy Tor 1k, %) 0y 45,

for all j > a2(R) + 1.

This example was studied by S. Huckaba and T. Marley [HM, Exam-
ple 3.13]. Denoting by G4 = @j>01j/fj+1 and by ¢;(G) = max{j |
Hg,  (G); # 0}, it was proved that the form ring G has depth 0, and
ay(G) < 01(G) < gy(G) = 4. Now a2(G) = max{a,(G) : i = 0,1,2} = 4
according to [Hy, Lemma 2.3], and then the short exact sequences

0—-Riyy - R— A—0,
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0= Riy(1) = R—>G—0,
where Ry = @01 7, show a2(R) = 4. The graded minimal free resolutions

of I® and I (computed with CoCoa) are :
0— A(=37)1° @ A(=36)° = A(=35)2 = I° =0,

0— A(—49)Y° @ A(—43)1? = A(—42)B 5 1° =0,

Then we may compute the polynomials P,(j), so the graded minimal free

resolutions of 17 for j > 5 are:
0= A(=2—-1)B @ A(-1 —T7§)7730 5 A(-7)" M 5P 0.

Furthermore, in this case we check that the bound can not be improved

because the resolution of I* is

0— A(—=30)"* - A(-28) - T* = 0.

Open Question Let I be a homogeneous ideal generated by forms in degree
d. Denote by I = I(I), s = n—depth, ) (R), c = a2(R). By Proposition 6.3.6,
there are integers {cy;} and polynomials {Qq,, (7)} of degree <1 —1 such that
for j > 0 the graded minimal free resolution of IV is

0-Di—...=»Dl—-1I =0,

with Dg = @; A(—ap — dj)ﬂzjﬂ and ,Bgz- = Qa,; (7). In some particular cases,
we have shown that this holds for 7 > ¢+ 1. The question is if this bound
holds for any equigenerated ideal I.

6.3.2 General case

We may also study the minimal graded free resolutions of the powers of any
arbitrary homogeneous ideal in the polynomial ring although in this case the
asymptotic result is not so nice. Our approach will be based on a detailed study

of the proof of [CHT, Theorem 3.4]. We need to introduce some notation.

Let I be a homogeneous ideal in A generated by r forms of degrees
di,...,d.. Let us consider S = k[X1,...,X,,Y1,...,Y;] the polynomial ring
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with deg X; = (1,0), degl; = (dj,1), and let Sp = k[Y1,...,Y:]). For any
finitely generated bigraded module L over So, let us define the set

5r.(5) = {i : Lz # 0}

Given ¢ = (c1,--.,¢r) €N, let us denote by v(c) = dic1 + ... +dpcr and by
lel=c+ ...+ cr Given a set C C N, C + N denotes the set of points of
N of the type ¢+ ¢ with ¢ € C, ¢ € N'. Then we have:

Lemma 6.3.16 Let L be a finitely generated bigraded Sy-module. Then there
are pairs (o, Bi) € 7.2 and finite subsets C; of N', 1 <1 <m, such that for
any j

sp() = Jlvle) + i e Ci+ N | cl=j—Bi}

Furthermore,
dimy, L jy = » #{c€N e Ci+ N, cl=7 - Bivle) =1 —ai}.
i=1

Proof.  As said, the proof is based on [CHT, Theorem 3.4]. Given any
finitely generated bigraded So-module L, there exists a sequence of bigraded
submodules

0=LyCLiC...CLp1CLp=1L

of L such that M; = Li/Li—1 = So/pi(—au, —Fi), 1 <1< m, with p; homoge-
neous prime ideals in Sz. Note that 5.(3) = U; 0, (3) = U; 0557000 — Gi) + i,
and so we can assume that L is cyclic.

Now let L = Sp/J, with J C 52 a homogeneous ideal. By fixing a term
order < in Sy, then L has a k-basis consisting of the classes of the monomials
which do not belong to the initial ideal in(J) of J. So we get Sg,0(9) =
6, fin() (J ), and we may assume J is a monomial ideal.

Let us write J = (Y- Yo, AARER 277), and ¢ = (€t - - - , cir ) for
1 <4 < p. For any ¢ € N', note that Y- Y € J if and only if there exists 1
such that ¢ = ¢; + ¢, for some ¢ eN,ie ce C+N , where C={ciy - Cp}-
Therefore

50() = {w(e) 1 c g C+ N, el= 17}

and we are done.0

Now we can show the asymptotic minimal graded free resolution of the

powers of an arbitrary homogeneous ideal .
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Proposition 6.3.17 Let I be a homogeneous ideal in the polynomial ring A =
k[ X1, ..., Xu] minimally generated by forms fi,...,f, of degrees di,... , Ay
Then there are pairs (o, Bpi) € 22 and sets Cpi CN, for0<p<s,0<i<
kp, such that for j large enough the graded minimal free resolution of I7 is

0=DI—... =Dl —0,

with Dg = @D, A(—ap; — v(c)), for oy and ¢ such that ¢ ¢ Cpi + N and
lc|=1J— Bpi-

Proof. Let us consider the Koszul homology modules H, = H,(X, R) of the
Rees algebra R with’ respect to Xi,..., X,. For any p, Hp is a finitely gen-

erated bigraded Sp-module with [Hy)(; ;) = Tor;f(k,]j)i. By Lemma 6.3.16,
there exist (v, Bp;) € Z? and sets Cp; C N such that

3, (3) = {0(e) + o : ¢ # Cpi + N, | ¢ |= j = By},

so we get the statement. O

Similarly to the equigenerated case, we can also prove that the rank of
the modules of the graded minimal free resolution of the powers of an ideal

behaves as a polynomial.

Proposition 6.3.18 Let I be a homogeneous ideal of the polynomial ring A =
k[X1,..., Xn] minimally generated by forms fi,...,f. of degrees di,...,d,,
and set I = I(I). For any pair (o, B) and set C in the previous proposition,

there exist a polynomial QQ(j) of degree <1~ 1 such that for any j > 0
QU)=#{c:cgC+N,|c|=j—p}.

Proof. Given (o, ), let us define HZ(,a”B) = @j(®|£|:j_ﬁ[Hp](a+U(g),j)). Since
Héa’ﬁ Visa finitely generated graded F- module of dimension < [, there exists
a polynomial Q(j) of degree <! — 1 such that for j > 0

Q) = dimy [H{™7),
=#{c:cdC+N,[c|=7~p} D
Remark 6.3.19 Given a homogeneous ideal I in the polynomial ring A gen-

erated by r forms of degree d, we considered its Rees algebra R with a natural
bigrading. By defining S = k[X1,..., Xy, Y1,...,Y;] the polynomial ring with
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the bigrading degX; = (1,0), deg¥; = (d,1), Ris a bigraded finite S-module
in a natural way. Now let E be any bigraded finitely generated S-module, and
let consider the graded A-modules Ei = ®i L ;. By taking E instead of R,
we can get analogous results for the asymptotic behaviour of the A-modules
EJ. In particular, by considering E to be the form ring G of I, the integral
clousure of the Rees algebra R = D; T/ or the symmetric algebra Sym 4(l) of
I we have the asymptotic behaviour of I7/7+1) 7 and Sym ;(I).



146




