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Abstract 
 
In this PhD I have used NGS technologies in different organisms and scenarios such as 
in ENCODE, comparing the conservation and evolution of long non-coding RNA 
sequences between human and mouse, using experimental evidences from genome, 
transcriptome and chromatin. A similar approach was followed in other organisms such 
as the mesoamerican common bean and in chicken. Other analysis carried with NGS 
data involved the well known parasite, Leishmania Donovani, the causative agent of 
Leishmaniasis. I used NGS data obtained from genome and transcriptome to study the 
fate of its genome in survival strategies for adaptation and long term evolution. All this 
work was approached while working in tools and strategies to efficiently design and 
implement the bioinformatics analysis also known as pipelines or workflows, in order to 
make them easy to use, easily deployable, accessible and highly performing. This work 
has provided several strategies in order to avoid lack of reproducibility and 
inconsistency in scientific research with real biological applications towards sequence 
analysis and genome evolution. 
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Resum 

En aquest doctorat he utilitzat tecnologies NGS en diferents organismes i projectes com 
l'ENCODE, comparant la conservació i evolució de seqüències de RNA llargs no 
codificant entre el ratolí i l'humà, utilitzant evidències experimentals del genoma, 
transcriptoma i cromatina. He seguit una estratègia similar en altres organismes com són 
la mongeta mesoamericana i el pollastre. En altres anàlisis he hagut d'utilitzar dades 
NGS en l'estudi del conegut paràsit leishmània Donovani, l'agent causatiu de la malaltia 
Leishmaniosis. Utilitzant dades NGS obtingudes del genoma i transcriptoma he estudiat 
les conseqüències del genoma en estratègies d'adaptació i evolució a llarg termini. 
Aquest treball es va realitzar mentre treballava en eines i estratègies per dissenyar 
eficientment i implementar els anàlisis bioinformàtics coneguts com a diagrames de 
treball, per tal de fer-los fàcils d'utilitzar, fàcilment realitzables, accessibles i amb un alt 
rendiment. Aquest treball present diverses estratègies per tal d'evitar la falta de 
reproductibilitat i consistència en la investigació científica amb aplicacions reals a la 
biologia de l'anàlisi de seqüències i evolució de genomes. 
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Preface 
 
At the beginning of my PhD I found myself entering into areas of NGS applications 
which were used in a wide range of topics and questions with an increasing number of 
research, knowledge, methods, tools and data being made publicly available in a very 
rapid way. One of my concerns was on how to make use of that knowledge and data 
while trying to follow the same protocols that had been already published and described. 
To my surprise that presented to be a much more complicated problem than expected, 
and my main concern towards sharing my scientific research. While other analysis were 
being published in similar areas of my research and studies, I was finding myself quite 
often having difficulties to find all the information published and reproduce the 
strategies presented in order to include them into my own analysis, or to just validate 
other approaches and results. This year's and the experience presented here have driven 
me through my main biological questions on sequence evolution and allowed me to 
satisfactorily address interesting questions. The work presented here shows some 
guidelines and effective strategies applied to real biological questions to avoid a 
downward spiral of irreproducibility. 
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1. Introduction 

1.1. Towards high throughput 
 

Sequences are the core of bioinformatics and computational biology. But before 
reaching to that point, before the sequence and sequencing era, biology was not data 
driven at all. This was in part due to the data scarcity and the lack of computational 
power and dominion. Bioinformatics was coined as the convergence and merging 
process between pre-existing but yet a set of unmatured techniques and theories. The 
integration and reduction of other sciences attempting to explain biological processes 
such as physics, chemistry and mathematics were instrumentalized in order to fortify 
scientific research in biology. This process of integration lead to the use of methods and 
techniques developed for the computational analysis of sequences in biology. But before 
the settlement of bioinformatics through history we could see science paving the way to 
current approaches in the field to gather, transform, integrate and process biological 
data. During last 70 years researchers experienced and witnessed key events in research, 
which conceived and transformed computational biology. 
 
Although nowadays sometimes in the sequencing era bioinformatics origin is pointed 
towards the origins of DNA sequencing, indeed its foundations and roots can be traced 
further away than that. Before sequencing capabilities were achieved in the 40’s 
researched was focus in studying proteins, which are the first sequences determined, and 
not DNA and RNA which due to the smaller alphabet made them more difficult to 
distinguished at the beginning. In that decade new chromatography techniques were 
presented (Martin and Synge 1941) and further improved (Sanger 1945; Edman 1949) 
which allowed describing single amino acid composition. Most of the efforts carried in 
identifying proteins on that decade were related to hormone proteins, which were easier 
to purify, and with a size and amount practical to work with. With the techniques to read 
amino acid sequences it became more evident the importance of sequence content and 
changes within them, and the relation to the structure and function, as it is the case of a 
described single mutation in hemoglobin producing sickle cell (Pauling and Itano 1949). 
But it wasn't until later in the 60’s that this process was automated (Edman and Begg 
1967) allowing faster rate of sequence identification. The number of protein identified 
and its publications containing its sequences started to increase. Some efforts were 
made in order to increase the number of these sequences publishing the first computer 
programs in FORTRAN able to predict the sequence and structure composition 
(Dayhoff 1965). In order to make available all sequences, a collection of protein 
sequences was published every year (Dayhoff and National Biomedical Resea...). 
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Although the number of sequences remained low, around 100, it settled the precedent 
on how to start organizing collections of sequences. The atlas of amino acid sequences 
contained as well tables of frequencies for amino acid substitutions, PAM (Dayhoff and 
Foundation 1979) from where others were influenced and established future 
computation resources like BLOSUM (Henikoff and Henikoff 1992). The availability of 
sequences to analyze allowed biology to be more quantitative, which allowed to apply 
statistical and mathematical approaches in the study of biological molecules and its 
processes. With sequences available scientists were able to compare them, one of the 
first analysis derived from new sequences available was applied to evolutionary biology 
with the first algorithm described for tree phylogenetic reconstruction in the late 60’s 
(Fitch and Margoliash 1967). During the late 60’s and the 70’s followed years of 
development an application of new algorithms to molecular biology which are the 
foundations of today’s analysis, such as the case in protein structures (Lee and Richards 
1971), RNA structure prediction (Delisi and Crothers 1971), population genetics 
(Kimura 1969; Kimura and Ohta 1971)  among others . Although computational biology 
started to settle down as a major field of research in biology, it wasn’t until the middle 
of the 80’s and beginning of the 90’s that become more widely adopted with the 
creation of more resources in databases like GenBank (Bilofsky et al. 1986) and EMBL 
data library (Hamm and Cameron 1986). Across the next years more algorithms were 
developed and specially tools were made available which allowed more researchers to 
apply the techniques in their own analysis, as in the case of gene prediction (Fickett 
1982; Shepherd 1981), RNA folding (Dumas and Ninio 1982) or multiple sequence 
alignments (Lipman et al. 1989; Higgins and Sharp 1988) to show some examples. 
 
The exponential data increase that happened decades ago forged and pushed 
bioinformatics forward and made it an essential toolkit driving sequence analysis in 
computational biology becoming a standard in many topics such as gene prediction, 
homology, protein structure and phylogeny. And during the last decade it has geared 
and turned towards approaching massive sequence problems. In the new scenario data 
has moved from sets of sequences to an expanded to extensive amounts of high 
throughput datasets increasing the magnitude and impact of computational and data 
driven research, previously never thought. This new approach of tackling large data sets 
and collections of data has proven how the path opened up by bioinformatics allows to 
gain new insights of biological processes and systems much more complex using 
multilevel data integration approaches in a feasible way previously unexpected because 
of the complexity seen. But that raises the interesting question on how to scale up 
reasonably to be able to cope and manage all genomic data and the complexity that 
comes together with it. 
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1.2. One-to-many applications 

Across the large bibliography of scientific publications, bioinformatics has taken its fair 
place among the highest ranked and cited papers of the era (Van Noorden et al. 2014). 
Among the first 10 most cited scientific papers we can find ClustalW (Thompson et al. 
1994) a multiple sequence aligner program that allows comparing many sequences 
similarities. On the next most cited papers we can find other bioinformatics methods 
papers such as two versions of BLAST alignment tool already introduced (Altschul et 
al. 1990; Altschul et al. 1997). The high ranking of those methodological articles and its 
standing against other essential biological tools such as crystal structure determination 
(Sheldrick 2008) points to how important and prevalent bioinformatics analysis have 
become in molecular biology and its wide adoption in such a short period of time. In the 
case of BLAST the fact of having multiple versions of the highly cited tools (States and 
Gish 1994; Morgulis et al. 2008) for different applications shows how extensive can be 
the use and applications of similar methods such as sequence search for genomic vs 
protein spaces. In a wet lab exist different techniques and variations of a protocol in 
order to approach a similar problem, but in the case of bioinformatics one can see how 
this becomes a large issue with the ability of researchers to develop easily their own 
methods. Each method has its own flavors and specialties addressing problems in 
different ways and leading to (probably) different results. In order to evaluate and 
review tools for the same purpose every year reviews and benchmark papers are 
published as a way to keep track in the literature of all the advances and sheer some 
light into the best application for each case. Even though there has been for a long time 
some scientific journals devoted to the publication of literature reviews, nowadays it is 
very common to see practical bioinformatics reviews making it into these journals 
(Stein 2001; Lee et al. 2007; Li and Homer 2010). The most typical applications used in 
bioinformatics related to sequences are sequence search tools like BLAST, often 
benchmarked against new search methods (Ye et al. 2011; Hauser et al. 2016). Some of 
these tools do even have more than one publication of the same method including new 
updates (Zhao et al. 2012; Kim et al. 2013), which includes the improvements and add 
new approaches to tackle the increase in the amount of sequence data available during 
the last decades. In other publications scenarios, researchers from different groups are 
invited to take part in a contest where an effort is made in order to evaluate methods in a 
more neutral and fair environment in a more or less regular basis (Steijger et al. 2013; 
Earl et al. 2014; Kryshtafovych et al. 2009). In contrast, in other reviews authors gather 
themselves different datasets published in the literature and use them to test different 
tools whether or not they are the authors (Conesa et al. 2016). Benchmarking is full of 
caveats as not all the tools are comparable at the same scale, as they convey differences 
in formats, inputs, parameters and computational resources. All these issues have to be 
taken into account when benchmarking and trying to reproduce computations in order to 
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establish a fair and objective analysis, which will help take the decision upon which 
method to use for each purpose. As bioinformatics keep evolving, analysis and 
protocols keep changing and becoming sometimes more and more complex. Usually 
this means it will require various steps and various sources of data to produce results 
and finalize the analysis. The compilation of a series of steps, tools and computation is 
commonly known as workflow or pipeline . In a workflow each step and piece of data is 
required and connected to another step of the analysis being carried. Given the diverse 
nature of information, formats and applications, in bioinformatics there are tools mostly 
developed for specific steps or analysis, and pipelines end up being an integration of 
different tools, data and steps that need to be properly connected, thus rising the 
complexity of the protocol being carried.  

1.3. Data big bang 

High throughput data has been accumulating and the rate of generated keeps increasing 
(Baker 2010; Stephens et al. 2015). As an example of data with the pace of generation 
increasing rapidly, we have the case of yeast genomics. In the case of a single species, 
with a very well known and studied genome (Dujon 2010) with a long track of scientific 
research published and also studying different similar genomes species (Blackwell et al. 
2016), an increase of 2000 genomes and tens of thousands of gene families has been 
seen in the last three years; together with an extreme increase in the number of bases per 
genome available as a consequence of the improvement in sequencing technologies and 
capabilities. Further away from a single species, the use of sequencing for 
metagenomics analysis in our environments (Tringe and Rubin 2005; Afshinnekoo et al. 
2015) or within organisms (Zarowiecki 2012; Krishnan et al. 2014) is increasing the 
number as well, both the number of applications and sequences obtained using very 
similar technologies with variations in the protocols. The relationship between data 
generation and technology typically changes after a short period of time that takes for 
new technologies to be adopted. After that period the technology starts generating an 
exponential increase in the amount of data to analyze. Since method development 
usually goes behind or after the appearance of new technologies, and it only further 
develops once the technology is starting to be adopted, those methods typically will not 
be able to cope with an exponential rate of data generation thus lagging behind the 
ability to generate fast enough results out of such amounts of data. Further problems 
include how to store, adapt, scale and handle results in a more reliable way, since the 
drop of sequencing cost had a steady decrease, the computation and storage becomes a 
real issue to take into account, even in the cost estimation (Muir et al. 2016). As a 
consequence of that increase in sequencing capabilities and massive parallel sequencing 
reaching out to sequencing centers there has been a turn in the estimation of the overall 



 

 6 

cost. As the technology keeps developing, the price for the technology has been 
lowering faster than Moore’s law, but what was not taken into account is the need to 
maintain an infrastructure resilient and capable of both receiving and keeping massive 
amounts of data while retaining the capability to process it. If there is no focus on 
improving computing capabilities, data will become a bottleneck where it will be 
generated much faster than it can be processed. As an illustration for this scenario, the 
rate of data generation for the last generation of sequencers from Illumina the X-Ten, 
are made up of ten HiSeq X sequencers which end up being able of produce 320 
samples per week, the equivalent to 18TB of data waiting to be processed in time. In 
order to process all the data without creating bottlenecks, it is important to develop 
solutions with the clear ideas of the limitations in mind. In the case of human genome 
sequencing in cancer and other disease related projects (Hudson (Chairperson) et al. 
2010; The Cancer Genome Atlas Research Netw...; Telenti et al. 2016), sequencing its 
already gathering and promising to keep generating hundreds of thousands of genomes 
alongside and coupled to other sources of sequencing information, not only the genome. 
The accumulation and availability of large datasets present other problems related to the 
reutilization of data, how to access the source and raw data, how to organize it and 
anonymize it in order to allow proper sharing, replication and inclusion in new analysis 
(Eisenstein 2015). There are some directions on how to proceed on this matters in order 
to tackle the situation, but it is certainly a technological challenge how to organize, 
structure and access data in a practical way (Bourne et al. 2015; Global Alliance for 
Genomics and Heal...). 
 
Molecular biology is facing new data growing at paramount speed, which has turn in the 
Big Data problem. Researchers might be facing with the issue of having to store dozens 
of petabytes of data, with large analysis and projects having to face new challenges 
involving technical aspects from Big Data. Although it is a new scenario in this research 
field, other fields once had to face the same problems and started developing solutions. 

 

1.4. Reproducibility 

1.4.1. Motivation 

 
Replication of data and its results is considered the cornerstone of scientific research 
(Helene Richter et al. 2010). The central dogma relies on being able to generate 
scientific knowledge for which the procedure and specifics of the analysis should be 
described accurately and let any other researcher be able to reproduce and lead to the 
same results. The main problem with reproducibility that has drawn a lot of attention in 
the last years (Ioannidis 2005; Prinz et al. 2011; Announcement: Reducing our 
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irreproduc...; Further confirmation needed 2012; Error prone 2012; Must try harder 
2012; Christakis and Zimmerman 2013; Gunn 2014; Freedman and Inglese 2014; 
Freedman et al. 2015; Roth and Cox 2015) is the fact that scientists expect that the 
content in published scientific journals to be clearly understood and used to replicate 
whenever is feasible due to the accessibility of proper resources (Roquet et al. 2014; 
Baud et al. 2014). In computational biology, since typically these resources can be 
acquired easily it would be expected that by reading a publication and with the data 
available whenever necessary, one could understand how is the computation done and 
be able to reproduce again the same results. One would believe that in computational 
biology, reproducibility would be easier as typically the results of it tends to be more 
quantitative and be precisely described and annotated (Davison 2012); whereas 
experimental cases results tending to be more qualitative described and with specific 
requirements to run experiments (Freedman et al. 2015; Cyranoski 2016). Contrary to 
the expectations the replication of results in computational biology is not as easy as 
would be expected, and is rarely the case (Ioannidis et al. 2001; Ioannidis et al. 2009; 
Firtina and Alkan 2016). As computational biology keeps advancing both computers 
and tools used to analyze the data become more and more complex, leading to the 
development of large protocols also known as pipelines or workflows. The level of 
skills and effort needed not only to perform analysis but also to re-analyze and integrate 
data already published into meta-analysis has increased during the last years (Nalls et al. 
2014; Cheng et al. 2015; Wang et al. 2016). Although it may seem far easier to 
reproduce computational analysis than experimental work, due to the ever changing 
nature of environments and the fast development of both software and technology, 
which have to carry on with the pace of fast track publication records, reproducibility 
has become much more difficult than expected. 
 
Scientific journals are well aware of the problem, there have been cases where, upon 
reproducibility issues, papers have been modified or even worse, calling for retraction 
because of the inability to reproduce the results claimed in publications (Gallego 
Llorente et al. 2015; Rhinn et al. 2013; Decullier et al. 2013). Academy and government 
institutions are also aware of the issue as they have started to implement rules towards 
how scientific results and data should be kept and reported for the sake of accessibility 
and reproducibility (Morin et al. 2012; Collins and Tabak 2014; Stodden et al. 2013; 
Announcement: Reducing our irreproduc...). New guidelines and recommendations 
have been described to solve certain issues around this topic for such issues as 
improving the descriptions and accessibility to data (Le Novère et al. 2005; Waltemath 
et al. 2011; Mack et al. 2015), but typically those guidelines present light requirements 
that improve accessibility to the research but do not help in order to replicate results, not 
being a clear requirement to publication in a journal. From the beginning of the 
publication process, this situation becomes a waste of time for the editorial journal, 
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which cannot replicate and confirm what an in silico analysis should facilitate. This 
situation is as well very harmful for the scientific community as it diminishes its 
credibility and reliability leading to profound and terrible consequences at both personal 
and organizational level. Altogether reproducibility concerns are becoming an 
increasing concern to the scientific community as it is impossible for researchers to 
validate the results, and even worse, not even reviewers are expected to go through code 
or have experts to verify its validity and its related statements. 
 
In this situation, even though reproducibility is a well-known issue, it does not receive 
enough attention as to make it a first priority, which makes the whole scientific 
development potentially and inevitably untrusting from the very beginning, as there is 
no need to be committed towards reproducibility. Reproducibility not being a top 
priority will set its root already in the design and setup of an analysis, and then will 
become more difficult over time to try to overcome and reshape computation after an 
inefficient setup has been developed. One of the reasons for reproducibility not being 
top priority is that scientists are often recognized for the results they obtain, but it is not 
so well recognized the effort of designing analysis and protocols reproducible in 
computational biology, those are way less recognized than the development of precise 
tools or methods. In terms of scientific productivity and output, the consequence coming 
out of these issues around irreproducibility is the duplicity of efforts to solve the same 
issue over and over again by different researchers. The situation ends up arising 
multiple publications of similar analysis with more or less the same applications and 
methods, because of the inability of sharing properly the knowledge previously and not 
being able of reusing and reaching to some level of agreement as a community on how 
to define standardized procedures. Although analysis are carried out following a very 
specific procedure, basically written and coded in a computer, there are some limitations 
in how to describe precisely the computations within an article if only described in text 
as used to be done with experiments in the literature (Gil et al. 2007; Bourne 2010). 
That becomes a problem downstream of scientific publications when in order to 
understand and replicate published results one has to start a journey of discovery and 
even a new project (Garijo et al. 2013) in order to achieve the same results whenever it 
is even possible to do it. But that can be a long process of trial and error with a lot of 
effort spent to elucidate how the descriptions published can be really transcribed and 
reproduced, before even being able to try with different scenarios and datasets. The 
main approach has been to describe and enumerate the steps and elements such as 
parameters, tools and configurations that have been carried out to generate the results, 
but without providing an explicit protocol of the procedure to validate the results 
themselves. This strategy has obvious drawbacks, among them is the completeness and 
quality of descriptions given to set up the analysis, apart from leading to a loss of time 
and effort to put it into practice and validate, leading to a duplication of code prone to 
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errors and lacking details, which does not guarantee that afterward the effort it will end 
up working correctly and with the same results. The reason for the failure in this 
approach to explain the procedure is the lack of enough resolution to deliver all the 
specific information with details that computational analysis need in order to be 
replicated (Hoffman 2016; Piccolo and Frampton 2016). A very simple and clear 
example of this situations is when differences in the computational platform and 
systems behind data and the code used to generate results are obliterated and not 
explicitly highlighted, leading to possible architectural and environmental differences, 
which will cause another researcher to not replicate the same results because its own 
system has differences not highlighted as a requirement in the original publication 
which will lead to differences in numerical calculations and therefore in results. 
 
Another strategy used to allow other researchers to obtain the same results and try the 
same analysis upon publication is to make available the procedure used to generate the 
results only integrating it into a web service or online web server that will allow others 
to replicate results. As it might sound a step ahead towards a better solution to achieve 
reproducibility, this option can lead to obscurity, as there is often a lack of open source 
distribution when no source is available and only the web service is able to replicate 
results, which in fact are a black box (Morin et al. 2012; Boettiger 2014). These options 
lead to the inability of the scientific community to review and validate results, specially 
for journal reviewers who are not able to validate themselves in hand the reproducibility 
of what it is being published which in turn do not promote transparency in the 
publication of distribution of scientific knowledge. It also do not provide any kind of 
control under what is inside the black box, as there is no possibility if anything changes 
over time and why. 
 

1.4.2. Barriers 

 
We can already find out before the appearance of new tools and technologies to tackle 
reproducibility issues, some hints and strategies being discussed on how to provide a 
better organization and structured way to prepare data, code and results in order to get 
one step closer to reproducibility. In order to explore the collection of tools available 
that try to guarantee reproducible research and computation in an efficient manner, one 
has to be able to identify key elements and actors involved in the problem. Here are 
some of them described and used to evaluate the needs that need to be fulfilled to 
compare different options available.  
 
Infrastructure: As sometimes bioinformatics workflows require of different types of 
computations (memory, CPU, I/O, network) is important to be able to change the type 
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of computational resources on demand, but being able to support this kind of 
infrastructures for the analysis it also requires a deep knowledge and expertise on it. 
HPC-based systems or cloud resources are very useful when needed to have 
infrastructure at point time with high availability and scaling easily for huge loads of 
computation. When having to deploy computation in parallel and communication 
between parallel executions, the network can also become a bottleneck because of 
similar reasons as before, and without enough network throughput, either as a an 
interface for communication between computation or with the storage system, it can 
delay and hurt performance. Most of NGS analyses are prone to generate a lot of I/O 
operations, creating and copying lots of files that can affect the performance of the 
computation specially if being done at large scale in a shared file system. 
 
Deploy: Trying to generate results deploying computation in a different environment 
where it was initially developed usually is a big challenge. Different infrastructures 
have different capacity and resources but are also managed and structured in a different 
way, it can be challenging to have to develop a piece of software that takes into account 
all possible environments and its differences within, to allow you deploy the 
computations without having to modify the code. In the worst case scenario an already 
designed analysis won’t be able to run and it will need to be rewritten from scratch. 
That problem used to be one of the reasons or excuses to avoid having to share and 
make reproducible computation, specially when there was no simple way to define and 
translate workflows to be run in different environments.  
  
Variability: Another challenge is to be able to deploy computation with all software 
made available for different environments with different resources. The high number of 
bioinformatics tools used within NGS workflows can be overwhelming to setup and 
configure in many systems, especially if the users do not have all permissions to self-
manage those systems as in shared clusters or HPCs. An approach that works 
remarkably well is the use of virtualization software, which provides a layer of 
abstraction from the hosting system being able to have above it another system setup up 
and tailored for the workflow. Lately other types of virtualization software have been 
developed and becoming widely adopted, this so called lightweight virtualization like 
Docker also allows to containerize more specific applications with a smaller impact in 
the system and network allowing to set up multiple virtualized applications for different 
steps of the workflow, which in turn can take care of the extra layer of choosing 
parameters and environment management to deploy all the computation in different 
environments, with different resources and configuration at very high level without 
further need to integrate this layer of information inside the workflow itself. 
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Learning: Although there are many different solutions to those problems, such as 
guidelines and workflow management software, the newer solutions, which have 
recently appeared and are geared towards resolving more of this general issues while 
adding features to enhance and make easier the integration with big data and large 
computational analysis, usually have the disadvantage of offering another learning step 
towards a different language or technology for which biologists are not used to. The 
adoption of such tool will take time and will still remain uncertain as for which tool to 
select whenever there is not enough information on which is the best tool for every 
scenario and type of analysis. Also without any standard and new tools coming out, it is 
difficult to see which one is going to mature enough and not end up dying, while having 
enough information and adoption on the field. 
 
Publication: But before the annotation and indications become accessible, sometimes 
not even the code used to generate results becomes available. There are no policies, or 
they are not clear enough, regarding the fact of making available the specific pieces 
used to obtain the results in the main scientific journals such as Nature, Science, PNAS. 
Typically those journals ask for the availability of the software that ensures the results 
published, but that is clearly not enough, as there are ways of making available black 
boxes which does not provide any way for science to review and validate the inner 
specifics of the methods used when they are not transparent and are opaque. That 
situation opens the possibility to make changes within the black box, which will lead to 
differences in the behavior between before and after the publication process, or even in 
the future. Those changes cannot be tracked or evaluated transparently and do not let 
anybody know about any the level of consistency or any situation happening behind. 
 
Flexibility and plug-and-play: In computational biology the way to design and 
implement a workflow is usually quite tangled and relies on a trial and error strategy 
where for one step of the computation, multiple tools might be available to be used, 
although with some differences in the results. Usually a biologist will have to develop 
and try to plug in and out multiple tools at different stages of the development in order 
to evaluate which one gives the better result. Another need related to flexibility, is the 
ability of using different parameters or configurations for the same step that might 
change the behavior and the outcome of that piece of computation. It has to be easily 
changeable without requiring too much effort in the development of the pipeline, even if 
the entire results might end up changing. 
 
Checkpoints and testing: Important features related to reproducibility are testing for 
integrity and consistency all the way down the pipeline. In order to be able to test for 
integrity, as an aid during the development, tests can be design in order to define what 
are the outcomes of a pipeline in any given environment, just a default execution 
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predefined that should not give any troubles if the pipeline is properly executed, that 
allows to track integrity during development and modifications with light executions. 
Another point is consistency checks, because the workflow needs to be able to detect 
when there is any inconsistency in what is expected to get out of it as a result. This 
means that within the workflow some rules and safeguards need to be checked from 
time to time in order to validate the output of the computation not only completely after 
the completion of the workflow but also partially, with certain level of granularity. In 
this way it becomes trivial to detect errors that can arise at any part of the workflow 
implementation, which can be attributed to such actions as changing configuration 
parameters or the dataset used along the pipeline, which might not be fitting or in a 
wrong format for one way or another (data-config-tool). Such features are extremely 
helpful when trying new configurations or ways of deploying computation even in 
different environments. It then becomes very useful to have the feature of error-
detection together with a caching feature as so to be able to resume computation from 
where it was left as soon as the errors are fixed in order to avoid recomputation and 
duplication of efforts if there is no change affecting it. 

Documentation: Another big trouble, that goes against the philosophy in scientific 
research, is the lack of proper or even documentation at all of the code used. As in a 
typical experiment, it is of critical importance in research to be able to keep track and 
record all the way down a protocol,  understand what is every single step and all the 
elements involved and how they are involved in the analysis. As it also is in 
computational biology, and all the computation should also be considered an experiment 
with the same importance as a wet-lab experiment. All the steps need to be understood, 
as well as the data and configurations used. The fact that code is available is not enough. 
Without proper description and documentation it can become very tedious to realize 
how the workflow goes if one is not familiar with the code. Therefore, is of extremely 
importance to be able to fill in proper descriptions of all the elements involved, such as 
which configurations are used by default and if not, which one is used and why; the 
tools and proper version used, and the aim and procedure and the expected output of the 
results. The lack of annotation in the code written and the procedure used to generate 
results halts other researchers than the authors from reproducing or reaching to the same 
conclusions, often giving an advantage position and closing in the range of action over a 
topic. Even if there is any annotation given, if the quality and specificity it is not 
enough, the publication of that code and that analysis, can only lead to the replication of 
the analysis using the very same dataset published,, without being able to understand the 
analysis and, therefore, use it further. It is also important to also be able to record and 
keep track of all the intermediate steps in computations, both for data, such as 
intermediate files, but also the code with variable parameters that have been used. In 
this way it becomes much easier to debug and backtrack when facing any issue, and it is 
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also easier to take snapshots, which can be later on shared and deployed in other 
environments to continue computations. 

Accessibility and collaboration: As many large efforts on computational biology, teams 
are organized, usually across institutions, to in a collaboration among them put an effort 
in data generation, collection and analysis. In this scenario it is necessary to be able to 
organize during the effort a system that will ensure the accessibility to a repository 
where all raw data can be obtained and shared openly. It is also mandatory to be able to 
record and share all the steps of the workflow during the development of the analysis in 
a shared repository which will allow easy collaboration and integration of all the 
committed work of all the members involved. The importance of keeping track of every 
single change: when, who made it and the repercussions and being able to see 
differences and understand them is also important; usually this feature is included in any 
version control system which could also be integrated into the framework. The setup of 
these features before submission for publication makes the process of evaluation, 
replication and review straightforward and can ensure the quality and reproducibility of 
all the work. 

All these issues need to be address in order to be able to tackle the big bio data problem 
(Marx 2013), which together with large-scale can allow and lead to big computation. 
When this is achieved infrastructure and resources can be better exploited and more 
performances will lead to faster results (which can be a 20 fold reduction in time), in 
order to avoid big computation bottlenecks and underused resources. For that purpose 
many solutions are being explored that will allow to use data and deploy computational 
in highly parallel systems. 

1.5. Approaches to reproducibility 

Reproducibility is an interesting topic that has drawn attention not only in biosciences, 
but also in computer science (Gent 2013; Sussman ). It has lead to the development of 
interesting tools to aid in making computation reproducible, without depending on the 
hardware where it is running. Here are reviewed the applications currently used and 
proposed as the best solutions to face reproducibility issues. 

1.5.1. Cloud 

Cloud computing can be of great help to mitigate the issues of reproducibility in science 
(Fusaro et al. 2011; Stein 2010; Kasson 2013; Baker 2010; Balazinska et al. ). Issues 



14 

specially related to resources where using the cloud can make easier to set them up. 
Reproducibility can be further improved and made easier upon publication by the 
authors when putting together a virtualization software and a cloud environment 
compatible between them. With this combo, reproducibility is not strongly attached to 
the physical resources used originally where computation took place, instead it offers 
the possibility to be distributed and deployed in any machine that supports virtualization 
software. This one can provide the same snapshot, an exact replica of the setup that was 
used on the system to generate the results, and can be deployed in any other 
environment available at any time in the cloud to replicate the results. That solution 
allows forgetting about issues related to tool, package and library versions; but also on 
the configuration parameters used to set up the environment. The virtualized 
environment can carry all the elements needed software-wise and data-dependent as 
well ensuring the consistency. Now, the only concern is whether there is enough 
infrastructure to virtualize and simulate the infrastructure once used to deploy the 
computation in the scenario of a large analysis and big bio-data. For this purpose cloud 
computing offers the perfect solution as it allows users to have on demand all the 
resources needed seted up and managed by a provider without having to maintain them 
while they are not being used. Regarding to the main challenges of this solutions, 
sometimes it has to be decided to commit to a specific solution, not all cloud and 
virtualization providers are compatible, although in the last years there is pretty much 
standardization and it is not so problematic to work with major technologies and 
providers such as VMware, Virtualbox, Docker and Amazon EC2, Google Cloud, Open 
Stack. The cost is the main concern under this scenario, where large computation 
requiring huge resources can be too expensive, although prices are lowering down 
during the last years, and possibilities such as using instances with reduced price 
whenever they are underused such as in Amazon Spot Instances are becoming easier to 
use, specially for non critical work, or even for critical work using tools relying in 
machine learning to predict how to better deploy your computation at lower risk with 
lower price. Another issue could be related to administrative control and cloud security, 
as depending on the project it might require to fulfill certain requirements in terms of 
data protection and access. 

Cloud environments also provide solutions for another big challenge associated with big 
bio data, as on many research fields the need to store and make available all the data to 
share. But in the case of biodata the main difference is that there is a wide range of data 
types and formats used either to store the raw data or processed files and results, and the 
ability to generate and connect all data in order to be useful and be able to use all of its 
relevant knowledge that can be extracted from it becomes an essential and critical piece. 
For this use, several attempts are being made to have connected cloud environments to 
relevant data repositories and biobanks with the tools necessary to access it, close to 
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them, so it makes easier to use all of the resources for analysis. This approach broadens 
the access to both data and the downstream computational part and can help with data 
geo-availability. 

The tendency on large consortia and institutional driven research groups is to build 
cloud based infrastructures, sometimes closely related to big technological companies 
such as Google or Amazon (DNAnexus). That interesting paradigm changes the way 
scientific research was receiving funding, as there is no more need to dedicate budget to 
spend on acquisition and maintenance of hardware, but rather on consumption of it. 
Another issue due to the stage of transition from typical commodity based or HPC 
dedicated hardware for computation into a cloud-based environment is the replication of 
datasets and not a full-reliance over cloud storage. Even though data can be stored, 
backed up and maintained in the cloud, most institutions still rely on local copies rather 
than on an updated distributed repository of all of their data and code. This creates the 
problem and the need to be able to access, move and deploy easily both the data and the 
code used to compute. This situation is still not fully developed and the direction is 
steering towards data availability from day 0 (generation) in connected clouds where 
researches will be able to have deployed both data and code, as otherwise it will become 
a bottleneck due the increase of data generation and transfer therefore. 

With the need to easily deploy data in the cloud and access to computational resources 
large enough to handle big data, the software dependency started to crack. As for the 
data there was a need for accessibility and connectivity; for the code, there is a need for 
easiness of deployment into any infrastructure that it might be supported in the cloud for 
computation. This means that for these tools to be used, a biologist needs to be able to 
deploy them correctly and it has to be able to scale up easily with large computational 
resources, without the need to adapt or develop new solutions only suitable for new 
systems/clouds. Cloud based environments can be used in order to facilitate the 
computational requirements. In a cloud environment it becomes easier to distribute large 
computations in a unified and scalable environment where accessibility/durability and 
performance can be ensured whenever is needed without having to engage into the 
implementation and management of an entire cluster or HPC local system. 

Another problematic thing related to code deployment is that the availability of cloud to 
analyze large amounts of data allows defining and establishing more heavy and 
powerful ways to obtain results out of the data. By combining all sources of big data 
available nowadays, large computations can be deployed and can be intersected to cross 
out more results. But that only leads to another layer of complexity, where not only the 
data and the layers must be easily accessible, but it also needs to be easily connected in 
a way that computation can be largely streamlined. But the many to many relationship 



16 

of data and codes results into easily troubles and crashes, which also calls for a solution 
in a model that allows computations to be easily tracked and saved without trashing 
everything and start over. 

1.5.2. Virtualization 

The very first technological approach to face reproducibility has been already put in 
practice with some researchers facilitating openly the access to snapshots of their 
environments used to replicate the data (Angiuoli et al. 2011; Nocq et al. 2013; Dahlö et 
al. 2015). These snapshots contain should contain all the code and data necessary to 
only achieve the same results. The solution through virtualization has received major 
attention as it offers the possibility to share an entire package that combines system, 
code and data. Some of the virtualization technologies are quite popular and widespread 
and can be deployed in HPC and the cloud computing environments easily, as these 
technologies are commonly well supported in any modern computer and system. Even 
though this technology solves some of the issues related to reproducibility, there are still 
other obstacles beyond this point not directly related to the technology and therefore left 
unsolved. Even with the ability to mimic and deploy computation if the code and data 
are not openly distributed without restriction, as only presented as binaries for example, 
there is no possibility to fully acknowledge reproducibility, just the replication of some 
results. It might also not be possible to deploy the same virtualization technology in all 
the systems for computation. The setup of the environment still needs to be configured 
if the computation is too large to run in commodity hardware.  

1.5.2.1.  Docker 

Virtualization technologies can be further used and integrated inside bioinformatics 
analysis in different ways than typically used to do. When properly integrated these 
technologies can avoid the drawbacks of typical virtualized environments. In order to 
avoid the extreme growth on the number of virtual environments needed to execute and 
finalize a workflow, if the virtualization technology can be separated and integrated, the 
workflow manager could take care in each part of the computation to select what needs 
to be virtualized and with what. Such an approach allows further compartmentalizing 
and a better reuse of pieces of workflows, allowing for a more flexible plug and play 
approach. The best solution that became highly available as a technology and has 
become widely adopted is Docker. It is an open source software that offers an 
alternative to the typical virtualization hypervisor-based software. The main difference 
between these two strategies for virtualization is that the later offers an extra layer of 
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hardware virtualization, not allowing the virtual operating system to access directly the 
underlying hardware. This difference between the technologies allows a much more 
lightweight version of virtualization software, as it requires less from the container-
based approach software like Docker to run on the host system. It uses a well known 
technology; LXC containers available in Linux systems for a long time, which allow 
simple abstraction and virtualization over a shared operating system kernel. The 
difference in the approach is also reflected in performance (Containers ), as hypervisors 
are typically a heavier solution for virtualization while container based even though 
being lighter had some issues regarding security and system compatibility in non-Linux 
operating systems. 

Other advantages of container technology from Docker are related to some of the 
features provided by the tools that precisely help to attack some of the issues related to 
reproducibility. This technology offers a better solution to document and integrate the 
information needed and related to the environment and software that is going to be used 
within the container to virtualize execution. It includes features to annotate the version 
of the base operating system used, all the commands used to install, and to set up the 
specific software, environment and additional checks to look for consistency during the 
build process. The beauty of it is the format; all those instructions are contained in a 
single text file. The simple format facilitates the recording and versioning of the 
containers, which can be on demand committed to a repository where can also be shared 
and accessible to any researcher. The content of the containers is up to the researches, as 
it can contain all the specified software, but it is not only restricted to the code. A 
container can include instructions to fetch datasets and databases, or setup connection to 
services or file systems where it can access all the data. Whenever it is needed all can be 
packaged into a heavier object, a snapshot, containing all the code and data after the 
build process and the container is completely built. Due to the recipe based 
configuration and organization of the build process in a text file, one can commit to 
repositories and have ready as many containers as needed which wasn’t a feasible 
option with typical virtualization tools, as the number of images grow the size and, 
therefore, data transfer would increase becoming impractical to deploy, fast and easily, 
all the virtual instances. All these possibilities have lead to this piece of technology to 
start being widely adopted and to think of ways on how to organize biological 
applications and workflows in a folder of shareable and publishable resources useful for 
the communities, with an increasing recognition (Moreews et al. 2015; Sallou and 
Monjeaud ; Boettiger 2014; Belmann et al. 2015). 
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1.5.3. Workflow management software 

Nowadays in bioinformatics there is a term used to define the procedure designed and 
used to carry on analysis on data. It is called a workflow, and it mainly describes a 
group of steps that involve tasks such as data gathering and processing or 
transformation and analysis of data generated from it. The group of steps involved in a 
workflow can include several bioinformatics tools and languages that allow the field to 
integrate several sources of information and different methods in order to produce 
results that allow us to backup our hypothesis. In the era of high throughput sequencing, 
bioinformatics tend to be made of pipelines or workflows to process the sequencing 
data. These workflows involve different data files and or databases, which are 
connected through a series of steps that typically involve long computations, which will 
end up passing through data transformations and filtering steps. One workflow starting 
from the genome sequence of a species can end up encompassing tens of different steps 
before generating the final results (Steinbiss et al. 2016). 

Before sequence analysis became so complex with the advent of NGS, bioinformatics 
already had some pipelines typically developed in scripting languages that made a fast 
learning curve in order to work in a similar way as used to do with a terminal. Such 
languages provide basic features such as variables, compartmentalization and access to 
system tools and file system quite easily. Some others grew and became better and gave 
the possibility to use further functions more specialized through the use of libraries like 
Perl or Python. Solutions in order to automate computation in bioinformatics have 
greatly advanced, getting away from just  scripting to process data and having all the 
steps joined into a script that simply execute everything serially and handle the minimal 
requirements for it to complete. That could be done either in a more primitive language 
such as BASH or using Make (Stallman et al. 2004) to construct recipe like scripts, rule 
based instructions to set the dependencies to run the analysis. Make is the most widely 
known build automation tools, it became one of the first attempts to automate the 
execution of more complex analysis, although having being developed for building 
other tools, it provided a simple and very specific syntax with one main purpose: follow 
rules to execute commands and generate results by taking care of the dependencies 
between commands and resolving them automatically. It also has some other features, 
such as not being limited to a specific language and it is also able to keep track of which 
elements have been already processed in order to avoid re-computation. These features 
are part of a list of requirements in order to generate more complex workflows, but it 
also carried some limitations on how complex the rules and dependencies can be 
defined. The downsides of these options and the main reason why it started to decay in 
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popularity is because the code becomes unusable if the environment changes or if it 
updates due to the entanglement of the scripts and the underlying infrastructure where 
the computation is run. The growth in complexity and loss of readability becomes more 
and more apparent if the workflow grows substantially in both data dependencies and 
parallel computation, which is also not so straightforward to manage across the whole 
workflow when that happens. However, Makefiles and simple scripting in some cases it 
is still proven enough, as the time to set up a small workflow with experience in such a 
way does not pose a big effort and is usually well handled. 

In order to overcome such limitations a new set of tools categorized as workflow 
managers have been specifically design to tackle the issue of the management of 
complex computational pipelines (Leipzig 2016). They are becoming an essential piece 
to develop pipelines and complex analysis, as evidenced from the publication records. 
Nowadays new scientific workflow tools provide new ways of designing and preparing 
large computations allowing to focus on the main steps that are carried to process data 
and run analysis without having to put so much effort on other tasks that although are 
very important, can be abstracted. That level of abstraction means that the manager will 
take care of deploying and adapting the runtime into different systems without the need 
to hardcode it in the workflow, leaving a pipeline with less dependencies that can halt 
from replicating results in different environments. Although the challenge is to remove 
all these blocking elements for reproducibility, different workflow managers do it in 
different ways and using different strategies, which means that it can also become 
impractical to port easily one workflow into another manager, having to probably 
rewrite it from scratch. But these should not be a major trouble, as for programming 
languages has been the same issue, and as long as the workflow manager of election fits 
the needs of the analysis and is broad enough to be run across different platforms it 
would be fit enough for its purpose. Especially important is to consider the use of 
certain features like virtualization or cloud support. In the case of not owning an 
infrastructure that allows running the workflow, it can be seamlessly deployed by 
running in a virtual environment and in the cloud, without having to care about 
ownership and maintenance. 

The suitability and features of a workflow manager is an interesting topic to discuss, as 
it affects how well a workflow manager can fit for the analysis. Depending on the level 
of abstraction that a workflow manager offers it will be critical to decide whether it is 
more or less suited for one case or another. In the case of HPC and clusters although 
equipment are generally running in similar systems, the management of parallel 
computation can differ greatly. In one case it can be that one cluster is running on a 
GridEngine or any other batch queue system to distribute and execute computation, 
while in another system computation could be managed by Hadoop. In order to be able 
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to run a workflow in different systems there is a need for high level abstraction that will 
allow to take and run computation without any change just by selecting which is the 
type of the underlying parallel system that is going to be used. 

Probably the most important step affecting the selection and usage of a framework is the 
main purpose of the analysis. Depending on the features of the computation, and its 
application results, it might be better to select one tool or another. One has to be able to 
identify what are the limitations, the resources, and the tasks that need to be done in 
order to design the workflow. Let’s say that the analysis is a block of a serial and 
monolithic applications, then, it won’t make much sense to try to design a pipeline that 
has a split design with low granularity, that is meant to take better advantage on 
distributed computations, instead a more simple and faster application is a better 
approach. Whereas if the application is related to a web interface it will be better to 
select a tool that is better adapted to access databases and generate results easily plug 
into a website or web server. 

Currently there are many options to choose from when looking into workflow 
management tools and frameworks. Tools can be very different and classified with 
different features both because of the features but also because of the design patterns 
they have followed to solve the issues of reproducibility. Depending on the situation 
one might suit better than the others for specific application, although there are others 
that hold a more general audience. There are other options more oriented towards more 
specific applications, like the case of RAP an RNAseq analysis pipeline (D'Antonio et 
al. 2015), Kepler (Wang and Altintas 2012), Chipster (Kallio et al. 2011) and even now 
some are available from biotech companies such as the BaseSpace from Illumina, 
DNAnexus, SevenBridges. 

Previously mentioned workflow managers and other like Taverna(Wolstencroft et al. 
2013), Pegasus (Deelman et al. 2005) or Galaxy (Goecks et al. 2010) are based on 
graphical interfaces. Most of them are web interfaces of online services, which are well 
suited to run the analysis with an interactive session for biologists who do not have the 
technical skills to code and prepare their own workflows from scratch. Instead, in the 
bioinformatics field, researchers have common skills well suited to prepare and adapt 
custom workflows without the need to interact with any interface, typically running into 
scripting or domain specific languages of preference in order to manage all the 
computation. For this reason, some tools have been developed in order to assists in 
design and management of workflows in a lower level. These workflow managers have 
been developed in order to aid bioinformaticians with a number of certain elements 
involved in workflow development, which are common and can be automated and 
abstracted from the process. The main purpose of those are to let the bioinformatician 
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focus in the development of all the steps for the analysis to obtain the results, without 
having to take care of other more technical and lower level issues such as handling file 
system, or orchestrating the execution in parallel environments. Which in turn can be a 
major advantage, as typically researchers have to develop their workflows, that have to 
run in different infrastructures like personal computer, workstation, cluster or the cloud 
depending on the environment they are sitting, which sometimes can be multiple. With 
the later parallelization, it becomes a critical operation when needed to use large 
computational resources to deploy and run huge computations. With the abstraction 
layers that workflow management provide, it becomes easier to shifts the balance of 
time and effort spent in more technicalities towards focusing on the analysis and results 
on which scientific research is built upon. 

Workflow managers have been around for some time already, although all of the 
frameworks aim for reproducibility; many have different approaches and features that 
makes the difference. There are some workflow managers worth to mention which have 
been widely adopted in many institutions because of the ease of use towards non-
bioinformatician users who still want to analyze NGS data but do not know how to 
prepare their own workflows from scratch and code them. Such frameworks like 
Taverna (Wolstencroft et al. 2013; Missier et al. 2010; Sroka et al. 2010) were 
developed in order to allow the setup and distribution of web services, which can be 
deployed in machines and large infrastructures to process NGS data. It can be done 
through an interface that allows the users to either select a pre existing workflow from a 
large repository or design one using its interface that contains a large amount of tools to 
be used within. That service also provides other third party, the web services, from 
which it can interact and retrieve updated data from databases. A similar approach is the 
one used by Galaxy (Goecks et al. 2010), a widely adopted workflow manager web-
based which also allows to run, share and design workflows to process NGS data. It 
provides a web application interface that can be either used through the public servers or 
installed on dedicated and private resources. Galaxy holds a broad range of applications 
available from scratch (Blankenberg et al. 2014) by having a repository of tools 
compatible, both as predefined workflows but also as core elements that can be used to 
design your own workflow step by step with all the parameters and configuration easily 
adapted by the user. Through this interface all the options are available to manage the 
data, tools and workflows used to run in the infrastructure, it also allows to manage 
accounts and the computation within it. It currently also has some support to be able to 
deploy in clouds (Afgan et al. 2012), like Amazon EC2. The results obtained by Galaxy 
has been cited and published in several publications (Goecks et al. 2015; Davidson et al. 
2016). It is able to track the metadata related to all the processes of the workflow and 
allows the users to annotate and document their own executions. It has also great 
capabilities to reuse components and pieces of data and results into other steps and other 
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pipelines and great capabilities to allow users to import and export histories, and share 
results and workflows directly. 

Other workflow managers have been developed more oriented towards 
bioinformaticians. One of the first managers developed for this purpose is Ruffus. 
Ruffus (Goodstadt 2010) is a Python library to build computational pipelines offering a 
series of markup helpers and functions using a syntax similar to Python, and was meant 
to ease the development taking into account tracking of files, parallelization and running 
in different cluster grid engines as well as visualization of the pipeline graph. Bpipe 
(Sadedin et al. 2012) came after as a next step in evolution towards reproducibility 
while it was trying to solve the same problem in a similar way, it was based in Groovy 
Java’s scripting language, but relying in a more flexible approach where command lines 
could be introduced directly and use environment variables. It was more targeted 
towards the general audience, used to build pipelines around bash scripting. It also 
offered a collection of helping functions in order to do split/gather operations over data 
between the steps of the workflow. Those features provide a much easier way to 
implement in a workflow from previous experiences, using a much more modular, re-
usable, not so cumbersome and less complex code. It also allows to keep track of the 
execution, and resume it after an error by caching previously completed steps. A 
different approach from the previous one, was developed in SnakeMake (Köster and 
Rahmann 2012), which was following the trace of widely, used Make. But this time it 
was developed in Python and offers several extensions to make it more flexible than 
common Makefiles. Most of the features included were already in previously 
commented software like automatic parallelization, dependency detection, checkpoints 
and resuming. But it provided a different type of designing workflows declaring input, 
output, configuration parameters and the commands as rules that were put together 
using dependencies with a very similar approach to Makefiles.  Another workflow 
manager was developed by Spotify written in Python and has been mainly used in web-
streaming data processing and therefore was adapted for scientific computation, called 
SciLuigi (Lampa et al. 2015). It added compatibility with typical cluster engines and 
added some capabilities to log and track down the all the execution steps. Luigi offers 
also a web interface to follow the graph and the computation on real time to debug. 
Other frameworks similar in Python have been developed with a more cumbersome 
definition of the dependencies in Leaf (Napolitano et al. 2013), where the definition of 
the steps is detached from the dependency on graph definition, which is defined 
separately using characters in a string. That definition is afterwards processed by the 
library to generate the execution graph and connect it to all the defined steps. More 
recently another framework was developed again in Python, COSMOS (Gafni et al. 
2014; Souilmi et al. 2015), this system offered new capabilities like the ability of 
tracking in real time the computation, showing statistics and storing all the information 



23 

related to execution in a database which could also be accessed through a web server. It 
also added support to starCluter and GlusterFS file system in order to be able to run in 
the cloud as Amazon AWS. Although it has to be noted that the configuration and setup 
of the environment requires manual intervention and it is not directly handled by the 
framework, but through auxiliary scripts. A novel approach was taken compared to the 
previous tools by BigDdataScript (Cingolani et al. 2015). Instead of relying on another 
language to build their manager upon like typically Python or Java, it has its own 
syntax, including its own parser and debugger that uses a very simple and reduced 
grammar to allow for conditional and control structures, and also the inherent workflow 
grammar to define the pieces of itself. Although it initially tries to abstract many of the 
elements already discussed here, there are some other features, which are not detected 
by default as with the case of parallelization that has to be specified, but overall 
supports different environments and cloud as well. 

There has been also further development in workflows management tools for very 
focused and specific applications such as Queue 
(https://software.broadinstitute.org/gatk/download/queue) framework from GATK 
(McKenna et al. 2010; DePristo et al. 2011; Van der Auwera et al. 2002), which is only 
focused towards its variant calling framework. Since variant calling can have multiple 
steps and usually processes large amounts of data when dealing with cohorts of samples, 
Queue was developed to better design workflows that could handle jobs in parallel 
together with GATK. Other similar cases of so-called frameworks have risen to take 
care of other typical NGS applications like in the case of bcbio-gen 
(https://github.com/chapmanb/bcbio-nextgen). Another development in the field worth 
mentioning is the Common Workflow Language (CWL) (Peter et al. 2016). The 
purpose of CWL is to become a standard and common format for scientific data 
workflows. It is made up of a contribution from multiple organizations. Its language 
defines all the elements required to build up in a workflow being able to define with 
syntax similar to YAML, with specifications of inputs/outputs, runtime environment, 
metadata and executables. The main drawback of this model is that to become a 
standard, it needs to be widely adopted by developers of workflow managers, and yet 
not so many have done it. If it was adopted one of the best features would be the 
possibility of having large repositories of workflows that could be easily imported into 
any workflow manager. Recently CWL has added support for Docker containers within 
the workflows designs. Just a few tools from the most well known collection of 
workflow managers, like Galaxy or Taverna, have already implemented some level of 
support for CWL within them, as well as bcbio-gen. 
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4. Leishmania genome adaptation and evolution 
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ABSTRACT  
 
Leishmania donovani causes visceral leishmaniasis, a fatal disease when left untreated. 
The process through which the parasite adapts to environmental change remains largely 
unknown. Here we show that aneuploidy is an integral part of parasites adaptation and 
that karyotypic fluctuations allow for selection of beneficial haplotypes, with important 
impact on parasites phenotype, including transcriptomic output, proliferation and 
infectivity. To avoid loss of diversity resulting from karyotype and haplotype selection, 
L. donovani takes advantage of two mechanisms: (i) polyclonal selection of beneficial 
haplotypes resulting in co-existing subpopulations that preserve the original diversity, 
and (ii) generation of new diversity as a result of higher mutation rates tolerated by 
aneuploidy-prone chromosomes. Our results uncover high aneuploidy turnover and 
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haplotype selection as a new mechanism of L. donovani evolutionary adaptation that 
preserves genetic diversity under strong selection. This process may be of broad 
significance to other human diseases, including fungal infection and cancer.  
 
 
INTRODUCTION 
 
Rapid pathogen adaptation to novel environments is a major threat to human health.  In 
parasites evolving under constant host selection, fitness gains often come along with 
increased pathogenicity1. Aneuploidy has recently been reported to be an important 
driver for evolutionary adaptation in fungal and protist pathogens. Variations in 
chromosome copy number have been shown to cause phenotypic variation resulting 
from changes in both transcriptomic and protein output. Aneuploidy has recently 
emerged as an important driver in evolutionary adaptation of fungal and protist 
pathogens, with chromosome copy number variation inducing phenotypic change 
through transcriptomic and protein expression modulation2. Beyond its effect on gene 
count, aneuploidy can also impact cellular phenotypes through the selection of 
beneficial alleles. While this phenomenon has received considerable attention in human 
genetics3 and cancer genome analysis4,5, the role of aneuploidy and allelic selection in 
genome evolution and adaptation of pathogenic eukaryotes remains to be elucidated.  

We have addressed this question in the protozoan parasite Leishmania donovani, 
an important human pathogen that causes fatal visceral leishmaniasis 6. During its life 
cycle Leishmania undergoes a major developmental transition from insect-stage 
promastigotes to mammalian-stage amastigotes, which adapts these parasites for extra- 
and intracellular survival, respectively 7. In addition to environmentally induced stage 
differentiation, Leishmania can adapt to a variety of unpredictable fluctuations inside its 
human host, notably pharmacological intervention. Such environment-genotype 
interactions likely select parasites for higher fitness and have important consequences 
on disease outcome as demonstrated by the emergence of drug resistant clinical isolates 
8. The underlying genetic mechanisms that drive short-term Leishmania evolution 
remain, however, largely unknown. In the absence of classical transcriptional gene 
regulation, these early-branching eukaryotes often control protein abundance via gene 
and chromosome amplification 9,10. Leishmania thus represents an ideal non-
conventional system to investigate how karyotype variations and haplotype selection 
drive parasite fitness gains and how transient and stable aneuploidies impact the 
parasite’s long-term evolutionary trajectory. 
 
RESULTS AND DISCUSSION 
 
Karyotype and haplotype selection in field isolates  
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We first explored the impact of aneuploidy on genetic diversity in Leishmania by taking 
advantage of the recently published sequencing data of 204 L. donovani field isolates 11. 
These populations originate from independent evolutionary radiations. They have taken 
place after a bottleneck caused by DDT vector control campaigns in the 1960s and thus 
constitute a convenient benchmark to study genetic diversity dynamics. Read-depth 
sequencing analyses were carried out to explore ploidy variations across culture adapted 
isolates (Fig. 1A). Within most isolates full chromosome amplification (as opposed to 
local episomal amplifications) was evidenced by predominantly uniform variations of 
read-depth across individual chromosomes (Supplementary Fig. 1). These same 
analyses also suggest a dominance of population-wide - rather than mosaic - 
aneuploidies within each isolates. The most frequent variations are consistent with 
previous reports 12,13 and involve trisomies (chr 5, 8, 9, 11-16, 22, 23) and tetrasomies 
(chr 8, 23 and 31). Co-occurrence analysis shows a higher prevalence for some 
aneuploidy combinations such as chr 5 and 26 or Chr 19, 25 and 34 (Supplementary 
Fig. 2). Principal component analysis (PCA) based on karyotype profiles (Fig. 1B) does 
not reveal any strong founding effect but rather a very heterogeneous collection of 
samples in which the most common karyotypic combination - all chromosomes diploid 
except 31 - makes up about 10% of the 204 isolates.  

The apparent discrepancy between karyotypic diversity and the previously 
reported genetic structure of that same isolate collection11 suggests that chromosome 
copy number fluctuations may be very dynamic with frequent, reversible and 
independent transitions between polysomic states. Two mutually exclusive models may 
account for such diversity; the first one - monoclonal - involves the rapid expansion of a 
single individual parasite carrying a beneficial set of driving polysomies, while under 
the second scenario - polyclonal - each culture adapted isolate results from the 
expansion of mixed subpopulations sharing the same independently generated driving 
polysomies. We used allele frequency analysis to discriminate between these two 
hypotheses. Merged profiles were produced by stacking the individual allele frequency 
distributions of each chromosome from isolates having strictly identical polysomy 
levels. The presence of well-defined peaks in most chromosome profiles suggests that 
the alleles are balanced the same way across isolates (Supplementary Fig. 3A). In 
disomic chromosomes most of these profiles are compatible with those expected for 
diploid asexual populations in which alleles would diffuse under very weak or non-
existing selection. When dominated by alleles at near-neutral equilibrium this process 
results in unimodal allele frequency distributions centered on 50% as observed for most 
disomic chromosomes (Fig. 1C - left panel, and Supplementary Fig. 3A - left column). 

The situation is more complex in trisomic chromosomes for which profile 
analysis reveals a mixture of unimodal and bimodal distributions (Fig. 1C - middle 
panel, Supplementary Fig. 3A - middle column). Within a given isolate, bimodal 
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distributions reflects homogenous chromosomal duplications across the entire 
population, i.e. when one chromosome is duplicated, the alleles it carries see their 
frequency increased to 66% with respect to the non-duplicated chromosome, whose 
relative allele frequencies decreases from 50% to 33%. In contrast, unimodal 
distribution reflects a perfect equilibrium between the two possible outcomes of a 
transition from disomy to trisomy, i.e. equal likelihood of either chromosome within a 
given pair to be duplicated. Unimodal distributions are perfectly compatible with a 
polyclonal origin but bimodality is best explained by a monoclonal process, in which a 
single original duplication would have founded the whole population. The coexistence 
of these two types of profiles within the same field isolates, e.g. trisomic bimodal chr 5 
with trisomic unimodal chr 12 (Supplementary Fig 4A), and trisomic bimodal chr 6 
with trisomic unimodal chr 12 (Supplementary Fig 4B), is an apparent paradox that 
most likely reflects haplotype selection acting as a confounding factor. Indeed, 
polyclonal origin may also result in a bimodal profile provided one of the two possible 
trisomic haplotype combinations gets selected over the other. Under this scenario, 
highly selected haplotypes result in bimodal distributions centered on 33 and 66% (e.g. 
chr 5), while lower levels of selection result in closer peaks (e.g. chr 6) - up to 
coalescence at 50% in the absence of any selection (e.g. chr 12) (Fig. 1C - middle 
panel). Strong selection of the same haplotype across isolates should therefore result 
allele frequencies being highly conserved across these isolates (i.e. any given allele 
should have similar frequencies when comparing isolates). This is exactly what we 
observed for chr 5, whose allele frequencies varies much less across isolates than 
similar frequencies measured on chr 6 or 12 (Fig. 1C - right panel). In this analysis, the 
high variation of allele frequencies measured for chr 12 alleles is in perfect agreement 
with the frequent unimodal allele profile of this chromosome (Supplementary Fig 4A 
and B) that implies the possible coexistence of alternative trisomic haplotypes across 
isolates resulting from limited haplotype selection. While chr 5 and 12 represent the two 
extremes of the selection spectrum, the intermediate profiles of chr 6  (Fig. 1C, middle 
and left panels, Supplementary Figure 4B) further confirms that haplotypes have the 
capacity to diffuse under selective pressures of various intensities. 

In vivo karyotype fluctuations 
The polyclonal hypothesis implies the pre-existence of a population-wide karyotypic 
variability. The maintenance of such a variability would require frequent polysomic 
fluctuations. We measured this effect by monitoring chromosomal copy number when 
re-passaging an individual aneuploidic field isolate through hamsters (Methods). The 
rapid shift towards a predominant disomic karyotype confirms our hypothesis of rapid 
aneuploidy fluctuations (Fig. 2A). It is unclear, however, if the aneuploidies observed 
during culture adaptation result from the expansion of existing subpopulations or 
constitute a reversible de novo phenomenon. This issue cannot be resolved by HiSeq 
that merely provides an integrative measurement that may not be sensitive enough to 
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reflect low frequency mosaicism. We therefore addressed this question by applying 
single cell DNA-FISH analysis to liver and spleen isolated L. donovani amastigotes. 
Our analysis confirmed important polysomic differences in situ in liver and spleen with 
mosaic aneuploidies observed for chr 5, 17, 22, and 27 (Fig. 2B and C). It is this pre-
existing diversity that most likely contributes to the emergence of population-wide 
aneuploidies observed during culture adaptation of the field isolates. This finding is 
perfectly in line with the polyclonal model that implies the capacity of simultaneously 
selecting multiple individuals from co-existing subpopulations.  

In vitro karyotype and haplotype selection 
While the field isolate and the in vivo analyses suggest that parasite adaptation relies on 
a finely tuned mechanism able to cope with frequent aneuploidies, these observations 
are merely static snapshots of a process that appears to be highly dynamic. In order to 
elucidate this phenomenon further we turned towards the experimental Sudanese L. 
donovani strain LD1S. In contrast to L. donovani clinical isolates from the Indian sub-
continent, this strain  contains a large number of heterozygous sites that make it an ideal 
model for polysomy longitudinal monitoring. We used HiSeq to follow hamster-derived 
LD1S amastigotes during adaptation to in vitro culture. Read depth analyses showed 
that parasites rapidly establish stable trisomies for chr 5, 9, 23, and 26 between in vitro 
passages p2 (20 generations) and p10 (100 generations)(Fig. 3A and Supplementary 
Fig. 5A). These karyotypic trajectories were highly reproducible across two independent 
experiments and matched the most common variations observed in the field isolates 
(Supplementary Fig. 2). All aneuploidies do not appear to be stable and homogenous. 
For instance, chr 20 underwent a transient trisomy between passages p2 and p20 (190 
generations), while mosaic aneuploidies were established for chr 14 and 15 at p10 and 
maintained thereafter as judged by their intermediate read-depth.  

We next measured variations across single individuals by applying HiSeq on 8 
sub-clones derived from p20 parasites. This approach provides an alternative to single 
cell sequencing that is not currently technically feasible in Leishmania. Systematic 
comparison between p20 and the 8 individual clones made it possible to model the 
original population complexity (Fig. 3B and Supplementary Fig. 5B). Haplotype and 
karyotype comparisons suggest that the eight clones may have arisen from at least three 
independent founding individuals. Indeed, while karyotypic variation may be explained 
by rapid aneuploidy turnover, direct haplotype comparisons (Fig. 4A, Supplementary 
Fig. 6) clearly show how the nature of chr 5 and 9 trisomies sets clones 1 and 8 apart 
from the rest. For instance, the systematic differences of dominant alleles on chr 5 
between clones 1 and 8 as opposed to the rest of the clones indicates that the two 
trisomies corresponding to the two groups of clones were established through two 
duplications of different chr 5 autosomes. While a complex scenario of chained 
duplications/reversions may account for these differences, the most parsimonious 
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reconstruction merely requires two trisomies of independent origins and is perfectly 
compatible with a high aneuploidy turnover. This very same explanation applies to 
chromosome 9 and further supports the common independent origin of clones 1 and 8. 
Similar haplotype comparisons also indicated some more genomic heterogeneity in the 
larger group of clones, especially with respect to chr 15, whose variations are 
compatible with an independent origin for clone 4 (Fig. 4A, Supplementary Figs.7 and 
8). Of course, the sequencing of 8 individuals has limited statistical power, and one 
should not ignore that our speculation of three original founders relies on a 
parsimonious hypothesis. Yet, the existence of clearly distinct subpopulation featuring 
similar aneuploidies brings further supporting evidence to the polyclonal hypothesis, 
under which individual strains represent complex mixtures of stable subpopulations.  

Polyclonality is further supported by clear indications of convergent karyotype 
and haplotype selection taking place during culture adaptation. At the karyotypic level, 
the most obvious traces are observed for chr 5, 9 and 26, whose trisomies are shared 
across all the clones despite their likely polyclonal origin. Selection also appears to 
occur at the level of haplotype, the most obvious signal being the one associated with 
chr 26. The haplotype map of this chromosome shows a consistent selection of the same 
allele combination across clones of different origins (Fig 4A). Unfortunately, the 
simultaneous haplotype/karyotype selection taking place on this chromosome makes it 
impossible to discriminate between purifying (lethality of one of the two possible 
trisomies) or positive (higher fitness of one trisomy) selection pressure being imposed 
on its haplotype. Chromosome 20 gives, by contrast, a very clear evidence for positive 
haplotype selection. This chromosome is heterozygous at p2, but becomes trisomic at 
p10 before reverting back to disomy at p20 (Figs. 3A and 4B, supplementary Fig. 8). 
After reversion the allele frequency profiles shows, however, a near-perfect homozygote 
disomy in 6 out of 8 clones (i.e. relatively flat allele frequency profile, Supplementary 
Fig. 7). It therefore appears that this transient trisomy provides an intermediate step 
towards the establishment of a homozygote disomy, whose independent selection in at 
least two subpopulations is consistent with positive fitness contribution.  

Impact of aneuploidies on phenotypic variations and long term genetic diversity 
The high aneuploidy prevalence coupled with the haplotype selection we observed 
during parasite culture adaptation points towards a functional role for these genomic 
variations. We therefore took advantage of the clones’ high karyotypic variability to 
measure the impact of polysomy on transcript output. Since Leishmania largely lacks 
classical gene regulation mechanisms, it has long been expected that polysomy should 
result in proportional transcriptional variation and that aneuploidy mediated gene 
expression variations could be a trait under selection. We used HiSeq analysis to 
compare read-depth variations between genomic and transcriptomic levels (Fig. 5A, 
Supplementary Fig. 9) and found a very high correlation for most chromosomes 
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(r=0.72), with the notable exception of chr 31. In this chromosome - mostly tetrasomic 
across various Leishmania strains - transcriptomic output appears to be halved thus 
canceling the polysomic effect. We also found karyotypic fluctuations resulting from 
culture adaptation to come along with rapidly increasing in vitro fitness as judged by the 
decreasing generation time (Fig. 5B), and decreased in vivo fitness indicated by lower 
infectivity (Fig. 5C). These observations confirm the physiological consequences of 
karyotype and haplotypic variation, but they do not make it possible to determine if this 
process may play a role during the parasite life cycle. We addressed this question by 
separately sequencing the same isolate obtained from spleen and liver of one individual 
infected hamster. We found significantly distinct allele profile variations for chr 20, 
whose allelic diversity is three times lower in spleen as compared to liver (Fig. 5D, 
Supplementary Fig. 11), while read depth analysis indicates a disomic state in both 
tissues (Supplementary Fig. 10). These observations recapitulate almost perfectly the 
results obtained in vitro analysing parasite clones and indicate that in vivo transient 
polysomies may play a role in parasite adaptation. The fate of chr 20 clearly shows how 
the combination of frequent aneuploidies and haplotype selection may lead to a rapid 
loss of heterozygosity. This process could seriously compromise the parasite adaptation 
capacity in the longer term and raises the important question of its capacity to avoid an 
evolutionary dead-end - especially given the absence of sexual reproduction of these 
parasites in the mammalian host 14. Maintaining diversity under such circumstances 
poses a dilemma for all microbial pathogens as it requires a mechanism that would 
allow some compromise between immediate survival and longer term adaptation. We 
therefore searched for traces of increased genetic diversity associated with frequent 
aneuploidies and found a clear signal in the 204 field isolates (Fig. 6). Integrating 
genetic variation across each individual isolate shows that polysomy prone 
chromosomes exhibit a significantly higher level of heterozygous sites than their more 
stable counterparts. This trend is especially strong for chr 31 - the most stable, most 
frequent and highest order aneuploidy. This important observation indicates that L. 
donovani takes advantage of aneuploidy in order to accumulate mutations and increase 
its diversity. It confirms that even though transient in vivo aneuploidies are difficult to 
detect and quantify, they are nonetheless frequent enough to leave their mark on the 
parasite genome thus shaping its genetic diversity.  
 
CONCLUSIONS 
 
Drawing from the sequenced genomes of 204 L. donovani field isolates and conducting 
evolutionary experiments we have uncovered highly dynamic karyotype changes during 
parasite growth in vitro and in vivo. This allows the emergence and selection of new 
alleles to foster the parasites’ genetic diversity during asexual growth within its 
mammalian host. We have demonstrated that karyotypic variation modulates transcript 
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abundance and generates considerable phenotypic variability, with fitness gains in situ 
associated with tissue-specific haplotype selection. The genomic landscape defined by 
an exhaustive combination of all possible trisomies, disomies and monosomies along 
with their haplotype variations is enormous. Aneuploidy turnover therefore provides the 
parasite with a genetic potential for adaptation comparable to the one that may be 
achieved through sexual reproduction. 
 

Rapid aneuploidy turnover combined with haplotype selection allows for fast 
adaptation, but it comes along with a heavy genetic cost: relative loss of heterozygosity. 
The transient trisomy of chr 20 and its tissue-specific haplotypic diversity we observed 
in vivo illustrates especially well the parasites’ dilemma between over-adaptation to any 
given environment - that may involve irreversible genetic tradeoffs - and the 
maintenance of enough genetic diversity for future adaptation. In this chromosome, the 
loss of heterozygosity seems to contribute to the parasite adaptive capacity across 
conditions and tissues, but one cannot ignore that this same process may also push the 
parasite into an evolutionary dead end.  

Yet, the very existence of the parasite testifies of the capacity it has evolved to 
establish a fine-tuned balance between the conflicting requirements of short- and long-
term adaptation. The parasite long-term survival relies on two complementary 
mechanisms for the generation and maintenance of genetic diversity. The first one 
relates to the polyclonal origin of selected populations. We have shown that culture 
adapted isolates do not have a single founding parent but result from the simultaneous 
selection of several individuals. This process results in the maintenance of a high level 
of genetic diversity. It benefits from the rapid aneuploidy turnover that allows selected 
polysomies to occur frequently and independently in genetically distinct individuals. 
The second one is a direct consequence of the relaxed selection reported to occur after 
gene duplication 15. Our findings are in perfect agreement with these models and 
confirm that aneuploidy prone chromosomes have a significantly higher mutation rate 
than their more stable counterparts, thus making aneuploidy one of the drivers of 
genetic diversity in L. donovani. 

Leishmania, like all known infectious agents, provides us with some of the best 
examples of genetic selection driven survival. But it does so in a very unusual way and  
while in most parasites survival is mediated by high mutation rates, genetic material 
exchange through sexual - or analogous - mechanisms, Leishmania appears to have 
evolved around a different, yet unreported, strategy. Our many findings are all 
consistent with the notion that Leishmania adaptation relies on genome instability to 
enhance the parasite evolvability. This strategy bears direct consequences for current 
protocols in Leishmania drug and biomarker discovery. First, Leishmania genome 
instability limits all current and future drugs that directly target the parasite biology and 
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are therefore bound to select for resistance phenotypes16,12,8. New strategies for anti-
leishmanial drug discovery are thus needed to avoid direct parasite selection, for 
example by targeting the parasites’ dependence on the host cell metabolism. Second, the 
massive genomic changes we observed during Leishmania culture adaptation call into 
question current protocols of biomarker discovery, which all rely on in vitro expansion 
of clinical isolates. Alternative, culture-independent approaches need to be established, 
for example by propagating field isolates in experimental animal models or applying 
direct tissue sequencing. Regardless of how these new approaches get implemented, it is 
clear that genome instability needs to be considered when investigating medically 
relevant aspects of the parasite’s phenotype such as tissue tropism, drug susceptibility 
and pathogenicity. Our findings clearly set the stage for the future discovery of 
haplotypes with diagnostic and prognostic value.    
 
Material and Methods 
 
L. donovani isolates, culture and axenic amastigote differentiation 
L. donovani 204 field isolates clinical samples from the ISC were used in this analyses 
to track evolutionary diversity maintained across populations 11. Infectious L. donovani 
strain 1S2D (MHOM/SD/62/1S-CL2D) was obtained from Henry Murray, Weill 
Cornell Medical College, New York, USA. Axenic L. donovani 1S2D, clone LdB, was 
cultured as described 17,18. Briefly, axenic promastigotes were grown at 26 °C in M199 
media supplemented with 10 % FCS, 25 mM HEPES pH 6.9, 4 mM NaHCO3, 1 mM 
glutamine, 1 x RPMI 1640 vitamin mix, 0.2 µM folic acid, 100 µM adenine, 7.6 mM 
hemin, 8 µM biopterin, 50 U/ml of penicillin, and 50 µg/ml of streptomycin. Axenic 
amastigotes were cultured at 37°C with 5 % CO2 in RPMI 1640 supplemented with 1 
mM glutamine, 1 x  RPMI 1640 vitamin mix, 0.2 µM folic acid, 100 µM adenine, 20 % 
FCS, 1 x RPMI amino acid mix, 50 U/ml of penicillin, and 50 µg/ml of streptomycin 
and 28 mM MES. Four days after induction of differentiation by pH and temperature 
shift as previously described 17, axenic amastigotes were centrifuged for 10 min at 4oC 
and 1500 g. Supernatants were removed, cells washed twice in PBS, and adjusted to 2 x 
108 parasites per tube for RNA or DNA extraction. 
   
Hamster infection and isolation of infectious amastigotes 
Anesthetized hamsters were inoculated by intra-cardiac injection with 5 x 107 infectious 
amastigotes obtained from infected hamster spleens or livers. Hamster weight was 
monitored and animals were euthanized with CO2 after four months of infection. 
Spleens and livers were collected, weighed, and homogenized in PBS supplemented 
with 2.5 mg/ml saponine using the gentleMACS homogenizer with gentleMACS M 
tubes from Miltenyi. Parasite burden was determined by limiting dilution as described 
19. For amastigote purification, suspensions were adjusted to 25 ml with PBS and 
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cleared by centrifugation at 130g for 5 min at room temperature (RT). The supernatants 
were collected, 1 ml of saponine (25 mg/ml) was added under gentle agitation, and 
parasites were harvested 5 min later by centrifugation at 1800g for 10 min at RT. After 
two washing steps with PBS, remaining host cell contaminants were removed by Percoll 
centrifugation. Parasite were resuspended in 3 ml of 45 % Percoll, and layered above a 
cushion of 2 ml of 90 % Percoll in a 15 ml falcon tube. After 30 min of centrifugation at 
3500g, 15°C, amastigotes were recovered from the interface of the gradient and washed 
3 times in medium or PBS (1800g, 10min, 15°C). Tissue-derived amastigotes were 
adjusted to 2 x 108 parasites per tube for RNA or DNA extraction or inoculated in 
culture medium for differentiation into promastigotes and further culture. 
 
Promastigotes derived from splenic amastigotes 
1 x 107 amastigotes purified from hamster spleens were inoculated in 5 ml of 
promastigote culture medium for differentiation and culture. Promastigotes were then 
maintained in culture by dilution in fresh medium once they reached stationary phase. 
At passages 2, 10 and 20 corresponding to approximately 20, 80 and 190 generations 
respectively, parasites in exponential growth phase were collected and adjusted to 2 x 
108 parasites per tube for DNA extraction. After 20 in vitro passages, serial dilutions of 
promastigotes were plated on M199 Agar plates for cloning and 8 clones were selected 
and amplified in promastigote medium.  
 
DNA FISH analysis 
DNA probes for chromosomes 5, 17, 22, and 27 were prepared as previously described 
20. Amastigotes were purified from infected hamster livers and spleens as described 
above, immobilized on glass slides, fixed in 4% paraformaldehyde and 4% acetic acid. 
Fluorescence in situ hybridization was performed according to Sterkers 20. Leishmania 
cells were viewed by phase contrast, and fluorescence was visualized using appropriate 
filters on a ZeissAxioplan 2 microscope with a 100 x objective. Digital images were 
captured using a Photometrics CoolSnap CDD camera (Roper Scientific) and processed 
with MetaView (Universal Imaging). Z-Stack image acquisitions (15 planes of 0.25 
mm) were systematically performed for each cell analysed using a Piezo controller, 
allowing to view the nucleus in all planes and to count the total number of labelled 
chromosomes. The ploidy was estimated on 150 to 300 labelled cells. 
 
Genomic sequencing 
All Leishmania samples, except the repassage shown on Figure 2a the liver/splenic 
differential analysis shown on Figure 5c were performed using DNeasy blood and tissue 
kits from Qiagen according to manufacturer instructions. Acid nucleic concentrations 
were measured with a NanoDrop® spectrometer. Between 2 to 5 µg were used for 
sequencing. DNA sequencing was performed using a Illumina Hiseq 2000 platform and 
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TruSeq v3 kits. 1 µg of nucleic acids were used for DNAseq while the rest of the 
material was used for quality control. In the passage experiments (sp-ama, P2, P10 and 
P20) two paired end libraries were constructed with insert sizes of 100 and 160 bp 
respectively. The libraries used for the clones only included an insert size of 160 bp. All 
libraries were sequenced in 125 bp reads. 
 
All Sequencing reads have been submitted to the European Nucleotide Archive (ENA) 
and are available under the Accession Number PRJEB15282. 
  
Transcriptomic sequencing 
RNAs were performed using RNeasy mini plus blood and tissue kits from Qiagen 
according to manufacturer instructions. Acid nucleic concentrations were measured with 
a NanoDrop® spectrometer. Between 2 to 5 µg were used for sequencing. RNA 
sequencing was performed using an Illumina Hiseq 2000 platform and TruSeq v3 kits. 4 
µg of nucleic acids were used for RNAseq, respectively, and the rest of the material was 
used for the quality control. RNA libraries were sequenced on a single flow cell single 
stranded 51 bp read. Sequencing reads have been submitted to the European Nucleotide 
Archive (ENA) and are available under the submission number PRJEB15282.     
  
Reads mapping and read depth analysis 
RNA and DNA sequences determined from all samples were aligned to the same 
reference genome (L. donovani BPK282A1, Accession number: PRJEA61817). 
Mapping and post processing was carried out using a combination of BWA mem 
(v0.7.8) 21 along with Samtools (v1.3)22 in order to refine read information and clean 
mapped sequences. Alignments were further refined using GATK (v2.8) IndelRealigner 
and MarkDuplicates23. In order to estimate chromosome somy levels for every sample, 
Samtools was used to estimate read-depth for every base, so as to determine median 
read-depth. This measure was calibrated to determine somy, under the assumption that 
the most frequent somy levels correspond to diploidy. These calibrated values were 
used to select subsets of chromosomes having comparable aneuploidy levels. 
Uncalibrated values were used to measure chromosome covariation of somy levels 
across all field samples and to run a Principle Component Analysis (PCA) using the R 
software. 
 
Relative expression estimation 
Gene RNA read counts corresponding to annotated ORFs were estimated using 
reference gene annotation from TriTrypDBv7. The actual read-counts were measured 
with BedTools (v2.19)24 using the BAM files obtained after mapping. Gene copy 
numbers were estimated using a similar protocol. In order to normalize for gene length, 
read counts were estimated in Reads Per Kilobase Mapped (RPKM)25 across all genes 
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and samples. These RPKM measurements were then used to compare expression levels 
across samples. 
 
 
Variant calling and allele frequency analysis 
Pileups were generated across the reference genome for all the samples using Samtools 
mpileup and its multiallelic caller to detect variants in all samples. Variants were 
filtered using a quality threshold of 15 using a Read Position Bias ( RPB) filter of 0.1 
and retaining alleles with frequencies comprised between 0.1 and 0.9 included. In order 
to filter out sites potentially affected by episomal amplifications, regions with a read-
depth higher than 1.6 x the median depth were excluded from the analysis. The resulting 
sites were then used to draw allele frequency statistics, and produce allele frequency 
profiles. Allele frequency profiles were produced by measuring the frequency of every 
nucleotide at every position and by compiling the resulting numbers were compiled so 
as to generate a distribution plot.  Allele dispersion plots were produced by measuring 
for each nucleotide at each position the standard deviation of frequencies across a set 
samples, compiling the resulting values and by plotting their distribution.  
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Figures 
 

 

 

Figure 1: Genome instability and haplotype selection in 204 L. donovani field 
isolates. Polysomy analysis based on read-depth comparison and derived allele 
frequency analysis on specific aneuploidies is shown. (A) Somy analysis. Chromosome 
copy number was estimated by read-depth analysis and plotted for each chromosome 
and field isolate. (B) PCA analysis. Each isolate somy profile was used to run a PCA 
analysis. Isolates are colored by genetic proximity. (C) Allele frequency analysis. The 
number of alleles (count) was plotted against their frequency. Distributions of allele 
frequencies are shown for three selected chromosomes (5, 6 and 12) (see full panel in 
Supplementary Figure 3) and are displayed for disomic (left panel) or trisomic (middle 
panel) isolates. The red line corresponds to a frequency of 50% (0.50). The left panel 
shows allele dispersion plots obtained by measuring distribution of allele frequency 
standard deviations (Std dev) across the corresponding isolates. Haplotype selection is 
indicated by a low Std as observed for trisomic chromosome 5. The red line was added 
as a visual aid to materialize the differences in the number of highly variable alleles 
across these three chromosomes. 
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Figure 2: In vivo aneuploidy dynamics. The three panels document the reversible 
nature and the mosaicism of L. donovani aneuploidy in situ during hamster infection. 
(A) Read depth analysis. Heat map representing the polysomy level as calculated by 
read density of the L. donovani field isolate XXX after over 10 passages in culture (iv) 
and following three passages in the hamster (H3). (B) DNA-FISH analysis.  L. donovani 
strain LD1S amastigotes purified from infected hamster liver (L) and spleen (S) were 
analyzed with fluorescent labeled probes specific for chromosomes (Chr) 5, 17, 22, and 
27 and signals were analyzed by microscopy. The signal for chr 5 in spleen-derived 
amastigotes is shown as an example (phase, phase contrast; FISH, fluorescent signal 
from DNA-FISH analysis; overlay, merged image of DNA-FISH and nuclear signal 
obtained with DAPI stain). The bar corresponds to XXX. The % chromosome number 
was calculated counting 100-300 individual cells per condition (lower panel). The level 
of somy is indicated by the bar filling, with white for monosomy (1n), gray for disomy 
(2n) and black for trisomy (3n). 
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Figure 3. In vitro aneuploidy dynamics. Read-depth variations in L. donovani LD1S 
of individual chromosomes at different passages during culture adaptation and in sub-
clones derived from the parasite population at passage 20. (A) Read depth variation 
during culture adaptation. Variations in read-depth for L. donovani LD1S amastigotes 
isolated from infected hamster spleen (sp-ama) and derived promastigotes at passage 2, 
10, and 20 (p2, p10, p20). Only aneuploidic chromosomes are shown (see full panel in 
Supplementary Figure 5A). Read-depth is displayed using a standard box-plot 
representation with the central line materializing the median of the distribution. (B) 
Read depth variation on individual sub-clones. Variations on these same chromosomes 
as shown in panel A are shown for 8 individual parasite cultures subcloned from p20 
parasites (sub-clones are indicated by CL).  
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Figure 4: Fluctuations of allele frequency during culture adaptation. These panels 
document haplotype selection by following the allele frequency distribution in the sub-
clones and the original p20 parasite population. (A) Haplotype selection in clones. 
Variable sites in chromosomes undergoing amplification were painted according to their 
dominant alleles to visualize haplotype variability across the 8 sub-clones derived from 
p20 parasites. Each line represents a chromosome from the original p20 population (first 
line) or the sub-clones. Allele frequency distributions are shown in the profiles on the 
right of each panel. The color code corresponds to the read depth, with disomic-to-
trisomic transitions indicated by a continuum from orange to green color. (B) Haplotype 
selection during culture adaptation. Allele frequency distributions corresponding to 
hamster-derived splenic amastigotes (sp-ama) and derived promastigotes during culture 
adaptation at passaged (p) 2, 10 and 20 is shown for selected chromosomes (for full 
panel see Supplementary Figure 6).  
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Figure 5: Aneuploidies and haplotype selection influence phenotype and fitness. 
This figure shows a quantification of aneuploidy and haplotype selection on 
transcriptomic output, virulence, growth rate and tissue-specific parasite adaptation. (A) 
Correlation of aneuploidy and transcript output. The median transcriptomic output of 
each chromosome was plotted against the median read-depth of genomic coverage for 
each of the eight sub-clones derived. (B) Parasite phenotype in vitro and in vivo. LD1S 
promastigotes during culture adaptation at passages p2, p10, and p20 were assessed for 
in vitro growth to determine the generation time (left panel), in vivo growth in infected 
hamster spleen and liver (middle panel), and pathogenicity by monitoring hamster 
weight as a function of time (right panel). (D) Tissue-specific haplotype selection. 
Amastigotes were isolated from infected hamster liver and spleen, purified genomic 
DNA was subjected to HTseq analysis, and allele profiles were established by plotting 
allele density versus frequency. 
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Figure 6: Aneuploidy influence on heterozygosity. Each chromosome is represented 
by its index on the graph and colored according to aneuploidy frequency after culture 
adaptation, as measured in the 204 field isolates . The three colored lines materialize 
three apparent regimen of mutation rates. 
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Supplementary Figure 1 Colored rendering of normalized read-depth variations across 
the 204 field isolates genomes with light colors representing disomic levels and darker 
color higher somy level up to blue for tetrasomic. Each chromosome is divided in 10 
bins and colored according to the median normalized read-depth measured on this bin 
so as to reflect partial amplification. The relative homogenous coloring suggests the 
prevalence of chromosome wide amplifications rather than partial amplifications. 
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Supplementary Figure 2 Pearson correlation measured for each pair of chromosomes 
while considering the median read depth measured in every field isolate. Two main 
clusters appear one containing typically trisomic chromosomes and another minor 
cluster with chromosomes that remain at disomic level for almost all the samples.  
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Supplementary Figure 3 Allele frequency combined distribution profiles on strictly 
disomic, trisomic and tetrasomic chromosomes in the 204 field isolates (A). Frequency 
plots were obtained by individually estimating a distribution in each chromosome of 
each isolate and by stacking up the profiles corresponding to chromosomes with similar 
somy level. This procedure made it possible to give the same contribution to each 
isolate thus avoiding the averaging effect that would have resulted from piling up the 
allele profiles. The number of chromosomes corresponding to each category is compiled 
in the bar graph (B). 
 

 

 

Supplementary Figure 4 co-occurrence of trisomies with predominantly bimodal (chr 
5)  and unimodal (chr 12) allele frequency distributions in field isolates. The isolates 
having a trisomy for both chr 12 and either 5 (A) or 6 (B) were selected and the allele 
profiles of the considered chromosomes were plotted. Note that no isolates was found to 
be simultaneously trisomic for 5, 6 and 12. The profiles show that in several isolates the 
allele profile shape are different between 12 and 5 or 6, with 12 (bottom line in A and 
B) being predominantly unimodal and 5 or 6 mostly bimodal. 
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Supplementary Figure 5. Full karyotype variation of the LD1S adaptation time course. 
The original splenic amastigote, the P2, P10 and p20 passage as well as 8 subclones 
derived from P20 were deep sequenced, the reads were mapped against the same 
reference genome and the median RPKM was estimated for each chromosome of the 
time course (A). Eight subclones were then derived from P20 and sequenced in a similar 
way (B). The median read-depth profile (i.e. one value per chromosome) were then used 
to run a PCA analysis on the clones, thus revealing well defined subgroups. 
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Supplementary Figure 6. Full Haplotype and karyotype variations maps of the 8 
clones and p20. The chromosomes having no copy number variation are not shown. 
Each stripe corresponds to the dominant nucleotide. Sites in which the difference of 
frequency between the top allele and the second highest frequency allele is less than 
10% are shaded in gray. The plot next to the painted chromosomes is the distribution of 
allele frequency colored according to the median read-depth of the chromosome. 
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Supplementary Figure 7. Passage 1 to 20  allele profiles. This figure displays the 
individual allele frequency profiles of each chromosome for the splenic amastigote and 
the adapted cultures P2, P10 and P20. 
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Supplementary Figure 8. Clones allele profiles. Similar analysis on the 8 sub-clones 
derived from P20. 
 

 
 
Supplementary Figure 9. Distribution of chromosome transcriptomic output (in 
RPKM) in the 8 subclones derived from P20. The median values were used to populate 
Figure 5A. 
 

 

 

Supplementary Figure 10. Spleen and Liver Boxplot. Distribution of genomic RPKM 
in the liver and spleen samples obtained after infecting a hamster with a P20 sample. 
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Supplementary Figure 11. Allelic frequency distributions in spleen and liver after re-
infection. All profiles are statistically identical with the exception of chromosome 20 
(highlighted in red).  
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4. Discussion

4.1. Challenges of reproducibility 

Reproducibility in scientific research is a troubling matter, which has been growing 
concern in the scientific community over time. Sometimes even up to the extent as to 
describe current state in science as a crisis of reproducibility, after the collection of 
surveys with information about scientist’s experiences (Baker 2016). The heart of 
scientific publication relies on the expectation of scientific research being 
knowledgeable and reproducible. And yet across years, many examples have been found 
and solutions have been proposed in order to identify, quantify and overcome this issues 
(Stodden et al. 2013; Firtina and Alkan 2016). More specifically in computational 
biology and bioinformatics, where there are inherent sources of variability while trying 
to convey any kind of analysis that relies on numerical calculations. These sources lead 
to differences in results, and therefore a certain level of instability than can be 
appreciated when executing the same analysis in different environments using the same 
methods, data and analysis. The solution used by Nextflow (Nextflow - A DSL for 
parallel and sca...; Di Tommaso ) has been proposed previously (Boettiger 2014), but 
the lack of standardization and agreement  on final solutions to tackle these issues has 
not lead to the adoption and integration of these in bioinformatics. This technology was 
new to bioinformatics and needed a deeper study and evaluation on the cost and the 
consequences upon introduction within bioinformatics analysis and its common runtime 
environments. Results in benchmarks of ENCODE (The ENCODE Project Consortium 
2012) data sets and typical genomics applications used in large-scale projects proved 
this approach to be more than convenient and without a noticeable overhead or penalty 
in performance. This approach has received attention and has been proposed in 
guidelines on how to approach container technologies and take advantage for 
reproducible purposes following the same line proposed in our work (Moreews et al. 
2015; Belmann et al. 2015; Pabinger et al. 2016; Byron et al. 2016).  

Nowadays there has not been major further development in the area of workflow 
management tools. Although there are some tools available that have focused on the 
development and improvement towards achieving a better support for HPC or cloud 
environments (Afgan et al. 2012; Liu et al. 2014), there has not been recent development 
to tackle the main reproducibility barriers. With that in mind, Nextflow includes major 
support for different platforms and computational environments as well as shown in 
benchmark, but it has also focused on its development towards including features to 
manage seamless integration with publishing resources in order to ensure not only 
computational operability but also to embrace code sharing policies and guidelines long 
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proposed (Barnes 2010; Code share 2014; Easterbrook 2014), altogether integrated 
within the same umbrella. 
 
The ultimate goal towards reproducibility of software management tools trying to 
address these issues is to harness all elements involved or related to computational 
analysis that might introduce any degree of instability. Although much is being done to 
try to solve these issues, not so much effort has been done in a real evaluation of the 
effect on real life applications. Therefore with applications existing such as Nextflow to 
ensure computational reproducibility, it is of imperial need to try to evaluate what is the 
extent of variability that needs to be acknowledged before trying to bring applications 
into the clinics.  
 
So far, many aspects related to computation and numerical stability have been explored 
by workflow managers, but not so many aspects and efforts have been put in the data 
side. With large amounts of sequencing data accumulating and its raw input being 
archived in repositories like NCBI SRA’s or EBI ENA (Leinonen et al. 2011; Leinonen 
et al. 2011), it is important to pay attention on how the data is being stored with all its 
related metadata, and allow a reference and standardized API in order to access and 
process all of it. This issue has been raised previously and some solutions have been 
proposed in order to structure and make a more meaningful retrieval of the data, but yet 
it hasn’t been addressed and integrated at the same level of computation.  
 

4.2. LncRNA evolution 

 
Although sequence conservation in lncRNAs it's not as high as in protein coding genes, 
it's nonetheless higher than other elements in the genome such as ancient repeats 
(Ponjavic et al. 2007). Therefore, it is still useful to use phylogenetic depth, as the 
number of species in a tree up to which lncRNAs are conserved, together with the 
homology relationship and sequence level conservation in order to catalog and to 
prioritize analysis (Pervouchine et al. 2015) those lncRNAs whose enrichment and 
correlation with experimental data is high. Although there is some degree of 
conservation at the expression level between species, the lack of sequence conservation 
makes functional characterization challenging. In order to address this issue other 
studies have tried to correlate lower sequence conservation with RNA secondary 
structure conservation (Johnsson et al. 2014). Moreover, the data also suggested that not 
only sequence conservation could be constrained, but also transcriptional levels and its 
regulation as shown in the comparison of expression levels between mouse and human, 
enriched as well with epigenetic marks. Annotation of lncRNAs in curated datasets such 
as GENCODE for human and mouse genomes (Harrow et al. 2012; Mudge and Harrow 
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2015) had an increased step in the number of annotated gene and transcript models 
released year after year. Although a large number of genes have been included in 
reference annotations and in experimentally derived annotations, our results concerning 
a small fraction of the lncRNAs being highly constrained and conserved across 
mammalian annotation still holds and has been replicated by other following similar 
approaches recently in the literature (Chen et al. 2016; Gardner et al. 2015; Hezroni et 
al. 2015). Our approach to identify and estimate the level of sequence of conservation is 
stringent enough to call homology and orthology between species, as it will probably 
lack models which are fast-evolving and with a turnover rate much higher than typically 
seen in protein coding genes (Freyhult et al. 2007; Roshan et al. 2008). There are other 
approaches that have been explored, although using similar but less extensive data sets 
of experimental data (Washietl et al. 2014; Necsulea et al. 2014), but using RNA-seq 
read data mapping from one species to another as a proxy to estimate conservation is 
not a good model to establish homology relationship, but rather a way to find 
incomplete transcript processivity similarities, specially when transcript reconstruction 
and homology is not properly evaluated altogether from these analysis. It is often 
difficult to cross datasets from different sources specially when in different approaches 
have been used with different filters in order to try to classify lncRNA. This can be 
extrapolated from our comparison crossing recently published datasets of lncRNA, 
which did not provide neither a good support in terms of experimental evidences of 
transcription and full transcript model definition, neither good positional overlaps 
(Ravasi et al. 2010; FANTOM Consortium and the RIKEN PMI a...). Other approaches 
related to functional characterization through secondary structure have also raised critics 
and concerns as to what it can be detected when analyzing lncRNA structures (Rivas 
and Eddy 2000). Even when structures have conserved motifs might be arising due to 
sequence bias composition from specific regions or even degenerated elements, which 
might be confounding sequence and structure similarity with functional conservation. 
 
Publication of new datasets and annotations have been accumulating through years on 
different species including ours (Li et al. 2015; Bateman et al. 2011; Paytuví Gallart et 
al. 2016; Amaral et al. 2011; Xuan et al. 2015), allowing to retrieve more information 
and annotations which can later be used in order to perform more integrative analysis. 
Annotation catalogs and databases on lncRNAs have become a powerful resource for 
research on this topic. Although sometimes, the information is quite heterogeneous and 
needs some manual curation and it also raises the question on which is the best dataset 
or how to merge all the information. Proper evaluation and curation will therefore be 
needed to meet quality standards as in the GENCODE resources. 
 
Future work will benefit from the integrative approach followed in this work, helping to 
establishing a comparative map between species such as human and mouse that 
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provides a catalogue and a reference that guides and makes easier when comparing and 
trying to translate research between species. Comparative analysis and comparative 
genomics have provided the best strategies to gain insights into lncRNA evolution and 
functional characterization. Integrating all the tools and methods available has proven to 
be the best aim to tackle multiple questions, though many are still unanswered. In order 
to fully understand functional relevance of lncRNAs, after accumulation of 
experimental and evolutionary evidence further steps are needed to elucidate its 
functions in vitro and in vivo with experiments such as loss of function, transcription 
modulate or genome modification with CRISPR systems (Goff and Rinn 2015; Han et 
al. 2014). Other work carrying knockouts have shed some light into sponge-like 
mechanisms of lncRNAs involved in disease and cancer (Du et al. 2016), while other 
studies in mouse knockouts have shown the importance and impact of some of these 
players during developmental processes (Fatica and Bozzoni 2014). 
 
 
 

4.3. Leishmania genomics and evolution 
 
Leishmania is among the most deadliest pathogens in the world. L. donovani species 
when left untreated generates visceral leishmaniasis, provoking between 200,000 and 
300,000 cases of the disease every year (Alvar et al. 2012). In the old world most of the 
cases of Leishmaniasis are coming from indian subcontinents, from where clinical 
genomic efforts have been carried to characterize the epidemiology and specially the 
rise of drug resistance (Imamura et al. 2016). In our work we revisited the 204 clinical 
isolates from indian subcontinents and found traces of recurrent episodes of aneuploidy 
in nearly the same chromosomes. Some of these events have also been seen in other 
species recently sequenced (Llanes et al. 2015). We continued these analysis with a 
hybrid strain in an in vitro system to monitor aneuploidy through time.  
 
Aneuploidy previously detected and described in the literature is the event where 
chromosomes have more copies than expected, this is two copies of the typically diploid 
genome of Leishmania species (Sterkers et al. 2011; Sterkers et al. 2012). Due to our 
results in the 204 isolates we expect the genome of these parasites to be extremely 
dynamic for us to be able to capture aneuploidic events so often. We sought to 
interrogate the dynamics of these events by passaging a field isolate in an in vivo 
system, in hamster, where aneuploidy rapidly goes back towards disomic state. We 
show with FISH that these dynamic transitions of aneuploidies can still be observed in 
the hamster, with different organs showing different patterns of chromosome 
aneuploidies in a lower proportion as compared to cultured parasites, pointing towards 
the preexistence of aneuploidic subpopulations. It is interesting to point out that 
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different organs might reflect different environments and strongholds of the immune 
system that the parasite needs to adapt differently (Stanley and Engwerda 2007). 
 
From our genomic analysis on the field isolates, traces of convergence towards the same 
haplotypes being favoured were observed on the chromosome copies that were 
amplified across the 204 field isolates. We therefore hypothesize on the opportunistic 
and mechanistic purpose of these events, happening more often than expected 
(Mannaert et al. 2012), and being more than a culture effect and rather a tool of the 
parasite. 
 
In our results we do not find any trace of recombination, consistent with previous work 
discussing about the origins and mechanisms of leishmania in the intracellular stage, for 
which no sexual event has been observed (Victoir and Dujardin 2002; Rougeron et al. 
2010). Although there is some controversy and findings related to parasexual and 
hybridization events with possible cases of automixis happening while the parasite is in 
the insect guts (Inbar et al. 2013; Akopyants et al. 2009; Sadlova et al. 2011). Despite of 
these cases can occur and the parasite is able to exchange genetic material and generic 
hybrids, it does not seem to occur often, and so the parasite is limited during the 
transition facing a radical change in the environment between insect and mammalian 
host, in which it may need to adapt very fast (Kaye and Scott 2011). 
 
In our in vitro system we show how the aneuploid events have a high rate of turnover, 
showing even some cases of reversion towards disomic state with a transient trisomic 
event. This is consistent with the low heterozygosity shown in studies from clinical 
isolates, which would prevent chromosomes from accumulating many deleterious 
mutations (Rougeron et al. 2015). But, by using our hybridized strain with a high 
amount of mutations we are able to follow the fate of karyotypes and haplotypes at a 
single base resolution across the genome. 
 
Aneuploidy has been studied in several species to understand what is the downstream 
effect and its level of tolerance in several species (Pavelka et al. 2010; Mulla et al. 2014; 
Gasch et al. 2016). But it is specially interesting in leishmania, as kinetoplastids lack 
any complex transcriptional regulation mechanisms, and therefore the differences in 
copy number impacts severely on the levels of expression and translation in the cell 
(Rogers et al. 2011). Overall we demonstrate recurrent whole chromosome aneuploidy 
events, with homogeneous increase in genomic depth, which is typically reflected in the 
transcriptome, except for some special cases as in chromosome 31. Our haplotype based 
analysis allows us to resolve which is the pattern of expression on RNA-seq data, and to 
see how many of these haplotypes are being expressed and at what rate. We also 
demonstrate a direct relationship between the number of copies per haplotype and its 
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relative levels of expression, not observing any distinction at the population level on 
which are the copies transcribed, reflecting the relative number of copies per 
chromosome both at the DNA and RNA levels. 
 
Our results provide further insights into subpopulation structure without using single 
cell genome sequencing, obtaining clones after passaging parasites in our in vitro 
system. This method allows to perform deep sequencing of separate individuals from a 
large population while allowing to grow them after isolation and see its level of 
homogeneity, which has not been previously studied. Combining this strategy with our 
highly heterozygous hybrid has allowed us to elucidate the polyclonal origin buried 
from the beginning in infective populations. Such a complex structure of infectious 
population of parasites has been shown to evolve with environmental fitness adaptation 
and its consequences to virulence previously uncovered in Leishmania.  
 
The importance of aneuploidy and the mechanism of fast adaptation to new 
environments is an interesting model system to study aneuploidy in cancer genetics as 
well. Genomic instability is a hallmark of cancer (Negrini et al. 2010), it has been 
observed in many cases how through aneuploidy cancer cells are able to become more 
resistant and escape drug target mechanisms or therapies (Gordon et al. 2012; Giam and 
Rancati 2015; Burrell et al. 2013) by either increasing cell to cell diversity by harvesting 
new mutations and/or having different number of copies per cell, which can lead to 
differences in dosage dependent expression and translation in the cell. 
 
Future research in line with the results presented is aiming towards achieving a deeper 
level of understanding of this mechanism. Following our in vitro setup,  to elucidate the 
subpopulation structures with a much finer grain strategy, single cell genome 
sequencing is already ongoing. Together with the in vitro system, it will allow to select 
subpopulation of parasites and evaluate them in vivo to detect changes in fitness related 
to differences in combinations of karyotypes and haplotypes between individuals and its 
pathogenic outcome in different environments. This line of research is going to provide 
some light into parasite population structure and how it impacts the infection 
capabilities of parasites. It is also of extreme importance to approach drug research and 
new therapies in the light of the work presented here. Typically clonal lines are used to 
develop and test treatments without taking into account how easy will be for another 
parasite through this mechanism to develop resistance. It is also very important to 
integrate this level of analysis in clinical research in order to screen parasite infections 
before treating them, to detect differences of subpopulations of parasites that could 
present difficulties and run into multidrug resistance problems. 
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Conclusion 
 
From chapter Reproducibility: 

• Nextflow is a new workflow management system developed and presented to 
address the main reproducibility issues that have been found during last years 
when dealing with complex computational pipelines. It provides features to 
avoid numerical instabilities between different environments, which leads to 
different results from the analysis, and also the possibility to automatically track, 
share and deploy published computational pipelines from repositories. 

• The approach followed by Nextflow to develop pipelines allows to fast-
prototype, its Dataflow model implicitly allows automatic parallelization in a 
large number of different environments, having support for all major platforms 
in HPC/cluster environments like Gridengine, Torque, PBS, Slurm, also in the 
cloud. 

• The software provides a large set of pipelines already developed and tested 
publicly that are available and tested for several bioinformatics applications 
which can be used and deployed from day 0. Compared to other available 
workflow softwares we have one of the largest community support, and it is the 
only one providing all the features described. 

• In our paper, container technology is benchmarked in several computational 
pipelines such as long non-coding RNA identification, variant calling and RNA 
quantification on the ENCODE datasets. This evaluation on the effects of 
introducing containers in our pipelines when running in HPC environments 
show how feasible and reliable this approach is. It was demonstrated that the 
overhead introduced in the pipelines is minimal, and even in some cases it 
presents an increase in performance.  

• Pipelines developed and benchmarked in Nextflow allow seamless integration of 
containers. It simplifies the process and takes care of deploying computation 
with containers and allows pipelines to share and execute computational 
pipelines in a reproducible way. This features relieve authors from taking care of 
the technicalities related to virtualization and allows them to focus on the 
development of the analysis, while still having all the benefits in reproducibility 
and performance. 

 
From chapter LncRNA evolution: 

• Published an extended set of mouse gene and transcript set by mapping 17,547 
human long non-coding RNA transcripts models annotated in Gencode to the 
mouse genome using a pipeline to find and map developed long non-coding 
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RNA mapping pipeline. From the homolog set 2,327 (13.26%) human lncRNA 
transcripts (corresponding to 1,679, or 15.48%, of the lncRNA genes) were 
homologous to 5,067 putative mouse transcripts (corresponding to 3,887 
putative genes). 

• Using one-to-one sequence homology and genome maps, we found and 
described a total set of 851 orthologs between human and mouse lncRNA genes. 
Of these, only 189 overlap with the set of 2,736 one-to-one human–mouse 
lncRNAs recently described, reflecting the yet incomplete characterization of 
mammalian lncRNAs, and of lncRNA orthologs. 

• Expression levels of orthologous lncRNAs correlate weakly with phylogenetic 
depth (that is, the number of mammalian species in which a given lncRNA can 
be detected 

• Although lncRNAs show distinct tissue- and species-specific expression 
patterns, we identified 12 lncRNAs expressed in at least 50% of the samples in 
each species. This small set of conserved broadly expressed genes may play 
important functions in mammalian cells. We found these genes to be highly 
enriched among nuclear lncRNAs  

• Reviewed and expanded the collection of lncRNA in chicken genome using a 
combination of ab initio lncRNA set derived from RNAseq data from 20 
different tissues and merged them with homology based predictions from human 
GENCODE LncRNAs set. Level of conservation was measured using a set of 42 
newly sequenced avian genomes finding two subsets, 5,058 conserved in more 
than 10 genomes and another subset of 1251 conserved in more than 40 avian 
genomes. 

• In the genome and transcriptome of Mesoamerican common bean we published 
a set of 1033 P.vulgaris lncRNA genes. The gene set was derived from a set of 
A. Thaliana lncRNAs found in the literature from which 38 were mapped into 
P.Vul genome using our pipeline, while the rest of genes were ab initio derived 
from RNAseq from 7 organs. The total set of LncRNAs were mapped onto 12 
other plant genomes to evaluate the level of conservation in the plant kingdom 
and found 94% genes conserved in other bean genomes, and 526 bean specific 
lncRNA genes. 

 
From chapter Leishmania: 

• Part of this work presents the reanalysis of 204 L.Donovani clinical field isolates 
sequenced genomes from Indian subcontinents. Measurements of karyotype 
changes on the genomes and tracking of its evolutionary diversity accumulated 
on different parasite populations showing clear signals of a trend to generate 
more diversity in the chromosomes that often are evidenced by read depth 
analysis on the samples to undergo aneuploidy episodes. 
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• We show further results using a L. Donovani strain in a in vitro system and 
using high throughput sequencing how to detect and quantify chromosomal 
amplifications and track its fate across time in an in vitro system. Using further 
sequencing and subcloning of populations we demonstrate the existence of 
different subpopulations and using allele frequency we are able to differentiate 
between haplotype changes across time and across subpopulations. 

• We manifest how many different combinations of chromosome copies with 
different haplotypes arise during the experiments, which allow the parasite to 
create differences among parasite subpopulations, which allows to explore a vast 
genotypic space. Together with changes in phenotypic features as growth and 
infectivity we see a correlation between haplotype changes and its response to 
the environment, proposing the usage of aneuploidy and haplotype selection as a 
mechanism of fast environmental adaptation in absence of sexual reproduction, 
while aneuploidy alone itself accounting for a mechanism to keep generating 
diversity due to the lack of heterozygosity. 
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