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Abstract 

The ability of  small molecules to bind to multiple proteins is not exclusive of  

drugs but general to most chemicals, including endogenous metabolites of  

living organisms, from plants to humans. In this respect, herbal medicines have 

been used since the dawn of  time for treating discomforts and maladies, but 

their exact mode of  action remains, still nowadays, unknown for most of  them. 

Remedial herbs are composed of  hundreds of  active compounds interacting 

between them and with many proteins, forming what we can refer to as a 

therapeutic cocktail. Some of  these interactions are essential for the therapeutic 

effect of  the plant, but some others may be detrimental to their 

pharmacological action or even cause undesired side effects. Gaining a deeper 

understanding of  the mechanism of  action of  remedial herbs is one of  the 

main objectives of  this Thesis. In addition, recent findings indicate a key role 

of  the endogenous metabolome in drug discovery, a dimension seldom being 

considered so far. In particular, we are interested in comparing the set of  

metabolomes currently available as a means to assess the degree of  variability 

among species. Based on this, a second main objective of  this Thesis is to 

develop a computational approach to generate the metabolome from its 

genome. From plants to humans, accounting for the endogenous metabolome 

of  biological systems emerges as a new paradigm in drug discovery. 

 

Resum 
 

L'habilitat de petites molècules per interaccionar amb múltiples proteines no és 

exclusiva dels fàrmacs, sino de la majoria de compostos, incloent els metabòlits 

endogens dels organismes, desde les plants fins els humans. Respecte això, les 

plantes medicinals han estat utilitzades desde el principi dels temps per tractar 

malestars i malaties, no obstant el seu mode d'acció roman, encara actualment, 



 

 x 

desconegut per la majoria d'ells. Les herbes remeieres estan compostos per 

centenars de compostos actius interactuant entre ells i amb diverses proteines, 

creant el que anomenem un cocktail terapèutic. Algunes d'aquestes interaccions 

son necessàries per produir l'efecte terapèutic, pero d'altres poden ser 

 perjudicials per l'acció farmacològica or fins i tot produir efectes secundaris no 

desitjats. Aprofundir en el conèixement del mode d'acció de les plantes 

medicinals és una dels principals objectius d'aquesta Tèsis. A més, estudis 

recents indiquen un paper clau dels metabolits endogens en la recerca de 

fàrmacs, una dimensió rarament considerada. En particular, estem interessats en 

comparar els sets de metabolomes actualment disponible per tal d'assessurar el 

grau de variabilitat entre espècies. Basant-nos en això, el segon objectiu 

principal d'aquesta Tèsis és desenvolupar un mètode computacional per generar 

el metabolome a partir del propi genoma. Desde plantes fins a humans, tenir en 

compte el metabolome endogen dels sistemes biològics surgeix com un nou 

paradigme en el desenvolupament de fàrmacs. 
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Preface 

In the last two decades, drug discovery has gradually moved from the 

traditional “one drug – one target” paradigm to a polypharmacological 

perception of  “one drug – multiple targets”. This new view of  drug design 

includes both single drugs acting on multiple targets within a disease pathway 

and single drugs acting on multiple targets interfering with multiple disease 

pathways. At the same time, it is observed that the number of  approved drugs 

keep on decreasing in recent years, whereas the interest for natural products in 

drug discovery increases significantly. One of  the advocated advantages of  

natural products over synthetic molecules is that they often resemble human 

endogenous metabolites. In addition, natural products tend to offer high 

structural diversity within the biologically-relevant chemical space.  

Many natural products are obtained from traditional medicines as part of  

complicated mixtures. The study of  their effects on complex biological systems 

has been facilitated by metabolomics. Research on cellular chemical processes 

and the emergence of  systems biology allow now a detailed study of  organisms 

as complex biological system. Also, the development of  new computational 

methods to predict the polypharmacology of  small molecules offers a new 

perspective to predictive toxicology Altogether, we have never been in a better 

position to investigate at a molecular level the effects of  natural products and 

traditional medicines in the organism, their therapeutics benefits and their 

potential adverse reactions. 

The ultimate aim of  this thesis is to investigate the applications and 

implications of  the endogenous metabolome of  organisms in drug discovery. It 

has been divided in five sections. It starts with an historical overview of  

pharmacology, traditional medicines, and metabolomics. Following this 

introductory section, the main objectives of  this thesis are introduced. It is then 

followed by a description and discussion of  the main results obtained. Finally, 
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the main conclusions derived from this thesis are outlined, and the document is 

concluded with a bibliographic section containing a list of  cited references
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Since early human history, plants have been used in the form of  remedies, 

potions and oils for medicinal purposes (Ji et al., 2009). Normally, people who 

use traditional medicine don’t understand the scientific rationale behind these 

remedies; but they know from personal experience that some medicinal plants 

can be effective to treat some diseases. Most of  this knowledge has been 

developed through trial and error over many centuries and has been transmitted 

through generations. Many of  these plants were not selected based on a track 

record of  remedial properties since people didn’t have a scientific insight to 

explain and predict the therapeutic action of  plants. In fact, in many cases their 

use was associated to rather irrational concepts, such as witchcraft and 

superstition. One example is the assumption that the appearance of  plants may 

give clues to their medicinal properties, for example, yellow flowers are 

associated with bile and jaundice (Sibley, 2015). Sometimes this assumption 

worked, like in the case of  Chelidonium majus, that contains yellow flowers and a 

yellow alkaloid containing latex has been used successfully to treat jaundice 

(Gurib-Fakim, 2006).  

Figure 1 (left):Chelidonium majus (http://www.floracatalana.net ) 
Figure 2 (right): Codex vindobonensis in De Materia Medica, written by Dioscorides.  
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As mentioned, most of  this traditional knowledge passed verbally from one 

generation to another; however, some written evidences have been identified. 

The earliest records about the use of  traditional medicines are from paintings in 

clay tablets in cuneiform from Mesotopamia, dating from about 2600 BC. 

Among the substances documented there are oils of  Cedrus species (cedar), 

Cupressus sempervirens (cypress), and Glycyrrhiza glabra (licorice) among others, 

some of  which are still used today to treat many ailments, from cough and 

colds to inflammation and parasitic infection. But perhaps the earliest 

comprehensive document about these practices is the Ebers Papyrus, an ancient 

Egyptian book written in 1500 BC that contains medicinal knowledge from 

before 3000 BC for about 700 drugs, mostly plants, covering all sorts of  

illnesses. On the other hand, in China, thousands of  herbal formulae have been 

documented over centuries. The first record dates back from 1100 BC and 

contains 52 prescriptions. Altogether, more than 100.000 formulae are 

documented on traditional Chinese medicine. Likewise, documentation of  the 

Indian Ayurvedic medicine system dates back from about 1000 BC. It is also a 

very ancient medicinal culture, perhaps even older than Chinese medicine 

(Enrique Raviña Rubira, 2011). Both Ayurvedic and Chinese Medicines are 

sharing some axioms, for example, that illness is the loss of  harmony 

(Gausachs, 2008). 

In contrast, in western civilizations, the Greeks contributed substantially to the 

rational use of  herbal drugs. In the first century AD, the physician Dioscorides 

wrote the Materia Medica, perhaps the most famous book in western medicine 

(Enrique Raviña Rubira, 2011). During the Dark and Middle Ages, this Western 

knowledge was preserved in monasteries of  England, Ireland, France and 

Germany, but the Arabs have to be recognized as the culture who preserved 

much of  the Greco-Roman knowledge and expanded it throughout Europe, 

including their own resources together with chinese and indian herbs unknown 
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to the Greco-Roman world. The Arabs were also the first to establish drug 

stores in the VIIIth century (Cragg and Newman, 2005).  

It wasn't until XIXth century that scientists isolated various active components 

from medicinal plants (Goerig and Schulte am Esch, 1991). With the isolation 

of  pure alkaloids and other active principles, as well as the preparation of  

synthetic pure organic chemicals, it was possible to study and examine their 

effects with accurately measured quantities. This process led to the 

establishment of  pharmacology as a science (Raviña Rubira, 2011). 

 

I.1 History of Pharmacology 

Etymologically, pharmacology is the study of  drugs (Greek pharmakon, 

medicine or drug; and logos, study). From its original purpose limited to the 

study of  drug action, nowadays pharmacology can be regarded as a broad 

scientific discipline aiming at studying the changes produced by chemically 

active substances in living organisms (Brenner and Stevens, 2010). 

 

 Birth of  pharmacology 

The infancy of  pharmacology can be traced back to France in the early XIXth 

century, with the works of  François Magendie (1783-1855) and his pupil Claude 

Bernard (1813-1878). They were both convinced of  the importance of  using 

experimental methods and, influenced by the development of  organic 

chemistry, extended their work to studying the physiological effect of  certain 

alkaloids. Magendie was the first physiologist to use alkaloids for the treatment 

of  diseases. Thus, he studied the action of  nux vomica (a strychnine-containing 

plant drug) on dogs and he was able to show that the spinal cord is where its 

convulsant action occurs. He wrote a Formulaire that was extensively used by 
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doctors in those times (Tubbs et al., 2008). On the other hand, Bernard was 

interested on the study of  curare, an arrow poison from various plants 

originated in central and south America. He discovered that curare acts at 

neuromuscular junctions to interrupt the stimulation of  the muscle by nerve 

impulses. Bernard is known as the father of  modern experimental medicine 

(van Bronswijk and Cohen, 2008). Their teachings gave a strong impetus to 

pharmacology and new scientists were immediately attracted by this discipline, 

like Rudolph Buchheim and Oswald Schmiedeberg, who are generally 

recognized as the founders of  modern pharmacology (Raviña Rubira, 2011). 

Rudolph Buchheim organized the first laboratory on this discipline and 

published a textbook on pharmacology (Lerhuch der Arzneimittelehre). He turned 

the purely descriptive and empirical study of  medicines into an experimental 

science; however, his reputation is overshadowed by that of  his student, 

Oswald Schmiedeberg (Habermann, 1974).  

Schmiedeberg is generally considered as the father of pharmacology. He 

worked in Dorpat under Buschheim until 1872, when he became professor of 

pharmacology at University of Strasbourg and created the magnificent 

Institute of Pharmacology. He studied the pharmacology of chloroform and 

chloralhydrate. In 1883 he published the first edition of Grundis der 

Pharmacheologie (Textbook of Pharmacology), a textbook that soon became 

a classic. Schmiedeberg had a great influence on the development of 

pharmacology as a science. In fact, he is considered the most prominent 

pharmacologist of his time. In 46 years at his Institute, Schmiedeberg trained 

numerous disciples from about 20 different countries, many of which 

became then professors of pharmacology in their own countries (Muscholl, 

2001).  
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 Drug receptor theory formulation 
During the XIXth century, a key theory for pharmacology was proposed by 

Paul Ehrlich: the side chain theory. He spent many years experimenting with 

dyes to stain cells. Fascinated by the ability of  some different cell types to 

accept or exclude dyes, Ehrlich developed the idea of  the selective interactions 

of  chemical substances with receptors expressed in cells. He proposed for the 

first time the idea of  a receptor as a selective binding for chemotherapeutic 

agents (Figure 3) (Bosch and Rosich, 2008). 

Ehrlich, together with Paul Guttman, pioneered the use of  fully synthetic drugs 

in medicine. In the 1880s, after discovering that methylene blue could stain 

Plasmodiidae, which includes the malaria pathogen, Ehrlich administered this 

substance to two patients suffering this disease. The publication of  the results is 

the first report of  a synthetic drug being used successfully to treat a specific 

disease (Ehrlich and Guttmann, 1891). Ehrlich made further advances in 

chemotherapy when he introduced arsenicals for the treatment of  syphilis. He 

took the premise that an infection caused by a micro-organism could be cured 

if  the drug of  choice was selectively taken by the invading microbes. Looking 

for a cure or treatment for syphilis, he began an exhaustive search for an arsenic 

Figure 3: Ehrlich side-chain theory – diagram used to illustrate his lecture 
to the Royal Society of London in 1900 
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compound that would be a 'magic bullet', able to kill the microbe but not the 

person with the disease. After screening more than 600 arsenicals, compound 

606 was found to be active in rabbits against the bacteria responsible of  

syphilis, Treponema pallidum. This compound was marketed as 'Salvarsan'. Ehrlich 

was the first investigator to develop an agent with a specific therapeutic effect 

on the basis of  theoretical considerations. The systemic approach introduced by 

Paul Ehrlich became the cornerstone of  drug search strategies in the 

pharmaceutical industry and resulted in thousands of  drugs identified and 

tested clinically (Gelpi et al., 2015). 

 

 Drug receptor theory acceptance 
Ehrlich receptor theory was not readily adopted by pharmacologists. It was in 

the early 1930s when significant support for the concept of  drug receptors 

emerged from quantitative analysis of  drug action receptor on cells by Alfred 

Joseph Clark. He analyzed mathematically a large amount of  pharmacological 

data, showing that for many drugs the relationship between the drug 

concentration and the biological effect corresponded to a hyperbolic curve. 

Clark argued that the hyperbolic curve of  drug action expressed the equilibrium 

between a drug present in excess that reacts with a finite number of  cell 

receptors. He concluded that the pharmacological action that was produced was 

“directly proportional to the number of  receptors occupied” (Maehle et al., 

2002). 

The last breakthroughs that strengthened the confidence in receptor theory 

were the direct measurement of  drug binding and the development of  a 

selective inhibitor of  beta-adrenoreceptor, propranolol. 
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 Early drug discovery 

Together with pharmacology, drug discovery process has been also evolving 

during the last two centuries. This process could be divided in two main 

periods; the first one originated at the beginning of XIXth century, whereas 

the second one would start in the 1930s. 

During the first period, the main aim was to isolate and purify natural 

products, obtaining new compounds by chemical synthesis and study their 

physiological properties. In this period, two generation of drugs were 

introduced. The first one is composed by alkaloids and organic products, 

while the second generation includes analgesics, hypnotics and antipyretics. 

The complete catalogue of effective drugs included morphine for pain, 

salicylates for fever, quinine for malaria, phenorbital for seizures, ether 

chloroform for analgesia, and not much else until 1935, when Gerhard 

Domagk discovered prontosil, which is considered the inflexion point of the 

second generation of drugs (Raviña Rubira, 2011). 

 
 The discovery of  Prontosil: the first antibiotic 

Domagk was a german physician and scientist of  the Institute of  Experimental 

Pathology, where he created a group focused on identifying antibacterial activity 

in dyes. Since one of  the difficulties encountered by early researchers working 

in this area was the lack of  reliable test for antibacterial activity, Domagk 

developed a method for screening the survival of  mice that had been 

inoculated with Streptococcus pyogenes. Domagk obtained favorable results with 

derivatives of  sulfonamide, with the most effective compound in protecting 

mice from lethal dose of  H.  streptococcus being Prontosil. After successfully 

using Prontosil to treat rabbits infected with H. Streptococcus, this drug began to 

be supplied to physicians to treat patients with life-threatening streptococcal 
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infections. Prontosil can thus be considered the first effective synthesized 

chemotherapeutic agent for treating bacterial infections (Bentley, 2009).  

Prior to Prontosil, researchers and clinicians had very little options to alter the 

course of  infectious diseases; it was considered untenable and ludicrous the 

idea that bacterial infection could be cured through the systematic 

administration of  chemical substances. However, Domagk and his colleagues 

provided the impetus for changing these perceptions. An insightful remark 

made by Alexander Fleming, discoverer of  penicillin, gave an interesting 

perspective of  the importance of  Domagk's discovery: “Without Domagk, 

there would be no sulfonamide! Without sulfonamide, there would be no 

penicillin! And without penicillin, there would be no antibiotics”.  

The capacity to treat a bacterial infection with an effective anti-microbial single 

pure drug provided clinicians with novel and substantial opportunities in 

therapeutics during an era where infectious deaths were common. In spite of  

the fact that Domagk's discovery was less celebrated than many others, it was 

the first step that allowed an increase in new drugs and treatments. His 

contributions represent an inflexion point of  this new age, the Golden Age of  

drug discovery (Grundmann, 2004). 

 

The discovery of  Penicillin: the era of  antibiotics 

The second period begins right before the start of  World War II, in 1935. It 

started with the introduction of  the 3rd generation of  drugs, which includes 

vitamins, hormones, sulfonamides, antibiotics, and their derivatives (Raviña 

Rubira, 2011). One of  the most relevant discoveries of  this period was 

penicillin, by Alexander Fleming, that replaced sulfonamides in phage therapy, 

since it showed better effects and fewer side effects. 

Fleming was a microbiologist at the University of  London. He spent a major 

portion of  his research career studying a variety of  diverse substances that 
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interfered with bacterial growth. In 1922, he isolated lysozyme from the nasal 

passages of  a patient suffering acute rhinitis, and found that it was an 

antibacterial substance that could protect against certain non-pathogenic micro-

organisms from becoming virulent. Fleming also found lysozyme in lacrimal 

fluid and saliva; this motivated him to seek other natural substances with 

antibacterial activity. This interest in natural substances promoted the accidental 

discovery of  penicillin. 

In St. Mary's Hospital, Fleming had a disorganized and untidy laboratory where 

there were contaminated Petri dishes and other detritus for extended periods of  

time. The disorganized state of  his laboratory would have and important 

bearing on the discovery of  penillicin. One day during the summer of  1928, a 

spore from a mold produced in the laboratory, floated into the laboratory and 

settled in a Petri dish impregnated with staphylococci. After several weeks, 

when Fleming was back to the laboratory after holidays, the contaminant mold 

had grown. Fleming inspected the Petri dishes and right in the corner of  one of  

them in which he had grown a strain of  staphylococci, he observed a small 

mold. He found that around the mold, the colonies had almost completely 

disappeared. He was intrigued by this observation, because staphylococci were 

known to be notoriously resistant to lysis. Since the mold could attack pathogen 

micro-organisms, he considered that the contaminant in the dish could have 

clinical utility. So he studied the properties of  the unknown substance. With the 

aid of  C. J. Latouche, a mycologist, he identified the mold as Penicillium rubrum. 

Since mold belonged to the genus Penicillium, the antibacterial substance was 

named penicillin. He found that penicillin killed streptococci, pneumococci, 

gonococci, meningococci, and diphteria bacilli. He also observed that penicillin 

was nontoxic to animals, and it was more effective against gram-positive than 

gram-negative. Fleming also identified some microorganisms insensitive to 

penicillin, like enterocoli, tubercle bacillus influenza and typhoid bacilli. 

Penicillin opened the door to a new era in the treatment of  bacterial infections. 
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After the discovery of  penicillin, and subsequently of  other antibiotics, many 

drug companies established departments of  microbiology and fermentation 

units (Aminov, 2010; Ligon, 2004). 

The discovery of  safe and effective antibiotic therapy was followed by the 

development of  drugs effective in psychic, neurological, and cardiovascular 

disorders. 

 

 Target-based drug discovery: the paradigm change 

After the identification of  alpha- and beta-adrenoceptors by Raymond P. 

Alquist, the first selective beta-blocker was introduced. In 1965, propranolol 

became the first drug with high affinity for beta-receptor and low affinity for 

alpha-receptor. Propranolol was a best-selling drug still used today that boosted 

the acceptance of  ‘magic bullet’ concept and promoted the rational drug 

design.  Beta-blockers are included in the fourth drug generation (1960-1980) 

together with semisynthetic antibiotics, psychopharmacological agents, and 

cardiovascular agents (Quirke, 2006). 

 

Figure 4: A) Propranolol structure (“Propranolol hydrochloride | Sigma –
Aldrich,”, n.d.). 

               B) Propanolol marketed. (“propranolol intravenous,” n.d.) 
 

A                                                                   B 



Introduction 
 

 13 

Finally, the 5th generation includes enzyme inhibitors and biotechnologically 

derived drugs.  In the mid-1980s, technological advances and the acceptance of  

receptor theory enabled a paradigm change in drug discovery. The advent of  

genomic sciences, DNA sequencing, combinatorial chemistry, and high 

throughput screening led ultimately to reverse pharmacology. So, drug 

discovery became a process based on the hypothesis that the modulation of  the 

activity of  a specific protein target will have beneficial therapeutic effects 

(Drews, 2000; Rubin, 2007). 

 

 Early animal experimentation 

Pharmacology has depended largely on experiments in animals (Hajar, 2011). In 

fact, in early times, our ancestors used self-experimentally trial-and-error search 

for finding plants with therapeutic value (Scheindlin, n.d.). These human 

experiments allowed ancient civilizations to learn about hundreds of  

substances. During lots of  centuries, it was not possible to isolate the active 

ingredients of  the plants and botanical substances. Doctors and pharmacists 

did not have the necessary knowledge or technology. So, the cause-and-effect 

relationships of  the administration of  a drug were not measured scientifically. 

Each time that a herbal drug was prescribed was equivalent to an experiment. 

The strength of  prescribed remedies depended on how they were prepared and 

administered, and thus the effectiveness was very variable. Due to it, there were 

discrepancies between doctors about the benefits of  a drug (Altman, 1987; 

Weisse, 2012).  

Pharmacologists soon learned that if  they really wanted to know the effect of  a 

herbal preparation on patient, it had to be tried first on people. So, many of  

them tested their potions on themselves. They could learn that the action of  a 

particular drug could vary depending on how it was administered. For example, 

some drugs are ineffective when they are swallowed because stomach acids 
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inactivate them. Self-experimentation provided crucial insights into the way 

drugs can be used in medicine (Altman, 1987; Weisse, 2012). 

In 1803 Friedrich Serturner, the German pharmacist who isolated the first 

alkaloid from opium, experimented on himself  to produce the drug that even 

nowadays is the principal painkiller, morphine. Few scientists took more risks 

than Serturner. He observed that some samples of  the drug could ease pain, 

while others did not. He hypothesized that opium contained an active principle 

that was responsible for the effect, but only when the concentration was high 

enough. He isolated the narcotic substance using basic techniques of  chemical 

analysis to pharmacology, and named it 'morphine', for Morpheus, the god of  

sleep. Once he had isolated morphine, he began testing it in animals. He put 

crystals of  pure morphine in food for mice and food for some dogs. In both 

cases, it put animals to sleep and ultimately killed them. Undaunted by the 

effects of  the drug, Serturner decided to test a greatly reduced dosage on him 

and 3 friends because, in his own words, experiments on animals do not give exact 

results. Serturned and his friends administered themselves 100mg of  morphine 

in 3 dosages. They began taking the first dosage of  morphine and their faces 

became flushed and felt feverish. After half  hour, they took another dosage, 

feverish increased and they began to feel nauseous and dizzy. Fifteen minutes 

later they took another dosage, and they experienced a sharp pain in stomach 

and felt they were about to faint. They layd down and fell into a dreaming state. 

Serturner and his friends experienced the symptoms of  severe opium poisoning 

for several days (Altman, 1987; Weisse, 2012). 

  
 Toxicology and safety pharmacology in XXth century 
With the appearance of  pharmaceutical industry in the late XIXth century, the 

number of  radical scientist using self-experimentation in their quest for new 

drugs was highly reduced. The use of  humans for testing also decreased, while 
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the use of  animals became more important, especially after some tragic 

incidents caused for not testing previously the safety of  drugs. In 1937, a 

pharmaceutical company created a preparation of  sulfanilamide, using 

diethylene glycol (DEG) as a solvent, called 'Elixir Sulfanilamide'. The 

company's chief  pharmacist was not aware that DEG was poisonous to 

humans, and the product was marketed. It caused the death of  more than a 

hundred people. No animal testing was done. After this incident, in 1938 safety 

testing of  drugs on animals became compulsory before they could be marketed. 

The most frequently animals used in this safety testing and other 

pharmacological studies are mammals. Mice, rats, guinea pigs, rabbits and dogs 

are used depending on the type of  test, since each one has special 

characteristics that make them more or less optimal. But mice are usually 

preferred because of  their small size, ease of  breeding, and short generation 

time (Hajar, 2011). 

Although humans are no longer used as laboratory animals, they are still 

essential in clinical pharmacology. After a new drug compound has gone 

through sufficient preclinical testing to show therapeutic action and safety on 

short-term administration, and has passed the strict review of  the Food and 

Drug Administration (FDA), the compound is administered to a small number 

of  healthy human volunteers under closely controlled and monitored 

conditions in the Phase I of  clinical trials. This phase provides information 

about the dosage and the common side effects likely to be expected (Scheindlin, 

n.d.).  

 

I.2 History of Ethnopharmacology 

Ethnopharmacology can be defined as a multidisciplinary area of  research 

focused on the observation, identification, description, and experimental 
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investigation of  ingredients of  indigenous medicines of  past and present 

cultures. It studies beneficial, toxic or other direct pharmacological effects. 

Ethnopharmacology is an excellent tool for drug discovery and it has 

contributed to the finding of  many important plant-derived drugs (Heinrich et 

al., 2009; Soejarto et al., 2005).  

The term 'Ethnopharmacology' was first used in 1967 as the title of  a book on 

hallucinogens by Efron et al., namely “Ethnopharmacologic Search for 

Psychoactive Drugs”. It was however proposed significantly later than the term 

“ethnobotany”, which appeared in a 1896 study of  human's plant use by 

William Harshberger, an american botanist. Both ethnopharmacology and 

ethnobotany investigate the relationship between humans and plants and all its 

complexity (Heinrich, 2014). 

Despite the fact that the term ethnopharmacology has a rather short history, 

for centuries researchers have been interested in natural medicines. Many 

studies involving the documentation and systemic study of  local and traditional 

uses of  plants have been performed. Explorers, missionaries, merchants, and 

experts in the respective healing traditions describe the uses of  such medicinal 

plants, which form the basis of  ethnopharmacology-based drug development. 

One of  the first ethnopharmacolgical studies is attributed to one of  the 

founding fathers of  pharmacology and physiology, Claude Bernard (1813-

1878). He was interested on the study of  curare and the reasons behind why it 

was non-toxic when it was applied orally. In his own words, Bernard highlighted 

that one of  the facts noted by all those who reported on curare is the lack of  toxicity of  the 

poison in the gastrointestinal tract. The Indians indeed used curare as a poison and as a 

remedy for the stomach. Bernard described also the different pharmacological 

effects depending on the administration: if  curare is applied into a living tissue via an 

arrow or a poisoned instrument, it results in death more quickly if  it gets into the blood 

vessels more rapidly. Therefore death occurs more rapidly if  one uses dissolved curare instead 
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of  the dried toxin (Black, 1999; Paton, 1976). He also demonstrated that animals 

didn't show any nervousness and no sign of  pain. If  the blood flow in the hind 

leg of  a frog is interrupted using a ligature without interrupting the 

innervations and it is poisoned via an injury of  the hind leg, it retains its 

mobility and the animal does not die from curare poisoning. These and 

subsequent studies provided a better understanding of  the pharmacological 

effects of  curare. The main toxin of  curare was isolated from Chondrodendron 

tomentosum and it was identified as D-tubocurarine. In 1947, the structure of  this 

alkaloid was determined and, in 1970, the tubocurarine structure was resolved 

using Nuclear Magnetic Ressonance (NMR). Nowadays, tubocurarine is used 

sporadically in some European countries, for example in France, as a muscle 

relaxant during surgery (Heinrich, 2014). 

We can consider an ethnopharmacological approach any empirical use and 

medical testing of  a plant for novel uses. Another example of  a systemic study 

of  the medical properties of  a herbal medicine, is the study performed by 

William Withering (1741-1799) on foxglove, Digitalis purpurea. Foxglove was 

reportedly used by an English housewife to treat dropsy. Withering used the 

orally transmitted knowledge of  British herbalism to develop a medicine that 

could be used by medical doctors (Heinrich, 2014). After identifying foxglove 

side-effects, he described the best and safest way of  using it. 

Figure 5:  
D-tubocurarine structure (Pubchem, n.d.) 
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The first natural products were identified during the early years of  the XIXth 

century, and they were characterized in subsequent research. Some examples of  

compounds isolated during the early XIXth century are listed below (Heinrich, 

2010): 

 - 1804 – Morphine, from opium poppy (Papaver somniferum L., 

Papaveraceae) was identified by F. W. Sertürner 

 -  1817 – Emetine, from ipecacuanha (Cephaelis ipecacuanba (Brot.) A. 

Rich., Rubiaceae) 

 -   1817 – Strychinine, from Strychnos spp., Loganiaceae. 

 -   1820 – Quinine, from Cinchona spp. (Rubiaceae) 

 -  1821 – Caffeine, from coffe tree (Coffea arabica L., and C. canephora 

Pierre ex. Froehn, Rubiaceae) 

 -   1826 – Coniine, from hemlock (Conium maculatum L., Apiaceae) 

 -   1833 – Atropine, from belladonna (Atropa belladonna L. Solanaceae) 

 -   1838 – Salicin, from willow bark (Salix spp., Salicaceae)  

The above-mentioned studies and discoveries helped to coin the term 

ethnopharmacology, which offered focus and clear concept of  the field of  

Figure 6: 
Digitalis purpurea 
( http://www.floracatalana.net ) 
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research interested in the interface of  traditional and local medical use of  plants 

and their biological characteristics (Heinrich, 2010).  

After the first use of  the term ‘Ethnopharmacology’ in the context of  

hallucinogenic plants, it was occasionally used until 1979 when Laurent Rivier 

and Jan Bruhn founded the Journal of  Ethnopharmacology. This term replaced 

many other terms used previously, like pharmacoethnologia, aboriginal botany 

or Pharmakoëthnologie used already, which was used by Tschirch (1910) in his 

'Handbuch der Pharmakognosie' (Heinrich, 2014). 

With the appearance of  the Journal of  Ethnopharmacology, the scope was 

broadened to a multidisciplinary area of  research concerned with the observation, 

description, and experimental research of  indigenous drugs and their biological activity. 

Currently, many journals are publishing ethnopharmacological research and 

demonstrate the research interest in how humans use plants as medicine. The 

most relevant articles in ethnopharmacology are those that study the biological 

and pharmacological activity of  locally and traditionally used medicinal plants 

and their historical uses (Heinrich, 2014). 

 

 

I.3 Medicinal plants 

Herbs have been throughout the history of  mankind. They have not only 

provided an important source of  food, but also served to cure different 

ailments. Animals have also taken advantage of  herbs in the co-evolution of  

plant-animal relationships. In fact, several animal species began to utilize plants 

rich in bioactive compounds for protection against predators and parasites. So, 

it is arguable that the actual origins of  herbal medicine can be traced back to 

the animal kingdom (Etkin and Elisabetsky, 2009).  
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Herbal medicine, also called traditional or natural medicine, has existed in one 

way or another in different cultures and civilizations, such as Egyptians, 

Western, Chinese, Kampo (Japan), Greco-Arab or Unani/Tibb (south Asia) 

(Dias et al., 2012). The knowledge on traditional medicines has been usually 

acquired through trial and error over the centuries. The reasons why people 

selected certain plants over others are complex, and a variety of  factors, both 

ideational (based on ideas or beliefs) and tangible. The organoleptic properties 

of  some plants were important elements to infer their therapeutic properties, 

information that was usually conveyed by the smell, texture, appearance, and 

even sound of  plants. The meanings of  organoleptics may vary between 

cultures (Leonti, 2002). Thus, red colour in plants may be a symbol for native 

medicines to identify plants that can be used to treat wounds, since red is the 

colour of  blood. However, the red colour of  some of  these plants can also 

mean that their red quinones are hemostatic and antimicrobial, properties that 

have been identified by the users of  these plants through their own experiences 

(Etkin and Elisabetsky, 2009).  

The ideational component of  plants valuation includes the characterization via 

binary opposition, namely, cold-hot (ying-yang) and wet-dry. Cold-hot, for 

example, is a binary characterization which has been used for many different 

culture medicines, from Chinese, to Galenic or Aztecs. In traditional chinese 

medicine, this characterization is very important. It doesn't refer to the 

temperature of  the food but to the effect of  the food on the body (Heinrich et 

al., 2006). Cold foods provide low-energy and help balance hot foods, whereas 

hot foods provide greater energy for activity, are higher in calories, and are used 

to treat pallor and weakness. Those who consume too many hot foods may feel 

overly warm, anxious or constipated, while those who consume too many cold 

foods experience diarrhoea, weakness, and depression. These principles are part 

of  models that emphasize balance and proportion of  medicine intake (Jiang et 

al., 2011). 
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Phytotherapeuticals have also had a close relationship to traditions. In this 

respect, different ethnopharmacological uses of  some traditional medicines can 

be found in different regions. One example is rosemary (Rosmarinus officinalis L. 

Lamiaceae), a native plant of  of  the Mediterranean region used for a variety of  

maladies depending on the culture. In Spain, it is used to treat several forms of  

pain, including rheumatic and traumatic muscular pain and pain in the bones, 

but it is also widely used for gastrointestinal and respiratory disorders. These 

ethnopharmaceutical uses are significantly different from those in Mexico and 

Guatemala, where rosemary was adopted by native Mesoamericans due to 

medical syncretism. Still today in the medical systems of  Mexico and 

Guatemala rosemary is used as a postpartum remedy, to treat respiratory 

problems, and against skin infections (Heinrich et al., 2006). 

 
Traditional Catalan Medicine 

Catalonia is a country located in the Mediterranean area, in the north-eastern 

part of  the Iberian Peninsula, conveying an area of  32,108 km² with a 

population around 7.5 million people. In this region, climate ranges from 

Figure 7: Rosmarinus officinalis ( http://www.floracatalana.net ) 
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mediterranean to nival, and the mean temperature varies from 17º C to 0º C 

due to the altitude range, which goes up to 3,000 metres. One the other hand, 

the altitude ranges and the presence of  an orography compartmentalized in 

mountains and depressions produces an irregular rainfall. It varies from 1,200 

mm/year in some points of  the Pyrenees, to less than 400 mm/year in the west 

of  the central depression. But in general, winter is cool or slightly cold 

depending on the location, spring and autumn are typically the rainiest seasons, 

and summers are hot and dry, except for the Pyrenean valleys, where summer is 

typically stormy (de Bolòs et al., 1997).  

The evolution of  the use of  medicinal plants, like in every place on Earth, 

started with the adaptation of  human to the medium. Catalonia has a set of  

geographic characteristics which favour the presence of  a high climatic diversity 

and, as a consequence, there is also a wide range of  ecosystems and flora, 

which has been the factor that gave rise to a strong ethnobotanical culture. 

Throughout the centuries, the use of  herbal medicines to treat ailments was 

closely accompanied by superstitious, magic and religious practices. One 

example of  these beliefs is the elixir ‘cordial’, a medicinal drink used to treat 

cough and flu. It was composed of  borage flower, mallow, poppy, violet, rose, 

gentian and holy water. Water had to be holy, otherwise the elixir would not 

work (Gausachs, 2008). 

The first important person in Catalan ethnobotany history is documented back 

in the XIIIth century. His name was Arnau de Vilanova, an alchemist, writer, 

philosopher, and theologist. He mixed theology with astrology in his medical 

practices and wrote one of  the first recipe books of  the traditional Catalan 

medicine history, the Antidotarium. Later on in the XVIth century we find 

Francesc Micó, the most important catalan botanist. He created one of  the first 

and most important herbariums and he was the first to work with a scientific 

methodology. Finally, in the XXth century, modern pharmaceutical 
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ethnobotany was established by Dr. Pius Font i Quer, who picked up a great 

deal of  information on popular uses of  medicinal plants in his floristic 

expeditions in the Iberian Peninsule, Balearic Islands and Pyrenees. He 

published Plantas Medicinales, a book to renew and update Materia Medica of  

Dioscorides. Although he only included 678 hispano-lusitans and western 

Mediterraneam herbs, this book became a reference of  medicinal botany and 

ethnobotany (Gausachs, 2008). 

 

 

I.4 Parallelism between plants extracts and 
polypharmacy 

Plants contain hundreds of  different chemical compounds, so the ingestion of  

herbal medicines is equivalent to the ingestion of  dozens of  chemicals 

including fatty acids, sterols, alkaloids, flavonoids, glycosides, saponins and 

others. A plant extract prepared to be used as a herbal medicine is thus, literally, 

a chemical cocktail prepared to interact with almost everything. Moreover, the 

number of  compounds can be even increased when traditional medicines 

combine multiple herbs, some formulations containing more than 10 different 

plants. In spite of  it, herbal medicines are in general associated to less side 

effects than those of  modern drugs. It is accepted that, even if  a specific 

compound is identified and its action understood, it is the effect of  the other 

supporting or modifying compounds present in the whole plant which 

complement the therapeutic action and minimize side effects and adverse 

reactions in herbal reactions (Firenzuoli and Gori, 2007; Vickers et al., 2001). 

In this respect, the use of  herbal medicines can be compared with the common 

practice of  polypharmacy, that is, the use of  more than one drug in medicine. 

Polypharmacy is quite common in the elderly population, with many patients 
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taking four or more medications. It is estimated that affects about 40% of  

adults over the age of  65. Some of  the concerns of  polypharmacy are the 

possibility of  drug-drug interactions and thus, the increase in adverse reactions. 

It is often associated with a decreased quality of  life, decreased mobility, and 

cognition (Fulton and Riley Allen, 2005). 

Herbalists maintain that side effects and adverse reactions common in 

polypharmacy are due to the single element philosophy of  modern medicine. 

Oppositely to herbal medicine, most of  drugs used in modern medicine contain 

a single active ingredient. It often implies that higher concentrations of  isolated 

chemical compounds may be ingested, which may increase the therapeutic 

action, and subsequently side effects, that can be even increased in 

combinations with other drugs (Wachtel-Galor and Benzie, 2011).  

It is frequently believed that herbal medicines are free of  toxins or adverse 

effects, since they are originated from nature. But, like it may also happen in 

polypharmacy, the high number of  active ingredients present in herbal 

medicines will increase the possibilities of  interactions between them, which 

may result in unexpected and undesired side effects. To ensure the safe use of  

herbal medicine products, they should be managed as drugs. It should be 

considered that, even though they can treat/cure a disease or maintain health, 

they may also cause some adverse reactions. And, as drugs, to avoid these 

adverse effects, it is important to understand how herbal medicines act and  

what is the most appropriate dosage and formulation for treating the disease 

(Wachtel-Galor and Benzie, 2011; Zhang et al., 2015). 
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I.5 Target deconvolution 

When chemical analysis became available in the early XIXth century, chemists 

began making their own version of  plant compounds and the use of  herbal 

medicines declined in favour of  drugs. However, over the last 40 years the 

interest in medicinal herbs resurged. A rapid and continued growth of  herbal 

market stimulated the interest in the scientific understanding of  how herbs 

work and their efficacy. As a consequence, more and better analytical 

techniques have been developed and used to infer the mechanism of  action of  

herbal medicines (Wills et al., 2000).  

Until the last quarter of  the XXth century, basically only experimental methods 

were used to study the therapeutic effects of  medicinal plants and natural 

Graphic 1: Pubmed publications showing the increased scientific interest 
in discovery of  the mode of  action of  herbal medicines. Each column is 
the quantity of  articles with ‘herbal medicine mechanism’ in title or 
abstract 
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products and to validate the hypotheses on their mechanism of  action.  

For instance, in 1988, King et al. investigated the effects of  tetrandine, a bis-

benzylisoquinoline alkaloid from Radix stephania tetrandrae and present also in 

other Chinese and Japanese herbs, which has been traditionally used to treat 

hypertension. Tetrandrine was a putative L-type Ca2+ entry blocker whose 

mechanism of  action was unknown (King et al., 1988). L-type Ca+ channels 

include three separate binding sites, those for dihydropyridines, 

benzothiazepines and phenyl alkylamines (Catterall et al., n.d.). To investigate 

the tetrandrine mechanism, King et al. characterized the effects of  tetrandrine 

on binding to the three chemical classes of  L-type Ca2+ entry blockers. Their 

results suggested that tetrandrine interacts directly at the benzothiazepine-

binding site of  the Ca+ entry blocker receptor complex and allosterically 

modulates ligand binding at other receptors in this complex. In a study 

performed later by Liu et al on the same alkaloid, it was shown that tetrandrine 

blocked also T-type Ca+ channel. All these findings explained the therapeutic 

effectiveness of  this alkaloid as vasodilatory agent, thus confirming its 

appropriate use to reduce blood pressure (Liu et al., 1992). 

 

 

 

Figure 8 (left): Radix stephania tetrandrae (macognosy, n.d.) 
Figure 9 (right): tetrandrine structure (King et al., 1988) 
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Traditional medicine current state 

According to the World Health Organization (WHO), about three quarters of  

the world population use traditional remedies (mainly herbs) for the health care 

(Wang et al., 2012). In the same way, research on the identification of  effective 

ingredients of  medicinal plants and functioning targets was intensified during 

the last years, and it keeps on increasing at present. A great amount of  new data 

about the composition of  herbal medicines appeared, and several databases 

about medicinal plants and their ingredients have been established, particularly 

databases about traditional Chinese medicine, such as the Traditional Chinese 

Medicine Database (TCMID).  

Since botanical mixtures contain hundreds of  potentially bioactive natural 

products, in many cases it is not feasible to elucidate their mode of  action using 

conventional biochemical technologies. The recent construction of  databases 

with information on herbs, their chemical ingredients, and their therapeutic use 

opens an avenue for the application of  computational methodologies in herbal 

medicine research. In this respect, computational methods offer a cost-effective 

and efficient approach to predict the mode of  action of  traditional medicines 

(Gertsch, 2011).  

Rollinger et al. published one of  the firsts ground-breaking examples of  

computational methods applied to investigating the potential mode of  action 

of  a plant. They used a computational approach to in silico target fishing to 

suggest the potential targets of  16 secondary metabolites identified from the 

aerial parts of  Ruta graveolens (rue). Rue is an important medicinal plant native to 

the Mediterranean region and the Balkans. It has been used since ancient times 

to prevent contagion, to repel insects, and to heal their bites. Based on the fact 

that previous in vitro screening studies confirmed a significant 

acetylcholinesterase inhibiting activity for some extracts of  Rutae herba, 

Rollinger et al. focused their study on three biological proteins, 
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Acetylcholinesterase, Human rhinovirus coat protein, and Cannabinoid 

receptor type-2. To predict ligand-target interactions, they generated 3-D 

pharmacophore models and performed a parallel screening against the putative 

biological targets. The major virtual hits that were obtained in that way showed 

a relatively good predictability and were corroborated in biological assays. In 

their results, arborinine was the compound with higher inhibitory activity for 

Acetylcholinesterase and Human rhinovirus coat protein, whereas rutamarin 

was confirmed as and active ligand of  the Cannabinoid receptor type-2 

(Rollinger et al., 2009).   

 

 

As shown above, traditional medicines may not only work through the 

inhibition of  a particular protein target, but through an optimal balance of  

interactions with multiple protein targets within the same network. Thus, the 

ultimate pharmacological effect could be the result of  is now referred to as 

network pharmacology or biochemical synergism. The term network 

Figure 10 (left):  
Ruta graveolens (Freckman, W. F. – 
https://gobotany.newenglandwild.org/spec
ies/ruta/graveolents/) 
Figure 11 (up):  
1-Rutamarin structure. 2-Arborinine 
structure. (Rollinger et al., 2009).   
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pharmacology was coined by Andrew L. Hopkins (2007) to emphasize that 

there are drug-target networks rather than single drug targets. On the other 

hand, Wagner stated in 2011 that in botanical drugs, multitarget effects 

predominate over other synergistic mechanisms (Wagner, 2011). Synergism can 

be produced by different molecular machinery, ligand interactions in one single 

protein or at the level of  downstream effects. The fact that natural products 

may interact with multiple targets (polypharmacology), implies that Paul 

Ehrlich's concept of  'magic bullet' (single drug target) applied in drug discovery 

and pharmacology may be changed to 'magic shotgun' (multiple drug targets) 

(Strebhardt and Ullrich, 2008). 

Polypharmacology is one of  the major challenges in drug discovery, its rational 

design is complex, and new methods are needed to validate target combinations 

and optimize multiple structure-activity relationships while maintaining drug-

like properties. The development of  drug combinations is difficult, however 

herbal medicines can offer good starting points. Taking apart and reassembling 

all their bioactive compounds, it would be possible to find which natural 

products contribute to the pharmacodynamics of  a given pharmacological 

effect, directly or indirectly (Gertsch, 2011).  

During the past decade, there has been an important and fast development of  

'omics' technologies and systems biology. Systems biology depicts the complex 

interactions at different levels as various networks and elucidates the underlying 

mechanisms of  biological systems by studying those networks. This has 

facilitated a systems-level understanding of  biological process concerning the 

interactions of  genes, proteins and environmental factors (Ma’ayan, 2011). 

Thus, the application of  network-based system biology to study the 

pharmacology of  traditional medicines opens the possibility to understand the 

targets of  bioactive ingredients and their interactions in the molecular network 

(Pelkonen et al., 2012).  
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The creation of  drug-target networks that reflect the pharmacology of  

traditional medicines requires the previous identification of  active compounds 

from botanical medicines and the targets of  each compound. Some of  the most 

conventional methods to identify bioactive compounds are the direct extraction 

of  components from the plant, their pharmacological evaluation, and 

biochromatography, were active components are identified through screening 

(Wang et al., 2000). On the other hand, for the identification of  targeted 

proteins of  these compounds, with the birth of  databases providing 

information about herbal compounds, it is now possible to apply data mining 

of  bioactive compounds and in silico screening approaches to perform rapid and 

low-cost predictions of  their targets (Zhao et al., 2010). 

One of  the first studies where systems pharmacology was applied to elucidate 

the mechanism of  action of  a traditional herb was performed by Zhao et al. In 

this investigation, they tried to shed light on the antidepressant mechanism of  

action of  Hypericum perforatum. First, they collected the main active compounds 

of  rue, hyperforin, hypericin, pseudohypericin, amentoflavone and several 

flavonoids. Through comprehensive literature search, they collected the 

neurotransmitter receptors, transporter proteins, and ion channels on which the 

St. John’s wort active compounds show effects. Mapping these proteins onto 

KEGG pathways, they observed that active compounds acted on the system of  

neuroactive ligand-receptor interaction. So, the actions of  multiple compounds 

of  Hypericum perforatum resulted in an additive or synergistic antidepressant 

efficacy, producing the same antidepressant action as normal monotherapy but 

at much lower doses for separate compounds (Zhao et al., 2010).  
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I.6 Polypharmacology 

Not so long ago, the paradigm in drug discovery was to pursue “one drug for 

one target”. That implied that the ultimate objective was to obtain potent and 

selective small-molecule candidates against individual protein targets. 

Unfortunately, most of  those alleged “selective candidates” were not 

thoroughly screened against a large panel of  proteins. When several public and 

private initiatives collected and stored drug-target interaction data, it was 

observed that many of  these selective compounds were in fact interacting with 

multiple targets and the percepcion of  drug selectivity changed (Mestres et al., 

2008; Nat Biotechnol). The ability of  small molecules to interact with multiple 

targets was defined as “polypharmacology”. 

The term polypharmacoly was used for first time in 1971 by Domino as a 

synonym of  polypharmacy. However, in 1997, Kenny et al used the term 

polypharmacology to refer to the lack of  a1-subtype adrenoceptor selectivity of  

the drug indoramin, that was known at the time to interact with other receptors, 

such as serotonin and histamine, leading to sedation as a side effect (Jalencas 

and Mestres, 2013). The number of  articles and reviews published in the past 

10 years containing the term polypharmacology in title, abstract or keywords 

(according to Scopus search results) has constantly increased. Out of  488 

papers, 265 have been published in the last 2 years.  

Now, it is widely recognised that selective drugs are more the exception rather 

than the rule and that most of  therapeutically effective molecules tend interact 

with multiple proteins. Despite they were not designed on purpose, we can find 

numerous drugs that are known to have multi-targeting activities. For example, 

Aspirin, which is often used as an analgesic to relieve minor pains or as an 

antipyretic to reduce fever, also acts as an anti-inflammatory medication to treat 
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rheumatoid arthritis, pericarditis and kawasaki diseases (Reddy and Zhang, 

2013).  

On the other hand, there are some complex pathologies that have evidenced to 

be often polygenic in nature and tend to involve the deregulation of  a complex 

and extended network of  proteins. For their treatment, pharmacological 

interventions based on a single target are unlikely to be successful. The inherent 

biological networks might impede the efforts of  shutting down a cellular 

pathway if  a single switch is turned off, so the modulation of  an optimal array 

of  targets may provide a more efficient strategy (Anighoro et al., 2014). Some 

of  these polygenic disorders beneficed by polypharmacology are psychiatric 

diseases and cancer (Peters, 2013; Roth et al., 2004). For example, all marketed 

antipsychotics are polypharmacological by nature. Chlorpromazine, the oldest 

known typical antipsychotic, which was originally developed more than 50 years 

as a sedative histamine receptor antagonist, was subsequently discovered to be a 

high-affinity dopamine antagonist. The examination of  various public 

databases, including Psychoactive Drug Screening Program (PDSP) database, 

GLIDA, DrugBank, and PubChem showed that chlorpromazine interacts with 

numerous molecular targets. The list of  targeted protein in PDSP database 

includes 29 different receptors: 9 different 5-HT receptors, 6 alpha-adrenergic 

receptors, 5 muscarinic receptors, 5 dopamine receptors, 3 histamine receptors 

and the imidazoline l1 receptor. In the case of  PubChem, 20 different screening 

assays were found where chlorpromazine was considered to be an 'active' 

compound. The activity as D2 antagonism is considered to be the core of  

chlorpromazine effectiveness as antipsychotic, but some of  these other 

mentioned activities may contribute to its effectiveness. On the other hand, 

some of  these interactions could also be responsible for some of  the side 

effects linked to chlorpromazine, such as hypotension, drowsiness or weight 

gain (Peters, 2012). When we are talking about a multitarget (promiscuous) drug 

with a wide and usually unpredictable spectrum of  biological activities it could 
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eventually lead to adverse reactions. The interaction with non-therapeutic 

targets can cause severe side effects (Anighoro et al., 2014).   

 

I.7 Side effects/Toxicity 

Toxicity can be defined as the degree to which a substance can damage the 

organism. In pharmacology, it used to be consequence of  adverse drug 

reactions, defined as the response to a drug that is unintentionally noxious. It 

may occur at therapeutical doses normally used for the treatment, prophylaxis, 

or diagnoses of  disease, but it is more often encountered at higher doses due to 

abuse, medicational error and unintended overdose. On the other hand, when 

adverse reactions are 'minor' and predictable, normally the term side effect is 

usually used as synonym for toxicity. Side effects are any effect caused by a drug 

other than the intended therapeutic effect, whether beneficial, neutral or 

harmful. It may occur as part of  a pharmacological action of  the drug or may 

unpredicable in its occurrence (Flora et al., 2012). 

In spite of  the fact that adverse reactions are usually associated to drugs, 

traditional medicines can also be responsible for them. There are many side 

effects that have been reported upon herb ingestion. One example is a case that 

describes 105 patients in Belgium who had been taking a chinese herbal product 

for weight and developed nephropathy, Aristolochia fangchi. Among them, 18 

patients were found to have urothelial carcinoma, which was shown to be 

related to the formation of  DNA adducts from the aristolochic acid in this 

herb. On the other hand, some other herb side effects may be caused by the 

excessive biological effects of  their active compounds. For instance, ephedra, a 

herb widely used in traditional medicine for treating asthma, bronchitis and 

fever. Ephedra was subjected to an analysis and it was found that it was 40 

times more likely to lead to a report of  a side-effect, compared to other 
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commonly used herbal products. It had a great risk to provoke nausea, 

vomiting, psychiatric symptoms and palpitations. Ephedra was banned from 

FDA in 90s (Bent, 2008). 

Many other factors may actually be affecting the occurrence of  adverse drug 

reactions. We could divide them in three types related to patient, social, and 

drug factors.  

 

 Patient- and social-related toxicity factors 

Some of  the principal patient-related factors are associated with age, gender, 

body weight and fat distribution. 

Age is a very important factor since elderly people are at high risk of  

developing them for several reasons. They are likely to have many health 

problems and thus take several prescriptions and over-the-counter drugs. 

Moreover, as people get older the liver loses the ability to metabolize drugs and 

kidneys are less able to excrete drugs into the urine. On the other hand, in aged 

people the amount of  water decreases and the amount of  fat tissue relative to 

water increase. Thus, drugs that dissolve in water reach higher concentrations, 

while drugs that dissolve in fat are more accumulated in fat because there is 

more fat tissue to store them. As a consequence many drugs tend to stay in an 

older person's body much longer than they would in a younger person's body, 

prolonging the drug effects and increasing the risk of  side effects (Malinovska 

et al., 2015). 

The biological differences between males and females may also affect the action 

of  drugs. In comparison to men, women have in general lower body weight and 

organ size, more body fat, different gastric motility and lower glomelurar 

filtration rate. All these differences may alter the pharmacokinetics and 

pharmacodynamics of  drugs including absorption, distribution, metabolism 

and elimination. For example, chlorpromazine and fluspirilene seem to be more 
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effective in women than in men for the same dosage in plasma concentration 

(Anderson, 2008).  

Body weight and fat distribution can also be a factor responsible of  adverse 

drug reactions. Once absorbed, some water-soluble drugs tend to stay within 

the blood and the fluid that surrounds cells, while some fat-soluble drugs tend 

to concentrate in fatty tissues; other drugs concentrate mainly in one small part 

of  the body. These accumulated drugs are slowly released into the bloodstream, 

keeping blood levels of  the drug from decreasing rapidly and thereby 

prolonging the effect. The distribution of  a given drug may vary from person 

to person, and for example obese people may store large amounts of  fat-

soluble drugs, whereas very thin people may store relatively little. In the case of  

older people, even when thin, they may store large amounts of  fat-soluble 

drugs because the proportion of  body fat increases with ageing (Alomar, 2014). 

On the other hand, among the social factors we can include alcoholism, 

drinking, smoking, race and ethnicity factors. One of  the effects of  alcohol 

consumption is the activation of  enzymes that transform some drugs into toxic 

chemicals that can damage the liver and other body organs. Alcohol can also 

magnify the inhibitory effects of  sedative and narcotics in the brain (Lewis et 

al., 2015). Smoking affects liver enzymes, acting as a potent inducer of  hepatic 

cytochrome P450 (CYP) 1A1, 1A2 and 2E1. The hepatic CYP1A2 enzyme 

metabolizes many drugs, resulting in the decrease of  their pharmacological 

effects (Faber and Fuhr, 2004). Finally, ethnic factors are linked to genetic 

factors, which in turn account for some of  the inter-individual differences due 

to polymorphisms in genes encoding drug metabolising enzymes, drug 

transporters, and receptors. For instance, Morimoto et al observed that African 

americans were found to be more susceptible to developing angiotensin-

converting enzyme (ACE)-related angioedema than other ethnic groups 

(Morimoto et al., 2004). 
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Diseases may also influence susceptibility to adverse drug reactions. Multiple 

co-occurring diseases make even cause that drugs that are helpful in one disease 

can be harmful in another. For example, some beta-blockers taken for heart 

disease or high blood pressure can worsen asthma and provoke problems in 

people with diabetes since these drugs raise blood sugar levels (Alomar, 2014).  

  

Drug-related factors: Polypharmacy and polypharmacology 

Finally, adverse drug reactions can be induced also by drug-related factors, 

which can be divided into drug dosage and frequency, polypharmacy and 

polypharmacology. These reactions can also be classified according to the 

required doses for obtaining the therapeutic effect, doses above the maximum 

dose required for a therapeutic effect (toxic effects), doses within the 

therapeutic range (collateral effects), and effects that occur at doses below the 

therapeutic range in susceptible patients (hypersusceptibility) (Ferner and Butt, 

2012).  

Polypharmacy and polypharmacology are also risk factors for adverse effects. 

In the first case, they may occur due to drug interaction, synergism, duplication, 

additive effect, discontinuation of  therapy, changing the dose to save money, 

skipping some medication and physiological antagonism. In the second, they 

are related to the capacity of  a drug to modulate multiple targets. The 

interactions of  drugs with unintended targets can be the cause of  several 

adverse effects.  

Some adverse effects can be extremely severe, such as the secondary effects 

caused by antipsychotics. Off-target activity against histamine H1, serotonin 5-

HT2C, and the muscarinic receptors, are assumed to be responsible for 

metabolic adverse effects, such as weight gain, hyperprolactinaemia, and 

diabetes (Roth et al., 2004). 
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 Prevention and prediction 

Adverse reactions are one of  the leading causes of  morbidity and mortality in 

healthcare. The American Society of  Health System Pharmacists found that 

85% of  patients consulted in a survey expressed concerns about at least one 

drug-related issue. Adverse drug reactions are a significant public health 

problem in the world and therefore, it is important to prevent them. Prevention 

strategies should target the prescribing and monitoring stages of  

pharmaceutical care. Moreover, understanding the activity of  drugs and adverse 

reactions may also help preventing them. In order to understand adverse drug 

reactions and being able to predict them, systems biology approaches can 

become very useful. The ever increasing amount of  data resources in genomics, 

transcriptomics, metabolomics, proteomics and their relationship to human 

physiology are paramount to create a new generation of  predictive systems. 

Nowadays some approaches to predict toxicity are already being used in early 

drug discovery to select compounds to move forward in development and 

reduce pharmaceutical research and development costs. These methods use vast 

sets of  experimental data from databases that cover information such as 

metabolic pathways, protein interactions, metabolomics, signal transduction and 

transcriptional regulation. Network visualization methods can also be applied in 

drug mapping to explore associative networks of  drugs, pathways and diseases 

(Shoshi et al., 2015).  

For instance, Xie et al. (2009) introduced a computational strategy for the 

systematic identification of  protein-drug interactions networks in order to 

elucidate the molecular mechanisms associated with the adverse effects of  

Cholesteryl Ester Transfer Protein (CETP) inhibitors. These inhibitors are used 

for the treatment of  cardiovascular diseases. One of  these inhibitors is 

trocetrapib, which has deadly off-target effects and was withdrawn from phase 

III clinical trials. They predicted the off-targets of  Torcetrapid and other CETP 
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inhibitors and mapped them to biological pathways. The predicted protein-

ligand network obtained was consistent with experimental results, revealing that 

side effects are modulated through the combinatorial control of  multiple 

interconnected pathways (Xie et al., 2009).  

 

I.8 Exogenous compounds on human 

metabolism 

Biological networks are emerging as a analyses and interpretative tools for a 

better understanding of  both drugs therapeutic activity and associated side 

effects. They may include all types of  omics data. For example, metabolic 

networks include reactions occuring in an organism and their metabolites. They 

help in the identification of  essential proteins and have been applied in 

pharmacology and toxicology (Csermely et al., 2013).  

But drugs (including traditional medicines) are not the unique chemicals 

targeting proteins in the biological system. Organisms need food to keep on 

producing energy for survival and, through nutrition, many other exogenous 

compounds are introduced in our body. Food supply includes many different 

molecules that can be classified as nutrients and non-nutrients. Non-nutrients 

are outweighting the number of  nutrients. Some of  the non-essential nutrients 

found in vegetables and traditional herbal medicines are secondary metabolites 

accumulated by plants for defense, reproduction, and so for. among them we 

find, for example, flavones, with metabolic effects on heart disease, or stanins, 

that are affecting cholesterol metabolism. In addition to those non-nutrients 

found in food supplies, some others are man made, intentionally or accidentally, 

and all of  them are factored into the metabolome. To understand the effects of  

nutrition on human metabolic regulation, metabolomics is currently being 

applied also to nutritional research. 
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Most of  these exogenous compounds (drugs, natural products, nutrients and 

non-nutrients) are transiently coexisting with endogenous metabolites, at least 

in biofluids, so they may be critically important in metabolic studies. In the 

same way that exogenous metabolites may have some metabolic effect, 

endogenous metabolites may also exert some effect on these exogenous 

metabolites activity if  they are, for example, interacting with the same target. 

 

I.9 Metabolomics 

Understanding cell metabolism is not only important for drug discovery and 

clinical treatment of  metabolic disorders, it is also essential in other fields, such 

as metabolic engineering and synthetic biology. As a consequence, in recent 

years the importance of  metabolomics research has been growing fast (Kotera 

et al., 2014). 

Metabolomics is the scientific study of  chemical processes involving 

metabolites, the intermediates and products of  metabolism. Usually, the term 

“metabolite” is restricted to small molecules. They are involved in several 

functions, including structure, signalling, stimulatory and inhibitory effects on 

enzymes, catalytic activity, defence, and interactions with other organisms. 

Metabolomics allows the construction of  metabolic networks and the 

conversion of  biological knowledge into mathematical format and the 

subsequent computation of  physiological states to address a variety of  scientific 

applied questions. 

The knowledge about metabolism has proven useful to investigate biomarkers 

of  diseases such as cancer (Koulman et al., 2009), quality of  foods (Fitzgerald 

et al., 2009) and assessment of  environmental pollution (Krauss et al., 2010) 
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 Metabolomics databases 

Currently, we can find several sources for metabolic data, such as the Kyoto 

Encyclopedia of  Genes and Genomes (KEGG) and MetaCyc. KEGG is a 

knowledge base for systematic analysis of  gene functions in terms of  networks 

of  genes and molecules. Its major component is the PATHWAY database, that 

consists of  graphical diagrams of  biochemical pathways including most of  

known metabolic pathways and some of  the known regulatory pathways. It also 

contains information about orthologous and paralog gene groups among 

different organisms. It has been developed since 1995 and, in recent years, their 

efforts have been focused on capturing and representing knowledge on diseases 

as a perturbed state of  the molecular network and drugs as perturbants to the 

molecular network (Kanehisa and Goto, 2000; Ogata et al., 1999). On the other 

hand, another important database is MetaCyc that contains a collection of  

metabolic pathways experimentally determined. With more than 2,100 pathways 

derived from >37,000 publications, it is the largest collection of  metabolic 

pathways available. Pathway reactions are linked to one or more well-

characterized enzymes, and both pathways and enzymes are annotated with 

reviews, evidences, codes, and literature citations. It contains the metabolic 

pathways for 2,205 organisms. We can find species belonging to the six 

kingdoms. The species with the highest number of  experimentally elucidated 

pathways in MetaCyc are Arabidopsis thaliana (328 pathways), Escherichia coli 

(312), Homo sapiens (229), and Saccharomyces cerevisiae (172).  

But still a large number of  metabolites and metabolic pathways remain 

unknown, and many reaction steps are still missing, even in well-known 

pathways. For example, it is estimated that at least 1,060,000 metabolites are 

produced within plants, for which most chemical transformations remain to be 

identified. The elucidation of  potential metabolite pathways in plants would 

provide a significant benefit for environmental, agricultural, pharmaceutical and 
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public health matters. But not only in plants most of  their metabolomes are 

unknown. Those for many other organisms are completely unknown as well. 

Since experimental determination of  metabolic pathways is difficult, expensive, 

and time consuming, even well-investigated species, like Homo sapiens, still have 

unknown or poorly known metabolic pathways. 

 

 

 Metabolome prediction 

For metabolite detection, Mass Spectrometry (MS) is one of  the most popular 

methods for its advantageous sensitivity and throughput factors. It generates a 

vast amount of  data. However, the identification of  the metabolites is a 

bottleneck, causing the finalization of  the data analysis to take quite a 

substantial amount of  time. As result of  this long analysis period, some 

experimental data may be lost or become difficult to trace (Ara et al., 2015). 

Thus, there is a strong need to develop in silico methods to infer unknown but 

Graphic 2: Evolution of  the number of  metabolites available for each 
organism in Metacyc Database. 
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possible metabolites and metabolic pathways. Automatic pathway 

reconstruction on a metabolome scale is a challenging issue in current 

computational biology (Kotera et al., 2014, 2013).  

A variety of  computational methods for reconstructing metabolic pathways 

have been developed. We can divide them in two categories: the traditional in 

silico methods for metabolic pathway reconstruction from a reference pathway, 

and the 'de novo' reconstruction methods which have been developed to 

elucidate novel reactions based on metabolite chemical structures, known 

enzymatic reactions, and possible chemical transformations.  

The most common in silico methods are those developed from a “reference-based 

framework”. In this framework, many known pathways are collected from 

literature to construct a combined pathway, named the 'reference pathway', that 

considers only chemical transformation without distinguishing the difference 

between organisms. For an organism of  interest, enzyme genes are assigned to 

appropriate positions in predefined reference pathways based on orthologous 

information about genes across different species. This methodology is limited 

for the available genome information of  organisms and the set of  genes, 

enzymes, and metabolites associated to pathway information. Another common 

approach is to consider chemical structures to identify pathways that conserve 

atoms from the original to the target compound in predefined pathway 

diagrams. Since these approaches reconstruct metabolic pathways from 

predefined pathways, they are unable to identify previously unknown pathways. 

Conversely, de novo pathway metabolome reconstruction approaches have been 

developed to elucidate novel reactions based on metabolite chemical structures, 

known enzymatic reactions, and possible chemical transformations. They can 

be categorized into “compound-filling framework” and “reaction-filling framework”. 

The former predicts pathways by hypothesizing intermediate compounds 

necessary between the original and target compounds, whereas the latter 
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predicts pathways by filling in reactions among many existing compounds at a 

time. These methods are computationally very expensive, so large-scale 

prediction is not yet computationally feasible because of  prohibitive 

computational burden (Kotera et al., 2014, 2013). 

Many groups have developed reference-based techniques for predicting 

metabolic pathways of  an organism from its genome and producing integrated 

pathway-genome databases that model the resulting predictions. Some of  them 

are, for example, the previously mentioned KEGG project and BioCyc. KEGG 

project used this methodology to reconstruct portions of  the metabolic 

pathways by using the reference biochemical knowledge (Bono et al., 1998). On 

the other hand, BioCyc offers a component called PathoLogic* that uses the 

MetaCyc database to predict the metabolic-pathway complement of  an 

organisms from its genome (Karp et al., 1999). It contains a collection of  more 

than 3,000 organism specific Pathway/Genome Databases (PGDB), each 

containing the genome and predicted metabolic network including metabolites, 

enzymes, reactions, metabolic pathways, predicted operons, transport systems, 

and pathway-hole fillers (Caspi et al., 2014). 
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Part II: Objectives 
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This PhD thesis started with the aim of studying the activity of exogenous 

(especially from herbal medicines) and endogenous chemicals on biological 

systems and to understand their effects. We started studying the mechanisms of 

action of medicinal plants from traditional Catalan medicine and followed with 

metabolites. The main objectives of this Thesis can be summarized as follows: 

i) To elucidate the mode of action of traditional medicines 

ii) To compare the polypharmacology between different bioactive 

compounds, including drugs, synthetic chemical libraries and 

natural products. 

iii) To study the completeness of metabolic databases 

iv) To develop a reconstruction protocol of organism metabolomes 

from their genome and validate it on Mycoplasma pneumoniae 

v) To explore the interference between endogenous human 

metabolites and exgoneous compounds (drugs and food 

ingredients) 

The first objective was accomplished on Chapter III.2, where virtual profiling 

methodology allowed studying the activity of herbal compounds and the 

identification of those responsible of therapeutic effects. Documentation 

accumulated during investigation on herbal medicines allowed the elaboration 

of a review on the topic in Chapter III.1. In Chapter III.3 we compared the 

polypharmacology of several bioactive compounds, which was followed by an 

analysis of the data included in metabolic databases, HMDB, KEGG and 

BioCyc. The data comparison between these databases let to achieve the third 

objective. Following with metabolic data completeness, it was elaborated a 

genome-scale metabolome reconstruction framework able to predict organism 

metabolomes from genomic data. It was applied in Chapter III.4 on Mycoplasma 

pneumoniae and other common species from several kingdoms in Chapter III.5, 
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including Escherichia coli, Saccharomyces cerevisiae, Homo sapiens and Arabidopsis 

thaliana. Finally, in Chapter III.6 and III.7, with the knowledge about 

metabolome, we studied  its interference on exogenous compounds, including 

drugs and food intake compounds. We infer on metabolites relation with side-

effects and drugs efficacy, and the impact of diet on human metabolome.



 

 49 

Part III: Result
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Abstract 

The ancient tradition of  taking parts of  a plant or preparing plant extracts for 

treating certain discomforts and maladies has long been lacking a scientific 

rationale to support its preparation and still widespread use in several parts of  

the world. This work presents a systems approach to generate mechanistic 

hypotheses for some of  the therapeutic uses of  remedial herbs. Both 

retrospective confirmation and prospective validation of  some of  the 

mechanistic hypotheses generated provide proof-of-principle for the validity of  

the approach. 
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1. Introduction 

Plant leaves, roots, barks, and extracts have been used since the dawn of  human 

history to treat various discomforts and maladies. The healing properties of  

remedial herbs were most likely identified through a long and serendipitous 

learning process that once acquired was carefully passed through generations. 

Still today, traditional medicines represent a well-established therapeutic 

alternative to synthetic drugs in vast parts of  the world (Tao et al., 2014). 

However, there is still a profound lack of  understanding about the concrete 

chemical ingredient(s) and the exact mechanism(s) of  action by which 

medicinal plants exert their therapeutic effect. 

In recent years, global efforts to generate, collect, store, and make publicly 

available data connecting plants with their chemical ingredients, interacting 

proteins, and disease indications have set the ground to develop novel systems 

approaches to unveiling the mode of  action of  remedial herbs (Liu et al., 2013). 

This is schematically illustrated in Fig. 1. Most current ethnomedicinal studies 

focus on which parts of  the plant are used to treat common ailments 

(Chassagne et al., 2016). Initiatives to identify and isolate some of  the chemical 

structures present in those parts of  therapeutic interest are still expensive and 

inefficient. This notwithstanding, it is estimated that approximately 50,000 

endogenous plant metabolites have been already identified (Hounsome et al, 

2008).  

Affinity data between plant metabolites and human proteins are scarce to find 

in public repositories (Bolton et al., 2008; Gaulton et al., 2012). Therefore, most 

efforts to close the gap between therapeutic use and mode action in remedial 

herbs are needed in this direction (represented as a dotted line in Fig. 1). One 

option is to process large libraries of  isolated small molecules from plants 

through in vitro high-throughput screening assays to identify affinities for 

therapeutically relevant proteins. This is a highly tedious and expensive 
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endeavour if  one wants to be comprehensive. Alternatively, modern state-of-

the-art computational methods to predict the affinity of  small molecules across 

thousands of  proteins can be applied to prioritize any further in vitro testing of  

selected small molecules on particular proteins (Vidal et al., 2010; Garcia-Serna 

et al., 2015).  

The last step involves connecting those confirmed interacting proteins with the 

actual disease for which the plant is prescribed. This task is now facilitated by 

the recent construction of  databases connecting human genes with diseases 

(Piñero et al., 2015). The aim of  this work is to collect and integrate all pieces 

of  data and processes that allow for automatically generate mechanistic 

hypotheses for the known therapeutic uses of  plants. Details on how data was 

collected and stored into an integrated database are given next followed by 

some examples of  retrospective confirmation, as well as prospective validation, 

that serve as proof  of  concept for the entire approach. 

 

 

2. Materials and Methods 

2.1. Linking plants to diseases 

A very first version of  the database was created containing the therapeutic uses 

of  plants used mainly in traditional Catalan medicine (Gausachs, 2007). Plants 

were stored using their scientific name in Latin, whereas therapeutic uses were 

mapped to their corresponding disease identifier in ICD-10 (International 

Classification of  Diseases Version 10). This initial database was complemented 

with additional therapeutic uses found for those plants in other public sources 

(Bonet et al., 1999; Raja et al., 1997; Rigat et al., 2007). Data from the different 

sources was integrated using Latin names for plants and ICD-10 identifiers for 

diseases from 18 categories. In total, 372 medicinal plants associated with 187 
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therapeutic uses (diseases) were collected at this stage. 

 

2.2. Linking plants to molecules 

The chemical composition of  every single plant in the database was extracted 

from three different sources, namely, Dr Duke Phytochemical and 

Ethnobotanical Database (Duke, 2016), the KNApSAcK database (Nakamura 

et al., 2014) and Gausachs’ work on Catalan remedial herbs (Gausachs, 2007). 

Among those, only KNApSacK contains chemical structures linked to chemical 

names. Structures for the chemical names available only in the other two 

sources were extracted from PubChem (Bolton et al., 2008) The final set of  

chemical structures from all sources was unified and stored using InChI Keys. 

In the end, a total of  7,443 unique chemical structures present in those 372 

medicinal plants could be gathered and added to the database. 

 

2.3. Linking proteins to diseases 

Next, a list of  both known and explored human proteins associated with 

diseases was extracted from the Therapeutic Target Database (Zhu et al., 2012). 

These data was complemented with curated protein-disease links, with focus on 

cardiovascular diseases, available in the literature (Cases and Mestres, 2009). The 

final list of  proteins was stored and unified using their UniProt identifies (The 

Uniprot Consortium, 2015). A final number of  724 unique proteins known to 

be relevant for 166 out of  the initial 187 diseases were ultimately entered into 

the database. 

 

2.4. Linking molecules to proteins 

Finally, affinity data (pKi, pKd, pIC50, pEC50) between the chemical structures 



Results 

 55 

and proteins was extracted from various public sources (Gaulton et al., 2012; 

Bolton et al., 2008; Gilson et al., 2016; Southan et al., 2016; Roth et al., 2004). 

Up to 9,342 known interactions between 282 molecules, present in 193 plants, 

and 170 proteins were identified and collected into the database at this stage. In 

addition, since affinity data are well recognised to be suffering from 

completeness issues (Mestres et al., 2008; 2009), known interactions between 

molecules and proteins were complemented with high-confidence predictions 

obtained using ligand-based computational models implemented in the CT-link 

software (Garcia-Serna et al., 2015). Accordingly, 12,000 additional predicted 

interactions between 1,353 molecules, present in 223 plants, and 246 proteins 

were generated. In the end, affinity data for a total of  21,305 interactions 

between 1,353 endogenous molecules, present in 223 plants, and 246 

therapeutically-relevant proteins were assembled and stored in the database. 

 

2.5. Experimental in vitro assays 

For the prospective validation, two molecules and one herbal extract were 

selected for testing with in vitro assays at Cerep (Cerep Inc.) . Ribosylzeatin was 

tested in binding assays to confirm the predicted interactions with adenosine 

A1 and A3 receptors. Cellular assays were used to confirm the predicted 

interactions between isorhamnetin and the dopamine D4 receptor, as well as 

between a bilberry extract and 5-lipoxygenase.  

For the binding assay, ribosylzeatin was tested twice at a test concentration of  

10 M. The reference agonist ligands used to calculate the compound activity 

were CPA for the adenosine A1 receptor and IB-MECA for the adenosine A3 

receptor, which have IC50 values of  0.75 nM and 0.31 nM, respectively. The 

adenosine A1 receptor assay was performed in the presence of  1 nM of  

[3H]CCPA. After 60 min. of  incubation with shaking, bound radioactivity was 

separated from free by vacuum filtration and determined scintillation counting. 
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A similar procedure was followed for the adenosine A3 receptor assay. In this 

case, it was performed in the presence of  0.15 nM of  [125I]AB-MECA. It was 

incubated with shaking during 120 min. After that, bound radioactivity was 

filtered and measured with scintillation counting. For these binding assays the 

results are expressed as a percent of  measured specific binding relative to 

control specific binding. 

Fot the dopamine D4 receptor assay, isorhamnetin was tested at a 

concentration of  10 M. The reference agonist ligand was dopamine, with an 

EC50 value is 28 nM. D4.4 was incubated for 10 min. at 37ºC and, after that, 

cAMP was detected and measured with HTRF. Results are expressed as a 

percent of  measured response relative to control response. 

Finally, for the 5-lipoxigenase enzyme assay, the bilberry extract was tested at a 

concentration of  10 M. The reference compound used was NDGA, which 

have an IC50 of  910 nM. 5-lipoxigenase was incubated 20 min. with shaking and 

25 M arachidonic acid as substrate. After it, rhodamine 123 was measured 

using fluorimetry. Results are expressed as a percent of  measured specific 

binding relative to control specific binding.  

Compounds showing an inhibition or stimulation higher than 50% were 

considered to be active for the proteins tested, whereas interactions showing 

activity values between 25% and 50% were considered to be indicative of  at 

least weak to moderate effects. 

 

3. Results and Discussion 

Among the 372 medicinal plants present in our database, Sambucus nigra (black 

elder) is the plant associated with the highest number of  therapeutic uses, 31. It 

is used for the treatment of  many different illnessess, such as bronchitis, 

migraine, diarrhoea, nausea, hyperuricemia and influenza. Genus Sambucus 
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belongs to Caprifoliaceae and includes eighteen species all over the world, six 

of  them distributed in subtropical areas of  America, Eurasia and Africa. In 

Catalonia, we can find Sambucus nigra and Sambucus ebulus, whose leaves, flowers 

and berries are traditionally used for several medicinal applications in many 

countries of  the world (Dulf  et al., 2013; Mahmoudi et al., 2014) Some other 

plants with a high number of  therapeutic uses are Allium sativum (24), 

Rosmarinus officinalis (22), Mentha spicata (21), Urtica dioica (21), Salvia officinalis (21) 

and Thymus vulgaris (21), all of  them found easily in the Catalan countryside, and 

used as food and/or spice in many other countries. 

On the other hand, if  we focus on cardiovascular diseases, a set of  169 plants 

are associated with 48 different therapeutic uses. For illustrative purpose, the 

network of  plants linked to cardiovascular diseases is shown in Fig. 2. Among 

plants, Ginkgo biloba is the plant with the most cardiovascular uses, 15, by 

Crataegus monogyna, Aesculus hippocastanum, and Vitis vinifera with 7, and Camellia 

sinensis and Allium cepa with 6. On the other hand, among diseases, 

hypertension, hypercholesterolemia, hyperglycemia, and haemorrhoids are 

clearly the cardiovascular aspects being most addressed by remedial herbs. 

Ginkgo biloba, Camellia sinensis, and Aesculus hippocastanum are not native Catalan 

plants per se. However, as in many other parts of  the world, they are cultivated 

and used also often as ornamental plants. Ginkgo biloba and Camellia sinensis are 

indigenous plants from Asia (Cybulska-Heinrich et al., 2012; Moore et al., 

2009). The extracts of  the leaves and nuts from Ginkgo biloba have been used 

for hundreds of  years to treat a wide variety of  disorders, such as asthma, 

vertigo, tinnitus, as well as general circulatory problems (Cybulska-Heinrich et 

al., 2012). Camellia sinensis is a plant from which green tea can be produced. This 

beverage has a long traditional use as social drink but also as medicine in the 

treatment and prevention of  disorders, dysfunctions, or diseases in humans and 

other animals (Moore et al., 2009; Batista et al., 2009). Aesculus hippocastanum, 

horse chestnut, is native to the countries of  the Balkan Peninsula, but it is 
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cultivated worldwide for its beauty. Historically, seed extracts from this plant 

have been used as a treatment for many ailments (“Aesculus hippocastanum 

(Horse chestnut). Monograph,” 2009).  

On the other hand, Crataegus monogyna (hawthorn), Vitis vinifera (grapevine) and 

Allium cepa (onion) can be found in Catalonia in the wild. The first one is also 

known as a traditional medicinal plant in many countries, growing in shrub 

communities and decidious thin forests (Öztürk and Tunçel, 2011). About 

grapevine, it is an indigenous plant from southern and Western Asia, but it is 

cultivated today in all temperature regions of  the world (Nassiri-Asl and 

Hosseinzadeh, 2009). Finally, Allium cepa (onion) is one of  the most important 

vegetables worldwide and is extensively cultivated. It is a herbaceous bulbous 

plant that has a long tradition of  being beneficial against inflammation, general 

cardiovascular diseases, and cancer (Slimestad et al., 2007). 

Figure 1. Scheme showing the process of  closing the gap between 

the therapeutic use of  plants and the protein targets predicted from 

the active principles extracted 
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About completeness of  knowledge on chemical composition, Camellia sinensis 

(green tea) is the plant with the highest number of  chemical structures 

identified, 710, followed by Zea mays (maize) and Panax ginseng (ginseng), with 

677 and 601 chemical structures, respectively. None of  them is naturally found 

in Catalonia, but they are certainly cultivated. Among the autochtonous plants 

with the highest number chemical structures identified we found Citrus sinensis 

(orange tree), Apium graveolens (celery), and Daucus carota (carrot), 589, 533, and 

507 molecules, respectively. In contrast, many plants in the dabase have only 

one or very few endogenous metabolites identified, such as Rhamnus alaternus 

(Mediterranean Blackthorn), Lonicera etrusca (honeysuckle), or Hernaria glabra 

(herniaria). 

A detailed analysis of  the inter-links between plants, molecules, proteins, and 

therapeutic uses in our database (Fig. 1) identified a total of  21,305 mechanistic 

hypotheses. A mechanistic hypotheses is generated if  a given plant known to 

have some therapeutic use contains a chemical structures that is either known 

or predicted to interact with a human protein associated with its original 

therapeutic use. The plant with the highest number of  mechanistic hypotheses 

for their therapeutic uses is Glycine max (soybean). It is followed by, Vitis vinifera 

(grapevine), Ginkgo biloba, Citrus limon, and Camellia sinensis, with 713, 712, 693 

and 584, respectively. Out of  the 21,305 mechanistic hypotheses, 9,342 involve 

known molecule-protein interactions, wherease 13,963 of  them involve 

predicted interactions. Thus, while the former will be used to perform 

retrospective confirmations, the latter will be used to pursue some prospective 

validations. 

 

3.1. Retrospective confirmations 

The plants with the highest number of  mechanistic hypotheses generated are 

Sambucus nigra and Allium sativum, with 25 out of  31, followed by Ginkgo biloba, 
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Thymus vulgaris, and Allium cepa. Among the therapeutic uses for which 

mechanistic hypotheses were generated on the basis of  experimentally 

confirmed data and associations, we identified some well known active 

hypercholesterolemia

Vitis vinifera

vasotonic

atherosclerosis

Allium cepa

cardioprotector

Crataegus monogyna

vasodilator

Olea europaea
Urtica dioica

antihemorrhagic

venotonic

hyperglycemia

vasoprotector

cardiotonic

Camellia sinensis
Ginkgo biloba

hypertension

circulatory

haemorrhoids

Figure 2. Network of  remedial herbs (green circles) linked to 

therapeutical applications in cardiovascular diseases (white circles). 
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principles such as atropine, morphine, and digitoxin (Fig. 3). 

One example is atropine, found mainly in Atropa belladonna and Datura 

stramonium (Caksen et al., 2003; Kurzbaum et al., 2001), both used commonly 

for their analgesic action (Duttaroy et al., 2002; Gausachs, 2008a; Overington et 

al., 2006). This molecule is known to be active against the muscarinic 

acetylcholine receptor M4, a therapeutic target associated with some analgesics. 

Therefore, we have all links confirmed and forming a mechanistic hypothesis 

for the analgesic action of  these plants (Owais et al., 2014; Soni et al., 2012. 

A second example is morphine, a compound with reported analgesic activity. It 

is found in Papaver somniferum (opium poppy) and it was the first active alkaloid 

extracted from this plant (Jurna, 2003). Opium has been used in traditional 

medicinal as sedative and analgesic (Calixto et al., 2001, Gausachs, 2008b). 

According to all links established in our database, morphine emerges as a 

candidate for the analgesic action of  opium through its interaction with Mu-

type opioid receptor (Choi et al., 2006; Yamada et al., 2006), a receptor well 

Figure 3. Scheme showing some of  the closed circles confirmed 

retrospectively for three plants used as cardiovascular remedies. 
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recognized to be associated with analgesia (Inturrisi, 2002). 

And a third selected example is digitoxin, a glycoside with activity against the 

sodium/potassium-transporting ATPase subunit alpha-1, a protein associated 

with heart failure (J. J. Chen et al., 2001; Hauck et al., 2009; Müller-Ehmsen et 

al., 2002). Digitoxin is found is Digitalis purpurea (J.-J. Chen et al., 2001), a plant 

used in traditional medicine for treating precisely this disease (Gausachs, 2008a). 

Digitoxin has not only been proven to indeed interact with the 

sodium/potassium-transporting ATPase subunit alpha-1, but it also has been 

show to be effective in heart failure (Belz et al., 2001). 

Some other, a bit more speculative, examples of  mechanistic hypotheses 

generated directly from connecting known data for other herbal therapeutic 

uses could be the therapeutic effect of  Salvia officinalis for the treatment of  

Alzheimer’s disease and the use of  Achillea millefolium for treating depression. 

Salvia officinalis has been shown to have some beneficial effect in Alzheimer’s 

disease (Obulesu and Rao, 2011). One of  the compounds present in this plant 

ellagic acid (Gašić et al., 2015), that has been shown to be active against Casein 

kinase II subunit alpha, a protein associated to Alzheimer’s disease (Perez et al., 

2011; Rosenberger et al., 2016). In addition, Achillea millefolium is traditionally 

used for treating depression. Multiple proteins have been associated to this 

disease, Monoamine oxidase A being one of  them (Thase et al., 1995). Our 

analyses reveal that three compounds from yarrow, namely, quercetin, luteolin, 

and apigenin have indeed biologically relevant affinities for this enzyme (Benetis 

et al., 2008; Lemmens-Gruber et al., 2006; Bandaruk et al., 2014; Han et al., 

2007). 

Among the disease categories, the circulatory system is the one for which the 

highest number of  mechanistic hypotheses were generated, 231, followed by 

the respiratory and musculoeskeletal system. Within these categories, a number 

of  diseases were selected for close inspection, namely, analgesia, cough, 
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Figure 4. Network of  remedial herbs (green circles) linked to proteins (orange 
circles) associated with various maladies, namely, analgesia, cough, 
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hypercholesterolemia, diarrhea, and catarrh. One ought to bear in mind that, 

even though plants may be composed of  chemicals targeting common proteins, 

the ultimate mechanistic hypotheses of  each plant for addressing each disease 

may be essentially different. 

The plant-protein network emerging for the selection of  five therapeutic uses 

of  plants is provided in Fig. 4. For analgesia, we can see that many different 

proteins associated with this disease are being targeted by at least one of  the 

endogenous metabolites found in those plants, the most among them being 

aldose reductase (Young et al., 1983, p. 198), muscarinic acetylcholine receptors 

(Duttaroy et al., 2002), and opioid receptors (Inturrisi, 2002). About plants 

being used for treating catarrh and cough, it can be observed that almost all of  

them are targeting the same targets. For catarrh, all plants contain some 

chemical that is active on the dopamine D1B. D2, and D3 dopamine receptors, 

all of  them associated with respiratory diseases (Birrell et al., 2002). For cough, 

all plants contain at least one chemical with affinity for the  and  opioid 

receptors (Kotzer et al., 2000). On the other hand, for diarrhea and 

hypercholesterolemia, different mechanistic hypotheses are retrieved for 

different plants linked to these therapeutic uses. For Diarrhea, the list of  

proteins comprises the  and  opioid receptors (Callahan, 2002), the 5-

hydroxytryptamine 3A receptor channel (Sikander et al., 2009), and the calcium-

activated potassium channel subunit alpha-1 (Deng et al., 2015). The first three 

proteins are the most targeted proteins. Even though many plants are targeting 

all them, others seem to target only one or two. Similarly, most of  the plants 

used for treating hypercholesterolemia contain at least one active ingredient on 

the peroxisome proliferator-activated receptor (Rimando et al., 2005) and the 

hydroxycarboxylic receptor 2 (Karpe and Frayn, 2004). However, other plants 

may be exerting their therapeutic effect through interactions with other proteins 

associated to this disease, such as fatty acid synthase (Marseille-Tremblay et al., 

2007) and squalene monooxygenase (Belter et al., 2011).  
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It is important to highlight at this stage that the use of  known data only is 

prone to the effects of  completeness and thus, several links may actually be 

missing in the networks discussed. In fact, looking at the distribution of  the 

affinity values for those known interactions, we observe that in many cases 

these interacting chemicals are found also in plants that are not used for 

treating the disease associated with the interacting protein. Some of  the reasons 

why these plants have not been used for these illnessess could be, for example, 

that the compound concentration is not enough in the plant or the plant really 

has this therapeutic action but it simply is not used for it. Another possible 

reason could be that we have focused on the therapeutic use of  these plants in 

Catalonia, while the traditional uses of  those plants can be different in other 

regions. Last but not least, it could well be that the action of  some of  these 

compounds require the presence of  some bioenhancer in the plant as well 

(Dudhatra et al., 2012), being the therapeutic action a result of  multiple 

compounds acting synergistically. Overall, from the initial number of  372 plants 

associated with at least one therapeutic use, only 193 contain known data for all 

necessary links to derive a mechanistic hypothesis. Therefore, adding 

predictions and thus, improving the lack of  completeness, could generate 

mechanistic hypotheses for the remaining plants.  

3.2. Prospective validations 

Before embarking into the analysis of  the mechanistic hypotheses emerging 

from predicted interactions, we validated the accuracy of  those predictions for 

which known data was available. Overall, a good correlation was found between 

known and predicted affinity values for the same molecule-protein interactions. 

As can be observed in Fig. 5, the median of  the difference in affinities was 

0.332, with 25% and 75% quartiles being at -0.1 and 0.7 with respect to the 

median, respectively, with a standard deviation of  0.794.  
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From all mechanistic hypotheses generated on the basis of  predicted molecule-

protein interactions, a focused set of  interactions to be confirmed in vitro was 

selected based on a balance between potency of  the predicted affinity and 

novelty of  the prediction, as regarded by the similarity to the closest molecule 

for which the affinity for the same protein is known already (Fig. 6). Among 

those, we prioritsed the confirmation of  the proposed mechanistic hypotheses 

for two single compounds, namely, isorhamnetin and rybosylzeatin, and one 

compound mixture, composed of  cyaniding, delphinidin, and malvidin (Fig. 7). 

Figure 5. Boxplot (left) and density (right) of  the accuracy between known 

and predicted affinities. 
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For ribosylzeatin, we could confirm experimentally the two interactions 

predicted for the adenosine A1 and A3 receptors, for which 57% and 65% 

binding, respectively, was obtained at 10M concentration. Ribosylzeatin is 

participating in the therapeutic action of  Ginkgo biloba, Glycine max, and Vitis 

vinifera. Accordingly, the mechanistic hypothesis would suggest that, for these 

plants, the interaction of  one of  their chemical ingredients (ribosylzeatin) 

with the adenosine A1 and A3 receptors may be contributing to their 

beneficial effect in the treatment of  a number of  cardiovascular diseases, 

Figure 7. Scheme showing some of  the closed circles confirmed 

prospectively for several plants used as cardiovascular remedies. 

 

Figure 6. Relationship between the similarity to the closest bioactive neighbor 
and the predicted affinity (pAct) for all mechanistic hypotheses linked to 
cardiovascular uses of  plants. A total of  2,860 molecule-protein interactions are 
depicted. The nine interactions selected for in vitro testing are highlighted in 
black. 
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namely, cardiac dysrhythmias, supraventricular tachycardia, acute ischaemic 

heart disease, and mycocardial ischemia by targeting adenosine receptor A3.  

It is interesting to note that the therapeutic action of  grapevine against 

ventricular tachycardia has been already demonstrated in rats (Zhao et al., 

2010). However, in this case, they only tested a proanthocyanidin grape seed 

extract. Therefore, on the basis of  the hypothesis generated here, we would 

suggest that ribosylzeatin is participating also on this therapeutic effect in 

synergy with proanthocyanidins. On the other hand, Ginkgo biloba is the sole 

surviving species of  the division Ginkgophyta, that seems to have existed for 

over 250 million years. It is indigenous to Korea, Japan and China, but 

nowadays can be found worlwide (Mahadevan and Park, 2008; van Beek and 

Montoro, 2009). Ginkgo was introduced in Traditional Chinese Medicine on 

2,800 BC. For over 5,000 years, the seeds and leaves have been used to treat 

various diseases, like pulmonary disorders, heart and lung dysfunction and skin 

diseases. More recenlty, its use has been suggested to address cognitive 

Figure 7. Scheme showing some of the closed circles confirmed prospectively 
for several plants used as cardiovascular remedies. 
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deficiencies and dementia. On the other hand, grapevine (Vitis vinifera) is a 

decidious woody climber plant indigenous of  Southern Europe and Western 

Asia, that is cultivated today in all temperature regions of  the world (Nassiri-Asl 

and Hosseinzadeh, 2009). The grape has been used in folk medicine since 

ancient times, it has diuretic and cardioprotector properties useful for many 

cardiovascular diseases. The leaves are also used to treat diarrhoea and heal 

wounds and the sap is used as an antiseptic for eye wash (Delíorman Orhan et 

al., 2009; Gausachs, 2008b). Finally, soybean is an annual legume of  the 

Fabaceae family. It is indigenous to East Asia and China but now is extensively 

cultivated in many temperate regions of  the world (Munro et al., 2003). 

Soybean is known as an important source of  proteins in diet, but it is also used 

widely as herbal medicine for the treatment of  many diseases such as 

atherosclerosis and other cardiovascular diseases, depression, obesity or 

osteoporosis (Gausachs, 2008b). 

The predicted activity of  the compound mixture composed of  cyaniding, 

delphinidin, and malvidin against arachidonate 5-lipoxygenase was also 

confirmed experimentally, with 41% inhibition. This results provides a 

mechanistic hypothesis for the therapeutic use of  Vaccinium myrtillus in 

atherosclerosis and ischemic heart disease. It has been already suggested that 

quercetin is partially responsible for the therapeutic action of  this plant due to 

its affinity for the arachidonate 5-lipoxygenase, but we could add now that 

delphinidin, cyanidin and malvidin, all of  them anthocyanidins, may be also 

contribute to the action of  the plant. Anthocyanidins are compounds present in 

high concentrations in bilberry fruit (Chu et al., 2011; Ciro Cassinese, 2007). 

On the other hand, other anthocyanidins present in bilberry, such as peonidin 

and petunidin, were also predicted to be active against this protein. So all these 

compounds may actually contribute synergistically to the therapeutic effect 

attributed to bilberry for the treatment of  atherosclerosis and ischemic heart 

disease.   
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Finally, the affinity value obtained for the predicted interaction between 

isorhamnetin and the dopamind D4 receptor was only 28%. Despite this rather 

low affinity value, we could suggest that this phytochemical may well be 

contributing to some extent to the effect of  the plants in which it is present for 

the treatment of  hypertension. A chemical present in most of  the plants listed 

and suggested to be responsible for this therapeutic action is quercetin, 

reported to have also a low experimental affinity value of  5M against the 

dopamind D4 receptor. 

 

4. Conclusions 

An effort to integrate data linking plants, molecules, proteins, and diseases has 

demonstrated to be useful to generate mechanistic hypotheses that provide a 

scientific basis for some of  the therapeutic uses of  remedial herbs. In this 

respect, the use of  predicted interactions largely increases our ability to 

generate mechanistic hypotheses for plants for which known data is scarce. The 

selected examples that provide retrospective confirmation, as well as those that 

offer prospective validation, anticipate very good perspectives for the 

applicability of  this type of  system approaches for finding a scientific rationale 

for many traditional medicines. There is much more to learn about nature and 

how to use it. More research in this direction is underway in our laboratory.  
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Abstract 

Medicinal plants have been very important along history for the treatment of 

many diseases. For centuries researchers have been interested in the 

observation, description, and experimental investigation of these medicines and 

their biological activites. Today, a huge amount of articles about 

ethnopharmacology have been published, and many of the data have been 

collected in several databases. At the same time, many other databases have 

been developed containin data from different but related fields. This has 

allowed the development of computational methodologies that take advantge of 

the available data to obtain information of interest, for example, the elucidation 

of herbal medicines therapeutic mode of action. In this review we have 

investigated on the diversity of computational approaches used on 

ethnopharmacological studies, providing information about the current state of 

the art. 

                                                
* Corresponding autor. E-mail address: jmestres@imim.es 
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1 Introduction 

Since early human history, natural products has been utilized to treat and 

prevent diseases, they have formed the basis of  most of  the modern medicines. 

In XIX century, with the chemopharmacological revolution, many 

pharmacological laboratories started to isolate the compounds of  many plants 

in order to extract their active principles, which were responsible of  the 

medicinal or toxicological properties of  the plants. The first time that a natural 

compounds(Jones, 2011) were isolated was on 1804, when F.W.A.  Sertürner 

isolated for first time morphine from opium (Papaver somniferum) and in the 

years following he investigated the effects of  this compound. Some years later it 

started to be produced derived compounds from natural products, the most 

famous example probably is acetylsalicylic acid, which was produced for the 

first time in 1853 by the french chemist Charles Frederic Gerhardt and patented 

in 1899 by Bayer, it was derived from salicin, a natural product isolated from 

the bark of  willow tree (Salix alba) (Jones, 2011) . 

Over the last century natural products have been the major source of  chemical 

diversity for starting materials while driving pharmaceutical discovery (Mishra 

and Tiwari, 2011). The investigation of  natural compounds reached his peak in 

the period 1970-1980, after this period, with the advent of  combinatorial 

chemistry technology and other synthetic chemistry techniques, the work with 

natural compounds went in wane (Newman, 2008). From late 1980s to late 

1990s, combinatorial chemistry let to create many libraries containing hundreds 

of  thousands to millions of  new compounds. However, these new techniques 

didn’t increase drug productivity and natural products remained as an important 

source of  new drugs, drug leads and new chemical entities (NCE). From 1981 

to 2002, natural products and natural product derived and synthetic derived 

natural product accumulated approximately a 48% of  the NCE reported 

(Balunas and Kinghorn, 2005). They have had a dominant role in anticancer 
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compounds and drugs for infectious diseases, where 60% and 70%, respectively 

(McChesney et al., 2007). 

Natural product structures have a greater complexity, a high chemical diversity, 

biochemical specificity, and other molecular properties that make the favourable 

for drug discovery (Koehn and Carter, 2005). Moreover, as the herbal medicine 

has been routinely used through the ages and their beneficial and adverse 

effects should be known, natural products may be safer than synthetic drugs 

(Cohen & Ernst, 2010).  

Nowadays, according to the World Health Organization (WHO), 80% of the 

world's population still relies on plant-based medicines for primary health 

(“Traditional Medicine Growing Needs and Potential - WHO Policy 

Perspectives on Medicines, No. 002, May 2002,” 2002). But most of these 

herbal medicines are based on traditional knowledge rather than evaluation and 

laboratory, so their safety and efficacy is relatively unknown and herbs with 

pharmacological activity may also be toxic, especially if they are used 

incorrectly. For example, recently it was reported a poisoning of Mandragora 

officinarum, a plant used as sedative and to treat some cardiovascular and 

respiratory system diseases, it is also known as magic, aphrodisiac and 

hallucinogenic. In this poisoning case report, a man ingested five ‘aphrodisiac’ 

berries of mandragora and after 1h of the ingestion he experienced nausea, 

vomiting, abdominal pain, agitation, aggression, hallucinations, mydriasis, dry 

mouth and skin, hyperthermia, tachycardia, and increased blood pressure, so, an 

unappropiated use of a medicinal plant can drive to unwanted consequences 

(Nikolaou et al., 2012;Gausachs, 2008). Therefore, it is important to identify the 

mode of action of these medicines in order to develop better medicines from 

traditional knowledge, potentiating the desired effects and removing the 

adverse ones. 

The little knowledge of  efficacy and the unwanted side effects are because the 
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mode of  action of  these herbal extracts remains unknown for the vast majority 

of  plants, despite that the chemical composition is well known for a great 

number of  plant species. Moreover, quite often there is not sufficient clinical 

data about herbal pharmacological effects and molecules responsible of  it 

(Dunnick and Nyska, 2013). 

In the recent years, the interest in the identification of  effective ingredients of  

medicinal plants and functioning targets has increased. As result, several 

databases about medicinal plants and their ingredients have been established, 

specially, databases centered principally in Traditional Chinese Medicine, such as 

Traditional Chinese Medicine Database (TCMID) (Xue et al., 2013).  

Traditional medicines contains hundreds of  compounds and only a few 

bioactive compounds contribute to the therapeutic effect, one of  the strategies 

to identify the compounds that are responsible of  the plants benefit is by using 

high-throughput screening methods, however they are still very limiting and 

vastly expensive (Naoghare and Song, 2010). Moreover, the complex 

composition and polypharmacology of  traditional medicines make it even 

harder to use experimental methods to elucidate multitarget mode of  action 

from a holistic point of  view  (Zhao et al., 2013).  

On the other hand, computer-assisted tools offer cheaper and better methods 

to predict the mode of  action of  traditional medicines. They can predict a large 

number of  new drug-target interactions, and allow constructing drug-target 

networks. These strategies try to predict new drug targets, and to achieve their 

endeavour they can use several different techniques (C. Huang et al., 2014) .  

In this paper, we will investigate the different computational strategies that have 

been used on these recent years to enquire in the mode of  action of  traditional 

medicines. 
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2 Data sources 

To perform any in silico study of traditional medicine it is necessary to collect 

data. Literature is always an available source of data; however, there are many 

database and sources where it is much easier to retrieve data. These databases 

can be divided in in four categories according to their content: 

2.1 Diseases – Plants 

- International Ethnobotany Database (ebDB): it provides a wide variety 

information about plants, including medicinal uses, plants parts used and 

locations where the plants growth (Skozen and Bussman, 2006).  

- Natural Products Alert (NAPRALERT): It contains ethnomedical 

information of  organisms derived from abstracts and original articles 

(“NAPRALERT,” 2012).  

- Dr Duke Phytochemical and Ethnobotanical Database: There 

information about the therapeutic uses of  more than 1000 plants (“Dr Duke 

Phytochemical and Ethnobotanical Database,” n.d.). 

- the Traditional Chinese Medicine Database (TCMD): It contains 1102 

unique herbs and information about their therapeutic uses (He et al., 2001). 

- Herbal Ingredients’ Targets (HIT): There are more than 1300 entries for 

reputable Chinese herbs where we can find its functions (Ye et al., 2011). 

- TCMDatabase@Taiwan: It contains 21 differents classes of  traditional 

medicines therapeutic uses and the medicines found in each functional class. 

The number of  plants in each functional class varies from 3 to 62 (Chen, 

2011). 

- Traditional Chinese Medicine Integrated Database (TCMID): It 

contains 8159 herb entries which may provide information about their 

therapeutic uses (Xue et al., 2013). 



Results 

 82 

- KNApSAcK: There are 1432 species entries with information about their 

biological activities. It containts almost 2000 different activites (Afendi et al., 

2012). 

2.2 Plant - Ingredients 

- Natural Products Alert (NAPRALERT): There is 

pharmacological/biochemical information of extracts of organisms 

(“NAPRALERT,” 2012). 

- Dr. Duke Phytochemical and Ethnobotanical Databases: There is 

the chemical composition of more than 1000 plants. Chemical structures 

are not available (“Dr Duke Phytochemical and Ethnobotanical 

Database,” n.d.).  

- the Traditional Chinese Medicine Database (TCMD): There are 

12120 unique compounds for 1102 herbs (He et al., 2001). 

- Herbal Ingredients’ Targets (HIT): It contains about 586 active 

compounds from more than 1300 chinese herbs (Ye et al., 2011). 

- TCMDatabase@Taiwan: It contains 32.364 constituents from 352 

different herbs, animal products and minerals (Chen, 2011). 

- Traditional Chinese Medicine Integrated Database (TCMID): It 

contains 8159 chinese herbs with 25210 ingredients, the structure of the 

compounds may or not be available (Xue et al., 2013). 

- Traditional Chinese Medicine Systems Pharmacology Database 
and Analysis Platform (TCMSP): This database contains 499 herbs 

registered in Chinese Pharmacopeia, with a total of 12144 chemicals (Ru 

et al., 2014). 

- KNApSAcK: There are 22399 species and 50897 metabolites entries, 

many of them with structure information. It also contains the biological 

activity of species (Afendi et al., 2012). 
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- Dictionary of Natural Products: There is information of 170.000 

natural products which includes their source data, however, all these 

data is not available to be downloaded (“Dictionary of Natural 

Products,” 2014). 

But electronic databases are not the unique source of information about 

traditional medicine plants compositions; it can also be collected from books, 

like Les Herbes Remeires of Gausachs, R. (2007), and articles of studies about 

plant composition.  

2.3 Ingredients - Proteins 

Herbal ingredients database doesn’t use to include the activity of the 

compounds, and it necessary to search this information in other databases. 

There are many existing databases with a great amount of information about 

chemical activities: 

- Herbal Ingredients’ Targets (HIT): There is information derived 

from more than 3250 literatures, it contains about 1301 known protein 

targets (221 of them described as direct targets) affected by 586 herbal 

compounds (Ye et al., 2011). 

- Traditional Chinese Medicine Integrated Database (TCMID): This 

database comprises information about targets of natural ingredients 

which is collected from different resources, STITCH, HIT and 

published articles (Xue et al., 2013). 

- Traditional Chinese Medicine Systems Pharmacology Database 
and Analysis Platform (TCMSP): It contains experimental and 

predicted drug-target information. Experimental data is retreived from 

HIT, while predicted data is obtained with SysDT model (Ru et al., 

2014). 
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- ChEMBL: It comprises > 1 million compounds and > 12 million of 

activites (Gaulton et al., 2012 

- PubChem: It contains the activity and the structure for > 19 million 

unique chemical structures (Bolton et al., 2008). 

- DrugBank: It contains 7680 drug entries, which includes some natural 

products (Law et al., 2014). 

- STITCH: There is interaction information for over 68.000 different 

chemicals (Kuhn et al., 2014). 

- The Comparative Toxicogenomics Database (CTD): This database 

includes 983049 chemical-gene interactions in 513 organisms, between 

105590 chemicals and 35095 genes (Davis et al., 2014) 

- BindingDB: It contains about 620.000 binding data for 5.500 proteins 

and over 270.000 drug-like molecules (Liu et al., 2007). 

- PDB: This database doesn’t contain the reported activity of 

compounds, however, it contains over 100.000 proteins structures, 

which are necessary for docking studies (Berman, 2000). 

2.4 Proteins - Diseases 

- Therapeutic Target Database (TTD): It provides information about 

explored therapeutic proteins and the targeted disease. It contains 1535 

targets (Zhu et al., 2012). 

- PharmGKB: It provides pharmacogenomic knowledge, with 

associations between > 20.000 genes, and 53 pathways and > 3000 

diseases (Whirl-Carrillo et al., 2012). 

- Potential Drug Target Database (PDTD): It contains 1207 entries 

covering 841 known and potential drug targets with structures from 
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PDB categorized into 15 types according to their therapeutic areas (Gao 

et al., 2008). 

- The Comparative Toxicogenomics Database (CTD): CTD provides 

almost 30000 gene-disease associations, including 7455 genes and 4912 

diseases (Davis et al., 2014). 

- KEGG: One of the most widely used databases; it contains 372 

pathways linked to protein/enzyme (Kanehisa et al., 2014). 

- OMIM: This database contains information on all known mendelian 

disorders and ober 12.000 genes. It is focused in relations between 

phenotype and genotype (“Online Mendelian Inheritance in Man, 

OMIM,” n.d.).  

- Genetic Association Database (GAD): Archive of human genetic 

association studies of complex diseases and disorders. Data extracted 

from published articles and GWAS studies (Becker et al., 2004). 

- Gene Expression Omnibus (GEO): public repository that archives 

microarray, next-generation sequencing and other forms of high-

throughput functional genomics data submitted by research community 

(Barrett et al., 2013). 

- ConsesusPathDB-human (CPDB): It integrates 32 public resources; 

some of the information information available comprises biochemical 

pathways linked to proteins (Kamburov et al., 2011). 

- Traditional Chinese Medicine Integrated Database (TCMID): 

Data retrieved from DrugBank and OMIM (Xue et al., 2013). 

- Traditional Chinese Medicine Systems Pharmacology Database 
and Analysis Platform (TCMSP): It contains disease information 

retrieved from TTD and PharmaGKB (Ru et al., 2014). 
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2.5 Side effects 

Despite the common use of herbal medicines, it is not always ensured if they 

are safely. Herbal products contains a huge number of compounds, and it isn’t 

known the activity of all them, this can cause that an unsuitable use of the 

herbal product may produce undesired effects 

Moreover, several drug-drug interactions have interactions have been reported. 

These interactions can alter the way of one or both of the drugs in the body, or 

cause unexpected side effects. For example, taking together selective serotonin 

reuptake inhibitors (SSRI) with non-steroidal anti-inflammatory drugs 

(NSAID), may increase the risk of bleeding, and the simultaneous 

administration of ibuprofen and acetylsalicylic acid produce antagonistic 

interactions, reducing the effects (Cascorbi, 2012). 

It is well known that plants contains a great amount of ingredients, with many 

different activities, some of them may be contributing to the therapeutic use of 

the plant, but some other could cause undesirable effects. And the number of 

compounds is even higher when several plants are merged to create a herbal 

medicine. So, in the same way this plants may treat diseases through a 

synergistic interactions of their ingredients, they could also produce undesired 

effects, this is why they are also important those databases about side effects. 

- SIDER: It contains information on marketed medicines and their 

recorded adverse drug reactions. There are 4192 side effects and 996 

drugs (Kuhn et al., 2010). 

- AERS: It contains over seven million reports of adverse effects 

(“AERS,” 2014). 
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2.6 Database Selection Criteria 

To select which databases will be used for the studies, researchers must 

consider some database appreciations. Here are listed some of the most 

important: 

- Availability of the database: Usually researches will try to use those 

sources that are publicly available. 

- How easy is to download data: It is important to use database that can 

be entirely downloaded in an easy way. For example in chemical 

databases it is a limitation to have to download structures individually. 

- The data included in the database: It must be considered that a database 

contains all the data we need; it is useless to download a great amount of 

data with missing necessary information. 

- Supported database: supported databases that are being actualized 

periodically are better. 

-  

3 Computational methodologies in herbal medicine 
research 

3.1 Computational methodologies to obtain herbal ingredients activity 

In herbal medicine research, many different methodologies have been used to 

collect and predict ligand-protein interactions. These strategies can be divided 

in methods that collect information from existing databases; and methods that 

try to predict new targets for the compounds, chemogenomic approaches. 
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3.1.1 Data mining 

Data mining is defined generally as the process of extracting meaningful 

information from large datasets through the use of any relevant data analysis 

techniques. These techniques can be applied to extract information from large 

volumes of text data, called text mining, or from structured databases, which is 

called data mining (Yang et al., 2013). 

3.1.1.1 Data mining 

Data mining is a computational method that has been traditionally used to 

search patterns in structured databases.  

3.1.1.2 Text mining 

Text mining is a process which comprises the discovery of knowledge from text 

through the extraction of meaningful patterns and trends. It is intended to 

explore relationship among the objects stored in unstructured database (Yang et 

al., 2013). 

This method is applied in drug discovery and biomedicine to the identification 

of entities such as genes or diseases, as well as the identification of relationships 

between those entities, including protein-protein interactions, disease-associated 

entities (genes/proteins), diseases-related networks and the interaction of herbal 

active ingredients and the targets.  

Text mining allows finding useful information from an extremely large number 

of articles, however, despite having access to a large number of papers, often 

can only be accessed to limited information because the full text is restricted. 
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3.1.2 Entity grammar systems 

Entity grammar systems are a formal grammar tool proposed for study the 

complex hierarchies in biological systems. Using it as a framework, the formal 

model of complex biological systems can be easily constructed. It has been 

successfully used in the modelling, learning and simulation of biological cells 

(Wang, 2004).  

3.1.3 Chemogenomic methods 

Chemogenomic approaches for drug discovery consist in ligand-based, target-

based and target-ligand methods, which are used to reveal novel relationships 

between compounds and targets (C. Huang et al., 2014). 

These In silico methods have their origins in Quantitative Structure-Activity 

Relationships (QSAR), which consists in the construction of a mathematical 

model relating molecular structure to a chemical property or biological effect by 

means of statistical techniques.  

QSAR use molecular descriptors as numerical representations of chemical 

structures. There are a large number of different molecular descriptors that are 

classified according to the dimensionality of the chemical representation from 

which they are computed. One-dimensional descriptors encode properties such 

as molecular weight, molar refractivity and octanol/water partition, offering a 

fair reflection of the size, shape and lipophilicity of molecules. On the other 

hand, 2D-descriptors are computed from topological representation of 

molecules. Finally, 3D-descriptors are obtained directly from 3D structure of 

molecules (Ekins et al., 2007). 

For computing these molecular descriptors, the structure of the chemicals is 

required. Usually, these chemical structures can be obtained from some herbal 
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medicines-ingredients databases or chemical databases like TCMSP, PubChem, 

etc., however, some chemical structures are not available and they have to be 

constructed in chemical structure drawing program such as MDL ISIS/Draw. 

To perform these in silico methodologies, one of the most used programs is 

Discovery Studio, from Accelrys (Accelrys Software Inc., n.d.), it allows 

performing docking studies, molecular dynamics simulations and generate 

pharmacophores and molecular descriptors  

A. Ligand-Based Approach 

The ligand-based approach is also known as the chemical approach, the basic 

assumption sustaining this method is that similar compounds are expected to 

have similar affinities for a given target, so, similar compounds should display a 

similar pharmacological profile (Vidal et al., 2011) . The general practices of this 

approach are describing compounds with chemical descriptors and calculate a 

similarity coefficient between ligands (Zhao et al., 2013).  

There is a diverse range of ligand-based methods with different 

computational costs depending on the type of structural information that they 

use. The most commonly used approaches are those using topological 

fingerprints encoding the presence of substructural fragments.  

Similarity Ensemble Approach (SEA) (Keiser et al., 2007) is one of the most 

used methods to predict human targets; its similarity criterion is the widely used 

Tanimoto coefficient (Tc). Tc has been also applied in many studies to evaluate 

drug-likeness of herbal ingredient. Another important approach used to 

calculate similarity between two molecular compounds is feature-pair 

distribution (FDP) (Vidal et al., 2011). 
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On the other hand, regarding methods that require 3D structure 

representations, the most widely used is pharmacophore model, which have 

been applied to screen potentian ligangs for many targets. These models can be 

generated by many programs, like GALAHAD, a Tripos Ltd pharmacophore 

module, from sets of compounds (“GALAHAD Tripos, Inc., 1699 South 

Hanley Road, St. Louis, MO 63144-2319. www.tripos.com. Contact company 

for pricing information.,” 2007). A pharmacophore is defined to be the 3D 

arrangement of molecular features necessary for bioactivity, and it can be 

generated by many docking programs such as Glide, from Schrödinger 

(Friesner et al., 2006), and Discovery Studio (Accelrys Software Inc., n.d.). 

There is also some available web servers able to identify potential targets using 

pharmacophore models, one example is PharmMapper, a freely accessed web-

server designed to identify potential target for the given molecules using 

pharmacophore mapping approach. 

But pharmacophore screening only considers compounds who are mimics 

of the ligand from which the pharmacophore was generated, so it may neglect 

other positive binding modes. This limitation can be avoided by constructing 

multiple pharmacophore models with different modes of interaction, which is 

called virtual parallel screening.  

B. Target-Based Approach 

Target-based methods predict ligand-target interactions through the structural 

information of proteins and ligands. Their aim is to predict the conformation 

and orientation of the ligand within the protein cavity (docking), as well as the 

binding affinity of the ligand and the protein (scoring).  

There are two target-based approaches, docking and inverse docking. The 

first one predicts the orientation of a compound in the cavity of a given target, 
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forming and stable complex. While inverse docking fishes targets from known 

ligands. Both of them play an important role in virtual screening. 

Some of the most important docking programs used are AutoDock, Discovery 

Studio and INVDOCK. AutoDock is free suite of automated docking tools, it 

consist of Autodock 4 and AutoDock Vina. Both AutoDock programs are 

often used in ethnopharmacology studies to perform virtual screening and 

chemical mechanism studies (Morris et al., 2009). 

On the other hand, INVDOCK is a inverse docking method used in target 

fishing studies where the authors tries to identify protein and nucleic acids 

targets of a small number of phytochemicals (Chen and Zhi, 2001). 

The performance of these methods is highly dependent on the targets, since it 

is necessary the structural information of the protein. Protein structures are not 

always available, alternatively, often homology modelling is used to build 

protein structure. Swiss-Model Automated Protein Modelling Server, for 

example, is one of the tools available for protein modelling (Schwede et al., 

2003, p.).  

The structure of the compounds is also necessary in these studies. It implies 

that the structure have to be built and optimized when it is not available. 

Between the programs used for the optimization and minimization we can find 

Maestro, from Schrodinger, and Sybyl, from Tripos. 

On the other hand, docking implementation depend highly on the nature of 

target, to alleviate this situation has been suggested the use of multiple active 

site corrections to compensate the ligand-dependent biases.  
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C. Machine Learning 

Machine learning is a high-throughput method of artificial intelligence that 

enables computers to learn from known data, like ligand chemistry, structural 

information, and ligand-proteins networks, and predict unknowns, such as new 

drugs, targets, and drug-target interactions.  

Machine learning can be supervised or unsupervised. In the first one, the 

objective is to build a mathematical model from input variables and predict 

unknown interactions involving new compounds and proteins, while the 

objective of unsupervised machine learning is to extract patterns and 

interactions between a series of input variables (Yamanishi, 2013). Usually the 

data is divided into a training dataset, which is used to create the model, and a 

validation dataset that check the robustness of the model (Zhao et al., 2013). 

Machine learning can use many different techniques. In unsupervised learning 

the most common approaches are principal-component-based methods. While 

in supervised learning the most used techniques are Support vector machines 

(SVM) and Random forests (RF), these techniques can be used individually or 

in combination with another technique (Jensen and Bateman, 2011).  

Support vector machine is a powerful tool to classify objects into two classes; it 

uses a training set of objects and their known classes to create a model to 

predict the classes for new objects [biological applications of SVM, rong yang]. 

SVM has two main categories, support vector classification (SVC) and support 

vector regression (SVR), which is the most common form of SVM (Basak et al., 

2007). On the other hand, random forest is a technique that includes an 

ensemble of decision trees and incorporates feature selection (Qi, 2012).  

Some other techniques that are used in some studies are Naïve Bayes classifier 

and linear regression models. The first one is a probabilistic classifier based on 
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Bayes’ Theorem; it is usually used in early prediction, it can process large 

amount of data, learn fast, and its tolerant to random noise (Tian et al., 2013). 
Otherwise, linear regression models try to stablish a relationship between two 

or more variables. 

3.2 Network construction 

Last years, one of the most used methods to elucidate the mode of action of 

medicinal plants has been the exploration of ligand-protein networks. Vast 

majority of of studies in traditional medicine network pharmacology are about 

Traditional Chinese Medicine, where synergism is the principle core and plays 

an essential role improving clinical. Chinese Medicine is considered the pioneer 

of multicomponent-multitarget pharmacology (Zhang et al., 2013). The number 

of publications in this area has been increasing exponentially the last 5 years 

(Zhang et al., 2013). 

The construction of the network allows identifying active ingredients and 

synergistic combinations, so, it helps to understand the therapeutic mechanism 

of traditional medicine.  

Networks use to be built in programs that allow visualizing complex networks 

and integrate attribute data. In this case, in most of studies, the authors use 

Cytoscape which is an open source software platform for biological network 

visualization, data integration and statistical modelling of molecular networks 

(Cline et al., 2007). 

3.3 Research studies 

In the last years, it has been performed many different studies focused on 

traditional medicine using the mentioned methods. A part from a great variety 

of methodologies, in these papers we can also find many different aims. The 
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authors not only try to elucidate the therapeutic plants mode of action, but also 

try to identify natural compounds that can potentially be new drugs. In 

medicinal plants research we can find principally these type studies: 

3.3.1 Drug discovery 

It have been published many studies where the authors use virtual screening on 

traditional medicine to try to identify potential ligands for protein targets of 

therapeutic interest. They predict interactions and affinities of compounds 

against proteins that must be subsequently confirmed experimentally. In these 

studies, usually the authors screen a large number of natural compounds, and 

some of the predicted interactions are tested experimentally, in order to validate 

their prediction. There is also target fishing studies, where a small number of 

phytochemicals are screened against a target database to identify protein targets 

ab initio.  

3.3.2 Multi-target studies 

Multi-target studies, unlike Western medicine studies, which are based on 

‘reductionism’ philosophy and follow the paradigm of ‘one gene - one drug - 

one disease’, are based on ‘holism’ philosophy and replace the drug design of 

‘magic bullets’ by the search of multitarget drugs that act on biological networks 

(Wang et al., 2011; Zhang et al., 2013). The authors of these studies assume that 

drugs commonly act on multiple targets, and that the mode of action of 

medicinal plants is due to the synergistic action of many constituents of the 

plant. So they search for a group of ligands that interact with one or more 

targets from a set of functionally/pathologically related targets, and single 

phytochemicals that potentially can target a variety of targets from the set of 

related proteins.  
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4 Aplications 

Recently Li Y. et al. combined methods of drug-likeness evaluation, oral 

bioavailability prediction, drug targets prediction and network pharmacology 

techniques to investigate the mechanism of Eucommia ulmoides Oliv., an herb 

widely used to help regulate hypertension and the immune system. The herbal 

composition was retreived from TCMSP, and using a systematic approach 

based on RF and SVM models the candidate targets were predicted. This model 

was built using a dataset of 6511 drugs and 3987 targets from DrugBank. 

Finally, compound-potential target and target-diseases networks were built in 

Cytoscape. From the screening of 41 ingredients they found 39 potential targets 

hits, which are associated to many diseases, such as neoplasms, cardiovascular 

diseases, immune diseases, etc (Li et al., 2014). This methodology have been 

applied previously in many studies to elucidate the pharmacological properties 

and mode of actions many other traditional medicines; such as licorice 

(Glycyrrhiza glabra), a widely used herb with many medicinal properties (H. Liu et 

al., 2013); Radix Curcumae formula, which consist of four herbs and it is 

applied to prevent CCVD (Tao et al., 2013); Ma-huang Decoction, and herbal 

formula composed of four herbs which is used to treat several diseases such as 

cough, asthma, headache, arthalgia, etc. (Yao et al., 2013); seven herbs clinically 

used for the treatment of cardiovascular disease, Radix astragali Monogolici, Radix 

puerariae Lobatae, Radix ophiopogonis japonici, and Radix salviae miltiorrhiza (Wang et 

al., 2012), and Ligusticum chuanxiong, Dalbergia odorifera and Corydalis yanhusuo (B. Li 

et al., 2012); and two sets of tonic herbs, called Qi-enriching herbs and Blood-

tonifying herbs (J. Liu et al., 2013).  

Li X et al studied the underlying therapeutic mechanism of Compound 

Danshen Formula (CDF) with a systems-pharmacological model. CDF is a 

traditional Chinese medicine applied in the treatment of cardiovascular diseases; 

it is composed of 3 herbs. The chemical composition of each herb was 
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retrieved from Chemistry Database (www.organchem.csdb.cn), Chinese Herbal 

Drug Database (Qiao et al., 2002) and literature, and their structures were 

downloaded from LookChem (http://www.lookchem.com) or produced in 
ISIS Draw 2.5 and optimized in Sybyl 6.9. Potential targets of these compounds 

were searched in PharmMapper and the information of predicted target 

candidates related with CVDs was collected from TTD, PharmGKB and 

DrugBank. To validate compound-target associations related with CVD, they 

performed a molecular docking simulation on each bioactive compound using 

AutoDock software, and molecular dynamics simulation in the Amber 10 suite 

of programs (Case et al., 2005). Finally, they used Cytoscape to generate 

Compound-Target, Compound-Pathways and Target-Disease networks. 

Compound-target Network, these networks illustrated the interactions of 85 

compounds with 41 targets which revealed the mechanism of CDF on CVD 

(X. Li et al., 2012). 

Shujing S. et al. used a docking-approach in an integrated model of systems 

pharmacology to study the mechanism of actions of Fufang Xueshuatong 

(FXST) Capsule. FXST is a traditional Chinese remedy used for the treatment 

of cardiovascular diseases, it is composed of four-herb formula of Panax 

notoginseng, Radix astragali, Salvia miltiorrhize and Radix scrophulariaceae. In this 

study the chemical composition of the herb was not retreived from any existing 

database but from chromatographic studies they performed previously. 

Otherwise, 115 candidate proteins related to blood coagulation and thrombotic 

diseases were collected using data-mining on literature and public database 

sources, including PubMed, PubChem, Drugbank, PDTD, TTD and 

PharmGKB. Protein structures were downloaded from PDB. Surflex-Dock 

(Jain, 2007) was used to perform the docking studies, where the top 10 targets 

for each compound where selected as potential targets. The predicted 

interactions were represented in a compound-target network. Their results 

showed that 22 ingredients of FXST interact with 41 targets related to some 
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cardiovascular diseases, elucidating the synergistic mechanisms of this medicine 

(Sheng et al., 2014).  

Duhuo Jisheng Decoction (DHJSD), a traditional Chinese medicine used to 

treat osteoarthritis (OA), has been also studied to elucidate his therapeutic 

mechanism of action. Zheng et al, performed a study of this medicine using 

LigandFit, a docking program within DS 2.0, to perform a virtual screening of 

phytochemicals. DHJSD is composed of 15 medicinal herbs whose chemical 

compounds were retrieved from Chinese Herbal Drug Database and 

Handbook of the Constituents in Chinese Herbal Drug, obtaining 496 

compounds. The chemical structures were docked against 20 proteins 

associated to OA, and compounds were sorted according to their DockScore. 

The top 3% compounds of the DockScore sorting were linked to their 

corresponding proteins to construct drug-targets networks in Cytoscape, in 

order to search for multi-target compounds of DHJSD. A drug-drug 

association network was also built to classify compounds into clusters. Their 

results suggested that DHJSD had compounds with potential synergy and 

polypharmacology against OA (Zheng et al., 2013b). Using a similar 

methodology, the same research group also investigated the molecular 

mechanism of Taohong Siwu decoction (THSWD), another formulation 

prescribed in traditional Chinese medicine used in the treatment of OA (Zheng 

et al., 2013a), and two herbs used for the therapy of CVDs, Salvia miltiorrhiza 

and Panax ginseng, both investigated in many other TCM studies (Zheng et al., 

2013b). 

To elucidate the mechanism of action of a group of 32 herbs found in Chinese 

medicines used for the treatment of type II diabetes mellitus (T2DM), in 2013 

Tian S et al applied a protocol that combines molecular docking and 

pharmacophore mapping to discriminate potential inhibitors from non-

inhibitors for the selected proteins. 2479 phytochemicals were retrieved from 
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TCMCD and TCM-Datatabase@Taiwan and 42 T2DM-related targets and 

their structure were collected from TTD, Drugbank, KEGG and literature. 

Molecular docking and pharmacophore-based ligand profiling were performed 

and their accuracy and reliability was examined using a validation dataset 

composed of inhibitors and non-inhibitors. Since the accuracies of these two 

methods were variable, Bayesian classifiers were also used to identify potential 

inhibitors. Summarizing, 1590 drug-like compounds were determined to be 

potential inhibitors for 14 proteins, but to achieve more reliable predictions, 

only the top 693 compounds ranked by decreasing the Bayesian scores for each 

target were chosen. The analysis of the compound-target networks 

demonstrated that a small portion of inhibitors can interact with multi-targets 

(Tian et al., 2013).  

A mechanistic study of an anti-cancer Chinese medicine, Yadanzi (Brucea 

javanica), has been recently performed by Zhang et al applying a reverse docking-

based approach. 13 major ingredients of Yadanzi were collected from TCMD 

and their putative targets were identified using INVDOCK. 902 proteins 

(including 113 known therapeutic targets of marketed drugs) and 7119 

ingredient-target interactions were predicted, 2100 of them with a better 

binding affinity than their corresponding drug-target interactions according to a 

comparative docking analysis. 17 of the 902 targeted proteins were mapped in 

KEGG pathway of non-small lung cancer (NSCLC), and the network analysis 

suggested that anti-cancer activity of Yadanzi is result of the manipulation of 

MAPK signalling and the phosphorilation process of anti-apoptosis (Zhang et 

al., 2014). 

Shi et al has applied a network pharmacology approach to understand the 

mechanisms of action of Bu-shen-Huo-xue formula (BSHX) against chronic 

kidney disease (CKD). This medicine is composed of five herbs, for which are 

retrieved 774 compounds. 478 genes associated with CKD were collected from 
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OMIM, Genetic Association Database (GAD) and microarrays of Gene 

Expression Omnibus (GEO), and 31 proteins associated to CKD from TTD 

and Drugbank. For the construction of a natural-product target network a 

molecular docking was performed to predict phytochemical putative targets. 

Finally, it was built a network including PPi extracted from human protein-

protein databases. Networks analysis revealed that BSHX exerts his therapeutic 

effect through multi-channel network regulation. Tanshinone IIA, rhein, 

curcumin, calycosin, and quercetin were identified as the potential effective 

ingredients of this medicine (Shi et al., 2014). 

Network construction and analysis has also been used by Song J et al. to 

elucidate the molecular mechanism of the tradicional medicine Chinese formula 

Shu-feng-jie-du, which consist of 8 herbs and is used to treat influenza 

infection. They developed a module analysis approach to investigate complex 

networks, and used it identify pharmacological units, which are connected 

subneworks where a set of compounds with similar physicochemical properties 

modulate the activities of a group of function-similar gene-products. Their 

approach consisted of three steps, network construction, module detection and 

pathway analysis. To construct the compound-target network, they collected all 

the necessary data from existing databases, the herb composition was extracted 

from the Chemistry Database (http://www.organchem.csdb.cn), and the 2D 

structure from PubChem, obtaining 243 chemicals, on the other hand, the 

potential targets are retrieved from Drugbank, CTD and STITCH. In the 

network it was also integrated protein-protein interactions (PPi) data from 

databases such as Human Protein Reference Database (Peri et al., 2004) and 

BioGrid (Stark et al., 2006) (protein-protein databases). They identified four 

pharmacological units, and 24 out of 40 enriched pathways that were ranked in 

the top 10 corresponding to each pharmacological unit were relevant for the 

process of influenza infection (Song et al., 2013).  
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The mechanisms of action of other 18 plants used for treating influenza have 

also been studied by Gu S et al using molecular computational methods. They 

collected the structures of plant ingredients in TCMD and the available 

structures of influenza viral proteins from PDB in order to perform docking 

simulations in AutoDockTools. The predicted interactions suggested that these 

herbs can inhibit influenza via the targeting of various viral proteins, and are 

effective against different influenza subtypes (Gu et al., 2013). 

A similar approach has been applied by Ma S et al to investigate the mechanism 

at the molecular level of TCM for the treatment of sepsis. They identified 16 

targets involved in sepsis diseased and 343 compounds from 5 herbs to 

perform a virtual docking using Schrodinger Glide. To validate the predicted 

interactions, compounds that inhibited thrombin protein in computational 

studies were tested in vitro. Docking results showed that multiple bioactive 

compounds targeted multiple proteins and the first 10 compounds were 

characterized. On the other hand, the in vitro assays suggested a good 

correlation with the virtual screening (Ma et al., 2013). 

Otherwise, Wang X et al applied molecular docking and virtual screening to 

identify potential natural ingredients able to inhibit inducible nitric oxide 

synthase (iNOS). They generated a pharmacophore model with GALAHAD 

from a set of iNOS inhibitors selected from the literature; and after testing it, 

the model was used to screen TCMD, which contains 23033 compounds. From 

screening it was obtained a hit list of 498 ingredients to be used in the 

molecular docking, performed in Surflex-Dock. For the top 20 compounds 

with a higher docking score, they searched in related literature for experimental 

evidence of their capability decreasing the activity or production of NO (Wang 

et al., 2014).  
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Arya H and Coumar MS searched fragment-like lead molecules in TCMD for 

filariasis target asparaginyl-tRNA synthase. For this study, 95 chemicals 

reported from eight plants used for the treatment of worm infection were 

retrieved from TCMD@Taiwan. Two different virtual screening approaches 

were used to identify the hits, docking-based virtual screening and E-

pharmacophore virtual screening. The best hits from both screening were two 

aglycones of Agrimonia, that were later used to perform a molecular dynamics 

simulation study, which revealed that both compounds are forming stable 

interactions with the target protein (Arya and Coumar, 2014). 

In a similar way, it has been performed some studies to identify candidate 

compounds that inhibit Human immunodeficiency virus type-1 (HIV). Huang 

HJ et al screened TCM compounds to identify new candidates that inhibit HIV 

integrase (IN), a required factor for the infection of HIV. They used a docking 

approach to identify compounds with a higher dock score than D77, a known 

drug with demonstrated inhibition against HIV by binding IN. Subsequently, 

multiple linear regression and support vector machine were used to predict the 

potential bioactivity of TCM candidates. 9-hydroxy-(10E)-octadecenoic acid 

and beauveriolide I were identified as potential inhibitor and a molecular 

dynamics simulation confirmed that both compounds were capable of forming 

stable complexes with IN (Huang et al., 2014). On the other hand, Yanuar et al 

performed a virtual screening using AutoDock to identify potential inhibitors 

of HIV-1 protease. They downloaded the phytochemicals from HerbalDB 

(Yanuar et al., 2011) and chemical structures were docked against HIV-1 

protease using AutoDock in PyRx. Top 10 ranked compounds were list as hits 

from screening, 8-Hydroxyapigenin 8-(2’’,4’’-disulfatoglucuronide), 

isoscutellarin 4’-methyl ether, amaranthin, torvanol A, ursonic acid, 5-

Carboxypyranocyanidin 3-O-(6’’-O-malonyl-beta-glucopyranoside), Oleoside, 

jacoumaric acid, platanic acid and 5-carboxypyranocyanidin 3-O-beta-

glucopyranoside(Yanuar et al., 2014).  
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Docking simulations have also been applied by Sathishkumar N et al to identify 

ginsenosides from Panax ginseng with binding affinity to 3 anti-apoptotic 

proteins, BCL-2, BCL-XL and MLC-1. Ginseng is one of the most valuable 

medicinal plants in eastern Asia and many studies have revealed that his 

derivatives reduce tumor growth. 12 ginsenosides downloaded from PubChem 

were docked against the anti-apoptotic proteins in AutoDock. Rg1, Rg3, Rf and 

Rh2 were found to have binding affinity with BCL-2, BCL-XL and MLC-1, 

therefore they were identified as potent cancer inhibitors that could be used in 

chemotherapy (Sathishkumar et al., 2012). 

Src kinase is also an attractive target associated to cancer for which have been 

searched potential ligands in traditional medicine databases. In 2012 Tou WI 

and Chen CY screened TCM Database@Taiwan against Src kinase using 

LigandFit program within DS 2.5 (Venkatachalam et al., 2003). DS 2.5 was used 

to calculate individual molecular property descriptors of 53 Src inhibitors with 

known pIC50 values, which were used to construct 4 models to predicting the 

bioactivity of TCM candidates, MLR and SVM models for QSAR, and CoMFA 

and CoMSIA models for 3D-QSAR. DS 2.5 was also used to perform 

molecular dynamics to evaluate the stability of candidates with Src kinase. 

Isopraeroside IV, 9alpha-hydroxyfraxinellone-9-O-beta-D-glucoside and 

aurantiamide were the top three TCM candidates identified from docking, and 

based on their high stability and predicted bioactivities, they may be directly 

used as candidate lead compounds in biological studies (Tou et al., 2013). This 

methodology was also applied by the same authors to discover potential 

FAAH-like anandamide transporter (FLAT) antagonist, a drug target for pain 

regulation. This study suggested Guineensine as an antagonist of FLAT, with a 

potential application in relieving neuropathic pain (Tou et al., 2013). 

Paulke et al performed a study to compare the activity of lysergic acid 

diethylamide (LSD) and lysergic acid amide (LSA), a psychoactive ergotalkaloid 
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found in seeds of Argyreia nervosa, a medicinal plant in Ayurvedic medicine. This 

herb is used in number diseases, such as nervousness, bronchitis, tuberculosis, 

arthritis and diabetes, and LSA is considered as a natural substitute of LSD, due 

to their similar chemical structure. To predict the pharmacological profiles of 

both compounds and other Argyreia nervosa ergotalkaloids, they performed an in 

silico prediction model based on the similarity of the compounds against a 

dataset of ligands retrieved from ChemblDB with reported Ki values for 

serotonin, norepinephrine, dopamine, muscarine, and histamine receptor 

subtypes. The comparison of LSA and LSD pharmacological profiles exhibited 

that LSA has a weaker psychedelic activity than LSD, and should not be 

regarded as LSD-like psychedelic drug. On the other hand, a broad spectrum of 

possible targets was predicted for Argyreia nervosa ergotalkaloids that need to be 

more investigated (Paulke et al., 2013).  

Luo J. et al proposed an approach called directed TCM grammar systems 

(dTGS), based on EGS, to identify effective components from TCM formula. 

In order to testing their approach they studied the component-disease 

relationship of the TCM formula Bai-Hu decoction plus Wasting-Thirsting 

(BHDWT) and type 2 diabetes mellitus (T2D). The components of the formula 

were extracted from TCMD and the compound-target interactions were 

derived from STITCH, on the other hand the signal pathways of T2D were 

retrieved from KEGG and the chemical components used to treat T2D from 

TTD. The collected data was used to create a compound-target network of the 

formula and a biological network of T2D, and performing their EGS approach 

it could be identified the effective components groups. They found 19 

compounds acting on 20 proteins in T2D (Luo et al., 2013). 
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5 Conclusions 

In the recent years, many different in silico methodologies has been applied in 

the traditional medicine research. These tools facilitate the identification of 

therapeutic targets of medicinal plants and allow elucidating the mode of action 

of these plants, identifying which constituents are responsible of the therapeutic 

action of medicinal plants and putative new leads for drugs. 

The used methodologies include several different approaches, such as data 

mining, QSAR approaches and statistical machine learning methods. The in 

silico tool used in each study depends on the purpose of the research and it’s a 

decision of the researchers. Most of these tools predict new chemicals activities 

which previously haven’t been reported experimentally, so it is important to 

know the reliability of the used approach and to combine in silico methodologies 

with experimental tests in order to validate the predictions.  

Some of medicinal plants researches use existing data to seek out the 

therapeutic mechanism of these traditional medicines. They use to apply data 

mining or entity grammar systems methods to collect and select data. Despite 

there is enough existing data to achieving this purpose, there is still many data 

that remain unknown or is private, so the use of in silico tools would allow 

complementing their methodology. 

Frequently, the therapeutic action of traditional medicines use to be considered 

as the result of the synergistic effect of their active ingredients, so, the study of 

therapeutic mechanism can result in a complex network. Given the complexity 

of traditional medicines, these studies requires the performance of many 

experimental work, despite of in silico tools offer and economical and efficient 

way to explore the chemical composition activity, it suggest hypothesis that has 

to be tested experimentally subsequently, in vitro or in vivo.  
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Network pharmacology can be useful to elucidate the mode of action of 

medicinal plants and confirm their effective ingredients. However, despite of 

that there are many studies about the chemical composition of many plants 

with information about the concentration of each compound; the studies about 

traditional medicine therapeutic action don’t use to take into account this 

information. So, it is not possible to it is not possible to know which is the 

contribution of each compound to the plant therapeutic effect. 

Nevertheless, network pharmacology can be helpful to identify synergistic 

combinations and optimize the formula of traditional medicine and find new 

leads for drugs. 
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Abstract 

Polypharmacology is known as the ability of  small molecultes to bind to 

multiple proteins. It has been reported for drugs in several articles, but not 

much for other bioactive groups, like metabolites or natural products. In this 

respect, here we are presenting a comparison of  the activity data available of  

many groups of  compounds, such as Natural Products Libraris, Metabolites, 

Plant Compounds and Synthetic chemicals. To performing this study we are 

using virtual profiling methodology. Results pointed to a relatively high average 

of  targets proteins in most of  the groups, suggesting the importance of  study 

more in deep the activity of  less study compounds like human metabolites and 

plant compounds. 

 

 

                                                
* Corresponding autor. E-mail address: jmestres@imim.es 



Results 

 116 

Introduction 

From few years ago, with the growing understanding of diseases, one drug-one 

target premise has been shifted away to a new 'multi-target, multi-drug' model. 

Nowadays it is widely recognised that selective drugs are more exception rather 

than the rule and that most therapeutically effective molecules tend to interact 

with multiple proteins (Anighoro et al., 2014). It has been reported that only 

15% of drugs are currently known to interact only with one single target, 

whereas 50% of them interact with more than 5 targets (Jalencas and Mestres, 

2013). The ability of a molecule to interact with multiple proteins has been 

popularly referred to as 'polypharmacology'. 

Polypharmacalogy is the result of chemical and biological sources. Two main 

aspects are highlighted as chemical sources linked to polypharmacology, 

molecular properties and fragment composition, both much related to each 

other. From a decade ago it has prevailed the idea that simple molecules are 

more likely to bind to multiple proteins than complex molecules. However, 

despite of the increasing of molecular complexity tend to limit drug 

polypharmacology, it has been reported that within a given range of Molecular 

Weight values, promiscuity tends to increase with hydrophicity (Jalencas and 

Mestres, 2013). About biological sources, if a small molecule is binding to a 

protein, there are chances for it to bind also to other proteins related by 

sequence identity and/or binding site similarity (Liscio et al., 2013).  

Polypharmacology is not only a characteristic of drug compounds; natural 

products, phytochemicals and metabolites, may also be interacting with more 

than one protein target. In this part of the thesis we have compared the relative 

degree of polypharmacology between 5 types of compounds. We will explore 

whether bioactive compounds (natural compounds and drugs) differ from 

synthetic compounds by their intrinsic level of polypharmacology. 
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Methods 

Data collection 

The different compounds used in this study have been collected from many 

different databases: 

● Drugs: Drugbank. 

● Metabolites: HMDB (Wishart et al., 2013) 

● Plant compounds: DUKE (Duke, 2016), KNApSacK (Afendi et 

al., 2012), CVDHD (J. Gu et al., 2013), SWEETLEAD (Novick 

et al., 2013), and TCMSP (Ru et al., 2014). 

● Synthetic compounds: Synthetic compounds libraries from 

InterBioScreen, Analyticon, Indofine and TimTec. 

● Natural Products: Natural product libraries from AnalyticonNP, 

Arbonova, PrincetonNP, SelleckChem, SpecsNP, Sequoia 

Research Products, TimTec  

Chemical structures were downloaded directly from these databases. To avoid 

repeated structures, for each compound set it was generated InChIKeys. The 

quantity of compound structures collected for each bioactive group can be 

observed in Table 1. 

Chemical groups Total 
Drugs 2671 
Metabolites 10577 
Plant compounds 55116 
Synthetic compounds 488497 
Natural Product Libraries 70142 

        Table 1: Compounds collected for each group 
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Target profiling 

For all the compounds we performed a ligand-based virtual profiling using 

CTLink. Target profiles obtained are composed of experimental and predicted 

interactions. In both cases we are considering only those with activity values 

>6. For predicted interactions we add a cuttoff of 0.3 on confidence score. 

Similarity calculation 

In this study we have calculated the similarity of structures. This was performed 

for compounds of each group, and between group pairs. Similarity values have 

been calculated using phrag as molecular descriptors (Vidal et al., 2011)). For 

each was calculated the similarity for compounds pairs, between compounds 

inside each group, and between compounds of differents groups. 

Results 

In general we have found experimental activity for a low number of 

compounds (Figure 1). Drugs are the group with a higher percentage of 

chemicals with reported experimental activity, 36%. It is followed by 

metabolites group, with 482 metabolites, a 4.56%. While for the other groups 

these percentages are 1.9% for plants compounds, 0,47% for natural products, 

and 0,28% for synthetic compounds.  

Regarding the amount of compounds with experimental data, there is a 

relatively similar number of chemicals in most of the groups. For metabolites 

and plant compounds there are 482 and 635 chemicals. While for drugs, natural 

products libraries and synthetic chemicals we have found interactions for 908, 

1028 and 1388 compounds, respectively.  
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After adding predicted activities reported by CTLink, the number of  

compounds with interaction data is increasing significantly in all the groups 

(figure 1). The group with a lower % of  compounds with predicted interaction 

data is phytochemicals, 27%. While the chemical groups with higher % are 

drugs (73,6%), that are followed by Natural Products with 56,3% (Figure 1). 

Figure 1: Graphic with the percentage of  compounds for which we 

find experimental, for which we are able to predict some activy, and 

the % of  compounds for we are not able to obtain activity data. 

 

Figure 2: Similarity heatmap, right values are representing the 
similarity values assigned to each color on the heatmap. D=Drugs, 
M=Metabolites;PC=Plant Compounds; NP=Natural Products; 
S=Synthetic chemicals; C=CTLink 
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To understand prediction percentages we have to look on the similarity values 

of each chemical group (figure 2). We could assume that for groups with higher 

similarities with CTLink chemicals, it would be easier to predict their target 

profile. Metabolites group, one of the groups with a lower % , is the group with 

a lower similarity to CTLink  chemicals. As well, the opposite is happening with 

synthetic chemicals, where, moreover, we find a higher in-group similarity. The 

same is happening with natural products, that in addition have a high average 

Figure 3: Molecular structure of  flavone (left) and flavan (right) 

Figure 4: Promiscuity average values of  each compound group. In blue 
there are promiscuity values from experimental data, in red with 
experimental and predicted 
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similarity value with synthetic chemicals (0.33). 

On the other hand, lowest in-group similarities are found in Plant Compounds 

(0.16), Drugs (0.19) and Metabolites (0.25). The variability in drugs can be 

related with the use of Natural products on drug discovery to increase drugs 

chemical space.  

Oppositly to natural products, we observe a high similarity between natural 

products. It could be consequence of  the high number of  compounds sharing a 

basic chemical structure, like flavonoids (Figure 3).  

 Polypharmacology analysis 

For each group we measured the average number of target proteins for the 

compounds, promiscuity values (figure 4). Since the number of chemicals with 

experimental data is low in some groups like natural products and synthetic 

chemicals, we are obtaining very low average values.  

We observe many differences on the promiscuity of each group of compounds; 

being drugs the chemicals with a higher promiscuity, in average they are 

targeting 2.48 proteins. Followed by Metabolites, with 0.14. For the other 

chemicals groups this value is lower, around 0.10. 

After adding CTLink predicted data, the number of chemicals with target 

profile available is increasing in all chemical groups (Figure 4). Natural products 

and Synthetic chemicals are the groups with a most significant increase. It 

results on an average promiscuity of 4.57 for natural products, and 3,78 for 

synthetic chemicals. On the other hand, drugs promiscuity is even higher, 

increasing to 7.33 targets per compound 
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In order to analyse how vary the promiscuity value on each group of 

compounds after adding predicted data, we performed the same analysis but 

selecting only those compounds for which we already have experimental 

activity (figure 5). In general it can be appreciated an important variation in 

promiscuity values, especially in plant compounds and metabolites, that now 

have promiscuity values of 8.82 and 8.10 respectively. These values are very 

similar to that of synthethic chemicals, which is 8.12. So afterall we can see that 

there is a high predicted promiscuity in all groups. Natural products and drugs 

are also increasing their promiscuity, being 10.81 and 12.59, respectively. 

 

Conclusions 

As expected, drugs are the most well known compounds, and the group with a 

higher promiscuity (Tan et al., 2016), in average they are targeting more than 6 

proteins, increasing to 12 after predicting the full target profile with CTLink. 

Figure 5: Promiscuity average values of  each compound group. In blue 
there are promiscuity values from experimental data, in red with 
experimental and predicted 
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CTLink virtual profiling is increasing substantially the promiscuity value for all 

chemical groups. In all them, for chemicals with known experimental activity, 

values are reaching average promiscuity values that are over 8. Thus, not only 

drug may be targeting a high number of proteins, also other compounds such 

metabolites. Thus, metabolic networks may have a high complexity.  

Usually metabolic networks are represented in a linear way, with a few numbers 

of targets for each metabolite, but many are interacting with more than 2 

proteins. Metabolite polypharmacology may be related with enzyme 

promiscuity (Gololobov et al., 1994). Recent literature shows that enzyme 

promiscuity may result on enzyme side-reactions that are used for obtaining 

diverse kinds of molecules (Piedrafita et al., 2015). 

About natural products, they use to have a wide chemical space (Gu et al., 

2013), and be structurally complex (Morrison and Hergenrother, 2014), which 

could be associated to a low promiscuity (Jalencas and Mestres, 2013). 

However, here we have found that they have high promiscuity average values in 

all the cases. They are the second compound group with a highest promiscuity, 

which is very similar to the drugs one.  

High promiscuity values are found also on synthetic compounds,  it is the 

biggest group of compounds but also the group with a highest in-group 

similarity, and the most similar group to CTLink chemicals. With all these 

factors we have been able to predict the activity profile of a high number of 

them. So, for Synthetic chemicals, as well as for Natural products, promiscuity 

is increasing after adding predicted data. This value is related with the fact that 

many of these synthetic chemicals may have been used as lead compounds, so 

they may have a high structural similarity to drugs. 

On the other side, there are some other groups with low inter-group similarity 

values to CTLink compounds, such as Plant Compounds and specially HMDB 

metabolites. This is reflected on the low proportion of chemicals from these 
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groups for which we predict their target profile. 

Otherwise, despite of there are many compounds with reported experimental 

activity (Figure 1), there's still many information to be added on their target 

profile, as can be observed in figure 5, 

Finally, for human metabolites and plant compounds there is a low amount of  

chemicals with reported experimental data. But like for other groups, with 

CTLink we are able to perform the target profile for a significant number of  

compounds. There we are finding high promiscuity values. This suggest that 

chemical space of  plant compounds could be higher than those of  Natural 

Product Libraries. So it should be of  interest to go in deep on these chemical 

activities research, in order to use their structures to expand to identify 

potential lead compounds which would allow to expand drug's chemical space. 

In a similar way, metabolite activities have yet to be explored for a high number 

of  compounds, despite of  knowing some reactions where they are taking part, 

they are interacting with many other proteins, and probably altering the 

metabolic flux. 

 

References 
Afendi, F.M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., 

Nakamura, K., Ikeda, S., Takahashi, H., Altaf-Ul-Amin, M., Darusman, 
L.K., Saito, K., Kanaya, S., 2012. KNApSAcK family databases: 
integrated metabolite-plant species databases for multifaceted plant 
research. Plant Cell Physiol. 53, e1. doi:10.1093/pcp/pcr165 

Anighoro, A., Bajorath, J., Rastelli, G., 2014. Polypharmacology: Challenges and 
Opportunities in Drug Discovery: Miniperspective. J. Med. Chem. 57, 
7874–7887. doi:10.1021/jm5006463 

Duke, J.A., 2016. Dr. Duke’s Phytochemical and Ethnobotanical Databases. 

Gololobov, M.Y., Stepanov, V.M., Voyushina, T.L., Morozova, I.P., 
Adlercreutz, P., 1994. Side reactions in enzymatic peptide synthesis in 
organic media: Effects of enzyme, solvent, and substrate 
concentrations. Enzyme Microb. Technol. 16, 522–528. 
doi:10.1016/0141-0229(94)90024-8        



Results 

 125 

Gu, J., Gui, Y., Chen, L., Yuan, G., Xu, X., 2013. CVDHD: a cardiovascular 
disease herbal database for drug discovery and network pharmacology. 
J. Cheminformatics 5, 51. doi:10.1186/1758-2946-5-51 

Gu, S., Yin, N., Pei, J., Lai, L., 2013. Understanding molecular mechanisms of 
traditional Chinese medicine for the treatment of influenza viruses 
infection by computational approaches. Mol. Biosyst. 9, 2696–2700. 
doi:10.1039/c3mb70268e 

Jalencas, X., Mestres, J., 2013. On the origins of drug polypharmacology. Med 
Chem Commun 4, 80–87. doi:10.1039/C2MD20242E 

Kenny, B., Ballard, S., Blagg, J., Fox, D., 1997. Pharmacological Options in the 
Treatment of Benign Prostatic Hyperplasia. J. Med. Chem. 40, 1293–
1315. doi:10.1021/jm960697s 

Liscio, P., Camaioni, E., Carotti, A., Pellicciari, R., Macchiarulo, A., 2013. From 
polypharmacology to target specificity: the case of PARP inhibitors. 
Curr. Top. Med. Chem. 13, 2939–2954. 

Morrison, K.C., Hergenrother, P.J., 2014. Natural products as starting points 
for the synthesis of complex and diverse compounds. Nat Prod Rep 31, 
6–14. doi:10.1039/C3NP70063A      

Novick, P.A., Ortiz, O.F., Poelman, J., Abdulhay, A.Y., Pande, V.S., 2013. 
SWEETLEAD: an in silico database of approved drugs, regulated 
chemicals, and herbal isolates for computer-aided drug discovery. PloS 
One 8, e79568. doi:10.1371/journal.pone.0079568 

Piedrafita, G., Keller, M.A., Ralser, M., 2015. The Impact of Non-Enzymatic 
Reactions and Enzyme Promiscuity on Cellular Metabolism during 
(Oxidative) Stress Conditions. Biomolecules 5, 2101–2122. 
doi:10.3390/biom5032101 

Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., 
Yang, Y., Xu, X., Li, Y., Wang, Y., Yang, L., 2014. TCMSP: a database 
of systems pharmacology for drug discovery from herbal medicines. J. 
Cheminformatics 6, 13. doi:10.1186/1758-2946-6-13 

Tan, Z., Chaudhai, R., Zhang, S., 2016. Polypharmacology in Drug 
Development: A Minireview of Current Technologies. ChemMedChem 
11, 1211–1218. doi:10.1002/cmdc.201600067   

Wishart, D.S., Jewison, T., Guo, A.C., Wilson, M., Knox, C., Liu, Y., Djoumbou, 
Y., Mandal, R., Aziat, F., Dong, E., Bouatra, S., Sinelnikov, I., Arndt, D., 
Xia, J., Liu, P., Yallou, F., Bjorndahl, T., Perez-Pineiro, R., Eisner, R., 
Allen, F., Neveu, V., Greiner, R., Scalbert, A., 2013. HMDB 3.0--The 
Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801-
807. doi:10.1093/nar/gks1065 



Results 

 126 

Vidal, D., Garcia-Serna, R., Mestres, J., 2011. Ligand-based approaches to in 
silico pharmacology. Methods Mol. Biol. Clifton NJ 672, 489–502. 
doi:10.1007/978-1-60761-839-3_19 



Results 

 127 

III.4: Completeness of metabolic databases  
 

Joaquim Olivés, and Jordi Mestres* 

Systems Pharmacology, Research Programme on Biomedical Informatics (GRIB), IMIM 

Hospital del Mar Medical Research Institute and University Pompeu Fabra, Parc de Recerca 

Biomèdica, 08003 Barcelona, Catalonia, Spain 

 
 

 

Abstract 

Currently there are several chemicals databases containing information about 

metabolomes, This databases provides scientist with the most current and 

comprehensive metabolic data. Some of the most important databases are 

HMDB, KEGG and BioCyc. These resources have facilitated the research for 

thousands of studies, which, otherwise, may allow the expansion of these 

databases. An actualized maintenance of this data is difficult because of the 

quantity of published studies about metabolomics. As consequence, despite 

sharing a high amount of data, these database may contain also different data. 

On this study we have explored the completeness of these databases, analysing 

the amount on metabolites activity data that can be added to HMDB from 

other resources, KEGG, BioCyc and ChEMBL. In addition, we have applied 

an In silico methodolosy for predicting activity of these metabolites. This article 

described how metabolic network complexity is increasing after expanding data 

from HMDB 
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Introduction 

 

Metabolome can be defined as the complete collection of small molecule 

metabolites found in the human body. These molecules include peptides, amino 

acids, nucleic acids, carbohydrates, organic acids, vitamins, minerals, food 

additives, drugs, toxins, pollutants and any other chemical that humans ingest, 

metabolize, catabolise or come into contact with. Metabolome, in contrast to 

genome and proteome, is not easily defined, since it is not solely dictated by our 

genes. Metabolome consists of a mix of genetic and external factors. Some 

external factors that are contributing to metabolome are environment (like what 

we eat, breathe and drink), and microflora (the bacteria that live in our intestinal 

tract). So it is composed of both endogenous and exogenous compounds. 

Endogenous metabolites are small molecules synthesised by the enzymes 

encoded by genome or microbial genomes, while exogenous metabolites are 

foreign or xenobiotic chemicals consumed as foods or other consumables 

(Wishart et al., 2013; Zamboni et al., 2015).   

A comprehensive knowledge of metabolism is essential for a better 

understanding of diseases, and exploring characteristics of organisms. In 

consequence, metabolomics has emerged as a functional methodology in a wide 

range of research areas such as toxicology, pharmacology, food technology, 

nutrition, microbial biotechnology, systems biology, and plant biotechnology. 

Because many metabolic mechanisms are yet to be well characterized, many 

studies focused on metabolome prediction have been performed (Cesare 

Marincola et al., 2015).  

HMDB is a resource dedicated to provide the most current and comprehensive 

coverage of the human metabolome. It was released in 2007 and since then it 

has facilitated research for nearly 1000 published studies in metabolomics. 

Currently it has annotated more than 40000 metabolites, which includes both 
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'detected' metabolites (those with measured concentrations or experimental 

confirmation of their existence) and 'expected' metabolites (those for which 

biochemical pathways are known or human intake/exposure is frequent but the 

compounds has yet to be detected in the body) (Wishart et al., 2013). 

HMDB annotations provide detailed compound description which includes 

compound synonyms, biofluid concentration, tissue location data and synthesis 

records. Furthermore, HMDB also contains data of proteins, diseases and 

pathways linked to metabolites.  

In this part of  the thesis we've tried to complement the data available in 

HMDB with the data available other databases with information available in 

other public databases, KEGG and HumanCyc, which are metabolome 

databases, and ChEMBL (Caspi et al., 2014; Gaulton et al., 2012; Kanehisa et 

al., 2014); and predicted data from CTLink, a similarity based virtual profiling 

software. 

 

Methods 

HMDB is composed by 41993 metabolites where we find 41681 different 

chemical structures. Some of the information available about metabolites in 

HMDB is their ‘origin’, which can be endogenous or exogenous. We can find 9 

different origins and each compound can have more than one (Table 1). To 

perform these completeness study, from HMDB compounds we will use only 

endogenous compounds.  
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Origin Metabolites Metabolites  
MW<800; nºC>2; rotors<40  

CTLink – Applicability domain 
Endogenous 29208 11024 
Food 32416 14044 
Drug 1501 1392 
Drug metabolite 920 879 
Microbial 171 156 
Toxin/Pollutant 163 132 
Plant 149 139 
Drug or steroid metabolite 32 32 
Cosmetic 17 14 

Table 1: Number of metabolites classified according to their origin. The 

total number and total number of metabolites within the applicability 

domain of CTLink 

 

On the other hand, in KEGG we find 13329 compounds, while in BioCyc 

(HumanCyc) we have 1577 metabolites, from all these compounds, 4777 and 

983, respectively, are associated to some enzyme. Finally, ChEMBL contains 

activity data for more than 400.000 chemicals with drug-like properties. 

From each database we have downloaded the compound structures and 

selected those which have a molecular weight lower than 800 Armstrongs, more 

than 2 carbons, and less than 40 rotors, in order to avoid minerals, water and 

other small molecules that are not in the applicability domain of CTLink. 

In CTLink and ChEMBL data, it is available the activity value in most of the 

reported interaction. For this study we have collected those interactions from 

ChEMBL with an activity higher than 5, while from CTLink we've selected 

those interactions with an activity higher than 5 in experimental interactions, 

and higher than 7 in predicted interactions. 
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Once data have been filtered we proceeded to associate metabolite with 

enzymes using the data available in each database. In BioCyc (HumaCyc) and 

KEGG metabolites are directly associated to EC (Enzyme Comission) number. 

However in HMDB, ChEMBL and CTLink compounds are linked to proteins, 

uniprot ID. In these cases, using the protein Uniprot ID we are able to 

associate these metabolites to EC numbers. 

 

Results  

After filtering the metabolites available in HMDB, KEGG and 

HumanCyc/MetaCyc, we have 11024, 12221 and 1415 metabolites, 

respectively. In table 2 it can be observed the data provided by each database. 

Source Compounds Proteins Enzymes (EC) 
HMDB 11024 4140 1161 
KEGG 12221 - 3529 

BioCyc (HumanCyc) 1415 3217 1421 
ChEMBL 424075 2881 798 

Table 2: Drug-like compounds from each database, and the number 

of proteins and enzymes associated to these compounds. 

 

From 11024 endogenous metabolites in HMDB, only 2051 are present in some 

of the others databases. The distribution of these compounds can be observed 

in the venndiagram of figure 1. KEGG is the database sharing a higher number 

of metabolites with HMDB, 1626. It is followed by ChEMBL, with 792 

compounds, and finally HumanCyc, that is sharing almost the half of 

compounds with HMDB, 634. On the other hand, CTLink is able to predict 

some interaction for 3313 endogenous metabolites from HMDB, 951 of them 

included in other databases. 
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 From 11024 endogenous metabolites in HMDB, only 2051 are present in 

some of the others databases. The distribution of these compounds can be 

observed in the venndiagram of figure 1. KEGG is the database sharing a 

higher number of metabolites with HMDB, 1626. It is followed by 

ChEMBL, with 792 compounds, and finally HumanCyc, that is sharing 

almost the half of compounds with HMDB, 634. On the other hand, 

CTLink is able to predict some interaction for 3313 endogenous 

metabolites from HMDB, 951 of them included in other databases.  

Regarding on these 2051 HMDB metabolites we observe that only 913 are 

associated to some enzyme protein. They are linked to 1099 different EC 

numbers, and there is in total 6321 interactions with EC (Table 3). 

 

Figure 1  
Distribution of  endogenous druglike compounds in databases. 
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Source Compounds 
(*) 

Compounds(*) 
(cumulative) 

EC EC 

(cumulative) 
Interactions Interactions 

(cumulative) 

HMDB 913 913 1099 1099 6321 6321 

HumanCyc 491 982   (+69) 973 1289 (+190) 2288 6946 (+625) 

KEGG 783 1079 (+97) 865 1302 (+13) 2998 7308 (+362) 

ChEMBL 219 1189 (+110) 148 1319 (+17) 386 7613 (+305) 

CTLink 489 1319 (+130) 219 1333 (+14) 1005 8214 (+601) 

 Table 3: Compounds from each database that are also present in 

HMDB, the number of enzymes associated with, and the number of 

interactions between these metabolites and enzymes. Cumulative 

columns show the number of interacting compounds and enzymes 

after adding each database. (*)Compounds associated to some enzyme 

protein. 

 

After adding the data available in HumanCyc, KEGG and ChEMBL, the 

number of interacting compounds and enzymes has increased 30.2%  and 20%, 

respectively, while the number of interactions both components increases a 

20.4%. After adding predicted data from CTLink this percentages are increasing 

to 44.5%, 21.3% and 30%, respectively (Figure 2). 

Metabolites associated to a higher number of new interactions with enzymes 

added are coenzymes like ATP, ADP, NADH, NADPH, NAD, ADP and 

AMP. ATP and ADP are essential nucleoside phosphates to the flow of energy 

in living cells. Energy transfer is the result of dephosphorylation of ATP. While 

AMP is a nucleoside phosphate that can be produced during the synthesis of 

ATP or the hydrolysis of ADP or ATP (Berg et al., 2009). On the other hand, 

NAD+ and NADH are coenzymes involved in redox reactions, carrying 

electrons from one reaction to another. NAD+ is an oxidizing agent, accepts 

electrons from other molecules, and NADH is used as reducing agent to donate 
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electrons. Finally NADPH is a cofactor used in anabolic reactions as reducing 

agent (Ying, 2008). HumanCyc is the database adding more data about these 

metabolites. All them are necessary in a several quantity of reactions, so their 

activity is well known, as consequence it would be expected that their activity 

was completely reported. However, in many cases, in reactions data cofactors 

use to be excluded, including only the main substrates and products. 

Some other compounds for which we are adding activity data are dopamine, 

glutamate and 3,3',4',5-Tetrahydroxystilbene. The first 2 are classified as 

“Detected and Quantified” in HMDB, while last one is only 'Expected'. From 

these 3 metabolites, dopamine and glutamate are synthesized in the body 

(Elsworth and Roth, 1997; Watford, 2015). 3,3',4',5-Tetrahydroxystilbene is a 

metabolite of resveratrol, which is found in wine (Maggiolini et al., 2005). 

Glutamate is one of the non-essential aminoacids, meaning that it is synthesized 

in the body, it is a key molecule in cellular metabolism, with many functional 

roles (Berg et al., 2002; Vazana et al., 2016) 

 

Metabolites HMDB + HumanCyc + KEGG + ChEMBL + CTLink 
ATP 229 269    (+40) 272     (+3) 272       (+0) 173      (+1) 

NADH 122 148    (+26) 164   (+16) 164       (+0) 165      (+1) 
NADP 153 181    (+28) 191   (+10) 191       (+0) 191      (+0) 
NAD 146 175    (+29) 182     (+7) 182       (+0) 183      (+1) 
ADP 171 197    (+26) 200     (+3) 203      (+3) 203      (+0) 
AMP 95 113    (+18) 113     (+0) 115       (+2) 116      (+1) 
Dopamine 28 30        (+2) 30       (+0) 37        (+7) 58      (+21) 
3,3',4',5-
Tetrahydroxystilbene 

0 0        (+0) 1         (+1) 3          (+2) 17      (+14) 

L-Glutamic acid 57 67      (+10) 69       (+2) 69        (+0) 69        (+0) 
Succinic acid 23 28      (+5) 30       (+2) 30        (+0) 30        (+0) 

Table 4: Table with some of the compounds with more enzyme 
interactions added, and their sources. Data is cumulative 
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A 

B 

Figure 2: 
Distribution of  endogenous 
druglike compounds in databases. 
In red, metabolites, in blue EC. 
A) Network with data from 
HMDB 
B) Network with data from 
HMDB completed with new data 
from KEGG, BioCyc, ChEMBL 
and CTLink 
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On the other hand, table 5 shows some of the properties of both networks in 

figure 2. There is a significant increase on the average degree, from 3,716 to 

4,833. With the increase of the average degree we would expect a decrease of 

network diameter; however it is increasing from 12 to 16 as consequence of the 

addition of new nodes to the network, which reduce the number of isolated 

components. 

 

 HMDB HMDB + HumanCyc + KEGG + 
ChEMBL + CTLink 

Avg Degree 3,716 4,833 
Network Diameter 12 16 
Connected components 1397 756 
Avg Path Length 4,549 4,529 
Table 5: Properties of the networks from Figure 2 

 

The initial number of components is 1397 and it is reduced to 756 after 

adding data and connecting many of them to the main network. Despite of 

this, the average path length decreases as result of the new connections. 

This new interactions can be from data of reactions not reported in HMDB 

or metabolite inhibitory activities. The first case would be important in the 

designing of synthetic metabolism, to optimize synthesis pathways (Bilgin 

and Wagner, 2012). 

  

Conclusions 

Metabolomics are a difficult omics science to be investigated because of its 

expensive experiments, but it has been extensively studied for some model 

organisms, such as Human, Escherichia coli, or Saccharomyces cerevisiae (Guo 

et al., 2013; Jewison et al., 2012). Nowadays, there are many databases collecting 

available metabolic data (Caspi et al., 2014; Kanehisa et al., 2014; Wishtart et al., 
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2013). They are sharing an important amount of data, however, none of them is 

complete. One of the reasons is the difficulty of maintaining them completely 

actualized with recently published data. In this study we observe how metabolic 

data is varying between these databases and how it is increasing after checking 

overlapped data between several databases and adding specific data from other 

databases.  

In this study we have focused on the available data in HMDB (Wishtart et al., 

2013). Where a 25% of the compounds classified as endogenous are found in 

other sources. Their activity data could be extended a 20% using other 

metabolic databases, which demonstrates the incompleteness of this database.  

On the other hand, the other data sources could also be extended using HMDB 

database.  

Despite of focus our study on the activity data of few HMDB metabolites 

found in other databases, other data sources, like HumanCyc, are also including 

human metabolites not reported in HMDB, such as 7alpha,12alpha-dihydroxy-

4-cholesten-3-one and Lipoyl-AMP, which is found in HMDB but with ‘origin’ 

field not defined. In the same way, there are many metabolites found in HMDB 

that are not present in BioCyc. So, both databases are clearly complementary.  

On the other hand, ChEMBL is focused in drugs and drug-like compounds 

(Gaulton et al., 2012), so we cannot find there many metabolites activity data. 

However, CTLink allow us to predict not reported activity for a few more 

metabolites, in total 2071. Through virtual profiling we are increasing the 

number of interactions of these metabolites around 30%. 

This study reflects the high amount of  missing data about human metabolism, 

one of  the most studied metabolomes. Moreover, relations between metabolites 

and enzymes are not only substrate/product-enzyme, but metabolites may also 

have inhibitory activities. All these interactions are increasing the complexity of  

metabolic systems and their dynamics. 
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Abstract 
 

Mycoplasma pneumoniae is a pathogenic bacterium belonging to the class 

Mollicutes. Due to its small genome and its ability to grow in vitro, it has 

become and interesting model organism for systems biology approaches. In 

this study we have reconstructed its metabolic network using a genomic-

scale approach that has been validated with the data of previous 

experimental study. In our genome-scale approach we are implementing also 

virtual profiling, which may contribute to get more activity data, increasing 

the complexity of the metabolic network. According to the results, 837 

metabolites and 481 enzymes have been identified. This model would be 

useful on the mycoplasma metabolome research. 
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Introduction 

Mycoplasma pneumoniae is a human parasite that colonizes the lung epitelium, it is 

involved in several diseases, amongst them walking pneumonia (Waites and 

Talkington, 2004). It is a bacterium belonging to Mollicutes, a class of bacteria 

lacking cell walls and typically having small genomes under 1000kb. This 

bacterium is surrounded by a cytoplasmic membrane only, which contains 

cholesterol as indispensable component (Baseman and Tully, 1997).  

Mycoplasma causes up to 40% of the community acquired pneumonias. 

Despite of the infection is mild in most of the cases; it is a significant cause of 

hospitalisation in elderly population and immunocompromised patients. 

Manifestations of M. pneumoniae infections can range from self-limiting upper 

respiratory illness to severe pneumonia (Chaudhry et al., 2016). In addition, 

20% of these infections can be accompanied by extrapulmonary complications, 

due to the direct infection of other organs, or infection-associated autoimmune 

phenomena (Xiao et al., 2015). 

M. pneumoniae has been highly investigated, and several virulence mechanisms 

have been identified. As surface parasite, since it is incapable of de novo 

synthesis of aminoacids due to its highly reduced genome, it requires close 

association with the host cell to survive. Moreover, mycoplasma also requires 

host cholesterol in their growth. The adherence to host respiratory epitelium 

initiate the cell injury, tissue disruption and cytotoxic effects  (Himmelreich et 

al., 1996). 

Because of its growth requirements, initially it was not considered as an 

organism suitable for basic studies, until 1990s, with the appearance of new 

methods of molecular biology (Dybvig, 1990). Its exceptional simplicity and 

reduced genomic complexity has led to mycoplasma to become appreciated for 

researchers. Beyond dealing with diseases that it causes, it have been used as 

simplified model for cell structure and genome analysis (Balish, 2014). So it has 
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become a model organism for bacterial systems biology. 

Mycoplasma pneumoniae is the most comprehensively analysed specie of 

Mycoplasma, there are many recent studies characterizing its transcriptome, 

proteome and metabolome (Xiao et al., 2015).  Yus et al (2009) constructed a 

manually curated metabolic network for Mycoplasma pneumoniae, consisting of 

189 reactions catalysed by 129 enzymes, and 225 metabolites. Compared with 

more complex bacteria, M. pneumoniae metabolic network results to have a more 

linear topology and contained a higher fraction of multifunctional enzymes.  

Currently, genomic-scale metabolic network reconstruction has become and 

important tool for studying system biology of metabolism. This process extract 

biochemical data from genome annotations to computational interconnect it 

with genomic data available for another organism. For dozens of organisms a 

genomic-scale metabolic model has been constructed, such as Haemophilus 

influenza Rd (Edwards and Palsson, 1999), Saccharomyces cerevisiae (Nookaew et al., 

2011), rice (Liu et al., 2013) or human (Ryu et al., 2015). Metabolic networks 

allow a better understanding of metabolism and cellular behaviour, which 

facilitates biological studies in a variety of applications, including network 

properties, metabolic engineering and drug discovery (Cazzaniga et al., 2014; 

Kell and Goodacre, 2014; Simeonidis and Price, 2015). 

The aim of this study is to predict the metabolites present in organisms using 

the data available in BioCyc. This database is an assortment of more than 1700 

organism specific Pathway/Genome Databases. They provide metabolites, 

enzymes, reactions and metabolic pathways. One of the databases found in 

BioCyc is MetaCyc, which provides experimentally determined metabolic 

pathways and enzymesof organisms from all domains of life (Caspi, 2015). 

Besides we have applied virtual profiling on the BioCyc metabolites before the 

metabolome prediction. On the other hand, we are also applying virtual 

profiling to predict chemical off-targets. This may increase metabolic networks 
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complexity. 

In this study we have predicted the metabolome of Mycoplasma pneumoniae 

through a genome-scale metabolic reconstruction framework. Since 

metabolome of M. pneumoniae has been already constructed with experimental 

methodologies by Yus et al, we are able to check the recall and precision of our 

prediction method. Moreover, we will analyse how is increasing the complexity 

of the metabolic network. 

 

Methods 
To reconstruct metabolic network of Mycoplasma pneumoniae we are using   

available data from BioCyc. Our framework is divided in 3 steps:  

1-  Retrieving from MetaCyc: all reported data from Mycoplasma is 

retrieved. 

2- Genome-scale reconstruction framework (MProjection): Mycoplasma 

genome is projected to BioCyc metabolomic data using OrthoMCL (Fischer et 

al., 2011). 

3- Virtual profile and projection (CTLink): For the metabolites predicted 

for mycoplasma we perform a ligand-based virtual profil using CTLink. Using 

the same methodology, we are projecting genomic data on virtual profile 

results. 

 

 -Metabolome and reactions 

For metabolome reconstruction framework we've used the data available in 

BioCyc and CTLink. From BioCyc we downloaded the data from databases 

belonging to Tier 1, which are the databases that have received at least one year 

literature based manual curation (Caspi et al., 2010). Currently it is composed of 
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7 databases. Among them, the major database is MetaCyc, which contains 

experimental information of 2332 organisms from 1086 species. The other 6 

databases are Humancyc (Homo sapiens), which contain metabolic information 

of humans, EcoCyc (Escherichia coli), AraCyc (Arabidopsis thaliana), YeastCyc 

(Saccharomyces cerevisiae), LeishCyc (Leishmania major Friedlin) and TrypanoCyc 

(Trypanosoma brucei) (Caspi et al., 2012; Shameer et al., 2015). 

From each organism of BioCyc we are retrieving their metabolites, and the 

proteins (uniprot ID) and enzymes that are interacting with. The structure of 

metabolites is downloaded from PubChem through the PubChem ID available 

in BioCyc. 

BioCyc compounds are identified inside each database with a BioCyc_ID, and 

have associated a PubChem ID. We have found that the same BioCyc ID can 

be associated to different PubChem ID in different databases; moreover one 

PubChem ID can be associated to different BioCyc ID. In most of these cases 

they are the same compounds with a different protonation or deprotonation.  

 

 -Genomes 

BioCyc uses its own ID for proteins, but many of them are linked to Uniprot 

ID. In these cases we have used the genomic sequences from Uniprot 

Database. While for species where BioCyc data is not associated to Uniprot 

DB, such as TrypanoCyc and LeishCyc, we used the genomic data of its own 

database.  

Identification of metabolites has been performed through the projection  by 

orthology of proteins associated to the metabolites onto the genome of the 

organism whose metabolome we are predicting.  
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 -Virtual profiling 

For the virtual profiling we have used CTLink. It is a software for large off-

target pharmacology and predictive safety of small molecule pharmaceuticals, 

cosmeceuticals and agrochemicals. It creates chemical pharmaceutical profiles 

using ligand-based approaches and cross pharmacology. The data used for these 

predictions is extracted from several public databases including ChEMBL 

(Gaulton et al., 2012), DrugBank (Wishart et al., 2006), BindingDB (Gilson et 

al., 2016), IUPHARdb (Southan et al., 2016), PDSP (Roth et al., 2004) and 

affinDB (Block et al., 2006).  

The activities obtained from CTLink are filtered considering its confidence 

score, which is related with predicted activity value. The cut-off used for 

confidence score is 0.7. 

 

 -Orthology 

Orthologous mapping of  genes was calculated with OrthoMCL-DB Version 5. 

We use the service of  the OrthoMCL-DB Website, which maps our proteins to 

OrthoMCL-DB groups. In the mapping process, this tool performs a BLASTP 

against all the proteins in OrthoMCL-DB, using a cut-off  of  1e-5 and 50% 

match. Proteins are assigned to the group containing its best hit. If  the best 

matching protein isn't assigned to any group, it is assigned to NO_GROUP 

(Fischer et al., 2011). 

 

Results and Discussion 
 
 BioCyc Data 

From Biocyc database it has been collected 12604 metabolites associated to 

10158 InchiKeys. 7297 of them are part of some reaction. Reactions may be 
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Table 1: Data extracted from each BioCyc Database and the results 

from the profile in CTLink. 

directly linked to proteins and their uniprot ID or BioCyc enzyme IDs (that 

may be linked to Uniprot IDs). In total there are 5768 metabolites associated to 

some uniprot ID. On the other hand, through CTLink we are able to predict or 

collect target proteins for 2828 metabolites. 

Compounds 

Interacting 

Interactions  

Total 
Enzymes Proteins 

Enzymes Proteins 

Enzymes Proteins 
MetaCyc 12135 7210 5335 5643 19821 29231 80526 
YeastCyc 1151 928 891 849 1190 4096 5465 
HumanCyc 2014 1415 1419 1421 3217 6130 12250 
TrypanoCyc 944 757 463 758 978 3448 3596 
LeishCyc 722 507 464 526 952 2341 3659 
AraCyc 2822 2248 2053 1508 5895 8280 31069 
EcoCyc 3007 1030 1101 1103 1341 4928 5554 
TOTAL 12604 7297 5768 5704 27844 32833 101137 
        
CTLink 2828 - 2828 - 2292 - 18835 
TOTAL 12604 7297 7173 5704 28868 26149 119312 

 Since we are also using CTLink to predict the activities, the number of 

metabolites associated to some reaction or protein is increased to 7173, a 56.9% 

of the compounds from BioCyc. 

From MetaCyc we extract metabolic information for about 1086 different 

organism from many different kingdoms and orders. Bacteria is the kingdom 

where we found more different species, 286, followed by Viridiplantae (green 

plants) which includes 265 different species. On the other hand, MetaCyc 

contains 230 species from Metazoa kingdom. Moreover, we can find also 

metabolic data for many strains. Bacteria kingdom is also where we find a 
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higher number of strains (Figure 1). 

From MetaCyc we extract metabolic information for about 1086 different 

organism from many different kingdoms and orders. Bacteria is the kingdom 

where we found more different species, 286, followed by Viridiplantae (green 

plants) which includes 265 different species. On the other hand, MetaCyc 

contains 230 species from Metazoa kingdom. Moreover, we can find also 

metabolic data for many strains. Bacteria kingdom is also where we find a 

higher number of strains (Figure 1). 

Regarding on the average number of compounds and enzymes from each 

kingdom; Archaeas are the organisms in MetaCyc with a higher average number 

of metabolites linked to reactions, 18,38; followed by Viridiplantae, Bacteria, 

Fungi and Metazoa, with and average number of 14,79, 14,55, 13,16 and 11,94 

metabolites per organism, respectively.  These 5 kingdom are also those with a 

higher average number of EC and proteins, which are found between 6,25 and 

Figure 1: Distribution by kingdoms of  species and organisms found 

in MetaCyc. In blue there is the number of  species, and in red the 

total number of  strains 
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9,59, and 29,33 and 25,51 respectively. On the other hand, Virus kingdom is 

where we find a lower quantity of data in general, the average number of 

compound is 2,26, and in EC and proteins is 1,62 and 1,4 respectively. 

Organism Kingdom Metabolites* EC Protein Metabolite-EC 
interactions 

Metabolite-
Protein 
interactions 

Arabidopsis thaliana Viridiplantae 1209 636 1047 4109 4739 
Escherichia coli K-12 Bacteria 1030 995 1303 5828 4656 
Homo sapiens Metazoa 961 767 1054 4356 4098 
Saccharomyces 
cerevisiae s288c 

Fungi 657 550 739 3097 2917 

Bacillus subtilis subsp. 
subtilis str. 168 

Bacteria 430 363 404 1330 1396 

Rattus norvegicus Metazoa 389 317 454 1334 1433 
Mus musculus Bacteria 298 237 352 771 950 
Haemophilus 
influenzae Rd KW20 

Metazoa 291 273 284 981 972 

Methanocaldococcus 
jannaschii DSM 2661 

Archaea 268 199 224 818 826 

Schizosaccharomyces 
pombe 972h 

Fungi 248 189 241 718 770 

...       

These numbers are representative of the little knowledge of most of the 

organisms; since, for example, for Escherichia coli it is reported the activity for 

around 1000 metabolites, but the average number of metabolites for organisms 

from Bacteria Kingdom is 14,55.  

Organisms with a largest amount of metabolic data available in MetaCyc are 

Arabidopsis thaliana, Escherichia coli, Homo sapiens, Saccharomyces cerevisiae, Bacillus 

subtilis  and Rattus norvegicus (Table 2) 

Table 2: Table with the organism for which there is more available data in 

MetaCyc. (*) Number of  metabolites directly associated to some reaction. 
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 Prediction of Mycoplasma pneumoniae metabolism. 

Mycoplasma pneumoniae is one of the organisms that are present in MetaCyc. In 

this database there are reported 89 compounds associated to 78 enzymes (EC). 

In total there is 268 interactions compounds-EC, which is a lower number than 

the total number of interactions reported by Yus et al, 629. Almost 70% of 

MetaCyc interactions are found in Yus et al study, and most of the compounds 

and EC are shared. So, many of the remaining 30% of interactions may be 

between metabolites and/or enzymes reported by Yus et al. These data can be 

observed in table 3, where the data obtained in each step of the framework is 

deconvulated. 

 

 

 

 

Figure 2: Distribution of   data in MetaCyc classified by kingdoms. 

Each column is the average amount of  data of  the organisms iof  

each kingdom. CP=Compound 
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Table 3: Mycoplasma pneumoniae data obtained from each source, and 

from each step of  the prediction framework. 

Proteins  Metabolites EC 
Enzymes No-Enzymes 

Interactions 
(CP-EC) 

Interactions 
(CP-Protein) 

Yus et al 225 134 0 0 629 0 
MetaCyc 89 76 0 0 268 0 
MProjection 830 467 0 9 1822 114 
MetaCyc U 
MProjection  

831 470 0 9 1840 114 

CTLink 156 112 0 22 270 55 
MProjection 
U CTLink 

836 478 0 24 1975 162 

MetaCyc U 
MProjection 
U CTLink 

837 
 

481 0 24 1992 162 

 

Figure 3: Distribution of  metabolites, EC, 

and Metabolite-EC interactions obtained 

based on the source from which have been 

obtained, MetaCyc, MProjection 

(Metabolomes) and CTLink.  

MProjection 

MProjection 

MProjection MProjection 

CTLink CTLink 

CTLink 

MetaCyc MetaCyc 

MetaCyc 

Metabolite-EC intetaction distribution 

 
  Enzyme distribution 

 
 

Compounds distribution 
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Through the projection of Mycoplasma genomic data to organisms from 

BioCyc and MetaCyc we are predicting 830 metabolites and 467 enzymes in 

1822 interactions (Table 3). These predictions are recovering most of the 

experimental data reported in MetaCyc for Mycoplasma, almost 100% of the 

metabolites, EC and interactions EC-Metabolite are recovered (Figure 3). On 

the other hand, CTLink reports new interactions for 156 of the 831 metabolites 

obtained from MetaCyc and predicted metabolites.  Using CTLink we don’t 

obtain many new EC, only 3, but we get new interactions between metabolites 

and EC collected in the previous steps.  

In total we have obtained 837 metabolites and 481 EC in 1992 interactions. 

Almost a 20% of these data is matching with the experimental data of Yus et al. 

MetaCyc data is where we have a higher number of recovered data, which is a 

Figure 4: Evolution of  the data obtained after each step of  the 

framework (MetaCyc, MProjection and CTLink), and how it 

increase respect experimental data from Yus et al (reported).  
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89% of metabolites, 78% of enzymes and 66% of interactions. With genome 

projection we are increasing the recall, but the % of recovered data in respect 

the total predicted (precision) is decreasing. 

Some examples of predicted interactions are represented in table 4. They are 

the interaction of 5,10-methenyltetrahydrofolate with 3.5.4.9 

(Methenyltetrahydrofolate cyclohydrolase), 1.5.1.5 (Methylene tetrahydrofolate 

dehydrogenase) and 6.3.3.2 (5-Formyltetrahydrofolate cyclo-ligase), and the 

interactions of 3-phospho-D-glycerate with 2.7.2.3 (phosphoglycerate kinase), 

5.4.2.12 (phosphoglycerate mutase) and 5.3.1.1 (triose-phosphate isomerase). 3 

of these 6 predicted interactions are reported by Yus et al. 

5,10-methenyltetrahydrofolate is a form of tetrahydrofolate that is an 

intermediate in metabolism. It is a coenzyme that accepts and donates methenyl 

groups.  In BioCyc we find this compound in all the 7 databases, but it is 

associated to some reaction in only 4 of them, YeastCyc, LeishCyc, TrypanoCyc 

and AraCyc. In Saccharomyces cerevisiae and Arabidopsis thaliana we have found that 

3 of the associated proteins are orthologs of 2 Mycoplasma pneumoniae genes. 

Specifically, yeast genes CT1TM_YEAST and C1TC_YEAST and Arabidopsis 

genes FOLD4_ARATH and FOLD2_ARATH are orthologs of 

FOLD_MYCPN, from Mycoplasma pneumoniae. All these genes are associated to 

the EC number 1.5.1.5 and 3.5.4.9, except C1TC_YEAST and 

FOLD2_ARATH, which are only associated to 1.5.1.5. So we have linked this 

metabolite to both ECs through FOLD_MYCPN. These interactions are 

confirmed by Yus et al. On the other hand, this metabolite is also linked to 

FTHC_YEAST and SFCL_ARATH, associated to EC number 6.3.3.2. They 

are orthologs of MTHFS_MYCPN, so we are also linking 5,10-

methenyltetrahydrofolate to 6.3.3.2.  

About 3-phospho-D-glycerate, in a similar way, it is reported to be associated 

with proteins from 212 different organisms. For 8 of these organisms,  
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Arabidopsis thaliana, Candida boidinii, Escherichia coli, Homo sapiens, Lactobacillus 

delbrueckii, Saccharomyces cerevisiae, Spinacia oleracea and Thermotoga maritima, some of 

the associated proteins are orthologs of PGK_MYCPN from Mycoplasma 

pneumoniae. These proteins are associated to EC-2.7.2.3. We also find a group of 

proteins associated to EC-5.4.2.12 that are orthologs of GMPI_MYCPN. 

Finally, from CTLink we obtain that this compound is associated to human 

gene TPIS_HUMAN, EC-5.3.1.1, an ortholog of TPIS_MYCPN, which is 

associated to the same EC number. So we linked 3-phospho-D-glycerate to 

2.7.2.3, 5.4.2.12 and 5.3.1.1. From these interactions, the first one is confirmed 

in Yus et al. 

Metabolite  Protein EC Organism Mycoplasma 
Ortholog 

YBR084W-MONOMER 
C1TM_YEAST 

1.5.1.5, 
3.5.4.9 

YGR204W-MONOMER 
C1TC_YEAST 

1.5.1.5 

Saccharomyces cerevisiae 

AT4G00620-MONOMER 
FOLD4_ARATH 

1.5.1.5, 
3.5.4.9 

AT3G12290-MONOMER 
FOLD2_ARATH 

1.5.1.5 

Arabidopsys thaliana 

FOLD_MYCPN 

YER183C-MONOMER 
FTHC_YEAST 

Saccharomyces cerevisiae 

5,10- 
Methenyl-
tetrahydrofolate 

AT5G13050-MONOMER 
SFCL_ARATH 

 
6.3.3.2 

Arabidopsis thaliana 

MTHFS_MYCPN 

HS02359-MONOMER 
PGK1_HUMAN 
HS10215-MONOMER 
PGK2_HUMAN 

Homo sapiens 

MONOMER-13169 
Q5KTR2_CANBO 

Candida boidinii 

PGK 
PGK_ECOLI 

Escherichia coli K-12 

CPLX-1864 
PGKT_THEMA 

Thermotoga maritima 
MSB8 

MONOMER-12711 
PGKH_SPIOL 

Spinacia oleracea 

3-phospho-D-
glycerate 

AT3G12780-MONOMER 

2.7.2.3 

Arabidopsis thaliana 

PGK_MYCPN 
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PGKH1_ARATH 
AT1G56190-MONOMER 
PGKH2_ARATH 
PGK_LACDE Lactobacillus  delbrueckii 
MONOMER-9165 
PMGI_MAIZE 

Zea Mays 

AT1G09780-MONOMER 
PMG1_ARATH 
AT3G08590-MONOMER 
PMG2_ARATH 

Arabidopsis thaliana 

PMGI-MONOMER 
GMPI_ECOLI 

5.4.2.12 

Escherichia coli 

GMPI_MYCPN 

TPIS_HUMAN 5.3.1.1 Homo sapiens TPIS_MYCPN 

 
In total 521 organisms from BioCyc are contributing to Mycoplasma 

metabolism prediction. 477 of them are reporting some data from Yus et al. In 

figure 5 it can be observed the evolution of cumulative metabolic data obtained 

from each organism sorted randomly. In this plot we observe how data is 

increasing progressively after each projection, however, we see that it isn’t 

increasing continuously. Usually the species with more available data are those 

which are adding a higher number of new data. The higher peaks observed in 

figure 5 are corresponding to Arabidopsis thaliana, Escherichia coli K-12, Homo 

sapiens, Saccharomyces cerevisiae s288c and Bacillus subtilis subsp. subtilis str. 168.  

Table 4: Example of  some of  the results obtained. In the first column 

there is the compound predicted, and in the last column the 

Mycoplasma Protein to which it have been associated. Protein column 

contains the BioCyc protein to which this compound in associated, EC 

contains the EC of  the reactions associated to these proteins, while 

organism column contains the source organism of  this data.  
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Figure 5: Contribution of  each organism to the data obtained. Sorting 

randomly this species. 

Figure 6: Contribution of  each organism to the data obtained. Sorting 

species through their contribution on adding new data. 
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If we sort the species by the quantity of data that they are contributing to the 

metabolome prediction, we see only 13 organisms can be necessary to obtain it. 

These organisms are Escherichia coli K-12, Homo sapiens, Arabidopsis thaliana, 

Leishmania major, Mycopllasma arginini, Lactococcus lactis subsp. Lactis, Pseudomonas 

aeruginosa, Lactobacillus sakei, Saccharomyces cerevisiae, Geobacillus stearothermophilus, 

Synechocytis sp. PCC 6803, Bacillus subtilis subsp. subtilis and Haemophilus ducreyi. 

Their individual data contribution can be observed in more detail on figure 6 

and table 5, with Escherichia coli we are already obtaining more than the 70% of 

the total data from Yus et al, and together with Homo sapiens and Arabidopsis 

thaliana is almost 93%. 

 

 Total Data 
(Metabolite-EC) 

Mycoplasma data 
(cumulative) 

New data 
apported 

(Metabolite-EC) 
Escherichia coli K-12 575 241 241 
Arabidopsis thaliana 714 299 58 
Homo sapiens 448 322 23 
Leishmania major 252 328 6 
Saccharomyces 
cerevisiae 

332 332 4 

Mycoplasma arginini 3 335 3 
Geobacillus 
stearothermopilus 

81 337 2 

Synechocytis sp PCC 
6803 

143 338 1 

Bacillus subtilis 266 339 1 
 

Table 5: Table with the organisms which are adding more new data in a 

progressive form to the Mycoplasma metabolome predicted. In this case 

we are representing only data about interactions Metabolite–EC 
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Despite of most of the data can be obtained from Escherichia coli, there are 

several other organisms from which most of these data can be obtained. In 

figure 7 we can observe how many organisms are the sources of each 

interaction Compound-EC. Despite there are many interactions which are 

reported only in 1 or 2 organisms, most of them can be obtained from between 

3 organisms and 40. In this histogram it can also be observed some interactions 

obtained from almost 60 and 90 organisms, they are those of the reaction 

catalysed by enzyme 1.2.1.12 (glyceraldehyde-3-phosphate dehydrogenase), D-

glyceraldehyde 3-phosphate + NAD+ + Phosphate = 3-phospho-D-glyceroyl phosphate + 

NADH + H+ and 2.7.2.3 (phosphoglycerate kinase), ATP + D-Glyceraldehyde 3-

phosphate = ADP + 3-phospho D-glyceroyl phosphate.   

 

Figure 7: Histogram with the distribution of  the interactions 

predicted. Each column represent the quantity of  interactions 

predicted by the values of  x-axe. 
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On the other hand, looking on the recall of the data extracted from Yus et al., 

we can observe how it increases after each prediction step. Enzyme field is 

where we recover a higher quantity of data, a 78%, followed by metabolites, 

where we recover 136 out of 225. 

There are many interactions that we have not been able to predict. From 286 

not recovered interactions, only in 41 of them we were recovering both 

metabolites and enzymes.  

Some of the reasons why we couldn’t recovered some interactions are that 

BioCyc enzyme associated to the reaction is not assigned to any OrthoMCL 

group (80 interactions), while some other interactions could not be recovered 

because they are missing in BioCyc (165 interactions). As result, excluding those 

165 interactions that are impossible to be recovered, recall % would increase to 

73%. 

Figure 8: Grafic with the % of  data recovery from Yus et al. Each 

column of  each type of  data (Metabolites, EC, Interactions) 

represents de data added after each step of  the prediction: BioCyc 

data, Prediction using metabolomes, Predictions using CTLink. 
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We have delved into these metabolites and enzymes that we are not able to 

recover through our methodology. The main reasons preventing their 

recovering are listed subsequently: 

- The interaction is reported in BioCyc, however we don't find any 

ortholog to the protein associated to this interaction because: 

- BioCyc protein is not associated to any orthology group. 

- The interaction is not present in BioCyc. In these cases, when the enzyme 

is reported in BioCyc, it may or not has an ortholog in Mycoplasma 

genome. 

- Both components are present in BioCyc, but the interaction is not 

reported. 

- Some of the components is not reported in BioCyc, metabolite or 

EC. 

-  None of the components are present in BioCyc. 

Between the interactions not recovered in the prediction, for 8 of them both 

components (metabolite and EC) are found in BioCyc, and we have a 

Mycoplasma ortholog for the EC. So, if the interaction between both 

components had been present in BioCyc we would have been able to predict it. 

Moreover, there are also 109 interactions for which despite we have found also 

mycoplasma ortholog of the enzyme, but the metabolite of the interaction is 

not reported in BioCyc.  

On the other hand, there are 42 interactions missing in BioCyc, but where we 

didn’t find neither any mycoplasma ortholog (if the enzyme is reported in 

BioCyc). 
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So, concluding, there are 117 interactions which we would have been able to 

predict if they had been present in BioCyc databases. While, 80 interactions are 

not recovered because in Mycoplasma genome we haven't found any ortholog.  

One example of these not recovered interactions is the interaction between D-

Fructose 6-Phosphate and EC-2.7.1.11 (6-phosphofructokinase). This 

metabolite is reported in all the databases except LeishCyc, whereas the enzyme 

reaction is found in all them. Despite both components are present in almost 

every database, their interaction is not reported on anyone. On the other hand, 

despite of being reported in all the databases, this enzyme reaction is associated 

to specific proteins in only 4 of them, MetaCyc, LeishCyc, AraCyc and EcoCyc. 

All these associated proteins where grouped in the OrthoMCL orthology group 

OG5_126758, where we find Mycoplasma pneumoniae protein PFKA_MYCPN. 

So, if the interaction of D-Fructose 6-Phosphate with 2.7.1.11 had been 

reported in BioCyc, we would have been able to predict it. 

 

 Completing Mycoplasma pneumoniae metabolome. 

On Mycoplasma metabolome reconstruction we are obtaining a good recall. So, 

the confidence of our predictions is high enough to assume that a significant 

percentage of our predictions may be correct.  

In total we have predicted 1649 new interactions which have not been reported 

in Yus et al. They could be divided between those interactions of compounds 

and EC from Yus et al (118), and those interactions where some of the 

components (or both) are predicted (1531).  
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Figure 9:  

A) Network created with the 

data reported in Yus et al. 

B) Network created with the 

nodes from Yus et al adding the 

new interactions predicted for 

these nodes. 

In circles there is some of  the 

metabolites for which we are 

prediction new interactions. 

These metabolites and their 

interactions are showd on the 

right of  the graphic. Continuous 

line are interactions from Yus et 

al, while discontinuous ones are 

new interactions. 
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In figure 9 we can observe the metabolic networks before and after adding 

predicted interactions. This new interactions are giving insights about the 

complexity of metabolic networks. Focusing on these 118 new interactions 

between Yus et al metabolites and EC, we are predicting new affinities for 54 

Figure 10: Network created adding all the data predicted to Yus et al reported 

data. In red there is metabolites, in blue EC and in dark blue it is represented 

those proteins that are not associated to any EC 
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metabolites. Pyrophosphate is the compound for which it is predicted a higher 

number of new interactions, 32. Between the other metabolites we find 

nucleotides and nucleotide phosphates like Cytidine, Deoxythymidine 

Triphosphate or Uridine monophosphate; aminoacids like L-Serine, cofactors 

like NADH, FAD and FMN, and other metabolites such as D-mannose 6-

phosphate, 3-phosphoglycerate or d-erythrose 4-phosphate. 

After adding predicted interactions, the average degree increase from 3,5 to 

4,15, while diameter decrease from 12 to 11, reflecting an increase in the 

metabolic network connectivity.  

Finally, in figure 10 it is represented the complete metabolic network of 

Mycoplasma pneumoniae. This network is composed with metabolic data from Yus 

et al, and data predicted by our framework. We are increasing more than 3 times 

the experimental data from Yus et al, obtaining 926 metabolites, 511 enzymes, 

and 2278 interactions. Our framework is not only predicting metabolic enzymes 

associated to EC number but proteins from genetic processing family, 

environmental information processing family and cellular processes family. In 

total we predict 24 proteins that are not associated to EC-number, between 

them we find transporters, cytoskeleton proteins and proteins related to genetic 

information processing. 

 

Conclusions 

Our framework has been able to recover an important part of Mycoplasma 

pneumoniae metabolome reported by Yus et al. Despite not having a high recall 

of the interactions Compound-EC, we recover almost 60% of metabolites and 

80% of EC. Many of not recovered data have been impossible to be predicted 

since it was not available in the metabolic data source, BioCyc.  

On the other hand we are increasing the complexity of metabolic network. We 

are not only adding new metabolites and proteins to the network, but we are 
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are also adding new interactions between the components previously reported 

by Yus et al.  

Despite showing some limitations on the prediction capacity, our methodology 

have resulted to be useful on the prediction of  metabolomes and completing 

the existing ones. In this case only a few species have been required for this 

reconstruction because of  the simplicity of  Mycoplasma pneumoniae, but for 

bigger genomes we should expect that there would be a higher number of  

organisms used on the metabolome reconstruction. 

 

References 

Balish, M.F., 2014. Mycoplasma pneumoniae, an Underutilized Model for 
Bacterial Cell Biology. J. Bacteriol. 196, 3675–3682. 
doi:10.1128/JB.01865-14 

Baseman, J.B., Tully, J.G., 1997. Mycoplasmas: sophisticated, reemerging, and 
burdened by their notoriety. Emerg. Infect. Dis. 3, 21–32. 
doi:10.3201/eid0301.970103 

Block, P., Sotriffer, C.A., Dramburg, I., Klebe, G., 2006. AffinDB: a freely 
accessible database of affinities for protein-ligand complexes from the 
PDB. Nucleic Acids Res. 34, D522-526. doi:10.1093/nar/gkj039 

Caspi, R., Altman, T., Dale, J.M., Dreher, K., Fulcher, C.A., Gilham, F., Kaipa, 
P., Karthikeyan, A.S., Kothari, A., Krummenacker, M., Latendresse, M., 
Mueller, L.A., Paley, S., Popescu, L., Pujar, A., Shearer, A.G., Zhang, P., 
Karp, P.D., 2010. The MetaCyc database of metabolic pathways and 
enzymes and the BioCyc collection of pathway/genome databases. 
Nucleic Acids Res. 38, D473–D479. doi:10.1093/nar/gkp875 

Caspi, R., Altman, T., Dreher, K., Fulcher, C.A., Subhraveti, P., Keseler, I.M., 
Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L.A., Ong, 
Q., Paley, S., Pujar, A., Shearer, A.G., Travers, M., Weerasinghe, D., 
Zhang, P., Karp, P.D., 2012. The MetaCyc database of metabolic 
pathways and enzymes and the BioCyc collection of pathway/genome 
databases. Nucleic Acids Res. 40, D742-753. doi:10.1093/nar/gkr1014 



Results 

 166 

Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M.S., Gaglio, D., 
Pescini, D., Molinari, S., Mauri, G., Alberghina, L., Vanoni, M., 2014. 
Computational strategies for a system-level understanding of 
metabolism. Metabolites 4, 1034–1087. doi:10.3390/metabo4041034 

Chaudhry, R., Ghosh, A., Chandolia, A., 2016. Pathogenesis of Mycoplasma 
pneumoniae: An update. Indian J. Med. Microbiol. 34, 7–16. 
doi:10.4103/0255-0857.174112 

Dybvig, K., 1990. Mycoplasmal Genetics. Annu. Rev. Microbiol. 44, 81–104. 
doi:10.1146/annurev.mi.44.100190.000501 

Edwards, J.S., Palsson, B.O., 1999. Systems properties of the Haemophilus 
influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416. 

Fischer, S., Brunk, B.P., Chen, F., Gao, X., Harb, O.S., Iodice, J.B., 
Shanmugam, D., Roos, D.S., Stoeckert, C.J., 2011. Using OrthoMCL to 
Assign Proteins to OrthoMCL-DB Groups or to Cluster Proteomes 
Into New Ortholog Groups, in: Goodsell, D.S. (Ed.), Current Protocols 
in Bioinformatics. John Wiley & Sons, Inc., Hoboken, NJ, USA. 

Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., Hersey, A., 
Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B., Overington, 
J.P., 2012. ChEMBL: a large-scale bioactivity database for drug 
discovery. Nucleic Acids Res. 40, D1100–D1107. 
doi:10.1093/nar/gkr777 

Gilson, M.K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., Chong, J., 2016. 
BindingDB in 2015: A public database for medicinal chemistry, 
computational chemistry and systems pharmacology. Nucleic Acids Res. 
44, D1045-1053. doi:10.1093/nar/gkv1072 

Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B.-C., Herrmann, R., 
1996. Complete Sequence Analysis of the Genome of the Bacterium 
Mycoplasma Pneumoniae. Nucleic Acids Res. 24, 4420–4449. 
doi:10.1093/nar/24.22.4420 

Kell, D.B., Goodacre, R., 2014. Metabolomics and systems pharmacology: why 
and how to model the human metabolic network for drug discovery. 
Drug Discov. Today 19, 171–182. doi:10.1016/j.drudis.2013.07.014 



Results 

 167 

Liu, L., Mei, Q., Yu, Z., Sun, T., Zhang, Z., Chen, M., 2013. An integrative 
bioinformatics framework for genome-scale multiple level network 
reconstruction of rice. J. Integr. Bioinforma. 10, 223. 
doi:10.2390/biecoll-jib-2013-223 

Nookaew, I., Olivares-Hernández, R., Bhumiratana, S., Nielsen, J., 2011. 
Genome-scale metabolic models of Saccharomyces cerevisiae. Methods 
Mol. Biol. Clifton NJ 759, 445–463. doi:10.1007/978-1-61779-173-4_25 

Roth, B.L., Lopez, E., Beischel, S., Westkaemper, R.B., Evans, J.M., 2004. 
Screening the receptorome to discover the molecular targets for plant-
derived psychoactive compounds: a novel approach for CNS drug 
discovery. Pharmacol. Ther. 102, 99–110. 
doi:10.1016/j.pharmthera.2004.03.004 

Ryu, J.Y., Kim, H.U., Lee, S.Y., 2015. Reconstruction of genome-scale human 
metabolic models using omics data. Integr. Biol. Quant. Biosci. Nano 
Macro 7, 859–868. doi:10.1039/c5ib00002e 

Shameer, S., Logan-Klumpler, F.J., Vinson, F., Cottret, L., Merlet, B., Achcar, 
F., Boshart, M., Berriman, M., Breitling, R., Bringaud, F., Bütikofer, P., 
Cattanach, A.M., Bannerman-Chukualim, B., Creek, D.J., Crouch, K., 
de Koning, H.P., Denise, H., Ebikeme, C., Fairlamb, A.H., Ferguson, 
M.A.J., Ginger, M.L., Hertz-Fowler, C., Kerkhoven, E.J., Mäser, P., 
Michels, P.A.M., Nayak, A., Nes, D.W., Nolan, D.P., Olsen, C., Silva-
Franco, F., Smith, T.K., Taylor, M.C., Tielens, A.G.M., Urbaniak, M.D., 
van Hellemond, J.J., Vincent, I.M., Wilkinson, S.R., Wyllie, S., 
Opperdoes, F.R., Barrett, M.P., Jourdan, F., 2015. TrypanoCyc: a 
community-led biochemical pathways database for Trypanosoma 
brucei. Nucleic Acids Res. 43, D637-644. doi:10.1093/nar/gku944 

Simeonidis, E., Price, N.D., 2015. Genome-scale modeling for metabolic 
engineering. J. Ind. Microbiol. Biotechnol. 42, 327–338. 
doi:10.1007/s10295-014-1576-3        

Southan, C., Sharman, J.L., Benson, H.E., Faccenda, E., Pawson, A.J., 
Alexander, S.P.H., Buneman, O.P., Davenport, A.P., McGrath, J.C., 
Peters, J.A., Spedding, M., Catterall, W.A., Fabbro, D., Davies, J.A., 
NC-IUPHAR, 2016. The IUPHAR/BPS Guide to 
PHARMACOLOGY in 2016: towards curated quantitative interactions 
between 1300 protein targets and 6000 ligands. Nucleic Acids Res. 44, 
D1054-1068. doi:10.1093/nar/gkv1037 

Waites, K.B., Talkington, D.F., 2004. Mycoplasma pneumoniae and its role as a 
human pathogen. Clin. Microbiol. Rev. 17, 697–728, table of contents. 
doi:10.1128/CMR.17.4.697-728.2004 



Results 

 168 

Xiao, L., Ptacek, T., Osborne, J.D., Crabb, D.M., Simmons, W.L., Lefkowitz, 
E.J., Waites, K.B., Atkinson, T.P., Dybvig, K., 2015. Comparative 
genome analysis of Mycoplasma pneumoniae. BMC Genomics 16. 
doi:10.1186/s12864-015-1801-0 

Yus, E., Maier, T., Michalodimitrakis, K., van Noort, V., Yamada, T., Chen, W.-
H., Wodke, J.A.H., Güell, M., Martínez, S., Bourgeois, R., Kühner, S., 
Raineri, E., Letunic, I., Kalinina, O.V., Rode, M., Herrmann, R., 
Gutiérrez-Gallego, R., Russell, R.B., Gavin, A.-C., Bork, P., Serrano, L., 
2009. Impact of genome reduction on bacterial metabolism and its 
regulation. Science 326, 1263–1268. doi:10.1126/science.117726  

Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., 
Chang, Z., Woolsey, J., 2006. DrugBank: a comprehensive resource for 
in silico drug discovery and exploration. Nucleic Acids Res. 34, D668-
672. doi:10.1093/nar/gkj067 



Results 

 169 

III.5: Insight on systemic metabolic prediction 

Joaquim Olivés, and Jordi Mestres* 

Systems Pharmacology, Research Programme on Biomedical Informatics (GRIB), IMIM 

Hospital del Mar Medical Research Institute and University Pompeu Fabra, Parc de Recerca 

Biomèdica, 08003 Barcelona, Catalonia, Spain 

 

 
Abstract 

Metabolic networks are consisting of compounds, enzymes and their 

interactions. They are very in important for several applications in 

pharmacology. However, its experimental study is expensive and time-

consuming, so computational modeling techniques become essential. One of 

the most used methodologies to model metabolomes is genome scale 

reconstruction. In this study we propose a methodology based on this strategy 

for the reconstruction of metabolic networks from genomic data. From 

experimental data from other organisms we predict their orthologs and 

construct a network with the reactions catalized. In our methodology we are 

also applying In silico profiling methodologies to predict the metabolites 

activity profile. This way we are perfoming metabolic networks with were it is 

reported the interaction of all the metabolites with enzymes and other proteins. 

We demonstrated the usefulness of the methodology to provide insight on the 

possible organisms metabolic networks by applying it on 6 organisms with its 

metabolic network already reported. The proposed methodology allows the 

prediction of primary and secondary metabolism which may accelerate 

metabolic research. 

                                                
* Corresponding autor. E-mail address: jmestres@imim.es 
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Introduction 

The establishment of complete genome sequences allowed the development of 

genome-scale models for the reconstruction of metabolic models (Edwards and 

Palsson, 2000). Metabolic models are an important tool in systems biology, they 

provide snapshots of the global metabolism given genetic and environmental 

conditions. These models enable the construction of metabolic models for 

different types of cells, from photosynthetic microorganisms to human cell 

types (Ryu et al., 2015). Genome-scale metabolic reconstruction use genome 

sequence for the integration of biochemical metabolic reactions. In general, the 

more information about biochemistry and genetics is available for the target 

organism, the better the predictive capacity. The first genome-scale metabolic 

model was generated in 1999 for Haemophilus influenzae (Edwards and Palsson, 

1999). While in 2000 it was modeled for first time the metabolic network of the 

most widely used bacterium, Escherichia coli (Edwards and Palsson, 2000).  The 

first model of eukaryotic metabolism was from Saccharomyces cerevisiae in 2003 

(Förster et al., 2003). And in 2009 it was pubblished for first time a genome 

scale model for Arabidopsis thaliana, used as a model organism in plant biology 

(Poolman et al., 2009).  

Metabolic networks can be viewed as lists of those molecular mechanisms 

(reactions) and associated molecular components (enzymes, substrates, and 

products) that are most directly related to the metabolic capabilities (Durot et 

al., 2009). The knowledge of the physiology of the whole organism has many 

applications. For instance, initially the reconstruction of metabolic models for 

microbial organisms allowed to know which metabolites are they able to 

produce, which chemical nutrients requires or how efficient is it converting 

chemicals (Durot et al., 2009; Kim et al., 2012). While metabolic models of 

mammals have been employed to study various human diseases and develop 

strategies for potential treatments (Lewis et al., 2010).  
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On the other hand, for drugs emerged the polypharmacology paradigm, 

consistent on the philosophy of “one drug multiple targets” (Reddy and Zhang, 

2013). Polypharmacology refers to the ability of a molecule to interact with 

multiple proteins. To attempt the prediction of links between the chemical 

structures of bioactive molecules and which proteins, chemogenomics 

approaches have emerged in the recent years. These In silico approaches have 

been widely used in drug discovery since they have great potential predicting 

the pharmacological profile of bioactive compounds and identifying potential 

targets (Lavecchia and Cerchia, 2016). 

Polypharmacology paradigm can also be applied in metabolic networks, where 

most enzymes accept multiple substrates and possess affinity for a wide range 

of compounds. This phenomenon can be referred as substrate promiscuity 

(Piedrafita et al., 2015). The chemical reactivity of metabolites and unspecific 

enzyme function give rise to a number of side reactions and side products that 

are not part of canonical pathways. The knowledge of these molecules is 

important since they  may affect metabolic efficiency and play a potential role in 

diseases (Khersonsky and Tawfik, 2010).  

The aim of  this work is to present and evaluate prediction capacity of  a 

genome-scale metabolic reconstruction framework using MetaCyc and BioCyc 

databases (Caspi et al., 2014). To include this substrate promiscuity in our 

metabolic networks predictions, we have applied In silico methodologies in our 

framework. BioCyc is a collection of  3000 pathway/genome databases, were 

each database is dedicated to one organism. While MetaCyc is an encyclopedia 

of  experimentally defined metabolic pathways, it contains 2100 metabolic 

pathways and 114000 metabolic reactions (Caspi et al., 2014). These databases 

are used as starting point for the reconstruction of  some of  the most complete 

metabolic models, Escherichia coli, Homo sapiens, Saccharomyces cerevisiae, Arabidopsis 

thaliana,  Trypanosoma brucei and Leishmania major. 
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Methods 

We have used the data available in MetaCyc and BioCyc to predict metabolome 

of 6 organisms using their genome. MetaCyc is composed of metabolic data 

reported experimentally; while from BioCyc includes several genomes classified 

in 3 Tiers according to the curation level. We have used only databases from 

Tier-1, which are composed by experimental and predicted metabolic data 

withmore than one year curation. It includes 6 databases, humancyc (Homo 

sapiens), ecocyc (Escherichia coli K-12 substr. M1655), yeastcyc (Saccharomyces 

cerevisiae), aracyc (Arabidopsis thaliana), trypanocyc (Trypanosoma brucei) and 

leishcyc (Leishmania major strain Friedlin). 

In this study we have predicted the metabolome of the previously mentioned 

most studied species in BioCyc. For the prediction of their metabolome we 

have projected genomic data to metabolic data from other species.  

Genomic data have been downloaded mainly from Uniprot and BioCyc 

database, and it has been classified in orthology groups using the OrthoMCL-

DB Version 5. Using the web application of OrthoMCL-DB we map our 

proteins on OrthoMCL-groups. This tool performs a BLASTP against all the 

proteins in OrthoMCL-DB using a cut-off of 1e-5 and 50% match. Proteins are 

assigned to the group containing the best hit. If the best match is not assigned 

to any group, it is assigned to NO_GROUP (Fischer et al., 2011). 

On the other hand, for the target profiling of metabolites we are using CTLink,  

that use ligand-based approaches and cross pharmacology. This program 

extract information from several public databases to perform the prediction. 

The databases included are ChEMBL (Gaulton et al., 2012), DrugBank 

(Wishart et al., 2006), BindingDB (Gilson et al., 2016), IUPHARdb (Southan et 

al., 2016), PDSP (Roth et al., 2004), and affinDB (Block et al., 2006). From the 

activities obtained from CTLink we select those with a confidence score >0.7 

and a predicted activity higher than 4. 
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Results 
In general we are recovering more than the half of the metabolites found in 

BioCyc, obtaining recall values higher than 0,8 in most of the species. 

Saccharomyces cerevisiae is the organism with a higher number of recovered 

metabolites, 623 out of 638 (0.98), followed by Escherichia coli, Leishmania major,  

and Homo sapiens, with recall values of 0.83, 0.819 and 0.803, respectively. On 

the other hand, for Trypanosoma brucei and Arabidopsis thaliana we could 

recovered about 60% of the total number of metabolites. About precision, 

Figure 1: Graphic with the recall and precisions obtained for 
each predicted organism metabolome. Calculated for 
metabolites and interactions between EC and metabolites. 
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most of the values are between 0.26 and 0.44. The highest precision is found in 

Arabidopsis, 0.55.  

Regarding interactions between metabolites and enzymes, recall values doesn’t 

use to be high. However they are still higher than 70% for most of the 

organisms. Saccharomyces cerevisiae is the organism with the highest recall, 0.959, 

followed by Escherichia coli, Leishmania major and Homo sapiens, with recall values 

of 0.902, 0.767 and 0.717, respectively. 

Since metabolomes are predicted using metabolic data from several organisms 

belonging to all kingdoms, we compared the contribution of species from each 

kingdoms to the reconstruction (figure 2). 

For Escherichia coli and Saccharomyces cerevisiae, most of the recovered data is 

obtained from organisms belonging to their kingdom, Bacteria and Fungi, 

respectively. However, the precision of this data is not the highest. 

On the other hand, for Homo sapiens and Leishmania, where the highest recall 

values are much lower than those of E.coli and yeast, there is a relatively similar 

% of recovered data (recall) from most of the kingdoms. However, for the 

precision values, we can be clearly observe higher values on data obtained from 

living organisms belonging to the same kingdom of the studied organism, 

Metazoa for Homo sapiens, and Eukaryota for Leishmania major. Otherwise, for 

Trypanosoma brucei many of the recovered data is obtained from organisms from 

Eukaryota kingdom. Moreover, in data predicted from Eukaryota we observe a 

high precision, it is over 0.7. Finally, for Arabidopsis thaliana, there is a similar 

contribution from most of the kingdoms. Precision values have a high 

variability, there is no relation with the source organisms. 

So, for most of living organisms, the most important contributors to the 

recovered data are those organisms belonging to the same kingdom. In many 

cases, those belonging to the same kingdom are not only adding an important 

amount of data to metabolic information, but also it has a high reliability. 
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Figure 2: Graphics for each predicted 
organism, with the representation of  
recall and precision data of  predicted 
data from organism of  each kingdom. 
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Figure 3: Cumulative graphics with 
metabolic data obtained from each 
organism. Red is for metabolites, and blue 
for interactions EC-metabolite.Pointed line 
is for cumulative data sorting organisms 
which are apporting more new data to 
metabolic data each time, and continue is for 
unsorted cumulative data. 
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Moreover, we have analysed the individual contribution of each organism to 

each predicted metabolome (Figure 3), obtaining in all cases a high number of 

species. But, not all them have the same contribution, as expected, organisms 

with a more complete metabolome are contributing the most (E. coli, Yeast, 

Homo sapiens,..).  

On the other hand, if we reorder data sources, sorting them according to new 

data contribution, we can observe the minimum quantity of organisms (and 

which ones) required to perform each prediction. In all cases, the highest data 

contributions are from Arabidopsis thaliana, Homo sapiens, Escherichia coli and 

Saccharomyces cerevisiae; specially the first 2, whose complexity is higher.  

So a higher number of data on the source metabolome may allow a higher 

number of data for the reconstruction. Taking only the first 2 species we are 

able to obtain more than 50% of the total data. It is a huge amount of data, but 

there is still an important quantity that must be obtained from other organisms. 

Figure 4: Quantity of  new interaction data between metabolites and EC 
found in BioCyc database. In blue there is the experimental data reported 
in BioCyc, and in red the new predicted data. 
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The quantity of required organisms for collecting all the predicted metabolites 

is 17-22% of the total number of contributing organisms. While interactions 

metabolites-EC, it is necessary a 20-26%. 

In general we have a high recall, while precision value is not high for any specie. 

We predict many interactions not reported in MetaCyc/BioCyc. This data 

includes new compounds and enzymes, or new interactions between 

metabolites and enzymes. These new interactions increase the number nodes 

and connectivity of metabolic networks. The quantity of new interactions 

between confirmed enzymes and metabolites are shown in figure 4. Homo 

sapiens is the organism with a higher number of new interactions between 

components from the BioCyc/MetaCyc network, 1503, increasing it a 31.5%. It 

is followed by yeast and Arabidopsis thaliana, with 23.1% and 17.5%, 

respectively.  

Among those predicted interactions on human, we could find experimental 

evidences of many of them. Some of them are listed in table 1:  

Metabolite EC Prediction 
Method* 

Predicted 
Activity 

Activity Reference 

17beta-estradiol 1.2.3.1 CTLink  
(EXPrd, 5.2) 

Ligand Inhibitor Barr and Jones, 
2013 

4-
hydroxybenzalde
hyde 

2.6.1.19 CTLink 
(EXPrd 4.8) 

Ligand Inhibitor Tao et al., 2009 

Acetaldehyde 1.2.1.4 Metabolomes Product/ 
Reactant 

Substrate Patel et al., 
2008 

Acetate 1.2.1.4 Metabolomes Product Product Patel et al., 
2008 

Alpha-D-glucose-
6-phosphate 

2.4.1.1 CTLink 
(EXPrd 4.6) 

Ligand Inhibitor Ercan-Fang et 
al., 2005 

benzoate 1.4.3.3 CTLink 
(EXPrd 5.3) 

Ligand Inhibitor Caldinelli et al., 
2010 

cholesterol 3.6.3.44 CTLink  Ligand Substrate Garrigues et 
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(EXPrd 5.1) al., 2002 
D-erythrose-4-
phosphate 

5.3.1.8 CTLink 
(EXP 4.0) 

Ligand Inhibitor Proudfoot et 
al., 1994 

D-gluconate  
6-phosphate 

 
5.3.1.9 

CTLink 
(EXPrd 4.4) 

Ligand Inhibitor Proudfoot et 
al., 1994 

D-glyceraldehyde 1.1.1.21 
 

CTLink 
(EXP 8.0) 

Ligand Substrate Rakowitz et al., 
2007 

dihydrolipoamide 1.8.1.4 Metabolomes Reactant Substrate Liu et al., 1995 
geranylgeranyl 
diphosphate 

2.5.1.60 CTLink 
(EXPrd 9.1) 

Ligand Substrate Baron and 
Seabra, 2008 

glycolate 1.1.3.15 Metabolomes Reactant Substrate Vignaud et al., 
2007 

glyoxylate 1.1.3.15 Metabolomes Product Product Vignaud et al., 
2007 

L-canavanine 3.5.3.1 Metabolomes Reactant Inhibitor Colleluori and 
Ash, 2001 

N-butanal 1.1.1.21 Metabolomes Product Substrate Endo et al., 
2009 

N-butanol 1.1.1.21 Metabolomes Substrate Product Endo et al., 
2009 

Nomega-
hydroxy-L-
arginine 

3.5.3.1 CTLink 
(EXPrd 5.0) 

Ligand Inhibitor Colleluori and 
Ash, 2001 

Nomega-
hydroxy-L-
arginine 

1.14.13.3
9 

CTLink 
(EXPrd 5.3) 

Ligand Product/ 
Reactant 

de Visser and 
Tan, 2008 

Oleoyl-CoA 2.3.1.22 Metabolomes Reactant Reactant  Lockwood et 
al., 2003 

2-oleoylglycerol 2.3.1.22 Metabolomes Reactant Reactant Lockwood et 
al., 2003 

4-coumarate 1.1.1.21 CTLink 
(EXPrd 5.5) 

Ligand Inhibitor Chethan et al., 
2008 

phytosphingosine 2.7.1.91 Metabolomes Reactant Substrate Kee et al., 2005 
progesterone 3.6.3.44 Metabolomes 

CTLink 
(EXP 4.2) 

Reactant
/ Ligand 

Substrate Wan et al., 
2006 
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progesterone 2.3.1.26 CTLink 
(EXP 4.8) 

Ligand Inhibitor Simpson and 
Burkhart, 1980 

quinine 1.14.14.1 CTLink 
(EXP 5.0) 

Ligand Substrate Diczfalusy et 
al., 2008 

sphingosine 2.7.1.91 CTLink 
(EXPrd 5.8) 

Reactant Substrate Meacci et al., 
2004 

Thymidine 2.7.4.9 CTLink 
(EXPrd 4.6) 

Ligand Inhibitor Chen et al., 
2001 

 

Between these interactions we find metabolic reactions that are not reported or 

totally reported in metacyc/biocyc, such as 1.1.3.15, 1.2.1.4 and 1.1.1.21. For 

them we are collecting substrate and products, as can be observed in table 1.  

However, for other reactions illustrated in table 1, we are only showing some of 

the components (reactant or substrate), because not all them are found in 

humancyc. In example, for the reaction associated to EC-2.7.1.91, we find that 

phytosphingosine is the substrate and phytosphingosine-1-phosphate the 

product, however only the first metabolite is reported in humancyc. 

From CTLink we are also able to predict some substrate of many reactions, like 

D-glyceraldehyde, Nomega-hydroxy-L-arginine and progesterone. For the first 

of them we find a high activity value for aldehyde reductase (EC-1.1.1.21).  D-

glyceraldehyde is one of the substrates for this reaction, together with NADPH. 

We are also predicting the interaction of NADPH with this enzyme in CTLink, 

but the confidence score value is lower than the cut-off applied. On the other 

hand, the main product of this reaction is glycerol, but his interaction with 

Table 1: Table with new predicted interactions between human 
metabolites and enzymes previously reported experimentally in other 
studies. There is annotated the prediction method and the possible role 
of  metabolite in this reaction, together with the real and confirmed 
role. 
(*)For CTLink interactions there is reported the pActivity value of  the 
original interaction, and is indicated if  it predicted (PRD), experimental 
(EXP), or both (EXPrd) 
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aldose reductase is not predicted by CTLink. 

About Nomega-hydroxy-L-arginine, it interacts with Nitric-oxide synthase, EC-

1.14.13.39, which mainly catalyzes the production of Nitric oxide (NO) from L-

arginine. However, it is also reported that L-arginine can be hydroxylated to 

N(omega)-hydroxy-L-arginine.  

While for progesterone and cholesterol we have found affinity for P-

glycoprotein, EC-3.6.3.44. It is an ATP dependant protein of the cell 

membrane that pumps many xenobiotic substances out of the cell. Despite this 

transport reaction is found in HumanCyc, it doesn't include any compound that 

it can be pumped out of the cell. 

On the other hand, in many of the new interactions obtained from CTLink, 

metabolites are acting as inhibitor. This would increase the number of ligands 

for some enzymes. Also the pathways may have a higher interaction between 

them, since the inhibitory activity of some metabolites produced may affect 

other pathway dynamics. We have found reported information about the 

inhibitory activity of 12 metabolites. One of them is D-erythrose-4-phosphate, 

synthetized in pentose phosphate cycle by transaldolase (EC-2.2.1.2). For this 

metabolite it has been reported inhibitory activity against Mannose-6-phosphate 

isomerase (EC-5.3.1.8). So the accumulation of D-erythrose-4-phosphate could 

be altering the dynamics of pathways that contains this enzyme, like D-

mannose degradation and GDP-mannose biosynthesis. 

 

Conclusions 

We have presented a metabolic network reconstruction genome-based 

framework, integrating also an in silico profiling methodology. This approach 

used protein sequences to project them into experimental and curated 

metabolic data. Framework is able to predict metabolites of an organism and 

the reactions where they are involved, as substrate or product. Moreover we are 
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predicting inhibitory activity with enzymatic proteins of the system.  

Our method is also able to recover almost all the data available in BioCyc for 

many of the studied organisms. Despite we obtain a low accuracy when we are 

comparing the predicted data against BioCyc data, we find potential reactions 

among predited metabolites. Some of the predicted new interactions between 

metabolites and enzymes have been already reported in literature. 

Despite of the framework is not recovering the full metabolome; it is capable to 

recover a high amount of the original data from BioCyc databases. So it can 

help on the creation of a preliminar metabolome which may support on its 

experimental elucidation. Since this method is highly dependent of the 

experimental data available, experimental research and computational 

frameworks can complement each other for a better and faster metabolomic 

networks construction. 

Moreover, the use of  in silico methodologies is giving new insights about the 

interaction between different pathways, and how the products originated in a 

pathway may be altering the flux of  other pathways.   
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Abstract  

Motivation: Treatment failure and undesirable drug-related adverse events 

remain to be a current issue nowadays. Therefore, gaining a better 

understanding of how drugs and singular pathophysiological conditions are 

associated at a systems level is of utmost importance. This study aims at 

establishing the interference that endogenous metabolites offer to the 

mechanism of action of drugs. 

Results: Endogenous metabolites reflect each individual physiological 

conditions and thus they offer opportunities for precision medicine from a 

chemical point. In this work, we demonstrate that metabolite competition with 

drugs for pharmacological annotated targets is a valuable unexploited asset for 

better understanding drug efficacy and safety, as well as for the identification of  

specific metabolite markers for each anatomical and therapeutic drug type. The 

set of  anti-Parkinsonian drugs is taken as an illustrative example. 
                                                
* Corresponding autor. E-mail address: jmestres@imim.es 
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Introduction 

One of the major challenges in drug discovery today is to provide more 

effective therapies to individual patients by maximizing drug efficacy and 

minimizing drug-related adverse effects for a given individual. Reasons for the 

success or failure of any therapeutic treatment are many fold and the ultimate 

outcome depends very much on the subject’s pathophenotype dictating the 

likely outcome (i.e., age, gender, stress, disease), as well as environmental 

factors (i.e., diet, lifestyle, exposure to pollution) (Wilson, 2009). 

The novel paradigm shift and the recent application of “one drug multiple 

targets” in the sector of drug discovery is referred to as polypharmacology and 

is of current interest for human health due to its potentially wide implications, 

going from anticipation of drug side effects to identification of drug 

repurposing opportunities (Jalencas and Mestres, 2012; Mestres et al., 2009; 

O’Hagan and Kell, 2015). Since then, several approaches have already been 

undertaken in order to investigate the molecular basis and complexity of drug 

actions. For instance, drug – disease interactions (Zhao and Li, 2012), drug – 

disease – gene correlations (Sun, 2015), and drug – drug interaction (Ai et al., 2015) 

at network based levels. Advances in all those areas are likely to be of 

paramount importance for enabling progress in the two aspects outlined above, 

namely, the early prediction of adverse drug reactions and the discovery of 

novel uses for existing drugs. 

On the other hand, the recent and rapidly evolving discipline of metabolomics 

offers great potential to contribute significantly to biomedical research in 

general, as well as to the drug discovery process in particular. Metabolite 

behavior closely reflects the actual cellular environment better than gene and 

protein expression do (Nicholson et al., 2012), such that much of the activity 

that happens in the cell occurs at the metabolite level: cell signaling, energy 

transfer, cell-to-cell communication, while genomics and proteomics set the 
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stage for what happens next in the cell (Perspectives, 2004). Almost a decade 

ago, metabolic profiling was already suggested to be an essential component, 

together with other more exploited ‘omics’, to permit a more personalized 

medicine leading to a better understanding of drug efficacy and toxicity 

(Schnackenberg and Beger, 2007). For example, the comparison of the 

metabolite levels between diseased and non-diseased individuals, has already 

been used  as disease biomarkers (Shah et al., 2015). Likewise, metabolic 

profiling between good-responders and poor-responders under a specific 

therapy could also be used as treatment chemomarkers. 

The large-scale analysis presented in this work introduces a new computational 

framework to investigate the interference of the endogenous human 

metabolomes in the action of drugs based on current experimentally confirmed 

target profiles of chemical entities and explores its potential use in precision 

medicine for the identification of treatment biomarkers. 

 

Material and Methods 

Metabolite, drug and protein databases 

Structures for metabolite and drug molecules were retrieved and processed 

respectively from the Human Metabolome Database (HMDB) version 3.6 

(www.hmdb.ca, downloaded on October 2015) (Wishart et al., 2013) and the 

DrugBank database version 4.3 (www.drugbank.ca, downloaded on October 

2015) (Knox et al., 2011), both in XML and SDF format.  

The python module Pybel was used to generate the corresponding InChIkeys 

of the different chemical structures contained in the downloaded SDF files 

through the OpenBabel API v2.3.0 (O’Boyle et al., 2008). In such way, 

InChIKeys were used to map both, metabolites and drugs. 
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With respect to metabolites, only organic and endogenous metabolites were 

considered (all inorganic molecules were discarded). In this regard, a good 

portion of metabolites were found to be wrongly annotated as endogenous 

compounds by HMDB. Accordingly, we cross-checked the contents of HMDB 

with the endogeneity criteria applied in the HumanCyc database version 18.5, 

(www.humancyc.org, downloaded on December 2014) (Romero et al., 2004), 

followed by a final manual curation of all remaining molecules. 

As regards to drugs, only the FDA-approved drugs present in the Anatomical 

Therapeutic Chemical (ATC) classification system were taken into account. The 

final set of drugs was filtered from all molecules presenting a structural collision 

with any metabolite structure (i.e., Levodopa, Mannitol). This was determined 

by comparing the first part of the InChIKey, which is 14 characters long and is 

based on the connectivity layer in the InChI string. Drug molecules were 

stratified according to the ATC classification system (WHO, 2015). Under this 

classification, a drug may actually belong to more than one group depending on 

the organ or system they are intended to act and/or their therapeutic and 

chemical characteristics. See Supplementary Table 1 for the complete list of the 

anatomical therapeutic chemical classification system drug classes analyzed. A 

total of 9 drug groups of the ATC anatomical-level were considered: (A) 

Alimentary tract and metabolism system (n=70), (C) Cardiovascular system 

(n=121), (D) Dermatological drugs (n=62), (G) Genitourinary system and 

reproductive hormones (n=56), (L) Antineoplastic and immunomodulating 

agents (n=69), (M) Musculoskeletal system (n=33), (N) Nervous system 

(n=163), (R) Respiratory system (n=81), and (S) Sensory organs (n=61). Drugs 

exclusively belonging to any of the (B) Blood and blood forming organs 

(n=16), (H) Systemic hormonal preparations – excluding reproductive 

hormones and insulins (n=10), (P) Antiparasitic products (n=14), (V) Various 

ATC structures (n=7), and (J) Antiinfectives for systemic use (n=34) were 

excluded from the study because of an insufficient number of drugs (n < 20) 
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(B-V), and because its pharmacological nature does not aim to be primarily 

directed towards endogenous human targets and we are just considering human 

proteins at the moment (P and J). Therapeutic groups corresponding to the 

second level of the ATC system classification of the 9 drug classes 

aforementioned were also inspected. 

Experimental affinity values (pKi, pKd, pIC50, or pEC50) for metabolite – target 

and drug – target interaction data were collected from public domain databases, 

namely, ChEMBL v19 (Gaulton et al., 2012), PubChem (imported from 

ChEMBL v19) (Bolton et al., 2008), IUPHAR-DB (downloaded on June 2014) 

(Sharman et al., 2011), BindingDB (downloaded on September 2014) (Liu et al., 

2007). 

As the study is limited to the human metabolome, we focused our analysis on 

human proteins. Moreover, protein subunits were collapsed into unique 

consensus UniprotKB to avoid protein redundancies. This made a final set of 

803 unique protein entities. 

Finally, only those metabolite – protein and drug – protein interactions with 

experimental affinity better than 1µM (pAct ≥ 6; pAct = pKi, pKd, pIC50, 

pEC50) were considered. Under this activity threshold, a total of 633 metabolite 

– protein and 4,227 drug – protein interactions involving 194 metabolites and 604 

drugs, respectively, were finally used in this study. For any given molecule 

(metabolite or drug), the interaction having the highest pAct value, as well as all 

additional interactions within 1 log unit of it, were labelled as primary/on-target 

interactions; all other interactions were treated as secondary/off-target 

interactions. 

Analysis and visualization of metabolite – protein and drug – protein 

interaction networks 

Networks were constructed to visually illustrate the interaction between drugs, 

metabolites, and proteins. Interaction networks were visualized using the Gephi 
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open source package version 0.9.0 (www.gephi.org) (Bastian et al., 2009). Both 

systems were exemplified as bipartite undirected networks, where nodes stood 

for the elements of the different sets (drugs, metabolites, and proteins) and 

edges connecting two nodes from different sets having an interaction affinity 

value above a certain threshold (in our case, pAct ≥ 6). Nodes were positioned 

using the Force Atlas 2 algorithm (Jacomy et al., 2011, 2014). Force Atlas 2 is a 

simple and very fast force-directed algorithm. It uses classic force-vectors, 

providing a generic and intuitive way to spatialize networks to allow a visual 

interpretation of their structure, turning structural proximities into visual 

proximities. Accordingly, highly connected nodes present higher attractive 

forces and are thus positioned at the center, whereas weaker nodes with lesser 

interactions are placed on the periphery.  

Node size reflects degree centrality (min size = 8 – max sixe = 45), which 

measures the number of ties a node has to other nodes. Thereby, large nodes 

are related to wide promiscuities, whereas smaller ones are associated to higher 

selectivity. Nodes were also colored with respect to the different chemical 

entities (blue = drugs, yellow = metabolites and red = proteins). Finally, edges 

were colored according to the primary/on-target (black) and secondary/off-

target (grey) label of the interactions. 

Construction of the drug – metabolite interference networks 

The original metabolite – protein and drug – protein interaction networks described 

above were connected through the common protein nodes to obtain a new drug 

– metabolite interference network. Given the set of drugs and metabolites for 

which the interaction for proteins is experimentally known, we consider that a 

metabolite interferes with the interaction of a drug for a protein if the pAct 

value of the metabolite – protein interaction is higher than the pAct value of the 

drug – protein interaction. These interferences are the edges of the drug – 

metabolite interference network. 
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Impact of metabolite interference to drug – target interaction networks 

Edges and nodes of the drug – target interaction network were filtered based on 

the previously described drug – metabolite interference network.  

The impact of metabolic interference to a drug – target interaction network is 

calculated as the relative number of drug – target interactions being interfered by 

at least one metabolite among all the original drug – target interactions in the 

network. This is quantitatively reflected by what we refer to as the relative 

metabolic interference (RMI). Using the ATC as the reference framework, the 

RMI values were evaluated at the different Anatomical and Therapeutic levels 

under study, and within each network, split into on-target and off-target 

interferences. 

Identification of metabolite markers within drug classes 

We used the statistical Fisher’s exact test and the two-sided P-values associated 

to them in order to assess whether metabolites presented any level of 

interference-specificity towards the different drug classes under study. An alpha 

value of 0.05 was set to establish the significance of P-values. 

Then, be MI, the set of metabolites participating in drug interferences, being 

{MI1, …, MIn} the different metabolites (n=116), and DI the set of interfered 

drug interactions, with {DI1, …, DIn} the subset of different 

anatomical/therapeutic drug interactions subset (n=9/n=50), the contingency 

table for the metabolite MI1 at the anatomical subset DI1 is defined as: 

 

DI1 interfered by MI1 DI-{DI1} interfered by MI1 

DI1 interfered by MI-{MI1} DI-{DI1} interfered by MI-{MI1} 
 

The fact that one drug may actually belong to more than one group did not 

exclude them from the DI-{DI1} set. 
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Specificity was represented in a heatmap using –log10(P-values). Significant 

metabolites (P-value ≤ 0.05) for each given anatomical or therapeutic drug class 

were colored using a yellow-to-black range colors. Non-colored metabolites 

have non-significant P-values for specificity. 

In addition, Pearson correlation coefficients were used to evaluate the 

hierarchical relationship between metabolites and the different drug classes. 

This was represented with two dendrograms along the metabolite and a drug 

type dimensions. This analysis was carried out in the R platform v3.2.1. (www.r-

project.org) using ‘RColorBrewer’, ‘pheatmap’, and ‘gplots’ packages. 

 

Results and Discussion 

Common protein spaces between drugs and metabolites 

We rely on the hypothesis that common target profile spaces between drugs 

and metabolites might be an important source of poor drug efficacy and 

undesirable adverse events. Endogenous metabolites can affect directly the 

pharmacodynamic and pharmacokinetic properties of drugs by the means of 

binding affinities and thus, become real competitors for a common protein.We 

start with 194 manually curated organic and endogenous metabolite structures 

from the Human Metabolome Database (Wishart et al., 2013) and cross-check 

them with HumanCyc database (Romero et al., 2004) to ensure its intrinsic 

endogeneity. This subset of endogenous metabolites represents a tiny little 

portion of what human metabolome is believed. Estimate approaches have 

reported ranges from 3,000 essential metabolites to approximates of 20,000 

unidentified metabolites that are not essential for growth and development but 

could be of significant importance for  prognosis, diagnosis and for the 

identification of surrogate markers for different disease conditions as well as for 

a better understanding of applied translational systems biology 

(Kouskoumvekaki and Panagiotou, 2011; Perspectives, 2004). However, as 
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above mentioned, metabolomics is still a young field and the real number of 

different human metabolites is to date unknown since a huge part of them have 

still not been identified and quantified and neither target-profiled.  So far, 

current HMDB statistics report a total of 2,721 detected and quantified 

endogenous metabolites. This number barely represents the 9% of a total of 

29,284 endogenous metabolites (http://www.hmdb.ca/statistics, downloaded 

on June 2016). However, not all these identified and quantified compounds 

have been experimentally target-profiled, hence reducing down to ~1% the 

portion of the human metabolome we have knowledge of for this study.  

Likewise, 604 FDA-approved drug structures are gathered from DrugBank 

database (Wishart et al., 2006, 2008) and ensured not to be metabolite-like (see 

Material and Methods section). 

In total we globally collect 4,227 drug – target interactions between 604 drugs 

and 680 protein targets (Figure 1). This results in an average number of targets 

Figure 1. Illustration of  our different network models. The drug – target and 
the metabolite – protein networks are projected into a drug – metabolite 
network when metabolite’s activity values are greater than the drug ones 
towards a common protein. 

 



Results 

 196 

per drug of 7 and an average of drugs per target of 6.2, which resembles a 

previously reported projected value of 6.3 targets per drug (Mestres et al., 2008). 

However, this average fluctuates over the different types of anatomical and 

therapeutic drugs (see Supplementary Table 2). For instance, Antineoplastic and 

immunomodulating agents (L) as well as Nervous system drugs (N) present the 

widest level of promiscuity with their respective average of targets per drug of 

15 and 10.2. In contrast, Cardiovascular system drugs (C) seems to be a more 

target-directed group with an average of 3.8 targets per drug. 

On the other hand, we collect a total of 633 interactions between 194 

metabolites and 256 proteins (Figure 1), resulting in an average number of 

proteins per metabolite of 3.2 and an average of metabolites per protein of 2.6. 

As we work only with annotated interaction data results may show an inherent 

bias towards therapeutic relevant targets in the case of drugs, and relevant 

metabolic pathways in the case of metabolites (Mestres et al., 2009). 

Noteworthy to mention the huge difference of interaction data collected in 

regard with drugs. This is explained by the novelty of metabolomics as a field 

together with the interest of drugs for being profiled due to tight toxicity and 

efficacy regulation concerns by the FDA. 

Up to 52% of the proteins interacting with metabolites are also found to be 

drug targets (overlap n=133) between 436 drugs and 134 metabolites. A total of 

5,474 drug – protein – metabolite associations are estimated by collapsing the drug 

together with the metabolite interaction profiles. This tripartite association set 

represents our basis for the further identification of potential competitive 

points between external agents, in our case drugs, and endogenous human 

metabolites. 
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Figure 2. Metabolite interference in drug Polypharmacology. (a) Bar height reflects the 
percentage of  interactions interfered by the affinities of  endogenous metabolites 
within each anatomical drug type. Blue portion corresponds to the percentage of  
primary targets affected and green portion to the percentage of  off-targets affected. 
(b) Bar height reflects  the percentage of  drugs interfered by the affinities of  
endogenous metabolites within each anatomical drug type. Blue portion corresponds 
to the percentage of  primary targets affected and green portion to the percentage of  
off-targets affected. (c) Bar height reflects the number of  drugs for each therapeutical 
drug type of  the secondary-level of  the ATC system. The different groups are sorted 
according to the percentage of  interfered drugs (top label). Blue portion represents 
the number of  drugs being interfered, and grey portion represents non-interfered 
drugs. 
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Human metabolome interference to drug polypharmacology 

We define the term drug – metabolite interference as the competitive effect 

between a drug and a metabolite when a metabolite has a greater annotated 

affinity towards at least one of the drug profile targets. Under this premise, we 

assume that: (I) both chemical entities have similar kinetics towards a common 

target; (II) target and site of action is reachable in all of the cases without 

considering any kind of body compartmentalization; (III) and lastly, metabolites 

are present in equilibrium with all the targets considered in their active 

pharmacological profile, hence, reaching at least a minimum concentration 

equivalent to the activity threshold set in this work (1µM or pAct = 6) (see 

Material and Methods section).  

After applying this criterion, we reduced down to 2,527 drug – protein – metabolite 

interferences (46.2%).  This subset of drug – protein – metabolite associations is 

then projected into unique pairwise interferences between drugs and 

metabolites with a total of 1,543 drug – metabolite pairs between 291 drugs and 

116 metabolites, being connected through one or diverse protein targets (Figure 

1). 

Figure 2a shows the relative metabolic impact of the drug – metabolite 

associations at the different anatomical drug types considered (see Material and 

Methods section). The 25.17% of the FDA-approved drug – target interactions 

network is competitively prone to be compromised by metabolite affinities, of 

which 9.3% affecting at the on-target level (blue) and 90.7% affecting at the 

off-target level (green). When inspecting at the different drug types, nervous 

system (N) and genitourinary system (G) drugs are the most susceptible to 

metabolite’s endogenous competitiveness with respective percentages of 37.4% 

and a 32.7%. However, only 4.4% of the profile for antineoplastic drugs (L) 

shows such metabolic vulnerability. If considering interferences inferring at the 

primary profile, alimentary tract class (A) is the most sensitive type with a 
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relative on-target impact of the 24.5%, whereas the smallest percentage 

corresponds to nervous system drugs (6.1%) (see Supplementary Table 2). 

In parallel, Figure 2b represents the percentage of affected drugs within each 

anatomical class. Following the same trend as before, most part of the drug 

types are mainly affected at their secondary profile (green), with on-target 

impacts ranging from 8 to 20% (blue). Although, in this case, we consider a 

drug with on-target impact if its primary target is interfered by any metabolite 

action, without taking into account any other impact at the secondary profile, 

while drugs classified as secondary impact are just interfered at their secondary 

profile. Nervous and genitourinary groups are once again on the top, with more 

than the 60% of their drugs exposed to metabolite’s activity. By contrast, only a 

27.3% of drugs belonging to the musculoskeletal (M) class are interfered. In 

regard to drugs primarily affected at their primary target, genitourinary group is 

the one with the greatest percentage (19.6%), followed by alimentary tract 

(18.6%) and nervous system (16%) classes. In contrast, sensory organs (S) 

group shows simply an 8.2% of its drugs being compromised on their primary 

target (see Supplementary Table 2).  

Lastly, Figure 2c represents the number of drugs included at each therapeutic 

drug subtype (n=50) decreasingly sorted according to the relative percentage of 

drugs affected. Blue portion of the bars indicates the number of interfered 

drugs. At the uppermost we find again genitourinary and nervous subclasses. 

Concretely, sex hormones and modulators of the genital system (G03), 

psycholeptics (N05), and psychoanaleptics (N06) with 94%, 82%, and 60% of 

their drugs affected, respectively. 

In general, there is a strong metabolic interference at drug off-targets rather 

than at specific on-targets. Moreover, some anatomical drug classes seem to 

have more predisposition to compete with metabolite’s action, such as nervous 

and genitourinary therapeutic strategies. However, the take home message here 
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is that human metabolism per se constitutes an innate protection against 

exogenous agents, such as drugs, explained somehow by this competitive 

impact. Nonetheless, the insufficient amount of experimental annotated 

interaction data, specially for metabolites, directly affects these results, which 

may be biased towards well-known metabolic and therapeutic pathways. This 

immediate deficit needs to be taken under consideration and thus we cannot 

extract any deciding metabolic impact patterns throughout the different 

anatomical and therapeutic drug classes. For instance, antineoplastic drug class 

might reasonably be the less affected by metabolite’s action due to this lack of 

interaction data in contrast with nervous and genitourinary classes, which have 

been of great relevance and consequently further studied. 

Identification of specific metabolite markers 

As before mentioned, a total of 116 metabolites representing the 59.8% of the 

initial profiled set, participates at least at one drug interference. This percentage 

greatly differs when inspecting the different drug anatomical classes (19.1% A, 

32.5% C, 22.7% D, 25.8% G, 34% L, 16% M, 39.2% N, 19.1% R, and 29.9% 

S). We could say that, the greater the number of metabolites potentially 

inflicting a therapeutic group, the greater metabolically divergent it is. But again, 

it is important to remember the implicit limitation of annotated interaction data 

we are carrying with throughout all this work. In such way, results point 

towards nervous system drugs presenting the greatest participation of 

metabolites, to be a profoundly divergent and persuadable system.  

In general, an average of 13.3 drugs are pointed by a metabolite and an average 

of 5.3 metabolites are linked to a drug. Again, this average diverges when 

particularly looking at the different groups. More specifically, an average of 2.81 

drugs/metabolite and 3.35 metabolites/drug for A drugs; 3.56 

drugs/metabolite and 4.31 metabolites/drug for C drugs; 2.98 drugs/metabolite 

and 4.37 metabolites/drug for D drugs; 5.04 drugs/metabolite and 7 
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metabolites/drug for G drugs; 1.48 drugs/metabolite and 4.26 

metabolites/drug for L drugs; 1.23 drugs/metabolite and 4.22 metabolites/drug 

 
Figure 3. Heatmap for identification of  specific metabolite markers. Heatmap 
representation for the identification of  specific enrichments of  each of  the metabolites 
shown to be interfering at drug’s profile. X-dimension represents the different 
secondary therapeutical drug classes (n=41), and y-dimension represents the 116 
metabolite interferers. Fisher’s exact test and its significant two-sided P-values (≤ 0.05) 
are colored according to the legend (P-values are displayed in negative logarithmic scale 
from yellow - weak significant evidence - to black - strong significant evidence, whereas 
uncolored boxes represent no metabolite specificity for the corresponding drug 
subclass. A total of  9 drug subclasses are excluded for the heatmap representation due 
to no significant P-values for any metabolite (A05, A16, D02, D03, L03, M04, M05, 
M09, R07). Drug classes and metabolites are hierarchically distributed based on their 
relationship according to Pearson correlation coefficients. Metabolites mentioned in 
section 3.3 are highlighted in yellow. 
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for M drugs; 9.11 drugs/metabolite and 6.35 metabolites/drug for N drugs; 

3.86 drugs/metabolite and 4.47 metabolites/drug for R drugs; and 2.05 

drugs/metabolite and 4.41 metabolites/drug for S drugs. Consistent with the 

previous findings, nervous and genitourinary drugs are in average pointed by a 

large number of metabolites.  

Reached this point, our endeavor now is to see whether there is an inherent 

specificity for these metabolite interferers towards the different drug anatomical 

and therapeutical classes, and whether there is a defined relationship between 

these drug classes according to their metabolites. Figure 3 shows the heatmap 

representation of specific metabolite markers (y-dimension, n=116) acting at 

the different therapeutic drug subclasses (x-dimension, n=41). Drug subclasses 

showing no significant enrichment for any metabolite (P-value > 0.05) were 

excluded of the heatmap (A05, A16, D02, D03, L03, M04, M05, M09, and 

R07). Along the y- and x-dimensions, the different therapeutical drug subclasses 

together with their metabolites are hierarchically distributed according to their 

Pearson correlation coefficients (P-value ≤ 0.05). We can observe from it that 

Respiratory (R) and nervous anatomical classes are placed together, which 

emphasizes the already reported relationship between these type of drugs. 

Similarly, genitourinary drugs are closely related with alimentary tract system 

drugs and dermatological drugs (D) (see Supplementary Figure 1). These 

relationships show somehow the inherent tight connection these systems have 

within the body. As an aside, there is a high portion of major steroid hormones 

specifically enriched for genitourinary drugs (i.e. Progesterone, Cortexolone, 

Testosterone, Androsterone, and Pregnenolone), that are also specific to the 

nervous system. This reflects in some way how hormones down- and up-

regulate a grand number of biological processes within different systems in the 

body and that they are not exclusives to one system (Barth et al., 2015). In a 

comparable way, Allopregnanolone, which is a neuroactive metabolite of 

progesterone and a modulator of the central gamma-aminobutyric acid 
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receptors, appears to be a specific chemomarker perturbing psycholeptics (N05) 

and muscle relaxant drugs (M03). Moreover, recent studies considered 

neurosteroids of great potential for the treatment of diverse central nervous 

system disorders (i.e., epilepsy, pre-menstrual syndrome, infantile spasms, 

fragile X syndrome, chronic pain, Alzheimer’s disease, bipolar disorder, and 

smoking and alcohol dependencies)(Reddy, 2010; Reddy and Estes, 2016). 

Conversely and as we could expect, the neurotransmitters Tryptamine and 

Serotonin, known to be involved in many physiological cycles such as the sleep-

wake cycle (Portas et al., 2000), appear to specifically impact at different drug 

subclasses of the nervous system, particularly anti-parkinsonian agents (N04), 

psycholeptics and psychoanaleptics. Moreover, serotonin also is identified as a 

marker for cardiovascular, respiratory, andgenitourinary drugs. Another 

interesting example is the metabolite Anandamide. This compound is a fatty 

acid neurotransmitter which effects are mediated primarily by CB1 and CB2 

cannabinoid receptors. Among its different functions, there is the regulation of 

the feeding behavior (Mahler et al., 2007). Here, it appears to be a specific 

marker of alimentary tract drugs, particularly to the therapeutical subclasses: 

antiemetics and antinauseants (A04), antiobesity preparations (A08), drugs for 

constipation (A06), and lipid modifying agents (C10). Finally, last remarkable 

example worth to bring up is the endogenous metabolite Oleamide. This 

metabolite is structurally similar to the previous cannabinoid Anandamide, and 

has been suggested to play an important role during sleep deprivation by 

inducing sleep (Reyes Prieto et al., 2012). We find it to be a specific marker for 

nervous system drugs, concretely at psycholeptics, psychoanaleptics, and 

analgesics (N02). 

The identification of such markers should be considered when looking at the 

metabolic profile of patients under treatment. For example, a recent study 

found that patients suffering from major depression under Sertraline therapy 
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with lower levels of serotonin and higher levels of 5-Methoxytryptamine lead to 

a better outcome (Zhu et al., 2013). 

Metabolic Impact at Anti-Parkinsonian drugs polypharmacology 

Parkinson’s disease (PD) is a neurodegenerative disorder of the central nervous 

system that leads to chronic and progressive malfunction of the motor system. 

Current available treatment leads to the occurrence of short and long term 

undesirable side effects (Müller, 2012) and new therapeutic strategies implying 

lower toxicity and better efficacy are of actual necessity. Our set of Anti-

Parkinsonian drugs is mainly formed by anticholinergic (N04A) and 

dopaminergic (N04B) agents. Specifically, the 15 PD drugs under study are: 

Ropinirole (N04B), Seleginile (N04B), Pramipexole (N04B), Rotigotine (N04B), 

Pergolide (N04B), Bromocriptine (N04B, G02C), Cabergoline (N04B, G02C), 

Apomorphine (N04B, G04B), Benzatropine (N04A), Procyclidine (N04A), 

Trihexyphenidyl (N04A), Metixene (N04A), Ethopropazine (N04A), Biperiden 

(N04A), and Tolcapone (N04B). 

The derived drug – target network shown in Figure 4a consists of 131 

interactions between these 15 drugs and 42 target proteins. The average 

number of targets per drug is of 8.7, and the average of drugs per target is of 

3.1. Distribution of the two main groups of anti-parkinsonians is well defined in 

the network, bottom part for anticholinergic agents and upper part for 

dopaminergic agents with Benzatropine appearing to be in the middle sharing 

some of the dopaminergic targets.  

The derived metabolite-protein network (See Supplementary Figure 2) is formed by 

a total of 66 interactions between 8 metabolites (Serotonin, Dopamine, 5-

Methoxytryptamine, Epinephrine, Norepinephrine, Tryptamine, 5-Hydroxy-L-

tryptophan and Oleamide) and 33 proteins.  
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The extracted drug – metabolite network accounting for the interferences is 

formed by these 8 metabolites and 9 drugs with a total of 46 interferences 

shown in Figure 4b. A total of 20 drug targets (47.62%) are considered as 

potential competitive points to metabolite affinities (i.e., 5-HT7 receptor, 5-

HT4 receptor, 5-HT1D receptor, 5-HT1B receptor and 5-HT1F receptor). 

a 

b 

c Figure 4. Potential versus actual polypharmacology of  anti-Parkinson drugs (N04). 
(a) Actual drug – protein interaction network. Magenta nodes stand for proteins and 
Blue nodes stand for drugs. Black edge color corresponds to primary/on-target 
interactions and grey edge color to secondary/off-target intractions. Proteins 
nodes without any label do not participate in Drug – metabolite interferences. (b) 
Drug – metabolite interference network. Blue nodes stand for drugs and yellow 
nodes for endogenous metabolites. Black edge color corresponds to primary/on-
target interferences and grey edge color to secondary/off-target interferences. 
Edge width correlates with the number of  proteins mediating for the interference. 
(c) Potential drug – protein  interaction network susceptible of  metabolic 
interference. Black edge color corresponds to primary/on-target interactions and 
grey edge color to secondary/off-target interactions. 
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Figure 5a shows these proteins ranked according to their occurrence at the drug 

– target network. In a simplistic way we could say that the most frequently 

targeted proteins by drugs are also the most relevant ones, so being mainly 

adrenergic and dopaminergic receptors. The magenta portion indicates the 

number of affected annotated interactions among the unaffected ones (grey).  

Five of these interfering metabolite appear to be specific markers to the anti-

parkinsonian group, namely Serotonin, 5-Methoxytryptamine, Epinephrine, 

Norepinephrine, and Dopamine (Figure 3). Serotonin, the most drug-

frequented metabolite, appears to be interfering with a total of 8 drugs (Figure 

5b), with interestingly 7 of them belonging to the class of dopaminergic agents, 

excluding Benzatropine. On the other hand, Dopamine is ranked as the second 

Figure 5. Proteins and Drugs susceptible to Metabolite’s action. (a) Ranking by drug 
occurrence of  the proteins participating in interferences. Bar height reflects the 
number of  drug – protein interactions within the anti-Parkinsonian working set of  
drugs, magenta portion indicates the number of  interactions susceptible to 
metabolite’s action, and grey portion indicates the portion of  interactions not 
affected. (b) Metabolites participating in the interference. Bar height reflects the 
number of  affected drugs (right y-axis), and the yellow trend line the percentage of  
affected interactions within the whole affected anti-Parkinsonian network (left y-axis). 
Metabolites are decreasingly sorted according to the relative number of  affected 
interactions. 

a b 
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most common target for anti-parkinsonian agents and also as the one affecting 

more number of drugs (n=9) with a total of 19 interfered drug – protein 

associations. 

In an overall, the relative metabolic impact for the PD treatment is of the 

41.98% and affects to 60% of its drugs. Concretely, with a relative on-target 

impact of the 5.5%, and a relative off-target impact of the 94.6%. Interestingly, 

all drugs showing more than a 50% impact in their profiles belong to 

dopaminergic agents: Ropinorle (100%), Selegiline (100%), Pramipexole 

(83.3%), Rotigotine (75%), and Pergolide (64%), with exception of Tolcapone 

that shows no interference to its profile. Actually, also many adverse effects 

reported in PD patients come from dopaminergic therapies, and even some of 

the drugs have been withdrawn in some countries, i.e., Pergolide (Elangbam, 

2010; Chaudhari et al., 2004). By contrast, the less affected ones are in grand 

part of anticholinergic nature: Biperiden (0%), Ethopropazine (0%), Metixene 

(0%), Trihexyphenidyl (0%), Procyclidine (0%), Benzatropine (31.3%), 

Apomorphine (36.4%), Cabergoline (37.5%), and Bromocriptine (45%).  

Metabolite’s effect potentially leads to a considerable reduction of the 

annotated drug – target interactions network free of endogenous 

competitiveness. This prominent reduction also affects to the average number 

of targets per drug, which turns to 5.9, and a respective average of drugs per 

target of 2.3. Figure 4c shows the potential drug – target annotated interactions 

susceptible to be interfered by metabolites. Notice that this network exclusively 

shows now dopaminergic agents (except of Benzatropine), in turn also being 

those ones resulting in a great number of side effects (Müller, 2012). May be 

metabolites the ones modulating such adverse reactions in respect to the 

different physiological status and stage of the disease? Development of motor 

and non motor symptoms, efficacy and tolerability of therapeutic approaches 

for this affliction vary from one subject to another. Our message with this 

Parkinson exemplification is that potential metabolically perturbed drug 
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interactions should be further considered for assessing a better outcome 

treatment and a reduction of undesirable drug-related side effects for individual 

patients. PD, as well as other individual conditions, should be idyllically treated 

in an individual and holistic manner and not in a population-based 

pharmacology. 

 

Conclusions 

In this study, we propose a novel interpretation of drug – metabolite relationship 

by identifying potential metabolic activities action to drug polypharmacology. 

To best of our knowledge, this is the first study to investigate endogenous 

metabolite’s relationship with drugs. We also assessed the degree of specificity 

of such metabolites among different anatomical and therapeutic drug classes. 

We further exemplified some of our findings by representing the network for 

anti-Parkinsonian drugs, and how it is affected by such metabolic effect. 

Of course, our approach also has some limitations. For example, it does not 

consider compartmentalization within the body, nor metabolite’s or drug’s 

titration, both implied in the reachability of the target. In a more realistic way, 

such drug – metabolite interferences would just take place as long as both 

chemical entities were available at the site of action, as well as in a sufficient 

concentration to displace drug’s action. However, this strategy aims to 

qualitatively highlight the existence of hotspots for interference between drugs and 

endogenous physiological conditions, characterized by metabolites activities.  

Metabolomics until recently has lacked the data reference resources such as 

electronic databases equivalent of GenBank and Uniprot for compound 

identification as other more exploited “omics” as genomics, transcriptomics 

and proteomics have. The current development and progress of the Human 

Metabolome Database and the Human Metabolome Project are being of great 
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importance for the growth of metabolomics as a field, allowing for a better 

metabolite identification and quantification (Psychogios et al., 2011). Despite 

just considering a microscopic portion of the human metabolome (~1%) our 

approach already reveals an inherent  interference that human endogenous 

metabolites offer to any external agent, such as drugs. But this only represents 

the tip of the iceberg. The different interference trends among the various 

anatomical classes reported in this work show nervous, genitourinary, and 

cardiovascular drug classes as the ones with a significantly higher RMI, in 

contrast with the notable lower metabolic impact at antineoplastic and 

immunomodulating agents. We cannot draw any plausible interpretation for 

these results, but emphasize the fact that results may be biased towards 

important metabolic targets in where nervous, genitourinary and cardiovascular 

systems and pathways have been well-studied for decades, while antineoplastic 

targets are yet not connected with many targets and thus, its lower metabolic 

interference percentage clearly reflects this lack of data completion. The 

representation of the Parkinson network was chosen because it is a widely 

studied affliction and it is directly connected with nervous system.  

There is much more effort to be done in order to metabolomics be at the same 

level as the other “omics” by standardization and normalization of Laboratory 

Information Management System (LIMS) techniques, software analysis 

development and other in-silico approaches, metabolic modeling, and expansion 

of comprehensive databases. These new footsteps within computational large-

scale metabolomics are likely to catch up genomics, transcriptomics and 

proteomics approaches, and then their final integration will lead us to a better 

understanding and application of the complexity of systems biology. The 

application of metabolomics to biological consequences will fill important gaps 

in system biology. Metabolites have already been used as disease biomarkers. 

Their up- and down-regulation under specific conditions (diet, sleep patterns, 

age, smoking, etc.), disease and treatments will allow a better descriptions of 
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individual’s drug action, a better identification of novel therapeutic strategies 

for different patients, and potentially predict safety and more effective drugs 

development and prescription for precision medicine. 
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Supplementary Material 
 
 

 

Anatomical group Code Therapeutic group 

A02 Drugs for acid related disorders 

A03 Drugs for functional gastrointestinal disorders 

A04 Antiemetics and antinauseants 

A05 Bile and liver therapy 

A06 Laxatives 

A07 Antidiarrheals, intestinal anti-inflammatory/anti-infective agents 

A08 Antiobesity preparations, excluding diet products 

A09 Digestives, including enzymes 

A10 Drugs used in diabetes 

A11 Vitamins 

A12 Mineral supplements 

A13 Tonics 

A14 Anabolic agents for systemic use 

Alimentary tract and 
metabolism (A) 

A15 Appetite stimulants 

C01 Cardiac therapy 

C02 Antihypertensive drugs 

C03 Diuretic drugs 

C04 Peripheral vasodilators 

C05 Vasoprotective drugs 

C07 Beta blocking agents 

C08 Calcium channel blockers 

C09 Agents acting on the renin-angiotensin system 

Cardiovascular system (C) 

C10 Lipid modifying agents 

D01 Antifungals for dermatological use 

D02 Emollients and protectants 

D03 Treatment of wounds and ulcers 

D04 Antipyretic drugs 

D05 Antipsoriatic drugs 

D06 Antibiotics and chemotherapeutics for dermatological use 

D07 Topical dermatological corticosteroids 

D08 Antiseptic and disinfectant drugs 

Dermatological drugs (D) 

D09 Medicated dressings 

D10 Acne drugs 

D11 Other dermatological drugs 

G01 Gynecological anti-infectives and antiseptics 

G02 Other gynecological drugs 

G03 Sex hormones and modulators of the genital system 
Genitourinary system and 

reproductive hormones (G) 

G04 Urological drugs 

L01 Antineoplastic drugs 

L02 Endocrine therapy 
Antineoplastic and 

immunomodulating agents 
(L) L04 Immunosuppressive agents 

M01 Anti-inflammatory and antirheumatic drugs 

M02 Topical products for joint and muscular pain Musculoskeletal system (M) 

M03 Muscle relaxants 

Supplementary Table 1.  Anatomical Therapeutic Chemical Classification system 
(ATC) codes of  the drugs under study 
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* On-target and Off-target impacts in respect to the general relative metabolic 
impact (RMP). 
** Percentage of affected drugs in respect to the number of drugs for each 
anatomical set. 

 
 
 
 
 

Anatomical 
Classification of 
drugs 

   Average  
targets/drug 

Average 
drugs/target 

RMP (%) On-target 
(%)* 

Off-target 
(%)* 

Affected 
drugs 
(%)** 

Number of  
metabolite  
interferers 

All FDA-approved 
set 

7.0 6.2 25.2 9.3 90.7 48.2 116 

A 3.8 2.3 19.7 24.5 75.5 44.3 37 

C 3.8 3.4 29.5 10.5 89.6 43.0 63 

D 4.8 4.8 20.1 10.0 90.0 48.4 44 

G 6.3 3.4 32.7 9.5 90.5 64.3 50 
L 15.0 2.5 4.4 15.6 84.4 33.3 66 

M 3.0 1.7 22.5 13.6 86.4 27.3 31 

N 10.2 11.2 37.4 6.1 93.9 66.9 76 

R 4.5 3.9 26.3 13.7 86.3 39.5 37 

S 4.4 2.9 22.8 13.1 80.3 44.3 58 

Supplementary Table 2.  Properties of  the Anatomical drug group networks 
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Supplementary Figure 1. Heatmap for the identification of  specific metabolite markers. Heatmap 
representation for the identification of  specific enrichments of  each of  the metabolites shown to 
be interfering at the drug profile. X-dimension represents the different secondary anatomical 
drug classes (n=9), and y-dimension represents the 116 metabolite interferers. Fisher’s exact test 
and its significant two-sided P-values (≤ 0.05) are colored according to the legend (P-values are 
displayed in negative logarithmic scale from yellow - weak significant evidence - to black - strong 
significant evidence, whereas uncolored boxes represent no metabolite specificity for the 
corresponding drug type. Drug classes and metabolites are hierarchically distributed based on 
their relationship according to Pearson correlation coefficients. Metabolites mentioned in section 
3.3 are highlighted in yellow. 
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Supplementary Figure 2. Metabolite – protein interaction network. Magenta nodes stand for 
proteins and yellow nodes for endogenous metabolites. Proteins nodes without any label 
do not participate in Drug – metabolite interferences. Black edge color corresponds to 
primary/on-target interactions and grey edge color to secondary/off-target intractions.  
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Abstract 

Motivation: Food has influence in human metabolism and, therefore, in 

health. Here, we aim to analyze the possible interference of food components 

to our body. For that purpose, a metabolite–food space is built by identifying 

competitive events between endogenous metabolites and food ingredients 

towards common protein targets. New metabolite–food interactions are sought in 

order to gain a better understanding of the diet and lifestyle impact over human 

metabolome. 

Results: Metabolite–food interfered pairs were associated. Despite food 

substances seem to not greatly interfere to human metabolome (27,49% 

interferences among total metabolite–protein interactions), interference network is 

highly connected, showing a non-specific but spread food influence to human 

metabolome. 

 
                                                
* Corresponding autor. E-mail address: jmestres@imim.es 
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Introduction 

In the past 20 years, the scientific community has advance significantly in 

different fields due tot the rising of high-throughput, “omics”, technologies. To 

date, a wide variety of omics disciplines has emerged, and thanks to them 

researchers are now facing the possibility of connecting food substances, food 

entities, diet, health, diseases, drugs and metabolism (Capozzi and Bordoni, 

2013).  

Metabolomics is the systematic study of the chemical processes involving small 

molecules (metabolites) that characterize the metabolic pathways of biological 

systems. It can be regarded as the end point of the “omics” cascade, as 

metabolites are the end products of cellular regulatory processes (Dettmer, K.; 

Hammock, 2004). Then, changes in the metabolome are the ultimate answer of 

an organism to genetic or environmental alterations. Consequently, the study of 

metabolism at a global level has the potential to contribute significantly to 

biomedical research, clinical medical practice, as well as drug discovery (Manach 

et al., 2009; German et al., 2005; Trujillo et al., 2006) 

Awareness that disease susceptibility is not only dependent on genetic make-up 

but can be affected by lifestyle decisions, has brought more attention to the role 

of diet and food (Jensen et al., 2014). To date, scientific literature has reported 

associations between diet or food/beverage groups and diseases. Indeed, the 

transition from a traditional diet towards a diet composed of more 

industrialized, refined and energy-dense foods has led to the well-known 

worldwide epidemics of obesity and type II diabetes (Fardet and Boirie, 2014). 

As a result, there are some recommended diets (i.e., Mediterranean and 

Okinawa diets) (Sofi et al., 2010; Kastorini et al., 2011; Willcox et al., 2009) or 

food groups (i.e., fruits, vegetables and fish) (He et al., 2007; Smith-Warner et al., 

2003) that prevent risk factors for several chronic diseases such as cancer, 

diabetes, cardiovascular diseases, obesity, etc. On the other hand, the intake of 
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particular food groups can lead to higher prevalence of these diseases (i.e., high 

consumption of red/processed meat over many years) (Larsson and Wolk, 

2012). Nevertheless, we cannot forget that prevalence of certain diseases, 

dietary habits, lifestyle or many other factors, differ among populations. Thus, 

giving a general recommendation to this heterogeneity seems not feasible. 

Considerable information on the chemistry and biological properties of dietary 

phytochemicals has been gathered over the past three decades. Conversely, 

other food components have been less explored. Furthermore, the ideal 

information system on food composition is still challenging (electronic 

resources are particularly scarce in the field of nutrition) (Scalbert et al., 2011; 

Manach et al., 2009). 

In the present work, we aim to study food interference to human metabolism 

by building a metabolite–food space from comparing well-known data of  protein 

associations. A pair of  metabolite–food is going to be linked through common 

protein associations, taking into account affinity values. We expect to discover 

new metabolite–food interactions to gain a better understanding of  the influence 

that food and diet may have in our bodies. 

 

Material and Methods 

Data retrieval 

Metabolite and food compound structures 

Available structures for metabolite and food compound molecules were 

retrieved and processed respectively from Human Metabolome Database 

(HMDB) version 3.6 (www.hmdb.ca, downloaded on October 2015) (Wishart et 

al., 2009) and Food Database (FooDB) version 1.0 (www.foodb.ca, downloaded 

on October 2015), both in XML and SDF format. Then, each structure was 

mapped by its corresponding InChiKey according to pybel OpenBabel module 
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(O’Boyle et al., 2008). 

Regarding metabolites, only organic and endogenous metabolites were 

considered. In this respect, a great number of  metabolites were found to be 

wrongly annotated in HMDB. Accordingly, structures were filtered by 

comparing them to HumanCyc database version 18.5, (www.humancyc.org, 

downloaded on December 2014) (Romero et al., 2005), followed by a final 

manual curation of  all remaining molecules. Correspondingly, only food 

compound structures with a reported food association were considered. 

Protein targets and association data 

Molecule–protein interactions including only experimental reported data were 

collected from public domain databases, namely, ChEMBL DB version 19 

downloaded in 2014 (Gaulton et al., 2012), PubChem imported from ChEMBL 

version 19 (Bolton et al., 2008), IUPHAR-DB downloaded on June 2014 

(Sharman et al., 2011), and BindingDB downloaded on September 2014 (Liu et 

al., 2007). 

Affinity value (pKi, pKd, pIC50 or pEC50) for association data could be active, 

inactive, undetermined or a quantitative number. However, only experimental 

molecule–protein interactions with an affinity value of  pACT ≥ 6 (1 µM; pACT = 

pKi, pKd, pIC50, pEC50) were finally considered. 

Among all the protein targets showing an affinity value equal or greater than 

the abovementioned threshold, only human proteins were selected. Moreover, 

some protein subunits were collapsed into unique consensus UniProt codes to 

avoid redundancy. Consequently, a final set of  698 unique protein entities was 

obtained. 

Furthermore, we classified the resulting associated proteins into primary/on-

targets and secondary/off-targets for each molecule by sorting their activity 

values, assuming that the highest pACT corresponds to the primary target. 



Results 

 221 

Final molecule working sets 

Initially we started with 18,182 metabolite structures and 23,100 food 

compound structures. However, as we have declared, not all metabolites were 

truly endogenous and not all the available food compound structures were 

pointed to a food source. In this regard, 10,759 ingredient structures could not 

be related to any food and 30 foods without including any compound were 

found. 

In addition to the different filtering criteria abovementioned, structural collision 

derived from the overlap between metabolites and food compounds was 

avoided by discarding the common structures from the food dataset according 

to the first part of  the InChIKey, which is 14 characters long. 

After removing all the structures that did not fulfill the several imposed 

requirements (i.e., truly endogenous metabolites, food related substances, 

experimental molecule–protein associations with pACT ≥ 6, human proteins and 

non structural collision), reduced molecule sets were acquired. Therefore, we 

ended up with 194 metabolites associated to 256 protein targets and 344 food 

compounds (encompassed in 838 foods from 23 different food groups) with 

336 protein targets. 

The number of  different metabolites in the human is unknown; experts believe 

there are at least 2,000–3,000 essential metabolites for normal growth and 

development (primary metabolites) and thousands more unidentified (around 

20,000, compared to an estimated 30,000 genes and 100,000 proteins) that are 

not essential for growth and development but could represent prognostic, 

diagnostic, and surrogate markers for a disease state and a deeper 

understanding of  mechanisms of  disease (secondary metabolites) (Perspectives, 

2004; Kouskoumvekaki and Panagiotou, 2011). However, current HMDB 

statistics report a total of  2,721 detected and quantified endogenous 

metabolites, representing the 9.3% among a total of  29,284 endogenous 
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metabolites (http://www.hmdb.ca/statistics, downloaded on June 2016). 

Nevertheless, it has not been experimentally found a target-profile for all of  

these identified and quantified metabolites. Consequently, our final working set 

represents the 0.66% of  the human endogenous metabolome (counting 29,284 

as the total) and the 7.13% of  the detected and quantified human endogenous 

metabolome (counting 2,721 as the total). 

Metabolite- Food interferences 

Comparing the different target profiles from each data source (metabolites and 

foods), a metabolite–food interference space can be built. Common proteins act as 

the linking points providing a metabolite–food association when both molecules 

share a target protein. Hence, a pair of  metabolite–food can be associated by one 

or several proteins. 

For each metabolite-protein-food connection, the pACT difference (dtpACT) is 

calculated by subtracting the food compound affinity value for the involved 

protein to its corresponding metabolite pACT (Eq. 1). 

We talk about interference when dtpACT of  a molecule pair for a same protein is 

negative, unraveling a food compound competition for that metabolite target 

due to higher affinity (Eq. 2). Conversely, when dtpACT values are equal or 

greater than 0, we talk about potential interactions, since metabolites still present 

higher affinities for their targets (Eq. 3). The sum of  the two constitutes the 

total number of  metabolite–food interactions. 

(1)  dtpACT protein=metabolite pACT protein− food pACT protein  
(2)  if dtpACT<0→ food pACT>metabolite pACT ;  Interference  

(3) if dtpACT ≥ 0 → metabolite pACT > food pACT ;  Potential interaction  

 

First of  all, three different protein target spaces were constructed depending on 

the classification targets: (a) primary metabolite targets versus all food 
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compound targets, (b) secondary metabolite targets versus all food compound 

targets and (c) all metabolite targets versus all food compound targets. 

Nevertheless, only last case (c) was selected for further study, distinguishing by 

primary and secondary targets. From this common target space, we classified 

the resulting metabolite–food associations into interferences or potential interactions 

according to the dtpACT value, as previously described. We focused on the 

interference set, since we are interested in identifying metabolism alterations due 

to food intake. 

Interferences were examined at three different levels: (1) metabolites–food 

compounds, (2) metabolites–foods and (3) metabolites–food groups. We scaled up from 1 

to 3 by selecting those foods in which food interfering compounds were 

included (2) and by looking for their pertaining food group (3), such as 

vegetables, herbs and spices, fruits, etc. Thus, the inference is always settled at 

the food compound level and ultimately projected to food groups. 

Visualization of the Networks 

Interaction networks were constructed to visually illustrate molecule–protein and 

metabolite–food interference spaces. They were visualized using the Gephi open 

source package version 0.9.0 (www.gephi.org) (Bastian et al., 2009). Both 

systems are undirected bipartite networks composed of  two sets of  nodes 

depending on each approach (metabolite–protein or food–protein for target profile 

networks or metabolite–food for interference network). Two nodes are connected 

by edges when they are interacting. 

Ordering and clustering can be processed according to the data. Then, 

graphical modules like size gradient or color are applied to modify the network 

display. Node size reflects degree centrality (min size: 10, max sixe: 60), which 

measures the number of  ties a node has to other nodes. Thereby, large nodes 

are related to wide promiscuities, whereas smaller ones are associated to higher 

selectivity. Nodes were also colored with respect to the different chemical 
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entities (yellow=metabolites, blue=food groups and pink=proteins). Finally, 

edges were colored according to the primary/on-target (black) and 

secondary/off-target (grey) label of  the interactions. 

Moreover, highly configurable layout algorithms can be run. We implemented 

ForceAtlas2 (a force-directed layout) by activating “Dissuade Hubs”,  “Prevent 

Overlap” and “Approximate Repulsion” as setting options (Jacomy et al., 2014). 

It uses classic force-vectors, providing a generic and intuitive way to spatialize 

networks to allow a visual interpretation of  their structure, turning structural 

proximities into visual proximities. Accordingly, highly connected nodes present 

higher attractive forces and are thus positioned at the center, whereas weaker 

nodes with lesser interactions are placed on the periphery. 

When needed, we also applied the “k-core” topology filter to select specific 

nodes and/or edges. 

 

Results and Discussion 

Food compounds, food entities and food groups 

Each chemical food compound is included in one or more food sources and, in 

the same way, each food encompasses several food ingredients. On the other 

hand, each food source points to a single food group, but a same group 

includes different foods. Additionally, some food groups present a subgroup 

classification (Fig. S1). 

Relationship from food compound level to food group is assessed. In total, 

there are 23,100 unique compound structures, 888 different food entities and 

23 food groups annotated at FooDB. However, not all chemical compounds 

could be linked to a food source nor to a food group. Consequently, a reduced 

working set of 12,341 food compound structures (53,42% from the annotated 

data), 858 food sources and 23 food groups is obtained. It is noteworthy to 
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mention that the number of food components included within a food can 

greatly differ among the different ingredients, as well as the number of food 

entities pointed by a food compound. In principle, we can uncover which food 

chemicals have a greater impact in metabolism by looking in how many 

different foods are contained. The more number of foods containing a same 

compound, the greater the expected impact on metabolism. 

We will go in depth with food and food group involvement when talking about 

metabolite–food interference set (see “Food interference to human metabolome” section). 

Molecule – Protein target spaces and common proteins 

We aim to study how diet and food intake may alter the human metabolism. 

For that purpose, our starting point relies on building individual and 

independent metabolite–protein and food–protein target spaces, in order to compare 

them and identify common protein targets. A shared target profile will link a 

metabolite to a food compound, showing molecule’s mechanism of action over 

same proteins (enzymes, transporters…). As a result, food ingredients may 

affect metabolite activities in terms of protein binding affinity and can be 

considered as possible metabolite competitors for common targets. 

After removing unsuitable structures, 194 organic endogenous metabolites and 

344 food compounds were captured. Then, experimental protein association 

profiles for both metabolites and foods were collected from public domain 

databases (see “Material and Methods”). 

Regarding metabolite set, we collect 633 metabolite–protein associations 

accounting for 194 unique metabolites and 256 proteins. On the other hand, 

841 food compound–protein interactions are gathered. These associations are 

translated to foods and further to food groups by relating each chemical 

compound to its food source. Then, we obtain 17,341 food–protein and 1,722 food 

group–protein associations constituted of 344 unique food compounds, 838 

foods, 23 food groups and 336 proteins (Fig. 1). The average number of protein 
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targets per metabolite is 3.26 (SD ± 3.25) while for food components is 2.46 

(SD ± 3.43) (Fig. S2). 

Next, proteins from the different data sources are compared. The intersection 

implies the linking points to relate metabolites to foods. The resulting 

metabolite–food interactions represent potential competitive hotspots between 

endogenous metabolites and external elements, such as food compounds. 

Hence, they are classified into potential interactions or interferences depending on the 

difference affinity value towards a common protein (see “Material and Methods”). 

However, as we are talking about food ingredients (surely present in our diet) 

we understand that a metabolite–food interaction will suppose a relevant 

metabolism alteration at certain food component concentrations. 

106 protein targets are obtained from the overlap between the two target 

spaces, meaning that up to 41.41% proteins already known to be associated 

with metabolites are also found as food compound targets. Actually, 1,006 

unique metabolite–protein–food compound tripartite interactions are accounted. At 

this intersection point, we have 125 metabolite structures and 206 food 

compounds involved. 

 Food interference to human metabolome 

Since we are interested in evaluate how diet and food ingredients may perturb 

our metabolism, we define a metabolite–food interference as the food association 

to a metabolite when the first one shows a higher affinity towards at least one 

of the metabolite’s profile targets. In such cases, foods and metabolites 

compete for a same protein target. For that reason, an interference is set down 

when dtpACT < 0 (food compound pACT > metabolite pACT) (see “Material 

and Methods”). 

Following this, 43.74% of the metabolite–protein–food compound tripartite 

interactions are interferences (n=440). From them, 27.73% interfere through 

primary metabolite targets (n=122) and 72.27% through secondary metabolite 
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targets (n=318). In total, 145 food compounds and 82 metabolites model these 

interferences, matching into 367 metabolite–food compound interfering pairs (Fig. 

1). 

Further analysis is done based on this interference set, although the remaining 

interactions might also be significant when food ingredient concentration is 

higher enough to displace metabolite activity. 

Interactions are always established at food compound level, but they are further 

projected to food groups. Thus, a better representation is achieved allowing us 

to identify outstanding clusters or interactions of interest. Once focused, we 

take steps backwards towards food compounds and food sources levels, to 

perform some statistics and point out more specific conclusions. 

In order to examine how and which specific foods interfere to the human 

metabolism, a computational framework to build molecule–target and metabolite–

food connectivity maps is developed. To do so, we integrate molecule and 

Figure 1. Schema of  the different connected elements. A metabolite–food 
space is built from the protein target intersection of  the independent 
metabolite–protein and food compound–protein networks 
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molecule/protein connectivity information based on protein interactions, as 

previously described (Fig. 2). 

All networks were exemplified as bipartite undirected networks. We represent 

proteins, metabolites and food groups as nodes. Edges linking metabolite–protein 

associations distinguish between primary and secondary targets according to 

different line color (black for primary and grey for secondary). On the other 

hand, in food group–protein network, edges width correlates with the number of 

foods (and therefore food compounds) mediating the association. Similarly, 

edge width in metabolite–food group network stands for the amount of foods (and 

ultimately common proteins) taking part in the association (Fig. 2 and 3). 

From a total of 633 metabolite–protein associations, 174 are affected by food 

components (acting over common proteins). 145 food compounds (accounting 

for 831 food sources from 23 food groups), conjointly with 82 metabolite 

structures and 65 proteins are the key responsible elements in the interferences. 

Hence, 27.49% of the metabolite–protein network is interfered by food. Figure S3 

shows the relative food interference impact to the overall metabolite–protein 

interactions. 

A cleaned metabolite–protein version of the network can be observed when 

collapsing metabolite–protein interactions with food–protein ones. As a result of 

food interference to metabolome, metabolite–protein affected associations are split 

from the original target space leading to unaffected metabolite–protein interactions 

network. Regarding the affected interactions map, two remarkable clusters are 

noticed. We name them as cluster 1 and cluster 2 (Fig. 3). 

Cluster 1 is mainly constituted of steroid hormones acting over 6 proteins. In 

total, 25 metabolites and 19 food compounds share these proteins as common 

targets (Fig. 3a). Food substances taking part in these interferences show a 

primary metabolite target competition of 21.62%, while the remaining 78.38% 

of interactions are through metabolite secondary targets. 
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As for metabolites grouped in cluster 2, they mainly belong to the nervous 

system. There are a total of 31 metabolites, 69 food compounds and 38 shared 

protein targets (Fig. 3b). Among the interferences, 21.95% of them are towards 

primary metabolite targets while 78.05% are towards secondary targets. 

On the other hand, assessment of the most relevant interferences is done in 

two ways. Primarily, we rank order the metabolites according to how often they 

are affected by food substances. Secondly, we do the same for food compounds 

but according to how often they interfere a metabolite–protein interaction. Then, 

the first top 10 for each case are represented (Fig. 4a-b). First ranking order 

provides information about the most affected metabolites in interferences, 

while second one shows the food compounds presenting greater interferences. 

Furthermore, we also look at the related food number profile for each 

compound participating in interferences (n=145). We ranked the substances in 

a decreasing order according to their related number of foods, and we finally 

select the first top 25 substances to be represented (Fig. 4c). 

Most interfering food compounds 

As we have said, we expect that a food substance would imply a greater 

metabolome impact as far as it is contained in more foods. Thus, we compare 

the top 25 food ingredients shown to be present in a greater number of 

different foods, with the obtained top 10 most interfering substances, to see if 

there exists a correlation. Certainly, we reach three remarkable coincidences: 

ergocalciferol, 17alpha-ethynylestradiol and quercetin. 

Ergocalciferol, also called vitamin D2, is the sixth compound most included in 

foods (n=322) and it is found in all 23 different food groups (Fig. 4c). 

According to our results, it is the third most interfering substance by the 

number of affected interactions (interfering to a 2.58% of the total metabolite–

protein interactions) and the first one most related to different metabolites 

(n=17) (Fig. 4b). This compound may be used as a vitamin D supplement and 
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it is officially regarded as equivalent and interchangeable with cholecalciferol 

(vitamin D3), which is produced naturally by the skin when exposed to 

ultraviolet light (Holick et al., 2011). However, conflicting evidence exists for 

how similarly D2 and D3 behave in the body and whether they are equally active 

or effective (Houghton and Vieth, 2006). 

Second example, 17alpha-ethynylestradiol (also called ethinyl estradiol) can be 

found in 82 different foods classified in 8 different groups: coffee, cocoa, teas, 

nuts, herbs and spices, vegetables, cereals and fruits (Fig. 4c). It ranks fifth in 

most interfering ingredients by affected metabolite interactions (2.05%) but 

third by its metabolite associations (n=12) (Fig. 4b). Ethinyl estradiol is a 

derivative of 17β-estradiol (E2), the major endogenous estrogen in humans. In 

pharmacology, it is an orally bioactive estrogen used in the estrogen-progestin 

combination preparations of oral contraceptives. 

Lastly, quercetin is a flavonol included in 194 different food sources (Fig. 4c), 

projected to 13 different groups (such as herbs and spices, pulses, vegetables 

and fruits). It is the last compound of the top 10 most interfering substances 

(affecting to a 0.95% of the total protein metabolic profile) and it is found to be 

related to 6 different metabolites. This compound is largely used as a nutritional 

supplement and as a phytochemical remedy for a variety of diseases like 

diabetes, obesity and circulatory dysfunction (D’Andrea, 2015). 

Comparing the interfered metabolite profile of these food compounds, we find 

that all three interact with epitestosterone and testosterone, which are steroid 

hormones from the androgen group. In addition, general metabolite profile for 

ergocalcalciferol, 17alpha-ehynylestradiol and quercetin is related to steroid 

hormone metabolites. Particularly, as abovementioned, we find an interfered 

cluster (cluster 1) composed of steroid hormones in which these compounds 

may have an important role (Fig. 3a). 
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Most affected metabolites 

First of all, we can see that the major part of the 10 most affected metabolites 

are found in cluster 2, providing an attractive connectivity map of interactions 

to be further evaluated (Fig. 3b). 
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Figure 4. Ranking orders. (a) Top 10 most affected metabolites participating in 
interferences. Bar height represents the percentage of  affected interactions regarding 
the total of  interactions. On the other hand, the green trend line points to the number 
of  food compounds interfering to the metabolite. Metabolites are decreasingly ranked 
according to the number of  affected interactions. (b) Top 10 most interfering food 
compounds participating in interferences. Bar height represents the percentage of  
interfering interactions regarding the total of  interactions. On the other hand, the 
orange trend line points to the number of  metabolites being interfered by the food 
compound. Ingredients are decreasingly ranked according to the number of  
interfering interactions. (c) Top 25 most contained compounds. Bar height stands for 
the number of  foods including each compound. 
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Dopamine holds the first position by affected interactions (1,74%) as well as 

for food chemical associations (n=25) (Fig. 4a). Conjointly with 

norepinephrine, serotonin and melatonin neurotransmitters, all four share OPC 

as a common interfering food compound. Certainly, OPC is the second most 

interfering substance, accounting for 4.11% of the total metabolite–protein 

interactions (Fig. 4b). This chemical compound is found in cinnamon, which 

has been explored due to its beneficial effects in Parkinsons, diabetes, blood 

and brain (Kawatra and Rajagopalan, 2015). 

Interestingly, glycine, thyroxine and D/L-serine are interfered by a single food 

compound: 1-Aminocyclopropanecarboxylic acid (ACC), which has been 

shown to be the most interfering food chemical by affected interactions 

(4.27%) (Fig. 4b). Moreover, these 4 metabolites stand for the whole metabolite 

profile of ACC. As a result, possible biological role relies on synaptic plasticity 

and memory function, since ACC and the four mentioned metabolites 

competes for NMDA receptor (Inanobe et al., 2005). 

 

Conclusions 

In this study we propose a novel interpretation of metabolite–food relationship by 

identifying common mechanism of action between food chemicals and 

metabolites. In conclusion, we have observed that food and diet may play an 

important role in human metabolism. However, we have estimated a small 

interference impact (27.49%), yet highly connected networks. 

These findings suggest that influence of diet over metabolism is mainly due to 

the variety and quantity of food intake, meaning that even food substances by 

themselves do not show a great impact to displace metabolite activities, they 

can imply an important effect since a same food chemical can be found in many 

different food entities, and therefore, in different food groups. Consequently, 

we observed highly connected interference networks when relating food groups 
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to metabolites. Despite using food groups to represent and identify the most 

relevant clusters, our main findings rely on food substances level in view of the 

specific conclusions that can be gathered, as opposed to the ambiguous results 

we could obtain by looking at food groups level. 

In comparison to other fields, such as pharmacology and drug mechanisms, 

nutrition has been less explored. In fact, collected information to date is limited 

to few, well-studied compounds (such as polyphenols, lipids and nutrients). For 

that reason, we cannot ensure that our findings are reliable consequence of the 

observed interferences. 

On the other hand, our approach has some limitations. First, it does not 

consider compartmentalization within the body, nor metabolite or food 

compound concentration levels. Second, we assume similar kinetics between 

metabolites and food substances towards a common target. Third, we also 

assume that all food substances are at chemical equilibrium with all their 

protein targets, meaning that there is the enough concentration of food 

compound so that it can reach its target and trigger the corresponding 

response. Hence, we are assuming that all food substances are at least at 1µM of 

concentration, since we only took into account molecule–protein associations with 

pACT ≥ 6 (= 1µM). As a result, our study is not quantitative but qualitative, 

revealing only the tip of the iceberg of what it can really involve. Then, our 

strategy aims to highlight the existence of susceptible hotspots for competitive 

events between food ingredients and endogenous metabolites. 

Further study will be assessed to find linking points with diseases pathology, as 

well as evaluate possible food supplementation or replacement of known drugs, 

by identifying common activity actions between food compounds and drugs. 
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IV.0: Endogenous Metabolites in Drug Discovery: from 

Plants to Humans 
 

In this Thesis, I have pursued the main objective of studying the activity of 

exogenous and endogenous compounds on human metabolism. On one hand, 

I have demonstrated that herbal medicines are performing their therapeutic 

activity through many different strategies, and many modes of action have been 

elucidated. On the other hand, we found that polypharmacology is not only 

common in drugs, but also in plant compounds and metabolites. Moreover it 

has been developed a framework to predict organism metabolic networks using 

genomic data. This framework aims to be useful on the elucidation of 

metabolomes, the identification of microorganisms that synthesize compounds 

of interest, and also on the construction of synthetic metabolism. Finally, we 

studied the interferences between metabolites and exogenous compounds, 

including drugs and food. These interferences could affect on drugs activity, 

reducing its therapeutic action, or preventing drugs side-effects. On the other 

hand, food substances may also interfere on metabolome dynamics. 

 

IV.1:Ethnopharmacology 

This thesis started with the objective of elucidating the mode of action of 

medicinal herbs. Many ethnopharmacology studies were performed during last 

years because of the declining of drug discovery. Several of them used 

computational methodologies such as data mining, and in silico target-based and 
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ligand-based approaches to identify active compounds and their therapeutic 

target. However they usually didn’t test experimentally their predictions. 

In this thesis it has been applied a large-scale in silico ligand-based profiling 

software (CTLink) on a set of compounds found in Catalan herbal medicines. 

Target profiling allowed the identification of compounds that are active against 

therapeutic target proteins associated to the diseases treated by these plants. 

Methodology has been successfully applied, being able to collect experimental 

and predicted activity data of herbal compounds supporting the therapeutic use 

of many traditional medicines. Nevertheless, only with reported experimental 

data, it was also possible to elucidate, partially or totally, a great amount of 

herbal therapeutic uses, a 55.8% of the total. One example of therapeutic action 

validated retrospectively is Papaver somniferum and its analgesic and sedative 

activity.  For this plant we have recovered its main active compound, morphine, 

which is interacting with opioid receptors for producing the therapeutic effect.  

Therapeutic actions can be the result of the activity of only one natural product, 

like morphine in opium poppy, or the result of the synergistic interaction of 

many compounds. Usually they may be targeting one therapeutic target, or 

several proteins related with a disease. For bilberry, for example, we have found 

that its antiatherosclerosis activity is related with the activity of cyanidin, 

delphinidin and malvidin against 5-arachidonate lypoxigenase. 

In our study, experimental data has been complemented with predicted activity 

data. It provided an increase of the amount of herbal therapeutic applications 

hypothetically elucidated. 6 predicted interactions were tested experimentally, 

and 3 were confirmed, validating the methodology applied. They confirmed the 
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interactions of zeatin riboside with adenosine receptors A1 and 3, isorhamnetin 

with D(4) dopamine receptor. Trough these interactions zeatin riboside would 

have a therapeutic effect on the treatment of dysrhythmia and ischemia, and 

isorhamnetin on hypertension.  

Methodology has shown to be useful on the identification of active herbal 

chemicals and their therapeutic target proteins. However, since compound 

concentrations may be varying on each herb, it was not possible a completely 

elucidation of mechanisms of action. Moreover composition may vary in 

species depending on where they are growing. 

Nevertheless, once we know the activity of certain herbal active compound of 

interest, it is possible to identify the plants from where it can be extracted, and 

calculate the necessary concentration of the compound to exert the therapeutic 

action. 

These results contribute to give support to the necessity of understanding the 

combinatiorial action of compounds on herbal medicines, which could be also 

applied to drug discovery. 

 

IV.2: Polypharmacology in bioactive chemical 
groups 

After predicting the activity of herbal medicine compounds, their promiscuity 

was compared with those from drugs. Natural products showed a lower 

promiscuity, indicating they have a higher specificity. After it, the analysis was 

extended to other bioactive chemical groups, including natural product libraries, 
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synthetic chemicals, human metabolites and plant compounds. The amount of 

plant compounds from previous analysis was increased with data from other 

herbal databases. 

In this study it was expected to find higher diversity and lower promiscuity on 

natural chemicals groups (including Natural Product Libraries, Plant 

compounds and Metabolites). However, in Natural Product Libraries we found 

a high in-group structural similarity, and a relatively high promiscuity compared 

to other groups. 

Results revealed drugs as the most promiscuous group, followed by natural 

product libraries. But promiscuity is increasing in all groups after target 

profiling. 

For plant compounds we obtained a lower average number of targets than for 

natural products. Moreover, we find lower in-group similarity values. So they 

can be a source of chemical diversity for the drug discovery, allowing the 

development of more specific drugs. On the other hand, comparing the 

quantity of chemicals against those of natural products libraries we can 

conclude that there’s a high amount of compounds that are still missing to be 

included in these libraries.  

Finally, human metabolites usually are only associated to those protein enzymes 

of the reactions where they are involved, and metabolic reaction networks  use 

to be very linear, implying an average of 2 enzymes for each metabolic. 

However, in our results the average number of protein targets was higher, 

suggesting the existence of polypharmacological capacity in metabolites. This 

may give a new insight on metabolomics, reflected on the creation of more 
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complex metabolic networks. 

 

IV.3: Human metabolic networks, current state 

Thesis followed with the study of the current state of metabolomics. It was 

analysed the completeness of 3 of the most important metabolomic databases, 

HMDB, KEGG, and BioCyc, all them including information about metabolites 

and the reactions that are related with. In this analysis we added to HMDB 

activity data from other databases.  

Some of the compounds with a higher quantity of missing activity data were 

phosphate and cofactors such as ATP, pyruvic acid or NADPH. Besides, for 

other intermediate metabolites like succinic acid and oxalacetic acid, KEGG 

and BioCyc were also adding activity data. 

On the other hand, also in ChEMBL and CTLink are adding data to many 

metabolites found in human,  increase metabolic network connectivity. 

In the last years some studies have reported data about the possible occurrence 

of side-reactions en enzymes (Piedrafita et al., 2015). These side-reactions may 

give as result the production of new metabolites, which moreover, could be 

active against other proteins, increasing even more network complexity. 

Not only the metabolism may be affected by metabolites polypharmacology, 

but exogenous compounds like drugs activity may also be affected. The 

existence of a metabolites targeting the same protein of a drug may reduce drug 

activity, and as consequence its efficacy or side-effects. These interferences 

between metabolome and drugs has been studied in Chapter III.7. 
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IV.4: Metabolome reconstruction 

Thesis continued with the study of side-reactions and network complexity. It 

has been perfomed a genome-scale framework for predicting organisms 

metabolome. 

Genome-scale methodology has been applied since some years ago on 

metabolism reconstruction. They took advantadge of the high number of 

genome-sequencing projects that appeared during the last 15 years thanks to 

the advances in sequencing technology. Currently thousands of genomes have 

been sequenced. On the other hand, these methodologies are also depending 

on the current quantity of metabolic data available. So they have become more 

useful along time, being able to perform more complete predictions about 

metabolomes for a high number of organisms. 

Taking as a starting point the state of the art on metabolic reconstruction, it has 

been developed a genome-scale metabolic network reconstruction framework 

that includes virtual profiling methodologies. Virtual profiling allows to obtain 

activity data about metabolites that otherwise wouldn’t be predicted. In contrast 

to other approaches we are predicting the activity of metabolites against other 

enzymes, where they may act, usually, as substrate or inhibitor. In both cases 

they are interfiring to enzyme activity, and as consequence cell metabolism. 

Moreover, when these metabolites are acting as substrate on the reactions, they 

may result on new metabolites which also may interfere on other reactions. 

This method has demonstrated to succesfully predict the metabolome of any 
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organisms whose genome is available. We didn’t obtain high precision values, 

but recall is high in most of the cases. On the other hand, like other genome-

scale methods, it’s missing the ability to predict metabolites that are not found 

in other metabolomes. Nevertheless, it is useful to perform a metabolome 

reconstruction to support the experimental metabolome research, and 

moreover understanding relations between metabolites. Aditionally, if some 

interesting metabolite was identified in some organism, we would be able to 

look for other organisms that can synthesize it.  

For these reconstructions it was observed that most of the predicted data came 

from the most complete metabolomes, like those of Homo sapiens or Escherichia 

coli. But the integration of data from incomplete metabolomes allows to 

perform a better and more complete prediction. Moreover, the most realiable 

data is obtained from organisms belonging to the same kingdom as target 

organism.  

 

IV.5: Inerference between human endogenous 
metabolome and exogenous compounds 

As last part of the Thesis, it was investigated the relation of metabolites with 

exogenous compounds. On one hand we focused on its role in disease 

treatments. We studied the interference of metabolome on drugs activity, which 

may drive to treatment failure or, oherwise, protect against side-effects. 

In our results we have identified strong interfence on drug off-targets, meaning 

that metabolome is offering an intrinsic protection against exogenous agents.  
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Because of the use of experimental data, results have been affected by the 

amount of available data. The quantity of metabolic interferences found on 

each therapeutic pathways are directly related with the knowledge about them, 

being nervous and genitourinary system drugs some of those which are more 

affected. 

We have represented an example of metabolome interference on anti-

parkisonian drugs, with 9 drugs and 8 metabolites competing on 20 targets. 

Metabolites competition is potentially leading to a reduction of the drug - target 

interactions, from an average of 5.9 per drug, to 2.3, which may reduce adverse 

reactions.  

This study suggests the considering of metabolic conditions for assessing a 

appropiated treatments, with better therapeutic efficacy and a reduction of 

undesired effects, for individual patients. 

On the other hand, we investigated the interference impact of food chemicals 

on metabolome. It was observed little influence of food substance by 

themselves; however, this impact is related with the amound of food substance 

intake, implying that a same chemical can has a greater effect if it is ingested 

from different food entities. Results revealed the existence of susceptible 

hotspots for competitive events between food ingredients and endogenous 

metabolites.  

Currently, nutrition is unexplored compared to other fields, but from this 

investigation we can highlight the existence of intereference between diet and 

metabolome. Knowledge of composition and activity of food groups would 

allow evaluating food supplementation or replacements of known drugs. 
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IV.6 Future directions of research 

From this thesis I can consider several future research lines. The first one 

focused on combinatorial medicine, related with the research of synergistic 

activities. The second one, on metabolic reconstruction, where it would be 

interesting to improve the methodology to have a better predictive capacity. 

And a third research line about metabolome protective capacity against drugs. 

 

 Designing synergistic drugs 

Side effects produced by drugs are common in pharmacology, usually they are 

caused by polypharmacology. A possible way to avoid them could be the use of 

synergistic compounds; it would help to avoid side-effects and toxicity 

produced by high doses of single drugs. Synergistic combination of two or 

more agents could overcome this undesired effect through biological 

compensation, sparing doses on each compound, or accessing multi-target 

mechanisms. On the other hand there are many multi-target diseases whose 

treatment would improve making use of synergistic drugs. Biological network 

become very useful on the study of these diseases and the research of effective 

drugs combinations. 

Despite of the prediction of synergistic combinations is complex, as it is 

reflected in current literature about this field, the development of a tool able to 

predict synergies would allow giving a step forward on combinatorial 

pharmacology. Traditional medicine knowledge may have an important role on 
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this research. But not only traditional medicines are useful, plants in general are 

a large source of chemical diversity. Systems biology may support the research 

of potential therapeutic uses of plants, and in the same way the research of 

synergistic compounds. 

 

Complete metabolome prediction 

Genome-scale metabolic network reconstruction framework has proven to be 

useful on the prediction of a general view of metabolic networks. But it has 

some limitations, for example on the prediction of metabolites not found in 

source organisms. Currently the number of metabolites that can be predicted is 

limited. Despite of the difficulty of predicting new metabolites, there is already 

methodologies doing this, and virtual profiling could allow us predicting them.  

On the other hand, currently we are only using BioCyc data, as observed in 

Chapter III.4, the inclusion of other databases such as HMDB and/or KEGG 

would allow improving the methodology. However, the addition of databases 

can be something complex and time-consuming because they are organized 

differently and use their own ID codes on data. Otherwise, in Chapter III.3 we 

observed that chemical diversity of metabolites is higher than drugs. Since 

currently CTLink is using data from ChEMBL and other drugs activity 

databases to perform predictions, the inclusion to CTLink of experimental 

metabolic data would improve the prediction capacity for metabolites activity. 

 

Interference of endogenous metabolome and diet on drug 
discovery 

Endogenous metabolites are commonly present on the organism in different 

concentrations. Results in Chapter III.6 revealed that metabolome can be 

affecting on drugs activity; which may decrease its activity or improve 
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therapeutic action and reduce side-effects. In future studies it would be 

interesting to go further on this research line, focusing on some specificic drugs 

classified in specific Anatomical Therapeutic Chemical (ATC) groups, like those 

from cardiovascular or nervous system, that has been more investigated. 

Moreover, increasing the metabolic data on this study may allow a deeper 

research. On the other hand, it would also be of interest to study the 

interefence between foods and drugs. The identification of common activity 

actions between food compounds and drugs in order to evaluate possible food 

complements during drug treatment. 
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The main contributions of this Thesis can be summarized as follows: 

 

i) An extensive review covering the current state of research in 

medicinal plants has been performed. It provides an up-to-date 

useful overview of current computational methodologies used for 

the elucidation of the likely mechanisms of action associated with 

the therapeutic use of plants. 

ii) Following on the above, we constructed an integrated database 

linking plants, molecules, proteins, and diseases and put together a 

systems protocol to generate mechanistic hypotheses for the 

therapeutic uses of plants. We were able to predict, first, and 

experimentally confirm the in vitro activity of some chemicals, 

ribosylzeatin and isorhamnetin, for proteins associated with the 

therapeutic use of some plants, namely, Ginkgo biloba, Vitis vinifera, 

and Citrus limon.  

iii) Usually medicinal plants are not exerting their therapeutic action 

through the activity of a single compound but they are provided as 

compound mixtures and administered raw or as extracts. In this 

respect, their therapeutic action can be viewed as the result of the 

synergism of a collection of compounds that are present at different 

concentrations in different plants. Therefore, not only the active 

ingredients may vary, but also the ensemble of interacting proteins. 

One example is the combination of delphinidin, cyanidin, and 

malvidin of Vaccinium myrtillus (blueberry) to treat atherosclerosis. 

The combined activity of these compounds against 5-arachidonite 

lipoxygenase may contribute to the ultimate therapeutic action of 

the plant. 

iv) The amount of pharmacological data available for small molecules 
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in public repositories is increasing at enormous pace. However, 

testing millions of small molecules against thousands of proteins 

seems, at present, unattainable. Consequently, there will always be 

an issue about data completeness. It is in this aspect that 

computational methodologies able to predict the pharmacological 

profile of small molecules are expected to have an increasing impact 

as well in our quest for elucidating the mechanism of action linked 

to the therapeutic use of plants.  

v) Drug discovery changed its paradigm from the ‘one drug – one 

target’ to ‘one drug –  multiple targets’ already more than a decade 

ago. The investigation of synergistic mechanisms with multiple 

small molecules at low concentration found in herbal medicines 

may actually provide insights for investigating a new generation of 

efficient synergistic medicines with improved safety profiles. 

vi) Currently, there are several commercial vendors that supply 

chemical libraries of natural products. These libraries contain only a 

small part of the large amount of plant chemicals and certainly do 

not cover all their chemical diversity. 

vii) A metabolome prediction framework that takes the genome of 

species as input has been developed and integrated with virtual 

profiling methodologies. This framework can be useful for the 

creation of an ab initio version of an organism metabolome. This 

initiative can help metabolomics research in the identification of 

metabolites in samples and their involvement in metabolic 

reactions. The framework developed obtained high recall values for 

the predicted metabolomes of several organisms in BioCyc. 

viii) Metabolic networks are very complex. This is in part due to the fact 

that metabolites do have polypharmacology, acting on their native 
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enzyme with potent affinity but having biologically relevant 

affinities for multiple other proteins. 

ix) The metabolome is an intrinsic protection mechanism of organisms 

against external compounds. It is interfering with drugs 

polypharmacology, thus reducing the number of drug-target 

interactions through competition with the endogenous metabolites. 

This is a highly novel aspect of this thesis that is yet to be fully 

exploited in drug discovery. 

x) Diet may be also influencing our metabolism. Despite food 

ingredients being present at low concentrations and offering low 

levels of competition with endogenous human metabolites, they can 

have some effects if taken more often than necessary or combined 

with drugs acting synergistically on similar targets. Hotspots of 

competitive events between endogenous metabolites and food 

ingredients were highlighted. 
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