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Preface

This thesis was written at the Campus Mar of the Global Health Insti-
tute Barcelona (ISGlobal), former Centre for Research in Environmental
Epidemiology (CREAL), between 2013 and 2017, and it was supervised
by Dr. Juan R. González. This work consists of a compilation of the
scientific publications co-authored by the PhD candidate according to the
procedures of the Biomedicine PhD program of the Department of Exper-
imental and Health Sciences of Universitat Pompeu Fabra.

The present document includes: 1) its abstract, 2) a general introduction,
3) two blocks of results with their own rationale, methods and discussions,
4) final conclusions, and 5) a description of future work.

This thesis focuses on the analysis of the exposome - understood as the
complete set of exposures a human being is in contact from conception to
death - and its molecular signatures.

The first part of the thesis aims to study the effects of artificial ultraviolet
radiation on transcription in humans to disentangle the molecular mech-
anisms underlying the last effects of ultraviolet radiation on heath. In
particular, I display two original scientific articles about its acute effects
on blood and skin human transcriptome, at level of gene and micro-RNA
expression. The second part of the thesis is based on the tools required
to analyses the exposome. In this part I present three original scientific
papers that corresponds to a set of four tools. The tools were developed
as R packages and cover the topics of: exposome data management, expo-
some data characterization and analysis, and exposome enrichment. Two
of this tools are already in Bioconductor and all them for are available
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through GitHub platform (http://github.com/isglobal-brge).

At the end of this document, in the “future work” chapter, I introduce the
HELIX project. The aim of this project is to characterize the early-life
exposome to advance our knowledge into the causal relationship between
the exposome and human health. The tools presented as result of this
thesis are currently being used in the HELIX project.

The printed version of this document is accompanied by a CD that in-
cludes: A) a PDF copy of it, B) the supplementary materials of the arti-
cles presented in chapter 3, C) the supplementary materials of the articles
included in chapter 4, and D) a registry of the copyright of each one of
the figures - from third-party scientific articles - used in this thesis.



Abstract

Most common diseases are caused by a combination of genetic, environ-
mental and lifestyle factors. These diseases are referred to as complex
diseases. Examples of this type of diseases are obesity, asthma, hyper-
tension or diabetes. Several empirical evidence suggest that exposures
are necessary determinants of complex disease operating in a causal back-
ground of genetic diversity. Moreover, environmental factors have long
been implicated as major contributors to the global disease burden. This
leads to the formulation of the exposome, that contains any exposure to
which an individual is subjected from conception to death. The study of
the underlying mechanics that links the exposome with human health is
an emerging research field with a strong potential to provide new insights
into disease etiology.

The first part of this thesis is focused on ultraviolet radiation (UVR) expo-
sure. UVR exposure occurs from both natural and artificial sources. UVR
includes three subtypes of radiation according to its wavelength (UVA
315-400 nm, UVB 315-295 nm, and UVC 295-200 nm). While the main
natural source of UVR is the Sun, UVC radiation does not reach Earth’s
surface because of its absorption by the stratospheric ozone layer. Then,
exposures to UVR typically consist of a mixture of UVA (95%) and UVB
(5%). Effects of UVR on human can be both beneficial and detrimental,
depending on the amount and form of UVR. Detrimental and acute ef-
fects of UVR include erythema, pigment darkening, delayed tanning and
thickening of the epidermis. Repeated UVR-induced injury to the skin,
may ultimately predispose one to the chronic effects photoaging, immuno-
suppression, and photocarcinogenesis. The beneficial effect of UVR is the
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cutaneous synthesis of vitamin D. Vitamin D is necessary to maintain
physiologic calcium and phosphorous for normal bone mineralization and
to prevent rickets, osteomalacia, and osteoporosis.

But the exposome paradigm is to work with multiple exposures at a time
and with one or more health outcomes rather focus in a single exposures
analysis. This approach tends to be a more accurate snapshot of the reality
that we live in complex environments. Then, the second part is focused
on the tools to explore how to characterize and analyze the exposome and
how to test its effects in multiple intermediate biological layers to provide
insights into the underlying molecular mechanisms linking environmental
exposures to health outcomes.



Resumen

Las enfermedades complejas se encuentran entre las mas comunes y son
causadas por una combinación de factores genéticos y ambientales (con-
taminación ambiental, estilo de vida, etc). Entre las enfermedades com-
plejas que se pueden destacar se encuentran la obesidad, el asma, la
hipertensión o la diabetes. Diversos estudios cient́ıficos sugieren que el he-
cho de padecer enfermedades complejas esta condicionado a la aparición
o acumulación de determinados factores ambientales. Asimismo, se ha
descrito que los factores ambientales son unos de los principales con-
tribuyentes a la carga mundial de morbilidad. Todo esto nos lleva a definir
el término exposoma como el conjunto de factores ambientales a los que
un individuo se ve expuesto desde la concepción hasta la muerte. El es-
tudio de la mecánica subyacente que vincula el exposoma con la salud es
un campo de investigación emergente con un fuerte potencial para pro-
porcionar nuevos conocimientos sobre la etioloǵıa de las enfermedades.

La primera parte de esta tesis se centra en la exposición a la radiación
ultravioleta. La exposición a la radiación ultravioleta proviene de fuentes
tanto naturales como artificiales. La radiación ultravioleta incluye tres
subtipos de radiación según su longitud de onda (UVA 315-400 nm, UVB
315-295 nm y UVC 295-200 nm). Si bien la principal fuente natural de
radiación ultravioleta es el Sol, la UVC no llega a la superficie de la Tierra
debido a su absorción por la capa estratosférica de ozono. En consecuencia,
la exposición a radiación ultravioleta a la que estamos usualmente someti-
dos consisten en una mezcla de UVA (95 %) y UVB (5 %). Los efectos
de la radiación ultravioleta en humanos pueden ser beneficiosos o perju-
diciales dependiendo de su cantidad y forma. Los efectos perjudiciales
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y agudos de la radiación ultravioleta incluyen eritema, oscurecimiento
del pigmento, retraso en el bronceado y engrosamiento de la epidermis.
Repetidas lesiones en la piel producidas por radiación ultravioleta pueden
predisponer, en última instancia, a efectos crónicos de fotoenvejecimiento,
inmunosupresión y fotocarcinogénesis. El mayor efecto beneficioso de la
radiación ultravioleta es la śıntesis cutánea de la vitamina D. La vitam-
ina D es necesaria para mantener el calcio fisiológico y del fósforo para
la mineralización ósea y para prevenir el raquitismo, la osteomalacia y la
osteoporosis.

El paradigma del exposoma es trabajar con múltiples exposiciones a la vez
en vez centrarse en una sola exposición. Este enfoque permite tener una
visión más parecido a la realidad que vivimos. Luego, la segunda parte se
centra en las herramientas para explorar cómo caracterizar y analizar el
exposoma y cómo probar sus efectos en múltiples capas biológicas inter-
medias para proporcionar información sobre los mecanismos moleculares
subyacentes que vinculan las exposiciones ambientales a los resultados de
salud.



Resum

Les malalties complexes es troben entre les més comuns i són causades per
una combinació de factors genètics i ambientals (contaminació ambiental,
estil de vida, etc.). Entre les malalties complexes que es poden destacar
es troben l’obesitat, l’asma, la hipertensió o la diabetis. Diversos estudis
cient́ıfics suggereixen que el fet de desenvolupar malalties complexes està
condicionat a l’aparició o l’acumulació de determinats factors ambientals.
Seguint amb aquesta ĺınia, s’ha descrit que els factors ambientals són uns
dels principals contribuents a la càrrega mundial de morbiditat. Tot això
ens porta a definir el terme exposoma com el conjunt de factors ambientals
als quals un individu es veu exposat des de la seva concepció fins a la mort.
L’estudi de la mecànica subjacent que vincula el exposoma amb la salut
és un camp de recerca emergent amb un fort potencial per proporcionar
nous coneixements sobre l’etiologia de les malalties.

La primera part d’aquesta tesi es centra en l’exposició a la radiació ultra-
violada. L’exposició a la radiació ultraviolada prové de fonts tant naturals
com artificials. La radiació ultraviolada inclou tres subtipus de radiació
segons la seva longitud d’ona (UVA 315-400 nm, UVB 315-295 nm i UVC
295-200 nm). Si bé la principal font natural de radiació ultraviolada és el
Sol, la UVC no arriba a la superf́ıcie de la Terra a causa de la seva absorció
per la capa estratosfèrica d’ozó. En conseqüència, l’exposició a radiació
ultraviolada a la qual estem sotmesos usualment consisteixen en una bar-
reja d’UVA (95 %) i UVB (5 %). Els efectes de la radiació ultraviolada en
humans poden ser beneficiosos o perjudicials depenent de la seva quantitat
i forma. Els efectes perjudicials i aguts de la radiació ultraviolada inclouen
eritema, enfosquiment del pigment, retard en el bronzejat i engrossiment
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de l’epidermis. Repetides lesions a la pell prodüıdes per radiació ultravio-
lada poden predisposar, en última instància, a efectes crònics de fotoenvel-
liment, immunosupressió i fotocarcinogènesi. El major efecte beneficiós de
la radiació ultraviolada és la śıntesi cutània de la vitamina D. La vitamina
D és necessària per mantenir el calci fisiològic i del fòsfor per a la miner-
alització òssia i per prevenir el raquitisme, l’osteomalàcia i l’osteoporosi.

El paradigma de l’exposoma és treballar amb múltiples exposicions al
mateix temps en comptes de focalitzar-se en una sola exposició. Aquest
enfocament permet tenir una visió més semblant a la realitat que vivim.
Després, la segona part del document se centra en les eines per explo-
rar com caracteritzar i analitzar l’exposoma i com provar els seus efectes
en múltiples capes biològiques intermèdies per proporcionar informació
sobre els mecanismes moleculars subjacents que vinculen les exposicions
ambientals als resultats de salut .
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Chapter 1

Introduction

1.1 Complex Diseases

Many of the most common diseases such as obesity, asthma, hypertension
or diabetes are caused by a combination of genetic, environmental and
lifestyle factors. These diseases are called complex diseases.

A central question in biology is whether observed variation in a particu-
lar disease is due to environmental or to genetic factors. Heritability is
a concept that summarizes how much of the variation in a disease is due
to variation in genetic factors [1]. Other causes of measured variation in
a trait are characterized as environmental factors. In human studies of
heritability, these are often apportioned into factors from “shared envi-
ronment” and “non-shared environment” based on whether they tend to
result in persons brought up in the same household more or less similar
to persons who were not.

Since heritability is estimated by comparing individual disease variation
among related individuals (in a population), heritability is specific to a
particular population in a particular environment.

Genome-wide association studies (GWAS) have been proven a powerful
tool for investigating the genetic architecture of complex diseases [2], [3],
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Chapter 1

in which several hundred thousand to more than a million single nucleotide
polymorphisms (SNPs) are assayed in thousands of individuals.

The underlying rationale for GWAS is that they look for common variants
for common diseases. So on, common diseases are highly attributable
to allelic variants present in more than 1–5% of the population [4], [5].
The allelic architecture of some conditions reflects the contributions of
several variants of great effect. In spite of this, the most common variants
individually or in combination confer relatively small increases in risk and
explain only a small proportion of heritability (a portion of phenotypic
variance in a population attributable to additive genetic factors) [6].

Table 1.1, from Manolio et. al. [7], summarizes the estimated heritability
for several complex traits. Age-related macular degeneration may provide
the best example of a common disease in which heritability is substantially
explained by a small number of common variants of large effect, but for
other conditions, such as Crohn’s disease, the proportion of heritability
explained is not nearly so large despite a much larger number of identified
variants.

Table 1.1: Estimates of heritability and number of loci for several complex
traits, from Manolio et. al. [7].

Disease # Loci Herit. Explained Herit. Measure Ref.
Age-related macular
degeneration

5 50% Sibling recurrence risk [8]

Crohn’s disease 32 20% Genetic risk (liability) [9]
Systemic lupus erythe-
matosus

6 15% Sibling recurrence risk [10]

Type 2 diabetes 18 6% Sibling recurrence risk [11]
HDL cholesterol 7 5.2% Residual-phenotypic

variance*
[12]

Height 40 5% Phenotypic variance [13]
Early onset myocardial
infarction

9 2.8% Phenotypic variance [14]

Fasting glucose 4 1.5% Phenotypic variance [15]
*Residual is after adjustment for age, gender, diabetes.

After 10 years of GWAS [16], it has been shown:

• Complex Diseases Are Highly Polygenic. More than 10,000 asso-
ciations have been reported between genetic variants and one or
more complex diseases through GWA studies. GWAS associations
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have proven highly replicable, both within and between populations
under the assumption of adequate sample sizes. A conclusion from
GWASs is that for almost any complex disease, many loci contribute
to standing genetic variation. This means that for most diseases
polymorphisms in many genes contribute to genetic variation in the
population.

• Pleiotropy Is Pervasive. This means that the paradigm of “one gene,
one function, one trait” is the wrong way to view genetic variation
in humans. This conclusion appears after: 1) mendelian mutations
for a specific diseases are frequently associated with other traits; 2)
pedigree studies have reported genetic correlations between traits
and diseases (same variants affects two or more diseases at the same
time); and 3) analytical methods that estimate genetic correlations
from GWAS data have provided evidence for widespread pleiotropy.
Then, the study of diseases in isolation might lead to the wrong
inference.

• The Importance of Sample Size to Detect Association. The number
of discoverable loci associated with a specific disease depends on the
disease and on sample size. But all show a sharp increase at a crit-
ical sample size. This observation implies that larger experimental
sample sizes will lead to new discoveries, and that is exactly what
has occurred over the last decade. To date, there has been no trait
with evidence of a plateau of the number of risk loci discovered with
increasing sample size.

• First Steps of Personalized Medicine. A long the last decade, the ex-
perimental design of GWAS led to remarkable discoveries in human
genetics: understanding of the genetic architecture of some complex
diseases; the discovery of variants and genes that play a relevant
role in biological pathways for complex diseases; and providing sets
of candidates of therapeutics and molecular targets. Into the future,
“personalized medicine” will use knowledge and strategies (as well
as prevention interventions or risk stratification) that, directly or in-
directly, will be built on information obtained in first step by GWAS
results.
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The questions arise as to why so much of the heritability is apparently
unexplained by GWAS findings. It is important to find an answer to this
question because a substantial proportion of individual differences facing
disease susceptibility is known to be due to genetic factors. Then, under-
standing these genetic variations may contribute to prevention, diagnosis
and treatment of diseases. GWAS have identified hundreds of variants
in many dozens of traits, but for many traits they have explained only a
small proportion of estimated heritability [17].

While any explanations for this missing heritability have been suggested
consensus is lacking. Proposed explanations includes much larger numbers
of variants of smaller effect yet to be found; rarer variants with possibly
larger effects that are poorly detected by available and commercial geno-
typing arrays (that focus on variants present in 5% or more of the popu-
lation); structural variants poorly captured by existing arrays; low power
to detect gene-gene interactions; and inadequate accounting for shared
environment among relatives [7].

It is reasonable to assume that allelic architecture (number, type, effect
size and frequency of susceptibility variants) may differ across traits. Also,
that missing heritability may take a different form for different diseases
[18]. Unfortunately, current knowledge is too limited to distinguish these
possibilities [7].

Immune and infectious agents have been recognized as among the strongest
selection pressures in human evolution [19], and immune-related genes
have been strongly implicated in Crohn’s disease and other immune-mediated
diseases [6], suggesting either that pleiotropic effects of these variants re-
duce the efficiency of negative selection or that strong environmental per-
turbation in modern societies might expose the disease risk associated with
these variants.

In this line, several empirical evidence suggest that exposures are necessary
determinants of complex disease and that operate in a causal background
of genetic diversity [20].

For instance, genetically-stable populations experience profound alter-
ations in cancer incidence across generations and in migrations which have
been subjected to different environments [21]–[23].
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1.2 Global Burden Disease of Environmental Ex-
posures

The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD)
is the largest and most comprehensive effort to date to measure epidemi-
ological levels and trends worldwide [24]. Led by the Institute for Health
Metrics and Evaluation (IHME) at the University of Washington, the GBD
quantifies the comparative magnitude of health loss to diseases, injuries,
and risk factors by age, sex, and geography over time. One of their last
update published in 2015, evaluated 300 diseases and injuries in 195 coun-
tries (by age and sex), from 1990 to 2013 [25].

In this study, they focused on three groups of risk: “behavioral”, “environ-
mental and occupational”, “and metabolic”. Risks factors were organized
into a four level hierarchy with first level blocks of environmental and
occupational, behavioural and metabolic. the next level in the hierarchy
included nine clusters of relative risks with more detail in the third and
four levels.

The environmental and occupational, risks included “unsafe water, san-
itation, and hand-washing” (with 3 nested risk factors), “air pollution”
(with 3 nested risk factors), “other environmental risks” (with 2 nested
risk factors) and “occupational risks” (with 6 nested risk factors; one of
them, “occupational carcinogens” included another 14 nested risk factors).
The behavioural risks contained “child and maternal malnutrition” (with
5 nested risk factors from that “suboptimal breastfeeding” has another 2
nested risk factors and “childhood under-nutrition” has 3 nested risk fac-
tors), “tobacco smoke” (with 2 nested risk factors), “alcohol and drug use”
(with 2 nested risk factors), “dietary risks” (with 14 nested risk factors),
“sexual abuse and violence” (with 2 nested risk factors), “unsafe sex” and
“low physical activity”. Finally, metabolic risks included 6 nested risk
factors (with body-mass index and blood pressure among others).

They adopted the World Cancer Research Fund grading the evidences
assessing an association between a risk factor exposures and an outcome
in four levels: 1) convincing, 2) probable, 3) possible, and 4) insufficient.
Only convincing and probable risk outcome pairs were taken into account.
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Figure 1.1: Proportion of all-cause DALYs attributable to behavioural, envi-
ronmental and occupational, and metabolic risk factors and their overlaps for all
ages in 2013, from GBD 2013 [25].

Figure 1.2: Global DALYs attributed to level 2 risk factors in 2013, adapted
from GBD 2013 [25].
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All risks combined account for 57.2% (95% uncertainty interval 55.8–58.5)
of deaths and 41.6% (40.1–43.0) of disability-adjusted life-years (DALYs).
As shown in Figure 1.1, 17.73% DALYs attributable to environmental risk
factors (for all ages in 2013). Figure 1.2 shows effects of different categories
of environmental risk factors by disease.

Two exposures studied by the GBD 2013 and GBD 2015 are relevant in
terms of public health: tobacco smoke (from behavioural) and air pollution
(from environmental and occupational). The first due to its large effects
effects [26], air pollution due to the wide range of affected populations
[27].

The case of “tobacco smoke”

Figure 1.3: Prevalence of daily smoking over time at the global level by men
(A) and women (B), adapted from GBD Smoking 2015 [26].

In 2015 smoking was the second leading risk factor for early death and
disability worldwide. Claiming more than 5 million lives every year since
1990 its contribution to overall disease burden stills growing.
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The GBD Smoking 2015 [26] investigated differences in smoking preva-
lence and attributable burden according to the Socio-demographic Index
(SDI). Figure 1.3 shows the prevalence patterns by year according to age.
Additionally, they assess age and sex patterns by birth cohort across lev-
els of development and performed a decomposition analysis of potential
drivers of smoking attributable disease burden over time.

Worldwide in 2015, the age-standardized prevalence of daily smoking was
25% (95% UI 24.2–25.0,) in men and 5.4% (5.1–5.7) in women. 51 coun-
tries and territories had significantly higher prevalence of smoking than the
global average for men, and these countries were located mainly in central
and eastern Europe and south-east Asia. For women, 70 countries, mainly
in western and central Europe, significantly exceeded the global average
[26]. Figure 1.4 shows the ranking of smoking as a risk factor worldwide.

Despite a global decrease, several countries still had a high prevalence of
smoking among individuals aged between 15 and 19 years.

In 2015, 6.4 million deaths (95% UI 5.7–7.0) were attributable to smoking
worldwide, representing a 4.7% (1.2–8.5) increase in smoking-attributable
deaths since 2005. In both 2005 and 2015, smoking was the second-leading
risk factor for attributable mortality among both sexes, following high-
systolic blood pressure.

Figure 1.4: Rankings of smoking as a risk factor for all-cause, all-age at-
tributable DALYs for both sexes combined in 2015, fragment from GBD Smoking
2015 [26].
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There were 148.6 million (95% UI 134.2–163.1) smoking-attributable
DALYs worldwide in 2015. Moreover, as can be seen in Figure 1.4, smoking
was the leading risk factor for attributable disease burden in 24 countries.

Overall, in 2015, cardiovascular diseases (41.2%), cancers (27.6%), and
chronic respiratory diseases (20.5%) were the three leading causes of
smoking-attributable age-standardized DALYs for both sexes. Of all risk
factors, smoking was the leading risk factor for cancers and chronic respi-
ratory diseases [26].

The case of “air pollution”

Exposure to ambient air pollution increases mortality and morbidity and
shortens life expectancy [28], [29]. GBD 2015 estimated the burden of
disease attributable to 79 risk factors in 195 countries from 1990 to 2015.
GBD 2015 identified air pollution as a leading cause (in top 10 leading
causes from 2005 to 2015) of global disease burden, especially in low-
income and middle-income countries [25].

A comparison of the percentage change in risk exposure from 1990 to 2015
with the level of attributable DALYs in 2015 helps to identify large risks
for which a long-term increase in global exposure has occurred.

Figure 1.5: Deaths attributable to ambient particulate matter pollution in 2015,
fragment from GBD Air Pollution 2015 [27].

Air pollution is a complex mixture of gases and particles whose sources and
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composition vary spatially and temporally. Population-weighted annual
mean concentrations of particle mass with the aerodynamic diameter less
than 2.5 µm (PM 2.5) and tropospheric ozone are the two indicators used
to quantify exposure to air pollution. PM 2.5 is the most consistent and
robust predictor of mortality in studies of long-term exposure [30], [31].
Ozone, a gas produced via atmospheric reactions of precursor emissions, is
associated with respiratory disease independent of PM 2.5 exposure [32],
[33].

Deaths attributable to long-term exposure to PM 2.5 in 2015 varied sub-
stantially among countries (Figure 1.5). also along time were PM 2,5 in-
creased by 11.2% from 1990 (39.7 µg/m3) to 2015 (44.2 µg/m3), increasing
most rapidly from 2010 to 2015.

In high-income countries, exposure to ambient PM 2.5 contributed to 4.3%
of total deaths in 2015 versus 9.0% in upper-middle income, 8.7% in lower-
middle-income, and 4,9% in low-income countries. These differences in
attributable mortality mostly reflect the fraction of total deaths from car-
diovascular disease among countries.

Figure 1.6: Deaths attributable to ambient particulate matter pollution by year
and disease, from GBD Air Pollution 2015 [27].

Cohen et. al. estimated the burden attributable to PM 2.5 for is-
chaemic heart disease (IHD), cerebrovascular disease (ischaemic stroke and
hemorrhagic stroke), lung cancer, chronic obstructive pulmonary disease
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(COPD), and lower respiratory infections (LRI) [34]. Evidence linking
these diseases with exposure to ambient air pollution was judged to be
consistent with a causal relationship on the basis of criteria specified for
GBD risk factors [25].

Finally, they conclude that long-term exposure to PM 2.5 contributed
to 4.2 million deaths in 2015, representing 7,6% of total global deaths.
Household air pollution from solid fuel use was responsible for 2.8 million
deaths (Figure 1.6).

1.3 The Exposome Concept

As previously illustrated, environmental factors have long been implicated
as major contributors to the global disease burden [25]. This lead to the
formulation of the exposome, concept first described by Wild on 2005.

The exposome is composed of every exposure to which an individual is
subjected from conception to death. Therefore, it requires consideration
of both the nature of those exposures and their changes over time [35]. The
consideration of the nature of the exposures generates three domains (Fig-
ure 1.7): internal environment, specific external environment and general
external environment [36].

First, the general external exposures domain includes the wider social,
economic and psychological influences on the individual, for example: so-
cial capital, education, financial status, psychological and mental stress,
urban-rural environment and climate. Second, the specific external ex-
posures is an extensive range which includes infectious agents, chemical
contaminants, diet, lifestyle factors (e.g. tobacco, alcohol...), occupation
and medical interventions. Last, the exposures in the internal domain
include all the internal biological processes in response to the external ex-
posures domain, to maintain homeostasis and which are influenced by the
genome (further in this thesis called molecular signatures).

Measures in one domain or another may reflect to differing degrees one
component of the exposome, e.g. the urban environment (general exter-
nal), pesticides (specific external) and inflammation (internal) [36].
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Figure 1.7: The effects and interactions between the different domains con-
stituting the exposome (specific and general external environments and internal
environment) and health risk. Figure inspired by Vrijheid [37].

This original concept proposed by Wild was further expanded by Rappa-
port and Smith [38], who functionalized the exposome in terms of circu-
lating chemicals in the body that reflect both exogenous and endogenous
exposures. In other words, the exposome represents the combined ex-
posures from all sources that reach the internal chemical environment.
Subsequently, Miller and Jones refined the concept.

There are 3 distinct differences between Wild (old) definition and Rappa-
port and Smith plus Miller & Jones (new) definition:

1. The concept of the cumulative biological responses, representing
body’s response to external forces and chemicals.

2. The inclusion of behavior, including lifestyle as a dynamic interac-
tion with our surroundings, our relationships, our interactions, and
physical and emotional stressors.
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3. The addition of “endogenous processes” that are affected by complex
exposures. Our bodies are complex biochemical reaction vessels with
countless reactions occurring at any time. The lingering damage seen
as DNA mutations, epigenetic alterations, protein modifications...
is the evidence of a real effect and may be present decades after
exposure.

This last version of the definition of the exposome led to understand that
the levels of endogenous molecules (internal exposome) and specific exter-
nal exposures do not need to be the same.

Figure 1.8: Each curve represents the cumulative distribution of chemical con-
centrations from a particular source category, from Rappaport et. al. [22].

So, as proposed by Rappaport et. al. 2014, measuring the exposome in hu-
man blood offers am an interesting approach for interrogating biologically
relevant exposure-associated processes, because blood transports chemi-
cals to and from tissues and represents a reservoir of all endogenous and
exogenous chemicals in the body at a given time [39]. Figure 1.8 shows
the cumulative distributions of blood concentrations for the four sources
of chemicals studied by Rappaport et. al. 2014 (endogenous chemical -
with 1,223 elements -, food chemical - with 195 elements -, pollutant -
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with 94 elements - and drug - with 49 elements).

The dynamic nature of the exposome presents one of the most challenging
features of its characterization. To fully characterize an individual’s ex-
posome would require either sequential measures that spanned a lifetime
(Figure 1.9). Therefore, innumerable cross-sectional measures of the expo-
sure profile building to a continuous real-time monitoring will be required,
which cumulatively would represent the exposome of the individual.

Figure 1.9: Exposome requires multiple measurements over human life including
in utero exposures (prenatal exposome - not included in the schema), from Wild
[36].

The exposome captures the essence of nurture; it is the summation and
integration of external forces acting upon our genome throughout our lifes-
pan [40]. This measurable quantity of the exposome represents a biological
index of our nurture and is the context in which specific exposures have
an impact on health [41].

Exposure during fetal or early life to environmental chemicals has been
associated with adverse fetal growth and with developmental neurotoxic
and immunotoxic effects in children [42], [43]. This clears up with two
situations: 1) up to now the environment and child health field focused
on single exposure health effect relationships [44], and 2) environmental
exposures during fetal stages linked with structural and functional changes
in later life stages, predisposing to disease [45].
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The role of the impact of prenatal exposome in human health has been
highly explored. There is evidence that shows that manipulation of the
environment in the prenatal and infancy stages can be associated with
permanent changes in physiology and/or structure:

• The link between the nature of infant feeding to later health conse-
quences [46].

• The relationship between birth size and later risk of disease [47]–[49].

• Prematurity independent of growth retardation is associated with
long-term metabolic consequences [50].

• Offspring of women subjected to severe undernutrition in early preg-
nancy did not have reduced birth weight but do have an increased
risk of obesity [51].

Many of these environmental changes are associated with permanent al-
terations in gene expression regulated by epigenetic factors such as DNA
methylation and histone alteration. Gluckman et. al proposed the “devel-
opmental origins of health and disease” (DOHaD) paradigm that leads to
the recognition that early life influences can alter later disease risk. DO-
HaD phenomenon can be considered as a subset of the broader processes
of developmental plasticity by which organisms adapt to their environ-
ment. The adaptive processes allow genotypic variation to be preserved
through transient environmental changes and they may affect a single or-
gan or system, but generally, they induce integrated adjustments in the
mature phenotype, a process underpinned by epigenetic mechanisms and
influenced by prediction of the mature environment [45].

The study of the underlying mechanics that links the exposome with hu-
man health is an emerging research field with a strong potential to provide
new insights into disease etiology [52].

One example of a successful effort is the National Health and Nutrition
Examination Survey (NHANES). Measured factors include environmental
exposures such as chemicals, nutrients, and infectious agents. It also in-
cludes other indicators of environmental exposures such as self-reported
nutrient consumption, physical activity, and prescribed pharmaceutical
drugs [53]. With systematic information on exposures, environment-wide
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association studies (ExWAS) could become much more powerful and com-
plement GWAS and deep sequencing studies [54].

1.4 Molecular Signatures of Exposome

Research has clearly established that the environment plays a significant
role in our health and in the development of diseases. At the same time
studies of genetic variants and disease have been conducted to reveal links
between environmental exposures and health outcomes. Other studies
have identified environmental factors as significant contributors to disease,
yet the specific exposures of concern are poorly defined [55], [56].

The main goal in exposome analysis is to understand how chemicals are
altering human biology to explain its association with human health out-
comes [57]. Such effects could include binding to macromolecules, induc-
ing structural changes and disruption of biological pathways. The need
remains for a systematical evaluation of the environmental contributors to
health and disease [58], [59].

Although the term biomarker refers to any measurable state in a living
organism, a useful biomarker can differentiate between biological states,
particularly those represented by diseased and healthy populations. Dis-
covery of new biomarkers is important for epidemiology, which seeks causes
of diseases (biomarkers of exposure), as well as for diagnosis and treatment
of diseases (biomarkers of disease). Moreover, biomarkers of exposure can
also take into account a given specific exposome period (prenatal, early
life, adulthood...). To this end, the different layer of molecular signatures,
as well as their relations must be taken into account. Figure 1.10 illus-
trates a simplification of the hierarchy between the different molecular
signatures.
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Figure 1.10: Simplification of the hierarchy of the molecular signatures (differ-
ent omic data types).

At the bottom of the pyramid both the genome and epigenome are located.
While the genome includes the codification of any function any cell type
can do, the epigenome is in charge to cover and uncover those genomic
regions needed by each one of the cell types. For this, any aberrations
in the genome, such as copy number variations (CNVs) or chromosomal
inversions, and any epigenetic perturbations, as changes in methylation
patterns or histone modifications, may have an impact in the transcrip-
tome. Modifications in transcriptome levels affects the levels and types
of proteome, that at its time effects, joint with external risk factors, the
proportions and patterns in metabolome. The joint effect of the cascade
modifications in each level of the pyramid triggers the alterations in dis-
easeome (also called phenome).

Example of defining biomarkers of exposure is the case of Reese et. al.
They looked for biomarkers in newborns of sustained smoking by the
mother during pregnancy. They result in a set of methylation probes
(CpGs) that can be easily applied to other newborn studies having methy-
lation data and lacking cotinine levels [60].

Disease biomarker discovery has grown over the last years guiding the
development of drugs and diagnostic products. Moreover, it has vigorously
embraced the omics revolution and thereby offers hope that whole new
classes of biomarkers of disease will be found. Parallel developments of
biomarkers of exposure have been more modest, not only because these
biomarkers lack clear commercial interests, but also because knowledge-
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driven designs are still favored over omic tools for characterizing exposures.

1.4.1 The Three Elements of Epigenetics

Epigenetics is defined as the study of heritable changes in gene expression
that occur without changes in DNA sequence [61]. Epigenetic mechanisms
are flexible genomic parameters that can change genome function under
exogenous and endogenous influences. There are three (see Figure 1.11):
DNA methylation, histone modifications and miRNA expression.

This layer of regulatory information is essential for proper development
of cellular function. The genome is static and present in all cells, the
epigenome is variable by cell, tissue and developmental stage. then, it
determines of cellular functions and identity. These mechanisms also rep-
resent an adaptive intermediary that interprets and responds to environ-
mental factors, resulting in alterations in the transcriptome.

Epigenome patterns have been characterized in different tissues and time
points in international projects such as ROADMAP [62] and ENCODE
[63]. They do not act alone but in combination determining chromatin
states which have specific regulatory functions (i.e. enhancers vs repres-
sors) [64].

5-methylcytosine (5MeC) represents 2-5% of all cytosines in mammalian
genomes and is found primarily on CpG dinucleotides. Methylation is in-
volved in regulating many cellular processes, including chromatin structure
and remodeling, X-chromosome inactivation, genomic imprinting, chromo-
some stability, and gene transcription [65], [66]. Generally, gene promoter
hypermethylation is associated with decreased expression of the gene [67].
However, more than 90% of all genomic 5MeC are not directly related to
gene function as they lie on CpG dinucleotides located in transposable
repetitive elements [68]. Then, global hypomethylation, as well as hy-
pomethylation of transposable repetitive elements, have been associated
with reduced chromosomal stability and altered genome function [69], [70].

DNA methylation is a covalent modification by which methyl groups are
to the DNA molecules. Methylation can change the activity of a DNA
segment without changing the sequence and it is heritable by somatic cells
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after cell division. Perturbations in methylation during fetal growth and
early lifetime can lead to irreversible changes in structure and function.

Figure 1.11: Epigenetic mechanisms, by National Institutes of Health.

DNA methylation is the main epigenetic biomarker investigated in molec-
ular epidemiology studies in relation to environmental exposures. A com-
mon finding in this studies is the small epigenetic effect that is associated
with exposures. A reasonable answer for this situation is proposed by Bre-
ton et. al. when referring to the consequences of these small effects. Small
effects result to be magnified over time, raising the risk for developing dis-
eases, so we do not find larger effects just because they are incompatible
with continued development [71].

microRNAs (miRNA) are single-stranded RNAs of 21-23 nucleotides in
length that are transcribed from DNA but not translated into proteins
(non-coding RNAs). Mature miRNAs are partially complementary to one
or more messenger RNA (mRNA) molecules. miRNA main function is to
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down-regulate gene expression by interfering with mRNA functions [72].

Figure 1.12: Formation and function of micro-RNA, by Wikipedia.

Research provided pieces of evidence to support two distinct modes of
miRNA-mediated translational repression, one acting at the initiation
phase of protein synthesis [73] and the other at a stage post-initiation [74].
While the majority of miRNAs are located within the cell, some miRNAs,
commonly known as circulating miRNAs or extracellular miRNAs, have
also been found in the extracellular environment, including various bio-
logical fluids and cell culture media [75]. miRNAs derive from regions of
RNA transcripts that fold back on themselves to form short hairpins [76].

miRNAs function via base-pairing with complementary sequences within
mRNA molecules. As a result, these mRNA molecules are silenced, by
one or more of the following processes [77], [78]:

• Cleavage of the mRNA strand into two pieces.

• Destabilization of the mRNA through shortening of its poly(A) tail.

• Less efficient translation of the mRNA into proteins by ribosomes.
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As already seen, the most studied environmental factor in relation to
methylation is smoking, also in miRNA [79]. Vrijens et. al. conducted a
systematic review looking for miRNA as potential signatures of environ-
mental exposure. Table 1.2, adapted from the systematic review, shows
the miRNA related to smoking from “in vivo” studies.

Table 1.2: In vitro studies on the effects of smoking on differential miRNA
expression, from Vrijens et. al. [80].

miRNA miRNA function Regulation Tissue/cell type

miR-15a Tumor suppressor ↓ Primary bronchial epithelial cells
miR-125b Targets p53, stress response
miR-199b Oncogene activation
miR-218 Tumor suppressor
miR-31 Apoptosis, tumor suppressor ↑ Normal and cancer lung cells
miR-21 Fatty acid synthesis, apoptosis ↑ Human squamous carcinoma cells
miR-452 Targets CDK1 ↓ Human alveolar macrophages

1.4.2 Transcriptomics and Beyond

Transcriptome analysis in molecular epidemiology studies has become a
promising tool in order to evaluate the impact of environmental exposures.
These analyses aim to help in establishing the exposome both by identi-
fying the chemical nature of the exposures and the induced molecular
responses. Transcriptomic signatures can be regarded as a biomarker of
exposure as well as markers of effect which reflect the interaction between
individual genetic background and exposure levels [81], [82].

Recent research has shown the usefulness of measuring transcriptomics
responses induced by environmental factors in order to:

• Define new biomarkers of exposure and effect at gene expression
level.

• Identify relevant gene–environment interactions.

• Establish mechanistic pathways involved in both initiation and pre-
vention of disease.

An already published study about the effects of the blueberry-apple juice
in human transcriptome revealed that most of the gene expression changes
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Figure 1.13: Gene-protein codification process.

were produced in biological pathways involved in the immune system. Cell
adhesion and lipid metabolism pathways were also perturbed.

Transcriptome was also a target for the study of smoking effects on human
health. Example of this is the study presented by Paul and Amundson
where they targeted 300 genes with significantly different expression, of
which 170 genes were up-regulated and 130 genes were down-regulated in
smokers [83].

The proteome is the set of proteins expressed in a given type of cell, at a
given time, under defined conditions. As seen in Figure 1.13 the proteins
results from gene codification and more than one protein can be produced
from one gene due to alternative splicing events. Then, exposure to en-
vironmental exposures often elicits a change in cellular signaling which is
carried out in part by changes in the post-translational state of proteins,
for instance changing their abundance levels.

Alterations in the proteome, as seen in the transcriptome, have an impact
on human health. Following the smoking topic, research has seen that
many of the substances included in tobacco smoke readily pass through
the placental barrier [84]. So on, maternal smoking significantly affected
72 protein out of 392 protein analyzed by Huuskonen et. al.: 27 pro-
tein levels were increased and 45 protein decreased their volumes. The
protein affected included constructs of hemoglobin subunits, protective
proteases, and proteins directly involved in cellular structure or carbon
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dioxide metabolism [85].

Other studies linked aberrations in proteome with the exposome and hu-
man diseases. For instance, the immune response is trigged intermediate
when air pollutants enter the body. Such a response is observable by as-
sessing levels of small proteins such interleukin-1β (IL-1β), interleukin-6
(IL-6), among others. These cytokines are prominent inflammatory sig-
naling mediators that contribute to widespread neuroinflammation in the
children’s brain [86].

Metabolic profiling (metabolomics) is now used routinely as a tool to pro-
vide information-rich data-sets for biomarker discovery, promoting and
augmenting detailed mechanistic studies. Hence it can be used to ex-
plore the integrated response of an organism to environmental changes.
Numerous metabolic phenotyping studies have investigated the impact of
anthropometric factors such as age, sex, and obesity in an attempt to
understand the human metabolome [87], [88].

Gu et. al. identified 25 metabolites associated with smoking status. In
their findings, they identified associations with metabolites involved in the
benzoate, caffeine, vitamin, steroid, amino acid and carbohydrate path-
ways, which potentially underscore smoking associated aetiological mech-
anisms [89]. These findings may have implications regarding the etiology
of smoking-related diseases. In the same direction, Rolle-Kampczyk et.
al. performed a metabolic profiling of serum from cord blood discovering
that the effects of environmental tobacco smoke on the fetal metabolome
are affected in a different way than the maternal metabolome [90].
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Objective

The aim of this Ph.D. thesis is to study the role of environmental exposures
on human molecular signatures. The thesis begins by studying the role of
a single exposure, while the second part aims to provide tools for extending
such analyses to the exposome paradigm. Both scopes are related to the
analysis of the impact of the exposome on human molecular signatures.
The specific objectives are:

1. To study the effect of ultraviolet radiation (UVR) on the blood and
skin transcriptome, including both mRNA and miRNA in an exper-
imental design.

(a) Scientific Article I: Analysis of the effect of solar fluorescent
simulated radiation on human blood transcriptome.

(b) Scientific Article II: Analysis of the effect of UVB on human
skin transcriptome.

2. To develop bioinformatics tools under R programming language for
the analysis of the exposome and multiple omic data-sets.

(a) Scientific Article III: Development of a coordinated data orga-
nization system for multiple omic data-sets.

(b) Scientific Article VI: Development of a framework to perform:
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• exposome data characterization; including exposures stan-
dardization, transformation and description.

• univariate association analysis between exposome and dis-
easome.

• univariate and multivariate association analysis between
exposome and multiple omic data-sets.

(c) Scientific Article V: Development of a tool to perform queries
to Comparative Toxicogenomics Database (CTDTM) for expo-
some enrichment analysis.
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Effect of Ultraviolet
Radiation in Human
Transcriptome

3.1 Rationale

Exposure to ultraviolet radiation (UVR) occurs from both natural and
artificial sources. UVR can be classified into three regions according to
its wavelength (see Figure 3.1): UVA (315-400 nm), UVB (315-295 nm)
and UVC (295-200 nm). The main natural source is the Sun. However,
radiation under 295 nm in wavelength does not reach Earth’s surface due
to the absorption by the stratospheric ozone layer. As a result, UVR
from Sun typically consist in 95% of UVA and 5% of UVB. On the other
hand, artificial UVR sources are widely used in industry and health care
organizations for their germicidal properties.

The health effects of UVR on humans can be beneficial or detrimental,
depending on the amount and form of UVR, as well as on the skin type
of the individual exposed. Detrimental and acute effects of UVR include
erythema, pigment darkening, delayed tanning and thickening of the epi-
dermis. Erythema, redness of the skin that occurs with sunburn, is a
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Figure 3.1: UVR spectrum and the chemical physical and biological effects,
from Matsumura and Ananthaswamy [91].

cutaneous inflammatory reaction that can be accompanied by warmth
and tenderness. In fair skin types, sunlight may induce a transient flush
of erythema during or immediately after exposure. A delayed erythema
response is common in all skin types, and peaks between 6–24h [92]. Re-
peated UV-induced injury to the skin, may ultimately predispose one to
the chronic effects photoaging (the development of deep wrinkles, leath-
ery skin, dilatation of blood vessels, and multiple dark spots on the Sun
exposed skin), immunosuppression, and photocarcinogenesis [93], [94].

The main established beneficial effect of UVR is the cutaneous synthesis
of vitamin D3. Vitamin D is necessary to maintain physiologic calcium
and phosphorous for normal bone mineralization and to prevent rickets,
osteomalacia and osteoporosis [95].

Vitamin D3 is synthesized endogenously in human skin following expo-
sure to UVB radiation in sunlight, which spontaneously photoisomerizes
7-dehydrocholesterol to pre-vitamin D3 [96], [97]. Pre-vitamin D3 is sub-
sequently converted to vitamin D3 by thermal isomerisation, which then
enters the circulation and is hydroxylated in the liver to long-lived 25-
hydroxyvitamin D (25OHD3) [98]. This process is seen in Figure 3.2.

Since foods are naturally low in vitamin D main source for most people is
by solar exposure. The solar zenith angle, which varies by latitude, sea-
son and time of day, determines the amount of absorption and scattering
of solar UVB radiation and thus the intensity of sunlight at ground-level
[100]. The association between solar UVB and vitamin D is not straight-
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Figure 3.2: From UVB to Vitamin D3 synthesis, from Hart el. al. [99].
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forward, since living in a sunny climate does not ensure sufficient vitamin
D status [101], [102]. Vitamin D availability also depends on personal and
lifestyle factors including skin pigmentation (increased melanin in darker
skin naturally blocks cutaneous synthesis of vitamin D3) [103], age (the
amount of 7-dehydrocholesterol in the skin decreases with age) [104], di-
etary and supplemental intake [105] and sunlight exposure (when and how
long unprotected skin is exposed) [106].

Besides vitamin D production, UVR has also been related to other ben-
eficial effects. Ecological and epidemiological studies have suggested that
UVB exposure and vitamin D protects against several cancers [107], [108].

For all this, we planned to study the effects of UVR on transcription
in humans to disentangle the molecular mechanisms underlying the last
effects of UVR on heath. In particular, we investigated the acute effects
of UVR exposure on both blood and skin human transcriptome, at level
of gene expression and micro-RNA expression.

3.2 Methods

3.2.1 Blood Analysis Design

Nine healthy males from UK and with similar anthropometric and sun-
sensitive skin type II were selected for the study. The whole body of the
participants was exposed to 3 standard erythemal dose (SED) of fluores-
cent solar simulated radiation (FSSR). FSSR imitates real solar exposures
and compresses UVA and UVB at similar proportions.

Five participants were exposed in spring (March-April), and 4 in summer
(July-September). Blood samples for the nine volunteers were obtained
pre-exposure and 6h, 24h and 48h post-exposure. RNA was extracted and
quantified with a Nanodrop spectrophotometer (Thermo Fisher Scientific),
all RNA samples had a RNA Integrity Number (RIN) > 7. Plasma vita-
min D2 and vitamin D3 levels were measured in duplicate with liquid ultra
high pressure chromatography tandem mass spectrometry (Waters, Mil-
ford, Massachusetts, USA) before detection by a TQD Mass Spectrometer
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(Waters, Milford, Massachusetts, USA) with electrospray ionization using
multiple reaction monitoring.

The description of the study can be seen in Figure 3.3.

Figure 3.3: Experimental design for the study of the UVR in human blood
transcriptome.

3.2.2 Skin Analysis Design

Seven of the nine volunteers had a region of the gluteus exposed to 3
SED, a region exposed to 6 SED and a region kept covered as control.
Each exposed region was exposed to fluorescent solar simulated radiation
(FSSR). FSSR imitates real solar exposures and compresses UVA and
UVB at similar proportions. For these seven volunteers biopsies of the
control region, 3 SED exposed region and 6 SED exposed region were
obtained at 6h and at 24h post-exposures. The description of the study
can be seen in Figure 3.4.

3.2.3 Bioinformatic Pipeline

The total number of samples was 84, 40 blood samples and 44 skin samples.
Seven technical replicates were included (different library preparation).

mRNA initial quality control was done by visual inspect of the reports gen-
erated by Lappalainen et. al. FastQC [109]. Alignment (with a maximum
of 5 mishmashes) and mapping (to NNCBI hg19 - EntrezId - allowing
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Figure 3.4: Experimental design for the study of the UVR in human skin
transcriptome.

multiple overlap and discarded if matched in more than one locus) was
done using Rsubread R package [110]. Three samples were filtered (due
to low number of reads) after checking GC content per sample, number
of read per gene and number of read in globin and collagen genes. Same
samples were marked to be discarded after 5’-3’ degradation inspection.
Minimum correlation between technical duplicates was of 0.983 and max-
imum of 1. Visual inspection of PCAs by tissue, exposure, technical and
anthropometric variables were done and no sample was discarded.

micro-RNA sequencing data were analysed as previously described [111].
At least ∼ 4M reads mapped to micro-RNAs in each sample. Despite
this, we detected a highly abundant micro-RNA, hsa-miR-486-5p that
represented between 78% and 90% of the reads. Principal component
analysis did not show any technical bias. One sample was removed due
to a completely different behaviour, possibly due to contamination. The
correlation between replicates was > 0.98 and only one of them was kept
in the analysis.

Normalization of the counts and differential expression analysis were done
using DESeq2 R package [112], including library batch, flowcell and id as
covariates and taking as reference the unexposed or first time. Pathway
analysis was performed on the results using DAVID (6.7 Jan 2010) [113].

27 blood genes and 55 skin genes were validates though qPCR (quantita-
tive polymerase chain reaction) performed using the TaqMan Real-Time

32



Bioinformatic Tools for Exposome Data Analysis

PCR system (Thermo Fisher Scientific). Four housekeeping genes were
selected from the mRNA data experiment [114]. Samples were run in
triplicate and their correlations were > 0.7 for blood genes and > 0.6 for
skin genes, except for three and two genes. Outlier replicates, defined
by a standard deviation > 0.25 and a qPCR threshold cycle > 33 were
excluded.

For three participants a second unexposed blood sample, collected between
1 and 22 days before UVR exposure, was also analysed and correlations
between the two unexposed samples were > 0.97.

3.3 Results

Two manuscripts corresponds to the results of this project, one with the
results obtained from the transcriptom analysis in blood and a second one
with the results obtained from skin analysis.
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3.3.1 Effect of FSSR on Human Blood Transcriptome
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Abstract 

Ultraviolet radiation (UVR) produces erythema, oxidative stress, DNA mutations, and 

finally skin cancer. Skin can adapt to UVR damaging effects by increasing 

keratinisation, tanning and apoptosis. In this study we investigated the skin 

transcriptional response to different doses of fluorescent solar simulated radiation 

(FSSR) in humans. 

Seven healthy male volunteers were exposed to 3 different doses of FSSR [0 

(unexposed), 3 and 6 standard erythemal doses (SED)]. Skin biopsies were obtained at 

6h and 24h post-exposure for each SED. Gene and miRNA expression was assessed 

with next generation sequencing, and a set of differently expressed genes were validated 

by quantitative PCR (qPCR). 

The number of differentially expressed genes increased with higher FSSR dose and 

shorter time post-exposure. At 6h and at 6 SED, 4,071 genes were differently expressed 

with an average absolute fold change of 1.5 (range: 1.2 - 2.5). A slight increase of the 

number of upregulated vs. downregulated genes was observed. At each time points, 

differently expressed genes were involved in main cellular functions such as 

transcription and translation. Moreover, keratinization and apoptosis were found at 6h, 

while inflammation and immune response was more prominent at 24h. Only four 

miRNAs (hsa-miR-146b-5p, hsa-miR-223-3p, hsa-miR-204-5p and hsa-miR-142-5p) 

were differently expressed, suggesting less strong effects or an earlier response. None 

time*dose interaction was validated. 

The high FSSR dose used in this study is similar to the daily UVR dose experimented 

by holiday makers, suggesting that their skin transcriptional profile is markedly altered. 
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Introduction 

Skin is the largest and most external organ in the body and forms a physical barrier to 

environment. It is organized in two layers: epidermis and dermis made of epithelial, 

mesenchymal, glandular and neurovascular components. Exposure to solar ultraviolet 

radiation (UVR) is one of the most important environmental factors affecting skin 

physiology. It is the main cause of the three most common types of skin cancer: basal 

cell carcinoma, squamous cell carcinoma and malignant melanoma (Greinert et al., 

2015). 

Terrestrial solar ultraviolet radiation typically comprises ≤5% of UVB (~295-315 nm) 

and ≥95% of UVA (315-400 nm). The impact of UVA and UVB radiation on the skin is 

dependent on their energy which is absorbed by cellular chromophores such as melanin, 

DNA, aromatic amino acids (ie. tyrosine and tryptophan), and urocanic acid, among 

others (Damiani and Ullrich, 2016)(Ramasamy et al., 2017)(Schuch et al., 2017).  

UVB radiation is more energetic than UVA. It can directly damage the epidermal cells 

producing erythema, associated with an inflammatory response (D’Orazio et al., 

2013)(Schuch et al., 2017). UVB also produces DNA mutations, which, if not 

eliminated via apoptosis or DNA repair mechanisms, can lead to photo-carcinogenesis 

(D’Orazio et al., 2013)(Ramasamy et al., 2017)(Schuch et al., 2017). On the other hand, 

UVB participates in the synthesis of vitamin D in skin, which has many beneficial 

effects on health.  

UVA rays penetrate deeper within the skin and are mostly responsible for the generation 

of reactive oxygen species (ROS), and therefore they can also generate DNA damage, 

but at lesser extent than UVB (Tewari et al., 2012)(Ramasamy et al., 2017)(Schuch et 

al., 2017). UVA can reach the deep dermis producing skin photo-aging (Krutmann, 

2000). Both UVR types are also involved in skin immunosupression (Hart et al., 2011). 
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Skin can adapt to UVR exposure by increasing keratinocyte cell division (epidermal 

hyperkeratosis) and by increasing tanning, melanization of the skin (D’Orazio et al., 2013). 

The first step of melanization consists in a redistribution of existing epidermal melanin 

pigments. This is mainly lead by UVA. UVB is responsible of the de novo melanin 

synthesis. Its transfer to keratinocyes starts after several hours or days of UVR 

exposure. However, tanning response is generally insufficient to prevent UVR 

mutagenic effects (Greinert et al., 2000)(Ridley et al., 2009) and erythema in lighter 

skin types (Sheehan et al., 1998).  

The molecular consequences of exposure to UVR, both the adverse effects as well as 

the adaptive responses, can be reflected in the skin transcriptional profile (D’Orazio et 

al., 2013)(Ramasamy et al., 2017)(Schuch et al., 2017). UVR-induced gene expression 

changes in skin have extensively been investigated, but the response of miRNAs, small 

non-coding RNAs that regulate gene expression, is less well characterized (Syed et al., 

2013). Moreover, not many of these studies performed in vivo and involving skin 

biopsies from exposed human volunteers (Enk et al., 2006)(Ramasamy et al., 2017). 

Usually they only evaluate one UVR dose and one time point post-exposure (Daniell, 

2012)(Dawes et al., 2014). The study of skin transcriptional response to the whole 

terrestrial UVR spectrum (UVA + UVB), as in real life settings, may provide relevant 

information for public health. 

In the present study, we investigated the effects of different doses of fluorescent solar 

simulated radiation (FSSR) over time on the skin transcriptional profile in humans. In 

particular, seven healthy male volunteers were exposed to two different doses of FSSR 

(3 SED and 6 SED). Unexposed and exposed skin biopsies from these volunteers were 

collected at 6h and 24h post-exposure, and gene and miRNA expression was assessed 

using next generation sequencing.  
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Material and methods 

Participants, biological samples and exposure to fluorescent solar simulated radiation 

The study was conducted according to the Declaration of Helsinki after approval was 

obtained from the Ethics Committee of St Thomas’s Hospital, London, UK. All 

participants gave written informed consent. The study design, library preparation and 

bioinformatic analysis can be found in Supplementary Figure 1. 

Seven healthy males from UK and with similar anthropometric and sun-sensitive skin 

type II were selected for the study (Table 1). Previously unexposed buttock skin was 

exposed to FSSR using Arimed B in a two Waldmann UV 100L W tubes (Waldmann 

GmbH & Co, Villingen-Schwenningen, Germany). The emission spectrum comprises 

5.3% UVB (280-315 nm) which accounts for 79.6% of the erythemally effective energy. 

Two different regions were irradiated to 3 and 6 standard erythemal doses (SED). An 

unexposed region was taken as control. At 6h and 24h the following punch biopsies 

(4mm including epidermis and dermis) were taken under local anaesthesia by a 

dermatologist: 6h – 0 SED (A), 6h – 3 SED (C); and 6h – 6 SED (E); and at 24h: 24h – 

0 SED (B), 24h – 3 SED (D), and 24h – 6 SED (F). All samples were immediately 

frozen. Total RNA from skin biopsies was extracted using the RNeasy Mini Kit 

(Qiagen, Hilden, Germany). RNA was quantified with a Nanodrop spectrophotometer 

(Thermo Fisher Scientific, Waltham, Massachusetts, USA), and quality evaluated with a 

RNA 6000 Nano Kit in a Bioanalyzer equipment (Agilent, Santa Clara, California, 

USA). All RNA samples had a RNA Integrity Number (RIN) >6.4, expect ICE_004_E 

(6h – 6 SED), which was eliminated from the study. Additional details on the samples 

can be found in Supplementary Table 1.  

Gene and miRNA expression (next generation sequencing) 
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RNA libraries were prepared with the TruSeq RNA Sample Prep Kit v2 (mRNA) and 

the TruSeq Small RNA Sample Prep Kit (small RNA) (Illumina, San Diego, California, 

USA). Small RNA library size selection was done with acrylamide gels and quality was 

assessed with the DNA 1000 or High Sensitivity Kit in a Bioanalyzer (Agilent, Santa 

Clara, California, USA). Pools of 6 (mRNA) or 16-20 (small RNA) cDNA libraries 

were prepared at 30 nM after quantification with KAPA SYBR® FAST qPCR (Kapa 

Biosystems, Hoffmann-La Roche, Basel, Switzerland). Libraries were single-end 

sequenced (100 nt and 50 nt for mRNA and small RNA, respectively) on a HiSeq2000 

platform (Illumina, San Diego, California, USA). Samples were randomized during 

library preparation and during the sequencing. Three mRNA and one miRNA samples 

were analyzed in duplicate. Correlation between replicates was >0.98 and only one of 

them was kept in the analysis. 

For mRNA, reads were mapped against the genome using the R package Rsubread 

(Liao et al., 2013), allowing a maximum of 5 mismatches and using the hs37d5 as 

reference. Gene annotation was performed with NCBI hg19 (Entrez Gene) database. 

Three samples had <10M reads and were excluded from the analysis (ICE_003_A, 

ICE_004_A, and ICE_004_F) (Supplementary Table 2). None of the samples showed 

degradation (Wang et al., 2012). 19,877 genes were detected in >80% of the samples, 

17,612 with an average of >19 reads.  

The small RNA sequencing data were analyzed as previously described (Lappalainen et 

al., 2013). At least 1.79 M reads mapped to miRNAs in each sample (Supplementary 

Table 3) and 1,427 miRNAs were annotated.  

Validation of the expression levels of top genes (qPCR) 

Validation of 55 genes was performed using the TaqMan Real-Time PCR system 

(Thermo Fisher Scientific, Waltham, Massachusetts, USA). The selection criteria is 
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specified in Supplementary Table 4. Four housekeeping genes were selected from the 

mRNAseq experiment using the RefFinder web-based tool (Xie et al., 2012). 

Unexposed and paired samples collected at 6h (A) and at 24h (B) showed a correlation 

> 0.97. Samples were run in triplicate and their correlations were >0.6, except for two 

genes (POMC, and CYP27B1). According to the NormFinder method (Andersen et al., 

2004), UBE2D2 and TBP were found to be the most stable housekeeping genes. ∆Ct 

was calculated subtracting mean (UBE2D2 + TBP) Ct to the candidate gene Ct.   

Sample size in the mRNAseq and qPCR experiments was slightly different 

(Supplementary Table 1). 

Statistical analysis 

All analyses were done in R3.1.0 and R3.2.3 environment (‘R: A language and 

environment for statistical computing.’, 2017, http://www.R-project.org). 

Differential expression: next generation sequencing  

mRNA and miRNA differential expression was analyzed using the R package DESeq2 

v.1.14.1 (Love et al., 2014).  

All samples were normalized together using the scaling factor method implemented in 

DESeq2. Then, a negative binomial generalized model to test the association between 

gene expression and a dummy variable that combined time and dose, was fitted. The 

model was adjusted for participant ID, library preparation batch, and flowcell (mRNA). 

Log2 Fold Changes (Log2FC) were estimated with an automatic shrinkage function that 

uses empirical Bayes priors. The following contrasts were tested: 6h - 0 SED vs. 6h – 3 

SED; 6h - 0 SED vs. 6h – 6 SED; 24h - 0 SED vs. 24h – 3 SED; 24h - 0 SED vs. 24h – 

6 SED, and 6h - 0 SED vs. 24h – 0 SED. Linear FSSR dose effects were tested at 6h 

and 24h, separately. Seventy-five % and 90% of the genes detected at dose 6 SED in the 

main analysis were also significant in the linear dose response analysis at 6h and 24h, 
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respectively (data not shown). Note that the differences between both analyses are the 

assumption of linear effects and the normalization process. In the linear dose response 

analysis, samples collected at 6h were normalized together and separately from samples 

collected at 24h, and vice versa. 

To search for genes whose expression level deviated from the additive effects of dose 

and time, a negative binomial generalized model with a time*dose interaction term was 

fitted. The following time*dose interaction parameters were retrieved: 6h – 0 SED vs. 

24h – 3 SED; and 6h - 0 SED vs. 24h – 6 SED.  

Multipletesting was addressed with DESeq2 by filtering genes that had little chance of 

showing significant evidence and by calculating adjusted p values with the False 

Discovery Rate (FDR) method within each comparison. Moreover, in the small RNA 

analysis, Bonferroni correction was applied by dividing the nominal significance (p 

value = 0.05) by the number of miRNAs detected with a minimum of 10 normalized 

counts (Bonferroni adjusted p value: 0.05 / 389 = 1.29E-04). 

Differential expression: qPCR  

The association between gene expression assessed by qPCR (∆Ct) and FSSR dose at 

different times was tested with linear mixed models adjusting for participant ID as a 

random effect. The interaction between time and dose was tested by introducing a 

time*dose interaction term in the models that contained all samples together.  

Note that sample size in the mRNAseq, miRNAseq and qPCR validation studies was 

slightly different.  

Functional enrichment analysis 

Genes with an arbitrary significance of p value <1E-03 were selected to perform 

functional enrichment analysis. No filtering of the genes based on Log2FC was done.  

Gene-set enrichment analysis 



10 

 

Gene-set enrichment analysis was performed with the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v.6.7 (Huang da et al., 2009a)(Huang 

da et al., 2009b), using GO-BP, KEGG, Biocarta, and Reactome databases. To reduce 

redundancy, we used the Functional Annotation Clustering option that displays similar 

annotations together. Results were filtered for enrichment scores 1.3 (equivalent to 

0.05 in the non-log scale). 

miRNA – gene regulatory networks 

The regulatory networks of miRNAs and genes, including transcription factors, were 

analyzed using MAGIA2 (Bisognin et al., 2012). This tool combines expression profiles 

analysis with in silico regulatory interaction predictions. To create the miRNA-gene 

networks, all samples with available gene and miRNA expression data were analyzed 

together, and not stratified by condition. Briefly, miRNA - gene (including transcription 

factors) interactions were predicted using DIANA-microT (Maragkakis et al., 2009) 

with mean stringency. Transcription factor - miRNA interactions are retrieved from 

mirGen2.0 (Friard et al., 2010) and TransmiR (Wang et al., 2010), whereas transcription 

factors - gene interactions were obtained from ‘TFBS conserved’ track of the UCSC 

genome annotation for human (version hg19). The correlation of the expression profiles 

was calculated with the Spearman test.  

Validated miRNA-targeted gene pairs were retrieved from ‘miRWalk 2.0: a 

comprehensive atlas of predicted and validated miRNA-target interactions’ 

(http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/).  
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Results 

Study design 

Seven healthy males with similar anthropometric and dermatological parameters were 

enrolled in the study (Table 1). Three skin biopsies were collected at 6h and three at 24h 

after exposure to different FSSR doses: unexposed (0 SED), exposed to 3 SED and 

exposed to 6 SED.  

Gene expression after exposure to FSSR  

Discovery phase: mRNAseq 

The number of differentially expressed genes at 5% FDR increased with higher FSSR 

dose (6 SED) and shorter time post-exposure (6h), suggesting a dose dependent short 

term effect on the majority of genes (Table 2). Therefore, the highest number of 

differently expressed genes was found at 6h and at 6 SED. Absolute mean fold change 

(FC) at 6h and 6 SED was 1.5 (ranging from 1.2 to 2.5). In general, a faint increase of 

the number of upregulated vs. downregulated genes was observed. At 6 SED, the effect 

size of upregulated genes was slightly more pronounced than the effect of 

downregulated, as shown in the Volcano plots (Figure 1). After multiple-testing 

correction, no statistically significant differences were observed among expression 

levels in unexposed (0 SED) skin biopsies collected at 6h and at 24h (data not shown). 

At 6h, 132 genes were differently expressed (5% FDR) after exposure to 3 SED 

(Supplementary Table 5). The number increased to 4,071 after exposure to 6 SED 

(Supplementary Table 6). Ninety-seven % of the genes detected at low dose (3 SED) 

were also altered at high dose (6 SED). At 24h, 16 genes were differently expressed 

(5% FDR) after exposure to 3 SED and 1,583 after exposure to 6 SED (Supplementary 

Table 7 and Supplementary Table 8). Again, 94% of the genes detected at low dose (3 

SED) were also altered at high dose (6 SED).   
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Figure 2 summarizes the overlap of genes differently expressed at 5% FDR at different 

conditions. At low dose (3 SED), 7.5% of the genes with FSSR induced changes at 6h 

were also found at 24h; while at high dose (6 SED), this increased to 29.7%.  Less than 

25% of the genes were exclusively identified at 24h. Ten genes (7 downregulated and 3 

upregulated) showed altered expression patterns after FSSR at all times points and 

doses. Their absolute FC ranged from 1.3 to 3.8 with a mean of 2.1. In general, their 

differential expression was more pronounced at 6 SED and 6h. 

Only two genes showed an interaction between time and dose: IGSF9B and TMEM127 

(at 5 % FDR and with >10 averaged normalized counts). However, their baseline levels 

at 6h and 24h were different and the time*dose interaction was not validated by qPCR 

(Supplementary Figure 4 and Supplementary Table 9).  

When the analysis was restricted to 5 volunteers with available samples in all 

conditions, gene expression patterns were similar to the ones observed in the main 

analysis (Supplementary Table 10 and Supplementary Figure 5). 

Gene-set enrichment analysis  

At 6 SED and 6h, the following biological processes were identified: keratinization, 

apoptosis, transcription and translation, splicing, tRNA modifications, and cytoskeleton 

organization (Supplementary Table 11). At 24, we detected the same pathways found at 

6h except for keratinization and apoptosis, and plus inflammation, immune response 

(IL1, IL6, IL10, TNF, NFKB, INF gamma, TLR), and hyaluronan biosynthesis 

(Supplementary Table 12). At low dose, we did not detect any enrichment, except for 

signaling through different factors at 6h (Supplementary Tables 13).  

Validation of candidate genes: qPCR 

The expression of 55 genes was validated by qPCR (Supplementary Table 4 and 

Supplementary Table 9). These included genes which were at least nominally associated 
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with exposure to FSSR in the discovery phase or were in pathways with genes fulfilling 

this criteria: 9 genes found at 5% FDR at all doses and time conditions, 2 genes that 

showed a potential time*dose interaction, and 34 genes involved in candidate pathways 

[immunity and inflammation (N=4), DNA repair (N=3), pigmentation (N=20) and 

vitamin D (N=7)].  

All tested pigmentation genes were repressed after FSSR, except for EDNRB, which 

was upregulated at 24h (Supplementary Figure 6). Some of the pigmentation genes 

showed a transient repression only at 6h post-exposure (EDN3, KIT, MITF, SLC24A5, 

PMEL and ASIP); whereas others had a more sustained downregulation (ATRN, LYST, 

TYRP1, OCA2, and FGFR2). Three of these genes, FGFR2, LYST and EDNRB, 

survived Bonferroni correction. 

Regarding vitamin D genes, only the expression of CYP2R1 was validated. CYP2R1 is 

involved in 25-hydroxyvitamin D production from vitamin D, mainly in liver. In the 

skin, its expression was decreased at high doses of FSSR and particularly at 6h 

(Supplementary Figure 7). 

In addition, 10 genes with differential expression in blood after whole body exposure to 

FSSR and with nominal associations in the discovery phase in skin were selected for 

validation (Bustamante et al 2017). Similarly, to what was observed in blood, the 

expression of CD83 was increased, but only at high doses. SCPEP1, FKBP5, FLT3 and 

ITSN1 were downregulated, especially at 6 SED and 6h, in agreement with the acute 

pattern observed in blood. In contrast to what was observed in blood, PLA2G7 that 

participates in PAF (platelet-activating factor) degradation was not downregulated in 

skin, while the expression of PTGS2 (COX2) regulated by PAF and involved in 

prostaglandin PGE2 production was increased. PAF transmits the UVR 
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immunosuppressive signal from the skin to the immune system (Damiani and Ullrich, 

2016). 

miRNA expression after exposure to FSSR in skin 

Discovery phase: miRNAseq 

We also explored the effect of FSSR exposure on skin miRNA expression over time and 

at different doses. Sixteen miRNAs had an abundance >1%. Hsa-miR-10b-5p was the 

most common miRNA with a mean abundance of 26.3% of the reads.  

The FSSR-induced effect on the miRNA expression was of smaller magnitude 

compared with the gene expression analysis as shown in the Volcano plots (Figure 3). 

Maximum absolute FC was 2.1 (hsa-miR-223-3p). Only 4 miRNAs survived 

multipletesting correction (Figure 4, Supplementary Table 15). Hsa-miR-146b-5p and 

hsa-miR-223-3p were upregulated at 6h and high dose (6 SED). At 24h, the levels of 

hsa-miR-223-3p were still high, while the levels of hsa-miR-146b-5p were close to 

baseline. The expression patterns of hsa-miR-204-5p and hsa-miR-142-5p were more 

complex, with potential time*dose interactions. Hsa-miR-204-5p was upregulated at 

24h and low dose. Hsa-miR-142-5p was upregulated at 6h and 6 SED and 

downregulated at 24h and 3 SED.  

miRNA – gene regulatory networks 

Then, we investigated the miRNA-gene regulatory networks combining information 

from expression profiles and by in silico predictions. All miRNAs, expect for hsa-miR-

142-5p, showed significant correlations with some predicted target genes or 

transcription factors (Figure 5). The following miRNA-gene correlations were negative 

and significant after multipletesting (q-value <0.05):  hsa-miR-146b-5p and TMEM237, 

TMEM132E, LANCL1, SLC6A4; hsa-miR-204-5p and IL1B; hsa-miR-223-3p and HLF 

(transcription factor).  
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A list of validated miRNA-gene interactions for these 4 miRNAs is shown in 

Supplementary Table 16. Some of them are: IL6 (hsa-miR-223-3p) in myeloid cells 

(Dorhoi et al., 2013), KIT (hsa-miR-146b-5p) in papillary thyroid carcinoma  (He et al., 

2005) and PRKCB (hsa-miR-142-5p) in breast cancer (Pillai et al., 2014). 

Discussion 

In the present study we investigated the transcriptional profile from skin biopsies from 

human volunteers exposed to FSSR. We tested two FSSR doses (3 SED and 6 SED) and 

two post-exposure time points (6h and 24h). 

FSSR dose was the main driver of gene transcriptional changes in skin. The number of 

differently expressed genes at 3 SED was 1-4% of the genes detected at 6 SED, and 

only <5% were specific to low dose. At 6h and at 6 SED, 4,071 genes were differently 

expressed, which represents around 20% of the human transcriptome. Volunteers were 

exposed to 3 and 6 SED that is about 1 or 2 minimal erythemal dose (MED) for skin 

type II, respectively (Harrison and Young, 2002). Our maximal exposure dose of 6 SED 

was similar to Danish holiday makers who received a daily average of 9.4 ± 7.0 SED 

during a holiday in Tenerife in March, when at least 50% body surface was exposed to 

greatest UVB intensity (Petersen et al., 2013). 

The number of differently expressed genes was reduced over time after FSSR exposure. 

Although the vast majority of biological functions detected at 6h and 24h were the 

same, a few of them were time specific. At 6h, we identified pathways related to 

apoptosis and keratinization; whereas at 24h, pathways related to inflammation, 

immune response and hyaluronan biosynthesis. Indeed, this expression pattern over 

time was confirmed by qPCR for some particular genes related to DNA repair (AEN, 

POLH) and immunity (IL1A, IL20, IL6 and TNF). Hyaluronan, one of the main 
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extracellular matrix molecules of epidermal keratinocytes, has previously been reported 

to increase after low dose UVB exposure (Rauhala et al., 2013), however results are not 

consistent among studies.  

Ten genes were differently expressed in all conditions. Nine of them were validated by 

qPCR. AEN (upregulated) encodes a nuclear exonuclease required for P53-dependent 

apoptosis (Kawase et al., 2008). CDKAL1 (downregulated) is expressed in immune cells 

and becomes downregulated when immune cells are activated with proliferating signals. 

Genetic variants in CDKAL1 have been associated with several diseases: psoriasis, 

Crohn's disease and type 2 diabetes (Quaranta et al., 2009). EPHB1 (downregulated) 

encodes an ephrin receptor tyrosine kinase that mediates cell-cell communication by 

interacting with ephrin ligands residing on adjacent cell surfaces. They participate in 

development, maintenance, and repair processes in cutaneous biology (Surawska et al., 

2004)(Lin et al., 2012). GRIP1 (downregulated) is a scaffolding protein required for the 

formation and integrity of the dermo-epidermal junction (Bladt et al., 2002). PRKCB 

(protein kinase C beta, downregulated) activates TYR, the key and rate-limiting enzyme 

in pigmentation. Topical application of a PRKCB inhibitor reduces skin and hair 

pigmentation (Park et al., 2004). SLC24A3 (downregulated), also known as NCKX3, is a 

Na+/Ca2+ exchanger. Another family member (SLC24A5) has a role in the 

development of pigmentation in skin and retinal epithelia (Giot et al., 2003). Moreover, 

we also validated by qPCR the expression of other key genes in the pigmentation 

processes. The expression of selected pigmentation genes was repressed at 6h, expect 

for EDNRB which showed increased levels. Consistently, EDNRB levels have been 

shown to increase after UVB exposure in cultured melanocytes. Downregulated genes 

promote skin pigmentation, except for ASIP. ASIP (agouti signaling protein) binds to 

MC1R and produces a switch in the melanin production, from eumelanogenesis to 
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pheomelanin. This expression pattern suggests that in individuals of skin type II and at 

24h the delayed tanning response that involves increases in the number and activity of 

functional melanocytes with increased activity TYR, has not still started (Brenner and 

Hearing, 2008).  

In contrast to genes, the expression of miRNAs was not massively affected by FSSR in 

the present time and dose conditions. Whether this is because transcription of miRNA is 

less influenced by FSSR or because effects take place in different time point (earlier 

response) deserves further investigation. It also could be that the precision of the 

RNAseq was lower for miRNAs, difficulty the identification of differently expressed 

miRNAs. In any case, due to their regulatory role, subtle differences in miRNA levels 

might be relevant in skin biology.  

Four miRNAs were differently expressed. Hsa-miR-146b-5p and hsa-miR-223-3p were 

upregulated after FSSR exposure. In agreement with our findings, hsa-miR-146b-5p and 

hsa-miR-223-3p have been found to be upregulated in cellular models irradiated with a 

UV lamp (254 nm) (Al-Khalaf et al., 2013) and UVB irradiated mice (Xu et al., 2012), 

respectively. Moreover they both seem to be upregulated in skin of psoriasis patients 

(Løvendorf et al., 2015)(Hermann et al., 2017). The miRNA-gene network analysis 

identified the following genes as potential targets for hsa-miR-146b-5p: TMEM237, 

TMEM132E, LANCL1, and SLC6A4. SLC6A4 encodes a serotonin transporter, which 

terminates the action of serotonin and recycles it in a sodium-dependent manner. 

Activation of the serotonin pathway has been suggested to mediate UVB-induced 

immune suppression (Wolf et al., 2016). hsa-miR-223-3p expression was inversely 

correlated with the expression of HLF (PAR BZIP transcription factor). Hsa-miR-204-

5p and hsa-miR-142-5p exhibited a more complex pattern, making interpretation more 

cautious. Hsa-miR-204-5p was upregulated at 24h and low dose. hsa-miR-204-5p may 
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control the signaling towards the MAPK and STAT3 pathway in the progression of 

actinic keratosis to squamous cell carcinoma (Toll et al., 2016), and is involved in skin 

wound (Etich et al., 2016). In our data, hsa-miR-204-5p levels were inversely correlated 

with IL1B levels. Another study has validated the interaction between hsa-miR-204-5p 

and IL1B (Li et al., 2011). Hsa-miR-142-5p has been found to be upregulated in 

chronically UVR treated mice skin (Singh et al., 2016). The role of miRNAs in UVR 

effects in human skin has been reviewed elsewhere (Syed et al., 2013). None of the 

miRNAs described there was deregulated in our study. 

The study has several strengths. First, the effects FSSR on transcription were 

investigated in biopsies obtained from volunteers locally exposed to FSSR, in contrast 

to the more artificial in vitro cellular models. Selected volunteers had a similar skin, 

type II according to the Fitzpatrick’s scale. Since we did not separate dermis from 

epidermis, present findings reflect the transcriptional pattern of all cell types in the skin 

biopsy. Secondly, the transcriptional profile was investigated comprehensively, 

including genes and miRNAs. Moreover, the expression of some genes was validated 

by qPCR. Finally, our study used a broad-spectrum UVR source, which has the 

advantage of simulating natural UVR.  

The study also has some limitations. On one hand, the sample size is still limited to 

detect small effect sizes, which is of special importance for miRNAs, whose FSSR-

induced expression change seems to be subtler. On the other hand, the study 

investigates the acute effects (up to 24h) of one unique FSSR exposure. The chronic 

effects on transcription of multiple FSSR exposures deserve further investigation. 

 

Conclusions 

FSSR induced changes on gene expression were dose dependent, with the highest 
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number of differently expressed genes at 6h and high dose (6 SED). The FSSR effect on 

transcription decreased over time, with a fewer number of genes differently expressed at 

24h compared with 6h. Gene-set enrichment analysis suggested a first response 

involving apoptosis and keratinization, followed by activation of inflammation and 

immune pathways. No time*dose interactions were detected. At these dose and time 

conditions, subtle effects of FSSR on miRNA expression were observed.  
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Chapter 3

3.4 Discussion

Effect of FSSR on Human Blood Transcriptome

Seventeen genes showed decreased expression at 6h, but recovered to their
baseline status at 24h or 48h. The direction of the effect of these genes was
validated by qPCR. Some are notable because of their relationship with
the reported effects of UVR on health. Table 3.1 shows the differentially
expressed genes involved in immune regulation, Table 3.2 lists the genes
related to cancer and Table 3.3 the genes associated with cardiovascular
diseases.

Table 3.1: Differently expressed genes in human blood after FSSR exposure
involved in immune regulation processes.

Gene Regulation Description
FKBP5 ↓ Member of the immunophilin protein family that particpates

in immunoregulation. Response to psychological stress. Ge-
netic polymorphisms have been associated with mood disor-
ders. Mechanisms of tumouriogenesis and chemoresistance.

IL13RA1 ↓ Subunit of the IL13 and the IL4 receptors. High levels of
IL4 and IL13 have been reported in asthmatic patients after
allergic sensitization.

EMR1 ↓ Orphan receptor expressed on mature eosinophils, involved in
cell adhesion. An anti-EMR1 antibody induces depletion of
eosinophils: potential therapy for eosinophilic diseases.

TLR2 ↓ Cooperates with LY96 to mediate the innate immune response
to bacterial lipoproteins and other microbial cell wall compo-
nents. It has been implicated in the pathogenesis of several
autoimmune diseases.

CLECE4 ↓ Cell-surface receptor for several ligands and induces the se-
cretion of inflammatory cytokines. Increased levels in bone
marrow derived mononuclear cells in rheumatoid arthritis

STAB1 ↓ Binds to both Gram-positive and Gram-negative bacteria and
may play a role in defense against bacterial infection. First
line of defense against infections.

CD83 ↑ Cell surface marker of mature dendritic cells that stimulates
the immune system. In contrast, the soluble form of CD83
has been shown to be a potent immunosuppressor.

Other studies have explored the effect of UVB on gene expression in whole
blood or in specific blood cell types. Jung et al exposed healthy male
volunteers to narrow-band UVB (311 nm) and identified, at 24h, 9 down-
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Table 3.2: Differently expressed genes in human blood after FSSR exposure
involved in cancer.

Gene Regulation Description
FLT3 ↓ Class III receptor tyrosine kinase that regulates hematopoiesis

[38]. Activating mutations cause acute myeloid leukemia
(AML), acute lymphoblastic leukaemia (ALL) and myelodys-
plasia.

CACNA2D3 ↓ Acts as a suppressor gene in nasopharyngeal and esophageal
squamous carcinomas. Hypermethylation is a poor prognostic
factor in gastric cancer and is associated with breast cancer
relapses.

MARVELD1 ↓ Microtubule-associated protein that is down-regulated in mul-
tiple cancers and silenced by DNA methylation.

Table 3.3: Significant differently expressed genes in human blood after FSSR
exposure involved in cardiovascular diseases.

Gene Regulation Description
PLA2G7 ↓ Phosphilipase that hydrolyzes phospholipids into fatty acids

and other lipophilic molecules. Degradation of the platelet-
activating factor (PAF): cell proliferation, angiogenesis, imm-
flamation, immunity, and vasodilatation]. PAF transmits the
UVR immunosuppressive signal from the skin to the immune
system: UVB absorbed in the epidermis→ keratinocytes stim-
ulate PAF production→ up-regulation of CXCR4 in mast cell
surface→ migration of mast cells to the lymph nodes→ secre-
tion of IL10 → suppress contact hypersensitivity, activation
of T follicular helper cells, germinal centre formation and an-
tibody formation.

ADORA3 ↓ Regulation of several homeostatic processes. Cardioprotec-
tive and anti-ischemic effects, and promotes vasoconstriction
through mast cell degranulation. Regulates the immune sys-
tem and is over-expressed in cancer cells and in rheumatoid
arthritis, psoriasis, and Crohn’s disease.

CPM ↓ Participates in the differentiation of monocytes to
macrophages. Part of the kinin-kallikrein system: in-
flammation, coagulation, pain and blood pressure control
(through nitric oxide (NO) production). In humans, whole
body UVA lowers blood pressure by release of NO. In rabbits,
acute and chronic exposures to UVR increases kinin levels
and decreases activity of kininases (CPM).
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regulated genes out of the 2,000 candidates tested using custom microar-
rays followed by qPCR [120]. All photobiological responses show spectral
dependence, and monochromatic UVB is not environmentally or physio-
logically relevant. In human monocyte-derived dendritic cells, exposure
to solar simulated UVA/UVB, up-regulated expression of genes involved
in cellular stress and inflammation, and down-regulated genes involved in
chemotaxis, vesicular transport and RNA processing [121]. These genes
do not overlap with those detected in the present study. To the best of our
knowledge, our study, which evaluates the blood transcriptome through
next generation sequencing, is the most comprehensive of its type to date.
Other studies have investigated seasonal effects on gene expression and
on blood cell types proportions [122]. Whether seasonal transcriptional
patterns are, in part, consequence of differential exposure to UVR through
the year deserves further research.

Only hsa-miR-3940-3p was differently expressed (5% FDR). A modest
change in the effect of FSSR on hsa-miR-3940-3p expression was observed
after adjustment by 25(OH)D3 levels, but not after adjustment for mono-
cyte proportions. No miRNA showed differential expression after UVR
exposure in any of the pair-wise comparisons. Little is known of the role
of hsa-miR-3940-3p, found at high levels in plasma and serum. There are
at least two possible reasons for the lack of changes in other miRNAs.
Firstly, our initial sampling time of 6h may be too late because miRNAs
are thought to be the first line of defence against stressors. Secondly,
we found that hsa-miR-486-5p, highly expressed in red blood cells [123],
represented 90% of whole blood reads, reducing the chances of detecting
other differentially expressed miRNAs at intermediate or low levels.

A bias towards hsa-miR-486-5p in samples prepared with the Illumina kit
has been reported [124].

Effect of FSSR on Human Skin Transcriptome

The number of differentially expressed genes increased with higher FSSR
dose (6 SED) and shorter time post-exposure (6h). At 6h, 132 genes were
differently expressed (5% FDR) after exposure to 3 SED. The number
increased to 4,071 after exposure to 6 SED (5% FDR), which represents
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around 20% of the human transcriptome. 97% of the genes detected at
low dose (3 SED) were also altered at high dose (6 SED). At 24h, 16 genes
were differently expressed (5% FDR) after exposure to 3 SED and 1,583
after exposure to 6 SED. 94% of the genes detected at low dose (3 SED)
were also altered at high dose (6 SED). At low dose (3 SED), 7.5% of the
genes with FSSR induced changes at 6h were also found at 24h; while at
high dose (6 SED), this increased to 29.7%.

Less than 25% of the genes were exclusively identified at 24h. Ten genes
(7 down-regulated and 3 up-regulated) showed altered expression patterns
after FSSR at all times points and doses.

In general, differentially expressed genes patterns were more pronounced
at 6 SED and 6h, suggesting a dose dependent short term effect on the
majority of genes.

At 6 SED and 6h, the following biological processes were identified:

• Keratinization

• Apoptosis

• Transcription and translation

• Splicing

• tRNA modifications

• Cytoskeleton organization

At 24h, we detected the same pathways found at 6h except for keratiniza-
tion and apoptosis. Three new pathways were also detected:

• Inflammation

• Immune response

• Hyaluronan biosynthesis

At low dose, we did not detect any enrichment, except for signalling
through different factors at 6h.

Rauhala et al., 2013 already suggested that hyaluronan, also known as
hyaluronic acid and one of the main extracellular matrix molecules of
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Table 3.4: Differently expressed genes in human skin after FSSR exposure
(across both extraction time-points and both FSSR doses).

Gene Status Description
AEN ↑ Encodes a nuclear exonuclease required for P53-dependent

apoptosis.
CDKAL1 ↓ It is expressed in immune cells and becomes downregulated

when immune cells are activated with proliferating signals.
EPHB1 ↓ It encodes an ephrin receptor tyrosine kinase that mediates

cell-cell communication by interacting with ephrin ligands re-
siding on adjacent cell surfaces. They participate in develop-
ment, maintenance, and repair processes in cutaneous biology.

GRIP1 ↓ It is a scaffolding protein required for the formation and in-
tegrity of the dermo-epidermal junction

PRKCB ↓ Protein kinase C beta activates TYR, the key and rate-
limiting enzyme in pigmentation. Topical application of a
PRKCB inhibitor reduces skin and hair pigmentation

SLC24A3 ↓ It is also known as NCKX3. It is a Na+/Ca2+ exchanger.
SLC24A5, another member of the same family, has a role in
the development of pigmentation in skin and retinal epithelia.

Table 3.5: Four miRNA were found differently expressed (up-regulated) in hu-
man skin after FSSR exposure.

Gene Status Target Genes*

Hsa-miR-146b-5p ↑ TMEM237, TMEM132E, LANCL1, SLC6A4
Hsa-miR-223-3p ↑ HLF
Hsa-miR-204-5p ↑ MAPK and STAT3
Hsa-miR-142-5p ↑ –

*Experimentally validated target gene.

epidermal keratinocytes, reported to increase after low dose UVB exposure
[125].

Ten genes were differently expressed in all conditions. Nine of them were
validated by qPCR. Table 3.4 summarize the most relevant detected genes
and their functions, apparat of key genes in the pigmentation processes.

In contrast to genes, the expression of miRNAs was not massively affected
by FSSR in the present time and dose conditions. Four miRNAs were
differently expressed. Table 3.5 shows them with their possible targeted
genes.

Whether this low number of differentially expressed miRNA is because
their transcription is less influenced by FSSR or because effects take place

78



Bioinformatic Tools for Exposome Data Analysis

in different time point - understood as earlier response process - deserves
further investigation. In any case, due to their regulatory role, subtle
differences in miRNA levels might be relevant in skin biology.

In agreement with our findings, hsa-miR-146b-5p and hsa-miR-223-3p
have been found to be upregulated in cellular models irradiated with a
UV lamp [126] and UVB irradiated mice [127], respectively. Moreover
they both seem to be upregulated in skin of psoriasis patients [128], [129].
SLC6A4 encodes a serotonin transporter, which terminates the action of
serotonin and recycles it in a sodium-dependent manner. Activation of the
serotonin pathway has been suggested to mediate UVB-induced immune
suppression [130].

hsa-miR-204-5p may control the signalling pathway in the progression of
actinic keratosis to squamous cell carcinoma [131], and is involved in skin
wound [132]. In our data, hsa-miR-204-5p levels were inversely correlated
with IL1B levels [133]. Hsa-miR-142-5p has been found to be upregulated
in chronically UVR treated mice skin [134].

Strengths & Limitations

The main strength of our study is the evaluation of physiologically and
environmentally relevant UVR exposure in humans in vivo. Selected vol-
unteers had a similar skin, type II according to the Fitzpatrick’s scale.

The exposure of ∼ 3 SED on blood analysis was low compared with Dan-
ish holiday makers who received a daily average of 9.4 ± 7.0 SED during
a holiday in Tenerife during March, when at least 50% body surface was
exposed when the UVB intensity was greatest [135]. The study population
was relatively small, but was phenotypically homogenous for erythemal re-
sponse after similar UVR exposures. Current maximal expression changes
were ∼1.5-fold reduction (for FLT3 and FKBP5), but the presented FSSR
exposure doses were limited by ethical considerations.

The effects FSSR on skin transcription were investigated in biopsies ob-
tained from volunteers locally exposed to FSSR, in contrast to the more
artificial in vitro cellular models. Since we did not separate dermis from
epidermis, present findings reflect the transcriptional pattern of all cell
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types in the skin biopsy. Moreover, the transcriptional profile was inves-
tigated comprehensively, including genes and miRNAs.

Another strengths of both studies is the validation of results with an in-
dependent method (qPCR).

The study also has some limitations. On one hand, the sample size is
still limited to detect small effect sizes, which is of special importance for
miRNAs, whose FSSR-induced expression change seems to be subtler. On
the other hand we have that, due to their design, we can only evaluate
acute effects from 6h to 48h post exposure. Then, the link between acute
effects on gene expression and chronic effects on health outcomes can only
be hypothesized, and should be assessed in future studies.
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Tools Development for
Exposome Data Analysis

4.1 Rationale

As the reduction of costs of genomic assays drops, projects in medicine
and biotechnology continue generating large volume and diversity of data.
While advances in knowledge of the molecular mechanics of human dis-
eases are expected, scientists are continuously challenged on data manage-
ment and analysis [136], [137].

Major public projects have performed experiments to a group of individ-
uals generating different types of datasets [138]. For instance, the Cancer
Genome Atlas (TCGA) [139], is the largest resource available for multi-
assay cancer genomics data and the International Cancer Genome Con-
sortium (ICGC) [140] coordinates 55 research projects to characterize the
genome, transcriptome and epigenome of multiple tumors.

In addition, large repositories collect data of several smaller projects al-
lowing unified storage and stimulating data sharing. Gene Expression
Omnibus (GEO) [141], [142] is the primary database where data from
multi-assay experiments is shared publicly. But there are other reference
databases like dbSNP [143], a deposit for short genetic variations.
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In parallel to this increase of omic data and to the improvement of the
understanding of the molecular origins of certain human genetic diseases
through genomics data, the environment also has a strong influence on
our health.

The term exposome was coined to describe the totality of human environ-
mental (i.e. non-genetic) exposures from conception onward, complement-
ing the genome [35]. The study of the underlying mechanics that links the
exposome with human health is an emerging research field with a strong
potential to provide new insights into disease etiology [52]. The exposome
paradigm is to work with multiple exposures at a time and one or more
health outcomes rather focus in a single exposures analysis. This approach
tends to be a more accurate snapshot of the reality that we live in complex
environments with between-exposure confounding, complex interactions,
and potential for multi-dimensional joint effects [144]. Exploring how the
exposome affects multiple intermediate biological layers (e.g. transcrip-
tome, methylome, proteome, metabolome, etc.) will provide insights into
the underlying molecular mechanisms linking environmental exposures to
health outcomes.

Rapid developments in technology and rapidly declining costs have led
to a virtual explosion in the amount of data regarding individuals’ expo-
sures over time. Current health studies are able to measure hundreds of
exposures simultaneously in the same individuals using combinations of
questionnaires, an array of sensors and biochemical assays [145]. Com-
monly assessed exposures include chemicals in the air, water, food, or
household products, as well as information about individual behaviors,
activities, and surrounding physical environments.

Some international projects have started to investigate the exposome sys-
tematically and including the different layers of complexity [146]. These
projects (Table 4.1) have provided a large amount of data on exposures,
health outcomes and omics that need to be analyzed and interpreted.

While the conceptual parallel to genomic analyses is attractive, a number
of unique methodological challenges need to be overcome. Unlike genomic
data, which has an underlying ordering with variables having the same
statistical distribution across the genome, exposome data have some char-
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Table 4.1: Short list of the most relevant research project on exposome effects
in human health.

Project Web Site
The Human Early-Life Exposome (HELIX Project) http://www.projecthelix.eu/
The EXPOsOMICS project http://www.exposomicsproject.eu/
HEALS http://www.heals-eu.eu/
The Human Exposome Project http://humanexposomeproject.com/

acteristics that prevent the direct application of methods designed for
other omics. Both Minari et. al. [53] and Robinson et. al. [44] disused
about them:

• The exposome measurement is a study of a heterogeneous constel-
lation of variables that have specific characteristics. This should
be understood that the exposome is composed by several biomark-
ers obtained from plasma and blood test having a nature extremely
different than the exposures obtained from individual sensors of ex-
ternal sensors.

• Due to the nature of the exposures measured in the exposome anal-
ysis, the involved statistical test will need to be available for both
continuous and categorical (including diatomic and multi-categoric)
variables.

• Usually, exposome studies group the exposures in families (aka.
PCBs, air pollutants, heavy metals...) [147]. This leads to a dense
correlation structure within variables in the same family. Hence, the
presence of high correlation between exposures within families makes
difficult to disentangle the effect of individual exposures [148].

• The conception of exposome is linked to time dependency. Due to
the nature of certain exposures, the expoomse is also linked to spatial
dependency.

Bioconductor initiative raised in 2001 with the aim to provide a portal
for free software - written in R - to centralize and standardize methods
to analyze high-throughput biological data [149], [150]. Both the core
members of the project and the community has made a great effort to
provide a standard infrastructure to represent biological data.
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Several R/Bioconductor packages implement methods to analyze, inte-
grate and visualize biological data. Each of these packages implements a
different strategy to manage input biological data and to perform the anal-
ysis. Therefore a standard structure to manage in a coordinated multiple
data-sets of the different omic types, allowing to include exposome data,
obtained from the same individuals is required. At the same time, the
development of a basic structure to contain the exposome data that could
be transferred to the previous multi-set structure is mandatory. Then,
this will allows operating at exposures level for exposome-health analysis
and exposome-omic analysis. Moreover, following the tendency of current
genetic analysis, a tool to perform enrichment analysis based on exposures
instead of genes will be the next step.

4.2 Methods

4.2.1 Coordinated Data Organization System for Multiple
Omic Data-Sets

MultiDataSet is a new R class based on Bioconductor standards devel-
oped to encapsulate multiple data-sets. MultiDataSet deals with the
usual difficulties of managing multiple and non-complete data-sets while
offering a simple way of subsetting features and selecting individuals.

Its structure is an extension of the abstract eSet class. MultiDataSet is
therefore a data-storage class that comprises data-sets of different omic
data (assay data), feature data and phenotypic data. Despite its general
form, MultiDataSet maintains the specific characteristics of the datasets
(e.g. it preserves matrices of calls and probabilities of a SnpSet).

The internal structure of MultiDataSet comprises five fields that are
R standard lists. Their names match other Bioconductor classes:
assayData containing the measurement values; phenoData that stores the
description of the samples; featureData and rowRanges that have the de-
scription of the features; and return method that allows recovering the
original dataset.
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Six accessors are available to retrieve information from each
MultiDataSet’s fields: assayData, pData, fData, rowRanges,
rowRangesElements and sampleNames. The first four retrieve the
content of assayData, phenoData, featureData and rowRanges.
rowRangesElements returns the names of datasets with a genomic
coordinates in a GenomicRanges. The accessor sampleNames returns a
named list with the samples names of each data set.

Following Bioconductor guidelines, MultiDataSet objects are created
empty through its constructor. Once the object is created, data-
sets of class eSet can be added with add eset and data-sets of class
SummarizedExperiment can be added using add rse. MultiDataSet

package incorporates three specific functions to include specific omic data
sets: ExpressionSet and SnpSet from Biobase package, MethylationSet
from MultiDataSet package and GenomicRatioSet from minfi package.

Adding a new type of data to MultiDataSet objects (data-sets with a type
of data that is not natively supported in MultiDataSet package) is easy
by implementing a new specific function that validates the data and then
uses add eset or add rse to incorporate the data-set to the MultiDataSet
objects.

4.2.2 Framework for Exposome Data Analysis

In order to enable comprehensive analyses of the exposome and its con-
nections to human health the rexposome project was created. rex-
posome project is a compendium of two R packages, rexposome and
omicRexposome, that provide a freely available and open-source frame-
work for robust, scalable and reproducible of state-of-the-art methods to
perform a comprehensive analysis of the exposome and its relationship
with health outcomes and molecular intermediates.

rexposome project envisions a typical sequence of analyses for exposome
data:

1. Detailed characterization of the exposome.
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2. Linear and non-linear association between exposure and health out-
come.

3. Univariate and multivariate association between exposures and molec-
ular intermediates (omic data).

To this end, rexposome R package implements a new R class,
ExposomeSet, that is based in standard eSet Bioconductor and designed
to incorporate exposome data into R/Bioconductor analysis framework.
Objects of class ExposomeSet can be created from data files using the func-
tion readExposome or from standard data.frames using loadExposome.

In some occasions exposome data can contains missing information. In
that case, multiple imputation process is suggested to be applied to esti-
mate the values of the missing data. To properly use the multiple-imputed
exposome data, rexposome implements the new R class imExposomeSet,
that can be created using loadImputed. Methods for downstream associ-
ation analyses using imExposomeSet objects are already implemented in
rexposome.

The internal structure of ExposomeSet is homologous to standard eSet-
like objects. Then, three internal fields stores the exposome data: 1)
assayData, having the matrix of exposures; 2) phenotypeData, having the
table of phenotypes, covariates and health outcomes; and 3) featureData,
having the exposure’ description table. All these objects are coordinated
by: 1) the names of the rows of the assayData and the phenotypeData

are the same and in the same order; 2) the names of the columns of the
assayData and the names of the rows of the featureData are the same
and in the same order.

Internal organization of imExposomeSet objects is the same as
ExposomeSet. But their tables must contains two special columns, la-
belled as “.imp” and “.id”. “.imp” column must contain the number of
imputation set (starting for 1, since 0 is for raw data) and column “.id”
must contain the real samples’ ID.

Accomplishing with the steps of the exposome data analysis pipeline, the
characterization process of the exposome has the aim to better understand
the underlying structure of the exposure data, prior to investigating their
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associations with markers of health and disease. This process includes: 1)
data pre-processing; 2) descriptive analyses; and 3) association analyses.

For exposome pre-processing step, rexposome implements the method
trans, which allows to apply a transformation function to ExposomeSet’s
exposures. The transformation aims to guarantee normality assumption,
required in downstream analyses. The method standardize allows the

user to standardize the data by using “normal standardization”
(
x−x̄
sx

)
,

“robust standardization”
(

x−x̃
MADx

)
or “interquartile range standardiza-

tion”
(

x
p75(x)−p25(x)

)
. Once exposome data is transformed, its can be cat-

egorized into variables coded as low/high exposed values by using tertiles,
quartiles or any other criteria by using the function highAndLow.

rexposome package contains functions to perform basic description of both
exposures and phenotypes. There plotFamily method allow the user to
get box-plots (continuous variables) or accumulated-bar plots (categorical
variables) by family of exposures. Correlation between exposures from
an ExposomeSet can be computed (method correlation). The nature
of the two involved exposures is taken into account: continuous vs. con-
tinuous uses cor function from R base; categorical vs. categorical uses
cramerV function from lsr R package; and categorical vs. continuous
exposures correlation is calculated as the square root of the adjusted r-
square obtained from fitting a lineal model with the categorical exposures
as dependent variable and the continuous exposure as independent vari-
able.

Principal Component Analysis (PCA) can be applied to exposome data
(method pca). PCA on exposome data is a way to explore the relationship
between exposures through the principal components. The correlation of
the exposures with the principal components can be obtained and plotted,
indicating the “meaning” of each principal component in terms of expo-
sures. The association between the phenotypes, covariates and health
outcome with the same principal components can also be obtained, and,
therefore, will help in deciphering the possible relationship between expo-
sures and phenotypes.

Finally, and after the descriptive of the exposome, its correlation and the
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PCA, in some occasions it may be useful to analyze the exposome as a
whole. If so, a clustering analysis, based on samples, can be performed to
cluster individuals having similar exposure profiles. This can be done in
rexposome package by using method clustering that has been designed
to accept any implemented clustering method.

rexposome provides two different approaches to analyze the association
between exposome data and health outcomes. The first of them is
called Exposome-Wide Association Study (ExWAS) that is equivalent to
a Genome-Wide Association Study (GWAS) in genomics or to Epigenetic-
Wide Association Study (EWAS) in epigenomics. The ExWAS was first
described by Patel et al. [54]. This type of analysis is performed using
the method exwas for ExposomeSet objects. The equivalent analysis was
designed for imExposomeSet where an analysis is done for each imputed
set and P-Values are pooled to obtain a global association score. Results
are encapsulated in ExWAS objects than can be plotted and exported to
standard tables and files. Multiple comparisons in the ExWAS analysis is
addressed by computing the number of effective (Neff) tests as described
by Li and Ju [151]. The method estimates Neff by using the exposure cor-
relation matrix that is corrected when it is not positive definite by using
nearPD from Matrix package. The significant threshold is computed as
1− (1− 0.05)Neff .

There are some authors that proposed to perform association analysis in
a multivariate fashion, just to take into account the correlation across
exposures [152]. To this end, rexposome allows to perform a multivariate
association analysis between the exposome and health outcomes using
Elastic-Net regularized generalized linear models, from glmnet R package.
The procedure is encapsulated in the mexwas method.

omicRexposome provides the function association that perform asso-
ciation analyses between exposures and molecular signatures (omic
data). The function, association takes as input a MultiDataSet ob-
ject [153]. This object must contain an ExposomeSet and an omic
container (ExpressionSet, SummarizedExperiment, MethylationSet,
GenomicRatioSet...) and fits linear models as described in the limma

R package [154], [155]. The pipeline implemented in association allows
performing surrogate variable analysis in order to correct for unwanted
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variability. This adjustment is provided by SmartSVA, isva [156] and SVA

R packages.

For multivariate association studies involving exposome and molecular
signatures omicRexposome provides the method crossomics, allows per-
forming integration analysis using different approaches: multiple co-inertia
analysis (MCIA), that is implemented in the omicade4 R package; and
Multi-Canonical Correlation Analysis (MultiCCA) that is implemented in
the PMA R package.

MCIA is an analysis method that identifies co-relationships between mul-
tiple data-sets by projecting the features of the multiple data-sets into a
single dimensional space. By using this approach the most relevant fea-
tures from each data-set can be obtained.

MultiCCA is an extension of Canonical Correlation Analysis - which has
gained popularity as a method for the integration of several omic data -
and provides a sparse version of it. The main advantage regarding MCIA is
that this method generates a list of features whose loadings are statistically
significantly different from zero.

4.2.3 Post-exposome Data Analysis: Enrichment Based in
Exposures

The Comparative Toxicogenomics Database (CTDTM; http://ctdbase.org)
is a public resource for toxicogenomic information manually curated from
the peer-reviewed scientific literature, providing key information about the
interactions of environmental chemicals with gene products and their ef-
fect on human disease [157]. CTD provides information of a triad of core
interactions describing chemical-gene, chemical-disease and gene-disease
relationships. It includes more than 30.5 million toxicogenomic connec-
tions relating chemicals/drugs, genes/proteins, diseases, exposures, Gene
Ontology (GO) annotations, pathways (KEGG/Reactome), and gene in-
teraction modules [158].

The CTDquerier R package has been developed to allow R/Bioconductor
user to query CTD from an R session. It facilitates the inclusion
of CTD data in downstream statistical and enrichment analyses in
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R/Bioconductor pipelines. CTDquerier R package allows querying CTD
by genes (query ctd gene), by chemicals or exposures (query ctd chem)
and by diseases (query ctd dise). The queries can be performed using
a single or multiple terms (gene names in gene symbol format, chemical
names or disease names).

The three functions to query CTD return an object of class CTDquery,
that encapsulates the data retrieved from the data base. This class en-
sures compatibility with R/Bioconductor third packages by implement 4
methods: get terms allows to see the terms that were validated in CTD;
extract returns the data retrieved from CTD, enrich performs a Fisher’s
exact test for testing the enrichment between two CTDquery objects. More-
over, the plot functions allows to obtain different representations of the
obtained data.

4.3 Results

Three manuscripts corresponds to the results of this project. The first
manuscript corresponds to the design of the MultiDataSet R/Bioconductor
package. The second manuscript corresponds to the implementation of
the rexposome project (rexposome and omicRexposome R/Bioconductor
packages). Lastly, the third manuscript corresponds to CTDquerier R
package.
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4.3.1 MultiDataSet R/Bioconductor package
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ABSTRACT 

Genomics has dramatically improved our understanding of the molecular origins of 

certain human diseases. However, our health is also influenced by the cumulative 

impact of exposures experienced across the life course (termed “exposome”). The study 

of the high-dimensional exposome offers a new paradigm for investigating 

environmental contributions to disease etiology. However, there is a lack of advanced 

bioinformatics tools for managing these data, characterizing the exposome and 

associating the exposome to health outcomes and different omic layers. We provide a 

generic framework in the R/Bioconductor architecture that includes object oriented 

classes and methods to leverage high-dimensional exposome data in disease 

association studies including its integration with a variety of high-throughput data types. 

The rexposome project offers a free infrastructure for robust, scalable, reproducible and 

open-source development of state-of-the-art methods to perform a comprehensive 

analysis of the exposome and its consequences on human health.  

MAIN TEXT 

Although genomics has dramatically improved our understanding of the molecular 

origins of certain human genetic diseases, the environment also has a strong influence 

on our health. As an illustration, the World Health Organization’s Global Burden of 

Disease collaboration estimates that 79 behavioral, environmental, occupational and 

metabolic risks factors account for half of global mortality and more than a third of global 



disability-adjusted life-years1. The term “exposome” was coined by Wild to describe the 

totality of human environmental (i.e. non-genetic) exposures from conception onward, 

complementing the genome2. The study of the links between the exposome and health 

is an emerging research field with a strong potential to provide new insights into disease 

etiology3,4,5,6. The exposome paradigm breaks with the common practice in 

observational epidemiology of analyzing and reporting the association between a single 

health outcome and a single exposure at a time. Studies of the exposome can provide a 

more holistic view of the complex relationships between constellations of exposures and 

one or more health outcomes, accounting for the reality that we live in complex 

environments with between-exposure confounding, complex interactions, and potential 

for multi-dimensional joint effects7. Moreover, the exposome approach may reduce 

publication bias since findings of positive, negative, and null associations are equally 

likely to be published if found and the rate of false positive results is decreased by 

properly controlling for multiple testing. In addition, exploring how the exposome affects 

multiple intermediate biological layers (e.g. transcriptome, methylome, proteome, 

metabolome etc.) can provide insights on the underlying molecular mechanisms linking 

environmental exposures to health effects. 

Rapid developments in technology and rapidly declining costs have led to a virtual 

explosion in the amount of data regarding individuals’ exposures over time. For 

example, current health studies are able to measure hundreds of exposures 

simultaneously in the same individuals3 using combinations of questionnaires, an array 

of sensors and biochemical assays. Commonly assessed exposures include chemicals 

in the air, water, food, or household products, as well as information about individual 



behaviors, activities, and surrounding physical environments. Given the growing 

numbers of variables commonly collected, there is a pressing and palpable need for the 

development of novel methods, pipelines and platforms that allow systematic and semi-

automatic analyses such as those conducted in the genomics or other omic analyses.  

While the conceptual parallel to genomic analyses is attractive, a number of unique 

methodologic challenges need to be overcome. Unlike genomic data, which has an 

underlying ordering with variables having the same statistical distribution across the 

genome, exposome data have some characteristics that prevent the direct application of 

methods designed for other omics. These include having multiple markers for the same 

underlying exposure (e.g. questionnaire-based data on exposure to certain chemical, 

data from personal monitors, or data from biomarkers in blood or urine); different 

degrees of measurement error; diverse patters of missing data; and heterogeneity of 

distributions, including censored variables (e.g. values below the limit of detection).  

To enable comprehensive analyses of the exposome and its connections to human 

health, we have created the rexposome project. rexposome provides a freely available 

framework for robust, scalable, reproducible and open-source development of state-of-

the-art methods to perform a comprehensive analysis of the exposome and its 

relationship with health outcomes and molecular intermediates. The project includes 

complementary R/Bioconductor packages capable of addressing a variety of scientific 

questions (see On-Line Methods).  

We envision the following typical sequence of analyses: (i) detailed characterization of 

the exposome, (ii) exposure signature discovery, (iii) linear and non-linear exposure-

disease association studies and (iv) omic-exposure association and integration. 



The aim of characterizing the exposome is to better understand the underlying structure 

of the exposure data prior to investigating their associations with markers of health and 

disease. This process includes: 1) data preprocessing (understanding missing data, 

imputation of missing data, and data transformation); 2) descriptive analyses; and 3) 

association analyses.  

Missing data is a common problem in epidemiological studies8, which is aggravated in 

studies of the exposome due to the high dimensionality. Tools to describe the missing 

data patterns have been implemented in rexposome. Therefore, the characterization of 

the exposome begins by describing the patterns of missingness and then performing 

imputation to enhance downstream analyses. A comprehensive approach to imputation 

of missing values in the setting of high dimensional data is beyond the scope of 

rexposome. Nonetheless, rexposome incorporates a naïve method for missing data 

imputation with the goal of allowing users to perform a complete analysis without the 

loss of statistical power typical of complete case analyses (see On-line Methods).  We 

recommend the user to properly perform multiple imputation  (for instance, by using 

mice R package) and then incorporate the multiple imputed data into the rexposome 

framework to perform downstream analyses (see On-line Methods and 

Supplementary Material 3).  

Once the exposome is free of missing data, several descriptive analyses can be 

performed to characterize the exposome. Box-plots for continuous exposures and 

cumulative bar-plots for categorical exposures can be obtained for any single exposure, 

family of exposures or for the whole exposome (Figure 1A and Supplementary 

Material 2 - Section 2.2.4). The exposome can be further characterized by exploring 



patterns of correlation within and between groups of exposures or exposure families 

(Supplementary Material 2 - Section 2.2.6). Principal component analysis (PCA) can 

be used to gain insights into how exposures are grouped and whether any quantitative 

trait may explain differences in exposure patterns (Supplementary Material 2 - 

Section 2.2.5). PCA will also facilitate identification of constellations of exposures that 

explain much or most of the variability in the exposome9 (Figure 1B and 

Supplementary Material 2 - Section 2.3.1). Clustering analysis can be used to identify 

signatures of exposures (Supplementary Material 2 - Section 2.2.7). These signatures 

will help when associating the whole exposome with omics data-sets representing 

molecular intermediates between exposure and health. 

The association between the exposome and health can be assessed by univariate or 

multivariate analysis of the exposures10,11. Univariate analysis is performed by 

performing Exposome-Wide Association Study (ExWAS) which is conceptually 

analogous to a Genome-Wide Association Study (GWAS) based on a high dimensional 

set of exposure metrics rather than gene loci12. A P-value of the association between 

each exposure and a given health outcome is computed from a generalized linear 

model using likelihood ratio or score tests. Some exposures do not present a linear 

dose-response relationship. Therefore, the association analysis can be performed using 

splines or any other non-linear method. The function to perform ExWAS includes an 

argument to define any type of modeling that includes the possibility of adjusting for 

confounding variables, interactions among variables, or splines to capture any possible 

non-linear exposure-outcome relationship (Supplementary Material 2 - Section 2.3.2).  



Importantly, rexposome provides several methods for visualizing the results of analyses. 

Manhattan-like plots provide a visual representation of the statistical significance of 

each association with p-values grouped by family of exposure (Figure 1C). The effects 

of different models to test the proper set of covariates can be visually inspected by 

using forest plots and volcano plots. The multivariate association analysis of the full 

exposome and health outcomes is performed by using elastic net, a penalized 

regression method that outperforms other multivariate methods in terms of controlling 

the false discovery rate (FDR) while maximizing statistical power13. Results can be 

visualized in a heat-map showing the level of the coefficients assigned to each 

exposure. 

 An important aim of exposomics is the identification of molecular signatures 

(methylome, transcriptome, proteome) that can represent molecular biomarkers of 

exposure. Currently there is interest on testing the association between the exposome 

and different high-throughput data types. These include genome14, transcriptome15 and 

epigenome16. The outcome of exposome-omic association studies will provide a list of 

molecular signatures (genes, CpGs...) associated with a single exposure or exposure 

signatures. The association analyses can be performed exposure by exposure or using 

exposure signature level by using state-of-the-art methods implemented in widely used 

Bioconductor packages (Figure 1D and Figure 1E. Also see On-Line Methods).  

A step further in exposomics is to integrate both the measurement of environmental 

factors with molecular signatures. The aim is to investigate the complex interactions 

between exposures and multiple omic features17. To achieve this goal, we implement 



two multivariate methods that are able to integrate multiple tables: sparse multiple 

canonical correlation analysis and multiple co-inertia analysis (see On-Line Methods). 

We demonstrate the usefulness of this platform through two applied examples. First, we 

investigate the association between PCBs, PDCs and PBDEs and markers of obesity 

using cross-sectional data from the US National Health and Nutrition Examination 

Survey (NHANES). Supplementary Material 1 illustrates how to perform this analysis 

of 41 exposures and 3 obesity-related phenotypes among 41,473 individuals (see 

Online Methods). The analyses performed using rexposome showed as PCBs, PDCs 

and BDEs are highly correlated with obesity (Supplementary Material 1). In a second 

applied example, we used rexposome and omicRexposome to characterize the 

exposome and its association with omics data (transcriptome and methylome) from a 

prospective pregnancy cohort in Spain, the INMA-Sabadell study (Supplementary 

Material 1). The analysis revealed that exposure to PCBs can alter different pathways 

related to brain and neurodevelopmental regulation processes (Figure 1E and 

Supplementary Material 1 – section 3.5). This would be highly relevant in this study 

since one of the main objectives in INMA is to established mechanisms linking 

exposome, biomarkers and neurodevelopmental disorders in children. 

To conclude, we have developed rexposome as an open-source platform to facilitate 

the application of novel methods to the analysis of the exposome and its connections to 

markers of human health, disease, and molecular signatures. In a time in which modern 

exposure assessment tools are providing ever-increasing amounts of detailed exposure 

data for epidemiologic studies, our tool can facilitate their analysis and the discovery of 

new health determinants. 



 

Figure 1. [top-left] Box-plots indicating the level of maternal serum concentration of 

each member of the PCBs family (INMA-Sabadell). [top-middle] First and second 

principal components showing the exposures space (INMA-Sabadell). [top-right] 

Manhattan plot showing the results obtained from the Exposome-Wide Association 

Study on asthma (INMA-Sabadell). [bottom-left] QQ plot showing the P-Values of the 

association between the cluster of exposures and transcriptome (INMA-Sabadell). 

[bottom-middle] Volcano plot indicating the P-Value (Y axis) and the strength of the 

association (beta coefficient) between PCBs and each loci (X axis) of the association 

between the cluster of exposures and transcriptome (INMA-Sabadell). [bottom-right] 

Heat-map with the P-Value obtained from the pathway enrichment analysis from PCBs 

family and transcriptome (INMA-Sabadell). 

 

ON-LINE METHODS 

rexposome Project Overview 

The aim of rexposome project is to provide a free framework for robust, scalable, 

reproducible and open-source development of statistical methodologies of exposome. It 

includes data characterization and analysis and integration with other omic data. To this 

end, the project includes rexposome and omicRexposome that are written in the 

Rprogramming language (http://www.r-project.org) and use  Bioconductor infrastructure 

(https://www.bioconductor.org). They are available under the MIT open source license 

and they have been submitted for inclusion in Bioconductor. Development version is 



available in the GitHub repository of our group (https://github.com/isglobal-brge). The 

main package is rexposome that provides a set of functions and methods to load 

exposome data into R environment and prepare it to perform exposome analysis. This 

allows users for full flexibility on adapting the exposome data to their goals. It contains 

functions to perform required exposome data processing steps such as: exposure 

categorization (low/high exposure), data transformation and standardization.The 

omicRexposome package focuses on performing exposome-omic data association 

(based on limma R package - https://bioconductor.org/packages/limma) and exposome-

omic data integration (based on both omicade4 - 

https://bioconductor.org/packages/omicade4 - and PMA - https://cran.r-

project.org/package=PMA - R packages). 

Data Description 

NHANES 

We download 41 exposures and 5 phenotypes (mean diastolic, mean systolic, weight, 

BMI and maximal calf circumference) from nhanes-prod database for a total of 41473 

individuals (See Supplementary Table 1 and Supplementary Table 2). 

INMA-Sabadell Cohort 

We subset original INMA-Sabadell Cohort selecting 32 exposures, 3 health outcomes 

(asthma, rhinitis and whistles) and 3 phenotypes (sex, age, cbmi) for 657 individuals 

from full pregnancy period or third semester if full pregnancy period not available. 

Exposures included matrix source and limit-of-detection (See Supplementary Table 3).  

Exposome Data Loading 



rexposome R package is designed to load exposome data from files in external format 

(.csv, .tsv…) or standard R data.frame objects. The function readExposome requires 

three external files (.csv, .tsv…) in specific format (Supplementary Material 2 – 

Section 2.1.1). One file must contain a table with the exposures, having the samples as 

rows and the exposures as columns. The second file must contain the phenotypic data 

(e.g. it includes co-variates and outcomes of interests), having the samples as rows and 

the phenotypes as columns. The third file must contain the description of the exposures, 

with the exposures as rows and the descriptors as columns (Supplementary Material 2 

- Section 1.3). The minimum requirement of this file is that it hast to provide two

columns, one with the name of the exposure and another with the family each exposure 

belongs to. If all these tables are already loaded into R, the function loadExposome can 

be used to encapsulate all this information into a single object (Supplementary 

Material 2 – Section 2.1.2). In both cases, the functions create an object of class 

ExposomeSet. In some occasions, exposome contains missing information. In that 

case, multiple imputation process can be applied to generate multiple tables of imputed 

exposures. These imputed datasets are then used to properly perform association 

studies by using multiple imputation techniques (paper). rexposome, can deal with 

these multiple imputed tables by encapsulating them into an imExposomeSet object 

using the function loadImputed. Methods for downstream association analyses using 

imExposomeSet objects are already implemented in rexposome (Supplementary 

Material 3 – Section from 1.1 to 1.3). 

The internal structure of ExposomeSet is homologous to standard ExpressionSet 

objects. This means that three elements are stored in different fields: 1) “assayData” 



having the matrix of exposures as an assayData object; 2) “phenotypeData” having the 

table of phenotypes and outcomes as an AnnotatedDataFrame object; and 3) 

“featureData” having the exposure description table as an AnnotatedDataFrame. All 

these objects are coordinated by: 1) the names of the rows of the “assayData” and the 

“phenotypeData” are the same and in the same order; 2) the names of the columns of 

the “assayData” and the names of the rows of the “featureData” are the same and in the 

same order (Supplementary Material 2 – Figure 2). This is a bit different for 

imExposomeSet objects that having the same elements with the same names it stores 

the information in DataFrames objects. Moreover, these DataFrames needs to have two 

columns labeled as “.imp” and “.id”, having in “.imp” the number of imputation set 

(starting for 1, since 0 is for raw data) and in the real samples’ ID in “.id”. 

Omic Data Loading 

The main input data for omicRexposome are ExposomeSet and ExpressionSet objects 

(also SummarizedExperiment), encapsulated in a MultiDataSet object.Both sets are 

used to test the association between the exposome in the ExposomeSet and any type 

of omic measure (transcriptome, methylome, proteome, metabolome…). The results are 

encapsulated in ResultSet objects, than can be used to visualize the results. 

Exposome Data Pre-processing 

Data Transformation 

rexposome offers full flexibility to the user to pre-process its exposome data. The 

package has several methods that perform the main pre-processing steps that are 

required when dealing with the exposome. The method trans allows the user to apply 



any function to transform the exposures encapsulated in an ExposomeSet. The 

transformation aims to guarantee normality assumption that is required in downstream 

analyses (Supplementary Material 2 – Section 2.2.2). The method standardize allows 

the user to standardize the data by using three different procedures (Supplementary 

Material 2 – Section 2.2.5):  

1. normal standardization:

2. robust standardization:

3. interquartile range (IQR):

Once data has been transformed the user can categorize the exposures into variables 

coded as low/high exposed values by using tertiles, quartiles or any other criteria by 

using the function highAndLow. 

Missing Data 

As previously stated, exposome data can be loaded having missing data. In our settings 

two different types of missingness patterns can be observed: missing at random and 

missing due to limit of detection (LOD).  rexposome contains functions to create tables 

and plots to study missing patterns. Although performing multiple imputation of 

exposome is beyond the scope of rexposome project we have described in the 

Supplementary Material 1 and 3 how to perform either a single imputation method - 

Hmisc (https://cran.r-project.org/package=Hmisc) - or a more sophisticated one based 

on multiple imputation - mice (https://cran.r-project.org/package=mice). Therefore, we 

recommend the user to perform imputation in a separate framework and then 



incorporate imputed data (i.e. multiple tables) into rexposome as an imExposomeSet 

object as described in Supplementary Material 1 and 3. 

Exposome Characterization 

The rexposome package contains functions to perform basic description of both 

exposures and phenotypes. There Summary and plotFamily methods allow the user to 

get descriptive statistics and box-plots (continuous variables) or accumulated-bar plots 

(categorical variables) by family of exposures (Supplementary Material 2 – Section 

2.2.4). Additionally, rexposome is able to compute the correlation between exposures. 

The correlation is computed using the method correlation. The method takes into 

account the nature of each pair of exposures: continuous vs. continuous uses cor 

function from R base, categorical vs. categorical uses cramerV function from lsr R 

package (https://cran.r-project.org/package=lsr) and categorical vs. continuous 

exposures correlation is calculated as the square root of the adjusted r-square obtained 

from fitting a lineal model with the categorical exposures as dependent variable and the 

continuous exposure as independent variable (Supplementary Material 2 – Section 

2.2.6). 

Principal Component Analysis (PCA) can be applied to exposome data (with method 

pca) as an alternative way to explore the relation between exposures (through the 

principal components) (Supplementary Material 2 – Section 2.2.5). Additionally it 

allows exploring the correlation of the exposures with the principal components and also 

the association of the phenotypes with the same principal components (Supplementary 

Material 2 – Section 2.3.1). This type of analysis will help in deciphering possible 

relationship between exposures and phenotypes. 



Finally, in some occasions the user may want to analyze the exposome as a whole. If 

so, a clustering analysis on samples can be performed to cluseter individuals having 

similar exposure profiles. This can be done in the rexposome package by using method 

clustering that has been designed to accept any clustering method the user can 

implement. The Supplementary Material 2 – Section 2.2.6 illustrates how to perform 

this by using hierarchical clustering. The exposure signature that is generated by using 

this method can be used later in omicRexposome to test the association of the 

exposome signatures with any omic data-set. 

Exposome Association Analysis 

Single Association Analysis 

rexposome provides to different approaches to analyze the association between 

exposome data and health outcomes. The first of them is called Exposome-Wide 

Association Study (ExWAS) that is equivalent to a Genome-Wide Association Study 

(GWAS) in genomics or to Epigenetic-Wide Association Study (EWAS) in epigenomics. 

The ExWAS was first described by Patel et al.12. This type of analysis is performed 

using the method exwas for ExposomeSet objects (Supplementary Material 2 – 

Section 2.3.2). Equivalent analysis was designed (in the homologous exwas method) 

for imExposomeSet where an analysis is done for each imputed set and P-Values are 

pooled to obtain a global association score (Supplementary Material 3 – Section 2). 

Results are encapsulated in an ExWAS objects than can be plotted and exported to 

standard tables and files (plotExwas, extract methods that perform these operations). 

The statistical analyses behind ExWAS are based on generalized linear models. The 

function exwas allows the user to indicate any formula describing the model that should 



be adjusted for. This follows standard formula options in R. That is, continuous or factor 

variables can be incorporated in the design, as well as interaction or splines using 

standard R functions and formulas. Multiple comparisons in the ExWAS analysis is 

addressed by computing the number of effective (Neff) tests as described by Li and Ju18. 

The method estimates Neff by using the exposure correlation matrix that is corrected 

when it is not positive definite by using nearPD R function. The significant threshold is 

computed as 1-(1-0.05)Meff. This threshold is added to the Manhattan-like plots obtained 

from ExWAS objects. ExWAS objects also offers plotEffect that allows to plot the effect 

of each coefficient of a given model or to compare the effects of the same coefficient 

given to models (two ExWAS objects). 

Multivariate Association Analysis 

There are some authors that proposed to perform association analysis in a multivariate 

fashion, just to take into account the correlation across exposures13. rexposome has 

implemented a method to perform association analysis between the exposome and 

health outcomes  using Elastic-Net regularized generalized linear models implemented 

in glmnet R package (https://cran.r-project.org/package=glmnet). The procedure is 

encapsulated in the mexwas method (Supplementary Material – Section 2.3.3). 

Results are encapsulated in a mExWAS object than can be plot and exported to 

standard R data.frames (plotExwas and extract methods can deal with mExWAS 

objects too). 

  



Exposome-Omic Association Analysis 

omicRexposome provides the function association that perform association analyses 

between exposures and omic data. This function takes as input a MultiDataSet object 

containing an ExposomeSet and an omic container (or ExpressionSet, 

SummarizedExperiment, MethylationSet, GenomicRatioSet...) and fits linear models as 

described in the limma R package19. The pipeline implemented in association allows 

performing surrogate variable analysis in order to correct for unwanted variability. This 

adjustment is provided by SmartSVA (https://cran.r-

project.org/web/packages/SmartSVA) and SVA R package 

(https://bioconductor.org/packages/SVA). Function association allows analyze a single 

exposure, the full exposome or a subset of exposures. association returns an object of 

class ResultSet, that contains the results obtained from the limma pipeline joint with 

other information that can be latter use to enrich the results (the exact number of 

individuals used, both featureData from ExposomeSet and ExpressionSet and the 

arguments passed to association). omicRexposome implements a series of methods for 

ResultsSet that can be useful for the user:  

 tableLambda provides the lambda value, that accounts for inflation, of each

association analysis (e.g. each exposure),

 tableHits returns the number of hits per association analysis (e.g. each exposure)

given a threshold of a given P-Value,

 plotAssociation allows to create a QQ-plot, Manhattan or Volcano plot of a given

association analysis (e.g. selected exposure).



Examples about how to obtain these results are described in Supplementary Material 

4. 

Exposome-Omic Integration Analysis 

The function crossomics allows performing integration analysis using different type of 

rexposome or Bioconductor objects. Any of them are added into a MultiDataSet20 object 

(ExposomeSet, ExpressionSet, SummarizedExperiment and SnpSet) that is given to 

the function. It contains two different pipelines for integration analysis.  

The first one is based on multiple co-inertia analysis (MCIA) that is implemented in the 

omicade4 Bioconductor package (https://bioconductor.org/packages/omicade4). MCIA 

is an analysis method that identifies co-relationships between multiple data-sets by 

projecting the features of the multiple data-sets into a single dimensional space, 

transforming diverse sets of features onto the same scale. By using this approach the 

most relevant features from each data-set can be obtained in a multivariate fashion 

(Supplementary Material 4 – Section 2.3.1). 

The second approach is an extension of Canonical Correlation Analysis (CCA), which 

has gained popularity as a method for the integration of several omic data 

(Supplementary Material 4 – Section 2.3.2). The method is called Multi-Canonical 

Correlation Analysis (MultiCCA) that is implemented in the PMA R package 

(https://cran.r-project.org/web/packages/PMA/). MultiCCA extends CCA by providing a 

sparse version of canonical correlation analysis. The main advantage with regard MCIA 

is that this method provide a list of features whose loadings are statistically significant 

different from cero. 
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4.4 Discussion

MultiDataSet in Bioconductor Ecosystem

MultiDataSet R package was the de first piece of software developed dur-
ing the first year of this Ph.D. thesis. MultiDataSet meets the objec-
tives that encouraged its development allowing coordinated management
of multiple data-sets; extraction of common samples along the multiple
data-sets; allowing filtering by data-set, sample, feature, phenotype (co-
variates and/or health outcomes) and genomic region; and to re-obtain
the original data-sets.

Parallel to the development of MultiDataSet, a Bioconductor initiative to
provide a tool in multiple data-set structure management was started by
Prof. Dr. Levi Waldron (from City University of New York) in mid-2014.
While MultiDataSet was make public available through Bioconductor 3.3,
MultiAssayExperiment was included in Bioconductor 3.4. From then,
both initiatives have been coexisting in Bioconductor ecosystem.

Homologous to MultiDataSet, MultiAssayExperiment introduces a new
Bioconductor class with three key components: 1) colData is the primary
data-set containing sample data, understood as characteristics such as
pathology and histology; 2) ExperimentList is a list of results of data-sets;
and 3) sampleMap is a table that relates elements from ExperimentList

with those in colData. Consequently, a set of methods are provided to
work with MultiAssayExperiment:a constructor function, subsetting and
methods (by data-set, genomic ranges, features and samples), extraction
methods, and functions for sample selection with complete cases and merg-
ing replicates among others.

Ramos et. al. wrote a comparison between MultiDataSet and
MultiAssayExperiment in the supplementary material of its publication
from bioRxiv (June 1st, 2017) [159]. In summary, MultiDataSet provides
wrappers for several analysis packages while MultiAssayExperiment pro-
vides generic extraction and reshaping functions capable of generating
output suitable for these and other packages. MultiAssayExperiment

does not provide a slot for feature annotations, however MultiDataSet
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includes the annotation of each added data-set allowing, for example, to
subset non ranged based data-set (like exposome data).

The main limitation of MultiDataSet, not highlighted by Ramos et.
al., must be highlight: memory management is not optimized it
MultiDataSet. As data-sets grow in size, further developments on
the storage need to be devised [153]. This limitation is overcome by
MultiAssayExperiment, allowing to include on-disk, remote and delayed
data representation of very big data-sets through DelayedMatrix classes
via an HDF5 back-end.

rexposome and omicRexposome for Exposome Data Analyses

As well as MultiDataSet, rexposome provides with a new class,
ExposomeSet, to incorporate exposome data in R/Bioconductor in or-
der to use already existing tools for its analysis. The join efforts for both
rexposome and omicRexposome allowed the development of a robust im-
plementation of a pipeline for exposome data analysis (excluding missing
data imputation).

The development of rexposome project was motivated by the several anal-
ysis that were carried out - and that steel being carried out - at the
Barcelona Global Health Institute and its projects (INMA [160], MeDALL
[161], BREATH [162]...). The development of the ExposomeSet provides a
data structure for intra-center exposome data sharing, also for exposome
data publication in data repositories (for instance, the in-development
Bioconductor’s ExperimentHub). At the same time, rexposome project
standardized the methods to be used in standard exposome data analysis
pipelines. In a time in which modern exposure assessment tools are pro-
viding ever-increasing amounts of detailed exposure data for epidemiologic
studies, rexposome and omicRexposome can facilitate their analysis and
the discovery of new health determinants.

The usage and usefulness of the rexposome projects were proved on ana-
lyzing two data-sets. The first data-set was obtained from the public data
repository of the the US the National Health and Nutrition Examination
Survey (NHANES) [163], [164] - cross-sectional data. The second data-set
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was obtained from a prospective pregnancy cohort in Spain, Infancia y
Medio Ambiente (INMA), corresponding to a single (INMA-Sabadell) of
the several cohorts in the project.

First, an investigation on the associations between polychlorinated
biphenyls (PCBs), polychlorinated dibenzofurans (PDC s) and polybromi-
nated diphenyl ethers (PBDE s) and markers of obesity using the NHANES
cross-sectional data. The analyses showed PCBs, PDC s and organochlo-
rines (BDE s) are highly correlated with obesity. The second illustrative
analysis performed the characterization of the exposome and its associ-
ation with molecular signatures. It revealed that exposure to PCBs can
alter different pathways related to brain and neurodevelopmental regula-
tion processes.

Incorporating CTD into Exposome Data Analysis with
CTDquerier

In the same direction that rexposome and omicRexposome, CTDquerier
was built to meet the lack of tools to provide information about existing
chemicals-gene or chemicals-disease associations. The information pro-
vided by CTD linking chemicals to genes and diseases can provide signif-
icant biological insight when joint with results from exposome analysis.

CTDquerier helps to improve the results of exposome analysis by: 1) pro-
viding a list of genes associated with the studied chemicals; and 2) pro-
vide a list of diseases associated with the chemicals used. If the exposome
analysis is based on the study of the relationship between exposures and
molecular signatures, it may provide with: 1) verify whether resulting fea-
tures linked to genes are associated with specific diseases; 2) provide a list
of chemicals that change linked genes expression, and 3)literature evidence
to disentangle the relationship between genes, exposures and diseases.

A Complete Framework for Exposome Data Analysis

Four software pieces have been presented in this chapter as part of the
results of this Ph.D. thesis. These packages have been built to provides a
full infrastructure for a complete pipeline to analyze exposome data. This
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pipeline is operational for analysis including or leaking the study of the
molecular intermediates for exposome molecular signatures.

Figure 4.1 illustrates how the presented packages are four puzzles pieces
than can be interconnected to perform a study were the underlying causes
of diseases are studied through investigating the link between the expo-
some and its molecular signatures.

Figure 4.1: A Complete Framework for Exposome Data Analysis.

Therefore, this pipeline perfectly matches with the purposes of the Eu-
ropean HELIX (The Human Early-Life Exposome) project [52]. Hence,
rexposome and omicRexosome are being used, joint to MultiDataSet, to
perform the first hight-thought analysis were ∼ 300 exposures are tested
for association with ∼ 500,000 omic features (including transcriptome,
methylome, proteome and metabolome).

The aim of this screening is to end up with a “Molecular Signature Cat-
alogue for Early Life Exposome”, a data base having the degree of asso-
ciation between all the exposures and all the omic features in the HELIX
project and a web portal for public access to the association data.
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Conclusion

UV Radiation Effect

Blood

• Exposure to UVR induced transient changes in gene expression in
blood cells.

• Affected genes are related to immune regulation, cancer and blood
pressure.

• UVR increased vitamin D3 over time, especially in participants with
low baseline levels.

• The acute effects of UVR on the blood transcriptome are indepen-
dent of vitamin D3.

Skin

• Effect to UVR induced was dose dependent, with a decreased over
time.

• Vast majority of the detected biological functions in skin transcrip-
tome at both 6h and 24h were similar.

• However apoptosis and keratinization were more prominent at 6h
while inflammation, immune response and hyaluronan biosynthesis
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at 24h.

• Four miRNA where found differentially expressed and they were
related to activation of skin wound and to serotonin pathway – that
has been suggested to mediate UVB-induced immune suppression.

Software and Tools

• MultiDataSet allows to manage data from different omics exper-
iment from the same or different individuals. Its implementation
eases standardization of multiple omic sets.

• rexposome implements ExposomeSet class, the first structure for
exposome data management under R and Bioconductor framework.

• rexposome implements exposome-wide association study, principal
component analysis, correlation analysis and clustering analysis.
Then, it is the first tool for exposome characterization and anal-
ysis.

• Combining of rexposome and omicRexposome allows to look for ex-
posome biomarkers.

• CTDquerier allows to obtain CTD data under R and Bioconductor
framework allowing enrichment analysis from the exposome (chem-
ical) side.

• All the five packages can be stand-alone used, providing individual
functionality that can be used in multiple downstream analysis. But
they can also be combined to provide a full framework for exposome
data analysis.
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Future Work

While the results shown in chapter 3 are auto-conclusive the results from
chapter 4 can be extended to other projects: tools designed for exposome
data analysis. Then, this chapter focuses on the application of these tools,
their possible improvement and the dissemination of the own tools and the
results obtained from their application.

6.1 Application

The HELIX (Human Early-Life Exposome) project [52] has as its general
aim to implement tools and methods to characterize early-life exposure to
a wide range of chemical and physical environmental factors and associate
these with data on major child health outcomes, thus developing an “early-
life exposome” approach.

Then, the project aims to find new exposure biomarkers through the de-
velopment and testing of new personal exposure devices and the develop-
ment and application of new statistical tools for exposome and molecular
signatures analysis.

The project takes pregnancy and childhood periods as the starting point
for developing the life-course exposome.
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Then, both ExposomeSet and imExposomeSet classes, implemented in
rexposome, are used as main structures to store, transfer and analysed
the exposome. At the same time, the implementation of the Exposome-
Wide Association Study (ExWAS) [54] is being used by the members of
the project to study the exposome association with growth and obesity,
neurodevelopment and respiratory health among others.

In parallel to the strict exposome analysis, HELIX project is testing the
association of the exposuers with six sets of molecular signatures with
omicRexposome, through MultiDataSet objects to coordinated manage
exposome data with transcriptome data (from micro RNA and gene ex-
pression), methylation data, proteome data and two sets of metabolome
data (urine and plasma).

6.2 Improvement

MultiDataSet R/Bioconductor package

While the class implemented in MultiDataSet R/Biocondcutor package
is useful and completely operational has a lack in terms of memory man-
agement. This limitation has made that most of the Biocondcutor users
moved to the MultiAssayExperiment R/Bioconductor package [159], as
we observed during “BioC 2017: Where Software and Biology Connect”
celebrated in Boston.

The team in charge of developing MultiAssayExperiment improved
the package once MultiDataSet was published and hired a pro-
grammer for full time development and maintenance. This has
moved MultiAssayExperiment to a superior position compared to
MultiDataSet.

rexposome R/Bioconductor package

Current version of exwas method, implemented in rexposome, allows
to test the association between the exposures in a ExposomeSet or

134



Bioinformatic Tools for Exposome Data Analysis

imExposomeSet versus an outcome of interest. This method relies in the
standard glm from base package so the outcomes of interests must follow
one of the standard distributions:

family(object, ...)

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse")

inverse.gaussian(link = "1/mu^2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")

quasibinomial(link = "logit")

quasipoisson(link = "log")

On of the lines for future work is to improve the exwas method to allow
to use a more extensive family of outcomes. Current ideas are:

• Cox models (proportional hazards models) are a class of survival
models in statistics. Survival models relate the time that passes
before some event occurs to one or more covariates that may be
associated with that quantity of time.

• Longitudinal data analysis including repeated measures, mixed mod-
els analysis, and multilevel modeling.

• Time series analysis by integration the ts() function from base

package and using ARIMA models.

Another improvement for rexposome is about the exposome contain-
ers. Both ExposomeSet and imExposomeSet are based on the eSet

class. Bioconductor is encouraging new development to be based on
SumarizedExperiment instead to eSet-like classes. Hence, rexposome

needs an update to re-implement both ExposomeSet and imExposomeSet

based on SumarizedExperiment.

omicRexposome R package

In order to improve omicRexposome, a data-package called BRGEdata was
developed. The package including a series of synthetic data-sets that
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can be used for exposome data analysis, for omic data analysis and for
exposome-omic data integration. The data-sets included in BRGEdata are
listed in Table 6.1.

Table 6.1: Five data-sets were encapsulated in BRGEdata to be used for illus-
trative purposes in omicRexposome vignette.

Data Type # Samples # Features Technology Object Name Class

Exposome 110 15 brge expo ExposomeSet

Transcriptome 75 67528 Affymetrix HTA 2.0 brge gexp ExpressionSet

Methylome 115 476946 Illumina Human Methylation 450K brge methy GenomicRatioSet

Proteome 90 47 brge prot ExpressionSet

After the direction Biocondcutor is taking, the data-sets needs to be up-
dated to SumarizedExperiment-like objects instead of the eSet-like ob-
jects that are currently being used.

Current version of omicRexposome accepts MultiDataSet objects as main
input. Since MultiAssayExperiment objects are becoming popular in Bio-
conductor ecosystem omicRexposome needs to be updated to also accept
this type of objects.

CTDquerier R package

CTDquerier package was develop to query the Comparative Toxicoge-
nomics Database (CTDTM) using genes, chemicals and diseases. During
the development of the package, CTD got improved and a new “com-
partment” was added: exposures. This “compartment” allows performing
“exposure studies” allowing to perform queries to CTD selecting a chemi-
cal, a gene, a disease and/or a phenotype (described with Gene Ontology
terms - biological processes). The “compartment” also allows to select
the “receptor”, that describes the category of human subjects that are
being acted upon by a chemical exposure stressor; the study factor, that
describes any main circumstance influencing the overall outcome of the
exposure study (such as age, genetic predispositions, etc.). At least one of
the fields must be filled. The result is a table listing all the studies that
match the queried terms, including the reference, the study title, the sum-
mary, the study factors (age, sex, BMI, etc.), the chemical, the receptors
and the outcome among others.
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Then, CTDquerier could be extended to allow a user to perform “exposure
studies” from R environment and obtain the literature results, with the
possibility to obtain the genes, chemicals and/or diseases from the results.

R Package Maintenance

To properly maintain and distribute the four R packages included as re-
sults of this Ph.D. thesis, they were developed using a version control sys-
tem (VCS). The selected VSC was Git and the system used was through
the GitHub web service (http://github.com).

Figure 6.1: All the four presented packages (MultiDataSet, rexposome,
omicRexposome and CTDquerier) have a repository in the BRGE’s GitHub ac-
count for version control and easy installation process.

Figure 6.1 shows a screen-shoot of the rexposome ’s GitHub repository.
Each package uses their repository for an up-to-date distribution using
the R package devtools and its method install github. The idea is to
start using the issue tab for issue tracking and new features development.
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6.3 Dissemination

Communicating science to the public is a must in any sci-
entific career. So on, Figure 6.2 shows the web-page cre-
ated for rexposome project using the GitHub pages framework
(https://isglobal-brge.github.io/rexposome/). The goal of this
web-page is to be a place to centralize the source-code of both rexposome

and omicRexposome packages as well as installation guides and their vi-
gnettes.

Figure 6.2: rexposome project web page -
https://isglobal-brge.github.io/rexposome/

While the rexposome project’s web page is for tool dissemination, this
Ph.D. thesis has the future goal to develop a web portal for disseminating
the results obtained from the screening performed in the HELIX project.
The screen, more described before (Application section), includes the as-
sociation test between more than 200 exposures (distributed into prenatal
and post-natal time points) and six molecular signature sets.
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In order to make the results of this screening public available a web portal
(The “Exposome Web Portal”) will be developed. Figure 6.3 shows a
mockup of the possible design of the portal.

Figure 6.3: Tentative mockup of the “Exposome Web Portal” that will be built
for HELIX project.

Figure 6.3 - A shows the main page of the portal. This section will show
a basic summary of the analyzed data (number of exposures, number of
features per molecular signature, etc.). From this screen, the user may
be able to go to a series of pages describing the data (correlation between
exposures, description of each molecular signatures, etc.) and to the query
page. The query page, seen in Figure 6.3 - B, will allow the user to query
giving a criteria. The criteria may involve any exposure, any feature from
any molecular signature set, an annotation of a feature and/or a threshold
for the association. The result of the query given user’s criteria will be
displayed in a table (that would be able to be exported as CSV file) and
will offer toms visualization per results like QQ-plot and Volcano-plot of
individual analysis.
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Scientific Work Related to
this Thesis

7.1 Peer-reviewed Publications Not Presented as
Results

The Pregnancy Exposome: Multiple Environmental Expo-
sures in the INMA-Sabadell Birth Cohort

Journal Environmental Science & Technology

Authors Oliver Robinson, Xavier Basagaña, Lydiane Agier,
Montserrat de Castro, Carles Hernandez-Ferrer, Juan
R. Gonzalez, Joan O. Grimalt, Mark Nieuwenhuijsen,
Jordi Sunyer, Rémy Slama, and Martine Vrijheid

Status Published (July 13, 2015)

Abstract

The “exposome” is defined as “the totality of human environmental expo-
sures from conception onward, complementing the genome” and its holistic
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approach may advance understanding of disease etiology. We aimed to de-
scribe the correlation structure of the exposome during pregnancy to bet-
ter understand the relationships between and within families of exposure
and to develop analytical tools appropriate to exposome data. Estimates
on 81 environmental exposures of current health concern were obtained for
728 women enrolled in The INMA (INfancia y Medio Ambiente) birth co-
hort, in Sabadell, Spain, using biomonitoring, geospatial modeling, remote
sensors, and questionnaires. Pair-wise Pearson’s and polychoric correla-
tions were calculated and principal components were derived. The me-
dian absolute correlation across all exposures was 0.06 (5th–95th centiles,
0.01–0.54). There were strong levels of correlation within families of expo-
sure (median = 0.45, 5th-95th centiles, 0.07-0.85). Nine exposures (11%)
had a correlation higher than 0.5 with at least one exposure outside their
exposure family. Effectively all the variance in the data set (99.5%) was
explained by 40 principal components. Future exposome studies should
interpret exposure effects in light of their correlations to other exposures.
The weak to moderate correlation observed between exposure families will
permit adjustment for confounding in future exposome studies.

psygenet2r: a R/Bioconductor package for the analysis of
psychiatric disease genes

Journal Bioinformatics

Authors Alba Gutiérrez-Sacristán*, Carles Hernández-Ferrer*,
Juan R. González, Laura I. Furlong

Status Published (August 17, 2017)

Abstract

Motivation: Psychiatric disorders have a great impact on morbidity and
mortality. Genotype-phenotype resources for psychiatric diseases are key
to enable the translation of research findings to a better care of patients.
PsyGeNET is a knowledge resource on psychiatric diseases and their genes,
developed by text mining and curated by domain experts.
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Results: We present psygenet2r, an R package that contains a variety of
functions for leveraging PsyGeNET database and facilitating its analysis
and interpretation. The package offers different types of queries to the
database along with variety of analysis and visualization tools, including
the study of the anatomical structures in which the genes are expressed
and gaining insight of gene’s molecular function. +sygenet2r is especially
suited for network medicine analysis of psychiatric disorders.

Availability: The package is implemented in R and is available under MIT
license from Bioconductor.

A systemic approach to identify signalling pathways acti-
vated during short term exposure to traffic related-urban
air pollution from human blood

Journal Environmental Health Perspectives

Authors José Eduardo Vargas, Nadine Kubesch,
Carles Hernandez-Ferrer, Glória Carrasco-Turigas,
Mariona Bustamante, Mark Nieuwenhuijsen, Juan R
González

Status Submitted (January 30, 2017)

Abstract

Background: The molecular mechanisms that promote pathologic alter-
ations in human physiology mediated by short-term exposure to traffic
pollutants remains not well understood.

Objetive: In this work was to develop mechanistic networks to determine
which specific pathways are activated by real world exposures of traffic air
pollution (TRAP) during rest and moderate physical activity (PA).

Methods: A controlled crossover study to compare whole blood gene ex-
pression pre and post short-term exposure to high and low of TRAP was
performed together with systems biology analysis. Twenty eight healthy
volunteers aged between 21-53 years were recruited. These subjects were
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exposed during 2 hours to different pollution levels (high and low TRAP
levels) while either cycling or resting. Global transcriptome profile of each
condition was performed from human whole blood samples. Microarrays
analysis was performed to obtain differential expressed genes (DEG) to
be used as initial input for GeneMania software to obtain protein-protein
(PPI) networks.

Results: Two networks were found reflecting high or low TRAP levels,
which shared only 5.6% and 15.5% of its nodes, suggesting specific cell sig-
nalling pathways being activated in each environmental condition. How-
ever, gene ontology analysis of each PPI network suggests that each level
of TRAP regulate common members of NFK-B signalling pathway.

Conclusion: Our work provides the first approach describing mechanistic
networks to understand TRAP effects on a system level.

Circulating miRNAs, isomiRs and small RNA clusters in
human plasma and breast milk

Journal PLoS ONE

Authors Mercedes Rubio, Mariona Bustamante,
Carles Hernandez-Ferrer, Dietmar Fernandez-Orth,
Lorena Pantano, Yaris Sarria, Maria Piqué-Borras,
Killian Vellve, Silvia Agramunt, Ramon Carreras,
Xavier Estivill, Juan R Gonzalez, Alfredo Mayor

Status Submitted (August 2, 2017)

Abstract

Circulating small RNAs, including miRNAs but also isomiRs and other
small RNA species, have the potential to be used as non-invasive biomark-
ers for communicable and non-communicable diseases. In this study, 1)
feasibility and pitfalls of analysing circulating small RNA in plasma and
breast milk using next generation sequencing have been evaluated, and 2)
small RNAs patterns in these biofluids have been compared. RNA from
plasma and breast milk samples from 15 healthy postpartum mothers, was
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extracted. Small RNA libraries were prepared with the NEBNext small
RNA library preparation kit and sequenced in an Illumina HiSeq2000 plat-
form. After an initial quality control, miRNAs, isomiRs and clusters of
small RNAs were annotated using seqBuster/seqCluster framework. The
average amount of extracted RNA was 81 ng/mL [standard deviation,
(SD), 41] and 3985 ng/mL (SD 3767) for plasma and breast milk, re-
spectively. In plasma, the mean number of good quality reads were 4.04
million (M) (40.01% of the reads), while 12.5M (89.6%) in breast milk.
1,182 miRNAs, 74,317 isomiRs and 1,053 small RNA clusters that in-
cluded piwi-interfering RNAs (piRNAs), tRNAs, small nucleolar RNAs
(snoRNA) and small nuclear RNAs (snRNAs) were detected. Samples
grouped by biofluid, with 308 miRNAs, 4,737 isomiRs and 778 small RNA
clusters differentially detected. Plasma and milk showed a completely dif-
ferent small RNA profile. In both, miRNAs, piRNAs, tRNAs, snRNAs,
and snoRNAs were identified, in line with previous studies showing the
presence of non-miRNA species in biofluids.

7.2 Conference Presentations

Molecular signature time variability in HELIX panel paired-samples
Carles Hernandez-Ferrer, Carlos Ruiz-Arenas, Martine Vrijheid, Juan R.
González.

• Event: New Horizons for Early Life Exposome Research - Final HE-
LIX Symposium (Oct 2017)

• Location: Barcelona Biomedical Research Park, Barcelona, Spain

• Type: Oral Communication

Linkage between methylation probes and expression transcripts
Carlos Ruiz-Arenas, Carles Hernandez-Ferrer, Martine Vrijheid, Juan R.
González.

• Event: New Horizons for Early Life Exposome Research - Final HE-
LIX Symposium (Oct 2017)

• Location: Barcelona Biomedical Research Park, Barcelona, Spain
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• Type: Poster

rexposome: A bioinformatic tool for characterizing multiple environmen-
tal factors and its association with different omics biomarkers and diseases
Carles Hernandez-Ferrer, Martine Vrijheid, Juan R. González.

• Event: Workshop in Environmental Omics, Integration and Mod-
elling (Oct 2017)

• Location: CosmoCaixa, Barcelona, Spain

• Type: Oral Communication

Extending Bioconductor To Exposome Data Analysis Carles Hernandez-
Ferrer, Juan R. González

• Event: BioC 2017: Where Software and Biology Connect (Jul 2017)

• Location: Dana Farber Cancer Institute, Boston (MA), United States
of America

• Type: Oral Communication

rexposome: A Bioconductor package for characterizing multiple environ-
mental factors and its association with different omics biomarkers and
diseases
Carles Hernandez-Ferrer, Martine Vrijheid, Juan R. González

• Event: European Bioconductor Developers’ Meeting (Dec 2016)

• Location: University of Basel (ZLF Building), Basel, Switzerland

• Type: Oral Communication

rexposome: a bioinformatic tool for charactering multiple environmental
factors and its association with different omic biomarkers and diseases
Carles Hernandez-Ferrer, Martine Vrijheid, Juan R. González

• Event: The Emory Exposome Course (Jun 2016)

• Location: Emory University, Atlanta, United States of America

• Type: Oral Communication, Hands-on-lab
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rexposome: a bioinformatic tool for charactering multiple environmental
factors and its association with different omic biomarkers and diseases
Carles Hernandez-Ferrer, Martine Vrijheid, Juan R. González

• Event: XIII Symposium on Bioinformatics (May 2016)

• Location: Universidad de Valencia, Valencia, Spain

• Type: Poster

Analyzing SNPs, CNVs, inversions and mosaicisms association studies
using Affymetrix CytoScan
Carles Hernandez-Ferrer, Ines Quintela Garcia, Katharina Danielski, An-
gel Carracedo Alvarez, Luis A. Perez-Jurado, Juan R. Gonzalez

• Event: Molecular Targets for Predictive and Personalized Medicine
of Cancer (Apr 2015)

• Location: Hospital St. Pau i de la Santa Creu, Barcelona, Spain

• Type: Poster

Analyzing SNPs, CNVs, inversions and mosaicisms association studies
using Affymetrix CytoScan
Carles Hernandez-Ferrer, Ines Quintela Garcia, Katharina Danielski, An-
gel Carracedo Alvarez, Luis A. Perez-Jurado, Juan R. Gonzalez

• Event: XII Symposium on Bioinformatics (Sep 2014)

• Location: Centro de Investigaciones Cientficas Isla de la Cartuja,
Sevilla, Spain

• Type: Poster
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