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als meus pares,
a les meves germanes

i a la petita Maria



Agräıments

És sorprenent com canvia la percepció de la velocitat temps. Sembla que fos ahir quan
entrava per primera vegada al CVC i tanmateix, ja han passat cinc anys (1826 dies
i més de 150 mil·lions de segons) des d’aquell dia. I quan miro enrere s’em fa dif́ıcil
veure d’un cop d’ull totes les persones que d’una manera o un altre han contribüıt a
que en aquest moments estigui escrivint aquestes ĺınies. No em sento capaç de resumir
tot aquest temps. Des de la perspectiva de les emocions viscudes, i compartides, segur
que per a més d’un li seria molt més amè que no l’objecte principal d’aquest treball
de recerca. Tanmateix, espero que aquestes ĺınies serveixin per agrair un cop més tot
el suport rebut en tot aquests temps.

Poques coses he tingut clares durant tot aquest temps. Una d’elles és que tot té
un principi, un recorregut i un final. Des d’aquesta perspectiva, puc assegurar que
la meva tesis no hauria començat si, d’una banda en Juanjo no m’hagués donat la
oportunitat de començar-la en el CVC i si, d’altre banda, l’Ernest no hagués acceptat
en dirigir-me. Sobre el recorregut de la tesis que dir. . . Un fet inqüestionable és que
lliga el principi amb el final. De quina manera? Bé, aquest és un altre tema. Gairebé
no m’atreveixo a afirmar res més al respecte. Ha estat un recorregut, de vegades
similar a un passeig aleatori, que hauria pogut estar molt diferent al que realment a
estat. De ben segur, el seu final no hauria estat tal com el veieu, sense les orientacions
de l’Ernest. Si hi ha res que s’hauria pogut fer millor, i no s’ha fet, segur que és per
la meva culpa.

Bien sure, cette thèse n’aurait pas été la même, si je n’étais pas allé à Nancy il y a
trois ans pour un séjour au LORIA pour travailler avec le membres du équipe QGAR
et plus particulièrement avec Salvatore-Antoine, qui aprés cette éxperience est devenu
mon co-directeur de thèse et avec qui j’ai eu l’occasion de parier quelques bières. On
a eu pas mal des discussions sur les descripteurs et il m’a appris plein choses. Par
ailleurs, Nancy, est une ville connu surtout pour l’Art nouveau et sa Place Stanislas.
Cependant, il a fallu que quelques mois plus tard j’y revienne avec mon collègue Joan
pour y découvrir quelques trésors cachés comme le Blitz et d’autres. . .

Han estat moltes hores en el CVC, en aquella taula de la cantonada de la sala
O-112 compartida per no pocs companys de “batalla” i presidida per una foto ben
genüına sobre l’extintor. No escric noms, sou molts els que heu passat pe aquest
despatx i els que quedeu i no en vull deixar cap. No es fàcil mantenir un ambient
de concentració havent-hi tant gent que entra i surt al cap del dia. Tanmateix, crec
que aquest ambient hi és, compensat a més, per necessaris moments d’esbarjo. Poc
m’hauria imaginat el que dóna de si quatre ninots de galetes per fer un pessebre o
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ii AGRAÏMENTS

les possibilitats que dóna un programa com el paint. Però aquest bon ambient no és
només exclusiu del despatx, és general de tot el centre. Potser afavorit per les seves
dimensions redüıdes que permet que tots ens coneguem. O potser afavorit per la sana,
i mai prou freqüent, tradició de portar croissanets per esmorzar i celebrar qualsevol
bon motiu amb caramels i bombons. Converses sobre el sexe dels àngels a l’hora de
dinar, més o menys interessants, però sempre entretingudes i tantes altres coses que
fan del CVC un bon lloc per venir a treballar.

Però hi ha tota una vida fora la tesis (i el CVC), moltes coses per fer, per veure
i molta gent per conèixer. Qui m’ho hauria dit el dia que vaig anar a una reunió
informativa al teatre de la plaça ćıvica organitzada per D-Recerca, i altres associacions
de investigadors pre-doctorals que mesos més tard m’hauria “enganxat” a aquest
moviment. La empenta i la convicció d’aquells, que després han estat companys, van
ser els culpables. Parlo de la Maria Villarroya, la Teresa Solchaga, el Mario, la Ma

del Mar, el Jordi Cabana i la Sarai. Després van venir la MJ, la Laia, la Cecilia i el
Txus i els que ara continuen el Jordi de Mier, la Noemi, la Elena i la Emi i tantes
d’altres persones que no he tingut la sort de conèixer però igual de convençuts.

I en l’àmbit estatal, la feina dels membres de la Federación de Jovenes Investigadores-
Precarios. Para algunos, si llega, unas siglas, una camiseta naranja o una taza con
el lema: “Investigar es trabajar”. Para mi, un colectivo de investigadores de ámbitos
muy dispares unidos por unas ideas, convicciones, proyectos comunes y pasionados
por su trabajo, por investigar. Personas que destacan por su calidad humana y su
compromiso personal. Realmente me siento afortunado de haber compartido parte
de mi tiempo con parte de ellos como son Joaquin de Navascués, Maria José Serván,
Cristina Muñoz. Marta V. y Ana Torralbo en la comisión de documentación. De
compartir momentos más que intensos con Marta G., Virgilio, Pere, Pablo P., Oscar
R., Jaime A., Cristina C., Aurelia, Irene y Ma del Mar. Conocer a personas incom-
bustibles com Andrés B. , Leni, Tatiana, Elvira o Jaime M. y aquellos que han venido
despues tanto o más incombustibles como los anteriores: Xosé, Nacho, Marisa y David
F.

I més enllà de la recerca i sou tots. Sou uns quants els que heu patit i sofert
els meus neguits i alegries. Han estat realment uns anys intensos en molts aspectes
que no els hagués viscut de la mateixa manera de no haver-los compartit amb els de
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“sempre”. Aquells que setmana rera setmana heu estat testimonis del meu recorregut.
Compartint el meu temps, entre xerrades, cerveses i somnis més o menys profunds
que han fet que sempre que estava amb vosaltres em trobés a casa, entre amics. Sou
el Nico, el Ruben, el Jose, la Judith, la Noelia, les “Annes” i les “Elis”. I com no, el
Jordi que des d’Osca... bé, millor no endisar-nos en records boirosos i muntanyencs.

Però tot i aix́ı, hi ha persones que han estat singulars. Hi ha el Gerard, l’Aura
i el Virgilio amb qui he pogut xerrar no poques vegades del que feia, o deixava de
fer, en la tesis. En certs moments d’incertesa he pogut discutir amb ells i la seva
opinió m’ha estat de molt valor. Però també hi ha la Esther i la Anabel que mes enllà
d’alguna revisió i lectura d’alguns dels treballs o la inestimable ajuda en la composició
d’alguna figura, en estat en bona mesura un bon suport moral i energètic. Finalment,
les meves germanes, la Marta, la Cristina i la Natalia i, molt especialment, els meus
pares l’Enric i la Ma Dolors. Sense la seva ajuda, paciència i alè es poc probable
que ni tan sols hagués arribat a la situació d’iniciar una tesis i molt menys d’acabar-
la. Durant tots aquests anys totes cinc han estat un referent i una fons d’inspiració
inacabable.

A tothom,
gràcies.
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Resum

En el camp de l’Anàlisi de Documents voldŕıem ser capaços de processar automàticament
qualsevol tipus de document digital i d’extreure la informació rellevant. És a dir,
voldŕıem conèixer la configuració del document, identificar cadascuna de les seves
parts i reconèixer els seus continguts; per a poder fer cerques entre les components
del document, però també, per fer cerques entre documents diferents. Aquest és un
problema dif́ıcil que ha motivat diferents ĺınies de recerca a diferents nivells. S’ha
desenvolupat tot una sèrie de tècniques destinades a pre-processar la imatge per aug-
mentar la seva qualitat, reduint el soroll dels sistemes d’adquisició i minimitzant els
efectes de la degradació dels documents. També trobem molts treballs en la seg-
mentació destinats a separar les àrees d’interès de la resta del document. Finalment,
des de finals dels anys 60 fins a l’actualitat s’han proposat molts tipus descriptors que
pretenen representar i identificar aquestes àrees d’interès.

En aquesta tesis ens hem centrat en el darrer d’aquests problemes, la descripció de
formes però tambéen la fusió de classificadors per a aplicar-los a una de les apliacions
de l’Anàlisi de Documents, el reconeixement de śımbols gràfics. En el reconeixement
de formes, moltes aplicacions han de fer front al problema de descriure un conjunt
gran i complex de formes per a reconèixer-les, o per a recuperar-les de gran bases
de dades. En alguns casos, a més del gran nombre de formes, podem trobar altres
dificultats com són la semblança entre formes o la variabilitat de classes de śımbols.
En aquest casos, un punt clau en el procés de reconeixement de formes és la definició
de descriptors de gran capacitat de discriminació. Malauradament, un sol tipus de
descriptors no sol ser suficient per aconseguir resultats satisfactoris i per tant, hem de
combinar la informació provinent de diferents fonts per a millorar el comportament
global del sistema de reconeixement. Aquesta combinació de la informació la hem
realitzat a través de la fusió de classificadors.

En relació a la descripció de formes, tradicionalment els śımbols gràfics s’han rep-
resentat mitjançant descriptors estructurals, constrüıts a partir d’una representació
vectorial. Els mètodes de vectorització són sensibles al soroll i a les distorsions dels
śımbols esboçats. Podem intentar evitar aquest problema definint gramàtiques o con-
struint models deformables dels śımbols. Una altra possibilitat, la que hem seguit en
aquest treball, és fer servir descriptors que no necessiten d’una representació vecto-
rial. En el context de la descripció de formes hem proposat un descriptor basat en la
transformada de crestetes —en anglés “ridgelets”— que, gràcies a que hem unificat
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vi RESUM

la terminologia i hem introdüıt un vocabulari per explicar i classificar els descriptors,
podem definir com: multiresolució, polar, 2D, que conserva la informació i invariant
a les similituds. D’altre banda, la propietat de multiresolució de la transformada de
crestetes fa que obtinguem una representació en diferents nivells de resolució que ens
permet dividir-la en grups de coeficients de crestetes que es poden considerar com a
descriptors. D’aquesta manera, hem entrenat un classificador per a cada descriptor,
i hem proposat unes regles de combinació lineals, IN i DN , que minimitzen l’error
de classificació per aquells classificadors que compleixin un conjunt de restriccions,
relatives a la distribució i dependència dels classificadors.

Aquests enfocs teòrics han estat avaluats a partir d’un conjunt d’experiments que
ens han donat els següents resultats: Els descriptors de crestetes descriuen millor els
śımbols que altres descriptors més genèrics. Els mètodes IN i DN redueixen l’error
de classificació en relació a d’altres mètodes de referència. Per últim, el mètode
IN aplicat als descriptors de crestetes, en combinació amb classificadors de tipus
“boosting” aconsegueix uns encerts de reconeixement propers als 100% en les proves
definides per a la base de dades de śımbols gràfics del GREC’03.

Paraules clau: descriptors de forma, fusió de classificadors, descriptors mul-
tiresolució, transformada de crestetes, operador d’agregació lineals.



Résumé

Dans le domaine de l’analyse de documents on voudrait être capable de traiter au-
tomatiquement n’importe quel genre de documents numériques et d’extraire l’ infor-
mation la plus importante. Plus précisément, on voudrait connâıtre la configuration
du document,identifier chacune de ses parties et reconnâıtre ses contenus, pour faire
des requêtes par le contenu du document lui-même mais aussi, parmi des documents
différents. Ceci est une problème difficile qui a suscité un nombre important de travaux
à différents niveaux. On a développé un ensemble de techniques destinés à pré-traiter
les images numériques afin d’augmenter leurs qualités, en réduisant le bruit provenant
des systèmes d’acquisition et en minimisant les effets de la dégradation des documents.
On trouve aussi, beaucoup de travaux destinés à la segmentation de zones d’intérêts
du fond du document. Finalement, depuis les années 60 à aujourd’hui un nombre
important des descripteurs on été proposé pour représenter ces zones d’intérêts.

Dans ce thèse, nous avons travaillé sur la description des formes et la fusion de
classificateurs pour les appliquer à la reconnaissance de graphiques. Dans la recon-
naissance de formes, beaucoup d’applications sont confrontées au problème de de-
scription de grands ensembles de formes complexes pour les reconnâıtre, mais aussi
pour les identifier dans des grandes bases de données. En plus du nombre important
de formes on doit également faire face aux problèmes de similitude des formes ou de
variabilité des classes des symboles. Dans ces cas, un point clé dans le processus de la
reconnaissance des formes est la définition de descripteurs ayant une grande capacité
de discrimination. Malheureusement, un seul descripteur ne suffit pas pour obtenir
des résultats satisfaisants et donc, nous devons combiner l’information provenant de
différentes sources pour améliorer le comportement global du système de reconnais-
sance. Cette combinaison est réalisée par un mécanisme de fusion des classificateurs.

Par rapport aux descriptions des formes, traditionnellement les symboles graphiques
ont été représentés par des descripteurs structurelles, construits à partir d’une représentation
vectorielle. Les méthodes de vectorisation sont sensibles aux bruits et aux distorsions
des symboles ébauchés. On peut essayer de contourner ce problème en définissant une
grammaire de descripteurs ou en construisant des modèles déformables des symboles.
Une autre possibilité, celle poursuivie dans ce mémoire, est d’utiliser des descripteurs
que n’ont pas besoin d’une représentation vectorielle. Dans le contexte de la descrip-
tion des formes on a proposé un descripteur basé sur la transformation de ridgelets
qu’on peut définir comme: multiresolution, polaire, en 2D et qui préserve l’information
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d’invariance aux similitudes. D’un autre coté, malgré qu’on puisse considérer ce de-
scripteur comme un seul, il nous offre une représentation des formes permettant de
la décomposer en groupes de coefficients de ridgelets qui sont chacun définis comme
un descripteur. De cette manière, pour chaque descripteur, nous avons entrâıné des
classifieurs qui sont combinés linéairement en utilisant des règles de combinaison: IN
(Indépendant et Normale) et DN (Dépendant et Normal), que minimisent l’erreur de
classification pour ces classifieurs par rapport à un ensemble de contraintes.

Ces développements théoriques ont été validés à partir d’un ensemble de résultats
expérimentaux. Les descripteurs ridgelets décrivent mieux les symboles que d’autres
descripteurs plus classiques. Les règles de fusion IN et DN réduisent l’erreur de
classification par rapport aux autres méthodes de références. Enfin, la méthode IN
appliquée aux descripteurs de ridgelets, en combinaison avec des classificateurs du
genre “boosting”, aboutie à un taux de reconnaissance d’environ 100% sur la base de
données définies au workshop GREC’03.

Mots clés: Descripteurs de forme, Transformée de ridgelets, fusion de classifi-
cateurs, descripteurs multiresolution, opérateurs linéaires d’agrégation.



Abstract

In the field of Document Analysis we would like to be able to automatically process
any kind of digital document. We mean extracting the document layout and identi-
fying each of its parts, recognising its contents and organising them in order to make
searches of its components, through the document itself, but also through different
documents. This is a challenger problem that has motivated different lines of research
in the field of Document Analysis at different levels: Pre-processing techniques have
been developed to upgrade the quality of the document image, reducing noise from
the input devices and minimizing the effects of the degradation of documents. A deep
study in segmentation has been carried out in order to separate the regions of interest
from the document background. Finally, many descriptors have been proposed for
representing and identifying these regions of interest since the end of 60s until now.

In this thesis, we have focused on, this last problem, the shape description de-
scription and also on classifier fusion, to apply them to one of the application fields
in the Document Analysis: the graphics recognition. In shape recognition, many ap-
plications have to face the problem of describing a large number of complex shapes
for recognition or retrieval in large databases. Besides the large number of shapes,
we can find other challenges for shape description, such as the similarity among some
of the shapes or the variability of the shape classes. In these cases, one of the key
issues is the design of highly discriminant shape descriptors. Unfortunately, one kind
of descriptor is not usually enough to achieve satisfactory results and hence, we have
to combine the information from different sources to improve the global performance
of the recognition system. We have carried out this combination of information using
classifier fusion.

Concerning shape description, traditionally graphics have been represented using
structural descriptors, which are based on a vectorial representation of the shape.
Vectorization is quite sensitive to noise and to distortions of sketched symbols. We
can try to overcome this problem using grammar descriptors or deformable models of
shapes. Another possibility, which is the followed in this dissertation, is to propose
descriptors that do not need a vectorial representation of the symbol. Thereby, in the
context of shape description, we have proposed a descriptor based on the ridgelets
transform which, thanks to we have unified the terminology used in shape description
and the introduced vocabulary, we can define as: 2D, polar and multi-resolution
descriptor information preserving and invariant to similarities. On the other hand,
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although ridgelets descriptor can be considered as a single descriptor, it offers a shape
representation divided into groups of coefficients, which permit us to consider them as
single descriptors. Thus, for each descriptor, we have trained a classifier and we have
proposed two linear combination rules, IN and DN , that minimize the classification
error of classifiers verifying a set of constraints concerning the dependence and the
distribtuion of classifers.

These theoretical approaches have been evaluated through an experimental evalua-
tion in ridgelets descriptors, classifier fusion and applying the classifier fusion methods
to ridge lets descriptors, obtaining the following results: Ridgelets descriptors have
proven to represent graphics symbols better than general purpose descriptors. IN
and DN methods reduce the misclassification rates regarding other reference fusion
methods. Finally, the IN method applied to ridgelets descriptor, in combination of
boosting algorithms, has reached recognition rates near to 100% in the test defined
for the GREC’03 database.

Keywords: shape descriptors, classifier fusion, multi-resolution descriptors, ridgelets
transform, linear aggregation operators.
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Chapter 1

Introduction

In this Chapter we will give a general overview of the shape recognition process. We
will put it in the context of the research done inside the Document Analysis field, giving
the motivation and pointing up those aspects that we will treat in this dissertation:shape
recognition and classifier fusion. We will summarize the objectives of this work as well
as the contents of each chapter.

1.1 Overview of Document Analysis

In the field of Document Analysis we would like to be able to automatically process
any kind of digital document —see Fig. 1.1. We mean extracting the document layout
and identifying each of its parts, recognizing its contents and organizing them in order
to make searches of its components, through the document itself, but also through
different documents. Layout analysis is necessary to extract high level information
from documents like magazines or newspapers. Thereby, we try to identify regions
like headlines, figures (and their captions), charts, etc. to use them for indexing
and retrieval purposes because the relevant information of such documents is usually
condensed in these regions. Besides, once we have detected and correctly identified
these regions we must apply expert tools to obtain relevant information. Depending
on the complexity of the object to be recognized we will have to divide it into smaller
entities to be processed separately. After the processing of documents, the amount of
extracted information can be considerable. Thus, we can require appropriate indexing
tools able to organize and deal with this heterogeneous information.

The process of Document Analysis depends on the document treated. Thereby,
type-written documents were the first kind of documents treated by researchers. We
can find many works from the 80s and 90s proposing Optical Character Recogni-
tion (OCR) methods for this kind of documents. Nowadays, we can purchase OCR
software able to correctly identify almost all isolated characters in type-written doc-
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Figure 1.1: Examples of documents processed by document analysis systems.
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uments. This fact has provoked research interest to move on to other challenging
documents, like historical, ancient, hand-written, sketched and technical documents.
We can group these last types of documents in three families, not necessarily disjoint,
of documents: ancient documents, technical documents and sketched documents —we
can see some examples of these types of documents in figure 1.1. Ancient, or histor-
ical, documents are digitized from paper support. They are usually degraded by the
effect of time and most of them are manuscripts. Besides, notation or writing rules
of some kind of documents like mathematical scripts or musical scores have evolved
along the centuries, making its comprehension more difficult even for human experts.
On the contrary, the main difficulty in technical documents is information organiza-
tion rather than document degradation. We mean that in text documents writing is
linearly organized. We read from left to right (or from right to left, depending on
the culture). However, in technical documents such as architectural maps, electronic
circuits or engineering designs information is organized in two dimensions, making
harder the extraction of semantic information. Besides, the range of semantic entities
is considerably larger than for text scripts in most of the cases. For text writing,
we have symbols from an alphabet (consisting of 24 to 30 letters in Latin languages)
whereas for non-Latin languages and for technical drawings the number of symbols to
recognize can be bigger. Finally, sketched documents are essentially technical hand-
written sketches. The research in this application domain has been motivated by the
challenges of new technologies. New input devices such as tablet-PC, digital pens,
PAD, etc. have motivated new uses and new needs that must combine these new
technologies with the use of paper. Their main characteristic is the use of temporal
information for recognition purposes. Some of their difficulties consist of shape seg-
mentation and variability between users which make difficult the learning process. In
an online framework, we can incorporate the information of the order in which the
symbol has been created, making easier the task of segmentation.

Each of these challenges has motivated different lines of research in the field of
Document Analysis at different levels. On the one hand, pre-processing techniques
have been developed to upgrade the quality of the document image, reducing noise
from the input devices and minimizing the effects of the degradation of documents. On
the other hand, a deep study in shape segmentation has been carried out. In particu-
lar, in technical documents, shape segmentation is usually achieved after vectorising
the image. Finally, many descriptors have been proposed for shape recognition and
for shape interpretation —for a review of these interests of research Tabbone [2005]
can be consulted. If we focus in the domain of technical documents, in figure 1.2,
we have depicted a scheme of shape recognition process. We start by applying seg-
mentation methods to detect the regions of interest and to extract the shape —after
pre-processing the document to reduce as much as possible the noise and to increase,
thus, the quality of image. Then, we input the unknown shape into the shape recog-
nition system which compares the query shape with a shape database containing the
set of shape models. However, this scheme is extremely simple for most of the docu-
ments to analyze and a recurrent dilemma is raised: We need to segment shapes to
correctly recognize them but we also need to recognize to correctly segment shapes.
In other words, in most cases we are not able to correctly segment a shape if we do
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Figure 1.2: Scheme of a document analysis process for technical drawings

not know which is the shape to segment. In this sense, spotting techniques try to
recognize shapes, even though the segmentation is not perfect. They try to detect
regions of interest where there is a high probability to find a shape, then they supply
these regions to a recognition engine which will try to recognize the shapes within the
region of interests or, in case that the recognition process has failed, they will refine
the shape segmentation in a later step.

Our work has been motivated by specific problems in the domain of technical
documents. However, among all these problems, challenges and lines of research, we
have focused on a general shape recognition framework without considering shape
segmentation and preprocessing steps.

1.1.1 Shape Recognition

This dissertation is about shape recognition. On the one hand we have an unknown
shape, the query, and on the other hand we have a set of candidates, the models
—Fig. 1.3. The recognition process consists of identifying which is the most similar
model to the query shape. In the general context of pattern recognition we can distin-
guish two stages: shape description and shape classification. The shape description
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Figure 1.3: Scheme of the shape recognition process.

stage is characterized to be a process which only depends on the properties of the
shape, whereas in the classification stage we usually take into account information
from other shapes. In other words, in the shape description step we extract the rel-
evant information which will be used, later, in the classification stage. In particular,
these two stages can be applied to the shape recognition process. However, in shape
recognition a third stage, namely shape comparison has to be defined. Classification
is usually done through the comparison between a query shape and a set of shapes
used as models. Thereby, this comparison should be included in the classification
stage, although some shape recognition methods include the definition of the simi-
larity measure in the shape description stage —as we will see in chapter 2. Besides,
structural methods focus their interest on looking for efficient matching algorithms.
That include, at the same time, comparison and classification stages. We are inter-
ested in distinguishing the shape description from the shape comparison and shape
classification stages. Then, these three stages can be described as follows:

Shape description: The shape description is an abstraction process consisting of
obtaining the relevant information from the shape. This is a critical stage be-
cause later, classification will depend on the goodness of the extracted features.
Ideally, all shapes from the same model should have the same features.

Shape comparison: We have to define a similarity measure to compare shapes us-
ing the extracted features. Not all similarity measures can be applied to any
descriptor. Depending on the properties of descriptors some measures will be
more suitable than others.
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(a) Feature Fusion (b) Classifier Fusion

Figure 1.4: Architectures for combining features to return a single value

Shape Classification: The classifier must be able to decide the model corresponding
to the shape. If the extracted features are good enough a simple classifier based
on the proximity of the shape to the models should work, typically a threshold
value. However, in real problems we need more complex classifiers able to deal
with the variability, noise, occlusions and similarities between models.

1.1.2 Classifier Fusion

Unfortunately, one kind of descriptor is not usually enough to achieve satisfactory
results in general pattern recognition problems. Thus we must combine the informa-
tion from different sources to improve the performance of single descriptors. In this
sense, there are several starting points to face this problem. We can find strategies
consisting of merging features from different descriptors into a single descriptor and
then, training high performance classifiers like neural networks [Lippmann, 1988],
boosting-based classifiers or Support Vector Machine [Burges, 1998]. However, for
general purpose problems in which the number of classes begins to be high and the
shapes to be recognized can be counted by thousands, these expert classifiers begin to
fail. Moreover, when the classes to recognize may change depending on the problem
handled or according to user requirements, neural networks, boosting algorithms and
support vector machine become rigid methods because they should be trained again,
which is usually time-expensive. Therefore, we have to find strategies that easily per-
mit us to adapt to the user needs, avoiding to train again the system each time the
problem conditions change. One possibility, the one we have followed in this work, is
to use different classifiers, one for each descriptor, and combine them in such a way
that the global performance increases —see figure 1.4 for an example of this strategy
compared to the combination of features, explained before. This strategy is known
in the community under some different names: aggregation operators, combination
rules or classifier fusion, depending on the context and the characteristics of classi-
fiers. We like the name of classifier fusion and we will use it in most of the times,
despite sometimes we will also use indifferently the terms of aggregation operator and
combination rule to refer to the same concept.
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Then, this dissertation is also about classifier fusion. Classifier fusion methods
started to be developed in the 90s. A raised question was whether it is reasonable to
combine the output of several classifiers to improve global classification rates and, if
plausible, which is the best way to combine these outputs. The first question has af-
firmatively answered through the research done in machine learning and experimental
results obtained during these last years [Kittler, 2000, Kittler et al., 1998, Schapire,
1990, Tax et al., 2000]. We find that fusion methods improve individual classifiers
performance. However, the question concerning which of fusion method is the best
one among all of them remains open. Besides, experimental evidence leads to think
that there is not a “best” fusion method, that it will depend on the application. In
this sense, for example, a discussion on when it is better to average or to multiply the
classifiers is given in [Tax et al., 2000] under strict probabilistic conditions but the
final behavior will depend on the application. Works like those by Stejic et al. [2005]
propose a genetic algorithm that learns which aggregation operator should be used
every time. In general, classifier fusion methods have been grouped in two classes
according to the architecture used to combine them: serial and parallel. Of course,
there is a third architecture, an hybrid architecture, which combines serial and parallel
classifier configurations [Jain et al., 2000, Zouri, 2004].

In Serial combination, classifiers are organized into ordered stages. Each stage is
composed of a single classifier that takes into account the output of the prece-
dent classifier to confirm, or reject, its response. Each classifier filters some
candidates to be the model reducing in such way recognition errors at each
stage.

In the Parallel architecture, on the contrary, we evaluate all classifiers at the same
time and, afterwards, we combine classifier outputs to return a single candidate
(or a ranked list of candidates). In these systems, the choice of the aggregation
operator is critical.

Hybrid architecture combines both parallel and serial configurations to take advan-
tage of the goodness of each one. The difficulty relies on the design of such an
architecture.

We have chosen a parallel architecture to fusion classifiers because we are interested
in the aggregation operators used to combine them. In particular, the chapter 4 has
been devoted to find linear combination rules minimizing the misclassification rates.

1.2 Objectives and contribution of the present dis-
sertation

The original proposal of the research project was related to the search of graphic en-
tities in technical documents using content-based information. Thus, we had to find
suitable descriptors for this kind of shapes, which could be rotated and scaled in any
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part of the document. Besides, the number of symbols could be big so that descrip-
tors should find an agreement between the size of the descriptor and its description
capabilities to facilitate later indexing tasks.

The global problem required the help of a wide range of methods from the fields
of shape recognition, segmentation, vectorization, classifiers and indexing. We had to
focus our work on some of these parts and we decided to intensify our research in the
shape recognition field to find out suitable descriptors for graphic symbols. However,
the lack of a general theory of shape description required a review and a test of exist-
ing techniques in feature extraction methods. In addition, existing descriptors do not
seem convenient when the number of symbols in the database to recognize increase
dramatically and we have explored new descriptors like multiresolution descriptors
based on ridgelets transform. Multiresolution descriptors offer a hierarchical descrip-
tion of shapes according to their resolution. It seemed that this kind of descriptors
could be useful to define an indexing structure, which facilitates the task of recog-
nition when the number of symbols increase. Furthermore, the capacity of ridgelets
transform to detect linear singularities made this transform more suitable than other
multiresolution transforms. Nevertheless, this descriptor took with him some intrinsic
problems, namely the size of descriptor and the representation of symbols at different
levels of resolution. On the one hand, we have studied different strategies to reduce
the size of descriptors. On the other hand, it was not evident how to combine all
resolutions of ridgelets descriptors and therefore, we have decided to explore classifier
fusion. We have studied linear rules as a way to combine all resolutions and after-
wards, we have compared them with other popular combination rules like max and
median in a framework for the general problem of combination of classifiers. Fur-
thermore, in this framework, we had to do some assumptions about classifiers, which
motivated a slight study of classifiers and their behavior

As a result, this dissertation treats about two different issues in shape recognition:
shape representation using multiresolution descriptors and the fusion of classifiers to
combine the information of multiple descriptors to improve single performance and
increase recognition rates.

1.2.1 Goals of the work

In this section, we will pinpoint the main goals achieved in this dissertation. These
contributions turn around two axes: shape descriptors and classifier fusion.

Shape descriptors When we have reviewed the bibliography, we have realized that
there is not an unified terminology. Due to the complexity of the shape recogni-
tion process, the division into three stages done above, namely shape description,
shape comparison and shape classification is not standard and depends on each
author. Thereby, there are several terms to denote similar concepts but be-
ing slightly different. Some feature extraction methods consider the similarity
measure as a part of the method, meanwhile others not. Hence, our review of
the state of art starts by the proposal of a set of definitions consistent with
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the decomposition of the shape recognition process in these three stages. More
specifically:

• We have formalized and unified the concept of feature vectors, signatures
and other terms used to refer to the results of feature extraction methods
under the name of descriptor.

• We have generalized the notion of primitive, specific for structural descrip-
tors, proposing a definition that can be applied to any descriptor.

• We have introduced the notion of primary feature extraction method in
order to decompose a descriptor in more elemental entities. Such decom-
position should not be seen like the decomposition of natural numbers in
prime numbers, in the sense that a descriptor can be decomposed in a
unique sequence of primary feature extraction methods. On the contrary,
it must be seen as a flexible manner to decompose a descriptor identifying
common elements among them for their classification.

After, we have reviewed existing methods and organized this part of the chap-
ter according to these definitions. In particular we have defined a taxonomy
based on the characteristics of primitives, on the properties of feature extraction
methods and on the characteristics of descriptors.

Ridgelets descriptors are particular multiresolution descriptors. We have consid-
ered ridgelets transform because this transform is suitable to detect linear sin-
gularities in multivariate functions. Thereby, in the context of Graphic Recog-
nition, this kind of singularities correspond to lines. Concerning other graphic
entities, like arcs, theoretical results assert that ridgelets transform is not worse
than other multiresolution transforms like wavelets [Candès, 1998]. The study
of ridgelets transform has involved:

• The study of Radon transform. Ridgelets transform requires the use of
Radon transform. Thus we have implemented Radon transform seeking
to reduce the time complexity of this transform. A modified version of
the Fast Slant Stack algorithm [Averbuch et al., 2001] that corrects some
geometrical distortions when the shape is rotated has been proposed.

• Definition of a ridgelets-based descriptor. We have constructed a shape
descriptor based on the ridgelets coefficients. In this sense, we have mod-
ified the ridgelets representation to make descriptors robust to noise and
vectorial distortion. Besides, we have normalized it to make it invariant to
shape shifts and scale.

• Multiresolution descriptors have different number of scales depending on
the shape resolution. In order to compare shapes at different resolutions
we have introduced the notion of Decomposition Level, DL, grouping in
the same DL all scales that appear when we increase the resolution of the
shape.

• Ridgelets descriptors are not invariant to symbol rotation. So, we have
proposed a similarity measure achieving invariance for each scale.
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• We have explored different techniques to reduce the size of ridgelets descrip-
tors. Some proposals consist of applying R-Signature descriptor [Tabbone
et al., 2006, 2001] to each ridgelet scale and defining Local Norm descrip-
tors [Costa and Cesar Jr., 2001] based on ridgelets transform

Classifier Fusion: Although the original problem was raised in the context of com-
bination of multiresolution descriptors, we have attacked it in the general frame-
work the combination of classifiers. Hence, the work in this area has involved:

• Raising the problem of combining ridgelets descriptors as a general prob-
lem of classifiers fusion. In this context, we have proposed a probabilistic
framework where we have modeled two-class classifiers as random variables.

• Focusing on linear combination rules, we found the optimal weight for each
classifier that minimizes the classification error under some constraints
about classifier distribution and dependence/independence of classifiers.
For independent classifiers we have found an explicit formula for the cases
where classifier distribution can be approximated by Normal and Dirac
distributions. For dependent classifiers, we have raised an optimization
problem to be solved for classifiers whose linear combination follows a a
normal distribution.

• Extending the optimal solution for binary classifiers to multi-class classi-
fiers through the operator arg max.

Combination of ridgelets descriptors: We have finished our dissertation apply-
ing the scheme of classifier fusion to the ridgelets descriptor. We have con-
structed two parallel classifiers. The first classifier uses the weights obtained
under the assumption of Independence of classifiers whereas in the second one
the weights have been obtained solving the optimization problem corresponding
to the Dependence assumption.

1.2.2 Framework of the thesis

We had to make some practical decisions in order to pass from the abstract shape
recognition problem, raised at the beginning of this chapter, to a practical shape
recognition problem. In this sense, some of the decisions taken were related to the
following issues: the application domain, the theoretical framework and the experi-
mental framework.

Application Domain: We have mainly worked with graphic symbols, specially when
we have studied shape descriptors, because the origin of this work was to look
for suitable shape descriptors for Graphic symbols. However, in the context
of classifier fusion we have extended our domain to datasets of handwritten
numerals.

Theoretical framewok: Our mathematical background has influenced the theoret-
ical approach. Multiresolution descriptors are based on wavelets theory which
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is an active interest of research in functional analysis community. In this con-
text, the shape image is taken as a bivariate function and all the mathematical
machinery of this field has been applied. Furthermore, a probabilistic approach
has been adopted in the classifier fusion approach, and as for multiresolution
analysis we have applied all the probabilistic terminology we have needed.

Experimental framework: Two slightly different experimental frameworks have
been developed according to the proposals for ridgelets descriptors and classifier
fusion. Ridgelets descriptors are applied to segmented images without any need
of symbol vectorization. For this reason, we have compared ridgelets descriptors
with other descriptors that do not need to be vectorized and have to be applied
on segmented shapes, too. The main measure to evaluate their performance
is the recognition rate or, alternatively, the classification error. Concerning
classifier fusion we have continued working with segmented, and non vectorized,
shapes. Furthermore, recognition rate has been the measure used to evaluate
classifier performance. However, we have compared our proposal of classifier
fusion with other classifier fusion approaches. For that reason, several classifiers
have been trained. Finally, we have complemented the set of experiments using
synthetic data to simulate classifiers satisfying the theoretical assumptions done
in the theoretical framework and other classifiers not verifying them.

1.3 Organization

This dissertation has been organized similarly to this chapter, which more or less
follows the temporal evolution of the work with two exceptions: The review of shape
descriptors, that has been done during all the time but have been summarized in the
next chapter, and the experimental evaluation that has been grouped at the end of
this work, before the conclusions chapter. More specifically, in each chapter we will
find the following;

• In chapter 2, we review the different shape descriptors proposed in the liter-
ature. First, we introduce some definitions related to descriptors and feature
extraction methods, permitting us to fix the vocabulary that we will use along
this work. Later, we introduce the most used shape descriptors in the graphics
recognition domain, grouping them according to the properties of the descrip-
tors. We have centered our attention in descriptor properties being the case that
we have introduced several times the same descriptor depending on the property
discussed at each moment. This discussion has been oriented to introduce, in
the next chapter, a ridgelets descriptor.

• Chapter 3 is devoted to ridgelets descriptors. In the first part we introduce
the mathematical framework that we need to explain the ridgelets descriptor,
i.e. Radon transform and Multiresolution Analysis theory. Then, we continue
with the implementation of ridgelets transform and the definition of a descriptor
based on this transform. We finalize this chapter by enumerating some of the
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problems of ridgelets descriptors, namely the size of the ridgelets descriptor and
the combination of descriptors from all resolutions. In this chapter, we also
propose some solutions for reducing the size of ridgelets descriptors, through
the definition of Local Norm descriptors.

• In chapter 4, we face the classifier fusion problem. We start with a short review
of classifiers and classifier fusion techniques and then we develop a probabilis-
tic framework to propose optimal solutions for linear combination of two-class
classifiers.

• The experimental evaluation of ridgelets descriptors and the optimal linear com-
bination rule is done in chapter 5. In this chapter we evaluate ridgelets descrip-
tors using symbol databases used in graphics recognition community to compare
ridgelets descriptors to other existing shape descriptors. The evaluation of the
combination rule is done in a similar way, using existing symbol databases, but
also using different classifiers to determine its influence in the combination rules.
We also carry out some experiments using synthetic data, which has permitted
us to experimentally validate the theoretical framework developed in the previ-
ous chapter. We finalize this chapter by applying the classifier fusion methods
introduced in chapter 4 to the ridgelets descriptors introduced in chapter 3.

• We finalize our work by summarizing the main contributions and the obtained
results. Besides, we point out some future lines of research in shape recognition
and classifier fusion.



Chapter 2

Shape Descriptors

In this chapter we will review some of shape descriptors proposed in the last years. We
will propose the definitions of descriptor and primitive and we will introduce the notion
of primary feature extraction method. With these definitions, we will classify shape
descriptors according to their properties pointing out their strengths and weaknesses,
concluding with a discussion about the proposed taxonomy for graphic descriptors.

2.1 Introduction

In the previous chapter we have divided the shape recognition process into three
stages, namely shape description, shape comparison and shape classification. In the
shape description stage, we describe the shape by extracting relevant features. In
the comparison stage, we compare shapes using these descriptors. Finally, in the
classification stage, we decide the class where the shape belongs to. However, if we
try to identify each of these stages in the existing methods we will realize that such
correspondence can not be done in a straightforward way. Most of the difficulties
to do this correspondence relies in the use of different terminologies to denote the
different elements taking part in the recognition process.

Since the first studies at the end of the sixties and beginning of the seventies, we
can periodically find in the literature several survey works which try to summarize the
new advances in shape descriptors, briefly explaining some of their main properties
[Loncaric, 1998, Mehtre et al., 1997, Pavlidis, 1978, Rui and Huang, 1999, Smeulders
et al., 2000, Trier et al., 1996, Zhang and Lu, 2004]. We will briefly summarize the
surveys of Pavlidis [1978], Mehtre et al. [1997] and Zhang and Lu [2004] in order to il-
lustrate the historical evolution of the proposed taxonomies as well as the terminology
used and its meaning in the shape recognition process.

One possible taxonomy can be that introduced by Pavlidis [1978] who divide algo-
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Internal External

Scalar
2D Fourier Transform
Moments

Fourier Transform

Space
Medial Axis Transform (skeleton)
Primary convex subsets

Chain code
syntactic descriptors
tree grammars

Table 2.1: Pavlidis’ taxonomy.

rithms for shape analysis in several binary classes: external and internal algorithms;
scalar and domain transforms; and information preserving and information nonpre-
serving methods. External methods refer to methods defined over the local boundary,
whereas internal methods are defined over the whole shape. He also makes another
distinction between scalar and domain transforms. This last kind of methods trans-
forms one image to another image whereas scalar methods compute scalar features
from input images. Finally, Pavlidis talks about information preserving and informa-
tion nonpreserving methods depending on whether it is possible to reconstruct the
original image from the shape descriptor. According to these three criteria, he defines
the following four classes of algorithms: external scalar transforms, internal scalar
transforms, external space domain techniques, internal space domain techniques —
table 2.1.

If we advance through the history of shape descriptors, we can observe some
changes. A first remark is that there were important advances in shape descriptors
from the end of the seventies to the middle of the nineties. The number of shape
descriptors increased and the number of groups of descriptors, too. Mehtre et al.
[1997] classified shape descriptors as boundary based methods and region based meth-
ods —which correspond to external and internal methods in Pavlidis’ taxonomy. The
tree structure used to organize the groups of shape descriptors illustrates the diffi-
culty of defining a suitable taxonomy of shape descriptors —Fig. 2.1. As example, in
boundary-based methods we find descriptors like chain code, area, perimeter, com-
pactness and Fourier descriptors, like in Pavlidis’ taxonomy. However, we can remark
that some of these descriptors like area, elongation and compactness, are also clas-
sified like complete, geometric, spatial and region shape descriptors. Therefore, the
classification is not unique. Besides, we must emphasize the different terminologies
used. Pavlidis talks of algorithms for shape analysis, whereas Mehtre et al. talk of
shape measures, shape recognition techniques and shape description.

Later, Zhang and Lu [2004] defined a slightly different taxonomy of that proposed
by Methre. They still differentiate between contour and region based descriptors
but they simplify Methre et al.’s classification by only differentiating between struc-
tural and global descriptors —in other contexts global descriptors are also known as
statistical descriptors. If we observe the descriptors reviewed by Zhang and Lu we
can remark that they are essentially the same descriptors than in Mehtre et al.’s
review. It means that advances in shape description have been done by improving
the existing methods. Besides, if we analyze the methods reviewed by Zhang and Lu
we can remark that some of them refer to shape comparison: Hausdoff distance or
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Figure 2.1: Mehtre et al.’s taxonomy.

elastic matching, which mean that they include the shape comparison into the shape
description stage.

Therefore, there is not a single, common and widely accepted term to define the
result of the description of shapes since the first applications of shape representation
in the seventies. Moreover, depending on the author’s idea and background, different
terms to denote the same concept have been used until now. We can talk of feature
vectors, descriptors or signatures depending on the application, mathematical prop-
erties or data representation. The problem is not only terminological. All these terms
have slightly different meanings and/or properties. We can find some examples of
that. For instance, Zhang and Lu [2004] define Shape signature as “a representation
by a one dimensional function derived from shape boundary points”. Meanwhile in
other contexts a signature is a n-dimensional vector of complex or real values [Tab-
bone et al., 2001]. Both definitions are quite different from a theoretical point of
view. Besides, the concept of feature vector implicitly implies a n-dimensional vector
where each component is a feature and they are often used in statistical approaches.
Usually, primitives are segments, arcs of circumference or splines represented by their
parameters, and they are used in structural or syntactic approaches.
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Contour Region

Structural

Chain code
Polygon
B-Spline
Invariants

Convex Hull
Media Axis
Core

Global

Perimeter
Compactness
Eccentricity
Shape signature
Hausdorff Distance
Fourier Descriptors
Wavelet Descriptors
Scale Space
Autoregressive
Elastic Matching

Area
Euler Number
Eccentricity
Geometric Moments
Zernike Moments
Pseudo-Zernike Moments
Legendre Moments
Generic Fourier Descriptors
Grid Method
Shape Matrix

Table 2.2: Zhang and Lu’s taxonomy.

But the different terminology is not the only difficulty to study the different exist-
ing feature extraction methods. As the description of the shape is usually the basis of
shape classification, one question arises: Where does shape representation finish and
where does shape comparison and shape classification start?

Depending on the terminology and the underlying definition used, we can fix
the border between these stages in one point or another. We have observed the
difficulty to fix this border in the reviewed literature. Zhang and Lu [2004] distinguish
between shape representation and description techniques, but differences between both
concepts remain unclear. It seems that a description technique involves not only the
features used to represent shapes but also the similarity measure or classification
methods to match them. Meanwhile shape representation only refers to the features.
Mehtre et al. [1997] use the concept of shape measures to refer to descriptors and
similarity measures to compare images in a Content-Based Image Retrieval (CBIR)
system. Some of the descriptors reviewed in their work are invariant moments, Zernike
moments or Fourier descriptors, which have been considered as shape representations
by Zhang and Lu [2004]. On the other hand, Loncaric [1998] and Trier et al. [1996], in
their respective surveys of shape analysis techniques and feature extraction methods
for character recognition, essentially review shape descriptors without taking into
account the measures used to match them or the classifiers involved in the recognition
process. Except for the so-called syntactic approaches, which are methods based on
grammars. The problem lies in the fact that a syntactic approach provides not only
a shape representation but also the definition of a measure —the parser— involved in
the recognition process. It is obvious that each grammar requires its specific parser,
but the descriptor is the definition of the grammar and the matching parser is the
similarity measure.

Then, we have considered that we should unify the terminology used to explain
shape descriptors. In this sense in section 2.2 we have proposed the definitions of con-
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cepts like descriptor, feature extraction method and primitive to clarify the different
parts taking part in the recognition process. In addition, because shape description is
a complex task, we have introduced the concept of primary feature extraction method,
which will help us to decompose feature extraction methods into more “elemental” en-
tities in section 2.3.

2.2 Definitions

All these differences in the ways to review shape description may provoke confusion to
a newcomer who is faced to several terms which are very similar in meaning and whose
differences are often linked to computational representation, mathematical context or
historical reasons. Therefore, we have proposed the definition of these concepts: de-
scriptor, primitive and feature extraction method that we will use through all this
work. The definition of descriptor will include the terms of feature vector and signa-
ture, whereas the definition of primitive will generalize the usual notion in structural
approaches.

Definition 1 (Descriptor). Is a set of features, extracted from primitives, used for
pattern recognition tasks.

This definition is coherent with the division of shape recognition in shape descrip-
tion, shape comparison and shape classification. As a result of the description of a
shape, we obtain a descriptor which later is used in the shape comparison stage. The
matching process does not characterize the shape and hence, it does not appear in
the definition of descriptor. Besides, we have to remark that we do not find any refer-
ence to feature representation. This fact, will permit us to state that feature vectors,
grammars and signatures are descriptors with independence of the structure used to
represent features. Finally, to completely understand the definition of descriptor we
have to explain what a primitive is. In this sense, we have proposed a definition of
feature extraction method that will permit us to introduce the concepts of primitive
and descriptor in a more natural way:

Definition 2 (Feature Extraction Method ). A feature extraction method (FEM)
is a map: D : X → Y such that:

• The elements x ∈ X are primitives

• For any A ⊂ X, yA = D(A) is a descriptor.

This mathematical definition of feature extraction method states primitives and
descriptors as input and output of the method, respectively. Let us illustrate these
concepts with the help of an example. Let us suppose that we have the shape shown
in figure 2.2. Then, several descriptors can be defined:

• We can extract the shape contours and consider the external contour as a prim-
itive. The closed curve is a periodic function and hence, the Fourier transform
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f(t) = tan−1(y(t), x(t))

∣∣∣f̂(ω)
∣∣∣

(a) Shape contour (b) Fourier descriptor based on the contour

Figure 2.2: Example of primitive and descriptors. (a) Example of a primitive (b)
Example of a descriptor, the Fourier transform (below) of the tan−1 (above)

can be applied to it, being the Fourier coefficients the descriptors —as depicted
in figure 2.2.

• We can vectorize the image and define an adjacency graph. In this case, the
primitives will be the vectors and the descriptor, the graph.

• We can compute Zernike moments, being the image the primitive and the coef-
ficients of Zernike functions, the descriptor.

These last examples show that we can find a wide heterogeneous pool of elements
that could be called primitives. Not only vectors and circumference arcs, as it has
traditionally been considered in structural approaches, but also pixel curves, raster
images, polylines, splines, etc. Besides, the definition of descriptor ties with one of
the reasons for being of FEMs, i.e. we need descriptors for something: recognition,
retrieval, spotting, indexing, etc. In this context, if we have a set of elements that we
can use for some pattern recognition purpose, then we probably have a descriptor. On
the other hand, if the features extracted from our data are not useful for the problem
that we have to solve, then we may seriously consider if we actually have something
that could be called a descriptor.

2.3 Taxonomy of Descriptors

In the reviewed surveys, the properties of descriptors are the basis of the groups of
descriptors. In a similar way, we can group classifiers according to the properties of
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the elements involved in the definitions of the previous section. Some examples of
these properties are:

Primitive: According to the geometry of the primitives of FEM, we can distinguish
between 1D descriptors and 2D descriptors. 1D descriptors will essentially cor-
respond to contour-based and skeleton-based descriptors while 2D descriptor
will correspond to region-based descriptors.

FEM: As Pavlidis, we will differentiate between FEM that permit us to reconstruct
primitives from descriptors —information preserving— and that do not permit
us this reconstruction —information nonpreserving. Besides, we can also group
descriptors according to whether they are invariant, or not, to affine transforms.

Descriptors: Some properties linked to a descriptor are related to its structure.
In this sense we can distinguish some particular kind of descriptors, such as
multiresolution and structural descriptors.

Nevertheless, we can easily remark that classifying shape descriptors using either
Zhang and Lu’s groups, or the ones defined according to these new properties, is not
straightforward. We can easily find methods that can be included in several categories.
For instance, a graph descriptor based on Hough/Radon transform [Lladós, 1997].
This descriptor is used to detect walls in architectural hand-drawing documents —
Fig. 2.3. We can identify these graphical entities because they are composed of two
parallel lines joined by obliques parallel lines. On the one hand, this descriptor can
be considered as structural —because the resulting descriptor is represented into
a string structure— but Hough transform is a global and region-based transform,
following Mehtre et al. [1997]’s taxonomy —Fig. 2.1. Using the new terminology
we can describe this last descriptor as: 1D, information preserving and structural
descriptor. We can define it as 1D because Lladós apply the Hough transform to
a vectorized image. Then, we have considered it information preserving because we
consider that Hough and Radon transform are essentially the same transform [Deans,
1982] —and the Radon transform is information preserving. Finally, as a structural
descriptor because the descriptor is represented using a string structure.

tdesk2
1.07

tdesk2
1.18

Figure 2.3: Example of the documents processed in Lladós [1997]

We have described this descriptor in this way because we have considered it as
the composition of two FEM. Firstly, we have applied the Hough transform to the
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vectorized image. Secondly, we have defined a graph structure based on the Hough
representation. The properties of the descriptor comes from the properties of these
two FEM. In this context, we can define primary FEM as a a FEM used as a part
of complex shape descriptors. Thereby, each of these two FEM can be considered
as primary FEM. However, we must emphasize that the decomposition of FEM into
primary elements have nothing to do with the decomposition of natural numbers into
“prime” numbers. In the case of descriptors, we can decompose FEM in several ways
depending on each situation. For us, the term of primary FEM is a conceptual tool
used to analyze shape descriptors.

The remainder of the chapter is devoted to the review of shape descriptors paying
special attention to those close to the multiresolution descriptor based on the ridgelets
transform, that will be introduced in the next chapter. In this sense, we have struc-
tured the review following a scheme similar to that done in the reviewed surveys, but
considering the properties of primitives, FEMs and descriptors. First, we group de-
scriptors according to whether their primitives are 1D or 2D. Then, we have classified
them depending on the FEM used to compute the descriptors. For 1D descriptors we
have defined four groups: Fourier, Stochastic, Curvature and Geometric Invariant.
Meanwhile for 2D descriptors we have defined three groups: polar, moments and local
norm. For all groups, we have discussed about their invariance to affine transforms.
After this review according to primitive properties we will review shape descriptors
from the perspective of descriptor properties. In this sense, we have distinguished
descriptors whose FEM is a multiresolution transform and descriptors that take into
account the structure of the shape to represent features.

2.3.1 Primitives of Descriptors

A constant issue in the surveys from Pavlidis’ to our current days is the distinction
between countour-based and region-based descriptors. We have also followed this dis-
tinction but changing the names to 1D and 2D descriptors, respectively. The basis
for changing the names is the definition of primitive. These names are linked to
the geometric properties of primitives in a more general way than contour-based and
region-based terms are. We will justify it with an example. There are feature extrac-
tion methods that can be applied to shape contours but also to other primitives as the
skeleton. Concerning the skeleton, if we look at the skeleton as a primitive, which are
the differences between a closed curve from a shape contour and a closed curve from
the skeleton ? —Fig. 2.4. If we consider the external contour of an image, and then we
consider the skeleton of the same shape, can anyone remark any significant difference
in these two representations? We believe that both representations, the skeleton and
the external contour of the circumference, are essentially equal and hence, we group
descriptors computed using both of them as 1D descriptors.

According to Definition 1, we will say that a descriptor is 1D, if its primitives
can be represented as a curve. We will consider that primitives are samples of an
unknown underlying curve that can be mathematically expressed as a combination
of continuous functions. Most of feature extraction methods based on mathematical
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(a) Contour (b) Circumference (c) Skeleton

Figure 2.4: Skeleton and Contour of a Circumference

transforms make similar assumptions, some of them imposing more restrictive condi-
tions like derivability. The cases where these hypothesis do not hold are object of a
deep study for each kind of descriptor and they are out of the scope of the current
discussion. Hence, we will basically think about descriptors obtained after computing
the contours, the skeleton or a vectorial description of the shape. Conversely, we
have defined 2D descriptors as those descriptors whose primitives are essentially two
dimensional regions.

1D descriptors

There are several transforms that can be applied to 1D primitives which can be
expressed in two ways, as univariate or bivariate functions. Some examples of de-
scriptors based on curves described by univariate functions are Fourier descriptors of
Zahn and Roskies [1972], curvature-based descriptors like those of Asada and Brady
[1984] and Berreti et al. [2000] or autoregressive (AR) descriptors of Das et al. [1990].
Examples of descriptors represented by bivariate functions are Fourier descriptors of
Bartolini et al. [2005], wavelets [Khalil and Bayoumi, 2000] and AR descriptors of
Sekita et al. [1992]. We will continue by sketching some descriptors according to the
type of transform used: Fourier, Stochastic, Curvature and Geometric Invariant.

• Fourier descriptors are probably the most applied descriptors in shape recogni-
tion problems. Fourier transform is an information preserving transform. Only
when the modulus is computed, information from primitives is lost. Without
the phase information we can not recover the original curve. There are sev-
eral ways to apply the Fourier transform to a planar curve: Zahn and Roskies
[1972] propose a descriptor based on the Fourier transform of the cumulative
angular function of the shape contour. Tabbone et al. [2006] apply 1D Fourier
transform to the R-Signature (which is obtained from the Radon transform of
the image) to reach invariance to rotation and Bartolini et al. [2005] apply this
transform to the shape contour and use phase information to compute similarity
between shapes. A strength of Fourier descriptors is that they permit to get
a global description of curves without requiring a large number of coefficients.
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However, they lose discriminant capability when the similarity between shapes
is important because slight differences are confused with noise.

• Stochastic descriptors are information preserving descriptors based on autore-
gressive methods. These methods consist of computing the parameters of the
curve using regression techniques like the least squares method. They are de-
fined over closed curves and hence, they are usually applied to contour curves.
The coefficients that fit contour curves are then used to derive invariant de-
scriptors to similarity transforms. Das et al. [1990] and Sekita et al. [1992],
propose bivariate AR models, instead of AR models based on univariate func-
tion representing the shape boundary, to overcome some shape representation
problems [Kashyap and Chellappa, 1981]. With a bivariate function convex
and non-convex shapes are treated in the same way. One of the drawbacks of
stochastic methods is that the number of coefficients needed to describe the
shape must be high for complex shapes and must be chosen empirically.

• Curvature descriptors are essentially computed from the curvature function,
which is based on the second derivative of a planar curve. It means that the
curvature function determines the planar curve, except in its position and ori-
entation, i.e. it is an information preserving FEM. Changes of curvature in
shapes are considered to be dominant features and they have been object of deep
study since the beginning of the eighties. Asada and Brady [1984] introduced
the concept of curvature primal sketch that is a multiresolution description of
shape based on curvature. Besides, Berreti et al. [2000], compute the curvature
function and extract local maxima points to construct a descriptor based on
minimal and maximal curvature points. Finally, the CSS descriptor, which is
based on a multiresolution description of the curvature function, is introduced
in the MPEG-7 standard [Manjunath et al., 2002], because it is shown that this
kind of descriptors usually have good performance for general shape description
purpose. However the computation of the second derivative makes this kind of
descriptor sensitive to noise.

• Geometric Invariant descriptors are inspired by Mundy and Zisserman
[1992]’s geometric invariant theory which aims at constructing affine invari-
ant descriptors. They suggest different ways to construct invariants that have
been applied to construct descriptors based on wavelets transform, Tieng and
Boles [1995, 1997], Khalil and Bayoumi [2002] and more recently, El Rube et al.
[2006]. For more details, Forsyth et al. [1991] and Khalil and Bayoumi [2001]
can be consulted.

2D descriptors

As we have said 2D descriptors are those whose primitives are essentially regions.
Classical descriptors in this group are: area, perimeter, eccentricity which were first
used in the seventies [Zhang and Lu, 2004]. But there are also more descriptors
than these that can be grouped according to their properties. Some examples are
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F -signature [Tabbone et al., 2001], who try to compute shape “internal forces”; zon-
ing descriptors and R-signature that could be considered to be special cases of a
more generic descriptors namely Local Norm descriptors, which have been introduced
by Costa and Cesar Jr. [2001]; Moments descriptors like invariant geometric mo-
ments [Hu, 1962], Legendre or Zernike [Teh and Chin, 1988, Yap and Paramesran,
2005]; multiresolution descriptors like wavelets or ridgelets; Fourier descriptors, Radon
descriptors or ART from MPEG-7 standard [Kim et al., 1999, Manjunath et al., 2002].
We have proposed to classify all these descriptors into three different groups: polar,
moments and local norm descriptors.

• Polar descriptors. Document images are usually expressed in Cartesian co-
ordinates. However some descriptors are based on a polar representation of im-
ages, although the change of artesian-to-polar coordinates is a time-consuming
process. These descriptors have proved to perform well in shape recognition
tasks but they have important drawbacks. One of them is the definition of
the coordinates origin. The change of artesian-to-polar, and polar-to-artesian,
is based on the distance of points to the coordinate origin. The same shape
can be represented in a very different manner depending on the definition of
the coordinate origin. Examples of methods to determine the coordinate ori-
gin are: the center of gravity, the center of the bounding box or the center of
the minimal enclosing circle. Each of these methods will get a different polar
description of the shape. A second drawback is the effect of shifts in a polar
description. While a shift in a artesian system follows a linear map, a shift in
a polar system follows a sinusoidal function. This fact makes difficult getting
shape invariance to translation. A third drawback is the time complexity of
this type of transforms. There are methods like that of Averbuch et al. [2001]
who propose a pseudo-polar transform in order to speed up the change of coor-
dinates, proposing concentric squares instead of concentric circles to represent
shapes in a pseudo-polar space. However, this transform introduces geometrical
distortions due to the approximation of circles by squares.

The most representative descriptors in this group are: Polar Fourier transform,
Fourier-Mellin transform, Radon/Hough transform, Zernike Moments and An-
gular Radial transform. We will treat Radon and Hough descriptors as the
same kind of descriptors, since Deans [1982] justifies that we can compute Hough
transform from Radon one. Hough transform has been classically used to detect
segments on images [Fränti et al., 2000, Leavers, 1992]. There exist generalized
versions of Hough transform trying to detect other simple shapes like circles
or general curves [Ballard, 1981] but their use is not generalized. Radon de-
scriptors are R-Signature [Tabbone and Wendling, 2002, Tabbone et al., 2006]
and the ridgelets transform introduced in chapter 3. Polar Fourier transform
simply consists of computing 2D Fourier transform in polar coordinates. An
example is the Generalized Fourier descriptor [Zhang, 2002]. On the contrary,
the Fourier-Mellin transform computes the Fourier transform in the angular pa-
rameter whereas in the radial parameter is the Mellin Transform (which is a
kind of moment function in a complex variable) [Adam et al., 2001]. Angular
Radial transform decomposes a shape in an orthogonal basis which is defined
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by the multiplication of a radial function and an angular function [Kim et al.,
1999]. Both functions, angular and radial are defined by a parameter that deter-
mines the ART coefficients. This descriptor has been included in the MPEG-7
Standard. Finally, Zernike Moments are defined by the same angular function
as ART descriptors, but the radial function is a real-valued polynomial [Chong
et al., 2003].

• Moment-based descriptors. Another family of 2D descriptors widely used
in shape recognition are moment-based descriptors. The most well-know are
invariant geometric moments described by Hu [1962]. Some algebraic combina-
tions can make them invariant to similarity transforms.

Legendre and Zernike moments are other moment-based descriptors used to
construct invariant shape descriptors. Definitions of these moments are based
on the Legendre and the Zernike polynomials, which are defined over the unitary
disk. These bivariate polynomials can also be expressed in a complex way and
mathematical theory proves that we can express any complex (or bivariate)
function defined over the unitary disk as a Legendre or Zernike polynomial of
infinite degree. Then, we can obtain an approximation of the original function,
i.e. the shape, by truncating this infinite polynomial. The polynomial degree
is the maximum moment order. Some works concerning Legendre and Zernike
Moments are [Teh and Chin, 1988, Yap and Paramesran, 2005], to cite some of
them.

Zernike moments have proved to be more discriminant and robust to noise
than geometric and Legendre moments. However, they are computationally
more time expensive. Some comparative studies have been carried out in this
direction [Chong et al., 2003].

• Local Norm descriptors are a group of descriptors constructed after com-
puting a norm over the primitives. Roughly speaking when we think of Local
Norm descriptors, we should imagine that we divide the space of primitives into
disjoint sets. Afterwards, we compute a norm over these sets. So the name of
local norm. These descriptors, introduced by Costa and Cesar Jr. [2001], are
not as known as other descriptors like moment and Fourier descriptors, but they
have some properties that make them interesting for shape description. Later,
in section 3.5 we will explain in detail local norm descriptors as we apply them
to ridgelets descriptors. Other examples of these descriptors are zoning and
R-Signature [Tabbone and Wendling, 2002] that can be understood as a Local
norm descriptor based on the Radon transform.

Invariance to similarity transforms will depend on the definition of each Local
Norm descriptor. For instance, R-signature is invariant to translation but not to
rotation whereas ridgelets local norm descriptors are invariant to shape rotation
but not to shifts. More specifically, invariance to similarities will depend on the
definition of the space in which we will compute each norm. If the space is
invariant to a particular transform, then the descriptor will be invariant, too.

This kind of descriptor is useful to compact and reduce the description of the
shape. We concentrate the information of a set of features on a single value, its
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norm. However, we probably lose discrimination capability. Therefore, we must
find the trade off between discrimination and the size of descriptor.

2.3.2 Multiresolution methods

During our daily activities we do not usually pay the same degree of attention to all
tasks we must carry out. If we held meticulous attention to all of them we would
surely finish our working day exhausted. It would be too energy consuming. In a
similar way, not all pattern recognition tasks need the same degree of information to
achieve their goals. Some of them can be done simply with a shape sketch whereas
other need as much information as possible. Multiresolution descriptors were born
to solve these needs, by describing shapes at different resolutions depending on the
problem to handle. In the literature, we can find two different approaches: Scale
Space and Wavelets methods.

Space scale method basically consists of smoothing the shape by convolving it
with a Gaussian kernel. This kernel depends on a parameter, σ parameter, which
is usually referred to as the scale parameter. The underlying hypothesis is that the
most relevant features will be preserved at rough scales, when the Gaussian kernel is
bigger. Therefore, descriptors based on this method usually extract features following
a pyramidal algorithm from the roughest scale to the finest one to complete the shape
description. In 1D descriptors, scale space descriptors are obtained by convolving the
contours of the shape by a Gaussian kernel (first and second derivative of a Gaussian
filter). They are known as Curvature Scale Space (CSS) and an example is the “primal
sketch curvature” [Asada and Brady, 1984]. In 2D descriptors a 2D Gaussian kernel
is applied over the whole image. An inherent drawback of this kind of multiresolution
approach is that the size of data is always the same, in spite of information reduction.
It means that for rough scales the size of the descriptor is the same as for finest
scales. However, in descriptors like the CSS included in the MPEG-7 Standard local
maxima are extracted and used as descriptors, reducing in such way the size of the
descriptor [Manjunath et al., 2002].

Other multiresolution descriptors are wavelets descriptors. By wavelets descriptors
we mean all descriptors derived from the Multi-Resolution Analysis (MRA) theory.
As MRA theory is one of the basis of ridgelets transform, later in section 3.2.2 we
will explain it in detail. For a deep study we recommend [Mallat, 1989, 1999]. 1D
wavelets have been applied to contours of shapes with a relative degree of success.
Some approaches are those from Khalil and Bayoumi [2000, 2001, 2002] which combine
wavelets with the geometric invariant theory and works from [El Rube et al., 2006].
Concerning 2D descriptors, wavelets have also been used directly on images to detect
horizontal and vertical lines. When lines have other orientations the performance of
2D wavelets decreases. In graphics recognition problems, we can find lines oriented
in any direction.

One of the main problems in this kind of descriptors is how to select the most
suitable range of scales to represent the shape. Depending on the selected range of
scales, recognition performance can vary significantly.



26 SHAPE DESCRIPTORS

2.3.3 Structural descriptors

By Structural descriptors we denote the descriptors that take into account the struc-
ture of the shape. We mean the logical relationships (perpendicularity, adjacency,
crossing,. . . ) between the elements composing the shape. According to the definition
of descriptor introduced at the beginning of this chapter —section 2.2— the vectors,
or curves, extracted in this previous step will be the primitives of the structural de-
scriptor, which ties with the classical notion of primitives that we can find in the
literature. Depending on the primitives extracted from the shape, we will be able to
extract different kinds of relationships. For instance, if we extract vectors we will be
able to compute parallelism, adjacency or angle between them. Besides, if we extract
polylines, or other complex curves, we will be able to extract information like inclu-
sion or intersection. If primitives are regions, like in logos or other solid shapes, we
can define relationships between the regions.

The first works in structural pattern recognition methods date from the end of 60s
and the beginning of 70s. Recently, Conte et al. [2004] have reviewed graph matching
methods defining two different taxonomies: matching algorithms and application of
graph-based techniques. Nevertheless, according to our discussion in section 2.2 this
classification can not be applied to descriptors as they have been defined there. Conte
et al. paid attention to graph matching algorithms and their application, whereas we
are interested in the descriptors themselves and more specifically in the existing struc-
tures to represent the relationships between graphical entities. Shapes are described
by these set of relationships extracted from primitives. Each different shape is called
a prototype and matching algorithms try to identify the correct shape comparing its
descriptor with the descriptors extracted from their prototype.

We find more suitable the classification done by Lladós [1997], when he explains
structural methods for graphics recognition. He distinguishes between syntactic and
prototype-based descriptors. Syntactic descriptors are those determined by a Gram-
mar [Groen et al., 1985, Lee, 1992, Messner and Bunke, 1996]. Grammar descriptors
are based on formal language theory introduced by Chomsky in the middle of 50s. A
grammar is a condensed representation of a large set of prototypes. From a finite set of
elements and a set of rules we are able to produce a large set of prototypes in a similar
way that in human language, in which we have an alphabet and the language gram-
mar rules which permit us to produce words. This kind of representation is suitable
when the number of prototype patterns is big, when common substructures among
patterns are large and when the knowledge available about the structure will facilitate
the grammar inference [Bunke, 1990]. If some of these factors do not hold then it
will be better to use a prototype-based descriptor. Prototype-based descriptors are
usually represented using strings and graph structures. They permit us to use graph
theory —graph and sub-graphs isomorphisms— to compare and classify shapes that
can be even partially occluded [Bunke, 1982, Fahmy and D., 1993, Habacha, 1991].

However, the computational cost in time of both kinds of representations, gram-
mars and graphs, is high. That is one of the reasons that explains that research in
this field has been focused on matching methods that try to speed up the algorithms.
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2.4 Discussion

In the reviewed literature we have observed that there is not a fixed terminology to
refer to the different elements involved in the shape recognition process. This fact
not only makes difficult for a newcomer to understand the difference between existing
descriptors but also a comparative analysis of them. Consequently, we have pro-
posed to unify the terminology by proposing definitions of descriptors, primitives and
FEM. These definitions are general enough to be applied to any kind of descriptors,
independently of application or implementation issues.

Besides, shape description is a complex task that have motivated a rich variety of
descriptors making difficult the task of grouping them into disjoint class. Thereby, if
we want to understand descriptors behavior, we need to describe them in a flexible
way. In this sense, we have proposed the notion of primary FEM. Thus, decomposing a
descriptor in these primary components will help us. Firstly, to understand descriptor
properties and, secondly, to propose new descriptors improving the performance of
the existing ones.

In this context, we have linked some properties of descriptors to one of the three
elements that take part in the process of shape description. We have characterized
descriptors according to the geometry of their primitives —distinguishing between
1D and 2D descriptors. Besides, we have connected structural and multiresolution
properties to the descriptor itself and, finally, the invariance and the information
preserving properties have been linked to the FEM. The review of shape descriptors
has been done according to these properties.

We have not pretended to do an exhaustive review of all kind of shape descriptors.
We have commented the more significant descriptors for the goals of our work and
we have seen how to describe them using the chosen properties and the groups of
descriptors defined in this chapter. However, there are other descriptors we have not
talked about as for example, those based on the Medial Axis Transform (MAT)[Blum,
1967] —also known as skeleton. We have seen the skeleton as a basis for other de-
scriptors. However, the first descriptors based on this transform date from the end of
sixties [Blum, 1967] and more recently [Siddiqi et al., 1999] has proposed shock graphs,
which are based on the skeleton. Another example of descriptors that we have not
commented are boundary approximation methods. These descriptors include polygo-
nal approximation, splines, but also vector approximation or autoregression methods.
For more detailed surveys about shape descriptors, referenced works like Loncaric
[1998], Mehtre et al. [1997], Zhang and Lu [2004] can be consulted.

This chapter had two objectives, the first one was to offer the reader a global
overview of shape descriptors, focused on 2D descriptors. The second objective was
to introduce the required vocabulary to introduce a descriptor based on the ridgelets
transform in the next chapter. Besides, we need to introduce the concept of primary
FEM to articulate the description of descriptors in a flexible way. Thanks to these vo-
cabularies we can describe the ridgelets descriptor as a multiresolution 2D descriptor,
polar, information preserving.
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Chapter 3

Ridgelets descriptors

In this chapter we will introduce ridgelets transform as a suitable multiresolution trans-
form to extract features from shapes. We will first explain Radon transform and mul-
tiresolution analysis as the theoretical framework of ridgelets transform. Then, we will
construct a descriptor based on ridgelets transform, proposing besides a similarity mea-
sure invariant to rotation. Finally, we will derive local norm features based on ridgelets
as a useful descriptor to reduce the size of ridgelets descriptors.

3.1 Introduction

General purpose descriptors do not usually perform satisfactory enough in graphics
recognition tasks. Traditionally, graphic symbols have been represented using struc-
tural descriptors [Lladós, 1997, Sánchez, 2001, Valveny, 1999], which are based on a
vectorial representation of the shape. Vectorization is quite sensitive to noise [Chen
et al., 1996, Nagasamy and Langrana, 1990, Tombre et al., 2000] and to distortions
of sketched symbols. We can try to overcome this problem using graph-edit dis-
tances Habacha [1991], Jiang et al. [2000], Messner and Bunke [1996], grammar de-
scriptors [Sánchez, 2001] or deformable models [Valveny, 1999]. Another possibility is
to propose descriptors that do not need a vectorial representation. In this context, we
can find 2D descriptors like those reviewed in the previous chapter. For instance, the
F-signature [Tabbone et al., 2001] or different evolutions of the R-Signature [Tabbone
and Wendling, 2002, Tabbone et al., 2006]. The multiresolution descriptor based on
ridgelets transform introduced in this chapter can be included in this second group
of descriptors.

Structural approaches have traditionally been used in graphics recognition be-
cause the difference between symbols can be expressed in terms of the difference in
the spatial relationships between the lines and the arcs of circumference composing
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the graphic symbol. On the contrary, we can think of lines as singularities and hence,
we can apply methods to detect these singularities. For example, edge detection meth-
ods [Canny, 1986] or two dimensional wavelets transform [Mallat, 1999]. However,
separable wavelets can only detect isolated points. Their performance is similar to
directional gradients and they are not able to describe properly more complex geome-
tries like lines. Therefore, other singularity detectors should be investigated. In this
sense, non-separable wavelets seems to enhance singularity detection. However, this
kind of transform is computationally expensive and particular constraints must be
applied to overcome this shortcoming. In that direction, Gabor wavelets bank filters
have been used in the texture analysis domain [Manjunath et al., 2000].

Another extension of wavelets to 2D is the ridgelets transform, which was defined
in the context of neuronal nets and functional approximation by Candès [1998]. His
goal was to design a system with the minimal number of neurons to fit any (but rea-
sonable) function. Candès concludes that, in the two dimensional case, the ridgelets
transform is better than Fourier and wavelets transforms to approximate functions
with singularities along lines, whereas its performance for other kinds of singularities
is not worse. This property makes it suitable to describe images with linear singulari-
ties [Candès and Donoho, 1999, Donoho, 2000, Flesia et al., 2001]. Ridgelets transform
takes the original intensity image and returns a multiscale sparse representation in
the polar space where high values correspond to the parameters (θ, t) of the lines in
the original image, while far away of these points the response is low (near to 0).

In fact, although it is an independent image transform, originated in the context
of non-separable wavelets, the ridgelets transform can also be explained as the combi-
nation of two primary FEM: Radon/Hough transform and wavelets transform. From
this point of view, the ridgelets descriptors can be defined as multiresolution, 2D,
polar, information preserving and invariant to shifts and scale but not invariant to
rotation. In this context, as the Radon/Hough transform have proved to be a suitable
transform to detect lines [Fränti et al., 2000, Lladós, 1997, Tabbone and Wendling,
2002], we can hope that ridgelets transform, too. Besides, as ridgelets transform be-
longs to the family of wavelet transforms, it is also a multiresolution transform with
several scales of decomposition, and it can be used for indexing purposes. Therefore,
the ridgelets transform can be used as the basis for general pattern recognition tasks
such as shape recognition, indexing, browsing, etc, where the main shape feature are
lines. To sum up, the ridgelets transform combines advantages of both transforms,
the ability to detect lines, from the Radon transform, and the multiscale property of
wavelets to work at several levels of detail.

We will continue by introducing the theoretical framework needed to explain
ridgelets transform. So, we will review in more detail Radon/Hough transform and
wavelets transform, in the context of multiresolution analysis. Afterwards, we will
construct a ridgelets basis like in Donoho [2000] to propose a descriptor based on
ridgelets transform. A similarity measure to compare ridgelets descriptors will be
proposed in section 3.4.2 and we will finalize by proposing a new ridgelets descriptor,
based on local norm features, to reduce the size of ridgelets descriptor in section 3.5.
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3.2 Theoretical Framework

Although we apply Radon transform to images, it can also be applied to scalar func-
tions defined in a high dimensional space. The Radon Space is the mathematical
object used to study the properties of the Radon transform. In particular, the defi-
nition of Radon Space for a two dimensional space is:

Definition 3 (Radon Space). We call Radon space, R, to the functional space,
squared integrable, defined in the surface of the cylinder R × S1 and verifying the
antipodal symmetry:

F (t, θ) = F (−t, θ + π) (3.1)

The Radon Space is a Hilbert space and most of the properties of finite vectorial
spaces are still valid. For instance, we can define an inner product that will permit
us to measure distances between functions as follows:

For f and g functions from the functional space of square-integrable functions in
V , L2(V ) —where V denotes a real and finite vectorial space of dimension n— we
define the inner product of f and g as:

〈g, f〉 =

∫

V

f(x)g(x)dx

This inner product induces a norm given by:

‖f‖2 =

∫

V

|f(x)|2 dx

and hence the distance between two functions will be given by d(f, g) = ‖f − g‖.
Besides, because the Radon space is a vectorial space we can find a discrete set of
functions forming an orthogonal basis, such that all the functions f ∈ L2(V ) are deter-
mined by a linear combination of the functions basis. The coefficient of each function
in the basis is computed by projecting the function f to the one dimensional space
spanned by the orthogonal function, i.e. the coefficients are given by the inner product
between the function f and all the functions of the basis. In this context, univariate
wavelets functions are an orthogonal basis of square-integrable real functions, whereas
the wavelets extension to bivariate functions is a set of bivariate basis functions of
square-integrable functions defined in a plane. The definition of ridgelets descriptors
lies in the construction of an orthogonal basis of ridgelets functions [Donoho, 2000]
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Figure 3.1: Radon transform of a graphical symbol: Electrical J : (a) Symbol image.
(b) Radon Transform of image in (a) corresponding to angles in [0, π)

3.2.1 Radon Transform

We will continue by explaining some properties of the Radon transform that will be
useful in the definition of ridgelets descriptors. Besides, we will propose a modification
of the Fast Slant Algorithm proposed by Averbuch et al. [2001] to compute the Radon
transform, which will correct some geometrical distortions of the original algorithm
making it useful for shape recognition tasks.

For a L2 function f(x), let Rf denote the Radon transform of f , which is defined
as the integral of the function along a line Lt,θ, and is expressed using the Dirac delta
δ:

Rf(t, θ) =

∫
f(x1, x2)δ(x1 cos θ + x2 sin θ − t)dx, (3.2)

where the phase space is R × [0, 2π). In binary images, the value of the Radon
transform at a point (t0, θ0) corresponds to the total number of pixels along the line
Lt0,θ0 . In figure 3.1 we can see an example of a binary image of a linear graphic
symbol and its Radon Transform. Higher values can be found at angles π/4 and
3π/4, which correspond to the orientation of the main lines of the symbol. The two
horizontal lines in the Radon transform are due to the circle.

The Radon transform has some interesting properties when a similarity transform
(translation, rotation or scaling) is applied to a given image. These properties allow
to recover the Radon transform of the transformed image from the Radon transform
of the original image. As they are partially inherited by the ridgelets transform, they
can be used in order to define invariant descriptors to such transforms. We have
summarized below these properties:

Rotation Let Gα be the rotation by angle α, which is applied to an image f(x).
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Then, the Radon transform of the rotated image can be expressed as:

R (f ◦Gα(x)) (t, θ) = Rf(t, θ + α). (3.3)

Translation Let Tv(x) = x + v, v = (v1, v2) ∈ R2, be a translation of an image
f(x). Then the Radon transform of the translated image is:

R (f ◦Tv(x)) (t, θ) = Rf(t+ t′(θ), θ), (3.4)

where t′(θ) = v1 cos(θ) + v2 sin(θ).

Scaling Let Ha(x) = ax, a > 0, be the scaling of an image. Then, the Radon
transform of the scaled image is:

R (f ◦Ha(x)) (t, θ) =
1

a
Rf(at, θ), (3.5)

Thus, a rotation of an image involves an horizontal shift (a shift in the angular
parameter) in the Radon space, whereas a translation in the image space results in a
non-linear shift in the t (vertical) parameter of the Radon space. Finally, scaling an
image involves another scaling in the Radon space but only in the vertical parame-
ter. In particular, expression (3.3) will play an important role in the definition of a
similarity measure between images, in section 3.4.2, in order to achieve invariance to
rotation.

There are several implementations of Radon transform. One of them consists of
applying the definition of Radon transform [Rosenfeld and Kak, 1982] but it could be
time expensive for some applications. Hence, other possibilities have been explored
and one of them is the Fast Slant algorithm proposed by Averbuch et al. [2001].
This algorithm is based on the computation of 2D Fourier transform in concentric
squares. However, this representation introduces some geometric distortion that can
difficult recognition tasks. So, we have suggested a slight variation of this algorithm
computed in concentric circles. Consequently, we will start the next part of this
section explaining the FSS algorithm of Averbuch et al. and then, we will explain
how we can correct the geometric distortion.

Implementation of Radon Transform

Fourier Slice theorem gives us the relationship between Radon transform and Fourier
transform [Rosenfeld and Kak, 1982]. Let us denote F1, F2 the univariate and bivari-
ate Fourier transform and P the polar-to-cartesian operator. Then:

F1◦R = P ◦F2 (3.6)

This expression suggests us a two steps method to estimate the Radon transform of
an image. Firstly, we can calculate Polar Fourier transform, the right side in equation
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Figure 3.2: Pseudopolar grid for N = 8

(3.6) and after that, we can apply inverse 1D Fourier transform to recover Radon
transform.

From the 2-dimensional discrete Fourier’s expression, we get:

f̂d(ω1, ω2) =
∑

j,k

f [j, k]e−i(kω1+jω2) (3.7)

we can change this expression to polar coordinates by writing ω1 = ξ cos θ and
ω2 = ξ sin θ. Then, we replace in (3.7) by sampling ξn = n

N , n = 0, . . . , N − 1 and
θm = 2π

Mm, m = 0, . . . ,M − 1.

f̂d[n,m] =
∑

j,k

f [j, k]e−
in
N (k cos 2πm

M +j sin 2πm
M ) (3.8)

It is not clear how to calculate equation (3.8) in a fast way. However, Averbuch
et al. define a pseudopolar grid —see figure 3.2— where circumferences are approx-
imated by squares in order to have frequencies aligned in two separate panels: the
first one, Ω1, is composed of frequencies with angles in [− π

4 ,
π
4 ) and the second one,

Ω2, composed of those frequencies with angles in [ π4 ,
3π
4 ).

Ω1 =

{(
nπ

N
,

2

M
m
nπ

N

)
−N ≤ n < N,−M

2
≤ m <

M

2

}

Ω2 =

{(
2

M
m
nπ

N
,
nπ

N

)
−N ≤ n < N,−M

2
≤ m <

M

2

}

We are going to develop Averbuch et al.’s approach with panel Ω1. For the set of
frequencies in Ω1, cos θ 6= 0, we can write:

f̂d[n,m] =
∑

j,k

f [j, k]e−iξ cos θ(k+j tan θ)
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But ξ cos θ = nπ
N and tan θ = 2m

M . Thus:

f̂d[n,m] =
∑

j,k

f [j, k]e−i
π
N n(k+j 2m

M )

=
∑

j

(∑

k

f [j, k]e−i
π
N nk

)
e−i

2π
N nj 2m

M

Setting αm = 2m
NM , we rewrite this last expression as:

f̂d[n,m] =
∑

j

(∑

k

f [j, k]e−i
π
N nk

)
e−i2πnjαm, (3.9)

where external sum is a Fractional Fourier transform with parameter αm, that can
be computed with logarithmic cost, Bailey and Swarztrauber [1991]. Panel Ω2 can be
treated in an analogous way, replacing cos by sin and tan by cot.

In this way, we can compute the right side of equation (3.6). Finally, we only have
to apply 1D inverse Fourier transform to each column and we retrieve the Radon
Transform.

a)

b)

c)

Figure 3.3: Geometric distortion of pseudo-polar coordinates in rotated shapes: a)
rotated images. b) Radon transform using original FSS. c) corrected version

This discrete implementation results in a Radon transform that is geometrically
exact to the continuous version in the same way that circles are similar to squares.
There is some distortion from the ideal transform due to the use of a pseudo-polar
grid instead of using a real polar grid. Figure 3.3.b shows what we mean. As we
move away from the origin, the distance between local maxima of image transform
and theoretical local maxima grows. The red line corresponds to the position in t
direction where all maxima should be. However, for rotated images, local maxima
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are farther from the origin. Furthermore, slice parameter t and angular parameter θ,
are not uniformly sampled for all couples (t, θ).

We have developed a slightly different implementation of the Fast Slant Stack
algorithm, where we correct the sampling of t parameter and we increase geometrical
precision by replacing the last 1D inverse Fourier transform in equation (3.6) by its
fractional version with parameter α according to the angular value in each column.
In the pseudo-polar grid, for each angle θ, t samples are equispaced but distances
between them depends on the angle. Fractional Fourier transform allows us to obtain
an uniform t sampling for all θ, as we can see in figure 3.3.c, where all local maxima
are located at the same value of parameter t, independently of the angle. In such
way we compute Fourier transform in concentric circles although it has not been
uniformly sampled in the angular parameter. As angular sampling is not important
for our applications, we leave it as in Averbuch et al. approach.

3.2.2 Multiresolution Analysis

Ridgelets coefficients are obtained after applying wavelets to the Radon transform of
the shape. Thus, we must explain wavelets transform in a more general framework, i.e.
multiresolution analysis (MRA). Multiresolution analysis theory has been developed
within wavelet theory. In fact it is difficult to state the border between both. One
may say that multiresolution analysis theory has been inspired and motivated by
wavelets study and multiresolution analysis can not be understood without wavelets.
In this section, we will summarize the theory of multiresolution analysis to state some
definitions and to fix the intuition about multiresolution approaches. For a detailed
explanation of multiresolution analysis A Wavelet Tour of Signal Processing, can be
consulted [Mallat, 1999].

The idea we should keep in mind when we think about wavelets is that we are
approximating the original shape by an addition of details grouped according to their
relevance. The name of multiresolution has been motivated by this characteristic of
approximating the image at different levels of resolution. The notion of resolution
in this field is also connected to the usual meaning of resolution when images are
acquired by some input devices such as scanners. Objects in a scanned document at
low resolution, are described without many details. Similarly, an image approximated
at a low resolution level offers a rough approximation of the original one. In other
words, we can imagine we have a kind of magnifying glass that we will use to examine
our image. This magnifying glass has different zoom levels permitting us to examine
our image at different resolutions. At a given resolution we will shift our over the whole
image obtaining an approximation at that resolution. Thus, the magnifying glass will
be expressed as a mathematical function, ϕ in L2(V ). The shifts and zooms of ϕ form
a parametric family of functions that will span the space L2(V ). The ϕ function is
named scaling function and it will determine the multiresolution approximation.

Fixing the resolution at level 0 the set of functions {ϕ0,k(x) = ϕ(x− k)|k ∈ Zn}
will span a vectorial space V0 ⊂ L2(V ). Then, we will project the image-function f
over V0 by computing the inner product a0[k] = 〈f, ϕk〉. Hence, the function: f0 =
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Figure 3.4: Fast Wavelet Transform, FWT is computed with a cascade of filtering with
h and g followed by a factor 2 subsampling Mallat [1999]

∑
k a0[k]ϕk(x) is the nearest element of V0 to f and is named the approximation of f

at resolution 0. If we dilate the function ϕ by multiplying their arguments by 2, then
we change the resolution of ϕ. Afterwards, the set {ϕ1,k(x) = ϕ(2x− k)|k ∈ Zn} will
span to a vectorial sub-space V1 ⊂ L2(V ). The function f1 obtained after projecting f
over V1 is another approximation of f .To see the relation between both approximations
we will return to one dimensional case, in which the multiresolution analysis was
initially developed. It can be proven that V0 ⊂ V1 and, more in general:

∀j ∈ Z, Vj ⊂ Vj+1

The bigger is the resolution, the bigger is the similarity between f and its ap-
proximation. The difference between space Vj and Vj+1 is another vectorial space,
namely Wj , which is the space composed by the details of f at resolution 2j . Wj is
generated by the integer shifts of the wavelet function ψ(x). In this case, the details
are obtained after projecting f over the wavelets functions, ψ, i.e.. dj [k] = 〈f, ψk〉.
Hence, we can obtain a decomposition of functional space, L2(V ), into orthogonal
vectorial sub-spaces:

L2(V ) = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕Wj0+2 ⊕ · · ·

To sum up, we can divide the functional vectorial space L2(V ) into a infinite
sequence of vectorial sub-spaces. The first sub-space of this sequence is the resolution
space which is generated by integer shifts of the scale function ϕ at a given resolution
2j0 , whereas the other sub-spaces are the details sub-spaces Wj generated by the
wavelet function ψj . Thereby, the wavelets coefficients are both the sequence {aj0 [k]}k
and {dj [k]}k,j≥j0 . Besides, the values aj0 and dj can be quickly obtained by convolving
the function f with a low-pass, h, and a high-pass, g, filters to compute the projections
to Vj0 and Wj , respectively —figure 3.4. Both filters, h, and g are obtained from the
scale and the wavelet function, respectively.

We can easily extend wavelet transform to higher dimensions by applying a MRA
to each dimension. On the left-hand side of figure 3.5 we can see the cascade 2D FWT
introduced by Mallat [1999]. At each iteration, we reduce the resolution of the original
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(a)Cascade 2D FWT (b) Tensorial 2D FWT

Figure 3.5: Extension of FWT to bivariate functions.

image by applying at each dimension one iteration of the 1D FWT. On the contrary,
on the right-hand side of the figure 3.5, we can observe the 2D FWT used by Donoho
[2000] to compute the ridgelets basis. In this case, first, we apply the 1D FWT to
one dimension of the image and then, we apply the 1D FWT to the other dimension
—each rectangle delimited by the orange lines corresponds to wavelets coefficients at
a given scale.

3.3 Ridgelets Transform

Ridgelets transform is a suitable transform to detect linear singularities in any direc-
tion. It will permit us to describe shapes, and more in particular graphic symbols, in
terms of lines without the need to vectorize documents. The ridgelets transform was
first defined by Candès Candès and Donoho [1999], in the context of neuronal nets
and functional fitting. In his work, the activation function, ψ, is a wavelet which is
used to define a ridgelets function, ρa,t,θ as follows: for each positive a, any t ∈ R and
θ ∈ [0, 2π), we define ρa,t,θ : R2 → R2 as:

ρa,t,θ(x1, x2) = a−1/2ψ((x1 cos θ + x2 sin θ − t)/a).

This function is constant along lines x1 cos θ + x2 sin θ = t and transverse to the
“ridges” —lines—, it is a wavelet. Candès concludes that ridge functions have better
properties than traditional activating functions and that we can approximate some
kind of functions, including images, by ridge functions. Intuitively, we can think of
images as composed of a superposition of ridges.

One interesting property of the ridgelets transform is coefficient sparsity. Higher
coefficients are concentrated around the parameters θ and t corresponding to the
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longer lines in the image. Thus, sparsity permits us to localize and to separate linear
singularities into the parameter space. This is the main property that distinguish
this wavelet from usual separable wavelets (Haar, Daubechies, Meyer,. . . ) [Mallat,
1999]. On the contrary, one of the shortcomings of the continuous ridgelets transform
is its discretization. However, Donoho overcomes this problem by constructing an
orthonormal basis which he calls orthonormal ridgelets basis [Donoho, 2000]. He
proposes a family of functions that form an orthogonal basis of L2(R2) and then,
he justifies the connection between this basis and the ridgelets functions defined by
Candès in his thesis. On the forthcoming, we will use the orthonormal ridgelets basis
constructed by Donoho, but keeping in mind the intuitive idea of the continuous
ridgelets transform.

Taking the definition of the Donoho basis, we can see the ridgelets coefficients of
an image f as the wavelets coefficients of the Radon transform of f . That means that
we must define an isometry, I−1, based on the Radon transform and an orthogonal
wavelet basis Wλ. Then, we can compute ridgelets coefficients with this formula:

WRf(λ) =
[
I−1f,Wλ

]
(3.10)

where WRf(λ) denote the λ ridgelets coefficients of image f and [·, ·] is the inner
product defined in the Radon Space —definition 3.

3.3.1 Computation of Ridgelets coefficients

Algorithm: Ridgelets coefficients

Input: Image, f .
Output: ridgelets transform, WRfλ.

begin:
F = FSSf , Computing Radon transform of f ;
WWλF decomposing F into wavelets Wλ

return ridgelets coefficients of image f .
end:

Algorithm 3.1: Computing ridgelets coefficients using FSS algorithm.

Donoho proves the existence of orthonormal ridgelets basis in a constructive way,
i.e. the proof also gives the main outline of the algorithm for computing ridgelets
—Fig. 3.1. The algorithm, which is deeply explained in Flesia et al. [2001], basically
consists of computing the Radon Transform using the Fast Slant Stack algorithm
and then, applying an usual wavelets decomposition. First, the Radon transform
of f is computed using the modified version of the Fast Slant Stack algorithm, FSS
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introduced in section 3.2.1. Then, taking Meyer [Auscher et al., 1991] and Lemarié-
Meyer [Lemarie and Meyer, 1986] wavelets in slice and angular parameters, respec-
tively, Wλ, the Radon transform of f is decomposed into its wavelets coefficients.
More explicitly, the formula of the wavelet basis, Wλ, of the Radon Space is given by
the following expression:

Wλ(t, θ) = (ψj,n(t)wk,m(θ) + ψj,n(−t)wk,m(θ + π))/2. (3.11)

After applying wavelets to the Radon space, we get a family of four-indexed
ridgelets coefficients, WRfj,k[n,m], where j and k correspond to the scale parame-
ters of the Meyer and Lemarié-Meyer wavelets, while n and m correspond to the shift
parameters. Then, summarizing this procedure, we can rewrite formula (3.10) in this
way:

WRfj,k[n,m] = [FSSf,Wj,k(t− n, θ −m)] . (3.12)

This last expression could be interpreted as the projection of FSSf over the sub-
spaces defined by functions Wj,k. As the parameters of the Radon space are in the
cylinder [−1, 1) × [0, 2π), we can see each subspace as a particular sampling of this
cylinder, where the resolution of sampling depends on the scale parameters (j, k).
We can visually represent this partition of the Radon space in figure 3.7, where each
rectangle corresponds to one of these subspaces. In figure 3.6 we can see an exam-
ple of decomposition of a particular image for the first twelve subspaces —numbered
1 to 12 in Fig. 3.7— each sub-image corresponds to one of 12 subspaces. In those
images, gray-scale values are the values of the ridgelets coefficients corresponding to
parameters θ (x-axis) and t (y-axis). Dark values represent high response, i.e. local
maxima, of the ridgelets transform at coordinates (t, θ) and hence, it means that we
have linear singularities at local maxima of ridgelets coefficients.

3.4 Image representation

With the decomposition procedure explained previously, we get a set of coefficient
matrices, each matrix corresponding to a pair (j, k) of scale parameters in the wavelets
basis. In this section, we describe how we can organize all these matrices to get a
multiscale representation of images which depends on a single index. The main idea
underlying this representation scheme is the decomposition level, DL. The number
of matrices depends on the size of the original image, while the size of each matrix
(and so, the level of detail) depends on the scale parameters (j, k). All matrices
corresponding to the same scale parameter j share the same size and sampling along
the direction of parameter t in the Radon space, while all matrices corresponding to
the same scale parameter k share the same size and sampling along the direction of
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Figure 3.6: Ridgelets coefficients of symbol Electrical J. The black points correspond
to high response in ridgelets transform.

parameter θ in the Radon space. We will use all these facts to define the concept of
decomposition level.

As we can see in figure 3.7, we have numbered each matrix depending on its
scale parameters (j, k). A decomposition level includes all matrices corresponding
to given scale parameters j and k, like the shaded band in figure 3.7. We can say
that a decomposition level L includes all information at the resolution provided by
scale parameters jL and kL. For example, if we compute the ridgelets coefficients
for an image of size 64×64 pixels, we will obtain 12 matrices corresponding to scale
parameters j = 1, 2, 3 and k = 1, 2, 3, 4. However, with a 128×128 image, we have j =
1, 2, 3, 4 and k = 1, 2, 3, 4, 5. A new set of matrices —the shaded band numbered from
13 to 20— is added to the representation. This new set of matrices, corresponding to
j = 4 and k = 5 is what we call a decomposition level, DL.

Thus, the representation of an image consists of a small number of decomposition
levels —from 3 to 7, depending on image size— and each level L includes all matrices
of coefficients generated when adding scale parameters jL and kL. As each decom-
position level is related to a given resolution at both parameters t and θ, we have a
general multiscale representation of any intensity image.

3.4.1 Definition of a shape model

For recognition purposes, we need to build a model of every pattern, based on the
general representation explained in the last section. This model must be invariant
to similarity transform and it must take into account the usual degradations and
distortions which can be found in images —in our case, linear graphic symbols. Then,
before applying the ridgelets transform to an image, we must normalize it in order
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Figure 3.7: Representation of ridgelets coefficients. Indexes of couples (j, k). The
shaded band corresponds to indexes in level 2.

to get such invariance. First, we apply a denoising step, a morphological opening, to
reduce binary noise produced by input devices. Then, we find the minimal enclosing
circle [Skyun, 1991] and we center then the image at the enclosing circle center, and
scale it to the nearest dyadic radius using nearest neighbor interpolation. Using the
nearest dyadic radius for scaling does not assure that all normalized images have
the same size. However, this is not a problem thanks to the multiscale nature of
the ridgelets transform. In the case that two images have different sizes, they will
be decomposed in a different number of decomposition levels. Then, as it will be
explained later, we will use only the common levels for comparing, and we will discard
the finest levels, only available in the largest image. To take into account degradations
and distortions, we will build the model of a symbol allowing some variability in the
ridgelets coefficients of the symbol. Each line of a symbol must give a high response
in the matrix of coefficients at a given location of the Radon space. However, due
to noise and distortion, this response will not always be the same, nor will be at the
same exact location. We can build the model of a symbol by taking each coefficient
of the ideal representation, WRfj,k, as a random variable Xj,k, that defines an area
of influence around the ideal location of coefficients. Its density is defined by this
expression:

X ∼ fX =
|WRf |
‖WRf‖L1

, (3.13)

in which we have left scale parameters out to simplify the notation. Then, to allow
variability, we smooth the description of a symbol by adding to X, a normal distribu-
tion, centered at 0, WΣ: Y = X +WΣ. It is known that the density of Y is obtained
by the convolution of X and WΣ. The covariance matrix Σ will be related to the
degree of distortion allowed to the symbol.
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3.4.2 Definition of a similarity measure

We also need to define a similarity measure to compare different images. As the
representation is not invariant to rotation, we will use expression (3.3) to define a
similarity measure invariant to rotation. This similarity measure is defined at each
decomposition level, based on the inner product in the Radon space.

Before defining this measure in the ridgelets domain, we must return to the Radon
space, R. Following the ridgelets theory of Donoho [2000], we can take the inner
product [·, ·], and its associated norm ‖·, ·‖:

[F1, F2] =
1

4π

∫ 2π

0

∫ ∞

−∞
F1(t, θ)F2(t, θ)dtdθ, (3.14)

F1 and F2 are in the Radon space —and refer to the Radon transforms of the symbols
to compare. If we normalize F1 and F2 to norm 1, computing the distance between
symbols is equivalent to computing the inner product:

[F1, F2] = 1− ‖F1 − F2‖2
2

.

Hence, using [·, ·] and expression (3.3), we can define a circular similarity measure, d,
invariant to rotation:

d(F1, F2) = max
α∈[0,2π)

[F1, F2 ◦Gα]

‖F1‖ ‖F2‖
, (3.15)

where we denote by F2 ◦ Gα the rotation by angle α of symbol f2. This distance is
similar to the circular distance defined in Fränti et al. [2000], but it can be seen as a
kind of correlation measure: d(F, F ) = 1. Similar symbols will return values near to
1.

As we have explained in section 3.3.1, the ridgelets transform divides the Radon
space into orthogonal subspaces. Thus, we can induce a metric R on each sub-
space and therefore, for each subspace indexed by parameters (j, k), expression (3.15)
remains valid. However, equality in expression (3.3) is lost because the wavelet trans-
form is not invariant to shifts in finest scales. Then,

WR(f ◦Gα)j,k[n,m] ≈WRfj,k[n,m+ αj,k], (3.16)

From these definitions, we can define a similarity measure between two symbols S1 and
S2 at a given decomposition level, DL = s, as the average of the similarity measure d
between both symbols for all pairs of scales (j, k) belonging to s:

d̄s(S1, S2) =
1

|Is|
∑

(j,k)∈Is
d(X

(1)
j,k , X

(2)
j,k ), (3.17)



44 RIDGELETS DESCRIPTORS

where d is the distance defined in (3.15), Is is the set of scales belonging to the
decomposition level s and Xj,k is the matrix of coefficients for scale parameters (j, k).
By construction, d̄s is in the interval [0, 1].

3.4.3 Definition of a combination rule

So far, we have defined a similarity measure for each DL. However, when we compare
two shapes, we usually need to return a single value stating whether two shapes
belong, or not, to the same class. In this section we have designed a combination
rule, CR, which is based on a voting scheme after taking into account two evidences
obtained from the analysis of some preliminary experiments with ridgelets descriptors
in Ramos Terrades and Valveny [2004]:

1. For all the decomposition levels, the ridgelets coefficients of scales: WRfDL+1,s,
where s = 1, . . . , DL − 1 (the “horizontal” ridgelets coefficients in figure 3.7)
yield better recognition rates than the ridgelets coefficient of scales: WRfs,DL+2,
where s = 1, . . . , DL+1 (the “vertical” ridgelets coefficients in figure 3.7). Then,
in the computation of the distance defined in equation 3.17, we have only used
the “horizontal” scales of the decomposition level.

2. The first decomposition level, DL = 0, reaches better recognition rates than the
other decomposition levels. Then, we will give a greater weight to this level in
case of equality.

For that, first we have built the ridgelets model, M , of every class of shapes in
the database at each DL —as explained at the beginning of section 3.4. So, we take
an ideal image of every symbol, we normalize it to shifts and scaling, we compute
its ridgelets coefficients and, finally, we smooth the coefficients at each scale. In
such way, we have obtained a symbol description at several decomposition levels,
robust to vectorial distortion and degradation. Then, the CR algorithm sketched
in Algorithm 3.2, works as follows: For each unknown image, WRf , we have also
normalized it and we have computed its ridgelets coefficients. Then, at each DL, we
compute the distance between the image and all the symbol models and we keep the
most similar at each DL. Finally, we vote among all DLs, returning the model with
the highest score. In case of equality between two, or more symbols, the winner is the
model identified at level 0 (we have done it by multiplying by 1.1 the model provided
in DL = 0).

3.5 Local Norm descriptors based on ridgelets trans-
form

The size of ridgelets descriptors constructed in the last section is relative big for
pattern recognition purpose. The usual size for descriptors is around 16 or 30 features
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Algorithm: CR

Input: WRf : ridgelets descriptors,
M : list of ridgelets models.

Output: m0: the nearest model
d0: similarity value

begin:
for all decomposition levels: s = 1, . . . , DL,

for all models in M : m,
Compute d̄s(WRf,Mm); (using 3.17)

endfor
Get the nearest model: ms = arg maxm d̄s;
vs(ms) = 1 otherwise 0;

endfor

return: m0 = arg maxm 1.1v1 +
PDL
s=2 vs;

end:

Algorithm 3.2: Combination rule of ridgelets descriptors

for shape. However, if we work with images of size of 16x16 the size of ridgelets
descriptors is around 1024 coefficients, most of them with values near zero. We have
explored local norm descriptors to reduce the size of ridgelets descriptors.

We have already introduced local norm descriptors in chapter 2, but now we will
explain them with more detail with the help of an example: Zoning. In zoning, we
divide an image of a shape into a squared grid and compute in each cell the area,
or volume, of the shape. In this case we apply the L1-norm and the result is a
volume or an area depending on whether the shape is a binary or an intensity image.
Considering the whole shape image, it could be seen as an element of a vectorial space
of dimension N ×M ( if the image size is N ×M ). Let us denote this vectorial space
by V . Therefore, after defining a grid in the image, each cell is a vectorial subspace,
namely Fl. These ideas can be formalized with the following definition:

Definition 4 (Local norm features). Let V be a vectorial space and {Fl}l, a family
of orthogonal vectorial sub-spaces of V , i.e. V =

⊕
l Fl. Let g be an element of V .

We can compute its Lα(Fl) norm for 1 ≤ α < +∞:

vg(l) = ‖g‖αLα(Fl)
=

∫

Fl

|g|α dx (3.18)

The set of values vg(l) computed over each subspace is the local norm descriptor.
Besides, different local norm descriptors can be obtained by defining these subspaces
in multiple ways. Thereby, concerning ridgelets coefficients, we have seen that they
are indexed by four parameters: WRfj,k[n,m], where j and k correspond to the scale
parameters, while n and m correspond to the shift parameters. These coefficients
are obtained after projecting Radon coefficients over the subspaces Vj,k defined by
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K(7) = 32 K(8) = 32 K(9) = 64

scale 7 scale 8 scale 9

Figure 3.8: Coefficients from F 3
1 . They are distributed on three different matrices of

sizes J(4)×K(7), J(4)×K(8) and J(4)×K(9). Here J(4) = 64

functions Wj,k. We can index functions Wj,k by the pairs (j, k), according to the
representation of figure 3.7, where each rectangle is a matrix of coefficients. We have
grouped these subspaces taking into account the concept of decomposition level, DL,
which is consistent with image resolution. Each decomposition level DL is composed
of a succession of spaces Vj,k, drawing a turned “L” in figure 3.7. According to the
experimental results explained in Ramos Terrades and Valveny [2004], we will only
consider some of these subspaces Vj,k to define the subspace VDL associated to a given
decomposition level DL. Then we define VDL as:

VDL = {Vj,k|j = DL, k = 1, . . . , DL} (3.19)

Given the vectorial spaces VDL defined in equation (3.19), we can split them
up into a set of subspaces FDLl by grouping basis Wj,k in convenient sets. Then, the
parameter l will run over rows of matrix coefficients while we will consider all columns
in order to obtain a representation stable under rotation. Thus, we can see a strip,
of width 4 —in figure 3.8— of ridgelets coefficients. In this way, the first local norm
feature at the third decomposition level will be obtained after computing the Lα-norm
of these ridgelets coefficients. Then FDLl can be defined as:

FDLl =

{
WDL,s(t− n, θ −m)∈ VDL

∣∣∣∣
0≤n−l<4,
0≤m <K(s)

∣∣∣∣
}

where l = 0, 1, . . . , J(DL)
2 −1 and J(DL) and K(s) are the size along j and k directions

of the matrix of coefficient WDL,s. We only need to take l up to J(DL)
2 , due to antipodal

symmetry inherited from the definition of Radon Space —expression (3.1). Hence,
we can compute L1-norm on Fl using the formula (3.18). Thus, the feature vector
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LNRDL will be a vector of length J(DL)
2 − 1 where each component is the volume of

WRf on FDLl . Particularizing formula (3.18) we obtain:

LNRDLWRf (l) =

DL−1∑

s=0

l+3∑

n=l

K(s)∑

m=0

|WRfDL,s[n,m]|2 .

3.6 Discussion

In this chapter we have introduced a multiresolution descriptor based on the ridgelets
transform able to properly represent shapes where “lines” are the relevant features.
In this context, we have extracted the information related to the position of lines
by applying a mathematical transform over the whole image —used as primitive—
that avoids the use of vectorization methods. Hence, we can overcome some of the
vectorization drawbacks with the presence of noise and vectorial distortions.

The construction of ridgelets descriptors has been done as follows: First of all, we
have grouped ridgelets coefficients according to the scale parameters, defining each
of these groups of coefficients as a descriptor —following the definition of descriptor
introduced in Chapter ??. Secondly, we have grouped ridgelets descriptors according
to decomposition levels, which is a concept introduced in order to describe shapes
having a different number of ridgelets descriptors in a coherent manner. Besides,
with the help of the decomposition level, we can sort ridgelets descriptors using only
a single subindex. Finally, we have proposed a similarity measure defined at each
scale of ridgelets descriptors that has been extended to all scales belonging to the
same decomposition level. Thereby, we can compare different shapes at different
decomposition levels. Afterwards, thanks to the design of a combination rule based
on a voting scheme, we can obtain a single similarity measure which permits us to
compare shapes having different number of decomposition levels. The definition of
this rule has been inspired in evidences obtained from the analysis of some preliminary
results (cf. section 3.4.3) .

Unfortunately, this definition of ridgelets descriptors has two intrinsic drawbacks:
the number of features, which is relatively huge regarding other shape descriptors,
and the definition of a non heuristic combination rule based on the performance of
ridgelets descriptor (at each scale) in recognition tasks. In this sense, we have reduced
the size of the descriptor by introducing a new local norm descriptor based on ridgelets
descriptor. Concerning the combination rule to be applied to ridgelets descriptor, in
the next chapter we have tackled this problem by developing a general theoretical
framework for combining classifiers.



48 RIDGELETS DESCRIPTORS



Chapter 4

Classifier Fusion

Ridgelets descriptor can be considered as a set of shape descriptors. In this sense, the
following question is raised: How can we combine ridgelets descriptors in order to reduce
as much as possible classification errors? In this chapter, we will tackle this problem
from the perspective of classifier fusion. In this context, we will review the state of the
art of classifier fusion and we will propose a linear combination rule, which minimizes
the classification error under some constraints in two-class classifiers.

4.1 Introduction

In the previous chapter, we have introduced a multiresolution descriptor based on
the ridgelets transform. Although it can be considered as a single descriptor, it
offers a shape representation divided into groups of coefficients according to the scale
parameters of the ridgelets basis, WRj,k (cf. (3.12)). In order to combine all these
groups into a single representation, we have proposed a ridgelets combination rule,
CR, (cf. algorithm 3.2) in a supervised framework [Duda et al., 2000, Jain et al.,
2000], taking into account the performance of ridgelets descriptors in a set of labeled
data, namely the Oracle. However, we can not guarantee that this CR rule performs
well for other classes of shapes. It was a first approximation but there can be many
other aggregation operators outperforming this CR method and therefore, we have
decided to explore other combination rules in the framework of classifier fusion.

As we have explained in the introduction chapter of this dissertation, in pattern
recognition many applications have to face the problem of describing a large number
of complex shapes for recognition or retrieval in large databases. In some cases, be-
sides the large number of shapes, we can find other challenges for shape description,
such as the similarity among some of the shapes, shape variability (due to trans-
formations, noise, occlusions, etc.) or the large number of images in the database.
In all these cases, one of the key issues is the design of highly discriminant shape

49
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descriptors —as we have done in chapter 3 introducing the ridgelets descriptor— in
combination with the use of powerful classification and retrieval methods. However,
in chapter 2 we have reviewed existing shape descriptors, seeing that we cannot find
a general descriptor able to properly represent all kinds of shapes. Consequently,
a lot of research has been done in finding and proposing classifiers that attenuate
descriptor lacks and improve recognition rates. Some examples are mixture mod-
els of normal distributions [Duda et al., 2000] or Bernoulli distributions [Juan and
Vidal, 2002] using the well-known Expectation-Maximization (EM) algorithm, neu-
ral networks [Tumer and Ghosh, 1996a,b], boosting classifiers [Freund and Schapire,
1996, Schapire and Singer, 1999, Skurichina and Duin, 2002] and support vector ma-
chine [Burges, 1998], who have proved to be suitable in many applications. Specially
those that are specifically designed to manage problems with small number of classes
in closed environments. However, Kittler [2000] justifies the use of classifier fusion
methods because high discriminant classifiers are not guaranteed to be superior to
other carefully designed classifiers. Besides, for general purpose problems where the
number of classes begins to be high and the shapes to be recognized can be counted
by thousands, these expert classifiers begins to fail. Therefore, we need to find out
classifier fusion strategies permitting us to introduce new classifiers in a flexible way
when new classes are included, so that we can increase the discrimination capabilities
and hence, we can reduce the misclassification rates.

In this chapter, we have attacked the problem of combining information from
different sources from the perspective of classifier fusion methods.

4.2 Classifier Fusion approaches

The strategies used for combining classifiers depend on the type of classifiers. Not all
aggregation operators can be applied to any type of classifier. In this sense, Xu et al.
[1992] divide classifiers into three levels and for each one define a type of classifier
fusion problem:

Abstract level is composed of those classifiers whose output is an unique label j
corresponding to the class of shape. In this case, the problem is: given L labels,
how can we use the classifier output to build a global classifier combining all
the labels to return a single label (Type 1 problem).

Rank level classifiers provide a list of ranked labels being the top element the first
choice. Thus, the problem is how to re-rank the labels in a new rank level
classifier (Type 2 problem).

Measurement level is formed by classifiers that associate each label with a measure-
ment of the degree of confidence that the element belongs to the class. Then,
the problem is how to combine these measurements to obtain a global measure
of confidence for each class (Type 3 problem).
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These three levels of classifiers cover the different scopes of application of classifier
fusion. Each one has motivated different combination rules in order to tackle the
combination problem. For instance, the Borda count method, which is the sum of the
number of classes ranked below a class by each classifier, is defined for Type 2 prob-
lems, whereas the majority vote rule and a combination rule based on the Dempster-
Shafer theory are used for Type 1 problems. Furthermore, several aggregation opera-
tors, such as the sum, the product or the max of the measurement of each classifiers,
as well as those reviewed by Stejic et al. [2005] can be defined for Type 3 problems.
Moreover, we can say that Type 1 problems are more general than Type 2 and Type 3
problems because information provided by classifier of the abstract level can also be
obtained from rank and measurement classifiers. Therefore, combination strategies
for Type 1 problems can also be applied to Type 2 and Type 3 problems.

We have constrained to linear combination rules, among all types of strategies for
combination of classifiers. On the one hand, experimental results reported in other
works show that the mean rule usually performs better than other rules [Alkoot and
Kittler, 1999, Kuncheva, 2002, Tax et al., 2000]. In this context, a discussion on
when it is better to average or to multiply the classifiers is given in [Tax et al., 2000]
under strict probabilistic conditions. On the other hand, high accurate classifiers
such as boosting, neural networks or support vector machine are based on additive
models. Therefore, we will review two theoretical frameworks that have been used to
explain linear combination rules: Bayesian approach and logistic regression. Bayesian
approaches have been used to explain some usual combination rules likemax, average,
product, median and voting. On the contrary, logistic regression has been used to
combine classifiers in [Ho et al., 1994] but also to explain boosting classifiers [Friedman
et al., 1998].

4.2.1 Bayesian approach

Bayesian approaches consist of considering that classifiers return an estimation of
the following probability: C(S) = P (S|ωj). We can understand such value like the
probability that a shape S can be “generated” by the class ωj . This approach has
already been used in [Xu et al., 1992] but Kittler et al. are who derive from Bayes’
formula a set of expressions which justify the most common combination rules such
as sum, product, max, min, median and majority rules [Kittler et al., 1998]. These
rules outperform individual classifiers, being sum and max rules those with the best
results.

The mathematical framework based on Bayes’ formula offers a comprehensive
explanation, from conditional probabilities estimation, C(S) = P (S|ωj). However,
the classification problem yields the inverse question, if we have a shape S which is
the probability that S belongs to class ωj , P (ωj |S)? We can answer this question
using the Bayes’ formula:
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Combination rule Bayesian approach r.v. approach
product 1

L

∏
l P (Xl|wj)

∏
l Cl

mean 1
L

∑
l P (Xl|wj) 1

L

∑
l Cl

max maxl P (Xl|wj) maxl Cl
min minl P (Xl|wj) minl Cl
median medlP (Xl|wj) medlCl

Table 4.1: Examples of combination rules

P (ωj |S) =
P (S|ωj)P (ωj)

P (S)

where the right side of Bayes’ formula is known or can be estimated. On a classifier
fusion scheme, we denote by X = (X1, . . . , XL) the vector formed by L descriptors
representing the shape S. If we assume that the events: {Xl|ωj} are independent,
then, applying the Bayes’ formula we obtain:

P (ωj |X1, . . . , XL) =
P (ωj)P (X1, . . . , XL|ωj)

P (X1, . . . , XL)

=
P (ωj)

∏
P (Xl|ωj)

P (X1, . . . , XL)

(4.1)

If we consider that all classes ωj have the same probability, we can directly de-
rive from this last expression the product combination rule. Besides, doing more
assumptions on the classifiers behaviour, sum, max, min and median rules are ob-
tained [Kittler et al., 1998] —see table 4.1.

4.2.2 Additive models: logistic regression approach

Almost all mathematical objects can be expressed like “weighted sums” (linear combi-
nation). For instance, Taylor series, Fourier series, the integral operator are examples
of infinite sums that can be truncated according to error bounds. Statistics is not
an exception and we can find several methods which are based on additive models to
approximate data. Maybe, one of the most well-known additive methods in pattern
recognition community is boosting since [Friedman et al., 1998] proved that boost-
ing algorithms could be defined using a logistic regression approach. But Logistic
regression methods have also been used in classifier fusion [Ho et al., 1994].

If we denote by Cl(S) the output of a given classifier for a shape S, logistic regres-
sion methods try to fit the probability P (ωj |S) by an additive model:

∑
l alCl(S).

However, in general we can not ensure that values obtained with the additive model
are in the range [0, 1] as it corresponds to a probability. So, a classical solution is to
apply the logit transform:
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Name Notation Meaning
Shape S the shape to recognize
Label Y the class of the shape
Descriptor X = FEM(S) the descriptor computed from the shape
Prediction Z = C(S) the classifier output
Validation U = Y Z the validity of the prediction

Table 4.2: Definition of random variables for binary classifiers.

log
P (ωj |S)

1− P (ωj |S)
=
∑

l

alCl(S) = Hj(S)

P (ωj |S) =
eHj(S)

1 + eHj(S)

(4.2)

Ho et al. [1994] use a logistic approach to generalize Borda count method which is,
at the same time, a generalization of the majority vote. The Borda count for a class is
the sum of the number of classes ranked below it by each classifier (Type 2 problems).
On the one hand, it does not require training but on the other hand, this method
does not take into account each classifier capabilities. All classifiers are treated equally
although some of them may be more accurate than others. Logistic regression tries
to overcome this lack, giving more weight to those classifiers than perform better.
Conversely, Friedman et al. [1998] show that the classifier obtained after applying
boosting algorithms can be interpreted as an additive logistic regression.

4.3 The problem of classifier fusion: definitions

The general problem of defining combination rules for classifier fusion can be expressed
as a minimization problem of the probability error:

Problem 1 (Classifier Fusion). Given J classes, {ω1, . . . , ωJ} and L classifiers Cl,
we want to find the optimal aggregation operator, f0 ∈ F which minimizes as much
as possible the probability of misclassification, for all classes ωj :

f0 = arg min
f∈F

P {f(C1, . . . , CL)(S) 6= ωj |ωj} (4.3)

where S denotes a shape belonging to the class ωj.

Thus, in order to face this Problem 1, we propose a probabilistic framework based
on five r.v —summarized in table 4.2— and defined as follows:

Shape variable, S: We consider that the shape to recognize is given by the random
variable S. All other the random variables depend on this variable.
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Label variable, Y , corresponds to the set of class labels: j ∈ {1, . . . , J} for a J-
class problem. When we have a two-class problem, or when we decompose the
problem of classifying J classes into J binary problems, we will also define the
r.v. Yj for each class denoting whether the shape S belongs (Yj = 1) or not
(Yj = −1) to the class. Let us remark that the values of Y depend on the shape
S, which means that Y and S are dependent r.v. and can be denoted by Y|S or
by f(y|s) if f is the pdf. of Y .

Descriptor variable, X: It is given by the feature extraction method (FEM) used
to extract the descriptors applied to the shape r.v., X = FEM(S). It also
depends on S, so, we will denote it X|S or f(x|s) if f is the pdf of X.

Prediction variable, Z, is the r.v of classifier. Z = C(S) and hence, this variable
depends on S. However, as classifiers are applied to descriptors, this r.v. also
depends on the descriptor r.v. X. Therefore, we will prefer to denote the
prediction r.v. as a function of the descriptor X by writing Z = C(X) —and
Z|X or f(z|x) if f is the pdf of Z— instead of Z = C(S).

Validation variable, U tells whether the prediction is correct or not. In binary
classifiers, it is defined as the product between the label variable and the predic-
tion variable, U = Y Z. Observe that if u is positive, then the shape s has been
correctly classified according to prediction z = C(x). Otherwise, the prediction
is wrong.

In this probabilistic framework, the validation r.v. play a central role and it is
closed to the concept of margin in machine learning algorithms [Allwein et al., 2000,
Breiman, 1996, James, 2003] —roughly speaking, the margin is a number that is
positive if and only if the example is correctly classified [Allwein et al., 2000]. However,
classifier fusion, as raised in Problem 1, is quite general and difficult to handle. Thus,
we have simplified it by considering two types of restrictions. First of all, we have
taken binary classifiers. Secondly, we have considered linear operators —as we have
argued in section 4.2. In this way, we have developed our theoretical framework for
binary classifiers, Cj and then, we have extended it to multiclass classifiers (a.k.a. J-
class classifiers) by taking the class corresponding to the classifier with the maximum
response:

j0 = arg max
j
Cj

The two main reasons that have motivated working with binary classifiers are
simplicity and flexibility. Simplicity because binary classifiers are easier to formalize
than multiclass classifiers. Flexibility because each time we want introduce a new
class to our system it will be enough to train the new classifier for the new class,
without needing to train again those classifiers fitted for other classes.

Besides, we want to emphasize that this probabilistic framework is general to any
type of classifiers, whatever be its level, although we have reduced the complexity of
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the Problem 1 by working on binary classifiers, mainly belonging to the measurement
level. In this sense, for classifiers in the measurement level, we can easily identify the
prediction r.v. and the classifier. Furthermore, we can easily define binary classifiers
from multiclass classifiers in the abstract and rank levels. For abstract classifiers, we
simply define:

Zj =

{
1 if C(S) = j

−1 otherwise

and for rank classifiers:

Zj =

{
C(S) if the first output is j

−C(S) otherwise

Furthermore, we can observe that for rank classifiers, Zj , the sign(Zj) is an abstract
classifier, which is coherent with the discussion about Type 2 and Type 1 problems
done in section 4.2.

For the combination of L classifiers, we can denote the L prediction and the L
validation r.v. as random vectors: Z = (Z1, . . . , ZL) and U = (U1, . . . , UL). More-
over, as we have constrained our approach to linear combination of classifiers, we can
express the linear combination of any type of classifier using the standard dot product
defined in RL: Zα = 〈Z,α〉 where α is a vector of weights. Thus, given a set of L
binary classifiers, Zl, the problem of looking for an optimal operator to apply to the
L classifiers turns into the problem of finding an optimal vector of positive weights α
minimizing the probability error of the linear combination. Therefore, according to
the definition of the label r.v. Y , the classification error occurs when Uα is negative:

〈U,α〉 < 0⇔
{
〈Z,α〉 < 0 if Y = 1

〈Z,α〉 > 0 if Y = −1

Problem 2 (Linear Combination of Classifiers). With the precedent definitions
of r.v., the problem 1 is expressed as the optimization of the following objective func-
tion:

α = arg min
α
P (Uα < 0|S) = arg min

α
P (〈U,α〉 < 0|S) (4.4)

with constraints: {
αl > 0 for all the weights.

‖α‖L1 (
∑
l αl = 1).

(4.5)

In the next section we will show how to find the optimal weights for classifiers
verifying two particular sets of constraints.
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4.4 Optimal Linear Combination Rules: IN and
DN

In this section we have developed two linear combination rules, namely IN and DN ,
which find the vector of weights α which minimizes the expression (4.4) under two sets
of hypothesis about the classifiers. On the one hand, the IN method assumes that
the validation r.v. are independent and normal. On the other hand, the DN method
assumes that the validation r.v., U are dependent and besides, that the validation r.v
of the combination, Uα is normal for all α. Let us observe that if the random vector
U follows a multivariate normal distribution, then Uα is a normal distribution for all
α. Therefore, in IN and DN methods we are imposing that the pdf of Uα is a normal
r.v. for all α.

Concerning the hypothesis of normal distributions, the differences between our ap-
proach and Bayesian approaches are not significant in practice. Bayesian approaches
consider that classifiers return a value p in [0, 1) affected by a normal, or uniform,
noise [Alkoot and Kittler, 1999, Kuncheva, 2002]. For instance, if we assume that the
noise of a classifier is a normal r.v., it is not difficult to see that we can express the
classifier output in terms of the sum of two independent r.v.: On the one hand, a
Dirac distribution centered in p and, on the other hand, a normal r.v. centered in 0
and variance σ2. The result of adding these two r.v. is a new normal r.v. centered in p
and variance σ2. Hence, we can include the noise in the definition of the classifier and
simply say that the prediction r.v. of the classifier follows a normal r.v. centered in p
and variance σ2. Besides, if we consider that we are working with 1-class classifiers,
the label r.v only reach the value 1, i.e. Y = 1 and hence, the prediction and the
validation r.v are the same r.v.

On the contrary, the hypothesis of classifier independence is assumed in many
works by simplicity in the theoretical development but also because the obtained ex-
perimental results perform satisfactory. However, Kuncheva et al. [2000] illustrate
how dependence can help to increase classifier performance. Which justify the anal-
ysis of independence and dependence hypotheses. Actually, these approaches assume
either the independence or dependence of events: {S|ωj}, whereas in our proposal,
we talk about dependence, or independence, of r.v.

The IN and DN methods are obtained after the “normalization” of the validation
r.v Uα, Ūα, in such a way that it is centered in 0 with variance 1. Thus, if we denote
by µ the mean vector of U and Σ the covariance matrix of U , then using expectation
and variance properties, we can compute the mean, µα and the variance σ2

α of the
combination of validation r.v., Uα:

µα = 〈α, µ〉 σ2
α = αtΣα = ‖α‖2Σ (4.6)

Therefore, the probability of expression (4.4) is equivalent to:
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P (〈U,α〉 < 0|X) =

∫ 0

−∞
gα(u|x)du =

∫ −µα
σα

−∞
g0
α(v|x)dv (4.7)

Finally, imposing that gα is the density of a normal distribution, g0
α does not

depend on α and we can find the optimal weights α by maximizing the function φ
defined by:

φ(α) =
µα
σα

=
〈α, µ〉√
αtΣα

(4.8)

Then, imposing either dependence or independence of the validation r.v. has
permitted us to maximize expression (4.8) in two different ways. In the IN method
we have found an explicit solution for the Problem 2 whereas in the DN method we
must solve a constrained optimization problem.

4.4.1 IN method

In the following discussion we will prove that the IN method —sketched in the
Algorithm 4.1— reaches the optimal solution for independent and normal classifiers
within the study of three different cases:

1. First, we have considered that all the classifiers are normal r.v. Thus, Proposi-
tion 1 shows that the optimal weight is: αN = µl

σ2
l
.

2. If the variance is 0, the last expression is ∞. Then, in this case we have consid-
ered that classifiers are “almost” perfect and we have considered these classifiers
are Dirac r.v. Thereby, Proposition 2 proves that the optimal weights are given
by: αDl = µl

3. Finally, we mix normal and Dirac r.v. and we prove in Proposition 3 that
the optimal weights are given by a linear combination of the optimal weights
computed from normal and Dirac distributions: λNαN + λDα

D.

Proposition 1. Given L classifiers whose validation r.v. Ul are independent and
normal: N (µl, σ

2
l ), the weight vector α minimizing the misclassification rate is:

α = Σ−1µ (4.9)

Proof. As we have explained above, we must maximize:
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Algorithm: IN

Input: Oracle: {(Xn, Yn)|Xn is a vector of L descriptors}
Output: H, combination of classifier

begin:
Train L classifiers for the L descriptors, hl;
for l = 1 . . . L,

Get hypothesis zl,n = hl(Xl,n);
Obtain the validation values: ul,n = ynzl,n;
Compute mean and variance of ul: µl, σl2;
If σ2

l = 0,
αDl = µl;

else,
αNl = µl

σ2
l

;

endif;
endfor;
Set: A =

P
l,t=N α

t
l and A =

P
l,t=D α

t
l ;

if A > B,
λN = A−B

2A−B and λN = A
2A−B ;

else
λN = 0 and λN = 1;

end;
update:

αNl = λNα
N
l ;

αDl = λDα
D
l ;

and normalize α such that:
P
l αl = 1;

return H =
P
l αlhl;

end:

Algorithm 4.1: IN method

φN (α) =
µα
σα

=
〈α, µ〉√
αtΣα

(4.10)

Our proof is based on geometric arguments. We have expressed the function φ as
the dot product of the mean vector µ and α, normalized by the standard deviation
σα. First, we will apply a linear function, given by a matrix A, to the vector α setting
φ̃(α̃) = φN (Aα̃). Then, we will prove that φ̃ has a unique maximal point (modulus
a positive scalar factor λ). Hence, φ reaches a unique maximal point too, because
linear functions preserve the monotony of functions. Finally, we will find the optimal
vector α.

We have defined φ̃ by setting A = Σ−1/2, which is correctly defined because Σ is
the covariance (and diagonal) matrix of the L independent normal r.v. Then, φ̃ is :
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φ̃(α̃) =
〈Aα̃, µ〉√
α̃t(AtΣA)α̃

=

〈
α̃

‖α̃‖ , A
tµ

〉

In such way we have expressed φ̃ as the dot product of Atµ and the unknown vector
α̃. But we known that the dot product reaches its maximum value when vectors are
aligned and thus:

α̃ = λAtµ

Plugging it into φ̃ and manipulating, a bit, we obtain:

φ̃(λAtµ) =

〈
λAtµ

‖λAtµ‖ , A
tµ

〉
=

〈AAtµ, µ〉√
(µtA)(Atµ)

(AAt = Σ−1)

=

〈
Σ−1µ, µ

〉
√
µtΣ−1µ

=

〈
Σ−1µ, µ

〉

‖Σ−1µ‖Σ
= φ(Σ−1µ)

Therefore:

α = Σ−1µ (4.11)

which finalizes the proof.

In particular, the weight of each classifier is given by:

αl =
µl
σ2
l

(4.12)

Observe that for classifiers with big variance and small mean, the misclassification
rates are significant and thus, the obtained weights are smaller than for classifiers with
small variance. In such way if the variance of a validation r.v. is almost zero, then the
weight is almost infinity. In these cases, the model fails and we have considered that
it is more suitable to approximate the validation r.v. by a Dirac distribution than
approximate it by a normal distribution. The optimal weights for Dirac distributions
are given by the following proposition:

Proposition 2. Given L classifiers such that the validation r.v., Ul, are Dirac and
independent r.v., δµl , centered in µl, the optimal weight vector α is µ.
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Proof. The sum of L Dirac distributions is again a Dirac distribution. Hence, the
linear combination of L Dirac distributions is another Dirac distribution centered in
µα = 〈α, µ〉.

For these distributions, the probability error given by the integral defined in ex-
pression (4.7) is zero. However, we can subtract µα to Uα:

P (〈U,α〉 < 0|X) =

∫ 0

−∞
gα(u|x)du =

∫ −µα
−∞

g0
α(v + µα|x)dv

obtaining that the φ function —defined in (4.8)— is in this case:

φD(α) = 〈α, µ〉 . (4.13)

Then, following the same geometric arguments than for normal r.v., we find that
the optimal weights are given by:

α = µ (4.14)

In real situations, we can find classifiers with good recognition rates, but not
enough to be used alone. These classifiers can be approximated by Dirac distributions
and must be combined with other classifiers that can be better approximated by a
normal distribution. For simplicity in the notation, let us suppose that Z1, . . . , ZN
are normal classifiers whereas ZN+1, . . . , ZN+M are Dirac ones. Then, the first N
components in the mean vector will correspond to the normal r.v. whereas the last M
components will correspond to the Dirac r.v., µ = (µN , µD). Besides, the covariance
matrix Σ (which is diagonal) decomposes as follows:

Σ =

(
ΣN 0
0 0

)

Therefore, we can denote by αN , and αD, the optimal weights for the normal and
Dirac distributions, respectively, α = (αN , αD). In this way, the function φ —defined
in (4.8)— is written as:

φ(α) =
〈α, µ〉
‖α‖Σ

=
〈αN , µN 〉
‖αN ‖ΣN

+
〈αD, µD〉
‖αN ‖ΣN

= φN (αN ) +
φD(αD)

‖αN ‖ΣN

(4.15)
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We realize that φ is maximized when the two summands —in the right size of
Eq. 4.15— are maximized (because they are allways positive). Therefore, the vector of
optimal weights, when we mix normal and Dirac distribution, is a linear combination
of the optimal weights for normal distribution and the optimal weights for Dirac
distributions given by the Prop. 1 and the Prop. 2:

α = λNΣ−1
N µN + λDµD

Proposition 3. With the precedent notation, given N independent and normal clas-
sifiers and M independent and Dirac, the optimal weights α are:

α = λNΣ−1
N µN + λDµD

where λ = (λN , λD) is :

{
λ = ( A−B2A−B ,

A
2A−B ) if A > B

λ = (0, 1) if A ≤ B (4.16)

being A =
∑N
n=1

µn
σ2
n

and B =
∑N+M
m=N+1 µm.

Proof. Observe that the optimal weights are obtained maximizing the the right side
of Eq. (4.15) wrt λN and λD:

arg max
λ=(λN ,λD)

φN (Σ−1
N µN ) +

λD
λN

φD(µD)∥∥Σ−1
N µN

∥∥
ΣN

(4.17)

Moreover, we can observe, that for Dirac and normal classifiers we have always the
trivial solution λ = (λN , λD) = (0, 1) which reaches the maximum value of function
φ, (∞), cf. Exp. (4.15). This solution is easy to understand from a theoretical
viewpoint. As we have “perfect” classifiers there is no need to use other types of
classifiers like normal classifiers. However, in practice this trivial solution does not
offer good performance, because in fact, Dirac classifiers are not “perfect”. Therefore,
we have to ensure that normal classifiers are considered in the combination rule by
imposing a second constraint linking λN and λD.

As we have seen for normal classifiers and Dirac classifiers, the optimal weights
are invariant to scalar factor. Then, we can consider, without loos of generality, the
following constraint:

∑

l

αl = λNA+ λDB = C (4.18)
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Figure 4.1: Straight lines, AλN + BλD = C, crossing the set of feasible λN ,D: 0 ≤
λN , λD ≤ 1.

where we have denoted by A =
∑
n
µn
σ2
n

and by B =
∑
m µN+m. Besides, a priori,

C can be any real constant value because if λ is an optimal solution maximizing φ,
then Cλ, ∀C > 0, is also an optimal solution. In fact, the expression (4.18) is the
implicitly equation of a straight line perpendicular to vector (A,B), crossing the line
given by λD = 0 in the point (CA , 0) —see figure 4.1. Therefore, depending on the
choice of parameter C we will cross these segments in different points.

The remainder of this prove is divided into two parts:

• First of all, we will prove that for any combination of normal and Dirac classi-
fiers, i.e. for any A,B > 0, C = A in order to find an optimal solution λ in the
square defined by the constraints: 0 ≤ λD, λN ≤ 1.

• Finally, we will prove that the optimal λ is given by the expression (4.16).

In order to see that C = A, we express λD in terms of λN from Eq. 4.18 and then,
we impose the condition λD ≥ 0. Thus, we find the following inequality:

C ≥ A (4.19)

To finalize this part ofthe proof, we have to show that C ≤ A. In this sense, in
order to impose that the optimal λ fall into the square given by the inequalities 0 ≤
λD, λN ≤ 1, we should impose that the straight line given by the implicit equation:
AλN + BλD = C cuts the unitary square: [0, 1] × [0, 1]. One way to impose this
condition is computing the inner product between the vector (A,B) and the vector
v = (1 − C

A , 1), which is the vector joining the point (CA , 0) and the vertex of square
(1, 1) —see figure 4.1. Thus, if the inner product between these two vectors is negative,
then the straight line does not cross the unitary square —see figure 4.1.b.



4.4. Optimal Linear Combination Rules: IN and DN 63

〈
(A,B),

(
1− C

A
, 1

)〉
≥ 0⇔ A− C +B ≥ 0⇔ C ≤ A+B (4.20)

In this way, if we consider both inequalities (4.19) and (4.20), we realize that for
any A,B ≥ 0:

C ≥ A
C ≤ A+B

which are always verified if C = A.

Therefore, if we express λN in terms of λD in Eq. (4.18) —setting C = A—
and then we plug it into the expression (4.17), we obtain the following univariate
optimization problem:

arg max
λD

φ(Σ−1
N µN ) +

λD

1− B
AλD

φD(µD)∥∥Σ−1
N µN

∥∥
ΣN

(4.21)

Thus, we have reduced the original problem —given in Eq. (4.15)— to another
problem —given in Eq. (4.21)— that is expressed as the search of a maximum point
in an univariate function. This problem can be solved using the standard calcu-
lus techniques. In this way, in order to find the optimal λ given by the expres-
sion (4.16), we have to differentiate the objective function given in (4.21) wrt λD
and then we have verified that it is always positive (except in the point A

B , which is
not defined). Hence, the maximal point is achieved in some point in the border of
interval [0,min{1, AB }]. Then, the optimal λ is computed by setting λD = min{1, AB }
and λN = 1− B

A min{1, AB }, which proves that the optimal solution lies in one of the
two segments:

λ ∈ {0} × [0, 1]N = 0

λ ∈ (0, 1]× {1} (4.22)

and normalizing λ so that λN + λD = 1, we obtain the solution:

{
λ = ( A−B2A−B ,

A
2A−B ) if A > B

λ = (0, 1) if A ≤ B

which finalizes the proof.
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Figure 4.2: Surface defined by function (4.17). The blue lines correspond to the uni-
variate function to maximize defined in (4.21) and the blue dots are the maximal values

Let us analyze the obtained result with the help of the figure 4.2 where we have
plotted a simplification of the Eq. (4.17): f(λN , λD) = 1 + λD

λN
. A and B are the

L1-norm of vectors µN and µD, respectively. We have also depicted several curves
depending on the values of A and B. If A ≤ B the function (4.21) is like the function

1
1−λD . It means that the “contribution” of Dirac distributions are equal or bigger
than normal ones. Thereby, the maximal value is reached in the set {0} × (0, 1] and
hence, the maximal point is λD = 1 and λN = 0. This solution tell us that we can
omit normal distributions and only use those that are Dirac. Conversely, if A > B
the function (4.21) is like the function λD and the optimal point is found in the set
(0, 1]×{1}. Besides, if B << A, then λ1,2 ≈ 1

2 , which means that Dirac-like classifiers
have a significant weight when they are with other classifiers with lower performance.

4.4.2 DN method

In the DN method, we have assumed dependence for validation r.v., Ul and besides,
we have supposed that the validation r.v. of the combination, Uα, is a normal distri-
bution. Therefore, the density of Ūα (expression (4.7)) does not depend on α and the
optimal weights are obtained after maximizing (cf. Problem 2):

φ(α) =
µα
σα

=

〈
α√
αtΣα

, µ

〉
(4.23)

with the constraints:
{
αl > 0 ∀l∑
l αl = 1

(4.24)
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Algorithm: DN

Input: {(Xn, Yn)|Xn is a vector of L descriptors}
Output: H, combination of classifier

begin:
Train L classifiers for the L descriptors, hl;
for l = 1 . . . L,

Get hypothesis zl,n = hl(Xl,n);
Obtain the validation values: ul,n = ynzl,n;

endfor;
Obtain weights: α = DependentWeight(U);
return H =

P
l αlhl;

end:

Algorithm 4.2: DN method

This constrained optimization problem is solved in the function DependentWeight
—see the Algortihm 4.2— once all the validation r.v. are estimated. Unlike for
independent classifiers, for dependent classifiers the positive condition on the weights
is not assured if we directly maximize function (4.23). Therefore, in the following
discussion we will justify the need of the constraints given in (4.24).

We can not directly apply the arguments used for normal and Dirac, independent
classifiers because the covariance matrix Σ is not diagonal. Then, there is a matrix
R such that the covariance matrix Σ = RDRt (|det(R)| = 1 and D a diagonal semi-
positive defined). In this way, we can decorrelationate the validation random vector,
U , and reduce this problem to another similar where the covariance matrix is diagonal
and the validation r.v. mix normal and Dirac distributions.

Suppose we have LN normal and LD Dirac classifiers (LN + LD = L) and let us
denote by β = βN+βD the weights after decorrelating the validation random vector U .
Afterwards, we define the projection maps : PN : RL → RLN and PD : RL → RLD ,
given by the matrices RN and RD, respectively, which essentially consist of applying
the matrix Rt to the vectors in RL. Then, the diagonal matrix D is:

D =

(
DN 0

0 0

)

Writing αN = RtND
1/2βN , αD = RtDβD, so that α = αN + αD:
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〈
α√
αtΣα

, µ

〉
=

〈
RND−1/2βN
‖βN ‖

, µ

〉
+

1∥∥β̄N
∥∥ 〈RDβD, µ〉

=

〈
β̄N∥∥β̄N
∥∥ , D

−1/2RtNµ

〉
+

1∥∥β̄N
∥∥
〈
βD, R

t
Dµ
〉

and the maximal vector is obtained:

arg max
(β̄N ,βD)

〈
β̄N∥∥β̄N
∥∥ , D

−1/2RtNµ

〉
+

1∥∥β̄N
∥∥
〈
βD, R

t
Dµ
〉

(4.25)

with the following constraints:

D−1/2RtN β̄N +RtDβD > 0 constraint: αl > 0 (4.26)∥∥∥D−1/2RtN β̄N +RtDβD

∥∥∥
L1

= 1 constraint:
∑

l

αl = 1 (4.27)

If we directly maximize function (4.25), then we will find an optimal solution, β,
similar to that obtained in normal and Dirac, independent r.v. given in Proposition 3.
However, we can not assure that that the weights α obtained from this solution β
are positive because the matrix R will rotate the vector β and hence, some of the α
components may be negative. So, we must impose the constraints given in (4.26) if
we want maximize the objective function given in (4.25) or, alternatively, if we want
maximize the objective function (4.23), we have to impose the restrictions imposed
in (4.24)

4.5 Discussion

In this chapter, we have reviewed some theoretical frameworks —Bayesian frame-
work and logistic regression— which justify common combination rules used for the
aggregation of classifiers. These theoretical frameworks have motivated the introduc-
tion of a new theoretical framework which has permitted the definition of two linear
combination rules depending on the distribution of classifiers. More specifically, we
have proved that the IN method minimizes the classification error. In this case, the
IN method assumes that the L validation r.v. —provided by the L classifiers— are
independent and normally distributed. On the contrary, the DN method is able to
minimize the classification error when the L validation r.v. are dependent and their
linear combination is also normally distributed.
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This theoretical approach to the problem of combining classifiers has been evalu-
ated in the next chapter, where we have also validated the ridgelets descriptor intro-
duced in chapter ??. The experimental evaluation is concluded with the adaption of
the IN and DN methods to the multiresolution properties of ridgelets descriptors.
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Chapter 5

Experimental Evaluation

In this chapter we will evaluate ridgelets descriptors within the context of symbol recog-
nition and classifier fusion methods proposed in the previous chapter. Two different
experimental scenarios have been developed according to the proposals for ridgelets de-
scriptors and classifier fusion. First of all, we have compared ridgelets descriptors to
other descriptors that do not need previous vectorization of images and can be applied
to segmented shapes. Secondly, we have compared our proposal of classifier fusion to
other classifier fusion approaches. We have finalized this chapter by applying the fusion
methods to ridgelets descriptors.

5.1 Introduction

So far we have proposed multiresolution descriptors based on the ridgelets transform
(cf. chapter 3) and two classifier fusion methods (cf. chapter 4). In this chapter we
will evaluate these theoretical approaches carrying out three groups of experiments.
First of all, we will compare ridgelets descriptors with regard to other well-known
shape descriptors. Secondly, we will evaluate classifier fusion rules comparing their
performance with regard to other fusion rules training several classifiers for several
shape descriptors and applying them to well-known shape databases. Finally, as the
motivation of classifier fusion was to find a method to combine all scales of ridgelets
descriptors, we will conclude this chapter by applying the classifier fusion methods to
the ridgelets descriptor.

We have used the database introduced in the symbol recognition contest during the
GREC’03 Workshop [Valveny and Dosch, 2004] to evaluate ridgelets descriptors. The
GREC’03 database is formed by shapes from fifty classes of symbols from engineering,
architectural and electronic domains —see figure 5.1— and it is organized in several
tests according to: the number of classes, the similarity transforms applied to the
symbols, the symbol degradation and the vectorial distortion. Thus, we have carried
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Figure 5.1: Models of GREC’03 database

out the tests of the GREC’03 contest comparing ridgelets results regarding the results
achieved using the ART descriptor [Kim et al., 1999, Manjunath et al., 2002], as it is a
general purpose and standard 2D descriptor included in the MPEG-7. The second set
of experiments is related to classifier fusion methods. We have compared our method
with other reference fusion methods such as mean, max and median. The evaluation
has been drawn in two directions. Firstly, we have simulated an arbitrary number
of classifiers that have permitted us to state the validity of the theoretical approach.
Secondly, we have used well-known databases to compare the performance of our
proposal regarding other classifier fusion methods. For these experiments we have
used again the GREC’03 database, as it is a suitable database for the goals of this
dissertation, and furthermore, a reduced version of the MNIST database —see figure
5.2— as is is a standard and general database widely used in pattern recognition. In
this set of experiments, we have used several types of descriptors: ART, R-signature
and LNR.

Figure 5.2: Numerals of the MNIST database

The last set of experiments consists of applying the classifier fusion methods to
the combination of ridgelets descriptors. Thus, we have repeated the tests of the
GREC’03 symbol recognition contest using the ridgelets descriptors combined using
the classifier fusion methods.

Before describing these experiments we will briefly summarize the descriptors used
in the different proposed experiments.
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5.2 Descriptors

We have seen in chapter 2 that a huge number of shape descriptors have been pro-
posed in the last years. Unfortunately, any of them can be considered as an universal
shape descriptor than perform well for any kind of shapes. Depending on the shape
properties some of them will perform better than others. Hence, to evaluate our
ridgelets-based descriptor we have compared it to other existing shape descriptors:
Angular Radial Transform (ART) [Kim et al., 1999, Manjunath et al., 2002], Fourier
R-Signature (F-R) [Tabbone and Wendling, 2002, Tabbone et al., 2006] and the Lo-
cal norm ridgelets descriptors (LNR), introduced at the end of chapter 3. We have
chosen these descriptors because they have similar properties to ridgelets descriptors
and we can apply them in similar problems. In other words, and using the vocabu-
lary introduced in chapter 2, we can say that all these descriptors are 2D and polar
descriptors. Besides F-R, ridgelets and LNR are based on Radon transform and F-R
and LNR are based on local norm descriptors.

Angular Radial Transform: We have selected this descriptor for several reasons.
On the one hand, we can apply it to the same shape images as ridgelets descrip-
tors, i.e. segmented and not vectorized images. On the other hand, because
the ART descriptor is included in the MPEG-7 standard. This fact permits us
to situate ridgelets descriptors in a more general shape description framework
than that of graphics recognition.

The ART is an orthogonal transform defined on an unitary disk that consists
of a complete basis decomposition using sinusoidal functions in polar coordi-
nates. Each basis function Vn,m is expressed by the multiplication of an angular
function Am(θ) and a radial one Rn(t):

Am(θ) =
1

2π
eimθ

Rn(t) =

{
1 n = 0

2 cos(nπt) n 6= 0

The ART descriptor will be obtained by projecting images to the ART basis
obtaining a coefficient for each function basis. Thus, it is an information pre-
serving descriptor:

ART (f)n,m = 〈f, Vn,m〉

Kim et al. only use 35 coefficients –setting n = 2 and m = 11– and we have
considered the same parameters. Regarding similarity invariance, we achieved
rotation invariance considering the modulus of coefficients, because ART coef-
ficients are complex values. Besides, scale invariance is obtained by dividing all
coefficients by the first coefficient.
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In the shape comparison stage we have used as similarity measure the L1 dis-
tance:

ART (f)−ART (g) =
∑

n,m

||ART (f)| − |ART (g)||

R-Signature: We have selected this descriptor because it is constructed from the
Radon transform of the image in a similar way to the ridgelets descriptor. In
the literature, we can find several evolutions of this descriptor. First, Tabbone
and Wendling [2002] introduced this descriptor by computing the squared norm
of the Radon coefficients for each angular parameter of the Radon transform:

Rf (θm) =
∑

n

|Rf [ρn, θm]|2 (5.1)

Then, Tabbone et al. [2006] modified the previous definition of R-signature to
improve the performance of this transform. They compute the map of dis-
tances of the shape achieving a representation of the shape at different levels
of distances. Then for each level they compute the R-Signature obtaining a
kind of multiresolution description. Then, to compare different shapes using
this descriptor, Tabbone et al. [2006] define a similarity transform based on the
modulus of the Fourier transform of the R-signature, to achieve invariance to
shape rotation.

We have usedR-signature to evaluate the performance of fusion methods. Thus,
we have adopted the definition given by the expression (5.1) but using the
similarity measure based on Fourier transform as it is not necessary to achieve
the best recognition rates.

Local norm ridgelets: We have introduced this type of descriptor in section 3.5 to
reduce the size of ridgelets descriptors. We have defined local norm descriptors
based on the ridgelets representation by defining sets of descriptors, Fl:

FDLl =

{
WDL,s(t− n, θ −m) ∈ VDL

∣∣∣∣
0 ≤ n− l < 4,
0 ≤ m < K(s)

∣∣∣∣
}

Then, the local norm descriptor is defined:

LNRDLWRf (l) =

DL−1∑

s=0

l+3∑

n=l

K(s)∑

m=0

|WRfDL,s[n,m]|2

And the similarity measure used is the Euclidean distance between the descrip-
tors.
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5.3 Ridgelets descriptors

We have used the tests from the GREC’03 contest in graphics recognition to evalu-
ate the goodness of the ridgelets descriptors introduced in chapter 3 comparing them
with the ART descriptor. The GREC’03 symbol database is composed of 512×512
binary images. Due to the FSS implementation of the Radon transform, the decom-
position process must start with a 1024×2048 array (cf. section 3.2.1) and according
to the ridgelets descriptors computation (cf. Algorithm 3.1), it yields 56 sub-matrices
of ridgelets coefficients, arranged into six decomposition levels. From all these ma-
trices of coefficients we have only used the first 20, corresponding to the first four
levels of decomposition. Considering higher levels would have considerably increased
the computation time, and could have introduced noise in the representation. These
experiments have been carried out before developing the linear fusion methods for
combining multiresolution descriptors proposed in chapter 4 and hence, we have com-
bined the similarity values between the ridgelets descriptors using the CR method
—see Algorithm 3.2.

We have grouped these tests into three groups of experiments:

1. Robustness to resolution. We have considered ideal representation of the
symbol model, i.e. without applying any kind of symbol rotation and symbol
degradation and we have re-scaled the symbol at different resolutions. The goal
is to evaluate the stability of the multiresolution representation at different sizes
of the input image.

2. Invariance to similarity transforms. Although, strictly speaking, ridgelets
descriptors are not invariant to symbol rotation we have evaluated whether the
ensemble composed of ridgelets descriptors and the similarity measure defined
in (3.17) achieves invariance when shapes are rotated, scaled and rotated and
scaled.

3. Robustness to degradation and vectorial distortion. The goal of this set
of experiments is to evaluate the robustness of the shape models constructed in
section 3.4.1 to handle symbol degradation and vectorial distortion.

5.3.1 Robustness to resolution

We have implemented some of the algorithms using Matlab, while others have been
implemented in C, in order to reduce the computation time. However, the ridgelets
transform of a 512× 512 image is quite time expensive. As explained in section
3.4, depending on the original size of image we will obtain a different number of
decomposition levels. Hence, a 64×64 has 3 decomposition levels whereas a 512×512
has 6 decomposition levels. We have only used the first four levels, so that we can
wonder whether we can take advantage of the multiresolution properties of ridgelets
to reduce the initial size of the image, and thus, reduce the computation time too,
without losing discrimination power. For example, for an initial size of 512×512
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we will compute 6 decomposition levels, but we will only use 4. Alternatively, if we
re-scale the same image to a size of 128×128, we will only compute 4 decomposition
levels, the same number as we will use for comparing. With this approach we can
reduce the computation time, but at the same time, we work at lower resolution and
we could lose discrimination power.

In order to answer this question, we have taken those tests containing only ideal
images of each symbol. In the GREC’03 database, there are three such tests, each
one with an increasing number of symbols: 5, 20 and 50 symbols. We have scaled
the images contained in those tests to sizes 64×64, 128×128, 256×256 and 512×512.
Then, we have applied the ridgelets transform and the classification scheme to each
of the re-scaled sets of images. We have to note that for a 64×64 image, we only have
three decomposition levels, whereas for bigger images, we can work with four levels,
as explained before.

Results are very satisfying. We have obtained a 100% recognition rate with all
tests, all image sizes and all decomposition levels except for one case, corresponding
to the last decomposition level with an image size of 64×64 using the test with 50
symbols. From these results we can draw three main conclusions: first, the ridgelets
transform has good properties for shape discrimination at all scales. It is to be noted
that there are very similar symbols in the database. Second, ridgelets performance on
shape discrimination is not degraded when the number of symbols increases. Third,
the size of the image seems to have no influence on the results, except maybe in the
case of 64×64 images. Therefore, in the forthcoming experiments, we will only use
those tests working with the biggest set of symbols, i.e, the set containing 50 symbols.
This way, we will test the ridgelets performance with the the hardest set of symbols in
the database in terms of number of symbols and shape similarity among them. With
regard to the initial size of the image, it seems that there can be a certain degradation
of the performance for 64×64 images. Thus, we will use the next experiment to extract
a final conclusion about this issue.

5.3.2 Invariance to similarity transforms

The next experiment aims to test the robustness to global transformations of the
image, such as rotation and scaling. There are three tests in the symbol database
including this kind of transformations: one test containing only rotated images of
the symbols, another one containing only scaled images, and another one containing
images which have been rotated and scaled at the same time, each test containing 250
images of all the symbols. We have applied our approach to these tests twice, with
images resized to 64×64 and 128×128, in order to determine if recognition rates are
degraded with 64×64 images.

Results are shown in table 5.1. Regarding image size, we can see that results are
clearly lower for 64×64 images than for 128×128 images, specially at decomposition
level 2. Even though recognition rates tend to decrease with the decomposition level,
results at level 3 for 128×128 images are better than results at level 2 for 64×64
images. Therefore, we will use 128×128 images in all experiments, as a compromise
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0 1 2
(a) Results with 64×64 images
rotation 100,00% 93,20% 69,60%
scale 99,60% 99,20% 99,60%
rotation & scale 98,40% 91,20% 72,00%

0 1 2 3 Combination
(b) Results with 128×128 images

rotation 100,00% 92,40% 93,60% 93,60% 100,00%
scale 100,00% 100,00% 100,00% 100,00% 100,00%
rotation & scale 98,40% 95,20% 92,80% 82,00% 98,80%

Table 5.1: Recognition rates at each decomposition level (columns) for each test. The
last column in (b) corresponds to the recognition rate when combining the results using
the CR algorithm

between computation time and reliability.

Table 5.1 shows that the ridgelets transform is invariant to scale but not to ro-
tation, specially at higher decomposition levels. More specifically, non invariance to
rotation is due to the fact that wavelets are not invariant to arbitrary shifts, as ex-
pressed by the inequality in expression (3.16). Rotation means a shift in the angular
parameter of the ridgelets representation and therefore, a shift in the angular position
of the singularities into the parameter space. However, the ridgelets response to this
shift is slightly different depending on the wavelets basis and the scale parameters.

On the other hand, analyzing values from table 5.1 we can remark that recognition
rates tend to decrease as decomposition level increases. This tendency is understand-
able after considering some properties of the ridgelets decomposition. First of all,
level 0 is composed by a 32×32 matrix of ridgelets coefficients corresponding to the
scaling function, not to wavelets. Therefore, in this matrix we concentrate almost
all information, having a low resolution Radon Transform of a symbol, similar to the
Hough Transform used by Fränti et al. [2000]. Secondly, the low percentage of hits
at the last level is due to noise. For 128×128 images, level 3 corresponds to the last
level of decomposition, which increases the presence of noise into symbol description.
Moreover, as we normalize each matrix to 1, using L2 norm, the noise is amplified
and, consequently, values of the local maxima in the matrix decrease.

So far, we have shown results for each decomposition level separately. We have
applied the voting scheme introduced in section 3.4.3 to the results from tests with
rotation and scaling, and the final result is summarized in the last column of table
5.1. In all cases, the combination of levels reaches better performance than any of
the four levels alone, showing strong stability in the ridgelets representation along
all decomposition levels. We can also see that different decomposition levels can
capture relevant features in different ways and thus, all levels are necessary and can
provide relevant information for classification. Thus, we can state that the ridgelets
transform is able to manage well this kind of transformations. Only when images are
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(a) model 2 (b) model 3 (c) model 5 (d) model 7 (e) model 9

Figure 5.3: Some examples of degraded images. (a) Local noise. (b) Local & global
noise. (c) Thickening. (d) Broken lines. (e) Thinning

(a) No distortion (model 9) (b) Level 1 (c) Level 2 (d) Level 3

Figure 5.4: Some examples of distorted images. (a) Without distortion. (b), (c) and
(d) correspond to increasing distortion degrees.

both rotated and scaled the performance is slightly degraded.

5.3.3 Robustness to degradation and vectorial distortion

Finally, in the GREC’03 database there are some tests containing images with sev-
eral kinds of binary degradations and vectorial distortions. These images have been
generated using models of image degradation and deformation trying to simulate
degradations found in real images. There are nine different models of binary degrada-
tion enumerated from model 1 to model 9 —examples of images generated using the
most representative models are shown in figure 5.3— and three degrees of vectorial
distortion —examples for each degree can be found in figure 5.4. The nine models of
degradation try to simulate those binary degradations introduced by copying, printing
or scanning documents [Kanungo et al., 1994]. They are based on a statistical model
to add binary noise to images. On the other hand, vectorial distortions try to model
shape variability introduced by hand-drawing. It is based on a statistical model to
generate variations of the lines in the symbol. The generation of vectorial distortion
has been limited, in the symbol database, only to 15 symbols exclusively composed
of straight lines, and each test contains 75 images. Nevertheless, we have used the
models of all symbols when classifying these images.

Strictly speaking, the ridgelets representation of the model of a symbol depends
on two parameters: the two elements in the diagonal of matrix Σ, used to smooth
the representation of the symbol —cf. section 3.4.1. This dependency is specially
important when working with degraded and distorted images, as Σ have a direct
relation to the amount of variability allowed in the representation of a symbol. We
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No distortion Level 1 Level 2 Level 3
ridgelets ART ridgelets ART ridgelets ART ridgelets ART

model 1 100,00 100,00 98,67 100,00 100,00 96,00 94,67 99,00
model 2 100,00 100,00 97,33 99,00 98,67 95,00 94,67 97,00
model 3 100,00 86,00 98,67 88,00 98,67 89,00 90,67 73,00
model 4 99,60 85,00 98,67 88,00 97,33 89,00 93,33 85,00
model 5 100,00 88,00 97,33 89,00 96,00 91,00 96,00 81,00
model 6 100,00 100,00 97,33 100,00 97,33 96,00 92,00 96,00
model 7 100,00 100,00 100,00 100,00 97,33 96,00 94,67 96,00
model 8 98,40 89,00 100,00 100,00 98,67 99,00 98,67 99,00
model 9 89,20 84,00 100,00 99,00 100,00 99,00 96,00 100,00

Table 5.2: Recognition rates for degraded and distorted images using ridgelets and
ART descriptors. Results are shown for 9 degradation models (models 1-9 in rows) and
3 distortion levels (level 1-3 in columns).

have considered different values for Σ in order to determine the ideal ones. We have
not reached any significant conclusion. We can see that low values of Σ are not
able to manage variability and recognition results are also low. But if we increase
too much the values of Σ, the recognition rates are also low because we allow too
much variability and we increase confusions among symbols. Thus, we have fixed the
best experimental values for Σ and we have carried out the tests with only binary
degradations (involving 50 symbols), and the tests with binary degradations and each
of the three degrees of distortion (involving only 15 symbols).

Table 5.2 shows the final recognition results for all these tests. We can see how the
ridgelets representation is able to perform well in all models of degradation, except
in model 9, where lines are thinner and more degraded. In general, with increasing
degrees of vectorial distortion, recognition rates decrease, showing that our represen-
tation is more robust to binary degradations than to shape variability. These results
mean that, even with binary noise, the ridgelets transform is able to accurately cap-
ture line singularities. However, as vectorial distortion implies changing the location
of these singularities, the performance decreases.

We find a surprising result corresponding to model 9 of degradation. In such case,
the recognition rate is higher for distorted images than for non-distorted images. We
can explain these results after visual inspection of images —figure 5.4. We can see
that lines in non-distorted images are thinner than lines in distorted images. This fact
is due to the way images have been generated in the database. Then, the ridgelets
representation for non-distorted images of model 9 fails to detect some of the line
in the symbol and therefore, recognition rates are lower. For a final comparison, we
have computed the global recognition rate for both descriptors, taking all images in
the tests with degradation and distortion. These global rates are 93.64% for the ART
descriptor and 97.49% for the ridgelets descriptor.
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5.4 Combining Classifiers

In chapter 4 we have proposed two optimal linear rules for classifier fusion depending
on the properties of classifiers, namely IN and DN . IN corresponds to classifiers
whose validation r.v. is independent and normal whereas DN corresponds to depen-
dent and normal validation r.v. In this context, we have organized the evaluation of
IN and DN in two ensembles of experiments depending on the type of data used.
First of all, we have generated synthetic data to simulate the classifier outputs. In this
way, we can ensure that classifiers follow the desired distributions. Secondly, we have
used two shape databases, one database of graphic symbols (GREC’03 database) and
one database of hand-written numerals (MNIST database), to test the performance in
real situations. For each type of data we have carried out the following experiments:

Synthetic data: We have defined five type of distributions depending on whether
the validation r.v. of classifiers follows or not the conditions for IN and DN
methods. Afterwards, we have generated an arbitrary number of outputs to
carry out two experiments:

1. Evaluation of the theoretical approach. The goal of this experiment
is linking the theoretical development and the empirical evidence. In this
sense, we have verified that the empirical misclassification error fits the
estimated error using the error formula given in (4.7). Besides, we have
verified that IN and DN method leads to the same optimal weights when
the validation r.v. are independent and normal.

2. Comparison with other fusion methods. In this experiment we com-
pare IN and DN methods regarding max, mean and median rules.

Shape databases: We have applied the classifier fusion methods to the combination
of shape descriptors using three binary classifiers: Discrete Adaboost (DAB),
Linear Classifier (LinClass) and a normal classifier (CNormal), which are ap-
plied to the distribution of distances between the descriptors of the query shape
and the descriptors of the model shape. Two experiments have been designed:

1. Binary classifiers. As for synthetic data, in this experiment we compare
IN and DN method regarding max, mean and median rules but using
binary classifiers

2. Multiclass classifiers. Similarly to the case of binary classifiers but
introducing the arg max function to define multi-class classifiers.

5.4.1 Using synthetic data

It is not easy to verify specific conditions on the output of real classifiers. Thus, many
works have focused on generating synthetic data to simulate the output of classifiers
in order to evaluate classifier fusion methods [Zouri, 2004]. In this section we will
define five kind of classifiers according to different distributions. Four of these are:
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T − IN , T − IN̄ , T −DN and T −DN̄ for respectively independent & normal, in-
dependent & non normal, dependent & normal and dependent & non normal. In this
way, we can test the performance of the method depending on whether the assump-
tions are fulfilled or not. The fifth family of classifiers is T − IID, which satisfies the
independence and normality but they are also identically distributed. The obtained
results from this classifier have permitted us the comparison with other approaches
that also make the assumption that classifiers are identically distributed [Alkoot and
Kittler, 1999, Kuncheva, 2002].

Generating classifier outputs

We will explain how to generate L distributions corresponding to the output of L clas-
sifiers. Thereby, we have used three well-known properties of normal and multivariate
normal distributions, X, to simulate the desired classifiers:

1. Uncorrelation of joint distribution implies independence of r.v.

2. 〈X,α〉 is a univariate normal distribution for all α. This property will permit us
to generate data satisfying the condition of normal distribution needed in the
DN method.

3. For any affine transform, T such that Z = TX, Z is a multivariate normal
distribution.

To generate a distribution from one of these five families of classifiers we need to
generate random positives values for µ and σ. we have chosen interval rµ = [.1, 1]
and rσ = [.2, 1.2] —for µ and σ, respectively— similar to those defined in Alkoot and
Kittler [1999]. Besides, to generate dependent distributions, we also need a random
matrix, R, for rotation in RL. The rotation matrix R will permit us to correlationate
the output of classifiers. To find a random rotation, we randomly generate a matrix
A and we define B = A + At. B is symmetric. Then, the rotation matrix R verifies
B = RSRt and detR = ±1 (S is the matrix of eigenvalues of B that we will not use).
For each group of distribution we will proceed as follows:

T − IID: We generate L independent normal distributions, U0, for the positive ex-
amples and L independent normal distributions, U1 for the negatives examples
. Then, we obtain a random value µ ∈ rµ and σ from rσ and we scale these 2L
classifiers by σ and we shift them by µ. Therefore:

Z|Y=1,l = σU0,l + µ

Z|Y=−1,l = −σU1,l − µ

T − IN : As in T − IID but obtaining L pairs (µ, σ). One for each classifier:
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Z|Y=1,l = σlU0,l + µl

Z|Y=−1,l = −σlU1,l − µl

T − IN̄ : In real situations it is usual to approximate unknown distributions by a
mixture of normal distributions. For distributions from T − IN̄ , we will gen-
erate a pair (µpos, σpos) for the elements belonging to the class and a new pair
(µneg, σneg) for those that do not belong. In such way, the validation r.v. will
not be normal. Hence:

Z|Y=1,l = σpos,lU0,l + µpos,l

Z|Y=−1,l = −σneg,lU1,l − µneg,l

T −DN : We generate a random mean vector µ and a random diagonal matrix D with
the variance values. We obtain the rotation matrix as we have explained above
and we compute the new distribution for a multivariate normal distribution:

Z|Y=1 = RDU0 + µ

Z|Y=−1 = −RDU1 − µ

T −DN̄ : As in T−IN̄ , we generate a mixture of multivariate normal distributions. In
this case, we have generated two multivariate normal distribution for the nega-
tives examples in order to ensure that the validation r.v. is not normal. Besides,
we generate each multivariate normal distribution as in T − DN . Therefore,
each multivariate normal distribution is:

Z|Y=1 = RposDposU0 + µpos

Z|Y=−1,1 = −Rneg,1Dneg,1U1 − µneg,1
Z|Y=−1,2 = −Rneg,2Dneg,2U2 − µneg,2

Thus, for each classifier we are able to generate a random number of outputs. We
have tested our approach by combining 3, 9 and 20 classifiers and then, we have ran-
domly generated, 2000 outputs, for each of them. Afterwards, to avoid the possibility
that the result could be influenced by the particular distributions of 20 classifiers, we
have repeated the process of generating 20 classifiers up to 500 times. In other words,
for the five families of classifiers we have generated 500 tuples of 20 classifiers.

Evaluation of the theoretical approach

This experiment aims to verify the theoretical framework using data following different
types of distribution. Thus, we have generated different types of distributions —as
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explained in the precedent section— in order to compare the empirical error and the
theoretical error depending on whether the distributions of data follow, or not, the
conditions imposed by the IN and DN methods. Moreover, we also aim to compare
the differences between the obtained weights using both methods.

When the validation r.v. satisfies the condition of normal distribution, the the-
oretical results permit us to estimate the misclassification rate using IN and DN
methods (cf. expression (4.7)). Besides, when classifiers are independent, DN and
IN must lead to the same optimal weights (because the solution is unique).

In this experiment, we have validated these theoretical results combiningN = 2000
outputs of 20 classifiers grouped in sets of 3, 9 and 20 classifiers for the five types of
distributions. For each group of classifiers we have obtained the optimal weights α
with both methods and thus, we have computed both the empirical misclassification
rate (EMR) and the theoretical misclassification rate (TMR):

EMR =
1

N

∑

n

1{〈un,α〉<0}(un)

TMR = P (〈U,α〉 < 0|X) =

∫ −µα
σα

−∞
g0
α(v|x)dv

where TMR is given by the expression (4.7) and we have denoted by un the n-th
validation vector of length 3,9 or 20

Then, we have computed the difference between both errors: |EMR − TMR|. On
the left hand side of figure 5.5 we have plotted the mean and the standard deviation
of the differences between the theoretical error and the empirical error obtained for
the five families of classifiers using the IN and DN method —in blue and green in
the figure 5.5. The mean and standard deviation have been computed over the five
hundred distributions of each classifier combined in groups of 3, 9 and 20 classifiers,
i.e. we have computed the EMR and TMR values of one thousand and five hundred
combinations of distributions.

Besides, for the same set of classifiers and grouping them into groups of 3, 9
and 20 classifiers as well, we have computed the differences between the obtained
weights using the IN and the DN method. This experiment aimed to verify that
both methods reach the same solution when classifiers are independent and normal.
On the right-hand side of figure 5.5 we can see the mean and the standard deviation
of these differences for the five families of descriptors and grouping them into groups
of 3, 9 and 20 classifiers (in blue, green and red, respectively).

Results are quite satisfying and we can extract the following two main conclusions:

• When the classifiers verify the hypothesis for the IN or DN method. There
are not differences between the empirical error (EMR) and the theoretical error
(TMR). Conversely, when classifiers do not verify the required conditions for
the IN and DN methods the differences between the EMR and the TMR are
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(a) Differences between EMR and TMR
(b) Differences between the ob-

tained weights using IN and DN
method

Figure 5.5: Validation of the classifier fusion method. Mean and Standard deviation:
(a) difference between theoretical error and the empirical error (b) difference between
the obtained weights using IN and DN method.

significant. Moreover, the “optimal” weights returned by these methods are
quite different depending on the method used.

• When classifiers are independent and normal, the IN and DN find the same
optimal weights —see first and second column in figure 5.5.b.

Therefore, the probabilistic framework introduced in Chapter 4 is suitable to face
the problem of classifier fusion.

Comparing with other classifier fusion methods

The goal of this experiment is to compare IN and DN regarding other combination
rules: max, mean and median, depending on the distribution of classifiers. Besides,
this experiment links to other experimental results reported in Alkoot and Kittler
[1999], Kuncheva [2002] and Tax et al. [2000] where they show that the mean rule
usually performs better than the other rules. In Alkoot and Kittler and Kuncheva
experiments, they work with 1-class classifiers that estimate a posterior probabil-
ity p ∈ [.5, 1] which is affected by a normal or uniform noise. These classifiers are
equivalent to binary classifiers whose the validation r.v. is centered in p− .5.

Besides, the mean rule is a linear rule so that the IN and the DN methods
should perform better than the mean rule and, consequently, than the other reference
methods. To test the validity of this hypothesis we have followed the same scheme
than in the previous experiment. i.e. For the five type of classifiers we have generated
500 tuples of 20 classifiers grouping them into groups of 3, 9 and 20 classifiers. Then we
have computed the empirical classification error obtained by the different combination
rules. The results obtained for classifiers belonging to T −IID group are quite similar
to that obtained for classifiers in the T − IN group. Hence, in figure 5.6 we have only
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Figure 5.6: Misclassification rates using combination rules: IN , max, median mean
and DN

depicted the results from T −IN , T −IN̄ , T −DN and T −DN̄ . Results confirm our
hypothesis: Linear combinations rules, such as mean, IN and DN outperform other
combination rules like max and median rules. Besides, IN and DN outperform the
mean rule in the five type of distributions except for the combination of 20 classifiers
of the T−DN̄ type. Besides, we can observe that in all methods (with the exception of
max rule) the classification error is reduced when we increase the number of classifiers
for the five types of classifiers even though the conditions for the IN and DN methods
are not satisfied.

Later, mean, max and median rules have been used as reference methods in the
evaluation using shape databases. Thereby, the obtained results in this part have been
used as a baseline when we have compared fusion methods using shape databases. For
instance, in this experiment we can observe that the max combination rule offers a
very poor performance in the five type of classifiers. Similarly, the max rule has
obtained a poor performance in experiments using shape databases.
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5.4.2 Using Shape Databases

The experiments with synthetic data have permitted us to state the validity of the
theoretical framework introduced to derive the IN and DN methods. However, in
practice we can not always verify the dependence, or independence, and the distribu-
tion law followed by classifiers. In figure 5.7 we have an example of the distributions
of the three binary classifiers used in our experimental evaluation for the symbol Elec-
trical J. The “normality” of the DAB classifier is unclear since it returns five discrete
values. The same effect can be observed in the distribution of the LinClass classifier.
However, concerning the distribution of the CNormal classifier we can see that it is
normal (by construction).

(a) DAB (b) LinClass (c) CNormal

Figure 5.7: Example of distributions of symbol Electrical J using DN method and
using three different classifiers

As we have explained before, we have used two shape databases (GREC and
MNIST) and four descriptors (ridgelets, ART, R-signature, and LNR) to test the
classifier fusion methods. Thereby, we have created three sets of experiments com-
bining databases and descriptors: GREC ridgelets, GREC descriptors and MNIST
descriptors. GREC ridgelets is formed by the ridgelets descriptors introduced in chap-
ter 3 applied to the GREC database. Conversely, GREC descriptors and MNIST
descriptors are composed of the set of descriptors explained in section 5.2 applied to
shapes from the GREC and MNIST database, respectively. More specifically, GREC
descriptors test is composed by six descriptors: ART , F − R and four LNR descrip-
tors (one for each decomposition level). Finally, the MNIST descriptor is formed by
four descriptors: ART , F − R and two LNR descriptors. In this case, we have two
descriptors from the LNR because shape images are smaller and hence we have ob-
tained less decomposition levels —we have summarized the three sets of experiments
in table 5.3.

Name GREC ridgelets GREC descriptors MNIST descriptors
Database GREC GREC MNIST
Descriptors WR LNR, F −R, ART LNR, F −R, ART

Table 5.3: Sets of experiment using two shape databases and two sets of descriptors

Concerning the learning process, we have divided the GREC database into two
halves: one half for training and the other half for testing. In this database, there are
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few positive examples for each class, so we have included all of them in the training
set whereas the negatives examples have been randomly chosen up to 200 examples
per class. Conversely, the MNIST database already contains a training set formed
by 60.000 hand-written examples of the ten numerals and a test database composed
of 10.000 examples. For this database we have randomly chosen 200 examples of
numerals 0,1,2,3,6,8. We have not considered the ten numerals because the database
is composed of hand-written numerals and descriptors are invariant to rotation. More
specifically, we have discarded the numerals 4 and 9 to avoid misclassification with the
numeral 6. The numeral 7 is discarded to avoid misclassification with 1 and finally, 5
as it is symmetric to 2.

The model descriptor has been obtained computing the mean of descriptors of
positive examples for each class and for all the three tests. However, for the GREC
ridgelets test we have not considered rotated symbols because ridgelets descriptors
are not invariant to rotations (cf. Chapter 3). Then, we have used the same similarity
measure —the Euclidean distance— to compare the query shape and the descriptors
of the model shape.

We must emphasize that the main goal of these experiments is to compare combi-
nation rules regardless the poor recognition rates achieved by some of the considered
descriptors either because we have used in all cases the Euclidean distance or either
because these descriptors can not be the most suitable for the type of images in the
database (as it is the case for the MNIST database).

Construction of classifiers

The three classifiers are trained on the distribution of distances between shape de-
scriptors, Xn, and the descriptor used as shape model, Mj , namely Dn = d(Xn,Mj).
Besides, we have adopted some conventions in assigning letters to subindex. Thereby,
n denote a particular shape; j is used for denoting classes and l the classifiers. Fi-
nally, the three classifiers are based on finding suitable thresholds, dT , and dividing
the space of distances into two sub-spaces: One sub-space corresponds to the shapes
belonging to the class j, Tpos = {Dn < dT }, and the second sub-spaces corresponds
to the shapes that do not belong to the class j, Tneg = {Dn > dT }.

We have chosen three types of classifiers: DAB, LinClass and CNormal. The
DAB classifier is the implementation of the Discrete Adaboost [Freund and Schapire,
1996], which has proved to perform well. On the contrary, the LinClass is a linear
classifier which is the simplest classifier that we can define and, besides, implicitly
assumes that the distribution of distances is normal. Finally, the CNormal classifier
is a linear classifier which modifies the distribution of distances in order to make it
normal. Hence, with these conventions on the notation, we have constructed the three
classifiers as follows:

DAB classifier is a Discrete Adaboost classifier. We have used a slightly modified
version of the Adaboost algorithm proposed by Schapire and Singer [1999] with-
out considering the sign of the output —Algorithm 5.1.
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Algorithm: Generalized Adaboost

Input: {(Dn, yn)}
Output: H, hard classifier

begin:
Initialize w0,n = 1/N ;
for m = 1 to M ,

Train weak learner hm;
Get weak hypothesis hm : R→ R;
Choose cm;
Update:

wm,n = 1
Zm

wm,nexp(−cmynhm(Dn))

where Zm is a normalization factor.
endfor
return H(D) =

P
m cmhm(D);

end:

Algorithm 5.1: Generalized version of Adaboost Schapire and Singer [1999] .

Schapire and Singer compute the weight cm when they train the weak classifier,
which simply consists of computing a threshold value, dT , in the distance dis-
tribution minimizing the weighted classification error. Then, the prediction of
the weak classifier is given by:

h(Dn) =
1

2
log

W a
+

W a
−

if Dn ∈ Ta (5.2)

where W a
+ =

∑
n:Dn∈Ta wn and W a

− =
∑
n:Dn∈Ta wn, a = pos, neg, and wn are

the weights assigned to each distance, Dn.

LinClass classifier is a linear classifier defined as:

h(Dn) =

{
rpos(Dn) if Dn ∈ Tpos
−rneg(Dn) otherwise

(5.3)

where the distance threshold, dT is obtained from the intersection of two straight
lines, rpos and rneg. We have defined both lines by implicitly assuming that the
margin distribution of Z|Y=1 and Z|Y=−1 are normal distributed. Thus, rpos
is the tangent to the pdf of Z|Y=1 at point tpos = µpos + σpos and rneg is the
tangent to the pdf of Z|Y=−1 at points tneg = µneg − σneg.

CNormal classifier is a linear classifier defined on a mixture of two normal dis-
tribution of data. In LinClass classifier we have assumed that D is normal
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distributed. However, in the CNormal classifier we modify the D distribution
so that it becomes a mixture of two normal distributions, DN (one distribution
for the positive examples and the other distribution for the negatives examples).
The three key points of the CNormal classifier —sketched in Algorithm 5.2—
are: the selection of the threshold distance dT ; the choice of parameters for the
mixture of the two normal distributions, and the construction of the cumulative
function of the distribution D, FW . dT is obtained after applying once the weak
classifier used in the DAB classifier. In this case, the weights assigned to Dn

are 1/N. Regarding the mixture parameters, the positive examples are centered

in -1 and the variance is σNpos =
σ2
pos

µpos
whereas the negative examples are centered

in 1 and the variance is
σ2
neg

µneg
. Then, we compute the cumulative function, G of

the mixture of the two normal distributions.

Algorithm: CNormal

Input: {(Dn, yn)}
Output: H, hard classifier

begin:
Obtain dT from the weak learner h (setting the weights to 1/N);
Estimate the variance of the mixture of the two normal distributions;

σNpos =
σ2
pos

µpos
;

σNneg =
σ2
neg

µneg
;

Compute the cumulative function of the mixture of normal: G;
Compute the cumulative function of the distance distribution: FW ;
DN = (G◦F−1

W )(D);
return h = −DN ;

end:

Algorithm 5.2: CNormal Classifier

It remains to explain how to compute the cumulative function FW . In this
sense, we assign a weight, Wpos, to the positives examples and a weight Wneg

such that FW (dT ) = 1
2 . These weights are given by:

Wpos =
#Tpos
N

Wneg =
#Tneg
N

We have computed DN by linearly interpolating functions G and F−1
W .

Binary Classifiers

In this experiment the question to answer is whether the fusion of binary classifiers
outperforms the classifier fusion methods used as reference when they are applied
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to real data. Besides, we also want to verify if the classification rate using the best
descriptor, denoted as single, is outperformed by the IN and theDN methods. Hence,
we have trained DAB, Linclass and CNormal classifiers and derived the optimal
weights for both methods (DN and IN). Then, we have applied these classifiers to
the training tests of the three sets of evaluation: GREC ridgelets, GREC descriptors
and MNIST descriptors as depicted in figure 5.8

(a) GREC ridgelets (b) GREC descriptors (c) MNIST descriptors

Figure 5.8: Mean of misclassification rates for binary classification for “GREC
ridgelets”,“GREC descriptors” and “MNIST descriptors” using IN , DN , max, mean
median and single —from left to right.

Results are quite positive. IN and DN rules outperform the other combination
rules even though the hypothesis of independence and normal distribution have not
been verified. Except for the “GREC descriptors” test using CNormal classifier. In
this case, the median rule outperforms the IN and DN methods. If we focus on the
performance of IN and DN methods, we can not conclude that one of them generally
outperforms the other. Depending on the shape database, classifier and descriptor
IN is better than DN and reciprocally.

Concerning the max rule, we can observe that the general bad performance of max
rule pinpointed in the experiments using synthetic data is stressed in binary classifiers.
Hence, the problem of the max method might be in how we have adapted the max rule
to our case: max(Zl) = Zl0 , where l0 = arg max {arg maxl Zl,− arg minl Zl}. This
definition is motivated due to the fact that we must treat both positive and negative
outputs of the binary classifiers. Thereby, the classification error of the combination
rule may be provoked by one classifier having low recognition rate and big variance.
This classifier can reach big values with the incorrect sign (positive when the shape
does not belong to the class and reciprocally). Hence, we may think about other
definitions of the max rule.

Therefore, we can summarize this experiment by saying that IN and DN meth-
ods actually outperform other fusion methods in binary classifiers even if the required
conditions are not always satisfied. However, we can not draw any conclusion about
which of the two methods is generally more suitable to compute the weights of com-
bination. The next experiment (in a multi-class context) will enlighten us in this
direction.
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Multiclass Classifiers

Experiments using binary classifiers have permitted us to compare IN and DN rules
regarding other reference rules without considering the effect of the arg max operator
in a multi-class problem. Hence, in this section, we have examined the performance
of IN and DN in a multi-class problem. Then, in this experiment we have used DAB
and CNormal classifiers, discarding LinClass classifiers because its recognition rates
are lower and we have considered that it will not contribute to the discussion with
additional relevant information.

On the other hand, we have slightly modified the IN method when it is applied to
the DAB classifier. In the original IN method we have approximated classifiers by a
Dirac distribution when their variance is 0. However, preliminary results in the multi-
class experiment were surprising for some classes of shapes. For instance in the GREC
database, we have found that there were many symbols miss-classified as belonging
to the class Architectural A. Hence, we have examined the estimated weights for the
ridgelets descriptors. In figure 5.9 we have depicted the weights corresponding to the
twenty descriptors of GREC ridgelets test. Thus, the classifier with a small variance
(the 13th) reaches a weight higher that .9 whereas the rest of classifiers were weighted
with values near 0. It means that the result of combining the ridgelets descriptor was
essentially the same as the result of the descriptor having the smallest variance.
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Figure 5.9: Differences between DAB and DAB−σ classifiers. Weights corresponding
to class Architectural A in GREC ridgelets test for classifiers DAB and DAB−σ.

Consequently, we though about approximating classifiers with low variance by a
Dirac distribution. In this sense, we looked for an error threshold so that classifiers
with an error lower than this threshold would be approximated by a Dirac distribution
whereas for higher errors we would approximate the classifiers by a normal distribu-
tion. First of all, we have tried an error ε = 1.10−16 and then we have computed the
variance, σ0 of the normal distribution (centered in 1), U , satisfying:

P (U < 0) = ε

being the variance σ0 ≈ 0.0151. Hence, in the modified version of the classifier,
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DAB−σ, we have approximated by a Dirac distribution all classifiers with a variance
lower than σ0 whereas classifiers with higher variances have been approximated by
a normal classifier —see figure 5.9 for the new weights obtained using this criteria,
where differences between weights are lower than in the DAB classifier .

In figure 5.10 we can see the misclassification rates for CNormal, DAB and
DAB−σ classifiers applied to the GREC ridgelets and the misclassification rates
for the GREC descriptors and GREC MNIST test using only CNormal and DAB
classifier. We have not applied the DAB−σ classifier to these two tests because we
have not observed that there were classifiers with a variance lower that 0.0151 (and
different of 0) that could modify the misclassification rates.

(a) GREC ridgelets (b) GREC descriptors (c) MNIST-descriptors

Figure 5.10: Mean of misclassification rates for multiclass classification for “GREC
ridgelets”,“GREC descriptors” and “MNIST-descriptors” using IN , DN , max, mean
and median rules –from left to right columns.

A first analysis of these results shows that recognition rates decrease for the three
set of descriptors, classifiers and fusion strategies regarding recognition rates of binary
classifiers. This result can be explained by the fact that even if the classifier of the
true class returns a positive value, this value can be lower than the value provided by
other classifiers. In particular, the max rule achieves again a poor recognition rate in
all cases (always lower than 50%). Therefore, we confirm our suspicion and we should
look for another definition of the max rule suitable for binary classifiers. Besides,
unlike binary classifiers, we have noted that the performance of classifiers depend on
the test and we will comment the obtained results for each one:

GREC descriptors: We start our experiment discussion with this set of descriptors
because the obtained results are the more coherent with the results obtained
with binary classifiers. If we compare plots in figures 5.8 and 5.10 we will
not realise significant differences in the classifier fusion methods performance.
Roughly speaking, IN and DN methods outperform max, mean and median
classifiers. Besides, IN is better than DN .

GREC ridgelets: The recognition rates for all classifier fusion methods (except for
the max rule) is higher than 99,9%. Besides, we can note that the mean rule
has reached a 0% of misclassification rate using DAB classifier, achieving better
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recognition rates than IN and DN method. However, the DAB−σ classifier has
also reached a 0% of classification error for both, IN and mean rule. However,
the DN method has obtained poorer recognition rates for DAB−σ than for
DAB classifier.

MNIST descriptors: Although the evaluation of the misclassification rates is not
the main goal of these experiments, we must say some words about it in this
discussion of results. The selected descriptors for the MNIST database provide
quite similar description of almost all classes, i.e. most of the classes overlap
and consequently, they lead to low performance classifiers. In this context, we
must note that for CNormal classifier, recognition rates using mean and max
are near to the random choice (whereas for binary classifiers misclassification
rates were under 30%). Conversely, IN and DN methods have misclassification
rates near to 40% for the CNormal classifier (whereas for binary classifiers they
achieve a rate near to 25%). However, in spite of these low recognition rates,
these results are still coherent with the results using binary classifiers in the
same way that the obtained in the GREC descriptor test, i.e. the IN and
DN methods are better than the other combination rule and besides, the DN
method is outperformed by the IN method.

IN 0 1 2 3 6 8
0 906 2 0 0 72 0
1 0 1135 0 0 0 0
2 925 104 0 3 0 0
3 0 1 696 0 0 313
6 1 3 116 225 613 0
8 10 1 151 0 10 802

mean 0 1 2 3 6 8
0 946 1 0 0 33 0
1 0 1135 0 0 0 0
2 991 22 0 19 0 0
3 4 1 683 0 0 322
6 0 2 80 57 819 0
8 23 1 115 0 8 827

Table 5.4: Confusion matrices for IN and mean rules.

We will pay attention to the obtained results using DAB classifier. For this
classifier the mean rule outperforms IN and DN methods, when in binary
classifiers the optimal linear rules were the best. If we analyse the confusion
matrices for the IN and DN methods —see table 5.4, the confusion matrices—
we can distinguish three groups of numerals for IN and mean methods. Nu-
meral ’1’ has a recognition rate over 95%, numerals ’2’ and ’3’ have a 0% of
recognition, finally numerals ’0’, ’6’ and ’8’ have a recognition rate higher than
80% (but under 95%). Hence, the difference in the recognition rates are achieved
for those numerals achieving low recognition rates (numerals ’0’, ’6’ and ’8’). As
a conclusion, we can say that when we use binary classifiers achieving low recog-
nition rates, being not normal distributed and then merged using the arg max
operator the mean rule can perform better than IN or DN rules. Furthermore,
we must remark that IN method has achieved a 61,73% recognition rate using
the CNormal classifier whereas the mean rule has achieved a 61,21% of recog-
nition rate using the DAB classifier. It can mean that the CNormal classifier
fits better the distribution of descriptors than the DAB classifier. However, we
must carry out more experiments in this direction before drawing more con-
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clusions. The only conclusion we are able to state is that it seems that the set
formed by ART, F-R and LNR descriptors are suitable for detecting the numeral
’ 1’ of the MNIST database, whereas for the other numerals other descriptors
(and classifiers) should be chosen.

To finalize this experiment, we can conclude saying that in multi-class classifiers
the IN method generally performs better than mean, max and median combination
rules.

5.5 Combining ridgelets descriptors

The work in classifier fusion was motivated by the problem of combining the ridgelets
descriptors. Hence, the last set of experiments consists of applying the classifier
fusion methods to the combination of ridgelets descriptors. There are three reasons
that justify this experiment, although we have already used ridgelets descriptors in
the evaluation of fusion methods —cf. section 5.4:

1. In GREC ridgelets test we have not considered rotated shapes because ridgelets
descriptors are not invariant to rotation.

2. In GREC ridgelets we have used the Euclidean distance instead of the similarity
measure defined in (3.15).

3. In GREC ridgelets, we have taken the 20 descriptors obtained from the ridgelets
transform without considering the division of ridgelets descriptors in decompo-
sition levels —as explained in section 3.4.

In this section, we want to use the similarity measure introduced before in sec-
tion 3.4.2 and besides, we want to take advantage of the representation of ridgelets
descriptors into decomposition levels but using IN and DN methods instead of the
heuristic CR method introduced in section 3.4.3. In this way, we will be able to com-
pare the obtained results in section 5.3 to the results obtained in this section using
the IN and the DN methods. Nevertheless, we need to slightly modify both linear
methods in order to adapt them to the representation in decomposition levels.

Thus, we had to slightly modify the IN and DN methods designing pyramidal
versions of them, PIN and PDN respectively, to compare shapes having different
number of decomposition levels in ridgelets descriptors —see Algorithms 5.3 and
5.4. Both algorithms return a set of classifiers, namely C1, . . . , CDL, one for each
decomposition level. Afterwards, we have repeated the test of the GREC’03 symbol
recognition contest using the ridgelets descriptors combined, but using the PIN and
PDN methods in order to compare them, regarding the CR method and the ART
descriptor —cf. section 5.3.

For the IN method, the combination rule is defined in a straightforward way. As
the classifiers have been considered to be independent, we can compute all the weights
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Algorithm: PIN

Input: Oracle: {(Dn, Yn)|Dn is a vector of L descriptors}
DL, maximum decomposition level

Output: C1, C2, . . . , CDL, Pyramidal classifier
begin:

Obtain α from the IN method;
for s = 1, . . . , DL,

S = (s+ 1)(s+ 2);
Set: A =

P
l≤S,t=N α

t
l and A =

P
l≤S,t=D α

t
l ;

if A > B,
λN = A−B

2A−B and λN = A
2A−B ;

else
λN = 0 and λN = 1;

end;
update:

αNl = λNα
N
l ;

αDl = λDα
D
l ;

and normalize α such that:
P
l αl = 1;

Cs =
P
l<S αlhl;

endfor
end:

Algorithm 5.3: Pyramidal IN method

together at the beginning of the PIN algorithm. The difficulty lies in computing the
weights λN and λD in case we mix both normal and Dirac classifiers. Thus, for each
decomposition level from 1 to DL, we have to consider the S first classifiers and
aftwewards, apply to them the mix rule defined in the Proposition 3 to obtain the
suitable λN and λD —cf. section 4.4. More precisely, the classifier C1 takes into
account the ridgelets descriptors from the decomposition level 0 and 1 (normalized
so that the sum of weights is 1). The classifier C2 is defined as the classifier C1

but considering descriptors up to the decomposition level 2. Finally, the classifier
CDL takes into account all the descriptors up to the decomposition level DL. On the
contrary, for DN method the combination rule is defined as an hybrid fusion rule
because classifiers are considered to be dependent. Thus, we have to apply the DN
method for each classifier Cs. The minimal ridgelets representation consist of the
two first decomposition levels (composed of the six first descriptors). Hence, we have
applied the DN method to obtain the optimal weights for the classifier C1. Then, to
define the classifier C2 we have considered the classifiers trained for the descriptors
from the decomposition level 2 and we have combined with the classifier C1 obtained
in the previous iteration. The classifiers C3 is defined as C2 in a similarly way and
we have repeated the process for all decomposition levels:
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Algorithm: PDN

Input: {(Xn, Yn)|Xn is a vector of L descriptors}
Output: H, combination of classifier

begin:
Train L classifiers for the L descriptors, hl;
for l = 1 . . . L,

Get hypothesis zl,n = hl(Xl,n);
Obtain the validation values: ul,n = ynzl,n;

endfor;
Set C0 = 0;
for s = 1, . . . , DL,

S0 = s(s+ 1);
S = (s+ 1)(s+ 2);
Obtain the validation values: ũn = ynCs−1;

Set Us = (US0 , . . . , US) and Ũ = (ũn, Us);

Obtain weights: α = DependentWeight(Ũ );

Cs = α0Cs−1 +
PS
l=S0

αlhl;

endfor
end:

Algorithm 5.4: Pyramidal DN method

Cs+1 = α0Cs +
S∑

l=S0

αlhl

As we have computed the ridgelets descriptors from 128 × 128 images, we have
only four decomposition levels and therefore, the PIN and PDN methods will return
three classifiers: C1, C2 and C3.

5.5.1 Invariance to similarity transforms

For this experiment we have applied the tests: rotation, scale and rotationand scale
defined for the set 3 in the GREC’03 contest (composed of 50 different symbols).
We can see the results in table 5.5, where we have written in bold letter the results
obtained using the CR method:

A quick analysis of the obtained results permits us to verify that the ridgelets
descriptors are invariant to the change of scale for all classifiers and pyramidal com-
bination rules. Only the C1 classifier does not reach the 100% of recognition rate.
However, when we introduce rotated symbols, the performance of the pyramidal meth-
ods decreases. Only the PIN method applied to the DAB classifier reaches the 100%
of recognition rate (as the CR method) for all the decomposition levels. The other



5.5. Combining ridgelets descriptors 95

C1 C2 C3 C1 C2 C3

Scale: 100,00% Rotation: 100,00%
PIN-DAB 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
PDN-DAB 99,00% 100,00% 100,00% 94,00% 94,00% 99,00%
PIN-CNormal 99,00% 100,00% 100,00% 92,00% 92,00% 99,00%
PDN-CNormal 100,00% 100,00% 100,00% 96,00% 94,00% 96,00%

C1 C2 C3

Rotation & Scale: 98,80%
PIN-DAB 100,00% 100,00% 100,00%
PDN-DAB 96,00% 96,00% 94,00%
PIN-CNormal 92,00% 95,00% 94,00%
PDN-CNormal 94,00% 93,00% 90,00%

Table 5.5: Invariance to similarities. The rates in bold letter correspond to the recog-
nition rates using the CR method

methods have a recognition rate lower than 96% for classifiers C1 and C2. Finally,
we have tested the pyramidal classifiers in rotated and scaled images. In this case,
the CNormal classifier and the DAB classifiers combined using the PDN method
are outperformed by the CR method, that has achieved 98,80% of recognition rate.
However, the DAB classifier combined using the PIN method has reached the 100%
of recognition rate even for the C1 classifier.

Therefore, we can draw three conclusions: First, in general the PIN and PDN
methods do not outperform the CR method when we apply them for any classifier.
Second, the DAB classifier combined using the PIN method is actually invariant
to similarity transforms even using the two first decomposition levels (classifier C1).
Finally, the PIN method outperforms the PDN when all classifiers are considered.

5.5.2 Robustness to degradation and vectorial distortion

Then, we have tested the robustness to degradation and vectorial distortion of the
PIN method using the DAB and CNormal classifiers. We have discarded the PDN
method because of the low recognition rates achieved in the previous experiment
with rotated symbols. We recall that, in the GREC’03 database there are some tests
containing images with several kinds of binary degradations and vectorial distortions.
These images have been generated using models of image degradation and deformation
trying to simulate degradations found in real images. There are nine different models
of binary degradation enumerated from model 1 to model 9 and three degrees of
vectorial distortion. The nine models of degradations try to simulate those binary
degradations introduced by copying, printing or scanning documents [Kanungo et al.,
1994]. They are based on a statistical model to add binary noise to images. On the
other hand, vectorial distortions try to model shape variability introduced by hand-
drawing. It is based on a statistical model to generate variations of the lines in the
symbol [Valveny, 1999]. The generation of vectorial distortion has been limited, in
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the symbol database, only to 15 symbols exclusively composed of straight lines, and
each test contains 75 images. Nevertheless, we have used the models of all symbols
when classifying these images. In table 5.6 we can see the results of applying the
PIN method using DAB and CNormal classifiers to degraded and deform-degrad-
level3 tests, and comparing them to the results using the ART descriptor and the CR
method introduced at the beginning of this chapter.

C1 C2 C3

CR ART DAB CNormal DAB CNormal DAB CNormal
(a) degraded

model 1 100,00 100,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 2 100,00 100,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 3 100,00 86,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 4 99,60 85,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 5 100,00 88,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 6 100,00 100,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 7 100,00 100,00 100,00% 99,00% 100,00% 98,00 % 100,00% 97,00%
model 8 98,40 89,00 98,00% 98,00 % 100,00% 100,00% 100,00% 100,00%
model 9 89,20 84,00 95,00% 93,00 % 99,00% 97,00 % 100,00% 100,00%

C1 C2 C3

CR ART DAB CNormal DAB CNormal DAB CNormal
(b) deform-degrad-level3

model 1 98,67 100,00 99,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 2 97,33 99,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 3 98,67 88,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 4 98,67 88,00 99,00% 100,00% 99,00% 100,00% 100,00% 100,00%
model 5 97,33 89,00 99,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 6 97,33 100,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 7 100,00 100,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 8 100,00 100,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
model 9 100,00 99,00 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

Table 5.6: Test with degradation and vectorial distortions tests using the PIN method
with DAB and CNormal classifiers

Concerning degraded symbols, the ART descriptor achieves a poor recognition
rate for the degradation models: model 3, model 4, model 5, model 8 and model
9, with a recognition rate lower than 90%. Besides, the CR method had a poor
performance in symbols with the degradation model 9. However, the PIN method
achieves recognition rates higher than 90% with the C1 classifier, which only uses
the six first descriptors with both DAB and CNormal classifier. Besides, the DAB
classifier achieves the 100% of recognition rate for the nine models of degradation for
classifier C3, using all the decomposition levels.

Besides, for degraded and vectorial distortions of symbols we have achieved a
similar performance. The CR rule and ART descriptor degrade performance in most
of tests whereas the PIN method achieves a 100% of recognition rate for the nine
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models of degradation in both classifiers, DAB and CNormal —except for some few
tests using the DAB classifier for C1 classifier.

5.5.3 Discussion

The previous experiment validates the approach of applying fusion methods to com-
bine the description obtained using multiresolution descriptors. If we observe the
obtained weights for all classes, we can easily realize that not all the resolutions have
the same relevance for all classes. It means that not all resolutions properly describe
all symbols in the same way. Thereby, depending on the class considered some resolu-
tions will be better than others and this fact will be reflected in the estimated weights.
On the contrary, in the definition of the CR rule, we have discarded a set of resolu-
tions according empirical evidences —as explained in section 3.4.3— and besides, we
have assigned the same weight to all resolutions belonging to the same decomposition
level.

In this last discussion, we have tackled a last question: Which is the relationship
between the optimal weights using PIN and PDN method and the ridgelets descrip-
tors selected in the CR method? we have plotted two surfaces representing the weights
of resolutions using CR and PIN method —in figure 5.11. For the PIN method,
we have taken into account all the optimal weights computed for the 50 symbols of
the GREC’03 database and we have computed the mean of these weights —see right
side of figure 5.11. Similarly, for the CR method we have assigned a weight 0 for the
descriptors we have not considered. Then, we have assigned a weight to the rest of
descriptors of the same decomposition level inversely proportional to the number of
descriptor —see the definition of the similarity measure in Eq. (3.4.2)— i.e. at level
0, we have one descriptor and hence, we have assigned a weight of 1. In the second
level, we have two descriptors and the assigned weight has been 1

2 . For the third level,
the assigned weight is 1

3 and finally, for the fourth decomposition level the weight is
1
4 .

Figure 5.11: weights of CR and IN methods

Each square of these surfaces represent a descriptor —following the same order
than in section 3.4— the dark gray and black colors represent the lowest weights
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values whereas the light gray and white colors represent the highest values. We can
observe that the lowest weights using the PIN method correspond to the descriptors
with poorer recognition rates that have not been considered in the CR method (we
recall that these descriptors correspond to the “vertical” descriptors in the decompo-
sition level). Besides, the first descriptor has achieved the highest weight in both, CR
and PIN , method. On the contrary, descriptors from the “horizontal” part of higher
decomposition levels have achieved higher weights than descriptors from decomposi-
tion levels 1 and 2. If we take into account the results depicted in table 5.6, both
facts may mean that the discriminant information is found in the higher resolutions.



Chapter 6

Conclusions

In this chapter we have summarized the contributions of this dissertation to the field of
shape description and classifier fusion. Besides, we have presented the main conclusions
of the research done in ridgelets descriptors and linear combination rules. We have
finalized by pointing some possible lines of continuity to improve the performance of the
proposed methods.

6.1 Summary of the Contributions

In this dissertation we have tackled different issues related to the shape recognition
process. In the chapter 1 we have distinguished three different conceptual stages
involved in this process: shape description, shape comparison and shape classification.
In this context, the forthcomings chapters have been focused on different aspects of
these stages, leading to the following contributions:

• In chapter 2, we have reviewed several shape descriptors proposing the defi-
nitions of descriptor, primitive and feature extraction method in order
to homogenize and simplify the terminology used to describe shape descriptors.
Besides, we have introduced the notion of primary feature extraction method in
order to decompose in a flexible manner a descriptor in more elemental entities.

• In chapter 3, we have introduced a ridgelets descriptor to be used for represent-
ing symbols, and more in general, to represent shapes where the “straight line”
is a relevant feature. This descriptor is based on a multiresolution transform
which has permitted us to group ridgelets coefficients into several decomposi-
tion levels according to the original shape resolution. Besides, in the comparison
stage we have defined a rotation invariant similarity measure which has been
used, later, in a heuristic combination rule proposed in the classification stage.
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• In chapter 4, we have proposed two linear combination rules, IN and DN .
These classifier fusion methods have been proposed in a probabilistic framework
based on the definition of suitable r.v. that has permitted us to prove in a rig-
orous way that IN and DN minimize the classification error of classifiers
verifying a set of constraints.

Then, in the chapter 5 we have used well-known shape databases as a reference
for comparing the ridgelets descriptor and IN and DN methods regarding similar
approaches (the ART descriptor and the mean, max and median rules, respectively).
Besides, concerning the proposed combination rules we have carried out some experi-
ments with real and synthetic data. The experiments using synthetic data have been
useful to evaluate the IN and DN performance depending on whether the data satis-
fies, or not, the constraints theoretically stated. The experiments using real data have
been suitable to state the performance of these methods in a more realistic framework.

In the next section we have summarized the main conclusions concerning ridgelets
descriptors and IN and DN methods.

6.2 Discussion and Conclusions

When we have reviewed the bibliography in shape descriptors, we have realized that
there was not an unified terminology to denote the different elements taking part in
the shape description process. In this context, we have formalized and unified the
concept of feature vectors, signatures and other terms used to refer to the results of
feature extraction methods under the name of descriptor and generalizing the notion
of primitive, in such way a that it can be applied to any descriptor. Finally, we have
introduced the notion of primary feature extraction method in order to decompose
in a flexible manner a descriptor in more elemental entities.

In this way, we have linked some properties of descriptors to one of these three
elements taking part in the process of shape description. We have characterized
descriptors according to the geometry of their primitives —distinguishing between
1D and 2D descriptors. Besides, we have connected structural and multiresolution
properties to the descriptor itself and, finally, the invariance of descriptors to affine
transforms and the information preserving property has been linked to the feature
extraction methods. Thereby, we have proposed a descriptor that, thanks to this
categorization of shape descriptors, we can describe as 2D, multiresolution and polar
descriptor based on the ridgelets transform.

6.2.1 Ridgelets descriptors

Ridgletets descriptors are based on a multiresolution transform that can be applied to
the analysis of general images. It is built on a solid mathematical background which
permit us to define a multiresolution and homogeneous representation. Ridgelets
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transform is specifically defined to localize —using polar coordinates— linear singu-
larities or, in general, tangents to C1 curves. This characteristic allows us to apply
our method to any kind of regular contours. However, it will work better applied to
images in which the linear component is a relevant feature.

We have carried out a set of experiments to validate the symbol representation
proposed in section 3.4. If we compare these results with those obtained using the
ART descriptor and those obtained in the contest in Graphic Recognition held during
the Workshop GREC’03 [Valveny and Dosch, 2004], then we can state that ridgelets
coefficients are an excellent set of descriptors for degraded graphics; robust to vec-
torial distortion and scaling of images. Moreover, the similarity measure defined in
expression (3.15) is actually invariant to rotation.

However, some drawbacks appear in the use of this type of descriptor. On the one
hand, an image of 128×128 generate 32,768 ridgelets coefficients which is a huge size
for a descriptor since the usual size turns around 16, 30 or 64 features. It is not only
a problem of stocking descriptors or a problem in the required time for computing
similarities between descriptors. Besides, it is also a problem for indexing and retrieval
purposes since high dimensional descriptors drop away the performance of indexing
methods [Berrani, 2004, Ciaccia et al., 1997, Manolopoulos et al., 2003]. On the other
hand, the estimation of the coordinates origin used to computed the change to polar
coordinates is another drawback. A bad estimation of the center of coordinates can
lead to different representations of the shape. In fact, this is a inherent drawback of
polar descriptors in general and hence, it affects to ridgelets descriptor as well (cf.
section 2.3.1).

Therefore, we have partially overcome the drawback of the size of descriptor by
introducing the Local norm descriptors based on ridgelets transform and combining
them with other shape descriptors as the ART or the R-Signature. Besides, the mul-
tiresolution representation and, more specifically the decomposition level, has helped
us to reduce the size of descriptors and attenuates the variability in determining the
center of the image.

6.2.2 Classifier Fusion

We have proposed a rigorous probabilistic approach consisting of the definition of
several r.v. such as the validation r.v. or the prediction r.v. Indeed, we have identified
the classifier as the prediction r.v. Then, it has sense to talk about the independence,
or the dependence, of classifiers, as well as the classifier distribution since we are
actually talking about the prediction r.v. In this way, we have found two optimal
combination rules for normal classifiers (being either independent or dependent):

IN: The IN method assumes that classifiers are independent and normal. The ex-
perimental results —cf. section 5.4— illustrates that this combination rule out-
performs other similar combination rules. Besides, the optimal weights are very
easy to compute as they only depend on the mean and variance of classifiers.
However, it would be interesting to find out optimal solutions for other distri-
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butions such as a mixture of normal or Bernoulli distributions since classifiers
can be better modeled by these kind of r.v.

DN: The DN method assumes that classifiers are dependent and besides, that the
linear combination of classifiers is also a normal distribution. Experimental
results —cf. section 5.4— show that this method does not take any advantage
of the dependence of classifiers and it has a poorer performance than the IN .
Besides, in multi-class problems other fusion methods like mean perform better
than the DN method. Therefore, the condition of normal distribution for the
linear combination is too restrictive and we should find weaker conditions for
the joint distribution of classifiers.

Finally, the last experiment has validated the approach consisting of the combina-
tion of ridgelets descriptors using the linear combination rules. Besides, the obtained
description composed of shape descriptors, but also of the weights computed from the
considered classifier depends on each class. It means that not all ridgelets resolutions
properly describe all symbols in the same way. Depending on the class considered
some resolutions are better for graphics description than others. This fact is reflected
in the estimated weight: the best resolution achieves the highest weights. In other
words, we can have a set of descriptors and classifiers and only use those that properly
describe each class of shape discarding the others for description purposes.

6.3 Open issues

In the previous section we have seen that each of the aspects treated in this disser-
tation has left several open issues. Concerning shape descriptors, we have seen that
we can not effectively reduce the size of ridgelets descriptors without dropping the
recognition rates. Concerning classifier fusion, we have experimentally verified that
IN method outperforms other related methods but without being able to determine a
set of conditions on classifiers permit to assure that linear methods outperform other
classifier fusion methods. Besides, DN method has not proved to outperform IN
method when classifiers are dependent.

In this section, we propose plausible lines of continuity of the work introduced in
this dissertation from the viewpoint of the three stages defined in the shape recognition
process:

Shape description: Multiresolution transforms are suitable transforms to organize
the information according to the decomposition levels. However, ridgelets trans-
form, as it has been defined, is not suitable to be applied to whole documents.
On the one hand, there is the problem of the size of descriptor. On the other
hand, there is the problem associated to the change of Cartesian to polar coor-
dinates. Given a specific application, the size of descriptor can be reduced using
existing methods for reducing the size of descriptors such Principal Component
Analysis or Linear Discriminant Analysis methods, to name some examples.
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Concerning the use of polar coordinates, when we move away from the origin
of coordinates the representation in polar coordinates become poorer. There-
fore, other multiresolution transforms have to be investigated. For instance,
curvelets and contoulets transforms are possible transforms to be taken into
account [Candès and Demanet, 2002, Candès and Donoho, 2003a,b].

Shape Comparison: An open issue since the beginnings of the shape recognition
problem is shape comparison. This is a well-known problem in the structural
pattern recognition where Conte et al. [2004] review structural approaches for
shape recognition from the point of view of the matching algorithms used. How-
ever, this is a problem shared by all shape descriptors. More specifically, the
problem is how to deal with huge amount of information. In this sense, Bar-
tolini et al. [2005] propose a descriptor based on the Fourier transform that
will be stored in a M-Tree structure [Ciaccia and Patella, 2002]. The M-Tree
which is an evolution of the R-Tree [Manolopoulos et al., 2003] for metric space
organizes descriptors in a tree structure according to the metric defined in the
space of descriptors. The architecture of this structure follows similar rules than
the B-Trees, which look for balanced trees in order to reduce the mean of the
number of comparisons. However, this structure only takes into account one
type of descriptor. Thus, for a shape described using several descriptors, we
must construct an indexing structure for each descriptor. Therefore, we have
to look for indexing structures, compatible with a multiresolution description
of documents and taking into account several types of descriptors.

Shape Classification: We have based our proposal for classifier fusion on training
univariate classifiers based on the distribution of distance between the query
shape and the model shape. The probabilistic framework introduced for clas-
sifier fusion, in chapter 4, can be easily extended to multivariate classifiers in
a straightforward way. Each feature of the descriptor can be considered as a
r.v. and hence, the problem of the combination of L dependent classifiers can
be seen as the problem of determining the border of two classes minimizing
the misclassification rates in a multivariate random vector. Therefore, we can
investigate the relationship between this probabilistic approach an other theo-
retical frameworks used for developing classifiers as support vector machines or
boosting classifiers.

6.4 Final Conclusion

In this dissertation we have touched different aspects of the shape recognition process.
From a wide viewpoint, we have studied multiresolution descriptors, grouping them
into several decomposition levels that have been combined using optimal linear clas-
sifier fusion methods. These theoretical approaches, have been applied in particular,
to the combination of ridgelets descriptors using the IN method for the recognition
of graphics symbols. The recognition rates achieved in the GREC’03 database are
near to the 100% in almost all tests.
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G. Sánchez. Un modelo sintáctico para la representación y reconocimiento de śımbolos
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