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Abstract

This thesis focuses the analysis of video sequences, applying model-based techniques
for extracting quantitative information. In particular, we make several proposals in
two application areas: shape tracking based on contour models, and detection and
tracking of vehicles in images acquired by a camera installed on a mobile platform.

The work devoted to shape tracking follows the paradigm of active contours, from
which we present a review of the existent approaches. First, we measure the perfor-
mance of the most common algorithms (Kalman based filters and particle filters), and
then we evaluate its implementation aspects trough an extensive experimental study,
where several synthetic sequences are considered, distorted with different degrees of
noise. Thus, we determine the best way to implement in practice these classical
tracking algorithms, and we identify its benefits and drawbacks.

Next, the work is oriented towards the improvement of contour tracking algorithms
based on particle filters. These algorithms reach good results provided that the num-
ber of particles is high enough, but unfortunately the required number of particles
grows exponentially with the number of parameters to be estimated. Therefore, and
in the context of contour tracking, we present three variants of the classical particle
filter, corresponding to three new strategies to deal with this problem. First, we pro-
pose to improve the contour tracking by propagating more accurately the particles
from one image to the next one. This is done by using a linear approximation of the
optimal propagation function. The second proposed strategy is based in estimating
part of the parameters analytically. Thus, we aim to do a more productive use of the
particles, reducing the amount of model parameters that must be estimated through
them. The third proposed method aims to exploit the fact that, in contour tracking
applications, the parameters related to the rigid transform can be estimated accu-
rately enough independently from the local deformation presented by the contour.
This is used to perform a better propagation of the particles, concentrating them
more densely in the zone where the tracked contour is located. These three proposals
are validated extensively in sequences with different noise levels, on which the reached
improvement is evaluated.

After this study, we propose to deal directly with the origin of the previous problem
by reducing the number of parameters to be estimated in order to follow a given shape
of interest. To reach that, we propose to model the shape using multiple models, where
each one requires a lower quantity of parameters than when using a unique model. We

iii
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propose a new method to learn these models from a training set, and a new algorithm
to use the obtained models for tracking the contours. The experimental results certify
the validity of this proposal.

Finally, the thesis focuses on the development of a system for the detection and
tracking of vehicles. The proposals include: a vehicle detection module, a module
devoted to the determination of the three-dimensional position and velocity of the
detected vehicles, and a tracking module for updating the location of vehicles on the
road in a precise and efficient manner. Several original contributions are done in these
three subjects, and their performance is empirically evaluated.



Resum

El treball d’aquesta tesi es centra en I’analisi de seqiiencies de video, aplicant tecniques
basades en models per extreure’n informacié quantitativa. En concret, es realitzen
diferents propostes en dues arees d’aplicacio: el seguiment de formes basat en models
de contorns, i la deteccid i seguiment de vehicles en imatges proveides per una camera
installada en una plataforma mobil.

El treball dedicat al seguiment de formes s’enquadra en el paradigma de contorns
actius, del qual presentem una revisié de les diferents propostes existents. En primer
lloc, mesurem el rendiment obtingut pels algorismes de seguiment més comuns (filtres
basats en Kalman i filtres de particules), i en segon lloc avaluem diferents aspectes de
la seva implementacié en un extens treball experimental on es consideren multiples
seqliencies sintetiques, distorsionades amb diferents graus de soroll. Aixi, mitjancant
aquest estudi determinem la millor manera d’implementar a la practica els algorismes
de seguiment classics, i identifiquem els seus pros i contres.

Seguidament, el treball s’orienta cap a la millora dels algoritmes de seguiment
de contorns basats en filtres de particules. Aquest algorismes aconsegueixen bons
resultats sempre que el nimero de particules utilitzades sigui suficient, pero malau-
radament la quantitat de particules requerides creix exponencialment amb el niimero
de parametres a estimar. Per tant, i en el context del seguiment de contorns, presen-
tem tres variants del filtre de particules classic, corresponents a tres noves estrategies
per tractar aquest problema. En primer lloc, proposem millorar el seguiment de con-
torns mirant de propagar més acuradament les particules emprades per ’algorisme
d’una imatge a la segiient. Aixo ho duem a terme utilitzant una aproximacié lineal
de la funcié de propagaci6 optima. La segona estrategia proposada es basa en estimar
part dels parametres de manera analitica. Aixi, es pretén fer un s més productiu de
les particules emprades, reduint la part dels parametres del model que s’han d’estimar
amb elles. El tercer metode proposat té com a objectiu treure profit del fet de que,
en aplicacions de seguiment de contorns, sovint els parametres relatius a la transfor-
macié rigida es poden estimar prou acuradament independentment de la deformacié
local que el contorn presenti. Aixo s’utilitza per realitzar una millor propagacié de les
particules, concentrant-les més densament en la zona on el contorn seguit es troba.
Aquestes tres propostes es validen de manera extensiva en seqiiencies amb diferents
nivells de soroll, amb les que es mesura la millora aconseguida.

A continuacié proposem tractar directament 1’origen del problema anterior mit-
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jangant la reduccié del nombre de parametres a estimar per tal de seguir una deter-
minada forma d’interes. Per aconseguir aix0, proposem modelar aquesta forma usant
multiples models, on cadascun requereix una quantitat de parametres inferior a la re-
querida per un tnic model. Es proposa un nou metode per aprendre aquests models
a partir d’un conjunt d’entrenament, aixi com un nou algorisme per emprar-los en el
seguiment dels contorns. Els resultats experimentals certifiquen la validesa d’aquesta
proposta.

Finalment, la tesi es centra en el desenvolupament d’un sistema de deteccio i
seguiment de vehicles. Les propostes realitzades comprenen: un modul de deteccio
de vehicles, un modul dedicat a determinar la posicié i velocitat 3D dels vehicles
detectats, i un modul de seguiment per actualitzar la localitzacié dels vehicles a la
carretera de manera precisa i eficient. Es realitzen diverses aportacions originals en
aquests tres temes, i se n’avalua el rendiment.
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Chapter 1

Introduction

In the last 20 years, the analysis of video sequences has become a topic of increasing
interest in the area of computer vision. The rise of computational power experienced
by personal computers has allowed researchers to address applications in this field,
which just a few years ago required the availability of very expensive hardware, de-
signed many times specifically for a desired task. As a result of that, nowadays one
can find low-cost products in the market whose functionality is based on a rough real-
time sequence analysis, like camera surveillance systems with improved facilities or
electronic devices with camera-based interfaces, amongst others. These pioneer prod-
ucts are just the prelude of many camera-based systems that for sure we will deal with
in the near future, as video sequence analysis is expected to play a very important
role in human-machine communication. Many other fields require the development of
systems able to extract key information from sequences of frames. In medical imaging,
the quality of imaging devices has improved spectacularly in the last years, provid-
ing very helpful visual representations of the human body. Nowadays physicians not
only diagnose by analysing images or volumetric data, but sequences of them too,
showing for instance the temporal behaviour of a given 3D body part. Computer
vision techniques can help in quantifying the dynamics of observed elements, or in
preselecting the information of medical interest contained in long sequences. In ro-
botics the analysis of image sequences is also a main topic of research, as one of
the basic sensors of robotic systems dealing in dynamic environments are calibrated
multi-camera systems. A sector like the automotive industry promotes also many
research efforts onto this topic, in the development of the so—called Advanced Driver
Assistance Systems (ADAS). ADAS has the goal of increasing the safety of vehicle
occupants, by providing vehicles with situational awareness. Sequences supplied by
camera systems provide a rich description of the vehicle surroundings, making pos-
sible applications which demand to ascertain the state of the driver and passengers
or the characterisation of the external environment (the road, other vehicles, traffic
signs, etc.).

This growing interest in sequence analysis from such an heterogeneous set of fields
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has been our main motivation to pose this thesis. In general, applications may require
to qualitatively extract information from frames (for instance, detecting a particular
dynamical event), or quantitatively (for instance, the precise characterisation of the
attributes of a given object along time). This thesis focuses on this second type of
application.

The computation of quantitative information from sequences can be formulated as
the estimation of the state x of an object or attribute of interest (target) at instant ¢,
from the evidence y obtained from frames. A key point in this process is the procedure
to analyse video frames in order to localise and extract the information of interest
y (i.e., the observation process). Classical strategies are based on a deterministic
search around the area where the target is expected, looking for a zone matching
a given object description (i.e., a target model). In applications where targets are
observed uncluttered on images, observations obtained may be sufficiently accurate
to solve a given task, leading to data—driven solutions. These cases are typically
implemented using variational methods, which accurately determine y by minimising
iteratively a cost function measuring the disparity between the image region inspected
and the target model. Examples of variational methods are found in the localisation
of targets using pattern [54], histogram [22, 29], and contour [66] models. However,
in many applications is not possible to obtain accurate information from frames, due
to restrictions on the computational resources available for this task, or due to the
noise and clutter distorting them. In these cases, the confidence given to y has to be
modulated to properly estimate x, and a way to do that is by taking advantage of
a priori information of the problem being solved: the knowledge on the observation
process and the noise distorting it (i.e., the observation model), and the knowledge
on the expected evolution of x along frames (i.e., the system model). These different
sources of information have to be properly combined, which is the purpose of the
methods developed in estimation theory. In this thesis the problem of video sequence
analysis is addressed within this theoretical framework. Concerning the estimation
of a target state x at a given instant ¢ (i.e., x¢), three different tasks are defined,
depending on the evidence y available at this instant:

prediction: when x; is estimated from evidence y up to t — 1,
filtering: when x; is estimated from evidence y up to t,

smoothing: when x; is estimated from evidence y up to T', with T" > t.

This thesis focuses mainly on filtering, the task to be solved in tracking appli-
cations, which demands the real-time estimation of a target state along time. The
main modules to be solved by a video—based tracking system are sketched in Figure
1.1. Basically, a detection module has to inspect acquired frames in order to ascer-
tain the presence of targets of interest. Then, the state of detected targets has to be
initially estimated, to then start a filtering process (also known as tracking algorithm
or tracker), which will update this state in successive frames, combining efficiently
the information extracted from frames with the a priori knowledge provided by the
system and observation models.
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Figure 1.1: Model-Based Tracking Framework.

Taking as reference the model-based tracking framework in Figure 1.1, the main
contributions of this thesis are on:

e novel proposals for the target tracking module in the context of contour tracking
applications;

e a proposal of a whole tracking system to detect and track vehicles in sequences
acquired by a single camera mounted in a mobile platform.

The first part of the thesis has been focused on contour tracking. Contours can be
a very informative visual cue of the state of objects, providing sufficient information
to solve many practical problems. From a research point of view, this problem is
inherently interesting, because contour tracking is very challenging in general. A
contour can change non—linearly along frames, and in a very sudden way, being its
tracking a difficult task. Hence, the first goal of the thesis has been the proposal
of new strategies to track contours, with the aim to overcome the performance of
previous approaches.

In the second part of the thesis, the work has been oriented to the development
of a complete vehicle tracking system. That is, a system able to automatically detect
vehicles in images, initialise their 3D state (i.e., their road location and velocity),
and update this state efficiently along time. Such a system is of special interest for
the automotive industry, because it can help to develop safer vehicles'. This thesis
contributes with a new proposal for vehicle detection and tracking using a single
camera.

Following sections describe in major detail the work developed concerning these
two objectives.

1Usually, the major threads for a driver are the other vehicles on the road ahead.
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1.1 Goals in Contour Tracking

Contour tracking has been studied in this thesis adopting the active contours ap-
proach, mainly developed by British research groups at the universities of Oxford,
Leeds and Manchester. The interested reader may wish to consult [18, 31, 11] for
a detailed and complete introduction on this topic. Essentially, the active contours
approach is based on defining a generative model of the outline of a given object of in-
terest, and then using an estimation algorithm to determine which model parameters
better fit the observations in the frames of a video sequence. Since its formulation, dif-
ferent active contour implementations have been proposed. A first goal of this thesis
has been to review and evaluate the main contributions on this technique, analysing
the effect on tracking performance of:

e the methods proposed to extract contour observations from frames;

e the estimation methods used to process them.

A comparative study of the different implementation options is presented, evaluating
their performance in sequences with different levels of noise. Results obtained reflect
the pros and cons of the different alternatives, giving relevant clues about which
options to considered given a particular tracking problem.

Next topic in this part of the thesis has faced the following problem. In many
contour tracking applications, when the target to be tracked can simultaneously dis-
play rigid and non-rigid transformations along time, the high dimensionality of the
corresponding contour state can be a handicap. If a particle-based estimation method
is used, it is observed that to achieve a desired tracking performance, the number of
required particles increases exponentially with the state dimensionality. In some prac-
tical systems, this amount of particles will be prohibitive. In this thesis we propose
different strategies to balance the effect of state dimension in particle-based contour
trackers, which at the time of being developed were novel in this application context:

e the adaptation of the so—called Unscented Kalman Particle Filter to this prob-
lem;

e the estimation of part of the contour state analytically, by applying the Rao—
Blackwellization technique;

e the estimation of the contour state using the Partitioned Sampling technique,
taking advantage of a novel proposed method to estimate the rigid transforma-
tion of a contour decoupled from the non-rigid ones.

The performance of all these techniques is evaluated, quantifying their capacity to
overcome traditional algorithms.

Next, a solution to this state dimensionality problem is proposed from a different
perspective: reducing the dimensionality of the estimated state by reducing the num-
ber of parameters required to model the non-rigid transformations of contours. Our
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proposal is based on replacing the single shape model commonly used to represent this
transformations, by a collection of multiple shape models. The idea is that, as each
one of these model will account just for a subspace of the feasible contour non-rigid
transformations, each one will require less parameters than the initial single shape
model. A novel method is proposed to generate such a collection of models from
training data, as well as an algorithm to manage all of them for contour tracking
purposes. The validity of the proposed method is experimentally evaluated, showing
its better performance with respect to the single model approach.

1.2 Goals in Vehicle Tracking

In this part of the thesis, the goal is the design and implementation of a complete
visual tracking system, aimed at the detection and 3D tracking of vehicles in images
acquired from a single camera mounted in a mobile platform. Topics obviated in
the previous work concerning contour tracking now have to be explicitly considered:
automatic target detection, tracking state initialisation, and tracking activity control
(i.e., the identification of misstrack situations, the control of the occlusions between
targets, etc.). The development of such a tracking system is a very challenging task.

Focusing just on the target detection task, difficulties arises due to the hetero-
geneity in the appearance of the objects of interest (with the term vehicle we refer
to cars, vans, trucks, buses, etc., excluding, however, motorbikes and similar) and
the wide variability of possible illumination conditions of the environment (due to
weather conditions, time of the day, shadows, etc.). To fulfil this task, we propose
the use of an state of the art machine learning technique (boosting) to generate from
training data, a classifier devoted to judge the presence of vehicles in image subre-
gions. The advantage of this approach is that, as long as the training data includes
sufficient significant examples, the generated classifier is robust to the high variety of
target appearances. To speed up vehicle detection, in practice a common approach is
learning several classifiers, evaluating them on images in cascade. In that way, image
regions are classified faster, because most regions in an image do not contain vehi-
cles, and are identified without evaluating the whole cascade of classifiers. To further
increase the efficiency in vehicle detection, the thesis proposes two novel strategies:
the a posteriori optimisation of the cascade of classifiers, and its lazy evaluation on
frames. A quantitative evaluation of the performance of the proposed detector is also
provided.

Concerning the initial estimation of the 3D state of detected vehicles (i.e., its 3D
location and velocity), a method combining projective geometry with multiple hy-
pothesis tracking is proposed. First, the output of the vehicle detector is processed
to estimate the 3D road region where detected vehicles may be present. Extracting
3D information from just 2D images is an ill-posed problem, and assumptions have
to be imposed on the observed scene to fulfil this task. We propose to assume that
the observed road conforms to a flat surface (a realistic assumptions in most cases),
and that the width and orientation of the observed vehicle is known. Although the
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hypothesis on the vehicle will be wrong in some cases, the violation of these as-
sumptions will provoke a systematic error in the vehicle localisations, which assures
spatio—temporal coherence between the 3D road coordinates estimated for a vehicle
in successive frames. This is very interesting because makes easier the construction
of vehicle trajectories from them, which is useful for estimating vehicle dynamics, as
well as for filtering out false vehicle detections, since they usually are spurious and
no trajectories can be build from them. From the constructed trajectories, the initial
state of a vehicle tracker is ascertained. This state can be inaccurate, due to wrong
assumptions of the vehicle width and orientation. However, if at some point there is
additional information to correct these assumptions, we provide with expressions to
properly amend the initial state computed.

Finally, we propose a multiple vehicle 3D tracking algorithm. The 3D location and
velocity of all detected vehicles is maintained in a single state vector, which includes
also parameters concerning the movement of the vehicle holding the camera. This is
done in that way to model more precisely the changes observed in successive frames.
From the state parameters and their assumed dynamics, the image regions where
vehicles should be observed are predicted, localising them more accurately than the
vehicle detection module can do, and therefore, estimating more reliably their state
along time. After each iteration cycle, a control process checks the estimated state, in
order to readjust it if a conflictive situation is observed (i.e., eliminates targets which
are occluded, or no longer detected, etc.).

1.3 Thesis Outline

The organisation of the thesis is as follows. Chapter 2 briefly describes the active con-
tours approach to contour tracking. First, the usual methods applied to generate a
2D shape model are detailed, as well as the expressions to describe their dynamic be-
haviour. Then the Bayesian formulation of the contour tracking problem is presented,
and the main proposals to solve it reviewed (i.e., Kalman—based and particle-based
estimation methods). Next, different proposals are presented to process frames, in or-
der to extract observations of the contour to be tracked. Then, the chapter focuses on
evaluating the proposals reviewed in a case—study application, in order to discern the
best way to extract observations from images, and the accuracy achieved by different
estimation algorithms (Kalman Filters, Extended Kalman Filters, Unscented Kalman
Filters, and Particle Filters). Results provided show the performance achieved by the
different proposals on sequences distorted by different levels of noise.

Chapter 3 starts describing a non-linear shape model to represent simultaneously
the rigid and non-rigid transformations that a contour may present along time. Then,
the use of this model by the classical algorithms presented in the previous chapter is
discussed, remarking the performance degradation observed in Particle Filters due to
the higher dimensionality of the contour model. We propose then the novel application
of three different estimation methods, with the aim of improving the performance
of Particle Filters in general contour tracking applications: the Unscented Kalman
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Particle Filter, the Rao—Blackwellized Particle Filter, and the Partitioned Sampling
algorithm. The last one of these methods is based on a novel approach that we propose
to estimate the rigid transformation of a contour, decoupled from its non-rigid one.
The performance of each method under different noisy situations is quantified, finally
comparing their achieved results to identify their strong and weak points.

Chapter 4 focuses on improving the performance of Particle filters by modelling the
outline of a target using multiple shape models. First, the problem of poor specificity
of single shape models is introduced, justifying the need for a constraint model to
delimit the parameterisations that can be applied on them, in order to synthesise
only wvalid shapes. Then, we propose a novel method to learn this constraint model
from training data, based on the unsupervised parameterisation of Gaussian mixture
models. Using this constraint model, we present an original methodology to replace
the initial shape model by an ensemble of simple linear shape models. This multiple
model approach to shape representation is shown in a case-study to overcome the
single model approach, in terms of the Bayesian Information Criterion. Finally, the
use of multiple models in tracking applications is detailed. The interaction along
time between the different models is modelled as a Jump Markov System, and a novel
multiple model contour tracking algorithm is presented which, in a case-study, is
shown to overcome the performance of an equivalent single model tracking algorithm.

Chapter 5 focuses on the detection and 3D tracking of vehicles from images taken
by a monocular vision system mounted in a mobile platform. First the detection of
vehicles on images is studied, proposing a classifier—based approach to perform this
task. The Adaboost technique is applied to learn a classifier from a training set, where
examples of the appearance of vehicles and non—vehicles under different illumination
conditions are provided. To achieve a desired detection accuracy, different classifiers
are learnt and arranged in a cascade. We propose then two strategies to reduce the
computations required to apply the generated cascade of classifiers on images. Then,
the chapter focuses on the problem of estimating the 3D state (3D location and
velocity) of detected vehicles. We propose a method based on combining a model of
camera projection, assumptions on the road and observed vehicles, and the Unscented
Transform mechanism, devoted to estimate the road location corresponding to vehicle
detections. The spatio—temporal coherence of these locations is then exploited, in
order to discard spurious false detections generated by the detector, and estimate
the 3D velocity of vehicles. This task is solved using a Multiple Hypothesis Tracking
Algorithm, whose performance is evaluated experimentally using synthetic detections,
studying the effect of common sources of error. Finally, the chapter describes a
multiple target tracking algorithm to efficiently update the state of detected vehicles
along time. The Unscented Kalman Filter has been proposed to carry out this task.

Chapter 6 draws the conclusions of this thesis, and suggests new directions for
further research.

Several appendices complement the information given in the former chapters, pro-
viding details on some topics that for the sake of readability were omitted. Appendix
A provides insight in the modelisation of state dynamics using auto-regressive models,
and describes two novel methods that we propose to parameterise respectively first
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and second order dynamic models, in order to achieve a desired dynamical behaviour.
Appendix B derives the Kalman Filter equations from a Bayesian point of view, com-
plementing in that way the one usually available in estimation theory literature. From
this perspective, the relation between Kalman and particle filters is clearer, which can
be helpful for readers unfamiliar with these topics. Appendix C presents some basic
concepts concerning Monte Carlo methods, which are the basis of the application of
sampling techniques in the resolution of state estimation problems. Finally, Appendix
D detail the methodology followed to quantify objectively the tracking performance
of the different methods studied in the thesis.



Chapter 2

Model-Based Visual Contour
Tracking

This chapter focuses on work developed in the last two decades on the use of contour
models for object tracking. The proposals reviewed are usually denoted as Active
Contours or Active Shape Models, and their basic building blocks concern the follow-
ing topics:

e the modelling of a parametric contour and the space of its feasible variations;

e the modelling of the dynamic behaviour of a contour, describing how it is ex-
pected to change along time;

e the Bayesian approach to combine both shape and dynamic models to estimate
the contour state from observations in video frames;

e the measurement process to efficiently analyse video sequences and extract the
information required for contour estimation.

All these topics are reviewed in this chapter, focusing on the concrete proposals
analysed in this thesis. Taking the general model-based tracking framework as a
kind of map, Figure 2.1 sketches the topics analysed in the following sections. Those
readers who are already familiar with these topics might wish to skip from section 2.1
to 2.4, and proceed directly to section 2.5, in which we contribute with an in-depth
evaluation of the reviewed proposals in a case—study application.

2.1 2D Shape Modelling

Any attempt of robustly modelling an object implies finding a representation that
deals in some way with its feasible variations. From a pattern recognition point of
view, the generation of a model can be viewed as determining an object representation
that generalises the whole spectra of object appearances, taking care of still remaining
discriminant (that is, recognise only the desired object). The objective could be

9
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Figure 2.1: Topics analysed in the chapter.

stated as generating models insensible to the object variability, which is particularly
interesting to detect specific objects of interest, or to distinguish between different
object types. Using machine learning terms, the objective is a classification model,
and a concrete example of these models in the context of vehicle detection can be
found in Chapter 5.

However, many problems not only require recognising an specific object, but also
identifying its state from a set of possible configurations. That is to say, represent
object variability instead of being insensible to it, what in machine learning terms is
known as a regression model. With this objective in mind, an issue of research is the
design of parametric models of object variation. These models are generative, in the
sense that given appropriate parameter values, they generate a concrete configura-
tion of the object being represented. Recognising an object using these models means
recognising an object in one of its concrete configurations, and this is the information
of interest in many applications. These are the models of interest in tracking applica-
tions. In these applications, the variation of the object is usually due to some dynamic
process, which becomes apparent in changes in the corresponding model parameters.

Many authors have worked on developing representations of shape variability in
many different ways. The references [18, 31] review the major contributions on this
field, and then focus on the description of a model-based approach to solve this
problem. There exist different possibilities to represent parametrically the outline of
an object. One of the most popular approaches is using B-spline curves. B-splines
construct expressions of a 2D contour as a weighted sum of Npg basis functions. The
contour points coordinates r(s) = [z(s),y(s)]T of 2D shapes are obtained by an
expression with the form

] - ] [e ] o

r(s) = U(s)q .

Matrices B(s)” in U(s) maintain Np basis functions, which are curves composed
of polynomials of degree d with finite support. They are C?~! continuous, which

or more compactly,
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means that the contour derivatives up to the (d — 1)-th are smooth. q = [q%,q¥]”
is the vector of the N, control points that weights properly the basis functions to
generate a desired curve. Thus, its dimensionality corresponds to N, = 2N,,. The
parameter s evaluates the linear combination of polynomia at concrete points.

In this thesis, contours are represented using regular periodic B-spline curves.
These curves are defined in terms of a finite spline basis over a closed interval 0 <
s < Np, where Ng = N,,. The matrix B(s) corresponds to

B(s) = [Bo,o(s) B1,o(s)... BNB,LO(S)]T ,

where B, o(s) denotes a B-spline basis function, with its subindex o indicating its
order (the degree d of its polynomial expression plus 1). B, »(s) is defined in terms
of piecewise polynomials obtained from the following recursive rule

Ground Instance
- 1 ifn<s<n+1
Bnals) = { 0 otherwise

Inductive step

For periodic splines,
By,,0(s) = Bo,o(s —n) .

Figure 2.2 exemplifies the construction of a 2D contour using a B-spline curve.

In practice, contours are not commonly synthesised from any value s, but at
predefined discrete values. By fixing a sampling ratio Ny, between control points,
a discrete contour is synthesised, consisting of N, (z,y) coordinates, with N, =
N¢pNsy. Curve sampling points s; are regularly placed along the support of the spline
parametric space, given by {s; = NLT}fv:(; 1. Thus, a sampled contour representation
is obtained with

[ (o) T [ BT Oy ]
a(sv) | _ | Bl )T O, [q]
y(s0) Ov,  B()' ||a |-
L y(S.NS) i L Ong B(sn,-1)"

or in compact form

r = Uq. (2.2)
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Figure 2.2: B-Splines contour construction in a nutshell. A contour is interpo-
lated using cubic B-splines, and 4 control points. The control point values multiply
their corresponding B-function, and their summation determine the x and y contour
coordinates.
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Using B-spline curves, a silhouette is represented by a point in an spline space
RNa. For complex silhouettes, the dimensionality of this space can be considerably
big. This is unconvenient for tracking purposes. Estimating a 2D shape will require
managing high dimension state vectors, which will be computationally expensive.
Besides, the estimation obtained will be prone to be erroneous: the bigger the number
of parameters to be estimated, the higher the probability of wrongly estimating some
of them. For this reason, models requiring less parameters are preferred. The most
popular approach is based on defining a Shape Space, which details a mapping of
shape space vectors ¢ € RVe to a spline space vectors q € RN¢, where N, < Ny. In
that way, the feasible values of q are constrained in a given subspace of RVe. Next
section focuses on two common methods to generate desired shape spaces, to describe
respectively local and global contour transformations.

2.1.1 Local Contour Transformations

A simple way to construct a generative model to account for local variations of a
mean shape q is by means of defining a linear Shape Space L(W,q), with the form

q=Wc+q . (2.3)

W is a N, x N, shape matriz, ¢ the shape space vector and q the spline control
points of the average contour of the modelled shape. The vector q corresponds to
a linear combination of the columns in W added to q. Thus, the family of shape
variations represented by £(W, q) depends on the columns of W, which are the basis
of the shape space. To account for the specific variability of a shape of interest,
the usual approach is establishing them from training data. Given a set {q;}Y,
corresponding to the spline control points of the shapes in a training sequence, its
mean and covariance (q, X) are computed by

1 N
q = N;qt7
1 N
o L o T
¥ = N;(qz qQM(q; —q)"

where M is a metric matrix which allows to measure the distance between B-spline
curves from only their control points (see Chapter 3 in [18]). Performing a Principal
Component Analysis (PCA) on ¥, the principal modes of variation of the examples
in the training data are obtained in the eigenvectors of ¥. The N, most significative
eigenvectors (i.e., the N, with biggest eigenvalues) are used to conform the basis in
W. N, is usually established as the minimum number of eigenvectors whose sum of
eigenvalues exceeds a given percentage of the total eigenvalues sum. The eigenvectors
discarded are considered as accounting for noise in training examples. The interesting
point is that N. < Ny, and thus a more compact shape model is obtained.
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2.1.2 Global Contour Transformations

A possibility to construct a shape space that accounts for global transformations of
a given shape q is designing a matrix W parameterised to account for a given space
of similarities, like Euclidean or Affine transformations. For example, for the affine
case, a 5 dimensional shape space is defined, maintaining

c = [toty s s, 0", (2.4)

where (t5,t,) accounts for a 2D translation, (s, s,) for  and y scale factors, and
0 for a given rotation. Given a shape q, its global affine transformation is obtained
from the expression

q = Wq+Tc, (2.5)

where Wy is a function matrix on ¢ given by

W _ SxINq ONq COS(@) INq — sin(e) INq (2 6)
(e) ONq SyINq Sin(g) INq COS(Q) INq ’ ’

and T the matrix

]-N ON ON ON 0N
T = @ TNeo Nao Ve INa ) 2.7
( Ong 1ng Ong Ong Onyg ) (2.7)

Notice that this proposal of affine shape space is non-linear. If the transformed
base shape q is constant along a sequence (i.e., the contour to be tracked is rigid), a
6 dimensional linear shape space L(W, @) can be defined, with

W = 1Nq/2 ONq/2 (lw ONq/2 ONq/2 fly
~\ o 1 0 q” q” 0
Nq/2 Nq/2 Nq/2 q q Nq/2

where q = [@°@?]”. Now an spline-vector q is synthesised with the expression
q = Wcd+q.

The vector ¢’ relates with the affine parameters in (2.4) as
= [ts ty (s5cos(0) — 1) (s, cos(f) — 1) (s, sin(f)) (—s,sin(9))]" .

2.1.3 Shape Space Representability

Besides their low dimension, shape spaces still have a bigger representability than the
one desired. That is, they still can synthesise shapes completely different to those in
the training data. Thus, in order to improve the model specificity, a constraint model
can be attached to the shape space, delimiting the subspace where parameters within
generate desired wvalid shapes. Figure 2.3 shows an example of a simple constraint
model attached to a shape model representing a hand with a pointing finger. In this
case, constraining the model parameters just inside a Gaussian envelope is sufficient
to assure that valid shapes are generated. In other problems where the modeled shape
can display a wide range of different configurations, a more complex model is required
to constraint the space of valid parameters (this is object of study in chapter 4).
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Figure 2.3: 2D shape space corresponding to a hand with a pointing finger. The
orthogonal directions of the shape space model variations in the orientation of the
pointing finger (vertical direction), and the degree of folding of the rest of hand fingers
(horizontal direction). The plotted ellipse (dashed) delimit a Gaussian envelope where
silhouettes in the training set project (dots). The shape corresponding to specific
points in the shape space (small circles) is reconstructed. Notice that locations
outside the gaussian envelope correspond to invalid outlines.
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2.2 Models of Dynamics

In the context of contour tracking applications, in addition to a generative model
of the target shape, it is required to model how this shape is expected to vary along
time. Using parametric shape models as the ones previously presented, shape variation
between successive time steps can be described by means of a model of the variation
of their parameters. Thus, the objective is establishing a dynamic model which fits
an expected shape parameter dynamics.

Concerning visual tracking applications, dynamics are usually modelled by means
of discrete time series. The value of a parameter = at a given instant ¢ (denoted as
x¢) is determined using an expression of the form

Ty = v—l—Zakxt,k +& (2.8)
k=1

where v and «ay are real constants, with aj # 0. & is an stochastic error term that
accounts for the inaccuracies of the deterministic part of (2.8). When &; corresponds
to a Gaussian white noise process, then (2.8) is denoted as Markov process or Auto—
Regressive process of order n (AR(n)) . For notation convenience, Equation (2.8) is
commonly expressed in vector—matrix form. For instance, for models where v = 0 and
& = bow; corresponds to a Gaussian white noise process with parameters N'(0, bob? ),
then Equation (2.8) is expressed as

T ap Qy o Qo1 Oy Tp—1 bo

Tt—1 1 0 s 0 0 Tt—2 0
Ty o _ o 1 --- 0 0 -3 | 4| 0 wy (2.9)

xt,(n,l) 0 0 s 1 0 Tt—n 0

This is called the companion form of Equation (2.8), and it describes the n-th order
dynamics of z; as a first—order Markov model in state space. Usually it is expressed
more compactly as follows

Xy = Athl + BWt 5 (210)

where terms equals one to one with vectors and matrices in Equation (2.9), except
for the part of the stochastic error term & . Here it is alternatively expressed using a
n x n B matrix given by

bop O 0 0
0 0 0 0

B = ,
0 0 --- 0 0

and a n x 1 Gaussian white noise vector wy.
In some cases, a third parameter X is used to fix a desired average value of x;
along time, leading to the following final expression of dynamics

Xy —X = A(thl — i) + BWt y (211)
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which, in fact, only adds just a constant term in the right—side part of expression
(2.10), namely (A —I)x.

This formalisation is the one adopted for the different problems analysed in this
thesis. To enhance the readability of the chapter, a more detailed explanation on
the use of AR processes to model dynamics has been placed in Appendix A. In this
appendix two novel methods are proposed to establish the parameters of AR(1) and
AR(2) models, with the aim of constraining the evolution of a parameter of interest
x inside a desired Gaussian subspace. This kind of constrained dynamical models are
very appealing for tracking purposes, since they provide some degree of control on
the wvalidity (see Section 2.1.3) of predicted object states.

2.3 Bayesian Approach to State Filtering

Previous sections have described the models used in this thesis to represent a shape
and its dynamic behaviour. Now the focus is on describing how these models can
be used to extract reliable information from sequences. Determining the outline of
an object in a video sequence is a task that can only be done with some uncertainty.
Observations extracted from frames are subject to several noise sources (effects of dig-
italisation, acquisition conditions, clutter, etc.), providing just inaccurate evidence of
the target of interest. Models can help to make a better interpretation of observations,
but as long as they are just an approximation of reality, they add also uncertainty in
the estimated information. Thus, methods in estimation theory face the problem of
determining the most likely state of a given target, providing at the same time some
measure of the certainty in this guess.

Classically estimation has been formulated from a computational point of view,
as the problem of finding the target state which minimises a given defined error.
Kalman—based estimation algorithms were developed with the aim to provide a re-
cursive solution to the least—square estimation method. We refer the reader to [47]
for an excellent review of classical estimation theory. A more general way to pose
the estimation problem is from a probabilistic point of view, using a Bayesian for-
mulation. Bayesian modelling provides a principled way to represent the available
prior knowledge about a phenomenon being modelled. Uncertainty is explicitly rep-
resented by means of probability density functions, which may be of arbitrary form.
Inference on unknown quantities is obtained from the application of Bayes’ theorem.
What has made this new problem statement important in estimation theory is that
it has provided a new perspective to solve the estimation problem through the use of
simulation—based methods. Let’s detail which is the estimation problem to be solved.

Solving a sequential estimation problem consist in estimating the sequence of a
state! xg.; = [xi]fzo, from observations yi.; (i.e., observations up to instant ¢). In
Bayesian terms, this corresponds to estimate the posterior density

p(xo:t|y1:t) - (2.12)

The estimation of (2.12) can be expressed recursively by applying Bayes’ theorem,

'In contour tracking, this state is constituted by parameters of the defined shape model.
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obtaining
X0: it—1 X0: 1:t—
p(Xoulyre) = p(ytlXo:ty1:6—1)p(X0:t|y1:6-1)
p(Yt|Y1:t—1)
_ p(Yt|X0:ty1:t—1)p(xt|X0:t—1y1:t—1)p(X0:t_1|y1:t_1). (2.13)
P(yelyie—1)

Notice the recursive nature of this estimation problem, where the posterior at a
given instant is defined in terms of its estimation at the previous time instant. In
tracking applications the objective is usually posed as estimating the filtering density
p(X¢|y1:+), which is a marginal of p(Xo.+|y1:+) corresponding to

p(xely1e) = /p(XO:t|Y1:t)dxo:t_1 ;

that can be obtained by just discarding the state part corresponding to x¢.;—1 from
p(X0:¢|y1:t). In practice, the filtering density is computed recursively, without the
need to keep track of the complete history of states.

Expression (2.13) is usually simplified by making two assumptions, which generally
hold in tracking applications:

e x; conditionally depends only on its state at the previous instant x;_1.

e observations yj.; are conditionally independent given the state of the object at
each instant.

These assumptions lead to

p(ye|xe)p(xe|x:-1)
P(Xo: : = P(X0:¢— 1) - 2.14
( 0t|Y1t) p(}’t|Y1;t71) ( 0:t 1|Y1t 1) ( )

To solve this expression it is required to define two important terms:

o p(x¢|x¢—1): the dynamics of x; expressed by a first order Markov model?, i.e.,
the probabilistic model of the state evolution, commonly referred as transition
prior, or state transition model.

e p(yi|x¢): the observation likelihood, or how the state is reflected on observations.
It is commonly referred as state measurement model.

Term p(y:|y1:t—1) factorises as the integration of the rest of right—side terms in
(2.14). That is

p(yilyie_t) = / Pl p(xe e )P (Kot [y 1:—1)Ixe -

When p(x¢|x;—1) and p(y¢|x:) correspond to Gaussian distributions, it is possible
to solve (2.14) analytically. Next section focuses on this particular case.

2A first order Markov model in state space does not means being limited to just first order
dynamics in shape space(see Section 2.2).
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2.3.1 Kalman-based Filters
The Kalman filter (KF) provides a solution to the estimation problem for cases with

e a Normal initial state distribution.
p(x0) = N(Xo,X0)

e linear state dynamics, perturbed by zero—mean normal white noise. That is, a
Markov model given by

x; = A1 +Byw,  w;~N(0,1), B.B =Q,. (2.15)

e linear observation model, perturbed by zero-mean normal white noise. That is

Yy = HtXt + Vtvt Vi~ N(O, 1) 5 VtV;T = Rt. (216)

Matrices A; and H; are respectively referred as system and observation matrices,
and both are usually constant in most of practical tracking applications. Thus, in the
following their subscript is eliminated. Q; and R; model the noise assumed at each
time step. The action of a known control input u; or a constant term D? could be also
considered in (2.15) and (2.16). For the sake of clarity, these terms are assumed zero
in this formulation. The expression of these models in Bayesian terms correspond to
the following Gaussian distributions

p(Xt|Xt_1) = N(Axt_l,Qt) 5 (217)
p(yelx:) = N(Hx,Ry) . (2.18)

Being all the right—side terms in (2.14) Normal distributions, the posterior distri-
bution turns out to be also Normal. It can be shown (see Appendix B for a detailed
explanation) that parameters of p(xo.t|y1.+) can be computed from a linear combina-
tion of the parameters of

e the system state prediction distribution p(x¢|y1.t—1) ,

e the expected observation distribution p(y¢|y1..—1) ,

Xy

e the cross-correlation between the predicted state and observations 3 ti—1 -

For the linear Gaussian models assumed in the Kalman filter, these parameters are
determined analytically. Before detailing their expressions, some notation has to be
introduced. In the following, a subscript is added to parameters to indicate concisely
at which instant they are estimated, and which information up to a given instant has
been used. Let’s see some examples

® X;;—1: denotes the estimation of x at instant ¢, using the observations available
up to instant ¢ — 1. The symbol " indicates that its value corresponds to just an
estimation of the real value x;;_;.

3For instance, the term (A — I)X derived from the model of dynamics in (2.11).
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° Ef\?: denotes the covariance of state x at instant ¢, from observations up to

instant t.

Once the notation has been presented, let’s express how the Kalman filter es-
timates p(x¢|y1:t), from the parameters of this distribution at the previous instant

p(Xt71|y1:t71)a given by
p(xt—1lyre—1) = pn(xe—1]y1e-1) :N(thl\tflasz”t_l) :

From the assumed system and the observation models, the parameters of the
densities required by the Kalman filter are determined as

p(xe|yre—1) ~ N(f(t\t—l, Ef\?_l) = N(Af{t—l\t—lv Asz1|t_1AT + Q)
pyelyue-1) ~ N1, B ) = N(Hk,1, H o HT+Ry)

Xy _ XX T
Et\t—l - i H

Given these parameters, the final posterior distribution p(x¢|y1.¢) is characterised
using the well-known Kalman expressions, usually organised in the following two
steps:

e Kalman Prediction Step

fit\t—l = Af(t—1|t—1 )
2(\?—1 = Azﬁcl\t—lAT +Q: .
e Kalman Updating Step
XX T
K — Et\tle
HE;‘lilHT +R;
v = yi— Hxyeq
X = X1+ Koy
e = (I-KH)XZF, .

The term 14, commonly denoted as innovation, measures the disparity between
observed and predicted measurements (i.e., the difference between y; and yy ;1)
Figure 2.4 relates the KF equations within the modules of the tracking framework
presented at the beginning of the chapter.

Extended Kalman Filter
Many real problems can not be properly described using only linear expressions, and
require the use of non—linear models as
Xt = G(Xt_h Wt) Wy N(V_Vt, Qt) 5 (219)
Yy = h(Xt, Vt) Vi ~ N(\?t, Rt) 5 (220)
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Target tracking System Model (A, Q)
}
(ﬁr-m-pzfux—l ) _ Prediction (ixp-l: = )

’—> X1 = AXr—llr-l
= —AR® AT4Q

- - -1 = -1
Target state estimation

. Iy
HEX H +R
X =Xy + K, Observation
Eﬁ: = (I - KH)E;T;{_] Observation Synthesis: | Observation
T )A'nm = Hium *1~  Model
J’i({ (ILR)
Image Analysis

. <—Image

Figure 2.4: The KF within the model-based tracking framework.

where a() and h() model the non-linear system and observation processes, and w; and
v, are usually assumed to equal to zero. Again, control inputs and constants are not
considered in the formulation presented for the sake of clarity. Notice that although
the disturbing noise is considered Gaussian too, it is no longer necessaryly additive.
The system non-linearities prevent finding a close-form solution to p(x;|yo.:) but a
Gaussian approximation of it can be obtained by linearising the system, and then
applying the previously described Kalman equations. This is the approach followed
by the Extended Kalman Filter (EKF) , based on the Taylor series expansion of a()
and h(). The linear approximations are defined in terms of the Jacobians of the
system and observation processes, given by

Oa(Xi—1,Wt)

A = 9%, 1 |(Xt—1 = Xy1jp—1, We = Wy)
Aw = aa(xat;wl:vathl =4 141, Wt = Wy)
Hj = %}ZW)K’% =Xyt-1,Vt = Vi) ,
H, = %‘ZW)K& = Xy|t—1, Vi = Vi) .

Using these linear expansion terms, it is straightforward to derive the following
filtering equations using the same reasoning that for the standard Kalman filter.

e FExtended Kalman Prediction Step

Xejpm1 = a(Xe_1—1, We)

T T
?ftc_l = Alxzﬁfl‘t_lAlx +AletAlw .
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e Extended Kalman Updating Step

:ﬁc\)t(—lHle
K = xx T T >
Hlxzt‘t_lHlx + Hlv]-:{tHlv
v = yt—h (kt\t—lvvt) )
Xep = X1 + K,
= (- KHu)ZH, .

Unscented Kalman Filter

The Unscented Kalman Filter (UKF) [114, 119, 63] is a quite recent approach that
deals with non-linearities in the Kalman scheme from a novel point of view. In
essence, the Kalman approach is based on the propagation along time of a Gaussian
distribution, through the linear processes describing a given system. When these
processes are non-linear, the propagation of this Gaussian does not remain Gaussian
anymore, and some mechanism has to used to obtain a Gaussian approximation of it.
The solution provided by the EKF is based on approximating the non—linear processes
by linear ones, forcing the propagated Gaussian to remain Gaussian. The UKF gives
a solution from another perspective: instead of approximating non—linear functions,
the idea is propagate the Gaussian non—linearly, and then approximate the resultant
distribution with a Gaussian. This is the task carried out by the so called Unscented
Transform. Given a Gaussian distribution and a non-linear function to transform it,
a set of weighted samples (denoted as o—points) are deterministically chosen from the
distribution, in a way that their sample mean and covariance matches the statistics
of the original distribution. There exist different proposals to determine these points,
being popular the methods described in [62, 64]. Each o-point has two weights w;,
and w,. associated, which are required to posteriorly compute the Gaussian para-
meters approximation. These o—points are propagated using the non-linear system,
generating a cloud of transformed points. Computing the weighted sample mean and
covariance of these points (using, respectively, w,, and w, ) the transformed Gaussian
distribution is characterised. Figure 2.5 exemplifies this procedure.

Sigma Points LTI Transformed

Sigma Points

’A

o1 TN\ Nonlinear "
\\) Transform
T Weighted Sample
N .. e R ™~  Mean and
LT K LY Covariance

Figure 2.5: The Unscented Transform mechanism. Procedure to estimate the mean
and covariance of a Gaussian distribution, when is non-linearly propagated.
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The UKF takes profits of this transformation to compute the terms required by
Kalman update equations, namely

e the distribution of the system state prediction N(f{t‘t_l, E:‘,(\)t(—l)'

e the distribution of the expected observations N (§j;—1, 22’&’71).

Xy

e the cross-correlation between the predicted state and observations 3 tt—1°

The UKF procedure is as follows. First, a Gaussian distribution is stated from the
concatenation of the variables of the system (the original state and noise variables),
with parameters

T

x{ = [ X wWe Ve |, (2.21)
» X 00

X = 0 Q 0 . (2.22)
0 0 R

From this distribution, o—points are generated and used to estimate the distribu-
tions required by the Kalman filter. Once having these terms, the classical Kalman
update expressions can be used. Algorithm 1 summarises an iteration of the UKF

The UT mechanism allows to obtain the statistics required by Kalman equations
in a very simple an efficient way. With respect to EKF, the UKF algorithm is easier to
implement, and it can be shown that higher accuracy is obtained [63]. The first order
system linearisations in a EKF introduces large errors in the estimated statistics of
the posterior state distribution, specially when the models are highly non-linear, and
the local linearity assumption breaks down (i.e., the effects of the higher order term of
the Taylor expression become significant). On the other hand, the UKF captures the
posterior statistics with an accuracy equivalent to a second order Taylor expansion of
any non-linear function.

2.3.2 Particle Filters

Methods described up to this point are based on approximating the p(x;|y1.:) prob-
ability density function (PDF) with a Gaussian. In general, p(x;|y1.:) can have any
form, so the performance of these methods will be conditioned on the validity of
this approximation. To overcome this problem, Particle Filters (PFs) are simulation—
based methods that approximate this PDF by means of population of samples (i.e.,
particles), being thus able to represent any arbitrarily complex density (see [8] for
a tutorial). Estimating a sample population describing accurately p(x¢|y1.:) is not a
trivial task, as there is no possibility to generate samples from this distribution (other-
wise, it would be already known and no estimation needed). The methods commonly
applied to solve this problem are popularly known as Monte Carlo methods, and they
are distinguished from other simulation methods by being stochastic (i.e., nonde-
terministic in some manner), using random numbers or (in practice) pseudo-random
numbers. The theory of these methods was developed in the 50s for early work related
to the development of the hydrogen bomb, and since then, their practical application
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Algorithm 1 Unscented Kalman Filter Iteration
(%0 =5) | = URF [ (%0100, 25, ) v
Establish x¢ and X3"*"
[{x““ wi), wl” } J — COMPUTE_o_POINTS [(x¢, x"x")]

{ where xt( D = [xii_)l‘t_1 wgz ng ], and w® and w are the weights associated
to each o-point }
Time update equations:

xi?’tll =a(x 1(5)1|t 1,w§1 ) Vi=1,...,N

- N i
Keje-1 = Dim wy g\t)—l

N i j _ i _
Efﬁe‘ 1= Zi:l wf(:l) (Xi\lt)_l - Xt\tfl)(xifz_l - Xt\tfl)T
Measurement update equations:

y§|1271 = h(x E‘zt LV Wi=1,.. N
Yiejt—1 = Zfil w%)yi‘?il
Ei’ﬁ' 1= valwcl (.YE\Z) 1™ Y- 1)(}’&2 L=y T
E:ﬁ‘// 1 _Z 1wc ( E\t) 1~ Xeje— 1)(Y§|2 L= Yepe—) T
K= E t|t— 1(Ey|¥ 1)_
Xeje = Xejp—1 + K(ye — Yep—1)

XX __ §IXX Yy T
Et|t = Et|t 1 K2t|t K
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in a great variety of problems has grown parallelly to the increase of computational
power of generic purpose processors. Their use is very popular in finding solutions to
mathematical problems involving many variables, which can not be efficiently solved
using deterministic numerical methods. The most outstanding characteristic of Monte
Carlo methods is that their efficiency increases when the dimension of the problem in-
creases. For a didactic introduction to this methods the reader may refer to [105, 79].
A more thorough review can be found in [73]. Classical problems where Monte Carlo
methods are applied are:

e expectation estimation: estimate the expectation of functions given a variable
distribution p(x)

Blf() = / f@p()de ;

e PDF sampling: generate a collection of samples distributed accordingly to a
given PDF p(x).

In fact, PDF sampling is implicitly required to solve the expectation estimation
problem, so methods developed with this first aim also allow to provide a population
of samples describing p(x). Common methods directed to PDF sampling are the
classical Rejection Sampling method, or Markov Chain Monte Carlo methods like
the Metropolis-Hasting method, or the Gibbs Sampler [118], but they require too
much computations to be used in real-time applications. The common approach
used in tracking application to approximate p(xo.:[y1.t) by a population of samples
is the Importance Sampling technique. This approach is the basis of a collection of
algorithms that in estimation theory have been denoted as Particle Filters. Next
section describes briefly how the importance sampling technique is applied to solve
the tracking problem. For readers not familiar with this technique, a more detailed
explanation is provided in Appendix C.

Sequential Importance Sampling

The task of particle filters is to provide a particle set representing properly the distri-
bution p(xo.¢t|y1:+). As generating samples from this distribution is not possible, the
mechanism of importance sampling is used to approximate it. Very roughly, the task
carried out is the following: A sample set {xff%}fil is first generated from a defined
importance function ¢(xo.t|y1.¢). Then, a weight zI}ti is associated to each sample
X(()Zl This weight evaluates if X(()Zl may be considered also a real sample of p(xo:¢|y1:¢)-
Thus, the desired posterior distribution p(xg.t|y1.+) is approximated by

N
PN (xoelyre) = Y o0, (2.23)
i=1 '

where x(()li is a random sample generated from ¢(xo.¢|y1:t), in the following expressed

as

Xg)lzf ~ q(X01t|y1:t) ’
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and
(4)
~ (i) Wy
o) = (2.24)
' Z;\flng)
w® _ POGlyie)

. = A .
a(xg2lyree)
The weights w; and w; are denoted respectively as normalised and unnormalised
importance weights. If the importance function is chosen of the form

t
q(x0:t|y1) = Q(XO)HQ(Xk|XO:k—1Y1:k)a

the weighted sample set in (2.23) can be estimated efficiently along time by a recursive
expression. Using Bayes’ theorem, the importance weight w; turns out to be
w, = p(ye[x0:y1:0—1)p(X¢ X0t 1Y 1:0—1)P(X0:t—1|y1:6-1)
p(yelyre—1)q(Xo:t|y1:) 7
p(yt[Xo:ty1:6—1)p(X¢[X0:4—1Y1:0-1) P(X0:t—1|y1:0-1)
p(yelyre—1)a(xe[%0:e—1y1:t) q(x0:e-1ly1:e-1)’
P(ye[X0:6y1:6—1)P(Xe[X0:0 1Y 1:0-1)

= Wi—1 - 2.25
p(yt|y1:t71)Q(Xt|X0:t71y1:t) t ( )

Thus, the importance weight of a particle at instant ¢ can be computed in terms
of its preceding value. In many formulations, the term p(y¢|yi.+—1) is omitted from
(2.25), as acts as a normalisation factor which cancels when w; is computed. In most
practical cases, as first order state dynamics are assumed as well, and observations
are independently conditioned on x;, the weight w; is finally computed as

p(ye|xe)p(Xe|x-1)
q(Xt|Xo:t—1Y1:t)

t—1 -

Thus, the Sequential Importance Sampling (SIS) algorithm consists in the recur-
sive propagation of weights and samples of pn(xo:t|y1:t) as each new measurement

is received. The initial particle set {xo ,wo)}z 1 propagated by this algorithm is
determined from the system priors, so that
xi) ~ q(xo) =p(xo) ,
w(()i) = 1.
An iteration of this algorithm is detailed in the pseudocode in Algorithm 2.
Using this basic procedure, different algorithms have been proposed which differ in
the importance function used to generate samples (some proposals will be presented
latter). However, whichever the importance function used, the SIS algorithm can not
avoid suffering what has been called the Degeneracy phenomenon. It can be proved
[41, 69] that at each iteration the variance of weights can only increase over time,
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Algorithm 2 Sequential Importance Sampling Iteration
[{oxgs wy 1) = SISy 1wy HE vl

fori=1to N do

Draw ng) ~ q(Xt|X(()2_1y1:t)

KN
dat oht (1) _ POYelxo¥1—1)P0” X,y Y1:0—-1)

Update weight w; a7 y1)

w§?1

end for

which in practical terms means that after several iterations, all but one particle will
have negligible weight. This provokes that a large computation effort is devoted to
updating particles whose contribution to py(xo.¢|y1.¢) is almost zero, which conse-
quently represents a poor approximation of p(xg.t|[y1.¢). The brute force approach
to mitigate this effect is having a very large amount of particles N, but then this
precludes the use of this method in real-time applications. An operative solution to
this problem did not appear until the last decade, when [50] proposed the addition
of a Resampling step at the end of the SIS iteration. The intuitive idea is to get rid
of particles with small weights, focusing on particles of bigger importance. This is
achieved by resampling with replacement the point mass distribution py(Xo:¢|y1:t) »
generating a theorically equivalent point distribution density py (xo.¢|y1:t) given by

N
PN (Xo:tly1e) = NZ(SX

With this process, the importance of each particle now gets reflected in the number
of copies generated from it, having each copy a weight equal to 1/N. This obviously
resets the particle weight variance to the feasible minimum. To implement the resam-
pling step, several algorithms have been proposed, being popular multinomial [50],
stratified [68], residual [74] and systematic [26] resampling schemes. A comparison
between them can be found in [39)].

This resampling step is applied by some authors at each SIS iteration. However,
since its finality is addressing the degeneracy problem, it is reasonable to apply it only
when this degeneracy effectively is present on the particle set. A suitable measure
of degeneracy is the effective sample size Ny introduced in [69], a term commonly
estimated (see [41, 78, 76]) using the approximation

1
Nepg  ~ ~

S ()2
In the ideal non—degenerated case, all particles have identical weight 1/N, resulting
that N.sr = N. As the weight variance increases, N.s; diminishes. Thus, a common
approach is applying the resampling step only when N.;y is below a defined threshold
Ngeg. Algorithm 3 specifies the general framework of Sequential Importance Sampling
with Resampling (SISR) algorithms, popularly denoted as Particle Filters.

(2.26)



28 MODEL-BASED VISUAL CONTOUR TRACKING

Algorithm 3 Sequential Importance Sampling Resampling Iteration

[{xd), w3 ] = SISRIxS)_ 1, w1 y1d]

fori=1to N do ‘
Draw x;” ~ q(x,[x{)) ,y14)

. 0 (D) |5 () A
. P Xg. t—1)P(X X4 t—
Update weight wgl) _ POelxoayiie-1) ((i)t X0 -1 ¥ e l)wgi)l

0it—1Y1:t)

end for ‘ B
Normalise weights zbgi) = # Vi=1,...,N
zﬁilzwi%z
if Nepr < Ngeg then

{6y, i 1) = RESAMPLE[{xq), @y}
end if

Compute Nepy =

Although the resampling step solves effectively the degeneracy problem, it does so
by reducing the diversity among particles (see Figure 2.6). This undesirable side ef-
fect is commonly denoted as sample impoverishment. The resampled particle set will
contain multiple repeated particles, being far from the ideal set of independent iden-
tical distributed random samples from p(xo.+|y1:¢). To avoid that, different methods
have been proposed, as for example the use Markov Chain Monte Carlo methods to
implement the resampling step [74, 6], or the regularisation of the particle set before
resampling [88]. However, in most of the particle filter implementations, the sam-
ple impoverishment problem is overlooked. The relevance of this problem attenuates
with the number of particles, and for the sake of simplicity, in practice is commonly
preferred the use of a less complex algorithm, whose lower computational complexity
allows the use of more particles. This has been also the consideration done in the
experiments carried out in this thesis.

Choice of the Importance Functions

This section summarises the basic concepts proposed to define ¢(x¢|Xg.t—1y1:¢), which
is the essence of any particle filter implementation. The following cases can be dis-
tinguished:

Prior Distribution p(x:|x.t—1). Is the most common choice of importance func-
tion, and defines what is commonly referred as Bootstrap filter or Condensation
algorithm. It is based on propagating particles in the previous instants using
the expected system dynamics.

Optimal Distribution p(x:|xo:t—1y1:t). It can be shown [41] that this importance
function minimises optimally (but not avoids) the rise of weight variance at each
SISR iteration. The major problem is that, except for some specific situations,
it is not straightforward to define this distribution.
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Figure 2.6: Sample-based density approximation. Left: approximation of a 1D
Gaussian distribution by means of a weighted sample set pn (xo0:¢|y1:¢). Each particle
is represented by a bar, whose height denotes its weight. Right: result of resampling
the weighted sample set, where the importance of particles (now represented by dots)

is reflected in the number of their copies that conform py (xo:¢|y1:¢)-

Local linearised Distribution N (x;, X¥*). This approach is based on defining the

importance function by means of a Gaussian approximation of p(x¢|y1.¢). The
idea is that at each iteration, for each i-th particle, is estimated a Gaussian
approximation of p(x¢|Xo.t_1y1:¢) = ./\f(fcgllt), E;‘G‘m
sample. This approximation is obtained using a Kalman—based estimator ap-
plied on the state of each particle. This requires maintaining a covariance matrix
for each particle, which evolves according to the Kalman equations. In general,
algorithms based on this technique are commonly denoted as Kalman Particle
Filters [41, 116].

) to generate an importance

Measurement—based Distribution ¢(x|z;.;). In this case, importance samples

are generated using information z;.; extracted from the current image, which is
related but not necessarily equal to yi1... With this information an importance
function is defined, which is sampled usually in combination with the prior
distribution p(x¢|x.t—1) to generate the importance samples at each iteration.
Examples of this way to proceed are given in [61, 96].

Remarks on Importance Sampling

One of the most important results of Monte Carlo theory is that the accuracy of
estimations obtained from its methodology is independent of the dimensionality of
the space sampled. Thus, for instance, the expectation of a given high dimensional
variable x
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can be approximated satisfactorily just by obtaining a few dozen of independent
samples of p(x). That is

N
1 .
Elx] ~ N}:x@. (2.27)
1=1

Unfortunately, this result does not hold in algorithms based on importance sam-
pling. In this cases, samples are generated from the importance function ¢() instead
of p(), what cancels out this so appealing property. The basic problem is that with the
dimensionality, the variance of the weights associated to particles increases exponen-
tially(see [79] for details). This means that the bigger the state dimension, the smaller
the number of effective particles (i.e., with non—negligible weight w;) representing the
estimated distribution. As a consequence, an importance sampling estimate is totally
dominated by a few samples with huge weights, what previously has been denoted as
degeneracy problem. Thus, the availability of a good importance function (i.e., a ¢()
approximating very tightly p()) is more crucial the bigger the sampled space is. A
consequence of this problem in practice is that to achieve a desired performance, an
importance sampling algorithm in a high dimensional space requires a huge number
of particles. For this reason it is commonly said that particle filters suffer from the
curse of dimensionality.

2.4 Contour Measurement Process

Preceding sections have described the basic modules in estimation methods, assuming
the availability of some measurements yq.;. It is time to describe how this measure-
ments are extracted from images, that is, to define the measurement process. This
is a key module in any vision—based tracking system, as usually it has to satisfy two
important demands: obtaining a robust and accurate description of the object of in-
terest, and providing this description within an small time interval. The information
extracted then has to be correctly linked with the state to be estimated, in order to
make a proper use of it. Concerning the tracking of contours, the information of inter-
est to be obtained from the measurement process is the disparity between measured
and predicted contours, what has been termed as innovation (v) in Section 2.3.1.
This can be obtained from

d*(rs(s),r(s)) = %/(Pf(S) —x(s))"(rs(s) —x(s))ds (2.28)

which computes the mean square disparity between the predicted contour curve r(s)
and the observed one rf(s) (subindex f indicates that the curve is defined from image
features), where s is the sampling parameter of the curve, and L the extent of its
support. Unfortunately, there is one problem in the application of expression (2.28):
it is sensitive to curve parameterisation. This means that the disparity between curve
points sampled at s is valid only if both curves are parameterised according to a
common reference frame (see Figure 2.7).

To deal with this problem, a criterion has to be defined to map samples of ry(s)
with the corresponding ones in r(s). One reasonable criterion is to select the map-
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Figure 2.7: B-Splines parameterisation problem. Discrete point—to—point compar-
ison between synthesised curves (dotted links between curves) rely on their parame-
terisation in a common reference frame (crosses between discontinuous lines indicate
spline control points). Left and right plots show identical situations, which yield
different distance computations (notice the different B-spline control points in the
outermost curve).

ping that generates a minimum disparity between curves. That is, finding a value €
minimising
1

I /(rf(s) —r(s+e) (rp(s) —r(s+e€))ds . (2.29)

Solving this problem globally is too complex to be useful for a real-time tracking
application. However, this criterion can be applied locally, as long as the following
assumptions hold:

e The offset between curve parameterisation is small (i.e., € = 0).

e Compared curves are continuous and smooth.

First assumption holds in tracking applications where the tracked contour performs
slight changes between frames. The second one holds for the shape model used in this
thesis shape, which assumes that real contours are precisely modelled using regular B-
spline curves. Hence, given a sample of the measured contour r(s;), the closest point
of r(s) can be approximately found by the following process. Due to assumptions
done, r(s) can be approximated by its first-order Taylor expansion at the point s;,
giving

(s — si) (2.30)

Using this approximation, the local disparity between curves at a given point s;
now is expressed as

@ (ry(s:),(si + ) = (r7(s5) — ralsi + ) (rp(s0) — ralsi +€) |
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that is, an expression which depends only on the parameter e. The minimum of this
square distance accomplishes that

A(ry(si) = ra(si + €))7 (rs(si) —ra(si +¢))
Oe

that simplifies to

70r4(8; + €)

=0 (2.31)

(ra(si +€) —rp(si))
From Equation (2.30) it follows that this expression is equivalent to

8r(si)

(ra(si+e) —rs(si))”
Equation (2.32) determines that the vector that connects r¢(s;) and r,(s; + €)
with minimum distance must be perpendicular to the tangent of r(s) at s;. In other
words, this disparity vector has the same direction than the normal of r(s) at s,
which is denoted as n(s;). This result reflects what has been denoted classically as
the aperture problem® [59]. To measure the disparity between curves, the information
of interest is the module of the disparity vector (rq(s; +€) —r¢(s;)), which, as Figure
2.8 shows, corresponds to

d(rs(si),r(si)) =~ n'(s;)(rs(s:) —1(s:)) ,

which is the normal displacement between corresponding points on the two curves.

rf(s;)

n’ (), (5,)~ r(s,))
r(s)

r,(s,+¢&) r(s)

Figure 2.8: Normal displacement between curves. It provides a measure of difference
which is approximately invariant to contour reparameterisation.

In practice, this disparity value has to be extracted from images, and an image
processing algorithm with this aim is required. From Equation (2.32), it follows that

ro(si+e€)—rs(s;) = am(s;) , (2.33)

4Using just local information, the association between contour points is inherently ambiguous.
Under this situations, humans perceive an association perpendicular to the contours orientation.
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where « is the required normal disparity value. From the assumption € = 0, Equation
(2.33) derives to

r(si) = rg(si)+oan(si) ,

which establishes that r(s;) and rs(s;) are connected by a vector normal to r(s;).
Thus, an image processing method to approximate the normal displacement « just
requires to detect edges along 1D measurement lines across r(s;), with direction given
by n(s;).

Using this result, a norm is defined to determine the disparity between two curves,
in terms of a third curve r,,(s) (measurement curve), assumed sufficiently close to
both curves ry(s) and r(s). This third curve is introduced to provide a method to
establish an association between r¢(s) and r(s), independent of both. The procedure
is as follows: given an image, the measurement curve r,,(s) is used to establish
measurement lines normal to it, which are used to process the image and estimate
the normal displacement between ry(s) and r,,(s) (see Figure 2.9). The normal
displacements obtained from the image processing are equivalent to the evaluation
of n,,, (8)T (r¢(s) — rmm(s)). Equivalently, this same measurement curve r,,(s) can be
used to compute its normal displacement to the predicted curve r(s). If this normal
displacement is identical to the obtained with r¢(s), this means that both curves are
identical, and their norm—difference must be zero. Otherwise, the disparity between
both vector reflects the disparity between r¢(s) and r(s) (see Figure 2.10).

1 2 3

- = Sp—— — —
& ! : \§\ Skin segmentation

\ o — O
Sobel Mask + Edge Detection

%\\\\\\\ *\W%z (R, G ) W E—, -

Figure 2.9: Contour measurement process. Image processing procedure to extract
contour observations for real-time applications.

Thus, the norm—difference between curves is defined in terms of r,,(s) as:

1

d(r =tf)n, = 7 /nﬂ(S)(rf(S) — Tm(s)) = 0y (s)(r(s) — rm(s))ds (2.34)

_ %/n;(s)(rf(s)—r(s))ds (2.35)

In practice, normal displacements between r¢(s) and r,,(s) are computed at dis-
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~

Figure 2.10: The use of the measurement contour (dashed). It evaluates the dis-
parity between image contours (circles) and the contours of the predicted curve
(squares).

crete sampling points {sl}fil, so in this case (2.35) is approximated by the summation

1SN,
d(r —Tf)n,, = Nznm(si)(rf(si)_r(si)) :

Once derived the expressions to compute the mean normal disparity between two
curves, let’s see how this translates into the expression of the measurement process
of a contour tracking application. Observations y; = {yl}i\]:1 reflect the disparity
between r,,(s) and the hypothetical curve ry(s;) determined by the image features,
at each sampling point s;. Thus,

yi = g (s0)(rp(si) = rm(si)) - (2.36)

Equivalently, the observations expected to be measured (i.e., y;;—1) correspond
to the disparity between r;;_;(s) and r,,(s) along n,,(s;), where ry,_;(s) denotes
the contour corresponding to the predicted state X;_;. If r,,(s) is synthesised from
parameters X,,, then Yijt—1 can be expressed in terms of state space parameters as

Vejm1 = NRU(fRep—1) = f(xm)) (2.37)

where f() is a function defined in terms of the shape space used, that transform an
state vector x into spline control points q. U is the matrix defined in (2.2) that
translates q onto contour samples, and N,, is a Ng X Ng matrix maintaining the
normal vectors [n,(s;) ny(s;)]T at contour sampling points as

[ n.(so0) 0 0 T
0 ng(s1) ... 0
B : : oo ng(sn.—1)
N = ny(S0) 0 0
0 ny(s1) ... 0
L : : ny (SN, 1)
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Thus, from (2.37) and using a linear shape space as the one in (2.3), the noiseless
expression of the observation model corresponds to

yi = NLU(Wx;+a)— (Wxp, +q))
NIUW (x; — xp) .

For a non-linear shape space as the one in (2.5) the following non-linear expression
is obtained

vt = NLU(W()a+Tx) — (Wi, )@+ Txm))
= NIU(Wi) — Wee)a + T(xe — %)) -

It lacks to define how r,, (s) is established in each measurement process. The usual
approach is to synthesise it from the prediction of the currently tracked contour at
that instant (i.e., X4—1).

2.4.1 Kalman Filter Measurement Process

The measurement process to obtain the normal displacement between a contour pre-
diction and the contour in the image, is based on the presented method of processing
1D measurement lines on the image. In many practical implementations, the length
of this measurement line is fixed to a given value, expecting to account for the error
in the contour prediction. However, in estimation methods like the Kalman filter,
jointly with the prediction of the most probable contour shape x;;_1, it is available
the uncertainty in this prediction (i.e., the predicted state covariance E;“il) . This
uncertainty delimits an image region where the real contour should be, according to
the modelisation of the problem. This information can be used to automatically con-
trol the spatial scale for searching image contours, as proposed in [17]. The objective
is constraining the search region to the minimum reasonable size, in a way that cor-
rect contours can still be detected, while edges from image clutter are less likely to be
included in extracted observations. This is done in the following way. Let’s assume
an state vector x maintaining the parameters c of a shape model. The Kalman state
prediction given by N (Xe)e—1, E;‘lf_l) can be used to estimate the predicted contour
in the image, as well as the covariance at any location s along this contour given by

iho1(s) = U(s) W WTU(s)" . (2.38)

This covariance defines a validation gate in a spatially distributed fashion. For
each contour sample, a 2D covariance delimits the most likely region where its real
value may lie. The proposal in [17] exploits this covariance to establish the length
of the measurement line used to detect the contour. Since what is measured is the
normal component of the disparity between the predicted and the real contour, the
length of this measurement line should be constrained to the maximum value that
this normal component is expected to take. This is computed by

on(s) = np(s)S_i(s)nm(s)
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where n,,(s) specifies the direction of the normal measurement line. Using the rule
of 30, this variance is used to specify the extremes of the measurement line as

I‘m(S) + 3Jn(s)nm(s) ) (239)

which encloses the region where the normal displacement of the contour should be
measured (at a level of confidence around 98%).

The proposed mechanism of taking advantage of Eg‘rt_l(s) to control search scale
suggested the study in this thesis of a method to design a more proper measurement
extraction process. Effectively, the contour covariance at a given contour point pro-
vides very significant information about the more likely region where the searched
contour may lie. Thus, it seems reasonable to use this information to stablish better
measurement directions along which to look for contours, instead of the blind nor-
mal direction presented previously. Unfortunatelly for us, in the early stages of the
development of this idea, a reviewer informed us that a similar proposal had already
been done in [10]. This generally overlooked reference provides an elegant way to
take this concept into account. The inverse of the positional covariance at a given
contour point defines a Mahalanobis distance metric, which can be used to redefine
the measure of the local disparity between curves

d*(rs(s),x(s)) = %/(rf(S) —1(s) T (Sffi_1 ()7 (rp(s) — x(s))ds

Making the same assumptions previously exposed, the local disparity between
curves is approximated as

d*(ry(si),e(si)) = (r7(si) = ralsi + €) T (Zffi_1(s) " (rs(si) —ra(si +e)) , (2.40)
whose minimum requires that

4 0r(s;
(r4(s1) = ralss + ) (S 5 2 = 0.
From previous equation, the direction of vector (rs(s;)—ra(si+¢€))7( gﬁ_l(si))*l
equals to the normal to the contour, which from the assumption ¢ = 0 yields a
measurement line connecting ry and r, given by

rp(si) = r(si) +aX_ (sinlsi) ,

where « is an arbitrary scalar. The result obtained states that the direction of mea-

surement is computed now from 3, (s)n(s), given by

)
)= IS Gnee)

Notice that if E‘trl‘;_l

gate, and the direction of measurement m(s) corresponds to the one indicated by
n(s), reflecting that in this case the aperture problem situation is not eluded (no

additional information is provided by Xy, _,(s)).

(s) equals to aly with a > 0, it defines a circular validation



2.4. Contour Measurement Process 37

The direction vector m(s) is usually close to the principal axis of the uncertainty
ellipse provided by the positional covariance (see Figure 2.11). Thus, [10] proposes
to determine the length of measurement lines by constraining them within the uncer-
tainty ellipse corresponding to this positional covariance. This is achieved by choosing
a length value p(s;) so that points in the measurement line lie within a Mahalanobis
distance of three standard deviations from the center of the ellipse, i.e.,

(2.41)

Wl
I
w

p(s)(m” (s)(B}f,_ (5))"'m(s))

,
v
/

Figure 2.11: Orientation of the measurement lines. Normal(left) and Learned
(right) measurement lines, with their length adjusted according to 3, _;(s).

This search direction proposal is denoted in the following as Learned or Baum-
berg® direction. In [10] it is said that this direction improves the performance of a
KF, compared with the use of the normal search direction. However, this is supported
by a very reduced experimental work, where other additional proposals are also eval-
uated. In order to ascertain this claimed superiority, we contribute in section 2.5.1
with a performance evaluation of both search direction proposals, in an exhaustive

experimental work done.

2.4.2 Particle Filter Measurement Process

In practical terms, the way how predicted contours extract measures from images
in Particle Filters does not differ from the Kalman filter methodology. Typically,
measurement lines are established normal to the contour, selecting the edge closer
to the contour prediction. The difference is that while in a Kalman Filter a single
measurement vector y; is extracted using commonly the mean contour of the predicted
Gaussian state distribution as measurement contour, in a particle filter each particle
extracts its own measurement vector. This fact is of essential relevance, as intrinsically
defines which form of p(y:|x;) is theorically assumed. In a Kalman Filter it is assumed
that the real contour is effectively extracted from the image, distorted just by Gaussian

5From the surname of the author who first proposed it.
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noise. Thus, the contour detected at the N measurement lines define an observation
process given by

2
Vti

1
exp —
\V2mo P 202

where vy, = y, — U¢, is the disparity along the i-th measurement line between the
detected contour and the contour synthesised from x;. Thus, the more likely an state
X is, the closer the vy, values are to zero.

In the case of particle filters, the measurement processes realized for the multi-
ple particles implicitly modelise a multimodal density function of p(y:|x;). As the
contours corresponding to particles are synthesised at different image locations, the
image contours detected in their corresponding measurement lines may be different,
which means that the likelihood of particles is evaluated with a function p(y¢|x:) of
multiples modes. This is decidedly a model that better adjusts to the characteristics
of the observation process, since the presence of multiple contours in the image is
considered. A graphical comparison of the Kalman and the Particle filter observation
models is given in Figure 2.12.

N
plyex) =T (2.42)

....
o

—_ N —_A
—_
_A
_ A
_ A

Figure 2.12: Observation model. Differences between the Kalman (left) and the
Particle Filter (right) observation model. For Particle Filters, different measurement
contours (vertical black lines) are evaluated, distributed according to the predicted
state uncertainty. Taking each time the closer contour as observation, this derives in
the construction of a multimodal observation model.

In [77, 76] are proposed analytic expressions for the p(y:|x;) inherent in PFs,
explicitly representing the presence of clutter in the image (i.e., contours in the image
that do not correspond to the tracked shape), as well as the possibility that the
tracked contour is occasionally missdetected. The most popular formulation used
is denoted as the Poisson likelihood. This model assumes that clutter features on
a 1-dimensional measurement line obey a Poisson law with density A, and that the
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probability of detecting and missdetecting the tracked contour are respectively 11
and go1. From this assumptions results the likelihood function

N _ALyn; \ N n; )~ \2
e M\ q 1 (27 —¢,)
plyelxe) = <II n,! ) II <(J01 + ;\1 Z T <_ ) 202 - )) ’
i i

i=1 j=1 =1

(2.43)
where z,(j ) denote n; edges assumed detectable along a measurement line of length L.
Although this likelihood expression is quite complex, in practice it can be computed
efficiently. The first factor in (2.43) is constant, and its computation can be avoided.
The sum in the second factor is determined mainly by its largest element, since o is
usually small and other terms rarely have a significant contribution. Thus, in practice,
this likelihood can be approximated by

N 2
q Vi,
P(Yt|xt)0<H(QO1+ e (—2;2)) , (2.44)

i=1

where 14, is the distance of the contour to the closer edge in the image, for the i-th
measurement line. This is the likelihood function proposed in the original Condensa-
tion paper [60], and simply corresponds to define an specific p(y¢|x;) function for each
particle xgi), from its own edge measurements ygi). Thus, for each particle there is a
functional very similar to (2.42), except for the terms go1, g11 and A, that explicitly

account for occasional missdetections of the tracked contour.

2.5 Contour Tracking in a Case—Study

Up to this point, a fast review of the essential points in a visual contour tracking
application has been presented, namely

e models to represent a contour shape and its dynamic behaviour,

e methods that fuse these models with observations to estimate the contour state
at each frame of a sequence,

e strategies to extract measurements from images in real-time tracking applica-
tions.

Multiple alternatives has been presented for each one of these tracking building
blocks. From the description done, one may guess which combination should generate
the best tracking performance: the one with the more accurate model, with the
estimation method requiring less a priori assumptions to be fulfilled, and with the
more robust observation process. However, this kind of decision is based inherently
in considering

e the worst case tracking scenario (i.e., performing tracking in very challenging
sequences),

e the availability of unlimited computational resources.
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Real tracking applications commonly do not correspond to neither of these two as-
sumptions. On the one hand, it is obvious that a real tracking application will impose
constraints in the computational resources available. On the other, for a given ap-
plication it may be possible to condition the tracking environment in order to obtain
good quality sequences. Thus, one has to consider these points when the solution to
a tracking application is designed. Our experimental work described in this section
tries to bring some light to this point. The major implementation issues concerning
a contour tracking application are evaluated in multiple experiments, using test se-
quences with different degrees of noise, and under different computational constraints
(when relevant). Our objective has been providing a fair comparison between the
different alternatives, showing the pros and cons of them. The experiments realized
have been designed in the following way:

First, we have acquired several sequences, showing the top view of a hand with
pointing finger displaying a representative set of feasible hand configurations. Then,
the outline of the hand at each frame has been annotated, generating in that way ex-
amples used to train a shape and a dynamic model (AR(2)). With these models, we
have generated different synthetic® sequences, where to evaluate next the performance
of different estimation methods and observation processes. Generated sequences sim-
ulate the ones of a hand with pointing finger, which has been isolated from the rest
of elements in the image by means of an ideal skin segmentation process. One impor-
tant advantage of processing these synthetic sequences, is that tracking algorithms
use the same shape model of the sequence generation. In that way, the quality of the
shape model is not a factor that can alter the performance of algorithms, as always
the perfect model is used. Another obvious advantage is that the ground truth shape
parameters used to generate sequences are available, and they can be used to quantify
the tracking performance.

To observe how robust is the performance of algorithms under noisy conditions,
sequences generated are distorted with different artifacts prior to its processing. The
tracking performance evaluation methodology is the following. Given the sequence
to be analysed, it is first distorted with random artifacts, according to a desired
signal-to-noise ratio (SNR). This sequence is then processed by a tracking algorithm,
obtaining the shape state at each frame. To quantify if this estimation is accurate,
an Image—based and a Contour—based method are simultaneously applied (see Figure
2.13). Essentially, the image—based method quantifies the tracking performance from
the degree of overlap between the original sequence (i.e., without distortion) and a
sequence generated from the estimated contour parameters. The accuracy achieved
is expressed by means of a SNR value, which is higher the better the tracking per-
formance. The contour—based method measures the average disparity between the
ground truth contour shown in the sequence, and the one estimated by the tracking
algorithm (i.e., the Mean Contour Error (MCE) ). A detailed description of both
quantification methods is provided in Appendix D, where their complementarity is
remarked.

6Real sequences have also been used to observe qualitatively the performance of the different pro-
posals. However, the study presented focus just on synthetic sequences, as allow to obtain objective
measurements of the achieved performance.
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Figure 2.13: Performance quantification procedure. SN R;n measures the degree
of distortion of the input to the tracking algorithm. SN Rour quantifies the dispar-
ity between the tracking output, and the ideal output (i.e., the undistorted input
sequence). MCE measures the mean contour disparity between the ground truth
contour and the estimated one.

To obtain an statistical view of the performance of the analysed tracking methods,
a hundred noisy sequences are generated for each level of noise distorting the input
sequence considered. Figure 2.14 gives some examples of different SN Ry situations
considered in the experiments. All trackers are evaluated on these sequences, sharing
the same shape and dynamical models. To model dynamics, a simple AR(1) model
has been used, while synthetic sequences have been generated using a second order
model. This has been done that way in order to evaluate methods in situations
where the dynamical model roughly corresponds with the real object behaviour, which
commonly happens in real applications.

SNR;n = 6dB SNR;n =8dB SNR;n = 13dB

Figure 2.14: Examples of noise in frames, for different situations considered in the
experiments.

Plots are generated displaying the performance achieved by two different eval-
uated methods, in a way that their respective performance can be easily compared.
For instance, plots are generated comparing different proposals to extract observations
from frames, different estimation methods, etc. The performance measured using the
image—based method is displayed using a boxplot representation, while the median of
the performance measured with the contour—based method is shown in an attached
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table. Figure 2.15 describes briefly the information provided in the generated per-
formance plots. A more detailed explanation of the graphical elements used in this
thesis to display tracking results is provided in Appendix D.
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Figure 2.15: Proposed representation of the evaluation results.

The sequences used in the experiments are of two types:
e sequences showing local deformations of the tracked shape;
e sequences showing rigid transformations of the overall shape.

The states estimated for each type of sequence are denoted respectively as xp and
X R, with dimensionality 2 and 5. xp maintain the parameters of a linear shape space
as the presented in Section 2.1.1, while xz maintain the global affine transformation
parameters in Section 2.1.2, which relate non—linearly with the tracked shape. Thus,
estimation algorithms concerning linear and non-linear models will be evaluated.
Each one of the analysed sequences is constituted by 750 frames, which correspond
to a 30 seconds sequence acquired by a standard video camera. Table 2.1 details the
system and the observation processes used in the estimation algorithm. The noise
term in the observation model corresponds to Gaussian noise N'(0, R;) for Kalman—
based algorithms, and non—Gaussian noise for Particle Filters.

2.5.1 Measurement Process Evaluation

Our first experiments have been focused to discern which is the contour measurement
process leading to a better tracking performance. Accordingly, in the following it is
quantified how the direction of measurement lines and the method used to establish
their lengths affects the performance of KFs and PFs. This study has been done in a
sequence showing only local shape deformations.
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Table 2.1: Models used in each type of processed sequence.
Local Transformations Estimation

State x = [cg ¢1]T
System Model x; — X = A(x4—1 — X) + Bwy
Observation Model y: = NP UW(x; — x,,) + noise

Global Affine Transformations Estimation

State X = [ty ty 55 8z 07

System Model x; — X = A(x4—1 — X) + Bwy

Observation Model | y; = NLU(W(x,) — Wi, 1)a + T(x; — X)) + noise

The Measurement Process in KF's

In this experiment we evaluate the performance of a KF tracker using the normal
and Learned measurement lines. Both approaches are evaluated for the case where
the measurement length is fixed a priori, as well as for the case where the length is
adjusted according to the covariance of the predicted contour location. Results are
shown in Figure 2.16.

For fixed length measurement lines, the Learned direction achieves a slightly bet-
ter performance. It reduces a 5 — 10% the MCE obtained with the normal direction,
slightly improving the average contour alignment in around 0.25 pixels. This better
performance may come from the fact that, although both compared directions can
extract with the same probability measurements which corresponds to clutter, the in-
formation deduced from normal measurement lines can suggest contour displacements
more unfeasible than the ones suggested for learned measurement lines (specially in
zones where the Baumberg and the normal direction are almost perpendicular. See
Figure 2.17).

The use of an adaptive validation gate provides a remarkable improvement on the
tracking performance, with respect to the fixed length case. A shorter measurement
line means decreasing the probability of extracting features corresponding to clutter,
being in that way less distracted from it. Results also show that the use of the Learned
measurement direction does not contribute in an improvement of the tracking perfor-
mance worth to be considered. While in low noise situations a minor improvement
in the tracking accuracy is obtained, as long as clutter increases the performance of
both approaches is put on the same level, and for extremely noise situations, the
normal measurement direction performs even better. This contradicts the assertions
previously done in [10], an demands an explanation of why this happens. We found
out that the reason lies on the method used in [10] to establish the length of mea-
surement lines (Equation (2.41)), which is very unappropiate for the case of normal
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directions. In cases where the direction of n(s) differs considerably from the principal
axes of Egﬁ_l, the length of the measurement line can be too short to detect any
contour in the image (see Figure 2.18). Thus, normal measurement lines are prone
to missdetect edges, achieving a worse tracking behaviour. Hence, the way how both
methods were compared in [10] was unfair. In our experiments, since the length of
measurement lines for the normal case is determined following Equation (2.39), this
edge missdetection problem is eluded. Figure 2.18 shows the tracking performance
achieved using normal measurement lines, comparing the two described methods to

establish their lengths. The method based on Equation (2.39) is clearly superior.
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Figure 2.18: Normal measurement lines and their length. Left: length of the normal
measurement lines established according to both checked proposals. The use of the
method in [10] in normal measurement lines (top example) is clearly unfair. Right:
Kalman performance using normal measurement lines, using the two methods to
establish the length of measurement lines.

Hence, our results show not only that the normal measurement direction performs
as good as the learned one, but also that in high noise scenarios it performs even
better. The explanation given to the fact that both methods perform very similarly
in most of cases is that, in fact, both measurement direction proposals explicitly take
into account that the real displacement between contours is not obtained, but the
projection of this real displacement onto a given measurement direction. Therefore,
from this point of view, the effect of the direction of measurement in obtaining more
informative observations is practically irrelevant. On the other hand, the reason why
the normal measurement direction performs better in high noise sequences is not so
clear. One plausible hypothesis could be that a tracker based on the learned measure-
ment direction takes this wrong information as more confident, because the direction
between neighbouring measurement lines is significantly correlated. Thus, it is more
likely that a given contour zone is affected by the same clutter artifact, giving more
credibility to the wrong information extracted. For the case of the normal measure-
ment direction, each contour zone is misleaded by the closer artifact, so between
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neighbouring lines the detected clutter elements are more likely to be different, pro-
viding a more contradictory information of the contour location, and hence, reducing
the reaction of the tracking algorithm to this wrong information. This situation hap-
pens rarely in low noise sequences, but as long as more artifacts distort frames, it
is more likely that this situation occurs, penalising the performance achieved using
learned measurement lines. Figure 2.19 shows an example of the problem described.

Adaptive Length + Normal Direction Adaptive Length + Learned Direction
~_ ~L
+

L

Figure 2.19: Problems with adaptive length measurement lines. The correlation
between learned measurement lines leads in some cases to a major amount of edge
misslocations. As these misslocations are consistent, they disrupt more notably the
tracking performance.

The Measurement Process in PF's

Our tests concerning PF's evaluate the performance of the Condensation algorithm,
that is, an implementation of the SISR algorithm which uses the prior target dynamics
as importance function ¢(x¢|Xo.t—1y1:¢) = p(X¢|X0:t—1). The essence of the measure-
ment process in PFs (see Section 2.4.2) is the computation of the likelihood of each
particle, done in terms of the proximity of the contour of each particle to edges in the
image. The experiments done quantify how this process is affected by the length and
direction of the measurement line. In the case of PFs, the direction of measurement
lines is determined from the uncertainty in their dynamical model (i.e., its stochastic
part defined by Q; in Equation (2.15)). The obtained results are shown in Figure
2.20, for two different amounts of particles considered (50 and 250 respectively).
Results show, differently to KFs, that there is no clear advantage on making an
adaptive control of the length of measurement lines. Using the normal direction, the
performance achieved with fixed and adapted measurement line lengths is practically
identical. This is because just edges very close to the predicted contour has a signif-
icant contribution to the likelihood term used to weight particles (Equation (2.44)).
Edges from image clutter detected due to processing a too large measurement line
contribute nearly the same as if they were undetected, so there is no need to im-
plement a fine control of the measurement line length. Using the learned direction,
it is observed that in low noise situations, fixed length measurement lines perform
even slightly better. This is due to the fact that measurement lines with a direction
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Figure 2.20: PF performance depending on the measurement process. Fixed length
(left) and adaptive length (right) measurement lines, for the normal and learned
measurement direction, in particle filters with 50 (top) and 250 particles (bottom).
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close to the contour tangent are prone to miss-detect contours if their length is very
small”. This reduces the likelihood of some evaluated particles, with respect to using
a fixed measurement line length. In low noise situations, this penalises (although
very slightly) the tracking performance more than the few noise artifacts that are
measured due to using a fixed measurement line length.

Concerning the measurement line direction, results obtained manifest that the
Learned direction performs slightly worse in low noise sequences, while it improves
the performance in high noise ones. Quite surprisingly, this is just the opposite be-
haviour than the one observed in KFs. Insight on this behaviour has been obtained
by analysing the frame-by—frame performance of PFs. In low noise situations, it is
observed that at the end of each iteration, the number N,y of effective particles (see
Equation (2.26)) of the PF is inferior if the Learned measurement direction is used.
This is due to the fact that extracting contours along the Learned direction implicitly
means evaluating the disparity between predicted and observed contours using a Ma-
halanobis distance (see Section 2.4.1), and this implies being more selective in giving
a high likelihood weight to particles close to the observed contour. As a consequence,
the tracking output is determined from an effectively inferior number of particles, and
the resulting contour adjusts less precisely around the ground truth contour. If the
number of particles in the PF are increased, the median paired difference between
the performance achieved using the normal and Learned measurement direction is
reduced.

In high noisy situation the Learned measurement direction performs better for
the following reason. The more clutter there is in a frame, the higher the likelihood
of a wrong particle can be. The edges of distracting elements in frames match the
ones of misplaced contours of wrong particles, and the probability of misstrack due to
this factor increases. This problem is less serious using the learned measurement line,
because the region of the video frame effectively used to evaluate the likelihood of
particles is much constrained than the one used by the normal measurement direction
(see Figure 2.21). Processing a better adjusted region of interest means avoiding
more distracting elements in the frame, and in that way decreasing the possibility of
misstrack . However, the use of the learned measurement direction has an important
drawback that is not reflected in the performance evaluation plot. The computational
time needed to process each particle increases notably, because to establish their
respective measurement lines a bigger amount of computation is needed. This reduces
the number of particles that can be used in a PF, if a given response time constraint
has to be fulfilled. In practice, a better performance is achieved inspecting a less
constrained image region using a bigger number of particles, so in the case evaluated
is more important quantity than quality, because the cost of quality is too high (see
Figure 2.21).

"Due to discretisation effects, in these cases the measurement line pixels commonly lay all in
foreground pixels, preventing the contour detection. Using the normal measurement direction this
is less likely to happen.
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Figure 2.21: PFs and the orientation of measurement lines. Left: image zone used
to evaluate the performance of particles. In grey, region common for the learned and
normal measurement direction. In black, zone inspected only if the normal measure-
ment direction is considered. Right: PFs with different measurement process and
amount of particles. The advantages of using a bigger number of particles overcome
the ones of using a learned measurement direction.

Summary

In the experimental work described, we have evaluated the performance of different
methods to extract observations from from frames, identifying the more appropriate
measurement processes to be used by each estimation algorithm in the following ex-
periments. Concerning Kalman—based algorithms, the normal measurement direction
will be used, adjusting the length of measurement lines according to the predicted
contour covariance. Concerning PFs, fixed length measurement lines will be used, us-
ing also the normal measurement direction. Although the Learned direction improves
the tracking accuracy of PFs, it is computationally cheaper achieve the same results
by just using a bigger amount of particles.

2.5.2 Evaluation of Estimation Methods

It is commonly assumed that any tracking performance achieved by a Kalman—based
filter can be equally obtained (or even improved) using a PF. Of course, this only
holds if the number of particles used is big enough to represent the distribution to
be estimated. In practice, the amount of particles is commonly set in order to fulfil
a given time response constraint, so in some situations, using a PF may not be the
best choice. Moreover, the bigger the dimension of the state to be estimated, the
bigger the number of particles required in a PF to achieve a desired performance.
Considering that, we have found interesting to compare the performance of Kalman
and particle based filters in different noise conditions. We have performed two types
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of experiments. In the first one we have compared algorithms in the estimation of
local contour deformations, using a linear shape model of dimension 2. In the second
the estimation of affine contour transformations has been studied, using a non-linear
shape model of dimension 5.

Estimation of Local Hand Deformation

We have carried out multiple experiments to compare the performance of the KF
versus a PF with 50 and 250 particles. Results obtained are shown in Figure 2.22
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Figure 2.22: KF vs PF comparison. Left: PF with 50 particles vs best KF. Right:
PF with 250 particles vs best KF.

Plots in 2.22 clearly manifest clearly the robustness of PF with respect to noisy
situations. This results from its superior observation likelihood distribution, which
better accounts for clutter in the observations. However, if the number of particles
is too reduced, the KF can have a superior performance in low noise sequences. In
general, a KF usually will be usually the choice in low—noise scenarios, as with less
computation achieves a performance comparable to PFs. PFs require a big number
of particles even in low noise scenarios, because otherwise the mean contour shape
estimated from particles jitters around the tracked object, and an accuracy inferior
to that of KF is obtained.

Estimation of Global Hand Transformation

Similarly to the previous experiments, a synthetic sequences have been generated
showing a rigid contour under a time—varying affine transform. Our objective in
the tracking of these sequences is two—fold: analysing the performance of Kalman—
based approaches facing non-linear systems (i.e., comparing EKFs with UKFs), and
comparing them against PFs.
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We propose an original adaptation of the EKF and the UKF to non-linear con-
tour tracking applications, which is significantly different to other approaches in the
literature. With respect to the UKF, the few references found concerning this topic
are based on a wrong modelisation of the contour measurement process. For instance,
[28] uses the UKF to estimate the affine transformation of an ellipsoidal contour, but
assuming that the measurement extraction process can determine the real point—to—
point contour displacement, while just the normal displacement is really obtained.
In [71], the use of the UKF for curve tracking is also proposed, but surprisingly in
a tracking application concerning linear models. What they really propose is using
the o—points procedure of the UKF to design an alternative contour measurement
process, which again does not take into account that just the normal contour dis-
placement is observed. Once observations are obtained, the contour state could be in
fact estimated using a classical KF.

In order to clarify which specific EKF and UKF implementation is proposed in
this thesis®, both are detailed in Algorithms 4 and 5. Notice that implementations
solve analytically the estimation parts concerning linear models, applying the Taylor
approximation and the Unscented Transform respectively, only when their application
can not be eluded.

Three different sequences have been used to evaluate algorithms:

Seql : slow-velocity rigid transformations
Seq2 : medium—velocity rigid transformations with abrupt changes of behaviour.
Seq3 : fast-velocity rigid transformations with sudden accelerations.

Figure 2.23 details the affine parameters used to generate the sequences, which
synthesise frames approximating the evolution observed in the outline of a hand, when
this hand (or equivalently the acquisition camera) changes its location and orientation
in the 3D space. Algorithms will track all these sequences using a fixed Constrained
Brownian motion model (see Appendix A), which reflects poorly the real dynamics
of the parameters to be estimated.

Figure 2.24 compares the performance of the EKF vs the UKF, and the UKF vs a
PF with 1000 particles. Notice that with respect to previous experiments, the number
of particles has been considerably increased, due to the higher dimensionality of the
state to be estimated.

Plots reveal some interesting results. With respect to the Kalman—based algo-
rithms, the EKF and the UKF have a nearly identical performance, being virtually
equivalent for the contour tracking problem analysed. On the other hand, the PF
clearly outperform the UKF in Seql (slow motion dynamics), but as long as the
assumed dynamical model worse adjusts to the real dynamics (Seq2 and Seq3), its
performance significantly degrades, being overcomed by the UKF in low—noise sit-
uations (for the amount of particles considered). Hence, in applications where the
behaviour of targets is difficult to predict, the most common PF implementation (i.e.,
the Condensation algorithm) require a high number of particles to reach in low noise
situations the performance of Kalman—based solutions.

8We claim that is the proper way to implement them, coherently with the system and observation
models described in previous sections.
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Algorithm 4 UKF for Contour Tracking

(x0-27)] = 0 (105

Time update equations:

Xejeo1 = Axpqp + (IT— A)X
xx — AXX AT + Q

tjt—1 t—1[t—1

Frame observations extraction

Xm = X¢|t—1

(y:,R¢) = FRAME_PROCESSING (x,,)

Measurement update equations:

[ {Xu) wg;i}’wgi)}]‘v ] = COMPUTE_c_POINTS [(&m_l,zz‘ﬁilﬂ

tlt—1 i
(@) _ NT
yt|t71 - NmU((W(xf“f)_l
_ N i) (i
Viji-1 = D ey wsfl)yz(qt)q
Y ZN (73)( (€ I ) (€ I )T +R

tt—1 i=1 We Vi1 = Yejt—1) Y1 — Yeft—1 t
S = 2wl (k) = R (v — V)T

_ yX -1
K = >3 ()
Xe)t = Xejpe—1 + K(ye — ¥ee-1)
XX _ Exxi o szy, KT

t[t

)= Wi)a+ T, = x)

« 400

T

AU

300

250

Ty

200

AvA
AVAV
S AVAVAN I
AVAV
AVAV

1.05

0.95

10

< 0

-10
0 200 400 600 0 200 400 600 0 200 400 600
Seq 1 Frames Id Seq 2 Frames Id Seq 3 Frames Id
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used in the experiments.
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Algorithm 5 EKF for Contour Tracking
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Figure 2.24: EKF vs UKF vs PF comparison. Performance obtained for the three
evaluation sequences considered (from top to bottom, Seql, Seq2, and Seq3).
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Experiments have been repeated to study the performance of algorithms in se-
quences disturbed by elements correlated along time. The objective is to simulate
very challenging situations that may occur in real applications: the presence of static
elements in the scene that continuously occlude the tracked object, and the presence
of elements with characteristics similar to the target, that add consistently clutter
along time. Figure 2.25 shows some frames of a sequence with this kind of artifacts.

frame 1 frame 10 frame 20 frame 30

Figure 2.25: Frames of a sequence disturbed by correlated noise.

In the experiments, only frame distortions up to just 10% of their pixels are consid-
ered, while previous experiments considered distortions up to the 25%. As correlated
artifacts disturbs more severely the tracking performance, extremely high noise situ-
ations are unreasonable to be considered, as in just a few frames algorithms will loose
the target contour. Figure 2.26 shows the tracking performance achieved by EKFs,
UKFs, and PFs. EKFs and UKFs performs very similarly in this sequences, showing
a very weak performance with respect to correlated artifacts. If the target movement
is not slow, they easily get distracted from clutter and misstrack the contour. How-
ever, PFs display a very robust performance even for this kind of artifacts, showing a
tracking accuracy scarcely inferior to the one achieved with non—correlated artifacts.

With these artifacts it is observed that, for high noise situations, Kalman—based
filters usually generate estimations which corresponds to invalid parameterisations
of the shape model, which explain the very poor performance in high noise scenar-
ios. PFs does not suffer from this problem, as long as the importance function used

generates just valid shape parameterisations °.

Summary

Results obtained manifest the well-known superior performance of PFs with respect
to Kalman—based approaches, provided a big enough number of particles is consid-
ered. A relevant point to remark is their similar behaviour for correlated and non—
correlated artifacts, a behaviour not observed in Kalman—based estimators, which
easily misstrack the target in the presence of correlated noise. On the other hand,
in low noise scenarios, the use of a poor dynamical model affects more severely PFs
than KFs, demanding a higher number of particles.

Concerning the comparison between EKFs and UKF's, results mainly show their
equivalence in the analysed application. The UKF is slightly better in a major number

9In the experiments done, this is guaranteed by the constrained Brownian motion model used to
model dynamics.
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Figure 2.26: EKF vs UKF vs PF comparison under correlated noise. Performance
achieved for the three evaluation sequences with correlated noise considered (from
top to bottom, Seql, Seq2, and Seq3).
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of noisy conditions considered, although the difference of performance observed is not
statistically significant in most cases.

2.6 Conclusions

In this chapter we have introduced the Active Contour approach to contour tracking,
describing in detail the most relevant issues of their implementation: the modelisa-
tion of shape and dynamics, the measurement of contour in images, and the estima-
tion methods applied to interpret correctly these measurements (Kalman-based and
Particle-based filters). After this introduction, the chapter contributes with the re-
sults of experimental work done, devoted to discerning the best way to track contours
in sequences.

Concerning KFs, our experiments conclude that to obtain the best tracking per-
formance, observations have to be extracted from measurement lines normal to the
predicted tracked contour, delimiting their length from the uncertainty on this pre-
diction.

Concerning PFs, there is no advantage on making and adaptive control of the
length of measurement lines. Determining the orientation of measurement lines ac-
cording to the most likely direction of deformation of the contour improves the per-
formance achieved in noisy situations. However, in practice the cost of determining
the direction of measurement lines for each particle contour is noteworthy, and it
is computationally cheaper to improve tracking performance by just increasing the
amount of particles considered, using normal measurement lines. Our experiments
also corroborate the superior performance of PFs with respect to KFs, provided the
amount of particles considered is sufficiently big.

The chapter also evaluates the performance of estimation methods dealing with
non-linear problems. We have proposed an original implementation of the EKF and
UKF for contour tracking applications, which differs from other proposals in the
literature in the more precise modelisation of the information provided by the ob-
servations. Results show the practical equivalence of the EKF and the UKF in the
studied problem, and the superiority of PF to these methods, as long as the number of
particles used is sufficiently large. It is observed that to overcome the performance of
UKFs, the amount of particles required by the standard PF implementation increases
notably if the contour dynamical model is poor.

Finally, we also evaluate the performance of the algorithms in sequences distorted
by correlated noise. In these cases, the degradation of the performance of EKFs and
UKF's is very pronounced, while the performance of PFs scarcely varies with respect to
the one observed in sequences with uncorrelated noise. Thus, in applications where
the target to be tracked present mostly persistent occlusions, PFs are clearly the
algorithms to be applied.
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Chapter 3

Contour Estimation and the Curse
of Dimensionality

The preceding chapter describes the basic components of model-based sequential
contour estimation, and evaluates the performance of different tracking proposals in
synthetic sequences. In the experimental work done, local and global contour trans-
formations (modelled respectively by linear and non-linear expressions) have been
estimated separately. However, in real applications the outline of objects usually dis-
plays simultaneously local and global transformations (commonly affine or Euclidean
similarities). This chapter focuses on the joint estimation of both contour transfor-
mations, proposing the application of novel methods to solve this problem in order to
improve the performance achieved by standard PFs.

The simultaneous estimation of local and global contour transformations is easy
to pose, as both transformations can be modelled, and consequently an estimator for
them can be designed. The state vector of the shape to be tracked is defined as

x = [XD XR]T
where x” and x denote respectively parameters of local deformation, and global
rigid transformation. In the following, it is considered that x” represents shape
space parameters from £L(W?P,q), and x? affine transformation parameters given by

xf = [t, t, 5. 5, 017 . (3.1)

To synthesise the B-spline control points q of the 2D shape that x represents, both
state vector parts are properly combined by

q = WR(XR) (WDXD + (i) +Tx%? , (3.2)

where WR() and T have the form presented in Section 2.1.2. From this shape model,
and using the same formalisation presented in the previous chapter, the contour track-

99
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ing problem is described by the following dynamical and observation models
Xy —X = A(Xt,1 —i)+BWt N

NG U ((Wiie) (WP + @) + Tx") —

Y
- (Wffcg/) (WPx] +q) +Txﬁ)) +vi

Commonly A is a block diagonal matrix, as x® and x” are uncorrelated in many
practical problems. The noise term v; disturbing y; is assumed Gaussian N (0, R;)
for Kalman—based solutions, and arbitraryly distributed in PF approaches. As the
relation between state x; and observations y; is non—linear, schemes like the EKF,
UKF and PF can be used to solve the required contour tracking application. As
remarked in previous experiments, the most robust and reliable performance will be
obtained by means of PFs, as long as the number of particles used is appropriate. We
have reproduced the experimental work presented in the previous chapter, this time
evaluating algorithms in synthetic sequences showing simultaneous rigid and non—
rigid contour transformations'. The tracking performance achieved by each method
is shown in Figure 3.1.
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Figure 3.1: EKF vs UKF vs PF comparison. Left: EKF vs UKF. Right: UKF vs
PF with 1000 particles.

As concluded in the previous chapter, the performance achieved by the EKF and
the UKF is practically identical. Again, the PF is the method more robust in noisy
situations, but now it is observed that in low noise situations it is significantly over-
comed by Kalman—based filters. This is due to the higher dimensionality of the state
now estimated, which requires to use a higher number of particles in the PF. Figure
3.2 shows the performance of a PF with twice and four times as much particles.

I1We have generated sequences where the rigid transformations correspond to the ones of Seq2 in
the previous chapter, displaying at the same time local contour deformations.
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Figure 3.2: UKF vs PF comparison, using 2000 (left) and 4000 (right) particles.

Notice that although the number of particles is increased significantly, the accu-
racy achieved in low noise situations is still below a Kalman—based solution perfor-
mance. This makes apparent the curse of dimensionality (previously introduced in
Section 2.3.2) that suffer importance sampling based algorithms. This weakness of
PF-solutions has motivated the proposal of novel schemes to diminish the effect of
the space dimensionality in the number of required particles. Concerning the contour
tracking problem, we propose in this chapter methods to deal with this problem from
three different points of view:

e by using a better importance function in the SISR algorithm, which takes the
most current observations into account,

e by solving part of the estimation problem analytically,

e by taking advantage that in most contour tracking applications, the contour
rigid transformations can be estimated decoupled from the non-rigid ones.

Our first proposal is detailed on Section 3.1, and it is based on applying the
unscented Kalman particle filter (UKPF) [115] in the contour tracking problem. The
basic idea is at each time step, estimate for each particle a Gaussian approximation
of the optimal importance function p(x;|xo.t—1y1.t). Using this importance function,
samples are generated around image regions where there is some evidence of the
presence of the tracked contour, and that makes possible tracking the shape of interest
with fewer particles.

Our second proposal is based on applying a technique called Rao-Blackwellisation.
This methodology proposes to estimate part of the state—vector x analytically, and
the remaining part by means of a PF. Since this remaining part is obviously of lower
dimension, the amount of particles required by the PF should be reduced. Section
3.2 details how we have adapted this technique to the studied problem.
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The last technique that we propose in this chapter exploits the fact that more
particles are required for a PF in a space of dimension N, than for instance by m
PFs in spaces of dimension N/m. Hence, given an state x, if it were feasible to
decomposed it into decoupled parts, it could be estimated more efficiently. For the
contour tracking problem analysed, this state decomposition is not in general feasible.
However, we show in Section 3.3 that making some assumptions that hold in many
practical cases, it is possible at least to estimate independently the global contour
transformations x® from the local ones x”. We take advantage on that using the the
partitioned sampling technique (Section 3.3.2), achieving a more accurate contour
tracking performance .

3.1 Contour Tracking Using an Unscented Kalman
Particle Filter

To understand this contour tracking proposal, first it may be helpful for the reader
reviewing briefly the essence of PFs (Section 2.3.2 in the preceding chapter). In
short, the aim of PFs is characterising the distribution p(xo.t|y1:t) by means of a
set of N samples from it. As this distribution is unknown and can not be sampled,
what is done in practice is generating samples {x((f%}fvzl from an importance function
q(x0:¢|y1:t), and weight them according to a factor @gl), that evaluates if each x(()g
can be considered a real sample of p(xo.+|y1:+). Thus, p(Xo:¢|y1:+) is approximated by

N
ﬁV(XO:tb’l:t) = dengt(” )

where u?lgi) is the normalised version of the factor

so that Zfil u?t(i) =1
PFs are SISR algorithms that use importance functions of the form
Q(XO:t|y1:t) = q(xt|X0:t71y1:t)q(X0:t71|y1:t71) )
so that the importance weight w; can be computed (up to a normalising factor) by

the recursive expression

X0. e X+ |x0. G
- P(ye|Xo0:4y1:0—1)p(Xe[X0:0¥1: 1)wt71 . (3.3)

Q(Xt|Xo:t—1Y1:t)

If the assumed state evolution along time corresponds to a Markov process, and
observations are conditionally independent given the states, this expression reduces
to

pvdbxopabe ) 5.
q(X¢|X0:—1Y1:¢)
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The key point of a SISR algorithm is the importance function ¢(x;|xo.t—1y1.¢) used
to generate particles at each time step. In [41] it is proved that the optimal? function
to carry this task is p(x¢|x0:t—1y1:t), whose determination in practical applications is
commonly a non-trivial task. The Unscented Kalman Particle Filter (UKPF) [115]
proposes approximating the optimal importance function locally around each particle
X(()gq by means of a Gaussian distribution. In concrete, for each particle X(()Z;Lp an
UKEF is used to generate and propagate a Gaussian importance function

; (i (@)
alxelxbi1ye) = N Z)

In practice this means that for each particle (x((f;l, wgzi), now it is also required to
maintain matrices ngg(” detailing the covariance of the associated Gaussian impor-
tance function at each time step. We propose to use this strategy in the described
contour tracking problem, which leads to the procedure detailed in Algorithm 6.

Algorithm 6 Sequential Importance Sampling Resampling Iteration

[{xg), o @ w1 ] = UKPF[{x{) 1, o), wi” 1Y yiee)

for i =1to N do A ‘
(%62, 357) = UK [ (x(2,, 521
i A (1) oxx®
Set q(xt |4X(():3571y1:t) : N(Xz(f )’ Et )
Draw x;" ~ q(xi[x{}_1¥1:)
Set x) 2 [x(_, x{?] and 5 2 [z =
(y¢,Ri) = FRAME_PROCESSING (x!7))

; (i) (i) 15 (9) )
Update Welght wtl) _ p(yelx;)p(x;" %2 (i)

a7 %0y t=1
end for
. ()
Normalise weights @,E"’ =—"*+— Vi=1,...,N
21wy
Compute N,sp = —2
P eff Zf\]:l wil)

if Nesr < Ngeg then
(x5, Sen®, wi” ] = RESAMPLE[{x{), 55757, 0" 1Y)
end if

Following the pseudocode in Algorithm 6, the execution of a UKF is required for
each sample, resulting in a high computational cost. However, in practice one can
take advantage of a remarkable fact of PFs applied to contour tracking applications.
At each iteration, the amount of particles surviving the resampling step is commonly
small (in most cases around the 25% of the total of particles). Due to this fact, at the
time of propagating particles most of them are identical, and all of them can share
the same linearisation of the optimal sampling function. Thus, at each iteration it
have to be evaluated just as many UKFs as different surviving particles, reducing a
great deal the computational cost of the algorithm.

2In terms of minimising the variance of the particle weights ws.



64 CONTOUR ESTIMATION AND THE CURSE OF DIMENSIONALITY

The application of the UKPF in visual contour tracking applications has been
also simultaneously proposed by other authors. However, their approaches differ
significantly from ours. In [99] a face tracker is presented, based on modelling the
face outline by means of an ellipse of fixed size and orientation. The system only
accounts for translations of the contour model. In [72] a contour tracker is proposed,
aimed at the estimation of affine transformations of a rigid contour model. These
two approaches apply unnecessary the UKPF on their tracking problem, because as
long as they use linear system and observation models, a classical KF could be used
to approximate the optimal importance function for each particle. In addition to the
unnecessary use of the UKF, both approaches derive from a wrong modelisation of
the contour measurement process. Both assume that from the observation process
the disparity coordinate—by—coordinate between predicted and observed contours can
be measured, while in practice only the normal disparity with respect to a defined
measurement contour is really obtained. Our proposal differs from these ones in the
fact that the use of the UKPF is completely necessary (non-linear expressions are
involved), and that a right modelling of the observation process is done, interpreting
more accurately the evidence extracted from the processed frames.

3.1.1 Experimental Evaluation

Before comparing the performance of the UKPF versus the PF, first we need to de-
fine an criterion to establish the amount of particles used in each of them, in order
to make a fair comparison. The UKPF currently presented, as well as the two other
methods detailed on subsequent sections, introduce modifications to the classical PF
implementation, which require additional computational resources. From this fact,
one may think of establishing the parameters of the compared algorithms (in this case,
the number of particles considered) to fulfil a fixed computational cost. However, this
criterion is of poor practical use, as an algorithm non—optimally implemented may be
in clear disadvantage with respect to a worse algorithm better engineered. Moreover,
the computational cost of an algorithm can vary in practice depending on the com-
piler used, and the characteristics of the machine available. To avoid the dependence
on these factors, we propose to compare algorithms, by parameterising them in or-
der to balance their capacity of extracting evidence from images. Hence, we set the
number of particle of each algorithm, in such a way that all extract the same amount
of observations per frame 3. In that way, what our performance evaluation method-
ology reflects is the ability of each strategy in taking advantage of the measurement
process. Following this criterion, given that a PF with N particles performs N image
measurements to evaluate their likelihood, this algorithm will be compared against
an UKPF with N/2 particles, since this one performs N/2 image measurements to
estimate the linearised optimal importance function, and N/2 more to evaluate the
particles likelihood. Using this criterion, Figure 3.3 compares the UKF and the PF
with the UKPF.

The UKPF overcomes the UKF in all the tested situations. With respect to
a classical PF, it performs significantly better in all cases, except in the case of

30f course, Kalman-based algorithms are an exception to this criterion, since execute just a single
contour measurement process per frame.
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UKF vs UKPF(500) PF(1000) vs UKPF(500)
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Figure 3.3: UKF vs PF vs UKPF comparison. Left: UKF vs UKPF with 500
particles. Right: PF with 1000 particles vs UKPF with 500 particles.

sequences with SNR=6db. In these cases, due to the non—Gaussianity of the noise
artifacts, the linear approximation of the optimal sampling function is very unreliable,
and results show that it is better to generate samples from the a priori assumed model
of dynamics.

3.2 Rao—Blackwellized Contour Estimation

The strategy that we proposed on this section is based on factorising the desired
density p(xo.t|y1:). If the state to be estimated is divided into two parts xg.; =
[xttxD2]T | then this density corresponds to p(xJ 1xt?|y1.¢), which can be factored as

pxbuxgilyie) = pxGilyi)p(xbrlxgiyie) - (3.5)

The Rao—Blackwell technique [40, 41] proposes to use this structural information

to infer analytically a part of the state (x{7) conditionally upon the other part of the

state (x{.}), which is estimated respectively by a Sequential Monte Carlo algorithm.
In the concrete case of Equation (3.5), this means solving:

o p(x47 x4t y1) analytically;
e p(x{t|y1:) by means of a PF.

From that, an estimation of the posterior density p(x{;x2?|y1.+) is obtained, given
by the following mixture of densities

P1(7
PN (X0:¢[y1:¢) Zwt p(xEixg; yia) (3.6)
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The Rao-Blackwell approach states that if this analytic solution to p(x{%|x{ 1y1.¢)
represents precisely the inherent real distribution, then the proposed methodology
directly leads to overcome the accuracy of a classical PF approach. This results
from the fact that using this technique, the variance of the weight of particles is
reduced, maintaining a bigger particle diversity after resampling [40]. Some examples
of the application of Rao-Blackwellised Particle Filters (RBPFs) in different areas
are: neural networks [5], map learning [87], positioning and navigation [52] and jump
Markov linear systems [42]. In this thesis we contribute with the novel adaption of this
technique to the problem of contour tracking, quantifying its potential for improving
the performance of PF's in this application field.

Behind the Rao—Blackwell proposal lies a rule of thumb in estimation theory: if
something can be solved analytically, do not solve it by means of sampling techniques.
From the methods reviewed in the previous chapter, the ones suitable to provide an
analytic solution to p(x{ ?|x{ 1y1.+) are the Kalman—based filters. Due to that, the idea
behind Rao—Blackwell PFb has also been published from the perspective of managing
a mixture of KFs [27]. The use of KFs inherently means modelling the estimation
of xP? given x'! by means of linear Gaussian processes. In the problem of visual
contour tracking, estimating part of the state analytically from yi.; is in general bad
posed, as non—Gaussian artifacts can distort observations. Thus, the benefits of ap-
plying the Rao—Blackwell technique onto this application can not be taken for granted
a priori. To ascertain if there are more advantages than disadvantages in using this
technique, we have evaluated its performance experimentally, providing quantitative
insight onto this point (see Section 3.2.1). Let’s first detail the Rao-Blackwell es-
timation of p(x¥ix5?|y1.¢). It requires updating at each time t the distribution in
Equation (3.6), which implies:

e updating the sample distribution of p(x{'}|y1.+) given by a weighted sample set
{( P1(i) (l))

Xp:t i=1)

e updating for each i-th sample x,., P1(0) , the distribution p(x{?|x,, t( )}’1;t)- This
is directly solved using a KF, Wthh estimates the parameters of the normal

density N (x50 7%,

The estimation of p(x{+|y1.¢) is solved using the Sequential Importance Sampling

P1(i)

technique reviewed in the previous section. Now, samples x,,.;" ~ are generated from

an importance function ¢(x}'}|y1.+) following the form

t
axgilyre) = axd") ] a0 xbh1yin) -

Using this type of importance function, the (unnormalised) weight factor associated

to each particle X(IE @ is determined recursively as

P1(i P1 P1(i
(i) p(yely1:e— 1X0t())p( © Ix; ()) (4)
Wy x P1(i) Pl(z Wiy -
a(x; 7 y1aX:e-1)
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If the prior distribution p(xf*|x1;) is used as importance distribution, then w;
is proportional to

wy X p(Yt|y1:t—1X(§:%)wt—l .

Thus, the unnormalized weight wgl) requires just to evaluate p(yt|y1:t_1xép:i(l)).
The nice point of the Rao—Blackwell strategy is that this term corresponds to the
evaluation of y; in the one-step-ahead Kalman prediction of the observation density
computed when p(x{iﬂx{;i (i)yl;t) is solved (Appendix B may help to understand this
relationship). This density corresponds to

P1(4 A
P(Yt|Y1:t—1Xo;t()) ~ N(Ytlt—lvzi?tl—ﬂ :

where y;;_; and 22’&’71 are the mean and covariance of the observations expected from

a contour with B—spline contour points corresponding to the joint state [xfl(i) ﬁﬁf_l]T.

Algorithm 7 details the pseudocode of a generic implementation of the Rao—
Blackwellized PF proposed. In practice, this pseudocode corresponds just to an it-
erative method to update a Gaussian mixture model in py(x{1x{?|yo.c). In this
mixture, one could interpret that several hypothesis on the sequence of x”! values
are maintained, and for each one of them, a KF is used to estimate the posterior
on x2. Some points are important to be remarked. Notice that x”!' and x©? re-
quire uncorrelated dynamical processes, specified by the process and noise covariance
matrices (AT, Q) and (AF2 QF?) respectively. We denote with H,

observation matrix established from a given concrete value of xf 1(i), that converts

state xI”2 onto the vector of their expected observations.

rPi() a linear
Xy

3.2.1 Experimental Evaluation

We have applied the Rao-Blackwell technique in the contour tracking problem in the
following way. We have divided the contour state into two parts, isolating the state pa-
rameters with a non-linear relation with the shape synthesised (i.e., x'* = [s, s, 0]T)
from the ones with a linear one (i.e., x2 = [t,, t, x”]T). In the experiments, 1000
particles have been used in the RBPF, which implied 1000 contour measurement per
frame, the same number than a PF with 1000 particles. Figure 3.4 shows the achieved
performance.

Results conclude that, on the one hand, the RBPF outperforms PFs in low-—
noise situations (noise < 10% frame pixels), due to the fact that part of the state is
estimated analytically. However, in these cases the UKF performs better than the
RBPF, as this algorithm estimates analytically the whole contour state. On the other
hand, in high-noise situations, the opposite behaviour is observed. The RBPF does
not improve the PF performance, because estimating x’? analytically implies that
the observation model is affected by Gaussian noise, and this is a wrong assumption
in these cases. However, with respect to the UKF, a better performance is achieved,
as estimating the state part x! by means of particles makes the tracker more robust
to transitory missestimations of this state part. In fact, results achieved manifest
the previously cited rule of thumb of estimation theory: if something can be solved
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Algorithm 7 Rao-Blackwell Estimation Iteration
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UKF vs RBPF(1000) PF(1000) vs RBPF(1000)
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Figure 3.4: UKF vs PF vs RBPF comparison. Evaluation of the state partition
x = [[s2840)7 [totyxP]T]. Left: UKF vs RBPF with 1000 particles. Right: PF vs
RBPF, both with 1000 particles.

analytically, do not make it by means of particles. Thus, in low noise scenarios,
estimating part of the state analytically is better than estimating the whole state
using a PF, but it is worse than estimating the whole state analytically. On the
other hand, in noisy situations, where the analytical solution of the contour tracking
problem is bad posed, estimating part of the state by means of particles is better
than estimating the whole state analytically, but worse than estimating the whole
state using particles. The RBPF solution applied to contour tracking is half a way
between analytic and particle-based solutions, and thus, combines the pros and cons
of both methods. For this reason, it does not outperform both methods for a given
noise situation. However, in specific applications where images could alternate high
and low noise situations, it would be possible that the average performance of the
RBPF could improve the one achieved by the UKF and the standard PF.

3.3 Contour Estimation by State Decoupling

Our third proposal to deal with the curse of dimensionality problem of PF's arises from
the following observation: In most real contour tracking applications, the dynamics of
global and local transformations are independent, and therefore they can be modelled
separately. Could it be possible to estimate also them separately? In general, the
answer to this question is clearly no, as observations manifest jointly the effect of the
two modelled transformations. However, paying attention to specific contour tracking
applications, it appears that in most cases a quite accurate estimation of the object
global transformation x may be obtained independently of its local deformation x”.
Indeed, commonly modelled objects deform just at localised regions of their outline,

and the rest of the outline can be assumed as rigid (see Figure 3.5). Thus, changes
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observed in these rigid regions will be caused only by global contour transformations,

and this can be used to estimate x®, whichever the parameters in x” are.

Figure 3.5: Almost rigid contour zone. Left: graphical representation of the contour
representability of a shape space £L(W?,q). Right: the bold line marks the contour
zones that vary minimally for any valid x” parameterisation, and can approximately

be assumed as rigid.

The estimation of x” can not be done independently from x%, as rigid transfor-
mation affect the object contour globally. However, we will show that advantage can
be taken from the isolated estimation of x’* to better estimate x”. Before arriving to
that point, first is necessary to solve the estimation of x* decoupled from x”, which
is the topic of study in the next section.

3.3.1 Decoupled x Estimation

The basis to estimate x without being affected by contour deformations, is using with
this objective the non—deformable regions of the contour to be tracked. Obviously, the
existence of such regions depends on the specific object to be tracked, and requiring
them to be perfectly rigid may be too restrictive for a practical use of this idea.
To extend the applicability of the strategy proposed, the rigid region requirement
is relaxed to use the less deformable contour zone to estimate x*. Obviously, the
accuracy on this estimation will depend on the real rigidness of the contour part
selected.

First of all, a representation of the rigidness/deformability of the points of the
modelled contour is needed. As shown in Section 2.1.1, the space of contour defor-
mations £L(W?P,q) is established from a set of aligned contour examples, showing the
different contour configurations to be modelled. From this same training set, the po-
sitional mean and covariance of contour points (¥, £**) can be easily computed*. The
positional contour variance (computed from the diagonal values of X**) inherently
maintains the rigidness or deformability of points along the modelled contour. Thus,
we propose to employ it to select the contour part that can confidently estimate x'?

4Alternatively, (¥, X'") can be computed from £(W?P,q) and the distribution of feasible x”
values.
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confidently. We have proposed and tested two different methods for exploiting this
idea: a metric-based approach, and a mask—based approach.

Metric—based Approach

The result provided by any estimation algorithm is driven by the disparity observed
between the predicted observations and the measured ones (i.e., the innovation). In
the studied contour tracking problem, the innovation term corresponds to the dispar-
ity between the predicted and measured contour, projected along a given measurement
direction. Concerning the global contour transformation x%, this projected disparity
can be expressed as

v = y-MpUW({ndq +Tx") . (3.7)

where MZ is a matrix maintaining the measurement direction used at each contour
point, U a matrix translating from contour points to contour samples, and q’ any
feasible contour configuration from £(W?,q) (usually q). In order to estimate x*
the idea behind the metric-based approach is to weight the components in vector v
according to rigidness of their corresponding contour zone. In that way, measurements
on rigid regions have bigger influence on the x® estimation. In the approach used in
this thesis, a natural way to implement that consist in setting the confidence given
to observations according to the contour positional variance. In practical terms, this
corresponds to adjust the covariance of the assumed observation noise R, expressing
that measures obtained in deformable zones are less reliable, since the information that
supply about x* may be distorted by the local contour deformation. Our proposal to
implement this idea is given in Algorithm 8, which is based in computing a measure
of the rigidity of each contour point to adjust accordingly R.

Mask—based Approach

This approach is a derivation of the previous one, based on making a rougher use of
the contour covariance information. The idea is constructing a mask that delimits
the rigid and non-rigid parts of a contour, in order to consider measurements only
on the rigid contour zones. Analogously to the previous approach, we model this by
adjusting the measurement noise covariance R. In this case, their values are modified
by the following criterion

R(i,i) Factor(i,i) < treshold

2 .
OnoMeas otherwise

R(i,i) = {
where Factor is the term detailed in Algorithm 8. However, in practice the imple-
mentation of this idea is completely different, being the strong point of this proposal.
As measurements in non-rigid zones are de facto discarded, there is no need to process
measurement lines on these regions. This reduces the computational effort required
to estimate x’*, which is always an interesting point.
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Algorithm 8 Rigidity Definition

[R] = R—RigidityTunning [R, "]

Average contour variance computation:

TPP = ([Iy, On. =" [y, On]" +[On

Minimum average variance identification:
02 ., =minXPP(i i) Vi=1,..., N
Rigidity Factor computation:

Factor = Oy,

Factor(i,i) = 02,;,,/3PP(i,i) Vi=1,...

min

Measurement noise variance tuning:

R(i,i) = R(i,i)/Factor(i,i) Vi=1,...

. IvE7on, InT) /2

Evaluation of x estimation proposals

The methodology used to evaluate the performance of the two proposed methods is
very similar to the one used in the preceding experiments. In this case, sequences
showing a hand with a pointing finger, displaying simultaneously global and local
transformations are processed by different trackers. As each tracker just estimates
global transformation, this time the tracking performance is evaluated just from the
mean contour error between the estimated contours and the ones corresponding to

the ground truth parameters (Figure 3.6).
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Figure 3.6: Procedure to evaluate the decoupled xT estimation performance.

Figure 3.7 shows the x/* estimation results obtained by an UKF and a PF, adjust-
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ing the confidence given to the measured contour disparities in three different ways:
uniformly, according to the metric-based approach, and according to the mask—based
approach. The best performance is achieved by the PF using the mask-based ap-
proach, which is remarkable. It is the method using less information extracted from
frames, but at the same time is the one most selective in using just reliable infor-
mation, which seems to be the key point to obtain the best performance. The UKF
behaves similarly in low—noise sequences, but when the presence of artifacts is high,
using just part of the total contour to estimate x* easily leads to misstracking. In
these cases, results show that is better for the UKF to trust all the contour obser-
vations equitably, although some of them are distorted by local contour deformation.
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Figure 3.7: Estimation of the affine transformation of a contour which also presents
local deformations. Mean contour error is determined from the disparity of contours
synthesised using the estimated parameters, and the ground truth parameters.

Finally, it has been evaluated the performance of our best proposal (the mask—
based approach using a PF) with respect to the joint estimation of [xf'x?]T using an
UKF and a PF (Figure 3.8). Results show that estimating at once the whole contour
transformations, a more accurate x* estimation is also obtained (by using an UKF
in low—noise situations, and a PF in high-noise ones). This is due to the fact that,
although scarcely, x” alters the contour zone used to estimate x%, and this disturbs
its precise estimation. In spite of that, the results achieved are very close to the ones
of a PF estimating the whole state, certifying the validity of the proposal for our
purposes.

3.3.2 [Exploiting the x® Estimation: Partitioned Sampling

Previous section has described two ways to decouple the estimation of x® from x?,

when there are nearly rigid zones in the tracked contour. Applying a similar approach



74 CONTOUR ESTIMATION AND THE CURSE OF DIMENSIONALITY
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Figure 3.8: Complete vs partial contour transformation estimation. Mean contour
error of the affine transform estimation, by estimating the whole contour transforma-
tion (x® and x®), or just the affine transformation in the most rigid contour zones.

to estimate x” is not possible, as long as rigid transformations affect the contour

globally, and no point along it is insensible to x. Thus, the estimation of x” requires
also taking x* in consideration. However, thanks to the proposal of previous section,
for estimating x” at a given instant we have now the estimation of x® available, and
we can take advantage from that. We propose to use this x* pre—estimation to define
a better importance function for the PF. In principle, one may argue that this has
little sense, as methods like the EKPF and the UKPF already allow to define such
an importance function, but for the whole state x. Thus, why just taking advantage
of that for x®?. The point is that now, for the state part concerning x7, we are
not limited to just using a Gaussian importance function: we can use the x* pre-
estimation to define it in terms of a weighted particle set. A method that exploits
this idea exists, which is denoted as Partitioned Sampling (PS) [77] .

Partitioned Sampling is a generic term for the weight variance reduction strategy
proposed in [77], based on modifying the SISR algorithm by inserting additional
resampling operations in its procedure. It consists on dividing the state space into
partitions, which can be propagated independently along time using their expected
dynamics. Each partition is manipulated sequentially, propagating samples applying
the partition dynamics followed by a weighted resampling step, which is the key point
of this proposal. This resampling is driven by a weighting function that approximately
evaluates the likelihood of particles from just the state partitions processed up to this
point. The objective is, at each resampling step, to move particles closer to the
posterior distribution to be estimated. After processing all partitions, most particles
concentrate around the peaks of the posterior distribution, improving ® the result

5This improvement is in terms of the variance of the weights of particles, which is diminished,
attenuating in that way the degeneracy problem of the PF.
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provided by the SISR algorithm. This procedure requires the following points to be
fulfilled:

e the state has to be able to be decomposed into parts x = [x{]¥ | with uncor-

(3
related dynamics,

e for each state partition x? a weighting function g pi() is needed (continuous and

strictly positive), which ideally is peaked in the same region as the likelihood of
the state part composed by partitions up to x”* (that is [xPJ]z-Zl).

In the contour tracking application studied in this chapter, both conditions are
accomplished by partitioning the state as [x[* xP]T. Figure 3.9 compares graph-
ically the classical importance sampling procedure, with the partitioned sampling
proposal. It shows how both algorithms generate a weighted sample set of a func-
tion p(x) = N(0q,0%I,) with x = [z y]T, sampling from an importance function
q(x) = N (02, (40)%I). In the partitioned sampling case, a likelihood function g(x) =
N(0,0?) is available for performing the weighted resampling. The example shows
that partitioned sampling provides a sample set with minor weight variance. A draw-
back of this technique is that diversity is lost in the state part used in the weighted
resampling, but as noted in Section 2.3.2 of previous chapter, there are methods to
attenuate this problem.

Weighted
Resampling

Figure 3.9: Importance Sampling (top) vs Partitioned Sampling (bottom) density
approximation.

This technique has been commonly applied to multi-object tracking applications
[77, 103], and to tracking applications concerning articulated models [78, 124]. Here
we adapt it to the shape modelisation that we use. Before detailing how this idea
is implemented for estimating [x*xP], first the weighted resampling procedure is
described more formally.
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Weighted Resampling Method

Let g(x) be a strictly positive, continuous function, denoted as weighting function.
Weighted resampling of a particle set with respect to g() is an operation which pop-
ulates the peaks of ¢g() with particles, without altering the distribution actually rep-
resented by the particle set. This is carried out by a procedure derived from the
importance sampling method.

Given a particle set {x(* w(»}N | approximating p(x) as

N
pn(x) = Y W6
1=1

first an importance function ¢(x) is defined by evaluating a weighting function g() on
the elements of this particle set. That is

(x) = i\’:L@))é . (3.8)
T TN ) |

N .
Z p(l) 5x(7:) . (3.9)
i=1

The importance sampling method states that a distribution p(x) can be approx-
imated from samples x'(Y) ~ ¢(x), with an associated unnormalised weight equal to
p(x')/q(x'™). From that result, an alternative representation of p(x) is given by

the (unnormalised) particle {x'®) w/}N |, where
X = xk)
WO = p ) ) | (3.10)
= @) ki)

and k; is the index identifying the i-th particle sampled from ¢(x). Thus, weighted
resampling is just a method to generate a weighted sample equivalent to a given
weighted sample set. The idea is to obtain a sample set with lower weight variance,
and the key point to achieve that is defining a good importance function ¢(x). Unlike
other proposals, now ¢(x) is defined in terms of a weighted particle set, with particles
x() identical to ones of the approximated sampled distribution® py (x), but differently
weighted. .

Algorithm 9 details the implementation of this procedure. Notice that now the
RESAMPLE function returns the indexes {k;}}¥, identifying the particles selected
from the resampled particle set.

3.3.3 Final PS Algorithm

Once described the weighted resampling method, it is quite direct taking advantage of
the availability of p(x|y;), using it to define the importance function q() in Algorithm
9. Algorithm 10 shows the resultant partitioned sampling method, which is based on
adding the weighted resampling step in the generic SISR process of PFs.

6Otherwise, the term in (3.10) could not be evaluated.
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7

Algorithm 9 Weighted Resampling Iteration

[{xi?), w,"}¥ ] = WEIGHTED RESAMPLING[{x{"}, w{" }X ,, ()]

for i =1to N do
0™ = g(x{)
end for o

Compute p*) = ﬁ Vi=1,...,N

[{xit) VL1, (ki L] = RESAMPLE[{(x(), o7}
fori=1 tokN do
/(2 i i
wt( ) _ w,f )/p(kz)
end for

Algorithm 10 Partitioned Sampling Iteration

[k wi Y] = PS[{x)_y, wi2 Yyl
{Remember that xé:i_l = [xéi(f_l x(ﬁgz_l]}
fori=1to N do

R(i R(i
Draw x;"*) ~ p(xfxg )
R(i) R(i) R(i
Xog —[Xog 1X t()]

end for

{x) w;"yN || = WEIGHTED RESAMPLING[{x\", w(” }N . p(y|xF)]

fori=1to N do

D(i
Draw x; b@) p(xP %o, E_)l)
D(i D(i D
XO:t( - [XOt( Xf ¢ )]

i R(i)__D(i
Set X(():?e = [Xog) Of( )]

Update weight wt( D= = w; (@ )p(yt )|x )
end for
. . ) w® .
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A point to be remarked is that the importance function q(xt|x(()271y1;t) in the
SISR part of the algorithm corresponds to
.
(Xt|X0t 1) = plx |X0 tl) )p(xt |X0:t(l—)1) 5
which is defined in terms of the dynamics of each state partition, which as required,
are uncorrelated.

3.3.4 Additional Advantages of Partitioned Sampling

The different resampling stages inherent on a Partitioned Sampling algorithm allows
a more flexible distribution of the computational resources in the estimation of the
different state parts. Given a partitioned state, it may happen that one of its parts
has a more erratic and unpredictable behaviour than the others, and consequently its
dynamic model is more imprecise. This means that in every PF iteration, the region
of its feasible predicted states is bigger than the one of the other parts. Thus, for a
fixed number of particles, this region is less densely inspected for this part than for
the others, resulting in a more unaccurate estimation of this part and, consequently,
of the overall state. In these cases, a proper strategy can be adjusting the amount
of particles assigned to each part according to their predictability, devoting more
computational resources to the more erratic state parts. The weighted resampling
step in Partitioned Sampling allows to implement this strategy, which was proposed
in [78]. Figure 3.10 shows an scheme of this proposal.
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Figure 3.10: Sketch of the implemented PS algorithm. The number of particles used

in the different samplings of distributions carried out is detailed in the superindices
of the propagated particle sets.
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In the case—study analysed in this chapter, rigid transformations (i.e., the whole
hand movement) can change more rapidly and unpredictably between frames, while
deformations tend to change more slowly. Thus, a number of particles M > N should
be used to inspect the feasible x* states to be more robust to their unpredictability.
Then, the resultant distribution is resampled back to N samples in the weighting
resampling step, to recompose the complete state and then compute its likelihood.
This strategy allows, for fixed computational resources, achieving a better tracking
performance. Notice that to estimate correctly x”, measurement lines have to provide
good measurements of that. As long as these measurement lines are placed relative
to the hand position (i.e., x* values), the strategy of using more samples to estimate
xf reverts in obtaining a better x” estimation, and, thus, a better overall state
estimation.
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Performance Evaluation

Our first experiment has been designed to check whether there is a real advantage on
managing a different number of particles in the different sample evaluation phases of
the PS algorithm, namely the weighting resampling of the x* importance samples,
and the likelihood evaluation of the complete state [x? x”]T . Two different cases
are evaluated, one distributing the same number of particles in the both phases, that
is (N/2,N/2), and one distributing particles following the proportion (2N/3, N/3).
Figure 3.11 shows, for the case N = 1000, the benefits of investing more particles in
the weighted resampling step of x, which improves to tracking performance in all
noise situations considered.
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Figure 3.11: Performance of two PS, with different proportion of particles devoted
to the weighted resampling step. A better performance is achieved when more par-
ticles are devoted to the weighted resampling step.

Our next experiment compares the performance of the PS (2N/3, N/3) against
the one of UKFs and PFs. Figure 3.12 shows the results obtained for a PS with
an amount of particles equivalent to a PF with 1000, 2000 and 4000 particles. In
low noise situations, the UKF performs better than the PS, showing a behaviour
similar to the one observed with the standard PF. However, the comparative study of
both methods certify the superior performance of the PS with respect to an standard
PF in all situations, although in the worst noise situation (i.e., SNR;y = 6dB)
their difference is usually not statistically significant. The performance improvement
achieved is due to the inner weighted resampling step in the PS, which delimits more
tightly the interesting part of the state space to be explored. Thanks to that, more
particles get closer to the ideal state parameters, and the tracking accuracy increases.

We have also compared the PS against the UKPF, the method that up to this
point has shown in general the best performance. Figure 3.13 shows that the UKPF
achieves a better performance, as long as the implicit linear approximation of the
optimal importance function is accurate. However, in high noise situations this does
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Figure 3.12: UKF vs PF vs PS comparison. Performance achieved for different
amounts of particles considered (from top to bottom, 1000, 2000 and 4000 particles
in a PF, and the equivalent amount for a PS with the proportion (2N/3, N/3)).
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not happen, and its performance degradates. The PS maintains its better performance
even in high-noise situations, as the redistribution of particles done by the weighted
resampling step adapts to any multimodal distribution that can be suggested by the
observations, being thus less disturbed by the non-Gaussian noise artifacts.
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Figure 3.13: UKPF vs PS Comparison. Performance achieved by the two methods,
using both an amount of particles equivalent to 1000 particles in a PF.

3.4 Conclusions

In this chapter it has been studied the problem of contour tracking, when this contour
presents simultaneously local and global (affine) transformations. We have worked in
two main concepts concerning this problem:

e the development of a new methodology to estimate global transformations (x*)
uncoupled form local contour deformations (x”);

b

e the novel application of three different variance reduction techniques to the
problem of contour tracking using PF's, and their comparative study.

With regard to the first point, we have proposed an strategy for estimating x%
uncoupled form x%, based on giving a bigger confidence to observations in contour
zones less likely to suffer from local deformations. Two alternatives has been studied
to modulate the reaction of estimation methods to observations at different contour
zones. In a case-study, the validity of both proposals has been tested, obtaining the
best x estimation using a PF that ignores observations in locally deformable contour
zones. Although the accuracy achieved is slightly inferior to the one obtained tracking
the whole contour transformations, it proves useful to assist a PF to improve their
performance through the partitioned sampling technique.

The work developed concerning the use of variance reduction techniques in con-
tour tracking applications has been devoted to attenuate the curse of dimensionality
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problem affecting PFs. As now global and local contour transformations have to be
recovered from frames, the dimensionality of the state to be estimated increases, and
this diminishes the effectivity of PFs. Three different techniques have been newly
adapted to the contour tracking problem, and their performance evaluated:

e The Unscented Kalman Particle Filter.
e The Rao—Blackwellized Particle Filter.
e The Partitioned Sampling Particle Filter.

These three proposed techniques try to improve the performance of PFs from
different perspectives, namely:

e computing for each particle a linear version of the optimal sampling function to
be used for propagating particles in the SISR procedure;

e estimating part of the state analytically;

e pre-evaluating the likelihood of particles from part of their content, which allows
to propagate particles closer to the real contour state.

Figure 3.14 summarises the mean performance” of the three proposed techniques,
as well as the one achieved by the UKF and PF. To make a fair comparison between
them, the number of measurement processes that each method® makes on each frame
has been fixed to 1000.
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Figure 3.14: Comparison of all proposed methods. For each noise situation evalu-
ated, the rank list of methods is also detailed.

The UKPF is the method that provides better results, overperforming in most

situations both the UKF and the PF. It allows to reduce very significantly the number

"Notice that in boxplots is remarked the median performance.
8Except for the UKF, which makes a single one.
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of particles with respect to a PF, for a given level of performance. Only in very noisy
situations this method has problems, performing worse than a classical PF.

The RBPF applied to the contour tracking problem has turn out to be a method
half-a—way between Kalman—based and Particle-based filters. In this context, it com-
bines the pros and cons of both approaches, remaining in between of the performances
achieved by these methods. Thus, in low noise situations, performs worse than an
UKF (the whole state can be well estimated analytically), but better than a PF. In
high noise situations, performs better than an UKF, but worse than a PF (the as-
sumption that part of the state can be estimated analytically does not holds, as noise
artifacts are non-Gaussian). Hence, if an specific contour tracking application has a
very well defined noise situation, it will not be clearly the best choice. On the other
hand, in an application where images could alternate high and low noise situations,
we think that it would be possible that the average performance of the RBPF could
improve the one achieved by the UKF and the standard PF.

Finally, the contour tracker based on PS performs always as good as or even better
than the classical PF solution. Hence, it is a clear candidate to replace this algorithm,
as long as part of the state can be approximately estimated decoupled from the other
part. Although this technique is the one more reliable in improving the standard PF
performance in all noise situations, this does not mean that it is the best method in all
situations. In low noise situations, the UKPF is clearly the best performing method.
We claim that the reason is that, in low noise situations, the optimal sampling function
can be approximates accurately using a Gaussian distribution, which is what the
UKPF does. The PS models this distribution by means of a particles, and this can
not overcome the analytic representation of the Gaussian distribution. In high noise
situations the optimal importance function turns out to be non—Gaussian, and the
PS achieves a better performance, as the particle representation that uses can model
the shape of any arbitrary density.
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Chapter 4

A Multi Model Approach to
Contour Tracking

The previous chapter has addressed the general problem of contour tracking (i.e., the
estimation of local and global contour transformations), and has proposed the use of
different techniques to improve the performance of PFs in this problem. Applied tech-
niques were based on different strategies to reduce the amount of particles required
by PFs to achieve a given performance, as this amount grows exponentially with the
dimension of the state to be estimated. Techniques analysed were based either on
methods to propagate particles closer to the real target state (UKPF and PS), or on
estimating part of the state analytically (RBPF). In this chapter we propose a novel
solution to this same problem from a different perspective. As the main problem of
PF's is the state dimensionality, we propose to reduce this dimensionality by using an
alternative modelisation of the contour to be tracked. The basic idea is replacing the
classical single shape model used in the previous chapters, by a collection of multiple
shape models of lower dimensionality. This chapter describes a new methodology pro-
posed to implement this strategy, detailing algorithms designed to solve the following
topics:

e the automatic generation from training data of a good collection of shape models
of low dimensionality;

e the management of multiple shape models to estimate the state of a contour
target along time.

Our proposal to learn multiple models from training data derives from an strategy
commonly used to improve the specificity of single shape models. A general problem
concerning generative models is that their representability is far bigger than the one
desired. That is, there are parameter configurations that, when applied to the model,
generate unfeasible instances of the modelled object. In these cases, it is very useful
delimiting the region in the space of parameters that generates valid target represen-
tations, to use it properly for a desired task (target synthesis, target tracking, etc.).
In the context of shape modelling, this region is commonly denoted as Subspace of
Valid Shapes (SVS) . Usually, in applications where the modelled shape can display

85
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a big variability of configurations, the SVS has a complex topology, consisting of un-
connected regions of irregular shape. Due to the impossibility of expressing the SVS
with a single parametric model, it is popularly described by a combination of hyper-
ellipsoidal regions given by a Gaussian Mixture Model (GMM) . In this chapter we
propose a method to unsupervisedly learn the GMM corresponding to the SVS of a
given shape model. Then, using the learned GMM, we propose a novel methodology
to derive a collection of low dimensional models to replace the original shape model.

Once the collection of models is available, the next step is formalising their use
for tracking purposes. Now, tracking not only implies estimating the contour trans-
formations at each instant, but also determining which model has to be used in this
estimation. Thus, an additional discrete variable is added to the target state, identify-
ing the active model at each instant. This discrete variable together with the collection
of linear shape models conforms what is commonly referred as a Jump Markov Sys-
tem (JMS) , and we propose a new algorithm to use it for contour tracking purposes,
which is based on the PS technique.

Next sections detail the different algorithms required to generate a collection of
linear models from training data, and their use in tracking. Section 4.1 reviews dif-
ferent approaches to determine the SVS of a given shape model, and proposes an
unsupervised algorithm to parameterise a GMM and solve this task. After evaluating
quantitatively the performance of the proposed method, Section 4.2 details our pro-
posal to generate a collection of models from the GMM adjusted to the SVS of a given
shape model. For a case study application, it is shown that by using multiple models,
a better! description of the target variability is achieved. Section 4.3 reviews different
proposals in the bibliography to use multiple models in tracking applications, and pro-
poses a PS—based algorithm to fulfil this task. It is shown in a case—study application,
that the use of multiple shape models leads to a better tracking performance.

4.1 SVS Modelisation

Given the training set {q;}; used to construct a linear shape model £L(W,q), the
model parameters {c;}¥; that better reconstruct them are obtained from?

ci=(WI'w)"'wT(q; — q) .

This projection of the training set onto the shape space reveals the region in this
space where the parameters of desired shapes are confined. Hence, this projection
can be used to delimit the SVS model. Thus, determining the SVS turns to be the
estimation of an accurate representation of the distribution of the projections ci.n.
The usual approach consists in modelling this distribution by means of a combina-
tion of simple parametric functions, which provides an accurate representation of the
modelled data, requiring a reduced number of parameters (see Figure 4.1).

1In term of the Bayesian Information Criterion.

21f the Euclidean norm has been used in the PCA of {q; ZI\; ; that determines W, this expression
reduces to ¢; = WT'(q; — q). In our case, a norm specific for spline contour points has been used
(see [18]).
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Figure 4.1: Construction of a Linear Shape Model constrained with a GMM.

Different proposals have been done to describe the distribution of ¢1.x. In [56],
the k-means algorithm is used to represent it by means of a combination of hyperel-
lipsoids. Similarly, in [30] a Gaussian Mixture Model is used, fitted to c1.y using the
Expectation Maximisation algorithm (EM) [37]. Both proposals are based on itera-
tive schemes that fit a given initial parameterisation of a mixture model to a target
distribution. Depending on their initial conditions, these schemes can converge to
a local maximum, which poorly represent the real data distribution. Another weak
point of these proposals is that they fix a priori the amount of components considered
(i.e., the order of the mixture model K), compromising the quality of the distribution
approximation obtained.

Our approach in this thesis is based on modelling the SVS using a GMM too. The
novelty of our proposal is that, in order to fit the GMM to the distribution of c1.y, we
propose an algorithm that does not demand to choose a priori the number of GMM
components to consider, neither their initial conditions. The proposed method has
the aim of generating an accurate representation of the SVS, using a parsimonious
number of components. In that way, methods that use the SVS model to increment
the robustness of a given tracking application (for instance, [23, 57]) will require less
computational resources. Next section details the proposed method.

4.1.1 Unsupervised Parameterisation of GMM

Mixture Models increase the representability of classical parametric distributions by
establishing a linear combination of several of them. In that way, they describe more
precisely a dataset distribution, while requiring a reduced amount of parameters in
comparison with the modelled data. The probability density function of such models

can be expressed as
K

p(x) => pxO)w; , (4.1)
i=1
where K indicates the amount of mixture components, p(x|©;) the probability density
function with parameters ©; of the i-th component of the mixture, and w; its weight
or mixing coefficient. The values w; are positive, and sum up to unity.
Given a Mixture Model with K components, the parameters (w;, ©;)K | are usually
determined by maximising their likelihood for a given dataset. This is a non-trivial
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task in general, but various procedures exist when mixture components are Gaussian
density functions [14]. These methods follow an iterative scheme that fit a given initial
parameterisation of the mixture model to data.

The majority of popular and computationally feasible techniques using mixture
models consider Gaussian components, given by

1 Clx—u VTS Y (x— s
p(X|®1):Wexp 2( Hi) 3 ( Hi) , (42)

where ©; = (u;, 3;) maintains the Gaussian mean and covariance. For a fixed num-
ber of components K, the mixture model is characterised by the set of parameters
D = {(wi, i, ZL)}{il Given an initial guess of parameters K and ®;,,;;, the EM
algorithm (see Algorithm 11) is the standard method used to determine the maximum
likelihood estimation of ®1.x. As remarked before, depending on ®1.x the algorithm
can converge to a local maximum, as the likelihood of a GMM is not unimodal, and
obviously the value of K is crucial to correctly model the real distribution.

Algorithm 11 EM Algorithm
[@1.] = EM [K, @it {x: }11 |

Set initial mixture model ®1.x «— Pinis
repeat
{ Expectation Step}
for :=1to K do
for j =1to N do

_ _ (x]1©:)w;
e(ig) = P(Oilx)) = 5 i ie
end for
end for

{Mazimisation Step}
for i =1to K do

N
— =1 €G0)
Wi="—"N
N
' Z;‘Vzl €(i,5)
n - S0l e (6 —pi) (g —pa) T
2 N
' PINEECIER))
end for

until convergence

There exist different strategies to establish a GMM with a proper number of
components. One possibility consists in inferring the value of K by making a restricted
search on this parameter. First a range of feasible values for K has to be given,
assuming that it contains the desired optimal number of components. Then, for each
value, several random initialisations of the GMM are generated and processed with
the EM algorithm, trying to avoid to get trapped in a local maximum . This generates
multiple GMM solutions, from where the one that maximises or minimises a given
cost function is selected. The works in [90, 98] describe and evaluate the performance
of several criteria proposed to make this model-order selection.
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Another possibility to fully parameterise GMMs is taking advantage of the infor-
mation provided by data clustering methods. In [45] good results are obtained by
initialising GMMs of different order from the application of the Ward’s clustering
method to the dataset to be modelled. These GMMs are then refined with the EM
algorithm, and the one that maximises a given criterion is selected.

Another strategy is to search for the optimal GMM by means of Markov Chain
Monte Carlo methods. The work in [95] proposes a Bayesian hierarchical model for
mixtures, where they detail an assumed prior distribution for the parameters of a uni-
variated GMM. Then, the Reversible Jump Sampling Algorithm is applied, refining an
initial guess of the GMM by updating the component parameters, splitting/merging
components, or adding/deleting components, scanning with this process the space of
GMNMs of variable order defined in the Bayesian priors. A variation of this technique
is applied in [97] to several clustering problems, where the author remark that even
this sofisticated and theoretically well-sustained proposal can get stuck in subopti-
mal solutions. However, the major problem of this technique is its high demand on
computation.

No one of the reviewed methodologies assures an optimal solution in the modelling
of a given data distributions using a GMM. In this thesis we present a novel proposal
that also does not, but provides an strategy to find suboptimal solutions avoiding an
exhaustive search in the space of feasible GMMs, and the definition of explicit priors
of the GMM parameters, which is very interesting in practice. It consists of a greedy
algorithm that iteratively fits a GMM to a given dataset, increasing at each iteration
the order of the GMM if the data modelisation is unsatisfactory for a given criterion.
The implicit assumption in the proposed procedure is that when a data distribution
is modelled using a GMM, this data can be grouped in normally—distributed clusters.
Starting from this idea, we propose to embed the parameterisation of GMMs inside
a classical hierarchical clustering technique.

Classical Cluster Analysis

Very popular methods used in Cluster Analysis are the Hierarchical Clustering Algo-
rithms (HCAs). These algorithms group data from the computation of their dendro-
gram: a branching diagram representing a hierarchy based on the degree of similarity
between elements in a data set. Among these algorithms, there exist two different
philosophies: Agglomerative HCAs and Divisive HCAs. The formers construct a den-
drogram by initially establishing a cluster for every element of the dataset, and fusing
them iteratively until a unique cluster is obtained. The key point of these methods
is the fusion criterion, and many proposals have been done concerning that topic.
Figure 4.2 shows examples of Agglomerative HCA for the simple single linkage and
the Ward’s method (the one most commonly used). The single Linkage method fuses
at each iteration the two groups that are closer, defining the distance between groups
as the distance between the closest pair of objects. On the other hand, the Ward’s
method [120] evaluates at each iteration the union of every cluster pair. The two
cluster whose union results in a cluster of minimum variance are fused. Figure 4.2
shows, for a given dataset, that the Single Linkage method suggests the presence of
just a single cluster, while the Ward’s method identifies clearly the two present clus-
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ters. No wonder, therefore, that the Ward’s algorithm has been applied to establish
the initialisation of GMMS, prior to the execution of the EM algorithm [45].

- -’.-’( z'. .\:P .
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Figure 4.2: Dataset and its associated dendrogram. Left: data from two Gaussian
distributions. Center: dendrogram applying the single linkage method. Right: den-
drogram applying the Ward’s method.

Divisive HCAs propose to analyse hierarchically the data but in the opposite di-
rection. Starting out from a cluster grouping the whole dataset, this one is iteratively
subdivided such that the objects in one subgroup are far from the objects in the other
groups. When a given number of subclusters is obtained, the algorithm stops. This
approach has one major problem: there is no splitting criterion that assures a good
partition of data, so incorrect groups are propagated along the cluster hierarchy. This
problem can be avoided if the splitting decision does not mean establishing definitive
clusters in the dataset, but a sign that the actual clustering gives a poor description
of the dataset. From this idea emerges our proposal described in this thesis, which
consists in embedding the EM algorithm inside the basic procedure of divisive HCA.

Adaptive Gaussian Mixture Modelling

Given a dataset xq1.ny = {xi}ﬁil , the simplest GMM to describe it corresponds to
the one with a single component, which is defined by the mean and covariance (u, 3)
of the data to be modelled. So an initial GMM is defined by ®; = {(w1 = 1,1 =
i, X1 = X)}. If this representation describes precisely the real data distribution,
there is no need to explain it using more components. Otherwise, more components
should be considered. So a test to check the fitness of the GMM with respect to the
data is needed. We propose to check that by verifying if the components of the GMM
delimit normally distributed data clusters in x7.ny. For the first GMM considered,
this means evaluating a Test of Multivariate Normality on x1.n. If the test fails, the
Gaussian is split in two, and the EM algorithm is applied next to make converge this
new defined GMM.

When the GMM has more than one component, the dataset is subdivided into
clusters by assigning each data element x; to the component which provides the
maximum conditional probability p(©;|x;). Then, the normality of each cluster is
checked in decreasing order of its weight w;, analysing first the components that
support a bigger part of the dataset. When a cluster fails the test, its corresponding
component is split in two, the EM is applied to the new GMM, and the overall process
is repeated again. In this procedure an stop condition is added to avoid splitting
components that model underpopulated clusters, as in these cases the normality test
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usually fails. Algorithm 12 summarises the proposed procedure. Figure 4.3 shows an
example of the procedure carried out.

Algorithm 12 Adaptive Gaussian Mixture Model Fitting Algorithm
['I’l:k] = AGMMFA [XlzN]

Set k «— 1, @15 « (1,4, %) from x statistics.
Set Split « TRUE
while Split = TRUE do ‘ ‘
Group x1.y into clusters {le:Nj Moy by x; € X{:NJ_ if j = argmaxy, p(Og|x;)
Sort components {®;}%_, in ®y.;. in decreasing order of w;.
Set i — 1,Split — FALSE
while i < k and Split = FALSE do
if #(xi,y.) > threshold & NORMALITY TEST(®;) = FALSE then
Split «+— TRUE
end if
if Split = TRUE then
(®,, &) — SPLIT COMPONENT(®;)
Ql:kfl — (I)lk\{(I)l}
Ql:kJrl — Ql:kfl U {(I)a} U {Qb}
k—Fk+1.
(Plzk — EM(/{J, (Plzlw Xl:N)-
end if
1 +— 1+ 1.
end while
end while

Multivariate Normality Test To perform this test the multivariate generalisation
of the Wald-Wolfowitz Two-sample test proposed in [46] has been used. This test
determines if two sample sets x1.n, and yi. N, are drawn from the same distribution,
by evaluating if both are very intermixed. In the case of multivariate data, this can
be discerned by constructing the Minimal Spanning Tree (MST) of the joined dataset,
and counting the links [ that join elements from x1.n, to yi.n,.

From the observed MST topology the following statistic can be defined

L 1= Bl 43)

VVarll] ’

where E[l] and Var[l] are the expectation and the variance of the value of [ respec-
tively, considering all the possible connectivity relationships between the edges of a
MST of the joined dataset {x1.n,, yl:Ny}. Under the hypothesis that x1.y, and y1.n,
are independent random samples from a given distribution, it is shown in [46] that for
large sample sets the distribution of w approaches an standard normal distribution
N(0,1). This can be used to judge if two set are equally distributed. If w is a negative
value far from zero, this manifests a spatial separation between xi.y, and yi.n,. On
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Figure 4.3: Unsupervised method to parameterise a GMM. a) Dataset. b) Initial
GMM. c) The test of Multivariate Normality fails and the component is split. d)
Final GMM obtained by applying the EM algorithm.

Figure 4.4: Minimal Spanning Tree of two datasets corresponding to the same
distribution. Solid lines correspond to X-to-Y edges.
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the other hand, the bigger the w value, the more intermixed are the two sets. Thus, a
one-sided test on the w value is appropriate for detecting if the distribution of x;.x,
and y1.n, are equal or not. For a significance level of 0.05, this means that x;.n, and
yi:.n, are assumed to be equally distributed when w > —1.645.

This same strategy can be readapted to design a test of multivariate normality.
Given a data cluster x3.y,, its sample mean and covariance (ux, Xx) is computed.
Then, a dataset y1.n, is randomly generated, according to the computed x1.y, sta-
tistics. If both x;.n, and y1:.n, are intermixed (the test on w is satisfied), this means
that xy.ny, is normally distributed. An evaluation of the performance of this test
concerning finite sample sets is detailed in [104].

Component Splitting For splitting a component, there is no criterion that one
can guarantee as the correct one (i.e., the one that best describes data). Otherwise,
hierarchical clustering methods would perform perfectly. However, the inaccuracy in
splitting a component is not a very critical problem in the proposed method, as long
as posteriorly this partition is rectified by the EM algorithm. To implement this task,
we have evaluated two different splitting strategies, in order to check the relevance of
the splitting criterion used on the results obtained. The methods checked are based
on splitting components:

e using a classical clustering algorithm,
e using an heuristical method.

The first proposal uses the Ward’s method to construct a dendrogram on the
data associated to the component to be split, and then separates this data in two
clusters. The mean and covariance of the data in each cluster is computed, and
used to establish the initial parameters of the new components. The weight of each
component is established proportional to the amount of data elements that it has
associated. With this process, it is expected a good initialisation for at least one of
the two components.

The second proposal is a blind method based on arbitrarily subdividing the com-
ponent into two partially overlapped new ones, which together approximately recover
the divided one. The objective of this partitioning method is suggesting the necessity
of splitting a component, more than establishing a good initial partition. The method
proposed replaces a component (w;, fi;, 3;) by (Wa, flas Xa), (We, iy, 2p), Where

1
Wy = wp=-w; ,
b7 2
+2
a i >V
1 pit 3
«
- i~ FV .,
m =
Y, = =3,

being v the eigenvector of 3; with the biggest associated eigenvalue, and « is the
square root of the biggest eigenvalue. Figure 4.5 shows a one-dimensional example of
this splitting process. It generates two identical Gaussians, both slightly separated
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along the principal axis of the divided one. This proposal relies on the EM to refine
such arbitrary data partition.

0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

0 L 0

Figure 4.5: Heuristical Gaussian splitting process. Left: initial distribution. Right:
mixture resulting of the splitting process (solid line). Sum of the elements in the
mixture (dashed line). Initial distribution (crosses).

Experimental Evaluation

We have tested the effectivity of our proposal by applying it to model data drawn from
randomly generated GMMs. The quality of the resultant GMMs in representing the
data is evaluated using the Bayesian Information Criterion (BIC) [102]. This criterion
is equivalent to he Minimum Description Length criterion used in information/coding
theory, and simultaneously judges both the complexity and the accuracy of a given
model. It gives a mathematical formulation of the principle of parsimony in model
building, so penalises models that with more mixture components give only a little
improvement in their fitting to data. The BIC is probably the most commonly used
model selection criterion, and its good performance is reported in the comparative
study done in [98]. Being x1.nx a set of N samples, the BIC coefficient of a GMM
whose amount of parameters® is M is computed by:

N
BIC(x1.v) = Y _logp(x;) — %Mlog(N) : (4.4)
i=1

The first term on the right side of (4.4) judges the accuracy of the approximation,
while the second one judges its complexity. Using this expression, we have evaluated
our proposed algorithm with the following procedure: first, a ground truth GMM
is randomly parameterised and then sampled to generate a dataset to be modelled.
Then, this dataset is processed by different modelling methods, obtaining from them
a given GMM solution. The tested methods are:

Mji: the proposed AGMMFA with the Ward’s splitting component method;
My: the proposed AGMMFA with the blind splitting component method;

Ms: the proposal in [45], i.e., an exhaustive search method that establishes EM ini-
tialisations using the Ward’s clustering technique.

3The amount of values that have to be maintained to represent computationally {(w;, u;, EZ)}szl
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The solutions obtained by each method M; are evaluated computing their respec-
tive BIC value (denoted as BIC)y,), and comparing it against the one of the ground
truth(GT) GMM (BICqr). Plots in Figure 4.6 show the paired difference between
BIC);, and BICqgr, for experiments carried out on datasets sampled from GMMs
of different number of components. For each number of components considered, 100
different experiments have been done.
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Figure 4.6: Comparison of the BIC value of the analysed methods. Paired difference
between the BIC value of each M; method and the BIC value of the ground truth
model, in datasets of 400 samples.

Positive differences in the plot manifest that the GMM estimated by the method
represent the modelled datasets better than the GT model does. This behaviour is
due to the fact that the datasets analysed have an sparse number of samples (400),
and in these cases is natural that the estimated GMMs fit the distribution of samples
more tightly than the GT model does. The fact that the difference increases with
the amount of components of the GT model manifest the fact that in many cases,
less GMM components than in the GT model are needed to represent the dataset
distribution. For instance, if the dataset to be modelled is generated from a GMM
which has two nearly identical components, the data elements generated from this
two components will be described by a single component in the learned GMM. Thus,
the generated model will be simpler, and will have a better BIC value.

Results show that our proposed methodology (methods M; and Ms) performs
comparably to the exhaustive search method M3, except for GMMs of 8 components,
whose performance is slightly worse. However, even in this case, the solution achieved
is satisfactory, in comparison with the BIC value of the GT model. Hence, although
our proposal is not optimal, achieves a fair performance for our purposes, using a low
cost greedy strategy.

With respect to the splitting component method used, the performance of the
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proposed method does not change noteworthy (i.e., the difference in performance
between M; and Ms is not statistically significant). We claim that this is due to the
fact that when a component is split into two, in most of the cases it should be really
split into a major number of partitions, according to the data cluster that models.
Therefore, any partition in two components is a provisional rough model, and for this
reason no splitting criterion seems to be a priori better than another one.

We have also checked the performance of our algorithm to model datasets not gen-
erated from GMMs. Figure 4.7 displays convergences obtained in three-dimensional
datasets, showing a qualitatively good behaviour of the proposed method to represent
complex data distributions (the ones commonly used in the literature).
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Figure 4.7: Convergence of the algorithm to datasets not generated from GMMs.
Left: circle and spiral-shaped dataset. Right: different views of the model generated
for a spring-shaped dataset.

4.2 Generation of Multiple Shape Models

Given the GMM modelling the SVS, each one of its components groups elements whose
shape variability can be delimited by a Gaussian distribution. We take advantage on
that, proposing to replace the linear model constrained by a GMM, with a collection
of linear models, each one constrained by a single Gaussian. First, given the training
set 1.y used to learn the shape space £L(W,q), its elements are projected in this
space, generating the set of model parameterisations ci.y. Each projected training
sample c; is assigned to the SVS component k that maximises its likelihood. This
defines K subsets qi,y. € qi.n, where

; . K
aiy, = Uy} V¢ | i = argmax p(c;[Op)wy. -

This gathers elements in the training set, organising them in clusters of similar shape.
What we propose is defining an specific linear shape model for each of them, constrain-
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ing its respective SVS with a single Gaussian. Figure 4.8 summarises this procedure.

- q}:Nl g . (Wl,q_l) ([ul’zl)
(K,®) : : : ~
(W _) Training | qu;{ ™ Principal | (WK7qK) (JuKazK)

-4 —»> Set Components
¢y ={¢,...,¢,} iClustering where Analysis

o K
Dy = {20} Qv = qu-N,
l:1 ...............................

Figure 4.8: Construction of multiple linear shape models, from a linear shape model
constrained with a mixture of models.

As elements in qi, ~, are commonly quite similar, it seems logical to expect that
the local shape model £L(W',q') generated from them should require a dimensionality
less or equal than the global model £L(W,q). In order to assure that, we propose
a criterion to determine the local model dimensionality, which promotes a reduced
model dimension while maintaining an accuracy similar to the one of the global model.
This criterion determines the local model dimensionality as the minimal N4 for which
the mean square reconstruction error of the local model is smaller or equal to the
obtained using the global model. That is,

min Z la; — (W'e} + C‘li)Hi/t < Z la; — (We; +(_1)||i,[ :

Nyi - -
q; €4}y, 9 €91, N,

where ¢/ is the projection of q; onto the L(W*,q’) space, and || || denotes the norm
used, which is based on the metric matrix M for B-Spline curves introduced in Section
2.1.1. The most important benefit of proceeding in that way, more than the gain of
accuracy achieved by the new models generated (that is set at a feasible minimum),
is the reduction in dimensionality of shape spaces. This lower dimensionality is very
convenient for several reasons:

e it reduces the computational load of tracking algorithms, since less parameters
have to be estimated. Thus, for a given computational time, it allows considering
either a better temporal sampling of sequences, or more sofisticated processes
to extract observations from images.

e it improves the specificity of the shape model, as the degrees of freedom of
the shape parameterisations are reduced. This favours to obtain more robust
performances.

e it improves the performance of PFs, as fewer particles will be required to achieve
a desired performance.

Despite these arguments favouring the practical application of the multiple model
approach, it remains to ascertain if this new proposal represents indeed an improve-
ment in shape modelling. This subject is studied in the next section.
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4.2.1 Comparison between Shape Models

To compare the multiple model proposal with the linear shape model constrained
with a GMM, again we propose to use the BIC (see expression (4.4)). As the models
to be compared maintain separately a shape model and a constraint model (i.e., the
SVS model), we define their overall BIC value as

BIC(Model) = BIC(Linear Shape Model) + BIC(SVS Model) . (4.5)
In the following, the factors required to compute the terms in (4.5) are detailed
and derived.
BIC of a GMM—-Constrained Linear Shape Model

Given a training set of shapes qi.x = {q;}}\; of dimension Ny , and a linear shape
space L(W, q) of dimension Ny, (so that W is a Ny, x Ny, matrix), the terms involved
in Equation (4.4) are defined as

N
_ 1 _
log (p(ai:n|(W,@))) = Z—gl\qi—(WciJrq)H?w,
=1
M = Ng,(Ng, +1),

where log (p(q1:x|(W,q))) corresponds to the mean squared reconstruction error of
the shape model, and M to the number or real numbers required to parameterise the
model (that is, the total real numbers in (W, q)).

To validate the SVS model in ®, it is evaluated how well the projected training
set c1.y = {c;}Y, is represented by the GMM. So if the number of components in
the GMM is K, the terms in the BIC expression are

N N K
> logp(ei| @) = log | Y pleilus, Tj)w; |
i=1 i=1 j=1

Ny (Nyg +1
K( d,,(zdnL)

log (p(cl:N|'I))

M

+Ndi+1)—1~

The value of M computes the parameters required to maintain a GMM, which consists
of K Gaussians, each one with a full covariance matrix (i.e., requiring to maintain
Ny, (Ng, +1)/2 values), a mean (a vector of Ny, values), and a weight. As the weights
of components have to sum up to unity, just K —1 values have to be really maintained.

BIC of a collection of Gaussian-Constrained Linear Shape Models
For the multiple model proposal, the terms of the BIC' expression are computed as
S 1
SN gla- (Wrek + @),
k=1q;eql:N;.*

K

M = KMdO+ZMd;§NdO .
k=1

IOg (p(q1:N|Wla s aWK7q17 e 7qK))
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where N, is the dimension of the k-th shape space, and cf is the projection of q; in

L(WF, qkl). The value of M accounts for the total number of real values required to
maintain the K linear models.
For the SVS model, the BIC terms reduce to

K
Z Z 1ng(ci|/’ék72k) )

kilcieclf:Nk
X Ngi(Nge + 3)

Moo= )

k=1

log (p(c1:N|u1,...,,uK,El,...,EK))

where now, for each model, the SVS is delimited by just a single Gaussian.

Using the presented expressions, the single and the multiple shape model ap-
proaches can be compared for a modelling problem. In the next section, this is done
in a case-study application concerning the generation of a shape model for the outline
of a walking pedestrian.

Experiments

Modelling the outline of a walking person is an interesting application to check our
multiple model approach, since the silhouette of a pedestrian present discontinuous
shape changes along time due to the legs movement, which will result in a non-linear
SVS. Given a sequence of a walking pedestrian, a training set has been generated by
delimiting its outline in the different frames. From the PCA of the training sequence,
an initial linear shape model £(W, q) of dimension 7 is determined. Figure 4.9 shows
the projection of the training set on the 3 first dimensions of the shape space, and
the SVS model obtained with the method described in Section 4.1.1.

From the SVS model, the collection of linear shape models is constructed. Figure
4.10 displays the dimensionality and the mean shape q' of each model generated.
Clearly, the SVS components unsupervisedly learned identify a reduced number of
silhouette states which synthesise a typical pedestrian walking cycle.

To observe the benefits obtained by generating multiple shape models of low di-
mensionality, Figure 4.11 compares qualitatively the shape deformation modelled by
each modelling method. Plots show the shape variability corresponding to some SVS
component of a global model, and the variability of its corresponding local shape
model. The local models are more specific in localising the zones of the silhouette
that deform.

Table 4.1 shows the result of applying the BIC expression in Equation (4.5) to
the different models. In order to model only the shape of the pedestrian, in terms
of the BIC the single model is better. That is, although the multi-model approach
represents more accurately the training set (i.e., its reconstruction error is inferior
to the one of the single model approach (i.e., —909 versus —1096) ), in BIC terms
performs worse than the single model approach (its BIC value (—6238) is further
from zero). The accuracy gained using 7 models to represent the pedestrian outline
does not justify the amount of model parameters to be maintained. On the other
hand, considering just the SVS model, it results that the multiple model approach is
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Figure 4.9: SVS of the pedestrian training set. Left: training data projected into
the 3 first dimensions of a 7-dimensional Shape space. Right: the SVS model consists
in a GMM of 7 components.

Reconstruction Error
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Figure 4.10: Details of the multiple models generated. Up: Mean squared re-
construction error for each new shape model generated. For each model, there is
a group of bars, where the black one shows the reconstruction error of the initial
7-dimensional shape model applied to qi. ~,- The rest of the bars show the error
of the model constructed from qi. N, considering dimensionalities from 7 (the white
bar closer to the black one) till 1. The gray bar marks the dimensionality selected.
Down: Mean shape of the generated models.
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Figure 4.11: Shape variability modelled. Top: variability corresponding to the SVS

components of a global shape model. Bottom: variability corresponding to the local
shape models created from the SVS components.

much better (i.e., —4850 vs —9829 in the single model approach). Evaluating together
shape and SVS models, in this particular application the multiple model proposal is
the best option, as it has a bigger BIC value (i.e., closer to zero).

4.3 Tracking With Multiple Shape Models

Previous section has shown the benefits of using multiple models to represent the
shape variability of an object. Now it is time to use them in a tracking application.
First, it has to be formalised the interaction between the models in the evolution of
the state of a process to be estimated. Extending the classical expressions of system
and measurement processes in Kalman filters, the action of multiple models can be
modelled including a discrete variable r; identifying which model is active at each
instant ¢. Formally, this is expressed as?

Xt = Artxtfl + Wy, Wi, N(Ov Qn) (46)
yi = H.x+v, vy, ~N(0O,R;,)
This system is commonly referred as a Conditional Dynamic Linear Model or

Jump Markov Linear System (JMLS) . It requires to specify the evolution of the
model selection variable r;, which is commonly done by means of a discrete time

4At this moment this expression is presented for the sake of clarity. Posteriorly, a different
expression will be proposed, in order to better model the state dynamics.
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Table 4.1: Quantitative results of the pedestrian modelisation. The closer to zero
the BIC value (bold numbers), the better the model is judged.

Single Model Approach

BIC(Shape) | logp(qi:n, ©shape) —%M log N Sum
—1096 —1523 —2619

BIO(SVS) logp(CLN,@Svs) —%MlogN Sum
—9082 =747 —9829

—12448

Multiple Model Approach

BIC(Shape) | logp(qi:n|Oshape) —%MlogN Sum
—-909 —5329 —6238

BIC(SVS) logp(c1.n|Osvs) | -3Mlog N Sum
—4660 —190 —4850

—11088

Markov chain with known transition probabilities. Basically, a JMLS can be seen as
one linear system whose parameters (A,.,, Q,,, H,,,R,,) evolve according to a finite
state Markov chain r;. The extension to non-linear and/or non-Gaussian systems
is straightforward. In the following, this kind of systems are generically denoted as
Jump Markov Systems (JMS).

The basic problem of estimating x; in a JMS is that it is unknown the active model
at each instant ¢ (i.e., 7 is not observable). This brings to consider at each instant ¢
all the feasible values of r;, opening in that way a tree of multiple hypothesis. This has
an obvious drawback: the computational demand to estimate x; grows exponentially
along time, making unfeasible an optimal estimation of x; in practice. For that reason,
suboptimal methods have been proposed to provide an operative solution to different
practical problems.

Early contributions on this problem were strongly conditioned by the limited com-
putational power available at that time. This forced to reduce the evaluation of the
tree of feasible hypothesis to the minimal expression. Basically, given x;_1, at t the
tree of hypothesis was spreaded and from the opened branches a unique estimation
of x; was derived. Thus, at each time step, only one hypothesis survived. Popular
examples of these first approaches are the Gaussian Pseudo Bayesian Filter (GPBF)
[1], and the Interacting Multiple Model Filter (IMM) [19, 84], which are restricted to
linear systems. These proposals mainly differ in how the opened tree branches are
processed to determine the final x; estimation at instant t. A comparative study of
these multiple-model algorithms and some of their extensions is provided in [91].

With the availability of more computational resources, it has been feasible to take
into consideration a bigger depth in the tree of multiple hypothesis. The reason is
clear; the more history is considered, the better the approximation of the optimal
density is obtained. To avoid the exponential grow in the number of hypothesis
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considered, different methods have been proposed to consider from the full tree of
hypothesis just a limited number of them. Proposed strategies are mostly based on
two basic concepts: fusing tree branches which are very similar, and pruning the ones
less sustained by the observations. Examples of these methods are given in [86, 81, 80].

The first operative implementations of PF opened a new perspective to solve this
problem. In fact, a PF can be interpreted as a mechanism to propagate along time
a constrained number of hypothesis on a given state x;. Each particle represents a
hypothesis expanded along time, and its survival along time depends on the resam-
pling procedure, which inherently implements a mechanism of pruning branches of a
hypothesis tree. Thus, the use of PF in a multiple model system is very attractive, as
allow to implement the expansion and pruning of hypothesis in a very simple way. In
this chapter we propose a multimodel contour tracking derived from this perspective.
In the following sections, first we present the procedure used to construct a JMS from
the multiple models previously generated. Then, we propose an estimation algorithm
based on the PS technique, adapted to deal with a JMS in a contour tracking appli-
cation. Two versions of the algorithm are proposed, to be used in the following two
situations:

e tracking a contour using a single shape model with multiple dynamical models;

e tracking a contour using multiple shape models, each one with its own dynamical
model.

The first situation corresponds to the case in which a single global shape model is
used, modelling its dynamical behaviour from the components of the GMM describing
its SVS. The second one corresponds to the case in which a collection of local shape
models are used. We evaluate the performance of both proposals experimentally,
showing the benefits of using multiple shape models in contour tracking tasks.

4.3.1 Modelling the Interaction Between Models

In a multiple model tracking system, the model to be used at each instant (i.e., the
value of r;) may vary in every frame, and this behaviour has to be modelled. In most
applications the transition between the different models is not arbitrary, but follows a
given dynamic pattern. Thus, given a training sequence, the dynamics of the discrete
variable r; can be learned. A very simple way to model that consists in using a first
order State Transition Matriz (STM) , which defines what is known as a Markov
Chain Model. This is a discrete probability density function of the form

P11 P12 o Pk
p(?“t|7”t71) = p2.71 p2,2 . ) (4.7)
pk,l “e e . e pk,k

where pj; > 0 for all j,k, and >, pjr = 1 for all j. Each value p;; gives the
probability of being active the j-th model at time ¢ conditional on being active the
k-th model at time ¢ — 1. These probabilities can be set by the following procedure.
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Given a training sequence qq.; displaying one o more cycles of the dynamic behaviour
to be modelled, each own of its components is projected onto the global shape space
L(W,q) used in the multiple model construction. This leads to a sequence cg.¢,
where each one of its elements is labelled with the component g; of the SVS model
that captures it. As from each SVS component derives one of the multiple models
learnt, the sequence of labels go.; determines the sequence of models expected to be
active along time. Using go.;, the STM can be constructed. First, elements p; ; are
initially set to zero. Then, using each consecutive pair of labels (g¢, g+—1) they are
updated using the expression

Pgi,gi-n = DPgigioa T1 -
Once the whole sequence has been processed, the resultant values are normalised by

Pij
-
Zk:l Pik

Figure 4.12 shows an example of this discrete description of dynamics.

Pij =

1 2 3 4 5 6
1| 0.96 0 0 0 0 0.04
2| 0.04 | 0.96 0 0 0 0
3 0 0.04 | 0.96 0 0 0
4 0 0 0.04 | 0.96 0 0
5 0 0 0 0.04 | 0.96 0
6 0 0 0 0 0.04 | 0.96

Figure 4.12: Dynamic learning process of a Markov Chain model. Left: a GMM
models the SVS. Right: the STM computed from a training sequence, using the
procedure described in [57]. It can be seen that the shapes in the training sequence
progress along the SVS in clockwise order.

Provided that gg.; maintains one or more complete cycles of the expected periodic
change between models, it can be used to compute the a priori probability of each
model of being active. This corresponds just to the portion of the sequence in which
each model is active. That is

_ Dkl ==1) (4.8)

Di P

Once the transitions between models are modelled, the next step is detailing the
dynamical model inside each shape model £L(W¥, g*). We propose to do that using
AR(1) models constrained inside a Gaussian envelope. By using first order models,
our objective is minimising the dimensionality of the state to be estimated, with the
aim to favour the performance of PFs. To construct the AR(1) models, we project the
training examples qg.n onto the parameter space of their corresponding shape model,
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and then the distribution of this projection is approximated using a Gaussian model.
Using the Gaussian parameters, a Constrained Brownian motion is established, which
confines the evolution of the model parameters inside a hyperellipsoidal region.

Since the proposed multiple model system combines different shape spaces, which
can be even of different dimensionality, it is also necessary to model how an state
vector changes once a given model transition occurs. Since in general each model
can represent a family of shapes completely different to the ones of the other models,
so there will be no continuity within parameters in the different spaces, what we
propose is modelling the more likely initial parameters of a model, once a given model
transition occurs. This is approximated from the training sequence, by collecting the
initial parameterisations of each model, for the different feasible model transitions.
Being {c;’ }g:f the set of initial parameters of model j when a transition form the i-th
model has occurred, we approximate its distribution by a Gaussian with parameters
N (3, 3%7). Thus, for a given active model ¢, the evolution of the estimated state
x; is finally defined by

x = { A, X1+ Wy, for ry =71 with w,, ~N(0,Q,,)

B pre=rrtt 4, . forry # v withng, |, ~ N(0, X717 (4,9)

modifying slightly the general JMLS presented in Equation (4.6). Figure 4.13 sketches
our proposal for modelling the dynamics of the proposed multiple model system.

Figure 4.13: Dynamical model attached to the proposed multiple model approach.

An Alternative Approach

The modelling methodology proposed in this chapter is based on a two—phased process:
first generate a shape model, and then fit a dynamical model onto it. A different strat-
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egy could have been used to generate both models simultaneously. In [35] is proposed
to learn the SVS of a given shape model by posing this problem as the parameterisa-
tion of a Hidden Markov Model (HMM) [92], given a set of training sequences. Like
in the method previously proposed, the SVS is modelled by a GMM, but now the
transitions between the different Gaussian components are modelled simultaneously
using the Baum-Welch algorithm. We claim that our two-phased method has some
advantages in practical terms. To generate the shape model just a set of significative
examples has to be provided in order to model the desired shape variability, but no
spatio—temporal coherence between examples is required. On the other hand, to train
properly the HMM, several training sequences have to be aligned, showing exactly
the same cyclical dynamic behaviour, which can be costly. This task of sequence
alignment is also present in the proposed methodology to train the dynamical model,
but as long as the shape variability has been already modelled, just the alignment of
a few sequences is usually needed.

4.4 PFs in a Multiple Model System

The application of PFs in problems concerning JMS is direct. Just a discrete variable

rf) has to be attached to each particle x& modelling the target distribution, which

informs of the model assumed active at a given instant ¢t. Then the SISR procedure

(Algorithm 3 in Chapter 2) is applied, using commonly the following mechanism to
propagate particles:

e first the current active model 7'@1 is propagated sampling the Markov chain
model in (4.7)

r? ~plrlr2y)

e then the particle X(()?:_l is propagated according to the rgi) value, using the
dynamics in (4.9), which is concisely expressed as

xi ~ pxilx )

To reduce the number of particles required to achieve a desired performance, sev-
eral variance reduction techniques can also be applied on this problem. For instance,
when the multiple models involved are linear, the Rao—Blackwellised Particle Filter
(RBPF) can be applied to estimate the r; distribution by means of particles, esti-
mating the rest of the state using a Kalman Filter [27, 42]. If models involved are
non-linear, the work in [7] proposes different techniques to also increase performance
efficiency. We propose to use the PS technique to manage the multiple model system
in a contour tracking application, because, as shown in the previous chapter, it over-
comes the performance of standard PF implementations, for an equivalent amount
of particles. We check only the performance of this algorithm, since our goal in this
chapter is not identifying which estimation strategy takes more profit on using multi-
ple models, but displaying the benefits of our multiple model approach with respect
to the approach of using a single shape model with a SVS constraint, as is done in
[57, 35]. Hence, we evaluate the tracking performance achieved using:
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e a single shape model, constrained in a SVS modelled by a GMM,

e an heterogeneous collection of simpler shape models, each one constrained inside
a Gaussian envelop.

The difference between both approaches is that in the former modelisation, the
estimation process consists in propagating particles in a given shape space through
some kind of wormholes®, while in the later particles propagate themselves through
completely different spaces, which can be even of different dimensionality (Figure
4.14).

a) b)

Figure 4.14: State estimation inside a wormholed space (left) and in a multi-spatial
system (right).

4.4.1 A Case-Study: Tracking the Outline of a Pedestrian

The tracking problem analysed in this section is the estimation of the silhouette
of a pedestrian, whose variation along time is due to the translation and the local
deformations of its outline. The two modelisation strategies compared require to
estimate, at each frame, the value of a discrete variable r that identifies:

e the active dynamical model (derived from the SVS component expected to be
active), if a single shape model is used;

e the active shape model, with its associated dynamical model, if a multiple shape
model is used;

Together with the value of r, for each frame we must estimate the shape parameters
xP = [c¢"] too, as well as the translation x® = [t,t,]. This task is solved using the PS
algorithm (see Algorithm 10 in Chapter 3), as its performance overcomes the one of
classical PFs.

Given the state x; = [x? xP r;], we propose to implement the weighted resampling
step of the PS in terms of the state partition [x? r;]7. The reason is the following.

The silhouette of a walking pedestrian presents zones with a high variability (the

5Term used in [57] to refer to jumps between different space regions.
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outline corresponding to the legs), as well as zones which scarcely vary along time
(the head and back contour regions). These practically rigid zones make possible to
preevaluate the likelihood of the state part [x[* r;]7 independently of the value of
xP . and this is used to implement the weighted resampling step in the PS algorithm.
In the two modelisation techniques compared, the methodology followed is the same.
The r; value denotes the model assumed active at instant ¢, but also determines a
Gaussian region of valid parameterisations in a given shape space. This region of valid
parameters has implicitly associated a set of valid shapes, whose variance allows us
to determine the contour zones which suffer from less deformation (see Section 3.3.1).
Thus, for each sample partition [Xf @ rgi)]T, the rigid contour zone associated to rgi)
is used in the reweighted sampling step, using the following evaluation function

N, 9 1/Nry
g([xff ") = H <QO1 + exp <— i >) (4.10)
bt} V2mo A 20

where v, is the distance to the closest edge in the image of the contour corresponding
to [ry xF]T | for the i-th measurement line. As the number of measurement lines
N,, for each rigid contour model can vary, the evaluation function consists in the
geometric mean of the likelihood computed in each measurement line. In that way,
models with a bigger rigid contour region are not penalised. Figure 4.15 shows for
the two compared modelisations, the contour zones where observations are extracted
and used in the weighted resampling step.
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Figure 4.15: Almost rigid contour zones for the different states in a single shape
model approach (top), and the different models in a multiple shape model approach
(bottom).

The tracking performance achieved for the two considered shape modelisations is
shown in Figure 4.16. As in the previous experiments in this thesis, the proposals
are evaluated on distorted versions of a given ground truth sequence, analysing the
results of 100 tracking performances, for each noise situation considered. Unlike in
the experiments of preceding chapters, the ground truth sequence has been obtained
from the manual segmentation of a real sequence. In that way, no one of the compared
models is favoured. The PS algorithms implemented manage an amount of particles
equivalent to 1000 in a SISR algorithm, using two thirds of the particles in the weight-
ing resampling step, and the remaining one third in the likelihood evaluation of the
complete particle state.
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Figure 4.16: Pedestrian tracking performance. PS using a single shape model and
a multiple shape model approach.
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Results show the significant improvement of the tracking performance provided
by our multiple shape model strategy, in all the noise situations evaluated. The
improvement achieved is more significant, the more the noise distorts frames. With the
use of multiple shape models, the dimensionality of x” decreases with respect to the
single model approach, resulting in a more dense inspection of the corresponding shape
space, for a given number of particles. An additional benefit of this dimensionality
reduction, is that the computational cost of the algorithm implementation is reduced,
as it depends linearly on the dimension of the estimated state.

4.5 Conclusions

In this chapter we have proposed an strategy to improve the performance of parti-
cle filters, based on modelling the target to be tracked by means of multiple low—
dimensional shape models, instead of the single model approach commonly used. To
fulfil this objective, we have done different proposals concerning the following topics:

e the unsupervised modelisation of the subspace of valid parameterisations of a
given shape model;

e the generation of multiple shape models, from the SVS of a given shape model;
e The use of multiple models in a particle-based estimation algorithm.

Concerning the first topic, we have modelled the SVS of a given shape model
using a GMM, bounding the region in the space of model parameterisations where
training shapes project. We have proposed a novel greedy algorithm to parameterise
the GMM, based on embedding the EM algorithm inside the procedure of classical
divisive hierarchical clustering algorithms. The proposed method avoids an exhaustive
search in the space of parameters of the GMM, incrementing iteratively the complexity
of an initial GMM until the sample dataset is properly modelled. Results achieved
are comparable to the ones obtained by an exhaustive search approach. Our proposal
is very appealing to be used in practical applications, as no parameters has to be set
by the user. The method displays also a qualitatively good performance in modelling
complex dataset distributions typically used in the literature to check this sort of
algorithms.

With regard to the second topic, we contribute with a novel methodology to
generate multiple shape models, from the components of the GMM bounding the
SVS of a single shape model. The proposed method replaces the initial shape model
by a collection of models of lower dimensionality, which is the desired characteristic
in order to improve the performance of contour trackers based on PFs. The validity
of the proposed multiple model approach has been tested in the context of modelling
the silhouette of a walking pedestrian. In terms of the BIC, it has been constated
that our proposal provides a better shape modelisation than the one obtained using
a single model approach.

Finally, we have presented a novel approach to use the multiple models generated
in a contour tracking application. First, we have formalised the relationship between
the different shape models using a JMS, establishing their parameters from training
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data. Then, we have proposed a novel contour tracking algorithm to manage the
multiple models, and we have tested its performance in the problem of tracking the
silhouette of a walking pedestrian. Results conclude that using the multiple model
approach, we overcome the performance achieved using the traditional single shape
model approach.
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Chapter 5

Monocular Model-Based Vehicle
3D Tracking System

Our work detailed in preceding chapters has focused on the study of different tracking
algorithms, aimed at improving the estimation of the contour of targets along time.
In the study done, algorithms were manually initialised, and evaluated on sequences
displaying the target of interest partially or totally in all video frames. In this chapter
a more general goal is pursued: the design and implementation of a complete target
tracking system. In addition to the tracking of targets along frames, a tracking system
involves the automatic detection of target in images, providing their initial state to a
tracking algorithm, and control the situations in which a tracked target is no longer
of interest.

Designing and implementing a tracking system means developing this system for
a given specific task. The one analysed in this chapter is the development of a vision—
based on—board advanced driver assistance system devoted to detect and track other
vehicles on the road ahead. Our main motivation to focus on this problem is that
its resolution is a classical demand of intelligent transportation systems, as the main
threats a driver faces are from other vehicles in the driving environment. Most appli-
cations addressed by the automobile industry (adaptive cruise control, autonomous
stop & go driving, lane change assistance, etc.) rely on an accurate perception of
the own vehicle surroundings [38]. To solve these tasks, the knowledge about other
vehicles around is of main relevance. In essence, what these applications demand
is estimating the relative 3D position and velocity of the observed vehicles, in or-
der to predict their future location and, for instance, warn in advance about unsafe
manoeuvres.

The perception of a vehicle surroundings has been investigated for automation with
active sensors for several decades. Hence, the application of radar and lidar systems
to the current application seems natural. However, the richness of the information
that can provide a camera (texture, colour, intensity) in addition to high resolution
and other aspects as low cost, low consumption, non-intrusive nature, etc., make it
the most suitable in the sensing process, either working alone or in combination with
active sensors. After all, vision is by far the most relevant sense in human driving.

113
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This chapter proposes a vehicle tracking system based on monocular vision. The
image acquisition is based on a monochrome camera installed on a host vehicle!,
mounted inside the cabin near the rear—view mirror, attached to the windshield screen
and forward facing. The camera uses a 1/3-inch sensor, has a (approximately) 7 mm
optics, an provides frames of 640 x 480 pixels. Our goal is detecting and tracking mid
range and far distance vehicles (up to 70 meters), as long as they are entirely observed
in images. To fulfil this objective, we propose a modular system composed of a vehicle
detector, an estimator of the initial 3D state of detected vehicles, and a vehicle tracker.
Figure 5.1 sketches the three main modules of the proposed system. Each module has
been designed isolatedly from the rest, using a shared memory technique to establish
communications among them. A supervising process controls their execution and
coordinates their cooperation. An alternative to our proposed modular system could
be the proposal in [128]. In this case, the tasks of the different modules are solved
simultaneously within a Bayesian framework, which integrates in a single expression
all the a priori system knowledge available (i.e., the vehicle appearance model, scene
geometry, the assumed vehicle dynamics, etc.). However, although this formulation
is very elegant, it lacks of scalability, and does not allow to check how each specific
required task is being performed separately from the rest. This obscures the analysis
of the system performance. A modular approach has clear advantages with respect
to these points, which are very relevant to develop functional systems.
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Figure 5.1: Vehicle tracking system proposed.

In a vehicle tracking system, the first task to be solved is detecting the presence
of vehicles on acquired frames. A vehicle detection module is required able to carry
out this task for different sorts of vehicles? (cars, vans, trucks, busses, etc.), from
their frontal and rear view, at distances up to 70 meters, and under a wide range
of illumination conditions (different daytime and weather conditions, and artificially
illuminated scenarios). To generate such a detector, we propose in Section 5.1 the
use of an state of the art machine learning technique (Boosting) to generate a model
to robustly distinguish vehicles from other elements in the sequences. Given a big

IWith host vehicle we denote the vehicle hosting the camera.
2Currently, motorbikes and similar are excluded.
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amount of vehicle and non—vehicle examples, the Adaboost algorithm selects a subset
of image features well-suited to discriminate between both training classes, and at
the same time parameterises a classifier tuned for this specific application. Using this
classifier, we propose to scan acquired frames with the aim to detect the observed
vehicles.

Once vehicles are detected, the next step is determining which is their state (3D
location and velocity), in order to initialise a tracking algorithm. This is the task of the
vehicle 3D state initialisation module in Section 5.2, which requires to estimate the 3D
road location corresponding to vehicle detections, and track them for a short period in
order to identify their dynamics. As the camera system used is monocular, determine
the 3D location of detected vehicles is an ill-posed problem, which in general can not
be solved. However, for the specific system analysed, realistic assumptions about the
driving environment can be done, which make this problem solvable. Specifically,
if the captured road conforms to a flat surface, a direct relation can be established
between image coordinates and the 3D location of objects on the road, as both (the
image and the road) are two planes and, therefore, can be related by an homography.
Once the 3D location of detections is computed, it is analysed their spatio—temporal
behaviour in order to estimate the 3D velocity of vehicles. This task is not only useful
to complete the initial state of a vehicle tracking algorithm, but also to filter out
false detections (i.e., False Positives (FPs)) that the vehicle detector can generate.
Indeed, depending on the camera viewpoint, sometimes non—vehicle regions match
the appearance of some of the sorts of vehicles modelled. These regions mislead
the designed detector just temporarily, because due to the movement of the vehicle
holding the camera, the camera viewpoint changes, and with that the appearance
of such regions, which are then correctly identified as non—vehicles. The process to
estimate the 3D velocity of detected vehicles will identify false detections due to their
lack of spatio-temporal coherence.

Having the initial state of a vehicle estimated, the goal is updating it efficiently
in the successive frames by means of an estimation procedure. This task is solved
by the vehicle tracking module detailed in Section 5.3, which has been implemented
by means of a multitarget UKF, due to the non-linear relation between the vehicle
3D states and their observations, and the type of noise disturbing the measurement
process. Finally, the coordination of the different modules of the system (i.e., how
they are sequenced and share information), is briefly detailed in Section 5.4.

5.1 Vehicle Detection

The detection of vehicles is the most challenging task of the proposed system. On
the one hand, vehicles conform a very heterogeneous class of objects, showing a wide
inter—class variability with respect to their appearance and dimensions (see Figure
5.2). On the other, they have to be detected in an uncontrolled environment with
a high variability too, and in a restricted processing time. This problem has been
classically addressed using heuristic criteria, based on certain expectations about the
vehicle appearance. Commonly, observed vehicles present

e vertical axis symmetry;
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e dark wheels;
e left and right boundaries;

e dark areas beneath (their own shadows).

Figure 5.2: Vehicle training set examples. Top: heterogeneity of the objects to
be detected, just from their rear—view. Bottom: Pairs of the same vehicle, acquired
under different illumination conditions.

These and other properties have been considered by many authors, to propose
the use of different visual cues to quickly hypothesise the presence of vehicles on
images. Examples can be found based on shadows and lateral edges [82], symmetry
[75], a combination of shadows, symmetry and edge information [24, 58], considering
the movement perceived between frames [13, 70], texture descriptors [65, 112], etc.
These methods are rather naif to provide a reliable detection system, and commonly
generate many false detections. However, they can help to preselect with an small
computational cost, the image regions where to apply a more sofisticated detector.
Other strategies can also be used with this same objective, like for instance, the
presegmentation of paved regions [51, 4], the use of high level information extracted
from images (for instance, use the detected road lane markings to delimit the detection
region [106, 58, 125]), or the use of other available sensors (for instance, radar [49,
126, 3]).

Main proposals to verify the presence of vehicles in given image regions are posed
from a classification point of view. Given an image region, a set of descriptors is
computed and evaluated by a classification function, which discerns if the region ap-
pearance corresponds to a vehicle or not. Many different features have been proposed
in the bibliography, with the aim to provide a robust vehicle representation: tex-
ture descriptors [67], edge orientation histograms [48], Gabor filters [108], Legendre
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moments [126], Haar filters [111], etc. Using a training set composed of vehicle and
non—vehicle examples, their feature representation is processed by a machine learning
algorithm to construct a vehicle classifier. The algorithms most commonly applied
to this task are Support Vector Machines (SVMs) [111, 108, 126, 67] and Neural
Networks (NNs) [65, 48, 126].

The recent review in on—road vehicle detection in [110] claims that an important
drawback of some proposed vehicle classifiers is that they are based on a generic
feature space defined a priori, which in general includes features redundant or even
irrelevant for the vehicle detection problem. Ideally, the vehicle detection should
be based on features that have great separability power to distinguish vehicles from
other elements on their environment. In that way, learned classifiers would generalise
better, requiring the computation of less features to classify image regions. The search
for these discriminant features is the object of study of feature selection techniques
[53]. In [109] is proposed the use of genetic algorithms to determine an optimised
set of Gabor filters to discern vehicles from no—vehicles. In this thesis we adapt the
approach based on the Adaboost algorithm in [117]® to our problem, which solves
simultaneously the selection of discriminant features and the construction of a vehicle
classifier.

Summarising, on-road vehicle detection is commonly solved in practice in two
steps: a fast preselection of image regions where to look for vehicles, and the refine-
ment of these regions by means of a classifier. In systems based purely on vision
sensors, the preselection step is needed to fulfil the response time constraints imposed
by final applications. In the work developed along the thesis, we have checked some
preselection methods in the literature [82, 36, 13]. Due to response time constraints,
methods checked consisted basically on the application of thresholding operations on
low level image features, in order to verify the presence of given image structures
(shadows, edges, etc.). The performance achieved by this methods in many situations
was significantly poor. For acquisition conditions deviated from the most common
ones, the thresholds for image processing algorithms were no longer valid, as well as
the ones used to verify the presence of relevant image features, which in some cases
were no longer observable in frames. Due to this poor performance, vehicles that our
vehicle classifier was able to detect, were in practice missdetected. Hence, we decided,
for the moment, to desist from using a preselection process. This prevents the appli-
cation of the proposed detector in a realtime scenario, but allows to measure the real
detection power of the proposed vehicle classifier. We claim that before establishing a
fast criterion to roughly predetect vehicles, we first need to assure that our classifier
reaches a desired performance. Once we achieve that, we could take advantage of the
features used by the vehicle classifier to construct a fast vehicle predetector assuring
that it does not provoke missdetections, which is the most critical error of a vehicle
detection system.

5.1.1 Vehicle Detection Using Adaboost

Due to the proven effectivity of the Adaboost algorithm in generating robust classifiers
[117], we propose to use this technique to construct a vehicle classifier that will be the

3The approach was originally applied to face detection.
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basis of the vehicle detection module of our system. The Adaboost is a supervised
algorithm, which trains a classifier from a training set ti.n, = {(hi,li)}fv:rl of N,
examples, where h; = | f;];vzl is a vector of features describing the i-th example, and
l; is a boolean flag indicating if this example is positive (i.e. it is a vehicle ) or not.
This algorithm selects Ny < N features f from h, and estimates a weak classifier
r;() for each one of them, such that when properly combined correctly classify the
training examples. Classifiers 7;() are branded as weak to reflect that commonly their
particular classification accuracy is just slightly over 50% of the training set. We have
used the confidence-rated version of the Adaboost algorithm [100], in which 7;() is a
decision stump on f; that returns a positive (v;") or negative (v;") value according to
its classification decision. That is,

K3

v; otherwise .

ri(fi) = { v if f; < (or >) threshold ,

The Adaboost combines these learned weak rules to construct a strong classifier

Ny

s(f) = Zﬁ‘(fi) 5 (5.1)

i=1

which, when applied to the features f of an image region, returns a value whose sign
provides the classification decision on this region*, and whose absolute value indicates
the confidence on this decision.

Training examples are characterised by an over-complete set of Haar-like® features.
We use this type of features because they can be computed very efficiently on image
regions, with a constant computational cost whichever the size of the region [117].
With the aim of detecting vehicles, this is a very interesting characteristic, because
vehicles are imaged in a wide range of scales (in our particular case, from 24 x 18 up
to 334 x 278 pixels), and Haar-like features do not demand an explicit size normali-
sation of image regions. Moreover, these features can be computed to be invariant to
monotonical changes on the intensity of regions, remaining thus also useful even in
low contrast lighting conditions. Using these features, each example is described by
a vector of 176214 Haar filter responses.

The procedure followed to learn the vehicle classifier has been the following. First,
an initial vehicle classifier is trained to detect frontal/rear views of all the kinds of
vehicles considered (cars, vans and trucks). The training process needs examples and
counter-examples of normalised size and aspect ratio. However, the aspect ratio of
cars, vans and trucks is different, thus we have just cropped out the upper par of
many trucks and some vans (Figure 5.3 a)). In other words, to detect trucks and
vans only their lower part is used. The learned classifier has been then applied to a
testing sequence, showing a good behaviour on detecting vehicles, but a bad behaviour
on discarding non—vehicle regions. This is due to the fact that, initially, it is very
difficult to provide a representative set of negative examples, as the non—vehicle class
is very heterogeneous. Collecting the false positive detections generated by this first

4A positive value means that the region is classified as vehicle.
5The responses of filters proposed in [117] and their absolute value are used.
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classifier, a new set of negative examples is generated, from which to learn a second
classifier to discard these regions. Following the proposal in in [117], this procedure
is applied iteratively, until the application in cascade of the learned classifiers results
in a desired detection performance. The use of a Cascade of Classifiers (COC) not
only improves the detection accuracy, but also reduces the classification time: once a
region is classified as non—vehicle, it has no longer to be evaluated in the rest of the
COC layers. Figure 5.3 sketches the procedure to learn a COC, and how it is used
to classify an image region. Following this process, an initial COC of 7 layers has
been obtained. In overall, 1830 positive examples and 11820 negative examples have
been processed to learn the COC, extracted from sequences acquired in high speed
roads, under sunny and cloudy midday and evening conditions. Due to the symmetry
of vehicles, for each example its reflection along the Y axis has been also considered,
doubling in that way the amount of training examples “ad-hoc”.
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Figure 5.3: COC learning process. a) Training set normalisation. b) Process to
construct the COC. ¢) Evaluation of the COC. True positives should be processed
by all the COC layers.

Once we have a COC, the following step is applying it on images to detect vehicles.
Next section details the systematic scanning procedure that we propose to perform
this task.

5.1.2 Image Scanning Procedure

The process of scanning frames to detect vehicles requires establishing different im-
age subregions where to apply the vehicle classifier. To properly perform this task,
inspecting just zones of the image where it is likely to find vehicles, it is first neces-
sary to detail how the 3D world projects on acquired frames. That is, modelling the
camera acquisition system.
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Camera Model

As previously remarked, the acquisition system is composed by a single camera in-
stalled near the rear—view mirror of the host vehicle, facing the road ahead with an
slight inclination. To model how this camera relates with the 3D world, a host coor-
dinate system is defined relative to the camera position, placed externally on the road
that sustains the host vehicle (Figure 5.4). Using this reference frame, the point of
view from where images are captured (i.e., the camera extrinsic parameters) is com-
pletely defined by the camera origin 0™ = [0, h, 0]7 and the pitch angle 6 describing
its inclination with respect to the road surface.

XC
oCam
[0,h,0])
)
ZC
YC,
h
Yw
XwW
[0,0,0] —w

Figure 5.4: Camera coordinate system relative to the host coordinate system.

The projection of the 3D world onto 2D images is modelled as a pin-hole camera
with zero-skew [55]. This requires identifying the effective camera focal length on
the image X and Y direction (f*, fY) an its center of projection (2°,y°) (i.e., the
camera intrinsic parameters). This has been done calibrating the camera with the
software provided in [21]. Using homogeneous coordinates, the image projection of a
3D coordinate [z y 2]7 on images is defined by

s|y | =ASRT

—
— N e 8

where s is a scale factor, A the camera intrinsic matrix, S a reflection matrix to model
the different sign of the Y axis of the camera reference system and (R, T) specify the
rotation and translation that locates the camera coordinate system with respect to
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the host coordinate system. For the situation in Figure 5.4, these parameters are

B fx 0 z°

A = 0 vy |,
| 0 0 1
1 0 o0

S = 0o -1 0|,
|0 0 1
10 0

R = 0 cos(f) —sin(0) ,
| 0 sin(f)  cos(0)
1.0 0 0

T = 01 0 —h
100 1 0

Scanning Process

The scanning process determines the image regions that are evaluated by the vehicle
detector, from determining the rectangular image zones where vehicles located at
different points on the road ahead project. These road points are defined in terms of
a regular grid on the road surface, considering points up to 70 meters away from the
camera (see figure 5.5). Given a grid point [z 0 z]T, the image coordinates [z" y"]T
where it projects are determined from Equation (5.2) as

_— [T
= 2+ 2 cos() — hsin(0)’ (5:3)
Jo= 0t 1Y (hcos(0) + zsin(0)) ' (5.4)

z cos(f) — hsin(6)

These image coordinates determine the bottom—left corner of the image region
analysed by the detector. The width and height of this region are determined from
considering the presence of vehicles of different possible sizes at the road grid point.
Obviously, if more than one grid point projects onto the same image pixel, only one
of them is taken into account.

Cam XS
oh,0"
zZc 0
'
h Projective
|
0,001 w ., LT,

Figure 5.5: Frame Scanning Process. For each inspected road point, rectangular
regions of different widths and aspect ratios are evaluated.
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A problem with this scanning process is that the position of the camera with
respect to the host coordinate system can vary significantly in every frame. Indeed, the
effect of the suspension system of the vehicle alters the camera extrinsic parameters
(see Figure 5.6). Thus, a proper scanning of frames depends on using the correct
camera extrinsic parameters. We have evaluated how the projection of points from
the road surface vary due to changes in the extrinsic parameters, and this has revealed
that the parameter with a more significant impact on that is 8. Ignoring variations
in 0¢“™ provokes a negligible error. However, estimating 6 from acquired frames is a
complex task in a monocular acquisition system. In [12] is proposed to ascertain 6 by
matching distant image structures observed on successive acquired frames, but in the
experimental evaluation of this technique that we have done, the method shows a very
poor performance in many situations (driving under bridges, in urban areas, etc.). In
[107] a robust method is proposed to estimate the vehicle ego-motion from the optical
flow observed in successive frames, which provides consequently information on the 6.
Future work is planned to incorporate an ego—motion estimator to the current system,
to assist the different modules proposed. For the moment, the problem of estimating
f from a single image has been obviated, as in a real system € may be determined
from additional sensors on the vehicle [32, 33]. In the experimental evaluations of the
system, we will use (when available) a value of § provided by ground truth data ©;
otherwise we will use its most likely value (i.e., the one corresponding to the neutral
position of the car suspension system).

B et
— 0\
SO———ZO~ —_)
Neutral Position Accelerate

O——L—"10O

Brake Surface irregularities

Figure 5.6: Extrinsic camera parameters variation.

Figure 5.7 exemplifies the application of the COC using the described scanning
process, where the refinement of the classification decision at different levels of the
cascade can be observed. Once a frame has been scanned, a list of image regions that
may contain a vehicle is obtained.

6Given a frame, we obtain the current value of § by manually annotating the position of the

h_,0
horizon. The y coordinate of the horizon (denoted as y") is related with 6 by § = tan—! %
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Figure 5.7: Vehicle detection example. a) Original image. b) Pixels used as bottom—
left corner for candidate image regions where to look for vehicles. c¢)-f) Image regions
that are like to be the bounding—box of the rear/front part of vehicles: ¢) shows
the surviving regions after the first layer of the cascade (rule s;()) and f) shows the
regions surviving after the last layer (rule sy ()).
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Clustering Detections

One same vehicle is usually detected in several neighbouring overlapping regions (see
the final detections in Figure 5.7-f). This is undesirable, since the detector should
provide a single precise detection for each vehicle. Thus, some postprocessing is nec-
essary to fuse the detections corresponding to it. The presence of multiple detections
is due to the fact that the classifier s() of Equation (5.1) is sensitive to vehicles even
if the scanning region is not perfectly adjusted to the location of vehicles on images.
Figure 5.8 exemplifies that, detailing the response of s() on subregions scanned +20
pixels from the optimal vehicle location (white rectangles). Notice that, in general,
the higher detector responses are, the closer the subregion evaluated is to the vehicle
optimal location. However, the detection surface computed has not a unique maxi-
mum, which difficults determining the best vehicle image location. Different strategies
have been proposed in the literature to solve this problem. In [117], regions are par-
titioned into disjoint non—overlapping groups and each group gives a single detection
located at the centroid of its associated regions. Differently, [2] proposes an strategy
founded on the idea of non—maximum suppression. Provided that each detection has
a confidence value, this strategy is based on identifying the one of highest confidence.
This region is registered as output, and detections in a predefined neighbourhood
around it are deleted. Then this procedure is repeated for the remaining regions,
until all detections are either considered as output or are suppressed.

We have evaluated both strategies in the current application, as well as some
variations of them, designed with the aim to improve the localisation of detected
vehicles in the generated output. We have obtained the best results combining both
strategies. That is, using the strategy of the non—maximum suppression mechanism
to detect non-maximum detections, but in order to cluster them (instead of deleting
them). Given a set of detections, first the region of maximum confidence is identified.
Then, the rest of detections are intersected with this one, grouping the ones whose
intersection is over the 50% of the area of the bigger of the two regions intersected.
Then the weighted mean and variance of the clustered regions is computed, using the
confidence detection value as weight. In that way, the different regions conforming
a cluster are reduced to a Gaussian distribution of region parameters, which reflect
the uncertainty about the real vehicle location. Thus, the final output of the vehicle
detector is a list of normal distributions, detailing the mean and the variance of
the region parameters [2" y” w” h"]T (i.e., the bottom-left corner coordinates of the
vehicle region and its width and height).

Detection Practicalities

Having the whole vehicle detection strategy described, is time to focus on its details.
In order to achieve a high detection rate using the proposed scheme, the scanning of
the road ahead has to be dense. This means that a huge amount of image regions
have to be evaluated by the COC generated. For instance, for a road sampling
grid with parameters d, = d. = 10 cms (see Figure 5.5) it is required to classify
between 350.000 and 500.000 regions per frame, depending on the pitch value 6 of
the acquisition system. This is a remarkably huge number of regions, especially if it
is compared to the amount inspected in other application domains. For instance, in
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Figure 5.8: Positive detector response in subregions around the optimal vehicle
location, for vehicles at near, middle and far distances.

[127] a dense scanning to detect pedestrians consists in evaluating just 12.800 regions
per frame. Hence, for the described application, the classification of the scanned
regions has to be done very efficiently. In the next section we propose two different
techniques to reduce the cost of evaluating the vehicle classifier in frames, namely the
lazy evaluation of the COC, and the optimisation of the COC, in order to reduce the
average number of features required to classify an image region.

5.1.3 Lazy COC Evaluation

Scanned regions are classified using a COC. Each level of the COC is constituted by
a classifier s() as defined in Equation (5.1). Since classification is done in terms of
the sign of the value returned by s(), it is not always necessary to evaluate all their
weak classifiers r; to produce the classification decision. A classification decision
can be taken, as soon as the sum of the accumulated r; responses has a magnitude
bigger than the summation of responses of opposite sign in the remaining rules. More
formally, given a classifier s() and the set of features f of the region to be evaluated,
the number of features n. sy required to establish a classification decision corresponds
to the minimum n accomplishing

Zm(fi)

We propose to take advantage on this fact to minimise the computation required
by the described vehicle detection process, evaluating for each classifier in the COC
layer the minimum number of features necessary. To quantify the significance of this
lazy evaluation scheme, we have applied the learned COC on a set of testing frames,
registering for each processed region the details of the COC evaluation, namely:

J

Jj=n+1

e the number of COC layers evaluated to give a classification decision”;
e the number of features evaluated at each COC layer.

Figure 5.9 displays the statistics of the obtained results, showing the percentage of
processed regions that receive a final classification decision at each COC layer, and

"Notice that only positive regions are expected to be evaluated in all COC layers.
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for each layer, the histogram of the amount of feature needed to classify processed
regions. For each layer, the expectation of the number of features evaluated vs the
total number of features ny of the classifier is presented. Considering the evaluation of
all the layers, it results that, on average, the standard evaluation of the COC requires
computing 102.82 features per region, while the lazy evaluation requires just 76.06.
This means reducing a 26% the number of computed features.

% Regions rejected (labelled non-vehicle) in layers 1-6, and finally classified in layer 7

100 T T T T T T
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Figure 5.9: Lazy COC evaluation on a testing set. Top: statistics of the lazy evalu-
ation of a COC. Bottom: for each layer, histogram of the number of features needed
for classification, remarking with text the average number of features evaluated vs
the total number of features of its classifier.

Results also show that, on average, 96% of regions are discarded (i.e., classified as
non-vehicles) at the first COC layer. This comes from the fact that processed images
present a large homogeneous area (the road), and the image regions croped there are
easy to distinguish from vehicles. However, despite most image regions require the
evaluation of just a single COC layer, this means evaluating 64.34 features, which
involves a noteworthy computational cost, due to the big amount of regions that have
to be inspected at every frame. In order to obtain a more efficient vehicle detector,
less features should be used to discard this greater part of the analysed regions.
Accordingly, we propose in the next section a methodology to further optimise the
learned COC.

5.1.4 Optimising a COC

In order to implement with lower computational cost the task of a given layer of a
COC, we propose to substitute its corresponding strong classifier by another COC.
Ideally, this COC should achieve an equivalent classification performance, requiring
the analysis of fewer features when a frame is processed. The method proposed is
based on a partition of the training set ti.n, used to generate the layer classifier
in order to obtain new classifiers of lower complexity. Let’s denote tg and tg the
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positive and negative examples in ti.n, (i.e., t1.n, = tg Utg). Using the classifier
s() learned from it, we classify the elements in tg, and then we select the ones whose
classification remains always negative once the first 10% of weak rules r;() in s() have
been evaluated. This selection groups negative examples according to how easily are
classified, partitioning tg in two groups:

e one with elements easily distinguishable from positive examples (tg, );
e the other with elements more difficult to classify (tg,).

Heuristically we hope that from these two sets new classifiers will be learned, that
jointly will require evaluating fewer features than the replaced COC layer. From the
training set {tgUtg, }, because it contains examples clearly negative , it seems logical
to expect learning a classifier requiring less features. For {tg Ut©2} it is also logical
to expect obtaining a classifier of lower complexity, because the Adaboost algorithm
will select a subset of features f different to the one of the original classifier s(),
specially dedicated to distinguish the elements in ts, from tg%. Thus, we propose to
recursively apply such a divide and conquer strategy, attempting to obtain classifiers of
lower complexity. Figure 5.10 sketches this idea. The subset tg, is recursively purged
using the described method, until either a classifier with a constrained maximum
complexity is obtained, or the complexity of the classifier obtained does not decrease.
Then, the examples discarded during this process are grouped in a new training set
t&’, and the process is started again. The process is stopped when no significant
improvement is achieved.
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Figure 5.10: Strategy proposed to substitute a classifier s() by a COC.

Using this strategy, the first level of the cascade analysed in Figure 5.9 has been
replaced by 4 new sub-levels which, when applied on testing frames, present the sta-
tistics of Figure 5.11. The joint performance of these new 4 layers is compared in
Figure 5.12 with the performance of the replaced layer. If in the process of scanning
an image 96% of regions were discarded in the first COC layer, requiring on aver-
age computing 64 features per region, now this same amount of regions is discarded
requiring just evaluating 33 features per region.

If the cost of evaluating the whole COC is considered, the average number of
features required per inspected region is now 43.35, which, with respect to the 76.06
of the original COC, means a reduction of the 43%. If we make this same comparison

8However, in case that this would not happen, one could just use the original s() for classifying
to,-
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Figure 5.11: Performance of the new COC layers. Left: statistics of the layers that
replace the first layer of the COC in Figure 5.9. Right: for each new layer, histogram
of the number of features needed for classification, remarking with text the average
number of features evaluated vs the total number of features of its classifier.
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Figure 5.12: Performance of the initial COC layer vs the new learned sublayers.
The new sublayers cuts the average number of features required to classify regions
approximately by half (from 64 to 33).

against the original COC with standard evaluation (102.82 features where required
on average), we have reduced around the 58% the number of features evaluated.

5.1.5 Performance Evaluation

To objectively evaluate the performance of the proposed vehicle detection module,
the following experiment has been carried out. First, sequences different from those
employed for training has been used, which were acquired by three different vehicles
and video cameras. Each camera has fixed optics, and has been calibrated assuming a
pin-hole camera model with zero—skew, with the software provided in [21]. The images
provided by each camera are significantly different, due to their different spectral
sensitivity and automatic gain control mechanism. Sequences have been acquired at
different hours of the day (midday and sunset) and environmental conditions (cloudy
and sunny). From them, 500 frames have been selected in order to construct a testing
set to validate the system. The selection criterion has been collecting frames showing
a variety of vehicles and lighting conditions (presence of shadows, specularities, under-
illuminated environments, etc.). In all selected frames a planar surface is annotated
approximating the observed road. This annotation is easy if parallel road structures
(lane markings, road limits, etc.) are clearly observed in the image. The annotated
plane provides indirectly the camera pitch angle 6 to determine the frame regions to
be inspected. With this information, an ideal scanning of video frames is carried out,
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and the best performance achievable for the proposed method can be quantified®.
The vehicles in testing frames have also been manually annotated, being labelled as

e detectable, if their detection should be mandatory;
e miss—detectable, if they can be miss—detected due to some of the following causes:

— present partial occlusions;
— are farther than the maximum operative detection distance (70 meters);

— lay in another plane different than the scanned.

detectable

detectable

Figure 5.13: Examples of detectable and miss—detectable vehicles.

The labelling of observed vehicles in these two disjoint classes (see Figure 5.13)
has been done to better quantify the detection performance (i.e., count properly the
number of false positives and false negatives of the detector). The miss-detection of
a miss-detectable vehicle does not have to be interpreted as a false negative, since the
objective is not evaluating the detection performance in these challenging cases. On
the other hand, miss-detectable vehicles, being detected or not, are counted neither as
true nor false positives, in order to not distort results. Thus, classification ratios are
computed taking into consideration just vehicles that must be detected. Table 5.1 and
Figure 5.14 show the results obtained for a dense scanning'® of testing frames, using
the original and the optimised COC respectively. Using the optimised COC, a slightly
lower detection rate is achieved (93.91% versus the 94.13% of the original COC), but
also a lower false positive rate per evaluated region. The detection accuracy achieved
is remarkable, due to the complexity of the faced problem (detection of vehicles up to
70 meters away), and the challenging conditions considered in the testing (different
acquisition cameras, daytime conditions, frontal and rear vehicle views, etc.).

The detector has a better performance in detecting the rear side of vehicles, prob-
ably due to the fact that frontal views are underrepresented in the training set (they
constitute less than the 10% of positive training examples). Concerning the type of
vehicles, those more difficult to detect are trucks. We guess that this is due to two

91t would be unfair to evaluate the performance of the detector scanning unproperly frames, as
missdetections could be due to the lack of inspection of regions containing vehicles.
10The ground plane has been inspected using a dense grid of points, with dz = dz = 0.1 meters.
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Table 5.1: Detection results of the original (top) and optimised (bottom) COC.
Original COC - True Positives Detection rates

Car Van Truck Acum.

Rear p47/570 ( 95.96%)(163/169 ( 96.45%)/67/78 ( 85.90%)|=-|777/817 ( 95.10%)
Front| 67/80 ( 83.75%)| 11/12 ( 91.67%)[11/11 (100.00%)=-| 89/103 ( 86.41%)

( ( (
4 4 4 g
[Acum [614/650 ( 94.46%)[174/181 (196.13%)[78/89 ( 87.64%)[=-[866/920 ( 94.13%)|

Original COC - False Positives Detection rates
FP per Window evaluated: 1.509e-004 | FP per Frame: 1.07

Optimised COC - True Positives Detection rates

Car Van Truck Acum.

Rear p45/570 ( 95.61%)[162/169 ( 95.86%)68/78 ( 87.18%)=[775/817 ( 94.86%)
Front| 67/80 ( 83.75%) 11/12 ( 91.67%)11/11 (100.00%)=| 89/103 ( 86.41%)

(
4 4 4 J
[Acum [612/650 ( 94.15%)[173/181 ( 95.58%)[79/39 ( 83.76%)=864/920 ( 93.91%)|

Optimised COC - False Positives Detection rates
FP per Window evaluated: 1.426e-004 | FP per Frame: 1.02

factors. On one hand, trucks conform a class with a bigger within—class variance
than other types of vehicles. On the other hand, the appearance of their rear side
usually vary very significantly depending on the camera viewpoint. This happens
less pronouncedly in the other types of vehicles, where the observed vehicle parts are
approximately at the same distance to the camera. No parallax is appreciated, and
for this reason their appearance scarcely varies with the camera viewpoint. Another
point worth to mention is the number of FPs. On average around 1 FP per frame is
generated, which is significantly big. However, in practice this does not represent a
major problem, as in real sequences FPs present no spatio—temporal coherence, and
can be distinguished from true detections. The suppression of spurious false detec-
tions is solved by the system module described in the next section, devoted to estimate
automatically the 3D state of detected vehicles, in order to initialise the state of a
vehicle tracking algorithm.

5.2 3D Vehicle Initial State Estimation

The output of the vehicle detector in the preceding section provides the statistics
(mean and variance) of the rectangular regions where vehicles have been detected.
These detections have to be reexpressed in terms of their corresponding 3D world
coordinates, in order to be useful for ADAS applications. This section details our
proposal to carry out this task, and presents an algorithm to construct trajectories
from the generated 3D coordinates, which allows to estimate the relative 3D velocity
of vehicles, as well as to discard false detections.
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Figure 5.14: Detection rates of the original and the optimised COC, using different

grouping criteria.
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5.2.1 From 2D Vehicle Detections to 3D Vehicle Locations

Each detection is specified by a Gaussian distribution N (u",¥"), where pu” details
the 2D region parameters [z" y” w” h"]T, and X" their uncertainty. To extract the
3D vehicle location from this observation, N'(u", X") has to be backprojected onto
their corresponding 3D road coordinates. In general, this backprojection can not be
solved, but by assuming that the road conforms to a flat surface (which is realistic
for motorways and high speed roads), and that the camera position with respect to
it is known, this is feasible. Using the model of camera projection presented in (5.2),
the bottom-left corner coordinates [z" y"]T of detected regions are related with the
3D road coordinates [z 0 z]T by

fYh (xo — xr)
f((y° —yr) cos(0) + fv sin(9))
Lo (h (fy cos(f) — (yo — yT) sin(@))) . (5.6)

(5.5)

(¥ —y") cos(0) + fY sin(0)

These expressions require the knowledge of the camera extrinsic parameters (h, @),
which as previously remarked, can vary at every frame due to the action of the
host vehicle suspension system. The variation of h can be ignored, as it provokes a
negligible error on = and z estimations, but a correct 6 value is essential to estimate
them accurately. With the objective of developing a method independent of 6, we
exploit the following relation: given a vehicle detection, the value of 8 can be estimated
if the width w of the observed vehicle and its yaw angle ¢ relative to the Y—axis (see
Figure 5.15) is known. At ground level, the value w’ = wcos(y) projects onto w”
image pixels according to

. f’E w/
"~ . 5.7
z cos(0) — h sin(0) (5:7)

Combining Equations (5.6) and (5.7), we found that
1- 1+(y°fyr)2_(w7~h)2
0 = 2arct " ur 5.8
= 2arctan P wh , (5.8)
Fu w T

and this makes feasible using Equations (5.5) and (5.6) to hypothesise the 3D vehicle
location. Another interesting advantage of knowing w is that the estimation of = does
not require anymore the value of §. Combining (5.3) with (5.7), it follows that

_ r 0 w
x = (x _I)F . (5.9)
Unfortunately, to estimate 6 the values of w and ¢ of observed vehicles are re-
quired, which are also unknown a priori. In practice, the value of ¢ is usually zero,
except in some specific driving manoeuvres, as for instance, vehicle overtaking. How-

ever, whichever its value, in a short time interval'! usually it can be correctly assumed

1 As the one considered in the process of constructing a trajectory from consecutive vehicle detec-
tions, in order to compute the 3D state of the vehicle (see Section 5.2.2).
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Figure 5.15: Top view of the road coordinate system, detailing the vehicle orienta-
tion angle ¢.

as constant. With respect to w, the range of feasible values is quite wide, since a de-
tected vehicle may correspond to a small car (w ~ 1.5 meters), or to a big truck
(w ~ 3 meters). Thus, a priori one may think that there is no advantage on using
our proposal to estimate x and z; if first we needed to guess 6, now we need to guess
¢ and w. However, there is an important difference between both situations. Given
the detections of a vehicle at successive frames, the accuracy of their road location
obtained by guessing directly 6 will vary at each frame, depending on how close this
value is to the real camera pitch angle. On the other hand, road locations derived by
assuming certain (p,w) values will present the same systematic error in all frames,
induced by the wrong assumed values. Due to that, locations extracted in consecutive
frames, although erroneous, will manifest an spatio-temporal coherence, which will
easily allow to construct trajectories from them. These trajectories will be incorrectly
localised on the road, but if afterwards a more precise guess on the (¢, w) values is
available, their localisation can be corrected. Details are provided in Section 5.2.5.

Backprojecting Vehicle Detections

The output of the vehicle detector does not provide simple 2D regions, but normal dis-
tributions AV (u", ¥") of parameters (z",y",w") (h" is discarded because is irrelevant
in the proposed backprojection scheme). Backprojecting these parameter distribu-
tions onto their corresponding 3D road locations is not straightforward, as backpro-
jection Equations (5.5) and (5.6) are non-linear. To solve that, we propose to use
the Unscented Transform [64] mechanism, described previously in Section 2.3.1. In
short, this transform involves the following procedure: a set of samples (sigma-points)
are deterministically chosen from the detection distribution, which jointly match its
mean and covariance. These samples are backprojected into road coordinates with
Equations (5.5) and (5.6), using the value of # computed from Equation (5.8), for an
assumed vehicle width and orientation w, ¢ parameters. Computing the sample mean
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Figure 5.16: Transformation of 2D detections into 3D road coordinates.
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Figure 5.17: Backprojection procedure. Left: distributions of 2D region parameters
(in pixels). Right: the corresponding distribution on road coordinates (in meters).
In both plots, bold dashed lines represent the road plane. It can be seen that, given
a detection with parameters (", y",w"), a fixed value of uncertainty (o = 5 pixels)
is further more critical in w” (rightmost 2D region) than on the other parameters.

and covariance of backprojected samples (properly weighted with defined factors), the
Gaussian distribution fitting the transformed distribution is characterised (see Fig-
ure 5.16). The uncertainty of the final vehicle location distribution depends on the
particular uncertainty in each detection parameter, being w” the one that affects 3D
locations the most (see Figure 5.17).

5.2.2 From 3D Vehicle Locations to 3D Vehicle Trajectories

The procedure described up to this point analyses sequences in a frame-by-frame
basis, and it can not provide information about the dynamics of detected vehicles.
Given the output of the vehicle detector, it generates a list of 3D location distributions
where vehicles can lie. These distributions may correspond to real vehicles or not, so
some mechanism is required to deal with the presence of false alarms, and estimate
the trajectory of genuine detections. There are two different philosophies to perform
this task.
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One option is to use the Track—Before—Detect (TBD) methodology. This approach
is applied in situations where the signal is noisy, and targets can have a very weak
response to its detector (i.e., the sensor has a low SNR). In order to detect them,
algorithms must apply a very low detection threshold, generating an output with
many false positives. To avoid these false detections, TBD methods propose to detect
targets not analysing the sensor signal frame by frame, but analysing a sequence
of consecutive frames simultaneously. The idea is taking advantage that true targets
should have well behaved trajectories, while false alarms are uncorrelated and unlikely
to form reasonable trajectories over time. Thus, they check the spatio-temporal signal
with a model of expected target dynamics, that when it matches, verifies the presence
of a real target, and at the same time determines its dynamics. It that way, the
generation of false detections is prevented. Examples of this strategy can be found in
[121, 20], which essentially implement an integration of the target energy through a
sequence considering a set of potential trajectories.

Another possibility to deal with this problem is using a Detect—Before—Track
(DBT) strategy. In essence this approach uses the same spatio-temporal criterion as
TBD methods, but this time oriented to discard false detections instead of avoiding
its generation. The idea is to connect consecutive detections along time, constructing
target trajectories or tracks. As new observations are collected, they may verify the
correctness of trajectories currently considered, as well as starting new ones. This
process of trajectory construction is not always trivial, as several detections may be
coherently assigned to a given trajectory at a given instant (this situation is commonly
referred as data association problem). In general, in case of ambiguous observation
assignments, the best option is to consider all the feasible hypothesis, and for this rea-
son Multiple Hypothesis Tracking (MHT) methods [16] are commonly applied on this
problem. Similarly to the multiple model algorithms introduced in Chapter 4, at each
time step a tree of hypothesis is expanded for active trajectories, but this time with
the purpose of evaluating the different possible associations between trajectories and
observations. Each considered trajectory is managed by an estimation method (com-
monly a Kalman-based filter) that integrates the information of assigned detections
in an state being estimated. Trajectories started from false detections are discarded
in a few frames, as future detections can not be coherently assigned to them. On the
other hand, true trajectories collect observations in successive frames, confirming the
presence of a real vehicle, and simultaneously estimating its dynamics. Examples of
these methods can be found in [25, 34].

For the system being developed, the DBT strategy has been chosen, as the vehicle
detector used has a high SNR. There exist many different MHT algorithms in the
literature that could be used to implement a solution. These algorithms basically differ
in how they deal with the data association problem. In general, the tree of trajectories
can grow exponentially with the observations. If occasional miss-detections must
also be considered, the growth in the number of hypothesis is even more severe.
Hence, in order to fulfil computational requirements, existing algorithms propose
different strategies to consider only a (presumably good) subset of all the possible
trajectories. Because of that, they are usually referred as suboptimal algorithms.
In this thesis we use the more conventional MHT algorithm, based on solving the
data association problem using the Global Nearest Neighbour (GNN) approach. It
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determines the most likely assignment of input observations to existing trajectories,
under the constrain that an observation can be associated with at most one track.
Unassigned observations initiate new trajectories. Inherently, it considers that an
observation is produced by a single target, which happens in the studied application.
The fact that in the vehicle tracking problem targets are widely spaced and false
alarms occur uncorrelatedly also makes the GNN approach a good a priori choice.
Next section details our implementation of this algorithm, based on the multiple
target Kalman tracker described in [34].

5.2.3 Trajectory Construction

Given a frame, its analysis provides a list of N observations, which are Gaussian
distributions N (y{, R%) on the road location where vehicles may be present. yi =
[z¢ 28T specify the road coordinates of the i-th vehicle, and R is a covariance matrix
denoting their uncertainty. Initially, for each observation (y?, R?), a first-order KF is
initialised, with state

leEC = Yfé ) E? = R% )

where k is a label identifying the different KFs that simultaneously are active. The
dynamics and the observation process of the KFs are assumed linear, defined as

xF = AxF vy, (5.10)

k k
yt = Xt +Wt )

where A is the dynamic matrix, and v; and w; are perturbations with distributions
vi ~ N(0,Q;), wy ~ N(0,R;). The first time that a KF is initialised, as no in-
formation on the target dynamics is available, it is assumed that its state remains
constant, except for a given Gaussian distortion; That is, A is an identity matrix,
and Q; takes into consideration the maximum variation that the position of a vehicle
can experiment between consecutive frames. Using Equation (5.10) the vehicle state
at t is predicted, delimiting a region of interest on the road (a wvalidation gate), that
constraints which observations at instant ¢ can be assigned to the KF. This validation
gate is defined in terms of a Mahalanobis distance between the prediction and the
observations. Given a k-th KF, the j-th observation is at distance d(k,j) from its
prediction, given by

Ak, ) =\ (<l —yDT (S8, ) ok, — vE) -
Using this distance, an observation y{ is assigned to the k-th KF iff

1. lies inside a region of interest delimited by thr, i.e.,

d(k,j) < thr ;

2. it is the closest observation to the k-th prediction, i.e.,

d(k,j) <d(k,i) Vi=1,...,.Ni#j ;
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3. from the set of active KF's (trajectories) which has no yet received a observation,
there is no other I-th KF prediction with [ # k closer to this measurement, i.e.,

d(k,j) <d(,j) Vl=1,...,K withl £k .

The first time a KF of first order (KF1) receives an observation, it does not
reestimate its state, but upgrades it to an state of second order. Thus, the KF state
is set to

xt = [yi yi. 1",
Ri 0

koo t ,

K [o R@J’

where here 0 is a 2 X 2 zero matrix. The state transition matrix A is updated to
express a model of constant velocity, which has been found a good approximation of
the behaviour of vehicles in the analysed application. It is given by

1+A, 1
Z—t 1+OA A 01
A = O At - 0 _A_t
1 0 0 0 ’
0 1 0 0

where A; is the time interval between acquired images. The noise process Q; is
readjusted too, as more accurate predictions now will be made. Future observations
assigned to this second order KF (KF2) will be used to reestimate the vehicle state
using the well-known Kalman update equations (see Appendix B).

If in a given frame, some observations are not assigned to any existing KF, they are
used to start new first—order KFs. On the other hand, if a KF receives no observation,
it persists active over some frames trusting in its state predictions, being robust in
that way to occasional vehicle miss-detections. At each frame, a rule-based procedure
checks active trajectories to verify the detection of vehicles. Once a KF has collected a
given number of observations, the presence of a vehicle is confirmed. On the contrary,
when a KF does not receive observations over several frames, it is discarded and erased
from the list of KF's. This happens for example in KF's started from false detections,
or when a vehicle is occluded or leaves the scene. Figure 5.18 sketches the described
process.

5.2.4 Trajectory Characterisation

Once a vehicle detection is confirmed, the next step is characterising the trajectory
that it has described, making maximal use of the available information. Using the
KF, the distribution of the feasible vehicle states at each instant ¢, using observations
available up to this same instant has been estimated (i.e., p(x¢|y1.t) ). A maximal use
of the IV collected observations can be done, by considering all of them to estimate
the vehicle state at each instant ¢. Formally, this corresponds to estimate p(x:|y1.n)
where N > t. In estimation theory terms, this procedure corresponds to the smoothing
of the trajectory. To do that, we have used a Kalman Smoother (KS) based on the
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Figure 5.18: Sketch of the trajectory construction procedure. For each frame several
observations Y are obtained, which are assigned (if proper) to active first and second—
order trackers KF1 and KF2. The non-assigned observations initialise new KF1s.
After a KF2 successfully collects a given amount of observations along time, the
detection D of a vehicle is confirmed.

Rauch-Tung—Striebel fixed-interval optimal smoother [47]. This algorithm estimates
a smoothed trajectory, from where we then computed the forward velocity vy and
orientation ¢, of the vehicle. First, we project the states of the smoothed trajectory
to the space of Euclidean velocities. Given an state N/(x},¥¥), the distribution of its
Euclidean velocity [v.F v.¥]T corresponds to N (Ex}, EXFET), where

E = % v a0

Ay Ay

Then, we reexpress the Euclidean velocity distribution in polar coordinates [vf ¢f]T.
We do that because in polar coordinates velocity parameters can be interpreted sep-
arately and more directly, and this benefits posterior processes that use them. For
instance, in order to estimate their values in a tracking algorithm, the dynamics of
[vF ©F]T can be modelled very accurately using a simple first order AR model. The
transformation from Euclidean to polar velocities is done using again the UT mecha-

nism (see Section 5.2.1), now with non-linear expressions

Uf = (Uﬁ?f)Q + ('Uzzlf)Q s
go,’f = arctan(vmf,vzf) .

Figure 5.19 sketches the proposed procedure. The distribution finally obtained
codifies the direction of movement of a target integrally in ¢. This is unconvenient
for some posterior applications like vehicle trackers, as in some situation the evolution
of ¢ may present sudden changes along time. For instance, imagine that a vehicle
overtakes the host, and after the host vehicle accelerates approximating to it. In this
case, the first computed ¢ will have a value around zero, which will change abruptly
to around 7 when the host vehicle begins to approximate to the target. To deal with
these common situations, is more convenient to express the direction of movement of
a target in the sign of the forward velocity v, maintaining in ¢ the relative orientation
of the vehicle with respect to the host. Given a polar velocity (vF,F), this means
restrict ¢F € [~m/2,7m/2] , changing the sign of the forward velocity v¥ if required.
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Figure 5.19: Process to estimate the 3D velocity vehicle.

Initial Tracking State Determination

Once the vehicle trajectory has been characterized, the initial tracking state for the
vehicle tracking module is determined. Since the trajectory has been constructed
from vehicle locations estimated using an arbitrary hypothesis '2 of the vehicle width
and height, first it has to be corrected according to a more plausible hypothesis
(i.e., a hypothesis sustained by some kind of evidence). Using the information on
the camera € value that available at this instant (as will be shown posteriourly, the
tracking module can provide a guess on this value), and using the width w" of the last
detection added to the trajectory, a more confident hypothesis on the vehicle width
w is determined from the relation in Equation (5.7). With this new hypothesis on
w, the trajectory can be corrected properly (details are given in Section 5.2.5). Using
the corrected trajectory, the initial tracking state of the vehicle is determined, which
consists in the following parameters (see Section 5.3):

(x,z) : the road location of the vehicle, obtained from the last trajectory state,

(v,) : the vehicle velocity in polar coordinates, determined from the average polar
velocity along the whole smoothed trajectory,

dy : the yaw rate, that is, the velocity in which the vehicle changes its orientation
. This value will be assumed zero.

This values are given to the tracking module, together with a hypothesis on the
vehicle width and height (w, h). We determine the value of h simply from the value of
w estimated, according to the average aspect ratio of the detection regions processed
to construct the trajectory.

12In the sense that it has been fixed before hand, without using any available information to
establishing it.

13Here we need also the value of the vehicle orientation. We take ¢ = 0, which holds in most
cases. However, it is shown in Section 5.2.5 that for near vehicles, ¢ could be estimated from the
trajectory to be corrected if the noise in the locations conforming the trajectory were negligible.
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5.2.5 Performance Evaluation

The presented proposal shows qualitatively a very good performance on real se-
quences, specially in discarding false vehicle detections. However, a quantitative
analysis is necessary to validate it objectively. Due to the lack of ground truth infor-
mation in the available real sequences (i.e, knowledge about the real 3D location and
velocity of vehicles in all frames), the system has been evaluated using synthetic data.
Its accuracy depends on many factors (the 3D position of vehicles, their velocities,
the noise perturbing detections, the fulfilment of assumptions made, etc.). Making
an exhaustive study of all possible situations is unfeasible. However, a selected set of
situations has been considered. In the case of errors derived from breaking assump-
tions done, we provide with expressions to correct estimated trajectories, if at some
point information to correct the assumptions done is available.

The effect of noise

Our first study done has focused on evaluating the system performance in situations
where assumptions hold, but vehicles are noisely detected and occasionaly missde-
tected. Synthetic vehicle trajectories have been generated, and the parameters of their
corresponding 2D image regions computed. An artificial variance has been given to
these parameters, emulating that of real detections. Three different situations have
been analyzed, showing a vehicle at three different starting points, with a velocity
relative to the host of 6 Km/h. The vehicle detection parameters (z",y",w") have
been randomly distorted by different amounts of noise, corresponding to disturbances
of the real vehicle position and width between [—0.15,0.15] meters. Missdetection
events with probabilities between 0 and 40% have been considered. Figure 5.20 gives
some examples of the type of trajectories processed.

For each considered noisy situation, 100 different random sequences have been
generated and processed, computing the disparity between the real and recovered
trajectory, forward velocity, and orientation. The performance criterion used is the
average of the Mean Square Error (MSE) between the estimated and the ground truth
trajectory in the 100 experiments. The presence of vehicles is confirmed, when their
corresponding trajectories collect 12 observations, which has been found sufficient to
filter out false positives. This means that in a real-time implementation, a correct
vehicle detection will be verified approximately in a second. Figure 5.21 shows results
obtained.

With respect to the disparity between the real and the recovered trajectory, the
system performs similarly wherever the trajectory starts. Noise on detections does
not increase significantly the disparity, while on the other hand, the presence of miss-
detections degradates notably the achieved accuracy.

In the estimation of the vehicle velocity [v, ], results achieved depend on the
degree of overlap between the 3D road regions connected to conform a trajectory.
The best results are obtained for close vehicles, as the uncertainty in the 3D road
locations composing the trajectory is small. Concerning the lateral position of vehicles
(z coordinate), centered ones provide a more accurate estimation of their orientation
v, while the estimation of the module of their velocity v is a little bit more imprecise.
Notice that the factor that affects more critically the estimation of the vehicle velocity
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Figure 5.20: Example of noisy trajectories evaluated (light gray lines): a) No noise.
From b) to d), trajectories with incremental added noise to the 2D detected image
region. e) Same as d), but with some missing observations due to occlusion. Dark
lines show recovered trajectories with the proposed algorithm. Dashed lines show the
ideal trajectory.

is the noise perturbing observations, while unexpectely, miss-detections clearly favour
its better estimation. This results from the fact that, due to miss-detections, it takes
a longer time to obtain the N observations that compose a complete trajectory, and
this favours having observations more distant (in spatial terms) between each other,
which will present an inferior degree of overlapping. This attenuates the effect of the
uncertainty of 3D locations in the velocity estimation (Figure 5.22).

In a different experiment, the presence of false positives in the observations has also
been evaluated. In each frame, false detections has been added, distributed randomly
according to a uniform distribution. Results obtained are practically identical to the
ones in Figure 5.21, showing the great capacity of our proposal to discard uncorrelated
false detections.

The significance of violated assumptions

Our proposal to construct vehicle trajectories assumes a vehicle with width w®, mov-
ing at constant velocity with an orientation ¢ = 0. Assuming constant velocity is
usually not a problem, as holds for the small period of time required to confirm a
vehicle detection. Furthermore, the stochastic term of the dynamic model in (5.10)
accounts for slight deviations on this assumption. However, assumptions on w® and ¢
are more arbitrary. Given a vehicle, the only a priori knowledge available on its width
w is a range of its feasible values (commonly w € [1.5, 3] meters). So its very likely
to use a w* deviated from the real w, provoking inaccuracies on the 3D estimations.
With respect to ¢, its value is in most cases really around zero, but in situations like
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Figure 5.21: Trajectory construction performance. a) Extremes of the three types of
trajectories considered. From b) to d): average MSE between real and recovered 3D
trajectory locations, forward velocities , and orientations, in 100 different experiments
done. e) Average number of frames required to confirm a vehicle detection.
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Figure 5.22: Velocity estimation. Left: consecutive observations of three trajecto-
ries. Right: distribution of their corresponding velocity. The more distant observa-
tions are, the less uncertain ¢ is.

lane change or taking a curve, it can deviate considerably from this value. The effect
of violating these two assumptions is evaluated on the next sections, where we also
present a mechanism to a posteriori correct estimated trajectories.

Wrong vehicle width hypothesis (w”* # w) The effect of this error on the esti-
mation of the location of vehicles has a different behaviour for the z and 2z coordinates.
Provided that the assumed vehicle width w® is deviated from its real value a given
scale factor « (so that, w® = aw), then, from (5.9), the estimations of = are deviated
from their corresponding real location by this same scale factor. Hence, if at any point
the real vehicle width is available, x coordinates can be corrected just by balancing
the factor w/w®.

The error in z is not so easily characterized, basically because its estimation de-
pends on the 6 obtained in (5.8) using w®. If at each frame the value of 6 used to
construct the trajectories has been saved, the following procedure can be carried out
to correct the estimated z:

1. Given the smoothed trajectory coordinates z,z, use w® and 6 in each frame
to obtain their theoretic detection parameters ", y", w” using (5.3), (5.4) and
(5.7).

2. Use (5.8) to estimate 6 coherent with y”,w" and the new w value.
3. Use (5.6) to reestimate z from y” and the new 6.

However, if instead of doing this procedure, z coordinates are corrected with the
same factor used for x coordinates, the resultant trajectory is relatively close to the
ideally correct one. Figure 5.23 shows the difference between the correction factor
used (i.e., w/w®), and the one that theoretically should be used for z, given different
w® inaccuracies and z values. Results show that this simplified correction method is
less accurate, the smaller the z coordinates are. However, for the situation of largest
error evaluated (z = 10 meters), notice that the error is inferior to 15 cm, what can
be acceptable for many applications.

Wrong vehicle orientation hypothesis (¢ # 0) To evaluate the impact of the
violation of this assumption, a synthetic experiment has been carried out, evaluating
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Figure 5.23: Trajectory correction factors. Difference between the factor to correct
the x and z coordinates, for an assumption w® = 2.25 meters and real w values
in [1.5, 3] meters. Plots a)—c) corresponds respectively to points at z € {10, 20,40}
meters.

for some selected trajectories with different angles ¢, which is the trajectory recov-
ered by assuming ¢ = 0. Figure 5.24 displays the ground truth trajectories versus
the recovered ones, showing that in some cases the disparity between both is quite
significant.

In general, it is seen that the more distant the = coordinates of trajectories from
zero, the worse located the recovered trajectories. This error increases slightly with
z, and is bigger for trajectories moving forward towards the road center. This asym-
metrical behavior with respect to the sign of ¢ (i.e., the vehicle orientation) is due
to the fact that depending on it, the projection of the vehicle width w” differs more
significantly from the one corresponding to ¢ = 0 (see Figure 5.25). This provokes
that the incorrectness of (5.8) to estimate 6 is bigger, and the 3D vehicle locations
are worse estimated.

However, results in Figure 5.24 show that although recovered trajectories can be
localized quite unaccurately, their length (i.e., the velocity module v;) and orientation
(p) are estimated quite accurately. So advantage on that can be taken a posteriori,
to correct the localisation of recovered trajectories. In order to do that, we propose
the following procedure:

1. given the smoothed trajectory coordinates x, z, use w® and 6 in each frame to
obtain its theoretic detection parameters ", 3", w" using (5.3), (5.4) and (5.7).
Notice that 8 has been estimated in the construction of the trajectory assuming
@ = 0, and this was not true. Having no other way to estimate it, we take at
any rate this value in the required computations;
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Figure 5.24: Different real trajectories studied with ¢ € {—10°,-5°,0°,5°,10°}
(gray lines), and the trajectories recovered using the described method (black lines).
An orientation ¢ = £10° accounts for situations in which a vehicle performs a lane
change maneouvre.
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Figure 5.25: Top view of the projection of the rear of a vehicle onto the image
plane. Tt is seen how symmetric orientations provoke different deviations of w” with
respect to ¢ = 0, which result in different trajectory deviations.
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2. the lateral edges of the rear of a vehicle with orientation ¢ lay on the world
coordinates given by x and x4+ w® cos(p). Using these coordinates, the width of
the image region where the rear of a vehicle projects can be computed. Using
(5.3) and after some algebraic manipulation, it is obtained that

x a 8
S AR )

Zr—20

(5.11)

— wcos(f) sin(y)

3. Isolating  from Equation (5.11), the  coordinate considering now the estimated
vehicle orientation ¢ is obtained, given by

. C w2 — ") (f* cos(yp) +f(::;r_ a® + a”) cos(6) sin(yp)) . (5.12)

4. To obtain the corresponding z coordinate, just (5.12) has to be combined with
(5.3), and then isolate z, obtaining

Lo FEw® cos(p) sec(f) + w(w" — 2° + ") sin(yp) +htan(d) . (5.13)

wT’

To demonstrate how the proposed procedure improves estimated trajectories, Fig-
ure 5.26 shows the result of an experiment carried out. Different trajectories with
¢ = 10° at different world coordinates are first recovered assuming ¢ = 0. Then, the
orientation ¢ of computed trajectories is used to correct their (x, z) coordinates, ap-
plying (5.12) and (5.13). The accuracy improvement is very significant, specially for
trajectories where ¢ is more precisely estimated. Figure 5.27 quantitatively evaluates
the benefits of the trajectory correction in this experiment.

The methodology proposed to relocate estimated trajectories has a very remarkable
performance, but relies on having a good ¢ estimation. Unfortunately, as has been
shown in Figure 5.21, estimating correctly ¢ requires observations scarcely distorted
by noise. Thus, the trajectory correction scheme will be of practical use if a low
distortion of observations can be assured, and mainly for correcting trajectories near
to the host vehicle, as in these cases the ¢ estimation error is small. Otherwise its
application can be counterproductive.

5.3 Multiple Vehicle 3D Tracking

Having vehicles detected and their initial 3D state estimated, the next step is updating
their state along time. This task could be done using the same MHT algorithm applied
to estimate their initial state, but at this point, as the presence of real vehicles in
frames is in some way asserted, we take advantage on that to carry out this task more
efficiently, modelling more accurately the vehicle tracking problem. On the one hand,
to detect vehicles, it is now available their state at the previous frame. This allows
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Figure 5.26: Trajectory correction results. Top: Real (dashed) and recovered (solid)
trajectories for ¢ = 0 (solid). Bottom: Real trajectories (dashed) and trajectories
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to define an specific measurement process to extract vehicle observations, localising
vehicles more accurately than the general vehicle detector can do, and requiring less
computational effort. On the other hand, the knowledge that real vehicles are observed
in frames allows also to model more accurately the observation process. Given a
sequence, the variation observed between frames will be on account of the change of
position of:

e the observed vehicles (the tracked targets),
e the host vehicle (which changes the camera viewpoint).

To correctly model the information obtained from frames, both have to be con-
sidered in the state to be estimated. By assuming that vehicles progress following a
constant velocity model, and that the road conforms to a planar surface, the movement
of vehicles is represented by a velocity vector parallel to the road plane. Extending the
proposal in [36] to consider multiple targets, our proposed system state x maintains

e the velocity describing the change of position and orientation of the host vehicle
between frames (v", dp");

e the position (27, 2%) and orientation (¢’) with respect to the host of each i-th
tracked vehicle, and its corresponding velocity (v*, dp*).

So, if NV vehicles are being tracked, x corresponds to
x = [(v", d"), (2", 2", @' 0t dp) )T

Figure 5.28 illustrates the meaning of the state parameters in an example. Two
different reference frames are used to describe the state vector parameters:

e (v,dyp) (forward velocity and yaw rate) of host and tracked vehicles are expressed
in terms of a fixed global 3D reference frame;

e the position (2%, 2%) and orientation ¢ of targets are specified in the host coor-
dinate system.

Using these two different reference frames, each parameter is represented in the
coordinate system that allows to model its dynamical behaviour more accurately and
using a simple expression. Considering (v, dy) under a global reference frame allows
to assume that their values remain constant between frames, an assumption that
would be unrealistic if a relative coordinate frame like the host coordinate system
were used. On the other hand, to describe the pose of targets (z¢, 2%, ¢?) it is better
to use a coordinate system relative to the host position. This is really the information
of interest, and in that way it is avoided to estimate the position and orientation of
the host vehicle with respect to a global coordinate system. Considering that, next
section details the evolution of the system state parameters.

5.3.1 System Model

The dynamics of parameters in x is expressed in the following way:
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Figure 5.28: Sketch showing system parameters at consecutive time instants.



150 MONOCULAR MODEL-BASED VEHICLE 3D TRACKING SYSTEM

(v,dp) dynamics The behaviour along time of vehicles strongly depends on the
road type where they move. In the current study, vehicles driving on motorways or
high speed roads are considered. In this context the ground plane assumption holds
most of the time, and the behaviour of vehicles is usually regular and smooth. So, it
is expected that vehicles maintain approximately their velocities (v, dy) along time,
experimenting just smooth changes frame—by—frame. To model this behaviour, a Con-
strained Brownian motion model has been used (see Appendix A), taking advantage
that for the current problem constraints can be imposed on the (v, dy) evolution:

e the range of values that they can feasibly take;
e their expected variation between frames.
(2%, 2%, ') dynamics The modelisation of the relative pose of targets at each frame

has been done using a deterministic linear model. Predicting the target pose at each
frame requires to:

e reexpress their pose at instant ¢ — 1 according to the position of the host coor-
dinate frame at instant ¢;

e update their pose given their current velocities.

For the i-th target, this process (illustrated in Figure 5.29) reduces to:

Qi = @y +dol—do}
x% h m%—l 0
i - Rd i - +
] = men [T ][]
T o
wRe | ]
t

where R is a rotation matrix with respect to the Y axis of the host coordinate system.

5.3.2 Observation Model

Initially, our first approach to track vehicles was based on the 3D vehicle wire—frame
approach used in works like [101, 43, 44]. Vehicles where localised by looking for
image contours arranged similarly to the edges of a 3D wire—frame model projected
on the image. However, due to the uncontrollability of the acquisition conditions
and the low dynamic range of the available camera, in some sequences the saliency
of contours in images was very poor, and a bad performance was achieved. Due to
that, we finally decided to use the same model used to detect vehicles (which is more
robust to these challenging situations), to also track them along time.

From the use of the vehicle detection model, it follows that the observation model
has to relate the 3D state of vehicles with the 2D regions on images where these
vehicles are expected to be detected. This is a non—linear relation, which results from
the synthesis of the following procedure. Given the state prediction X;;_, we first
parameterise for each tracked vehicle a bounding box corresponding to its front /rear!

14The one visible from the camera point of view.
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Figure 5.29: Prediction of a target new pose. a) Previous host and target state,
and current velocities. b) & c¢) New position of the host coordinate frame. d) New
coordinates of the tracked vehicle.

side. This bounding box is determined from the road location and orientation of each
vehicle, and the value of its width and height estimated when the vehicle has been
initialised in the tracking module'®. Then, we project the generated bounding boxes
on image coordinates, determining the predicted observation vector y;;_; (i.e., the 2D
regions expected to be observed in images by the measurement process). To perform
this task we need to know the pitch angle 6 at the current instant. We propose a
procedure to estimate its value by means of an exhaustive search on the range of its
possible values, determining 6 as the one that projects tracked vehicles closer to the
regions where they are detected.

Given the state prediction X;;_;, the value of its corresponding observation y;;_;
is computed for 8 € [0,nin, Omaz], which is the range of values that 6 can take according
to the possible states of the host suspension system. Joining the different computed
observations, a group of 2D regions where to look for vehicles is obtained. This set is
then augmented by the slight translation and scaling of its members, and analysed by
a vehicle classifier. The classifier judges if the sub-image in each 2D region matches
the appearance of a vehicle, generating as result a list of positive 2D regions. The
positive regions of each target in X,,_; are then clustered together, finally setting
y: with the average region of each cluster. Once y; has been obtained, an iterative
search procedure is started , to determine the camera pitch 0. that generates the
projection y ;1 closer to it. This Opes; value is considered the current camera pitch
and determines the observation model finally considered (see Figure 5.30). However,
being rigorous, the estimated 6 by this procedure may not correspond to the real 6,
as this depends on the validity of the width and height values (w, h) assumed for each
vehicle. These values are established when a vehicle is added to a tracker, using the
estimation of 6 at that moment. Therefore, the accuracy of the proposed method
depends on the correctness of the 6 considered the first time a vehicle is added to the

15Given the rectangular frame region where a vehicle is observed, we determine the width and
height of the vehicle by backprojecting this region using the values of the camera pitch 6 and the
vehicle orientation ¢ more likely at that instant.
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Figure 5.30: Vehicle measurement process. Dashed lines show the projection of
the rear face of the vehicle, for the bound values of the 6 range. The solid rectangle
shows the measurement obtained, which determines ¢ for this frame.

tracker.

5.3.3 Estimation Algorithm

Once described the system and observation models, it is now time to address the
algorithm to combine them with observations, in order to update the state of vehicles.
Considering that

e we have constated experimentally that noise distorting observations can be as-
sumed as Gaussian distributed;

e we require a method with a low computational cost;

the UKF has been found the more appropriate method to perform this task. At the
end of each estimation cycle, the state provided by this algorithm is checked to control
if the locations of tracked vehicles reflect some of the following events:

e a vehicle is being occluded by another target;
e a vehicle has moved outside the field of view of the acquisition system;

e a vehicle does not receive observations during a given period of time (missde-
tection situations);

e a vehicle moves too far away from the camera for being properly tracked (i.e.,
it is more than 70 meters away).

In any of these situations, target involved are eliminated from x, as they are no
longer observable.

A point to be remarked is that, as the current system uniquely relies on the
location of vehicles in images, the state in x can only be trusted in relative terms.
That is, any situation of a host vehicle with v" = n km/h observing a vehicle with
v! = n+20 km/h is identical in terms of their estimation, whichever the value of n is.
Thus, the value estimated of v" is of use just relatively to v'. To avoid this problem,

additional sensors in the host vehicle could provide information about its egomotion.
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In the experimental work done, a qualitatively robust performance of the vehicle
tracking module is observed. A quantitative evaluation of its performance has not
been possible, because unfortunately we lack of ground truth information providing
the location of vehicles in testing sequences, as well as the egomotion information.

5.4 System Modules Cooperation

Finally, we describe how all proposed modules cooperate to implement the whole
tracking system. Providing a detailed explanation of the system coordination would
be considerably extensive, requiring to provide details on implementation decision
taken that may obscure the essential ideas. For this reason, just an schematic view of
the overall system is provided. Figure 5.31 details the flow of acquired images through
the system modules for the cases in which the system is currently tracking vehicles
or not.

Results obtained from the cooperation of all the modules are encouraging, showing
a reliable performance in the simultaneous tracking of different types of vehicles, even
when acquisition conditions are challenging. However, as previously remarked, this
performance can only be evaluated at this moment qualitatively. Figure 5.32 gives an
example of the performance of the system in a short testing sequence.

5.5 Conclusions

This chapter has focused on the design and implementation of a complete target
tracking system, devoted to detect and track vehicles observed from a camera mounted
in a mobile platform. A modular approach has been followed, integrated by:

e a vehicle detector, to identify the presence of cars, vans and trucks in frames;

e a vehicle 3D state initialiser, to estimate the 3D location and velocity of detected
vehicles, discarding at the same time false detections;

e a vehicle tracker, to estimate efficiently their 3D state along a sequence.

We have designed the vehicle detection module following a classifier—based ap-
proach. Using the Adaboost algorithm, first we have trained a COC from training
data. These classifiers are used to detect vehicles on frames, by evaluating them at
different images regions determined using the projective geometry of the acquisition
system. As the amount of regions to be classified is huge, two proposals has been
done to increase the efficiency in the COC evaluation: an optimisation of the first
COC learned, and its lazy evaluation. Thanks to this two proposals, the number
of image features to be computed per evaluated region has been reduced around a
58%. The performance of the proposed detection system has been analysed on test-
ing frames, correctly identifying around the 94% of detectable vehicles, generating on
average a false positive detection per frame. This high false positive rate does not
suppose a problem to the system developed, as false positives usually do not present
spatio—temporal coherence along time, and this allows to identify and discard them
posteriorly.
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Figure 5.32: Detection—tracking procedure. Frame 000 is the first frame of the
sequence. After several consecutive detections (frame 005), a target is added to the
tracking module (frame 012). Frame 061 shows that the tracker is robust to sudden
changes in the lightening conditions. At frame 110 a new target is added to the
tracking module. Frame 174 shows the situation previous to the elimination of one
target, due to the occlusion it suffers. Also it is shown how a distant truck is detected.
Frame 207 shows the simultaneous tracking of two cars and one truck. Frame 260
shows the situation previous to the elimination of one target that leaves the camera
field of view.

Our proposal to estimate the initial 3D state of a detected vehicle is based on a
method that constructs vehicle trajectories from series of successive vehicle detections.
First, we propose to estimate the 3D road locations corresponding to detections by
combining a model of projective geometry, the unscented transform, and assumptions
on the width and orientation of detected vehicles. With respect to other approaches,
the advantage of our proposal is that

e we estimate a whole distribution of the feasible vehicle locations;

e the error in the estimated vehicle location, derived from the violation of as-
sumptions done, is systematic.

Having just a systematic error is very interesting because the spatio—temporal coher-
ence of successive detections is maintained, and this makes easier the task of estimat-
ing vehicle trajectories. Moreover, a systematic error is always easier to correct. In
our proposal, the localisation errors are mainly due to the use of wrong hypothesis of
the vehicle width and orientation. Conscious of that, we provide with expressions to
correct locations if more accurate assumptions on this values are later available.

In order to construct trajectories from successive vehicle locations, we propose a
multiple hypothesis tracking algorithm based on the KF, using the GNN to associate
locations between frames. Generated trajectories allow to solve two different tasks:
the verification of the detection of real vehicles (false positives are spurious and do
not allow to construct coherent trajectories), and the characterisation of their dy-
namic behaviour. The performance of the proposed methodology has been estimated
using synthetic data, in order to identify how the different sources of error threating
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the proposal affect the results achieved. Results show that trajectories of real vehi-
cles are recovered, even in the presence of significant noise and missdetection events.
Hence, the task of verifying the presence of vehicles and discard false detections is cor-
rectly fulfilled. With respect to the 3D localisation of trajectories, accuracy decreases
when the noise disturbing observations and the amount of missdetections increases.
Concerning the estimation of the 3D vehicle velocity, the accuracy depends on the
overlap between the 3D road regions that conform a trajectory, which is bigger the
more distant the vehicles are.

The information of constructed trajectories is used to initialise the state of a
vehicle tracker. Our vehicle tracking module is integrated by a multiple target tracking
algorithm based on the UKF, and a supervision process that control when tracked
targets are no longer of interest. The state estimated along time includes parameters
concerning tracked targets, as well as the host vehicle holding the camera. In that way,
observations extracted from frames are more accurately interpreted. Results achieved
in testing sequences are satisfying in qualitative terms. A quantitative performance
evaluation has not been possible yet, due to the lack of ground truth information in
testing sequences.



Chapter 6

Conclusions and Future Work

In this thesis we have mainly focused on the application of estimation techniques to
the problem of quantitative analysis of video sequences. In particular, our work has
concentrated on the study of two different application contexts: contour tracking, and
vehicle detection and tracking. We have studied different problems concerning these
topics, and made contributions to each of them.

6.1 Contour Tracking

Our first task developed in this part of the thesis has been the review of the contour
tracking state of the art, following the model-based approach proposed in the Active
Contours formalism. In particular, different approaches to extract contour observa-
tions from frames have been reviewed, as well as Kalman-based and Particle-based
algorithms to track contours from these observations. An in-depth study of the per-
formance achieved by the different proposals has been done. Performance has been
quantified in terms of the overlap between the tracked object and their estimated
shape, as well as in terms of the point—to—point disparity between the estimated
contour and an ideal ground truth contour. Results obtained allow to compare the
accuracy of tracking algorithm in different noise situations, providing insight about
the implementation issues that lead to their best performance.

Regarding the measurement process, Kalman-based and Particle-based algorithms
have a different behaviour. The performance observed in KFs shows that:

e the adaptive control of the length of contour measurement lines is a very relevant
issue in order to achieve a good tracking performance. With respect to the fixed
length approach, it minimises the disturbance that noise artifacts provoke in the
measurement process;

e the best tracking performances are achieved using measurement lines normal to

157



158 CONCLUSIONS AND FUTURE WORK

the predicted contour. With this result, we refute the conclusions in [10]. We
claim that this is due to the method to establish the length of measurement
lines used in that work, which is inappropriate when the normal direction is
used.

On the other hand, the performance observed in PFs! regarding the measurement
process lead to the following conclusions:

e there is no advantage on making and adaptive control of the length of measure-
ment lines;

e determining the orientation of measurement lines according to the method in
[10] improves the performance in noisy situations, but at a high cost. In practice
is more productive just considering a higher number of particles using normal
measurement lines.

A comparative study of the different estimation methods evaluated has allowed us
to reach the following conclusions:

e the well-known superiority of PFs with respect to Kalman—based algorithm is
corroborated specially in high noisy situations. However, in low—noise sequences,
they require a big amount of particles to match their accuracy; Hence, in this
cases a Kalman—based algorithm is preferred.

e the standard PF implementation (i.e., Condensation) is very sensitive to a bad
modelisation of the target dynamics, while Kalman—based approaches are no-
tably robust to that;

e in non-linear contour tracking problems, the performance achieved by the pro-
posed adaptations of the EKF and the UKF is practically the same;

e in presence of noise artifacts correlated in time?, the performance of Kalman—
based algorithms degrades very significantly, while PFs basically present the
same performance no matters whether artifacts are correlated or not.

The next topic of research studied in this part of the thesis has been the im-
provement of the performance of PF in general contour tracking applications. This
applications require the estimation of rigid and non-rigid transformations of a con-
tour, which commonly implies estimating a high dimensional contour state. This
challenges significantly the performance of standard PFs. With the aim to improve
their performance in this cases, we have novelty adapted three different techniques to
the contour tracking problem: the UKPF, the RBPF, and the PS technique.

The UKPF is an algorithm that tries to improve tracking performance of PFs
by estimating, at each time step, a linear approximation of the optimal importance

1Experiments have been done using the Condensation algorithm.
2This corresponds, for instance, to situations where the target of interest is occluded by other
objects.
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function used to propagate samples. Our aim in using this technique has been to
reduce the need of a major number of particles by propagating them better (i.e., closer
to the ground truth state of the tracked contour). Results achieved are noteworthy:

e with a reduced number of particles this algorithm overcomes the performance
of Kalman-based algorithms, even in low—noise situations. To achieve the same
result with the usual PF implementation, a very big amount of particles is
required;

e with respect to the classical PF implementation, a significative better perfor-
mance is achieved in low noise situations, which degrades as long as the noise
increases. Just in extremely noisy sequences, the performance achieved is infe-
rior to the one of the classical PF. In this case, the approximation of the optimal
importance function done by the UKPF is completely distorted, and using it to
propagate samples is worse than using the dynamical model of the system with
this purpose.

The RBPF is a technique that deals with the curse of dimensionality of PFs by
estimating one part of the state analytically (i.e., using Kalman expression), and the
other part by means of particles. As state partitions have compulsorily a dimen-
sion inferior to the one of the original state, the demand on the number of particles
decreases. The adaptation of this technique to the contour tracking problem has
revealed the following performance:

e in low—noise situations this technique successfully overcomes the classical PF
performance. However, it performs worse than an UKF. Results conclude that
in these situations is better to estimate the whole state analytically, instead of
just part of it;

e as sequences present more noise artifacts, the RBPF turns to overcome the
performance of the UKF, but underperforms the one achieved by classical PFs.
This reflects the problem of the Kalman estimation equations when the noise
disturbing observations is mainly non-Gaussian®. In this situation, estimating
the whole or part of the state analytically is bad posed, and the best option is
estimating the whole contour state using particles.

We conclude from results that in the context of contour tracking, the RBPF aver-
ages the pros and cons of Kalman and Particle-based filters at each noisy situations.
Hence, if an specific contour tracking application has a very well defined noise sit-
uation, it will not be clearly the best choice. On the other hand, in an application
where images could alternate high and low noise situations, we think that it would be
possible that the average performance of the RBPF could improve the one achieved
by the UKF and the standard PF.

3Remember that the Kalman equations are derived assuming observations perturbed by Gaussian
noise.
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Our third proposal to improve the contour tracking performance of PFs is based on
the PS technique, which provides a well-founded to implement our following premoni-
tion: if it were possible to estimate the rigid transformation of a contour independently
from its local deformations, this estimation would provide very valuable to improve
the estimation of the whole contour state. Hence, first we have proposed a novel
method to estimate contour rigid transformations in spite of the local deformations
that can be present. After quantitatively evaluating this proposal, which has proven
to be reliable in different noisy situations, we have used this method to implement
the reweighted sampling step of a PS algorithm. The resultant contour tracker has
shown the following performance:

e it overcomes the performance of UKFs, except in low noise sequences, where is
still better to estimate the contour state analytically;

e with respect to the classical PF implementation, a better tracking performance
is achieved in all situations. However, in highly noisy sequences, the performance
of both methods is very similar.

From the three proposals done, we observe that the proposal more regular in
improving the PF performance is the PS algorithm, as overcomes the PF in all the
noise situations. However, in noise situations with a SNR equal or higher than 8 db,
the UKPF is clearly the best performing method, overcoming even the performance
of the UKF. Thus, in many practical application this should be the chosen method.

Our last contribution regarding contour tracking has also been devoted to address
the curse of dimensionality of PFs, but from a completely different perspective. In-
stead of proposing alternative algorithms to deal more robustly with high—dimensional
states, now we propose a method to directly reduce the dimension of the state to be
estimated. Our proposal is replacing the shape model used by a tracking algorithm,
by means of a collection of models of lower dimensionality. In that way, for any shape
model being active at each time step, the contour state will have a lower dimensional-
ity. To make this idea operative, novel contributions have been done in the following
topics:

e the unsupervised characterisation of the SVS of a given shape model;

e the generation of multiple shape models, using the model of the SVS constrain-
ing a given shape model,;

e the estimation of the contour of an object using the multiple models generated.

Concerning the first topic, we have developed a novel algorithm to model the SVS
of a given shape model using a GMM. Our proposal is based on embedding the EM
algorithm inside a divisive hierarchical clustering technique. Using a greedy search
strategy, we have achieved a performance comparable to the one obtained using an
exhaustive search strategy. Our proposal is very appealing to be used in practical
applications, as no parameters has to be set by the user.
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Using the GMM delimiting the SVS of a given shape model, we have proposed an
original method to generate a collection of multiple models from it. Generated mod-
els represent training shapes more accurately than the original global shape model,
requiring in overall an inferior number of parameters. The validity of the proposed
multiple model approach has been tested in the context of modelling the silhouette
of a walking pedestrian. In terms of the BIC, it has been constated that our pro-
posal provides a better shape modelisation than the one obtained using a single model
approach.

Finally, we have proposed a novel algorithm to track contours using the generated
multiple shape models. First, the dynamics of each model, as well as the interaction
between them, has been modelled using a JMS. Then, an algorithm based on the
PS technique has been presented. We have evaluated the performance of our algo-
rithm experimentally, showing that in all noise situations, the multiple shape models
approach overcomes the performance achieved by the traditional single shape model
approach.

6.2 Vehicle Detection and Tracking

This part of the thesis has been devoted to the development of a complete vehicle
tracking system, with the aim to extract information of interest for ADAS applica-
tions. Our goal has been developing a system to detect and track vehicles observed
from a camera mounted in a mobile platform. A modular approach has been followed,
integrated by a vehicle detector, a vehicle 3D state initialiser, and a vehicle tracker.

We have designed the vehicle detection module following a classifier—based ap-
proach. Using the Adaboost algorithm, first we have trained a COC from training
data. These classifiers are used to detect vehicles on frames, by evaluating them at
different images regions determined using the projective geometry of the acquisition
system. As the amount of regions to be classified is huge, we have contributed with
two proposals to increase the efficiency in the COC evaluation, namely a COC optimi-
sation, and its lazy evaluation, reducing around a 58% the number of image features
to be computed per evaluated region. The proposed detection system detects the
94% of the detectable vehicles in a set of testing frames, generating on average a false
positive detection per frame. This false positive rate does not suppose a problem to
the system developed, as false positives usually are uncorrelated, and this allows to
identify and discard them posteriorly.

Our proposal to estimate the initial 3D state of a detected vehicle is based on
a method that constructs vehicle trajectories from series of successive vehicle detec-
tions. First, we have proposed a novel method to estimate the 3D road locations
corresponding to the positive image regions returned by the vehicle detector. With
respect to other approaches, the advantage of our proposal is that

e we estimate a whole distribution of the feasible vehicle locations;

e the error in the estimated vehicle location, derived from the violation of as-
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sumptions done, is systematic.

Having just a systematic error is very interesting because the spatio—temporal coher-
ence of successive detections is maintained, and this makes easier the task of esti-
mating vehicle trajectories. In our proposal, the localisation errors are mainly due to
incorrect hypothesis done on the width and orientation of the detected vehicle. Con-
scious of that, we have provided with expressions to correct locations if more accurate
assumptions on this values are later available.

In order to construct trajectories from successive vehicle locations, we have pro-
posed a multiple hypothesis tracking algorithm based on the KF, using the GNN to
associate locations between frames. Generated trajectories allow to solve two different
tasks: the verification of the detection of real vehicles (false positives are spurious and
do not allow to construct coherent trajectories), and the characterisation of their dy-
namic behaviour. The performance of the proposed methodology has been estimated
using synthetic data. Results show that trajectories of real vehicles are recovered,
even in the presence of significant noise and missdetection events. Hence, the task
of verifying the presence of vehicles and discard false detections is correctly fulfilled.
With respect to the 3D localisation of trajectories, accuracy decreases when the noise
disturbing observations and the amount of missdetections increases. Concerning the
estimation of the 3D vehicle velocity, the accuracy depends on the overlap between
the 3D road regions that conform a trajectory, which is bigger for the more distant
vehicles.

From the information collected in the constructed trajectories, we have proposed
a method to establish the initial 3D state of vehicles, to be provided to the vehicle
tracking module. The proposed vehicle tracking module is integrated by a multiple
target tracking algorithm based on the UKF, and a supervision process that con-
trol when tracked targets are no longer of interest. The proposed approach is based
on an extension of the formulation in [36] devoted to manage multiple targets. Re-
sults achieved in testing sequences are satisfying in qualitative terms. A quantitative
performance evaluation has not been possible yet, due to the lack of ground truth
information in testing sequences.

6.3 Future Research Directions

During the work developed in this thesis, different possible lines of continuation have
been identified:

Concerning the work developed in contour tracking, we claim that the proposed
multiple shape model tracking approach can be further extended:

e with respect to the generation of multiple shape models, and the description of
their dynamics, alternative algorithms could be considered (for instance, based
on auto-regressive HMMs [92]);

e in the use of multiple models for contour tracking, other estimation algorithms
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could be also considered. For instance the RBPF could be used, estimating the
distribution of the discrete variable identifying the active model by means of
particles, and the distribution of the parameters of each model using a KF.

With respect to the proposed vehicle tracking system, next steps could be done
in the following directions:

e acquiring a collection of testing sequences synchronised with the output of other
sensors installed in the host vehicle (accelerometers, radar, lidar, stereo cameras,
etc.). These sensors will provide additional information on acquired frames, that
could be used as ground truth to evaluate quantitatively the performance of the
different modules of the system.

e improving the vehicle detection module, by improving the performance of the
classifier used to detect vehicles. Concerning that point, there are a lot of
complementary alternatives to study:

— using a different machine learning technique to construct the classifier
(SVMs, NN, etc.);

— using different sorts of features to describe vehicles;

— turning the proposed binary classification problem (i.e., vehicle/non-vehicle)
to a multiclass classification problem (i.e., car/van/truck/road/guard rail/
etc.);

— learning a multipart vehicle model, in order to gain robustness to occlu-
sions, glitters and shadows, taking advantage of the spatial relationship
between the considered vehicle parts;

— training different classifiers optimised to detect vehicles at specific ranges
of distances.

e adding an egomotion estimation module to the current system, which will pro-
vide valuable information to increase the accuracy on the 3D information ex-
tracted from sequences. For instance, we could start by checking the egomotion
estimator proposed in [107], as authors claim to achieve a remarkable robust
performance.

e using alternative vehicle models in the vehicle tracking module. Different topics
may be considered:

— using appearance models generated on-line for detected vehicles, having in
that way an ad—hoc model for each vehicle being tracked;

— using 3D wire—frame vehicle models, adapting them to vehicle contours
in order to better estimate their 3D pose. For a robust performance of
this approach, images should be acquired using a camera with a high dy-
namic range, in order to guarantee the saliency of vehicle contours even in
challenging illumination conditions.
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Appendix A

Models of Dynamics

The dynamics of many physical processes can be approximated by first, second and
sometimes higher—order ordinary linear differential equations in time domain. A gen-
eral expression of a second order differential equation is

0z (t) Ox(t)

BT +a; ot +apx(t) = z(t), (A1)

ag

where z(t) is the modelled function, and z(t) some external forcing function, indepen-
dent of x(¢). Although this models are very usual in general tracking applications,
concerning visual tracking is more common the use of models based on discrete time
series. For a second order motion model, expressions of the following form are used

T = T+ Qerio+ & (A.2)

which describes the value of a function at instant ¢ (denoted as z;) by means of a
weighted sum of its previous values. This expression can be easily related to (A.1)
through time discretisation. For instance, applying the Euler method on (A.1) with
a discretisation constant 7, parameters in (A.2) are determined as
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If the forcing function &; is a Gaussian white noise process, then (A.2) defines
an auto-regressive process of second order (AR(2)). These kind of processes are
also known as Markov Processes, and describe a stochastic dynamic process using
expressions of the form

mo= vty amig+bowr (A.3)
k=1
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where v and oy, are real constants, being «y, # 0, and byw; corresponds to a Gaussian
white noise process with parameters N'(0, bob? ).

For mathematical and notation convenience, dynamics are commonly expressed
in the vector-matrix form proposed by the state-space notation. For instance, (A.3)
when v = 0 is expressed as

Tt ap Qy o pe1 Oy Tp—1 bo

Tt—1 1 0 s 0 0 Tt—2 0
Tioo - o 1 - 0 0 -3 | 4| 0 | w, (A4)

mt—(n—l) 0 0 s 1 0 Tt—n 0

This is called the companion form of Equation (A.3), and it describes the n-th
order dynamics of x; as a first—order Markov model in state—space. Usually it is
expressed more compactly as follows

Xy = Axt—l + BWt 5 (A5)

where terms equals one to one with vectors and matrices in Equation (2.9), except
for the part of the stochastic error term & . Here it is alternatively expressed using a
n x n B matrix given by

by 0 0 0
0 0 0 0
B — :
00 -~ 00

and a n x 1 Gaussian white noise vector wy.
A third parameter X can be added to fix a desired mean dynamical behaviour,
leading to the following final expression of dynamics

Xy —X = A(thl — i) + BWt .

There exist several proposals to establish the dynamic parameters A, B, x of
AR processes from training sequences. Relevant works are the ones in [93, 123, 89].
Although learning techniques provide quite accurate descriptions of the behaviour ob-
served in training sequences, their use in practical applications may require providing
very long and complete training examples. Otherwise, a model too specific to the
given training data is obtained, which is obviously counterproductive. In general, in
many applications the a priori knowledge on the dynamics of a process is quite loose,
as its evolution can perform a wide spectra of variations. In this cases, with a single
model only a very general description of this behaviour is possible, and an operative
way to model dynamics is selecting a generic model from available a priori knowl-
edge, and then use training sequences for a fine tuning of parameters involved. Next
section describes generic models typically used in visual tracking, and how to parame-
terise them to obtain a desired constrained behaviour. Expressions developed assume
X = 0, but the term X can be easily incorporated by replacing in the expressions x;
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A.1 AR(1) Processes

An AR(1) process is a first-order process, meaning that only the immediately previous
state value has a direct effect on the current value. For modelling the evolution along
time of a single parameter ¢, the terms in equation (A.5) will correspond to

Xt = [Ct] ,
A‘ = [Oé] )
B = [b) .

A typical form of AR(1) (known as Brownian motion (BM) ) corresponds to
setting @ = 1. It models the assumption that ¢; maintain the same value than in
the previous instant, except for a given disturbance N (O,BBT). This displays a
random evolution of x;, which mimics for example the one observed in microscopic
particles immersed in a fluid, or less scientifically, in the walk of a very drunken
person. x; evolves unbounded, what is a problem in practice, as parameters are
usually meaningful inside a given range of feasible values. Considering that, what can
be useful in practice is a Markov process showing the random—walk behaviour on a
short—time scale, but constrained in a given subspace. For the cases where a Gaussian
envelope is a satisfying approximation of this subspace, this can be achieved by just
using 0 < o < 1, modelling what is known as Constrained Brownian Motion (CBM).
If a2 =1 — € with 0 < € < 1 then, on a small time-scale, the dynamic process is
almost indistinguishable from the case o = 1. However, in the long term can be seen
that the x; is constrained in a Gaussian envelope given by A(0, %BBT) (see chapter
9 in [18]). Figure A.1 display the evolution of a system following respectively BM
and CBM. Under same initial conditions and equivalent disturbances, it is clear than
CBM maintains the evolution of the process in a range determined by a Gaussian
envelope.

20 /\'W\l\ /J‘\/\‘ 1 -20- b
)
(i
-a0f \,\/JV; -a01

L L L L L L L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure A.1: Evolution of a process following BM (left) or CBM(right). Horizontal
lines mark the constrained imposed in the CBM.
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A.1.1 Parameterising a Constrained Brownian Motion

In this section is detailed an original proposal to establish the parameters of a CBM
to obtain a desired behaviour. As described previously, a CBM constraints values
in a Gaussian envelope given by (0, %bobg), being e a parameter that determines the
AR(1) process by the relation a? = 1 —e. Given the AR(1) of a parameter z; as

T = axy—1 + bowy (A.6)

the idea is take profit of the properties of Gaussian distributions to establish parame-
ters (o, bg) in a way that

e C1: constraints x; in a desired range [, 1],

e (C2: forces the term bow; to take an average magnitude equivalent to m (the
most likely disturbance expected).

This is achieved in the following way. It is well known that a random variable
with Normal distribution A/(0,0?) is constrained with a 99.73% probability in the
range [—30,30]. From this property, the Gaussian envelope in a CBM establishes
consequently a range of more likely x; values, that it can be adjusted to have desired
bound values. Thus, a CBM that fulfils constraint C1 requires that

bo

Another property of random variables with Normal distribution A'(0,0?) is that
the expectation of their absolute value corresponds to o4/2/m. As from expression
A6 the disturbance term byw; follows a distribution N (0, bobl'), this property can be
used to tune the CBM to fulfil C2. This requires a by value given by

bO = gm. (A.g)

Thus, the more likely disturbance expected m determines the value of by. Once
bo is established, then combining (A.7) and (A.8) ¢ is determined as

<= 57

and the parameter a of the desired AR(1) is obtained as « = /1 —e.
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A.2 AR(2) Processes

Second—order Markov Processes are popularly used because model dynamic behav-
iours less random than the ones of AR(1). For modelling the evolution of a model
parameter ¢, the terms in equation (A.5) will correspond to

- o
= A9

Xt I Ci1 :| ’ ( )
o [ a1 Q2

A = R ] , (A.10)
[ 0

B = K O] . (A.11)

A typical AR(2) used for translational motion is the Constant Velocity model,
obtained with a; = 2 and as = —1. However, with this model the value of x; evolves
unbounded for any by > 0, which as explained before is undesirable. There exist
however alternative parameterisations of A that effectively impose value constraints.
A wusual approach is establish a; and as to mimic the behaviour of an harmonic
oscillator. In differential equation terms, an harmonic oscillator is expressed as

0?%x(t)
ot?

+2582§t) Fulat) = () (A.12)

where 0 and wy are respectively the damping constant and the natural frequency of
the oscillator. In terms of an AR(2), (A.12) is reproduced using the following factors

al = 2exp(—07)cos(—iwgr) ,
a2 = —exp(—2067) ,

where wy = /3% — w} is usually denoted as the damped frequency of the oscilla-
tor. Depending on the value of § and wy and the relation between them, b; evolves
according to the typology shown in figure A.2.

The usefulness of an harmonic oscillator model is quite obvious for objects present-
ing a periodic movement (for example, the outline of a beating heart). wy establishes
the desired frequency of oscillation, while 3 controls the magnitude of the reaction to
perturbations . The value of by acts as an scale factor of the whole process evolution,
and determines the amplitude of the range of values that z; may take (see figures
A.3 and A.4). Tt can be shown (chapter 9 in [18]) that this range is delimited by a
Gaussian envelope given by N (0, %bobOT), where

04205%

€ = l—-a3—aj—2 (A.13)

1-— (65) '
By establishing wy = 0 it is possible to model constrained non-oscillatory behav-

iours, which are more useful for practical problems than oscillations. Next section
details our proposal to parameterise this behaviours imposing a desired constrain.
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Figure A.2: Response of an Harmonic Oscillator to an impulse signal (i.e. z(t) =
0(t) in (A.12)). Dotted: undamped (6 = 0). Dashed: under-damped (5 < wo).
Solid: critically damped (8 = wo). Dash—dotted: over-damped (3 > wo).

Figure A.3: Response of an under-damped (left) and a critically damped (right)
oscillator to an impulse signal. The damped frequency wd is fixed, while different
damping values are considered: (3 (solid line) and 28 (dashed line). Notice how
[ controls the reaction to perturbations along time (both magnitude and temporal
influence).
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Figure A.4: Evolution of a AR(2) process of fixed wd = 27. On the left, plots for
(B,bo) (solid) and (3, 2bo) (dashed), showing that by can be interpreted as an scaling
factor. On the right, plots for (3,bo) (solid) and (23, bo) (dashed). The bigger the
3, the smoother the reaction to perturbations.

A.2.1 Parameterising a Critically Damped Oscillation

As noted before, a valid model to be applied in a real practical application many
times require to be a very loose and generic one. In many cases, the only a priori
knowledge that can be exploited is the range of values that a process may take, and
some notion of the process evolution along time. When this evolution is quite erratic
and noisy-like, CBM can be a good and computationally cheap option. When the
state evolution is more smooth and has more inertia, the use of an AR(2) provides a
better description. Interpreting the parameters (a1, a2) as coefficients of an Harmonic
Oscillator, a non-oscillatory state evolution can be obtained by imposing wy = 0 (i.e,
parameterising a Critically Damped Oscillation (CDO) ). Due to this constrain, it
holds that —a? = 4ap. If it is computed the variance of state values as t — oo, it can
be shown that it tends to Lbyb{’, where now

2

8
e=1—aj3+4as + o2 (A.14)
1 — Q2

Using the properties of Gaussian distributions, a shape parameter b; can be con-
strained in a desired range [—[,[] by imposing the relation
bo

1=322 .
Ve

. . . . 2 .
Given by, this expression determines € as € = (%) . Thus, having €, the value of

ap can be isolated from (A.14). The solution that determines ap is not unique, but
imposing ay € R, it is found that

n € ~(=9e+ V3272 4 3)1/3
559 1 VAVIIE T ) 57 ’

0422—].
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and from s, the value of § is determined as

log(~as)
27 '

From the presented procedure, parameterising a desired constraint requires spec-
ifying 2 parameters (I,bg). Figure A.5 shows the effect of by for a fixed maximum
range value [, for dynamics modelled respectively by a CDO and a CBM. For CDOs,
it can be seen that the smaller by, the smoother the trajectory (3 is also smaller).
However, the average rate in which the range of feasible values is explored is basically
maintained. This is a behaviour completely different to the one of CBMs. In CBMs,
the value of by determines the average velocity of dynamics, so the range of feasible
values is explored more slowly. At long term both models share the same statistics,
but CDOs allow moving inside the range of feasible values with a fast and smooth
movement, while CBMs only can model this fast movement by means of a very abrupt
and erratic evolution. The behaviour of both models is similar just when the feasible
range of valid values is up to an order of magnitude bigger than assumed average
perturbations.

6=

CDO with (1, bo/2)

CDO with (1, bo)

L
o 05

L L L L L L L
15 2 25 3 0 0.5 15 2 25 3

CBM with (I, bg) CBM with (1,b/2)
Figure A.5: Evolution of a CDO (top) and a CBM (bottom) for two given parame-
terisation.



Appendix B

Probabilistic Origins of the Kalman
Filter

The objective of this appendix is document the derivation of the KF equations from
a probabilistic point of view, complementing in that way the explanation commonly
given in the literature, derived from a computational point of view [9, 122, 94]. For
the sake of readability and completeness, the appendix re-examine briefly some key
topics already described in the thesis chapters.

The KF addresses the problem of estimating recursively the state x; of a given
continuous Markov process, from its observations y1.+ = {y1,...,yt} obtained along
time. The process to be estimated is assumed to be governed by a linear stochastic
difference equation

Xy = AXt,1 +VVt . (B].)

This expression describe the evolution of x; by the summation of a determinis-
tic and a stochastic term. The deterministic term models the expected evolution
of x¢ by means of a system transition matrix A. This matrix established a linear
auto-regressive relation between successive states of x;. However, no mathematical
model represent perfectly the evolution of a process. Furthermore, the dynamics of
a process can also be driven by disturbances that can be neither controlled nor mod-
elled deterministically. For this reason, an stochastic term is also considered. This
term is governed by a random variable v; denoting an independent Gaussian white
noise sequence N'(0,I). The matrix V multiplying v; transforms the noise sequence
to mimic the distribution of (0, Q), where Q = VV7. The matrix Q is referred
as the process noise covariance and represents the inaccuracy in the deterministic
dynamic model used.

Observations yj.; are collected by a measurement process, which is modelled by a
linear stochastic equation given by

Yy = HXt + th . (B2)

H is the measurement matriz, and describe the deterministic linear relation be-
tween the state and its observations. The sthocastic part of (B.2) represents the dis-
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turbances corrupting measurements. It is governed by a random variable w; denoting
an independent Gaussian white noise sequence A (0,T). This sequence is modified to
be distributed as A'(0,R) by means of the matrix W. The matrix R = WWT is
referred as the measurement noise covariance.

From a Bayesian point of view, the task carried by the KF is the estimation of
the conditional probability density of x;, conditioned on the data yi.;. Formally, this
means characterise the density

p(xelye) -
Applying the Bayes’ theorem, this can be developed as

P(Xty1:)
p(y1:t)
P(Xeyelyr:e—1)p(y1:e-1)
P(y1:t)
P(Xeye|yie—1)p(Yie-1)
Pyt |Y1:t—1)p(Y1:t—1)
Py tlyre-1)
p(ytlyre-1)

p(xely1s) =

)

(B.3)

For the modelisation of the problem done, given an initial Gaussian distribution of
the process state xg ~ N (%, 25*), this is propagated along time through stochastic
linear equations with white Gaussian noise. A consequence of that is that the distrib-
ution of p(x¢|y1.¢) is Gaussian, too. An important implication of that is that the right
side terms in (B.3) are necessarily Gaussian. This fact is important, as allows to take
advantage of the relation between the joint and conditional distribution of Gaussian
random variables, in order to parameterise p(x¢|y1.:) . The following section describes
this relation, and next it is used to characterise p(x¢|y1.¢)-

B.1 Joint and Conditional Gaussian Random Vari-
ables

Two random vectors x and y are jointly Gaussian if the stacked vector z = [x y|7 is
Gaussian, with parameters

o3 B )
where

= Blx-%)(x-%)7]
>y
Vo= Blx-%)(y-3)=®E",

I
=
<

|
<\</>
<

|
<>
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are the blocks of the partitioned covariance matrix.
If x and y are jointly Gaussian, they are also marginally Gaussian. That is,

px) = / p(x,y)dy = N (&, %) |
py) = / p(x,y)dx = N3, 5%) .

Taking that into account, the conditional density p(x|y) can be analytically com-
puted. Using Bayes this is expressed as
pxy)
pxly) = —/=, (B.4)
(cly) p(y)
B 27272~ 2 exp (-1 (z — 2)T(2%2) "1 (z — 2))
o [2rEw [ 2exp (3 (y —3) T () Hy —9))

|27TEZZ 71/2 1 ~ S R L
WQXP —; E @) -y () ly) | (BS)
q
where
7z = z—A,
vy = y-y.

The subexpression in (B.5) denoted as ¢ can be expanded as

q = [ ;:( }T[ g;z g;z }71[ ;:( } _S,T(EYy)—ly 7
- { ; ﬁ S;i S;i } [ ; } -y =)ty (B.6)
—_————
Szz

where the matrix S%% = (Ezz)f1 can be easily determined by solving

(s mw [ s | = [0 1] 1)
Expanding deeper expression (B.6) it is obtained that
g = X'Sx+x"SVy 4y SV x4y Sy -y (=),
which rearranging terms, it can be equivalently expressed as

¢ = &+ (8IS SR+ (57 15F) +
+3T(S - 8(E) ISy -5 (2) Y (B3)
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The resolution of (B.7) states that
(Eyy)—l = SYy _ Syx(sxx)—lsrxy ,

and applying that result on B.8 it is obtained a quadratic form that characterises the
Gaussian density p(x|y), given by

¢ = (X+(S)7ISVy)TSN(x+ (8%) 1Sy (B.9)

From this expression, the mean and covariance of this density can be easily iden-
tified. The mean is obtained by solving the following equality

x - Blxly] = %+(8%)7'59y
x—Elxlyl = x-%+(8)'SV(y-y)
Elxly] = % (S%)7'S¥(y-3) . (B.10)

The covariance of p(x|y) must correspond simply to
Covlxly] = (S*)°! .

Making the proper substitutions using the terms obtained by solving (B.7), the
final expressions of the first and second statistics of p(x|y) are given by

Elxly] = x+Z¥(EY) (y-y),
Cov[x|y] = X -3y (xyy)~lyyx
Results obtained conclude that given two vectors x and y jointly Gaussian, the

mean and covariance of the conditional density p(x|y) can be determined by a linear
combination of the parameters of

o p(x) ~ N(x,5*).
e p(y) ~ N(y,=¥).

o XXV,

B.2 Solving the Kalman Estimation Problem

The problem to be solved by the KF presents a clear analogy with the one in the
previous section. The expression to be characterised is

PXt|Ytyi:t—1) =
(t| o ) p(Yt|Y1:t—1)

which in fact present exactly the same relations as (B.4), but now the variables x;
and y; are conditioned on a third variable yj.;—1. As the assumptions made imply
that x; and y; are jointly Gaussian, the resolution scheme is exactly the same that
for p(x|y). By analogy with the previous result, the first and second statistics of
p(x¢|y1:+) are determined from a linear combination of the parameters of
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o p(xelyrie—1) ~ N (Xepe—1, B )
o p(yilyia—1) ~ N(yt\tfla Eﬁ_l)-

xy
* X1

B.3 Characterising p(x|y1.+-1)

p(x¢]y1:4—1) is a Gaussian density denoted as state prediction distribution. Charac-
terising it implies determining its first and second order statistics F[x¢|y1.+—1] and
Cov[x¢|y1:t—1], commonly expressed respectively as X;;_; and Efﬁil' X¢[¢—1 is deter-
mined by applying the system process equation (B.1) in the corresponding expectation
computation. From the properties of the expectation computation (see table B.1), it
follows that

Elxy11-1] = E[Axi—1+ VVi|yie—1] ,
= AE[xi1lyre-1]+ VE[Vi|y1-1] -
As by definition v¢ is an independent variable, with E[v;] = 0, it results that
Elxi|yii-—1] = AE[xi_1|y1t—1] + VE[v¢] ,
= Af(t—1|t—1 .

t[t—1
which, by making similar substitutions to the ones to compute X;;_1, corresponds to

To characterise X it is useful to first define the state prediction error x;;_1,

~ é A
Xtlt—1  — Xt — Xg|t—1 >
= Xt — Axtfl\tfl )
= Axy 1 +Vvi—AX g1,
= A(x¢—1 —Xiqp-1) + Vi,
Ax; qj4—1+ Vv .
This simplifies the derivation of state prediction covariance expression. By defin-
ition, it corresponds to

o1 = Elxe —Xg-1)(xe —%y-1) " |y1a-1]

= E[it|t_1i£t,1|y1:tfl] ’
= E[(Akt—l\t—l + VVt)(Af(t_”t_l + VVt)T|y1:t71] .
(B.11)

From the properties of the expectation computation, and provided that v; is a
noise term independent from yi.;_1, it results that

2(\?71 = AE[itfl\tfli?—l\tﬂ|Y1:t—1]AT + VE[VtV:EF]VT +
+AEK v VI + VEvX{ |, JAT .
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As the noise in the system process is assumed uncorrelated (i.e. E[f(t_l‘t_lvtT] =
E [vtif_ll 1] =0), previous expression finally reduces to

-1 = Azﬁcl\t—lAT‘FQ .

Thus, summarising, the state prediction distribution p(x¢|y1.1—1) corresponds to
a Gaussian distribution with parameters

N(&t|t717 Eﬁﬁ_l) = N(A&tfl\tfla Az?f”t_lAT + Q) .

B.4 Characterising p(y:|y1.:-1)

p(yi|y1:+—1) is a Gaussian density denoted as measurement prediction distribution,
whose statistics Ely¢|y1.+—1] and Cov[y¢|y1.—1] are commonly expressed as y;;—;

yy
and Et‘t_l.

yt\tfl £ Elyi|y1:e-1] ,

Eiﬁ_l £ CO'U[Yt|y1:t71] = E[(}’t - yt\t—l)()’t - ytlt—l)T|y1:t71] .

To obtain y;—1, equation (B.2) is substituted in the corresponding expectation
computation, obtaining
Elyilyii-1] = EMHx; +Wwilyi:1] ,
= HE[X¢y11-1] + WE[wW¢|y1.0-1] -

As wy is an independent variable with E[w;] = 0, it results that

Elyiyit—1] = HE[X¢|y1.—1] + WE[wy] ,
= H&t|t71-

To compute 22’&’71 it is useful to first define the measurement prediction error

Yijt—1, which, by making similar substitutions to the ones to compute y;;_, corre-
sponds to
~ A A~
Yit—1 = Yt = Ytjt—-1 >
= Yt~ H&t|t71 )
= Hx; +Ww; — Hxy;_ ,
= H(x¢ — X¢p—1) + Wwy
= Hs(ﬂtfl + WWt . (B12)

Yy

Using that result, the measurement prediction covariance 3 tlt—1

is computed as

22’&’4 = Ellyt—9ee-1)ye — Teje—1)" [y1e—1]
= E[S’t\t—lf’ﬁt—lb’l:tﬂ] )
= E[(Hf{t“,l + WWt)(Hiﬂtfl + WWt)T|Y1:t—1] )
= HE[Ry 1%, |y JH + WEww! W7 4
+HE[X,;_1w! W' + WE[wx/, ,JH" .
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tt—1

Using the fact that w; and X;;_1 are uncorrelated (i.e. E[Xy;_ 1wy ] = E[w;x],
0), it results that

tlt— =

=Y, = HZff H +R.

tt—1

Thus, summarising, the measurement prediction distribution p(y:|yi.t—1) corre-
sponds to a Gaussian distribution with parameters

N(ytlt*hzfﬁ—l) = N(Hx;; ., HEF HT +R) .

B.5 Characterising Zﬂt )

The cross-covariance between x; and y; conditioned on yy.;—1 is defined as
E;ﬁ,l = El(xt— fcth%l)(Yt - yt\tfl)Tb’l:t—l] )
= E[it\t71y£t71|Y1:t—1] .

From the result derived in (B.12), and applying the properties of expectation
computation, this term is developed as

E[it\tflyat—ﬁ}’l:t—l] = B[Ry (HZyo1 + Wwy) |y1a-1]
= E[it|t71i£t71HT|y1:t—l] + E[&yeo 1w W y11]
= E[iﬂtfliz\ﬂtfﬂ}’l:t—l]HT + E[&ye—1wi [yra—1 W',

which due to the fact that w; is an independent and uncorrelated noise term, it
reduces to

E[Xye1¥1 alyrea] = S HT .

B.6 Joining Results: Characterising p(x:|yi.)

Using the results detailed in section B.1, the moments of p(x;|y1.:) are finally com-
puted by

E[Xt|Y1:t] = Xt|t 1+Et|t 1(22,&, 1) 1(yt_yt|t71) )
COU[Xt|y1:t] = ?\3&(71 _Et|t 1(22,&, 1)_1(E:|¥71)T :

As all the terms involved have been characterised, it just lacks making the proper
substitutions and grouping terms to arrive to the final expressions

Xejp = X1+ B0 1HT(EZ‘¥ D7 e = Fee-1)
T 1
fﬁc = ;(\?71_ t|t 1H (EZ\%’ 1) H2t|t 1

= (I t\t 1HT(Eyy )" 1H) t|t 1 -

tjt—1
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Given an estimation of p(x;|y1.:), its statistics are recursively reestimated by it-
erating the two phases described in algorithm 13. K is denoted the Kalman gain,
and modulates the influence of the predictions and measurements in the final estima-
tion. For didactic examples describing the performance of the Kalman algorithm, the
reader may refer to [83].

Algorithm 13 Kalman Filter Iteration

(R0 =57) | = KF [ (Remape1 32, ) oy
{Prediction step ( p(x¢|y1:+—1) estimation)}

)A(t\tfl = A)A(t71|t71
Ixx — AXX AT+Q

tt—1 — t—1[t—1

{Updating Step (fusion of p(x¢|y1:t—1),p(y¢|y1.t—1) and Ef‘il)}

K — 2?\’:—1HT
HZY  HT+R
Xt = Xg|t—1 + K(y: — HXt\tfl)

=y = (- KH)S
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Table B.1: Expectation properties
Expectation definition
Elz] = [ zp(x)dx
Expectation of a function f(x)
Elf(@)] = [ f(@)p(x)de
Given a constant c:
Elz+c]=Elz]+¢
Elcx] = cE[z]
Elcx|z] = cE[z|z]
Given two random variables z,y
Elz +y] = E[z] + E[y]
Elz + y|z] = Elz|z] + Ely|2]
Given two random independent variables x,y
Elzy] = Elz]Ely]

Variance definition

Varlz] = E(x — Elz])(x — E[z])"] = El2?] — Ela]?
Given a constant c:

Var[z + c] = Var|z]

Varlez] = e¢Var|z)e?
Given two random independent variables x,y

Varlz +y| = Var[z] + Var[y]

Given a random variable 2 with Gaussian distribution N(u, o?)
Elz] = p
Var[z] = o

2
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Appendix C

Expectation Computation Using
Monte Carlo

The estimation of expectation by Monte Carlo Methods has its origins in the Central
Limit Theorem. This theorem states that the distribution of an average value tends
to be Normal, even when the distribution of the variables from which the average is
computed is decidedly non-Normal. The expectation operation computes

Elz] = /xp(m)dm .

Lets assume a random variable z, with unknown statistics E[z] = g and V[z] = o2.

The Central Limit Theorem states that the sum of N > 1 independent samples
{xDIN | of p(z) follows a Normal distribution with parameters N'(Nyu, No?). This
results from considering that samples {2V} are instances of identical and inde-
pendent random variables, from what follows that

ElzM +.. . +2M™] = E2W)+... +EzM] =Ny,

VieW + . +2™] = VWl 4+, + VW] = No? .

From the rule of 3¢ the sum of samples {z(?) } | is bounded in the following range
P{Nu—30VN <z 4+ ... + 2™ < Nu+4 30V N} =0.997 .
Dividing the inequality by the number of samples yields

p{ 30 U4 ™ 30
H=UN N N
This expression is the key of Monte Carlo methods. What it states is that the

mean of a distribution p(z) can be estimated by averaging N independent samples
from p(x), with an error inferior to 3Z the 99.7% of the times. Synthesising that in

VN
3o
< —= 7, =0.997 .
=]

1 s
)
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} =0.997 .

an expression:
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This result can be directly extended to pose the estimation of the expectation of

functions
[ s (1)

N
%Zf(x(z))) with 2 ~ p(z) .

E[f(x)]

1

A very important characteristic of this result is that the precision in the estimation
of expectation depends only in the number of samples N, while deterministic numer-
ical methods to solve integrations depend on N, and the dimension of x. Thus, in
high-dimensional spaces the Monte Carlo solution achieve accurate results in the esti-
mation of E[z] requiring an inferior number of samples than deterministic numerical
methods .

C.1 Importance Sampling

Importance Sampling is a method to estimate E[f(x)] for cases where it is not possible
to sample p(x). The method require that following assumptions hold:

1. although p(x) can not be sampled, it is possible to evaluate a function p’(z) =
Cp(x), where C' is an unknown constant;

2. there exists an importance distribution ¢(x) that can be sampled, but only eval-
uated through the function ¢'(x) = Dgq(x), where D is an unknown constant.The
importance distribution is selected such that p(x) > 0 implies g(x) > 0.

With that E[f(z)] (Equation (C.1)) can be reexpressed as:

/ f@ , (C.2)

This expectation can be computed with the classical Monte Carlo method previ-
ously described. Thus, generating N samples from ¢(x) it can be computed

As p(x) and ¢(z) can only be evaluated indirectly through p’(z) and ¢'(x), what
can be really computed is

N (20
Elf(2)] 1§jf<>———ﬂ9

1

[2
2=
Ql

”Mz
iiii\
a
&
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So, it is necessary to ascertain D/C. As p(x) is a PDF, it follows that

/p'(x)dx = /Cp(m)dm =C . (C.4)

Thus, C can be determined by computing integral (C.4) also by importance sam-
pling. That is

C:

1

N 0 G
Yy () (C.5)

Substituting (C.5) into (C.3), it is obtained the expression that synthesises the com-
putation of E[f(z)] by means of the importance sampling technique:
. r( (1)
E?Ll f(x(z))p/('x(i))
Blf @) = === (C.6)
> =1 7 (@)

This result obtained implicitly provides an approximation of the distribution of
p(z) by means of a population of weighted samples. For each (V) in (C.6) there is a
normalised importance weight W™ defined as

w(z®)
YL w(@®)
where w(z(?) computes the importance weight
P (™)
¢ (z®)

Thus, (C.6) can be seen as the solution to E[f ()] using the approximation of p(x)
given by

Q)

w(z®) = (C.7)

N
i=1

where 0(x) denotes the delta-Dirac function. py(x) is commonly referred as the point
mass approximation of p(x). Weights w( evaluate how good samples from g(z)
resemble an hypothetical sampling of p(z). They give an idea of the frequency that
each sample should ocurr, in order to generate a sample set distributed according to
p(z). Obviously, the behaviour of importance sampling will better as long as ¢(z)
is more similar to p(z). A very important point to remark is that, unlike the case
when is possible to sampled directly from p(z), the importance sampling technique
does not scale well with dimensionality (see [79]). So in high dimensional spaces the
number of samples required to approximate p(x) accurately it is commonly huge.
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Appendix D

Performance Quantification

The effectiveness of the different techniques analysed in this thesis has been examined
through exhaustive experimental work. Tracking algorithms have been evaluated on
testing sequences, which have been distorted with synthetic noise artifacts, in order
to check the algorithms performance under different noise conditions.

Several methodologies have been proposed in the literature to synthetically dis-
tort images, with the aim to then check the performance of tracking algorithms under
different challenging scenarios. In [113] is proposed to add Gaussian noise to video
frames. However, in most of video camera systems the effect of this kind of pertur-
bation is too weak to disturb the performance of tracking algorithm. Hence, we find
unappropiate to measure tracking performance in situation where the Gaussian noise
is big enough to become a challenge, since this would imply testing algorithms in
unrealistic situations. The proposal in [15] is to add very realistic disturbances onto
sequences (basically occluding objects), but requires a big database of ground truth
sequences from which to generate the artifacts. In this thesis the technique in [11] is
used, which is a distortion model that tries to reproduce the artifacts found in con-
tour tracking applications where targets of interest are first presegmented from frames.
Target presegmentation is a common approach in applications where a robust appear-
ance model of the target or their environment is available, and foreground /background
segmentation techniques can be applied. Case-study applications studied in this
thesis adjust to this kind of applications. The distortion artifacts added to frames
correspond to random circles with the foreground of background colour (see Figure
D.1). These artifacts challenge the performance of tracking algorithms by provoking
missdetections and wrong localisations of the tracked contour (see Figure D.2).

Algorithms are evaluated in sequences with different levels of distortion. For each
noise condition considered, a given sequence is distorted randomly, generating one
hundred noise sequences where the performance of algorithms is quantified. Tracking
performance is measured using two different methods: an image—based and a contour—
based method.
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Input Frame Corrupted Frame

Noise
Generator

1, ref’ Leorr

Figure D.1: Frame distortion process.

Contour wrongly
localised

Contour missdetected
(occlusions)

Figure D.2: Contour measurement problems provoked by the noise artifacts added.

D.1 Image—based Performance Quantification

An image—based criterion is used in this thesis to quantify the noise distorting the
sequences processed by tracking algorithms, as well as to quantify the performance of
tracking algorithms. It is based in measuring the pixel-to—pixel disparity between an
ideal ground truth sequence, and another sequence of interest. This ground truth se-
quence is interpreted as the signal that tracking algorithms observe distorted by some
noise, and which has to be recovered by them as accurately as possible. The distortion
of the input signal, as well as the quality of its retrieval by tracking algorithms, is
quantified in terms of the signal-to-noise ratio

SNR = 10log [”g"“q . (D.1)

noise

Concerning the distortion of the input sequence, the signal and noise terms of this
expression are defined as

signal = > [Les(x,y) = L), (D.2)

frames x,y

noise = Y Z{Iref(xvy);lcorr(xvy)}2 ’ (D.3)

frames x,y

where I..¢(x,y) is the pixel value at (z,y) for the ground truth image and Icopr (2, y)
is the corresponding pixel in the corrupted image. The constant I is set to halfway



D.2. Contour—based Performance Quantification 189

between the background and foreground pixel values, so that both have the same
signal strength, thus ensuring that the SNR is independent of the relative image and
object size. A value of 0dB corresponds to a distortion of all pixels of the tracking
sequence.

Concerning the measurement of how well the input signal is recovered by the
tracking algorithm, the SNR terms are defined as

signal = 2 Z ZI,,ef(a:,y)2, (D.4)

frames x,y

noise = Z Z[Iref(x,y)_Itrack(mvy)]Q . (D.5)

frames x,y

where ;.40 is a frame synthesised from the state estimated by the tracking algorithm.
In this case, the signal just accounts for foreground pixels, as in binary images a
background pixel is zero. The scale factor of two in the signal value is chosen so that
an SNR of zero (i.e., signal = noise) would occur if the tracker silhouette consisted of
a shape of the same area as the ground truth shape, but inaccurately placed so that
there is no overlap between the two.

This image—based method provides an objective measure of the tracking conditions
(i.e., the noise in the input sequence), but with respect to tracking performance,
it is a quite rough measure. It is based on the number of pixels that the ground
truth and estimated shape overlap, so, as long as both shapes have a high degree of
overlapping, a high SNR value will be obtained, although their respective orientation
could be completely opposed. For this reason, the tracking performance measurement
is complemented by a contour—based method.

D.2 Contour—based Performance Quantification

This tracking quantification measure is based on a point—to—point comparison between
the ideal contour of the shape being tracked, and the contour finally estimated by the
tracking algorithm. Given the B-spline control points of the tracked ground truth
contour (i.e., q¢), and the ones corresponding to the state estimated by the tracker
(i.e., G¢¢), their contour mean disparity (i.e., the MCE of the estimated contour) is
computed as

MCE = \/(Qt - élt|t)T/Vl (CIt - flt\t) .

Matrix M is a metric matrix that allows to measure the distance between B-
spline curves from only their control points. It implicitly establishes a correspondence
between points of both contours, reflecting thus the contour disparity even if both
have a high overlap.

D.3 Performance Plots

To obtain an statistical view of the performance of the analysed tracking methods, a
hundred noisy sequences are generated for each one of several SN Ry values consid-
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ered. The performance measured by the image—based method is displayed on figures
using a the box—and—whiskers or boxplot representation, while the contour—based one
is described in a table just from its median value.

A boxplot[85] (see Figure D.3) is a quick graphic approach for summarising the
performance achieved in the hundred tracked sequences. It depicts the lower quartile,
median, and upper quartile of the performances achieved, as well as the worst and
best one. Performances considered as unusual (outliers) are also distinguished.

3417 1. Box |
T 2. Whisker
2— 3. Outlier |
5. 4. Median
8l o4 :
| 6 5. Upper quartile
6. Lower quartile l
2]
7. Notch 1
3t 8. Median Confidence |
Interval

Figure D.3: Graphical elements of the box—and—whiskers representation.

Using boxplots, figures are generated showing the performance of two compared
methods, in sequences disturbed by different levels of noise. The results of both
method are displayed in pairs, in order to make easier their comparison. For each
noisy situation, the method with a better median performance is distinguished by
the colour of an small rectangle painted at the bottom of the plot. The tracking
performance measured with the contour-based approach is shown in a table attached
to the boxplot. The median MCE of each evaluated method is shown, as well as the
median of the Mean Paired Difference (MPD) between the two compared methods.
When this difference is greater or equal than 0.01 and is statistically significant,
the results in the table are written in bold numbers. A percentage is also shown
quantifying how one method reduces the MCE of the other one. Figure D.4 shows
an example of the kind of plots generated, with added comments to help clarify and
understand the information displayed.
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Glossary of Notation

Oy
1y

By,o(s)

[

vector of zeros of length NV, 10
vector of ones of length N, 14

system matrix, 19

B-spline basis function, 11

observation matrix, 19

identity matrix, 14

linear shape model, 13

B-spline curve metric matrix, 13

Gaussian distribution, 16

probability density function of x; given yj.;, 18
Normal distribution density, 20

point mass distribution, 26

point distribution density, 26

system noise covariance matrix, 19
x coordinates of the control points in q, 14

observation noise covariance matrix, 19
superscript denoting transpose, 10

normalised importance weight, 26
unnormalised importance weight, 26

constant, 10
matrix, 13
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208 Glossary of Notation

X(s) function matrix, 10

x variable, 10

x(s) function, 10

x vector (column). State, 2

x($) function vector, 10

X mean vector, 13

Xy vector (state) at instant ¢, 2

Xty |ta estimation of x at ¢; using observations up to
ta, 19

X1:N set of NV vectors, 90

{x N, set of N vectors, 13

x(@ i-th sample, 23

{xD}N | particle set, 26

y observation vector, 2



List of Acronyms

ADAS Advanced Driver Assistance Systems, 1

AGMMFA  Adaptive Gaussian Mixture Model Fitting Al-
gorithm, 91

AR(n) Auto-Regressive process of order n, 16

BIC Bayesian Information Criterion, 94

BM Brownian motion, 167

CBM Constrained Brownian Motion, 167

CDO Critically Damped Oscillation, 169

CcOoC Cascade of Classifiers, 118

DBT Detect Before Track, 135

EKF Extended Kalman Filter, 20

EM Expectation Maximisation, 86

FP False Positives, 115

GMM Gaussian Mixture Model, 85

GNN Global Nearest Neighbour, 135

GPBF Gaussian Pseudo Bayesian Filter, 102

GT Ground Truth, 94

HCA Hierarchical Clustering Algorithm, 89

HMM Hidden Markov Model, 105

IMM Interacting Multiple Model filter, 102

JMLS Jump Markov Linear System, 101

JMS Jump Markov System, 86

KF Kalman Filter, 18

KF1 Kalman Filter using first order dynamics, 137

209



210

KF2
KS

MCE
MHT
MPD
MSE
MST

NN

PCA
PDF
PF
PS

RBPF

SIS
SISR

SNR
STM
SVM
SVS

TBD

UKF
UKPF

List of Acronyms

Kalman Filter using second order dynamics, 137
Kalman Smoother, 137

Mean Contour Error, 40

Multiple Hypothesis Tracking, 135
Mean Paired Difference, 190
Mean Square Error, 140

Minimal Spanning Tree, 91

Neural Network, 116

Principal Component Analysis, 13
Probability Density Function, 23
Particle Filter, 23

Partitioned Sampling, 73

Rao-Blackwell Particle Filter, 65

Sequential Importance Sampling, 26
Sequential Importance Sampling with Resam-
pling, 27

Signal-to—Noise Ratio, 40

State Transition Matrix, 103

Support Vector Machine, 116

Subspace of Valid Shapes, 85

Track Before Detect, 134

Unscented Kalman Filter, 22
Unscented Kalman Particle Filter, 62
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