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“Les quelques pages de démonstration qui suivent
tirent toute leur force du fait

que l’histoire est entièrement vraie,
puisque je l’ai imaginée d’un bout à l’autre.”

– Boris Vian.

“A theory that still doesn’t have any good
counter-evidence is one worth pursuing.”

– Haruki Murakami.

“Sand is overrated,
it’s just tiny little rocks.”

–from Eternal Sunshine
of the Spotless Mind.



Puedo empezar

“Tengo ya preparadas las respuestas
para las entrevistas period́ısticas

que me harán en la prensa, radio y tele.

Querrán saber qué opino y cómo soy.
Me mostraré ingenioso y espontáneo.

Tengo ya preparadas unas listas
de personalidades importantes

e incluso redactados ya los textos,
muy agudos, de las dedicatorias.

Tengo ya preparadas las metáforas
que servirán como brillante ejemplo
o śıntesis que aclare lo que exponga.

Saldrán como galaxias de las páginas.

Y tengo preparada mi postura
al sentarme o de pie, tono de voz,

expresión de los ojos y la boca.

Todo está preparado. Todo a punto.
Puedo empezar, pues, a escribir mi libro.”

– José Maŕıa Fonollosa, Albert Pla, Eugenio.
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Je tiens aussi à remercier à Karl Tombre et à Jean-Marc Ogier pour m’avoir
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Resum

Habitualment, els sistemes de reconeixement de patrons consisteixen en dos grans
apartats. D’una banda, l’adquisició de les dades i, de l’altre, la classificació d’aquestes
dades dins d’una certa categoria. Per tal de reconèixer a quina categoria pertany un
cert element, un conjunt de patrons models han d’haver estat proporcionats per antic-
ipat. Per tal d’entrenar el classificador i que pugui oferir una classificació de patrons
robusta, es necessita una etapa d’aprenentatge que es pot dur a terme fora de ĺınia.
Dins del camp de reconeixement de patrons, estem interessats en el reconeixement
d’elements gràfics i, en particular, en l’anàlisi de documents rics en informació gràfica.
En el cas particular del reconeixement de śımbols, certs descriptors s’extreuen del
śımbol a reconèixer i s’emparellen posteriorment amb el conjunt de śımbols model.
En aquest context, una de les principals inquietuds és assegurar-se que els sistemes
que es proposen romanen escalables respecte al volum de dades i que poden fer front
a quantitats creixents de models. Per tal d’evitar el fet de treballar amb una base
de dades de śımbols de referència, s’han proposat en els últims anys els sistemes de
reconeixement de śımbols al vol, o els sistemes de localització aproximada de śımbols
gràfics coneguts com a mètodes de symbol spotting.

En termes generals, es pot definir el problema de symbol spotting com la iden-
tificació d’un conjunt de regions d’interès d’un document que puguin contenir una
instància d’un determinat śımbol sense haver d’aplicar expĺıcitament tot el procés de
reconeixement de patrons. El nostre marc d’aplicació consisteix en la indexació d’una
col·lecció de documents gràfics. Aquesta col·lecció es consulta donant un exemple del
que es vol trobar, és a dir, amb una única instància del śımbol a cercar i, gràcies als
mètodes de spotting es retornen les regions d’interès dels documents on és probable
trobar el śımbol en qüestió. Aquest tipus d’aplicacions es coneixen com a recuperació
d’informació dirigida.

Per tal que els sistemes de recuperació d’informació puguin gestionar grans col-
leccions de documents necessitem proporcionar un accés eficient als grans volums
d’informació que es poden emmagatzemar. Farem ús d’estratègies d’indexació que
siguin capaces de retornar localitzacions on apareguin parts similars del śımbol consul-
tat. En aquest escenari, els patrons gràfics s’hauran d’emprar com a ı́ndexs afavorint
l’accés i la navegació de la col·lecció de documents. Aquests mecanismes d’indexació
permeten a l’usuari buscar elements semblants utilitzant informació gràfica en lloc de
formular consultes textuals.
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iv RESUM

Al llarg d’aquesta tesi es presenten una arquitectura i diferents mètodes de lo-
calització aproximada de śımbols, per tal de construir una aplicació de recuperació
dirigida fent front a una col·leccions de documents gràfics.

S’han proposat diferents descriptors de śımbols que codifiquen informació geomètrica
i estructural. L’objectiu d’aquests descriptors és descriure les parts dels śımbols de
manera molt compacta i eficient. Signatures vectorials, cadenes amb atributs i de-
scriptors de forma genèrics s’han fet servir per agrupar śımbols per semblança.

S’han utilitzat diverses estratègies de cerca d’informació gràfica per semblança.
Per tal de recuperar les localitzacions dins de la col·lecció de documents on apareixen
les parts dels śımbols, hem utilitzat lookup tables i grid files indexades a partir de
patrons gràfics. S’ha introdüıt una fase final de verificació per validar les hipotètiques
localitzacions on és probable que es trobi un cert śımbol. Aquesta etapa de validació
està formulada en termes d’informació espacial i relacional.

A més a més, es proposa un protocol per avaluar el rendiment dels mètodes de
localització aproximada de śımbols en termes de tases de reconeixement, precisió en
la localització i escalabilitat. Es mostra que les mesures que es proposen permeten
determinar els punts forts i febles dels mètodes analitzats. Totes les contribucions
proposades s’han posat a prova experimentalment amb una col·lecció de planells ar-
quitectònics, amb la corresponent base de dades de referència.

Paraules clau: Reconeixement de Patrons, Reconeixement de Gràfics, Descripció
de Śımbols, Localització Aproximada de Śımbols, Recuperació d’Informació Dirigida,
Indexació de Patrons Gràfics, Avaluació del Rendiment.



Abstract

Usually pattern recognition systems consist in two main parts. On the one hand, the
data acquisition and, on the other hand, the classification of this data on a certain
category. In order to recognize which category a certain query element belongs to, a set
of pattern models must be provided beforehand. An off-line learning stage is needed to
train the classifier and offer a robust classification of the patterns. Within the pattern
recognition field, we are interested in the recognition of graphics and, in particular,
on the analysis of documents rich in graphical information. In the particular case of
graphical symbol recognition, descriptors are extracted from the symbol to recognize
and are subsequently matched with the set symbol models. In this context, one of
the main concerns is to see if the proposed systems remain scalable with respect to
the data volume so as it can handle growing amounts of symbol models. In order to
avoid to work with a database of reference symbols, symbol spotting and on-the-fly
symbol recognition methods have been introduced in the past years.

Generally speaking, the symbol spotting problem can be defined as the identi-
fication of a set of regions of interest from a document image which are likely to
contain an instance of a certain queried symbol without explicitly applying the whole
pattern recognition scheme. Our application framework consists on indexing a collec-
tion of graphic-rich document images. This collection is queried by example with a
single instance of the symbol to look for and, by means of symbol spotting methods
we retrieve the regions of interest where the symbol is likely to appear within the
documents. This kind of applications are known as focused retrieval methods.

In order that the focused retrieval application can handle large collections of docu-
ments there is a need to provide an efficient access to the large volume of information
that might be stored. We use indexing strategies in order to efficiently retrieve by
similarity the locations where a certain part of the symbol appears. In that scenario,
graphical patterns should be used as indices for accessing and navigating the collec-
tion of documents. These indexing mechanism allow the user to search for similar
elements using graphical information rather than textual queries.

Along this thesis we present a spotting architecture and different methods aiming
to build a complete focused retrieval application dealing with a graphic-rich document
collections.
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vi ABSTRACT

Different symbol descriptors encoding geometric and structural information are
proposed in this thesis. These descriptors aim to describe parts of the symbols in a
very compact and efficient way. Vectorial signatures, attributed strings and off-the-
shelf shape descriptors are used to cluster parts of the symbols by similarity.

Several strategies aiming to search for graphical information by similarity are
used in this thesis. In order to retrieve locations from the document collection where
parts of the symbols appear we use lookup tables and grid files indexed by graphical
patterns. A final validation phase is introduced to validate the hypothetic locations
where a symbol is likely to be found. This validation stage is formulated in terms of
spatial and relational information.

In addition, a protocol to evaluate the performance of symbol spotting systems
in terms of recognition abilities, location accuracy and scalability is proposed. We
show that the evaluation measures allow to determine the weaknesses and strengths
of the methods under analysis. All the proposed contributions have been tested with
an experimental scenario consisting of a collection of architectural drawings with its
corresponding ground-truth.

Keywords: Pattern Recognition, Graphics Recognition, Symbol Description, Sym-
bol Spotting, Focused Retrieval, Graphical Pattern Indexation, Performance Evalua-
tion.
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Chapter 1

Introduction

In this chapter we put in context the symbol spotting problem. By giving a general
overview of the Document Image Analysis and Recognition field and, in particular,
of the Graphics Recognition research topic, we present the motivations of this work.
We summarize the objectives and contributions of this work as well as the contents
of each chapter.

1.1 Document Image Analysis and Recognition Con-
text

Document Image Analysis and Recognition (DIAR) is one of the most important
subfields of Pattern Recognition. In its early years, the research efforts were mainly
focused on the processing of textual documents. In particular, most research ef-
forts were centered in the development of automatic reader systems which entailed
the design of effective Page Layout Analysis (PLA) methods and Optical Character
Recognition (OCR) techniques. However, nowadays, commercial OCR software per-
forming good recognition results in type-written documents can be purchased, and we
can say that OCR in type-written documents is a mature problem from the scientific
point of view. Today, the interests of the Document Image Analysis and Recognition
community cover a wide spectrum of open challenges. Let us enumerate a few of them.
For instance, the processing of hand-written documents, for both off-line [BB08] and
on-line [SMVG08] inputs, is still an important research topic. The huge variability of
the character shapes among different writers make hand-written character recognition
to be a much more complex and interesting problem that type-written OCR. Another
research topic which has attracted the attention of researchers in the last years is the
problem of processing documents acquired with low-resolution digital cameras, as in
[LD08]. This problem has emerged with the presence of such cameras in ordinary
devices like PDAs or cell-phones and the big amount of interesting applications that
can be envisaged with the inclusion of recognition tasks in portable devices. As an

1
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example, the cell-phone Motorola A1200 has a built-in OCR able to process business
cards by finding names, phone numbers, addresses and automatically import them
to the phone-book. Another actual and interesting problem is the analysis of web
documents, as presented in [EFM07, YN07]. Although the process of web documents
seems quite easy since they are digital-born documents, they may be a great chal-
lenge since they can contain a great amount of artwork, a great variability of font
types, different font sizes, non-standard layouts, a large variety of colors, etc. which
difficult recognition tasks. Finally, another example of open problem that nowadays
is receiving a lot of interest is the management of digital libraries of cultural heritage
documents like in [CCL07, BvKS07]. Usually the main problem to tackle in such
applications is the management of historic documents which may be very old and
degraded. In addition, these document collections are quite large and the methods
to analyze these documents should be conceived to provide an efficient access to such
amounts of information.

1.1.1 Accessibility to Large Document Collections

Nowadays, there is still a huge amount of information stored in paper format. Li-
braries are the main example. For instance, the Spanish National Library1 has about
eight millions of paper documents (besides books) of different kinds such as musical
scores, maps, plans, engravings, etc. Great efforts are made to digitize such amount
of information mainly for space saving and preservation issues, but also to avoid phys-
ical boundaries and to facilitate the information retrieval. For example, Gallica2 is
the digital library for on-line users of the French National Library. It provides free
access to 90.000 scanned and OCRed books and has made available more than 80.000
document images. The interest of providing access to books through the web has also
gained importance with big initiatives such as Google Books3. However, the need of
digitizing paper documents is not just a specific problem of libraries, and it is not
just focused to old and rare documents which need preservation. Hundreds or even
thousands of invoices, receipts, faxes, etc. can be managed per day by big compa-
nies. Obviously, the cost of storing and consulting this information in paper format
becomes unaffordable and the use of a digital collection becomes a must.

However, these huge amounts of digitized information are usually stored in poor
formats making difficult the accessibility to the contained information. On the one
hand, type-written documents are scanned and then transcribed by an OCR soft-
ware to provide access to the text. The fact of storing these collections by using the
ASCII character encoding allow to retrieve desired contents from the collection by
using textual queries. In this particular scenario, the main challenge nowadays is to
add semantic information to these digital documents in order to permit a higher level
information extraction process. On the other hand, there is a lot of documents which
can not be processed by an OCR software since they are hand-written or contain
non-textual information. In those cases, digital libraries use facsimile representations

1http://www.bne.es/
2http://gallica.bnf.fr/
3http://books.google.com/
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http://gallica.bnf.fr/�
http://books.google.com/�
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of these documents, i.e. the image arising from the scanning process, to store them.
Even if the use of facsimile representation is useful for storing and preservation is-
sues, it still presents a great drawback, which is the lack of accessibility. Nowadays,
recognition methods for hand-written documents or non-textual elements do not reach
such reliable recognition rates as OCR systems. In addition, the computational cost
of recognizing type-written characters is very low in comparison with hand-written
character recognition or graphic recognition schemes. These constraints provoke that
usually, facsimile documents are just manually annotated with a set of previously
harvested metadata. This means that the only information we have about these doc-
uments is a set of predefined keywords and these documents can not be queried in
terms of their contents but they can be retrieved just by querying the predefined
keywords. This problem is common to any search tool that has to face non-textual
information. For example, Google Image Search4 service bases its search engine on the
images filenames and text adjacent to the images. In this context, there is a need of
creating tools aiming to provide efficient categorization, indexation, browsing, infor-
mation retrieval in terms of visual contents, etc. for non-textual documents, without
any human inspection of each document. In particular, one of the main motivations
of our work is the adaptation of the idea of text mining techniques to non-textual
elements. In that scenario, graphical patterns should be used as indices for accessing
and navigating large collections of documents.

1.1.2 Information Spotting

The use of graphic indices to access non-textual documents is not straightforward.
One of the strategies proposed to enhance the accessibility of large data collections
that may result suitable in the case of non-textual documents is the Information
Spotting technique. We can define the term spotting as the task of locating and
retrieving specific information from large datasets without explicitly recognizing it.
That means that if we want to provide a retrieval tool for non-textual documents,
with a spotting approach there is no need to fully recognize all the objects conforming
a document in the database but to coarsely locate some regions of interest where the
queried object is likely to be found. These spotting approaches were already proposed
some years ago within the speech recognition field in order to spot spoken words from
a sound recording. In the works of [GN93, RJN93, JFJ95], the use of Hidden Markov
Models (HMM) allowed to process the speech signal and to focus the attention on a
set of time intervals where a certain keyword is likely to be pronounced. This problem
is known as phonetic word spotting.

Spotting techniques have also been applied to textual document images in the
recent years by following the same ideas of the word spotters used in the speech
recognition field. Even if images are two-dimensional structures, the text lines ap-
pearing on those documents are segmented and they are taken as one-dimensional
signals. These signals are then processed by a HMM or a neural network as presented
in [WPW95]. The locations where the output of the network has higher responses
are the ones likely to contain the queried word. These techniques can be applied to

4http://images.google.com/
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both type-written documents, as the case of automatic fax routing applications like
in [VRL04], or hand-written documents, as the historical word spotting method pre-
sented in [RM03]. The use of spotting methodologies to treat textual documents allow
to process large amounts of documents without the need to apply an OCR software
to get the ASCII characters. This methods have particular interest in applications
dealing with documents where an OCR would not produce a reliable result.

These methods are however hardly useful when we want like to treat graphic-
rich documents. All word spotting methods make the strong assumption that all the
objects in the document can be segmented and transformed into a one-dimensional
signal in order to be processed in a linear way. This assumption is no longer valid
when we want to spot graphic elements instead of textual ones. In the last years,
the problem of spotting symbols within graphical documents has been an emerging
research topic.

1.2 Symbol Spotting

Among the Graphics Recognition community, a lot of efforts have been devoted over
the years to the problem of recognize symbols. Several contests of Symbol Recogni-
tion have been held during the last editions of the Graphics Recognition Workshop
(GREC). These contests are an excellent way to track the progress of the research on
this specific problem and aim to determine which are the challenges and the future
research directions. In the last edition5, an important challenge to be addressed has
been identified. For many years researchers of the Symbol Recognition community
centered their methods in recognizing isolated symbols undergoing several transforms
and degradations. Nowadays, state-of-the-art recognition schemes yield performances
far above ninety percent of recognition rates but the real challenge should not be to
achieve the one hundred percent but should be centered in three different aspects. In
the first place we should see if the proposed methods are real scalable in terms of the
number of symbols to recognize. Secondly, it should be tested if the proposed meth-
ods could be applied to any symbol design or whether they are ad-hoc conceived to
recognize a specific dataset and tackle with a specific source of noise. And finally and
most important, we should consider if these methods can recognize symbols present
in complete drawings without previous segmentation. In this direction, the concept
of spotting graphical symbols within graphic-rich documents has been introduced by
Tombre and Lamiroy in [TL03]. Five years later, the authors present in [TL08] some
achievements in this field by pointing several open challenges.

Generally speaking, the Symbol Spotting problem can be defined as the location
of a set of regions of interest from a document image which are likely to contain an
instance of a certain queried symbol without explicitly recognizing it. One of the main
applications for symbol spotting methods is its use in large collections of documents.
This particular application can be seen as a Content Based Image Retrieval (CBIR)
application but having some particularities. The main difference is that standard

5 Seventh IAPR International Workshop on Graphics Recognition, GREC07. Curitiba, Brazil.
20-21 September 2007.
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document retrieval approaches find atomic documents, leaving to the user the tasks
of locating relevant information within the provided results. Whereas symbol spotting
provides the user a more direct access to relevant information by returning a set of
regions of interest which are sub-parts of the documents in the collection. Such
applications which return passages of interest within documents instead of complete
documents, are known as Focused Retrieval systems. The interested reader is referred
to the recent review by Joty and Sadid-Al-Hasan [JSAH07] on the topic of focused
retrieval.

To our best knowledge, in the workshops organized by the community of focused
retrieval6, no works dealing with graphics have ever been proposed, and all the works
are centered in the retrieval of textual passages from ASCII documents. Back to
the image documents, there is an important difference between the spotting systems
dealing with graphics and the ones dealing with word images. In the case of word
spotting, usually a learning step is required and only a small subset of keyword queries
is allowed. In the symbol spotting problem, the amount of items composing the
symbol alphabet can increase indefinitely. In addition, the input of a spotting system
is the user’s query symbol which he wants to retrieve from the whole collection.
Therefore, usually the spotting systems are queried by example. That is, the user
segments a symbol he wants to retrieve from the document database and this cropped
image acts as the input. This particularity reinforces the fact that spotting methods
should not work for a specific set of model symbols nor have a learning stage where
the relevant features describing a certain symbol are trained. The retrieval of the
relevant zones should be done on-the-fly. Nevertheless, in the acquisition step, i.e.
when a given document is added to the collection (which is a process that could be
done off-line) several steps of primitive extraction and description can be computed.
The desired output of the spotting methods is a ranked list of zones of interest likely
to contain similar symbols to the queried one. That is, each result should have an
associated confidence value depending on a certain similarity function between the
query and the result. We can see an overview of the symbol spotting methodology
applied to a focused retrieval application in Fig. 1.1.

In Document Image Analysis and Recognition and in Computer Vision in general,
the relationship between recognition results and segmentation performance presents
a common problem known as the Sayre paradox [Say73]. In order to achieve good
recognition results the objects should be previously segmented, but to get a reliable
segmentation, the objects should be previously recognized. To avoid such paradox,
symbol spotting architectures do not use a preliminary segmentation step followed
by a proper recognition method but are usually conceived to coarsely recognize and
segment in a single step. We can appreciate in Fig. 1.2 our proposal of a general archi-
tecture for symbol spotting systems. Basically, three different levels can be identified.
The first level aims to represent and compactly describe the primitives that com-
pounds the graphical symbols. These features describing graphical symbols are then
stored in a particular data structure. This data structure should be chosen carefully

6The first Workshop on Focused Retrieval http://www.cs.otago.ac.nz/sigirfocus/
held in Amsterdam in 2007, and the second Workshop on Focused Retrieval
http://www.cs.otago.ac.nz/sigirfocus2008/ held in Singapore in 2008.

http://www.cs.otago.ac.nz/sigirfocus/�
http://www.cs.otago.ac.nz/sigirfocus2008/�
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Figure 1.1: Symbol spotting applied to a focused retrieval application overview.

in order to provide efficient access to the symbol descriptors. During the querying
process, this data structure is traversed and the locations within the document images
where to find similar primitives than the queried ones are retrieved. A final validation
stage determines which are the valid hypotheses where the queried symbol is likely to
be found.

Summarizing, our work has been motivated by the specific problem of proposing a
spotting methodology applied to a focused retrieval problem. The proposed methods
should be able to locate and retrieve graphical content within a database of complete
document images. From a methodological point of view, the main challenges stem
from the nature of the queries, which are iconic queries instead of the ASCII strings
used in the keyword-based searches. The fact of working with graphical entities raises
several problems to tackle. The first important problem is how to compactly represent
and describe symbols without a preliminary segmentation stage. Another important
issue is the choice of the data structures allowing to efficiently retrieve graphical
patterns by similarity.

1.3 Objectives and Contributions of this Thesis

Main Objective of this Work

The main objective of this work is to propose a symbol spotting methodology for
locating graphic symbols within a collection of complete documents. The spotting
method is formulated in terms of a search by similarity of all the primitives which
compose the queried graphical symbol. Among the wide variety of possible symbols
and graphic documents, we have basically focused our research on a framework dealing
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Figure 1.2: General architecture of a symbol spotting system.

with technical line-drawings such as architectural floor-plans or electronic schemes.

To this end, the problem will be tackled from different points of view and this
main objective can be detailed into the following points:

1. Testing Well-known Methods from the Computer Vision Field

Although symbol spotting has its own particularities, the problem of locating
symbols in documents can be seen as a particular case of the object recogni-
tion problem from the Computer Vision field. Our first objective is to test if
such well-known techniques can be applied to the problem of spotting graphic
symbols. In this part of the work we describe graphical symbols by means of
well-known photometric descriptors. We identify which are the limitations of
those approaches in the particular scenario of spotting symbols in line-drawing
collections.

The main contribution of this part of the thesis do not correspond to the recog-
nition methodology, since we use off-the-shelf recognition methods, but the ap-
plication of this kind of techniques to the graphics recognition domain.
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2. Geometric and Structural Symbol Description Techniques

Since our work is mainly focused on technical line-drawings, the rest of the
thesis is centered on the use of geometric and structural constraints to describe
graphical symbols and graphic-rich documents. The primitives to extract and
the description techniques to represent a graphical symbol are expressed and
defined in the domain vectorial domain instead of working with the raw image
format. The objective of this part of the thesis is to find a methodology to
describe symbols aiming to cope with the different noise sources that we have
to face in our framework. In this work we present three different proposals of
vectorial primitives and the subsequent symbol description techniques:

• Vectorial Signatures: The use of signatures as a coarse description tech-
nique is usually used on spotting systems. Taking vectors as the primitives
which compound a graphical symbol, a model of vectorial signature is
proposed. Symbols are described by the occurrences of simple geometric
configurations among segments.

• String Representation of Polygons: The second proposal to represent
graphical symbols is the use of a higher-level entity than segments. In
that case graphical symbols are described by a set of chains of adjacent
segments grouped into polygon instances. These polygons are described as
one-dimensional attributed strings, and the distance between two similar
polygons is computed by using string edit operations.

• Off-the-shelf Shape Descriptors Applied to Vectorial Primitives:
Finally, we study the use of several well-known shape descriptors applied
to the vectorial primitives which compose a symbol. In this case the con-
tribution is not the descriptors themselves but its use to represent vectorial
symbols.

3. The Descriptors Organization

The second main research axis of this thesis is centered on how the primitives’ de-
scriptors can be organized in a data structure for posterior efficient access. The
main objective of this part is to find a mechanism allowing graphical patterns
to be used as indices so as to provide an efficient access to graphic information
contained in large data corpora.

Along this thesis we present three different approaches, each one of them re-
lated to the previous description of symbols. These structures aim to organize
by similarity all the extracted vectorial primitives from the documents in the col-
lection. In focused retrieval applications, it is indispensable to avoid one-to-one
matching when querying a certain graphical primitive by providing mechanisms
which allow to search for graphical primitives by similarity.
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4. The Hypotheses Formulation

The last step of spotting architectures is the hypotheses formulation. Regions of
interest where the queried symbol is likely to appear have to be generated with
their associated confidence value. The main objective of this part, is to present
validation schemes which aim to reduce the false alarms that may appear from
the retrieval of primitives by similarity.

Inspired by the classical voting schemes where the hypotheses validation is done
in terms of an accumulation of evidences, we present a validation scheme which
aims to discard false alarms. In addition of the accumulation of evidences in
terms of locations within a document where the query symbol can be found,
we also propose a relational validation method, which also takes into account
the spatial configuration and the structural relationships among the primitives
which composes a graphical symbol.

5. Performance Evaluation

Finally, one of the main concerns of the Graphics Recognition community is the
generation of evaluation studies which aim to assess and compare the accuracy
and robustness of the proposed methods. To our best knowledge, there has been
very few attempts to describe a performance evaluation protocol for symbol
spotting architectures applied to focused retrieval tasks.

Inspired by several works on the performance evaluation of Graphics Recog-
nition methods and algorithms, and on the evaluation measures used in the
Information Retrieval field, we propose a set of measures which aim to evalu-
ate the performance of symbol spotting systems in terms of its localization and
recognition abilities.

1.4 Organization

The rest of this thesis is organized in eight chapters and one appendix, structured in
three main parts.

In chapter 2, the state of the art in symbol spotting is reviewed. Since symbol
spotting is quite an emerging topic, the literature dealing with this problem is not vast.
Some other works which are not directly related to the problem of spotting symbols,
but which may be related to one of the three levels of the spotting architecture are
presented. After a brief overview of the literature of symbol spotting, we organize this
chapter in three differentiated parts, namely, the state of the art in symbol description
techniques, in feature organization and in hypotheses validation.
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Part I

The first part of this thesis, is centered on the application of well-known methods of
Computer Vision for recognizing objects in scenes, to the specific problem of spotting
graphical symbols in documents.

• In chapter 3 we present a method for spotting symbols by using techniques from
the Computer Vision field. As a running example, we present an application of
logo spotting for a document categorization application. The method processes
incoming document images such as invoices or receipts. The categorization of
these document images is done in terms of the presence of a certain graphical
entity detected without segmentation. The symbols are described by a set of
local features computed by using the well-known methods of SIFT and shape
context descriptors. The categorization of the documents is performed by the
use of a bag-of-visual-words model. Spatial coherence is introduced by a voting
scheme in order to reinforce the correct category hypotheses, aiming also to
spot the logo inside the document image. Experiments which demonstrate the
effectiveness of this system on a large set of real data are presented.

Part II

The second part of this thesis is devoted to proposing spotting methods in a frame-
work of line-drawing images. Therefore, it is centered on the use of geometrical and
structural constraints as symbol description techniques.

• In chapter 4 we present a method to determine which symbols are probable
to be found in technical drawings by the use of vectorial signatures as symbol
descriptors. The proposed signature model is formulated in terms of geometric
and structural constraints among segments, as parallelisms, straight angles, etc.
After representing vectorized line drawings with attributed graphs, our approach
works with a multi-scale representation of these graphs, retrieving the features
that are expressive enough to create the signature. A window-based system
aims to compute these signatures within complete documents identifying the
zones of interest where a symbol is likely to appear.

• In chapter 5 we present a spotting method which uses a prototype-based search
as the basis for the focused retrieval task. First, symbols are decomposed in
primitives representing closed regions. These primitives are then encoded in
terms of attributed strings. Second, the strings are organized in a lookup table
so that the set median strings act as representative prototype of the clusters of
similar primitives. This indexing data structure aims to efficiently retrieve the
locations from the document collection where to find similar primitives than the
queried ones. Finally, a voting scheme formulates hypotheses in the locations
of the line drawing image where there is a high presence of regions similar to
the queried ones, and therefore, a high probability to find the queried graphical
symbol. The proposed approach has been proved to work even in the presence of
noise and distortion introduced by the scanning and raster-to-vector processes.
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• In chapter 6 we present an indexing method aiming to retrieve locations of
interest where a query symbol is likely to be found. In order to foster the
querying speed, a hashing technique is proposed which is able to retrieve prim-
itives by similarity very efficiently. Vectorial primitives are coarsely encoded by
well-known shape description methods providing a numerical description of the
primitives. A relational indexing approach is presented in order to introduce
some structural information of the symbols and provide an accurate hypothe-
ses validation. Experimental results show the performance of the proposed
approach.

Part III

Finally, the third part of this thesis has just one chapter focused on the performance
analysis of spotting methods.

• Chapter 7 is centered on the performance evaluation of spotting systems. Since
symbol spotting systems and focused retrieval applications shall have the ability
to recognize and locate graphical symbols in a single step, the measures to
evaluate the performance of a symbol spotting system are defined in terms of
recognition abilities, location accuracy and scalability. By testing the spotting
method of chapter 6 we show that the proposed measures allow to determine
the weaknesses and strengths of the analyzed method.

Finally, in chapter 8 we give some concluding remarks about this work, and we specify
some possible future research lines on symbol spotting techniques.

Along this work, different symbolic databases have been used to perform the exper-
iments. All these databases are explained in the appendix A. For each database, we
detail the kind of symbols it contains and the distortions which have been introduced
in the original elements. Some other characteristics for each database, as the number
of elements, the number of primitives in the vectorial representation, their size, etc.
are also detailed.
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Chapter 2

State of the Art in Symbol Spotting

In this chapter we will review the related work to symbol spotting which has been
proposed in the last years. We first present a review of the contributions from the
Graphics Recognition community to the spotting problem. In a second part, we
focus the attention on the different symbol description techniques and families we
can find in the literature. Then, the existing data structures which aim to store the
extracted descriptors and provide efficient access to them will be analyzed. We finally
review which are the existing methods for hypotheses validation which can be used
for spotting purposes.

2.1 Introduction

Generally speaking, the architecture of a symbol spotting system consists in the three
main levels outlined in the previous chapter in Fig. 1.2. In the first level, the docu-
ments are decomposed in a set of primitives which are characterized by a descriptor
capturing the most important cues. The second level is focused on how these descrip-
tors are organized to be posteriorly consulted. Finally, the third level is in charge of
validating the hypotheses arising from the matching between model and stored data.
This third level shall provide the resulting list of locations where a queried symbol is
likely to be found.

We organize this state of the art in four different parts. First we briefly review
in section 2.2 the recent contributions of the Graphics Recognition community to the
spotting problem. The subsequent three parts refer to each level of the general symbol
spotting architecture. In section 2.3 we focus on the symbol descriptor categorization.
Section 2.4 focuses on the organization and access to the stored descriptors and in
section 2.5 we present the existing approaches for hypotheses validation. We finally
summarize in section 2.6 which are the suitable approaches for spotting graphics.

13



14 STATE OF THE ART IN SYMBOL SPOTTING

2.2 Spotting Graphical Elements

Among the Graphics Recognition community, a lot of efforts have been devoted in
the last years to the problem of locating elements in document images. However, two
different applications can be identified, namely locating words in textual image doc-
uments in the image domain or identifying regions likely to contain a certain symbol
within graphics-rich documents. Although the problem is the same, the proposed
methods are very different whether the focus of the application is centered on text or
in graphics. Let us briefly review in the next sections the existing work on both word
and symbol spotting.

2.2.1 Word Spotting

OCR engines benefit from the nature of alphanumeric information, i.e. text strings,
are one-dimensional structures with underlying language models that facilitate the
construction of dictionaries and indexing structures. Word spotting techniques take
also advantage of this aspect and usually represent words as one-dimensional signals
which will be further matched against the query word image. The main idea of
these approaches is to represent keywords with shape signatures in terms of image
features. The detection of the keyword in a document image is usually done by a
crosscorrelation approach between the prototype signature and signatures extracted
from the target document image.

Although using image features without word recognition, the information is still
one-dimensional and it facilitates the use of some classical techniques used in speech
recognition. Rath and Manmatha presented in [RM03, RM03] a method to spot
handwritten words. They use the normalized projection profiles of segmented words
as word signatures. These word signatures are seen as time series and are aligned
using the Dynamic Time Warping (DTW) distance. We can see an example of such
approach in Fig 2.1.

Figure 2.1: Word image signature for word spotting using the DTW distance
(reprinted from [RM03]).

Kuo and Agazzi used in [KA94] another classical technique from the speech process-
ing field. A Hidden Markov Model (HMM) is used to spot words in poorly printed
documents. In this case, a learning step to train the HMM is needed. In addition, the
features describing each word the user wants to query have to be learned previously.
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Lladós and Sánchez proposed in [LS07] a keyword spotting method based on the
shape context descriptor. Words are represented by a signature formulated in terms
of the shape context descriptor and are encoded as bit vectors codewords. A vot-
ing strategy is presented to perform the retrieval of the zones of a given document
containing a certain keyword.

Leydier et al. presented in [LLE07] a word spotting method in order to perform
text searches in medieval manuscripts. The orientation of the gradients in a given
zone of interest are taken as features describing the local structure of the strokes and
the orientation of the characters’ contours. A matching process is then proposed to
identify and retrieve the locations where a given word is likely to be found. The
experimental results show that the proposed method is tolerant to several kinds of
noises as well as geometric distortions.

In [KGN07], Konidaris et al. presented another strategy for word spotting. In
that case, the query is not an image but is an ASCII string typed by the user.
Thus, the features which representing a word should be invariant enough to appear in
both synthetic characters and extracted character from the ancient documents. The
authors propose an hybrid approach by using the density of pixels in a given zone
of the character and the projections of the upper and lower profile of the character.
In order to improve the retrieval performance, a user’s feedback procedure is also
proposed.

Recently, Lu and Tan have proposed in [LT08] a very simple typewritten word
coding which is useful enough to characterize documents. The proposed word code
is based on character extremum points and horizontal cuts. Words are represented
by simple digit sequences. Several similarity measures based on the frequency of the
codes are defined to retrieve documents written in the same language or talking about
similar topics.

Finally, Kise et al. addressed in [KTM02] another interesting aspect of the word
spotting problem. Since they focus their approach in Japanese documents, they found
that a word can be formed by several Kanji characters. Locating a query word within
a document is then done by analyzing the characters density distribution within a
document image. The same idea can be applied to other languages when we want
to spot not only a single word, but we want to perform what is known as passage
retrieval.

One of the weak points we find in almost all the methods presented in the existing
literature, is that most of the approaches take advantage of the layout knowledge. By
assuming that the entities of the document images follow a certain spatial structure,
they are able to segment words and take them as atomic elements. To our best
knowledge there are very few methods which can deal with the document image as a
whole without a specific word segmentation step. This is a strong limitation of these
approaches since the performance of these methods will always be strongly dependent
on the performance of the previous word segmentation. We believe that rather than
using crosscorrelation approaches, the use of some indexing structure pointing to the
locations where the queried word is likely to appear would be much more interesting
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for spotting purposes. As we will see, some symbol spotting methods are based on
this idea.

2.2.2 Symbol Spotting

The main idea of symbol spotting is to describe symbols by a very coarse descriptor to
foster the querying speed rather than the recognition rates. Even if symbol spotting
is still an emerging topic, several works facing the problem can be found.

Müller and Rigoll proposed in [MR00] one of the first approaches we can identify
as symbol spotting. By using a grid of fixed size the technical drawing images are
partitioned. Each small cell acts then as an input in a two-dimensional HMM trained
to identify the locations where a symbol from the model database is likely to be found.
The main advantage the system presents is that symbols can be spotted even if they
appear in a cluttered environment. However, the fact that the recognizer must be
trained with the model symbols entails a loss of flexibility to the presented method.

On the other hand, some techniques work with a previous ad-hoc rough segmen-
tation, as presented in [TWT03]. In that case, an algorithm of text/graphics sepa-
ration is applied in order to separate symbols from the text and the background. In
[TW04, TWZ04], the symbols which are linked to a network are segmented by ana-
lyzing the junction points of the skeleton image by a loop extraction process. After
these ad-hoc segmentations, global numeric shape descriptors are computed at each
location and compared against the training set of pixel features extracted from model
symbols. As most of the word spotting methods, in this case, when querying a certain
object, a set of segmentations are proposed. A descriptor is computed sequentially
for each sub-image and a distance metric decides whether if it is the searched item or
not. The one-to-one matching is a clear limitation of such approaches which won’t be
a feasible solution to adopt when facing large collections. In addition, the ad-hoc seg-
mentations are only useful for a restricted set of documents which makes the method
not scalable to other application domains.

Other techniques as in [MB96, LMV01, BHA05, LAT07, QRB08] rely on a graph
based representation of the document images. These methods focus on a structural
definition of the graphical symbols. Subgraph isomorphism techniques are then pro-
posed to locate and recognize graphical symbols with a single step. However these
approaches do not seem suitable when facing large collection of data since graph
matching schemes are computationally expensive.

Realizing that the computational cost has to be taken into account, several works
as [VS94, DL04, ZW07] are centered on computing symbol signatures in some regions
of interest of the document image. These regions of interest can come from a sliding
window or be defined in terms of interest points. Obviously, these methods are quicker
than graph matching or sequential search, but make the assumption that the symbols
always fall into a region of interest. In addition, symbol signatures are usually highly
affected by noise or occlusions.

Zuwala and Tabbone presented in [ZT06, Zuw06] an approach to find symbols in
graphical documents which is based on a hierarchical definition of the symbols. They
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Figure 2.2: Dendrogram representation for spotting symbols in technical drawings
(reprinted from [ZT06]).

propose the use of a dendrogram structure which aims to hierarchically decompose a
symbol. A symbol is represented by its composing subparts splitted at the junction
points. These subparts are merged according to a measure of density building the
dendrogram structure. Each subpart is described by an off-the-shelf shape descriptor.
The dendrogram can be subsequently traversed in order to retrieve the regions of
interest of a line drawing where the queried symbol is likely to appear. We can see an
example on the use of a dendrogram representation for symbols appearing in technical
drawings and the obtained spotting results in Fig 2.2.The authors proposed in [TZ07]
an enhancement of the traversal step, which by the use of indexing strategies allowed
to reduce the retrieval time.

Finally, in some domains, graphical objects can be annotated by text labels. In
these cases, the spotting mechanism could manage textual queries to provide graphical
results as presented by Lorenz and Monagan in [LM95]. Najman et al. present in
[NGB01] a method to locate the legend in technical documents. The text contained in
the legend can be posteriorly used to extract graphical areas annotated by these text
strings, as presented in [SM99] by Syeda-Mahmood. In our work we do not consider
textual annotations and thus the spotting method only manages graphical entities.

We can found in Table 2.1 a summary of the state-of-the-art symbol spotting
approaches. Our feeling, as in the case of word spotting, is that indexing mechanisms
and voting schemes are very useful when trying to not only recognize a graphical object
but when trying to locate and recognize at the same time. Spotting methods which
do not use indexing structures may discriminate zones of interest from a document
image, but can hardly be transferred to a real focused retrieval application dealing
with large collections of document images. Let us focus in the next section on the
problem of how can we describe graphical symbols.
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Table 2.1: State-of-the-art symbol spotting approaches.

Family Method Pros. Cons.

2D HMM [MR00] Segmentation-free. Needs training.

[TWT03]
Robust symbol description.

Ad-hoc previous
segmentation.

Pixel Features [TW04]
[TWZ04]

[MB96]
Simultaneous symbol
segmentation and
recognition.

Computationally expensive.
Graph-based [LMV01]

[BHA05]
[LAT07]
[QRB08]

Symbol Signatures
[VS94]

Compact and simple symbol
description.

Performance decreases if the
symbol could no be perfectly
isolated.

[DL04]
[ZW07]

Hierarchical
Symbol
Representation

[ZT06] Linear matching is avoided
by using an indexing
technique.

Dendrogram structure is
strongly dependent on the
merging criterion.

[Zuw06]
[TZ07]

Textual queries
[LM95] More robust since it is easier

to recognize characters than
symbols.

Only applicable when
textual information is
present.

[SM99]
[NGB01]

2.3 Symbol Description

Symbol Recognition is at heart of many of the Graphics Recognition applications.
As pointed out in the state of the art review of Lladós et al. in [LVS02], because
the wide range of different graphic documents, each of them containing its particular
symbols, it is not easy to find a precise definition of what a symbol is. In the context
of graphic-rich documents, symbols can be defined as the graphical entities which are
meaningful in a specific domain and which are the minimum constituents that convey
the information.

From this definition, we can see that there is a large variety of entities that can be
considered symbols. Symbols can be from simple 2-D binary shapes composed of line
segments as the case of the entities found on engineering or architectural documents
to complex sets of gray-level or even color sub-shapes, as in the case of trademarks
or logos.

This vast and heterogenous nature of symbols provoke that when facing the prob-
lem of describing and recognizing symbols, the proposed methods that can be found
in the literature can rely on different primitives and visual cues to describe a symbol
depending on the application to face. In the different reviews of description techniques
each author propose a different taxonomy to cluster the methods following different
criteria. For instance Mehtre et al. base their classification of shape description tech-
niques presented in [MKL97] on whether the methods described the shapes from the
previously extracted boundary of the objects or if they are region-based and use all
the internal pixels to describe a shape. A more recent review of shape description
was proposed by Zhang and Lu in [ZL04]. In that case, the authors add another
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criteria to cluster the existing methods. Besides the contour-based or region-based
nature of the systems, they propose to look if they are structural or global. This
sub-class is based on whether the shape is represented as a whole or represented by
segments/sections. Lladós et al. presented in [LVS02] a state of the art on symbol
recognition techniques, clustering the existing methods not only by techniques nature
but also by their intended applications. In our work, we propose to cluster the de-
scription techniques in three different categories clearly defined by the different visual
cues which the methods aim to encode. In the first place, the photometric descrip-
tion of symbols describe the graphic objects in terms of the intensity of its pixels.
It encodes thus several visual cues at the same time, as the shape of the object, the
color, its texture, etc. On the other hand, a geometric description of symbols is only
centered on the analysis of the shape as basic visual cue. Finally, the syntactic and
structural description of symbols aims to represent the structure of a set of geometric
primitives by defining relationships among them. Obviously, some methods in the
literature are difficult to classify following this taxonomy since they use a combined
strategy, or because they may be understood as belonging to different categories at
the same time. We can found the whole hierarchy of the classification in the diagram
shown in Fig. 2.3.

Figure 2.3: Classification of symbol representation and description techniques.
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2.3.1 Photometric Description

The main interest of this kind of approaches to describe a graphical symbol is that
the photometric description encode several visual cues at the same time. This kind
of descriptions are suitable when we have to face with complex symbols that could be
hardly described by only using the shape information. The problem of logo recognition
is one of the application examples where a photometric description is suitable.

Bagdanov et al. present in [BBB07] a method focused on the detection of trade-
marks appearing in real images. In order to describe those symbols, in that work, the
authors use the SIFT descriptor to match the trademark models against video frames.
The SIFT descriptor, presented by Lowe in [Low99, Low04], basically characterize the
local edge distribution around a given interest point by analyzing the intensity gra-
dients in a patch surrounding the previously extracted keypoint having a certain
scale and orientation. The feature descriptor is computed as a set of orientation his-
tograms on a grid of 4 × 4 neighborhoods. These histograms are computed relative
to the keypoint orientation in order to achieve invariance to rotations. In addition,
the magnitude and orientation of the gradients are computed from the Gaussian scale
space image closest in scale to the keypoint’s scale. The contribution of each pixel is
weighted by the gradient magnitude, and by a Gaussian with a σ value proportional
to the scale of the keypoint. Histograms contain 8 bins each, and each descriptor
contains an array of 16 histograms around the keypoint. This leads to a SIFT feature
vector with 4 × 4 × 8 = 128 elements. The SIFT descriptor has been widely used
in Computer Vision for several applications as object recognition or robotics related
problems as SLAM (Simultaneous Localization and Mapping). It could be very useful
to describe complex graphic symbols as logos, but it looses effectiveness to represent
simpler symbol designs.

(a) (b) (c)

Figure 2.4: Example of the generic Fourier descriptor. (a) An original logo image;
(b) polar-raster sampled image plotted in Cartesian space; (c) Fourier spectra of (b);
(reprinted from [ZL02]).

From another point of view, there is a family of photometric descriptors which
base the symbol representation in the spectral domain. The analysis of images in the
spectral domain overcome the problem of noise sensitivity. Within this family we can
find some works focused on the application of such descriptors for symbol recognition.
For instance, the Generic Fourier Descriptor (GFD) presented by Zhang and Lu in
[ZL02] is used to recognize a set of trademarks. In this work, the raster images of
logos (as the one shown in Fig. 2.4) are transformed from the Cartesian to the polar
space and then a two-dimensional Fourier transform is applied to obtain the symbol
description. Another example of spectral descriptors is the Fourier-Mellin transform.
After a polar representation of the image, the angular parameter is expressed by the
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coefficients of the Fourier transform whereas the Mellin transform is applied to the
radial parameter. In [AOC00], Adam et al. present a method allowing the classifica-
tion of multi-oriented and multi-scaled characters appearing in technical documents.
They base their set of invariants on the Fourier-Mellin transform, and are able to deal
even with connected characters without a previous segmentation step.

Another family of photometric descriptors are the ones based on moments. As pre-
sented in Teh and Chin’s review [TC88], moments have been utilized as pattern fea-
tures in a number of applications to achieve invariant recognition of two-dimensional
image patterns. Let us briefly review some of the moment-based descriptors which can
be applied to the description of graphical symbols. Hu first introduced in [Hu62] a set
of moment invariants by using nonlinear combinations of geometric moments. Those
invariants have the properties of being invariant under image translation, scaling, and
rotation. All these properties make Hu’s invariants a suitable symbol descriptor. For
instance, in [CKL93], Cheng et al. presented a symbol recognition system focused on
the recognition of previously segmented electrical symbols. After a normalization, a
symbol is described by a feature vector representing the six geometric moment invari-
ants computed with respect to the symbol centroid. From the theory of orthogonal
polynomials, Zernike moments have been introduced in [Tea80]. By projecting the
symbol image to a vectorial space defined by a set of orthogonal polynomials named
Zernike polynomials, the Zernike moments are obtained. Independent moment invari-
ants are then easily constructed in an arbitrarily high order. As an application exam-
ple, Khotanzad and Hong use in [KH90] the Zernike moments to describe a small set
of upper case letters affected by several transformations and distortions. They show
that Zernike features compare favorably with Hu’s geometric moment invariants. In
addition, the Zernike moments have the ability to reconstruct the graphical symbol
from its description, which in some applications may result useful. Finally, another
orthogonal moments are the Legendre moments, which make use of Legendre polyno-
mials. In [CRM04], a descriptor based on an enhancement of the Legendre moments
is presented to recognize Chinese characters ongoing several transformations. We can
see an example of the ability to describe and reconstruct shapes of both Zernike and
Legendre moments in Fig. 2.5. Usually, moment invariants are good descriptors since
they are easy to compute and besides describing the intensity of the pixels, they also
have a relation with geometric properties as center of gravity or axes of inertia.

We can found in Table 2.2 a summary of the state-of-the-art photometric symbol
descriptors. Let us focus in the next section on the geometric descriptors.

2.3.2 Geometric Description

Geometric description techniques are primitive-based methods encoding basically the
shape as the most important visual cue to describe graphical symbols. Symbols are
broken down into lower level graphical primitives and are then described in terms
of these primitives. The usual extracted primitives from the symbols are: contours,
closed regions (loops), connected components, skeletons, etc. Within this family, we
will differentiate between methods which are only able to describe one primitive, or
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(a)

(b)

Figure 2.5: Example of the orthogonal moments for reconstruction of the letter
E with from the second-order moments (a total of six moments) through up to
20th-order moment (a total of 231 moments). (a) Zernike moments; (b) Legendre
moments; (reprinted from [TC88]).

methods which can be used to describe a whole symbol in terms of all these composing
primitives.

Single Primitive Description

A great variety of simple shape descriptors coping with geometric characteristics exist
in the literature. Those descriptors are very easy to compute but are usually poorly
discriminant. They can be used as a the first stage of the selection process among the
shapes likely to be good candidates. Most of these simple descriptors are computed
over a contour primitive, but can also be used to describe the skeleton or a region.
Among the whole variety of simple shape descriptors we can cite a few. The area and
the perimeter of the shape under analysis can be used as a coarse filter in applications
where invariance to scale is not needed. The diameters of the circles with the same
area or perimeter than the shape can also be used as simple descriptors, but, again the
scale invariance is not achieved. Usually, for segmentation purposes, the orthogonal
projections of the shape following the x and y axes are used to describe whether a
shape is present or not. To have invariance to rotation, Feret’s diameters are used.
The Feret’s diameters are the maximal and minimal orthogonal projections of the
shape on a line. In order to achieve invariance to scale, usually some ratios among
simple features are used. The eccentricity, aspect-ratio or Feret’s ratio characterizes
the dimensionality of the shape and is computed as the ratio between the maximum
and minimum Feret’s diameters. The area-perimeter ratio which is computed as
4πA(X)/(P (X)2) (being A(X) and P (X) the area and the perimeter of the shape X
respectively) characterizes deviations of the shape from a circular form. For a disc
it is equal to 1 while for all other shapes it is less than 1. The convexity ratio is
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Table 2.2: State-of-the-art photometric symbol descriptors.

Name Application
to Symbol
Description

Notes

SIFT [BBB07] Invariance to affine transforms and illumination
changes. Set of orientation histograms computed
over previously extracted keypoints.

GFD [ZL02] Applied to segmented symbols. 2D Fourier trans-
form of the polar image.

Fourier-Mellin [AOC00] Can be applied to non-segmented symbols.

Hu’s invariants [CKL93] Nonlinear combination of the lower order mo-
ments. Invariant to similarity transforms but not
too much discriminative.

Zernike [KH90] Orthogonal moments. Allow a reconstruction of
the shape. Robust to noise.

Legendre [CRM04] Orthogonal moments. Allow a reconstruction of
the shape. Less robust than Zernike.

defined as the ratio between the area of the shape and the area of its convex-hull. It
characterizes deviations from convexity.

Obviously, not all these simple descriptors have the desired invariance to rotation
or scale, but most of them can be easily normalized to achieve such invariance. In
addition to these simple descriptors, we can find in the literature several arc-length-
based signatures. These signatures represent a shape by a one-dimensional function
derived from its contour. From the variety of arc-length signatures, we can cite:

• The radius-vector function, rx(ϕ) is the distance from a reference point O in
the interior of the shape X to the contour in the direction of the ϕ-ray where
0 ≤ ϕ ≤ 2π.

• The tangent-angle function φx(p) characterizes the changes of direction of the
points of the contour. The tangent angle at some point is measured relative to
the tangent angle at the initial point.

We can find in Fig. 2.6 an illustration on how these contour signatures are com-
puted. These signatures are also normalized to achieve invariance to translation and
scale. Invariance to rotation is obtained by considering the function as periodic and
analyzing a circular permutation of the signature. In addition to the high matching
cost, contour signatures are sensitive to noise, and slight changes in the boundary can
cause large errors in matching.

Another family of descriptors are the ones working at different scales. The scale
space representation of a given shape is created by tracking the positions of interest
points (protrusions and inflections) in a shape boundary filtered by a Gaussian filter
of different width σ. As the σ value increases, little inflections are eliminated from
the contour and the shape becomes more and more smooth. The inflection points
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(a) (b)

Figure 2.6: Computation of the arc-length-based signatures. (a) The radius-vector
function; (b) the tangent-angle function; (reprinted from [Kin97]).

of the shape under analysis that remain present in the representation are expected
to be significant object characteristics. Mokhtarian et al. present in [MAK96] the
Curvature scale space (CSS) signature. The peaks from the curvature scale space
contour map are extracted and used as to match two shapes under analysis. The CSS
signature is tolerant noise and changes in the boundary since it bases its representation
at different detail scales. However, since the matching process tries to find the best
match between the contour branches of the CSS signature by applying shifts and
different scales to achieve invariance to scale and rotation, the matching process proves
to be very expensive.

As another example of geometric descriptor for single primitives, we can cite the
Shape Context (SC) descriptor presented by Belongie et al. in [BMP02]. The shape
context descriptor allow measuring shape similarity by recovering point correspon-
dences between the two shapes. Given a set of points from a symbol (e.g. interest
points extracted from a set of detected edge elements), the shape context captures the
relative distribution of points in the plane relative to each point on the shape. Specif-
ically, a histogram using log-polar coordinates which counts the number of points
inside each bin is constructed. The descriptor offers a compact representation of the
distribution of points relative to each selected point. An example of the shape con-
text descriptor to match shapes can be seen in Fig. 2.7. Translational invariance
come naturally to shape context. Scale invariance is obtained by normalizing all ra-
dial distances by the mean distance between all the point pairs in the shape. In order
to provide rotation invariance in shape contexts, angles at each point are measured
relative to the direction of the tangent at that point. Shape contexts are empirically
demonstrated to be robust to deformations and noise. The shape context descriptor
has been tested on different datasets. It has been used to recognize handwritten digits,
to retrieve silhouettes by similarity and even to retrieve logos. In [MS05], Mikolajczyk
and Schmid, proposed to enhance the shape context descriptor by weighting the point
contribution to the histogram with the gradient magnitude, and to add orientation
information to the histogram besides point locations. This enhancement makes that
the shape context descriptor may also be classified into the photometric description
techniques.

Describing graphical symbols by geometric descriptors coping with a single primi-
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(a) (b) (c) (d) (e)

Figure 2.7: Example of the shape context descriptor for shape matching. (a) and
(b) Original shapes to match with sampled edge points; (c) diagram of the log-polar
histogram bins used in computing the shape contexts; (d) shape contexts obtained
from one point of (a) and one point of (b); (e) correspondences found using bipartite
matching for the two shapes (a) and (b); (reprinted from [BMP02]).

tive can be very useful when the symbols are non-isolated and other entities than the
symbol may appear. These methods may also be very useful when the symbols can
be affected by occlusions. As a last example of geometric description for single prim-
itives we can mention what we call a description based on graphical tokens. Given
a primitive (usually a contour or a skeleton of a symbol), it is partitioned into small
graphical entities which can be described by very simple attributes. For example,
Berretti et al. present in [BBP00] a system which partitions a contour into a set of
tokens by partitioning the shape at minima of the curvature function. Each token τi is
described through the features (mi, θi) representing the curvature of the token and its
orientation with respect to a reference system. Stein and Medioni propose in [SM92]
to polygonally approximate a shape and then to partition this representation into sets
of adjacent segments named super-segments. Those chains of consecutive segments
are then represented by several attributes as the lengths, angles, orientation and ec-
centricity of the token. Nishida presents in [Nis02] a simpler yet effective approach.
He proposes to apply a quantized-directional codes the the approximated contour
and to characterize the tokens by a tuple representing the angular span and the di-
rection of the segment (Fig. 2.8a). Lorenz and Monagan in [LM95], propose another
set of simple tokens to represent graphical entities (Fig. 2.8b). To describe regular
structures, parallel segments and junctions are taken as tokens and represented by
attributes as length ratios and angles. To cope with irregular structures, chains of
adjacent segments are taken as more complex tokens and are encoded by using the
first six harmonics of the Fourier approximation of the segments chain. Those simple
descriptions of symbols allow to cope with distorted symbols and with occlusions.
However, as the symbol to recognize is composed by several tokens, usually, in order
to match two different symbols, an algorithm of bipartite graph matching has to be
used.

Description of Several Primitives

A first example of geometric description of symbols which can handle several prim-
itives at the same time can be grid-based method proposed by Lu and Sajjanhar in
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(a) (b)

Figure 2.8: Examples of graphical tokens-based description. The symbol primi-
tives are partitioned into small graphical entities which are described by very simple
attributes. (a) Quantized-directional codes (reprinted from [Nis02]); (b) length and
angular tokens (reprinted from [LM95]).

[LS99]. This descriptor is inspired on the classic photometric descriptor known as
Zoning [Bok92], but adapted to work with primitives, thus encoding geometric con-
straints among them. After a primitive extraction step, as contours or skeletons, the
symbol is normalized for rotation and scale. The symbol is scaled into a fixed size
rectangle, shifted to the upper left of this rectangle and rotated so the major axis
Fmax(X) of the symbol is horizontal. Then, the symbol is mapped on a grid of fixed
cell size. Subsequently, the grid is scanned and a binary value is assigned to the
cells depending on whether the number of points in the cell are greater than or less
than a predetermined threshold. A unique binary number is obtained as the symbol
descriptor. Although its simplicity, this kind of simple description is very dependent
on the normalization step, and may not tolerate well slight distortions.

Inspired by the shape context descriptor described above, Mori et al. present
in [MBM01] the shapeme histogram descriptor. This approach computes the shape
context descriptor for all the interest points extracted from a symbol and uses vector
quantization in the space of shape contexts. Vector quantization involves a clustering
step of the shape context feature vectors and then represents these feature vectors by
the index of the cluster that it belongs to. These clusters are called shapemes. By this
means, we obtain a single descriptor for a symbol, no matter how many primitives
it has. Each symbol is represented by a collection of shapemes by a histogram. The
matching of two symbols is done by finding the nearest neighbors in the space of
histograms of shapemes.

Yang presents in [Yan05] a symbol descriptor which as the shape context descrip-
tor also captures the relative distribution of points from a symbol. However, the Pixel
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Level Constraint Histogram (PLCH) descriptor encodes all the complete symbol no
matter how many primitives (skeleton branches in that case) compose the symbol.
The descriptor represents geometric constraints between every pair of points from the
skeleton in reference to a third point. At each point from the symbol we compute a
histogram depicting how the other points configure surrounding this point. Length
ratios and angles are computed for each pair of points by using one point as refer-
ence. Using an equal bin partition and an accumulation space, two matrices (one for
the length information and other for the angle information) of fixed dimensions are
obtained. These matrices are used as the shape descriptor. The distance between
two symbols is then defined as the sum of differences between the model and the
test matrices. The tests, using the data from the symbol recognition contest held
in the Fifth IAPR International Workshop on Graphics Recognition (GREC 2003 )
[VD04], give good recognition rates under diverse drawbacks such as degradation,
distortion, rotation and scaling. As the descriptor focuses on geometric constraints
among points, the rotation and scale-invariance are guaranteed. However this method
can only work with segmented symbols and its computational complexity may become
very high (O(n3)), since all the triplet of pixels of the skeleton image are considered.

Another family of methods to describe graphical symbols using geometric infor-
mation is the approaches based on vectorial signatures. This description technique
is best suited for applications dealing with symbols arising from line-drawings as
electronic diagrams or architectural floor plans where the primitives are of vectorial
nature. The primitives representing the symbols are the segments extracted from a
polygonal approximation of the contour or the skeleton of the symbol. The signatures
are defined as a set of elementary features, containing intrinsically a discrimination
potential. Huet and Hancock present in [HH99] a simple and compact histogram rep-
resentation which combines geometrical and structural information for line-patterns.
The attributes which are taken into account to built the signature are computed be-
tween pairs of line segments. These pairwise geometric attributes are the relative
orientation between pairs of line segments, length ratios, distances and projections.
This representation can be effectively used to index into a large database according
to shape similarity. Based on the work by Etemadi et al. [ESM91], Dosch and Lladós
present in [DL04] a method for symbol discrimination by using vectorial signatures.
The method starts by a study on basic relationship between pairs of lines. Several
main relations are thus enumerated: collinearity, parallelism and intersections. For
each of these relations, some extensions are considered, like overlapping for paral-
lelism, or the kind of intersection point. The number and the type of the relations
found in a particular zone will form the signature. In [WZY07] Liu et al. present
a similar approach. In that case, symbols are also represented by the occurrences
of intersections among segments, parallelism and perpendicularities. Each of those
features are attributed with certain parameters as angles, length ratios or directions.
We can see an illustration of the considered geometric constraints which built the
proposed signature in Fig. 2.9. These approaches present a very compact representa-
tion of graphical symbols having enough discriminative power to be used as a basis
for spotting systems. However, the main drawback of such signatures is they may be
very sensitive to slight changes of the primitives.
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Table 2.3: State-of-the-art geometric symbol descriptors.

Name Application
to Symbol
Description

Primitives Notes

Simple ratios [NSS02] Single Very simple to compute. Low discrimi-
nant power.

Arc-length Signa-
tures

[TR03] Single Sensitives to slight boundary deforma-
tions.

CSS [MAK96] Single Scale space analysis of a single contour.
Tracking of the inflection points. Ro-
bust to boundary noise.

Shape Context [BMP02] Single Compact representation of distribution
of points relative to a reference point.
Invariant to similarity transforms.

Graphical Tokens [SM92], [LM95],
[BBP00], [Nis02]

Single Partition of graphical primitives into
simpler entities. Those tokens are de-
scribed by simple geometric attributes.
Very useful in case of occlusions.

Grid-based [LS99] Multiple Provide a binary description of the sym-
bol’s shape. Very simple representation
but dependent on a previous normaliza-
tion step to achieve invariance to simi-
larity transforms.

Shapeme [MBM01] Multiple Vector quantization on the shape con-
texts of a symbol. Obtains a single fea-
ture vector for a symbol.

PLCH [Yan05] Multiple Represents geometric constraints be-
tween every pair of points from the
skeleton in reference to a third point.
Invariant to similarity transforms and
robust to noise.

Vector Signatures [HH99], [DL04],
[WZY07]

Multiple Compact representation of vectorial
symbols. Invariant to similarity trans-
forms but very sensitive to noise at vec-
tor level.
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(a) (b) (c) (d)

Figure 2.9: Geometric constraints taken as features to build a vectorial signature.
(a) Intersection of segments; (b) parallelism; (c) perpendicularity; (d) constraints
regarding arcs and circles; (reprinted from [WZY07]).

We can found in Table 2.3 a summary of the state-of-the-art geometric symbol
descriptors. Let us focus in the next section on the syntactic and structural description
family.

2.3.3 Syntactic and Structural Description

Finally, the syntactic and structural description approaches are focused on the struc-
ture of the symbol under analysis. Symbols are first decomposed in basic primitives
which may be represented by any description presented above. The syntactic and
structural descriptors aim then to define the relationships among those primitives.
Whereas in syntactic description we offer a rule based description of the symbols, in
structural description, the recognition of a given symbol is performed by comparing
its symbolic representation against a predefined model of the symbol under analysis.

As introduced by Fu in [Fu74], the syntactic approach to pattern recognition pro-
vides a capability for describing a large set of complex patterns by using small sets
of simple pattern primitives and of grammatical rules. The application of gram-
mars to the problem of symbol description has been widely used over the years since
this application is especially well suited to model description through syntactic rules.
Terminal elements of the grammars will correspond to the basic primitives compos-
ing a graphical symbol and the non-terminal elements will describe the production
rules. Syntactic analyzers are built from these grammars in order to group the basic
primitives following the production rules and in order to finally recognize graphical
symbols. We can find in the literature many kinds of grammars, from the linear ones
as the PDL-grammars presented in [Sha69] or the adjacency grammars used by Mas
et al. in [MJS08], to more complex grammatical structures as the graph grammars
presented by Bunke in [Bun82]. However, the syntactic approaches present the prob-
lem that rule based description schemes are very affected by noisy data. Since the
recognition of the symbols is done in terms of the rules of composition of primitives,
slight perturbations on the terminal elements may provoke that the production rules
can not be applied, and then the symbol can not be recognized.

As a first example of structural descriptors, we focus on the string representation
of symbols. Symbols are represented by an ordered set of primitives which are encoded
as a one-dimensional string. These descriptors codify in which order we expect to find
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Figure 2.10: String representation of closed contours (reprinted from [Fu74]).

the primitives that compose a given symbol. For instance, Fu proposed in [Fu74] to
represent chromosome shapes by a chain of boundary segments forming codewords
(see Fig. 2.10). In this kind of approaches, the similarity measure between two string
representations of a symbol will be computed by using the string edit operations
proposed by Wagner and Fischer in [WF74]. Tsay and Tsai in [TT89] or Wolfson in
[Wol90] use the string edit operations applied to the recognition of polygons. Another
commonly used method for transforming shapes into one-dimensional strings is the
use of the chain codes presented by Freeman in [Fre61]. In that case, shapes are
described by a sequence of unit-size line segments with a given set of orientations.

Figure 2.11: Attribute relational graph for symbol description. Nodes represent line
segments and are attributed by their length while edges represent an adjacency rela-
tionship and are attributed by the formed angle between the two segments (reprinted
from [MB96]).

The most common structural representation of symbols is the Attribute Relational
Graph (ARG). Graphical primitives are extracted from the symbols and a graph is
built representing the structural relationships among those primitives. Messmer and
Bunke proposed in [MB96] a symbol recognition framework based on an ARG rep-
resentation. The primitives taken into account are the line segments that arise from
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a polygonal approximation of an engineering drawing. An ARG is constructed by
taking the segments as the nodes of the graph and the edges represent that two seg-
ments are adjacent. Both nodes and edges have associated attributes. The length of
the segment is stored in the nodes whereas the angle between two segments is stored
in the corresponding edge. We can see an example of such graphs in Fig. 2.11. As
another example, Lladós et al. present in [LMV01] another approach by using an
ARG. In this case, the authors use higher level primitives than segments. Closed
regions are identified from the symbol prototype and are used as the nodes of the
graph. The nodes of two adjacent regions of the symbol are linked through an edge of
the graph. The nodes of the region graph are attributed by the string representation
of the boundary of the region. The edges are attributed by the shared string of the
two adjacent regions. Length and orientation attributes are also added to this graph
representation. The use of attributed graphs for representing symbols has the main
advantage that we can have a very complete description of the symbols. Primitives
can be described by photometric or geometric descriptors and these descriptions can
be the attributes of the nodes. In addition, the relationships among those primitives
are represented by the edges, codifying structural information. In the general case of
graph-based symbol description, the recognition of the symbols has to be done by the
use of an sub-graph isomorphism. For each symbol, a prototype of its ideal shape is
build as an attributed graph. An input symbol is recognized by means of the match-
ing between the representation of the symbol and the symbol prototype. The main
drawback of such powerful representation is that the sub-graph isomorphism algo-
rithms are extremely expensive in computation time since they it is an NP-complete
problem as stated in [GJ79].

In order to avoid the complex step of matching two graph representations, several
approaches can be found. For instance, Franco et al. [FOL04] use the minimum
spanning tree as a simplification of a graph. By connecting all the pixels constituting
the object under the constraint to define the shortest path the shape topology is
captured. A template matching algorithm which uses minimum spanning trees as
symbol representation is presented.

We can found in Table 2.4 a summary of the state-of-the-art syntactic and struc-
tural symbol description approaches. Let us focus in the next section on the problem
of how to organize the descriptors to provide an efficient access to the information.

2.4 Descriptors Organization and Access

In the problem of recognizing graphics appearing within document images, the basic
paradigm involves a matching step between the features extracted from the model
graphical symbol and the features extracted from the document images. To be able
to recognize and to locate elements in documents, the descriptors should be stored
in a data structure and clustered by similarity. Once the user formulates a query in
terms of a symbol, we have to retrieve by an efficient mechanism the locations within
the document images where similar symbols to the queried one appear. As pointed
out by Califano and Mohan in [CM94], since all feature combinations may have to be
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Table 2.4: State-of-the-art syntactic and structural symbol descriptors.

Name Application
to Symbol
Description

Notes

Grammars [Sha69],
[MJS08],
[Bun82]

Rule-based description. Performance highly af-
fected by noise in primitives.

Strings [Fre61], [Wol90] One-dimensional representation of symbols. The
structural information is the order followed by the
primitives. Similarity measure defined in terms of
edit operations.

Graph-based [MB96],
[LMV01],
[FOL04]

Prototype-based description. Very powerful tool
to describe symbols. Extremely expensive in com-
putation time.

explored, brute-force matching is equivalent to exponential search. In focused retrieval
applications with large databases, these costs may become unaffordable. The choice
of a data structure providing efficient access to the descriptors is crucial to the final
performance of the system. Let us briefly overview in this section which approaches
can be found in the literature.

2.4.1 Sequential Access

In the first place, we can find a family of spotting methods which work with a se-
quential access to the symbol descriptors, i.e. the descriptors are stored in a list or
a similar sequential data structure. In those methods, regions of interest where the
symbols are likely to be found are extracted by some means. A symbol descriptor is
computed afterwards for each of these regions of interest. When the user wants to
retrieve the zones of the image collection having similar description than the queried
symbol, one-to-one matching has to be computed in a sequential way. The complex-
ity of searching similar descriptors by using data structures with sequential access
is O(N), with N being the number of segmented regions of interest for the entire
collection. Even if the use of sequential structures has several important drawbacks,
it is the most used approaches in the literature dealing with symbol spotting.

As application examples we can mention the work by Tabbone et al. [TWT03],
where an algorithm of text/graphics separation is applied in order to separate symbols
from the text and the background of technical documents. Each connected compo-
nent is represented by a photometric descriptor computed over the area defined by
the bounding box of the connected component. Subsequently, each descriptor is se-
quentially compared against all the model descriptors and if the distance between
two descriptors is small enough, the interest region is labelled as containing a certain
symbol. Such approaches are obviously very dependent on the segmentation phase.

To avoid the dependence on a previous segmentation method, some approaches as
[MR00] or [DL04] use a grid partition of the document or a sliding window approach
to compute the descriptors all over the documents. As in the previous method, each
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Figure 2.12: Symbol spotting results by using sliding windows. (reprinted from
[DL04]).

descriptor arising from a window is sequentially compared against the all the model
descriptors. If the descriptor matches one of the model’s description, the window is
labelled as containing a certain symbol. We can see in Fig. 2.12 the result of spotting
symbols by using a sliding window approach. In those cases, the amount of descriptors
to compute and the number of distances among descriptors is dramatically increased.

The spotting methodologies which use a sequential access to the descriptors present
several drawbacks. One the one hand the access to the descriptors is not efficient,
leading to exponential search when all the combinations of descriptors have to be
tested. On the other hand, they are hardly scalable to a large number of documents
to consider or a larger number of symbol models.

2.4.2 Hierarchical Organization

In order to provide a more efficient search by similarity in the description space, we can
find a number of methods which work with a hierarchical representation of descriptors.
These methods use data structures such as trees, dendrograms, lattices or graphs.
Hierarchical data structures are based on the principle of recursive decomposition.
They are attractive because they are compact and depending on the nature of the
data they save space as well as time and also facilitate operations such as search.
The search by similarity is done by a traversal of the data structure that usually can
be done in logarithmic time with respect of the number of clusters involved in the
structure.
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Decades of research in the data mining field have resulted in a great variety of
hierarchical data structures that aim retrieval by similarity. The interested reader is
referred to Gaede and Günther’s [GG98] comprehensive survey on multidimensional
access methods. As examples, we can for instance cite the K-D-B-trees [Rob81],
which partition the universe and associate disjoint subspaces with tree nodes in the
same level. The LSD-trees [HSW89], guarantee that the produced data structure is
in addition a balanced tree being much more efficient in the traversal step.

Figure 2.13: Hierarchical organization of descriptors by using an M-tree struc-
ture. Traversing the structure allows a nearest neighbor search in logarithmic time
(reprinted from [BBP00]).

As application examples we can mention Lowe’s work [Low99] which uses a k-
d tree structure [Ben75] to organize the instances of the SIFT descriptor. Berretti
et. al. [BBP00] divide in their work contour primitives into diverse tokens which
are subsequently stored in an M -tree indexing structure [CPZ97]. We can see an
example of the obtained M -tree structure in Fig. 2.13. From another point of view,
Punitha and Guru [PG08] use a B-tree [BM76] to represent the spatial organization
of previously recognized primitives.

Within the symbol recognition field, we can for instance cite the work of Zuwala
and Tabbone [ZT06], which use a dendrogram to hierarchically represent the prim-
itives which compound the graphical symbols present in technical documents. The
dendrograms are tree structures which are used to illustrate the arrangement of the
clusters produced by a clustering algorithm. Following a similar idea, Guillas et al.
use in [GBO06] a concept lattice to hierarchically organize symbol descriptors. The
navigation of the concept lattice is done in a similar way than a decision tree.

Finally, graphs can also be used to store information and provide some kind of
hierarchical organization of data. For example, in [WZY07] graphs representing sym-
bols are reduced to a spanning tree which are posteriorly traversed to identify symbols
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within technical documents. Messmer and Bunke propose in [MB96] to build a net-
work of common subgraphs patterns. This network is then traversed by applying
graph isomorphisms. Ah-Soon and Tombre propose in [AST01] to build a graph of
geometric constraints which are then used to recognize symbols appearing in line-
drawings.

Structures aiming hierarchical organization of information based on the principle
of recursive decomposition can be very useful for the specific application of symbol
spotting. Thousands of feature vectors may arise from the documents and in the
querying step a similarity search has to be done in an efficient way. However, trees
can grow arbitrarily deep or wide and usually the efficiency of the traversal step is
very dependent on the tree topology. Balancing algorithms can be applied to maintain
the structure usability but are very costly to apply.

2.4.3 Prototype-based Search

Another kind of techniques conceived to avoid brute force matching are the ones
based on a prototype-based search. Although these kind of approaches are not very
common in the data mining field, in the particular case of pattern recognition they
have been used in several applications to provide efficient access to clusters of patterns
by similarity.

In prototype-based search, we are given a set of distorted samples of the same
pattern and want to infer a representative model. In this context, the median concept
turns out to be very useful. Given a set of similar patterns, a representative of this set
having the smallest sum of distances to all the patterns in the set can be computed.
If we want to retrieve similar patterns than a certain query, by using a prototype-
based search the retrieval by similarity is done efficiently since only the distances
between the query pattern and the representative of a cluster of similar patterns has
to computed. The fact of avoiding a brute-force distance computation allows a fast
pattern retrieval by similarity.

The computation of the median of a given set is straightforward when the feature
vectors used as descriptors are numeric, however it is more complex to extend this
concept to the symbolic domain. We can find in the literature several approaches
which aim to compute the median of a set of symbolic representations. Recently, Fer-
rer et al. present in [FVS09] a method to compute the median of a set of graphs. Jiang
et al. review in [JMB01] the possible applications of the median graphs. Obviously,
due to the extreme cost of computing the matching between graphs, prototype-based
search are very efficient methods to provide access the information.

2.4.4 Hashing Approaches

Finally, the other widely used data structure is the look-up table which aims to access
to the information immediately without any structure traversal step. For instance,
grid files [NHS84] are a bucket method which superposes a n-dimensional grid on
the universe and a directory (build with the definition of a hash function) associates
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cells with bucket’s indices. When using hashing techniques, the search operations
can theoretically reach O(1) time with well chosen values and hashes. To perform
a search by similarity by using such structures, the hash function must be seen as a
clustering function which can assign the same index to similar shapes.

Multidimensional hashing methods partition the space into hypercubes of known
size and group all the records contained in the same hypercube into a bucket. To
identify the bucket to which a certain query belongs, the index of the query is au-
tomatically computed using a hash function (performing one-dimensional partitions)
and the resulting bucket is obtained. In the specific case of shape retrieval, given a
primitive, a feature vector is computed using one of the presented descriptors. A hash
function establish a quantization criteria to apply to each dimension of the feature
vector to limit the index parameters to a finite number of discrete values.

Figure 2.14: Using hash tables for descriptor organization [SM92]).

Califano and Mohan use in [CM94] a look-up table mechanism to replace the
runtime computation of one-to-one matching with a simpler lookup operation. The
speed gain can be significant since retrieving a value from this structure is faster
than traversing a tree structure and much faster than a sequential comparison. Stein
and Medioni propose in [SM92] a similar approach to retrieve by similarity subparts
of a shape. As we can appreciate in Fig. 2.14, the subparts composing a shape are
encoded by a hash function resulting in the bucket index of the indexing structure.
The same hash function is applied in the querying step, and all the instances of similar
primitives stored in the bucket identified by the resulting index are retrieved.

Another classical example of the use of such structures is geometric hashing
method introduced by Lamdan and Wolfson in [LW88]. The geometric hashing ap-
proach aims to match geometric features against a database of such features. Geo-
metric hashing encode the model information in a pre-processing step and store it
in a hash table. During the recognition phase, the method accesses the previously
constructed hash table, indexing the geometric features extracted from the scene for
matching with candidate models. By the use of geometric hashing the search of all
models and their features is obviated. The simplest features one can use are the points
coordinates forming a shape. Normalizing the shape scaling, rotating and translating
it taking as basis a reference vector will give the position of hash table bins to store
the shape entry. The major disadvantage of the method is that the same subset has
to be chosen for the model image than the previously acquired images.

In the data mining field, the main drawback of hashing techniques are the colli-
sions. Given two different entries to store in the database, the database system has
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to guarantee that the hash function used to index such entries do not assign the same
key-index to them. If such thing happens, it would provoke the data to be lost. To
overcome this problem expensive re-hashing algorithms have to be applied once a
collision is detected. In the specific case of shape retrieval by similarity, collisions
are not a problem but the basis of the indexing strategy. Given two similar (but not
equal) primitives, they are represented by a compact feature vector. Hopefully, if the
two primitives have similar shape, the two feature vectors will be two nearby points
in a n-dimensional space. The hash function has to guarantee that both points fall
into the same bucket to have stored in a single entry all the similar primitives.

2.4.5 Spatial Access Methods

So far, we have only focused on the point access methods, i.e. indexing structures
which can only handle information represented by n-dimensional points. However,
another family of indexing structures exist, aiming to manage polygons and high
dimensional polyhedra, which is named the spatial access methods.

Point access methods can not be directly applicable to databases containing ob-
jects with spatial extension. Spatial data consists of objects made up of points, lines,
regions, rectangles, surfaces, volumes, etc. The spatial access methods can be seen as
a joint shape description and feature organization. The spatial access methods can
handle such data and are finding increasing use in applications in urban planning,
geographic information systems (GIS), etc. The interested reader is referred to the
book on spatial access methods by Samet [Sam90].

(a) (b) (c)

Figure 2.15: Quadtree representation of a shape. (a) Sample region; (b) its maximal
blocks from the array representation; (d) its Quadtree representation; (reprinted from
[Sam90]).

In the spatial access methods class we can find the Quadtree structures, illustrated
in Fig. 2.15, which divide a two dimensional space by recursively partitioning it into
four quadrants or regions. The R-trees [Gut84], which represents a hierarchy of
nested n-dimensional intervals storing minimum bounding boxes in leaf nodes. An
improved structure are the R∗-trees [BKS90], which try to minimize the overlap
between bucket regions, minimize the perimeter of the leaf regions and maximize the
storage utilization. SS-trees [WJ96] use spheres instead of rectangular regions, SR-
trees [KS97] combine both R∗-trees and SS-trees and store the intersection between
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spheres and rectangles. Finally P -trees [Jag90] manage polygon-shape containers
instead of intervals.

Even if such data structures may be very helpful in the context of symbol spotting,
our work is focused on the use of symbol descriptors as a basis for data representation.
In this thesis we will only work with point access methods organizing feature vectors
describing graphic objects.

2.4.6 Curse of Dimensionality

The curse of dimensionality is a term coined by Bellman [Bel57] to describe the
problem caused by the addition of extra dimensions to a space which provokes an ex-
ponential increase in volume. This volume increase usually results in a performance
degradation. Weber et al. argue in [WSB98] that indexing techniques reduce to se-
quential search for ten or higher dimensions. However, in the case of symbol spotting,
it is difficult that we suffer this problem.

The study by Korn et al. showed in [KPF01] that the feeling that nearest neighbor
search is hopeless in high dimensions due to the curse of dimensionality may be
overpessimistic. Real data sets disobey the assumption that the data is uniformly
distributed since they typically are skewed and exhibit intrinsic dimensionalities that
are much lower than their embedding dimension due to subtle dependencies between
attributes.

In addition, for spotting purposes high-dimensional descriptors are not the best
suited. Usually, high-dimensional descriptors are more robust to noise and transforms
and are more reliable than simpler ones. Obviously, in the case of isolated symbol
recognition, it is desirable to have this robustness and accuracy despite the volume
explosion. However, in the case of symbol spotting, we are more interested in the
efficiency of the retrieval by similarity step than the final accuracy of the recognition
task. Usually compact representations are best suited for spotting purposes despite
the discriminative power loss. Therefore, for spotting applications low-dimensional
descriptors are usually chosen.

2.5 Hypotheses Validation

In the retrieval stage, the result of the traversal of the data structure is a set primitives
similar to the ones which compounds the searched symbol. The document locations
accumulating several primitives are hypothetic locations where it is likely to found
the symbol under a certain pose. These hypotheses have to be validated in a final
phase of the retrieval process.

We can find two different approaches to face the hypotheses validation problem.
The first one focuses on the feature vectors arising from the description phase, and
if this descriptors can or can not be a correct symbol. On the other hand, there are
some other approaches which will focus on geometric and spatial relationships among
primitives to finally validate if a zone is likely to contain a certain symbol.
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The first family usually be focused on a statistical analysis of the features, whereas
the second family is based on a voting strategy and on the accumulation of little
evidences to solve the pose estimation problem.

2.5.1 Statistical Validation

One of the most common approaches to validate if a zone contains or not a symbol is
based on the study of statistical measures with the help of a probabilistic classifier.
The features obtained by a symbol descriptor are seen as points in a n-dimensional
space and the classifiers which are previously trained with a supervised learning step,
are able to identify which is the class the symbols belongs to. Within this family of
approaches, a lot of different classifiers are used to the problem of classifying symbol
instances. One of the most common approaches are the Bayesian classifiers, which for
instance are used in [TÓD90] to recognize handwritten symbols. The Support Vector
Machines (SVN), which are used in [HN04] to recognize sketched symbols described
by Zernike moments. The modelling of neural networks as classifiers is also another
option, as the method applied to musical symbols recognition presented in [SCC02].

From another point of view, there are some other validation methods which are
based on the bag-of-words (BoW) model. These approaches use a frequency vector
of features to decide whether a region can contain a symbol or not. The principle of
the bag-of-words model relies on a document representation as a vector of features
where each feature has an assigned frequency. Bag-of-words approaches have been
used over the years for text document classification, as for instance in [ADW94],
but the analogy to the bag-of-visual-words can be derived to classify images as in
[SRE05]. The approaches based on bag-of-words models have the advantage that the
hypotheses validation is done without any spatial information being very simple to
implement a quick to use. In [BHA05] Barbu et al. present a method which applies
the bag-of-words model to the symbol recognition problem. However, instead of
building the vocabulary from a photometric description of the symbols, they propose
a bag-of-graphs model where structural descriptors act as words.

Although high recognition rates can be obtained with statistical validation the
main drawback these approaches present is that they are dependent on a learning
stage. In order to have a good performance, we need a lot of training samples to
feed the classifier. In the particular case of symbol spotting we can not use such a
priori knowledge nor have an immense sample set of every symbol we want to query.
Since spotting approaches are intended to be a query-by-example, usually a statistical
validation for symbol spotting approaches is out of question.

2.5.2 Voting Strategies and Alignment

On the other hand, there exist other validation approaches which do not focus on the
features arising from the description phase, but on testing if the spatial organization
of features in a certain location agrees with the expected topology.

Usually, these approaches are focused on some kind of voting strategy as the Gen-
eralized Hough Transform (GHT) presented by Ballard in [Bal81]. The problem of



40 STATE OF THE ART IN SYMBOL SPOTTING

finding a query object inside an image is transformed into the problem identifying
accumulation points in a parameter space. A transformation function maps spatially
sparse shapes in the image space to compact regions in the parameter space. The
parameter space is divided into buckets. Then, every query descriptor votes in this
space according to transformations provided from the matchings with the database
descriptors. A high density of votes in a bucket indicates a high probability of de-
tecting the object with its corresponding transformations. For example, in [LG96]
Lamiroy and Gros extended the geometric hashing method with a Hough-like voting
strategy to validate the hypotheses in an object recognition application.

Depending on the nature of the symbols to retrieve, the hypotheses validation
can be seen as a registration problem. Some approaches validate the coherence of the
symbol retrieval using geometric alignment techniques that put in correspondence the
original information of the query symbol with the information of the retrieved zones
of interest. Some affine transformations can be inferred to align the information of
the model object and the retrieved results. Classical techniques use spatial distance
between the contours of both images, but other characteristics as the gradient infor-
mation can be used as shown in [HU87]. Other techniques as B-splines or snakes can
also be used for elastic shape matching, as in the approach presented by Del Bimbo
and Pala in [BP97]. However, these alignment techniques based on deformable tem-
plate matching are hardly applicable to symbols where the extracted primitives are
not their contour.

2.6 Conclusions and Discussion

In order to summarize this state-of-the-art chapter, let us recall which are the most
suitable methods to apply to the symbol spotting problem in each of the three levels.

Regarding the description phase, we should select one of the photometric descrip-
tors if our application has to deal with complex symbols as logos, which may have
information in several visual cues as color, shape, texture, etc. since the descriptors
from this family have the ability to encode all this information. For simpler symbols
designs, as the ones appearing in line-drawings, geometric descriptors are the most
suitable methods to compactly represent the primitives’ shape. We should carefully
select the appropriate descriptor depending on if the symbols can be represented in
an accurate fashion by a single primitive as the contour or, on the other hand, if we
need several primitives to describe a single symbol instance. Finally, syntactic and
structural descriptors are a powerful tool in the context of symbol description, but
present some drawbacks in the context of symbol spotting. Syntactic approaches are
very sensitive to noise and need a definition of the rule set, which is a strong burden
for the approach flexibility. Structural techniques should be carefully applied due to
the strong time constraints which have to face spotting approaches.

Another factor which is important to take into account is that for spotting pur-
poses, it is not essential to look for the descriptor which provides the more accurate
description and the better recognition results. Usually, a simpler description able
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to coarsely discriminate symbols would be a better choice rather than a complex
descriptor with high accuracy.

Once the suitable description technique has been chosen, we have to think how we
should organize all the information arising from the document collection to provide
an efficient search access. Obviously, the approaches which follow a sequential access
to the descriptors, are simple to design, but its application to large databases is not
realistic. Indexing mechanisms, whether from the hierarchical category or the hashing
techniques should be adopted to access to the data. We believe that in the particular
case of spotting, hashing techniques are a better choice, since we avoid traversal steps
and costly balancing algorithms. However, a comparative study should be further
described in order to really determine which are the strengths and the weaknesses of
both approaches in this application.

We strongly believe that the use of low-dimensional descriptors is highly recom-
mended in spotting applications in order to avoid the curse of dimensionality. As we
previously mentioned, the use of simpler descriptors will cause an accuracy loss and
an increase of false positives, however these two phenomena are not a limitation in
the case of spotting, since high recognition rates are not needed.

Finally, regarding the hypotheses validation step, our feeling is that voting strate-
gies are more recommendable than statistical validation schemes for a spotting ap-
plication. Voting strategies do not need a learning stage which is an advantage for
scalability reasons. In addition, some voting schemes as the Hough transform or some
works inspired by the geometric hashing are formulated in terms of spatial organiza-
tion of primitives. The use of a geometric descriptor and such voting schemes provide
a combined geometrical definition and structural validation.
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Chapter 3

Symbol Spotting for Document
Categorization

In this chapter we present a method for spotting symbols in document images by using
a photometric description of symbols. As running example we present an application
of logo spotting. The presented method use a bag-of-words model in order to perform
a categorization of document images such as invoices or receipts. The hypotheses
validation is done in terms of spatial coherence by the use of a Hough-like voting
scheme. Experiments which demonstrate the effectiveness of this system on a large
set of real data are presented at the end of the chapter.

3.1 Introduction and Related Work

The problem of locating symbols within document images can be seen as a particular
case of the object recognition problem from the Computer Vision field. In this first
part of the thesis, we want to test if some well-known techniques from the object
recognition field can be applied to the specific case of symbol spotting. Instead of a
focused retrieval application, we propose an application of detecting logos in document
images such as invoices, receipts, etc. for document categorization.

Companies deal with large amounts of paper documents in daily workflows. In-
coming mail is received and has to be forwarded to the correspondent addressee.
A study on the invoice processing in several German companies [KAD04] revealed
that in average the cost of manually process (opening, sorting, internal delivery, data
typing, archiving) these incoming documents is about 9e per invoice. These costs
represent an important quantity of money if we consider the amount of documents
received by a big company at the end of the day.

Several systems intended to automatically process incoming documents have been
designed over the years. As an example, Viola et al. presented in [VRL04] a sys-
tem aiming to automatically enroute incoming faxes to the correspondent recipient.

45
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However, most of the existing systems only process typewritten information making
the assumption that the recipient information is printed in the document image. In
many cases, graphic elements present in the documents convey a lot of important
information. For instance, if a company receives a document containing the logo of
a bank, usually this document should be forwarded to the accounting department,
whereas if the document contains the logo of a computer supplier, it is quite probable
that the document should be addressed to the IT department. The categorization
of documents may also have other applications besides the automatic rerouting. For
instance it is helpful organize documents and providing efficient access to all the doc-
uments coming from a certain supplier. The recognition of such graphic elements can
help to introduce contextual information to overcome the semantic gap between the
simple recognition of characters and the derived actions to perform brought by the
document understanding. In this chapter we use the presence of graphical symbols
(logos) to categorize the class of the incoming documents.

Many contributions exist in the Graphics Recognition literature that deal with logo
recognition and retrieval, e.g. the recent work on trademark recognition from Wei et
al. [WLC09]. However they just focus on isolated or pre-segmented graphic images
which are affected by synthetic noise and deformation sources. As noted in [VDF08],
one of the big challenges for the next years for the Graphics Recognition community
is the localization/recognition of graphic symbols appearing in complete documents
without any previous segmentation. To our best knowledge, in the literature, only Zhu
and Doerman addressed in [ZD07] the problem of logo spotting by means of a cascade
of classifiers. We propose in this chapter a method which aims to categorize documents
and to detect graphical logos in a single step. The main contribution of this chapter
is the use of well-known strategies of the Computer Vision field to this particular kind
of images. State-of-the-art photometric descriptors are used to characterize graphical
symbols and a bag-of-visual-words approach is presented to categorize the documents.
This kind of approaches are commonly used in object recognition as in [SRE05] and
image classification applications. To our best knowledge, very few works have been
proposed in the literature using this kind of descriptors to the domain of document
images. Due to the binary nature of the document images, usually, photometric
descriptors are not well suited for document analysis applications. However, the
fact that the recent proposed descriptors work at several scales and blur the image,
makes possible its use on binary images. The bag-of-visual-words is an analogy to the
Computer Vision domain of the classic bag-of-words model, where a text is represented
by an unordered set of words. In that case, an image is represented by collection of
image patches. By the combination of photometric descriptors and a bag-of-visual-
words model, we propose a segmentation-free recognition method which do not rely on
a learning step but uses a single instance of logo models so as to benefit the scalability
of the method.

The presented application, however, differs a little bit of the main objective of
this thesis. By means of spotting graphical elements, we want to build an indexing
mechanism which aims to query a large collection of documents and perform focused
retrieval tasks. Whereas object recognition methods rely on an off-line learning of the
models to search for, indexing methods should be queried by example without any
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training step. Object recognition methods have an off-line stage where a classifier is
trained with several examples of the features extracted from the models to recognize
and, usually, a set of negative examples to be considered as non-objects. Once the
classifier is trained, the images are given as input of the system, and the regions of
interest of this image where any of the trained models appear are retrieved. On the
other hand, indexing mechanisms have also an off-line step in which the documents
are acquired and some features are extracted and organized, but, the input of the
system is one single instance of the model to retrieve. The main difference of such
applications stems for the training stage and the nature of the input, even if both
applications can perform spotting and focused retrieval tasks.

The remainder of this chapter is structured as follows: the next section presents
an overview of the proposed method. In section 3.3, we detail the detection proce-
dure from the feature extraction to the bag-of-words model used to categorize the
documents. Section 3.4 focus on the addition of a set of spatial coherence rules which
aim to refine the results and moreover, to perform logo spotting in addition to the
categorization. Section 3.5 presents the experimental setup by using a large set of real
documents. Finally, the conclusions and a short discussion can be found in section 3.6.

3.2 Outline of the Approach

Our document categorization method is based on the presence of graphical logos in the
incoming documents. This application is as a particular case of the problem of object
recognition but has certain particularities. First of all, the documents are in binary
format and are affected by the noise arising from the different acquisition systems.
Since photometric descriptors are used to process gray-level (or even color) images,
usually, when trying to codify a binary images we obtain poorly discriminative feature
vectors. This may cause that the presence of false alarms increases. Secondly, the
object recognition methods usually rely on a costly learning stage where a classifier
is trained with multiple instances of the objects to recognize. In our application, in
order to benefit the scalability of the method, no learning stage is involved and a single
instance of the logos to locate is needed. Generally speaking, the presented method
has a structure like the one proposed by Sivic et al. in [SRE05], where a bag-of-words
model is translated to the visual domain by the use of photometric descriptors over
interest points.

We can see an overview of the presented method in Fig. 3.1. The extracted
local features from a document are matched against the codeword dictionary and
an accumulator is used in order to decide to which category the queried document
belongs. Let us further detail in the next sections the followed steps.

3.3 Document Categorization by Logo Detection

The document categorization and the logo detection is performed by using a bag-of-
words model of visual words. These visual words are defined in terms of local features
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Figure 3.1: Overview of the proposed document categorization method.

extracted from a photometric descriptor. Let us first detail how these features are
extracted and computed, and then focus on the bag-of-words model.

3.3.1 Feature Extraction and Description

Our method is inspired on the work presented by Bagdanov et al. in [BBB07], focused
on the recognition of trademarks in real images. In that work, the authors use SIFT
features to match trademark models against video frames. We use a similar matching
approach, whereas our aim is to categorize and to use several different logos as models.
Logos are represented by a photometric descriptor applied to a set of previously
extracted key-points.

Interest Point Detection: Harris-Laplace Detector

The interest points are detected by using the Harris-Laplace detector presented by
Mikolajczyk and Schmid in [MS04]. This algorithm extracts points with high curva-
tures (as corners or junctions) and automatically selects the scale of the region where
to compute the photometric descriptor. Let us briefly review how this detection
algorithm works.

The corner detector proposed by Harris and Stephens in [HS88] is based on the
second moment matrix. This matrix is then adapted to scale changes to make it
independent of the image resolution. The scale-adapted second moment matrix is
defined by:

µ(x, σI , σD) = σ2
Dg(σI)×

[
L2

x(x, σD) LxLy(x, σD)
LxLy(x, σD) L2

y(x, σD)

]
(3.1)
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where La is the derivative computed in the a direction. The local derivatives
are computed with Gaussian kernels of size σD. The derivatives are then averaged
in the neighborhood of the point by smoothing with a Gaussian window of size σI .
The Harris measure is then defined in terms of the trace and the determinant of this
second moment matrix as:

Mc = det(µ(x, σI , σD))− κ trace2(µ(x, σI , σD)) (3.2)

where local maxima of Mc determine the location of interest points, with κ being
a tunable sensitivity parameter. The Harris-Laplace detector uses the scale-adapted
Harris function from eq. 3.2 to localize points in scale-space. The scale-space rep-
resentation of the Harris function is built for pre-selected scales σn = ξnσ0 where ξ
is experimentally set to 1.4. The matrix µ(x, σn) is computed with the integration
scale σI = σn and the local scale σD = sσn with a experimentally set parameter
s = 0.7. For each point an iterative algorithm that detects the location and the scale
of interest points is applied. The extrema over scale of the Laplacian-of-Gaussian,
eq. 3.3, are used to select the scale of interest points by rejecting the points for which
the LoG response does not attain any extremum or which response is below a certain
threshold.

|LoG(x, σn)| = σ2
n|Lxx(x, σn) + Lyy(x, σn)| (3.3)

Interest Point Description: SIFT and Shape Context

After the interest points are detected in an image, a photometric descriptor has to be
applied to each region of interest defined by these key-points. In our experiments, we
use and compare the performance of two different photometric descriptors. On the
one hand we use the SIFT features and, on the other hand, we use the shape context
descriptor1. As we will see in the experimental results section, each descriptor has its
own strengths and weaknesses. Both descriptors are computed with the code provided
by Mikolajczyk et al. 2.

SIFT descriptors, presented by Lowe in [Low99, Low04], are computed for nor-
malized image patches arising from the key-point detection stage. The descriptor
is a histogram of gradient locations and orientations. The locations are quantized
into a 4× 4 location grid and the gradient angles are quantized into eight predefined
orientations. The resulting descriptor has 128 dimensions. Each orientation plane
represents the gradient magnitude corresponding to a given orientation. In order to

1Note that in the chapter 2 we classified the shape context descriptor as a geometric descriptor
since it copes with spatial arrangement of points. However, the enhancement of this descriptor
proposed by Mikolajczyk and Schmid in [MS05] which takes into account not only point locations
but also gradient magnitudes and orientations makes that this modified version should be considered
as belonging to the photometric class.

2http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html�
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(a) (b) (c) (d) (e)

Figure 3.2: SIFT and shape context descriptors. (a) Detected region; (b) gradient
image and location grid; (c) dimensions of the histogram; (d) four of eight orientation
planes; (e) cartesian and the log-polar location grids; (reprinted from [MS05]).

obtain illumination invariance, the descriptor is normalized by the square root of the
sum of squared components.

The shape context descriptor implementation, based on the original presented
by Belongie et al. in [BMP02], is similar to the SIFT descriptor, but is based on
edges. Shape context is a histogram of edge point locations and orientations. Edges
are extracted by the Canny detector. Location is quantized into nine bins of a log-
polar coordinate system and orientation quantized into four bins. A 36 dimensional
descriptor is therefore obtained. In addition, the point contribution to the histogram
is weighted with the gradient magnitude.

We can see in Fig. 3.2 an example of the computation of the SIFT and the shape
context descriptor. The gradient image is quantized in a location and orientation grid.
Depending on which descriptor we use, the location grid has a cartesian of log-polar
representation.

Let us see in the next section how we formally describe logos with the above
presented key-point detection and description methods, and how similar logos can be
matched.

3.3.2 Logo Representation and Matching

A given logo Si is represented by its ni interest points extracted from the Harris-
Laplace detector. Each of these key-points are then described by a feature vector
arising from a photometric descriptor. A logo instance is thus formally represented
as:

Si = {(xk, yk, sk, Fk)}, for k ∈ {1...ni} (3.4)

where xk and yk are the x- and y-position, and sk the scale of the kth key-point. Fk

corresponds to the photometric description of the region represented by the key-point.
An individual key-point k of the logo Si will be denoted as Sk

i . The same notation
applies when the key-points and the description vectors are computed over a complete
document Dj . The matching between a key-point from the complete document and
the ones of the logo model is computed by using the two first nearest neighbors:
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N1(Si, D
q
j ) = min

k
(Fq − Fk)

N2(Si, D
q
j ) = min

k 6=N1(Si,D
q
j )

(Fq − Fk) (3.5)

Then the matching score is determined as the ratio between these two neighbors:

M(Si, D
q
j ) =

N1(Si, D
q
j )

N2(Si, D
q
j )

(3.6)

If the matching score M is lower than a certain threshold t this means that the
key-point is representative enough to be considered. By setting a quite conservative
threshold (t = 0.6 in our experiments) we guarantee that the appearance of false
positives is minimized since only really relevant matches are considered as so. We
can appreciate in Fig. 3.3 an example of the feature extraction and matching between
a model and a document. However, for categorization purposes, we can not directly
apply this matching procedure between the query document and all the model logos
we consider. We use instead a bag-of-words model which have reached successful
results for topic categorization. Let us describe in the next section how we adapt this
model to the visual domain.

3.3.3 Bag-of-visual-words

The bag-of-visual-words is an analogy to the Computer Vision domain of the classic
bag-of-words model, where a text is represented by an unordered set of words. In
that case, an image is represented by collection of image patches. In our particular
case, given a set of logo models considered as different categories, we extract all the
feature vectors F i

k from them. Each feature vector is associated to its corresponding
logo model Si. By joining all the feature vectors from all the logos, we obtain the
codeword dictionary W = [F 1

1 , F 1
2 ...F i

k]. This dictionary is computed off-line from
all the model logo database. Given a query document Dj , all the feature vectors
Dq

j are used as indexes and matched against the codewords of the dictionary W .
The matching function Mq returns the index i corresponding to the logo class of the
matched feature vector F i

k as follows:

Mq = {i|M(W,Dq
j ) < t} (3.7)

Finally, the determination of whether a document contains a logo is done by using
by accumulating hypotheses of document categories in a histogram H.

H[Mq] = 0 at initialization,

H[Mq] = H[Mq] + 1, for q ∈ {1...nj} (3.8)

In the original bag-of-words model, a given document is categorized in terms
of the frequency of appearance of certain words. For each document category we
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(a) (b)

Figure 3.3: Matching logos in documents with the SIFT features. (a) SIFT features
computed over an isolated logo model; (b) feature matching between the model and
the complete document.

have a histogram of frequencies, and in order to determine which is the category
an incoming document belongs to, distances among its histogram and all the model
histograms must be computed. We face here a slightly different problem. If in a given
document we have several appearances of parts of a given logo, we shall consider that
it is probable that the document contains this logo. The document category is thus
determined by searching the maximum m of the accumulator H after normalizing
each accumulation cell with the total number ni of features of the corresponding logo
k. If the value of m is less than a threshold T , which has been experimentally set, we
consider that the document do not contain any logo and is categorized in a rejection
class.

3.4 Introducing Spatial Density for Logo Spotting

Whereas bag-of-words models have been very successful in the text domain, the anal-
ogy to visual words for image categorization has an important drawback. Bag-of-
words models completely ignore the spatial relationship among features. Even if this
drawback in the text domain is overcome due to the important impact of few key-
words, in the image domain it is an important burden since the spatial layout among
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(a)

(b) (c)

Figure 3.4: Introducing spatial density information to spot logos. (a) Logo model;
(b) parameter space; (c) spotted region of interest.

features has similar importance as the feature description itself.

It has been shown that the spatial organization of photometric descriptors com-
puted from key-points is a powerful tool to recognize objects in scenes and to index
images in terms of their contents as for instance the work of Mikolajczyk and Schmid
presented in [MS01]. In the document analysis field, Nakai et al. introduced in
[NKI05, NKI06] a method to retrieve document images acquired with a camera from
a large image database using the arrangement of invariants computed over extracted
feature points. The results are promising in terms of accuracy, time and scalability.

To overcome this drawback we use a simple yet effective voting scheme to guarantee
that the spatial organization of features maintain certain coherence by introducing
a density factor. Before contributing to the accumulator H, we get rid of the all
the feature points of a same category i that are isolated in space. A Hough-like
approach is used to transform the matched key-points from the image domain to a
three-dimensional parameter space in order to cluster reliable model hypotheses that
agree upon a particular model pose. The three-dimensional parameter space is built
from the x- and y-locations of the matched key-points and a third dimension i which
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represents the logo class. This parameter space is quantized and the problem of
finding coherent locations is transformed in the problem of finding a maxima in this
parameter space. By this means, only clusters of key-points which belong to the same
category and which are close in space are considered. As we can see in Fig. 3.4, all the
false alarms when matching key-points are eliminated. The red dots are inconsistent
hypotheses and the blue dots maintain a certain spatial coherence and are taken as
likely hypotheses. The bounding-box of likely hypotheses are returned to the user
as the zones of the document image where the logo should be found. The presented
method, given a document is able to in a single step categorize it in a certain class
and return the zone of the document which contain the logo.

3.5 Experiments

To provide a realistic evaluation of the proposed method we used a large document
collection. The collection consists in 1000 real document images which were sent by
fax and then scanned. These images correspond to several kinds of documents such as
invoices, letters, receipts, forms, etc. They contain both typewritten and handwritten
text. Graphical elements such as logos, stamps, tables, etc. are also present in most
of these documents. Typical dimensions of documents are near 2500 × 3500 pixels
with varying resolutions. All the images were scanned in binary format by using the
built-in thresholding method of the scanner. Ground-truth of the entire collection
was manually created identifying 18 different logo classes appearing in nearly 180
images, the rest of document images do not contain any logo and are used to test if
the presented method is also able to reject these documents.

3.5.1 Evaluation Methodology

We will base our performance evaluation on how well the categorization of the doc-
uments is done. The performance of categorization methods is usually evaluated by
confusion matrices to see if the systems under evaluation confuse two classes, misla-
belling one as another. In addition, the true positive rate (TPR) and false positive
rate (FPR) are used as evaluation measures in order to compare the performance
among different methods. These ratios are derived from the contingency table and
defined in terms of the amount of true positives (TP ), false positives (FP ), true
negatives (TN) and false negatives (FN):

TPR =
TP

(TP + FN)
; FPR =

FP

(FP + TN)
(3.9)

The TPR ratio measures the effectiveness of the system in retrieving the relevant
items. Whereas the FPR ratio measures the probability that a non-relevant document
is retrieved by the query. In our experiments we use the TPR ratio to summarize
the correct categorization of documents containing a given logo. The FPR is used to
measure the amount of documents that do not contain any logo which are incorrectly
identified as belonging to a certain class.
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3.5.2 Performance Comparison

We can appreciate in Fig. 3.5 the obtained confusion matrices after running the whole
experimental categorization. We can appreciate some differences between the use of
SIFT features and the shape context descriptor. For example, when using shape
context, a lot of documents are incorrectly classified as class 8 (shown in row 8), or
the documents corresponding to class 17 are usually misclassified in other document
categories (shown in column 17). These misclassifications leads the overall TPR
shown in Table 3.1 to be lower when using the shape context descriptors than when
using SIFT features. On the other hand, when we test the documents that do not
contain any logo and should be categorized in the rejection class, the SIFT features
perform worst than the shape context descriptor, as shows the FPR of Table 3.1.
In addition, the computational complexity when using SIFT is higher due to the
highest number of dimensions of the feature vectors than when using the shape context
descriptor, resulting in a higher querying time.

Table 3.1: Evaluation measures for the document categorization experiment.

Descriptor TPR (%) FPR (%) Time (secs.)

SIFT 92.2 1 3.25
SC 81.6 0.3 1.34

In conclusion, the use of SIFT features should be preferred in applications where
it is important to correctly identify the incoming documents, no matter if false alarms
(documents which do not contain any logo) are present. On the other hand, if for
the intended application it is preferable to minimize the false alarms even if we reject
or misclassify some documents, or, if we want a faster method, the shape context
descriptors should be considered.

3.6 Conclusions and Discussion

In this chapter we have presented a method for spotting logos in document images
by using a photometric description of symbols. The use of a bag-of-words model
reformulated to manage feature vectors arising from photometric descriptors combined
with a Hough-like voting approach to guarantee the spatial and density coherence, aim
to spot logos inside the document image and, in addition, to determine the category
of the queried document. The presented experiments demonstrate the effectiveness
of the method on a large set of real document images.

The presented application in this part, although it can be understood as a symbol
spotting application, has been inspired by the characteristics of the object recognition
methods from the Computer Vision field. The spotting of logos by means of a bag-of-
words model applied to incoming documents, is useful for categorization purposes, but
not for indexing or browsing of a large collection of documents. The main application
of the rest of the thesis is the focused retrieval in a collection of line-drawing images
rather than the object recognition one.
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(a)

(b)

Figure 3.5: Confusion matrices for the document categorization experiment. (a)
Using SIFT features; (b) using the shape context descriptor.
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In the following part of this thesis, we will focus on the use of geometric and
structural description techniques for the representation of graphical symbols rather
than using photometric descriptors. Although photometric descriptors yield good
recognition results and can be used as a basis for symbol recognition and matching
applications, they have several limitations in the context of spotting graphical symbols
from line-drawings.

The first conclusion that can come to our mind is that photometric descriptors
encode several visual cues at the same time, but the line-drawing images are usually
binary and the symbols appearing in it are usually just made by line segments. Since
the only discriminative visual cue to recognize such symbols is the shape, it seems
more natural to use a geometric or structural description to really cope with the
useful information. However, as we can appreciate in Fig. 3.6, the results of matching
line-drawn symbols by a photometric descriptor (the SIFT features in this case), are
not bad at all. We can notice nevertheless, that for simpler symbol designs, e.g.
Fig. 3.6b, very few key-points are matched since the description is not discriminative
enough. This factor can be problematic when the images in the collection are affected
by some noise, and the symbol can be completely lost if these few key-points can not
be matched against the model. The main factor provoking the discriminative power
loss, is that in the case of line-drawings, the presence of a corner or a junction is
not so relevant as in the case of real images (or the logos in the document analysis
context). The information conveyed by the gradient magnitudes and orientations is
not really discriminant in this particular context.

In addition, there is another limitation on the use of photometric descriptors in the
context of spotting symbols for indexing a large collection of line-drawings. Usually,
photometric descriptors tend to be high-dimensional. The SIFT descriptor has 128
dimensions whereas the adaptation of the shape context descriptor has 36 dimensions.
This high-dimensionality helps to be discriminant enough to recognize objects in
real images, but hinders the possibility to build indices over the high-dimensional
description space. Even if Califano and Mohan claim in [CM94] that multidimensional
indexing performs better than when using smaller spaces, the curse of dimensionality
affects such high-dimensional spaces. In order to reduce the impact of the curse of
dimensionally, when trying to index such descriptors, a step of reduction of dimensions
as PCA as proposed by Ke and Sukthankar in [KS04], should be studied. Since
geometric and structural description techniques are based on a previous primitive
extraction, they tend to have lower dimensionalities than photometric descriptors
which work at pixel level.

Let us see in the next part of this thesis three different approaches for symbol
spotting in line-drawings which are based in a geometric and structural description
of the symbols.
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(a)

(b)

Figure 3.6: Matching symbols in line-drawings with the SIFT features.
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Chapter 4

Vectorial Signatures for Symbol
Recognition and Spotting

In this chapter we present a method to determine which symbols are probable to be
found in technical drawings by the use of vectorial signatures as symbol descriptors.
The proposed signature model is formulated in terms of geometric and structural
constraints among segments, as parallelisms, straight angles, etc. After representing
vectorized line drawings with attributed graphs, our approach works with a multi-
scale representation of these graphs, retrieving the features that are expressive enough
to create the signature.

4.1 Introduction and Related Work

Since in the context of recognizing and locating graphical symbols from line-drawing
images, the most important visual cue to describe graphical elements is the shape,
a geometric and structural description of primitives seems the most natural choice.
In order to apply such description techniques, a primitive extraction step is needed.
Graphical symbols are broken down into lower level graphical primitives such as con-
tours, loops, connected components, skeletons, etc. In the field of symbol discrimina-
tion, probably the approach which has gained most attention is the use of vectorial
signatures as the description technique aiming to represent the graphical symbols.
Vectorial signatures are geometric symbol descriptors which compactly encode the
symbol in terms of particular geometric constraints among line primitives. The to-
tal amount of occurrences of each constrain forms the final signature. In order to
compute the descriptors, the images must be processed in order to be broken down
into segments by the use of a raster-to-vector conversion algorithm. Since spotting
techniques are intended to coarsely recognize symbols, these particular descriptors
are conceived as being very compact and having enough discriminative power to, at
least, identify most of the zones of interest of a document image where a given symbol
is likely to appear. Let us briefly overview the related work on the use of signatures
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for symbol description and focused retrieval.

One of the first vector-based signatures has been proposed by Ventura and Schet-
tini in [VS94]. In their work, the authors propose a signature for recognizing sym-
bols from the architectural and electronic fields. First, line-drawing images are pre-
processed by a thin/thick line separation algorithm, and then, the thin lines are
polygonally approximated by straight segments. From the segments composing a
symbol, they extract a number of geometric features as the number of segments in-
tersecting in one point, the angles among these segments, their lengths, etc. Thick
structures are described by their area, orientation and second order geometric mo-
ments. All these features are combined to create the signature which aims to describe
the vectorized symbols. In order to make the signature more reliable, two values are
added to each feature: a tolerance threshold and a weight. In the recognition step, the
signature of the symbol to recognize is compared with all the model signatures. The
distance among features is computed dependent on the tolerance threshold and nor-
malized by the corresponding weight. A global threshold finally determines whether
the query symbol matches a certain model. Results show efficient recognition, but
this approach has the strong limitation that it has been conceived to just recognized
isolated or pre-segmented graphical symbols.

Recently, Zhang and Wenyin presented in [ZW07] another model of vectorial sig-
nature for symbol description. Starting from the assumption that the symbols are in
vectorial forms, primitive-pair relationships are recorded and employed to create the
signature which is subsequently used as descriptor. Besides the basic relationships
among segments, the authors propose a set of measures in order to describe several
relationships among primitives having different nature, i.e. relationships among seg-
ments and arcs, segments and circles, etc. The proposed descriptor however, can also
only be used to recognize isolated symbols.

Usually, in order to have a powerful representation of the vectorial symbols to
easily compute the signatures, an attributed graph is used. We can find several ex-
amples in the literature. Coustaty et al. in [CGV08] or Qureshi et al. in [QRC07]
use a graph representation of the symbols. In the nodes of the graph, primitives are
stored and edges encode a certain geometric relationship among pairs of primitives.
The use of the adjacency matrix of the attributed graph as descriptor has been widely
used. However, despite the representative power of this structure, the proposed signa-
tures are only tested in a symbol recognition framework working with pre-segmented
instances of the graphic elements to recognize.

Inspired by the work of Ventura and Schettini and using some of the geometric
features conceived to describe line-patterns presented by Etemadi et al. in [ESM91],
Dosch and Lladós proposed in [DL04] another signature model. In addition to the
description itself, the authors proposed a windowing methodology in order to be able
to discriminate the regions of interest within a line-drawing where a given symbol is
likely to be found. The signature of a graphic element is defined as a set of elementary
features, containing intrinsically a discrimination potential. The method starts by a
study on basic relationship between pairs of lines. Several main relations are thus
enumerated: collinearity, parallelism and intersections. For each of these relations,
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some extensions are considered, like overlapping for parallelism, or the kind of inter-
section point. The number and the type of the relations found in a particular zone
will form the signature. The zones of interest are built from a decomposition of the
image in several non overlapping tiles. The graphical primitives are then stored in
these buckets, and relationships are only computed between the primitives of a bucket
and the primitives of its neighboring buckets. The results show that this simple im-
plementation can discriminate the learned symbols. A lot of false alarms are however
present, especially with symbols not present in the library. Symbols containing arcs
often lead to some non relevant signatures. But the main drawback is the fixed bucket
partition of the image, that makes the method not really scale invariant, and causes
a lack of flexibility.

Besides the fact that most of the approaches of vectorial signatures are focused on
the application of symbol recognition and not on symbol spotting, we find that most
of these approaches present another important drawback. Since vectorial signatures
describe symbols in terms of geometric and structural constraints among sets of prim-
itives, the inclusion of errors in the process of primitive extraction may provoke large
variations in the signature, thus entailing a severe loss of discriminative power. We
propose a signature model inspired in the work presented by Huang in [Hua97], where
the main primitives describing a symbol are not just straight segments but are more
complex sub-shapes composing a symbol. Inspired on the work of Dosch and Lladós
[DL04] we also propose a window-based methodology allowing to compute different
signatures within a whole graphic document, permitting to locate symbols appearing
within a complete document image.

The remainder of this chapter is structured as follows: the next section presents
the pre-processing step which aims to transform from the raw images acquired with
the scanner to a vectorial format by introducing some state-of-the-art methods we use
to achieve a raster-to-vector conversion. In section 4.3 our vectorial signature model
is presented. Subsequently, in section 4.4 we define the window-based methodol-
ogy which allows the computation of signatures within complete graphic documents.
Section 4.5 presents the experimental results. Finally, the conclusions and a short
discussion can be found in section 4.6.

4.2 Pre-processing Step: Raster-to-vector Conver-
sion

In the part II of this thesis we focus on the particular application of spotting symbols
in line-drawings by means of geometric and structural description techniques. Both
description families work with primitives such as line-segments, arcs, etc. thus they
need a previous step of conversion from the raw image to the primitive domain. We
present in this section the pre-processing algorithms we use to convert the raw images
to the vectorial format. Basically, we follow three steps. First, gray-scale images are
denoised and binarized. In a second step, the skeletons of the foreground components
are extracted. Finally, these skeletons are polygonally approximated.
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Two different approaches to reach a raster-to-vector conversion can be found in the
literature. Some methods are based on the combination of a skeletonization algorithm,
followed by some kind of polygonal approximation. On the other hand, there exist
another family of approaches which are not based on a recursive thinning but on
contour following. These algorithms do not compute the skeleton but extract paths
which are equidistant from contour lines, and approximate two parallel contour lines
by segments. Although both families have their advantages and drawbacks, we decide
to use a skeleton-based vectorization. The interested reader can find in [TASD00] a
review on which are the most suitable methods to build a raster-to-vector system.

In this thesis, we work with the QGAR1 implementation of the raster-to-vector
conversion. In the QGAR library, the raster-to-vector conversion is based on Trier
and Taxt’s binarization, the (3,4)-Distance Transform skeletonization, and Rosin and
West’s polygonal approximation algorithm. Let us review in the following subsections
these three methods.

4.2.1 Document Binarization

First, grayscale images should be denoised using simple operations based on morpho-
logical operations. When working with scanned documents, the inherent noise and
distortions as warping, paper folds, paper stains, etc. arising from these processes
have to be faced. The interested reader is referred to Loce and Dougherty’s review
[LD97] of some simple existing techniques for digital acquired document enhancement
and restoration.

After the document beautification stage, the graysacle line-drawing images should
be transformed into binary format. A lot of well-known binarization methods exist,
the interested reader is referred to the recent benchmarking study of binarization
methods of Ntirogiannis et al. [NGP08]. We choose to use the approach of Trier and
Taxt [TT95]. This binarization method was conceived to treat document images and
yields good results. The interested reader can find a recent comparative study on the
performance of different binarization techniques in [NGP08].

Trier and Taxt’s method is based on the method by White and Rohrer [WR83]
where a gradient-like operator is used to achieve a three level label image. Pixels with
activity below a manually threshold TA are labelled ‘0’. Then if the Laplacian edge
operator of the pixel is positive, the pixel is labelled ‘+’, otherwise ‘−’. The idea
is that in a sequence of labels, edges are identified as ‘−+’ or ‘+−’ transitions and
object pixels are assumed to be ‘+’ and ‘0’ labels between a ‘−+’ and ‘+−’ pairs.

Trier and Taxt improved this method by three modifications. First smoothing the
input image with a 5×5 mean filter in order to remove some noise. Then a print pixel
identification is done in order to delete the false positives corresponding to noise blobs
that are still present in the background area. The constraint of the original method,
namely that ‘+’ marked regions should be surrounded by ‘−’ pixels to be labelled as
print, is not sufficient criterion to remove the false print objects. For each ‘0’ marked

1http://www.qgar.org

http://www.qgar.org�
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region the number of ‘−’ and ‘+’ labels that are 8-connected is counted and the pixel is
labelled print only if the number of ‘+’ pixels is in majority. Finally a postprocessing
step is proposed to remove false print objects. The average gradient value at the
edge of each printed object is computed. Objects having an average gradient below a
threshold TP are labelled as misclassified, and are removed. In Fig. 4.1 we can see the
results of binarizing an old document by several methods. Both Otsu’s and Niblack’s
well-known methods to binarize images leave some misclassified regions, whereas Trier
and Taxt’s method perform a good binarization of document images.

(a) (b)

(c) (d)

Figure 4.1: Binarization of an old handwritten document. (a) Original image; (b)
Otsu’s binarization; (c) Niblack’s binarization; (d) Trier and Taxt’s binarization.

4.2.2 Skeletonization

Sanniti di Baja proposed in [Baj94] a skeletonization method which is not based in
thinning operations but on the analysis of the (3,4)-Distance Transform of the binary
image. Each pixel of the shape is labelled with its distance to the contour. Each pixel
p can be interpreted as the center of a disc, which includes all the pixels whose distance
from p is less than the label of p. A disc Dp not completely included in the disc Dq

centered on any neighbor q of p is called a maximal disc. The skeleton of a shape will
include all the centers of maximal discs of the (3,4)-Distance Transform, except for
those whose removal is indispensable to allow the skeleton to be a unit wide set. On
the skeleton, the pixels can be classified into end points, normal points and branch
points, by taking into account the number of components of neighbors not belonging
to the skeleton. This method does not require the iterated application of topology
preserving removal operations, and does not need checking a condition specifically
tailored to end point detection, since end points are automatically identified when
the maximal centers are found. Skeletal pixels found on the distance transform can
be classified as “parallelwise detectable” and “sequentially detectable” skeletal pixels.
Parallelwise detectable pixels can be directly identified on the distance transform, due
to the structure of their neighbors. This is the case of the maximal discs. Sequentially
detectable skeletal pixels can be found only after some of their neighbors with smaller
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labels have been identified and marked as skeletal pixels. Sequentially detectable
pixels are necessary to link to each other the components of parallelwise detectable
skeletal pixels. After the detection of skeletal pixels a raster scan inspection is done
to reduce to unit width and to fill the holes. Then a pruning and beautification step
is proposed to erase some non significant pixels of the skeleton. An example of the
obtained skeletons is shown in Fig. 4.2. The computational cost of this method is
modest and independent of the thickness of the pattern to be skeletonized.

(a) (b)

Figure 4.2: (3,4)-Distance-based skeletonization. (a) Original images; (b) obtained
skeletons.

4.2.3 Polygonal Approximation

The last step of the raster-to-vector conversion is to approximate skeleton images by
segments. Rosin and West proposed in [RW89] a method of segmenting curves in
images into a combination of circular arcs and lines. The method is an extension of
the algorithm proposed by Lowe in [Low87]. Lowe’s algorithm segments each curve by
recursively splitting it at the maximum deviation from the approximating straight line.
At each level a decision is made looking if whether the single straight line is better than
the representation at a lower level consisting of two or more approximating straight
lines. The measure of goodness of fit is termed the “significance” and is defined as
the ratio of maximum deviation from the straight line to the length of the straight
line.

The attractive property of this algorithm is that no thresholds are used to control
the accuracy of the resulting representation. This is controlled by the significance
values that can be regarded as the error between the curve and the straight line
description weighted by the length of the straight line. Thus long straight lines are
regarded as being a better representation even thought the error can be greater. This
introduces scale invariance such that a contour of different scales will have the same
or similar description.
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A list Lij of skeleton pixels is hypothesized as being a straight line passing through
its end points Pi and Pj , the point Pn corresponding at the point of maximum de-
viation dij to the straight line segments the list Lij in two lists Lin and Lnj and
the process is repeated recursively on each of the two lists. The recursive process is
stopped when a line segment is smaller than four pixels long or the deviation is less
than three pixels. The result of the recursive process is a multilevel tree where the
description of the list of skeleton pixels at each level is a finer approximation of the
level above. The tree is then traversed back up to the root. At each level, if any of
the line segments passed up from the lower level are more significant than the line
segment at the current level, they are retained and passed up to the next higher level
as candidate line segments. If this is not the case, the line segment at the current
level is passed up. In Fig. 4.3 we can see an example of the first steps of the algorithm
in approximating a curve by a set of straight lines.

(a) (b) (c)

Figure 4.3: Three levels of the straight line approximation. (a) First iteration; (b)
second iteration; (c) third iteration.

The significance measure is the ratio of the maximum deviation divided by the
line segment length. Thus, the lower the significance value, the more significant the
line. The procedure is weighted in favor of long line segments. The longer the line
is, the greater the deviations that will be tolerated. This algorithm produces a high
quality, general purpose polygonal approximation. No arbitrary error threshold is
required. Instead, the most appropriate values are chosen dynamically throughout
the procedure.

4.3 A Vectorial Signature for Symbol Description

Starting from a vectorial representation of the documents, we propose in this section
a model of vectorial signature aiming to describe symbols in terms of geometric con-
straints. In order to have a powerful representation of the vectorial symbols to easily
compute the signatures, an attributed graph is used. The nodes of the attributed
graph represent the segments of the symbol and graph edges represent spatial rela-
tionships between segments. Let us formally define a graph G in the next subsection.
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4.3.1 Representing Symbols by Attributed Graphs

Starting from a vectorial representation of the symbols from a line-drawing, we rep-
resent these symbols with a graph G defined as follows:

Definition 4.1 An attributed graph is denoted as G = (V,E, µ, ν) where V is
the set of nodes representing the segments of the symbols and E is the set of edges
representing the spatial relationships among them. A subgraph of G containing the
nodes si, ..., sj is denoted as G{si,...,sj}. ΣV and ΣE are a set of symbolic labels,
and the functions µ : V → ΣV and ν : E → ΣE assign a label to each node and
each edge. ΣV = [θsi

, ρsi
] contains the information of each segment si according to

a polar representation. ΣE = {L, T, P, 1, 0} represents the different kind of spatial
relationships between a pair of segments. The possible relationships between segments
are:

1. L represents a straight angle between a pair of adjacent segments.

2. T represents a straight angle between a pair of non-adjacent segments.

3. P represents two parallel segments.

4. 1 represents two adjacent segments.

5. 0 represents a non expressive relation between two segments.

We define a signature in terms of a hierarchical decomposition of symbols. Follow-
ing the idea presented by Huang in [Hua97], a symbol can be described by the number
of occurrences of particular sub-shapes. In our proposal, these expressive sub-shapes
are extracted from the analysis of the adjacency matrix. Following a combinatorial
approach on the number of subgraph nodes sub-shapes as squares, triangles, paral-
lelisms, etc. are taken into account. In Fig. 4.4, we show a graph2 of a simple symbol.
Let us see in the next subsection how the signatures are built from the analysis of the
adjacency matrix.

4.3.2 Building the Vectorial Signature

Starting from the analysis of the adjacency matrix, we propose a combinatorial ap-
proach which aims to extract particular subshapes which compose a symbol. For all
the segments, all the subgraphs formed by at least two nodes, and a maximum of
four nodes are analyzed to search some representative shapes. Being n the number of
segments, eq. 4.1 gives the number of subgraphs to analyze.

#G{...} =
4∑

k=2

Ck
n =

4∑

k=2

n!
(n− k)!× k!

(4.1)

2The edges labelled with a 0 are not shown.
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(a) (b)

Figure 4.4: Attributed graph representation of graphical symbols. (a) Graphical
symbol; (b) its graph representation.

For each subgraph, we work with its adjacency matrix. The matrix MG is in
fact only computed once for all the segments, and then, when we want to focus to a
subgraph, a group of rows and columns of this matrix is selected. Notice that in most
cases the relations between segments could be extracted in the vectorization process.
In the extraction of these constraints, each comparison has associated a threshold
value in order to be more tolerant. For the simple shape of Fig. 4.4, we can see below
in 4.2, its corresponding adjacency matrix MG.

MG =




s1 1 0 L P L
1 s2 T 1 0 0
0 T s3 1 1 0
L 1 1 s4 L P
P 0 1 L s5 L
L 0 0 P L s6




(4.2)

From this matrix, we examine all the possible combinations of sub-matrices taking
four, three and two of the six possible nodes. Hence three different levels are consid-
ered. For all the sub-matrices representing the subgraphs, normally the analysis of
one single row can determine the shape that it encodes.

The vectorial signature of a symbol is then defined as a 40-dimensional vector VS

where in each position we have the number of occurrences of a particular geometric
configuration of segments forming a given sub-shape. We have defined a set of 30
geometric configurations among different number of segments which can be efficiently
extracted by analyzing the adjacency matrix. We can see some examples the sub-
shapes taken into account to build the signature in Table 4.1. In order to provide a
more accurate description of the symbols, some additional information as the length-
ratios and the distance-ratios are added in the last 10 positions of the signature. Since
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Table 4.1: Examples of sub-shapes composing the vectorial signature.

Level Considered Level Considered
sub-shapes sub-shapes

4 nodes 3 nodes

4 nodes 3 nodes

4 nodes 2 nodes

3 nodes 2 nodes

3 nodes 2 nodes

these measure features can take values from 0 to 1, this space is split into five bins
where the occurrences of these geometric ratios among segments are accumulated.

It may seem redundant to store the information for multiple levels of the subgraph,
since if in the level of four nodes we find a square, it is obvious that we will find two
parallelisms and four straight angles in the level of two nodes. But this redundancy
helps to detach completely all the multiple shapes in the drawing. For instance, a
square with a cross inside can be seen as a square and a straight angle, or it can
be seen as a set of triangles (see example in Fig. 4.5). This redundancy helps to be
more error tolerant and to store all the geometric configurations of all the multiples
sub-shapes of the drawing. The occurrences of each sub-shape are accumulated to
build the vectorial signature.

(a) (b) (c)

Figure 4.5: Sub-shapes extracted from a symbol at different levels. (a) Original
symbol; (b) symbol detached at level four and at level two; (c) symbol detached at
level three.

Once the the signatures of the model symbols are extracted, in the querying step
we can compare the obtained signature with the model signatures and associate a
confidence value to each correspondence between the original symbol and all the
model symbols depending on a distance function. The used distance function is the
chi squared distance computed as follows:
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Cij =
1
2

K∑

k=1

(Vi[k]− Vj [k])2

Vi[k] + Vj [k]
(4.3)

where Vi and Vj are the vectorial signatures of two symbols i and j, and K the
length of the vectorial signature (40 in our experimental setup).

However, as we commented in the introduction section 4.1, the approaches based
on vectorial signatures have the drawback that can not be straightforwardly used to
locate a given symbol within a complete document. The spotting approaches based
on vectorial signatures need a previous segmentation stage. Inspired by the work
on symbol discrimination in complete documents presented by Dosch and Lladós in
[DL04], we present in the next section a window-based strategy aiming to compute
the vectorial signatures within documents.

4.4 Sequential Access to Signatures: Defining Re-
gions of Interest

When working with complete drawings, the usual approach is to divide the drawing
into windows of fixed size which frame every symbol. In each zone of interest, a
signature is computed and compared against the set of model signatures. However,
these approaches lack of flexibility and may be quite sensitive to the scale of the
documents. We propose to use a more dynamic approach, where the windows are
built depending on the original line-drawing.

Figure 4.6: Computing a region of interest from a reference segment. In the second
step, all the adjacent segments to the reference segment are considered. A bounding-
box is obtained from the minimum and maximum coordinates.

Regions of interest are computed from the maximum and minimum coordinates
of several adjacent segments. So, the size of the regions of interest is variable. Also, a
first filter of area and aspect-ratio can be easily implemented in order to delete some
non relevant symbols as for example the walls in the architectural field or the wiring
connections in electronic diagrams. Formally, for each node nsi of G (segment in the
drawing) we build a list of all the nodes connected to nsi by an edge. Having a list of
all the endpoints of the adjacent segments to reference segment, we get the maximum
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and minimum coordinates of the endpoints that will construct a framing window of
these segments. We can see an example on how to build the regions of interest in
Fig. 4.6. As in most cases of technical drawings the symbols have a low eccentricity,
its bounding-box are square-shaped and this kind of windows frame them. But, as
the windows are based on the connection of the segments, the efficiency decreases if
the symbols are disconnected or overlapped.

Moreover, in the vectorization step, more problems may happen: small vectors
can appear due to noise, straight lines can be split into several collinear vectors, the
arcs are approximated by polylines, some neighboring lines in the drawings are not
adjacent in the vectorial representation because of gaps, dashed lines appear as a set
of small segments instead of one unique instance, etc. To solve this kind of problems,
the best results are reached when we work with a lower resolution of the drawing
to calculate the windows. This sub-sampling step reduces local distortions in the
vectorial representation but preserving the most salient geometrical properties.

First, a contraction of the normalized graph is done, merging the adjacent nodes
having a lower distance than a threshold thr. This graph contraction by distance
allows to reduce the jaggness of some collinear straight segments. Then, applying
eq. 4.4 to each node coordinate we get a lower resolution graph. With this repre-
sentation with decreased resolution, the problems of the gaps, or the split segments
are solved. Every endpoint is sampled for each step of m, so the minor errors are
corrected.

x = m× round
(

x
m

)
y = m× round

(
y
m

) (4.4)

Experimentally, in Fig. 4.7a the graph has 154 nodes because an horizontal line
has been split in the vectorization process. When the graph contraction by distance
is done (with a threshold value thr = 0.06) Fig. 4.7b, we get a graph with 52 nodes
which lines are crooked due to the node contraction, and with the decreased resolution
graph (with m = 35) Fig. 4.7c we have to face up to only 33 nodes. Finally, we can
appreciate in Fig. 4.7d the resulting extracted windows where to compute the vectorial
signature.

This change of resolution can cause some errors, for example some lines which are
almost horizontal or vertical can be represented with a very different slope. But these
errors do not interfere with the obtained windows, since they continue to frame the
symbols. Notice that these lowest resolution images will only be used to calculate the
regions of interest, not for the spotting process. Since each segment proposes a region
of interest, there is no problem if one of the segments of a symbol gives a mistaken
window.

Let us present in the next section the experimental results.
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(a) (b)

(c) (d)

Figure 4.7: Obtaining regions of interest from a low-resolution representation of line-
drawings. (a) Original drawing; (b) graph contraction by distance; (c) low resolution
representation; (d) obtained windows in the document image.

4.5 Experimental Results

Our experimental framework consist of two different scenarios. First we test the
performance of the vectorial signatures to recognize and classify isolated symbols.
Secondly, we have used the method for symbol spotting in a small set of real archi-
tectural drawings and we will show some qualitative results.

The first tests were done using the GREC-SEG database, which is detailed in
appendix A. This database contains a selection of symbols from the GREC2005 data-
base which does not contain arcs. For each model symbol, we have applied three levels
of synthetical distortion and twenty instances at each level have been generated. The
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Table 4.2: Results of the recognition of GREC-SEG database (1).

Symbol TPR (%) Symbol TPR (%)

r = 5 r = 10 r = 15 Total r = 5 r = 10 r = 15 Total

001 100 100 100 100 002 100 100 100 100

003 95 70 45 70 005 100 100 100 100

007 100 100 95 98,3 008 100 100 100 100

011 100 100 100 100 012 100 100 100 100

013 100 100 70 90 014 90 60 25 58,3

015 100 100 25 75 018 100 95 60 85

020 100 100 80 93,3 023 100 100 95 98,3

027 100 100 100 100 028 100 85 70 85

029 100 90 65 85 030 100 100 100 100

031 100 100 85 95 032 100 100 60 86,6

033 100 95 70 88,3 034 100 100 100 100

037 100 100 100 100 041 100 100 100 100

042 100 100 100 100 043 100 100 100 100

044 100 85 40 75 045 100 100 100 100

048 100 100 100 100 051 100 100 100 100

052 100 100 100 100 053 100 100 60 86,6

054 100 85 55 80 055 100 100 100 100

057 100 100 100 100 058 100 100 95 98,3

059 100 100 100 100 060 100 100 100 100

062 100 75 50 75 063 100 100 100 100

symbols are represented with a graph, where the nodes represent the segments end-
points. Each node from the graph is randomly shifted within a predefined radius r.
As the symbols are represented with a graph, the connectivity is not lost. We can see
an example of these distortions in Fig. 4.8.

We can see the recognition results in Tables 4.2 and 4.3 expressed in terms of the
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Table 4.3: Results of the recognition of GREC-SEG database (2).

Symbol TPR (%) Symbol TPR (%)

r = 5 r = 10 r = 15 Total r = 5 r = 10 r = 15 Total

065 100 100 70 90 068 100 100 85 95

069 100 100 100 100 072 100 100 100 100

074 100 100 100 100 078 100 90 40 76,6

079 100 100 100 100 084 50 10 10 23,3

085 100 100 100 100 088 100 100 75 91,6

091 100 100 100 100 093 100 100 100 100

094 40 50 80 56,6 098 100 80 60 80

104 100 100 100 100 106 100 100 100 100

107 100 100 100 100 108 100 100 100 100

110 100 100 100 100 111 100 85 60 81,6

113 100 90 40 76,6 114 100 65 30 65

115 100 100 100 100 120 100 100 100 100

121 100 100 100 100 126 100 100 100 100

127 100 100 100 100 128 100 100 100 100

130 100 85 30 71,6 132 100 100 100 100

133 100 100 100 100 134 100 100 95 98,3

136 100 100 90 96,6 137 100 100 95 98,3

138 100 100 100 100 143 100 100 100 100

144 100 100 85 95 145 100 95 95 96,6

147 100 100 100 100 Total 97,79 92,58 79,25 91,18

True Positive Rate (TPR). We can see that the method uses to yield good results
when applying a low degradation of symbols. Most of the symbols of of the GREC-
SEG database are “square-shaped” and the computed signatures are discriminative
enough. But, when a symbol is composed of tiny little segments, and not very con-
nected, the results are worst. Let us analyze some problematic symbols. Symbol 014
and 015 are very thin, but composed by an expressive sub-shape really discriminative,
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(a) (b) (c)

Figure 4.8: Example of synthetical distortion from the GREC-SEG dataset. (a)
r = 5; (b) r = 10; (c) r = 15.

a square. These two symbols give good results when applying low degradation, 90%
and 100% of recognition respectively, but their recognition rate falls to 25% in both
cases when applying a huge geometric deformation. As these symbols are composed
by very short segments, a higher deformation distorts too much the little segments
and damages the performance. On the other hand, symbols having segments which
are not very connected between them give also bad results. For example symbols
003, 054, 114 or 130. As the deformation model guarantees the connectivity between
segments, deforming the graph representation of the symbol, not the symbol itself,
when the symbol is composed by non connected segments, these segments are more
affected by the deformation than the connected segments, that, in some way, share
the deformation between them. Notice that the recognition performance of symbol
094 evolves inversely to the expected way. Symbol 094 does not have very expressive
sub-shapes, only parallelisms and adjacency can be found. As vectorial signatures
encode the presence of salient geometric features, when a symbol is composed of few
sub-shapes, the recognition performance is very low. When applying a higher geomet-
ric noise most of these sub-shapes are not preserved, but as the model of distortion
guarantees the connectivity, this symbol is recognized better at high distortion levels
than at the lower ones.

Finally, in order to have an idea on whether the symbol design can affect the
performance of the recognition abilities of the signature model and to test if there are
some symbol designs which are more sensitive to distortions, we present in Fig. 4.9
some indicators on the recognition performance. We classified the symbols in the
GREC-SEG database into three different classes dependent on their average true
positive rate. We can see that a 74% of the symbols of this database attain an average
true positive rate greater than 90%. A second symbol family can be identified. A 18%
of the symbols in the database has an average true positive rate ranging between 75
and 90%. Finally, an 8% of the symbols has an average true positive rate below the
75%. As we can appreciate in the example, the symbols in this last group are formed
by less discriminative sub-shapes, and thus, the description ability of the signature



4.5. Experimental Results 77

is severely damaged. We can appreciate in Fig. 4.9c the different tolerance to the
distortions for all the three classes of symbols and how simpler symbol designs are
mode affected when we increase the synthetic deformations.

(a) (b)

(c)

Figure 4.9: Average true positive rates for three different symbol categories. (a)
Three different symbol categories depending on their average recognition rate; (b)
its distribution on the database; (c) average recognition rates per different symbol
degradation levels.

In the second test, we tried out the vectorial signatures with real architectural
drawings by using the windowing approach presented in section 4.4. Using more
relaxed threshold values than when we are working with the database of isolated
symbols, the symbols appearing within a complete document can be spotted. As we
can see in Fig. 4.10, some false positives appear (red squares) and some symbols are
still missed. False positives appear when a window does not correctly frame a symbol.
The stairs which consist of a lot of segments give a lot of regions of interest where false
positives appear, and the wrong segmentation of the tables makes that the part where
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the chairs are drawn a sofa is spotted, because their representation is very close. When
we use vectorial signatures in real drawings there are two factors that may cause the
spotting results not to be so good. First of all, the symbols can be adjacent between
them or to a wall, or the region of interest could not frame perfectly the symbol,
in this case we face up to occlusions and additions of segments which distort too
much the signature. On the other hand, in real drawings, the symbol design may be
different of the learned model, so the learned features of a symbol could not appear
in real drawings, in this case it is obvious the symbol can not be spotted, a semantic
organization of different design instances for any symbol is necessary.

4.6 Conclusions and Discussion

In this chapter we have presented a vectorial signature model which is able to describe
graphical symbols in terms of the occurrences of certain spatial configurations of
segments. Since signatures are compact and yet effective symbol descriptors, they are
very suitable to be used as the basis for a spotting approach. We have also presented
a window-based segmentation system which aims to use the vectorial signatures to
spot symbols appearing within complete documents.

We can see that the symbol discrimination using vectorial signatures yields good
results when we are working with the database of pre-segmented symbols and with
symbols with synthetical distortion, which is a controlled framework. In real scanned
architectural drawings, even if the symbols are usually well spotted, a lot of false
positives appear. However, since the objective of spotting techniques is not to give a
recognition of the symbol but in some way to index the drawing, the false positives
problem is not so significant.

4.6.1 Limitations of the Vectorial Signatures

Even if the recognition performance of the signatures attains good levels, the proposed
methods presents some important drawbacks to be used as a spotting method for
indexing a document collection to be used by a focused retrieval application. Let us
enumerate the most important drawbacks and let us see in the next two chapters how
can we solve these problems.

Since the presence of the sub-shapes is determined from the analysis of the ad-
jacency matrix, the method is not tolerant at all to segment fragmentation. If the
number of segments composing a symbol does not correspond of the number of seg-
ments of the learned model the signature can be severely damaged. In addition, the
connectivity of adjacent segments also must be guaranteed in order to achieve an ac-
ceptable performance. Even if this effects do not occur on synthetic data as the one of
the GREC symbol recognition competitions, these two phenomena occur frequently
in real document images treated with a raster-to-vector conversion. A more tolerant
set of features in which base our signature must be find to tolerate this kind of errors.
We introduce in the next chapter the notion of polylines instead of segments. We
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(a)

(b)

(c)

Figure 4.10: Qualitative results of spotting symbols by using vectorial signatures.
(a) Original drawing; (b) spotting the sofa symbol; (c) spotting the door symbol.
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will also see how we can represent the expressive sub-shapes defined above at polyline
level.

Moreover, the extracted sub-shapes from the adjacency matrix composing the
vectorial signature, were ad-hoc defined to describe a particular family of graphical
symbols. We saw in the experimental results section, that the recognition performance
of the signature model was dependent on the symbol design. However, spotting
approaches should be more scalable in terms of the nature of the documents, and not
be conceived for a particular collection. We propose in the next chapters the use of
more flexible description approaches which should perform similarly no matter which
nature the line-drawing is.

In addition, the proposed signature model just captures geometric configurations
formed by straight segments. It is not able to deal with circular primitives such arcs,
circles, ellipses, etc. This fact is a strong limitation since only symbols formed by
lines can be considered. The methods proposed in the next chapters can deal with
any polygonal shape.

Finally, the presented window-based system can be useful in applications whit a
predefined set of model symbols. Given an input line-drawing, regions of interest are
extracted by the windowing approach and the signatures are sequentially computed
and matched against the model database. However, this sequential approaches are
hardly useful when facing focused retrieval applications. In these cases, we can have
large collections of documents and the user can query any symbol. We shall provide a
more efficient access to the descriptors by using indexing data structures. We propose
in the next chapters the use of particular data structures having graphical patterns
as indices for accessing and navigating large collections of documents and be able to
use spotting methods as the basis of a focused retrieval application.



Chapter 5

Symbol Spotting Through
Prototype-based Search

In this chapter we present a method to determine which symbols are probable to
be found in technical drawings by the use of a prototype-based search. First, sym-
bols are decomposed in primitives representing closed regions. These primitives are
then encoded in terms of attributed strings. Second, the strings are organized in a
lookup table so that the set median strings act as representative prototype of the
clusters of similar primitives. This indexing data structure aims to efficiently retrieve
the locations from the document collection where to find similar primitives than the
queried ones. Finally, a voting scheme formulates hypotheses in the locations of the
line drawing image where there is a high presence of regions similar to the queried
ones, and therefore, a high probability to find the queried graphical symbol. The pro-
posed approach has been proved to work even in the presence of noise and distortion
introduced by the scanning and raster-to-vector processes.

5.1 Introduction and Related Work

The vectorial signature model presented in the last chapter is only able to discrimi-
nate symbols if the query symbol has the same number of segments that the symbol
present in the collection. Even if vectorial signatures yield good results on recogniz-
ing isolated symbols they present important weaknesses when trying to apply them
in a focused retrieval application dealing with a collection of real vectorized line-
drawings. Basically, one of the main problems to face is the noise and the segment
fragmentation introduced by the raster-to-vector conversion process. In addition, the
raster-to-vector algorithms used in this thesis do not detect arcs, but approximate
them by a set of adjacent segments. The interested reader can find in the literature
some works concerning the arc detection for vectorization algorithms as for instance in
[Dor95, WD98]. The fact that the vectorization algorithm does not detect arcs make
that symbols containing arcs and circles were not considered in the previous chapter.

81
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In order to enhance the robustness of the spotting method, we propose to introduce
a polyline approximation in the raster-to-vector algorithm as a post-processing step.
Let us formally define the term polyline.

Definition 5.1 Given a segment si = (x1, y1), (x2, y2), the adjacency A(si) = (p, k)
of si is defined as the number of segments incident in (x1, y1) for p and incident in
(x2, y2) for k.

Definition 5.2 Let s1...si...sn be a set of sorted and adjacent segments where

A(s1) = (p, 1) with p 6= 1
A(si) = (1, 1) with i ∈ {2, ..., n− 1}

A(sn) = (1, k) with k 6= 1

The polyline Ps1...si...sn is the geometric shape considering the set of adjacent seg-
ments s1...si...sn as an unique instance. A polyline start and end at the points were
a segment sn finishes and no other segment is adjacent to sn, or at the points were
more than two segments are adjacent.

When the segment approximation is done in the raster-to-vector step, a grouping
of the adjacent segments is implemented. All the segments having A = (1, 1) form
part of a polyline. Segments having A = (p, 1) or A = (1, k) with p, k 6= 1 are
the end-segments of a polyline.We can see an example of polyline decomposition in
Fig. 5.1.

Figure 5.1: Polyline decomposition of a vectorized symbol. The vectorized symbol
has 31 segments which are grouped into 12 polyline instances (displayed in different
colors).

The main idea of treating multiple segments as an unique instance is that we
should not have the restriction of the number of segments forming a symbol. Since
we obtain more tolerance to the noise arising from the raster-to-vector conversion
step, the jaggness problem is not critical. The underlying problem is how to describe
these polylines in terms of geometric constraints. Since polylines are ordered sets of
adjacent segments, a polylines can be seen as a one-dimensional chain. We can find
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some works in the literature which describe shapes by chains of adjacent segments.
Let us briefly review a few.

Stein and Medioni proposed in [SM92, SM92] to describe objects by a polygonal
approximation of their contours. The segments arising from the raster-to-vector con-
version are then grouped into sets of adjacent segments named super-segments. These
chains of consecutive segments are then described by a feature vector of geometrical
attributes as the lengths or the angles of the segments, and the global orientation
and eccentricity of the super-segment. In order to be tolerant to changes of the num-
ber of segments composing a super-segment, the authors propose to work at multiple
cardinality scales. However, the fact of considering this cardinality scale implies an
important grow of the number of feature vectors describing a shape, thus exponen-
tially increasing the time of computing distances among shapes.

In order to provide more tolerance to changes in the number of segments com-
posing a polyline, we can find in the literature some works which, starting from an
attributed string representation of the shape, they use string edit operations to com-
pute the distance between two strings representing two shapes. As examples, we can
for instance cite the work of Wolfson presented in [Wol90], the methods of Bunke and
Bühler [BB93], or the more recent work of Kaygin and Bulut [KB02]. In all these
works, polygonally approximated contours are represented by attributed strings. Sim-
ilar shapes are matched depending on the costs of the operations needed to edit and
transform one string into the other. We use in this chapter this particular shape
description and matching technique in order to be tolerant to changes in the number
of segments composing a given polyline. Let us see which particular data structure
we use in order to provide an efficient access to the stored descriptors.

One of the drawbacks of the method presented in the last chapter is that in order
to retrieve similar symbols, all the matchings between the query descriptors and the
ones of the line-drawings have to be computed. In order to face a focused retrieval
application with a large document collection, we shall provide an efficient access to
the descriptors by using indexing data structures. We propose in this chapter the use
of a lookup table indexing structure aiming to retrieve primitives by similarity and
drastically reducing the amount of comparisons to be computed. The main idea is to
provide what we call prototype-based search. In prototype-based search, we are given
a set of distorted samples of the same primitive and want to infer a representative
model. In this context, the median concept turns out to be very useful. The use
of the string matching algorithm to compute a similarity measure also allows the
computation of the set median strings. Given a set of similar strings representing
vectorial primitives, a representative of this set having the smallest sum of distances
to all the strings in the set can be computed. These set median strings act as indexing
keys of a lookup table. When performing a query, the retrieval by similarity of
primitives is done efficiently since only the distances between the query primitive
and the representative of a cluster of similar polylines has to computed. The fact
of avoiding a brute-force distance computation allows a fast primitive retrieval by
similarity. By the use of a lookup table together with a Hough-like voting scheme, we
propose in this chapter a framework able to spot graphical symbols within a document
image collection.
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The remainder of this chapter is structured as follows: the next section reviews
the string matching theory and algorithms and provides details about our particular
cost functions. Subsequently, in section 5.3 we detail the proposed prototype-based
indexing framework allowing to spot graphical symbols within a document collection.
Section 5.4 presents the experimental results. Finally, the conclusions and a short
discussion can be found in section 5.5.

5.2 String Matching Theory and Algorithms

String edit distances were first defined by Wagner and Fischer in [WF74] to find
out the minimum cost edit sequence to convert the string A into the string B using
edit operations. Although the origin of the algorithm is spelling correction, it has
been used for different purposes, and particularly as an approach to the problem of
recognizing and classifying polygons. The problem is to define dissimilarity measures
between polygons, and to find algorithms that compute these measures fast enough.
The string matching-based approaches should be independent of the scale, transla-
tion and rotation of the polygons under analysis. Let us review the string matching
theory and algorithms and subsequently provide the details about our particular cost
functions to match polygons.

5.2.1 Definitions

Let us first introduce some basic notation and definitions of the basic string matching
algorithm first proposed by Wagner and Fischer in [WF74].

Definition 5.3 Let Σ be a set of elements called symbols and let Σ∗ denote the
set consisting of all finite strings over Σ. The length |A| of a string A ∈ Σ∗ is the
number of symbols in A. And let Λ denote the null string which has length 0.

Definition 5.4 For a string A = a1a2...an ∈ Σ∗, a cyclic shift is a mapping σ :
Σ∗ → Σ∗ defined by σ(a1a2...an) = a2a3...ana1. For all k ∈ N, let σk denote the
composition of k cyclic shifts. Two strings A and A will be called equivalent if A =
σk(A).

Definition 5.5 An edit operation s is an ordered pair (a, b) 6= (Λ,Λ) of strings,
each of a length less than or equal to 1, denoted by a → b. An edit operation a → b
will be called an insert if a = Λ, a delete operation if b = Λ, and a substitution
operation otherwise.

Definition 5.6 A string B results from a string A by the edit operation s = (a → b),
denoted by A → B via s, if there are strings C and D such that A = CaD and
B = CbD. An edit sequence S = s1s2...sk is a sequence of edit operations. We say
that S takes A to B if there are strings A0, A1, ..., Ak such that A0 = A,Ak = B and
Ai−1 → Ai via si for all i ∈ {1, 2, ..., k}.
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Definition 5.7 Let γ be a cost function that assigns a non-negative real number
γ(s) to each edit operation. For an edit sequence S, we define the cost γ(S) as

γ(S) =
k∑

i=1

γ(si)

The edit distance δ(A,B) from string A to string B is then defined as

δ(A,B) = min{γ(S)}

And the edit distance δ([A], [B]) of two cyclic strings [A] and [B] is given by

δ([A], [B]) = min{δ(σk(A), σl(B))|k, l ∈ N)}

Attributed string matching has been used for polygon matching in several appli-
cations. In order to avoid the segmentation inconsistencies due to the noisy images
or distorted shapes, Tsay and Tsai introduced in [TT89] two other edit operations.

Definition 5.8 The split operation is the result of splitting a symbol ai into a se-
quence of k consecutive symbols, denoted as ai → ai1ai2...aik.

Definition 5.9 The merge operation is the result of merging k consecutive symbols
into a symbol, denoted as aiai+1...ai+k−1 → a′i.

5.2.2 Linear String Matching

Let A and B be two strings over Σ∗ of length n and m respectively. The Wagner
and Fischer [WF74] algorithm takes O(nm) time in find δ(A, B) by determining
a minimum weighted path in a weighted directed graph. Let D(i, j) denote the
cost of a minimum weighted path from the vertex v(0, 0) to the vertex v(i, j), so
D(n,m) = δ(A,B). We can see below in algorithm 5.2.1 the details of linear string
matching.

For the split and merge step, a window q×q is needed. For each D(i, j) the cost of
split and merge is considered as the minimum cost of all the possibilities in a region
starting at the vertex v(i, j) and ending at v(i−q, j−q). And the costs are computed
as a sum of three costs. For example, in the merge case

γ(akak+1...ak+p → blbl+1...bl+t) = γ(akak+1...ak+p → a′) +
γ(blbl+1...bl+t → b′) + γ(a′ → b′) (5.1)
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5.2.1: Linear string matching algorithm
D(0, 0) := 0;
for i := 1 to n do

D(i, 0) := D(i− 1, 0) + γ(ai → Λ);
end
for j := 1 to m do

D(0, j) := D(0, j − 1) + γ(Λ → bi);
end
for i := 1 to n do

for j := 1 to m do

D(i, j) :=





D(i− 1, j) + γ(ai → Λ)
D(i, j − 1) + γ(Λ → bi)
D(i− j, j − i) + γ(ai → bi)

end
end

Figure 5.2: Example of the string matching algorithm. Edit operations
and obtained cost to transform the string “YWCQPGK” into the string
“LAWYQQKPGKA”.
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5.2.3 Cyclic String Matching

Linear string matching can not tackle with strings having cyclic shifts since the com-
puted paths starts always from a given initial symbol. A cyclic string matching
procedure is needed in the case of cyclic strings.

Given two finite strings A and B, the cyclic string matching problem is the problem
of determining δ([A], [B]) and an edit sequence realizing this cost.

Let BB = b1b2...bmb1b2...bm be the concatenation of B with itself. For all l ∈
{1, 2, ...,m}, we can find a minimum cost edit sequence from A to σl(B) by determin-
ing a minimum weighted path from v(0, l) to v(n,m + l).

Although the computation of only one path takes O(nm) time, the computation
of all these paths can be done in O(nm log m) time, since all the paths can be chosen
such that two different paths never cross.

5.2.4 A String Matching Cost Function for Polygon Recogni-
tion

Visually, two chains of segments are similar if the length attributes and angles between
consecutive segments can be aligned. In the literature on polygonal shape recogni-
tion, most approaches base the distance definition between two polygonal shapes on
length and angle differences. For example, Arkin et al. used in [ACH91] the turning
function which gives the angle between the counterclockwise tangent and the x-axis
as a function of the arc length. Their results are in accordance with the intuitive
notion of shape similarity.

In order to use string matching for polygon recognition, we will use an attributed
string matching. Starting from a polygonal approximation of the shape, we will use
the segments as primitives, encoding them with a pair of numbers (li, φi), where li
denotes the length of the segment si and φi denotes the angle between si and si−1 in
the counterclockwise direction. We can appreciate an example on how these attributes
are computed for a sample shape in Fig. 5.2.4

Let A and B be two chains of adjacent segments, represented as strings, with total
lengths |A| = n and |B| = m and with respectively attributed string representations:

A = (lA1 ; φA
1 )...(lAn ;φA

n ) and,

B = (lB1 ;φB
1 )...(lBm;φB

m)
(5.2)

The costs functions for attributed string matching are as follows:

γ((lAi ; φA
i ) → (lBj ; φB

j )) = |φA
i −φB

j |
360 +

∣∣∣∣
lAi
|A| −

lBj
|B|

∣∣∣∣
γ(λ → (lBj ; φB

j )) = lBj
|B|

γ((lAi ; φA
i ) → λ) = lAi

|A|
γ((lAi,j ;φ

A
i,j) → (lAu ; φA

u )) = (Pj
k=i lAk )−lAuPj

k=i lAk

(5.3)
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Figure 5.3: Attributed representation of a chain of adjacent segments.

which are the proposed cost functions inspired by the ones proposed by Tsay and
Tsai in [TT89] where they use string matching for shape recognition. Maes proposed
in [Mae91] to use a weighting factor in the length costs to compensate undesirable
cost bias for angle differences. However, in our experiments we did not observe any
improvement in adding such parameter. Finally, for the sake of simplicity, the previous
operations are grouped by a block substitution using the merge operation. The total
cost of substituting a whole sequence of symbols by another is computed as follows:

γ(Ai,j → Bk,l) =
γ(Ai,j → u) + γ(Bk,l → v) + γ(u → v) (5.4)

being u and v the segments starting at the initial point of Ai and Bk and ending
at the final point of Aj and Bl respectively.

As all the length comparisons are weighted by the total perimeter of the chain of
segments and the angles are computed relatively to the previous segment, the proposed
string matching approach is rotation and translation invariant. In addition, the merge
operation attributes low edit costs to primitives undergoing noisy transformations as
the inherent segment fragmentation from the raster-to-vector process and aims to
compare strings with different number of segments making the system tolerant to
segment cardinality and to scale changes.

5.3 Spotting Method

Given a technical document, the main idea of this chapter is to organize clusters of
similar string primitives in a lookup table. Each entry of this table is indexed by a
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representative string allowing to use a graphical pattern as query and avoiding the
computation of distances over all the stored primitives.

We divide the spotting method in four different parts. First primitives are ex-
tracted from the symbol instances in terms of strings attributed with geometric con-
straints among their segments. Then, the off-line step to build the indexing data
structure to organize the primitive descriptors. Third, the on-line process of formu-
lating a graphical query and the search in the data structure for similar primitives.
Finally, the Hough-like voting scheme which spots the zones of interest where there
is high probability to find the symbol. Let us further describe the above steps.

5.3.1 Symbol Representation in Terms of String Primitives

The first step to consider in any symbol recognition methods using geometric con-
straints as descriptors is the preprocessing step allowing to decompose into primitives
the target documents as well as the queries. Let us briefly explain these pre-processing
steps of primitive extraction.

We use in this chapter the same raster-to-vector algorithm implementation pre-
sented in the last chapter (see section 4.2) with a slight modification. Rather than
representing symbols with a polygonal approximation based on a skeletonisation, our
choice for this chapter is focused on computing a closed region labelling and extrac-
tion based on a connected component analysis. The contours of these closed regions
are then polygonally approximated using the Rosin and West’s [RW89] algorithm.

After computing the polygonal approximation of the contours of the closed regions,
an association of chains of adjacent segments resulting in a polyline is done. These
polylines are encoded as attributed strings, and used as primitives to describe the
symbol to be recognized.

Formally, let R be the contour of a closed region which is polygonally approximated
and represented by the chain of adjacent segments P (R) = {s1...sn} consisting of n
segments si. As we have seen in the previous subsection 5.2.4, each segment si is
attributed with the tuple (li, φi), where li denotes the length of the segment si and φi

denotes the angle between si and the previous segment si−1 in the counterclockwise
direction. A symbol is then described in terms of its composing p region contours and
denoted as S = {P (R1)...P (Rp)}. We can see a graphical example in Fig. 5.4.

The distance between two polylines is computed by using the string matching
algorithm and the particular cost functions defined in the previous section. The final
distance between two symbols is then computed as the sum of distances among the
corresponding primitives. Let us focus the next section on the primitive description
organization and the indexing structure construction.

5.3.2 Off-line Lookup Table Construction

We propose in this section the use of an indexing structure which allows a fast primi-
tive retrieval by similarity. The main idea is to cluster similar polylines into entries of
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Figure 5.4: Symbol representation in terms of polygonal approximation of closed
region contours. Each of these region contours are represented by strings attributed
by length and angles.

a lookup table. The retrieval of primitives by similarity is done by a prototype-based
search. Each entry of the lookup table is identified by a representative of a cluster
of similar primitives. When querying this lookup table, a list of locations where to
find similar primitives is obtained without computing the distance between the query
and all the primitive instances, but just by computing the distance between the query
and the cluster prototypes. In order to correctly identify the lookup table entries, a
representative of the clusters of primitives has to be computed.

Each lookup table entry representing a cluster of similar strings appearing in the
document collection, consists of two different items: a representative polyline of each
cluster which acts as indexing key and the stored list of locations where we can find
the polylines belonging to this cluster. If strings are used for representing the objects
under consideration, then we are faced with the task of finding the median of a set of
similar strings. Let us see how can we compute the representative string from a set
of similar strings.

Generally speaking, the representative polyline of each cluster can be computed in
two ways, namely the mean string or the set median string. As proposed in Sánchez
et al. in [SLT02], the mean string M over a string cluster C = {A1...An} is defined
as:

M = arg min
M∈Σ∗

(
n∑

i=1

δ(Ai,M)) (5.5)

The mean string is computed as a new string that represents the average shape
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among all the strings in the set. The main drawback of this approach is its compu-
tational cost which increases with a large number of shapes. On the other hand, the
set median string M̃ is defined as the string in a given set minimizing the sum of
distances to all the strings in the set. The set median string is defined as:

M̃ = arg min
fM∈C

(
n∑

i=1

δ(Ai, M̃)) (5.6)

In our case, we have experimentally verified that a set median string is useful
enough to be used as index of a table entry. Besides, it is less expensive since we
do not need to compute a new string being an exact shape average of the set, but
to select it between the strings composing the cluster. Let us see how, from the set
median string formalism, we can build an indexing structure aiming to retrieve by
similarity stored primitive strings.

The lookup table is built as follows. For all the polylines P (Ri) appearing in a
document of the collection, we store its location in the lookup table. In order to be
able to query the indexing structure by similarity of graphical patterns, we should
select a cluster of similar polylines where it belongs to. The selection of this cluster
is done by applying the string matching algorithm proposed above. We select the
cluster where the cost of editing the string P (Ri) to match the set median string P̃C

of the cluster is lower than a threshold thr. Once we identified the corresponding
cluster, we add P (Ri) to it. The set median string P̃C of the corresponding cluster
is recomputed in order to keep offering a good cluster representative. If no cluster
has a set median string similar to P (Ri), then we define a new cluster having P (Ri)
as representative. The set median strings act as indexing keys of the lookup table
where at each entry a list of translation vectors −→vi = (xi, yi, di) are stored. Where
(xi, yi) are the coordinates of the middle point of the polyline, and di identifies the
corresponding document in the collection where P (Ri) appears. We can see the details
in the algorithm 5.3.1:

5.3.1: Algorithm to build a LUT from a list of primitives.
for i = 0 to length(R) do

if LUT [P (Ri)] is not NULL then
LUT [P (Ri)].AddV alue(−→vi );
LUT [P (Ri)].UpdateKey();

end
else

LUT [P (Ri)].CreateNewPos(−→vi );
end

end

When applying the algorithm described above, the order followed to add polylines
in the lookup table is important since the primitive clustering is done in an incremental
way. However as in retrieval applications the user can add more and more documents
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to the database at any time, we preferred to use an incremental primitive clustering
than a classical classification method which would need a learning stage, making
difficult to increase the data collection. In addition, the coarse primitive clustering
offered by the lookup table is compensated by the use of a voting scheme.

Let us detail in the next subsection how we proceed to use the lookup table in
order to retrieve the location of graphical primitives by similarity.

5.3.3 On-line Querying of Symbols: Activating Table Entries

Given a query symbol S = {P (R1)...P (Rp)} and the lookup table containing q entries,
a maximum of p table entries are activated resulting on the one hand in a list of
locations where to find similar primitives and, on the other hand, in a confidence value
depending on the similarity ratio between the query primitives and the prototypes
representing these table entries. A table entry having as prototype a certain median
string P̃j is activated depending on the following condition:

δ(P (Ri), P̃j) < thr
where 1 ≤ i ≤ p and 1 ≤ j ≤ q

(5.7)

From the traversal of the lookup table, we obtain a list of locations where to find
similar primitives than the ones that compose the query symbol. The zones of a
document in the collection likely to contain the query symbol are the ones where we
can find more accumulation of the symbol’s primitives. By using a Hough-like voting
scheme, we determine the zones of the collection where we have more accumulation of
primitives by simply looking at maxima at the voting space. The locations where there
is a presence of most of the polylines composing the symbol S form clusters of coherent
votes. The presence of similar polylines in other locations of the line drawing provokes
false positive votes which are scattered into the voting space. The accumulation of
evidences is done in terms on the similarity between the query primitive and the
prototype one, so the values of the votes to distribute in the parameter space are
proportional to each δ(P (Ri), P̃j). Let us detail in the next section how we proceed
to validate the location hypotheses.

5.3.4 Hough-like Voting Scheme to Validate Location Hypothe-
ses

The voting space is a four-dimensional space (x, y, s, d) consisting of 2D position co-
ordinates, a scale ratio and an index of a given document in the collection. Given a
query string Pq we accumulate votes in the translation coordinates −→vi = (xi, yi) of
the corresponding line-drawing image d. The third dimension of this space represents
the scale factor between the query polyline and the polylines stored in the lookup
table. This voting scheme formulates hypotheses of spatial location, document in-
stance, and scale of the queried symbol. The zones of the line-drawing where we find
similar primitives at a similar scale that the ones that form the query symbol tend to
accumulate more votes and thus to form clusters in the voting space. The problem of
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finding zones where a symbol is likely to be found is then reduced to a local maxima
localization problem in the voting space.

For the sake of simplicity the voting space is split into several bins, I(1,1,1)...I(m,n,s)

named buckets for each document d. The bin size has to be related to the scale of
the symbol so the different votes fall in nearby buckets. In our experiments the grid
size has been empirically set and is determined in terms of the size of the original
image. In our case, m and n are determined such as max(m, n) = 128, preserving
the aspect ratio of the original image. The scale dimension is sampled to s = 8
possible buckets. The parameter d is directly the number of documents stored in the
collection. Following a similar idea than the proposed by Lorenz and Monagan in
[LM95] we use a voting method known in signal processing as anti-aliasing to relate
(−→vi , s) to a set of Ij neighboring buckets, based on the Euclidean distance between the
voting location and the discrete bin partition buckets. Each (−→vi , s) has the edit cost
vote to distribute among its eight neighboring buckets, depending on their proximity.

Given a symbol S, the activation of the lookup table entries results on a list
L = {(−→v1 , s1)...(−→vn, sn)} of translation vectors. Being d((−→vi , si), Ij) the Euclidean
distance between (−→vi , si) and one of the eight neighboring buckets Ij we define the
value of the vote V (Ij) received in the bucket Ij is accumulated as:

V (Ij) = V (Ij) +
w1

d((−→vi , s), Ij)
+

w2

δ(P (Ri), P̃j)
(5.8)

Where w1 and w2 weight the distance factor and the edit cost. We can see an
example of the voting distribution scheme in Fig. 5.5.

As we can see, the anti-aliasing method reduces the problem of working with a
discrete grid where to distribute votes. Voting schemes are only efficient if a high
number of votes fall in the right bin, so that the bin can be easily detected among
the background noise. If some votes fall in the neighboring bins, the significance of
the correct bin decreases. Since the votes are now distributed among nearby buckets,
even if the locations of a symbol do not fit a unique bin, the votes of close buckets
collaborate between them.

Since the intended application of the spotting methods is a focused retrieval
process, given a query symbol, the top k zones of interest in terms of accumulated
votes are returned to the user. The more primitives a symbol has, the more votes can
be accumulated in a given zone. However, since only one query is done at the same
time, there is no need to normalize the votes to retrieve the zones of interest.

Let us see in the next section the experimental results testing the performance of
the proposed description technique, and the ability of locating and retrieving symbols
within a collection of complete documents.

5.4 Experimental Results

In order to evaluate the proposed spotting methodology we present three different ex-
periments. The first one only focuses on the string matching algorithm as a distance
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Figure 5.5: Anti-aliasing method to cast votes. Even if two votes fall in different
buckets due to the discretization, they still contribute to form coherent peaks in the
desired values of the voting space.

measure between polygonal shapes. It aims to empirically determine a well suited
threshold value thr which determines whether two strings are considered similar or
not. The second experiment is designed to test if the proposed primitives are suffi-
ciently discriminative to represent a graphical symbol. Finally, the third experiment
tests the symbol spotting method by querying a document image database of real
architectural floor-plans.

5.4.1 Silhouette Shape Matching

The first experiment is designed to test the efficiency of the string matching algo-
rithm as a shape descriptor. The algorithm is used as a distance between two shapes
represented by a polygonally approximated contour. This experiment also aims to em-
pirically determine a well suited value of the threshold thr which determines whether
two polylines are similar or not. We used a subset of isolated silhouette shapes from
the MPEG-7 core experiment described by Latecki et al. in [LLE00]. We call this
polygonal shapes collection the MPEG-POLY database.

For each one of the 15 shape models, the noise model presented by Kanungo et
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al. in [KHP93] is applied to generate 300 degraded images per class, which are then
polygonally approximated. The fact of applying the noise model and then converting
the images from raster to vector format, introduces a lot of variations in the number
of segments approximating a given silhouette. All the details of this dataset can be
checked in the appendix A. With all this dataset we run a classification experiment.
The distance between each model and the vectorized shapes is computed by using the
cyclic string matching algorithm with the proposed cost functions. These results are
sorted by increasing distance to extract a Receiver Operating Characteristic (ROC)
curve (the interested reader is referred to paper by Fawcett [Faw06] on ROC analysis),
which plots the true positive rates against the false positive rates. These evaluation
metrics are the same than we used previously to evaluate the performance of the
document classification method of chapter 3. We can see how they are computed in
eq. 3.9.

Figure 5.6: Receiver Operating Characteristic curve for the silhouette matching
experiment. Average ROC curve is shown in black.

We can appreciate in Fig. 5.6 the tradeoff between the correctly classified items
and the appearance of false positives. In our framework, as we use a voting scheme
to accumulate evidences, we are more interested in achieving high true positive rates
values rather than having low false positive rates. We can find in Table 5.1 the
obtained false positives rates and thresholds for different true positives rates.
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Table 5.1: Obtained false positive rates and decision threshold thr for several true
positive rates.

TPR FPR thr

0.25 0.025 0.008
0.5 0.105 0.014
0.75 0.281 0.024
0.9 0.511 0.035

In the presented spotting method the lookup table offers a coarse clustering that
is then refined by the use of a voting scheme. The presence of false positives in a
lookup table entry is not a problem but we want to minimize the missed primitives.
In our experiments, we used a thr value of 0.03 which guarantees about a 75% of
correctly clustered shapes in a given lookup table entry. False positives appear but
the voting strategy will hopefully discard them.

5.4.2 Evaluation of the Contours as Primitives

The second test aims to see if the region contours are better primitives to repre-
sent a graphical symbol than the skeletons, which were the extracted features to be
polygonally approximated in the last chapter. We compare the performance of the
presented method by using both vectorization strategies, one computing the skeletons
of the objects and then applying the Rosin and West’s algorithm, and the other which
tries to approximate the contours of the closed regions extracted from the image. To
carry this experiment, a real floor-plan has been degraded to build a collection of
500 synthetically distorted plans by using again the noise method of Kanungo et
al. These distorted images are then polygonally approximated with both representa-
tions: contours and skeleton primitives. We can appreciate the differences between
both primitives in Fig. 5.7.

In Fig. 5.8 we can see the obtained precision and recall graph (the interested reader
is referred to van Rijsbergen book [vR79] on information retrieval) when querying a
symbol. The graph shows that the presented primitives are more expressive than the
use of skeletons since the spotting method using this representation outperforms the
skeleton in all cases. In average there is a gain near a 17.5% of precision for the same
recall values. Details are shown in Table 5.3, where we can see the number of false
positives we have when requesting a certain number of the 500 possible solutions. In
addition, using contours as primitives, in only 5 of the 500 images the queried symbol
has been missed and using the skeleton we miss the symbol in 73 of the 500 images.
This yields to a significant gain in the recall value when using contours instead of
approximating the symbol skeleton.

Finally, we tested the method in a database of isolated symbols affected by vecoti-
ral noise. We can see in Fig 5.9 the obtained ROC curve for the matching experiment
with the 150 isolated symbols from the GREC-POLY database (fully detailed in
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(a)

(b) (c) (d) (e)

Figure 5.7: Symbol Primitive Representations. (a) Model floor-plan; (b) zoom
of the toilet symbol; (c) degraded image; (d) symbol with skeleton primitives; (e)
symbol with contour primitives.

Table 5.2: Number of false positives when requesting a certain number of retrieved
zones.

Primitives Retrieved Items

200 300 400 475

False positives with Contours 6 7 29 159
False positives with Skeletons 73 76 89 273

appendix A). The experimental setup is the same than the silhouette matching ex-
periment. The main difference is that we do not try to match individual shapes but
all the primitives composing a given graphical symbol. When all the primitives from
a symbol are matched against the model primitives, the symbol is then considered as
recognized.
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Figure 5.8: Precision and recall plot when spotting the toilet symbol shown in Fig.
5.7 using two different symbol primitives. The contours outperforms in both precision
and recall the skeleton primitives.

Figure 5.9: Receiver Operating Characteristic curve for the symbol matching ex-
periment. Average ROC curve of the 150 symbols is shown in black.
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5.4.3 Symbol Spotting in a Document Database

Finally, we tested our method with a collection of ten real floor-plans and ten dif-
ferent symbols as queries. This is a subset of the FPLAN-POLY dataset detailed in
appendix A. The query symbols appear in the floor-plans several times and are seg-
mented by cropping a zone in the floor-plan image and vectorizing it. Each floor-plan
has been polygonally approximated and ground-truthed. The database consist on
approximately 14200 polylines which after the lookup construction result in near 320
table entries. The amount of distance computations is thus reduced by a factor of 45
with respect to a sequential access to all the primitives appearing in the collection.
We can see in Fig. 5.10 the precision and recall plot resulting from spotting these
symbols in the whole floor-plan database.

Figure 5.10: Precision and recall plot for symbol spotting in the document database.

In Table 5.3 we present a detailed set of measures to evaluate the performance of
retrieval systems which aim to evaluate the spotting architecture. As we can see, the
recall ratio is quite good. However there is an important number of false positives
in the results which harm the precision value. The F -score is a composite measure
which aims to rank the results. However, the most interesting point here is to notice
the difference between the precision and the average precision AveP values. The
average precision is a measure of quality which rewards the earliest return of relevant
items. As we can see, even if in our experiments the precision values are quite low, the
average precisions are significantly higher. That means that usually the false positives
are ranked worst than the correct results, as we can also see in the qualitative results
shown in Fig. 5.11. Finally, we also show the average time taken by our software
prototype to spot a symbol per plan. It is remarkable that usually the symbols which
are composed by common simple primitive shapes (circles, squares, etc.) are the ones
which are more time consuming since the entries of the lookup are more populated
and more hypotheses have to be considered. No significant differences due to the
number of polylines composing a symbol can be appreciated.
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Table 5.3: Detailed retrieval measures for each model symbol for the symbol spotting
in a document database experiment.

Symbol Retrieval Measures

Class p Precision Recall F -score AveP Time
(%) (%) (%) (%) (secs./plan)

Bidet 4 30.8 100 47.1 87.5 0.76
Chair 5 36.8 100 53.8 83.3 0.64
Burners 9 5.1 100 9.6 59.1 1.09
Toilet 5 50 37.5 42.9 27.1 0.98
Toilet sink 5 30 100 46.2 68.7 1.89
Kitchen sink 5 11.8 50 19 33.3 1.16
Single sofa 4 37.5 100 54.6 100 0.43
Double sofa 6 15 75 25 65 0.22
Table 7 16.7 100 28.6 100 0.24
Tv set 4 20 100 33.3 95 0.12

AVERAGE 5.4 25.4 86.2 36 71.9 0.75

5.5 Conclusions and Discussion

In this chapter we have presented a method of symbol spotting and its use in a focused
retrieval application from a collection of technical line-drawings. First a suitable
symbol representation as a set of closed region contours and its codification with
attributed strings has been presented. The distance definition using a cyclic string
matching algorithm allows to tolerate the segment fragmentation problem. Then, a
clustering of salient zones of interest and a voting method have been presented and
tested to spot symbols in real technical line-drawings.

The experiments show that the representation and distance approaches are able
to tackle with the inherent noise arising from the scanning process and the distortions
introduced by the raster-to-vector algorithms. The presence of false positives is not a
critical problem since the purpose of spotting methods is to find by a fast technique
a coarse identification of zones where a given symbol appears. Finally, we can see
that the use of voting strategies are of vital importance for spotting problems. To
reach higher precision one can use better shape descriptors, however this also entails a
complexity increment. The accumulation of evidences allows to work with a coarsely
recognition in the indexing step.

There are still some aspects which should be further studied. The main concern is
that the order followed to add polylines in the lookup table is important and in some
cases could lead to some misclassifications. However for spotting applications where
the user can add more and more documents at any time, the primitive clustering
must be incremental. The use of incremental classifiers such as iPCA [AJL02] or
iLDA [POK05] applied to primitive clustering should be studied. On the other hand,
the presented matching approach can not cope with occlusions which will provoke the
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(a) (b)

1st 2nd 3rd 4th 5th

V (I) = 54117 V (I) = 14070 V (I) = 12922 V (I) = 8790 V (I) = 8406

6th 7th 8th 9th 10th

V (I) = 6937 V (I) = 5419 V (I) = 5115 V (I) = 5072 V (I) = 1217
(c)

Figure 5.11: Qualitative results for symbol spotting by cyclic string matching. (a)
Vectorized floor-plan database; (b) query example; (d) ranked top ten results.

polylines to be broken. A partial matching algorithm as the one presented in [TVH05]
by Tănase et al. could be helpful in such situations.

One of the main advantages of the proposed method regarding the vectorial sig-
nature approach, is the use of a prototype-based search. This indexing technique
provides an efficient way to retrieve the locations of graphical patterns by similar-
ity. Even if the implementation of the method is still a prototype and has not been
optimized, the times to retrieve the occurrences of a symbol given in Table 5.3 are en-
couraging. However, depending on the applications, the number of table entries may
increase drastically, and even the computation of the distance with the prototypes
can be time consuming. The use of a hashing structures instead of lookup tables,
can provide a more efficient access to the data without computing any distance with
prototype primitives. We propose in the next chapter the use of this particular data
structures aiming a faster primitive retrieval by similarity.

There is another drawback in the presented approach. since graphical symbols
are composed of several primitives, querying a symbol consists in separately querying
each of its primitives. The locations showing a higher accumulation of primitives
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are the most plausible hypotheses to contain the queried symbol. The structural
configuration of these primitives in that location is not taken into account. Most of
the false alarms presented in the qualitative results do not contain any similar symbol
than the query. But in those regions, usually there is a high presence of simple
primitives, and these locations accumulate several votes. We present in the next
chapter an indexing methodology aiming add structural information in the primitive
queries. An enhanced voting scheme aiming to better validate the spotted locations
is also presented in the next chapter.

Finally, our feeling is that, representing the primitives as attributed strings is
a powerful description technique. The retrieval by similarity with this particular
data representation has however an important burden compared with descriptors
working with a feature vector description. Symbolic descriptions are meaningful but
computationally expensive to match. Numeric-based descriptions are usually less
expressive, but easier to match by just the definition of a distance. We will use in the
next chapter several off-the-self numerical description techniques instead of symbolic
ones, in order to foster the retrieval by similarity.



Chapter 6

A Relational Indexing Method for
Symbol Spotting

In this chapter we present a method to retrieve from a collection of document images
the regions of interest where a query symbol is likely to be found. In order to foster the
querying speed, a hashing technique is proposed which is able to retrieve primitives
by similarity very efficiently. Vectorial primitives are coarsely encoded by well-known
shape description methods providing a numerical description of the primitives. A
relational indexing approach is presented in order to introduce some structural infor-
mation of the symbols and provide an accurate hypotheses validation. Experimental
results show the performance of the proposed approach.

6.1 Introduction and Related Work

The use of a lookup table providing a prototype-based search of similar primitives,
as presented in the last chapter, allow to avoid the computation of the similarity
measure for all the primitives extracted from the collection. The use of such indexing
structures aims to efficiently access and to retrieve graphic elements by similarity, and
becomes a must when dealing with applications which have to face large collections
of documents. In the particular use case presented in the last chapter, we achieved to
reduce the amount of distance computations by almost a factor of 45 without missing
an important number of symbols. However, there is still need to compute several
hundreds of distances between descriptors. Even if this is not an important burden
when working with numeric descriptors, it may be an important inconvenient when
we use symbolic description of primitives as the attributed strings. We propose in this
chapter to enhance the accessibility to the stored descriptors by two means. First,
we will coarsely describe primitives by the use of well-known descriptors with low
dimensionality. These descriptors result in a numeric feature vector. The distance
among those descriptors is easily computed as the distance between two points in the
n-dimensional description space. Second, this description space is efficiently organized
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and accessed by the use of a hashing technique. The use of hashing techniques allow in
ideal conditions to retrieve items by similarity with a complexity O(1). We can find in
the literature many works which use such efficient indexing structures to organize and
retrieve the primitive descriptors. Califano and Mohan used in [CM94] a hash table
indexed by four-dimensional indices describing the geometric configuration of triplets
of points extracted from a contour image in order to efficiently locate in an image
the location of query objects. Stein and Medioni also used a Hash table in [SM92] in
order to provide an efficient retrieval of similar portions of a contour described by a set
of features extracted from a super-segment. Recently, Lladós and Sánchez proposed
in [LS07] a binary codification of the shape context descriptor which is stored in an
indexing structure aiming to efficiently retrieve the locations within a document image
where a given typewritten word is likely to appear.

Moreover, there is another drawback in the previously presented method. Since
graphical symbols are composed of several primitives, querying a symbol consisted in
separately querying each of its primitives. The locations showing a higher accumula-
tion of primitives were taken as the most plausible hypotheses to contain the queried
symbol. This technique may lead to several false alarms since we are not checking
which primitives appear in those zones and whether their spatial organization and
their structural configuration is consistent with the query symbol design. We propose
in this chapter an indexing methodology aiming add structural information in the
primitive queries. We can find some works in the literature as the one proposed by
Chang and Lee. in [CL91] or the one by Costa and Shapiro in [CS00], which are
focused on the addition of structural information to the primitive querying process.
We can call this kind of approaches relational indexing, since besides the fact of in-
dexing primitive objects, these works try to index also their spatial relationships. An
enhanced voting scheme aiming a better validation of the spotted locations is also
presented in this chapter.

The remainder of this chapter is structured as follows: we first start by detailing
how the symbols are represented in terms of a polygonal approximation of contours
and a relational graph. Subsequently, in section 6.3 we present the off-the-shelf shape
descriptors we have used in our experiments to coarsely describe and index the prim-
itives by similarity. Even if some of the descriptors were conceived to describe im-
ages, they are reformulated to be applied to a set of polygonal primitives. Section 6.4
presents the indexing structure aiming to efficiently retrieve primitives and section 6.5
outlines how the relational indexing methodology works. In section 6.6 we present
some qualitative results in using the proposed spotting architecture to retrieve loca-
tions of interest from a collection of line-drawing images. Finally, the conclusions and
a short discussion can be found in section 6.7.

6.2 Description of Graphical Symbols in Terms of
Vectorial Primitives

Recognition schemes rely on two basic steps namely primitive extraction and de-
scription. First, the primitive extraction step has to transform the image drawings
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arising from the scanning process to a vector domain. Then, in the second step, such
primitives have to be represented by a shape descriptor.

6.2.1 Vectorial Primitives

Graphical symbols are usually composed by the union of several simple sub-shapes.
According to that, a symbol can be described in terms of the assembly of sub-shapes
which composes it. The basic primitives we want to extract to represent a graphical
symbol are these simple sub-shapes.

As our work is focused on the management of graphical data in vectorial format
the documents which are in paper format need a digitalization process. We use in
this chapter the same raster-to-vector process than in the previous chapter with just
one particularity. Since we want to add relational information between primitives to
the indexing framework, a graph representation of the symbols is also needed. The
documents are scanned and de-noised by some simple morphological operations. The
raster-to-vector algorithm proposed in [RW89] is then applied to these line-drawing
images to obtain a vectorial representation of the documents. However, vectors as
it, are not suitable to be used as primitives due to its instability in terms of arti-
facts, fragmentation, errors in junctions, etc. A higher level entity has to be used
as primitive. Adjacent vectors are merged together into a polyline instance. These
polylines represent then the sub-shapes conforming a given graphical symbol. In our
method, we use the contour of the closed loops conforming a symbol as the primitives
to polygonally approximate and to merge as single polylines.

Formally, let p = {s1...sn} be a polyline consisting of n segments si. A symbol is
represented in terms of its polylines representing loops and denoted as S = {p1...pm}.
The gravity center of the symbol is computed as the average of the gravity centers
of each polyline, and it is denoted as mC . The gravity center of the symbol will
be used in the subsequent process of localization of the query symbol inside the line-
drawing images. To represent the spatial organization of primitives which compounds
a symbol, a proximity graph is constructed. Using the k -NN algorithm, each primitive
is linked to its k nearest primitives by an edge of the graph G(S) = (V,E). A node
ni ∈ V is attributed with the primitive pi. An edge e ∈ E is denoted as e = (ni, nj ,−→vij)
where ni and nj are nodes of V and −→vij is a vector representing the spatial relationship
between the primitives pi and pj . This proximity graph is the basis of the proposed
relational indexing technique.

We can appreciate in Fig. 6.1 how the different parts of a symbol are detached
making the regions meaningful primitives, and how their spatial organization can
describe a symbol.

Note that the same primitive representation and extraction is used for the com-
plete documents in the acquisition step. A given document D is composed by a large
number of polylines. A proximity graph G(D) is also computed to link nearby prim-
itives and store their spatial relationship. Obviously, in this case we do not know
which polylines compose a symbol, the graph just represents neighboring primitives.
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Figure 6.1: Primitive symbol decomposition. A graphical symbol is decomposed in
sub-shapes which are polygonally approximated. An attributed proximity graph is
the basis for the relational indexing.

The polygonally approximated sub-shapes are used as the local components of a
given symbol. To describe them, we apply at each primitive separately one of the
off-the-shelf global numerical shape descriptors existing in the literature.

6.3 Off-the-shelf Shape Descriptors Applied to Vec-
torial Data

Formally speaking, given a symbol S = {p1...pm} and a shape descriptor f defined
over the space of primitives, after applying f to each primitive we will have in return
a set of feature vectors f(pi) for all i ∈ [1,m]. A symbol is then expressed by a set of
feature vectors describing its conforming primitives. Let us briefly review in the next
section the used shape descriptors.

Global numerical shape descriptors are formulated in terms of a compact represen-
tation of expressive invariant features describing a shape as a whole. The interested
reader is referred to Zhang and Lu’s [ZL04] review of shape representation and de-
scription techniques. In this section we will summarize the global shape descriptors
used in our experiments. We make no claims about robustness of the chosen descrip-
tors. Depending on the nature of the data better descriptors can be used. The point
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here is only to test several shape descriptors seen as black-boxes which one can plug-
in into the system. The selection of one or another shape descriptor is application
dependent. For example, if we are interested in retrieve just correct symbols despite
missing some positives, an accurate shape descriptor has to be chosen. On the other
hand, if the user wants to retrieve all the instances of a given symbol without giving
really importance to the presence of false positives, one must choose a simpler shape
descriptor. Four shape descriptors with different accuracy are chosen here to test the
behavior of the system.

Let us further overview the numerical shape descriptors used in our work. Firstly
we introduce some basic notation. We consider an image I(x, y) containing an object
shape O with area A and perimeter P . Its centroid is the point c = (x̄, ȳ). The
boundary B of the shape is polygonally approximated by a polyline pO composed
by a set of n adjacent segments si = {(xi, yi), (xi+1, yi+1)}. A shape descriptor will
result in a compact representation of the shape formulated in terms of a feature vector
f(O). Let us briefly introduce the well-known shape descriptors we use.

6.3.1 Moment Invariants

The central (p + q)th order moment for a digital image I(x, y) is expressed by

µpq =
∑

x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) (6.1)

The use of the centroid c = (x̄, ȳ) allow to be invariant to translation. A normal-
ization by the object area is used to achieve invariance to scale.

ηpq =
µpq

µγ
00

where γ =
p + q

2
+ 1 (6.2)

Boundary Moments

The geometric moments can also be computed among the contour of the object as
introduced by Chen in [Che93] and by Sardana et al. in [SDI94] by using eq. 6.1
only for the pixels of the boundary of the object. In that case, a normalization
by the object perimeter is used to achieve invariance to scale by using eq. 6.2 with
γ = p + q + 1. By sampling the polygonal approximation we can use the boundary
moments as geometric descriptors of the primitives.

Geometric Moments for Line Segments

When the contours of the objects are polygonally approximated, the geometric mo-
ments can be formulated for line segments as introduced by Lambert and Gao in
[LG95, LG96]. Given a polygonally approximated shape composed of n segments, let
us take ai = (yi+1− yi)/(xi+1−xi) as the slope of the segment si. The line moments
are then computed by
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µpq =
∑n

i=1 Di,

Di =
√

1 + (ai)2 ·
∑q

k=0

{(
q
k

)
ak

i (yi − aixi)q−k · xp+k+1
i+1 −xp+k+1

i

p+k+1

}
(6.3)

And if the segment si is vertical, we use

Di = xp
i ·

yq+1
i+1 − yq+1

i

q + 1
(6.4)

Invariant Moments

To obtain invariance under translation, the centroid is used as in eq. 6.1. The normal-
ization by the polyline length is used to obtain scaling invariance. Finally, invariance
to rotation is achieved by using the set of seven functions proposed in [Hu62] involving
moments up to third order.

φ1 = η20 + η02

φ2 = (η20 − η02)2 + (2η11)2

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]+
(3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

φ6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2] + 4η11(η30 + η12)(η21 + η03)
φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]−

(η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

(6.5)

Moment invariants can be normalized with to get the different invariants into
similar numerical ranges. Usually we can use the logarithm as a coarse normalization:

ψ1 = log|φi|, i ∈ [0...7] (6.6)

Hupkens and de Clippeleir proposed in [HdC95] the following normalization of
invariants to achieve a better robustness to noise.

φ′1 = φ1 = η20 + η02

φ′2 = φ2 / φ2
1

φ′3 = φ3 / φ3
1

φ′4 = φ4 / φ3
1

φ′5 = φ5 / φ6
1

φ′6 = φ6 / φ4
1

φ′7 = φ7 / φ6
1

(6.7)
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6.3.2 Simple Shape Description Ratios

The eccentricity, aspect-ratio or Feret’s ratio of a given shape is the ratio of the length
of the longest chord of the shape to the longest chord perpendicular to it. It can be
computed by using the moments described in eq. 6.3 as

ecc =
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

µ20 + µ02 −
√

(µ20 − µ02)2 + 4µ2
11

(6.8)

The circularity, or area-perimeter ratio of a shape is defined as how closely-packed
the shape is. For a circle it is equal to 1, all other shapes have a circularity lesser
than 1. It is computed as

circ =
4πA

P 2
(6.9)

Obviously, there are many other shape ratios describing certain geometrical prop-
erties. The interested reader is referred to [Rus], [SS94]. In our case, we only use
these two ratios as the feature vector describing a shape.

6.3.3 Fourier Descriptors

Given a polyline pO which is the polygonal approximation of the boundary of a shape
O, we use as a vectorial shape signature the centrical distance function computed as

ri =
√

(xi − x̄)2 + (yi − ȳ)2 for (xi, yi) ∈ pO. (6.10)

Zahn obtained in [ZR72] a Fourier descriptor of a shape, applying the Fourier
transform on the signature representing the shape boundary. Sampling ri to N = 2n

samples so the use of the FFT is possible, the feature vector of the Fourier descriptor
is given by

f(O) =
[ |F1|
|F0| ...

|FN/2|
|F0|

]
(6.11)

where Fi corresponds to the ith component of the Fourier spectrum. Other shape
signatures as curvature or complex coordinates can be used to compute the Fourier
descriptor. The interested reader is referred to [KSP95].

In the case of graphical symbols, the shape descriptors above presented can be
applied to each of the primitives of the symbol extracted as mentioned in section
??. Formally speaking, given a symbol S = {p1...pp}, applying one of the presented
descriptors will return a set of feature vectors f(pi) for all i ∈ [1, p]. Let us study in
the next section how to adapt classical indexing structures used in the databases field
to index graphical symbols in a document database.
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6.4 Multidimensional Hashing to Index Primitives

The previously presented methods for spotting symbols from a document database,
present an important constraint. As the number of considered shape models is in-
creased, the computational cost of the matching step can be unaffordable. As pointed
in [CM94], in order to avoid a brute-force matching step, the use of indexing para-
digms becomes necessary.

Among the wide taxonomy of indexing structures (cf. [GG98]), the point access
methods are the ones which are more suitable for our purposes. Tree-based structures
are frequently used in indexing mechanisms. Nevertheless, they suffer from several
drawbacks. The querying process can be computationally expensive since the tree
have to be traversed and in addition, tree balancing algorithms are needed to main-
tain an effective search performance. As in our case we want to foster the querying
speed and we want a system where the data could be easily added at any moment,
a multidimensional hashing technique has been selected instead of a tree-based one.
In particular, we use a grid file structure, described in [NHS84], in order to index the
vectorial primitives. Let us overview with more detail how multidimensional hashing
methods work.

Multidimensional hashing methods partition the space into hypercubes of known
size and group all the records contained in the same hypercube into a bucket. The
buckets are uniquely identified by a key-index which aims a fast retrieval of all the
data contained in the bucket. A hash function performing one-dimensional partitions,
automatically computes the key-index of a given query to identify the bucket which
it belongs to.

In our case, given a polyline, a feature vector is computed using one of the pre-
sented descriptors and then a hash function obtains the key-index. This hash function
establish a quantization criterion to apply to each dimension of the feature vector to
limit the key-index parameters to a finite number of discrete values. To avoid bound-
ary effects, each primitive is stored into the two closest buckets in each dimension.

Usually, the main drawback of hashing techniques is the collisions. Given two
different items to store in the database, we have to guarantee that the hash function
used to index such items do not assign the same key-index to them. To overcome this
problem expensive re-hashing algorithms are applied once a collision is detected. In
our case, collisions are not a problem but the basis of our indexing strategy. Given
two similar (but not equal) primitives, they are represented by a compact feature
vector. Hopefully, if the two primitives have a similar shape, the two feature vectors
will be two nearby points in the description n-dimensional space. The partition of
this space by the grid file has to guarantee that both points fall into the same bucket
(or at least to neighboring buckets) to have stored in a single entry all the similar
primitives. This technique allows to have an efficient retrieval by similarity.

In Fig. 6.2 we can appreciate an overview of how the indexing mechanism works.
Formally speaking, a symbol S = {p1...pm} is described by a set of feature vectors
f(pi) for all i ∈ [1,m] arising from one of the descriptors presented above in section 6.3.
A hash function hp(f(pi)) = ki returns a key-index identifying a certain bucket in



6.5. Relational Indexing and Hypotheses Validation 111

Figure 6.2: The use of a grid file to index vectorial primitives. The hash function
projects the feature vectors into key-indices. Two similar primitives are stored into
the same bucket.

the n-dimensional indexing space. As the shape descriptors are invariant to similarity
transformations and robust to noise, even if the input primitives are not completely
equal, the whole procedure leads to the same bucket. The symbol S is then represented
by the set of key-indices {k1...kk} with k ≤ m since all the similar primitives are
represented by the same key-index.

In each bucket the information of the position in a three-dimensional space (i.e.
(x, y) coordinates of the primitive gravity center appearing in a certain document d of
the collection) of all the primitives in the document database having key-index ki is
stored. Summarizing this section, the proposed indexing methodology allows retrieve
all the spatial locations where similar primitives than the queried one are likely to be
found.

6.5 Relational Indexing and Hypotheses Validation

Since graphical symbols are composed of several primitives, indexing a symbol consists
in separately indexing each of its primitives. This approach has a big drawback since
the spatial coherence of the retrieved primitives is not taken into account. We present
in this section a relational indexing algorithm to furnish the indexation methodology
with spatial information. A voting scheme aiming to validate the spotted locations is
also presented.
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6.5.1 Relational Indexing

(a) (b) (c)

Figure 6.3: Relational indexing. For the sake of visibility, only two primitives p1

and p2 are queried. (a) Sample line-drawing and the query symbol; (b) results of
retrieving a couple of primitives by similarity without taking into account the spatial
information, the resulting primitives are highlighted in gray; (c) retrieving the same
two primitives by using the relational indexing mechanism.

When considering large databases, many symbols may share a substantial part of
primitives with many other. Bag-of-words models describe objects in terms of the
presence of the primitives which compounds them, ignoring their spatial structure.
Recently, a method to locate objects in images using a bag-of-words model has been
proposed in [SRE05]. The large amount of features taken from interest points aim to
discard spatial information. However, in our case, the presence in a given location of a
set of primitives do not guarantee the presence of the searched symbol, since symbols
are not usually composed by too many primitives. The geometrical configuration of
these primitives is a crucial information to refine the zones of interest. Inspired by the
work presented in [CS00], spatial relationships among primitives are also considered
when indexing in order to obtain much more valid hypotheses.

Given a symbol represented by a set of primitives S = {p1...pm}, the similar
primitives appearing in a document can be retrieved by using the set of key-indices
{k1...kk}. To take into account the spatial configuration of those primitives, the
proximity graph G(S) has to be used. The edges eij ∈ E represent the relationship
between two primitives stored in the nodes ni and nj . These edges can be used to
retrieve by similarity pairs of primitives agreeing with a certain spatial distribution.
We can appreciate in Fig. 6.3 an example on the use of relational indexing.

To efficiently retrieve all the edges of a query symbol, a hash table HR is used to
store in memory the adjacency matrix of the proximity graphs. This hash table is
indexed by pairs of primitives. The use of hash tables with multiple indices has been
used over the years to store and guarantee an efficient access to sparse matrices, like
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presented in [SMK72]. The entry of the table HR[ka, kb] stores all the possible edges
eij where the primitive stored in the node ni is indexed by ka and the primitive of
the node nj is indexed by kb. In the acquisition step, for all the documents D in the
collection, each graph G(D) is added to the table HR so a spatial relationship between
two given primitives can be efficiently retrieved from all the document collection.

Figure 6.4: Relational indexing architecture. Starting from the proximity graph,
each edge performs a relational query based on the indices representing the primitives
stored in the nodes. A list of vectors is retrieved corresponding to spatial relationships
between primitives in target documents. A center mapping function transform these
vectors into hypothetic centers where the symbol should be found.

When querying a given symbol, each edge of the graph is considered. A querying
function Q(eij ,mC), taking an edge and the center of the query symbol mC , results
in a list of hypothetic centers LhC = [hC1...hCx] where to find the two primitives
with a given pose. We can see in Fig. 6.4 how this function proceeds. The key-
indices representing the primitives stored in the nodes are computed by using the
hash function hp. Both indices identify an entry of the hash table HR storing a list
of edges, and most importantly the corresponding vectors −→vij . These vectors are the
spatial distributions of the primitives appearing in the document database. A center
mapping function Cmap(−→vi ,mC) = hCi applies a scale and rotation transform to the
center mC in order to find the pose of the hypothetic center hCi depending on the
vector −→vi . We can see an example of the hypothetic center location in Fig. 6.5. Note
that the center mapping process align the query edge to the retrieved edges in the
line-drawing database, thus being invariant to scale and rotation transforms.

By applying the relational indexing function to each edge of the proximity graph of
the query, the locations in the documents where we can really find the queried symbol,
should appear several times in the hypothetic centers list. The use of a voting scheme
reinforces these hypotheses and validates the possible locations.
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Figure 6.5: Center mapping function to find the pose of the hypothetic centers
given an edge of the relational query and the gravity center of the query symbol.

6.5.2 Voting Scheme

Following the idea of the Generalized Hough Transform (GHT) [Bal81], each of these
centers accumulate votes. Applying the querying function to each edge of the graph
from the query symbol, we accumulate evidences in the hypothetic centers in the
stored documents where it is probable to find similar primitives with the same spatial
organization than the query. In the voting space, the coherent votes tend to form
salient peaks, the rest of votes will be scattered in different locations but not forming
clusters. A simple ranking of these clusters result in the positions of the documents
where it is more feasible to find the queried symbol.

The querying process leads to consider each pair of primitives of the queried sym-
bol S = {p1...pm}, implying Cm

2 accesses to the hash table HR. The number x of
hypothetic centers where to cast votes is the same as how many position vectors are
stored at each table entry. Obviously, the x value is directly related to the number of
documents stored in the library. That results that for each query symbol we have

x · Cm
2 = x ·

(
m

2

)
= x · m!

2(m− 2)!
(6.12)

centers where to accumulate votes. The locations where the votes are casted are
sorted and returned as the retrieved regions of interest. Note that no threshold is
used to decide whether a symbol is present or not. Let us present in the next section
some qualitative results of applying the presented relational indexing method.
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6.6 Experimental Results

To perform the experimental results we worked with a collection of architectural floor-
plans consisting of 42 images (of 3215× 2064 pixels in average) arising from four dif-
ferent projects. This dataset is the FPLAN-POLY database, detailed in appendix A.
These images are polygonally approximated resulting in a collection of vectorial docu-
ments. The symbols taken into account for these experiments are divided in 38 classes
and we have in total 344 instances in the document images. In a single document
image the average number of symbols is around 8 and it goes from 0 to 28 symbols.
The models to query the document database are cropped from the document images,
so they also contain vectorial distortions.

When querying a model symbol against the database, the convex hull of the ac-
tivated polylines in the documents conform a set of regions of interest which are
sorted by confidence value depending on the number of received votes. We can see
in Figs. 6.6 and 6.7 the first twenty results of querying several symbols in the whole
document collection when using the Fourier shape descriptor. As we can appreciate,
most of the results correspond to the correct queried symbol, but obviously some areas
of false positives appear. We observe two interesting phenomena, usually, two close
symbols (i.e. burners in Fig.6.7f or chairs in Fig. 6.6d) are grouped in a single region
of interest, on the other hand it is common to find that a symbol is well spotted but
the returned region of interest is bigger than expected (i.e. the burners in Fig. 6.7f).

We consider that if the resulting polygons are able to overlap at least a certain
percentage of the ground-truthed representation of a symbol, they can be considered
as recognized. On the other hand, if the resulting polygons do not cover the ground-
truth, the symbol should be considered as missed. Of course, as with all decisions
implying a certain threshold, its value can be critical, and the system’s evaluation can
depend on it. The definition of this threshold is completely subjective as it depends
on what the user considers a symbol as being detected or not. In our case, we consider
a symbol as detected if it overlaps at least a 75% with the ground-truth area. We
can see in Table 6.1 the total True Positive Rate (TPR) when applying the different
shape descriptors and the average of False Positives (FP ) regions obtained by all
these methods. Notice that the time to retrieve a symbol from a document is highly
related to the accuracy of the selected method. Methods having higher recognition
rates expend more time in retrieving zones of interest since the table entries are more
populated and the amount of false positives is also increased. On the other hand, the
methods which have less recognition rate but also less false positives, are usually less
computationally expensive.

However, in focused retrieval applications, there are some cases that the per-
formance evaluation is not straightforward. Let us consider the example shown in
Fig. 6.8. Given a document in the collection, we query one symbol which can be
found twice in within the document. Instead of obtaining two different regions of
interest framing the occurrences of this symbol, the system results in a single region
framing both instances of the symbol. The two symbols were relatively close in space
in the document, so it is understandable that the system just retrieves one big region
of interest where the probability to find the query object is high enough. However,
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(a) (b) (c)

(d)

(e)

(f)

Figure 6.6: Qualitative results of the relational indexing method (1). (a) Query
symbol chair ; (b) query symbol TV set ; (c) query symbol toilet ; (d),(e) and (f) first
20 retrieved regions when querying the symbols (a), (b) and (c) respectively.

the question on how to evaluate this result, is not easy to answer. Both symbols
were retrieved, but the system fails to identify that there are two different instances.
By returning just one region, its area is big enough to contain other graphic objects
which are not the symbol, but it is hard to consider this result as a false alarm. We
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(a) (b) (c)

(d)

(e)

(f)

Figure 6.7: Qualitative results of the relational indexing method (2). (a) Query
symbol stairs; (b) query symbol sink ; (c) query symbol burners; (d),(e) and (f) first
20 retrieved regions when querying the symbols (a), (b) and (c) respectively.

propose in the last part of this thesis a protocol for performance evaluation for symbol
spotting and focused retrieval systems. In this part we will present the quantitative
evaluation of the relational indexing method presented in this chapter.
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Table 6.1: Recognition results of the relational indexing method.

Description TPR (%) FP Time (secs./plan)

Simple ratios 93.62 153.42 3.44
Hu’s boundary moments 91.3 76.76 0.71
Line segment moments 55.62 63.89 0.55
Fourier descriptor 73.33 58.76 0.78

(a)

(b) (c)

Figure 6.8: Illustration of a result which is difficult to evaluate. (a) Floorplan image
in the collection; (b) queried symbol; (c) retrieved region.
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6.7 Conclusions and Discussion

A relational indexing mechanism to spot symbols in a collection of line-drawing im-
ages in vectorial format has been presented. A first step of primitive extraction and
description has been introduced in order to have a compact representation of the
graphical symbols. These primitives are organized in an indexing structure aiming
to retrieve by similarity all the primitives in the collection. A relational indexing
mechanism has been presented in order to take into account not only the similarity
of the primitives which compounds a symbol but also the spatial relationship among
them. Finally a Hough-like voting scheme aims to validate the hypotheses where a
symbol is likely to be found.

The qualitative results show good performance results. Most of the approaches in
the literature always make a choice on using only structural information about the
symbols or just numerical descriptions of a symbol. The presented approach use both
structural and numerical information. The use of both information sources increases
the robustness of the method. It also aims to use very simple descriptors with good
results according to the user needs.

There is obviously still some room for improvements. By describing symbols by
closed regions, we make the assumption that the symbols are composed by several
loops. This may not be the case in certain graphic-rich documents. In such cases,
another primitive extraction process should be considered.

In some application domains, as for instance in the case of complex electronic dia-
grams, some symbols share a substantial part of their design and only differ by slight
details. Symbols may also be composed of other known and significant symbols. In
this context, the proposed focused retrieval methodology might result in an important
number of false alarms.
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Chapter 7

Performance Evaluation of Symbol
Spotting Systems

Symbol spotting systems are intended to retrieve regions of interest from a document
image database where the queried symbol is likely to be found. They shall have the
ability to recognize and locate graphical symbols in a single step. In this chapter we
present a set of measures to evaluate the performance of a symbol spotting system
in terms of recognition abilities, location accuracy and scalability. We show that
the proposed measures allow to determine the weaknesses and strengths of different
methods. In particular, we have evaluated in detail the spotting method presented in
chapter 6.

7.1 Introduction

Performance evaluation methods are essential tools to understand and compare the
behavior of algorithms and systems. A performance evaluation protocol should iden-
tify the strengths and weaknesses of the methods under test. The analysis of these
strong points and drawbacks should determine which method is the most suitable for
a certain use case and predict its behavior when using it in real applications with real
data.

In the last years, performance evaluation has been a quite prolific research topic
in the Document Image Analysis and Recognition field and in particular among the
Graphics Recognition community. Several competitions focused on particular top-
ics, namely, symbol recognition, layout analysis, text detection among others, have
been organized in the major conferences and workshops of this field. We can also
find a lot of contributions in the recent literature proposing evaluation techniques for
different document image analysis applications. Performance evaluation frameworks
have been proposed for evaluating low-level applications such as line and arc detec-
tion algorithms [WD97, WD98] or raster-to-vector systems [SST02]. However, in the
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last years, frameworks aiming to evaluate higher level applications such as symbol
recognition [VDW07] or layout analysis [AB07] have been proposed.

In this chapter, we propose a set of measures and methodologies to evaluate the
performance of spotting systems. Although we mainly focus on the specific case
of symbol spotting, these measures are also applicable to performance evaluation of
other focused retrieval applications such as word spotting, or even object recognition
in Computer Vision applications. Symbol spotting techniques should efficiently locate
graphical symbols in document images without using full recognition methods. Such
systems are intended to index large collections of document images in terms of the
graphical symbols which appear in them. Given a graphical symbol as query, the
system has to retrieve a ranked list of locations where the query symbol is likely to
be found. Since spotting systems deal with recognition and segmentation at the same
time, such abilities must be taken into account by the evaluation process. Segmenta-
tion errors must be punished as well as recognition mistakes.

As we illustrate in the review provided in section 7.2, there exist many approaches
to measure the performance of different Graphics Recognition algorithms. However,
in the particular case of symbol spotting, existing methods in the literature just
provide measures based on binary decisions of found / not found. Along this thesis
we have evaluated the proposed methods on these binary decisions. Based on a
decision on wether to consider a symbol as being correctly located, we have presented
all the results by giving information about the true positive rate (TPR) and the false
positive rate (FPR) for the recognition and classification applications (chapters 3, 4,
5 and 6). We gave the results for the focused retrieval application in terms of the
precision and recall of the binary decisions (chapter 5).

We develop the theory in this chapter that the performance of a symbol spotting
system should be defined in terms of two components: the recognition and the location
goodness. Starting from this hypotheses, the main contribution of this chapter is
to propose a set of performance evaluation measures, based on the precision and
recall concepts, to evaluate the performance of symbol spotting systems in terms of
two criteria, namely recognition and location. In addition, a second contribution
is to use the same formalism to evaluate a third quality criterion, the scalability
under an increasing number of symbol prototypes. Most of the work found in the
literature dealing with performance evaluation of Graphics Recognition systems is
mainly focused on the computation of a score to allow an easy way to rank different
methods. We strongly believe that the proposed measures can give a more accurate
idea of the real behavior of the system under study than typical recognition rates.

The remainder of this chapter is organized as follows: We briefly overview in
section 7.2 the work on performance evaluation for related areas such as retrieval
systems, Graphics Recognition and Document Image Analysis applications. In section
7.3, we basically review the well-known measures of precision and recall typically
used in retrieval evaluation and the measures we can derive from precision and recall.
Section 7.4 outlines how these measures can be reformulated and applied to evaluate
a spotting system in terms of retrieving regions of interest from a document image
database. Section 7.5 shows a use case of such measures, evaluating the performance
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of the symbol spotting method presented in chapter6, which is based on a set of four
different off-the-shelf shape descriptors. Finally, the conclusions and a short discussion
can be found in section 7.6.

7.2 Related Work

Symbol spotting systems are intended to produce a ranked list of regions of interest
cropped from the document images stored in the database where the queried symbol
is likely to be found. Symbol spotting can thus be seen as a particular application
within the Information Retrieval (IR) domain. Usually, retrieval systems are evalu-
ated by precision and recall ratios which give an idea about the relevance and the
completeness of the results (we will briefly review these measures in section 7.3).
These basic measures can be enhanced considering many other indicators depending
on the application. For instance, Lu et al. evaluate in [LSS07] a set of desktop search
engines by deriving a set of ratios from precision and recall to indicate the abilities
of the systems when incrementally retrieving documents. Müller et al. evaluate in
[MMS01] content-based image retrieval systems, proposing some strategies to take
into account the way the number of items stored in the collection affects the results
and how user feedback can improve the response of such systems. Kang et al. eval-
uate in [KKL04] a text retrieval system which uses semantic indexing, focusing on
the distribution and amount of key-indices used to index the database. Finally, we
can find in [HWH07, NBM06] the performance analysis of some information retrieval
systems having the information distributed in a peer-to-peer network (P2PIR), which
takes into account the query response time, the network resources requirements and
the tradeoff between distributed and centralized systems. As we can see, the coverage
of information retrieval topic is so wide that even if researchers use similar indicators
to evaluate the performance of their methods, no general evaluation framework can
be defined. In our case we will also base our measures on the notions of precision and
recall by adapting them to the recognition and location abilities that the spotting
systems should present.

In the Document Image Analysis and more particularly the Graphics Recognition
field, some work focused on spotting can be found. However all this work is evalu-
ated by ad-hoc measures. For instance, Rath and Manmatha presented in [RM03] a
system able to spot handwritten words in ancient documents. They evaluate their
system with a score based only on the precision value. Marcus presented in [Mar92]
an algorithm to spot spoken words in an audio signal. The evaluation is based on
Receiver Operating Characteristics (ROC ) graphs [Faw06] which are related to pre-
cision and recall measures. Tabbone and Zuwala present in [TZ07] a method to spot
graphical symbols in a collection of electronic drawings. They base the evaluation
of their method in precision and recall graphs. Finally, Valveny et al. present in
[VDW07] a framework to evaluate symbol recognition methods envisaging a way to
evaluate location and recognition of symbols by also using precision and recall mea-
sures. However, all these methods are computed on a binary retrieval notion: whether
an item is considered retrieved or not. By these measures one can see the ability of the
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system in retrieving relevant items and discarding negative ones, but these measures
do not evaluate how well the system located the queried objects.

To avoid binary relevance labelling, our measurements are inspired in the tech-
niques used to evaluate layout analysis systems. In fact, layout analysis shares some
similarities with spotting in the sense that sub-regions from documents have to be
labelled according to their content. Layout analysis competitions [AGB05, AGB07,
AGK03] were held in last editions of the ICDAR conference. In these contests, the
evaluation of the participants’ methods was done according to the overlapping between
regions of the results and the ground-truth. Two indicators introduced in [PC99] are
used to formulate an entity detection measure from which an averaged segmentation
measure is deducted to score the systems. Following the same idea, in the text de-
tection competitions [Luc05, LPS05] held in last editions of ICDAR, precision and
recall measures were computed in terms of overlapping between bounding-boxes of
the ground-truth and the results. From the precision and recall numbers, a score was
computed to rank the algorithm performance. However we believe that the use of a
single evaluation score allow an easy ranking of the different systems, but hinders the
understandability of their behavior and the performance prediction when using other
type of datasets.

Finally, in the last symbol recognition competitions [AYS00, VD04, VD06] held
in the GREC workshop editions, several symbol descriptors where evaluated. In that
case, the performance is evaluated by the recognition rates the systems yield. In
the last edition, other measures such as the homogeneity and the separability of the
symbol classes in the description space have been introduced. We find very interesting
the fact that the scalability of the systems is also tested. This test is performed looking
how the performance of the systems evolve as the number of symbol classes to consider
increases.

The measures we propose in this chapter are based on precision and recall, since it
has been demonstrated to be a good way to evaluate recognition (or at least classifi-
cation) and location at the same time. We formulate the precision and recall notions
in terms of overlapping between retrieved areas and ground-truth. The presented
measures and plots allow to assess the weaknesses and strengths of the methods in
terms of recognition abilities and location accuracy. In addition we also present a
methodology to extract a scalability measure from precision and recall to test if the
methods can be used with a larger amount of classes. Let us first review the basic
measures used to evaluate retrieval effectiveness.

7.3 An Overview on Measures to Evaluate Retrieval
Effectiveness

In this section we review the basic measures provided in the literature used to evaluate
the retrieval effectiveness. The measures outlined in this section will be reformulated
in section 7.4 for the framework described in this work.



7.3. An Overview on Measures to Evaluate Retrieval Effectiveness 127

7.3.1 Precision and Recall

In the information retrieval field, most measures to evaluate effectiveness are based on
a binary labelling of relevance of the items, namely whether each item is considered
as relevant or non-relevant. In addition, these measures are also based on a binary
retrieval notion, i.e. whether an item is retrieved or not.

Given a database consisting of a set of elements tot, and a query item i to retrieve
from it, let us label as rel the set of relevant objects in the set and rel the set of non-
relevant items with regard to the query i. When querying this item to the database,
we label as ret the set of retrieved elements and as ret the set of elements from the
database which were not retrieved. The retrieval matrix of Table 7.1 shows all the
possibilities in terms of intersections between these sets.

Table 7.1: Retrieval Matrix.

Relevant Non-Relevant TOTAL

Retrieved |ret ∩ rel| |ret ∩ rel| |ret|
Not Retrieved |ret ∩ rel| |ret ∩ rel| |ret|
TOTAL |rel| |rel| |tot|

The analysis of this table allows to define the well-known ratios of precision and
recall (see van Rijsbergen’s [vR79] book on Information Retrieval for more details)
to evaluate the behavior of the information retrieval system which are computed as
follows:

P = |ret∩rel|
|ret| , R = |ret∩rel|

|rel| (7.1)

For a given retrieval result, the precision measure P is defined as the ratio be-
tween the number of relevant retrieved items and the number of retrieved items. The
precision measure measures the quality of the retrieval system in terms of the ability
of the system to only include relevant items in the result. A hundred percent preci-
sion means that no false positive has been included in the system response. As the
precision value decreases, the more non-relevant items are included in the results.

The recall ratio R is defined as the number of relevant retrieved items as a ratio to
the total number of relevant items in the collection. It measures the effectiveness of
the system in retrieving the relevant items. A hundred percent recall means that all
the items labelled as relevant are retrieved and no one has been missed. As the recall
value decreases, the more relevant items are missed by the system which wrongly
considers them as non-relevant.
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7.3.2 P@n and P (r)

The precision and recall measures are computed on the whole set of items returned
by the system. That is, they give information about the final performance of the
system after processing a query and do not take into account the quality of ranking in
the resulting list. Information retrieval systems return results ranked by a confidence
value. The first retrieved items are the ones the system believes that are more likely
to match the query. As the system provides more and more results, the probability
to find non-relevant items increases.

Relevance ranking can be evaluated computing the precision at a given cut-off
rank, considering only the n topmost results returned by the system. This measure
is called precision at n or P@n. However, this measure presents the drawback that it
does not give information about recall.

Let us define P (r) as the precision at a given recall cut-off, that is the precision
at that point where recall has first reached the value r.

7.3.3 Precision and Recall Plots

The usual way to represent the stability of the system as the user requires more
and more results is to plot precision and recall against each other. Such plots are
computed stepwise retrieving at each step a given item while varying the decision
threshold value over the confidence rate, i.e. computing P@n for the different values
of n and plot this values against its associated recall.

These plots show the tradeoff between precision and recall. Buckland and Gey
analyzed in [BG94] the relationship between both ratios concluding that they are
inversely related, trying to increase one usually provokes the other to be reduced.
Thus, when comparing several methods, the one yielding the higher values for both
precision and recall will be the best. However, it is not always easy to assess which
precision and recall plot corresponds to a better system.

7.3.4 Measures of Quality

Sometimes it is difficult to measure the effectiveness by a measure composed by more
than a number. The difficulty in certain cases to assess which method is the best, has
led to invest in some composite measures which are able to rank the methods under
study according to a combination of precision and recall information. However, as
claimed by vanRijsbergen in [vR79], usually these measures are rather ad-hoc and
difficult to interpret.

Let us see a couple of composite measures which try to combine both precision
and recall information in a single number.
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Average Precision

We can define the average precision AveP using each precision value after truncating
at each relevant item in the ranked list resulting after a query. Average precision is
one of the evaluation measures used by the TRECVid1 community [SOK06].

For a given query, let r(n) be a binary function on the relevance of the nth item
in the returned ranked list, we define the average precision as follows:

AveP =
∑|ret|

n=1(P@n× r(n))
|rel| (7.2)

The average precision is a measure of quality which rewards the earliest return
of relevant items. Retrieving all relevant items in the collection and ranking them
perfectly will lead to an average precision of 1. The average precision can also be
seen as the area under the precision and recall plot. However, average precision does
not take into account the fact that a system returns non-relevant items after having
reached a hundred percent recall (i.e. having returned all relevant items).

F -score

Another classical composite measure is the F -score (see [HR05] for more details)
which is the weighted harmonic mean of precision and recall, computed as follows:

F β =
(1 + β2)× P ×R

(β2 × P ) + R
(7.3)

Which for a value of β = 1 is equivalent to Dice’s coefficient (a well-known simi-
larity measure between two sets X and Y ) defined as:

s =
2|X ∩ Y |
|X|+ |Y | (7.4)

Although there is some work like the one presented by Makhoul et al. in [MKS99]
which point out some drawbacks of this measure, the F -score is widely used as a
measure of merit in the information retrieval literature.

The F -score can also be computed at several recall cut-offs to evaluate the stability
of a system’s response. We re-formulate the F -score presented in eq. 7.3 for several
recall values as:

F β(r) =
(1 + β2)× P (r)× r

(β2 × P (r)) + r
with r ∈ [0, R] (7.5)

We can see some examples on how F 1(r)-score evolves in Fig. 7.1 for several
synthetic precision and recall plots. The better the system responds, the higher its
values. As we can appreciate, the F -score heavily penalizes low values of precision or
recall.

1TREC Video Retrieval Evaluation (http://www-nlpir.nist.gov/projects/trecvid/)
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(a)

(b)

Figure 7.1: F 1(r)-score plots for different synthetic precision and recall plots.

7.3.5 Fall-Out and Generality

Let us finally introduce two more measures, one related to the non-relevant retrieved
items and the other related to the dataset, which are computed as follows:

Fo = |ret∩rel|
|rel| , G = |rel|

|tot| (7.6)

The fall-out ratio Fo gives information about the number of non-relevant retrieved
items in respect to the number of non-relevant items present in the collection. This
measure is of special interest in unbalanced applications such as symbol spotting,
where the amount of elements which are not relevant is much more larger than the
relevant elements in the collection. Independent of the precision of a system, this
measure should have low values to consider the behavior of the system good. Either
because very few non-relevant items have been retrieved or because the number of non-
relevant retrieved items is negligible in relation to the number of non-relevant items
in the dataset. To evaluate the evolution of the systems response in terms of false
positives usually the fall-out is plotted against recall. This plot is equivalent to the
typical ROC graphs [Faw06], which are commonly used to evaluate the performance of
classifiers. We can find in [DG06] a study of the relationship between precision-recall
and ROC curves.
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Finally, the generality ratio G, gives information about the collection dataset. It is
computed as the number of relevant items in the entire collection for a certain query. It
can be then averaged for all the considered queries in the experimental setup denoted
as the AveG ratio. This ratio does not give any measure about the effectiveness of the
retrieval itself, but complements the previous measures. As claimed by Huijsmans and
Sebe in [HS05], when evaluating the performance of a retrieval system, this measure
should be given to really understand the meaning of the values of precision, recall and
fall-out.

7.3.6 Central Tendency of Precision and Recall

To evaluate a retrieval system, obviously many queries have to be performed. Each
query under evaluation results in a precision and recall plot. To give an idea on well
good the system responds, the retrieval results are averaged over these queries. The
central tendency of several precision and recall plots are computed sampling individual
curves at different points and averaging the samples. We can see an intuitive example
of the central tendency in Fig. 7.2.

Figure 7.2: An example of computing the central tendency of precision and recall
plots.

The same averaging technique is applied to fall-out versus recall plots and to
F β(r)-score plots.

7.4 Precision and Recall for Spotting Systems

Spotting systems are intended to perform both recognition and location at the same
time, and thus, these abilities have to be evaluated together. Let us first propose a
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formulation of the precision and recall measures to evaluate both concepts. To help
the interpretation of precision and recall plots, we propose to use two more measures
focused at symbol level which only consider a binary concept of retrieval. Finally,
we propose a scalability test to check the systems ability to achieve similar behavior
independent of the number of queried symbols.

7.4.1 Precision and Recall of Regions of Interest

(a) (b)

(c) (d)

A(Pi) Precision (%) Recall (%)

A(Prel) = 60560

88.99 91.56
A(Pret) = 62307
A(Pret⊕ Prel) = 55449
A(Pret⊕ Prel) = 5111
A(Pret⊕ Prel) = 6858

(e)

Figure 7.3: Overlapping between results and ground-truth. (a) Original image; (b)
its ground-truth; (c) the result of a spotting system; (d) overlapping between results
and ground-truth labelled according to Pret ⊕ Prel (light gray), Pret ⊕ Prel (dark
gray) or Pret⊕ Prel (black); (e) detailed areas and obtained precision and recall.

To evaluate the performance of a spotting system we propose a set of measures
inspired by both information retrieval and layout analysis. The idea is to merge both
precision and recall measures with area overlapping rates. Precision and recall ratios
provide information on the incremental accuracy of the retrieval process in terms of
recognized items. On the other hand, the region overlapping between results and
ground-truth data is used to evaluate the segmentation accuracy.

To compute the region overlapping between result and ground-truth, we define
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for both data polygons representing regions of interest. The more accurate is the
definition of the region of interest the more the evaluation is reliable. To define
the region of interest where a symbol is located we use the convex-hull algorithm
presented in [BDH96] of all the points belonging to the symbol. In the particular
setup of chapter 6, the graphical symbols are defined by the contours of the closed
regions composing a symbol, so the convex-hull of the contour pixels englobe the
whole symbol. Convex-hulls define much more accurately the zones where a symbol
is than bounding-boxes or ellipses. This representation can be extended to different
formats of the data of the collection (bitmap or vectorial format) and to different
symbol representations (internal pixels, skeleton, contours, segments, etc.).

Given a collection of graphical documents, we denote as Ptot the set of polygons
representing the whole document image database. For any graphical symbol S to spot
in the collection, we label as Prel the ground-truth polygon set which is composed
by all the polygons framing the locations where we find an instance of the symbol
S. When spotting the symbol S in the document collection, we denote as Pret the
set of retrieved polygons. To match the results from the system to the ground-truth
polygon set, we define the polygon set intersection operation Pk = Pi⊕Pj , that given
two polygon sets Pi and Pj , results in a set of polygons from the spatial overlapping of
the polygons belonging to the different sets. To measure the total amount of polygon
overlapping, we define the function A(Pi) as the sum of areas of all the polygons in
the set Pi.

From the above sets and functions, precision and recall ratios of can thus be easily
formulated in terms of areas of the overlapping between sets of polygons representing
results and ground-truth as follows:

PA = A(Pret⊕Prel)
A(Pret) , RA = A(Pret⊕Prel)

A(Prel) (7.7)

We can see in Fig. 7.3 an example of ground-truthed symbols and a result from a
spotting system. Some background region has been considered as forming part of the
symbol. When we compute the overlapping between retrieved regions and relevant
ones this false positive region is identified, resulting in a precision decrease. On the
other hand some part of the symbol has been missed, this results to the recall value
not reaching one hundred percent.

7.4.2 Measures of Quality, Fall-out and Generality

Analogously, the measures of quality AveP and F -score, and the ratios fall-out and
generality can be expressed in terms of the area of the overlapping between polygon
sets representing the ground-truth and the results from the spotting system.

We reformulate eq. 7.2 by using the area precision at n (PA@n). That is computing
the area precision value after truncating the result list after each polygon having some
overlapping with a polygon in the ground-truth. The average area precision is then
computed as:

AvePA =
∑|Pret|

n=1 (PA@n× r(n))
|Prel| (7.8)
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By using the area precision and area recall, we reformulate the F -score from eq. 7.3
as:

F β
A =

(1 + β2)× PA ×RA

(β2 × PA) + RA
(7.9)

and the use of the area precision at a certain area recall cut-off (PA(r)) aim to
reformulate eq. 7.5 as:

F β
A(r) =

(1 + β2)× PA(r)× r

(β2 × PA(r)) + r
with r ∈ [0, RA] (7.10)

Finally, Prel being the complementary polygon set for the ground-truth we can
reformulate the fall-out and the generality from eq. 7.6 as:

FoA = A(Pret⊕Prel)

A(Prel)
, GA = A(Prel)

A(Ptot) (7.11)

7.4.3 Measures at Symbol Level

As pointed out by Lucas in [Luc05], sometimes precision and recall based measures
are difficult to interpret. A precision of 70% could mean that all symbols were found
with an accuracy of 70%, or, on the other hand, that only 70% of the symbols were
correctly identified and the other 30% completely missed. A low precision value can be
due to a low accuracy in the recognition or to a bad location due to over-segmenting.
The recall value can be also affected by missed symbols or by under-segmentation.

To complement the precision and recall based measures, in our experiments we
also provide two measures focusing on the recognition at symbol level. In this case we
only consider a binary concept of retrieval. Whether a symbol is found or not. Let us
consider one symbol Si and its polygonal representation Preli from the ground-truth,
it will be considered as recognized if:

A(Preli ⊕ Pret) ≥ thr ∗A(Preli) (7.12)

That is, if the resulting polygons are able to overlap at least a certain percentage
of the ground-truthed representation of a symbol, this symbol is considered as recog-
nized. On the other hand, if the resulting polygons do not cover the ground-truth,
the symbol is considered as missed. Of course, as with all decisions implying a certain
threshold, its value can be critical, and the system’s evaluation can depend on it. Its
definition is completely subjective as it depends on what the user considers a symbol
as being detected or not. The important thing here is that this value is provided
when evaluating a system, so as the readers can easily interpret the meaning of the
evaluation results. In our case, we consider a symbol as detected if it overlaps at least
a 75% with the ground-truth area.

At symbol level, we derive the recognition rate of the spotting system under study.
In addition, if one of the polygons Pretj in the resulting set does not overlap with
any recognized symbol, it is considered a false positive. For all the possible queries,
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the average of false positives AveFP is computed. These two measures help to better
interpret the values of precision and recall.

Notice that the recognition rate is expressed as a percentage of the total number
of symbols in the ground-truth and can be used as a measure of quality by itself, but
the false positives are not normalized and are given in absolute values. This is due
to the fact that we can not define the negative set in terms of symbol items in the
dataset. The false positive average can only be expressed in absolute values and used
to compare methods between them.

7.4.4 Scalability Test

Finally, one of the main interests for spotting systems is that a system has to be
applicable to a large data corpora. To test the scalability of the system, i.e. its ability
to achieve similar behavior independently from the number of queried symbols, we
propose a measure to evaluate the scalability of the systems under study.

A scalable system has to yield similar responses no matter what the number of
model classes taken into account is. We can measure the scalability of a system
in terms of its variance in both precision and recall. Let us consider the synthetic
example of Fig. 7.4a which is highly damaged by the addition of new classes. Let
us define stdR and stdP the standard deviations in precision and recall for a certain
sampling of the precision and recall plot. We can see in Fig. 7.4b the central tendency
of all precision and recall plots with error bars following the vertical and horizontal
axis to check the effect in both precision and recall measures when considering more
and more classes. The greater the deviation is, the worst the system tolerates changes
in the class number, thus the system can be considered as less scalable. To allow an
easier interpretation, the standard deviation can be computed for the F β

A(r)-score
plots (as shown in Fig. 7.4c) having now a single variance measure instead of having
one for precision and one for recall. To compare the scalability between different
methods, both the mean std of all the samples of the standard deviation and the
maximum max(std) of all the samples of the standard deviation are given as variance
measures.

On the other hand, the performance of a spotting system not only is affected by
the increasing number of considered models but also is dependent on the size of the
document collection. To appreciate how the system degrades with the expansion of
the dataset we propose to work at symbol level. Recognition rates and false alarms are
given to illustrate the performance variability in relation to the size of the database.
These measures help to predict how the performance of a system will be affected by the
inclusion of more documents in the database. However, increasing the database size
has an important drawback. When adding new documents in the database implicitly
we can be adding new graphical symbols contained in these new documents. As a
consequence of that the number of model symbols has also to be increased along with
the dataset size.
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(a) (b)

(c)

Figure 7.4: Scalability test example. (a) Synthetic precision and recall plots; (b)
averaged precision and recall plot with standard deviations in recall and precision;
(c) averaged F 1

A(r)-score plot with associated standard deviations.

7.5 Evaluating a Symbol Spotting System

In this section, to show an example of application of the presented evaluation frame-
work, we tested a symbol spotting architecture. We first explain the ground-truthing
process, then we briefly detail the spotting system and the used dataset and finally
we provide the evaluation results for this architecture.
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(a) (b)

Figure 7.5: Sketching annotation tool for ground-truth generation. (a) Graphical
interface; (b) the generated ground-truth XML file.

7.5.1 Ground-truthing

First, an annotation tool has been developed to build the ground-truth. The user
can select graphical entities in the document images roughly segmenting them using
a sketching application. All the contour pixels falling inside the delimited zone of
interest are taken as being part of the symbol. If a given connected component has
more pixels outside the zone of interest than inside, it is considered as being part of
the background. This basic annotation tool works fine with architectural drawings
where the symbols are usually not extensively connected with background elements.
For other kinds of documents, e.g. electronic diagrams or geographical maps, the
annotation tool should be enhanced in order to provide a trusted ground-truth. For
all the foreground pixels, we compute the convex-hull as presented in [BDH96] as the
minimum area of interest which contains the symbol. Once the region of interest is
shown, the user can modify it using certain control points and label them by their
content. We can see a screen-shot of the sketching application in Fig. 7.5a. The use
of convex-hulls as the ground-truth primitive may be inadequate for some spotting
systems. The inclusion of noisy pixels in the spotting results may provoke considerable
deviations of the convex-hull from the one defined in the ground-truth. However, the
presented evaluation measures can be easily adapted to other choices of ground-truth
primitives. From coarser to more refined primitives we can select for instance to
use bounding-boxes, ellipses, isothetic polygons, quad-trees, etc. as ground-truth
primitives. In all these cases, the computation of the overlap between ground-truth
and automatically extracted primitives is straightforward.

As the user labels the regions containing the graphical symbols, an XML file is
constructed to store the information about the whole library. Following the same file
structure used for page layout ground-truth presented in [AKB06], the convex-hull
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coordinates and the symbol category as well as other information about the document
are organized in the XML file we can see in Fig. 7.5b.

As claimed in [LN01], creating a ground-truth for graphic documents is not always
straightforward due to ambiguous cases or subjectivity issues. For example, in the
architectural field, each architect tends to use its own symbol designs to represent a
furniture element. Whereas human observers have no difficulty in clustering these el-
ements despite the design differences, it is usually impossible for a spotting system to
be able to identify different designs as the same object. In the process of ground-truth
building, we tried to avoid such problems but we believe that the use of a collabo-
rative framework as proposed in [VDW07] would enhance a lot the quality and the
accuracy of this ground-truth. To avoid subjective decisions on the ground-truthing
process, synthetic ground-truth can be generated for graphic rich documents, as re-
cently presented in [DPV08]. Such tools which synthetically generate ground-truthed
data present several interesting advantages. Subjective decisions are avoided since no
human interaction is needed, thus providing an error-free labelling of graphical items.
In addition, we have complete control on the number of items in the collection and the
number of symbols which have to appear in each document, making the scalability
tests much more easy and reliable. However, nowadays the data generated by these
methods still appears quite artificial and the use of real data (when possible) should
be preferred.

7.5.2 Spotting Methods Under Test

The symbol spotting architecture we use to test the evaluation measures is based on
the relational indexing scheme presented in chapter 6. Summarizing, symbols are de-
composed in basic primitives which are subsequently described by a geometric symbol
description technique. The feature vectors arising from the description are indexed
with a hashing technique. When querying this hash table, structural information is
added by means of a relational indexing technique. That is, that only similar primi-
tives sharing the same spatial relationship are retrieved. One of the most important
points of the system is the way the graphical primitives are described to be indexed.
We tested four off-the-shelf geometric symbol descriptors described below.

• Method a: uses a set of simple ratios described in [SS94] such as the eccen-
tricity or the non-circularity as shape descriptors. These rough descriptors are
formulated from the shape contour of the symbol’s primitives. It is expected
that the use of such simple shape description can only discriminate very dis-
similar shapes; the system should result in a lot of false alarms but should be
tolerant to distortions and thus retrieve almost all the instances of the queried
symbol.

• Method b: uses Hu’s geometric invariants [Hu62] to describe contours. These
invariants are known as good shape descriptors. The expected performance is
to have good spotting rates in all aspects.
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• Method c: is based on a reformulation of the previous one. Geometric mo-
ments can be formulated for polygonally approximated contours [LG96] which
are taken as primitives. In this case, the use of simpler primitives should result
to smaller tolerance to distortions.

• Method d: uses the Fourier transform to compactly represent a curvature sig-
nature computed over the shape contour. This descriptor is detailed in [KSP95].
This is also a good shape descriptor and the systems performance is expected
to be good in all aspects.

Note that we do not want to perform an exhaustive evaluation of shape descrip-
tors or primitives. These methods have been chosen because of their different nature
and to test if the proposed evaluation measures really determine the strong and weak
points of each method. As the descriptors are well-known among the Graphics Recog-
nition community, it is easy to assess whether the results correspond to the expected
behaviors.

7.5.3 The FPLAN-POLY Dataset

(a) (b) (c) (d)

(e)

Figure 7.6: Symbol models and an example of a document in the database. (a)
Burner symbol; (b) chair symbol; (c) stairs symbol; (d) TV set symbol; (e) sample
document.

The dataset is a collection of architectural floorplans consisting of 42 images (of
3215×2064 pixels in average) arising from four different projects. Any given furniture
symbol appears in several images in the database. The symbols taken into account
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for these experiments are divided into 38 classes and we have in total 344 instances in
the document images. In a single document image the average of symbols is around
8 ranging from 0 to 28 symbols. The models to query the document database are
cropped from the document images. We can see in Fig. 7.6 some examples of model
symbols as well as a sample document from the database. More details of this dataset
are given in the appendix A.

7.5.4 Evaluation

(a)

(b)

Figure 7.7: (a) Precision versus recall; (b) fall-out versus recall.
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We first present the plots showing precision versus recall and fall-out versus recall
in Fig. 7.7 for all the four spotting methods under evaluation using the whole collection
of documents. Methods b and d show an acceptable tradeoff between precision and
recall as expected. Method d misses much more symbols than method b but gives a
significantly smaller amount of false positives. Method a yields good recall values,
i.e. it succeeds in retrieving most of the symbols in the document database but has
a poor precision due to the high amount of false positives. Finally, method d shows
good precision values at early recall stages but quickly falls missing more than half of
the symbols in the dataset. The proposed measures aim to stress the expected good
behavior of methods b and d and to point out the simplicity of method a and the lack
of tolerance of method c.

Table 7.2: Measures of quality.

Method AvePA F 1
A-score Rec. rate (%) AveFP AveGA (%)

a 20.08 6.87 93.62 153.42

0.16
b 39.77 23.34 91.3 76.76

c 23.69 12.57 55.62 63.89

d 41.99 21.45 73.33 58.76

We can appreciate in Fig. 7.8a the F 1
A(r)-score plots. In this graph we can see

again the clear dominance of methods b and d over the other two. As the F -score
combines both precision and recall, the methods which fail in one of those measures
are clearly demoted in the overall evaluation. Method a starts with a low precision
value while the precision of method c quickly falls stopping at a 50% recall. Those
two methods are clearly at disadvantage as expected. In Fig. 7.8b we can see how we
can use the F 1

A(r)-score plots to visually check the variance of performance of a given
method depending on the symbol the user queries.

In Table 7.2 we can see the measures of quality for all the methods. As the average
precision AvePA measure does not take into account the recall, the method d is ranked
as the best. On the other hand, F 1

A-score gives the best for method b. The measures
working at symbol level, which are intended to evaluate only the recognition task, are
consistent with the results shown in Fig. 7.7b. The amount of recognized symbols is
related to the recall value, which ranks the methods in the order a,b,d and c, in terms
of the amount of correctly retrieved elements. On the other hand, the average of false
positives is related to the fall-off ratio, ranking the methods in the order d,c,b and a,
in terms of the false alarms present in the results. Finally, the averaged generality
gives an idea of the proportion between relevant and total elements in the dataset.
These last measures aim to interpret the precision, recall and fall-out values. For
spotting applications it is typical to have an extremely low generality measure, since
usually the documents in the collections will have much more background objects
than foreground ones. This low generality explains the low precision values in both
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(a)

(b)

Figure 7.8: (a) F 1
A(r)-score plot for all methods under test; (b) F 1

A(r)-score plot
depending on the queried symbol for method b.

precision and recall plots and in the average precision AvePA indicator.

Finally, the scalability test results are shown in Figs. 7.9 and 7.10. Several sets of
symbol classes are considered ranging from only 5 to 35 possible symbols to query. We
randomly selected n symbols from the dataset and computed the average precision
and recall for these queries. This experiment has been repeated 100 times for the
sake of stability and the averaged curves are presented in Figs 7.9a and 7.10a. First,
we notice in the Figs. 7.9b and 7.10b that the changes in the number of classes affect
different properties depending on the method. The recall of method a drastically
decreases when introducing more and more symbol classes, whereas the precision of
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Table 7.3: Scalability test details.

Method Recall Precision F -score

max(stdR) stdR max(stdP ) stdP max(stdF ) stdF

a 11.37 6.06 4.2 2.32 4.09 2.2
b 3.38 2.22 2.01 1.74 1.84 0.98
c 1.6 1.02 2.64 2.18 2.17 1.21
d 2.66 1.96 3.44 2.46 1.09 0.85

method c suffers much more than the recall. On the other hand, methods b and d seem
to be equally affected by changes in scale in both precision and recall. From Figs. 7.9c
and 7.10c we can see how the variations in the F 1

A(r)-score space are good indicators
of the scalability of the methods under study. We can see in Table 7.3 the quality
indicators for scalability tests. We present the mean of the standard deviations and
its maximums. Again, methods b and d show much more scalability than methods c
and a when looking at the composite measure. Finally, Figs. 7.11a and 7.11b show
the scalability test at symbol level when increasing both the number of models and
the dataset size. As we can appreciate, the recognition rates vary slightly whereas
the number of false alarms is exponentially increased in all the cases along with the
dataset size.

From these results we can conclude that methods b and d seem to be much better
than the other two. Method b should be chosen when we desire to retrieve as much
symbols as possible, and on the other hand method d is suitable if we want to reduce
the amount of false positives. Method a should only be chosen if the presence of false
positives is not a problem and the user prioritizes finding all the positive symbols
despite of the presence of false positives. However its performance seems to be affected
by the number of considered symbols. Finally, method c is only suitable if we are
interested in retrieving positive symbols at the first positions of the ranked retrieved
locations even if we completely miss the rest of the symbols. Methods b and d also
tolerate well changes in the number of considered classes and should be considered
when facing applications involving a large amount of data. On the other hand, the
strong points of methods a and c are compromised when introducing more and more
symbol classes. All these conclusions are in accordance with the expected behavior of
the studied methods, showing that the proposed evaluation protocol emphasizes the
expected strengths and weaknesses of the methods under study.

7.6 Conclusions and Discussion

Times where algorithms were tested with a small set of data are over. Nowadays, it is
necessary the use of standard reference ground-truth and performance evaluation pro-
tocols. The Graphics Recognition community is one of the most healthy communities
within the Pattern Recognition field regarding this aspect. A lot of works and efforts
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Figure 7.9: Scalability tests for the two first methods. (a) Precision recall plots
for several amount of symbol classes; (b) averaged precision and recall plot with
standard deviations following vertical (precision) and horizontal (recall) axis; (c)
averaged F 1

A(r)-score plot with associated standard deviations.

are centered in proposing evaluation methods which aim to track the progress in a
certain specific problem. As far as we know, the works focused on symbol spotting
always have been evaluated by an ad-hoc set of measures. We hope that the proposal
of the performance evaluation protocol presented in this part of the thesis can be used
to evaluate other spotting methods.
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Figure 7.10: Scalability tests for the two last methods. (a) Precision recall plots
for several amount of symbol classes; (b) averaged precision and recall plot with
standard deviations following vertical (precision) and horizontal (recall) axis; (c)
averaged F 1

A(r)-score plot with associated standard deviations.

One of the main problems of evaluating spotting methods is that we do not have
any public dataset of real documents to test the proposed methods. Nowadays, the
only available ground-truthed dataset which can be used to test spotting and focused
retrieval of graphics is the one proposed by Delalandre et al. in [DPV08]. The main
problem of this dataset is that it is composed only by synthetical generated documents
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(a)

(b)

Figure 7.11: Scalability tests at symbol level. (a) Recognition rates; (b) false
positives.

which do not yet seem realistic. We preferred to evaluate our work on a set of real
documents.

One of the main criticisms of using precision and recall to evaluate the performance
of classification and location tasks is that it is sometimes difficult to really asses the
behavior of the system under study. As claimed in [Luc05], a low precision value
can be due to a low accuracy in the recognition or to a bad localization due to over-
segmenting. In addition, as pointed out in [WJ06], the amount of overlap between
polygons seems not to be a perceptively valid measure of quality. Quality indicators
as the F -score have been also questioned, in [MKS99] it is argued that this measure
makes the systems look like they are much better than they really are.
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We believe that the presented measures are able to evaluate well the behavior
of symbol spotting and focused retrieval systems, emphasizing their strong and weak
points, and their tolerance to changes in scale. Precision is sometimes hard to interpret
or does not provide perceptively good indicators, but the point of a spotting system
is to retrieve zones of interest of document images, and the presented measures aim
to measure the system’s ability to do this task. Quality indicators aim to rank the
methods according to certain ability, so even if the numbers by themselves do not
have an accurate absolute meaning they are useful to compare methods between
them. Finally, precision and recall are enhanced by measures working only at symbol
level and the generality factor which helps to interpret the meaning of the plots. As
shown in the evaluation section, the results obtained by using the proposed evaluation
protocol are consistent with the ratios working at symbol recognition level, and most
importantly, emphasizes the expected strengths and weaknesses of the methods under
study.
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Chapter 8

Conclusions

In this chapter we summarize the contributions of this dissertation to symbol spot-
ting problem and in particular to the application of focused retrieval of graphical
symbols from collections of line-drawing images. We also present a discussion and
the limitations of the presented approaches. We finally point some possible lines of
continuation on the field of symbol spotting and some improvements of the proposed
methods which should be further studied.

8.1 Summary of the Contributions

In this thesis we have introduced a complete framework for symbol spotting, and in
particular for a focused retrieval application. As explained in chapter 1, our work has
been motivated by the specific problem of proposing a spotting methodology able to
locate and retrieve graphical content within a database of complete document images.
A lot of interest is made worldwide for mass digitization of document collections and
their storage in digital libraries. It results in digital repositories rich in information if
they are semantically accessible. Although such semantic access has been improved
a lot for textual queries, iconic access is still in early stages, especially when dealing
with documents rich in graphical information like technical documents. This is the
starting hypothesis of the work developed in this thesis. From a methodological point
of view, the main challenges stem from the nature of the queries, which have to
be iconic queries instead of the ASCII strings used in the keyword-based searches.
In addition of the nature of the queries, the retrieval of the relevant zones should
be done on-the-fly. In our framework, the system is queried by example, that is,
the user segments a symbol he wants to retrieve from the document database and
this cropped image acts as the input. This particularity reinforces the fact that the
proposed spotting methods are not meant to work for a specific set of model symbols
nor have a learning stage where the relevant features describing a certain symbol can
be trained. The use of data structures having graphical patterns as indices so as to
provide an efficient access to the graphic information contained in large data corpora
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is a must in focused retrieval applications.

We have identified three different levels when conceiving a spotting architecture.
The first level aims to represent and compactly describe the primitives that com-
pounds the graphical symbols. In the second level, these features describing graphical
symbols are then organized in a particular data structure. This data structure should
be chosen carefully in order to provide efficient access to the symbol descriptors. Dur-
ing the querying process, this data structure is traversed and the locations within the
document images where to find similar primitives than the queried ones are retrieved.
The third level consists in a validation stage to determine which are the valid hy-
potheses where the queried symbol is likely to be found. Along this thesis, we have
made some contributions in each of the three stages. Let us briefly summarize these
contributions:

• Extraction of Vectorial Primitives: The part II of the thesis has been fo-
cused on the use of geometric and structural description techniques aiming to
describe the graphical symbols. This family of descriptors, need a previous step
of primitive extraction. Since graphical symbols are usually composed by the
union of several simple sub-shapes, the basic primitives we have extracted to
represent a graphical symbol are these simple sub-shapes. In chapter 4 the
polygonally approximated skeletons of the shapes have been taken as the basic
primitives representing a symbol. A symbol has been then represented by a set
of line segments. Since this representation is quite unstable, in the chapters 5
and 6 a higher level entity has been used as primitive. Adjacent vectors have
been merged together into a polyline instance. We have used the contour of the
closed loops conforming a symbol as the primitives to polygonally approximate
and to merge as single polylines. In chapter 5 we have proven that this prim-
itive representation is more robust and representative than the use of the line
segments arising from a vectorization of the skeleton.

• Geometric Description of Symbols: In order to describe these extracted
primitives, three different methods have been presented in the second part of the
thesis. In chapter 4 we have proposed a signature model which is formulated in
terms of geometric and structural constraints among vectorial primitives, such
as parallelisms, straight angles, etc. After representing vectorized line drawings
with attributed graphs, our approach encode the features that are expressive
enough to create the signature. The proposed description technique is simple
yet effective to discriminate graphical symbols. In chapter 5, chains of adjacent
segments have been described by an attributed string formalism. In this chapter,
we have used a symbolic description instead of a numeric one. Distances between
two primitives have been computed by following a string matching algorithm
with a particular cost functions. Finally, in chapter 6, we have proposed to
coarsely describe vectorial primitives by a reformulation of several off-the-shelf
shape descriptors in order to apply them in the vectorial domain.

• Efficient Access to Huge Amounts of Descriptors: Once primitives are
extracted and described, we shall organize all the data extracted from the doc-
ument collection in order to provide an efficient access to it. In chapter 4 we
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have worked with a window-based algorithm, so the access to the descriptors
has been done in a sequential way. In chapter 5 we have proposed the use of
a lookup table allowing a prototype-based search. By clustering primitives by
similarity, this indexing data structure has aimed to efficiently retrieve the lo-
cations from the document collection where to find similar primitives than the
queried ones. In order to try to reduce even more the complexity of accessing
the data, we have proposed in chapter 6 the use of indexing structures based
on the idea of multidimensional hashing. In particular we have used a grid file
structure to organize the descriptor space.

• Hypotheses Validation: The last of the three levels in the spotting architec-
tures is the validation of hypotheses. Since from the other levels we have ob-
tained spatial locations where to find similar primitives, those locations should
be validated. Along this work we have based our validation steps on the idea
to build a Hough-like voting scheme which has aimed to validate the locations
where several hypotheses were present. The main contribution within this part
has been mainly introduced in chapter 6, where spatial relationships among re-
trieved primitives have been also introduced as a validation criterion, allowing
a more robust identification of the zones of interest.

• Photometric Descriptors for Symbol Spotting: Although we have cen-
tered our research on a focused retrieval application dealing with line-drawing
images, and in this context, a geometric and structural approach seemed the
most convenient, we have also worked on another application on the part I of this
thesis. An application of document categorization via logo spotting has been
presented, and well-known photometric descriptors and matching techniques
from the computer vision field have been tested. These kind of description
techniques have been rarely used in the Graphics Recognition field, due to the
bi-level nature of document images, and yet we have shown its good perfor-
mance even though the application have to face binary and noised document
images.

• Performance Evaluation Protocol: Finally, in part III, we have presented a
set of measures to evaluate the performance of symbol spotting systems in terms
of recognition abilities, location accuracy and scalability. We have shown that
the proposed measures allowed to determine the weaknesses and strengths of dif-
ferent methods. In particular, we have evaluated in detail the spotting method
presented in chapter 6. Although within the Graphics Recognition community
there is an important interest in the research of the performance evaluation
topic, to our best knowledge, no framework for evaluating the performance of
spotting applications has been proposed in the past.

8.2 Discussion

In this thesis we have made some contributions about symbol spotting methods and
the particular application of such methods for a focused retrieval system from a collec-
tion of line-drawings. Along the second part of the thesis we presented three different
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symbol spotting methods which base the description of primitives in a set of geometric
and structural constraints. The three methods should be seen as an evolution from
the most limited method to a more general and applicable in real situations one.

Although it reaches good recognition results, our first method, presented in chap-
ter 4, presents several important limitations when trying to apply it for spotting sym-
bols in large collections. In order that the vectorial signatures reach good recognition
results, we have to make the assumption that the number of segments composing a
symbol will maintain stable. When facing real data arising from a raster-to-vector
conversion step, this assumption is too strong, and the performance of the spotting
system drops. In addition, although the presented method is able to spot symbols,
it can not be used as a focused retrieval application. The main cause is the use of
window-based systems. Windowing methods provoke a sequential access to the data
and are obviously not well suited for large collections.

The use of prototype-based search as the one presented in chapter 5 is clearly
a better choice than a sequential access to the data. In a retrieval by similarity
framework, this kind of indexing structures allow to drastically reduce the amount
of distance computations. However, the computation of the representatives from a
given cluster is not always straightforward. The decision on whether two primitives
should be considered as similar can be somehow subjective. In our experiments we
used the MPEG-7 silhouette database in order to experimentally set up this kind of
decision thresholds. However we believe that the performance of such systems might
be enhanced by the use of more complex classification and clustering algorithms.

Our feeling is that one of the right directions to follow in spotting-related problems
for the next years is the use of coarser descriptors rather than accurate descriptions
techniques. We have shown that the combination of coarse description and relational
validation, i.e. combining numeric and structural description techniques, yields very
good results. In particular, we have proven in chapter 6 that there is no need for
high-dimensional descriptors for spotting purposes, and with really simple shape de-
scriptors, we can reach acceptable performances when combining those descriptions
with relational information. Obviously, depending on the intended final application,
the word “acceptable” may adopt several meanings. As we have seen in part III, if
the user of the final application is interested in retrieving the most of the relevant
portions of images from the collection, no matter the number of false alarms, a sim-
pler description should be used. If the user is more interested in a better precision
without caring the fact the system misses symbols, then we should start using more
and more complex and fine description techniques. However, we strongly believe that
for most of applications, the use of low-dimensional descriptors (in our experiments
of the chapter 6, we use a maximum of seven-dimensional feature vectors) is enough.
The choice of such low-dimensional feature vectors avoids the so-called curse of dimen-
sionality and provides an efficient access to the data. The good results obtained by
such simple description techniques are also favored by the inclusion of relational and
structural information of the graphical symbols. The use of a joint local numerical
description and structural analysis contributes to obtain an important discriminative
power. However structural information should be added carefully since the analysis
of complex structural relationships (entailing comparisons in the graph domain) can
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not be managed on the context of symbol spotting due to its huge complexity.

One of the critical assumptions that we made along this thesis is that the graphical
symbols can be well represented by a particular primitives, the region contours. Obvi-
ously, not in all the cases the symbols are formed by closed loops, and such proposed
primitives can not be used. However, the presented architecture and framework re-
mains valid no matter which kind of primitive representation we chose and no matter
which appropriate description we select.

Finally, we would like to mention the importance that has the use of a performance
evaluation protocol. Times where algorithms were tested with a small set of data
are over. Nowadays, it is necessary the use of standard reference ground-truth and
performance evaluation protocols. The Graphics Recognition community is one of the
most healthy communities within the Pattern Recognition field regarding this aspect.
A lot of works and efforts are centered in proposing evaluation methods which aim to
track the progress in a certain specific problem. As far as we know, the works focused
on symbol spotting always have been evaluated by an ad-hoc set of measures. We
hope that the proposal of the performance evaluation protocol presented in part III
can be used to evaluate other spotting methods and helps to track the progress on this
topic as well as to identify the strengths and weaknesses of the proposed methods.
However, one of the main problems is that we do not have any public dataset of
real documents to test the proposed methods. Nowadays, the only available ground-
truthed dataset which can be used to test spotting and focused retrieval of graphics is
the one proposed by Delalandre et al. in [DPV08]. The main problem of this dataset
is that it is composed only by synthetical generated documents which do not yet seem
realistic, however it is the only one available and the community related to spotting
applications should start using it.

8.3 Open Challenges

Since symbol spotting is quite a novel problem, we are convinced that there is still a
lot of room for improvements and some open challenges.

First of all, the scalability of the proposed methods should be better checked by
analyzing other kind of technical documents such as electronic diagrams or mechanical
schemes. In addition, even if we have used quite large databases, the methods should
be tested on massive data collections in order to assess their transference to real
systems.

We would also like to further investigate on the use of a different architecture that
the one proposed in the introduction. We would like to use some of the spatial access
methods presented in [Sam90] for spotting purposes. These data structures should
be able to describe and organize symbols in a single step and might be very useful
for focused retrieval applications. They have been used in related problems as GIS
system querying for long time.

Another possible research line that we would like to further investigate is the use of
the proposed techniques to the retrieval of other elements besides graphical symbols.
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To our best knowledge, most of the word spotting techniques existing in the literature
work with a previous segmentation of words and with a learning stage where features
from the words are extracted and trained. In the existing word spotting methods,
indexing strategies are rarely used and the access to the data is often sequential. We
would like to apply the indexing mechanisms and the on-the-fly retrieval framework
to the topic of retrieving typewritten or even handwritten words in documents.

More generally speaking, the focused retrieval problem dealing with non-textual
queries is and will be one of the major topics of interest of the computer vision and
data mining communities. The possibility of formulate queries in an abstract level
(semantic querying), i.e. graphics appearing in images, sounds being pronounced in
speeches, etc. will be one of the major breakthroughs of the next years. Nowadays
we are starting to see the first applications that are able to deal with massive data
collections. As an example, Google recently released a beta version of its Google Sim-
ilar Images1 search. It allows the user to search for similar images using pictures
rather than words. The similarity between images takes into account spatial infor-
mation, color, shapes, texture, etc. and the results are quite impressive. Although
from its behavior it is pretty clear that the software is getting clues from words asso-
ciated with images, the results are very promising. The similarity computation and
the indexation is all done off-line and the interface still does not perform real-time
image analysis. The images the user would like to search for can not be uploaded or
sketched, but need to be previously indexed.

Finally, another interesting topic which should be further studied is the use of
sketch queries instead of a query-by-example paradigm for spotting and focused re-
trieval applications. In this context, users could roughly sketch the symbol to search
into the collection of graphical documents, thus enhancing the usability of the system.
Obviously, if the queries are sketched by the users, a distortion model has to be intro-
duced in order to be able to define whether a symbol in a document is similar to the
sketch or not, and aiming to tolerate the inherent distortions of the sketches. The use
of the Gestalt laws of perceptual organization might be helpful in such applications.

1http://similar-images.googlelabs.com/

http://similar-images.googlelabs.com/�


Appendix A

Databases

Along this work, several databases have been used, namely, the GREC database of
graphical symbols, the MPEG database of silhouette shapes, and the floorplan data-
base which is a selection of several real floorplans. In this appendix we will explain in
detail all these databases. For each one we will detail the kind of graphical data that
composes the database, its vectorial representation and which kind of deformations
and distortions are applied to the data.

A.1 GREC 2005 Database

The GREC database is composed by a set of graphical symbols coming from different
technical fields. It was originally created for the symbol recognition contests held in
the past GREC workshops. The results of these competitions are summarized in the
following communications [VD04, VD06, VDF08].

The main goal of the contest is to provide a framework for the evaluation of
different methods for symbol recognition in graphic documents. This framework is
intended to be general and flexible so that it can be used to evaluate a wide range
of symbol recognition methods. The contest is based on a pre-defined set of symbols
(tables A.1 to A.3). Using this set of symbols, different tests were generated, consisting
of several images of each symbol with increasing levels of degradation and distortion
in both bitmap images and vectorial representations.

Based on the complete collection of 150 model symbols we have used in our ex-
periments two variations of the GREC database. The first variation only involves
the symbols formed by straight lines. A distortion model is used to introduce noise
at the location of the endpoints by preserving the connectivity and the number of
segments which compose a symbol. The second variation is applied to all 150 models.
A degradation model is applied to the bitmap images which are then polygonally
approximated. In this variation, the number of polylines composing a symbol is guar-
anteed to be constant, but these polylines can be composed by different number of
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segments.

A.1.1 Variation GREC-SEG

(a)

(b) (c)

(d) (e)

Figure A.1: Example of variations for the GREC database. (a) Bitmap model; (b)
GREC-SEG vectorial model; (c) GREC-SEG with endpoint distorition (r = 15); (d)
GREC-POLY vectorial model; (e) GREC-POLY with vectorial distortion.

In this variation we have used a subset of 80 different symbols of the original
GREC database. The used symbols are the ones which are only composed by straight
lines and have no arcs. For each class 60 distorted instances have been generated by
using the following operations.

The vectorial representation of each symbol is represented by an attributed graph
where the nodes represent points and the edges a segment between two endpoints.
Each node from the graph is randomly shifted within a predefined radius r. Three
different levels of distortion are generated with values of r equal to 5, 10 and 15,
respectively. At each level, 20 different instances of the symbol are generated. Notice
that the graph representation aim to maintain the connectivity and the number of
segments which compose the graphical symbol. In this variation, the symbols are
represented by segments stored in VEC format1. Fig. A.1c shows an example of this
vectorial distortion. Some complementary characteristics of this variation can be seen
in Table A.4.

1The vectorial file format used in the symbol recognition contests
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Table A.1: GREC 2005 Database (1).

symbol001 symbol002 symbol003 symbol004 symbol005 symbol006

symbol007 symbol008 symbol009 symbol010 symbol011 symbol012

symbol013 symbol014 symbol015 symbol016 symbol017 symbol018

symbol019 symbol020 symbol021 symbol022 symbol023 symbol024

symbol025 symbol026 symbol027 symbol028 symbol029 symbol030

symbol031 symbol032 symbol033 symbol034 symbol035 symbol036

symbol037 symbol038 symbol039 symbol040 symbol041 symbol042

symbol043 symbol044 symbol045 symbol046 symbol047 symbol048
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Table A.2: GREC 2005 Database (2).

symbol049 symbol050 symbol051 symbol052 symbol053 symbol054

symbol055 symbol056 symbol057 symbol058 symbol059 symbol060

symbol061 symbol062 symbol063 symbol064 symbol065 symbol066

symbol067 symbol068 symbol069 symbol070 symbol071 symbol072

symbol073 symbol074 symbol075 symbol076 symbol077 symbol078

symbol079 symbol080 symbol081 symbol082 symbol083 symbol084

symbol085 symbol086 symbol087 symbol088 symbol089 symbol090

symbol091 symbol092 symbol093 symbol094 symbol095 symbol096
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Table A.3: GREC 2005 Database (3).

symbol097 symbol098 symbol099 symbol100 symbol101 symbol102

symbol103 symbol104 symbol105 symbol106 symbol107 symbol108

symbol109 symbol110 symbol111 symbol112 symbol113 symbol114

symbol115 symbol116 symbol117 symbol118 symbol119 symbol120

symbol121 symbol122 symbol123 symbol124 symbol125 symbol126

symbol127 symbol128 symbol129 symbol130 symbol131 symbol132

symbol133 symbol134 symbol135 symbol136 symbol137 symbol138

symbol139 symbol140 symbol141 symbol142 symbol143 symbol144

symbol145 symbol146 symbol147 symbol148 symbol149 symbol150



160 DATABASES

Table A.4: Some characteristics of GREC-SEG dataset.

Property Value

Number of classes 80

Total number of elements 4,800 (60 elements/class)

Max. number of segments in a symbol 36

Min. number of segments in a symbol 3

Mean number of segments in a symbol 10.2

A.1.2 Variation GREC-POLY

In this variation we have used all the 150 model symbols of the original GREC data-
base. For each class 300 distorted instances have been generated by using the following
operations.

The bitmap images are degraded by using the method presented by Kanungo et
al. in [KHP93] to simulate the noise introduced by the scanning process. Some
simple morphological operations are applied to these degraded images to get rid of
the background noise. A connected component analysis is applied to label the closed
regions and to extract the internal and external contours composing a symbol. These
distorted contours are then polygonally approximated by using the Rosin and West
algorithm introduced in [RW89]. In this variation, the symbols are composed of several
polylines each one composed by a set of adjacent segments. The number of polylines
which composes a symbol is constant for a given class, but the number of segments
of these polylines is affected by the distortion model and varies from an instance to
another. We store these symbols in DXF format. Fig. A.1e shows an example of this
vectorial distortion. Some complementary characteristics of this variation can be seen
in Table A.5.

A.2 MPEG Database

The MPEG database is composed by simple pre-segmented shapes defined by their
outer closed contours. It is the database used in the MPEG-7 Core Experiment CE-
Shape-1 (described in [LLE00]) which aims to evaluate the performance of several
2D shape descriptors. We have adapted a subset of this database to build a shape
database in vectorial format.

A.2.1 Variation MPEG-POLY

The silhouettes of the MPEG database may be affected by several distortions such
as change of view point or non-rigid object motion. As dealing with such strong
deformation was not on the scope of our work, we selected a subset of 15 shape
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Table A.5: Some characteristics of GREC-POLY dataset.

Property Value

Number of classes 150

Total number of elements 45,000 (300 elements/class)

Max. number of polylines in a symbol 16

Min. number of polylines in a symbol 1

Mean number of polylines in a symbol 3.9

Max. number of segments in a symbol 264

Min. number of segments in a symbol 11

Mean number of segments in a symbol 73.7

classes (20 elements per class) which are only affected by slight changes in shape. We
can see in Tables A.6 and A.7 some examples of the 15 shape classes.

Figure A.2: Example of the distortions of the MPEG-POLY database.

For each contour image we applied the same distortion model than in the GREC-
POLY variation. The noise model proposed by Kanungo et al. is applied to degrade
each image. The background noise is cleaned so the distortion only affects the shape
contours. These degraded contours are then polygonally approximated. For each im-
age we generate 300 distorted vectorial shapes. We can see in Fig. A.2 an example of
the resulting polylines after the degradation process is applied to the same instance of
the carriage class. Note that as the database is composed by closed contours, the re-
sulting vectorial shape consist only on a single closed polyline. These vectorial shapes



162 DATABASES

Table A.6: MPEG Database (1).

Bottle class.

Brick class.

Car class.

Carriage class.

Cellular phone class.

Children class.

Face class.

Flatfish class.
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Table A.7: MPEG Database (2).

Fountain class.

Key class.

Pencil class.

Personal car class.

Teddy class.

Truck class.

Watch class.
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are stored in DXF format. Some complementary characteristics of this variation can
be seen in Table A.8.

Table A.8: Some characteristics of MPEG-POLY dataset.

Property Value

Number of classes 15

Number of instances 300 (20 instances/class)

Total number of elements 90,000 (300 elements/instance)

Max. number of segments in a shape 91

Min. number of segments in a shape 7

Mean number of segments in a shape 34.1

A.3 FPLAN-POLY Database

The FPLAN-POLY database consist of a collection of 42 real floorplans in both DWG
and PDF format. The floorplans come from four different projects designed by the
same architect. Nevertheless, the same symbol design can only be found in floorplans
from the same project. These originals have been ground-truthed and 388 symbols
instances from 38 different symbol classes have been labelled.

Figure A.3: Example of the distortions of the FPLAN-POLY database.

To simulate the scanning acquisition process, we applied to each plan the same
strategy from the GREC-VECT and MPEG-VECT variations. The floorplan images
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are degraded via the Kanungo noise and after a cleaning process, they are vectorized
to obtain the DXF files. Each floorplan image has been degraded 50 times to have a
large database. We can see in Fig. A.3 the results of this distortion process. We find
in Table A.9 the complementary characteristics of this database.

Table A.9: Some characteristics of FPLAN-POLY dataset.

Property Value

Number of real floorplans 42

Number of distorted floorplans 2,100 (50 instances/floorplan)

Number of symbol classes 38

Mean number of symbols per floorplan 8.2

Max. number of polylines in a floorplan 3,710

Min. number of polylines in a floorplan 35

Mean. number of polylines in a floorplan 972.3

Mean. number of segments conforming a polyline 3.2



166 DATABASES



List of Publications

This dissertation has led to the following communications:

Journal Papers
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• M. Rusiñol. A Model of Vectorial Signatures in terms of Expressive Sub-Shapes:
Symbol Indexation in Technical Documents. CVC Technical Report Num. 94,
2006.
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