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Resum

La reconstrucció del moviment humà mitjançant l'anàlisi visual és una àrea de recerca
de la visió per computador plena de reptes amb moltes aplicacions potencials. Els
enfocs de seguiment basat en models, i en particular els �ltres de partícules, formulen
el problema com una tasca d'inferència Bayesiana l'objectiu de la qual és estimar
seqüencialment la distribució sobre els paràmetres d'un model del cos humà al llarg
del temps. Aquests enfocs depenen en gran mesuta d'emprar bons models dinàmics
i d'observació per tal de predir i actualitzar les con�guracions del cos humà en base
a mesures extretes de les dades d'imatge. No obstant, resulta molt difícil dissenyar
models d'observació, i en especial pel cas de seguiment a partir d'una sola vista,
que siguin capaços d'extreure informació útil de les seqüències d'imatges de manera
robusta. Per tant, per tal de superar aquestes limitacions és necessari emprar un
fort coneixement a priori sobre el moviment humà i guiar així l'exploració de l'espai
d'estats.

El treball presentat en aquesta Tesis està enfocat a recuperar els paràmetres de
moviment 3D d'un model del cos humà a partir de mesures incompletes i sorolloses
d'una seqüència d'imatges monocular. Aquestes mesures consisteixen en les posicions
2D d'un conjunt reduït d'articulacions en el pla d'imatge. Amb aquesta �nalitat,
proposem un nou model de moviment humà especí�c per cada acció, que és entrenat
a partir de bases de dades de captures de moviment que contenen vàries execucions
d'una acció en particular, i que és utilitzat com a coneixement a priori en un esquema
de �ltratge de partícules.

Les postures del cos es representen emprant un model articulat simple i com-
pacte que fa ús dels cosinus directors per tal de representar la direcció de les parts
del cos en l'espai Cartesià 3D. Llavors, donada una acció, s'aplica l'Anàlisis de Com-
ponents Principals (PCA) sobre les dades d'entrenament per tal d'aplicar reducció
de dimensionalitat sobre les dades d'entrada altament correlacionades. Prèviament
al pas d'entrenament del model d'acció, les seqüències de moviment d'entrada són
sincronitzades mitjançant un nou algoritme d'adaptació dens basat en Programació
Dinàmica. L'algoritme sincronitza totes les seqüències de moviment d'una mateixa
classe d'acció i és capaç de trobar una solució òptima en temps real.

Aleshores, s'aprèn un model d'acció probabilístic a partir dels exemples de movi-
ment sincronitzats que captura la variabilitat i l'evolució temporal del moviment del
cos sencer durant una acció concreta. En particular, per cada acció, els paràmetres
apresos són: una varietat representativa de l'acció que consisteix en l'execució mit-
jana de la mateixa, la desviació estàndard de l'execució mitjana, els vectors de direcció
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mitjans de cada subseqüència de moviment d'una llargada donada i l'error esperat en
un instant de temps donat.

A continuació, s'utilitza el model especí�c per cada acció com a coneixement
a priori sobre moviment humà que millora l'e�ciència i robustesa de tot l'enfoc de
seguiment basat en �ltratge de partícules. En primer lloc, el model dinàmic guia
les partícules segons situacions similars apreses prèviament. A continuació, es re-
stringeix l'espai d'estats per tal que tan sols les postures humanes més factibles siguin
acceptades com a solucions vàlides a cada instant de temps. En conseqüència, l'espai
d'estats és explorat de manera més e�cient ja que el conjunt de partícules cobreix les
postures del cos més probables.

Finalment, es duen a terme experiments emprant seqüències de test de vàries
bases de dades. Els resultats assenyalen que el nostre esquema de seguiment és capaç
d'estimar la con�guració 3D aproximada d'un model de cos sencer, a partir tan sols
de les posicions 2D d'un conjunt reduït d'articulacions. També s'inclouen proves
separades sobre el mètode de sincronització de seqüències i de la tècnica de comparació
probabilística de les subseqüències de moviment.



Abstract

Recovering human motion by visual analysis is a challenging computer vision research
area with a lot of potential applications. Model-based tracking approaches, and in
particular particle �lters, formulate the problem as a Bayesian inference task whose
aim is to sequentially estimate the distribution of the parameters of a human body
model over time. These approaches strongly rely on good dynamical and observation
models to predict and update con�gurations of the human body according to mea-
surements from the image data. However, it is very di�cult to design observation
models which extract useful and reliable information from image sequences robustly.
This results specially challenging in monocular tracking given that only one viewpoint
from the scene is available. Therefore, to overcome these limitations strong motion
priors are needed to guide the exploration of the state space.

The work presented in this Thesis is aimed to retrieve the 3D motion parameters
of a human body model from incomplete and noisy measurements of a monocular
image sequence. These measurements consist of the 2D positions of a reduced set of
joints in the image plane. Towards this end, we present a novel action-speci�c model
of human motion which is trained from several databases of real motion-captured
performances of an action, and is used as a priori knowledge within a particle �ltering
scheme.

Body postures are represented by means of a simple and compact stick �gure
model which uses direction cosines to represent the direction of body limbs in the 3D
Cartesian space. Then, for a given action, Principal Component Analysis is applied to
the training data to perform dimensionality reduction over the highly correlated input
data. Before the learning stage of the action model, the input motion performances
are synchronized by means of a novel dense matching algorithm based on Dynamic
Programming. The algorithm synchronizes all the motion sequences of the same
action class, �nding an optimal solution in real-time.

Then, a probabilistic action model is learnt, based on the synchronized motion
examples, which captures the variability and temporal evolution of full-body motion
within a speci�c action. In particular, for each action, the parameters learnt are: a
representative manifold for the action consisting of its mean performance, the stan-
dard deviation from the mean performance, the mean observed direction vectors from
each motion subsequence of a given length and the expected error at a given time
instant.

Subsequently, the action-speci�c model is used as a priori knowledge on human
motion which improves the e�ciency and robustness of the overall particle �ltering

vii



viii

tracking framework. First, the dynamic model guides the particles according to similar
situations previously learnt. Then, the state space is constrained so only feasible
human postures are accepted as valid solutions at each time step. As a result, the
state space is explored more e�ciently as the particle set covers the most probable
body postures.

Finally, experiments are carried out using test sequences from several motion
databases. Results point out that our tracker scheme is able to estimate the rough
3D con�guration of a full-body model providing only the 2D positions of a reduced
set of joints. Separate tests on the sequence synchronization method and the subse-
quence probabilistic matching technique are also provided.

Keywords: Human Motion Modeling; Particle �ltering; Monocular Full Body
3D Tracking.

Topics: Image Processing; Computer Vision; Scene Understanding; Machine
Intelligence; Machine Vision Applications; Video-Sequence Evaluation
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Chapter 1

Introduction

Human motion capture is the problem of recording the motion of the human body for
immediate or delayed analysis and playback. The �rst known works using video data
to analyze human body motion date from the 19th century and were carried out by
Eadweard James Muybridge and Etienne-Jules Marey. In 1878, Muybridge became
the �rst person to record animal motion over time by taking a series of photographs
of a horse in motion. His pictures from animal and human motion are still available
today in his books [55]. In addition, Marey published pictures of birds in �ight in the
early 1880's made with his "photographic gun" [10]. His invention was a forerunner
of the motion picture camera, and consisted of a sight and a clock mechanism which
allowed to take 12 exposures of 1/72th of a second each. His observations concerning
the changes in the shape of birds' wings in relation to air resistance were a great
revolution in understanding the phenomenon of �ight. He also extended his work
to human motion analysis in questions such as fatigue minimization related to how
soldiers march while carrying a heavy pack.

However, it hasn't been until the last 20 years that automatic video-based motion
analysis appeared as an active research problem. Nowadays, there are many commer-
cial Motion Capture (MoCap) systems available based on visual analysis techniques.
They can provide very fast, generic and accurate recordings of the motion performed
by any subject, which makes this systems very suitable for applications such as sports
performance enhancement, medical analysis or animation of virtual characters from
MoCap data, which is becoming more and more popular in the video game and �lm
production industry.

Unfortunately, such systems require multiple cameras recording the scene from
di�erent points of view in a controlled illumination environment. As a result, the
capturing volume is usually very limited and involve expensive and complex setups.
In addition, they require that the recorded subject wears non-natural markers such
as special clothing, re�ective makeup, re�ective balls or active LED-based markers,
among others. This fact limits the range of suitable applications, making it impractical
for TV footage-based MoCap, automatic content annotation, video-surveillance or
scene understanding among others, which usually involve an uncontrolled environment
and there is only one simultaneous camera recording the scene. Therefore, researchers
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2 CHAPTER 1. INTRODUCTION

have been studying more �exible solutions for motion capture which do not require
any special set up, and that could work from any number of cameras or video sources.
Additionally, in many scenarios, the action can only be seen from a single camera at
a time.

In consequence, a great number of literature has been devoted to the problem of
full body 3D tracking from a monocular image sequence over the past years [53, 83,
3]. Nowadays, this is still a very active research area [53, 72, 60], as many related
di�culties remain as an open problem. The work presented in this Thesis is all
part of these e�orts. Hence, it tackles the problem of recovering the 3D human
body motion parameters from a monocular image sequence, as a previous step to
produce qualitative descriptions suitable for scene understanding applications such as
automatic content annotation or smart video surveillance.

1.1 Motivation

Visual human motion analysis attempts to understand from image sequences what is
happening in the scene in terms of human actions, their evolutions and their interac-
tions. Although it concerns a lot of hard issues ranging from human detection and
tracking, people identi�cation, body parts detection and action recognition among
others, one of the most challenging task relies in modeling, analyzing, and recovering
human motion from image sequences which is the aim of this work. This domain is re-
ferred as Human Sequence Evaluation (HSE) in the framework presented by Gonzàlez
in [27], and provides a general scheme for producing human motion descriptions from
image sequences suitable to be used for scene understanding applications.

Fig. 1.1 presents an overview of the architecture required to perform HSE. Hence,
the HSE framework divides the task of evaluating sequences of images involving hu-
man motion in several layers or modules, each one encapsulating di�erent domains of
knowledge.

Hence, the interpretation of human motion is treated as a transformation process
of knowledge from level to level. Therefore, each module has its own associated
models, and the transforming processes between levels must be de�ned. From this
point of view, we can see the process of evaluating sequences of human motion, as
a proper parametrization of the models involved in each level of abstraction. Notice
that all levels are interconnected between them in order to cooperate and successfully
describe human motion: higher levels may help lower levels by performing reasoning
about the most plausible actions of a subject given a certain situation. On the other
hand, lower levels may help the higher ones by correcting and updating their degree
of belief about what is happening on the scene.

The �rst level is called Signal Level. It deals with raw video data signals and
information about the camera parameters. Hence, this level has control about the
acquisition procedure of images from the reality and can control the viewing con-
ditions. The next level is the Image Level . At this stage, we aim to process the
raw video signals from the previous level frame by frame in order to segment the
regions of interest (ROI) of the image. As a result, a a �rst representation of the
data is provided to the following layer, namely the Picture Domain Level. Here, pos-
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1.2 Applications

The application domains related to visual human motion analysis are wide and broad.
For instance, to name a few, one may want to recover and reconstruct the 3D body
poses from 2D image sequences for enhancing sports performance. Alternatively,
it might be interesting to synthesize realistic image sequences from 3D models of
motion learnt from existing TV-footage. Also, smart video surveillance applications
could bene�t from having a better comprehension of what is happening in the scene.

In the following, we state some of the most interesting applications related to
visual human motion analysis within the HSE framework. In addition, in an at-
tempt to organize the enumerated applications, we have grouped them into 3 related
technologies, namely, activity and gesture recognition, motion capture and motion
synthesis.

1.2.1 Activity and Gesture Recognition

Activity recognition aims to identify which action/activity a human agent is perform-
ing during a given motion sequence. According to Kurtenbach et al. [42], �A gesture
is a motion of the body that contains information�. Hence, gesture recognition rather
than treating an action as a whole, is aimed at recognizing the meaningful gestures
involved in the articulation of a physical action. Interesting application areas for these
technologies comprise:

1. Smart video surveillance: Current surveillance systems have poor, or non-
existing qualitative data available to make high-level decisions. In most cases
they consist in simple video recording systems, and they are used as a �forensic�
tool when the fact to analyze has already happened. Even more sophisticated
systems are based in simple motion detection, and in most cases they require
human supervision when some movement appears in the scene not taking into
consideration what is generating that motion, or which kind of motion is. The
incorporation of qualitative information into a smart surveillance system could
be used to build a system that describes where, when, and what an agent is
performing in the monitored scene. Hence, such a system would be able to
make high-level reasoning about what is happening in the scene, make deci-
sions according to it, and minimize the intervention of a human supervisor by
only requiring its attention when suspicious or ambiguous behaviours are being
detected. For instance, a surveillance system monitoring a parking lot could
generate an alarm if it detects a subject approaching a parked vehicle and not
entering in it, and repeats the same behaviour with other vehicles. Another
suspicious situation where such a system could be useful would be a pedestrian
approached by someone who was walking and starts running suddenly.

2. Video safety: Similarly to surveillance applications, particular dangerous sit-
uations could be detected automatically by a system and react appropriately
to prevent the danger. For instance, such a system could help in elderly care
by detecting if a subject has fallen into the ground and automatically raising
an alarm accordingly. Kindergarten surveillance applications could also bene�t
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from such technologies by de�ning a security area where babies can stay, and
raise an alarm if a baby is detected outside these premises. In a similar fashion,
one could think of an automated monitoring system for swimming pool safety
which could help in detecting drowning situations, thus reducing the interven-
tion time. Additionally, a driving assistance system could detect if a driver is
falling sleep and warn him to prevent a car accident.

3. Advanced human-computer interfaces (HCI): Advanced user interfaces
could take into consideration human gestures and actions in order to provide
control and command from the user to the computer, or develop machines able
to interpret human behaviour, leading to a more natural and intelligent commu-
nication between machines and humans. Existing systems with early advanced
interfaces may use facilities such as speech recognition, but they could also take
advantage of action and gesture recognition by adding context information as
a rich cue for understanding human communication, thus helping in solving
some of the ambiguities inherent to human natural language. Speci�c appli-
cations include: automatic sign-language translation, gesture-driven control of
graphical objects, or signaling in high-noisy environments, among others. Do-
motics could also bene�t from advanced HCI as one could command a series of
functionalities using simple gestures.

4. Automatic content annotation: Nowadays, with the appearance of a huge
number of lightweight integrated cameras into portable devices and the univer-
sal availability of high internet bandwidth, the growth of digital media content
is becoming unmanageable. Hence, there is a need to make accessible and
searchable the huge amount of media generated each day by users, profession-
als and also the already existing footage. As a result, a lot of e�ort is required
to label, classify and annotate it. Activity recognition algorithms could leverage
this e�ort by automatically annotating the activities detected into the media
without human intervention.

1.2.2 Markerless Motion Capture

Motion capture is the process of recording live movement and translating it into usable
mathematical terms by tracking a number of key points or regions/segments in space
over time and combining them to obtain a three-dimensional representation of the
performance [62]. Applied to human actions, motion capture aims to perform full 3D
reconstruction and identi�cation of the di�erent body limbs and its movement while
performing an action. Notice, that this is not strictly necessary for action recognition,
where the body can be treated as a whole without requiring accurate 3D data.

Nowadays, there exist di�erent commercial motion capture systems which are
based on di�erent technologies, such as electromagnetic �elds, magnetic, ultrasound
or mechanical tracking systems among others. However, optical Motion Capture
systems provide the higher accuracy and ease of use, and have become extremely
popular on the entertainment industry. Such systems use a set of calibrated cameras
to digitize di�erent views of a prede�ned region of interest and usually, a set of easy-
to-segment markers are taped or glued to speci�c points all over the object or actor's
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body whose movement will be recorded. As a result, accurate 3D information about
the motion performed by the actor is �nally obtained.

However, despite all the achievements of optical motion capture systems, they
still require a numerous multicamera setup and the placement of markers attached to
the subject body. As a result, they are not suitable for non-intrusive scenarios and
the setup is complicated and time consuming. Therefore, markerless motion capture
based on computer vision techniques would enable new applications and facilitate the
usage of the existing ones which currently use optical MoCap systems. In addition, it
would also be of interest to use ideally only one camera, or at least a reduced number
of them.

Some of the application areas which could bene�t from markerless motion capture
are:

1. Sports Biomechanics: Motion capture is currently used to understand ath-
lete's body motion and enhance its performance and prevent injury. Markerless
approaches would ease this process allowing to capture the athlete's motion in
its real environment, e.g. during a soccer match, rather than on a special setup.

2. Medical analysis: The diagnosis of some diseases which a�ect body motion
could be improved by such systems. In addition, applications for the assisted
recovery after injuries or surgery would also bene�t of using markerless motion
capture.

3. Arts & Entertainment industry: Currently, motion capture is being widely
used for video-games and �lm production. The motion performed by an actor
is extracted and used to animate virtual characters. Markerless motion capture
would extend current applications easing its setup and bringing new possibili-
ties. For instance, MoCap could be applied on existing TV footage and extract
motion models for famous dancers. Alternatively, systems using a reduced cam-
era setup for markerless motion capture would make this technology available
to independent artists or dancers which could explore body motion in more
innovative and creative ways.

4. Security: Security devices could bene�t from markerless MoCap by detect-
ing body movement and extracting characteristic and unique signatures per
each subject linked to his identity. This could be used as an alternative or
complement to biometric techniques such as �ngerprints or iris scan.

1.2.3 Motion Synthesis

Motion synthesis is a fairly broad term that refers to the automatic creation of ani-
mation data. In particular, human motion synthesis aims to animate virtual actors or
characters. An important challenge remains in making the subject's motion to appear
realistic, smooth and natural-looking. This is not easy to achieve, since human body
motion is conditioned to a huge number of constraints very di�cult to be determined
and modeled, i.e. physics laws such as gravity, constraints on the body topology or
the e�ect of the wind among others. From the scope of human motion analysis, some
interesting synthesis applications comprise:
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1. HCI: More realistic and intuitive user interfaces could be developed using syn-
thetic human models. Hence, the information presented to the user could be
rendered in real-time in the form of a human avatar which moves and reacts nat-
urally. Early examples within this application area, comprise the work carried
out by Activa Multimèdia on automatic TV content generation, with their SAM
system1. SAM is a fully automatic system which presents the national weather
forecast by means of a synthetic avatar which moves and speaks naturally in a
number of di�erent languages.

2. Virtual Reality: Accurate visual feedback could be provided to the user by
mimicking his motion inside a virtual world. As a result, the overall interactivity
of such systems would improve resulting in a much better immersive experience.

3. Character reanimation: Visual gesture recognition and markerless motion
capture in combination with motion synthesis techniques can be used to recre-
ate the captured scenes for di�erent targets and audiences. For instance, a
virtual puppet application for a kids show, could recreate in real-time the body
motion and gestures performed by an actor appearing as performed by the main
character of a cartoon. Another interesting application would be to generate
accurate multiple character 3D reanimation streams from real world sports set-
tings. For instance, the user could watch a recreation of a soccer match from
a completely novel perspective by allowing him to choose the viewpoint from
where to watch the match.

4. Video compression: The required storage or transmission bitrate could be
lowered by exploiting body motion information. For instance, the background
of the scene could be encoded separately and use higher bitrates on areas of
interest of the scene where the motion is occurring.

1.3 Why is it di�cult?

Despite its promising applications, recovering the underlying 3D full-body motion
parameters by visual analysis of video sequences still constitutes an open problem.
The main challenges involved arise from 4 main issues, namely, the 2D-3D projection
ambiguities, the occlusions and self-occlusions, changes in the shape and appearance
of the human body within the scene and the high-dimensionality and non-linearity of
human motion.

In the �rst place, we are dealing with 2D images which are projections of the origi-
nal 3D scene given a particular camera con�guration. Hence, all the depth information
from the scene that originated such images is lost in the projection process leading
to 2D-3D ambiguities. In other words, there are many human body con�gurations
from the real world resulting in the similar 2D projected images, and vice-versa.

This situation is depicted in Figure 1.2, where typical walking 3D body postures
are shown with their corresponding 2D silhouettes obtained from di�erent viewpoints.
As we may observe, it is very hard to infer a univocal mapping between the 2D

1SAM is available under http://www.activamultimedia.com/sam/
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Figure 1.2: Example of 2D-3D ambiguities.

silhouettes and the 3D body postures, since some silhouettes are very similar although
they were originated by 4 di�erent postures.

In the second place, most of the times the 2D position of the human body joints
are not observable in the images due to self-occlusions and occlusions with other
objects. For instance, depending on the viewpoint used to record the scene, one
limb may occlude the other one during a walking or running cycle, or the human
body could be temporarily occluded by other subjects or objects located between the
subject and the camera. Figure 1.3, shows three subjects su�ering both occlusions
and self-occlusions in the context of a soccer match2.

Third, the shape and appearance of the human body may also change dras-
tically from one subject to another, and even between di�erent frames from the same
subject due to changing illumination conditions, shadows, rotations in-depth of body
limbs, loosely �tting clothing, and background clutter. This phenomenon is depicted
in Figure 1.4, where di�erent frames of the same subject have been taken from a
sequence where the subject goes to a vending machine, buys a bottle of water, drinks
it and sits down in a table. As one may observe, there are many light sources in the
scene, self-rotations and background clutter, causing severe appearance changes as
the subject moves across the room.

2image courtesy of Mediapro S.L.
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Figure 1.3: Example of occlusions and self-occlusions.

Figure 1.4: Changing subject's appearance due to varying lighting condi-
tions, self-rotations and background clutter during a performance of an action.

Finally, another challenging issue is the non-linearity of human motion and the
high dimensionality of human body models. Hence, the human body is composed
of many articulated limbs which su�er large accelerations while performing an action.



10 CHAPTER 1. INTRODUCTION

As a result, even very simple body modeling approximations easily result in very high
dimensional models with non linear dynamics.

1.4 Contributions and Thesis Outline

The work presented in this Thesis is all part of the e�orts for recovering the 3D human
body motion parameters from a monocular image sequence. The full-body tracking
problem is faced following a model-based approach, i.e. the process of sequentially es-
timating the parameters of the target's model given the observations available at each
moment. In particular, the estimation process is formulated as a recursive Bayesian
�lter implemented by a Particle Filter (PF). The Bayesian formulation results in a
probabilistic inference framework whose aim is to estimate the posterior probability
density function (pdf) at each time step over the parameters of a human body model
given the evidences (image data) available up to each time step. Hence, the posterior
pdf represents the sum of knowledge regarding the state of the tracked object from
frame to frame.

In general terms, PF tracking approaches are good for keeping multiple hypotheses
about the state of the tracked object, and can incorporate a priori knowledge by
means of their motion and observation models, which are responsible of propagating
the particle set over time and determining the �tness of the particles to the evidences
available at each time step. However, full body PF tracking approaches su�er from
well known problems related to their discrete nature, and to the fact that it is very
di�cult to de�ne robust observation models, resulting in drift on the posterior pdf
estimate over time. Therefore, a strong motion prior is needed to guide the movement
and dispersion of the particle set and avoid tracking failures, which constitutes the
framework of the approach presented in this Thesis.

Therefore, this work is aimed to address common drawbacks for full-body 3D
tracking using particles �lters. This is achieved by using a strong motion prior to
improve the robustness and e�ciency of this PF framework for monocular 3D full-
body tracking of a given set of actions. Towards this end, an action-speci�c dynamic
model of human motion is introduced to avoid particle wastage within the prediction
step of the PF. Hence, particles are propagated taking into account their motion
history, and previously learnt motion directions from real training data. Next, the
state space is constrained by �ltering out those body con�gurations which are not
likely according to our motion model. As a result, as long as the truly performed
motion lies within the bounds of our motion model, robustness is added to the whole
tracker against non-reliable measurements from the image sequence, i.e. in case of
occlusions and/or background clutter. In fact, experimental results show that the
tracker allows the reconstruction of the 3D motion parameters of a full body stick
�gure model, using only the 2D positions of a very reduced set of observable joints,
namely the head, one hand, and one foot, which constitute a set of joints which are
feasible to be automatically extracted from images [85, 51, 46, 47, 74, 65]. Hence,
this work assumes an external detection or 2D tracking stage which provides the 2D
position of some joints as input data for our tracking scheme.

Regarding the human body model used, human postures are represented by means
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of a full body 3D model composed of 12 limbs. Limbs' orientations are represented
within the kinematic tree using their direction cosines [87] thus avoiding singularities
and abrupt changes due to the representation. Moreover, near con�gurations of the
body limbs account for near positions in our representation at the expense of extra
parameters to be included in the model. Principal Component Analysis (PCA) is
applied to the training data to perform dimensionality reduction over the highly
correlated input data, leading to a coarse-to-�ne representation of human motion
which relates the precision of the model with its complexity by means of the main
modes of gait variation, i.e. the principal components found.

In addition, we introduce an action-speci�c model of human motion suitable for
motion tracking applications. The parameters of this model are learnt from examples
of motion-captured data, both from our own dataset and from a publicly available
one, i.e. the Carnegie Mellon University's (CMU) Graphics Lab Motion capture
database. These datasets were acquired using a commercial optical Motion Capture
system which provides very accurate motion data from a set of re�ective markers
carefully attached on the human body. Given that motion performances have di�erent
speeds and durations, a method for synchronizing similar motion sequences has been
developed in order to allow comparison between them.

Summarizing, the main contributions of the presented approach are the following:

� A stick �gure human body model well-suited for 3D motion capture applications
based on PCA and direction cosines representation.

� Amethod based on Dynamic Programming (DP) for synchronizing pre-recorded
motion datasets which have been performed at di�erent speeds by di�erent
subjects.

� A probabilistic action model based on examples which captures the variability
and temporal evolution of full-body motion within a particular action. Fur-
thermore, the motion model allows to predict feasible 3D body postures given
a small motion history of a particular action.

� An improvement of the e�ciency and robustness of a PF framework for full-
body tracking by introducing a strong motion prior based on the learnt action
model.

The outline of this document is organized as follows. Chapter 2 covers the state of
the art regarding visual human motion analysis paying special attention to the use
of particle �lters for 3D full body tracking within the literature. Additionally, an
overview on most commonly used human body models is given.

In Chapter 3, we present the body model used in this work to represent 3D
human postures. Subsequently, in Chapter 4, the overall action modeling approach is
detailed. In particular, we �rst depict the composition of the motion capture training
datasets and introduce the representation space used. Second, the synchronization
method applied to the input dataset is detailed. Finally, the model itself and the
learning procedure are fully described.

Chapter 5 develops the tracking framework used. Hence, we �rst review the
particle �ltering framework for human motion tracking, and then, we detail the use of
the learnt action models to improve the overall tracking performance and robustness.
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Chapter 6 is related to experimental results. Tests are carried out regarding the
dataset synchronization method, the probabilistic matching technique for matching
motion subsequences, and the overall tracking approach including the action-speci�c
motion priors.

Lastly, Chapter 7 summarizes the main contributions of this Thesis, outlines the
conclusions and discusses some future research lines beyond the scope of this work.



Chapter 2

Related Work

To overcome the issues mentioned in the previous chapter related to full body track-
ing, many approaches make use of a priori knowledge within the estimation process.
This knowledge usually comes in the form of a geometrical model of the human
body whose parameters are to be estimated given its projections on the 2D images
[53]. However, given the complexity of such models, exhaustively searching for the
best match within the state-space is not feasible for full-body posture estimation.
Therefore, some approaches use machine learning techniques to learn view-dependant
mappings between features extracted from the 2D images and the full state space in
order to solve the 3D-2D ambiguities [78, 33, 9]. Alternatively, a common approach
is to explore only a part of the state-space by temporal �ltering, a.k.a. model-based
tracking. Model-based tracking approaches aim to sequentially estimate the parame-
ters of a human body model, by comparing the image data from a video stream to a
priori knowledge about the subject's observable properties, in order to estimate the
best �t between the model and the images available at each time instant. Therefore,
such approaches are typically composed of a human body model, a human dynamical
model, an observation model and a search strategy.

Some well-known examples of model-based human body tracking approaches are
given in the following. For example, Wachter and Nagel [82] estimated the motion
parameters of a human body model composed of right-elliptical cones assuming a con-
stant velocity model, and using an Iterated Extended Kalman Filter (IEKF) inference
framework. They assumed a constant velocity dynamic model and use region and edge
information from images in order to match the model to the data. Kalman Filter was
also used by Drummond and Cipolla [20] to track the limbs of an articulated human
body. They extended Harris' previous work [31] on tracking the 6 DOF pose param-
eters of a rapid moving rigid body to the articulated body case, by adding global
consistency kinematic constraints. Similarly, the work carried out by Sidenbladh et
al. [71, 70] formulated the problem as a Bayesian inference task implemented as a
Particle Filter (PF). They used strong motion priors based on examples and learnt
the probability density function (pdf) of �lter responses based on edges and ridges
detection over human body limbs. Alternatively, Plänkers and Fua's [63] approach
could estimate both the motion and size parameters of the human body by modeling

13
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very accurately the shape and appearance of the human body, and the use of an ob-
servation model based on binocular disparity maps and silhouettes. Delamarre and
Faugeras [16, 17] presented a multi-view human tracking approach based on silhou-
ette contours and 3D volumetric models whose projection onto the image plane was
associated with detected 2D contours for improved tracking robustness. Bregler and
Malik [12] aimed to track 3D motion at the level of joints by integrating twists and
products of exponential maps into region based motion estimation, thus obtaining
both image motion and kinematic chain parameters at the same time. Alternatively,
Zhao [88] de�ned the state of the human body as strings, and trained a highly struc-
tured motion model similar to a �nite state machine for ballet dancing under the
minimum description length (MDL) paradigm. It is worth noting that in general,
motion models of human dynamics constitute an important part of most tracking
processes, being used as a priori knowledge to predict motion parameters [88, 15],
to interpret and recognize human dynamics [11], or to constrain the estimation of
low-level image measurements [70].

The remainder of this chapter is organized into two sections. First, we focus on
human body models which are of critical importance within model-based tracking
approaches. Hence, the body model is very related to the �nal applications each
tracking approach is facing. As a result, there is a large variety of human body models
employed in the tracking literature and thus, we will be reviewing some of them in the
following. Second, we discuss on Particle Filtering approaches. PFs [34] have become
a very popular model-based scheme for human body tracking because they bring a
practical and principled way for estimating non-Gaussian posterior distributions over
time, thus multiple hypotheses about the human body posture can be considered and
prior knowledge about the human dynamics can be easily integrated into the tracking
process. Therefore, we will end this section reviewing the use of particle �ltering
applied to visual motion analysis paying special attention to the use of human motion
priors.

2.1 Human Body Models

Models for representing the human body vary widely in the levels of details. Stick
�gure models have been frequently used in the literature [27, 45] for motion tracking
due to their simplicity and to its ability to represent the relative position and angles
between the joints and limbs composing the human body. In such models, the human
body is assumed to be a rigid articulated body, where body parts are represented
by sticks connected by joints with up to 3 degrees of freedom (DOF). The number
of joints, limbs and DOF vary from work to work. For instance in [71] the authors
use an articulated body model with 50 DOF. Similarly, 47 DOF are used in [72] to
represent all the possible body con�gurations of a 10 limbed stick �gure model, with
9 joints overall, including the �xed parameters of a volumetric model consisting in a
set of tapered cones.

The stick �gure representation follows a topological organization, i.e. limbs and
joints are organized in a hierarchical manner, which enables to express one joint's
position relative to another. For instance, one hand's position can be expressed only
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(a) (b)

Figure 2.1: From Gavrila et al [24]. (a) Typical truncated cone 3D volu-
metric model used for 3D human model-based tracking. (b) �ELLEN� and
�DARIU�: A 3D human model using super-quadrics.

relative to the elbow. Thus, moving only the torso doesn't in�uence on the relative
position of the hands. Notice that this is a very desirable property, since it allows the
analysis of motion for speci�c body parts regardless the rest of the body which might
not be interesting for analyzing local motion patterns. This full-body tree-like layout
is known in robotics as a kinematic chain [69].

Additionally, the stick �gure model can be �augmented� by using some kind of
3D volumetric primitives to depict the body shape in more detail [82, 16, 17]. Fig.
2.1 shows two volumetric models that have been used for 3D modeling. In Fig.
2.1.(a) a model consisting of 3D truncated cones is shown. The volume and shape
of each limb can be approximated by the conical sections, so that information could
be used to predict the region of a limb when performing the matching between the
model and the image. More accurate modeling can be achieved by using super-
quadrics, see Fig. 2.1.(b). The model was used by Gavrila et al in [24] and consists
of generalizations of ellipsoids which have additional �squareness� parameters along
each axis. Moreover, they support global deformations such as tapering, bending, etc.
Compared to truncated cones, super-quadrics provide a wider scope for better �tting
the model to less cylindrical body parts bringing a reasonable degree of accuracy and
�exibility at expenses of more parameters to estimate.

In [16, 17] a 3D human model with 20 degrees of freedom is built using truncated
cones, spheres and parallelepipeds as shown on Fig. 2.2. Mikic et al. [52] used
an articulated human body model for tracking consisting of ellipsoids and cylinders
combined with the reconstruction of 3D voxels of the human body.

Alternatively, Korc and Hlavac [41] represented human silhouettes using six-link
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Figure 2.2: A volumetric 3D human model from Delamarre and Faugeras
[16, 17].

(a) (b)

Figure 2.3: (a) Six-link biped human body model employed in [41]. (b)
Sigal's et al. representation of the human body consisting of a 2D trapezoid
for each body part [74].

biped model (see Fig. 2.3.(a)), in which principal body parts such as head, torso
and legs are represented by rectangles for detection and tracking of humans from
monocular videos with dynamic background. The model is represented by a parameter
set consisting of the center of the body, angles between the body parts and a vertical
line and relative sizes of body parts.

Sigal et al. [74] model the human body as ten rigid parts consisting of 2D trape-
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Figure 2.4: Stick �gure model �eshed out by superquadric ellipsoids with
additional tapering and bending parameters used in [76].

zoids with 5 DOF each (see Fig. 2.3.(b)). Then, probabilistic constraints are de�ned
between the parts resulting in a total of 50 parameters. A more realistic model is used
by Sminchisescu et al. [76] as shown in Fig. 2.4. It consists of a stick �gure model
�eshed out by superquadric ellipsoids with additional tapering and bending param-
eters. The model has 30 joint parameters plus 8 parameters controlling the internal
limb proportions and 9 additional deformation parameters per each body part.

In general, one would expect that the more complex 3D volumetric models, the
better results may be expected due to an improvement in the matching step of the
model-based tracker. However, although more complex models are specially useful for
synthesis purposes, for tracking applications the number of parameters to be estimated
grows up since the primitives used need to be characterized. Therefore, a �raw� stick
�gure is often preferred to characterize human postures instead.

2.2 Particle �lters and motion priors

PFs constitute a powerful tool for representing and dealing with complex posterior
distributions. The key idea is to represent the posterior distribution function (pdf)
over the state-space by a discrete set of weighted samples or particles, and propagate
this distribution over time by means of a dynamic and observation model. One of
the �rst approaches to use particle �ltering for visual motion estimation was CON-
DENSATION [34]. However, its initial formulation presented several misbehaviours
which caused the �lter to unavoidably loose the target over time. Indeed, particle
�lters su�er from many well known problems related to its discrete nature [40], and
to the fact that a good model of the system dynamics is required in order to repre-
sent the posterior pdf properly. Additionally, although it has been shown that there
exists an upper bound for the number of particles to achieve a certain estimation
error [54], there exists an exponential relationship between the number of required
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particles and the dimensionality of the state space for being properly populated [50].
This becomes critical for 3D human motion tracking where the models employed are
usually high-dimensional, and dynamics are highly non-linear.

In general terms, there are two main methodologies to improve PFs: modifying
the algorithm itself to prevent particle wastage, or designing better dynamic and ob-
servation models for the tracked objects. The �rst ones control the particle quality
by directly modifying them. For instance, the kernel-based PF [30] faces the sample
impoverishment issue by approximating the likelihood and the posterior densities by
a Mixture of Gaussians (MoG) at each time step and using them as proposal dis-
tributions for sampling new particles. An hybrid search strategy was introduced by
Sminchisescu et al., which combines the global particle representation of the posterior
with deterministic search for local optimization [75]. Then, in [22] authors make the
particle set more e�cient, by adapting its size during the estimation process. Hence,
they approximate the estimation error due to the sample-based representation by the
Kullbach-Leibler distance. Then, the key idea is to bound the error by increasing the
number of particles when the uncertainty on the state space is high. Finally, some ap-
proaches aim to lower the searching complexity by assuming that the state space can
be decomposed. For example, in [25] they perform a hierarchical search of the body
con�guration, or in [50] they use partitioned sampling to build independent observa-
tion densities over each dimension of the state space. Alternatively, Deutscher's et
al. annealed PF algorithm [18] replaces the likelihood pdf by a �tness function which
measures the quality of a particle relative to an observation. The whole posterior
pdf is no longer propagated, thus requiring less costly likelihood evaluations. Addi-
tionally, a searching technique is presented which introduces the in�uence of narrow
peaks in the �tness function, gradually. As a result, particles are guided e�ciently to
a global maximum of the �tness function. See [53] for additional examples.

Alternatively, PFs' e�ciency can be improved by designing better observation
models (likelihood) and dynamic models (prior) for the tracked objects. Observation
models evaluate the �tness of predicted postures to the measurements available. They
must deal with severe illumination and viewpoint changes, and most of the times
only a few set of body joints may be observable from images. Although observation
models have been intensively studied [70, 82, 23, 2, 6, 35], it still constitutes an open
problem in 3D full-body tracking from a monocular image sequence. In general, it
is very di�cult to design robust likelihood functions. As a result, the update of the
predictions may not be reliable for a certain period of time due to weak and noisy
measurements. Therefore, strong motion priors are also needed to avoid tracking
failures.

Indeed, many action recognition and human body tracking works rely on proper
models of human motion which usually are learnt from training datasets of real pre-
recorded motions [57, 71, 28, 80]. However, training sequences are often acquired
under very di�erent conditions making it di�cult to extract useful information from
these training sets. Therefore, methods for synchronizing the motion training sets are
often required so that a mapping between postures from di�erent sequences can be
established. For example, Ning et al. proposed a method for normalizing the length
of cyclic walking sequences using a self-correlation measure [57]. As a result, the
training walking cycles are rescaled to last the same period of time and are aligned to
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the same phase. However, self-correlation is only suitable for cyclic motion sequences.
In [56] a variation of Dynamic Programming (DP) is used to match motion sequences
acquired from a motion capture system, but the overall approach is aimed to the
optimization of a posterior key-frame search algorithm. The output from this process
was used for synthesizing realistic human motion by blending the training set. They
divided the body in 4 portions, and similarities are evaluated independently for each
part.

Applied to particle �lters, human motion priors can be exploited to guide the
exploration of the state space and propagate particles e�ciently to areas of interest.
For instance, Sidenbladh et al. sample new body postures from a database of pre-
recorded motions [71]. They used the well-known multivariate principal component
analysis (MPCA) method to train a walking model based on the examples. Then,
given a motion subsequence they probabilistically searched the best match within
the database and predictions were made assuming a Gaussian distribution over the
learnt motions. Although they achieved good tracking results, the model could only
predict postures which were present in the motion database. Likewise, Ong and Gong
[59] employed the hierarchical PCA to learn their motion model that was represented
by the matrices of transition probabilities between di�erent subspaces in a global
eigenspace and by the matrix of that between global eigenspaces.

Alternatively, Ning. et al [57] tracked a 12 DOF body model of a walking se-
quence using a PF and a dynamic model of walking including constraints formulated
as independent Gaussian distributions per each joint. Chai et al. [14] presented a
learning scheme for large motion sets (about 1 hour) to reconstruct 3D motion in
real-time from a few 2D control signals. The system learnt a series of local linear
models for the on-line mapping with the control signals. The reconstructed motion
basically consisted in the retrieved postures from the database which best matched
the 2D tracked markers, although it had some ability to interpolate new motions not
explicitly present in the training set.

Recently, Urtasun et al. [81] introduced the use of a Gaussian Process Dynamical
Model (GPDM) to learn 3D posture and motion priors for 3D human tracking from
a small training set. They successfully tested their priors using the 2D position in
images of some 3D joints. However, only lateral walking sequences were tested, and
instead of a PF, they used an o�ine inference approach to obtain the MAP estimate
over a time window including past and future events. Similarly to this work, Wu et al.
[86] learnt a model of feasible hand postures from a real motion database represented
in a PCA space, which was used as the importance function in a PF framework for
articulated hand tracking. They de�ned a set of basis hand con�gurations based on
its topology and observed that most natural hand motion can be constrained by the
set of linear manifolds spanned by any two basis. However, it is not clear how to
de�ne such set of basis for human body postures, and linear manifolds seem to be
too restrictive to accommodate natural body motion. Another work using a PCA
space to constrain articulated hand motion was carried out by Stenger et al. [77].
They use a tree-based grid �lter, partitioning the PCA state space by clustering
motion capture data. Then, dynamics are modeled as a �rst order process with learnt
transition probabilities between the states. In addition, a likelihood function based
on edge and color information is de�ned, and initialization of the tracking process
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is handled by combining hierarchical detection and Bayesian �ltering. Recently, this
work has been successfully extended to body tracking in a controlled environment [58]
by introducing body shape information for the likelihood computation. However, the
method strongly relies in the good behaviour of the likelihood function, since limbs'
dynamics are modeled using a simple �rst order motion model.



Chapter 3

Human Body Modeling

The choice of the human body model to represent 3D human body postures is of
critical importance within a model-based tracking approach, since it conditions the
choice, design and performance of all underlying methods. Thus, it is desirable to
choose models having a good trade o� between low complexity and high-generality so
they can represent the state of the human body accurately enough while keeping the
number of parameters to be tracked low.

Bearing this in mind, the body model employed in this work consists of a stick
�gure model comprising twelve rigid body parts connected by a total of ten inner
joints. Body limbs are structured in a hierarchical manner and the self rotation around
its axis is not modeled. Direction cosines are chosen for characterizing 3D directions
to avoid discontinuities in the representation and because they have a direct geometric
interpretation.

In this chapter, we �rst motivate the selection of a proper body model with respect
to its �nal application by reviewing common human body models employed in the
literature and exploring their advantages and drawbacks within the context of full-
body tracking. Then, we discuss di�erent options to represent 3D orientations and
their suitability for the tracking problem. Lastly, we fully specify this work's human
body model and elaborate on how to convert from Motion Captured data to our
representation.

3.1 Motivation

The selection of a proper human model is highly dependant on the �nal application of
it. Typically, one has to carefully choose an appropriate trade-o� between complexity,
generality and compactness of the model, since there is not a unique solution suitable
for all scenarios. In the case of full-body 3D tracking, on the one hand, we need a
model which represents well the motion parameters of the full body rather than its
accurate surface and texture. On the other hand, facilities for synthesis must be taken
into account, and no singularities in the evolution of the parameters are wished due to
the model-based tracking approach. Finally, the model has to be easy to manipulate
and computationally treatable, since models with high dimensionality often result in

21
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(a) (b)

Figure 3.1: Stick �gure Body Model and its Hierarchy. (a) Generic human
body model composed of twelve limbs and �fteen joints. (b) Hierarchy of the
joints of the human body model (kinematic chain).

too much parameters to be estimated by the tracking framework, leading to tracking
failures and una�ordable computational costs.

Towards this end, stick �gure models have been frequently used in the literature
[27, 45] because they are simple and well suited for representing body motion. Indeed,
such models consists of a prede�ned set of limbs of a given length connected by a set
of joints with a variable number of DOF. The number of joints, limbs and DOF vary
from work to work, ranging from about 50 DOF in [71, 72] or to 12 in [57], for instance.
In Fig. 3.1 it is shown the stick �gure model used in [27]. It is composed of 12 limbs
and 15 joints organized in a hierarchical manner.

Stick �gure models can be in turn extended with more complex volumetric models,
such as cylinder [32, 82, 66], truncated cones [17] or super-quadrics [75, 67]. Addition-
ally, accurate shape and appearance of the human body can be modeled by adding
further layers to the core stick �gure model. For instance, a complete human body
model was presented by Plankers and Fua [63] consisting in an accurate hierarchical
human body model, which included four levels: skeleton, ellipsoid meatballs simulat-
ing tissues and fats, polygonal surface representing skin, and shaded rendering. As a
general rule, the more complex the human body model, the more accurate tracking
results may be expected, since give they give better results for synthesis so the model
can be better compared to the image data. On the other hand, simpler models require
less parameters to be estimated resulting in less computational complexity.

Therefore, for full body motion capture applications, we aim at a human body
model with great representational power in terms of motion parameters accuracy,
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with synthesis facilities, exempt of singularities, and compact enough to make the
tracking problem computationally treatable.

3.2 Representing Orientations in 3D

A very naive approach to model the placement of each body part using stick �gures,
could be to decide which body parts we want to model, and then simply store its raw
3D positions. With this representation, each human posture could be modeled as an
ordered tuple of 3D end-point coordinates of the limbs composing the model, where
each limb l would be de�ned by its end-points (xi, yi, zi) and (xj , yj , zj).

Even though such an approach is very simple to compute and has a direct ge-
ometric interpretation, it su�ers from a lot of inconveniences. From the one hand,
given the fact that the length of the limbs varies from one subject to another, the
3D positions also vary between several performances of the same action. On the
other hand, it does not re�ect the actual topology of the human body in a treatable
manner, since each position does not keep any relationship to each other. Moreover,
Cartesian coordinates are not ideal when considering linear approaches for posture
variation modeling. Summing up, this approach is very useless since it requires a lot
of post-processing for human motion analysis.

This fact is illustrated in Fig. 3.2. The evolution of the 3D positions of a set
of four prede�ned body parts -i.e. both shoulders, left knee and left foot- are shown
while performing a bending action. Each column describes a di�erent body part,
consisting of three subplots which represent the X, Y and Z Cartesian coordinates of
that particular part. Lines in di�erent colors correspond to di�erent actors performing
the same bending action. One can observe that all the performances vary a lot from
one actor to another, making this model totally useless since establishing a similarity
measure between them could be a tough task. Thus, we need to formulate the problem
in a more e�cient and robust manner.

Alternatively, we can model the 3D con�guration of the body by computing the
angle between adjacent limbs, thus achieving independence from the size of the actors.
As a result, using the stick �gure representation, a particular human body posture will
be de�ned by (a) its global location and orientation in the space, (b) the length
of each body limb, and (c) the relative limbs orientation, i.e. each limb position
is expressed in a relative manner, following the kinematic chain. Final positions of
the limbs will depend on their position in the kinematic chain, their length and their
relative orientation from others.

Unfortunately, the choice of the angles to model is not direct. There are several
problems involved with measuring angles that should be confronted. In the �rst place,
the angle discontinuity problem occurs when a limb returns to the same position after
each revolution of orientation. For example, we show in Fig. 3.3.(a) the orientation
values corresponding to the left wrist during a bending performance using a spherical
coordinates system. During this performance, the left arm hangs performing a circular
swing. Despite of the fact that elevation values are stabilized near −π2 , orientation
values jump between −π and π 1. This discontinuity in the angle-time curve is not

1We consider a bipolar range for angle values, i.e. a range of [−π, π].
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(a) (b)

Figure 3.3: Orientation values per frame during a bending performance. (a)
As angle values lie between the range of [−π, π], the angle discontinuity prob-
lem should be confronted. (b) Resulting angle values by avoiding discontinuity
jumps.

Rotation Matrices

With this method, we can de�ne the rotation of a local system with regard to a global
system by means of a 3× 3 matrix. A rotation in a three-dimensional space requires
a representation that provides at least 3 DOF. However using 3 × 3 matrices, result
in a total of 9 parameters to be set. Indeed, a 3 × 3 matrix is suitable to perform
more transformations than only 3D rotations. Subsequently, we need to introduce
some constraints on its form, thus reducing the number of DOF to 3. In fact, only
orthogonal matrices are valid rotation matrices. Formally, an orthogonal matrix A
accomplishes that

A ·AT = I.

Rotation of the local system with regard to the global system is represented as
follows: the axes (x, y, z) of the local system are represented by their components
in the global reference system. Due to the de�nition of the dot product, dividing
each component by the vector length (which is equal to 1) results in the cosine of
the angle that the vector makes with each of the coordinate axes (X,Y, Z) of the
global system. These angles are the direction angles or direction cosines. Indeed, the
direction cosines written in matrix form as elements of a 3 × 3 matrix conform the
so-called rotation matrix. Thereby, we de�ne a rotation matrix R as:

R =

 cosXx cosXy cosXz
cosY x cosY y cosY z
cosZx cosZy cosZz

 .
In this notation, cosab refers to the cosine formed between the axis a of the global

system and the axis b of the local system.
Fig. 3.4 shows the rotation described by the matrix R1 of a local coordinate
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R1 =

 0.6092 −0.3137 0.7283
0.6292 0.7502 −0.2032
−0.4826 0.5821 0.6544



Figure 3.4: Rotation of a local coordinate system (x, y, z) in reference to the
global system (X,Y, Z) described by the rotation matrix R1.

system (x, y, z) in reference to the global system (X,Y, Z). Notice that each row
corresponds to the components de�ned in the global reference system of each vector
from the local system. Notice also that the three vectors are orthogonal with norm
equal to 1.

A very interesting property from rotation matrices is the fact that by multiplying
several rotation matrices, we can concatenate several rotations grouping them into a
single rotation matrix. Since matrix multiplication is not commutative, the order of
the multiplications will de�ne the order in which we perform the rotations.

On the other hand, rotation matrices require to specify 9 values to represent a
single 3D orientation, that requires only 3 DOF. Moreover, it is not easy to establish a
geometrical interpretation on the parameters of this representation, and interpolating
between the parameters of two rotations doesn't result in uniform soft �nal transitions.
For all these reasons, rotation matrices happen to be a very useful tool for making
calculations, but a very tedious way of describing orientations for applications where
a compact, easy-to-handle representation is needed.

Euler angles

Euler angles have been widely used in order to describe orientations of the body
limbs [82, 17, 57]. It consists on concatenating three successive rotations around pre-
set axes. Notice that �nite rotations in 3D space are not commutative, i.e. performing
the same rotations in a di�erent order leads to di�erent �nal orientations. Thereby,
there exists a set of 12 di�erent conventions for describing Euler angles, depending on
the order of the rotations and the axes used for each rotation. The general process
goes as follows:

1. The �rst rotation is de�ned relative to an axis of the global reference frame,
i.e. one of the Cartesian axis X,Y, Z.

2. Then the second rotation is de�ned with regard to a local axis from the previous
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Figure 3.5: Rotation of (α, β, γ) described using the Zy′z” Euler convention.

rotation. We denote this axis as x′, y′, z′.

3. The �nal rotation is done again around the local axis transformed from the
previous rotation denoted as x”y”z”.

Notice that axes are notated with single prime (′) or double prime (”) according to
the number of preceding rotations. Using this notation we can enumerate the 12
conventions about Euler angles depending on the order of the axis used. For exam-
ple, a sequence of rotations Xy′z” means that the �rst rotation is done around the
Cartesian axis X, then around the local axis y′ resulting from the previous rotation,
and �nally the third rotation is done around the z” axis which was previously rotated
around the global X axis and then around the local y′axis.

Fig. 3.5 shows a rotation of (α, β, γ) described using the Zy′z” Euler convention.
Starting at the left frame, with Cartesian axes X,Y, and Z, we rotate through a
positive (counter clockwise) angle α to arrive in the middle frame having Cartesian
axes x′, y′, z′. Next we rotate by a positive angle β around the y′ axis and we arrive
in the frame on the right, having Cartesian axes x”, y”, z”. Finally, we rotate by
a positive angle γ around the z” axis obtaining the �nal frame rotation with axes
x”′, y”′, z”′.

The main advantages of expressing orientations as Euler angles are their sim-
plicity and easy geometrical interpretation. Moreover Euler rotation can be easily
formulated as rotation matrices, thus several Euler rotation can be concatenated by
only multiplying their rotation matrices which is a desirable property in a kinematic
chain, where local position and orientations of each limb depends on the previous limb
in the kinematic chain. However, it su�ers from some implicit problems:

� Problems with periodicity: when rotating an object around a particular axis,
every time a full turn is completed there exists a leap between 0º and 360º.
This makes this representation a bad candidate to be used for calculations that
demand a certain continuity on the input data.

� Singularities: in some particular cases, the value of one or more coordinates
cannot be de�ned for certain angular positions. A DOF is lost due to the
fact that a rotation axis gets aligned with another one after performing several
rotations of 90º. This problem is known as gimbal lock [84], and is partly due
to the fact that the same orientation can be described in 12 di�erent manners.
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Figure 3.6: SLERP (Spherical Linear intERPolation) interpolation using
quaternions.

� No interpolation facilities: it is very di�cult to softly interpolate 2 orientations
de�ned with this representation method.

Quaternions

Quaternions appear as an extension of the complex numbers by adding to a real
number not 2 but 3 imaginary parts (i, j, k), which satisfy the following relation:

i2 = j2 = k2 = ijk = −1.

Every quaternion is a number q which is a linear combination of the so-called
quaternion units, i.e. i, j, k, 1, Thus, a quaternion q has the form q = a + bi +
cj + dk, where the vector of real numbers (a, b, c, d) de�ne a particular quaternion.
Mathematical operations with quaternions are de�ned by special rules. Quaternions
are not restricted to representing orientations, and its use goes much further than
this. However, we are interested in the quaternions able to represent orientations, i.e.
the ones whose vector (a, b, c, d) has norm equal to 1. Formally, quaternions suitable
to represent orientations ful�ll the condition:

a2 · b2 · c2 · d2 = 1.

An interesting property of quaternions is that the quaternion qt resulting from
two consecutive rotations q1, q2 is the product qt = q1q2. Unlike it occurs in real
or complex numbers, multiplications between quaternions are not commutative, thus
when concatenating rotations using quaternions we must take into account the order
of the rotations.

Interpolating rotations using quaternions can be done with very simple operations
and results in soft transitions between two (or more) orientations. If one thinks of
a quaternion as a point in a sphere, the SLERP (Spherical Linear intERPolation)
interpolation allows us to go from point a to point b of the sphere going along the
shortest arc between both points [64], see Fig. 3.6.

Using quaternions, SLERP interpolation is de�ned by the equation
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SLERP (qa, qb, t) =
qa sin((1− t)φ) + qb sin(tφ)

sin(φ)
,

where qa and qb are the two quaternions that de�ne two particular orientations (posi-
tions on the sphere), t is a value between 0 and 1 that de�nes the interpolation step,
and φ is the angle between a and b radius.

Besides the interpolation facilities, using quaternions for representing orienta-
tions doesn't su�er from singularities problems (unlike Euler's angles), and is a more
compact and faster representation than matrices. However, we require 4 values to de-
scribe 3 DOF, and direct geometrical interpretation of the parameters is not straight-
forward.

Direction cosines

Another interesting method for describing the direction of a vector w.r.t. a reference
system is by means of their direction cosines. As pointed out before, the direction
cosines of a vector l are the cosines of the angles that the vector makes with each of
the coordinate axes (X,Y, Z) of the reference system, i.e. the direction angles of the
vector.

In particular, given the vector l = (lx, ly, lz) depicted in Fig. 3.7, its direction
cosines (cos θxl , cos θyl , cos θzl ) are computed as follows:

cos θxl =
lx√

l2x + l2y + l2z

,

cos θyl =
ly√

l2x + l2y + l2z

, (3.1)

cos θzl =
lz√

l2x + l2y + l2z

.

From these de�nitions, it follows that

cos2 θxl + cos2 θyl + cos2 θzl = 1. (3.2)

From the above equations its easy to see that if l is a unit vector, then the direc-
tion cosines of l are equivalent to the coordinates (lx, ly, lz) of the vector. Therefore,
direction cosines are easy to calculate and have a direct and intuitive geometric in-
terpretation.

Also note that while being particularly suitable for representing the direction of a
given vector, they are not independent of each other since they are related by Eq.(3.2).
Thus, direction cosines only have 2 DOF and can only represent direction of a vector
but not its orientation. In other words, direction cosines do not de�ne how much a
vector is rotated around its axis, and require 3 parameters to determine only 2 DOF.

On the contrary, unlike polar angles, they are de�ned anywhere in the unit sphere
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Figure 3.7: Direction angles (θxl , θ
y
l , θ

z
l ) for the limb l.

while being continuous and stable, i.e. they are exempt of periodicity problems and
singularities present in Euler angles. Therefore, smooth rotations of a vector result in
smooth and continuous changes on their direction cosines. Hence, direction cosines are
useful for a wide range of applications where a stable, smooth and continuous repre-
sentation is needed, for instance 3D motion compression, statistics over 3D rotations,
3D motion tracking, etc.

Summarizing, direction cosines are particularly interesting for representing body
limbs' direction in a body motion tracking context because they enable a represen-
tation exempt of discontinuities with a direct geometric interpretation and easily
treatable.

3.3 The Human Body Model

For full body motion tracking we want to characterize where each part of the body
is placed and which relationships keep with the other parts, rather than attempting
to represent very accurate information about the shape of each limb, the color of the
skin, or the clothing, among others. In turn, we need a body model with great rep-
resentational power in terms of motion parameters accuracy, with synthesis facilities,
exempt of singularities, and compact enough to make the tracking problem compu-
tationally treatable. In other words, we don't need very realistic and natural looking
models as long as we keep the body's geometric structure well enough to support
segmentation and matching.

Towards this end, the stick �gure model is used to approximate the human body
as a rigid articulated object, where each limb is modeled as a segment of �xed length.
Adjacent segments are connected between each other by means of a joint or articula-
tion.
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Figure 3.8: Relative Angles: Leg angle φ
′

leg is de�ned in terms of its angle
w.r.t. its parent limb within the kinematic tree chain of the human body
model, i.e. relative to the tight.

In addition, notice that human actions are constrained motion patterns, i.e. there
is a strong relationship between the movement of di�erent limbs while performing a
particular action. For instance, during a walking and running action, legs and arms
move in a coordinated manner alternating left and right swings of both legs and
arms. Consequently, we consider a hierarchy between limbs in order to incorporate
these relationships into the model by describing each limb with respect to a parent,
i.e. constituting a kinematic tree. Usually, the root of this tree is located at the
hip. Consequently, by describing the the human body using the relative angles of the
limbs, we actually model the body as a hierarchical and articulated �gure. This is
illustrated in Fig. 3.8 where the 2D angle of a leg is expressed relative to the upper
limb in its hierarchy, i.e. the tight. Hence, φtight and φleg correspond to the absolute

angles of both limbs w.r.t. the Cartesian axis, while φ
′

leg is the relative leg angle
within the kinematic tree.

Therefore, the body model employed in our work consist of a stick �gure model
composed of twelve rigid body parts (hip, torso, shoulder, neck, two thighs, two
legs, two arms and two forearms) connected by a total of ten inner joints, see Fig.
3.9.(a). Limbs' direction is modeled using 2 DOF, without modeling self rotation of
limbs around its axis. The body segments are structured in a hierarchical manner,
constituting a kinematic tree as shown in Fig. 3.9.(b). The root, located at the hip,
determines the global rotation of the whole body. Notice that body's global position
is not considered in the model. Direction cosines are used to represent limbs' direction
within the kinematic tree.

As a result, our �nal representation of a human body posture ψ consists of 36
variable parameters, i.e.

ψ = {cos θx1 , cos θy1 , cos θz1 , ..., cos θx12, cos θy12, cos θz12}, (3.3)

where θxl , θ
y
l , θ

z
l are the relative directional angles for the limb l according to the
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(a) (b)

Figure 3.9: (a) Details of the human body model used. (b) Hierarchy of the
limbs of the human body model (kinematic chain).

topology shown in Fig. 3.9. In addition, the global position and orientation of the
body as well as the length of each limb are also needed to derive the �nal 3D position
of a joint given a particular body con�guration ψ. Nevertheless, each limb length
is assumed to be �xed for each subject as it doesn't change signi�cantly along the
performance of a particular action.

Consequently, the characteristics of our human body model can be summarized
as follows:

� Simplicity and compactness of the representation: the human body is modeled
using a stick �gure model with a reduced number of parameters.

� High-level interpretation of the parameters, the anatomical characteristics and
topology of the human body is re�ected by means of the kinematic tree.

� Depth information can be determined. The 3D position of each limb and joint
can be determined. In addition, it can be extended by putting it in corre-
spondence with a more realistic and complex models by �eshing it out with
volumetric primitives.

� Constraints on human motion can be easily speci�ed, i.e. angles ranges can be
constrained for individual joints, thus simplifying the search space for tracking
procedures.
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� The human action can be represented as a sequence of postures, as motion
trajectories of body parts, or as the variation of joint angles over time.

� A comparison measure between di�erent human body poses can be established,
due to the hierarchical nature of the stick �gure representation.

� The direction cosines representation provides a representation exempt of discon-
tinuities with a direct geometric interpretation. Hence, similar con�gurations
of the body limbs account for close values of this representation.

Summarizing, by using this human body model, we take pro�t from the advantages
of using stick �gures due to their simplicity and compactness. Thus, it re�ects the
anatomical structure of the human body and its topology by means of the kinematic
tree, i.e. angles are modeled in a relative manner by de�ning a hierarchy. In addition,
the stick �gure can be easily �eshed out with volumetric models in the future without
having to modify the stick de�nition. Finally, singular positions and discontinuities
over time w.r.t. to the angles between limbs are prevented by choosing direction
cosines for representing limbs' direction.

3.4 Importing Motion Capture Data

Commercial motion capture systems store the captured data in many di�erent for-
mats, i.e. C3D, BVH, FBX, BIP, etc. Such formats may di�er between them re-
garding the internal format used to organize the captured data, the articulated model
employed, the body representation (angular vs. positional data), etc. Hence, in order
to make use of external motion captured data in this work, we de�ned a procedure
for importing already existing motion captured data into our representation.

Regardless the internal representation of data used, most motion capture sys-
tems provide methods for computing the raw positional data of each motion captured
marker. Therefore, we adopted this positional representation of motion capture data
as a generic intermediate representation constituting the input for importing data
from motion capture databases. Hence, we assume, that in this representation, human
body postures are represented by the raw XY Z positions of the M markers attached
to the subject in an absolute world coordinates system, denoted as Xt = (x1, ..., xM ).
Notice that depending on the capture setup used, the number of markers and their
topology within the kinematic tree may vary, so this will need to be considered before-
hand when working with di�erent sets of data. Once we have allM markers position,
we convert this data to our human body model representation by establishing a map-
ping between the M markers and our 15 end-points (see Fig. 3.9.(a)).

Subsequently, we will explain the conversion process for one external dataset used
in this work, namely the CMU motion capture dataset. This dataset was acquired
using a Vicon optical motion capture system2 which captured a working volume of
approximately 3m x 8m. The captured subjects worn a total of 41 markers, whose
detailed placement explanation can be found at CMU's motion capture dataset web-

2Vicon Motion Systems: http://www.vicon.com/
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Figure 3.10: Details of the CMU motion capture dataset marker placement.

site3. In Fig. 3.10 we show the markers used and their placement on the body, with
the names associated to them.

Then, considering the huge detail and number of markers used, we select some
principal markers for the mapping in order to make the input motion capture data
usable according to our human body representation. Towards this end, we selected the
markers named as: LFWT, LBWT, RFWT, RBWT, RFHD, LFHD, LSHO, LELB,
LWRB, RSHO, RELB, RWRB, LKNE, LHEE, RKNE and RHEE.

The markerset selected and the mapping used is fully depicted in Fig. 3.11.(b),
which relates the absolute position of each joint from our human body model with the
markers' used in the CMU database. For instance, in order to compute the position
of joint 5 (head) in our representation, we should compute the mean position between
the RFHD and LFHD markers from the CMU database, which correspond to the
markers placed on each side of the head. Notice that our model considers the left and
the right parts of the hip and the torso as a unique limb, and therefore we require a
unique segment per each. Hence, we compute the position of joints 1 and 4 (hip and
neck joints) as the mean between the previously computed joints 2 and 3, and 6 and
9 respectively.

3CMU motion capture dataset marker placement guide:
http://mocap.cs.cmu.edu/markerPlacementGuide.pdf
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Figure 3.11: Details of the human body model used and the relationship to
the markerset employed in the CMU database.

Once the mapping between CMU markers and end-point positions of our body
model is done, we use Eq.(3.1) to represent each posture from the CMU dataset in
terms of our representation as speci�ed in Eq.(3.3).





Chapter 4

Human Action Modeling

The action model presented in this work aims to describe how humans move, by
learning the variability and temporal evolution of full-body motion within a particular
action. On the one hand, we characterize which con�gurations of the human body
model's parameters correspond to feasible postures and which postures are typical
from each action. On the other hand, we learn how postures change during the
performance of the action. Thus, providing a way of making good predictions about
human postures within our model-based tracking approach.

Our action model is example-based, i.e. it is learnt from examples of a human
motion database comprised by motion sequences of di�erent sources and natures. On
the �rst hand, we built an on purpose made action database by asking several actors to
perform a given set of actions. On the second hand, motion sequences from a publicly
available dataset (Carnegie Mellon University's (CMU) Graphics Lab Motion capture
database) has also been used for the de�nition of our training set. In both datasets, the
3D postures for each action have been recorded using a commercial Motion Capture
system which provides very accurate motion data from a set of re�ective markers
carefully attached to the human body.

All the motion performances from the training dataset are synchronized using a
Dynamic Programming (DP) algorithm and a mean manifold for a set of training
performances is computed. As a result, we can analyze intra-performance di�erences
for each time step. In other words, we can quantify the di�erence between the same
part of two di�erent performances of the same action. Then, a mean direction of
motion is learnt for subsequences of a determined length, and statistics are extracted
from the synchronized dataset that characterize the variation observed in each step
between di�erent training performances.

Within this chapter, we �rst detail the motion datasets used for training. Then,
we introduce a representation space for human actions and de�ne the synchronization
algorithm. Finally, we explain the learning procedure of our action speci�c motion
model.

37
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4.1 Human Action Training Sets

We de�ne a human motion as a sequence of human postures which are exhibited
while performing a particular action. Two human motion datasets were considered
for training our action model. Both datasets consist of several sequences of human
postures recorded by several actors for a prede�ned set of actions, and were acquired
using a commercial motion capture system based on optical markers. Since these
databases vary in terms of the actions covered, the number of subjects recorded,
and the parameters available for each, we selected di�erent number of actions and
performances to de�ne proper training sets for each.

The �rst dataset, namely the CVC motion dataset was developed on purpose for
this work and covers a comprehensive number of actions, i.e. 9 actions with a balanced
number of recorded sequences and actors per each action. The second dataset, namely
the CMU motion capture dataset consists of a great number of sequences divided
into 6 categories and 23 subcategories. For this work, we focused on the �walking�
subcategory from the �Locomotion� category.

The following, explains the data acquisition procedure, the marker placement,
and the number of subjects and sequences composing each database.

4.1.1 The CVC training set

In order to �t our needs for studying human motion, we built our own action database
by asking several actors to perform a given set of actions. We have concentrated in a
prede�ned set of 9 human actions to be studied, in particular the bending, running,
kicking, jumping, squatting, tumbling, sitting, walking and skipping actions. We
designed a training set of human actions consisting in the above mentioned 9 actions
performed by di�erent actors. The actors performed the same action several times.
All the 3D data was acquired using commercial Motion Capture systems following
the process described next.

Procedure for data acquisition

We have used an optical Motion Capture system1 to acquire real training data for
our algorithms. Optical systems include minimal re�ective markers which are used
to recover the relative motion of the agent. This system is based on six synchronized
video cameras to record images. The optical system incorporates all the elements
and equipment necessary for the automatic control of cameras and lights during the
capture process. It also includes a software pack for the reconstruction of movements
and the e�ective treatment of occlusions.

In our experiments, the subject �rst placed a set of 19 re�ective markers on the
joints and other characteristic points of the body, see Fig. 4.1.(a). These markers are
small round pieces of plastic covered in re�ective material. Subsequently, the agent is
placed in a controlled environment (i.e., controlled illumination and re�ective noise),
where the capture will be carried out, see Fig. 4.1.(b).

1STT Ingeniería y sistemas: http://www.stt.es
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(a) (b)

(c)

Figure 4.1: Procedure for data acquisition. Fig. (a) shows the agent with the
19 markers on the joints and other characteristic points of its body. (b) shows
the scene where the motion capture system acquired the training samples. (c)
corresponds to some frames of the 3D data acquired for a walking cycle.

As a result, the accurate 3D positions of the markers are obtained for each
recorded frame, 30 frames per second. In our experiments, not all the 18 markers
are considered to model human actions. In fact, we only process those markers which
correspond to the joints of the human body model detailed in the last section. In
Fig. 4.1.(c) the 3D positions acquired from the Motion Capture system have been
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Figure 4.2: Normalization in position and orientation of body postures. The
origin of the local reference system (x′, y′, z′) is placed at the center of the hip
with its x′ axis pointing toward.

mapped into our human body model. We can see the 3D body postures obtained for
a walking cycle of an agent.

Due to the high variability in the recording sessions -each recording session had
to be calibrated separately, and the actors performed each action in di�erent parts of
the room, showing di�erent orientations- , all the performances have been normalized
in order to work with them. The normalization process has been done regarding the
size of each subject, his height, and the global orientation and position of the human
body.

We have calculated a local reference system for all the postures, in order to force
to each performance to an identical starting position and orientation of the hip. Sub-
sequently, for each performance of the database, the center of the hip of every �rst
3D posture has been forced to lie at the Cartesian position (0, 0, 0). All the pos-
tures have been re-expressed with regard to the local reference system de�ned by the
(x′, y′, z′) axes. Fig. 4.2 depicts this scenario. The posture shown is expressed in
a global reference system spanned by the (X,Y, Z) axes. A local reference system
has been calculated which corresponds to the (x′, y′, z′) axes in black, green and blue
respectively. The calculation of the local system has been done as follows: �rst, the
z′ axis is forced to coincide with the orientation of the hip at the �rst frame. Then,
the y′ axis is forced to be perpendicular to the previous one and to point upwards,
and �nally, the x′ axis is constrained to be perpendicular to the y′ and z′ axis and to
look ahead.

The nature of the actions acquired, and the details about the motion database
are explained next.
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Action Database

We considered a set of 9 di�erent elementary action types which are more typical of
human motion:

� aBend: a bending action where a subject is standing, then he bends to the
�oor as if he were picking up something and ends standing like in the beginning
of the action. Sequences of both right and left hand were considered when
picking the imaginary object from the �oor.

� aJump: a jumping action where a subject is standing, then he folds his knees,
jumps, and ends in the same initial position. The subject uses his arms to help
impulsing himself which end up pointing upwards while performing the jump.

� aKick: actually this action consists of a standing subject performing the fol-
lowing movements in order: punching with the right arm, punching with the
left arm, kicking with the right leg, and �nally kicking with the left leg.

� aRun: a running action where a subject performs several run cycles. Each
cycle is segmented and considered as a performance of the action.

� aSit: a sitting action where a standing subject sits to a chair and stands up
again.

� aSkip: a subject passing his legs over an obstacle lying on the �oor to skip it.
First the right leg and then the left one.

� aSquat: a squatting action, where a standing subject folds his knees until he
actually sits on his haunches. Then, he stands up again.

� aTumble: a subject standing up, literally sits down on the �oor and stands
up again.

� aWalk: a walking action, where a subject performs several walking cycles.
Likewise the running action, each cycle is segmented and considered as a per-
formance of the action.

Once the set of actions was de�ned, we asked to nine di�erent actors to perform each
action. In order to provide a proper learning set which is generic enough, each actor
performed each action an average of 5 times. The actor set consisted of 3 females
and 6 males. Thus, as a result 45 performances of the same action were recorded
(in average). Hereafter we refer to a performance as a sequence of 3D human body
postures which correspond to a particular action performed by a particular actor in
a particular manner.

Table 4.1 shows a summary of the performances contained in this action database.
For each elementary action, information about the number of performances recorded,
the number of frames, and the number of actors involved is shown. Notice that, due
to the cyclic nature of actions such as running or walking, several cycles of the action
were captured per each actor in each recording session. Several performances were
obtained a posteriori by manually-segmenting each sequence. Di�erences between the
number of samples per action in the database are due to several reasons: in the �rst
place, the number of frames per action depends on the length of the action itself. On
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Action

Total

#perfor-

mances

Total

#frames
#actors

Average

#perfor-

mances/

actor

Average

#frames/

perfor-

mance

aBend 51 3921 9 5.7 77
aJump 48 2578 8 6 54
aKick 43 7242 9 4.8 168
aRun 40 4042 5 9 101
aSit 28 3309 6 4.7 118
aSkip 13 1053 4 3.3 81
aSquat 54 4202 9 6 78
aTumble 31 5301 8 3.9 171
aWalk 32 4038 4 8 126

Table 4.1: Detail of the CVC motion database.

the other hand, we had to trash some of the captured data mainly because of noise in
the capturing process, and calibration errors. Therefore, the number of performances
and actors appears slightly unbalanced between actions.

Finally, in Figures 4.3 and 4.4 we show the remaining actions from this database,
i.e. the aBend, aJump, aKick, aRun, aSit, aSkip, aSquat and aTumble actions. For
each action, a sequence of postures from a performance is drawn using a stick �gure
representation.

4.1.2 The CMU motion capture dataset

The CMU motion capture dataset is composed of 2605 trials organized in 6 categories
and 23 subcategories2. The 6 main motion categories are �Human Interaction�, �Inter-
action with Environment�, �Locomotion�, �Physical Activities & Sports�, �Situations
& Scenarios� and �Test Motions�. We focused in the Locomotion category which in
turn is subdivided into the �walking�, �running�, �jumping� and �varied� subcategories.
From these, the walking, running and jumping subcategories are similar to the 9 ac-
tions we selected for building the CVC dataset, but only the walking action comprises
a representative number of performances done by many di�erent actors. Therefore,
we used this subcategory for training our action model with this dataset.

As a result this training set is composed of 12 subjects showing di�erent perfor-
mances of the walking action. In turn, each walking performance consists of a variable

2at present.
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Figure 4.3: Sample frames from the aBend, aJump, aKick and aRun actions
from the CVC dataset.
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Figure 4.4: Sample frames from the aSit, aSkip, aSquat and aTumble actions
from the CVC dataset.
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Subject

id.

Index of selected

performances

# recorded

perfor-

mances

Total # of

walking

cycles

Total #

body

postures

2 {1, 2} 2 3 372
5 {1} 1 3 448
7 {1, 2, 3, 6, 7, 8, 9,

10 ,11}
9 15 2027

8 {1, 2, 3, 6, 9, 10} 6 9 1058
12 {3} 1 3 482
16 {15, 16, 21, 22, 31,

32, 47}
7 15 1977

35 {1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14,
15, 16, 28, 29, 30,
31, 32, 33, 34}

23 42 5782

38 {1, 2} 2 4 540
39 {1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 12, 13, 14}
13 26 3260

43 {1} 1 2 263
49 {1} 1 3 491
55 {4} 1 1 191

TOTAL 67 126 16891

Table 4.2: Detail of the CMU training set composition.

number of cycles ranging from 1 to 5. Subsequently, each recorded performance is
split into its composing walking cycles. We used the angle between the left and right
legs as the criterion for splitting walking cycles. A full cycle is de�ned as all the body
postures in between two consecutive maximums of the angle between both legs when
the left leg remains in the back. Incomplete cycles and erroneous sequences were
discarded from the training set. As a result, we �nally end up with a set of 16891
body postures corresponding to 126 walking cycles performed by 12 di�erent actors
showing di�erent speeds and di�erent body con�gurations while performing the same
action. Table 4.2 details the composition of our training set. The number of each
subject and recorded performance corresponds to the same indexes used in the CMU
database.

For more details on the marker placement for this dataset and the mapping to
our human body model, please, revisit section 3.4 and in particular Figures 3.10 and
3.11.
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4.2 Human Action Spaces or aSpaces

It is desirable that our action model ful�lls the requirements of compactness, accuracy
and speci�city. In other words, it should capture most of the information of the
training data set in a small number of parameters. Also, it should model well enough
all the set of body con�gurations that a human body can exhibit while performing a
particular action, but not those postures which are not likely to be adopted during
such an action.

In addition, due to the direction cosines representation we are using 3 parameters
to determine only 2 DOF for each limb. Such representation generates a considerable
redundancy of the vector space components. Furthermore, the human body motion is
intrinsically constrained, and these natural constraints lead to highly correlated data
in the original space. Therefore, we aim to �nd a more compact representation of the
original data to avoid redundancy. To do this, we consider the training set of all the
postures belonging to an action, and perform Principal Component Analysis (PCA).

By applying PCA, a new orthogonal basis for the training data is computed, which
are the so-called eigenvectors of the data covariance matrix. Hence, all the training
postures are expressed as a linear combination of the new basis. Furthermore, the
vectors of the new basis coincide with maximum variance directions of the training
data. As a result, projections into that new space lead to an uncorrelated version of
the original data.

Usually, few eigenvectors describe the most of the variance of the training data, so
a lower dimensional version of the data is obtained which preserves the most amount
of information from it. Moreover, distances within the eigenspace provide a natural
way of measuring similarities between human postures. Furthermore, only plausible
samples are learned and new ones can be generated by modifying the existing ones
within the limits of the principal modes of variation.

Hence, the PCA-like space, hereafter the aSpace, is built from the recorded ex-
amples of human motion in order to capture the intrinsic characteristics of it. Subse-
quently, we detail the process followed for building this aSpace which has been done
for each individual action of the training set.

First, let us de�ne the training set for an action Ak as a collection of performances
for that particular action. A performance Ψi of an action consists of a time-ordered
sequence of body postures such as

Ψi = {ψ1
i , ..., ψ

Fi
i }, (4.1)

where i stands for the index of the performance Ψi of the action action Ak and Fi is
the total number of human postures of that performance.

As a result, we de�ne the complete training set of human postures for an action
Ak as:

Ak = {Ψ1, ...,ΨP }, (4.2)

where P refers to the overall number of training performances for this action. Each
posture ψji of a performance Ψi is of of dimensionality 36 × 1 corresponding to the
parameters of the human body model from Eq. (3.3). Therefore, the total number of
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training postures ψji , for an action k is determined by

NAk
=

P∑
i=1

Fi. (4.3)

The next step is concerned in building the action space by performing PCA on
the training data set. For each action Ak, we compute its covariance matrix as:

ΣAk
=

1

NAk

P∑
i=1

Fi∑
j=1

(ψji − ψ̄)(ψji − ψ̄)T , (4.4)

where NAk
refers to the overall number of postures for that action, and ψ̄ is the mean

human body posture for that action. Then, the eigenvectors un and the eigenvalues
λn of ΣAk

are calculated by solving the eigenvector decomposition equation:

λnun = ΣAk
un. (4.5)

Each obtained eigenvector un corresponds to a mode of variation of the data,
while its corresponding eigenvalue λn accounts for the variance explained by that
eigenvector. The full set of n eigenvectors constitute a new orthogonal basis spanning
an space where the data can be projected. However, by selecting only the �rst b
eigenvectors, a {u1,u2, ...,ub}, as the new basis, the original data can be re-expressed
in a lower dimensional space. Thus, b determines the dimensions of the action space
or aSpace.

The value of b is commonly set by eigenvalue thresholding. The overall variance
λT of the training samples that we keep is computed as the sum of the eigenvalues,
i.e.:

λT =
n∑
i=1

λi. (4.6)

For example, if we want to guarantee that the new representation of the data
keeps the 95% of the variance of the original data, we must impose that:∑b

i=1 λi
λT

≥ 0.95. (4.7)

Consequently there exists a direct trade-o� between the accuracy of the new
representation of the data, and the number of parameters needed to model it. That
is, the lower number of eigenvectors we choose, the lower dimensionality of the action
model is obtained at expenses of errors in reconstructing the original data.

Finally, all the training postures are projected to the PCA space, thus obtaining
a lower-dimensional representation of human postures for that action, i.e.

ψ̃ji = [u1, ...,ub]
T (ψji − ψ), (4.8)

where ψji refers to the original posture, ψ̃ji denotes the lower-dimensional version
of the human posture represented in the PCA space, [u1, ...,ub] is the PCA space
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transformation matrix that correspond to the �rst b selected eigenvectors, and ψ is
the mean of all the training postures. Subsequently, we denote the lower dimensional
version of a particular performance as Ψ̃i such as

Ψ̃i =
{
ψ̃1
i , ..., ψ̃

Fi
i

}
. (4.9)

We name the resulting PCA-like space as the aSpace [26] for a particular action.
Each dimension of the aSpace describes a natural mode of variation of human motion
while performing an action, resulting in a more suitable and compact representation
than the original 36-dimensional vector ψ from Eq.(3.3). Notice that, by choosing
di�erent values for b we result in models of more or less complexity in terms of their
dimensionality. Hence, while the gross-motion3 is explained by the �rst eigenvectors,
subtle motions require more dimensions to be considered in the aSpace representa-
tion. Therefore, choosing an appropriate value of b, and due to the use of real-life
training data, the model for human motion is restricted to plausible con�gurations,
thus avoiding non typical human postures and providing realistic deformations. An-
other very interesting property of the aSpace is that closer points between di�erent
manifolds correspond to similar human postures.

Figure 4.5 illustrates this concept by showing the human postures resulting of
varying the principal component found for 3 particular actions, namely the bending,
jumping and tumbling actions.

The walking action aSpace, hereafter the aWalk space, has been used to illustrate
the overall approach. In Fig. 4.6 we depict the modes of variation found for the
human posture along the three �rst components obtained from PCA. The �rst (a),
second (b), and third (c) eigenvectors of the mean posture are modi�ed from −3
to 3 times the standard deviation found in training postures. As we may observe,
the main motion present in the walking action is related to arms and legs, while
the motion of the torso is barely perceptible. Hence, the �rst dimension accounts
for the coupled motion between arms and legs, and most of the variance from the
training data (69.7%) is explained by this component. Notice that the right arm
moves accordingly to the left leg, and in an opposite manner to the pair composed of
the left arm and the right leg. In addition, the second and third components explain
the 8.5% and 8.2% of the variance present in the training set, and encode a more
subtle motion of legs and arms.

In addition, in Fig. 4.7 we show the �rst three dimensions of a performance of the
bending action projected into the aSpace. The performance has been sampled at 5
di�erent time steps (frames 1, 20, 50, 75 and 100) which are depicted by big red dots.
Their corresponding body postures are shown next to each dot. Similarly to other
action spaces, we can observe the fact that each dimension of the aSpace corresponds
to natural modes of variation of human gait. Moreover, the �rst dimensions are the

3mainly, the motion of the torso, legs and arms.
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(a)

(b)

(c)

Figure 4.5: Variation of the human posture within the aSpace space ex-
plained by the �rst principal component found for the bending (a), jumping
(b), and tumbling (c) actions.

(a) (b) (c)

Figure 4.6: Variation of the human posture within the aWalk space explained
by the �rst (a), second (b), and third (c) principal components.

most important ones, i.e. the dimensions which capture higher variance in the human
motion. Thus, it is natural that one main mode of variation corresponds to the fact
of bending the torso instead of small movements of hands. This fact is certi�ed by
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Figure 4.7: Bending action performance projected in the aSpace. The three
�rst dimensions are shown which correspond to the main three modes of vari-
ation of human motion. The postures from frames 1, 20, 50, 75 and 100 are
depicted in the curve by big red dots. Their corresponding sampled body
postures are also shown.

Figure 4.8: Jumping action performance projected in the aSpace. The three
�rst dimensions are shown which correspond to the main three modes of vari-
ation of human motion. The postures from frames 1, 32,45,60, 80, 90 and 100
are depicted in the curve by big red dots. Their corresponding sampled body
postures are also shown.

the postures shown in Fig. 4.7 and their corresponding position in the aSpace. One
can observe on the one hand, that both initial and �nal positions lie almost in the
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same place of the space: indeed, they are very similar postures. However, on the
other hand, when the subject is totally bent, the postures lie in the opposite part of
the �gure, i.e. the �rst dimension captures information about the �bendness� of the
torso.

Finally, we provide another example for the jumping action. The same situation
can be observed in Fig. 4.8 where the projections of a jumping performance have
been plotted. In this case, the manifold has been sampled at 7 di�erent time steps
(frames 1, 32,45,60, 80, 90 and 100). One can observe that as the subject is completing
the jumping action, the position of the posture in the aSpace moves from the left to
the right part of the �gure. In this case, the corresponding dimension expresses the
motion of the shoulder complex.

Summarizing, the aSpace has been proved suitable to represent human postures,
thus obtaining a lower dimensional representation for postures than the original hu-
man body model with some intrinsic interesting properties. First, similar human
postures lie in close points within the space. Then, each component of the space
corresponds to a natural mode of variation of human motion. Finally, the complexity
of the model can be selected by choosing the number b of dimensions of the aSpace
to keep.

4.3 Synchronization of the Training Set

As stated before, the training sequences have been acquired under di�erent condi-
tions and by di�erent actors, showing di�erent durations, velocities and accelerations
during the performance of a particular action. As a result, it is di�cult to put in cor-
respondence postures from di�erent sequences of the same action in order to perform
useful statistical analysis to the raw training data. Therefore, a method for synchro-
nizing the whole training set is used so that we can establish a mapping between
postures from di�erent sequences.

Inspired by techniques used in the stereo-matching and image processing liter-
ature [13, 68], we developed a novel dense matching algorithm based on Dynamic
Programming (DP), which allows us to �nd an optimal solution for synchronizing the
pre-recorded motion sequences of the same class in the presence of di�erent speeds
and accelerations. Towards this end, we �rst compute the similarity between each
pair of training sequences with a given metric. Then, in order to extract from the in-
put data set the best time scale pattern for synchronization, an intra-class minimum
global distance criterion is used. Finally, all performances are synchronized to the
computed time pattern. The detailed explanation of the process is as follows.

The projection of the training sequences into the PCA space constitutes the input
for our sequence synchronization algorithm. Before starting synchronizing the dataset,
all the performances are resampled, using cubic spline interpolation, so that all the
performances have exactly the same number of frames F . The longest performance
from the training set is chosen to be the one which determines the number of frames
F of the rest of the set.
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(a)

(b)

(c)

Figure 4.9: (a) Non synchronized one-dimensional sequences. (b) Linearly
synchronized sequences. (c) Synchronized sequences using a set of key-frames.
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Hereafter, we consider a multidimensional signal xi(t) as an interpolated expan-

sion of each training performance Ψ̃i =
{
ψ̃1
i , ..., ψ̃

F
i

}
such as

xi(t) = ψ̃fi if t = (f − 1)δf ; f = 1, ..., F ; (4.10)

where the time domain of each action performance xi(t) is [0, T ). Notice that all
the input sequences xi(t) have the same period T .

Before describing the full approach, let us introduce the problem by discussing on
di�erent strategies one could follow to synchronize 2 given signals, xn and xm with
di�erent periods.

Let us assume that the two considered signals correspond to the identical action,
but one runs faster than another (e.g. Fig. 4.9.(a)).

Then, under the assumption that the rates ratio of the compared actions is a
constant, the two signals might be easily linearly synchronized in the following way

xn(t) ≈ xn,m(t) = xm(ρt); ρ =
Tm
Tn

; (4.11)

where xn and xm are the two compared multidimensional signals, Tn and Tm are
the periods of the action performances n andm, xm,n is the linearly normalized version
of xm, hence Tn = Tm,n. Unfortunately, in real-world scenarios we rarely if ever have
a constant rate ratio ρ. An example, which is illustrated in Fig. 4.9.(b), shows that a
simple normalization using Eq.(4.10) does not give us the needed signal �tting, and
a nonlinear data synchronization method is needed. Further in this section, we shall
assume that the linear synchronization is done beforehand and all the periods Tn have
the same value T .

Instead, the nonlinear data synchronization could be done by

xn(t) ≈ xn,m(t) = xm(τ); τ(t)=

t∫
0

ρ(t)dt; (4.12)

where xn,m(t) is the best synchronized version of the sequence xm(t) to the se-
quence xn(t). In the literature the function τ(t) is usually referred to as the distance-
time function or rate-to-rate synchronization function.

The rate-to-rate synchronization function τ(t) satis�es several useful constraints,
i.e.

τ(0)=0; τ(T )=T ; τ(tk) ≥ τ(tl) if tk > tl. (4.13)

One common approach for building the function τ(t) is based on a key-frame
model. This model assumes that the compared signals xn and xm have similar sets of
singular points, that are {tn(0), . . . tn(p), ..tn(P−1)} and tm(0), . . . tm(p), ..tm(P−1)}
with the matching condition tn(p) = tm(p). The aim is to detect and match these
singular points, thus the signals xn and xm are synchronized.

However, the singularity detection is an intricate problem itself, and to avoid the
singularity detection stage we propose to use a dense matching algorithm. In this
case a time interval tn(p+ 1)− tn(p) is constant, and in general tn(p) 6= tm(p).
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The function τ(t) can be represented as τ(t) = t(1 + ∆n,m(t)). In this case, the
sought function ∆n,m(t) might synchronize two signals xn and xm by

xn(t) ≈ xm(t+ ∆n,m(t)t); (4.14)

Let us introduce a formal measure of synchronization of two signals by

Dn,m =

T∫
0

‖xn(t)− xm(t+ ∆n,m(t)t)‖ dt+ µ

T∫
0

∥∥∥∥d∆n,m(t)

dt

∥∥∥∥ dt. (4.15)

where ‖•‖ denotes one of possible vector distances, Dn,m is referred to as the
synchronization distance that consists of two parts, where the �rst integral represents
the functional distance between the two signals, and the second integral is a regular-
ization term, which expresses desirable smoothness constraints of the solution. The
proposed distance function is simple and makes intuitive sense. It is natural to assume
that the compared signals are synchronized better when the synchronization distance
between them is minimal. Thus, the sought function ∆n,m(t) should minimize the
synchronization distance between matched signals.

In the case of a discrete time representation, Eq.(4.15) can be rewritten as

Dn,m =
<P∑
i=0

|xn(iδt)− xm (iδt+ ∆n,m(i)δt)|2 + µ
<P−1∑
i=0

|∆n,m(i+ 1)δt−∆n,m(i)| ,

(4.16)

where δt is a time sampling interval. Eq.(4.13) implies

|∆n,m(p+ 1)−∆n,m(p)| ≤ 1, (4.17)

where index p = {0, . . . , P − 1} satis�es δt P = T .

The problem of synchronizing two multidimensional signals xn(t) and xm(t) is
similar to the matching problem of two epipolar lines in a stereo image. For stereo
matching a Disparity Space Image (DSI) representation is usually employed [13, 68].
The DSI approach assumes that a 2D DSI matrix has dimensions time p and and
disparity d, ranging from 0 ≤ p < P , and −D ≤ d ≤ D. Let E(d, p) denote the DSI
cost value assigned to each DSI matrix element (d, p) calculated by

En,m(p, d) = |xn(pδt)− xm(pδt+ dδt)|2 . (4.18)

Consequently, we formulate the synchronization task as an optimization problem
as follows: �nd the time-disparity function ∆n,m(p), which minimizes the synchro-
nization distance between the compared signals xn and xm, i.e.

∆n,m(p) = arg min
d

<P∑
i=0

En,m(i, d(i)) + µ
<P−1∑
i=0

|d(i+ 1)− d(i)| . (4.19)
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Figure 4.10: The optimal path trough the DSI trellis.

(a) (b)

Figure 4.11: The �rst b = 4 dimensions within the aWalk PCA space before
(a) and after (b) synchronization of the training set for the walking action.

The discrete function ∆n,m(p) coincides with the optimal path through the DSI
trellis as it is shown in Fig. 4.10. In other words, we must �nd the path whose sum of
cost values plus its weighted length is minimal among all other possible paths. This
is solved e�ciently by using the Dynamic Programming. The method consists of an
step-by-step control and optimization given by the following recurrence relation:

S(p, d) = E(p, d) + min
k∈0,±1

{S(p− 1, d+ k) + µ1d+ k1} ,

S(0, d) = E(0, d), (4.20)

where the scope of the minimization parameter k ∈ {0,±1} is chosen in accordance
with Eq.(4.17). By using that recurrence relation, the minimal value of the objective
function in Eq.(4.19) can be found at the last step of optimization. Next, the algorithm
works in reverse order and recovers a sequence of optimal steps (stored in a lookup
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tableK(p, d) for the values of the index k in the recurrence relation given by Eq.(4.20))
and eventually the optimal path, given by

d(p− 1) = d(p) +K(p, d(p)),

d(P − 1) = 0,

∆(p) = d(p). (4.21)

Finally, having found ∆n,m(p), the synchronized version of xm(t) to a base rate
sequence xn(t) might be calculated by

xn,m(pδt) = xm(pδt+ ∆n,m(p)δt). (4.22)

Summarizing, the dense matching algorithm that synchronizes two arbitrary hu-
man motion sequences xn(t) and xm(t) is as follows:

1. Prepare a 2D DSI matrix, and set initial cost values Eo using Eq. (4.18)

2. Find the optimal path trough the DSI using recurrence Eqs. (4.20), (4.21).

3. Synchronize xm(t) to the rate of xn(t) using Eq.(4.22).

Our algorithm assumes that a particular sequence is chosen to be a time scale pattern
for all other sequences. In order to make an optimal choice of the sequence that will be
used as the pattern for synchronizing the rest, a statistically proven rule according to
some appropriate criterion is desirable. Towards this end, we use the synchronization
distance between a pair of sequences (n,m) given by Eq.(4.16) to determine which
sequence from the training set will be used as the time pattern.

Hence, we compute the global distance of the full synchronization of all the se-
quences m relative to the pattern sequence n as

Dn =
∑
m∈Ak

Dn,m. (4.23)

Therefore, we choose the synchronizing pattern sequence n with minimal global
distance Dn: in a statistical sense, such signal can be considered as a median value
over all the performances that belong to the set of Ak or can be referred to as median
sequence.

Finally, after running the algorithm against the whole training set for each action,
all the performances Ψ̃i are synchronized and will be denoted hereafter as

Ψ̂i = {ψ̂1
i , ..., ψ̂

F
i }. (4.24)

Figure 4.11.(a) shows the �rst 4 dimensions of the input walking sequences rep-
resented in the PCA space without performing any synchronization. Figure 4.11.(b)
shows the same situation after applying the synchronization algorithm proposed here.
Notice that a common motion pattern arises after the synchronization step.
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4.4 Learning an action speci�c model of human mo-

tion

Once all the motion sequences share the same time pattern, we learn an action speci�c
motion model which will be used to improve the performance of a particle �lter
tracker. Towards this end, we want to learn where the postures lie in the aSpace,
how do they change over time as the action goes by, and what characteristics do
the di�erent performances have in common which can be used as a priori knowledge
within the tracking framework. In other words, we aim to characterize the shape and
the temporal evolution of the synchronized version of the training set for the action
in the aSpace. The learning process is detailed below.

First, we extract from the action training set Ak = {Ψ̂1, ..., Ψ̂P } a mean represen-
tation of the action by computing the so-called mean performance Ψ̄ = {ψ̄1, ..., ψ̄F },
where each mean posture ψ̄t is de�ned as

ψ̄t =
P∑
i=1

ψ̂ti
P
, t = 1, ...F, (4.25)

where ψ̂ti corresponds to the t-th posture from the i-th training performance, and F
denotes the total number of postures of each synchronized performance.

Additionally, to handle the cyclic nature of actions such as walking or running,
were applicable, we concatenate the last postures from each cycle with the initial pos-
tures of the most close performance according to a Euclidean distance criterion within
the PCA space. Then, the very �rst and last postures from the mean performance
are resampled using cubic spline interpolation to soft the transition between cycles.

Subsequently, we observed that there are parts of the action which are performed
in a very similar manner by all the subjects, while other parts do not. Furthermore,
there is also a dependency between the time step of the action, and the variation
from frame to frame among performances. Therefore, it makes sense to learn di�erent
parameters of the motion model depending on the time step of the segmented action.
This phenomena can be seen in Fig. 4.11.(b) for the case of the walking action.

Towards this end, we quantify how much the training performances Ψi vary from
the computed mean performance Ψ̄ of Eq.(4.25). Therefore, for each time step t, we

compute the standard deviation σt of all the postures ψ̂ti that share the same time
stamp t, i.e.

σt =

√√√√ 1

P

P∑
i=1

(ψ̂ti − ψ̄t). (4.26)

Fig. 4.12 shows the learnt mean performance Ψ̄ (red solid line) and ±3 times the
computed standard deviation σt (dashed black line) for the walking action. Only the
�rst b = 6 principal components from the aWalk space are represented in the �gure,
which explain the 93.3% of the total variation of training data.

Third, we are also interested in characterizing the temporal evolution of the action.
Therefore, we compute the mean direction of the motion vt for each subsequence of
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Figure 4.12: Learnt mean performance Ψ̄ and standard deviation σt for the
walking action.

d postures from the mean performance Ψ̄, i.e.

vt =
vt
‖vt‖

; vt =
1

d
·

t∑
j=t−d+1

(ψ̄j − ψ̄j−1)∥∥(ψ̄j − ψ̄j−1)
∥∥ , (4.27)

where vt is a unitary vector representing the observed direction of motion averaged
from the last d postures at a particular time step t. In our experiments for the walking
action, we used d = 10 as the length of the subsequences considered out of a mean
walking cycle length of F = 198 postures.

In Fig. 4.13, the �rst 3 dimensions of the mean performance are plotted to-
gether with the direction vectors computed in Eq.(4.27). Each black arrow corre-
sponds to the unitary vector vt computed at time t, scaled for visualization purposes.
Hence, each vector encodes the mean observed motion's direction from time (t − d)
to time t, where d stands for the length of the motion window considered. Addi-
tionally, selected postures from the mean performance have been sampled at times
t = 1, 30, 55, 72, 100, 150 and 168 and have been overlaid in the graphic.

Finally, we learn the expected error from the dynamic model at a given position
of the mean performance. Given that new particles will be propagated within the
PF following a �rst order motion model with Gaussian noise, we characterize the
expected error committed by the dynamic model as follows. First, for each training
sequence, we apply our dynamic model to every posture, and then we compute the
error observed w.r.t. the truly performed ones. Then, we store the covariance of
the error committed at each time step. Hence, di�erent parameters for the di�usion
model are learnt depending on the current time step within the walking cycle.

The step by step process is as follows. First, for each posture ψ̂ti of each training
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Figure 4.13: Sampled postures at di�erent time steps, and learnt direction
vectors vt from the mean performance for the walking action. Note that the
vectors have unit length and have been rescaled for visualization purposes.

Figure 4.14: Prediction expected error at each step of the mean performance.
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performance Ψ̂i, we predict a posture ψ̆
t+1
i for time t+ 1 using the velocity observed

in the mean performance at the corresponding time instant, i.e.

ψ̆t+1
i = ψ̂ti + (ψ̄t+1 − ψ̄t), (4.28)

where (ψ̄t+1 − ψ̄t) is the observed velocity from the mean performance at time t.

Then, we compute the error between the predicted posture ψ̆t+1
i and the real

posture from the training set at time (t + 1) as eti = |ψ̂t+1
i − ψ̆t+1

i |. Doing this for
all the postures from all the training performances we end up with P error measures
per each time step t, i.e. et = (et1, ..., e

t
P ). Then, we characterize the error committed

by the constant velocity model by learning the error covariance matrix for each time
step, i.e.:

Σt = E
[
(et − E(et)) (et − E(et))

T
]
, (4.29)

where Σt is the covariance matrix computed at time t, et is the error committed
by the assumed �rst order motion model for all the training sequences, and E (•)
is the expectation of a distribution. The computed covariance matrices Σt are used
for characterizing a Gaussian di�usion model in the stochastic search process in our
tracking approach. Fig. 4.14 shows 100 samples from each Gaussian distribution for
the di�usion model centered at their corresponding posture from the mean perfor-
mance. Hence, we characterize di�erent distributions for each posture from the mean
performance. This results in an adaptive-noise term within the particle �lter which
improves the e�ciency of this stochastic search process as opposed to �xed-di�usion
models.

Finally, the action-speci�c motion model ΓAk
is de�ned as

ΓAk
= {Ψ̄, σt,vt,Σt}, t = 1..F, (4.30)

where Ψ̄ is the mean performance for the action Ak, and σt,vt,Σt correspond to the
computed standard deviation, mean direction of motion and covariance matrix of the
error at time step t, respectively.

In Fig. 4.15, we plot the computed mean performance (solid red line) and standard
deviation (dashed black line) for the jumping, kicking, sitting, squatting and tumbling
actions. Only the �rst three dimensions of the aSpace are shown indicating the amount
of variation from the original data explained by each.
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Figure 4.15: Learnt mean performance Ψ̄ and standard deviation σt for the
jumping, kicking, sitting, squatting and tumbling actions.





Chapter 5

The Tracking Framework

In this chapter, we describe the probabilistic framework used to face the body tracking
problem. As stated before, the tracking is formulated as a Bayesian inference task, in
which the posterior distribution over the model parameters is estimated at each time
step, given the evidences available up to that moment. Therefore, in the �rst place,
we will introduce the Bayesian �ltering approach in general terms. Subsequently, we
will give the basis of Particle Filtering as a technique to approximate the pdf over
the human body model parameters at each time step, and its application to human
body tracking. In the third place, we will detail the use of the learnt action models
within this framework to improve tracking performance.

5.1 Introduction to Bayesian Filtering

In visual tracking, the process of sequentially estimating the parameters of a model
of a target over time from visual data is known as a model-based tracking task.

Typically, model-based visual tracking processes follow the cycle represented as a
�ow chart on Fig. 5.1 [61]. The state of the object for the next time step is projected
forward according to a dynamical model and all the information extracted up to the
current step. Then, the model is projected into the image plane in order to match the
prediction to the image and establish a measure of �tness between the predicted state
and the image data. This steps may be repeated until the model state successfully
matches the image data for each frame, and �nally the predictions are re�ned and a
new state is calculated.

In this work, the problem of estimating the full-body's 3D model parameters over
time is faced as a model-based tracking approach formulated as a Bayesian �ltering
problem.

The Bayesian formulation of the problem consists of a probabilistic inference task
whose aim is to estimate the posterior pdf of the model parameters at each time step
(the state1 of the tracked object) from a sequence of measurements available (image

1The state of an object de�nes a particular con�guration for a given representation for
such an object.

63
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Figure 5.1: Model based tracking cycle [61].

data) up to that moment. Hence, the posterior pdf represents the sum of knowledge
regarding the state of the tracked object from frame to frame.

The key idea of Bayes �lters is to sequentially estimate the beliefs over the state
space conditioned on the measurements (i.e. the images) obtained at each time step.
The state at time t is represented by random variables φt, and the uncertainty about
the real state of the object is represented by a probability distribution over the model
parameters φt given the evidences available up to that moment (i.e. a sequence
of images It), hereafter the posterior pdf p(φt|It). In other words, the posterior
pdf provides an answer to the question: �What is the probability that the model is
parametrized as φt given the history of images is It, for all possible parametrizations
of φt ?�.

The Bayesian formulation for the tracking problem (Eq.(5.1)) is derived as follows:
The posterior p(φt|It) at time t can be expressed as a marginalization of the joint

posterior probability p(~φt|It) over all parameters ~φt = [φ0, ..., φt], given all the images
It up to that moment:

p(φt|It) =

∫
p(~φt|It) dφ̃t−1.

By introducing a �rst-order Markov assumption, i.e. the state φt at time t is
assumed to depend only on the state φt−1 at time t− 1, the previous expression can
be reduced to:

p(φt|It) =

∫
p(φt, φt−1|It, It−1) dφt−1.

Now, using Bayes' rule, and assuming independence from frame to frame, we
reformulate the equation as:

p(φt|It) =

∫
p(It|φt, φt−1)) p(It−1|φt, φt−1) p(φt, φt−1)

p(It) p(It−1)
dφt−1.
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Taking into account that It conditioned on φt is independent of φt−1, and It−1 is
independent of φt, the above expression can be further simpli�ed to:

p(φt|It) =

∫
p(It|φt)
p(It)

p(φt|φt−1)
p(It−1|φt−1) p(φt−1)

p(It−1)
dφt−1.

Notice that k = 1/p(It) is constant with respect to the model parameters φ. By
applying Bayes' rule again to the last term of the integrand, we obtain

p(φt|It) =

∫
k p(It|φt) p(φt|φt−1) p(φt−1|It−1) dφt−1

= k p(It|φt)
∫
p(φt|φt−1) p(φt−1|It−1) dφt−1.

Thus, using the Bayes' rule, we formulate the computation of our model param-
eters over time as [7]:

p(φt|It) = k p(It|φt)
∫
p(φt|φt−1) p(φt−1|It−1) dt , (5.1)

where φt represents a particular pose of the human body at time t, It is the
image sequence up to time t, k is a normalizing factor, p(It|φt) is the likelihood of
observing the image It given the parametrization φt of our model at time t, and �nally
p(φt|φt−1) is the temporal prior, or dynamic model in this work.

Eq. (5.1) can be split in two di�erentiated parts which divide the estimation
problem in two steps, i.e. the term outside the integral corresponds to the update
step, and the whole integral can be referred to as the prediction step. The distribution
p(It|φt) is the likelihood of observing the image It given the model parameters φt. The
prediction part of the equation, i.e. the integral, can be in turn understood as the
product of two terms: p(φt−1|It−1) which is the posterior pdf at the previous time
step, and the temporal prior p(φt|φt−1) or human dynamical model in this work which
propagates the posterior distribution from time t − 1 to time t. In other words, the
dynamical model de�nes how human postures evolve over time.

Thus, the aim is to recursively estimate the parameters of the human body model
φt at time t given the sequence of images It up to that moment by computing the
posterior pdf p(φt|It) over the model parameters at each time step. Unfortunately,
Eq.(5.1) relies on an integral which cannot be analytically calculated unless strong
assumptions about Gaussianity and linearity on the involved distributions are made.
When both the temporal prior and the likelihood pdfs follow a Gaussian distribution,
the Kalman �lter (KF) [38] provides the optimal solution yielding an also Gaussian
distribution of the posterior. The Kalman �lter can also be seen as an optimal recur-
sive estimator for linear systems, considering the likelihood and the posterior linear
functions which de�ne the �tness of the model to the data and the transition from
state to state. The Extended Kalman Filter (EKF) [7, p. 106] improves the perfor-
mance of the simple KF on non-linear systems by linearizing the non-linear models
before applying the KF algorithm, thus obtaining Gaussian posteriors too. A more
re�ned approach is the Unscented Kalman Filter (UKF) [36] which uses a set of dis-
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cretely sampled points to parametrize the mean and covariance of the posterior pdf.
However, there is still an assumption about the Gaussianity of the posterior distri-
bution, and this may be a too strong assumption for applications such as ours where
the involved models are highly non-linear leading to a multi-modal and non-Gaussian
posterior distribution.

Alternatively, such distributions can be propagated over time by using particle
�ltering techniques [5], which constitute the most general class of �lters which are
based on Monte Carlo integration methods. The current posterior distribution is
approximated by a weighted set of random samples or particles. The new posterior
pdf is computed based on these particles and their weights, and no assumption about
Gaussianity on any of the involved distributions is needed.

5.2 Particle Filtering in human motion tracking

As stated before, the recursive Bayesian �lter provides the theoretical optimal solution
to the tracking problem represented by Eq.(5.1). However, as illustrated in section 1.3,
human body tracking presents several characteristics which makes the tracking task
di�cult. Mainly, due to occlusions and self-occlusions, 2D-3D projection ambiguities,
changes in appearance and shape and non-linearity of human motion, the involved
distributions results highly non-Gaussian.

Therefore, given that Eq.(5.1) cannot be analytically solved for non-Gaussian
distributions, we can approximate the true posterior distribution p(φt|It) instead by
means of a particle �lter [34, 5]. Particle �lters belong to a set of simulation-based
methods named Sequential Monte Carlo methods [19] which provide a convenient and
useful approach for computing the posterior distributions.

In a particle �ltering framework, the posterior distribution at time t is represented
by a weighted set of samples or particles. Each particle corresponds to a particular
human posture, and has its own probability of being propagated over time depending
on its weight. If a particle is selected to be propagated at time t, a transition model
or dynamic model is used to predict the new location in the parameter space at time
t+ 1, i.e. the new con�guration at the following time step.

Using a particle �lter to solve the estimation problem is motivated mainly because:

� it can approximate non-Gaussian posterior pdfs: human limbs motion su�er
from large non-uniform accelerations while performing an action, resulting in
non-linear human dynamics. Moreover, self-occlusions, 2D-3D ambiguities and
singularities make the density function to be estimated highly non-Gaussian
and multi-modal.

� it provides us a principled way to incorporate a priori knowledge about human
motion dynamics by means of a dynamic model: human dynamics happen to be
highly correlated, so by introducing this knowledge into the tracking process we
can restrict the search space only to the most plausible con�gurations, making
the tracking more robust and e�cient.

� it establishes a method for naturally keeping multiple hypotheses about the
performed motion: due to the inherent ambiguity between 2D projections of
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human postures, there are a lot of actions which share similar postures, and
a lot of postures which share similar 2D projections. Thus, it is necessary
to enable a way for considering multiple possible con�gurations which can be
estimated from the image data.

In this work, each particle φst represents a particular 3D body con�guration. Then, a
normalized weight πst is assigned to each particle depending on how likely is the body
posture that it represents to be found on the image It.

The sequential estimation method works as follows: the posterior pdf at time
t − 1 is represented by a weighted set of N samples, i.e.

{
φst−1, π

s
t−1; s = 1 : N

}
.

Each weight πst−1 corresponds to the normalized likelihood value for each sample φst .
Then, the posterior pdf for the next time step is obtained according to the following
procedure:

1. N new particles are sampled from the posterior pdf at time t− 1 using Monte
Carlo sampling, i.e. the normalized weight πst−1 of each particle is equal to
the probability of selecting that particular particle s as the new sample. It can
be proven that when N → ∞ the sampling is equivalent to the true posterior
distribution p(φt−1|It−1).

2. Then, each new sampled particle is propagated in time by applying the dy-
namic model to it. In other words, the temporal prior p(φt|φt−1) is sampled,
thus obtaining a set of N new particles for the next time step, i.e. {φst}. These
N new samples now represent the prior distribution over φt, i.e. p(φt|It−1).
This step usually comprises some sort of di�usion process where some noise is
added to the prediction in order to represent the growth of uncertainty from
frame to frame about the model parameters, so the space of solutions is su�-
ciently explored and non-possible con�gurations about the human body pose
are omitted.

3. For each particle φst its weight π
s
t is computed by evaluating the likelihood func-

tion p(It|φt) given that particular sample and image. The normalized likelihood

πst is computed as πst = p(It|φst )/
∑N
s′=1 p(It|φs

′

t ). Finally, the current posterior
pdf is approximated by the sampled particles plus its corresponding normalized
weights, i.e. {φst , πst ; s = 1 : N}. In other words, the likelihood function evalu-
ates the �tness of the predicted particle to the measurements available which
determines the particle's weight, and thus, its probability of being propagated
to the next time step.

Figs. 5.2 and 5.3 illustrate the procedure described above in a more graphical
manner. Fig. 5.2 shows the key idea behind the approximation of the posterior (solid
line) by a weighted set of samples (full circles below the graphic). The solid line
on the upper part, represents the true posterior distribution p(φt−1|It−1) over the
parameters φt of a 1D model. On the bottom of the �gure, we �nd the scheme which
describes how the true pdf is approximated by particles or samples: each sample is
represented by a circle whose size and position correspond to its normalized weight
and its position in the parameter space respectively.

In addition, Fig. 5.3 illustrates the propagation procedure of the posterior from
frame to frame. The process has been divided in the three main steps previously



{ τ st , φst ; s = 1 : N }
τ st

t�1

t
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5.2.1 Final state estimation

We have seen that particle �lters are useful for approximating and propagating the
posterior distribution about the target model parameters, i.e. φt, at each time step.
However, for many applications, we may need to take a decision and determine a
particular state of our tracked object at a given time step. There are several criteria
one could follow. For example, one option is to select the particle that maximizes the
likelihood at each time step:

φ̂t = {φs0t | s0 = arg max
s
πst}, (5.2)

where φ̂t represents the estimated state of our parameters at time t. However, this
approach has several drawbacks. On the one hand, if not enough particles are used,
the estimations for successive time steps tend to �jump around� since the approxima-
tion of the posterior pdf is too erroneous and full of spurious modes. On the other
hand, an image-based likelihood may present multiple-modes, high peaks, etc. due
to changes in the appearance model, shape and appearance ambiguities, etc., making
the maximization likelihood criterion not stable and reliable over time. Consequently,
an approach that takes all the particles into account is preferred. Thereby, we use
the expected value of the distribution as the estimated state for each time step, i.e.:

φ̂t = E [φt] =

N∑
s=1

πstφ
s
t . (5.3)

Notice, that Eq. (5.3) provides a good summary for the distribution if the pos-
terior is uni-modal. Otherwise, even though the estimated state may be totally erro-
neous, the distribution is properly propagated over time.

5.2.2 Choosing the number of particles

The use of particles for representing the posterior brings a very powerful tool for
representing complex posterior distributions, since they don't involve any assumptions
about Gaussianity, uni-modality, or linearity. However, the number of parameters to
be computed at each time step is huge in comparison to other methods such as the
basic KF where the posterior is represented by only its mean and covariance. For
these reasons, a drawback of particle �lters is the high computational cost which
directly depends on the number of particles used to represent the posterior. Hence,
the computational complexity for computing each time step is O(N), being N the
number of particles used.

According to McCormick and Isard [50], the number of needed particles depends
on both the dimensionality of the search space, and the shape of the distribution. In
our case, we aim to estimate the con�guration of a high articulated structure, which
spans a search space with a rather large volume. Moreover, human dynamics results
in complicated shapes of the posterior distribution. Therefore, a large value for N is
needed, which outcomes high computational costs for properly estimating the model's
parameters. On the one hand, too low values for N will lead to either not enough
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accuracy while tracking the target, or even loosing it eventually. On the other hand,
too high values for N nevertheless result in unnecessarily wasted computational cost,
which is a critical issue for real-time tracking applications.

Therefore, setting the number of needed particles is a though task, although in
[50] a relation for N regarding the dimensionality of the space and the sharpness of
the posterior distribution is derived:

N ≥ Dmin
βb

,

where the exponent b corresponds to the dimensionality of the parameter space,
Dmin stands for the minimum acceptable number of particles to survive the sampling,
and β is the survival rate, being β � 1. Basically, the survival rate β is related to the
shape of the posterior and prior distributions, and measures how well the posterior is
predicted at each time step. Notice that as β decreases, N grows up exponentially.
Generally, distributions with sharp peaks and noise lead to lower values of β, thus
demanding of a higher number of particles to be properly represented and propagated.

It is remarkable that there exists a trade-o� condition between the number of
particles used and the accuracy of the estimations made, or in other words, more
accuracy accounts for more computational cost. Nevertheless, it is worth saying that
implementations of particle �lters are fully parallelizable due to their particle nature.
The calculations for the propagation, di�usion and evaluation of each particle could
be performed in parallel since there are no dependencies between them.

As a result, within this work, the number of particles is set empirically by run-
ning several tracking tests varying the number of particles used and analyzing its
performance.

5.3 Using the Action Models to improve tracking

performance

In the previous section, we've introduced a general PF framework applied to human
body tracking. However, although it has been widely used within this application
context [18, 50, 71], it su�ers from a signi�cant number of problems as stated in
section 2.2. This work is aimed to leverage these problems by introducing two main
contributions within the prediction step of the PF: an e�cient dynamic model for
predicting human postures, and the constraint of the state space to the most plausible
solutions. Thus, particle wastage is avoided and robustness is added to the overall
tracker compared to a standard PF with a generic motion prior.

As a result, the prediction stage works as follows: each selected particle φnt is
propagated over time according to these 3 steps:

1. Identify which part of the learnt mean performance Ψ̄ from Eq. (4.25) is more
similar to φnt . Thus, we probabilistically match the particle φnt and a subse-
quence of the last estimated motion history against all the subsequences from
Ψ̄ having the same length.
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2. Propagate the particle over time by means of a 1st order motion model and a
Gaussian di�usion term whose parameters are retrieved from the action model
at the time instants that matched the mean performance.

3. Constrain the possible solutions to feasible postures according to the learnt
action model at the matched time instant. If the predicted posture is considered
to be invalid, the prediction is wasted, and a new particle is stochastically
selected from the particle set representing the posterior pdf. Then, start over
with step 1 until a prediction is accepted.

In the following subsections a detailed explanation of each step is given. In addition,
the full posterior's propagation process can be found in Algorithm 5.1.

5.3.1 Probabilistic Match

Our probabilistic matching approach aims to identify which part of the mean per-
formance is more similar to the current particle. On the one hand, we de�ne the
subsequence of estimated motion to be matched at time t, by concatenating the cur-
rently selected particle with the last (d− 1) estimated postures of the motion history,

i.e. Φnt = (φ̂t−d+1, ..., φ̂t−1, φ
n
t ).

On the other hand, we de�ne a motion subsequence of length d from the mean
performance at time instant i as Ψ̄i = (ψ̄i−d+1, ..., ψ̄i−1, ψ̄i).

Then, abusing the notation, we de�ne a similarity measure between 2 motion sub-
sequences of length d within the aSpace, namely Ψ̄ = {ψ̄1, ..., ψ̄d} and Φ = {φ1, ..., φd},
as

S(Ψ̄,Φ) = exp
(
−DM (Ψ̄,Φ)

) [ (vΨ̄ · vΦ) + 1

2

]α
, (5.4)

where · stands for the dot product between the average motion direction vectors vΨ̄

and vΦ from Eq.(4.27), and DM is the sum of the Mahalanobis distances within the
aSpace space between each subsequences' postures ψ̄j and φj , j = 1..d.

This similarity measure is composed of two terms. The exponential term accounts
for the spatial proximity between postures within the aSpace, while the dot product
term expresses similarity w.r.t. directions of motion across time, regardless the body
postures exhibited. The exponent α is introduced to balance the importance of each
term in the �nal similarity computation: high values for α leads to high similarity
between sequences sharing the same motion direction, while low values will take more
into account the position of their postures within the aSpace. Therefore, this similar-
ity metric is a trade o� between sequences that exhibit similar motion directions and
sequences with similar postures within the aSpace according to a Mahalanobis dis-
tance criterion. The key idea is that close sequences which follow the same direction
get high scores, while sequences that do not match in motion direction or position are
given low similarity scores. Notice also, that S(Ψ̄,Φ) ∈ [0, 1].

Finally, we probabilistically match Φnt to a subsequence from the mean perfor-
mance Ψ̄ by computing the similarity sti between Φnt and all the possible subsequences
Ψ̄i from the mean performance as sti = S(Ψ̄i,Φ

n
t ), i = 1..F, and then randomly se-
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(a) (b)

(c) (d)

Figure 5.4: Similarity between motion subsequences of the aBend and aKick
actions. In (a) and (b) a motion subsequence from the aBend action is com-
pared to all the subsequences from the mean performance. Similarly, in (c)
and (d) the same comparison is done for the aKick action.

lecting a matching sequence Ψ̄i with probability

p(Ψ̄i|Φnt ) =
sti∑F

i=1 s
t
i

, i = 1..F, (5.5)

where F is the total number of postures from the mean performance.

Alternatively, one could opt for a deterministic matching approach by selecting
the subsequence Ψ̄i which maximizes the similarity sti. However, in case p(Ψ̄i|Φnt )
is multimodal, only the mode with highest similarity would be selected, thus loos-
ing the remaining ones. Furthermore, the extension to multiple action models is
straightforward given the probabilistic de�nition of the matching process. Hence, the
multimodality introduced in p(Ψ̄i|Φnt ) by similar postures shared between di�erent
action models is kept by the approach. In such case, the cost of matching for a time
step of the PF tracker is N ·

∑K
i=1 Fi, where N is the number of particles used, and

Fi is the number of postures of the mean performance for the action i out of a total
of K actions.
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Figure 5.4 illustrates the behaviour of the given similarity measure. Hence,
S(Ψ̄,Φ) has been computed for 2 di�erent subsequences of the aBend and aKick
actions against all possible subsequences from their mean performance. For visualiza-
tion purposes, the �nal posture of the matched subsequence is overlaid on the upper
right corner of each �gure. Also, some selected postures from the mean performance
are plotted. For instance, in Fig. 5.4.(a) a motion subsequence from the beginning of
the bending action is compared to all the subsequences from its mean performance.
As expected, from the one hand, higher scores are obtained on the very �rst postures
from the mean performance which correspond to an almost standing posture going
towards the �oor. On the other hand, totally bent postures in the middle of the
performance get a score of 0 because they are completely di�erent from the compared
subsequence. Then, the similarity grows up again by the end of the action given that
these postures correspond to an almost standing posture. Interestingly, although they
are indeed very similar postures, their score is much lower than in the beginning of
the action due to the di�erence w.r.t. their direction vectors. In Fig. 5.4.(b) a pos-
ture from the middle of the action is compared instead. Analogously, the similarity
of subsequences from the aKick action is shown in Fig. 5.4.(c) and (d).

5.3.2 Dynamic Model de�nition

Within the prediction step of the PF, we project forward the particle set representing
the posterior at time (t − 1) by drawing new samples φnt from the dynamic model
p(φt|φt−1) of Eq.(5.1). Following the approach described by Sidenbladh in [71], we
extend the state space to store the history Φt−1 = (φt−1, ..., φt−d) of the last d es-
timated postures, and sample from the conditional distribution p(φt|Φt−1), instead
of considering only the last posture φt−1. Finally, given Φnt−1, new samples φnt are
computed as

φnt = φnt−1 + (ψ̄i+1 − ψ̄i) + η(Σi+1), (5.6)

where i is the index of the motion subsequence from the mean performance which
probabilistically matched Φnt−1 according to Eq.(5.5). Hence, (ψ̄i+1− ψ̄i) corresponds
to the velocity present in the mean performance Ψ̄ (Eq.(4.25)) at the matched sub-
sequence, and η(Σi+1) is a zero-mean Gaussian noise function with covariance Σi+1

learnt computing Eq.(4.29). Therefore, by sampling from the prior p(φt|Φt−1) a par-
ticle is propagated by a �rst order motion model that uses the learnt velocity and
error's covariance from the matched subsequence Ψ̄i of the mean performance. Thus,
a priori knowledge on human motion is used to guide the exploration of the state
space.

It is worth mentioning that as a result, on the one hand we achieve a more ef-
�cient use of the particle set compared to more generic dynamic models as long as
both the training and testing sequences belong to the same class of motion. On the
other hand, a poor estimate could be obtained from the mean performance in case the
motion to be tracked is too di�erent from the learnt model, or its framerate di�ers too
much from the framerate of the training sequences. While the former would require
training the system with examples of this kind of motion, the latter is accommodated
by the present approach as long as the framerate di�erence is not too large. This is
due to the probabilistic matching approach, and the nature of the particle �ltering
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framework. Hence, although in the presence of substantial framerate di�erences be-
tween the testing sequence and the mean performance, the �nal matching probability
is still maximum between the most similar subsequences, since its similarity scores
are normalized in Eq. (5.5). Then, the Gaussian di�usion term from Eq.(5.6) and
the stochastic nature of the particle �ltering framework contribute in accommodating
the prediction error, up to a certain limit.

5.3.3 Constrained solution space

After new postures are sampled, we apply a �ltering step which discards predicted
particles which do not correspond to feasible human postures according to our action
model. Hence, given the matched subsequence Ψ̄i = (ψ̄i−d+1, ..., ψ̄i−1, ψ̄i) we deter-
mine that a particular posture φt lies within the variation bounds accepted for the
action if

|φnt,j − ψ̄i+1,j | < k1 · σi+1,j , ∀j = 1..bfilt, (5.7)

where φnt = (φnt,1, ..., φ
n
t,b)

T is the b-dimensional predicted particle representing a

particular body posture in the aSpace. In addition, ψ̄i+1 = (ψ̄i+1,1, ..., ψ̄i+1,b)
T is the

next posture to Ψ̄i, i.e. the immediately following posture from the mean performance
which probabilistically matched the current particle according to Eq.(5.5). Then,
σi+1 = (σi+1,1, ..., σi+1,b) stands for the learnt standard deviation for the i-th posture
of the matched subsequence. Subsequently, k1 is a scale factor for the variance allowed.
Hence, too small values for k1 lead to accepting only postures almost equal to the
ones stored in the mean performance Ψ̄. Typically we set k1 to 3, thus including the
99.73% of variation of the training set.

Finally, bfilt determines the number of dimensions from the aSpace considered
for �ltering. Notice that bfilt ≤ b, where b is the total number of dimensions in the
aSpace (Eq.(4.8)). While the accuracy of the representation is a matter of as more
dimensions the better, by not using all the b dimensions for �ltering, we allow to
track subtle motions which were not present in the training set, while �ltering out
non-likely postures according to the most important modes of variation found for the
action. Hence, bfilt controls the trade o� between generality and speci�city of the
�ltering method. For instance, in our experiments for the walking action, we achieved
better results setting bfilt = 3 and b = 5.

Therefore, the approach is as follows: given a selected particle φnt−1 to be propa-
gated, we use the dynamic model de�ned in Eq. (5.6) to obtain a new sample. Then,
if the new sample is not accepted according to Eq.(5.7), this particle is dropped and
a new one is stochastically selected. Then, the propagation process is restarted until
a prediction is accepted.

By removing the particles which are not accepted we modify the particle set repre-
senting the posterior distribution. Thus, after this process, they are not representing
that distribution anymore, but a pruned version of the posterior pdf, since indeed,
the posture �ltering step can be seen as a pruning of the state space where parti-
cles live. An alternative to dropping rejected particles, which does not modify the
convergence results of the PF, is to sample additional particles by importance sam-
pling until enough accepted particles are achieved. However, such a method requires



5.4. UPDATING THE PREDICTIONS 75

computing the likelihood of each extra sampled particle, which is usually the most
computationally expensive part of a PF framework. Consequently, being aware that
we are sampling from a pruned version of the posterior pdf, in this work we implement
the particle removal method and show that also good tracking results are obtained
by dropping beforehand those predictions which are not likely to appear during the
performance of a particular action.

5.4 Updating the predictions

Once the particle set {φnt−1} has been propagated from t − 1 to t, the predictions
are updated assigning a weight to each particle corresponding to the �tness of the
predicted posture to the evidences available at time t. This is done by evaluating
the likelihood function p(It|φt) from Eq.(5.1) for each particle from the set {φnt }.
Then, the computed weights are normalized, obtaining the posterior representation
{φnt , π̄tn} at time t.

As discussed in chapter 2, there exists a great number of approaches in the lit-
erature that aim to �nd suitable likelihood functions that model well enough the
probability that an image It explains the target state φt. However, many of them re-
quire to compute image-based measures for each particle to determine the probability
of the image given the particle, which usually constitutes the most time consuming
step of particle �lter trackers. In addition, a lot of research e�ort has also been done
on characteristic 2D point detectors [4, 8, 49, 79] and the extraction of statistically
relevant features from 2D or 3D patches in images [44, 21, 48, 43, 37], suitable for ac-
tivity recognition. Body limb detection methods also retains popularity in the vision
community and indeed there exist many works which extract the whole 2D position
of body joints from images with relative success [65, 47, 51].

Consequently, in this work we assume that there exists a method for detecting a
rough approximate of the 2D position of some body joints given an input image. We
also assume that this detection stage produces noisy results, since typically, only a
reduced set of joints is observable at each time step. In particular, the head, hands
and feet are easily visible, so �nding an approximate of their 2D position in some
frames might be a feasible task. Summarizing, we assume that this detection method
is executed once per each frame, and that its output is noisy and incomplete. The
output from this detection stage at time t is composed of a set of 2D image coordinates,
and is denoted as XDS

t = (xDS1 , ..., xDSD ) where D stands for the number of detected
joints.

Given the previous assumption, we compute each particle likelihood as follows.

First, we reconstruct the human body posture encoded by each particle. Hence,
given a predicted particle φnt in the aSpace, we project it back to the original 36-
dimensional representation and divide each limb's direction cosines vector by its norm,
so that the restriction (cos θxl )2 + (cos θyl )2 + (cos θzl )2 = 1 is satis�ed. Then, we
compute the 3D absolute positions of each joint j from the human body model and
project it to the image plane according to the camera's projection matrix. As a result,
a set of 2D image coordinates are obtained, which correspond to the projection of the
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human body joints. The resulting vector is denoted as

Xt = (x1, ..., xJ), (5.8)

where J is the number of virtual markers composing the human body model.
Finally, a mapping between detected and estimated joints is computed. For our

tests, we used a simple Nearest Neighbor (NN) criteria for de�ning this mapping.
Let's de�ne the mapping function as

mj,d =

{
1 if joint xj matches with x

DS
d

0 otherwise
. (5.9)

Subsequently, we de�ne a likelihood function based on a distance between the
detected 2D positions from the detection stage, i.e. XDS

t , and the reconstructed and
projected 3D joints positions encoded by the particle, i.e. Xt. Formally, the likelihood
of observing the evidences It given the predicted particle's φnt corresponding posture
is de�ned as

p(It|φt) ∝ e−γ·
∑J

j=1

∑D
d=1mj,d·dist(xj ,x

DS
d ), (5.10)

where dist stands for the Euclidean distance between the joint position xj from
the predicted posture and the detected joint position xDSd from image data, weighted
by the mapping function mj,d. Additionally, γ is a scale factor which determines the
�peakiness� of the likelihood function, with a direct impact on the particle survival
rate. Hence, the higher γ is, the higher is the di�erence between the probability of
the most likely and the most non-likely postures. In our experiments, γ = 80 showed
to be a good trade o� for keeping a balanced particle set to represent the posterior
pdf for the tested sequences.

In addition, it should be noted that this likelihood de�nition is mainly aimed for
monocular image based tracking where 2D measurements from the image sequence
are available. However, it could be easily employed in a multicamera setup, by using
the 3D joint positions estimated from the individual 2D detections by triangulation.
Hence, in such scenario, each particle likelihood could be computed analogously by
evaluating p(It|φt) but using 3D joint positions when de�ning Xt and XDS

t .
Finally, this work assumes that the tracker has been already initialized, i.e. that

we know the �rst d 3D body postures from the performed motion. Notice that this
framework can be combined with direct 3D body posture inference methods that
use 2D body shape information extracted from monocular video images [65]. Such
methods perform well with postures having low 2D/3D ambiguity which are suitable
to be used for initializing the tracker and recovering from critical failures.

The pseudo-code for propagating the posterior estimation over time is shown in
Algorithm 5.1.
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Algorithm 5.1 Pseudo-code of the posterior's propagation algorithm over
time.
� for t=d, .., T

� for n=1, .., N

1. Select a particle to be propagated according to its weight
* Draw n′ ∼ {1, ..., N} such that p(n′ = i) = π̄i

t−1, i = (1, 2, ..., N)

2. Propagate the selected particle φn′
t−1

(a) Build Φn′
t−1 = (φ̂t−d, ..., φ̂t−2, φ

n′
t−1)

(b) Probabilistically match Φn′
t−1 with a motion subsequence Ψ̄i of the

same length from the mean performance

i. Compute sn
′

i = S(Ψ̄i,Φ
n′
t−1), i = (1, 2, ..., T ) using Eq.(5.4)

ii. Stochastically select Ψ̄i with matching probability p(Ψ̄i|Φn′
t−1) given

by Eq.(5.5)

(c) Predict a new particle φn
t using the dynamic model, Eq.(5.6)

* φn
t = φn′

t−1 + (ψ̄i − ψ̄i−1) + η(Σi)

(d) Constrain the solution space by �ltering out non-feasible predictions
according to Eq.(5.7)

i. Compute deviation between the predicted particle φn
t and the last

posture ψ̄i from the matched sequence Ψ̄i of the mean performance
* ∆n

t = |φn
t − ψ̄i| = (∆n

t,1,∆
n
t,2, ...,∆

n
t,bfilt

)

ii. Check if the particle is accepted by the action model

if (∆n
t,j < k1 · σi,j) ∀j = 1..bfilt (posture lies within

the boundaries)
* Accept the prediction φn

t for this particle and pro-
ceed on propagating the next particle.

else

* Drop the predicted particle φn
t and proceed to step

(1).
* Repeat the whole process until a prediction for par-
ticle with index n is accepted.

endif

3. Update step: Compute the likelihood of the prediction using Eq.(5.10)
* πn

t ∝ p(It|φt)

� endfor

� Compute normalized weights {π̄t} such that
∑N

n=1 π̄
n
t = 1

� endfor





Chapter 6

Experimental results

In this chapter, experimental results are presented to show the performance and
behaviour of the di�erent contributions of this work.

First, we present some results regarding the synchronization method for the mo-
tion training set. Then, we analyze the performance of the probabilistic matching
methodology. In particular, we present some tests carried out using the similarity
measure between motion subsequences in a gait recognition scenario.

Finally, we discuss on the methodology for estimating the parameters of the hu-
man body tracker supported by empirical tests, an show results of the overall tracking
framework for several test motion sequences.

6.1 Synchronization of the training set

In the �rst place, we consider the training set for the bending action to illustrate the
performance of the motion sequences synchronization method explained is section 4.3.
The training set for this action consists of 51 performances carried out by 9 di�erent
actors as seen in Table 4.1.

We chose the �rst 16 eigenvectors that captured 95% of the original data to build
the aSpace representation. The �rst 4 dimensions within the aSpace of the training
sequences are illustrated in Fig. 6.1.(a). All the performances have di�erent durations
with 100 frames on average. The observed initial data shows di�erent durations,
speeds and accelerations between the sequences. Such a mistiming makes it very
di�cult to learn any common pattern from the data.

The proposed synchronization algorithm was coded in C++ and run with a 3 GHz
Pentium D processor. The time needed for synchronizing two arbitrary sequences
taken from our database is 1.5 · 10−2 seconds and 0.6 seconds to synchronize the
whole training set. The output from the synchronization stage is illustrated in Fig.
6.1.(b).

To prove the correctness of our approach, we manually synchronized the same
training set by selecting a set of 5 key-frames in each sequence by hand following a
maximum curvature subjective criterion. Then, the training set was resampled so
each sequence had the same number of frames between each key-frame according to
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(a) (b)

Figure 6.2: Synchronization results for the jumping, kicking and sitting
actions. (a) Non-synchronized training set. (b) Automatically-synchronized
training set with the proposed approach.

6.2 Probabilistic matching of motion sequences

A second set of experiments were done for testing the behaviour of the probabilistic
matching methodology introduced in section 5.3.1. Towards this end, we designed a
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(a) (b)

Figure 6.3: Synchronization results for the squatting and tumbling actions.
(a) Non-synchronized training set. (b) Automatically-synchronized training
set with the proposed approach.

test scenario for gait recognition, i.e. recognize the id of a subject given a sequence
of his body motion. To carry out this experiment, were considered the walking per-
formances from the CMU dataset (see Table 4.2) given the great number of samples
available and the diversity between subjects, i.e. 126 walking cycles performed by 12
di�erent actors. The experiment setup, methodology and results is as follows.

The aim of this test is to identify which subject is performing an action by ana-
lyzing the observed motion from a particular test subject. Hence, instead of training
a global action model considering all the motion performances available for a partic-
ular action, we trained an speci�c model per each subject Si, where i identi�es the
subject according to Table 4.2. As a result, we learned 11 di�erent action models,
denoted as ΓS2, ΓS5, ΓS7, ΓS8, ΓS12, ΓS16, ΓS35, ΓS38, ΓS39, ΓS43, and ΓS49. All
subject-dependent action models share the same PCA space representation ΩAk so
all the postures are represented in a common space. Notice that subject S55 was not
considered in this experiment since we had only 1 walking cycle available from this
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S2 S5 S7 S8 S12 S16 S35 S38 S39 S43 S49
S2 66.7 0 0 0 0 0 0 0 33.3 0 0
S5 0 100 0 0 0 0 0 0 0 0 0
S7 0 0 80 13.3 0 0 0 6.7 0 0 0
S8 0 0 0 77.8 0 0 0 0 22.2 0 0
S12 0 0 0 0 100 0 0 0 0 0 0
S16 0 0 0 0 0 40 33.4 13.3 0 13.3 0
S35 0 0 0 0 0 7.14 92.86 0 0 0 0
S38 0 0 0 0 0 25 0 75 0 0 0
S39 15.4 0 0 19.2 0 0 0 0 65.4 0 0
S43 0 0 0 0 0 0 0 0 0 100 0
S49 0 0 0 0 0 0 0 0 0 0 100

Table 6.1: Confusion Matrix in percentages for full cycle recognition

subject.
The approach is as follows: given an input motion sequence of length d, we

compute the similarity S to all the subsequences of the same length from the 11
learned mean performances. Then, the subsequence which best matched a subject's
mean performance according to our measure determines the identity of the subject.

Hence, the similarity measure used for gait identi�cation between 2 subsequences
of length d, namely Ψa = {ψ1

a, ..., ψ
d
a} and Ψb = {ψ1

b , ..., ψ
d
b } is given by Eq.(5.4). As

a remainder:

S(Ψa,Ψb) = exp
(
−DM (Ψa,Ψb)

) [ (va · vb) + 1

2

]α
,

where · stands for the dot product between vectors va and vb corresponding to the
average direction of motion computed following Eq.(4.27). DM is the sum of the
Mahalanobis distance within the PCA space ΩAK between each posture ψja and ψjb
from the subsequences, j = 1..d.

In our �rst experiment, we took a full walking cycle of each individual for testing
the identi�cation approach. We chose b = 10 dimensions for the PCA space represen-
tation of human postures. Subsequently, the similarity of the full test cycle to each
speci�c action model's mean performance was computed according to Eq.(5.4). The
tested walking cycle was removed from the training set in the learning stage. Then,
this experiment was repeated for each cycle of the database, resulting in a total of
126 identi�cation tests. The confusion matrix explaining the recognition performance
can be seen in Table 6.1.

As we may observe, several miss classi�cations occur due to di�erent reasons. On
the one hand, results obtained for subjects S2, S38, S43 and S49 are not statistically
con�dent since less than 5 cycles are provided in the training database. On the
other hand, looking at the miss classi�cation obtained between subjects S16 and
S35 we discovered that indeed they correspond to the same actor who performed the
recording. Despite of the fact that in the speci�cation of the CMU database, these
subjects are de�ned as di�erent, the authors of this work recognized that the same
person performed the recordings for both subjects datasets by subsequently checking
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S2 S5 S7 S8 S12
S2 91.28 0 0.05 0.47 0
S5 0 97.21 0 0 1.92
S7 0.35 1.80 89.88 0.12 0
S8 0.47 0 0.29 91.86 0
S12 0 0 0 0 99.83

S16 0 0 0 0 3.20
S35 0 1.34 0.06 0 4.19
S38 0 1.28 0 0 1.86
S39 6.51 0 0.06 3.49 0
S43 0 0 0 0 0
S49 0 0 0 0 0.17

S16 S35 S38 S39 S43 S49
S2 0 0 0 7.04 1.16 0
S5 0 0 0.35 0 0 0.52
S7 0 0.06 2.50 0.12 1.92 3.25
S8 0 0 0.12 7.26 0 0
S12 0 0 0 0 0 0.17
S16 64.17 19.37 6.34 0 2.04 4.88
S35 19.09 69.28 3.84 0 1.10 1.10
S38 6.17 2.91 76.85 0 0 10.93
S39 0 0 0 88.66 1.28 0
S43 0 0 0 0 100 0
S49 0 0 0 0 0 99.83

Table 6.2: Confusion Matrix in percentages for subsequences of d=10 pos-
tures

the video recordings from those sessions.

A second experiment was run taking d = 10 as the length of the subsequences
considered for performing gait identi�cation. All the testing walking cycles have a
total length of F = 200 postures, and therefore, only the 5% of a full walking cycle
was used for gait recognition.

For each subject, a random test walking cycle was selected from the database.
Thus, each tested cycle is composed of a total of (F − d + 1) overlapping motion
subsequences. Hence, we ran the gait identi�cation experiment for each possible
motion subsequence of each tested subject and computed its confusion matrix. The
same experiment was repeated a total of 10 times.

The average of the obtained confusion matrices can be seen in Table 6.2. One can
observe that the performance obtained is comparable with the full cycle experiment,
but using only 1/20 of a walking cycle. Although some miss classi�cations occur
between subjects that did not appear in the previous experiment, in some cases the
performance is even better. This can be explained because of the better statistical
robustness of this experiment, since we performed an identi�cation test for each of
the (F − d + 1) = (200 − 10 + 1) = 191 subsequences belonging to a full tested
cycle. This results in a total of 191 ∗ nSubjects ∗ timesRepeated = 191 ∗ 11 ∗ 10 =
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21010 identi�cation tests as opposed to the 126 identi�cation tests from the previous
experiment.
The results are very encouraging, since they show that we are able to recognize which
subject is performing an action by observing only a very reduced motion portion from
it.

6.3 Human body tracking results

In this section, we detail the experiments carried out to test the overall tracking ap-
proach. First, we comment on the training and testing sets used for this particular set
of experiments, and de�ne a suitable error measure for evaluating and comparing the
results obtained. Then, we discuss on choosing an appropriate number of dimensions
for the aSpace representation. Finally, we evaluate the performance of the track-
ing approach regarding the tracking e�ciency improvement in terms of the number
of needed particles, the computational cost, and the robustness against ambiguous
and incomplete measurements from the detection stage, which are used to update
the predicted postures. Sequences from three motion databases are used allover the
experiments, namely the CVC and CMU databases and the HumanEva-I dataset1.

In addition, qualitative tracking results are also presented for one walking se-
quence from the CAVIAR dataset[1] and video footage from two bending perfor-
mances.

6.3.1 Training and testing sets

We have focused on the walking action for testing the overall tracking framework
and illustrating the methodology of the approach within this section. This is moti-
vated by the fact that walking constitutes one of the activities humans do more often
and, in consequence, a very important action for HSE applications. In addition, we
have a good amount of data available attaining this action from di�erent databases.
Nevertheless, the approach is easily extensible to any other actions by choosing a
representative training set.

For the walking experiments carried out, the training set is composed by the se-
lected walking performances from the CMU dataset as detailed in Table 4.2. Regard-
ing the testing set, several walking cycles are selected from di�erent motion databases.

In particular, the �rst testing sequence (testing sequence #1) consists in 4 con-
tinuous walking cycles from the same database used for training. Consequently, we
randomly selected 4 continuous cycles from the CMU database, removed them from
the training set, and used them for testing.

Alternatively, the second test sequence (testing sequence #2) consists of 2 and a
half walking cycles from the HumanEva-I dataset [73]. This dataset comprises 4 sub-
jects performing 6 di�erent types of actions recorded in 7 calibrated video sequences
from di�erent viewpoints. Additionally, 2 trials were recorded per each action, and
at least for one trial the video sequences are synchronized with the corresponding 3D
pose parameters of the human body obtained by means of an optical motion capture

1available at http://vision.cs.brown.edu/humaneva/
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system. We selected 2.5 cycles from the �rst trial of the walking action from subject
1 for testing our tracking approach. Notice that this database was acquired under
di�erent conditions and used di�erent marker placements than the CMU database
used for training. Hence, we aim to show that the learning process does not over�t to
the training data by running similar tests on motion sequences from a totally di�erent
source than the one used for training.

Lastly, we used testing video sequences whose ground truth 3D pose parameters
were not available. Hence, they are aimed to show qualitative results of the tracking
approach. On the �rst hand, we used a testing sequence from the CAVIAR dataset [1]
which corresponds to a walking video from a subject in a shopping mall. This dataset
comprises several manually annotated video sequences of real subjects in an entrance
lobby and a shopping center. On the other hand, some results for the bending action
are also shown. The training set used corresponds to the CVC dataset and the testing
set consists of 2 sequences of 2 di�erent subjects performing a bending action whose
2D joints positions have been manually annotated.

6.3.2 Error measure

Given that in some of our experiments we are using motion captured performances
to de�ne the testing set, we can compare and quantify the error between the full 3D
estimated body postures and the full 3D body postures from the ground truth data.
To do so, it is needed to de�ne some error measure between the tracker output and
the ground truth data available.

Let's represent the pose of the body using J = 15 virtual markers, corresponding
to the joint centers and limb ends of the human body model. Hence, a particular body
con�guration can be written as X = (x1, ..., xJ), where xj ∈ R3 is the 3D position
of the marker j as in Eq.(5.8). We denote as Xe the 3D body posture estimated by
the tracker, whereas the known body posture from ground truth is denoted by XGT .
Thus, given a particular body posture in the aSpace representation, we �rst rewrite its
body con�guration as X = (x1, ..., xJ) according to the procedure detailed in section
5.4. Then, the error between an estimated body posture Xe and the truly performed
one XGT from ground truth data is computed as the average squared distance between
individual 3D joints, i.e.

D(Xe,XGT ) =
1

J

J∑
j=1

||xej − xGTj ||. (6.1)

6.3.3 Determining the number of dimensions of the aSpace

In the following, the methodology to determine the appropriate number of b dimen-
sions considered for building the aSpace representation is explained. Two main criteria
are taken into account.

On the one hand, we compute the implicit aSpace representation error by project-
ing back the training sequences to the original representation space. Then, the error
between the original postures and the reconstructed ones is computed according to
Eq.(6.1). In Fig. 6.4.(a) we show a boxplot of the mean reconstruction error in mm.
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computed for all the training sequences varying the b parameter. It can be seen, that
the error is high for the �rst 4 dimensions, and it gets stabilized below 8 mm after
b = 5 dimensions.

On the other hand, we empirically validate the most suitable value for b by running
several complete tracking tests with �xed parameters but varying b. Towards this end,
we selected 4 di�erent walking cycles from the CMU database, and ran the particle
�lter tracker �xing all the parameters involved but b. In particular, we used N = 500
particles, d = 10, γ = 80, and bfilt = 3. The likelihood of each predicted particle
was computed according to the mean 2D distance of all the projected joints between
ground truth and estimated postures, both from a lateral viewpoint. Hence, we
can evaluate the accuracy without the in�uence of artifacts caused by image-based
likelihood measures. The tracker was initialized with ground truth data.

Then, several runs were carried out varying the b parameter from 3 to 12. Finally,
for each value of b tested, we computed the mean estimated 3D joints error from the
4 testing cycles. The results are shown in Fig. 6.4.(b). We observed that while con-
sidering more dimensions for the aWalk representation actually lowers reconstruction
error, the �nal estimation error gets higher as one keeps adding more dimensions after
b = 5. This is due to the fact that the number of needed particles grows exponentially,
up to a certain bound, w.r.t. the number of dimensions of the state space [50, 54].

Therefore, by choosing b = 5 dimensions we explain the 94.55% of the variance
present in the original training data with a mean reconstruction error of 7.68 mm.
In conclusion, it results in a good trade o� between the dimensionality reduction
performed by PCA and accuracy of the estimation for the walking action with a
manageable number of particles.

6.3.4 Tracking performance results

In order to test the performance of the proposed approach, we carried out several
tests comparing the results obtained between three di�erent tracking methods.

First, we used a standard Particle Filter tracker with a �rst order motion model.
Second, our tracker using the prior model but without including the posture �ltering
step de�ned in section 5.3.3. Finally, our full tracking approach using the prior model
and the posture �ltering step. Hereafter the three tracking methods are referred to as:
generic PF tracker, our tracker with the posture �ltering step (PFT), and our tracker
without the posture �ltering step (NPFT), respectively. By posture �ltering step, we
refer to the rejection of predictions corresponding to non-likely postures according
to Eq.(5.7). Notice that omitting this step is equivalent to setting the parameter
bfilt = 0, since we are accepting all the predictions, and thus, the posture �ltering
step does not have any e�ect.

The �rst tests are intended to show the e�ciency improvement of our tracker in
terms of the computational time and the number of particles needed to achieve a
certain error, for motions belonging to the type of action learnt. Thus, we compare
the time consumption and the mean estimation error obtained by a standard PF with
a very general motion prior against our motion model guided tracker with and without
the posture �ltering step, while varying the number of particles used.
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(a)

(b)

Figure 6.4: (a) Boxplot of the reconstruction error of the training postures
from the aWalk space varying b. (b) Total mean error obtained in a typical
run of the tracker vs. reconstruction error, varying b.
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The PF's generic motion prior consists of a constant velocity model for the pa-
rameters, were each parameter is independent. The di�usion term consists of a �xed
White Additive Gaussian Noise term (WAGN) with covariance computed in the same
fashion than Eq.(4.29) for the dynamic's model expected error but considering all the
postures from the training set. We used only 1 cycle from the CMU database for
testing motivated by the fact that the generic PF tracker lost track very quickly, and
after that point, the error obtained does not scale well to the number of particles
used. All the parameters were �xed except the number of particles. Namely, we �xed
b = 5, d = 10, γ = 80, and bfilt = 3 or bfilt = 0 for runs with or without the posture
�ltering step, respectively. The same likelihood computation method as the previous
test was used.

Figure 6.5 relates the average computation time per frame, the mean estimation
error, and the number of particles used in each �lter run. All three trackers are
implemented in MATLAB and running on a PC with an Intel(R) Pentium(R) 4 CPU
@ 3.2 Ghz. with 2 Gbytes of RAM, and the code has not been optimized for high
performance. On the one hand, the high error obtained by the generic PF for less
than 500 particles (> 53mm), is explained by the fact that it totally lost track of the
target after a few frames. Misstracks generally occurred after a large acceleration in
the parameter space, since the generic motion prior assumes a constant velocity for
each parameter. Hence, the ability of the generic PF to handle accelerations depends
on the di�usion model and the number of particles considered. Thus, the larger the
acceleration is, the larger the di�usion applied should be, demanding more particles
to properly populate the state space.

On the other hand, from 500 particles or more, the generic PF tracker could
complete a full cycle without loosing track. However, the �nal error of the generic PF
is much higher (21.32 mm. for the N = 10000 particles test) than any of the errors
obtained by our tracker with posture �ltering. Hence, even adding more particles to
the generic PF the estimation error stabilizes and never achieves better results than
the 100 particles test for the tracker with posture �ltering (MSE of 19.53 mm.). This
is due to the role of the posture �ltering step within the tracking process. Hence,
we observed that indeed, it discards modes in the likelihood function which would
give high weights to particles corresponding to badly estimated human postures at a
given time instant. Thus, without �ltering these non-likely postures, these particles
are considered for computing the �nal estimated state and consequently, the overall
tracking performance decays.

Regarding time consumption, the generic PF and the tracker without the posture
�ltering step have very similar processing times. This is explained by the fact that the
computation of the likelihood is usually the most time consuming part of a particle
�ltering framework. In comparison, the overhead introduced by the dynamic's model
probabilistic matching is almost negligible in the experiments carried out.

Then, the tracker with posture �ltering shows a slight increase w.r.t. the process-
ing time at a given number of particles, but outperforms the other two regarding the
�nal estimation error obtained. For instance, for the N = 10000 particles test, the
average processing time per frame was 62.97, 63.02 and 70.08 seconds, with an MSE
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(a)

(b)

Figure 6.5: (a) MSE of the estimated 3D joints' position and average pro-
cessing time per frame, obtained varying the number N of particles, of a
generic PF tracker (blue), our tracker with (red) and without (green) �lter-
ing non-feasible human postures according to our motion model. (b) Mean
prediction acceptance ratio per frame of the posture �ltering step.

of 28.32, 15.85 and 8.16 mm. for the generic PF, the tracker without posture �ltering,
and the tracker with posture �ltering, respectively. Comparatively, for the N = 100
particles test, the results obtained were 0.63, 0.63 and 0.70 seconds with an MSE of
189.27, 36.93 and 19.53 mm.

On average, the overhead introduced by the posture �ltering step takes 10.1% of
the total processing time on the experiments carried out. This overhead is directly pro-
portional to the prediction acceptance ratio, de�ned as the ratio between the number
of predictions sampled from the dynamic model and the number of postures accepted.
Fig. 6.5.(b) shows the mean prediction acceptance ratio per frame obtained. Hence,
while the mean ratio is 6.26, there are two peaks of around 20 sampled predictions per
accepted posture in the beginning and the end of the tested sequence. Interestingly,
we observed that they occur in areas where the mean performance has high curva-



6.3. HUMAN BODY TRACKING RESULTS 91

ture, since particles show some inertia which makes its adaptation to abrupt changes
in the state of the tracked object more di�cult. This inertia can be explained by
the assumption of a �rst order motion model and the probabilistic sequence matching
technique of the prediction step. However, specially in this situation, the posture
�ltering step shows bigger improvements in the particle set e�ciency, since most of
the predictions that wrongly follow the particle's inertia are rejected.

The second set of tests are intended to validate the ability of our approach to keep
track of the target's state when reduced and ambiguous measurements from the scene
are used to update the predictions. As discussed in section 5.4, we assume that there
exists a detection stage which is applied once to each input image It whose output is
a set of 2D image coordinates corresponding to the detected joint positions at time t.

Therefore, we use 2D ground truth data to test the robustness of our tracker
against incomplete evidences in two di�erent manners. From the one hand, we use
ground truth information from all the joints available, and from the other hand, we
consider only three joints, namely the head, one foot and one hand. This is motivated
by the fact that there exist many approaches to detect some body limb positions
in the images, and in addition, background subtraction algorithms can be used in
combination in a static camera setup such as ours. Furthermore, this reduced set of
joints is typically observable in images most of the times under normal circumstances.
As a result, we assume that �nding an approximate 2D position of the head, and at
least one hand and one foot in input images is a feasible task for the detection stage
under normal conditions.

The viewpoint used is also varied between a lateral and a totally frontal one. Con-
sequently, we designed di�erent tests with an increasing level of di�culty regarding
these parameters for the likelihood computation. In every test the proposed tracker
is also compared to a PF tracker with our motion prior, but without including the
posture �ltering step.

Finally, we �xed some parameters and varied the number of joints and the view-
point considered the likelihood computation. Speci�cally, we used N = 500 particles,
α = 30 from Eq.(5.4), γ = 80, b = 5, d = 10, and k = 3 and bfilt = 3 was used for
the posture �ltering step from Eq.(5.7).

First, we projected the 3D postures to a 2D plane using a perspective projective
model. We ran the tracker against testing sequences #1 and #2 for both viewpoints,
and computed the likelihood of the predicted postures based on the 2D positions of
all the body joints from the estimated postures vs. their ground truth. Additionally,
every test was repeated 30 times in order to provide statistical signi�cance to the
results obtained. Fig. 6.6 shows the mean estimation errors per joint in mm. for both
testing sequences and the standard deviation observed. Blue solid and red dashed lines
encode whether we used the �ltering step (PFT �lter) to constrain the state space
or not (NPFT �lter). First of all, we may observe that for the frontal viewpoints a
greater overall error is obtained compared to the lateral ones. This is explained by
the fact that on a lateral viewpoint most of the motion is observable since the subject
is walking parallel to the projection plane, regardless of self-occlusions. Contrarily,
on a totally frontal view the main motion of arms and legs is lost, because there is no
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(a) (b)

(c) (d)

Figure 6.6: MSE of the estimated 3D joints' position for the PFT (solid blue
line) and NPFT (dashed red line) �lters, using 2D measurements from all the
joints. (a) and (b): results for testing sequence #1. (c) and (d): idem for
testing sequence #2.

depth information on the 2D projected walking postures. However, for the lateral view
test in sequence #2 the tracking accuracy is slightly better in some frames without
applying the posture �ltering step. This is explained by the fact that sequence #2
was extracted from a di�erent database than the one used for training. Therefore, the
non-constrained tracker can track more general motions. However, the mean overall
error for both sequences is still lower using the posture �ltering step.

Then, for the lateral viewpoint, both �lters (PFT and NPFT) can track the
sequences with a stable behaviour. However, on the frontal viewpoint, the NPFT
�lter clearly fails after a few frames (t ' 300 and t ' 100 in sequences #1 and #2,
respectively), while the PFT �lter shows a low and stable error over time.

Regarding the standard deviation, for both viewpoints and sequences, the NPFT
�lter shows much bigger variability between di�erent runs than the PFT �lter. Also,
frontal viewpoint tests have bigger standard deviations than lateral ones. This is due
to the fact that frontal 2D postures are more ambiguous and di�cult to track.
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(a) (b)

(c) (d) constrained

Figure 6.7: MSE of the estimated 3D joints' position for the PFT (solid blue
line) and NPFT (dashed red line) �lters, using 2D measurements from only
3 joints. (a) and (b): results for testing sequence #1. (c) and (d): idem for
testing sequence #2.

Finally, we repeated the experiment but reducing the number of 2D joints consid-
ered. For the likelihood computation, we used the known 2D position of only 3 joints,
namely the center of the head, the left hand and the left foot. In Fig. 6.7 we show the
results obtained. As in the previous experiment, the frontal viewpoints show a greater
overall error and standard deviation compared to the lateral ones for the same reasons
mentioned above. From the one hand, the performance of the non-constrained tracker
is very poor even for the lateral viewpoint, since it rapidly looses track of the target
as supported by Figs. 6.7.(b), (c) and (d). However, although it has higher standard
deviation than in the previous experiment, the PFT �lter does perform well and is
able to keep track of the target with relatively low and constrained error throughout
all the walking cycles from both sequences. Therefore, although resulting in a less
generic tracker, the use of the posture �ltering step is responsible for stabilizing the
tracking error even using a very reduced set of joints to update the predictions, as
supported by the tests performed.
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Mean error Max error Min error

NPFT PFT NPFT PFT NPFT PFT

All joints S1 25.53 14.80 32.83 19.29 16.08 13.13
2D Lateral S2 29.91 19.95 54.31 21.10 16.89 15.72
All joints S1 69.57 23.48 118.22 48.98 32.15 12.60
2D Frontal S2 71.34 27.57 149.36 51.38 29.37 17.37
3 joints S1 40.87 19.70 55.30 39.55 17.03 10.14
2D Lateral S2 36.42 19.68 64.59 36.60 19.22 10.75
3 joints S1 77.08 24.42 169.43 41.21 35.17 12.87
2D Frontal S2 78.00 24.82 165.19 51.51 38.02 14.65

STD Estimate
STD

NPFT PFT NPFT PFT

All joints S1 4.29 1.08 3.48 0.81
2D Lateral S2 8.00 1.81 3.80 1.42
All joints S1 22.53 10.07 29.15 7.24
2D Frontal S2 39.63 12.02 27.57 8.36
3 joints S1 9.40 6.65 20.15 2.64
2D Lateral S2 10.05 7.49 30.43 3.73
3 joints S1 40.82 10.43 57.44 7.54
2D Frontal S2 33.89 12.71 61.83 6.29

Table 6.3: Summary of the tracking error obtained from each experiment in
mm.

Table 6.3 summarizes the experiments carried out regarding all the tests per-
formed on the two sequences, namely the CMU and HumanEva-I chosen sequences,
with and without �ltering. The error measures have been obtained on a basis of 30
�lter runs per sequence, due to the non-deterministic nature of particle �lters. NPFT
and PFT refers to the results for the Non-Posture-Filtered tracker (bfilt = 0), and
the full tracking approach with Posture Filtering (bfilt = 3), respectively. Each row
corresponds to a particular experiment. We present the mean, maximum and mini-
mum of the mean estimation errors, in millimeters, obtained from each run for each
testing sequence (S1 or S2), for each experiment. Additionally, the standard devia-
tion observed in the mean error is also shown, as well as the standard deviation of
the estimated postures across di�erent runs to test the quality of the estimates. As
previously discussed, the tracking error is considerably higher using frontal views as
opposed to lateral views for the likelihood computation. Also, the tracker which does
not include the posture �ltering step presents an overall higher mean error, specially
in the 2D frontal viewpoint tests, since it lost track of the target in most of the exper-
iments carried out. Additionally, for the tracker with posture �ltering, the standard
deviation of the mean error is noticeably lower among the di�erent tests, since the
estimation error remains constrained and stable throughout all the frames of the test-
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Figure 6.8: Tracking results: 16 frames of the HumanEva dataset test se-
quence with their corresponding estimated body postures overlapped, seen
from camera #1.

ing sequences. Regarding the standard deviation of the estimates, we computed the
distance of Eq.(6.1) between each 2 estimated postures of each pair of runs. The value
shown corresponds to the mean of the standard deviation of these distances along a
testing sequence, in order to summarize the estimate variance observed in each test.
The results point out that the estimated postures for the 2D lateral experiment con-
sidering all the joints are very stable for both the NPFT and PFT trackers. However,
on the other experiments, the NPFT tracker shows large variance compared to the
PFT one. This is explained by the fact that the PFT tracker constrains the state
space and the estimated postures do not di�er too much between runs as long as a
severe misstrack does not occur.

Then, Figs. 6.8 and 6.9 show the stick �gures of the estimated 3D postures
for the testing sequence #2. They have been overlapped with their corresponding
image frames from the HumanEva-I dataset, from two di�erent cameras. The 6 DOF
corresponding to 3D position and orientation of the body were taken from ground
truth data as well as the camera calibration parameters. The relative human body
con�guration corresponds to the estimated body postures by our tracker from the last
experiment, i.e. using the known 2D positions of only 3 joints observed from a frontal
viewpoint. For further details on the camera placement and acquisition conditions of
the HumanEva dataset, we may refer the reader to [73].

Finally, we ran additional experiments in order to test qualitatively the output
of our tracking approach under more realistic conditions. Towards this end, we used
video footage from walking and bending sequences whose 3D ground truth data is
not available. The �rst sequence was taken from the CAVIAR dataset [1], and is
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Figure 6.9: Tracking results: 16 frames of the HumanEva dataset test se-
quence with their corresponding estimated body postures overlapped, seen
from camera #6.

Figure 6.10: Tracking results: 16 frames of the sequence TwoEnter-
Shop1front from the CAVIAR dataset, where the corresponding estimated
body postures have been overlapped.

named TwoEnterShop1front, which o�ers a lateral view of a woman (subject S0)
walking in a straight line from left to right in a shopping center. This sequence
was selected because the 2D position of feet, hands and head of the subject were
partially annotated, i.e. only the body parts which are visible at each frame have been
annotated, leading to annotations with occlusions and noise. Therefore, ground truth
data for this experiment is closer to realistic conditions as opposed to the ground truth
data obtained from a HMC system used in the previous experiments. Speci�cally, the
2D position of both feet and the head is well annotated and available for each frame
of the sequence. On the contrary, the left hand has no annotations available at all,
and the right hand su�ers multiple short occlusions from frames #303−#390, and a
severe occlusion from frames #217−#250 and #291−#302.

As in previous experiments, we ran our tracker with the posture �ltering step
with N = 500 particles, in order to track the subject S0 from frames #184 to #394.
The available 2D ground truth data was used to update the predictions at each time
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step. Frame #184 was chosen as the initial frame because it is the �rst frame with
a full-body view of the subject. The global position of the subject was manually
annotated, as well as the �rst postures of our body model in order to initialize the
tracker.

Figure 6.10 shows the results obtained on every 14th frame of the sequence. The
stick �gures representing the �nal estimated 3D body postures have been superim-
posed over their corresponding frames, and the available 2D ground truth position of
the annotated limbs is depicted as a purple circle centered at their actual position.
On the one hand, we observe that on frames where ground truth data about hands
position is not available, the estimated arms 3D posture is given by the strong motion
prior. Then, on frames with the right hand next to the subject's face, the tracker is
unable to track its true position due to the restrictive motion prior used. However, on
the last frames the quality of the arms tracking improves, since the hand's 2D ground
truth position is more stable and the resulting posture is accepted as a feasible human
posture by the action model. On the other hand, the approximate con�guration of
both legs is successfully estimated along all the walking cycles present, which shows
the ability of the proposed approach to produce rough estimates of the performed
motion even when a very reduced set of measurements are available.

Lastly, two video sequences of a bending action from a lateral viewpoint were also
tracked. The �rst sequence corresponds to 73 frames of a full bending performance
and the second sequence has a total of 289 frames where a subject begins to bend, then
he returns to a standing position and �nally he completes a full bending execution.
To carry out this test, we manually annotated the 2D position of the following body
parts: the head, one hand, one foot, one knee and the hip. In addition, the 3D
position and orientation of the full body was also initialized by hand, as well as the
length of each body limb to �t each subject. The parameters used were N = 1000
particles, α = 30, γ = 80, b = 6, d = 10, and k = 3 and bfilt = 3.

The tracking results are depicted in Fig. 6.11. As we might observe, for both
sequences, the full 3D body posture is successfully tracked throughout the bending
performance using only measurements from �ve known 2D joint positions. On the
�rst hand, the sequence on Fig. 6.11.(a) is easier, because the performed action bears
a lot of similarity with the prototypical bending action learnt from training data.
Nevertheless, if we look carefully at the images provided, the limb representing the
head and the shoulder complex are reconstructed slightly twisted as if the subject's
head was turned to the left. This is due to the fact that our body model approximates
the human body as a rigid articulated chain, and thus the limbs' length is �xed and
cannot vary over time. However, during a bending performance, and specially when
the subject is totally bent, the back appears slightly curved, and thus, its length varies
resulting in twists and missalignments in the tracked postures to accommodate these
phenomena. Also, as expected, the left arm and leg don't follow the truly performed
motion because no information is provided to update their state. Hence, their motion
is mostly guided by the motion prior resulting in plausible postures overall.

On the other hand, the second bending sequence illustrated in Fig. 6.11.(b)
is more challenging. Here, the subject begins to bend but then, he returns to an
upright position and completes a full bending performance from there. Notice, that
the dataset used for training is composed only of bending sequences going downwards.



98 CHAPTER 6. EXPERIMENTAL RESULTS

As a result, the motion prior guides the predicted postures downwards as the subject
begins to bend, and despite the inertia of the particle set, the subject is successfully
tracked as it returns to a standing position. Mainly, this is due to two reasons. From
the one hand, the ability of the particle �lter tracker to keep multiple hypotheses of the
state of the tracked object, and from the other hand, the nature of the probabilistic
matching step. Hence, at a given time step, some motion subsequences are recognized
as a bending going downwards, while some other subsequences are matched as a
bending going upwards, leading to multiple hypotheses about the state of the subject.
Artifacts due to the �xed limbs length are also present, but overall, the subject is
tracked successfully throughout the sequence.
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(a)

(b)

Figure 6.11: Tracking results for the aBend action: (a) 16 frames from a
short bending sequence and (b) 24 frames of a longer bending sequence where
the subject starts bending, then stands up again, and �nally completes a full
bending performance.





Chapter 7

Concluding Remarks

The work presented in this Thesis is all part of the e�orts for automated visual human
motion analysis. Towards this end, we focused on the de�nition of strong priors for
human motion to ease the problem of tracking the approximate parameters of a full
body 3D model from a monocular image sequence. Hence, rather than aiming to
recover the accurate con�guration of a body model over time, the key idea is to exploit
a series of learnt motion priors for a prede�ned set of actions, so the approximate body
motion can be recovered from noisy and incomplete image measurements suitable
for generating coarse approximations about how humans move and behave for scene
understanding applications.

The overall problem has been faced as a model-based tracking approach formu-
lated as a recursive Bayesian �lter. In particular, the particle �ltering framework
has been chosen to tackle the problem of tracking a human body model over time
because their ability to keep multiple hypotheses about the state of the object, and
the ease to incorporate a priori knowledge on human motion within their prediction
stage. However, most PF approaches for monocular full-body tracking su�er from
issues related to PFs' discrete nature and must deal with the lack of robustness of
image-based likelihood functions. Hence, our approach exploits learnt strong motion
priors to improve the overall tracking performance, compared to a generic PF tracker,
in terms of number of needed particles, computational cost, and robustness against
ambiguous and incomplete measurements from images. These measurements are pro-
vided to the tracker by means of an external detection stage which is assumed to feed
our PF tracker with the 2D positions of a variable set of body joints on the image
plane. Then, the state of a full 3D human body model is inferred over time guided
by our human action models.

For building our action-speci�c motion models, �rst, we de�ned a suitable yet
simple human body model consisting of a stick �gure body composed of 12 limbs
structured in a hierarchical manner. Direction cosines have been chosen to represent
limbs orientations thus avoiding singularities and abrupt changes in the representation
space at the expense of extra parameters. As a result, our human body model is
simple and compact, and the use of direction cosines enables useful statistical analysis
over human body postures since a smooth representation is guaranteed, i.e. near
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con�gurations of the body limbs account for near positions in the parameter space.

On the second place, Principal Component Analysis has been applied to the train-
ing data for an action to perform dimensionality reduction over the highly correlated
input data, thus leading to a coarse-to-�ne representation of the human body, i.e.
the so called aSpace, which relates the precision of the model with its complexity
by means of the main modes of gait variation within each action, i.e. the principal
components found for each action.

The parameters of the action-speci�c model are learnt from examples of motion-
captured data. In particular, they have been trained with pre-recorded motion se-
quences from our own action dataset, i.e. the CVC dataset, and from the publicly
available Carnegie Mellon University's Graphics Lab Motion capture database. Both
datasets' motion sequences present di�erent speeds and accelerations. Therefore, we
developed a dense matching algorithm based on DP, which has been used to syn-
chronize human motion sequences of the same action class. The algorithm �nds an
optimal solution in real-time. Additionally, we automatically select from the training
data the best pattern for time synchronization following a minimum global distance
criterion.

Then, the synchronized version of the training set has been subsequently used
overall the whole learning approach. Hence, a probabilistic action model is learnt
based on these examples which captures the variability and temporal evolution of
full-body motion within a particular action. The motion model allows to predict
feasible 3D body postures given a small motion history of a particular action, as well
as determine which con�gurations of the representation space correspond to feasible
human body postures given a particular action. In particular, the parameters of the
resulting action model consists of: a representative manifold for the action, namely
the mean performance, the standard deviation from the mean performance, the mean
observed direction vectors from each motion subsequence of a given length and the
expected error at a given time instant.

Subsequently, the action model has been embedded into a motion prior which is
used as a priori knowledge within the particle �lter tracking framework. From the one
hand, we introduced a dynamic model responsible of predicting new body postures
given the previously estimated ones, which has proven to drastically improve the
e�ciency of the PF tracker compared to a constant velocity model for the body
model's parameters. On the other hand, a posture �ltering step has been added to
discard predictions which correspond to non-feasible body postures. If the motion
performed belongs to the trained action class, this adaptive constraint of the search
space improves the overall tracking reliability, stabilizes the overall error and avoids
misstracks due to ambiguous and incomplete measurements from the real world, as
supported by the tests performed. To de�ne a suitable likelihood function, a detection
stage, which has not been considered in this work, has been assumed to provide
approximate 2D position of some body joints on each image. The predictions given
by the motion prior are then updated according to these 2D measurements.

The performance of the overall approach has been measured using testing se-
quences from two databases with ground truth data available, namely, the same one
used for training (the CMUMoCap dataset) and the HumanEva-I dataset. The results
showed that the approach generalized well within the tested action class, and that it
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is robust against incomplete and noisy measurements. Towards this end, several tests
have been carried out varying the number of joints considered and the viewpoint used
to update the predicted postures from the dynamic model. In the worst tested case,
results point out that our tracker is able to estimate the 3D con�guration of a full-
body model providing only the known 2D positions of 3 joints from a totally frontal
viewpoint as measurements to compute the likelihood of the predicted postures.

In addition, further tracking experiments were also run to test qualitatively the
output of the proposed approach under more realistic conditions. Hence, video footage
from the CAVIAR project and two bending sequences were successfully tracked from
the known 2D positions of a reduced set of joints.

Alternatively, we also carried out tests regarding the performance of the sequence
synchronization algorithm. Hence, we manually synchronized several action training
sets using key-frames and compared them against the results obtained automatically
with our method. Tests showed that both the manually synchronized training set
and the one obtained with the proposed automatic synchronization method were very
similar. In addition, the algorithm computed the optimal solution in near real-time
due to the Dynamic Programing formulation of the problem.

Lastly, a gait recognition test scenario was set out de�ning a set of experiments to
test the behaviour of the probabilistic matching methodology of motion subsequences.
The experimental results pointed out that we were able to recognize which subject
performed a motion subsequence from a set of 11 tested subjects using a very reduced
number of motion samples.

On the contrary, the approach has the following limitations. First, general non-
constrained motion cannot be tracked, since the use of a strong motion prior limits
the approach to the subset of actions learnt beforehand. Second, the body's absolute
position and orientation estimation hasn't been addressed in this work. Then, the
PCA-based posture representation has proven to be e�ective in reducing the dimen-
sionality of the state space for highly correlated motion such as the action datasets
used, i.e. the motion between arms and legs while walking and running, or the symme-
try between the left and right part of the body in most of the tested actions. However,
more complex motions with less linear correlation, like break dancing, wouldn't ben-
e�t from this amount of reduction. Finally, although the probabilistic matching step
provides some �exibility, it is assumed that the framerate of both training and testing
sequences do not di�er too much.

Therefore, future research lines include the estimation of the absolute body orien-
tation from the image sequence, and dealing with the initialization of the tracker
for practical applications [58]. In addition, our tracker must be combined with
approaches to track or identify the 2D body parts, i.e. the head, hands and feet
[65, 85, 51, 74, 46, 47, 29] within each image implementing a proper detection stage.
Towards this end, an interesting solution for this problem consists of learning a map-
ping between body silhouettes obtained by background subtraction techniques [39]
and the viewpoint at a given height of the camera w.r.t. the subject [65].

Finally, the overall tracking approach should be trained and tested for a wider
set of actions, and add multiple action support by selecting appropriate training sets
and dealing with transitions between actions. Towards this end, it is worth noting
that our method for matching motion subsequences probabilistically is specially well-
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suited for this purpose. Hence, predictions taking into account multiple actions could
be implicitly considered by only using a common representation aSpace for multiple
action models. Thus, similar postures or subsequences between actions would lead
to stochastically propagating these postures according to the most relevant action
models.

At present, in the context of free-viewpoint media content creation, work is being
done to apply the motion tracking framework to soccer scenes in combination with a
commercial player tracking system which provides the bounding box of each player
in the �eld accurately.



Appendix A

Acronyms

Given the presence of numerous acronyms through the text we have found convenient
to summarize them in Tables A.1, A.2.

Symbol Description

KF Kalman Filter
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
IEKF Iterated Extended Kalman Filter
fps frames per second
PF Particle Filter
pdf Probabilistic Density Function
HCI Human-Computer Interaction
HSE Human-Sequence Evaluation
MSE Mean Squared Error
PFT Posture Filtered Tracker
NPFT Non Posture Filtered Tracker
MoCap Motion Capture
DOF Degrees Of Freedom
PCA Principal Component Analysis
MPCA Multivariate Principal Component Analysis
CMU Carnegie Mellon University
DP Dynamic Programming
DSI Disparity Space Image
MDL Minimum Description Length

Table A.1: Acronyms (I).
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Symbol Description

GPDM Gaussian Process Dynamical Model
MAP Maximum A Posteriori
WAGN White Additive Gaussian Noise
NN Nearest Neighbor
MoG Mixture of Gaussians
ROI Region Of Interest
STD Standard Deviation
HMC Human Motion Capture

Table A.2: Acronyms (II).



Appendix B

Symbol List

In order to aid the reader comprehension, the symbols used throughout this work are
here summed up, split in Table B.1 and Table B.2.

Symb. Description Symb. Description

R rotation matrix Xy′z” Euler angles convention

(i, j, k)
quaternion's imaginary
parts

θxl
direction vector component
for limb l

(x, y, z) 3D Cartesian coordinate Xt
body posture's positional
data

M number of markers Ak action k
Ψi action performance ψj

i posture of a perf.
Fi number of postures of a perf. P number of training perfs.

NAk

number of training postures
for an action

ub eigenvector

λb eigenvalue b
number of selected eigenvec-
tors

ψ̄ mean body posture ψ̃
projected posture within the
aSpace

Ψ̃
projected perf. within the
aSpace

xi(t)
interpolated expansion of a
perf.

δ (•) Dirac's delta T period
ρ synchronization rate τ(t) distance-time function

∆n.m(t) sought function synch. Dn,m synch. distance

E(d, p) DSI cost value xn,m(t)
synchronized version of
xm(t) to xn(t)

ψ̂j
i posture of a synch. perf. Ψ̂i synchronized perf.

Table B.1: List of symbols used within this work.
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Symb. Description Symb. Description

Ψ̄ mean performance σt STD from the mean perf.
vt mean motion direction Σt error covariance matrix
eti prediction error ΓAk

action model
d size of a motion subsequence E (•) expectation of a distribution

ψ̆t+1
i predicted posture It sequence of images
It image φ̂t estimated state
Φn
t estimated motion history p(φt|It) posterior pdf

p(φt|φt−1) temporal prior p(It|φt) likelihood
N number of particles φst particle
πst particle's weight πst particle's normalized weight

bfilt
number of �ltering dimen-
sions

β survival rate

Dmin
min. acceptable num. of
particles

η(•) zero-mean Gaussian noise

S(Ψ̄,Φ)
similarity between subse-
quences

p(Ψ̄i|Φn
t ) probabilistic match

α prob. match balancing exp. DM
sum of Mahalanobis dis-
tances between postures

γ likelihood's exponent mj,d mapping function
D(Xe,Xg)MSE between body postures

Table B.2: List of symbols used within this work.
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Publications

C.1 Journals

1. Action-speci�c motion prior for e�cient bayesian 3D human body tracking.
Ignasi Rius, Jordi Gonzàlez, Javier Varona, F. Xavier Roca. In Pattern Recog-
nition, volume 42, number 11, pp. 2907-2921, November, 2009.

2. Automatic Learning of 3D Pose Variability in Walking Performances for Gait
Analysis. Ignasi Rius, Jordi Gonzàlez, Mikhail Mozerov, F. Xavier Roca. In
International Journal for Computational Vision and Biomechanics, volume 1,
number 1, pp. 33-43, January-June, 2008.

3. Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in
Human Motion Sequences. Mikhail Mozerov, Ignasi Rius, Xavier Roca, Jordi
Gonzàlez. In EURASIP Journal on Advances in Signal Processing, volume
2010, article ID 507247, January, 2010.

4. Importance of detection for video surveillance applications. Javier Varona,
Jordi Gonzàlez, Ignasi Rius, Juan J. Villnueva. In Optical Engineering, volume
47, issue 8, 087201, August, 2008.

C.2 Conferences

1. Virtual camera synthesis for soccer game replays. N.Papadakis, A.Baeza, Ig-
nasi Rius, X.Armangué, A.Bugeau, O.D'Hondt, P.Gargallo, V.Caselles and
S.Sagas. Submitted to 7th European Conference on Visual Media Production
(CVMP'2010), London, UK, November, 2010.

2. Exploiting Spatio-temporal Constraints for Robust 2D Pose Tracking. Gré-
gory Rogez, Ignasi Rius, Jesús Martínez del Rincón, Carlos Orrite. In Second
Workshop Human Motion - Understanding, Modeling, Capture and Animation,
pages 58-73, Rio de Janeiro, Brazil, October, 2007.
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3. Hierarchical Eyelid and Face Tracking. Javier Orozco, Jordi Gonzàlez, Ignasi
Rius, F.Xavier Roca. In 3rd Iberian Conference on Pattern Recognition and
Image Analysis (ibPRIA'2007), Girona, Spain, June, 2007.

4. 3D Human Motion Sequences Synchronization using Dense Matching Algo-
rithm. Mikhail Mozerov, Ignasi Rius, Xavier Roca, Jordi Gonzàlez. In 28th
Symposium of the German Association for Pattern Recognition (DAGM'2006),
Berlin, Germany, September, 2006.

5. Action Spaces for E�cient Bayesian Tracking of Human Motion. Ignasi Rius,
Javier Varona, Jordi Gonzàlez, Juan José Villanueva. In 18th International
Conference on Pattern Recognition (ICPR'2006), Hong Kong, China, August,
2006.

6. Posture Constraints for Bayesian Human Motion Tracking. Ignasi Rius, Javier
Varona, F. Xavier Roca, Jordi Gonzàlez. In 4th International Workshop on Ar-
ticulated Motion and Deformable Objects (AMDO-e'2006), Andratx, Mallorca,
Spain, July, 2006.

7. Robust Particle Filtering for Object Tracking. Daniel Rowe, Ignasi Rius, Jordi
Gonzàlez, Juan J. Villanueva. In 13th International Conference on Image Anal-
ysis and Processing (ICIAP'2005), Cagliary, Italy, September, 2005.

8. Improving Tracking by Handling Occlusions. Daniel Rowe, Ignasi Rius, Jordi
Gonzàlez, Juan J. Villanueva. In 3rd International Conference on Advances in
Pattern Recognition (ICAPR'2005), Bath, United Kingdom, August, 2005.

9. 3D Action Modeling and Reconstruction for 2D Human Body Tracking. Ig-
nasi Rius, Daniel Rowe, Jordi Gonzàlez, F.Xavier Roca. In 3rd International
Conference on Advances in Pattern Recognition (ICAPR'2005), Bath, United
Kingdom, August, 2005.

10. Probabilistic Image-based Tracking: Improving Particle Filtering. Daniel Rowe,
Ignasi Rius, Jordi Gonzàlez, F.Xavier Roca, Juan J. Villanueva. In 2nd Iberian
Conference on Pattern Recognition and Image Analysis (ibPRIA'2005), Estoril,
Portugal, June, 2005.

11. A 3D Dynamic Model of Human Actions for Probabilistic Image Tracking.
Ignasi Rius, Daniel Rowe, Jordi Gonzàlez, F.Xavier Roca. In 2nd Iberian Con-
ference on Pattern Recognition and Image Analysis (ibPRIA'2005), Estoril,
Portugal, June, 2005.

C.3 Technical Reports

1. Articulated 3D Human Motion Modeling for Tracking and Reconstruction. Ig-
nasi Rius. In CVC Technical Report #91, CVC (UAB) , September, 2005.



Bibliography

[1] EC Funded CAVIAR project. http://homepages.inf.ed.ac.uk/rbf/caviar/.

[2] A. Agarwal and B. Triggs. Recovering 3 D human pose from monocular images.
PAMI, 28(1):44�58, 2006.

[3] JK Aggarwal and Q. Cai. Human motion analysis: A review. CVIU, 73(3):428�
440, 1999.

[4] M. Agrawal, K. Konolige, and M. Blas. Censure: Center surround extremas for
realtime feature detection and matching. In ECCV '08, pages 102�115, Marseille,
France, 2008.

[5] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
�lters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions
on Signal Processing, 50(2):174�188, February 2002.

[6] A.O. Balan and M.J. Black. An adaptive appearance model approach for model-
based articulated object tracking. In CVPR '06, pages 758�765, Washington,
USA, 2006.

[7] Yaakov Bar-Shalom and Thomas E. Fortmann. Tracking and data association.
Academic Press, 1988.

[8] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features
(SURF). Computer Vision and Image Understanding, 110(3):346�359, 2008.

[9] M. Brand. Shadow puppetry. In ICCV '99, pages 1237�1244, Corfu, Greece,
September 1999.

[10] M. Braun. Picturing time, work of Etienne-Jules Marey 1830-1904. University
of Chicago Press, 1995.

[11] C. Bregler. Learning and recognizing human dynamics in video sequences. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, San Juan, Puerto Rico, 1997.

[12] C. Bregler, J. Malik, and K. Pullen. Twist based acquisition and tracking
of animal and human kinematics. International Journal of Computer Vision,
56(3):179�194, May 2004.

[13] M.Z. Brown, D. Burschka, and G.D. Hager. Advances in computational stereo.
PAMI, 25(8):993�1008, 2003.

111



112 BIBLIOGRAPHY

[14] J. Chai and J.K. Hodgins. Performance animation from low-dimensional control
signals. SIGGRAPH 2005, 24(3):686�696, 2005.

[15] J.C. Cheng and J.M.F. Moura. Capture and representation of human walking in
live video sequence. IEEE Trans. Multimedia, 1(2):144�156, 1999.

[16] Q. Delamarre and O. Faugeras. 3D Articulated Models and Multi-View Tracking
with Silhouettes. In Proceedings of the International Conference on Computer
Vision, volume 2, page 716, 1999.

[17] Q. Delamarre and O. Faugeras. 3D Articulated Models and Multiview Tracking
with Physical Forces. Computer Vision and Image Understanding, 81(3):328�
357, 2001.

[18] J. Deutscher and I. Reid. Articulated Body Motion Capture by Stochastic Search.
IJCV, 61(2):185�205, 2005.

[19] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in
Practice. Springer, 2001.

[20] T. Drummond and R. Cipolla. Real-time tracking of highly articulated structures
in the presence of noisy measurements. In IEEE International Conference on
Computer Vision, Vancouver, 2001.

[21] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsuper-
vised scale-invariant learning. In 2003 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2003), volume 2, Madison,
WI, USA, 2003.

[22] D. Fox. Adapting the Sample Size in Particle Filters Through KLD-Sampling.
International Journal of Robotics Research, 22(12):985�1003, 2003.

[23] D.M. Gavrila. The visual analysis of human movement: A survey. CVIU,
73(1):82�98, 1999.

[24] D.M. Gavrila and L. Davis. 3d model-based tracking of humans in action: A
multi-view approach. In Proc. Conf. Computer Vision and Pattern Recognition,
pages 73�80, San Francisco, CA, USA, 1996.

[25] D.M. Gavrila and L.S. Davis. 3-D model-based tracking of humans in action: a
multi-view approach. Proc. CVPR '96, pages 73�80, 1996.

[26] J. Gonzàlez, J. Varona, F.X. Roca, and J.J. Villanueva. A comparison framework
for walking performances using aSpaces. ELCVIA, 5(3):105�116, 2005.

[27] Jordi Gonzàlez. Human Sequence Evaluation: the Key-frame Approach. PhD
thesis, Universitat Autònoma de Barcelona, May 2004.

[28] K. Grochow, S.L. Martin, A. Hertzmann, and Z. Popovi¢. Style-based inverse
kinematics. ACM Transactions on Graphics (TOG), 23(3):522�531, 2004.

[29] M. Al Haj, A. Amato, F.X. Roca, and J. Gonzàlez. Face Detection in Color
Images using Primitive Shape Features. In CORES'07, Wroclaw, Poland, 2007.



BIBLIOGRAPHY 113

[30] B. Han, Y. Zhu, D. Comaniciu, and L. Davis. Kernel-based bayesian �ltering for
object tracking. In CVPR '05, pages 227�234, San Diego, USA, 2005.

[31] C. Harris. Tracking with rigid models. Active vision, pages 59�73, 1993.

[32] D. Hogg. Model-based vision: a program to see a walking person. Image Vision
Computing, 1:5�20, 1983.

[33] N.R. Howe, M.E. Leventon, and W.T. Freeman. Bayesian reconstruction of 3D
human motion from single-camera video. In Advances in Neural Information
Processing Systems, pages 820�826, 2000.

[34] M. Isard and A. Blake. Condensation � conditional density propagation for visual
tracking. IJCV, 29(1):5�28, 1998.

[35] A.D. Jepson, D.J. Fleet, and T.F. El Maraghi. Robust online appearance models
for visual tracking. PAMI, 25(10):1296�1311, October 2003.

[36] S.J. Julier and J.K. Uhlmann. New extension of the Kalman �lter to nonlinear
systems. In Proceedings of SPIE, volume 3068, page 182, 1997.

[37] M.B. Kaâniche and F. Brémond. Tracking HOG Descriptors for Gesture Recog-
nition. 2009 Advanced Video and Signal Based Surveillance, pages 140�145, 2009.

[38] R. E. Kalman. A new approach to linear �ltering and prediction problems.
Transactions of the ASME�Journal of Basic Engineering, 82(D):35�45, 1960.

[39] K. Kim, TH. Chalidabhongse, F. Harwood, and L. Davis. Background modeling
and subtraction by codebook construction. In ICIP'04, Singapore, 2004.

[40] O. King and D.A. Forsyth. How does CONDENSATION behave with a �nite
number of samples? In ECCV'00, pages 695�709, Ireland, 2000.

[41] F. Korc and V. Hlavác. Detection and tracking of humans in single view sequences
using 2D articulated model. Computational Imaging and Vision, 36:105, 2008.

[42] G. Kurtenbach and E.A. Hulteen. Gestures in human-computer communication.
The art of human-computer interface design, pages 309�317, 1990.

[43] I. Laptev. On space-time interest points. International Journal of Computer
Vision, 64(2):107�123, 2005.

[44] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In 2006 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, volume 2, New
York, NY, 2006.

[45] H.J. Lee and Z. Chen. Determination of 3d human body posture from a single
view. Computer Vision Graphics, 30:148�168, 1985.

[46] M.W. Lee and I. Cohen. Human Upper Body Pose Estimation in Static Images.
In ECCV'04, Prague, Czech Republic, 2004.

[47] M.W. Lee and R. Nevatia. Body Part Detection for Human Pose Estimation and
Tracking. In WMVC'07, Austin, Texas, USA, 2007.



114 BIBLIOGRAPHY

[48] B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and
segmentation with an implicit shape model. In Workshop on Statistical Learning
in Computer Vision, ECCV, pages 17�32, 2004.

[49] D.G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91�110, 2004.

[50] J. MacCormick and M. Isard. Partitioned sampling, articulated objects and
interface-quality hand tracking. In ECCV'00, pages 3�19, Dublin, 2000.

[51] A. Micilotta and R. Bowden. View-based location and tracking of body parts
for visual interaction. In BMVC'04, volume 2, London, UK, 2004.

[52] I. Miki¢, M. Trivedi, E. Hunter, and P. Cosman. Human body model acquisi-
tion and tracking using voxel data. International Journal of Computer Vision,
53(3):199�223, 2003.

[53] T.B. Moeslund, A. Hilton, and V. Kruger. A survey of advances in vision-based
human motion capture and analysis. CVIU, 104(2-3):90�126, 2006.

[54] P. Del Moral and L. Miclo. Branching and interacting particle systems. Ap-
proximations of Feynman-Kac formulae with applications to non-linear �ltering.
Séminaire de probabilités de Strasbourg, 34:1�145, 2000.

[55] Eadweard Muybridge. The Human Figure in Motion. Dover Publications, Inc.,
1955, First published 1887.

[56] A. Nakazawa, S. Nakaoka, and K. Ikeuchi. Matching and blending human mo-
tions temporal scalable dynamic programming. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2004), volume 1, 2004.

[57] H. Ning, T. Tan, L. Wang, and W. Hu. Kinematics-based tracking of human
walking in monocular video sequences. IVC, 22:429�441, 2004.

[58] R. Okada and B. Stenger. A single camera motion capture system for
human-computer interaction. IEICE Transactions on Information and Systems,
91(7):1855�1862, 2008.

[59] E. Ong and S. Gong. A dynamic human model using hybrid 2d-3d representation
in hierarchical pca space. In 10th British Machine Vision Conference, United
Kingdom, 1999.

[60] E.J. Ong, A.S. Micilotta, R. Bowden, and A. Hilton. Viewpoint invariant
exemplar-based 3D human tracking. CVIU'06, 104(2-3):178�189, 2006.

[61] J. O'Rourke and N.I. Badler. Model-based image analysis of human motion using
constraint propagation. IEEE Trans. Pattern Analysis and Machine Intelligence,
2(6):522�536, June 1980.

[62] F.J. Perales, A. Igelmo, J.M Buades, P. Negre, and G. Bernat. Human mo-
tion analysis & synthesis using computer vision and graphics techniques. some
applications., Benicassim, Spain, 16-18 May 2001.



BIBLIOGRAPHY 115

[63] R. Plankers and P. Fua. Articulated soft objects for video-based body model-
ing. In Proceedings of the Ninth International Conference on Computer Vision,
Vancouver, Canada, 2001.

[64] R. Ramamoorthi and A. H. Barr. Fast construction of accurate quaternion
splines. In 24th Annual Conf. on Computer Graphics and Interactive Techniques
(SIGGRAPH '97), pages 287�292, Los Angeles, California, USA, 1997.

[65] G. Rogez, C. Orrite, J., and J. Herrero. Probabilistic spatio-temporal 2d-model
for pedestrian motion analysis in monocular sequences. In AMDO'06, pages
175�184, Andratx, Spain, July 2006.

[66] K. Rohr. Towards model-based recognition of human movements in image se-
quences. CVGIP: Image Understanding, 59:94�115, 1994.

[67] A. D. Sappa, N. Aifanti, S. Malassiotis, and M. G. Strintzis. 3d human walking
modeling. In 3rd International Workshop on Articulated Motion and Deformable
Objects (AMDO'2004), pages 111�122, Palma de Mallorca, Spain, September
2004.

[68] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. International Journal of Computer Vision,
47(1):7�42, 2002.

[69] J.M. Selig. Geometrical methods in robotics. Springer, New York, 1996.

[70] H. Sidenbladh, M.J. Black, and D.J. Fleet. Stochastic tracking of 3d human
�gures using 2d image motion. In ECCV'00, pages 702�718, Dublin, 2000.

[71] H. Sidenbladh, M.J. Black, and L. Sigal. Implicit Probabilistic Models of Human
Motion for Synthesis and Tracking. In ECCV'02, volume 1, pages 784�800,
Copenhagen, Denmark, 2002.

[72] L. Sigal and M. Black. Predicting 3D People from 2D Pictures. In AMDO'06,
pages 185�195, Mallorca, Spain, 2006.

[73] L. Sigal and M. J. Black. Humaneva: Synchronized video and motion capture
dataset for evaluation of articulated human motion. Technical report CS-06-08,
Brown University, 2006.

[74] L. Sigal and M.J. Black. Measure Locally, Reason Globally: Occlusion-sensitive
Articulated Pose Estimation. In CVPR'06, volume 2, pages 2041�2048, New
York, USA, 2006.

[75] C. Sminchisescu and B. Triggs. Covariance scaled sampling for monocular 3d
body tracking. In CVPR'01, Kauai Marriott, Hawaii, 2001.

[76] C. Sminchisescu and B. Triggs. Estimating articulated human motion with
covariance scaled sampling. The International Journal of Robotics Research,
22(6):371, 2003.

[77] Bjorn Stenger, Arasanathan Thayananthan, Philip H. S. Torr, and Roberto
Cipolla. Model-based hand tracking using a hierarchical bayesian �lter. PAMI,
28(9):1372�1384, 2006.



116 BIBLIOGRAPHY

[78] A. Thayananthan, R. Navaratnam, B. Stenger, P. H. S. Torr, and R. Cipolla.
Multi-variate relevance vector machines for tracking. In Proc. 9th ECCV, vol-
ume 3, pages 124�138, Graz, Austria, 2006.

[79] C. Tomasi and J. Shi. Good features to track. In Proceedings of IEEE Conf. on
Computer Vision and Pattern Recognition, pages 593�600, 1994.

[80] R. Urtasun, L. EPFL, D.J. Fleet, A. Hertzmann, and P. Fua. Priors for people
tracking from small training sets. In Tenth IEEE International Conference on
Computer Vision, 2005. ICCV 2005, volume 1, Beijing, China, 2005.

[81] R. Urtasun, D.J. Fleet, and P. Fua. 3D People Tracking with Gaussian Process
Dynamical Models. In CVPR'06, pages 238�245, New York, NY, 2006.

[82] S. Wachter and H.H. Nagel. Tracking persons in monocular image sequences.
CVIU, 74(3):174�192, June 1999.

[83] L. Wang, W. Hu, and T. Tan. Recent developments in human motion analysis.
Pattern Recognition, 36(3):585�601, 2003.

[84] A. Watt and M. Watt. Advanced animation and rendering techniques. Addison-
Wesley Professional, 1992.

[85] C.R. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland. P�nder: real-
time tracking of the human body. Master's thesis, Massachusetts Institute of
Technology, Dept. of Electrical Engineering and Computer Science, 1996.

[86] Ying Wu, John Lin, and Thomas S. Huang. Analyzing and capturing articulated
hand motion in image sequences. IEEE Trans. Pattern Anal. Mach. Intell.,
27(12):1910�1922, 2005.

[87] V.M. Zatsiorsky. Kinematics of Human Motion. Human Kinetics, 1998.

[88] T. Zhao, T.S. Wang, and H. Y. Shum. Learning a highly structured motion model
for 3d human tracking. In Proceedings of Fifth Asian Conference on Computer
Vision, Melbourne, Australia, 2002.




