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Abstract

In this dissertation, we will study deeply Reed-Muller codes together with two families
of Z4-codes related to them. These families are QRM(r, m) and ZRM(r, m).

It is known that QRM (r, m) modulo 2 is exactly, the Reed-Muller code RM (r, m).
Moreover, the Kerdock code and its Z4-dual code, a Preparata-like code, are obtained
as images of some QR M (r, m) codes via the Gray map. We will generalize such family
of codes to the class of codes QRM(r, m). Any code in this class modulo 2 is a Reed-
Muller code and it will be proven that any Kerdock-like and Preparata-like code is
the image of a code in QRM (r, m) via the Gray map. The properties of codes in the
class will be studied and we will calculate the rank and the dimension of the kernel of
these codes. Moreover, we also give different constructions of codes in QRM (r,m)
and consider chain of codes in such class. We will determine some properties of such
chains concerning the duality and minimum distance of codes in the chain.

Codes ZRM (r,m) were defined in order to determine the Z,-linearity of Reed-
Muller codes. There were two different definitions of ZRM((r, m) codes (denoted
ZRM(r,m) and ZRM*(r,m)) that coincides if and only if the related RM (r,m)
code is Zy-linear. Thus we calculate the rank and the dimension of the kernel of both
ZRM(r,m) and ZRM™*(r,m) codes. Finally, we relate both codes with codes in
ORM(r,m) and Reed-Muller codes.
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Chapter 1

Introduction

The origin of codes was the aim of correcting errors on noisy communication channels.
It was in the late 1940’s when Golay, Hamming and Shannon studied that engineering
problem from a mathematical point of view and that marked the beginning of today’s

coding theory.

Historically, linear codes have been the most studied types of codes. Due to
their algebraic structure, they are easy to describe, construct, encode and decode.
Whenever a code is not linear, there are two parameters or invariants of the code
that give the information about how far is that code to be linear; these are the rank
and the dimension of the kernel. It was around 1970 that were constructed some
nonlinear codes having twice as many codewords as any known linear code with the
same length and minimum distance. Among these codes, there are the Nordstrom-

Robinson, Preparata and Kerdock codes.

About 20 years later, an important step in coding theory was achieved. It was
proven that nonlinear codes mentioned above could be considered as the image under a
called Gray map of additive codes over Z, [HKC*94]. They are called Z,-linear codes.
The Preparata code is not a Z4-linear code but a code with the same parameters;
it is called a Preparata-like code. It also was given that the Z4-dual code of the

Kerdock code is the Preparata-like code mentioned above. In fact, there are many
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nonequivalent codes with the same parameters of the Preparata code; that is many
nonequivalents Preparata-like codes [Kan83]. Z,-dual code of any Preparata-like code
is called a Kerdock-like code. Any additive Preparata-like and Kerdock-like code is
Z4-linear code.

In 1989 propelinear codes were introduced [RBH89]. The difference with linear
codes is that, given two codewords x and y, the sum of such codewords may not
belong to the code but it belongs the sum of x and a permutation (associated to z) of
y. Both linear and Z,-linear codes turn out to be propelinear codes. Among the most
important propelinear codes are those being 1-perfect with an Abelian structure that

n—k
corresponds to codes which are isomorphic to a subgroup of Z§ x Z,? .

One of the simplest and most important families of linear codes are the Reed-
Muller codes, RM (r,m). Recall that some photographies of Mars were transmitted
by the Mariner 9 spacecraft on 19 January 1972 using the first-order Reed-Muller
code RM(1,5) (one of these pothografies can be found in [MS77, Figure 14.7]). The
importance of these codes lies in the fact that they are relatively easy to encode and
decode by using majority-logic circuits. Moreover, they are of mathematical interest
due to the fact that they are related to finite affine and projective geometries. In
general, RM (r,m) are not Z-linear codes. However, there are some values for the
parameters  and m for which such codes are Zj-linear. There are two families of
Zy4-codes related to them: QRM(r, m) and ZRM(r,m) codes. Let QRM (r,m) and
ZRM (r,m) denote their binary image under the Gray map.

The first family, QRM (r, m) codes, is important because Preparata-like and Ker-
dock codes are QRM (r,m) codes. The inverse image of Preparata-like and Kerdock-
like codes under the Gray map are called quaternary Preparata-like and Kerdock-like
codes respectively. RM (r,m) codes are obtained from QRM (r,m) codes by apply-
ing the modulo 2 map. The second family was defined to prove the Z,-linearity of
Reed-Muller codes, whenever they are Zj-linear. The purpose of this dissertation is
to study deeply both families of codes and establish the relationship between them
together with Reed-Muller codes.



Firstly, due to the fact that Preparata-like and Kerdock codes are QRM (r,m)
codes and there are nonequivalent Preparata-like and Kerdock-like codes, we gener-
alize QRM(r, m) codes to the class QRM(r,m). All quaternary Preparata-like and
Kerdock-like codes belong to QRM (r,m) and, any code C in this class modulo 2
is a Reed-Muller code. Image under the Gray map of codes in QRM (r,m) are not
linear codes in general. Thus, we would like to establish which is the rank and the
dimension of the kernel of codes in the class QRM(r,m). In particular, we would
obtain the rank and the dimension of the kernel of the family of codes QRM (r, m).

Related to the Zy-linearity of RM (r,m) codes, we would like to determine which
is the minimum Zg4-linear code containing RM (r,m) codes. ZRM(r,m) codes are
defined such that ¢(ZRM(r,m —1)) = RM(r,m)) when RM (r,m) is Z4-linear. We
would like to determine their rank and their dimension of the kernel and prove that
the minimum Zg4-linear code containing RM (r,m) is, in fact, p(ZRM(r,m)).

The organization of this dissertation is the following.

Chapter 2 is an overview of coding theory in general. It contains basic definitions
that will be used along the whole dissertation. There are, in particular, definitions
and some properties of linear codes, 1-perfect and propelinear codes. The Z,-codes
are studied in Chapter 3. The Gray map and its extensions are shown and the
binary image of these codes via the Gray map is considered. After that, the theory
of additive codes is given in Chapter 4. Starting from association schemes, we then
introduce some particular types of additive codes: Zsg,-codes and binary mixed group
codes. Some of the most important class of additive codes, the 1-perfect additive
codes and extended 1-perfect additive codes, will be presented in Subsections 4.4
and 4.5 respectively. Last subsection, 4.6, corresponds to the punctured extended
1-perfect Z,-linear codes. The existence, the rank and the dimension of the kernel
are established for all these 1-perfect codes.

In Chapter 5, first of all we will review definitions, known properties and con-
structions of Reed-Muller codes. Then, we will present the known statements about

their Z,-linearity and will study the minimum Z,-code containing ¢~ (RM (r, m)) for
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some specific extended Gray map ¢. That way, we obtain an upper bound of the
number of codewords of the minimum Z,-linear code containing RM (r,m) codes.

Even though there are some contributions about Reed-Muller codes in Chapter
5 (specially, the part concerning quaternary codes), Chapters 6 and 7 are the main
core of this work.

The family of QRM (r, m) codes are studied in Chapter 6. We introduce the class
ORM and present definitions, properties and several constructions of codes in this
class. Then, we establish the rank and the dimension of the kernel of codes in this
class. Finally, we develop some construction of chains of codes in QRM and we
describe some of their properties.

In Chapter 7 we review the different definitions of ZRM codes. In the literature
there are two different definitions ([HKC*94], [Wan97]) of the family of ZRM codes.
Both families of codes are denoted ZRM(r, m) and ZRM™(r, m). We establish that
the families ZRM(r, m) and ZRM*(r,m) only coincide when the associated Reed-
Muller code is both linear and Z,-linear. Otherwise we have that the binary images
ZRM*(r,m) and ZRM (r,m) of ZRM*(r,m) and ZRM(r, m) respectively, satisfy
that (ZRM*(r,m)) = ZRM(r,m). We prove that, for all , ZRM(r,m) are linear
codes. ZRM*(r,m) are not linear codes and we compute the rank and the dimension
of the kernel.

Finally, in Chapter 8 we summarize the obtained results and give the conclusions

of the dissertation together with the open problems and future lines of research.



Chapter 2

Coding theory

In this chapter we will give basic definitions and known results about general codes
which will be used in the subsequent chapters. Apart form general definitions in
Section 2.1, we will focus on some particular types of codes. First, an overview
of linear codes is given in Section 2.2. The next section is about 1-perfect codes:
definitions and existence, description of ST'S and invariants related to these codes,
constructions and, finally, some results about their rank and their dimension of the

kernel. Section 2.4 concludes the chapter with propelinear codes.

2.1 Basic definitions

Let F? be a vector space of dimension n over the Galois Field F, = GF(q), where
q > 2 is a prime power. A subset C' of F/ is called a code of length n, and the
elements ¢ € C' are codewords. When C'is a linear subspace of F, C' is called a
linear code; in that case, the sum of any two codewords is also a codeword. If C'is
a subgroup of F' then C is called a group code. Unless stated otherwise, we shall
assume that ¢ = 2; so that GF(2) = Fy, and hence, we denote by ZJ the additive
group of F" =FJ}. C' C F" is called a binary code.

A code C'is called a systematic code if there exist coordinates iq, - - - , 7, such that

b}
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C restricted to these coordinates generates F* and |C| = 2F.

The Hamming distance between vectors x,y € F™ is the number of coordinates in
which x and y differ. We will denote the Hamming distance by d(, ). The Hamming
weight of a vector z is the number of nonzero coordinates and it is denoted by wt(z).
We define the Hamming weight by means of the Hamming distance as wt(z) = d(z, 0),
where 0 is the all-zeroes vector. If C' C F" is a binary code, then we assume, unless
it is said otherwise, that 0 € C'.

The metric used in codes as subsets of F" will be the Hamming metric. Other
no-Hamming metrics can be found in [Mar01] .

For X C F"™ and v € F™, we define the distance of v to X, denoted by d(v, X), as

the minimum distance of v to any vector in X:
d(v, X) = min{d(v,z)|z € X}.
Let C be a code. The minimum distance of C' is
de = min{d(z,y)|z,y € C,xz # y},
and the minimum weight of C' is
wte = min{wt(x)|z € C, x # 0}.

We denote d¢o as d when there is no ambiguity.
Let A; be the number of codewords of Hamming weight ¢ in C', then {Ag, -+, A,}
is called the weight distribution of C'. The weight enumerator of C' is defined as the

polynomial

Wo(X,Y)=> AX"Y" (2.1)
=0

We is an homogeneous polynomial of degree n in X and Y. There is another way

of writing this polynomial:

We(X,Y) = xn-Wioywto, (2.2)
ceC
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d—1
The error correcting capability e of a code C'is e = L?J . In this case, we say

that C' is e-error correcting.

Consider the translate classes of C', C + 2 = {y + z|y € C'}, where z € F". If C
is linear then the translate classes are also called cosets. Each vector of F" of weight
less or equal to e is in a different translate of C'. A code C' is called distance invariant
if the weight distribution of C'+x is the same for any x € C'. If C' is distance invariant
and 0 € C then the minimum weight and the minimum distance coincide.

For u = (uy,- -+ ,uy), v = (vy,---,v,) € F", the scalar product between u and v
isu-v=uwuwv +- -+ uv, If u-v=0then u and v are called orthogonal. Let C'
be a code, we define the orthogonal code of C, denoted by C+, as the set of vectors

which are orthogonal to all codewords of C'
Ct={ueF"lu-c=0Vce C}.

When C is a linear code, C* is called the dual of the code C'.

If C' C C* then C is called a self-orthogonal code and, if C' = C* then C is called
a self-dual code.

Two structural properties of codes are the rank and the kernel. The rank of C,
rank(C'), is the dimension of the subspace spanned by C. If C is a code of length n
and rank(C') = n, then we say that C' is a full-rank code. The kernel of C' is defined

as

ker(C) ={z € C|C =C+ z};

and it is the set of vectors in C' that leave C' invariant under translation. In general,
if 0 € C, then ker(C) is a linear subspace. C' can be written as the union of cosets
of ker(C), and ker(C) is the largest such linear code for which this is true (see
[BGH83]). The dimension of the kernel of C' is denoted by dim(ker(C)). If C is
linear, then ker(C) = C and rank(C) = dim(ker(C)). In some sense, the rank and
kernel of a code give some information on its linearity.

The group of coordinate permutations 7 : €' — C' is denoted by Aut(C). An

isometry of a binary code is a distance-preserving 1-1 mapping ¢ : ¢ — C. An
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isometry ¢ of F™ can always be represented by a translation plus a coordinate per-
mutation, ie., p(y) = x + 7(y) (see [BE48]). Isometries of a code form a group,
Iso(C). Given two codes, Cy, Cy, we say that these codes are isomorphic if there
exists a coordinate permutation 7 such that C; = w(Cy). C is equivalent to Cy if
there exist an isometry ¢ such that C; = ¢(Cy).

Let C be a code in F™ and * an operation defined in C. We will write (C,*) to
emphasize this operation. Assume the operation * induces an action x: C' x F" —

F™. The action x is a Hamming-compatible action if
d(x,z*v) = wt(v), (2.3)

for all z € C' and for all v € F™.
A binary code (C, ) of length n is a Hamming-compatible group code if (C, %) is
a group and it is possible to extend x : C' x F" — F™ to a Hamming-compatible

action.

2.2 Linear codes

Let C C F™ be a code. If C is a linear code we will denote it by C(n, k), where n is
the length of the code and k is its dimension, that is, the dimension of the subspace C'
in F". The number of codewords is |C] = 2*. Note that rank(C) = dim(ker(C)) = k.

If C' is a linear code, then C'+ x = C for all x € C; hence, every linear code
is a distance-invariant code. As a consequence, the minimum weight and distance
coincide. We can also consider the code as (C,+), where + is the usual sum of
vectors in F”, that is, a Hamming-compatible group code.

Let C be a linear code. As C' is a linear subspace in F" of dimension k, there

exist k linearly independent codewords x1,--- ,x; in C' such that

O:<$la"'7xk>a
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where x; = (241, x;) € C. So, the matrix

T11, 5 Tin
G = Til, -y Tin (24)
Tk1, 5 Tkn

is called a generator matrix of C'(n, k). In this way, any codeword ¢ € C' is given by

a linear combination of the rows of GG
C:>\1$1+"‘+>\k$k,

that is,
Cc= (>\17 T 7>\k)G7

where A1, .-+, A\ € F.

The dual code C* has dimension n — k; in fact, it is a linear code C*(n,n — k).
Let H be a generator matrix of C+. x € F" is a codeword of C' if and only if z H! = 0,
where H' denotes the transposed matrix of H. H is called a parity check matrix of
the code C. Moreover, if GG is the generator matrix of C, then G is the parity check
matrix of C*.

A linear code is a systematic code if it has a generator matrix that contains
the identity matrix of dimension k. We assume, without loss of generality, that the
identity matrix is given by the first k coordinates. Let C' be a binary linear systematic
code with generator matrix

G=(1d|pP)
where Id is the (k x k) identity matrix and P is a (k X (n — k)) matrix. Then, a

parity check matrix of C' is the matrix given by
H=(P|1d)

where Id is the ((n — k) x (n — k)) identity matrix.
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Example 2.2.1. Hamming codes.
A Hamming code H, is a linear code H,.(n = 2" — 1,k = 2" — 1 — r) with minimum
distance d = 3, forr € {2,3,...}. The ((n — k) x n) -matriz, H, with columns all the

different non-zero vectors of length n — k is a parity check matrixz of H,. Then,
H, = {zr € F*|zH' =0}

Letr =3, thenn="T and k = 4. Let H be a parity check matrix of Hs:

0111100
H= 1011010

1 101001

A generator matriz of Hs is

1 0000O0T1°71

01 00101
G —

0010110

0001111

The codewords of Hs, generated by the rows of G, are:

0000000 1111111
1000011 0111100
0100101 1011010
0010110 1101001
1110000 0001111
0011001 1100110
0101010 1010101
1001100 0110011

Note that the weight distribution of Hs is

{1,0,0,7,7,0,0,1}.
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The following theorem, that can be found in [MS77], shows that the weight enu-
merator of the dual code C*(n,n — k) of a binary linear code C(n, k) is uniquely

determined by a linear transformation of the weight enumerator of C'(n, k).

Theorem 2.1 (MacWilliams identity). Let C(n, k) be a linear code and C*(n,n—
k) its dual, then

1

Example 2.2.2. Let H3(7,4) be the Hamming code defined in Example 2.2.1. Then
Wi, (X, V) = X"+ 7XY3 +7X3v  + Y7
Wis (X, Y) = X7+ 7X°7*
It is easy to check that these weight enumerators verify the MacWilliams identity.

For more information about Hamming codes and linear codes in general, see

IMST77].

2.3 Perfect codes

A binary code C' of length n is perfect if for some integer » > 0 every x € F" is within
distance r from exactly one codeword of C'. Note that this definition coincides with
the one given in the last section with » = e. C' will be called perfect e-error correcting
code or e-perfect code to emphasize the parameter e.

It is shown in [Tie73] and [ZL73] that the only binary perfect codes of length n

are:
e trivial codes:

— F" d=1and e =0.

— {z}: e=n.

n—1

e repetition code, {0, 1} (and equivalents): n odd, d =n and e = 5
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e binary Golay code: n =23,d =7 and e = 3.
e l-perfect codes: n=2"—1,d=3 and e = 1.

For any m > 2, there exists a Hamming code of length n = 2™ — 1. Moreover,
if C'is a 1-perfect code, then the weight distribution of C' is the same as the weight
distribution of a Hamming code with the same length. For n = 3, the Hamming
code is, in fact, the repetition code of length 3. If n = 7, then the Hamming code is
the only 1-perfect code up to equivalence. In the case e = 3, the Golay code is also
unique up to equivalence (see [Ple68],[Sno73],[DG75]). Thus, the only parameters for
which there exists nonequivalent binary perfect codes are e =1 and n = 2™ — 1 with

m > 4.

2.3.1 STS and invariants of 1-perfect codes

A 1-perfect linear code of length n = 2™ — 1 is equivalent to a Hamming code. The
nonlinear 1-perfect codes are, however, not fully classified. There are many invariants
of 1-perfect codes that are used to study these codes and to try to distinguish between
nonisomorphic 1-perfect codes.

The two main invariants of such codes, even though they do not classify them
completely, are the rank and the dimension of the kernel. They were defined in
Section 2.1 and, due to the importance of these invariants, they are studied in greater
details along the dissertation. Other invariants are those related to the Steiner triple
systems. To give these invariants, it is necessary to define the Steiner triple system
and see its relationship with 1-perfect codes.

A Steiner triple system is an ordered pair (V, B) where V is a finite set of points
called vertices, and B is a set of 3-subsets of V' called blocks such that each pair of
elements of V' is contained in exactly one block of B. If n = |V, then we say that n

is the order of the Steiner triple system and it is denoted by ST'S(n) or simply, ST'S.
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Example 2.3.1. Let V ={1,2,--- 7} be the set of vertices and
B ={(1,6,7),(2,5,7),(3,5,6),(1,2,3),(3,4,7),(2,4,6),(1,4,5)}.

be the set of blocks. Then, (V, B) is a Steiner triple system of order 7 and it is called
the projective plane of order 2 or the Fano plane. The Figure 2.1 shows this STS(7).

Figure 2.1: STS(7)

Given two ST'S(n), (V,B) and (V, B’), we say that they are isomorphic if there

exists a permutation 7 on the set V' such that B = n(B’).

Proposition 2.2 ([AJMJ67],[GVTT75]). If C is a 1-perfect code of length n con-
taining the zero vector, then the minimum weight codewords (of weight 3) in the code

form an STS(n) by considering blocks as {(i,j,k)} where (i, j, k) are the support of
all the codewords of weight 3 in C.

The ST'S obtained in this way is denoted ST'S.
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Example 2.3.2. Consider the Hamming code Hs of Example 2.2.1. The following
table shows the codewords of weight 3 in Hs and the blocks related to them:

1000011 — (
0100101 — (
0010110 — (
1110000 — (
(
(
(

1,6,7)
2,5,7)
3,5,6)
1,2,3)
0011001 — (3,4,7)
0101010 — (2,4,6)
1001100 — (1,4,5)

From Hs, it yields the STS(7) (V, B), with V- ={1,2,--- 7}, and
B = {(17 67 7)7 (27 57 7)7 (37 57 6)7 (17 27 3)7 (37 47 7)7 (2747 6)7 (]'7 47 5)}

Note that this ST'S(7) coincides with the one given in 2.53.1. In fact, STS(7) is unique

up to isomorphism.

Let C be a 1-perfect code. Let v € C. The set of codewords w € C' at distance
three from v is a Steiner triple system, denoted by ST'S,, taking as the set of blocks
B the support of all the vectors v + w, where w is at distance 3 from v.

Note that starting from a 1-perfect code C, we can obtain different STS’s; for
instance, ST Sy, STS,, etc. These ST'S’s may or may not be unique. In that sense,

we will give some algebraic results that limit the possibilities of the ST'S’s obtained.

Proposition 2.3. (/Bor98]) A 1-perfect code C' of length n > 3 is a linear code if
and only if
STS, =STS,, for all v,w e C.

Proposition 2.4. (/Bor98]) Let C be 1-perfect code of length n > 3 with kernel
ker(C). If v € ker(C) +w, for v,w € C, then STS, = ST'S,,.

If two codes C, C” are isomorphic, then the Steiner triple systems obtained from C

and C’ by Proposition 2.2 are isomorphic and the invariants related to them coincide.
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Nevertheless, two nonisomorphic codes can give the same ST'S and, hence, the same
invariants. In this way, invariants related with ST'S’s give information about the
nonisomorphism of 1-perfect codes.

On the other hand, the number of nonisomorphic ST'S(n) (see [MPR83]), N(n),
is given by

N(n) _ nn2(1/6+0(1))'

Hence, there are 80 nonisomorphic S7T'S(15), that are listed in [WCC19], but for
n = 31 there are ~ 10%%° nonisomorphic ST'S’s. That way, the only invariants related
with ST'S’s given in this section are those related to ST'S(15).

There are some invariants that do not distinguish completely the nonisomorphic
STS’s. Among these invariants, in [MPR83] we can find the cycle vector, cycles
through elements, the compact train or the representative k-coloring of triples. Also
in [Dej94] we find the ST'S-graph invariant, H(C'), that belongs to this class.

Now we will list some complete invariants of ST'S’s which allow us to distinguish
completely nonisomorphic ST'S’s. The first complete invariants were the cycle struc-
ture and trains that appeared in [MPR&3|. Later, we can find fragments in [LeV95]
and the characteristic vector in [Rif99]. Finally, in [DDO02] there is a refinement of
H(C), Hier(c)(C), called the ST'S-graph of C' modulo the kernel.

2.3.2 Constructions of 1-perfect codes

Nonlinear 1-perfect codes were first constructed by Vasil’ev. A generalization of the
Vasil’ev construction was given by Mollard. Other constructions of nonlinear 1-perfect
codes have been subsequently presented by Phelps, Solov’eva and Bauer et al. Some
of these constructions will be shown in this section. To obtain more information
about constructions of 1-perfect codes, see [EV94] and [Vil01].

A code C of length n 4+ 1 = 2™ is extended perfect if it is obtained from a perfect

code of length n by extending with either an even or odd parity coordinate.
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Vasil’ev construction

For v € F", define p(v) = wt(v) (mod 2). Let C,, be a l-perfect code of length
n=2"—1. Let f:C, — {0,1} be an arbitrary mapping such that f(0) = 0 and
fler) + fea) # f(e1 + o) for all ¢1, ¢ and ¢1 + 3 € C,.

Proposition 2.5 ([Vas62]). The code Co, 11 defined by
Cont1 = {(v|v +¢|p(v) + f(c)) ;v e F" c e Cy},
where | denotes the concatenation, is perfect.

Mollard gives a construction that is, in a sense, a generalization of the one given
in Proposition 2.5. It is defined as follows.
Let © = (x11,%12,"** , T1ny, To1, To2,* ** , Tpyny) € FM™2. Define the generalized
/

functions py(z) = (o1, ,0n,) € F™ and py(z) = (o}, ,0,,) € F™ by setting

Y n9

n2

Op = ) _j21 Tij and a;- = > x;;. Let €y and Cy be two 1-perfect codes of lengths ny

and no, respectively. Let f : C; — F™ be an arbitrary mapping.
Proposition 2.6 ([Mol86]). The code F defined by

F={(z|le1 + pi(z)|ca + pa(z) + fe1)) 12 € F™™,c1 € Ch, 00 € Ca}
1s a 1-perfect code of length n = niny + ny + no.

Note that for ny = 1 it coincides with the Vasil’ev construction.

Doubling construction

The following construction of 1-perfect codes of length 2n 4 1 from 1-perfect codes of
length n is due to Phelps and Solov’eva.

Let e; be the vector with 1 in the coordinate ¢ and 0 elsewhere. Let X C F™ and
Y C F™. Then, the direct sum of X and Y, denoted by X @Y € F "™ is as follows:

XY ={(z,y)lre X,yeY}
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Let C; be a 1-perfect code of length n and let C; be an extended 1-perfect code of
length n + 1.

Proposition 2.7 ([Phe83], [Sol81]). The code
CI@C UCI+61 C2+e7rz)) )7

where T is a permutation on the set {1,2,--- ,n}, is a 1-perfect code of length 2n+ 1.

The next proposition gives a more general variant of the above construction.

Let E" be the set of all even weight vectors of F". Let Cj,C},---,C; and
Dy, Di,- -+, D be partitions of E"™! and F"™'\E"*! respectively, into extended 1-
perfect codes by extending with an even parity coordinate the first ones and with

an odd parity coordinates the second ones. Let m be a permutation on the set

{0,1,--- ,n}.

Proposition 2.8 ([Phe83], [Sol81]). The code C' defined by
JC={(cld): ceC;,de Dy}
i=1

1s an extended 1-perfect code of length 2n + 2.

Puncturing any coordinate of C' yields a 1-perfect code of length 2n + 1 .

Switching construction

This construction consists of starting with a 1-perfect code C' of length n and switching
out one specially selected set of codewords S C C' for another set of vectors S’. The
resulting code C" = (C\S) U S’ is a 1-perfect code.

The first approach of this construction was due to Solov’eva in 1988 (see [Sol88]).
Others approaches can be found in [Sol00], [AS97] and [PL95]. We will present the
one due to Phelps and LeVan.
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For a 1-perfect code C of length n, we define the minimum distance graph of C
as a graph G(C) = (C, E) with the codewords in C as vertices and edges [z,y] € E
if and only if d(z,y) = 3.

We define a subgraph G;(C) = (C, E;) as the subset E; of all the edges in G(C)
where the codewords x and y disagree at the i coordinate (see [Sol88]).

Define T; to be the linear subcode of a Hamming code, H, generated by the
codewords of weight 3 having a 1 in the i component. There will be a path from z to
yin G;(H) if and only if there is a sequence of codewords of weight 3 t,ts, -+ ,t, € T;
such that x 4+ ¢, +t, +-- - +ts =y, that is equivalent to y € T; + x. Thus, T; +x is a

component of G;(H).

Proposition 2.9 ([PL95]). Given a Hamming code H,, of length n = 2™ —1, let T;
be the linear subcode of H,,, x; € H,,. Then

C = Hn\(T; + ;) U(T; + z; + €;)

is a nonlinear 1-perfect code of length n, Vi € {1,--- n}.

2.3.3 Rank and kernel of 1-perfect codes

Let C be a 1l-perfect code. We have seen that if C' is linear, then dim(ker(C)) is

equal to the dimension of the code. When C' is a nonlinear code, then
dim(ker(C)) <log,|C| — 2

Moreover, as 1-perfect codes are diametrically opposite, then 0 and 1 belong to the
kernel and hence, dim(ker(C)) is at least 1. Indeed, if n = 2™ — 1 is the length of
the code, then dim(ker(C)) € {1,2,---,2™ —m — 3} or dim(ker(C)) =2™ —m — 1
and C'is a linear code.

Etzion and Vardy proved in [EV94] that there exist 1-perfect codes with any
possible rank. In [PL95] Phelps and LeVan obtained 1-perfect codes with kernels of

all possible sizes:
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rank(C) € {n —m,--- ,n}
dim(ker(C)) € {1,2,--- ,n—m —2,n—m}

and they are related. The natural question, appeared in [EV98], was for which pairs of
values (r, k) there exist a 1-perfect codes having rank(C) = r and dim(ker(C)) = k.

There are some theorems in [VP02] that establish the exact upper and lower
bounds on the kernel dimension by means of the rank of codes of length n = 2™ — 1
except for the case rank(C) = n and m > 4. Lately, in [EV98], it is shown that
for m > 10 this upper bound is tight for full-rank codes. Finally, Solov’eva et al.
have determined in [AHSO03] all allowable parameters (r, k) except to in the case of

full-rank codes (r = n).

2.4 Propelinear codes

In 1989 the propelinear structure was introduced in [RBH89] with the purpose of
studying the algebraic structure of completely regular codes (not necessarily linear
codes) associated with distance-regular e-latticed graphs. Lately, this structure was

studied apart from graphs, in propelinear codes, as we will do in this dissertation.

Let C' be a subset of F" and let §,, denote the symmetric group of permutations of

theset {1,2,--- ,n}. Let m € §,,. For any vector v = (vy,--- ,v,) € F", we write 7(v)
to denote the vector (vz-1¢1), -+ ,Vr-1(,)). We will denote the identity permutation
by Id.

Definition 2.4.1. C' C F" is called a propelinear code if Vv € C' there exists m, € S,
such that:

i) Vee C:v+mc) e C,

ii) Ve € C': my 0T = Ty, where m = v + m,(c).
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2.4.1 Algebraic structure of propelinear codes

Let C be a propelinear code. Given z,y € C' we define the binary operation x as
rxy =2+ m(y). (2.5)

The operation * is closed in C' and for all z € C' we have that x xy = z % z if and
only if y = z and hence, C' x C' = C' . The vector 0 is always a codeword in C' with
permutation associated my = Id, the identity permutation. Thus, as we can see in
([RBH89)), (C,*) is a group, which is not Abelian in general, with 0 as the identity
element, and = = 7! (x) as the inverse element of x € C. The set Il = {r,| z € C}
is a subgroup of §,, with the usual composition of permutations. There are different
ways to refer to a propelinear code C: (C,II) is used to emphasize the permutation
group IT whereas (C,x) is used to emphasize the operation x. A general propelinear
code is only denoted by C.

Note that if IT = {Id}, then C'is a linear code. Hence, it is clear that every linear
code is a propelinear code. However, it is possible to construct a linear code with
different propelinear structures as we can see in ([PR97b]).

Let (C,*) be a propelinear code. For any x € C define ¢, : C — C by ¢.(y) =
xxy =x+m(y), fory € C. ¢, € [s0(C) for all x € C. The following statements
can be found in [PR02].

Lemma 2.10. Let (C,*) be a propelinear code. G = {¢.|x € C} is a subgroup of
Iso(C).

Proof: The operation in G is the composition of isometries; that is, ¢,¢,(z) =
Ga(y + my(2)) = v + Moy +my(2)) = 25y + Moy (2) = T * Y + Touy(2) = Puay(2). Po
is the identity element and ¢! = ¢,-1, where 27! = 7 (z).

Proposition 2.11. Let (C,*) C F™ be a group. C is a propelinear code if and only

if the group Iso(C') contains a reqular subgroup acting transitively on C.
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Proof: Let (C,*) be a propelinear code. By Lemma 2.10, G = {¢,|z € C} is a
subgroup of Iso(C'). By definition of G it is clear that |G| = |C|. Now, given w,v € C

there exist x € C', x = w*v~!, such that w = ¢,(v):
Ge(V) = 2+ T (V) = w + T (V) F TuTe1(V) = W+ TV ) + (v = w.

Hence, G is a regular subgroup acting transitively on C'.

Conversely, assume [so(C') contains a regular subgroup, G, acting transitively on
C. Therefore |C| = |G|, and, for x € C there exist a unique ¢ € G such that
x = ¢(0). Let call ¢, = ¢, where z = ¢(0). For x € C, define 7,(v) = = + ¢,(v) and
rxv =2+ 7, (v) = ¢,(v). With this operation, we claim that (C,x) is a propelinear
code. First of all, we have to prove that Vx,v € C, x + m,(v) € C, but it is clear due
to the fact that  + 7, (v) = ¢,(v) and ¢, € Iso(C). Finally, we have to check that
TyTy = Tawy. Note that ¢,¢,(0) = ¢.(¢,(0)) = ¢2(y) = & *x Y = ¢4y (0) by definition
of ¢, and hence ¢,¢, = ¢y, Now, for all v e C, m,m,(v) = 7, (y + ¢, (v)) = 7 (y) +
7o (6y(0)) = & 62 (1) + 2+ Bu(0(0)) = Bay) + BuBy() = T XY + Dy (1) = Tany (0);

hence, m, T, = Tyuy. 1

2.4.2 Translation-invariant propelinear codes

The operation defined in (2.5), x : C' x C' — C, can be extended to
*: CxF" —— Fm
(u,v) —— urv=1u+m(v)

Lemma 2.12. If (C,x) is a propelinear code, then:
d(u,v) =d(x *u,xxv), Vo € C, Yu,v € F".
Proof: The claim is trivial and can be found in [RBH89] and [BR99].

Corollary 2.13. A binary propelinear code (C,*) is a Hamming-compatible group

code.
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Proof: Let (C,*) be a binary propelinear code. By Lemma 2.12 for every z € C,
vel”

d(xz,z*v) =d(0,v) = wt(v).
Therefore, the action x is Hamming compatible and hence (C,*) is a Hamming-
compatible group code. 1

A propelinear code (C, ) is a translation-invariant code if
d(z,y) =d(x *u,y*u); Yo,y € C, Yu € F".

Translation-invariant codes have been studied by J. Pujol and J. Rifa in [PR97b]
where we find the characterization of conditions of propelinear codes to be translation-

invariant and a classification of these codes. Now we will show some of these results.

Lemma 2.14. Let (C,*) be a propelinear code of length n. C' is translation-invariant

if and only iof for all x € F™ and for all uw € C
wi(u) = d(z,u* ).

As a corollary of this lemma, we obtain the following necessary condition for a

propelinear code to be a translation-invariant code.

Corollary 2.15. IfC is translation-invariant propelinear code of length n, then |C| =

2k for some k < n.

For examples of non-translation-invariant propelinear codes see [PRI7b].
A translation-invariant propelinear code C'is a subgroup of the group Zgl X Z? X
18“3, where ki + 2ky + 4ks = n is the length of the code and Qg is the non Abelian
quaternion group of eight elements (see [PRI7b]). In this way, we make a partition

of the set of coordinates {1,---,n} in three subsets, X, Y, Z, such that:
o | X| =k, |Y| =2k and |Z| = 4k3
o Ox ={(ci, ey )ller, -+ en) € Cig, - -+ iy, € X}, is a linear code,

Cy = {(cirs s iy, (er, -y en) € Crin, -+ yigg, € Y} is a Zy-code and

Cz=A{(ciy, - ,Ci4k3)\(01, ceo ) € Cliyy -+ gk, € Z} is a quaternion code.
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We will say that such a code C, is a code of type (k1, ko, k3). Note that a code
of type (k1,0,0) is a linear code and a code of type (0, ko,0) is a Zy-linear code.
Moreover, as Qg is not Abelian, every translation-invariant Abelian propelinear code

is of type (kq, k2,0).

Example 2.4.1 ([PR97b]). Let a = (1,0,1,0) and b = (1,0,0,1) be in F* with
permutations associated w, = (1,2)(3,4) and m, = (1,3)(2,4) respectively. Notice
that

a*=1d, a*> =1V*, axbxa=b.
The propelinear code C generated by a and b is called the quaternion propelinear code
and it is 1somorphic to the quaternion group Qg:
(C, 1) =< (a,m,), (b,m) >= {(0,1d), (a,m,),
(a?, Id), (a3, 7,),
(b, ), (@%b, Taxp),
(a®x b, mp), (a®x b, Tasp) }

C' s of type (0,0,1).

A code C not only have a unique representation as a code of type (kq, ko, k3);
that is, there exist codes of type (ki, k2, k3) that can be also seen as codes of type
(ki kS, k%) # (ki, k2, k). The Hamming code of length 7 is a 1-perfect linear code
and, hence, a translation-invariant propelinear code of type (7,0,0). In [PRI7b], it is
shown that the Hamming code of length 7 is also a code of type (3,2,0) and a code
of type (3,0,1).

Example 2.4.2. The Hamming code Hs defined in Example 2.2.1 is isomorphic to

the following translation-invariant propelinear codes:

[ ]
(C,I1) = < ((1,0,0,0,0,1,1), Id),
((0,1,0,0,1,0,1), Id),
((0,0,1,0,1,1,0), Id),
((0,0,0,1,1,1,1), Id) >
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Cy is a linear code of type (7,0,0).

)

(Co,I) = < ((1,0,1,0]1,0,0), (1,2)(3,4)),
(1,2)(3,4)),

((1707071|07170)7 ) )( )
((1,1,1,1]1,1,1),Id) >
Cy is of type (3,2,0) where the first four coordinates make up a Zy-linear code

and the last three coordinates correspond to the linear ones.

(Cs,I1) = < ((1,0,1,0]1,0,0),(1,2)(3,4)),
((1,0,0,1]0,1,0),(1,3)(2,4)),
((1,1,1,1]1,1,1),Id) >
Cs is of type (3,0,1). As in the last code, the three last coordinates are linear
but in this case, the first coordinates make up a quaternion code. Notice that

this code is not Abelian:

axb=(1,1,0,0,1,1,0) # (0,0,1,1,1,1,0) = bx a.

Finally, within translation-invariant propelinear codes, we would like to charac-
terize those codes being 1-perfect. The different available values (k1, k2, k3) of such
codes were given in[PRI7b].

Let C' C F" be a 1-perfect translation-invariant propelinear code of type (k1, ka, k3)

and length n. There are some conditions over ki, ky and ks:
e ki # 0, because n is odd.
o k3 <1.
o If k3 =1, ko =0.

Let C be a 1-perfect translation-invariant propelinear code of type (ki, ks, k3). If
ks > 0 then, necessarily, k3 = 1 and also ky = 0; hence, C' is of type (n — 4,0,1).
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From [BR99] n = 2/ — 1, with ¢ > 3; moreover, there is only one 1-perfect propelinear

code of type (n —4,0,1).

Theorem 2.16 ([PR97b]). Let C be a I-perfect translation-invariant propelinear
code of type (ki, ko, ks). If ks > 0, then C' is the Hamming code of length 7 and of
type (3,0,1).

Let C' be a 1-perfect translation-invariant propelinear code. If the length of the
code is n > 7 then, by Theorem 2.16, k3 = 0 or C' is a Hamming code of length
7 and it also has an structure of type (7,0,0) or (3,2,0). If the length of the code
is 3, then it has a propelinear structure of type (1,1,0). Then, if C is a 1-perfect
translation-invariant propelinear code of length n, C'is a code of type (k, "T_k, 0) with

n—k

an Abelian structure and it is isomorphic to a subgroup of Z& x Z,? .
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Chapter 3

Z.y~codes

Recently, Z4-codes have appeared in a large number of articles, for instance [HKC94],
[BSBMO7], [AGOS99], [BSC95], [CMKH96], ... There are, basically, two different
motivations to study these codes. Firstly, the best known nonlinear binary codes such
as the Nordstrom-Robinson, Kerdock, Preparata, Goethals, and Delsarte-Goethals
codes contain a larger number of codewords than any known linear codes with a fixed
block size. Hammons, Kumar, Caldermark, Sloane, and Sole [HKC*94] discovered
that these codes have a structure of Zs-codes via the Gray map. And secondly,
it was shown that self-dual Z4-codes are closely related to unimodular lattices via

Construction Ay (see, for example [BSC95] or [HSG99)).

This chapter is organized as follows. Section 3.1 include weights, distances and
weight enumerators. The different extensions of the usual Gray map is given in
Section 3.2. Then, binary images under the Gray map of quaternary codes are studied
in Section 3.3, and the linearity of such codes in Section 3.4. Cyclic codes over Z,
and Galois rings are presented in Section 3.5 to conclude, in Section 3.6 with the
most important example of cyclic code over Z,4, the Kerdock code and, moreover, its

Zy4-dual code, the Preparata-like code.

27



28 CHAPTER 3. Z,-CODES

3.1 Weights and distances

A quaternary code, or Z4-code, C of length n is a linear block code over Z,; that is, C
is an additive code of Z}. We define different weights in Z, apart from the Hamming
weight, wt() defined in chapter 2, namely the Lee weight and the Euclidean weight.
The Lee weights of the elements 0,1,2, and 3 of Z4 are 0,1,2, and 1, respectively,
and the Lee weight wtr(z) of x € C is the rational sum of the Lee weights of its
components. We define the Lee distance as we defined the Hamming distance by
means of the Hamming weight; in this sense, the Lee distance, dy(x,y) of two vectors
z,y € Cis wtp(x —y).

In the literature about Z,-codes, there are different definitions for the Euclidean
distance and the Euclidean weight. We show two versions where the weights of the
elements of Z, are different from each other.

Usually, when the Z4-codes are used in communications, the elements 0,1,2 and
3 in Z, are represented, respectively, as i = 1, i' =4, i = —1 and ®> = —i in the
complex plane. In this way, in [HKC*94] and [Wan97], d%(i%,4°) is defined as the
square of the usual Euclidean distance between i* and ® in the complex plane. If
x = (x1,...,2,) € ZY, then * = (i**,...,4""). Thus, the square of the Euclidean

distance between two vectors x,y € C is given by
n
dip(i*,i¥) = ) dp(i,i%).
j=1

With this definition Zhe-Xian Wan obtained the Lee distance from the Euclidean

distance as

1 .
dL(xvy) = §d2E(Z 77'y>‘

Another definition was introduced in [BS94] (see also [BSC95]). The Euclidean
weight of the elements 0,1,2, and 3 of Z, are respectively 0,1,4 and 1, and the

Euclidean weight of an element = € C, wtg(z), is the rational sum of the Euclidean



3.1. WEIGHTS AND DISTANCES 29

weights of its components. Hence, the Euclidean distance between two vectors z,y €
C, dr(z,y), is wtg(z —vy).

Note that the Euclidean weights of the elements 0, 1,2 and 3 of Z4 given in the
first definition are, respectively, 0,+/2,2 and v/2 which are not the same values as
those given in the second one. The first definition is used with modulations while the
second one is used with lattices. In this section, we are going to use the first one that
is the one related with the Lee distance.

In the previous chapter, we defined the minimum (Hamming) weight and distance.

Similarly we define
min{wtr(c)lc € C ,c # 0}, min{dy(c,)|c,d € C ,c# '}

and

min{wtg(c)|lc € C ,c# 0}, min{dg(c,d)|c,d € C,c# '}

to be the minimum Lee weight and distance and the minimum Euclidean weight and
distance of C, respectively.

For all z,y € Z}, x = (z1,...,2n), ¥y = (Y1, - - -, Yn) We define the inner product of
x and y by

Ty =x1y1+ -+ Ty, mod 4.

Hence, the notions of dual code (C*), self-orthogonal code (C C Ct), and self-dual
code (C = C*t) are defined in the standard way (see [MS77]).

A self-dual Z4-code with Euclidean weight divisible by eight is called a Type II
code.

Two codes are equivalent if one can be obtained from the other by permuting
coordinates and (if necessary) changing the signs of certain coordinates. The auto-
morphism group Aut(C) of C is the group of all coordinate permutations and sign-
changes that preserve the set of codewords. Codes differing by only a permutation

coordinates are called permutation-equivalent.
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Any Zg4-code C is permutation-equivalent to a code C’ with generator matrix of

the form
I, A B

0 2I;, 2C
where A and C' are matrices over Zs and B is a matrix over Z,. We say that C is of
type 4512F2. Notice that C is of type 4¥12%2 if and only if |C| = 2%17*2 and the number
of order 2 codewords is 2F1+k2
We can obtain the type of a Z,-linear code when vectors in the generator matrix

have some specific properties. This is the case of the following lemma.

Lemma 3.1. Letvy, ..., vk, U1, .., Uk, be ki+ko linearly independent binary vectors.
Then, the Z4-code generated by the matrixz G with row vectors vy, ..., Uk, , 2Uq, . . ., 2U,

is of type 4F12k2,

Proof: In particular, vy,..., v, are linearly independent binary vectors and the
matrix with row vectors vy, ..., vy, is permutation equivalent to a matrix of the form
(1 )

As vy, ..., vk, uy, ..., ug, are linearly independent binary vectors, then the matrix

with these vectors as row vectors is permutation-equivalent to a matrix of the form

Iy, A1 B
0 I, C4
where A = (Al Bl>
Similarly, we obtain that the matrix with row vectors 2vq, ..., 2vg,, 2uq, ..., 2ug,

is permutation-equivalent to a matrix of the form

2, 24, 2B
0 2I, 20

Therefore the Zs-linear code, C, generated by G is the Zj-linear code gener-

ated by the matrix with row vectors vy, ..., vk, 2v1, ..., 20k, 2uq, ..., 2uy, that is
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permutation-equivalent to a code with generator matrix

I, A B
oI, 24, 2B
0 2L, 20,

Note that the code generated by the last matrix coincides with the code generated
by

Iy, A B

0 2L, 2C4

and, therefore, C' is of type 4%12k2. 1y

3.1.1 Weight enumerators

Let C be a Zy-code of length n. There are different weight enumerators related to the
code C. First, we define the complete weight enumerator (or c.w.e.) of C by
cwee(W, X, Y, Z) =Y Wl xmilym(e) zns(e)
ceC
where n(c) is the number of components of ¢ = (¢q,...,¢,) € C that are congruent
to k (mod 4). Two codes differing by only a permutation of coordinates have the
same c.w.e., but equivalent codes may have different c.w.e.’s. We define then the
symmetrized weight enumerator (or s.w.e.), which is the appropriate weight enumer-
ator for an equivalence class of codes. The s.w.e. is obtained by identifying X and Z

in the c.w.e.:

swee(W, X,Y) = cwee (W, X, Y, X).

The Lee weight enumerator of C given by

LeeC(VV, X) — Z Wzn_WtL(C)XWtL(C)

ceC

is obtained from the s.w.e. as

Leec(W, X) = swee(W? WX, X?).
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It is a homogeneous polynomial of degree 2n. Finally, the Hamming weight enumer-

ator is also obtained from the s.w.e. as
Hame(W, X)) = swee(W, X, X).

The MacWilliams identity gives the weight enumerator for the dual code C* in

terms of the weight enumerator for the code C ([MS77],[HKC*94],[Wan97]):

cweer (W, XY, Z) =
1
g eweeW X Y 4 ZW 40X =Y —iZW = XY = ZW —iX =Y +i2)

1
sweer (W, X, Z) = @swec(WjL 2X4+Y, W =Y, W -2X+Y),

1
LeeCL(I/V,X) = mLeec(W—FX,W — X),

1
Hame (W, X) = mHamc(WjLSX,W—X).

3.2 The Gray map

It is known (see [HKC194]) that binary codes such as the Nordstrom-Robinson, Ker-
dock, Preparata, Goethals, and Delsarte-Goethals codes have a structure of Z4-codes
via the Gray map. This mapping provides a one-to-one correspondence between a
Zy4-code and a binary code. We will give the definition, applications and properties
of this important mapping.

First of all we will introduce the following three maps «, § and v from Z4 to Z,

by the following table:

w N = O
_ O = O




3.2. THE GRAY MAP 33

Note that « can be defined as the map
a(r) =z mod 2. (3.1)

Clearly, « is an additive group homomorphism from Z4 to Z,. For each element
x € Z4 we have

r = a(x)+26(z), and
a(x) + f(z) +v(x) = 0mod 2, for all x € Zy.

Note that vy(z) can be expressed as v(z) = a(z) + (x) mod 2.

Now we define the Gray map in terms of 5 and ~ as follows:

o(z) = (B(z),y(z)) for all z € Zy.

We obtain the following map:
7, —— 73

0 —— 00
1 —— 01 (3.2)
2 — 11

3 —— 10

We construct binary codes from quaternary codes using the extended Gray map
¢ : Z} — 72" given by
QS(C) = (90(01)7 ceey QO(Cn>>,

where ¢ = (¢1,...,¢,).
In the literature, one can find, basically, two different extensions of the Gray map.

The first one can be found in [BR99], [BPRO3], [BPRZ03], etc, and it is given by

¢(C) = (ﬁ(cl)> ’Y(Cl)a s 76(071)7 7(@1))7 (33)
and the second one (see, for example, [HKCT94] and [Wan97]) is defined as

¢(c) = (B(cr), -, Blen),v(er), -, 7(en)), (3.4)
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where ¢ = (¢1,...,¢,).

In fact, if ¢ = (¢q,...,¢,), any coordinate permutation of

(B(cr), (1), - -, Blen), v(en))

can be considered as an extension of the Gray map. That way, if ¢; and ¢y are
two different extensions of the Gray map, then there exists a coordinate permutation
m € Sy, such that ¢; = 7o ¢9. In general, the properties concerning ¢ that will be
given in this chapter are true for any extension of the Gray map. In that case, we will
talk about a general Gray map or simply, the Gray map. Unless it is said otherwise
¢ will denote a general Gray map. Whenever a specific extension of the Gray map is
needed we will refer to the exact arrangement of coordinates.

Let ¢ be an extended Gray map. If C is a quaternary code, then C' = ¢(C)
is the binary image of C under ¢. We say that a binary code C' is Zj-linear if its
coordinates can be arranged so that it is the image under the extended Gray map ¢
of a quaternary code. Notice that this definition is equivalent to say that there exist
a different extended Gray map ¢’ = m o ¢, m € Sy,, and a quaternary code C, such
that C' = ¢'(C).

The Gray map has the property that adjacent elements in Z, differ by only one
binary digit. It is an important fact useful in communications systems employing
quadrature phase-shift keying (QPSK) (see Fig. 3.1). The advantage of using a
general Gray map in QPSK is that, when a codeword over Z, is transmitted across
an additive white Gaussian noise channel, errors most likely to occur are those causing
a single erroneously decoded information bit.

The most important property of the Gray map is that ¢ is a weight-preserving

map from (Z}, wtr), to (Z2" wt); i.e.:
wtr(2) = wt(¢(z)), Vo € Z7,
and ¢ is also a distance-preserving map from (Z%}, dp), to (Z3",d); i.e.:

dp(z,y) = d(¢(x), d(y)), Vz,y € Zj.
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1—10

2—u| {1} {1} | 0—00

{-i

3— 01

Figure 3.1: QPSK

The minimum Lee weight and distance of C are equal to the minimum Hamming
weight and distance of C' = ¢(C), respectively.
The following examples provide Zj-linear codes with propelinear structure by

means of the Gray map. They can be found in [BR99].

Example 3.2.1. Let ¢ be the Gray map defined in (3.2). For all (i) € Z3, where
i € Zy, we define the coordinate permutation o; = (12)°. (p(Z4),%) is a propelinear
code, where
(i) x 0(j) = @(i) + ai(¢(5))-

For example:

10 %01 = 10 + (12)3(01) = 10 4+ 10 = 00 € ¢(Zy).
It is easy to verify that, fori=1,--- 4, (i) = (1) = (1) *xp(1)x- -+ i times, and
also

(i) * p(4) = (1) % p(1) = (1) = (i + j).

Hence, the operation x can also be defined as:

zxy =l (z)+ ¢ (),
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where x,y € p(Z4) and + is the usual sum in Z,. With this definition,
10%x 01 = (34 1) = ¢(0) = 00.

Example 3.2.2. Every Zs-code is a propelinear code: Let C = ¢(C) be a Z4-code
where C is a subgroup of Z}. From the last example, (p(Z4),*) is a propelinear code
and it is easy to check that (¢(Z}),*) is also a propelinear code and, consequently,

(C, %) is a propelinear code where

zxy=¢(¢ " (x) + ¢ (y)) (3-5)

is the operation defined in ¢(ZY).

3.3 Binary images of a quaternary code

Let C be a quaternary code. Due to the linearity, C is distance invariant with respect
to the Lee weight. Hence, the binary image of C, C' = ¢(C) is distance invariant.

From a quaternary code C, we can define its dual code C*+. Since in general
C = ¢(C) is not linear, it need not have a dual. We define then the Z4-dual of ¢(C)
to be the code C'| = ¢(C*). We have the following diagram

c —25 =4

dual J/

ct 2y =¢(Ch)
that is not a commuting diagram in general. We call the binary codes C' = ¢(C) and
C, = ¢(C*t) formally dual. If C is a self-dual code over Z,, then ¢(C) is a formally
self-dual code, that is, a binary code whose weight enumerator is invariant under the

MacWilliams transform. We can give some information of C'; in terms of C' by the

binary MacWilliams identity.
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Theorem 3.2. Let C and C+ be dual Zy-codes, and let C = ¢(C) and C'| = ¢(C*) be
their binary images. Then, the weight enumerators We(X,Y) and We (X,Y) of C
and C'|, respectively, are related by the binary MacWilliams identity

1
We, (X,Y) = —

= We(X+Y, X -Y).
‘C| C( _'_7 )

Proof: See [HKCT94].

If {Ao,...,As,} is the weight distribution of C', then its MacWilliams transform
is the weight distribution {Aj,..., A5 } of C| and the MacWilliams transform of
{4y, ..., A, } is exactly {Ao, ..., Aa, )

Hence, if C is a Z4-code and C' = ¢(C), then C and C| are distance invariant and

the weight distribution of C' and C'} are the MacWilliams transforms of each other.

3.4 Linearity conditions

Recall that a binary code C'is called Zj-linear if, up to coordinate permutation, it
is the binary image of a quaternary code. In this section, we will give necessary and
sufficient conditions for a binary code to be Zj-linear and for a Z,-linear code to be
a binary linear code.

Let x € Z4, we defined p(z) as (6(z),v(x)) (¢ defined in (3.2)). Note that
o(—z) = (v(x),B(x)). Let ¢/ = (12) € Sy, then o'(p(x)) = ¢(—z). We define
the swap map, o, as the product of all transpositions permuting the two binary
coordinates, corresponding to each Z, coordinate. Notice that o is related to the

extension of the Gray map.
Example 3.4.1. Let ¢ be the Gray map defined in (3.4). Therefore, o is defined as

0 (Upy ooy Uy ULy ey Up) — (Ve ey Upy Uy ey U (3.6)
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Note that if ¢ = (c1,...,¢,) € Z}, then

o(d(c)) = o((B(cr), -, Blen), V(er), - -, () =
(Y(er), - v(en), Bler), - -, Blen)) = d(=0).

It is easy to check that if ¢ is a general Gray map, then o(¢(x)) = ¢(—z). As a
consequence, o is a fixed-point-free involution in the automorphism group of C.
First, we will give necessary and sufficient conditions for a binary code to be

Z4-linear in the following theorem.

Theorem 3.3 ([HKC194]). A binary, not necessarily linear, code C' of even length

s Zy-linear if and only if its coordinates can be arranged so that
wvelC=u+v+(ut+ou)- (v+o))eC,
where o is the swap map and - is defined by

(@1, ooy @n) - Y1y ey Un) = (1YL, -+ o Tpln)- (3.7)

Hence, if C'is a binary linear code of even length, then C'is Zg-linear if and only

if its coordinates can be arranged so that
u,v€C = (u+ou)) - (v+o))eC.

Let ¢ be an extended Gray map. Now we will give some linearity conditions
related to ¢. Let C be a quaternary code and C' = ¢(C). Let x,y € C. Consider the
following property (see [BPRZ03]):

o(x) + o(y) = ¢(x +y + 21y), (3.8)

where 2zy is 2x - y.

Note that if z,y € C, then

$(22 +y) = ¢(22) + ¢(y). (3.9)
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C is a linear code if and only if for all pair of codewords z,y € C, we obtain
o(z) + ¢(y) € C. By (3.9), if z € C is an order 2 codewords; that is, all nonzero
coordinate have value 2, then ¢(z) + ¢(y) = ¢(x +y) € C. In general, if x and y are
codewords in C, then ¢(z) + ¢(y) € C if and only if ¢(z +y + 2zy) € C (by (3.8)) or,
equivalently, 2zy € C.

The following theorem shows when the binary image of a Z4-linear code is linear.

Theorem 3.4. The binary image C' = ¢(C) of a Zy-linear code C is linear if and only
of

r,y € C = 2xy €C.

This Theorem can be found in [HKC94], where instead of use 2xy, it is given the

equivalent expression 2a(x) - a(y).

3.5 Cyclic codes over Z, and Galois Rings

A cyclic code of length n can be defined as an ideal in the ring of polynomials modulo
X" — 1. A cyclic code of length n over the field F, = GF(q) consists then, of all
multiplies of a certain generator polynomial g(X) which is the monic polynomial of
least degree in the code and it is divisor of X™ — 1. If n and ¢ are relative prime, then
zeros of X™ — 1 lie in the field GF(¢™), where m is the least positive integer such
that n divides ¢™ — 1. Then, to study cyclic codes over F, we consider the Galois
field GF(¢™).

Similarly, to study cyclic codes over Z, of length n = 2™ — 1 we construct the

h

Galois ring GR(4™) that is an extension of degree m of Z, containing an n' root

of unity. Constructions of GR(4™) and all the statements in this subsection are in
[HKC*94] and [Wan97].

Note that GR(4™) is not a field, it contains zero divisors. We will construct
GR(4™) in two different ways: as an extension Z4[¢] of Zy, where £ is an n'* root of

unity or as a residue classes of Z4[X| modulo X™ — 1.
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Let hao(X) € Zo[X] be a primitive irreducible polynomial of degree m. There is a
unique monic polynomial h(X) € Z4[X] of degree m such that A(X) = ho(X) mod 2
and h(X) divides X™ — 1 mod 4 (see [CS95]). The polynomial h(X) is a primitive
basic irreducible polynomial. The way to find this polynomial by means of hy(X) is
the following. We write ho(X) as e(X) — d(X) where e(X) contains even powers and
d(X) the odd ones. Now, we obtain h(X) from h(X?) = £(e*(X) — d*(X)). Finally,
let £ be a root of h(X), so that " = 1. Then, GR(4™) is defined to be Z4[£]. Any

element ¢ € Z4[¢] can be represented as (co, ..., ¢,—1), where
n—1
c=) ¢
1=0

h(X) is called the Hensel lift of ho(X). The presented method is the Graeffe’s

method that is used to find a polynomial whose roots are the squares of the roots of

ha(X).
On the other hand, R = GR(4™) can be considered as
Z4[X]
R = X —1)
Codewords ¢ = (¢g, ..., ¢,—1) in C can be represented as polynomials in R as

n—1
=0

A cyclic code C is an ideal in the domain R. In fact, R is a principal ideal domain
[CS95], and therefore, C =< ¢g(X) >, where g(X) € R is the generator polynomial of
the code.

Example 3.5.1. Let ho(X) = X0+ X5+ X*+ X +1. Then, e(X) = (X®+X*+1),
d(X) = (—X°—X) and h(X?) = 2(X)—d?(X) = X 24+ X104 X34 2X6 12X X241,
Hence, the Hensel lift of ha(X) is

h(X) =X+ X°+ X" +2X° +2X% - X +1.

Note that h(X) = hy(X) mod2. h(X) generates a Zy-code of length n = 25 —1 = 63.
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Let f be the Frobenius map from R to R the ring automorphism defined as

R I, F

c=a+2b —— c¢f =a%+20?
The relative trace from R to Z, is defined by

T(C>:C+cf+cf2+...—|—cfm_l,CER. (310)

3.6 Preparata-like and Kerdock-like codes

The Preparata codes were introduced by Preparata in 1968 (see [Pre68]). This family
of nonlinear binary codes are 2-error correcting codes and generalize the Nordstrom-
Robinson code. For m > 4, m even, the extended Preparata code of length 2™

denoted by P,, is a binary nonlinear code with parameters
(n,d, M) = (2™,6,22" ™),

which is a union of 20m~Dm=2/2 cosets of RM(m — 3,m) in RM(m — 2,m), where
RM((r,m) is the r-th order Reed-Muller code studied deeply in Chapter 5. P,, has
twice as many codewords as the 2-error correcting code BC'H with the same length.
Actually, P,, has the maximum possible number of codewords in a binary code of
length 2" and minimum distance 6. The weight distribution of the family of Preparata
codes were given in 1969 in [SZZT71].

In 1972, another class of codes given by Kerdock generalized the Nordstrom-
Robinson code [Ker72]. For m > 4, m even the extended Kerdock code of length 2™,

denoted by K,, is a nonlinear code with parameters
(TL, d, M) _ (2m’ 2m—1 . 2(m—2)/2’ 22m>’

which is the union of 2™ cosets of RM(1,m) in RM (2, m).
From now on, both codes, extended Preparata and extended Kerdock will be

called Preparata and Kerdock, respectively.
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Two relevant facts strongly suggested that P,, and K,, were dual in some arith-

metic sense. First, the fact that
RM(1,m) C K,, C RM(2,m),

RM™*(2,m) = RM(m — 3,m) C P,, C RM(m —2,m) = RM*(2,m).

The second fact, and the most important, is that in [Ker72| and [SZZ72] it was
found that the weight enumerator of P, is the MacWilliams transform of the weight
enumerator of K, (see [MST77]).

Let x — x7 be an automorphism of F, i.e., ¢ is a power of 2. We require that both

o—1

otland ¢ —

r— are one-to-one mappings, i.e., (o0 £1,2™ — 1) = 1. (This is
true, for example, for o = 2).

For the admissible values of o we shall define a code P (o) of length 2n+2 = 2™+,
The codewords will be described by pairs (X,Y) where X C F, Y C F. As usual we
interpret the pair (X,Y") as the corresponding pair of characteristic functions, i.e., as
a (0,1)-vector of length 2™+, We shall let the zero element of F correspond to the

first position in the X-part.

Definition 3.6.1. The Preparata code P(c) of length 2™+ consist of the codewords
described by all pairs (X,Y) satisfying

a) | X| is even, |Y| is even,
b) ZxEX = Zer Y
o o+l o
c) erX a7t + (ZmGX x) - Zer y
The code P(o) is obtained by deleting the first coordinate.

Last definition is an alternative definition of Preparata code given in [BVLW83]
that generalize these codes. Actually, the usual definition of the Preparata codes

coincides with last definition for o = 2:
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There are nonequivalents codes given in the last generalized definition ([Kan83]).
All the codes P(c) have the same weight enumerator (Goethals) and they have
the same parameters as the original Preparata code ([SZZT71]). They will be called
Preparata-like codes. The Preparata-like code differs from the standard Preparata
one in the fact that it is not a subcode of an extended Hamming code (for length
n > 32) but of a nonlinear code with the same weight distribution as the extended
Hamming code ([SZZ73]).

In [HKC"94], it is shown that Kerdock codes are extended cyclic codes over Zy.
These codes are linear codes over the integers modulo 4. The known fact that the
weight distributions of the Kerdock and Preparata codes are the MacWilliams trans-
form of each other would suggest that theses codes are duals in some more algebraic
sense. In the same paper, it is proven that the Z4-dual code of a Kerdock code is not
a Preparata code but a Preparata-like code.

Let h(X) € Z4[X] be a primitive basic polynomial of degree m and let g(X) be
the reciprocal polynomial to (X" —1)/((X — 1)h(z)), where n = 2™ — 1.

Theorem 3.5 ([HKC7'94]). Let K~ be the cyclic code of length n over Z4 with
generator polynomial g(X), and let IC be obtained from K~ by adjoining a zero-sum
check symbol. Then for odd m > 3 the binary image K,,»1 = ¢(K) of K under the
Gray map is a nonlinear code, of length 2™ with 4™ words and minimal distance

om — 2m=1/2 “that is equivalent to the Kerdock code. This code is distance invariant.

Theorem 3.6 ([HKC194]). Let P~ be the cyclic code of length n = 2™ — 1 with
generator polynomial h(X), and let P be obtained from P~ by adjoining a zero-sum
check symbol, so that P = K*+. Then for odd m > 3 the binary image P, 1 = ¢(P) of
P under the Gray map is a nonlinear code of length ¢ = 2™+ with 222 codewords
and minimal distance 6. This code is distance invariant and its weight distribution
is the MacWilliams transform of the weight distribution of the Kerdock code of the

same length.

For odd m > 3, K is called the quaternary Kerdock code, P is the quaternary
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Preparata-like code and P,,;; = ¢(P) is a Preparata-like code.

Example 3.6.1. The polynomial h(X) = X% + X° + X4+ 2X3 +2X? — X + 1
gwen in Example 3.5.1 is the generator polynomial of the code P~ where P is the
Preparata-like code of length 64.

Following theorems gives generator matrices of quaternary Kerdock and Preparata-

like codes.

Theorem 3.7 ([HKC'94]). Let R = Z4[£] be the Galois ring GR(4™) where £ is a

basic primitive root of unity, so that ™ =1, n=2" —1. The (m+ 1) x 2™ matriz

1 1 1 ... 1
bloo bll bl2 e bln—l

111 1 --. 1

001 ¢ € . et ] 52.00 bfl 532 b2r‘b—1 (3.11)
broo bmi bmz - bun_1

is a generator matriz of K, where & is replaced in the second matriz by the m-tuple

(brjs - -, bing) given by & = b+ bay§ + -+ + by ™
Corollary 3.8. Matriz given in (3.11) is the parity check matriz of P.

The Kerdock and the Preparata-like codes of length 16, m + 1 = 4, coincide,
giving the Nordstron-Robinson code. In this case, the code IC is called the octacode.
As the Kerdock and the Preparata-like codes are duals of each other, the octacode
is a self-dual code; in fact, it is the unique self-dual quaternary code of length 16 and

minimal Lee weight 6.

Theorem 3.9. The Nordstrom-Robinson code is the binary image of the octacode

under the Gray map.

Lately, it was found in [BPRZ03] that any additive Preparata-like code is Z4-

linear code. The Z4-dual codes of such codes are called Kerdock-like codes that are,
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therefore, Z-linear codes. The rank and the kernel of these codes are computed and
the results are included in Sections 6.2.1 and 6.2.2.

Even though original Preparata codes are not Zy-linear codes, they have a group
propelinear structure as it was given in [PR97b] using Definition 3.6.1. Moreover, both
classes of codes, Z,-linear Preparata-like and Z,-linear Kerdock-like, have structure

of propelinear codes.
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Chapter 4

Additive codes

We will introduce additive codes by means of association schemes as it was introduced
by Delsarte (see [DL98]). Some kind of additive codes as linear codes or Z4-codes
were studied in previous chapters. In this chapter, we will deal with codes that
can be considered, in some sense, as a generalization of linear and Z4-codes. First,
we introduce Zgi-codes in Section 4.2. We generalize the Gray map ¢, and define
an operation -, so that (©(Zg),) is a Hamming-compatible code. Codes over Zy,
have structure as propelinear codes but, in general, these codes are not translation-
invariant codes. Codes as subgroups of Z’;gl X e X ZSZTT are introduced in Section 4.3.
Their algebraic structure and their binary image will be studied and it will be given

for which cases such images are 1-perfect.

The different structure, the rank, and the dimension of the kernel of 1-perfect
additive codes and extended 1-perfect additive codes are given in Section 4.4 and 4.5.
If C is a 1-perfect additive code, then the extended code C* is an extended 1-perfect
Zy-linear or additive non Zy-linear code. Finally, codes obtained by puncturing a
binary coordinate of an extended 1-perfect additive codes are considered in Section

4.6.

47
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4.1 Association schemes

Let X be a finite set of cardinality n and let R = {Ro, Ry,---, R4} be a set of
nonempty binary relations on X (i.e. R; C X?) forming a partition of the Cartesian

square X2 of X. We shall use N; to denote the set N; = {z € X|(0,z) € R;}.

Definition 4.1.1. The pair (X, R) is called an association scheme of class d on X

(i) Ro = {(z,z)|lz € X},
(ii) Rt = R;, where R! = {(z,y) € X*|(y,x) € R;}, fori,j € {0, - ,d},

(iii) fori,j, k € {0,---,d}, the number of z € X such that (z,z) € R; and (z,y) €
R; is a constant number whenever (x,y) € Ry, and it is denotedpf’j. The numbers

pfj are called intersection numbers.

There are more restrictions to an association scheme that are useful in coding-

theory. If the condition (ii) is replaced by
(ii") Rt =R,

then (X, R) is called a symmetric or Bose-Mesner association scheme. Moreover,
when pf; = ph; for all ¢, 7, k, the association scheme is commutative.
From now on, an association scheme (X, R) is a symmetric commutative associa-

tion scheme of class d on X. For more information about general association schemes

see [DLO8] and [BI84].

Example 4.1.1. Let X = F be the n'" Cartesian power of the finite alphabet F,,
with |F,| = ¢ > 2. Let v = (z1,---,2,),y = (Y1, ,yn) € X. The Hamming
distance between x,y is d(z,y) = [{j € {0,1,--- ,n} | ; # y;}|. Hence, (X,R)
with d(x,y) is a symmetric class association scheme called the Hamming scheme and

denoted by H,'.
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Let (X, R) be an association scheme where X has an Abelian group structure.

(X, R) is a translation-invariant association scheme if for all R; € R
(,y) e Ry = (x+2z,y+2) R,

for all z € X.

Note that the Hamming scheme is a translation-invariant association scheme due
to the fact that d(z,y) = d(z + 2,y + 2).

Let Y be a nonempty subset of the point set X of a Hamming scheme (X, R) = H.
Then, Y is a code. The inner distribution of Y in an n-class association scheme (X, R)
is the rational (n + 1)-tuple (ao, - ,a,) where |Y]a; counts the number of pairs of
points in Y2 (codewords) that belong to the relation R;:

1

a; = a;(Y) = V]

Y2N R;|, forie{0,---,n}.

If (X, R) is a Hamming scheme, H, then a code Y in (X, R) is a g-ary code of length
n. The inner distribution of Y is its (Hamming) distance distribution. In this case,
|Y'[a; counts the pairs of codewords z,y with d(z,y) =i. If Y is a linear code in H},
then the inner distribution of Y is none other than its weight distribution.

An additive code, Y, in a translation-invariant association scheme (X, R) is a
subgroup of X. The weight of an element x € X is the number wt(z) = k such that
x € Ni. The weight distribution of the code Y C X is the vector (ag, - -, a,) defined
by

a; =Y NN

and coincides with the inner distribution. The numbers ay such that a, # 0 are called
the weights of the code. The degree of an additive code is the number of its distinct

nonzero weights.

4.2 7Z9-codes

The results in this section were presented in [BFRO1].
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Let C be a subgroup of (Z%,,+) for some k,n > 1, where + is the usual addition
in Zs, extended coordinatewise. We say that C is a Zgg-modulo code or, briefly, a
Zo-code. If k =1, then C is a linear code and if k£ = 2, C is a Z4-code or a quaternary

code.

We define the Lee weight and the Euclidean weight as a generalization of the
definition given for Z,-codes. The Lee weight of an element i € Zoy, is min{|i|, |2k —
i|} and the Lee weight wtr(z) of x € C is the rational sum of the Lee weights of
its components. We define the Lee distance dp(z,y) of two vectors z,y € C as
wtz(x —y). The Euclidean weight of an element i € Zgy, is min{i?, (2k —i)?} and the
Euclidean weight of x € C, wtg(z), is the rational sum of the Euclidean weights of its
components. Hence, the Euclidean distance between two vectors x,y € C, dg(x,y),
is wtg(x — y). Note that for k = 2, these definitions corresponds with the ones given

for Z,-codes.

For all x,y € Z%,, x = (1, -+ ,&n), y = (Y1, -+ ,Yn) We define the inner product
of x and y by

-y =x1y1 + -+ xpy, mod 2k.

Definitions of minimum weight and distance, dual code, self-orthogonal code, and
self-dual code are the ones given in Chapter 3.

Two Zsg,-codes are equivalent if one can be obtained from the other by permut-
ing coordinates and (if necessary) changing the signs of certain coordinates. Codes
differing by only a permutation of coordinates are called permutation-equivalent.

Let C be a Zgg-code of length n. The complete weight enumerator (or c.w.e.) of
Cis

Cwec(Xo,X1, o ,sz—l) _ ZX(?O(C)X?I(C) . 'nglji_ll(C)7

ceC

where n;(c) is the number of components of ¢ = (¢1,- -+ ,¢,) € C that are congruent

to ¢ modulo 2k. As in the case of Zs-codes, the appropriate weight enumerator for
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an equivalence class of codes is the symmetrized weight enumerator:

swee(Xo, X1, -+, Xop_1) = ZXSL{)(c)X?’l(c) - .X:;(c)’

ceC

where n/(c) is the number of components of ¢ = (¢1,--+ ,¢,) € C that are congruent

to 44 modulo 2k.

4.2.1 Generalizations of the Gray map

There are different ways of giving a generalization of the standard Gray may. For
instance, Carlet gives in [Car97| a generalization to Z,.. We will give one preserving
the basic property that the distance between the images of two consecutive elements
is exactly one. In this section we will see that any Zsy,-code accepts a representation
as a propelinear code via this generalization of the Gray map.

Consider the modulo Z; and let ¢ € Zj. ¢ can be written as ¢ = «a(c) + 2r, where

a(c) = cmod 2 and r € N. Define:

ﬁr+1(0) == ﬁt—l(c) =0,

k
where ¢ = liJ . Let y(c) the parity check of the vector

(Oz(C), ﬁl(c)7 T 7ﬁt—1(c)>
For each element ¢ € Z;, we have
c=a(c)+2(fi(c)+ -+ Bi1(c)), and

ale) + pi(e) + -+ Bii(c) +v(c) = 0 modulo 2.

Now we define the extended Gray map in terms of 3; and ~ as follows:

o(c) = (Bi(e), -+, Bi_1(e),v(c)), for all ¢ € Z.
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Example 4.2.1.
Zg —— 74
0 —— 0000
1 —— 0001
—— 1001
—— 1000
—— 1100
1101
— 1111

N O Ot ks W N

— 1110

Note that d(¢(0), p(k — 1)) # 1, for k > 2. In fact,

t, if t odd or k = 3,
d((0), p(k — 1)) = .
t—1, otherwise.
As in Z4-codes, this generalization is useful to work in communications systems
employing quadrature phase-shift keying (QPSK). Distance between two consecutive
elements is one but distance between the first and the last element is at least the

maximum minus 1.

If we want a generalization preserving the property that the distance between
images of two consecutives elements in Z; is 1, then d(p(0),o(k — 1)) = 1. In
that case, k has to be even ([BFRO1]), so we will write Zg,. We define the second

generalization of the Gray map as ¢ : Zy, — Z% such that:

(1) () = (0% |19) Vi=0,...,k—1,and

(4.1)
(i)  pli+k)=p()+1® Vi=0. k-1
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Example 4.2.2.

Zy —— 73
0 —— 0000
1 —— 0001
—— 0011
—— 0111
— 1111
1110
—— 1100

N O Ot s W N

—— 1000

Note that this Gray map, ¢, is distance-preserving and weight-preserving. In

Section 4.2.2 we will see more properties of this mapping.

Finally, we will see a generalization that can be found in [KS02]. Let ¢ € Zqx, and

consider its 2-adic expansion

N

-1

ai(c)Qi,

o
|
-
I
o

where a;(c) is the i bit of ¢ represented as a k bit integer. We define

CLZ'_H(C)—’—CLZ'(C), if 1 < ]{5—1,
bi(c) =
ag—1(c), ifi=4k—1.

Then we define the Gray map as follows:

o(c) = (bi(c),- -+ ,br_1(c)), for all ¢ € Zgx.
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Example 4.2.3.
Zg —— Z%

0 —— 000
1 —— 100
— 110
— 010
011

— 111

[ R PV \V)

— 101

7 —— 001
This mapping has the property that the image of Z,x has the lowest length. Note

that d(2* — 1,0) = 1, but, in general, ¢ is not a distance-preserving mapping as we

can see in the above example:

3= dy(4,7) # d(p(4), (7)) = 2.

4.2.2 Zoi-codes as propelinear codes

We have seen that linear codes are propelinear codes. Also Z4-codes are propelinear
codes (Example 3.2.2). Now we will use the generalization of the Gray map given in
(4.1) to see that any Zox-code is a propelinear code.

We denote by | the concatenation, i.e. if x = (z1,...,2,) and y = (y1,...,Ys),
then (z | y) = (z1,..., 20, Y1,...,ys). If m, € S, and 7, € S;, then the permutation

= (m;|my) € Sy is defined as

m(zly) = (me()|my(y))-
Definition 4.2.1. Let ¢ be the Gray map defined in (4.1). For any two elements
(i), o(j) € p(Zar), define the product

(i) - o(7) = ¢(i) + 0i(p(4)), (4.2)
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where

o=k k—1,...,2) (4.3)
(i.e. i left shifts), for all vector (i), i =0,...,2k — 1.

Lemma 4.1. Let ¢ be the Gray map defined in (4.1). Let i € Zgy and - the product
defined in (4.2). Then,

Proof: It is easy to verify that ¢(i) = (i — 1) - (1) = ¢(1) - ¢(i — 1). Appliying
this repeadly yields the result.
Using this lemma is easy to check that the operation defined in 4.2 can be written

as:

©(@) - p(j) = p(i + )

Proposition 4.2. (¢(Zax),-) is a group, with ¢ and - defined in (4.1) and (4.2)

respectively.
Proof: We have that
((i) - 9(5)) - p(0) = (P(1)" - (1)) - (1) = (1) = (i) - (p(4) - p(0)),

for all 4, j, ¢ € Zg. Therefore, the operation is associative.
It is clear that 0*) = ©(0) acts as the identity element. Moreover, given ¢(i) €
©(Z%), we have that

(i) - o(k — i) = (1) = p(1)* = (k) = ©(0) = 0*).

Theorem 4.3. Let ¢ : Zo, — 75 be a Gray map. If (¢(Zay),-) is a Hamming-
compatible code where - is the operation defined in (4.2) then, ¢ is unique up to

coordinate permutation.
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Proof: See [BFRO1]
From now on, we will consider the map defined in (4.1) as the (unique) general-

ization of the Gray map being Hamming-compatible (see 2.3).

Definition 4.2.2. We define the extended map ¢ : 73, — Z5™ such that ¢(j1, . .., jn) =
(0(j1),---,9(n)), where ¢ is defined in (4.1). Finally, we define the permutations
= (05,10, ), for v =¢(j1,...,jn), where o; is defined in (4.3).

Note that if K = 1, then ¢ is the identity map and, if £ = 2, then ¢ is as defined
in (3.4).

Next theorem will prove that given a Zs-code of length n, there exists a propelin-
ear code of lenght kn such that both codes are isomorphic. The isomorphism between

them extends the usual structure in (Zag,+) to the propelinear structure in (Z5,.).

Theorem 4.4. If C is a Zgy-code, then ¢(C) is a propelinear code with associated

permutation m, for all codeword x € ¢(C).

Proof: Letx = ¢(j1,...,Jn) = (©(J1)s-- -, 0(n)) and y = @(i1, ..., 1) = (©(i1), ..., @(in))

be two codewords. Then,

z+mo(y) = (9(1) + 05 (0(in)), -, ©(n) + 75, (9(in))-
For any coordinate, say r, we have that
p(r) + 05, (plir)) = o(1)7 (1) = o(1)7 " = ¢y +1iy).
Thus,
w4+7:(y) = (Ut - @Untin)) = 001, - - n) + (i, -1 00)) = (07 (2)+07 (y)).

Therefore, it is clear that z + m,(y) € ¢(C).
On the other hand, the associated permutation of ¢(j, + i,) is

— Jrtir _
Ujr+i,«—(1;kak_17---72)r T—O’jTOO'Z'T,

hence, if 2 =  + 7m,(y), then 7, = m, om,. 1
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Corollary 4.5. The map ¢ : (C,+) — (¢(C),*) is a group isomorphism, where
rxy=2x+m,(y) for all x,y € ¢(C).

Proof: As we have seen in the previous proof, z xy = ¢(¢~'(z) + ¢ (y)) and,
clearly, ¢ is bijective.

In [PR97D] it is shown that linear and Z,-linear codes are translation-invariant.
Now, we show that for k > 2 any Zy,-code, viewed as a binary propelinear code, is

not translation-invariant according to the classification given in [PRI7b].

Proposition 4.6. Ifk > 2 and C € Z%,, then ¢(C) is a propelinear but not translation-

mwvariant code.
Proof: Consider the vector z = (1,0,...,0,1) € F*. Then, it is easy to check that
d(0W %z (1) % 2) =3 # d(0®) (1)) =1.

Now we will show that it is not possible to generalize the MacWilliams identity
given in (3.2) to Zgy if k > 2. This result is the conclusion of some discussion with
Patrick Solé and Ling San. Firstly, we will see the existence of a self-dual code in Zsy,

for every k > 1.

Proposition 4.7. (¢f. [BDHO99]) There exists a self-dual code C' of length n over
Zoy. if n is a multiple of eight.

Proof: Consider the matrix

(147M4)7

where I, is the identity matrix of order 4 and

a b c d

b —a —d c
M4 == )

c d —a —b

d —c b —a

then M, - M,! = (a2 + b4+ d2)I4 over Z. From Lagrange’s theorem on sums of
squares, there are elements a, b, ¢, d of Z such that 1 + a? + b? + ¢ + d? = 4k for any



o8 CHAPTER 4. ADDITIVE CODES

k with &k > 0. The integers a, b, ¢, d are necessarily less that or equal to 2k so there
exist a, b, ¢, d of Zsyy, such that 1 + a? + b*> + ¢ + d? = 4k for k > 0. Therefore these
elements a, b, ¢, d of Zsy, give that the matrix ( I, , My ) generates a self-dual code of

length 8 over Zyy for any positive k. 1

Theorem 4.8. Let C and C* be dual Zayy-codes, and C = ¢(C) and C, = ¢(Ct) be
their binary images. Then, the weight enumerators We(X,Y) and We (X,Y) of C
and C respectively, are related by the binary MacWilliams identity

1
We, (X,Y) = HWC(X +Y, X —Y) (4.4)

if and only if k = 1,2; that is, C' is linear or Z4-linear.

Proof: If £k = 1 or 2 then, by Theorem 2.1 and Theorem 3.2 the MacWilliams
identity holds. Let C be a self-dual code of length a multiple of eight in Zy (it exists
by Proposition 4.7 ). Let C = ¢(C) and C| = ¢(C*+) = C. When X =Y =1, we
obtain from (4.4) the following result

1
C|=—2"

and, hence, |C| = v2k". As C is a self-dual code, |C| = \/(2k)". Finally, |C| = |C] if

and only if 2¥ = 2k and it is true only for cases k =1 and k = 2.

4.3 Binary mixed group codes

Definition 4.3.1. A general mized group code C' is an additive subgroup of G1 X --- X
G, where G1,...,G, are finite groups. We say that a binary code C of length n is a
.., 25 ) and lengthn if C = ¢(C), where iy, -+ ,i, are
the minimum values such that C is a subgroup of Zgill X - X Zggr and Y i_, ijk; = n.

We denote C < Z;@l X oo X Z’S;-

mized group code of type (Zkl

2419 "

Proposition 4.9. Let C' be a mized group code of type (Zggl, e ,Zg;“r) and length n.

Then, C' is a propelinear code.
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Proof: C = ¢(C) where C < ZE x---xZ&  Then C = Cy x - - - x Cy, with C; < Z5? .
T J
We can write ¢(C) as (¢1(C1),- -+, ¢-(C.)) with ¢; : Zgjj — Zgﬂj as in definition
4.2.2. We will denote z € C as (x1]---|x,) where z; € ¢;(C;). By Theorem 4.4,
¢;(C;) is a propelinear code. Hence, we define the permutation 7, as (7, |- - |7s,),
where 7, is the permutation associated to x; in ¢;(C;). Now it is easy to verify that
C' is a propelinear code with permutation associated 7, for all x € C.
Let (C, %) be a propelinear code where C'is a mixed group code of type (Zé”;l, o Z';gr).
By Theorem 4.4 and Corollary 4.5, it is easy to check that the operation x is given
by

vxy = ¢(¢r (@) + 01 (), 0 (@) + 60 (), (4.5)

where ¢ = (z1,- -+ ,2,),y = (y1,- - ,yr) € C.

Theorem 4.10. Let C be a binary mized group code of type (Z’;gl, e ,ZS;T) and length
n. If C is 1-perfect, then C is of type (Z’g,zﬁf"“w) for some k € N.

Proof: Let C be a binary mixed group code of type (Zg;l, o ,Zg;). Assume there
exists j € {1,---,r} such that i; > 2. Without loss of generality we will assume
j=1land k;=1.

Let z = (10---01]0---0[---]0---0) € F". If C is l-perfect, then there exists
y € C such that d(z, ¢(y)) < 1. As the minimum weight in C'is 3 and the distance of
x must be at most 1, the only possibility is 7; = 3 and ¢(y) = (111/0---0|---|0---0),
therefore C = G x --- X GG, where (G7 is a subgroup of Zg and 3 € G;. The only
subgroups of Zg that contain 3 are {0,3} and Zg. We assume G; = Zg; otherwise,
G1 = {0,3} would be isomorphic to Z,. Let u = (101100 ---0), v = (101010---0) €
F™ (where customary commas have been deleted); u,v ¢ C. The only codewords
at distance 1 of w and v are, respectively, (111100---0) and (111010---0) but the
distance beetwen them is 2 which is not possible if C' is 1-perfect.

The last theorem shows that the only 1-perfect binary mixed group codes of type
(Z3;

. . . . n—
2y ,Zg;“r) are translation-invariant propelinear codes of type (k, ——).

2
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4.4 1-perfect additives codes

An additive code of length n is a subgroup of (F", %), where (F", %) is a translation-
invariant Abelian group. Notice that this definition coincides with the one given in

the last section using association schemes (see also [BCN89]).

Theorem 4.11. Let (F™, %) a Hamming-compatible group (see 2.8). The following

sentences are equivalents:
(i) (F™ %) is an Abelian group.
(ii) % is a translation-invariant operation.
(iii) F™ is isomorphic to Z& x Z:%k, for some k.

From last theorem, if (F™, %) is a Hamming-compatible Abelian group and C'is a
subgroup of F™; that is, an additive code then, C' can be considered as a translation-
invariant propelinear code of type (ki, k2, 0). If F™ is isomorphic to Z& x Z:%k then,
C' is of type (k,(n —k)/2,0) or, simply, (k, (n —k)/2).

Let (C,*) be an additive code of length n and type (k, "T_k) We make a partition
of the set of coordinates {1,---,n} in only two subsets, X, Y, where | X| = k are the
coordinates in Zy and |Y| = n — k are the binary coordinates of the Z4 part. We
suppose X = {1,2,--- ,k} without loss of generality.

Every vector v € F™ can be written as v = (vx|vy), where | denotes the concate-

nation of coordinates. If vy = (v§1 ), e ,vgf _k)) we suppose that its coordinates are

n—k
well ordered in Z,* ; that is

_ _ 2 _ n—k— n—=k
¢ (oy) = (o (0D, o), TR Ry, (4.6)

where ¢ is the Gray map (3.2) and ¢ is the extended Gray map defined in (3.3). In
all this section, the extended Gray map used ¢ will be the one defined in(3.3).
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n—k
The operation * defined in (2.5) is extended to F", considering F" as Z5 x Z,2

in the following way: If v = (v, -+ ,v,),u = (ug, -+ ,u,) € F™, then

VXU = (vl + Uy, Vg + Uk,
¢(¢_1(Uk+17 Uk—i-?) + ¢_1(uk+17 uk+2))7 T 7¢(¢_1(Un—17 Un) + (b_l(un—ly un)))>

where the sum is modulo 2 in the first £ coordinates, modulo 4 in the last ones and

(4.7)

¢ is the extended Gray map.

Theorem 4.12. Let C be a 1-perfect additive code of type (k, "T_k), where n = 2t — 1
and t > 3. Then, there exists a natural number r, such that 2 <r <t <2r and

(1) k=2"—1; that is, C is of type (2" — 1,201 — 27— 1)
(i) Q=275 x ZL", where Q is the quotient group F™/C.

In the group Q2 = F"/C every element has order 2 or 4, and hence, it is clear that
Q = Zg x ZY for some natural numbers a, 3. The proof of these theorems can be
found in [BR99].

From Theorem 4.12 we obtain the following table where we find all the different

parameters of n and k of 1-perfect additive codes :

t {n=2—-1 r|k=2"—1 | types: (k,"5")

2 3 1,2]1,3 (1,1),(3,0)

3 7 2.3 (3,7 (3,2), (7,0)

4 15 2,3,4 | 3,7,15 (3,6), (7,4), (15,0)

5 31 3,4,5(7,15,31 | (7,12),(15.8), (31,0)

6 63 |3,4,5,6|7,15,31,63 | (7,28), (15,24), (31, 16), (63,0)

Table 4.1: Type of 1-perfect additive codes

Note that for n = 3 we obtain two different types (1,1) and (3,0) refering to the
same code: the trivial code of length 3, {(000), (111)}. At the end of Section 2.4.2,

we saw that the Hamming code of length 7 has different algebraic structures as an
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additive code: (3,2) and (7,0). Only in the cases n = 3 and n = 7 there are two
codes having the same set of codewords, up to coordinate permutation, but having

different algebraic structure. We will see that there are no more cases.
Let us show that two additives codes of the same length n but with different

algebraic structures are non isomorphic for n > 7.

Assume C; and Cy are 1-perfect additive codes of length n > 7 and of type (k, ”T_k)

and (U, ”T_l), respectively. Assume that there is a coordinate permutation o € S,

such that C; = ¢(Cy) = C. Let % be the operation such that (C,x) is isomorphic to
n—k
a subgroup of Z§ x Z,? and let L be the operation such that (C, 1) is isomorphic
n—l
to a subgroup of Z, x Z,* .

Theorem 4.13. Let (C,*) be a 1-perfect additive code of type (k, "5%) and (C, L) be

a 1-perfect additive code of type (I, ”T_l) Then it 1s not possible that | < k and n > 7.

Proof: (see [BR99]). 1

We have seen the parameters n, k allowed in order for a code to be a 1-perfect
additive code of type (k, ”T_k) and, for a fixed length n, we know in which cases these
codes are non isomorphic. Now we will see some results about the existence of these
codes.

Let r and ¢ be natural numbers such that 2 < r < ¢ < 2r. Consider F" with the
additive propelinear structure such that it is isomorphic to the group Zgr_l ><Z§f71_2r71
and has the coordinates as in (4.6). Let G be the group Z3" " x Z{™". There exists

an application

V:F"— G (4.8)

such that:
(i) v(e;) # V(ey), Vi,j =1--- ,nsuch that i # j, and J(0) =0 .

(i) J(e;) = —v(ej) <= e;xe; =0.
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(iii) For all vector x =e;, *---x¢;, € F",

Moreover, the map ¥ : F" — G is well-defined and it is an homomorphism onto.

The following theorem gives a method to find any 1-perfect additive code with
admissible parametres. The proof can be found in [BR99] and, previously, in [Rif99)
with a slightly different notation.

Theorem 4.14. With the previous definition of G and ¥ : F" — G, C = Ker(v)
is a 1-perfect additive code of type (2" — 1,2t71 —2r=1),

Now we will see that the 1-perfect additive code constructed in this way is unique,

up to isomorphism, with the given parametres.

Proposition 4.15. For all v and t, such that 2 < r <t < 2r, there is exactly one
1-perfect additive code of type (2" — 1,271 — 271 "up to isomorphism.

Proof: See [BR99]. &

With Theorem 4.14 and Proposition 4.15 we have seen the existence and the
uniqueness of 1-perfect additive codes. As a conclusion, we give the exact number of
1-perfect additive codes of length n = 2 — 1. If n = 3, 7; that is, t = 2,3, there is a
unique 1-perfect additive code, up to isomorphism. If n > 15 (¢ > 3), the number of
such codes is exactly {# .

The unicity means that if ¢ is another homomorphism of F™ onto G such that

C" = ker(v') then there exists a permutation 7 € S, such that 7(C') = C" and ¥ = 7.

4.4.1 Rank and kernel

In Section 2.3.3 we have seen some bounds of the rank and the dimension of the kernel

of 1-perfect codes in general. In this section, we will see the values that arise these
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invariants in the case of 1-perfect additive codes. All theorems and propositions given

in this section can be found in [PR02].

Let C be a propelinear code. Let C; be the set

Cr ={a€Clm, =7}

Lemma 4.16. Let C' be an additive code. Let o € S,, be the swap map (see Section
3.4). Then o € Aut(C'). Moreover, if C is 1-perfect then, Cy C ker(C).

Proposition 4.17. If C' is a non-linear 1-perfect additive code then the dimension

of Crg is 2071 42771 —p — 1.

Proposition 4.18. If C is a I-perfect binary additive code then, either ker(C) =
Crq = C when C is linear or ker(C) = Crg U Cy when C' is not linear. In the first
case, dim(ker(C)) = dim(Cpq) and in the second case dim(ker(C)) = dim(Crq) + 1.

As a corollary of these two propositions, we obtain the following theorem.

Theorem 4.19. Let C be a binary 1-perfect additive code of type (2" —1,2!71 =27 1),
the kernel ker(C) of C has dimension:

dim(ker(C)) = { For-Lodft=m

2r—b ot o if it £

Theorem 4.20. Let C be a binary 1-perfect additive code of type (2" —1,2!71 =271,
of length n = 2t — 1, where t > 4, then the rank of C is:

rank(C)=n—r=2"—r—1.

In the following table, we can see the parameters of the rank and the kernel of

1-perfect additive codes:
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t r type: (K, "57) dim(ker(C)) | rank(C)

2 1,2 (1,1),(3,0) 3.3 3.3

3| 2.3 (3,2), (7,0) 4,4 4,4

4] 2,34 (3,6), (7,4), (15,0) 8,9,11 13,12, 11
5 | 3,4,5 (7,12), (15,8), (31,0) 17,20,26 | 28,27,26
6 |3,4,5,6 | (7,28), (15,24), (31,16), (63,0) | 33,36,43,57 | 60,59,58, 57

65

Table 4.2: Rank and dimension of the kernel of 1-perfect additive codes

4.5 Extended 1l-perfect additive codes

Let C be a code of length n. The extended code C* of C' is a code of length n + 1
obtained from C by adding the parity check coordinate.
For all this section, let C' be a binary additive code of length n of type («, ).

Theorem 4.21. If C* is an extended 1-perfect additive code of length n+1 = 2, then
it is of type (a+ 1, 3), where either a+1 = 0 and it is a Zy-linear code or o = 2" — 1,
2<r<t<2r.

In the next two subsections we give a characterization of extended 1-perfect ad-
ditive codes and we give the rank and the kernel of such codes. The first subsection
is about codes of type («, 3) with a > 0 and the second one is when o = 0 and the
code is Zy-linear. Theorems in these two sections can be found in [BPRO3] unless it

is said otherwise.

4.5.1 Extended 1-perfect additive non Z,-linear codes

Theorem 4.22. For any r and t > 4 such that 2 < r < t < 2r there is exactly
one extended 1-perfect additive code C* of type (27,21 — 2"1) up to coordinate

permutation.

Proof: The statement follows directly from Proposition 4.15 and Theorem 4.21.
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The following theorem gives the rank and the dimension of the kernel of such a

1-perfect additive code.

Theorem 4.23. Let C* be an extended 1-perfect additive code of type (27,271 —27—1)
where t > 3, then

(i) dim(ker(C*)) =21+ 2"  —r if t £ r and dim(ker(C*)) =2"—r—1ift =r.
(it) rank(C*) =2 —r — 1.

In Theorem 4.14 it is shown that an additive code can be constructed as the kernel
of amap ¥ : F* — Z$ x Z?. For any allowable parameter r and ¢, code C* could
be seen as the kernel of a group homomorphism:

Fr+l = zot x 78 — 2 7] < 78
where a+1=2", 3 =271 —2""1 v =2r —t+1 and § = t — r. This homomorphism

could be represented by a matrix like

(Bl)’YXOH-l ‘ (BQ)’YXﬁ
(Ql)éxoﬁ—l ‘ (QQ)(SXB

The columns of this matrix are all the possible independent vectors in {1 € Zy} x

H =

Zg_l x Z3. B; are binary matrices, @ is a quaternary matrix with elements of order
2 and (), is a quaternary matrix with elements of order 4. H can be considered as a

parity check matrix of the code C*.

Example 4.5.1. Let C be a 1-perfect extended code of an additive code of length 31.
From Theorem 4.22 there are three different pairs of allowable parametres of such a
code: (3,5), (4,5) and (5,5). Let C be of type (3,5), then, C is the kernel of the
homomorphism F 3% = 78 x 7Z1* — 72 x 7Z3. A parity check matriz of the code given

by the homomorphism is

111111111 1111111T1T1T171
H_ 000011110000 001111T171
0022002211 110211T1T1F0 2
020202020123110123171
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The rank of C is 2t —r—1 = 28 and the dimension of the kernel is 2" 1 +2t1 —p = 17,

In [BPRO3] it is also constructed the parity check matriz when the code is of type
(4,5) and (5,5).

The following tables show the different values of v and ¢ and the values of R =
rank(C*) and K = dim(ker(C*)) in each case for ¢ equal to 4, 5 and the general case.

4 R|\K | R|IK | R|K
11111 | 12|19 | 13|38
4 3 1
o 0 1 2
s R|K | R|IK | R|K | R|K
2626 | 2720 | 28|17 | * | x
vy 6 4 2 0
§ 0 1 2 3
R K R K
t| 2t—t— | 20— | 20 —¢— |20l 4 otrl
1+0 |[t—1 140 t+4
5 0 >3

4.5.2 Extended 1-perfect additive Z,-linear codes

Let C* be an extended 1-perfect additive code of length n + 1 = 2t > 16 of type
(0, B), where 23 = n + 1; that is, C* is a Z4-linear code of length n + 1.

Theorem 4.24. Let C* be an extended 1-perfect Zy-linear code of length n+1 = 2t >
16, such that F "1 /C* is isomorphic to Z3 x 73 for a fived 6 € {1,---,|(t +1)/2]}

and vy =1t+1—29. Then, C* is unique, up to coordinate permutation.

Theorem 4.25. For every t > 4, there are exactly |(t + 1)/2] extended 1-perfect
Zy-linear codes of length n +1 = 2°,
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This theorem, that is a corollary of Theorem 4.24, was previously proved by
Krotov in [Kro01] using Hadamard codes. Each one of the nonequivalent codes of
length n+ 1 = 2! correspond to the | (t+1)/2] different quotient groups Zj x Z$ such
that v +20 =t + 1.

As in Section 4.5.1, for any allowable parameters r, t we can construct an extended

1-perfect additive Zy-linear code C* as the kernel of the group homomorphism:

Fril =78 2 7)< 7}

where 8 = 27! and t + 1 = v + 2. This homomorphism could be represented by a

matrix like
(B)’Yxﬁ

(Q)&xﬁ

The columns of this matrix are all the possible independent vectors in Zj x {1 €

H—

Z4} x Z3'. B is a binary matrix and @ is a quaternary matrix. H can be considered
as a parity check matrix of the code C*.
Now we will see some theorems about the rank and the kernel of extended 1-perfect

additive Zy-linear codes.

Theorem 4.26. Let C* be an extended 1-perfect Zs-linear code of length n+1 = 2t >
16 and assume the quotient set is isomorphic to G = Z3 x Z3. Then, rank(C*) =
20 —t — 14 0. For the case t = 4, either G = Z5 ' x Zy and rank(C*) =2t —t —1;
i.e. C* is linear, or G = Zy X 73 and rank(C*) =2' —t — 1 + 2.

Theorem 4.27. Let C* be an extended 1-perfect Zy-linear code of binary length n +
1 =2
For § =1 the dimension of the kernel is dim(ker(C*)) = 271 +¢ — 1.
For § =2 the dimension of the kernel is dim(ker(C*)) =271 —§ 42 = 21,
For ¢ > 3 the dimension of the kernel is dim(ker(C*)) =21 — 4§ + 1.

Example 4.5.2. Let C* be an extended 1-perfect additive Z,-linear code of length
32. C* is of type (0,16). There are three possible pairs of values to the parameters
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(6,7): (0,3), (2,2) and (4,1). Assume the case 6 =y = 2. C* is the kernel of the
homomorphism F 3% = 716 — 72 x Z2. Then, a parity check matriz of the code given

by the homomorphism is

S = | OO O
S == O
S = | OO =
O = | = =
— RO O
_ == O
— RO
— = =
N = O
N =]
N =D =
N == =
w = o O
W == O
w = | o =
W | =

The rank of C is 2! —t — 1+~ = 26 and the dimension of the kernel is 211 = 16.

Parity check matrices of codes with the other parameters are constructed in [BPR0S3)].

The following tables show the different values of v and § and the values of R =
rank(C*) and K = dim(ker(C*)) in each case, for ¢ equals to 4, 5 and the general

case.

! RIK | R|K | R|K
« | % | 1111 | 13| 8
4 3 1
5 0 1 2
5| BIE | R|K | RIK|R|K
* | % | 27)20 | 28|16 | 29|14
ol 6 4 2 0
5 0 1 2 3
R|K R K R | K R K
Lo | | 20—t |20 | 28— 27 ] 2Pt 01 |27 =041
§—1 |t—1 | 6-1 ((t,8) # (4,1))
5| 0 1 2 >3
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4.6 Punctured extended 1-perfect Z,-linear codes

Let C' be a 1-perfect additive code. By Theorem 4.24 the extended code C* is an
extended 1-perfect Z4-linear or additive non Zj-linear code. If C* is the extended
1-perfect additive non Zy-linear code of C' and we puncture a binary coordinate, then
(C*)" is isomorphic to C. It is not true if we puncture a quaternary coordinate.

The aim of this section is to prove that a punctured extended Z,-linear code is
not a 1-perfect additive code up to the extended Hamming code of length 16. All the
results in this section can be found in [BF02] that contains the source code of the

implementations used in the proof of the results.

Lemma 4.28. Let C be a 1-perfect code and C* the extended code. Then, the rank

and the dimension of the kernel of C and C* coincide.

Lemma 4.29. Let C* be an extended 1-perfect Zy-linear code of length n+1 = 2t > 16
such that F"+1/C* 2 7 x 75, v +20 =t + 1, and assume C = (C*)' is a 1-perfect

additive code. Then, the allowable parameters of t and d are:

(i) t=4,6=1,
(i) t =4, 6 =2,
(iii) t =5, 6 = 1.

Proof: From Theorems 4.20 and 4.26 we obtain:
rank(C)=n—r=2"—r—1

20—t —lor2t—t+1 ift=4,
20—t —149¢ if t > 4.
By Lemma 4.28 rank(C*) = rank(C') then,

rank(C*) = {

e ift =4, eitherr=torr=1t-—2,

e ift>4 6=t—r.
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Now, from Theorems 4.19 and 4.27 we obtain:

2N —r—1, ift=r,
2r=b 4 ot o if t £

dim(ker(C)) = {

2141 if§=1,
dim(ker(C*)) = { 2t=1 if 6 =2,
2t 541 ifd > 3.
By Lemma 4.28 dim(ker(C)) = dim(ker(C*)), and hence,

eift=4andr=t=4,then2"—r—1=2"14+¢—1and § = 1, that corresponds

to the case (i),

eift=4andr#t thenr =t—-2=2 271 +271 —p =271 and § = 2, that

corresponds to the case (ii),
e if £ > 4 then 0 =1t — r and there are three cases:

(1) 2rt 42t —p =214 ¢t — T and 6 = 1.
We obtain the equations 2! —»r = ¢t —1 and 1 = ¢t — r, and hence,
2t=2 = 2¢ — 2 that has solution if and only if ¢ = 5, that corresponds to the
case (iii).

(2) 2t 427t —p =271 and 6 = 2.
2"=1 = r if and only if r = 1,2, but for these values of r it is not possible

0=t—r,t>4and d=2.

(3) 2t 427l —p =271 —§+1and 6 > 3.
2l _p=—§+1<—=2. But 2! <r — 2 has no solution.

Proposition 4.30. If C* is an extended 1-perfect Z4-linear code with parameters

t =4 and 6 = 2, then the punctured code (C*)' is not a 1-perfect additive code.
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Proof: Assume C* is an extended 1-perfect Z4-linear code with parameters ¢t = 4
and § = 2. The rank of C* is 13 and the dimension of the kernel is 8. If C' = (C*)’
is a 1-perfect additive code then, its rank and dimension of the kernel have the same
values than C*, and hence, C' is necessarily of type (3,6) (see Table (4.2)).
Constructing the ST'S(15) associated to (C*)" and computing the pattern array
of fragments (see [LeV95]) we obtain that the pattern array of fragments from (C*)’
corresponds to the ST'S(15) number 3 whereas the pattern array of fragments from
the 1-perfect additive code of type (3,6) corresponds to the ST'S(15) number 7. As
the ST'S(15)'s obtained from these two codes are not isomorphic, the codes are not

isomorphic, and hence, (C*)" is not a 1-perfect additive code. 1

Proposition 4.31. If C* is an extended 1-perfect Z4-linear code with parameters

t =5 and 6 =1, then the punctured code (C*) is not a 1-perfect additive code.

Proof: Assume C* is an extended 1-perfect Zy4-linear code with parameters ¢t = 5
and 0 = 1. The rank of C* is 27 and the dimension of the kernel 20. If C' = (C*)
is a 1-perfect additive code then, its rank and dimension of the kernel have the same
values than C* and C' is necessarily of type (15,8) (see Table (4.2)).

Let S7 be the set of weight 3 codewords of the punctured extended 1-perfect Z4-
linear code, (C*)" and Sy the set of weight 3 codewords of the extended 1-perfect
non Z,-linear code with parameters t = 5 and § = 1 puncturing a binary coordinate.
Note that, as it is punctured a binary coordinate, this code coincides to the 1-perfect
additive code of type (15,8).

Both, S; and Ss, contain 155 codewords of length 31 and weight 3 (results obtained
by computer test). Using GAP we compute the dimensions of these sets and we obtain
dim(Sy) = 26 and dim(S2) = 27. As their dimensions are different, S; and Sy are not

isomorphic, and hence, the punctured code (C*)’ is not a 1-perfect additive code.

Proposition 4.32. Let C' be a 1-perfect code of length n = 2" — 1. Let S, (C) be the
STS(n) associated to C. Let H,, be the Hamming code of length n. Hence, we obtain
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the following inequation:
rank(H,) < dim(S,(C)) < rank(C).
and r(H,) = dim(S,(C)) if and only if S,(C) is isomorphic to S,(H,).

Proof: Clearly, dim(S,) < rank(C). The other inequation and the condition to the
equality can be found in ([AJK92, Theorem 8.2.1])

By the last proposition, if C'is a code of lenght 31, then the dimension of the set
of its weight 3 codewords is equals to r(H31) = 26 if and only if this set is isomorphic
to the set of weight 3 codewords in Hs;. In the proof of Proposition 4.31, we have
obtained a code of rank 27; that is, a nonlinear code, but the set of its weight 3

codewords is isomorphic to the set of weight 3 codewords in a linear code.

Theorem 4.33. If C* is a binary extended 1-perfect Z4-linear code of length n+1 > 16
then, the punctured code (C*)" 1-perfect is not a 1-perfect additive code up to the case
that C* equals to the extended of the Hamming code of length 15.

Proof: Let C* be a binary extended 1-perfect Z,-linear code of length n+1 > 16. If
C = (C*)is a 1-perfect additive code then, by Lemma 4.29 the allowable parameteres

of t and § are:

By Proposition 4.30, if C* is a binary extended 1-perfect Z4-linear code with the
parameters given in (ii), then the punctured code (C*)" is not a l-perfect additive
code. We obtain the same conclusion with Proposition 4.31 and the parameters
given in (iii). Finally, the parameters given in (i) correspond to the extended of the

Hamming code of length 15.
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Chapter 5

Reed-Muller codes

The family of Reed-Muller codes was introduced by Muller in 1954 in [Mul54]. Muller
presented a mathematical method to simplify switching circuit. This method can be
applied in those circuits that may be represented by using Boolean algebra. As a
result, a relationship between Boolean expressions and error-detecting codes of length
a power of two was given. The same year, Reed, in [Reeb4], analyzed in depth these
codes and described a decoding algorithm. One of the most important properties of
this family of codes is the ease with which they can be implemented and decoded by
using majority-logic circuit. This fact makes these codes very useful even though their
minimum distance is relatively small (lower than BCH codes). Finally, we emphasize
the mathematical interest of Reed-Muller codes. They are the simplest example of

geometrical codes and they are related to affine and projective geometries.

Section 5.1 presents Boolean functions and analyze the connections between them
and Reed-Muller codes. In Section 5.2, definitions, constructions and properties of
Reed-Muller codes are given. Next, we will establish the relationship between such
codes and geometries in Section 5.3 and, finally, we will study the Zj-linearity of

Reed-Muller codes in Section 5.4.

5
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5.1 Boolean functions

As mentioned above, the first definition of Reed-Muller codes was given in terms
of Boolean functions. Thus, it is the purpose of this section to introduce Boolean
functions to conclude, in the next section, with the first definition of Reed-Muller
codes. The definitions of Boolean functions in this section are obtained from [MS77]
and [PHB9S].

Let m be a positive integer and n = 2™. Any function f : F™ — [F; that is, a
function in m variables that takes on the values 0 and 1 is called a Boolean function.
Let B be the set of all Boolean functions.

Any function f € B can be identified with a vector f € F" with coordinates the
value of f in all 2™ possible arguments. The m-tuples are lexicographically ordered;
that is, (a1,...,amn) < (by,...,by) if and only if there is an integer k such that aj = 0,
by =1and a;, = b; for k <i <m.

The usual logical operations, U (or), N (and), = (not) and W (exclusive or), may
be applied to Boolean functions. These operations can also be defined in terms of

binary functions in the following way:

fNng = fg
JUg = f+g+fg (5.1)
-f = 1+f
fwg = f+yg

Example 5.1.1. Let f : F? — F defined by f(x1,25) = x1Wwy = 11 +2. The ordered
2-tuples are (0,0), (0,1), (1,0) and (1,1), and the corresponding vector of length 4 to
the function f is f=(0,1,1,0).

Using equivalences given in (5.1) between logical and binary operations and due to
the fact that 22 = x;, any Boolean function can be expressed as a linear combination

of

1,21, .. T, 1T, o ooy Ty 1Ty« + -y T1T "+ Ty (5.2)
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Therefore, (5.2) is a basis of the set of Boolean functions and if f € B, we can write

flxy, ... xp) = Z Clar,mam) T T,

(at,....,am )EF™

where ¢, .. a,) € F. The degree of f is defined as

max{ Z ailClar,..am) 7 O}'
=0

Define the i-th coordinate function as f(z1,...,2,) = x; which takes the value
1 on all m-tuples (z1,...,x,) with z; = 1. Its corresponding vector in F" will be
denoted v; and has weight 2™,

Let us order lexicographically all vectors u; in F™. If we construct a matrix with
columns vectors u; then, row 7 is the vector v; corresponding to the i-th coordinate

function.

Example 5.1.2. m=3, n=8

U Uy Uz Uy Us Ug Uy Us
v/ 0 O 0 O 1 1 1 1
v 0 0 1 1 0 0 1 1
vs|0 1 O 1 0 1 0 1

It is easy to check that the j-th coordinate, j = 1,...,n, of v; is 1 if and only if
271 occurs in the binary expansion of j — 1.

Let f,g € B with associated binary vectors f, g respectively. Then, f + g, fg € B
and the corresponding binary vectors are, respectively, f + g and fg. As the vector
associated to the ¢-th coordiantes function is v,,_;.1, the binary vectors corresponding

to the basis given in (5.2) is

1,01, .0, Uy U102, - o o, Ui iUy -+« U102 * * * Uy (5.3)
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5.2 Definitions and properties

Reed-Muller codes can be defined in a simple way in terms of Boolean functions.

Definition 5.2.1. The r-th order binary Reed-Muller code RM (r,m) of length n =
2m for 0 < r < m is the set of all vectors f where f(x1,...,2,) € B has degree at

most r.

A basis of B is given in (5.2), and therefore, the set of vectors corresponding to
this basis, (5.3), is a basis of the code. That way, RM(r,m) consits of all linear

combinations of the vectors corresponding to the products
1,01, .., Up, V102, V103, . . ., U1V, - - . (up to degree 7).

The number of different vectors in the basis is
m m m
k=1 e .

Pr(vi, ... vm) = [ v, (5.4)
el
where I = {iy,...,is} C {l,...,m}, i3 < iy < --- < i5, and P; = 1 if |I| = 0.

Therefore, the r-th order Reed-Muller code of length 2™ can be defined as

Define

RM(r,m) = ({Pr(vi. ..., vm) b11<r)- (5.5)

Table 5.1 shows the basis vectors of a RM(r,5). Vectors 1, vy, ..., vs correspond
to the basis vectors of RM(1,5); 1, vq,..., 05,0102, ..., 0405 correspond to the basis
vectors of RM(2,5); 1, ..., 010903, . .., 030405 to RM(3,5), etc. In this example,
RM(0,5) is the code generated by vector 1; that is, the repetition code. It is easy to
check that RM(1,5) is the dual of the extended Hamming code and RM (5,5) is the
whole space F2°. We will see that these properties are, in fact, general properties for

any m > 1.

The following theorem gives us a recursive definition of Reed-Muller codes, using

vectors or in terms of generator matrices.
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1

1111

1111

1111

1111

1111

1111

1111

1111

01
V2
U3
V4
Us

0000
0000
0000
0011
0101

0000
0000
1111
0011
0101

0000
1111
0000
0011
0101

0000
1111
1111
0011
0101

1111
0000
0000
0011
0101

1111
0000
1111
0011
0101

1111
1111
0000
0011
0101

1111
1111
1111
0011
0101

V1V2
U1V3
V14
V105
VU3
VaVy
Va5
V34
V3Vs
V45

0000
0000
0000
0000
0000
0000
0000
0000
0000
0001

0000
0000
0000
0000
0000
0000
0000
0011
0101
0001

0000
0000
0000
0000
0000
0011
0101
0000
0000
0001

0000
0000
0000
0000
1111
0011
0101
0011
0101
0001

0000
0000
0011
0101
0000
0000
0000
0000
0000
0001

0000
1111
0011
0101
0000
0000
0000
0011
0101
0001

1111
0000
0011
0101
0000
0011
0101
0000
0000
0001

1111
1111
0011
0101
1111
0011
0101
0011
0101
0001

V1V2V3
V1V2V4
V1V2V5
V1V3V4
V1V3V5
V10405
V2V3V4
VaV3Vs
VaU4 Vs
V30V4VU5

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0001

0000
0000
0000
0000
0000
0000
0000
0000
0001
0000

0000
0000
0000
0000
0000
0000
0011
0101
0001
0001

0000
0000
0000
0000
0000
0001
0000
0000
0000
0000

0000
0000
0000
0011
0101
0001
0000
0000
0000
0001

0000
0011
0101
0000
0000
0001
0000
0000
0001
0000

1111
0011
0101
0011
0101
0001
0011
0101
0001
0001

V1V2V3V4
V1V2V3Vs
V1V2V4 Vs
V1V3V4Vs5
VaU3U4 V5

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

0000
0000
0000
0000
0001

0000
0000
0000
0000
0000

0000
0000
0000
0001
0000

0000
0000
0001
0000
0000

0011
0101
0001
0001
0001

V1UV2V3V4V5

0000

0000

0000

0000

0000

0000

0000

0001

Table 5.1: Generators of the code RM(r,5)
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Theorem 5.1 ([MS77]). Let r,m be integers such that 0 < r < m. The Reed-Muller
code RM(0,m) is the repetition code {0,1} and

RM(r+1,m+1)={(u,u+v)|lue€ RM(r+1,m),v € RM(r,m)}. (5.6)

If G(r,m) is the generator matriz of the Reed-Muller code RM (r,m) then, G(0,m) =
(1) and
Gir+1,m) G(r+1,m)

Gir+1,m+1)= . Glrom) (5.7)

Note that G(r, m) can be defined as the all columns vectors of Z5".

Example 5.2.1.

1 1111 1111 1111 1111

(] 0101 0101 0101 0101
GM(1,4) =1 wvs | =] 0011 0011 0011 0011 |,

Uy 0000 1111 0000 1111

Uy 0000 0000 1111 1111

GM(0,4) = (1111111111111111).

Using (5.7) we obtain the generator matrixz of the code RM(1,5)

1111 1111 1111 1111|1111 1111 1111 1111 1
0101 0101 0101 0101|0101 0101 0101 0101 Us
0011 0011 0011 0011|0011 0011 0011 0011 Uy
0000 1111 0000 1111 0000 1111 0000 1111 U3
0000 0000 1111 1111 0000 0000 1111 1111 Vo
0000 0000 0000 0000|1111 1111 1111 1111 1

As a corollary of Theorem 5.1, and considering codes RM (r+1, m) and RM (r,m)
as subsets of Z2", we obtain the following construction of RM (r + 1,m + 1), where

¢ is the extended Gray map defined in (3.4).
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Corollary 5.2. Let r,m be integers such that 0 < r < m.
RM(r+1,m+1)=¢2RM(r+ 1,m)) + ¢(RM(r,m)).

The following Lemma gives a property of the generator vectors of RM (r, m) codes.

It will allow us to build up a different recursive construction of RM (r,m), for r > 2.

Lemma 5.3. Let I1,I, C {1,2,...,m}. Then,

Pr(vi,...,0m)Pr(v1, ..., 0m) = P (V1 ..., Un)

Proof: By definition, Pr, (v1,...,vm) = [Lics, Vi Pro(v1, ..., 0m) = [licy, vi- Due to
the fact that v;v; = v; fori € {1,...,m}, Pr,(v1,...,0m)Pr(v1,...,0m) = Hie(huh) v; =

P([lU[Q)(’Ul, e ,’Um). 1

Proposition 5.4. Let r,s,m be integers such that 0 < r,s < m. Define
Cris ={zy |z € RM(r,m),y € RM(s,m)}.
Then, (Crys) = RM(t,m), where t = min{r + s, m}.

Proof: Let t = min{r + s,m}. Let x = S.F Pr(v1,...,0m) € RM(r,m), y =
Z?/:o Py (v1,...,vm) € RM(s,m). By definition, |I;| < r and |J;| < s. Thus, xy =
S o S Pr(vr, . Um) Py, (v, . .. 0y,) thatis equals to 30 o S Py (v, )
due to Lemma 5.3. As |[; U J;| = ¢, we obtain that, effectively, zy € RM(t,m) and
(Cris) € RM(t,m).

Let Pr(vy, ..., vy,) be a generator vector of RM (t,m). |I| < t, and therefore, there
exist I; , I;, such that |I; | < r, |[;,| < sand ([;,Ul;,) = I;. That way Pr(vy,...,0y) =
Pu, or (i, 0m) = Pr(vi, ..., 00) P (v1,. .., 0n) € Crgs. Hence, RM(t,m) C
<Cr+s>' 1

The next lemma summarizes the basic properties of Reed-Muller codes. The proof

of such properties can be found, for example, in [MS77] and [PHB98|. Nevertheless,

most of them are easily derived from the different definitions of the codes.
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Lemma 5.5. Let r,m be integers such that 0 < r < m. Let RM(r,m) be the r-th
order Reed-Muller code.

(i) The dimension of the code is k =1+ (7) + () + -+ (7).
(ii) The minimum distance is d = 2.
(111) The weight of Pr(vy, ..., vp) 18 2™, where i = |1].
(iv) RM(r,m) C RM(r +1,m), Vr < m.

(v) RM(r,m)* = RM(m —r —1,m) ¥Vr < m.

As we have seen in the case of the Reed-Muller code of length 25 with some

specific values of r we obtain well-known codes. We present a list of such different

codes (the proof can also be found in [MS77] and [PHB9S§]):

e RM(0,m) is a repetition code.
e RM(1,m) is the dual of the extended Hamming code, (H')~.

e RM(1,m) C K,, C RM(2,m), where K,, is the Kerdock code if m > 4, m

even.

e RM(m — 3,m) C P, C RM(m — 2,m), where P,, is the Preparata code if

m > 4, m even.
e RM(m — 2,;m) is the extended Hamming code H'.
e RM(m — 1,m) is the even code (all vectors in Z3" of even weight).

e RM(m,m)=73%".

Figure 5.1 shows the sequence of Reed-Muller codes.
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RM(0,m) C RM(1,m) C K,, C RM(2,m) C ---
Repet. (H")* Kerdock

..« C RM(m —3,m) C P, C RM(m —2,m) C
Preparata H'

C RM(m —1,m) C RM(m,m)

Even Zz"

Figure 5.1: Sequence of Reed-Muller codes
5.3 Reed-Muller codes and geometries

In this section we briefly outline an introduction to projective geometries and the
connection of such geometries with RM (r,m) codes. All the information in this

section can be found in [MS77].

Definition 5.3.1. A finite projective geometry consist of a finite set V of points
D,q, ... together with a collection of subsets L, M, ... of V called lines, which satisfies

azioms (i)-(iv).
(i) There is a unique line pq passing through any two distinct points p and q.
(ii) Every line contains at least 3 points.

(i) If distinct lines L, M have a common point p, and if q,r are points of L not
equal to p, and s,t are points of M not equal to p, then the lines (qt) and (rs)

also have a common point.

(iv) For any point p there are at least two lines not containing p, and for any line

L there are at least two points not on L.
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A subspace of the projective geometry is a subset S of V' such that

(v) If p,q are distinct points of S then S contains all points of the line (pq)

Let GF(q) be a finite field and suppose m > 2. The points of V' are taken to be
the nonzero (m + 1)-tuple

(ag, a1, ..., am), a; € GF(q),

with the rule that

(ag, a1, ..., a,) and (Aag, Aag, . .., Aay,)

are the same point, where \ is any nonzero element of GF(q). These are called
homogeneous coordinates for the points. There are ¢™ ! — 1 nonzero (m + 1)-tuples,
and each point appears ¢ —1 times, so the number of points in V' is (¢""' —1)/(¢—1).

The lines through the points (ay, ..., an) and (b, . .., by,) consist of the points
(Aag + pbo, - .oy A, + b)),

where A\, u € GF(q) are not both zero. The projective geometry defined in this way
is denoted by PG(m,q).
A hyperplane or subspace of dimension m — 1 in PG(m, q) consist of those points

(ag, . .., a,) which satisties a homogeneous linear equation
)\an -+ )\1&1 + -t )\mCLm == 0, >\z c GF((])

It is denoted [Ag, ..., Am] or Ao Xo + M X7+ -+ A\ X, = 0. The affine geometry
EG(m, q) is obtained from PG(m,q) by deleting the points of a hyperplane H. A
subspace S of EG(m,q) is called a flat. A flat of dimension r in EG(m, q) is a coset
of an EG(r,q), and will be referred as an EG(r,q) or an r-flat. A subspace PG(r, q)
of PG(m,q) is also called an r-flat.

Any subset S of the points of EG(m,2) has associated with it a binary incidence
vector x(S) of length 2™, containing a 1 in those components s € S and zeroes

elsewhere.
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Similarly, any vector z = (zo,...,Zsm_1) of length 2™ describes a subset S, of
EG(m, 2) consisting of those points P; for which x; has value 1.

Therefore, we obtain a one-to-one correspondence between points of EG(m,2)
and coordinate positions of binary vectors of length 2.

For example, let us consider EG(3,2). Such affine geometry contains 23 vectors

of length 3, said, Py, P,..., Pr

R PP, P3Py B B Py
1 1. 1.1 0 0 0 0
1 1.0 0 1 1 0 0
1 01 0 1 0 1 0

X(S):(1717()’070’071’1)<—S:{PO>P17P6>P7}7

x:(17070707171a170)—)5x:{POaP4aP5aP6}~

Consider vy, ..., v, the generating vectors of RM(1,m) and vy, ..., 0, its com-

plements, v; = 1 + v;. Points of EG(m,2), Py, Py, ..., Pym_y, are columns of

U1 11 10
Vg 11 01
Umn—1 11 .- 01-- 00
U 10 --01.--- 10

Hyperplanes X; = 0; that is, [A,..., Apm_1), with A\; = 1 and A; = 0, for j # 4,
are hyperplanes that pass through the origin. Points in hyperplane X; = 0 are those
(g....,Tm-1) such that z; = 0.

With m = 3, we obtain three hyperplanes: Xy, = 0, X; = 0 and Xy = 0. Note
that the incidence vectors of such hyperplanes corresponds to the generator vectors

of RM(1,m):
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hyperplane H | Set of points X(H)
Xo=0 | {Py, Ps,Ps, P;} | 00001111 = v,
X1 =0 {P, P3, Ps, P;} | 00110011 = vy
Xo=0 {P1, P35, P5, P;} | 01010101 = v

Note that RM (1, m) is spanned by the incidence vectors of hyperplanes, or (m—1)-
flats, with equation X; = 0.

Vectors v; themselves are called the characteristic vectors of such (m — 1)-flats,
v;v; with @ # j describes (m — 2)-flats and so on. That way, Pj(vq,...,v,,), are
characteristic vectors of (m — |I])-flats. RM (r,m) is spanned by the incidence vector
of these (m — s)-flats, for 0 < s < r. We will see more general results with any
(m — r)-flats, not only the ones defined before.

Let H be any hyperplane in EG(m,2), h = x(H). Note that if v € RM(r,m) is

an incidence vector of S,, then hv € RM (r 4+ 1,m) and is incidence vector of S, N H.

Theorem 5.6 ([MS77]). Let v be a minimum weight codeword of RM (r,m). Then,
Sy is an (m — r)-dimensional flat in EG(m,2)that need not pass through the origin.

The converse of the last theorem is the following theorem.

Theorem 5.7 ([MST77]). The incidence vector of any (m — r)-flat in EG(m,2) is
in RM (r,m). Moreover, they generate RM (r,m).

Finally, we obtain the following corollary.

Corollary 5.8 ([MS77]). The minimum weight codewords in RM (r,m) generate
RM (r,m).

5.4 Relationship with quaternary codes

In section 5.2, Reed-Muller codes were presented and their different definitions and
their basic properties were given. In this section, the relationship between Reed-

Muller codes and quaternary codes will be established. The first question one can
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formulate about this topic is when a Reed-Muller code is Z4-linear code. The answer

was partially given in 1994 in [HKC*94] with the following theorem.

Theorem 5.9. The r-th order binary Reed-Muller code RM (r,m) of length n = 2™,

m > 1, is Zy-linear forr =0,1,2,m — 1 and m.

This theorem was proved in terms of some quaternary codes denoted ZRM (r, m)
(further information of these codes in Chapter 7). In the same paper, the authors also
conjectured that these were the only values of r such that RM (r,m) was a Zg4-linear

code. This fact was proved lately in [HLK98].

Recall the connection between RM (r,m) codes and k-flats in binary m-space.

Each coordinate in RM (r, m) corresponds to a binary m-tuple in m-space.

Theorem 5.10. [MS77, Theorem 24] The automorphism group of the Reed-Muller

codes is the general affine group GA(m) acting on the m-space,
7y —— Iy
r —— Ax+0b

for1 < r<m—2. Whenr =0,m — 1 and m, the automorphism group is Som.

Lemma 5.11. Let 7 € GA(m), © # Id,0. Then, © has 28 < 2™ fized points.

Proof: Let w(z) = Az +be GA(m), (A# (0)). Assume b=0. S = {zx € Z}'| Az =
x} is a subspace of Z5', and hence, |S| = 2* for some k < m.

If b # 0 then, if there exist an m-tuple a such that Aa + b = a, the set S’ =
{z € ZJ'|Ax + b = z} is exactly S + a, an affine subspace or a flat. Therefore,
|S'| = |S| = 2%, for some k < m.

Corollary 5.12. Let 1 < r < m — 2. The number of fized coordinates in RM (r, m)

of any automorphism « # Id, o is 2F < 2™,

Lemma 5.13. Let ¢ be a general Gray map, 1 < r < m — 2. The number of odd
coordinates of ¢~ (x), x € RM(r,m) is 0,2™2 or 2m~1,
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Proof: Let x € RM(r,m). m, is an automorphism and o is a fixed point free
involution on RM (r,m).

The number of odd coordinates of ¢~(0) and ¢~ (u) are 0 and 2! respectively,
where w € RM(r,m) is such that m, = o.

Assume x € RM (r,m) different to 0 and u, 1 < r <m — 2.

Since 7, is an automorphism, it fixes 2% coordinates (Corollary 5.12), and there-
fore, ¢~1(x) has 2¥1 even coordinates. Moreover, o o 7, is also an automorphism
on RM(r,m) and fixes 2¥'. Then, ¢'(z) has 2¥~! odd coordinates. As 2F 2F < 2m
and 2F + 2¥ = 2™ necessarily, 2¥ = 2¥ = 2m~1. That way, ¢~ '(x) has 2”2 odd

coordinates. 1

Theorem 5.14. The r-th order binary Reed-Muller code RM (r,m) of length n = 2™,

m > 1, is Zy-linear if and only if r =0,1,2,m — 1 and m.

Proof: Clearly, for r =0,1,2,m — 1 and m, RM (r,m) is Z4-linear due to Theorem
5.9.

To prove the inverse, first note that RM (r, m) is generated by minimum weight
codewords (Corollary 5.8); that is, is generated by the codewords of weight 27", Let
1 < r<m—2, it follows from Lemma 5.13 that the number of odd coordinates of
¢~ Hz), x € RM(r,m) is 0,2™2 or 2™~ Thus, if r > 2 then, all minimum weight
codeword x in RM (r,m) is such that ¢~!(x) is an order 2 codeword, and therefore,
the code generated has all codewords with ¢~1(y) of order 2, y € RM(r, m) which is

impossible. 1

Recall that we say a binary code C'is Z4-linear if it is equivalent under coordinate

permutation to a general Gray map image ¢(C) of some quaternary code C C Z.

Lemma 5.15. Forr = 0,m—1 and m, there exist an unique Z4-code C up to isomor-
phism such that ¢(C) is permutation-equivalent to RM (r,m). Moreover, ¢~ *(RM (r,m))

is of type 4921, 427121 and 42" forr = 0,m — 1 and m respectively.
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Proof: By definition, RM(0,m) = (1), RM(m — 1,m) is the even code and
RM(m,m) = Z2". Therefore, if r = 0,m — 1 or m, for any coordinate permu-
tation m € Som, m(RM(r,m)) = RM(r,m). That way, for these values of r, if C
is a quaternary code such that ¢(C) is permutation-equivalent to RM (r,m), then,
necessarily, C = ¢~ (RM (r,m)).

Note that ¢~ (RM(0,m)) = (2), and ¢~ (RM(m,m)) = Z3" . Clearly, (2),
and Z2"" are Zy-codes of type 4°2! and 42" respectively.

Finally, as RM(m —1,m) is the even code and the Gray map is weight-preserving
then, C = ¢~ '(RM(m —1,m)) is the even code in Z2" . The dimension of RM (m —
1,m) is 2™ —1, and therefore, |C| = 22" ~1. Moreover, the number of order 2 codewords
in C is the number of order 2 codewords in Z2"'; that is, 2~ 1. Hence, if C is of type

4k19k2 then,

%y +ky = 2™ —1

ky + ko om—1

That way, k; = 2™ —1—2m 1 =9m=1 _ 1 k=1 and C is of type 42" ' ~12!. 1

Let us consider RM(1,m). As mentioned in Section 5.2, it is the dual of the
extended Hamming code, and therefore, it is a Hadamard code. Z4-linear Hadamard
codes are characterized in [Kro0O1], [PRV04] and [PRV05] and we can obtain a char-

acterization of Zy-linear RM (1, m) codes.

Proposition 5.16. [PRV04, PRV05] Let 6,7 be positive integers such that m + 1 =
v+ 20. For each possible value 9, there exits a unique Zy-dual code H of the extended
1-perfect Zys-linear code and all these codes H are pairwise non-equivalent, except for
0 =1 and 0 = 2, where the codes H coincides with the binary dual of the extended
Hamming code. The generator matrixz for the corresponding Zg-linear code of H

consist of all columns vectors of the form {1 € Z,} x Zi™" x 27J.

Corollary 5.17. Let C be a Zy-linear code such that ¢(C) is equivalent to RM (1, m),

m > 3. Then, up to isomorphism, C is of type 412™~1 and its generator matriz is
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the all columns vectors of the form 275" x {1 € Z} or C is of type 422™=3 and its

generator matriz is the all columns vectors of the form 2753 x {1 € Zy} x Zy.

From last corollary, we obtain that there are only two non-isomorphic quaternary
codes, one of type 4'2™~! and the other of type 42273, such that their image under
the Gray map is permutation-equivalent to RM (1, m). Let us consider ¢ the extended
Gray map defined in (3.4). In Lemma 5.19 it will be proved that ¢ ~'(RM(1,m)) is,
in fact, the quaternary code of type 412™~!. First, the next lemma will give the image

of the generator vectors of RM(1,m) under the Gray map defined in (3.4).

Lemma 5.18. Let v; (i € {1,2,...,m}) be the generating vectors in RM (1, m) and
vl (1 € {1,2,...,m + 1}) be the generating vectors in RM(1,m + 1). Let ¢ be the
extended Gray map defined in (3.4). Then, ¢(v;) = vivi,, and ¢(2v;) = vl .

Proof: Notice that, by construction, vectors v} can be expressed as v; = (0,1) and
vl = (vi,v;) for © € {1,2,...,m}, where 0 and 1 are the all zeroes and all ones
vectors of length 2™ respectively. Therefore, ¢(2v;) = (v;,v;) = vi,; and ¢(v;) =
(0,v;) = v, fori e {1,2,...,m}.

Lemma 5.19. Let m > 3. Let the matriz G be the all columns vectors of the form
2751 x {1 € Z,} and the matriz Gy, the all columns vectors of the form 275 *x{1 €
Zy} X Zy. Let Cy and Cqy be the Zy-code generated by Gy and Gy respectively. Then,
®(C1) = RM(1,m) and there exist m1 € Som such that wo ¢(Cy) = RM(1,m), where ¢
is the Gray map defined in (3.4).

Proof: By last corollary, ¢(C;) and ¢(Cy) are equivalent to RM (1, m). Hence, we
only have to check that ¢(C;) = RM(1,m) or, equivalently, the generator vectors
U1, ..., Uy of RM(1,m) are in ¢(Cy).
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Note that, by definition, G; can be expressed as

20}
204,
G, = . ,
20,y
1
where v}, ..., v} _, are the generator vectors of RM (1, m—1). Thus, fori =1,...,m—

1, we obtain ¢(2v)) = (vi,v}) = vi41 (see Lemma 5.18). Finally, ¢(1) = vy, and
therefore, vy,..., v, € @(Cy). ¥

Example 5.4.1. Let Cy, Cy be the two non-isomorphic codes (obtained from the dif-
ferent values of §) such that ¢(Cy) and ¢(Cs) are codes equivalent to RM(1,4), ¢
defined in (3.4). If 6 = 1, then Cy is of type 4'23. If G, is the generator matriz of Cy,

then
0202 0202

0022 0022
0000 2222
1111 1111

G =

For § =2, Cy is of type 4221 and the generator matriz, G is

0000 2222
Gy=| 1111 1111
0123 0123

Note that

1111 1111 1111 1111
0101 0101 0101 0101
= 0011 0011 0011 0011 |,
0000 1111 0000 1111
0000 0000 1111 1111

$(22222222)
¢(G1)

that is the generator matriz of RM(1,4). Therefore, ¢(C1) = RM(1,4).
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As we have seen, RM (r,m) codes are Z-linear if and only if r = 0,1,2,m — 1
and m. Let ¢ be the extended Gray map defined in (3.4). In [HKC"94] it was proved
that ¢~ (RM(r,m)) is a Zs-code for r = 0,1,2,m — 1 and m. When 3 <r < m — 2,
¢ *(RM(r,m)) is not a quaternary code for any extended Gray map. Up to the end of
this chapter, the Gray map ¢ will be the specific extended Gray map defined in (3.4).
Using this Gray map we will study which are the codewords missing in ¢~ (RM (r, m))
to be a quaternary code. In that case, we can construct the minimum quaternary

code C such that ¢(C) contains the code RM (r, m).

First, we will study some properties of Reed-Muller codes related to its generator

basis and the Gray map ¢.

Let = be a codeword in RM(r,m). The order of z in (Z3",x), x defined in (2.5),
is the order of ¢~'(x) in (Z?"',+) (due to (3.5)). The following lemma will show

that all vectors Pj(vy,...,v,,) are order 2 codewords if and only if 1 & I.

Lemma 5.20. If 1 & I then ¢~ (Pr(vi,...,vm)) is an order 2 codeword; otherwise,

all nonzero coordinates in ¢~ (Pr(vy,...,vy)) are of order 4.

Proof: By construction, ¢'(v;) = 1; that is, an order 4 codeword, and v;, for all

j # 1, is an order 2 codeword.

If 1 ¢ 1, Pi(vy,...,vy) is a componentwise product of vectors of order 2, and
therefore, an order 2 codeword. Assume 1 € I, Pr(vy,...,0m) = v1Ppy(vi, ... Um)
where Pp13(v1, ..., vp) is an order 2 codewords and all coordinates in ¢~*(v1) are of

order 4. Thus, all nonzero coordinates in such a product are of order 4.

Corollary 5.21. Let I C {2,...,m}. Then,

Pr(v, ..., vm) = (20 (01 Pr(vy, ..., vm))).
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Example 5.4.2. From Table 5.1, let us consider vector vivsvs:
0000 0000 0000 0000 0000 0101 0000 0101

(1)71

00 00 01 01 00 00 01 01

00 00 02 02 00 00 02 02
¢
0000 0101 0000 0101 0000 0101 0000 0101

that is exactly vector vsvs.
Corollary 5.22. Let I,J C {1,2,...,m}. Then,

0, 1€1UJ,

¢(2¢_1(P1(211, ey Um) Py, . ,vm))) =
P([UJ)\{l}(Ul, ... ,Um), lelUJ

Proof: Clearly,if 1 ¢ IUJ, 2 = ¢~ (Pr(vy,...,0m)Ps(v1,...,v,)) is an order 2 code-
word and ¢(2x) = 0. Assume 1 € TU J. Then, ¢ (Pr(vy, ..., 0m)Pr(vi,. .., 0p)) =
O (Prus(vi, ..., vm) = ¢ H(viPruspgy (v, ..., ) and the Corollary holds by
Corollary 5.21.

Lemma 5.23. Let o be defined in (3.6).

Pr(vr, ... vp), LE 1,

o(Pr(vy,...,0m)) =
Pr(vi, ..., vm) +P]\{1}(U1,...,Um>, 1el.

Proof: If 1 & I, then P;(vy,...,v,,) is an order 2 codeword and o (P;(vy,...,vy)) =
Pr(vi,...,vp). If 1 € I, then Pr(vy,...,v5) = v1Ppgay(vi, ..., vy) and, all nonzero
coordinates in ¢! (Ps(vy,...,v,)) are of order 4. That case, o(Pr(vy,...,v,)) =

Pr(vy, ..., vm) + (207 (Pr(vy, ..., vy))), and the lemma holds by Corollary 5.21.

Corollary 5.24. o(RM(r,m)) = RM(r,m).
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Proof: By Lemma 5.23, o(RM (r,m)) C RM(r,m). As RM(r,m) and o(RM (r,m))
has the same dimension, then o(RM (r,m)) = RM(r,m).

Given two generator vectors Pr, (vy,...,vy) and Pr(vy,...,vy,), we can consider
the two different binary operations + and  ( propelinear operation defined in (2.5)).
Any RM (r,m) code is a linear code and, therefore, closed with respect to the opera-
tion 4. To prove that a Reed-Muller code is a Z,-linear code, we would have to show

that the code is closed with respect to the operation *.

Proposition 5.25. Let I}, I, C {1,2,...,m} such that |I1|,|l2] <r and 1 € (I1NI).
Then,

Pr(vi, ... 0m) % Pr(v1,. .., 0p) =
Pr (v, ... vm) + Pr(v1,. .., 0m) +
Py (1. 0m).

Proof: Let I,1, C {1,2,...,m} such that |[1],|I5] <rand 1 € [;NI5. By equation
(2.5)

Pr(vi, ... 0m) % Pr(v1,. .., 0) =
¢<¢_1(P11 (2717 s aUTn)) + ¢_1(P12(UI’ cet >Um)))a
that can be written, by (3.8), as
¢(¢_1(P11 (Ulv S 7Um))) + ¢(¢_1(P[2(1)1, s >Um))) +
¢(2¢_1(P11 (v, .., 0m))d N (Pr (1, ..., Um))).
Thus, the equality is given if and only if
¢(2¢_1(P11 (v1,. .. ,Um))qb_l (P12 (vg,... ,vm)) =
Poopnay (V1,0 0,

that is true by Corollary 5.21.
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Lemma 5.26. Let C' be a binary linear code, a,b € C'. Therefore a xb € C if and
only if (26 a)o~ (b)) € C.

Proof: By (3.8) a+b=¢(¢7'(a) +¢ ' (b) +267'(a)o™" (b)) = ¢(¢ " (a) +67'(b)) +
6207 a)p™ (D)) = ax b+ ¢(2¢" (a)gp ' (b)). Therefore, a xb € C if and only if
) €

¢(2¢7 (a)p~ (b)) € C.

Proposition 5.27. Leta,b € RM(a,b). There exist indexes Iy, ..., I and Jy,. .., Jg,
\L] <7 and|Jg| <7, suchthata =" _ Pr(v1,...,0y) andb = Zj/:l Py (vi,. .., Um).
Hence, a xb € RM(r,m) if and only if for all pair i,j, where i € {1,...,s} and
Je{l,....s'}, Pp(ve, ..., 0m) x Py (ve,. .., 0) € RM(r,m).

Proof: In all of the proof, we will omit variables v; writing P; instead of Pj(v1, ..., v,).

If axb € RM(r,m) for all a,b € RM (r, m) then, in particular, P;xP; € RM(r,m)
forall I,J C{1,...,m}.

To prove the converse assume that for all pairs I,J C {1,...,m} with |I| <
r,|J| <r, PPy € RM(r,m). First of all, since Py Py = Pr+7p,(P;) € RM(r,m),
see (2.5) and P; € RM(r,m) then, np (P;) € RM(r,m). Hence, Py xb = P; +
(> 7, (Py,)) € RM(r,m) forany b= >, | P;, € RM(r,m). Since Pyxb = bxP; =
b+my(Pr) € RM(r,m), it follows by a similar argument that 7,(P;) € RM(r, m) and
thus bxa =axb € RM(r,m)

From the last proposition, to prove that x is closed it is enough to check the
operation x on the generator vectors. From Proposition 5.25, if there exist two subsets
I, I, C{1,...,m} such that 1 € (I N 1y), |I1|,|lo] <rand |([;UL)\ {1} > r, then
RM (r,m) is not a Zy-linear code. The following lemma shows for which values of r

this property is achieved.

Lemma 5.28. There exist two subsets Iy, I of {1,2,...,m} such that ||, |I5] <,
|ILNL|>1and |[[LUILy] >7r+1if and only if 3 <r <m —2.

Proof: In cases r <2 and r =m — 1, it is clear that |[; U | — 1 <r.
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Let us consider I} = {1,2,...,7}, L={1,m,....m—r+1}. |[LUL|=7r+ |{i|
i <m,i>mazx(r,m—r+1)}.

Im—r+1>r |LUL =r+(m—(m—-—r+1))=2r—1>r+1if and only if
r > 3. In the case r > m —r+ 1 then, |[LUL|=r+(m—-r—1)=m—-1>r+1if
and only if » < m — 2. Finally, when r = m — 2 and r > 3 then, |[, U I| =1 + 2.

Proposition 5.29. ¢~'(RM(r,m)) is not a quaternary code if and only if 3 < r <

m — 2.

Proof: For I} C {2,3,...,m}, |I| < r, Py(vi,...,0,) is an order 2 codeword.
Then, for any I, C {1,2,....,m}, P, (v1,...,0n)*x P, (vi, ..., 00) = P (vi, ..., 00)+
Pr(vy,...,v5) € RM(r,m).

Forall Iy, I, C {1,2,...,m}, with 1 € (I;N13), by Proposition 5.25, Py, (vy, ..., vp)*
Pr(v1,...,vy) € RM(r,m) if and only if Pupyqy(ve, ..., vn) € RM(r,m); that is,
|(I;Uly)\ {1} <r, but by Lemma 5.28, it is not true in general when 3 < r < m—2.
1

For the cases r < 2 and r > m — 1, RM(r,m) it was known to be a Z,-linear
code. We have seen that, in the rest of the cases, there are several vectors missing;
the ones given by P,upy\y(v1,...,vy) in Proposition 5.29. Such vectors, indeed,

should belong to any Z4-linear code containing RM (r,m).

Theorem 5.30. Let C be the minimum quaternary code such that RM (r,m) C ¢(C).
Then, for 3 <r <m—2, C = ¢(C) = {RM(r,m) U (U, jr<i1gr Pr(vi, .- vm))},

and |C| = 2%, where
— (m—1 N /m—1
k:
(") %0

for t = min{m — 1,2r — 2}.

Proof: Let r,m be integers such that 3 < r < m — 2. By Proposition 5.25 and, as a

corollary of Proposition 5.29, C' is a Zy-linear code containing RM (r,m) if and only
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if for all Py (v1,...,vm), Pr(vi,...,vn) € RM(r,m), Pruppgay(vis... vm) € C,
where |([; U L) \ {1} < min{m — 1,2r — 2}. Therefore, the minimum Z,-linear
code is the one containing RM(r,m) and all vectors Pyupnpay(vis--.,0m) € C,
where |([; U L) \ {1}| <t, where t = min{m — 1,2r — 2}; that is, C = {RM(r,m) U
(Ur<isj<tagr Pr(vis .. s 0))}. Finally, |C| = 2%, where k = dim(RM (r,m))+|{I | r <
<t =30 () + X () As T (1) = XZi= 01 (") + 0, ("))
then, k=3 i=0""("") +>i=0(""). u

Note that last theorem gives the minimum quaternary code such that ¢(C) con-
tains RM (r,m), where ¢ is the Gray map defined in (3.4), that is not the minimum
Z4-linear code containing RM (r,m). There may exist a quaternary code C’' with
dimension less than C and a coordinate permutation 7 such that 7o ¢(C’) contains
RM((r,m) (or, equivalently, a different extended Gray map ¢’ = 7o ¢). Nevertheless,

with the last proposition we can assure the following statement.

Corollary 5.31. Let C be the minimum Zy-linear code containing RM (r,m). Then,
— (m—1 L (m—1
dim(C) <
o= (") %)

where t = min{m — 1,2r — 2}.

Proof: The minimum Z4-linear code containing a linear code is both, Z,-linear
and linear (see Lemma 7.11). Then, if C' be the minimum Z,-linear code containing
RM (r,m), C'is a linear code and the upper bound of its dimension is obtained from

Theorem 5.30. 1
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Chapter 6

QRM codes

In this chapter, we will study a special case of quaternary codes related with Reed-
Muller codes; ORM codes. In this case, however, the map relating both classes
of codes is not the Gray map but a (modulo 2) map. The original construction of
such codes ([HKC194]) is given in Section 6.1. After that, in Section 6.2 we will
generalize these codes; we will construct the class of QRM codes (m) We will
calculate the dimension of the kernel and rank of this class in Subsections 6.2.1 and
6.2.2 respectively. Finally, chains of codes in OQRM will be studied in Subsection
6.2.3.

6.1 Definitions and properties

QRM(r,m) codes were defined in [HKC*94] to be quaternary Reed-Muller codes of
length 2™, QRM(r,m) C Z¥". The main property of these codes is the fact that
their image, under the aw map is RM (r,m).

Let R = Z4[¢] be the Galois ring GR(4™) where & is a basic primitive root of
unity, so that £ = 1, n = 2™ — 1. Let us consider T the relative trace defined in

(3.10).
Definition 6.1.1. Let QRM (0, m) be the quaternary repetition code of lengthn = 2™

99



100 CHAPTER 6. QRM CODES

and for 1 < r < m let QRM(r,m) be generated by QRM(0,m) together with all
vectors of the form
(07 T()‘j)> T()‘jfj)a T()\j§2j), R ,T()\jf(n_l)j))

where 7 ranges over all representatives of cyclotomic cosets mod 2™ — 1 for which
wt(j) < r, and \; ranges over GR(4). Then, QRM(r,m) is a quaternary code of
length n = 2™ and type 4%, where

e () () ()

If m > 3, m odd QRM(1,m) is a quaternary Kerdock code ([HKC*94]). In
(3.11) we obtain a generator matrix of a such code and, therefore, a generator matrix
of QRM(1,m). We can obtain a construction of a general QRM (r, m) starting from

a similar matrix (see [Wan97]). Let us consider the ((m + 1) x 2™) matrix:

1 1 1 - 1 1
bioo b11 b1z - bins U1
1111 --- 1
9 1 = baoo  ba1 oo - bopg = U2 >
01 ¢ & - & .
bmoo bml bm2 e bmn—l Um,
where & is replaced in the second matrix by the m-tuple (b ,...,by;) € Z* given

by & = by + by + -+ + by ™. Then, the quaternary r-th order Reed-Muller
OQRM(r,m), 0 < r < m, of length 2™ is the code generated by the 2™-tuples of the
form

1,u1, ..oy Uy, U, UTU3, - .« .y Upy— 1V, - - - (Up to degree 7).
Example 6.1.1. Let £ be a root of h(X) = X3 +2X%+ X +1. The generator matriz
of QRM(r,m), obtained from & as in Section 3.5, is

1 1

1
0
0
1

[ N S S G

11 11
10 1 2
01 3 3
0 0 2 3

o o O

3
3
1
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Let us define Pr(us,...,umn) = [[;c; wi, where [] is the componentwise product,

I C{l,...,m}and Pr=1if |I| =0. Then,

QRM(r,m) = <{PI(U1, e aum)}\l\ﬁr>4

Both definitions of QRM (r, m) (Definition 6.1.1 and the last one) are equivalent
(see [Wan97)).

Basic properties of QRM codes are grouped together in the next lemma.

Lemma 6.1 ([HKC"94]). Letr, m be integers such that 0 < r < m. Let QRM((r,m)
be a quaternary Reed-Muller code of length 2.

(i) QRM(r,m) is of type 4%, where k =1+ (7) + () +--- + (7).
(i) QRM(r,m) C QRM(r +1,m), ¥r < m.
(iii) QRM(r,m)* = QRM(m —r —1,m), Vr < m.
(iv) a(QRM(r,m)) = RM(r,m).

As in the case of Reed-Muller codes, we can construct a chain or sequence of
ORM codes that includes some well-known codes. Such codes are listed below and
the proof can be found in [HKC*94] and [Wan97|. Figure 6.1 shows the sequence of
ORM codes.

o ORM(0,m) is a repetition code.
o ORM(1,m) is the code K defined in Theorem 3.5.
o ORM(m —2,m) is the code P defined in Theorem 3.6.
e ORM(m,m)=72".
Corollary 6.2. Let m > 3 odd. Then,

(i) (QRM(1,m)) = Ky,
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QRM(0,m) C QRM(1,m) =K C QRM(2,m) C ---
Repet.

o COQRM(m —3,m) C QRM(m —2,m) =P C

C QRM(m —1,m) C QRM(m,m)
72"

Figure 6.1: Sequence of QRM codes

(i1) $(QRM(m —2,m)) = Ppi1.

Let ¢ : Z2" — Z¥""" be a general Gray map. We define QRM (r,m) =
H(QRM(r,m)) a binary Z,-linear code of length 2% and the application:

m—+1 m
Uz — 73

grouped by ¥(z) = ao ¢~ !(z) (Image 6.2). That way W(QRM (r,m)) = RM(r,m).
O
) Q

Zj

Figure 6.2: Psi map

Lemma 6.3. ¥ = oo ¢! is a homomorphism between Z3* and Z5.
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Proof: Let us consider ¢(z), ¢(y) € Z3*. By [BPRO3], ¢(z) + ¢(y) = ¢d(x +y +2zy).
Therefore, U(¢p(z) + ¢(y)) = Y(d(z +y + 22y)) = a(r +y + 2ry) = az) + a(y) =
W(p(x)) + ¥(e(y)). o

6.2 Class QRM(r,m) of codes

Even though the best-known Zj-linear Kerdock and Preparata codes are the ones
given in [HKCT94], there are many other nonequivalent Z4-linear Kerdock and Preparata
codes, called Kerdock-like and Preparata-like, all of which seem to have a common
set of basic properties ([SZZT71],[SZZ72|, [SZZ73], [CCS97],[Kan83]). Hence, it is rea-
sonable to define a class of quaternary Reed-Muller codes which includes all these

nonequivalent codes as well as others.

Definition 6.2.1. Let r,m be integers such that 0 < r < m. Let us define QRM (r,m)
a class of quaternary Reed-Muller codes where C € QRM(r,m) if and only if:

(i) The quaternary length of the code C is 2™.

(ii) C is of type 4%, where
b= () ()4 ()

(iii) o(C) = RM(r,m).

We also define the related binary class

QRM(r,m) ={C =¢(C) | C € QRM(r,m)}.
Properties (7)-(i1i) in the definition of the quaternary Reed-Muller codes class,
were given in Lemma 6.1 to the particular quaternary code QRM(r, m). Thus, the

quaternary code defined in [HKC*94] belongs to the QRM(r,m) class but other

codes belong to this class as well.
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Let {Pr(vi,...,vn)||I| < r} be the generator vectors of RM(r,m) defined in
(5.4). Define the Z4-code

SRM(r,m) = ({Pi(vr, ..., vm) | 11| <7}, (6.1)

By construction, length SRM(r,m) is 2™ and SRM (r,m) is of type 4%, where
k=[{Pr(vr,...,vm) ||| <7} =i, ("), by Lemma 3.1. Moreover, a(SRM (r, m))
RM (r,m) and, therefore, SRM (r,m) € QRM (r,m).

The minimum distance of SRM (r, m) code coincides with the minimum distance
of RM(r,m); that is, has value 2™~". Thus, SRM (m — 2, m) has minimum distance
4 whereas QRM (m — 2, m) has minimum distance 6 and, hence, they are different
codes in QRM(r,m). Note that if C € QRM(r,m), then the minimum distance of
C is greater or equal to 2™~ " due to the fact that «(C) = RM(r,m). As a result,
SRM(r,m) codes has the lowest minimum distance of codes in QRM(r, m).

In order to give more examples of codes in QRM(r, m) apart from QRM (r,m)
codes, the Doubling construction will be used. As with Reed-Muller codes, the Dou-
bling construction applied to these codes gives another code in this class; something

which is not generally true of the particular codes QRM (r, m).

Proposition 6.4. Let C € QRM(r + 1,m) and D € QRM(r,m). Then, the code
C* defined as {(u,u+v) |u € C,v € D} belongs to the class QRM(r +1,m +1).

Proof: By construction, the length of C* is 2™, Let (u,u + v) be a codeword in
C*, where u € C and v € D. a(u,u+v) = (a(u),a(u+v)) = (a(u), a(u) + a(v)) €
RM(r+1,m+1). Therefore, a(C*) = RM(r+1,m+1). We only have to check that
C* is of type 4% where k = Z::& (mjl) Recall that C* is of type 4F if and only if
|C*| = 4% and the number of order 2 codewords in C* is 2F. AsC € QRM(r+1,m) and
D € QRM(r,m), C is of type 4, where ky = S (™), and D is of type 4*2, where
ko =>"71_o (). Moreover, the number of order 2 codewords is 2** in C and 2" in D.

Note that |C*| = |C||D| = 4%, where k = ki +k, = >170 (T)+30_ (7) = ik (M) +

S () = (S [+ ()] = () S () = S (7). Finaly,
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order 2 codewords in C* are those (u, u+v) where both, u and v, are order 2 codewords
in C and D respectively. Therefore, the number of order 2 codewords in C* is 2172 =
2k,

Finally, we can define codes in QRM(r,m) class in terms of generator matrices.

If G is a quaternary matrix, with row vectors z1, xs, . .., zx then, a(G), is defined
as
a(xy)
ax
o(@) = | *
a(xy)

Lemma 6.5. Let C € QRM(r,m) and let G be its generator matriz. Then, a(G) is

a generator matriz of RM (r,m).

Proof: Let k = |, (";) and xq,xs,...,rr be the row vectors of G. For any
y € RM(r,m), there exist z € QRM(r, m) such that a(z) = y. = can be expressed as
T = a1x1+asTo+- - -+agry, where ay, . . ., ax € Zy4. Hence, y = a(x) = alaixi+aszs+
cetaprg) = ofar) o) Falag)a(xe)+- -+ alag)alxy), where a(ay), . .., alar) € Zsy

and a(zy),...,a(x) are row vectors of a(G).

Proposition 6.6. Let C be a quaternary code of length 2™. C belongs to the class
OQRM(r,m) if and only if there exist a binary (3., (T) X 2™) matriz, N, such that
the generator matriz of C is

G = G(r,m) + 2N,
where G(r,m) is the generator matriz of RM (r,m) defined in (5.7).
Proof: Let N be a binary (3°;_, (") x 2™) matrix, G(r, m) the generator matrix of

RM(r,m), and C the quaternary code generated by the matrix G = G(r,m) + 2N.

By construction, length C = 2™ and «(C) = RM (r, m). Moreover any row vectors in
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G is an order 4 vector. Then, C is a quaternary code of type 4%, where k = >/ _, (T),
and hence, C € QRM(r,m).

Let C € QRM(r,m) and G a generator matrix of C with row vectors z1,. .., 7y,
where k=37 (7). G can by written as a(G) + 2N, where
1 — a(zy)
N — o — a(x2)
x — a(xy)

Let G(r,m) be the generator matrix of RM(r,m) defined in (5.7). As a(G) is a
generator matrix of RM (r,m) by Lemma 6.5 then, after a linear row combination of
a(G) + 2N, we obtain G(r,m) + 2N’ that is a generator matrix of C.

I

Define the set of matrices that are generator matrices of codes in QRM(r, m)

T

GQ(r,m) ={G(r,m) + 2N|N is a binary (Z (T) x 2™) matrix }. (6.2)

i=0

Note that, if N = (0), the code generated by G(r,m) € GQ(r,m) is the code
SRM(r,m) defined in (6.1).

Proposition 6.4 can be established in terms of generator matrices as it was done

in (5.7) of Theorem 5.1.
Proposition 6.7. Let My, My € GQ(r + 1,m) and My € GQ(r,m). The matriz

M, M
M= T (6.3)
2N; M,

where N is a binary (3;_o () x 2™) matriz, belongs to GQ(r + 1,m + 1).

Proof: If My, M, € GQ(r+1,m) and My € GQ(r, m) and Ny is a binary (3>°7_, () x
2™), then by (6.3)
M, M, G(r+1,m) G(r+1,m) N 2N; 2N,

M p— s
2N3 M4 0 G(’I", m) 2N3 2N4
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where Ny, N, and Ny are binary matrices. Dimension of N; and Ns is (Z’;& (™) x2m)

and dimension of Ny is (3_/_, () x 2™). Note that if N is defined as

i

Ny N,
N3 Ny

N =

then, the dimension of N is (3207 (") +3 00—, (7)) x (2™ +2™)) that is, (30, (") x
2ty and M =G(r+1,m+1)+2N € GQ(r + 1,m+1).

When N3 = (0), the construction is exactly the Doubling construction of Propo-
sition 6.4.

We will study some general properties of the class QRM (r,m). In particular, is
it possible to generalize the rest of the properties of Lemma 6.1 to this class of codes?

When the parameters of codes RM, OQRM, ORM, ... are omitted, they are exactly

r and m.

Lemma 6.8. Let us consider RM as a subset in Z3 and C € QRM. Then, 2C =
2RM.

Proof: Let C € QRM and x € C. By the properties of QRM class, a(x) € RM
and 2z = 2a(x). Hence, 2C = 2a(C) = 2RM. 1

Corollary 6.9. Let C,D € QRM. Then, 2C = 2D.

In particular, OQRM € QRM and, therefore, for any code C € QRM, we obtain
2C = 2QRM. That way, we will denote 2QRM to refer any 2C such that C € QRM.

Lemma 6.10. Let C € QRM. Then, Ciq = ¢(2QRM).

Proof: Let C = ¢ 1(C) € QRM. Clearly, ¢(2ORM) = ¢(2C) C Crq. Now, we will
prove that if x € C' such that 7, = Id, then z € ¢(2C).
Codes in QR M are quaternary codes of type 4*; that is, are permutation-equivalents

to a code with generator matrix of the form

Gz([dk A),
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where A is a Z,-matrix (Chapter 3). Notice that all codewords in the generator matrix
have order 4 and, hence, if z € C of order 2 then, there exist y € C such that 2y = z.
Therefore, all codewords of order 2 in C, that is ¢~(Cpq), are in 2C = 2QRM. 1

We will write Q RM 4 instead of Cp4 for any code C € QRM, (C1g = QRMy, QRM €
QRM). In fact, QRMq = $(2QRM).

Lemma 6.11. Let C € QRM and let x,y € C. Then, ¥(x) = V(y) if and only if
Ty = Ty.

Proof: If U(z) = ¥(y), then there exist z € C of order 2, such that ¢~'(z) =
z+ ¢ '(y). Therefore, my,y = Id and x = ¢(z) xy. As (C,*) is a propelinear code
([PRI7D]), then m, = 7y o Ty = Id oy = .

Conversely, if m, = m, then, © = y + 2z, where ¢ '(z) is an order 2 codeword and

U(z) ="(y) + V(z) =V(y).
Lemma 6.12. Let C € QRM. Then, C/2QRM = RM.
Proof: Let us consider the map

a:(C,+) — (RM,+).

Clearly, av is a homomorphism. By the first isomorphism theorem, C/ker(a) = Im(«).
Now, ker(a) = {x € C | 2z = 0} = 20RM and, by definition of QORM, Im(«a) =
RM.

Lemma 6.13. Let C € QRM. Then, C/QRM;4s = RM.

Proof: Let us consider the map
U (Cyx) — (RM, +).

Let 2,y € C. U(rxy) = a0 (zxy) = a0 (d(¢7(z) + ¢7'(y))) =
a(p™(z)) +a(d (y)) = ¥(x)+ ¥(y) and ¥ is a homomorphism. ker(¥) = {x € C |
2(¢p7H(x)) =0} = p({z € C | 22 = 0}) = ¢(2QRM) = QRM 4 and the lemma holds

using the same argument as in Lemma 6.12. 1
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As a corollary of the last lemma, for any code C' € QRM , we obtain |C|/|QRM 4| =
|RM| and, consequently, |[QRM ;4| = 4%/2F = 2 where k = >"_ (). Therefore,

i

"~ (m
di RM;,) = . 6.4
im@mi) =3 () (6.4
Moreover, (Q RM 4 not only has the same dimension that RM but also there exist

an isomorphism between them.
Lemma 6.14. (QRM[d, *) = (RM, +)

Proof: From Corollary 6.8, 2O0RM = 2RM and, by Lemma 6.10, QRM;4 =
®(2QRM). Let define the map ¢ : RM — 2QRM4 by p(z) = ¢(22). ¢ is a
homomorphism due to the fact that ¢(2z) and ¢(2y) are order 2 codewords and then,
ez +y) = d(2x + 2y) = ¢(22) + ¢(2y) = ¢(22) * #(2y) = ¢(x) * p(y). As QRMq
and RM have the same dimension, ¢ is an isomorphism. 1

Image 6.3 shows the relationship between cosets obtained from Lemmas 6.12 and

6.13 and codewords in a Reed-Muller code.

The following propositions give a generalization of properties (iz) and (éiz) of
Lemma 6.1. That way, starting from the properties given in the definition of QRM,
we will prove that codes in such a class fulfill all properties of the initial ORM code.

Lemma 6.15. Let x,y € Z}. Then, a(z -y) = a(x) - a(y).

Proof: a(xy) = a( Yoo xiy; (mod 4)) =3, (a(xiyi)) (mod 2) =37 (a(xi)a(yi))
(mod 2) = a(z) - a(y).

Proposition 6.16. Let C € QRM(r,m), r < m. Then, Ct € QRM(m —r —1,m).

Proof: Let C € QRM(r,m). It is clear that the length of C* is 2™. The number
of codewords is 4" = 42"~% where k = Y7 (7). Then, k' = 2™ — 37 (7) =

S (m) = Z;’;B’”_l (m) We have to check that a(Ct) = RM(m —r — 1,m) =

i=r+1 \ j 7

RM (r,m)*. By definition of C, RM(r,m)* = «a(C)* and, for all z in RM(r,m),
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Ce QRM(r,m) CeQRM(r,m) RM(r,m)

20RM |_?_| ORrRM;; | ¥ o0

20RM +z _¢> QRMrq+ ¢(z) — a(z)

Y

Figure 6.3: Cosets of Reed-Muller and quaternary Reed-Muller codes

there exist 2’ € C such that a(z’) = z. Let y € Ct, then, using Lemma 6.15,
ay) -z =a(y) a(@) =a(y-2') =a(0)=0.

Image 6.4 shows the applications involved in the relationship of codes in classes
QRM and ORM, Reed-Muller codes and their duals.

Code QRM(r,m) € QRM(r, m) not only has the property that QRM>(r,m) €
ORM(m —r —1,m), but also QRM™*(r,m) = QRM(m — r — 1,m). That is, the
chain of codes QRM (r,m) in QRM(r,m), r =0, ..., m, contains both QRM (7, m)
and QRM™*(r, m) codes.

This fact is not true in general. Let us consider codes SRM(r,m) € QRM(r,m)
defined in (6.1). By construction, SRM(r,m) C SRM(r+1,m) for 0 <r <m —1,

forming a chain of codes in QRM (r,m). However, for a given code SRM (r,m), its
dual code does not belong to the chain. As SRM™*(r,m) € QRM(m —r —1,m) (by
Proposition 6.16) and SRM(m —r —1,m) € QRM(m —r — 1,m) we only have to
check that SRM™(r,m) # SRM(m —r —1,m).
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C € QRM(r,m) ¢1 »> (C € QRM(r,m)
(r,m)

1 1

M(m—=r—1,m)

Y/ 2

Ct € QRM(m —r—lm?lCleQR (m—r—1,m)

¢

Figure 6.4: Applications between Reed-Muller codes and related codes.
Lemma 6.17. SRM(r,m)* # SRM(m —r —1,m).

Proof: Let Pr(vy,...,0y) € SRM(r,m) and P;(vy,...,v,) € SRM(m—1r—1,m)
(see (6.1)).
Note that

< Pr(vi,. .., vm), Pr(vr, ... om) >4=
wr(Pr(vy,...,vm) - Pr(vi, ... 0)) =

Wt(P([UJ)(’Ul, e ,Um>> =
2m—‘IUJ|‘

Ifl={mm-1,....m—r+1}and J ={1,2,...,m—r—1} then, [IUJ|=m—1
and < Pr(vy,...,0m), Pr(vi, ..., 0m) >4= 2 # 0. Thus, SRM(r,m)*+ # SRM(m —
r—1,m).

Nevertheless, for all Pi(vy,...,v,) € SRM(r,m) and P;(vy,...,v,) with |J| <
m —r — 2 we can assure that |[I U .J| < m — 2 and their inner product, 21/l is
0 modulo 4. Hence, even though SRM(m —r — 1,m) # SRM=*(r,m), the code
SRM(m —r —2,m) C SRM=*(r,m).
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Proposition 6.18. Let C € QRM(r,m), with 1 < r < m. There exist D €
QRM(r —1,m) such that D C C.

Proof: Let C € QRM(r,m). By Lemma 6.12 we can write C as the union of
cosets, C = 2QRM(r,m) U (2QRM(r,m) + z1) U (2ORM(r,m) + x3) U- - - , where
y € 2QRM(r,m) + z; if and only if a(y) = a(z;).

We define 2D as 2QRM(r — 1,m) = 2RM(r — 1,m) (Corollary 6.8). Clearly,
2D C 2C. For every coset 2QRM (r,m) + z; such that o(z;) € RM(r — 1,m) C
RM (r,m) we get the coset 2Q0RM(r — 1, m) + x; of D.

By construction, D C C, the length of D is 2™ and «(D) = RM(r — 1,m). The
number of codewords is [2QRM (r — 1,m)| - [{z; such that a(z;) € RM(r — 1, m)}|;
that is, 2% - 2 = 4% where k' = 327"} (™). Therefore, D € QRM(r —1,m).

As we have seen in the last proposition, we can construct a chain of codes in
OQRM codes. Nevertheless, this chain is not unique; given a code C € QRM(r, m),
there may exist Dy, Dy € QRM(r — 1,m), such that D; # D, and Dy, Dy C C.
This is due to the fact that, for a given coset 2QRM(r,m) + x; and taking y; in
this coset, we obtain 2QRM(r,m) + z; = 2QRM(r,m) + y; but not necessarily
20RM(r — 1,m) + z; = 2QRM(r — 1,m) + y;. We also can construct a chain of
ORM codes in terms of their generator matrices.

Let C C QRM(r,m), and M € GQ(r,m) its generator matrix. By definition (see
(6.2)), M = G(r,m) + 2N for some binary (}_;_, (") x 2m) matrix, N. If r > 1,

7

consider the matrix N_; formed by the first Z::_& (T) row vectors of N. Hence,
M_ 1 =G(r—1,m)+2N_; € GQ(r —1,m). (6.5)

Moreover, if r < m, for any binary (<rT1) X 2m) matrix, N 1, we obtain

M =G(r+1,m)+ N € GQ(r+1,m). (6.6)

Niy

Let C_; € QRM(r —1,m) and C;1 € QRM(r + 1,m) be the codes generated by
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M_y and M, respectively. Then,
C_1 cCcC C—i—l'

Note that, with this construction, code C.; may not be unique, it depends on the

choice of matrix N,

6.2.1 Kernel of codes in QRM (r,m)

Lemma 6.19. Let C € QRM, and let x € ker(C), y € C such that ¥(z) = ¥(y).
Then, y € ker(C).

Proof: There exist 0y,---,0; € Som such that ker(C) = CrqUCy U---UC,,. If
x € ker(C), then C,, C ker(C). Hence, by Lemma 6.11, if U(x) = U(y), y € Cr, C
ker(C).

Let C € QRM. We define the coset u = 2+29QRM € C, where a(z) =1 € RM.
Notice that for all u € u, a(u) =1 € RM, 2u is the all two’s vector and m, = o.

Lemma 6.20. Let C € QRM. Then, Cy C ker(C).

Proof: Let C € QRM and u € u. For any y € C, where y = ¢(z), x € C,
o(u) +y = o(u) + ¢(x) = ¢p(u + x + 2ux) € C by (3.8) and, hence, ¢(u) € ker(C).
Finally, using Lemmas 6.11 and 6.19, C, = C. C ker(C).

T (u)

Lemma 6.21. Let C € QRM, where 1 < r < m — 1, then for all pair of coordinate
positions i,j € {1,...,2™}, there exists x € C with exactly 2™~ " odd coordinates and

such that x has odd coordinates in positions © and j.

Proof: For 1 < r < m — 2, RM(r,m) is invariant under the group of all affine
transformation of the 2™-dimensional binary space which is triply transitive (see
[IMS77]). As a consequence, the nonzero codewords of any weight in RM form a
3-design, and hence a 2-design as well. For r = m — 1, RM contains all weight two

vectors. Then the claim follows taking into account that «(C) = RM. 1
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Proposition 6.22. Let C € QRM. For0<r <m—1, ker(C) = QRM;q4U C,.

Proof: Clearly, Cq C ker(C') and therefore, by Lemma 6.20, C1q U C, C ker(C).

If r =0, then C' ={0,1, ¢(u), p(—u)}, where ¢(u) € C,, therefore ker(C) = C =
CrqUCy.

If 1 <r < m—1, assume that there is some other codeword v € ker(C'), such
that v ¢ Crq U C,. Note that v € ker(C) if and only if 7, € Aut(C) [BPRZ03|.

For any # € C = ¢~ 1(C), note that ¢ 'm,¢(z) € C would be a codeword like
x with some coordinates, but not all, with a sign change. Let 7 be one of these
coordinate positions and let j be a coordinate position without sign change. By
Lemma 6.21 we can assume that x has exactly 2™~ odd coordinates and x has odd
coordinates in positions i and j. Now, let z = z + ¢ 'm,¢(z) € C. If ¢(z) has
weight w, it is clear that 0 < w < 2™ But z is an order two codeword, thus
d(2) € Crg = p(2QRM). But also Crqg = ¢(2RM), hence Cry has minimum weight

2m="+1 and we get a contradiction.

Corollary 6.23. For0<r<m—1, if C € QRM, then

dim(ker(C)) = Z (T) +1,

=0

and dim(ker(C)) = 2™ for r = m.

Proof: For r < m — 1, we obtain the result from Proposition 6.22 and (6.4), using
C, = {Cra+¢(u)}, for all C € QRM, u € u. And for r = m we have that C = ZJ".

Let P and K be the quaternary Preparata-like and Kerdock codes defined in
[HKC*94]. In that article, it is proved that P = QRM(2m — 3,2m — 1) and K =
QRM(1,2m—1) and, therefore P € QRM(2m —3,2m —1) and K € QRM(1,2m —
1). Moreover, we obtain ¢(P) € QRM (2m—3,2m—1) and ¢(K) € QRM (1,2m —1).
Next Lemma shows that this result is true for any Preparata-like and Kerdock-like

code.
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Lemma 6.24. Let Py, be a Z4-linear Preparata-like code and Ko, a Zy-linear Kerdock-
like code of length n+1 = 2°™. Py, € QRM (2m—3,2m—1) and K»,, € QRM (1,2m—
1).

Proof: K,,, has the same parameters as the Zj-linear Kerdock code defined in
[HKC*94] and, therefore, Ks,,, € QRM (1,2m—1) if and only if ¥(Ky,,) = RM(1,2m—
1). By [BPRZ03|,

ker(Kap) = RM(1,2m) = (¢(RM(0,2m — 1)), ¢(2RM (1,2m — 1))).

As ¢(2RM(1,2m — 1)) C Ko, and ¢ (Ks,) is a quaternary code of type 42™~!
then, RM(1,2m — 1) C ¢~ (Ks,,). Hence, RM(1,2m — 1) = o(RM(1,2m — 1) C
U(Ky,,). Finally, as [RM(1,2m—1)] = 22! and |¢ ! Ky, )| = 42 it follows that
RM(1,2m — 1) = VU(Ks,,). If Py, is a Z4-linear Preparata-like, then P, = (Ka,,) .1
where K, € QRM(1,2m—1). Then, by Proposition 6.16 Py, € QRM (2m—3,2m —
1). n

As a corollary, ¢~ H(Py,) € ORM(2m—3,2m—1) and ¢~ 1(Ks,,) € QRM(1,2m—
1).

From [BPRZ03], ker(Ky,,) = RM(1,2m) and, therefore, dim(ker(Kay,)) = 2m +
1. Moreover, dim(ker(Pyy,)), dim(Pry(2m)) and dim((Ksm)ra) can also be found
in such article. Nevertheless, the following proposition will present all these results

considering such codes as particular cases of codes in the QRM class.

Proposition 6.25. Let Py, be a Z4-linear Preparata-like code and K, a Z4-linear

Kerdock-like code of length n+ 1 = 22™. Then
(i) dim((Pom)1a) = 2™ 1 — 2m, and dim(ker(Pay,)) = 221 —2m + 1,
(ii) dim((Kam)ra) = 2m, and dim(ker(Ksy,)) =2m + 1.

Proof: P, € QRM(2m — 3,2m — 1) and Ks,, € QRM(1,2m — 1). Using (6.4)
dim((Pom)1a) = Yoo ® (*"=1) = 221 —2m and dim((Kan)1a) = S, (*™=1) = 2m.

3 K3

In both cases, the dimension of the kernel follows directly from Proposition 6.22.
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6.2.2 Rank of codes in QRM(r, m)

Let C be a quaternary code. Let C be defined as the span of the subset containing
2xy for all z,y € C;
C=2xy|z,yecl), (6.7)

Proposition 6.26. Let C be a quaternary code, C = ¢(C) and C defined in (6.7).
Then, <C'> = gb(C + @

Proof: gzﬁ(C’ + C7) is a Zy-linear code, and, moreover, for all pair of elements z,y €
C+C, 2zy € C+ C. Hence, by Theorem 3.4, ¢(C + C_) is a linear code. Clearly,
C C gb(C + C_) and, then, we obtain <C> C gb(C +C_).

Let z,y € C. Using (3.8) we obtain ¢(2zy) = ¢(z)+¢(y)+¢(z+y) € (C). For any
2 € C, z can be expressed as z = 22191 +2Toys+- - -+22,yi, where k > 0 and z;, y; € C,
i€{l,...,k}. Image under the Gray map of z is ¢(2) = @(2z111) + - - - + d(2xxyx) €
<C’> and, then, ¢(C) C <C’> Finally, if € C + C then, x = ¢ + 2z where ¢ € C and
z € Cand ¢(z) = ¢(c) + ¢(2) € (C). 1
Lemma 6.27. Let C € QRM, C defined in (6.7). Then, |C| = 2%, where k =
S o (), t=min{2r,m}.

Proof: C can be defined as (2a(z)a(y) | x,y € C), that is isomorphic to (a(z)a(y) |
z,y € C) where a(z), a(y) € RM. Considering the basis of RM and being k such
that |C| = 2¥, we obtain

k={Pr(vi,...,0m)Ps(vy,...;0o)|L,J C{L,...,m}, |I],|J|<r}|=
= H{Puup(vi,...,vm) | I,J C {1,...,m},|I],|J| < r}| by Lemma 5.3. Hence,
k={IuJ|L,JC{l,....om}|I,|J| <r}=KI]IC{1,...,m},|I| <t} where
t = min{2r,m} and this value is exactly 3°;_, (7).

Lemma 6.28. Let C be a quaternary code and C defined in (6.7). Then,

clic|
Icnc|

IC+C|=
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Proof: By the second isomorphism theorem, C/(CNC) = (C + C)/C and, therefore,

lc|  _ lc+C
lcnel — el
1

Proposition 6.29. Let C € QRM. Then,
T t
m m
k =
rank(C') ZE:()(Z,)-F O(Z,),

where t = min{2r, m}.

Proof: Let C € QRM, C = ¢(C) and C defined in (6.7). By Proposition 6.26,
(C) =¢(C+C). Clearly, rank(C) = dim(C) and [(C)| = [¢(C +C)| = |C +C|.

It is easy to check that CNC = 2QRM and then, |C|/|C+C| = |C/2QRM| = |RM|
using Lemma 6.12. That way, |C + C| = |RM]||C| applying Lemma 6.28 that is
equal to 2M2k2 = 2k1%k2 where ky = dim(RM) = Yi_ (7) and ko = S;_ (),
where t = min{2r,m} by Lemma 6.27. Finally, rank(C) = dim{(C) = ki + ky =
Yino (1) + Xieo (7)-

I

As in the case of the kernel of quaternary Kerdock-like and Preparata-like codes,

the results of their ranks can be found in [BPRZ03]. These results are obtained as a

corollary of the last theorem.

Corollary 6.30. Let P»,, be a Z4-linear Preparata-like code and Ko, a Zs-linear
Kerdock-like code of length n +1 = 22™. Then

(i) rank(Pay,) = 22™ — 2m,
(ii) rank(Ksy,) = 2m? + m + 1.

Proof: P, € QRM(2m — 3,2m — 1), therefore rank(Pyy,) = S.7° (™1 +

=0 i
S () = 2 () () 42 = 9o

Similarly, Ko, € QRM(1,2m — 1) and rank(Kan)= Y1, ")+

=0 7

32 (=20 ) + 207 + () = 2mt L

7
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We present a table with all properties of the Preparata-like, P,,, and Kerdock-like,

K,,, codes:

C K, Py
length 2m 2m

d gm=1 — g(m=2)/2 6

le] 92m 92m—2m
dim(C1q) m 2m=1 _m

dim(ker(C)) m+1 2m=t —m 41

rank(C) (m*+m)/2+1 2™ —m
pH(C)in | QRM(1,m —1) | QRM(m — 3, m — 1)

6.2.3 Chain of codes in QRM(r,m)

A chain of codes Cy CC; C --- C Cp,—1 is denoted (Co,Cy, ..., Cr1).
We define the set of chain of codes where all codes in the chain belongs to the

QRM(r,m) class.

[ ={(Cy,Ci,...,Cn1) | Co € QRM(r,m),r =0,...,m — 1} (6.8)

Due to the fact that if C C D, then D+ C Ct, we can consider the dual of a chain.

Definition 6.2.2. The dual of a chain of codes (Cy,Cy,...,Cpn_1) 1S
(Co,Cry .., Cop)E = (CE_,C= ... CF). (6.9)

If (Co,C1, ..., Cope1)t = (Co,Cy, ..., Cont), then it is called a self-dual chain of codes.
Lemma 6.31. IfT €T then, I'* €T.

Proof: Let I' € T; that is, I' = (Cy,Ci,...,Cm-1), where C; € QRM(i,m). As
I+ =(Ckt ,,Ct ,,....Ci), we only have to check that C;- € QRM(m —i—1,m) for

m—15%~m—2>

all 0 <+ < m — 1, but this is true due to Proposition 6.16.
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Two different chains of codes can be found in last section. The class QRM (r, m)
was introduced in order to generalize the well-known QRM (r, m) codes. From Lemma

6.1, such codes can be arranged to form a chain of codes (see Image 6.1). Denote
Torm = (QRM(0,m), QRM(1,m),..., QRM(m — 1,m)). (6.10)

Therefore, [graq € I
A chain of codes can also be constructed with SRM((r, m) codes defined in (6.1).
It will be denote

Again, note that I'sga € T

By Lemma 6.1, the dual code of QRM(r,m) is QRM(r,m)* = QRM(m —
r — 1,m) that also belongs to the chain. Therefore, FéRM =T'orm and I'grag 1s &
self-dual chain.

This property of I'ograq is not a general property. Even though given a code
C € QRM(r,m), its dual code belongs to QRM (m — r — 1,m), there may exist a
chain I' € T containing C that do not contains C*. This is the case, for example of
Lsrm.

Lemma 6.32. FSRM 7é F‘JS_RM

Proof: By Proposition 6.16, SRM (r, m)* belongs to the chain of SRM (r, m) codes
if and only if SRM(r,m)t = SRM(m —r — 1,m), that is not true by Lemma 6.17.

Construction of chains

Let 1 <r <m, C, € QRM(r,m). We have presented different methods to obtain
codes C,_1 € QRM(r—1,m) and C,y1 € QRM(r+1,m) such that C,_; C C, C Cpy1.

First, in Proposition 6.18, a code C,_; € QRM (r — 1,m) is given. However, this
construction of codes is not unique. We can obtain C’._;, € QRM(r — 1, m) such that

C._,#C.—yandC._, C C.
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The second construction is given in terms of generator matrix. From M, €
GQ(r,m) the generator matrix of C,, we obtain M,_; € GQ(r — 1,m) and M, €
GQ(r+1,m) ((6.5) and (6.6)) that are generator matrices of some codes C,_; and C,41
respectively. In that case, the construction of C,_; is unique but not the contruction
of Criq.

As a conclusion, we obtain the following lemma.

Lemma 6.33. Given a code C € QRM(r,m), we can construct different T € T such
that C 1s in I.

Minimum distance of chains
Definition 6.2.3. Let I' = (Cy,Cy,...,Cm_1) € I. Define the minimum distance of
I' as
d(l') = (do, dy, ..., dpm—1), (6.12)

where d; 1s the minimum distance of C;.
Lemma 6.34. Let T' € T, d(T') = (do, dy, . ..,dm_1). Then,

(1) 27" <d, <2m 0 <r <m,

(ii) if m >3 odd, d; < 2™ — 2(m=1/2,
(i) if m > 3 odd, dp,—5 < 6.

Proof: Let C € QRM(r,m), with 0 < r < m, and d, be the minimum distance of
C.

In order to establish bounds to d,, notice that, as a(C) = RM(r,m), d, is, at
least, the minimum distance of RM (r,m). By Lemma 5.5 and due to the fact that
0 € RM (r,m), the minimum distance of RM (r, m) is 2™~ " and, therefore, d,, > 2™~".

Let v € C such that a(v) is a minimum weight codeword, 2", in RM(r,m).
Codeword 2v also belongs to C and wy,(2v) = 2wt(a(v)) = 2™~ "+, Hence d < 2™ "1

yielding (7).
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To prove (i) and (i4i), we first note that if m > 3 odd, then ¢(QRM(1,m)) =
Ky and ¢(QRM(m — 2,m)) = P, (Corollary 6.2). Any code with the same
number of codewords than K,,,; and P,,;; has minimum distance lower than 2™ —

2(m=1/2 and 6 respectively ([MS77]). Then, d; < 2™ —2(m=1/2 and d,,, 5 < 6.
Lemma 6.35. d(T'sga) = (27,2771, ...,2777 ..., 2).

Note that the minimum distance of any code in I'szas is the least possible for

codes in QRM(r, m) with the same parameters r and s.
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Chapter 7

ZRM codes

In the literature, there are two different definitions of ZRM codes. The first defini-
tion was given in [HKC194] in 1994 and these codes will be denoted ZRM (r,m).
The second one can be found in [Wan97] (1997) and codes in this case are denoted
ZRM*(r,m). Even though they are not equivalent definitions, in both cases they
are used to prove the Zy-linearity of RM (r, m) (whenever it is a Z4-linear code). For
r=0,1,2,m—1 and m, the image of both families of codes under ¢ are Reed-Muller

code, where ¢ is the extended Gray map defined in (3.4).

Definitions and constructions of both families of codes are in Section 7.1. The
linearity of ¢(ZRM(r,m)) is given in Section 7.2 whereas the computation of the
rank and the dimension of the kernel of ¢(ZRM™(r,m)) is in Section 7.3. Finally,
Sections 7.4 and 7.5 relate ZRM (r,m) codes with the family of Reed-Muller codes
and codes in the class QRM(r, m), respectively.

Note that if C'is a binary code, then rank(C) = rank(m(C)) and dim(ker(C)) =
dim(ker(m(C))) for any coordinate permutation 7. Moreover, if C is a linear code
then, 7(C) is also a linear code. That way, in order to obtain the rank and the
dimension of the kernel and study the linearity of ¢(ZRM(r,m)) codes, we can
apply a specific extended Gray map (a general Gray map is the composition of a

coordinate permutation and an extended Gray map). For this reason, in all this

123
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chapter, unless it is said otherwise, ¢ is the extended Gray map defined in (3.4).

7.1 Definitions of ZRM(r,m) and ZRM*(r, m) codes

Let m,r be integers such that —1 < r < m + 1. Let RM(r,m) be a r-th order
binary Reed-Muller code, G(r, m) its generator matrix and Pr(vy .. ., v,,) its generator
vectors for |I| < r (Theorem 5.1), where RM(—1,m) = RM(m + 1,m) = {0} and
G(—1,m) =G(m+1,m) = (0).

Let ZRM(r, m) be the quaternary code of length 2™ generated by RM (r —1,m)
and 2RM (r,m);

ZRM(r,m) = (RM(r —1,m),2RM (r,m)) (7.1)

4
Denote by ZRM (r,m) = ¢(ZRM(r,m)) the Z,-linear code of length 2™+,
Let ZRM*(r,m) be the Z4-code of length 2™ generated by the matrix
G(r—1,m)
2G(r,m)
Note that ZRM*(r,m) can be defined as
ZRM*(r,m) = ({Pr(vr, ... vm) | [T <7 =1}), + ({2Pi(v1, ... om) | ] <7}),.
(7.2)

Denote by ZRM*(r,m) = ¢(ZRM*(r,m)) the Z4-linear code of length 2.
In [HKC'94] and [Wan97] can be found the proof of the following Proposition.

Proposition 7.1. Let r=0,1,2,m — 1 and m.
(i) ZRM(r,m — 1) = RM(r,m),
(i) ZRM*(r,m — 1) = RM(r,m).

As a corollary, for the values of 7, m such that RM (r, m) is a Z4-linear code, both
definitions, ZRM(r,m — 1) and ZRM*(r,m — 1), coincide and the binary image of
such codes under the Gray map is, exactly, RM (r,m).
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Example 7.1.1. ZRM(2,3) and ZRM*(2,3) are generated by the matriz

11111111 Vo
000O01T1T171 U3
001100171 Uy
01010101 ]|= Uy
000O0O0O02 2 20309
000O0O0Z2¢0 2 20311
0002000 2 2091

So we have seen that for some values of r,m, ZRM(r,m) and ZRM*(r,m)
codes coincide. What is the difference between such codes? Let uq, us be codewords
in RM(r — 1,m). Since u; and uy belong to both codes, so does their quaternary
sum. Now consider their binary sum us. By definition, us belongs to RM (r—1,m) C
ZRM(r,m) but it may not belong to ZRM*(r,m). Thus, some of the codewords
in ZRM(r,m) (obtained from the binary sum of codewords) may not be generated
in Z, by the generator vectors of ZRM*(r,m) (Equation (7.2)). We will give a set
of generator vectors of ZRM(r, m) and will see that these codes are equivalent only
for the values of r, m of the Proposition 7.1.

Note that, given codewords with all nonzero coordinates equal to one, we may be
interested in both, their binary and their quaternary sum. In order to avoid confusion,
any binary sum of such codewords x and y will be denoted =+, y and the quaternary

sum is denoted simply = + .

Lemma 7.2. Let x1, o, ..., x5 vectors in Z) with all nonzero coordinates equal to 1.

Then,

Ty +pTo+pFpxs = ($1+$2+-~-+xs)+2( Z xzm])
1<i<j<s

Proof: Let a; be the ¢-th coordinate of x;, i = 1,...,s. Let iy,...i, C {1,2,...,s}

be indexes of vectors with nonzero ¢-th coordinate. The /-th coordinate of 1 +p z2 +4

“dp a5 is k= a; +ag+ - -+ as, mod 2. Moreover, the product a;a; is nonzero if and
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only if both a; and a; are nonzero coordinates; that is, 7, j € {i1,...,4x}. That way,

D i<icj<s 2TiT; is exactly 2(5) = k(k — 1) and we only have to check that
kmod 2 = (k+ k(k — 1)) mod 4 = k* mod 4.

If Kk =2m, m > 0 we obtain k? = 4m? = 0 mod 4 whereas if £k = 2m + 1, k? =
4m? + 4m + 1 = 1 mod 4; so that, k mod 2 is, effectively, k2 mod 4.

Let us consider Pr(vy, ..., vy), Py(v1,. .., vy,) generator vectors in RM (r, m). Clearly,
their binary sum belongs to RM (r,m) and, therefore, to <RM (r, m)> 4 As these gen-
erator vectors also belongs to (RM (r,m)) , 50 do their (quaternary) sum.

Thus, both the binary and quaternary sum are codewords in the Z4-spanned code

of RM(r,m) and they are related by the last lemma as follows:

Pr(vi,...,vm) +o Py(vg, ... ,Um)) =
Pr(vy, ... vm) + Pr(vr, ..oy vm) + 2P (v1, ooy 0m) Pr(v1, .o, U)

Corollary 7.3. Let x1,2s,...,xs be vectors in Z} and let ¢ be a general Gray map.

Then,
Ga1 + @y + -+ 20) = (1) 4o d(w2) o+ O(z) H2( Y dlwixy)).
1<i<j<s
Lemma 7.4. Let r,m,t be integers such that 0 < r < m andt = min{2r,m}. Then,

2P;(v1,...,0m) € (RM(r,m)), for all I C{1,2,...,m} where |I| <t.

Proof: Let I C {1,2...,m} such that |I| < ¢. There exist I;,ls C {1,2...,m},
with |I1], |I3] < r such that [y Uly = 1. As Py, (vi,...,0m), Pr(v1,...,v,) are code-
words in RM (r,m) their binary sum, called s, also belongs to RM (r,m). There-
fore, s — P, (v1,...,0m) — Pr(v1,...,vm) € (RM(r,m)), that is, by Lemma 7.2
2P;, (v1, - -+, Um) Pry(v1, .., vm) € (RM(r,m)),. Using Lemma 5.3,

2P (v1,y .y Um) Pry(vi, oy 0m) = 2P on (V1 .o Um) = 2P (01, ..., Up) € <RM(7", m)>

e

As (RM(r—1,m)), € ZRM(r,m) by definition, we obtain directly the following

corollary.
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Corollary 7.5. Let r,m,t be integers such that 0 <r < m and t = min{2r — 2, m}.
Then, 2P (v, ..., vp) € ZRM(r,m) for all I C{1,2,...,m} where |I| <t.

Proposition 7.6. Let r,m be integers such that 0 < r < m. Then,
<RM(r,m)>4 = <{P1(vl,...,vm) 1] < r}>4+ <{2P1(vl,...,vm)\r+ 1< < t}>4,
where t = min{2r,m}.

Proof: Let z € RM(r,m). x can be expressed as the binary sum of some generator
vectors Pr(vi,...,0n),..., Pr(v1,...,0,) and, by Lemma 7.2, x = Py, (vy,...,0,)+
o Pr(vis e vm) 4 2 cicics Pri(n, - 0m) Pr (o1, ) € (RM(r,m),.
As L] <7, Pr(vi,. .., 00) P (v, .o, Um) = Prog (1, ..., 0,) with 0 < LU 1] <
min{2r,m}. Thus, if t = min{2r,m},
e ({Pr(vr,...,vm) [ <7}y, 4+ ({2P(v1, .. ,om) [ ] < t}), =
({Pr(vr, ... ;vom) [ T] <}y, + {2Pr(vr, o) |14+ 1 < T < 8},

That way, if © € RM(r,m) there exist a € ({Pr(vi,...,vn) ||| < r}), and
be ({2Pi(v1,...,vm) |7+ 1 < |I| <t}), such that z = a +b.

Let us consider \jz; + -+ + \pxp € <RM(7‘, m)>4 where z; € RM(r,m) and
Ai € Zy. Then, Mz + -+ + Mz = (Mag + -+ 4+ Mag) + (Aiby + -+ + Agby),
where A\a; + --- + \pap, € <{PI(vl, N e R VA 7"}>4 and A\iby + --- + \bp €
({2Pr(v1,. .., o) [P+ 1 <|I| < t}),. As a result,

<RM(7’,m)>4 C <{P1(211,...,vm)|\[| S7"}>4+<{2PI(211,...,vm)|7“+1 < |1 §t}>4.

Clearly, ({Pr(v1,...,vm) ||| <7}), € (RM(r,m)),, therefore, to prove the converse
we only have to check that ({2P;(vi,...,vn)|[r+1 < |I] < t}>4 C (RM(r, m)>4 but

this is true due to Lemma 7.4. 1

Proposition 7.7. Let r,m be integers such that 2 <r <m+ 1. Then,

ZRM(r,m) = (RM(r —1,m)),.
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Proof:

By definition, ZRM(r,m) = (RM(r —1,m),2RM (r,m)), = (RM(r —1,m)), +
(2RM (r,m)),.

Clearly, (RM(r —1,m)), € ZRM(r,m). Hence, we only have to check that
(2RM(r,m)), € (RM(r —1,m)),.

Now, let P, (v1,-++ ,0m)s .., Pr.(vi, -+, vy) € RM(r,m). Note that 2Py, (vy, -+, vp)+
s 2P (V1,0 Um) = Q(Ph(vl, e U)o Pr(vg, ,vm)). Therefore, by
Proposition 7.6, (2RM (r,m)), = ({2P;(v1,...,vm)||I] < r}), € (RM(r—1,m)),
if and only if r < min{2r — 2, m}; that is, » < m and r < 2r — 2 or, equivalently,
2 <r <m. Thus, for r <2r —2, ZRM(r,m) = <RM(7" — 1,m)>4.

Finally, if 7 = m 4+ 1, ZRM(m + 1,m) = (RM(m,m),2RM(m + 1,m)), =
(RM(m,m)), by definition of RM(m +1,m).

Corollary 7.8. Let r,m be integers such that 2 <r < m -+ 1. Then,
ZRM(r,m) = <{P[(U1, ) [ < r = 1}>4 + <{2P1(vl, o) | < I < t}>4,
where t = min{2r — 2, m}. Moreover,
ZRM(0,m) = <{2}>4,
ZRM(1,m) = ({1}), + ({2P:(v1, ..., o) [T < 1}),.

Proof: When 2 < r < m, the equality follows from propositions 7.6 and 7.7. The
rest of the cases are obtained applying the definition of ZRM (r,m).
Proposition 7.9. ZRM(r,m) = ZRM*(r,m) if and only if r = 0,1,2,m and
m+1.
Proof: From Proposition 7.1, if » = 0,1,2,m and m + 1, then ZRM(r,m) =
ZRM*(r,m).

By equation (7.2) and Corollary 7.8, ZRM(r,m) = ZRM*(r,m) if and only
it ({2P1(v1,...,vm) |7 < ] < t}), = ({2Pi(vr,...,0m) [ |[I| < r}),, where t =
min{2r — 2, m}; that is, if and only if » > min{2r — 2, m}. The equality is given if

and only if r > 2r — 2 or r > m; equivalently, for values r =0,1,2,mand m + 1.
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7.2 Linearity of ZRM (r,m) codes

Proposition 7.10. ZRM(r,m) is a quaternary code of length 2™ and type 4*12~2,
where ky = 31—, (") and ke =3 ("), t = min{2r — 2, m}.

3 3

Proof: By Corollary 7.8,
ZRM(r,m) = <{P1(211, e vm) [ < r = 1}>4 + <{2PI(1)1, o) | < I < t}>4,

where t = min{2r — 2, m}. Note that {Pr(v1,...,v,) | |I| < t}, are linearly indepen-
dent binary vectors and, applying Lemma 3.1, ZRM (r,m) is of type 4*12*2 where

k=300 (M) and ky = 30 (7).

Lemma 7.11. Let C be a binary linear code and C = (C),. Then, ¢(C) is a linear

code, where ¢ is a general Gray map.

Proof: Let x,y € C. By Lemma 7.2, 22y =z 4+, y — (x + y) € C.

Now, consider two codewords z,y € C. As C = <C’>4, T =x + -+ x5 and
Yy=1uy1+- - +y, where z;,y; € Cforalli=1,...,s;5=1,...,t. 2oy =2(x1 +-- -+
zs)(yr + -+ y) =D, 21y; € C. Therefore, ¢(C) is a linear code by Theorem 3.4.

Proposition 7.12. ZRM (r,m) are linear codes and

r—

dim(ZRM (r,m)) = 2:05 @) + to (T)

1=

where t = min{2r — 2, m}.

Proof: ZRM(r,m) = (RM(r —1,m)), by Proposition 7.7. Then, using Lemma
7.11, ZRM(r,m) = ¢(ZRM(r,m)) is a linear code.

dim(ZRM (r,m)) = k, where 2% is the number of codewords of ZRM (r,m). By
Proposition 7.10, the number of codewords of ZRM (r,m) is 412~ = 22F1+k2 where
ey =302 (M) and ky = >0 (), t = min{2r — 2,m}. Then, dim(ZRM(r,m)) =
257150 (1) + 20 () =25 (D + Xise (7)-
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7.3 Rank and kernel of ZRM*(r,m) codes

First, we establish the type of the quaternary code ZRM™(r,m).

Proposition 7.13. ZRM*(r,m) is a quaternary code of length 2™ and type 4512k
where k; = Z::_é (T) and ko = (T)

Proof. By definition (7.2) of ZRM™(r, m) and applying Lemma 3.1. O]

By Proposition 7.1 for r = 0,1,2,m,m + 1, ZRM*(r,m) is a linear code and,
therefore, rank(ZRM*(r,m)) = dim(ker(ZRM*(r,m)) = > (™). We will es-
tablish the value of the rank and the dimension of the kernel for the rest of the values
of r.

Recall that ZRM™*(r, m) is the image of ZRM”*(r, m) under a general Gray map,
that is, a composition of the extended Gray map and a coordinate permutation.
Note that if C'is a binary code, then rank(C) = rank(w(C)) and dim(ker(C)) =
dim(ker(m(C))) for any coordinate permutation w. That way, in order to obtain the
rank and the dimension of the kernel of ZRM™*(r, m) codes, we can apply a specific
coordinate permutation to the extended Gray map. In all this section, the Gray map
¢ will be the Gray map defined in 3.4.

Let I C {1,2,...,m} be aset of indexes. We define the sets It, I* C {1,2,...,m+
1} as:

I ={i+1|iel}

F={ufitlliel}
Lemma 7.14. Let I,J C{1,2,...,m}. Then,
¢(PI(U17 B 7Um)PJ(U17 B 7Um)) - ¢(PI(U17 R 7Um))¢(PJ(U17 B 7Um))7

O(2Pr(v1, ... vm)Pr(v1, . o)) = (2P (v1, ..., 0m))0(2Ps(v1, . ., 0m))-

Proof: Let consider x;,y; the j-th coordinate of P;(vy,...,v,,) and Py(vy, ..., 0p)

respectively. Assume x; = 0; then, by one hand, ¢(z;y;) = ¢(0) = (00) and
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6(z;)0(y;) = (00)6(2y;) = (00) and, by other hand, ¢(2z;y;) = 6(0) = (00) and
®(2z;)¢(2y;) = (00)¢(y,;) = (00). Finally, if z; = y; = 1 then, in the first equation of
the lemma, we obtain ¢(z,y;) = (01) and ¢(x;)¢(y;) = (01)(01) = (01) and, in the
second equation, ¢(2x;y;) = (11) and ¢(2z;)¢(2y;) = (11)(11) = (11).

Corollary 7.15. Let I C {1,2,...,m}. Then, ¢(Pr(vi,...,vp)) = Pr(v, ..., 0, 1)
and ¢(2Pr(vy, ..., 0m)) = Pr+(v1, ..., Vi1 ).

Proof: By Lemma 5.18 and Lemma 7.14 and due to the fact that v? = v; for all
1=1,...,m. 1
Next theorems will give the values of the rank and the dimension of the kernel of

ZRM*(r,m) codes for the other values of 7.

Proposition 7.16. Let r,m be integers such that 0 <r < m + 1.
(ZRM*(r,m)) = ZRM (r,m)
Proof: It follows from definitions (5.5), (7.1) and (7.2).

Theorem 7.17. Let r,m be integers such that 3 <r < m — 1.

r—

rank(Z RM* (r,m)) 22: <T) +§ (”Z)

1
1=0

where t = min{m, 2r — 2}.

Proof: Due to Propositions 7.16 and 7.12.

By Proposition 7.19, ¢ image of generator vectors of ZRM*(r,m) are generator
vectors of RM (r,m + 1). That way, ker(ZRM*(r,m)) C RM(r,m + 1). Moreover,
order 2 codewords in ZRM™*(r,m) belongs to its kernel, and then, ¢(2RM (r,m)) C
ker(ZRM*(r,m)). Therefore, we obtain the following bounderies to the dimension

of the kernel of ZRM*(r,m):

XT: (m) < dim(ker(ZRM"(r,m))) < TO (mf 1).

- 2 1
=0

1=
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Theorem 7.18. Let r,m be integers such that 3 <r < m — 1.

dim(ker(ZRM*(r,m))) = Z (m) +m+ 1

im0 N\

Proof: As ¢(2RM(r,m)) C ker(ZRM*(r,m)), we have to check which vectors of
¢(RM(r — 1,m)) belong to the kernel of ZRM™*(r,m).

Let Pr(vi,...,vm), Py(v1,...,0p) € RM(r—1,m).
O(Pr(v1,. . svm)) 4o ¢(Pr(v1, ..., 0m)) = Pre(viy. .. 0me1) o Pre(v1, ..., 0my1) €
ZRM*(r,m) if and only if Preyypg13(v1, - -, Upg1) = Preog+(v1, - - -, Umy1) € ZRM*(r,m).
That is, ¢~ (Pr+us+(v1, -, Umy1)) = 2Pros(vi, ..., 0) € ZRM*(r,m) or, equiva-
lently, Pros(vi,...,vy) € RM(r,m). So, ¢(Pr(vi,...,vm)) +b ¢(Ps(vi,...,0m)) €
ZRM*(r,m) if and only if [TUJ| < 7. As|J| <r—1land 3 <r < m—1,
Pr(vy,...,vm) € ker(ZRM*(r,m)) if and only if |I| < 1.

Therefore, for 3 <r <m —1,

ker(ZRM*(r,m)) = ¢(2RM (r,m)) + {Pr(vy,...,m)||I] < 1}

and dim(ker(ZRM*(r,m))) =>"_ (") +m—+1. a

=0

7.4 Relationship between ZRM (r,m) and RM (r,m)

codes

Proposition 7.1 established that for r = 0, 1,2, m and m+1, ZRM (r,m) = RM (r,m+
1). Whereas both codes, ZRM (r,m) and RM (r, m), are linear codes, only ZRM (r,m)
is Zy-linear code for all values of 0 < r < m + 1, m > 0. In this section we will see

that ZRM (r,m), in fact, contains RM (r,m + 1).

Example 7.4.1. Let vy = 1, vy, v9,v3,v4 generator vectors of RM(1,4).Consider the
set {Pr(vy,...,vq) | |I] < 1} U{2P1(v1,...,v4)||I| < 2} that is, by definition, the
set of generator vectors of ZRM(2,4). Such vectors are represented in Table 7.1
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whereas their ¢ image and its correspondence with vectors of length 2° Pr(vy, ..., v}),
by Corollary 7.15, are given in Table 7.2. It is easy to check that in this case
{6(Pr(vy,...,v0)) ||| S 1FUA{D(2P(v1,...,v4)) | || < 2} is exactly
{Pr(vy,...,v5) ||I| <2}. That is, the generator vectors of RM(2,5).

v | 1111 1111 1111 1111

vg | 0000 0000 1111 1111

vg | 0000 1111 0000 1111

vg | 0011 0011 0011 0011

vy | 0101 0101 0101 0101
200 | 2222 2222 2222 2222
2v4 | 0000 0000 2222 2222
203 | 0000 2222 0000 2222
2v9 | 0022 0022 0022 0022
201 | 0202 0202 0202 0202
2vusvg | 0000 0000 0000 2222
2uavg | 0000 0000 0022 0022
2viv4 | 0000 0000 0202 0202
2uavg | 0000 0022 0000 0022
2viv3 | 0000 0202 0000 0202
2uivg | 0002 0002 0002 0002

Table 7.1: Generator vectors of ZRM(2,4)

As we have seen in the last example, r = 2 and m = 4, the Gray map image of
generator vectors of ZRM(r,m) codes are generator vector of RM (r,m + 1). This
fact is not true in general; only in the cases that RM (r,m + 1) is a Zy-linear code,
that is r = 0,1,2,m, do RM(r,m + 1) and ZRM (r,m) = ¢(ZRM(r,m)) coincide.
In the other cases, however, RM (r,m + 1) C ZRM(r,m). These statements will be

proven in the following propositions.

Proposition 7.19. Let r,m be integers such that 0 <r < m+ 1.
{Pr(vy, - v ) [ <} =

{6(Pr(v1, .. .;om)) | ] <7 — 1Y U{(2P (v, ...,om)) | || < 7).
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Proof: Let be P;(vf,..., v}, 1) where I C {1,...,m+ 1} and |I| <.

If 1 € I, then let be J = {i — 1|7 € I,i # 1}. By definition, J* = I and,
using Corollary 7.15 ¢(Py(v1,...,vm)) = Pr(vi,...,v,,) where Py(vi,...,vy) €
RM(r —1,m).

If 11, then J© =1, where J ={i —1]|i € I}. By Corollary 7.15
d(2P;(v1,...,vm)) = Pr(vy, ..., v),,1) where 2Ps(vy,...,vy) € 2RM(r,m).

From the last proposition, all the generators vectors of RM(r,m + 1) are in
ZRM(r,m). Hence, as both RM(r,m + 1) and ZRM((r,m) are linear codes, we

obtain the following inclusion.

Corollary 7.20. Let r,m be integers such that 0 < r < m+ 1. RM(r,m + 1) C
ZRM((r,m) and the equality is given for r =0,1,2,m.

Proof: Propositions 7.1 and 7.19. &

Proposition 7.21. Let r,m be integers such that 0 < r < m. Then, ZRM(r,m—1)
is the minimum quaternary code such that ¢(ZRM(r,m — 1)) contains RM (r,m),
where ¢ is the Gray map defined in (3.4).

Proof: Let r,m be integers such that 0 < r < m. Let ¢ be the Gray map defined in
(3.4) and ZRM (r,m) = ¢(ZRM(r,m)). If r < 2o0rr > m—1, then ZRM (r,m—1) =
RM (r,m) and the statement is given.

Assume 3 < r < m — 2 and let C be the minimum quaternary code such that
¢(C) contains RM (r,m). As ZRM (r,m — 1) is a quaternary code and RM (r,m) C
ZRM (r,m — 1) by Corollary 7.20, ¢(C) is a subset of ZRM (r,m — 1). Now, the
equality follows from the fact that |¢(C)| = |[ZRM (r,m — 1)| (see Theorem 5.30 and
Proposition 7.12).

In fact, if we consider the construction of RM (r,m) of Corollary 5.2:

RM(r,m) = ¢(RM(r —1,m —1)) + ¢(2RM(r,m — 1)) =
G(RM(r—1,m—1)4+2RM(r,m — 1)).
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we obtain C = ¢~ '(RM) = RM(r — 1,m — 1) + 2RM(r,m — 1). Therefore, the
minimum quaternary code containing ¢~'(RM) is <C>4 = (RM(r — 1,m — 1) +
2RM (r,m — 1)), = ZRM(r — 1,m) by definition of ZRM (r,m).

Moreover, note that ZRM(r,m) is the code C of Theorem 5.30. The dimension
obtained in that theorem coincides, effectively, with the dimension of ¢(ZRM(r, m))
of Proposition 7.12.

7.5 Relationship between ZRM (r,m) and QRM (r, m)

codes

In order to establish the relationship between ZRM*(r,m) and QRM (r,m) codes,
we will consider the definition (7.2) of ZRM*(r,m) codes and definition (6.1) of
SRM(r,m) codes; that is,

ZRM*(r,m) = ({Pr(v1,...,vm) | ] <7 =1}), + ({2P1(v, ... om) | ] < 7)),
SRM(r,m) = ({Pi(v1,...,vm)||I] < 7"}>4.

By definition of a(), a({({2P(v1, ..., vm) | [I| < r}),) = 0. Thus, a(ZRM*(r,m))
is equal to a(SRM (r—1,m)). Moreover, as SRM (r,m) belongs to the class QRM (r, m)
we obtain a(ZRM*(r,m)) = RM(r — 1,m). Even though, ZRM™(r,m) does not
belong to QRM(r — 1,m) class due to the fact that it is of type 4¥12%2 where
k= Z::_& (T’) and ky = (T) However, with the above definitions, it is easy to check
that
SRM(r—1,m) C ZRM*(r,m) C SRM(r,m).

where SRM (r — 1, m) and SRM(r, m) belong to the classes QRM(r — 1, m) and
QRM(r,m) respectively.
Similarly, if we consider the definition of ZRM((r, m) given in Corollary 7.8, we

obtain

SRM(r—1,m) C ZRM(r,m) C SRM(t,m),
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c ZRM(r,m)
SRM(r—1,m) C ZRM*(r,m) ; SRM(t,m)
< SRM(r,m) -
N N N
QRM(r —1,m) QRM(r,m) QRM(t, m)

Figure 7.1: Relationship between ZRM (r,m), ZRM*(r,m) and QRM (r,m) codes

where t = min{2r — 2, m}, and SRM(t,m) C QRM(t, m).

Finally, SRM(r — 1,m) C ZRM(r,m) and rank(SRM(r —1,m)) =

rank(ZRM*(r,m)) = dim(ZRM(r,m)) by Propositions 6.29, 7.12 and Corollary

7.16. Hence, if SRM (r — 1,m) = ¢(SRM(r — 1,m)), then

(SRM(r —1,m)) = (ZRM*(r,m)) = ZRM(r,m).
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¢(vp) | 01010101 01010101 01010101 01010101 |
¢(v4) | 00 00 00 00 00000000 01010101 01010101 |vjvg
¢(v3) | 00000000 01010101 00000000 01010101 |vjvy
¢(v2) | 000001 01 00000101 00000101 00000101 |vjvs
¢(v1) | 00010001 00010001 00010001 00010001 | vjvh
#(2vp) | 11111111 11111111 11111111 11111111 | v
#(2v4) | 0000 0000 00000000 11111111 11111111 | vj
#(2v3) | 00 00 00 00 11111111 00000000 11111111 |v}
$(2v2) | 0000 11 11 0000 11 11 0000 11 11 00 00 11 11 | v
#(2v1) [ 00110011 00110011 00110011 001100 11 | o4
®(2v3v4) | 00 00 00 00 00 00 0000 00000000 11 11 11 11 | vjvy
®(2v2v4) | 00 00 00 00 00 000000 00001111 0000 11 11 | vgvy
®(2v1v4) | 00 00 00 00 00000000 00110011 001100 11 | vhv
¢(2vav3) | 00 00 00 00 0000 11 11 00 00 00 00 00 00 11 11 | v5v)
¢(2v1v3) | 00 00 00 00 00 11 00 11 00 00 00 00 00 11 00 11 | v4v)
¢(2v1v2) | 00 00 00 11 00 00 00 11 00 00 00 11 00 00 00 11 | vhv}

Table 7.2: ¢ image of generator vectors of ZRM (2,4)
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Chapter 8

Conclusion

8.1 Results of the dissertation

8.1.1 Additive codes

Define the generalization of the Gray map as ¢ : Zy, — Z& such that:
(i) @)= 0% [10) Vi=0,....,k—1,and
(1)  pli+k)=¢()+1® Vvi=0,... k-1
For any two elements ¢ (i), ¢(j) € ©(Zay), define the product
pli) - 9(J) = ¢li) + (),
where
oi=1kk—1,...,2)
(i.e. 7 left shifts), for all vector (i), i =0,...,2k — 1.
Among all possible generalizations of the Gray map to Zsy, the one defined above

is the only (up to coordinate permutation) that (¢(Za), ) is a Hamming-compatible
code.

Let us define the extended map ¢ : Z5, — Z5" such that ¢(ji,...,75n) =
(0(j1),---,9(n)), where ¢ is defined in (4.1). Finally, we define the permutations

e = (04| - -]0j,), for & = ¢(j1, ..., jn), where o; is defined above.

139
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Result 8.1. If C is a Zyy-code, then ¢(C) is a propelinear code with associated per-
mutation m, for all codeword x € ¢(C). Moreover, if k > 2 and C € Z%,., then ¢(C) is

a propelinear but not translation-invariant code.

Thus, the only codes being translation-invariant are linear codes and Zj4-linear

codes.

Result 8.2. Let C and C* be dual Zgy,-codes, and C' = ¢(C) and Cy = ¢(C*) be their
binary images. Then, the weight enumerators Weo(X,Y') and We (X,Y) of C and
C'| respectively, are related by the binary MacWilliams identity

1
We, (X,Y) = @WC(X +Y, X-Y)

if and only if k = 1,2; that is, C' is linear or Z4-linear.
.., Z% ) and

length n if C = ¢(C), where iy, ,i, are the minimum values such that C is a

A binary code C' of length n is a mixed group code of type (ZA4!

2419 °

subgroup of Z§! x -+ x Z and Y7, i;k; = n.
Result 8.3. Let C' be a mized group code of type (Z’;gl, e ,Z’;;;) and length n. Then,

(i) C is a propelinear code.
(i1) If C is 1-perfect, then C is of type (ZS,ZY—Mﬂ) for some k € N.

Hence, the only 1-perfect binary mixed group codes of type (Z5! ..,Zg;“r) are

2417

n—=k
translation-invariant propelinear codes of type (k, T> In fact, any l-perfect ad-

).

The different structures, the rank, and the dimension of the kernel of 1-perfect

n—=k
ditive code is a translation-invariant propelinear code of type (k, ——

additive codes and extended 1-perfect additive codes are known. If C is a 1-perfect
additive code, then the extended code C* is an extended 1-perfect additive (Z-linear
or non Zgy-linear) code. If C* is the extended 1-perfect additive non Z-linear code of
C' and we puncture a binary coordinate, then (C*)" is isomorphic to C'. This is not
true if we puncture a quaternary coordinate. In fact, a punctured extended Z4-linear

code is not, in general, a 1-perfect additive.
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Result 8.4. If C* is a binary extended 1-perfect Z4-linear code of length n +1 > 16
then, the punctured code (C*)" 1-perfect is not a 1-perfect additive code up to the case
that C* equals to the extended of the Hamming code of length 15.

8.1.2 Reed-Muller codes

The main results obtained concerning Reed-Muller codes are those related with their

Zy-linearity. Even though, we first present a new construction of RM (r,m).
Result 8.5. Let r, s, m be integers such that 0 < r,s < m. Define

Crys ={zy|x € RM(r,m),y € RM(s,m)}.
Then, (Cris) = RM(t,m), where t = min{r + s, m}.

It is known that RM(r,m) codes are Zg4-linear if and only if r = 0,1,2,m — 1
and m. If C is a Zy-linear code, then there exists an extended Gray map, ¢, and
a coordinate permutation, 7, such that m o ¢(C) = C for some quaternary code C.
Nevertheless, there may exist a nonisomorphic code C" and a coordinate permutation
7" such that 7’0 ¢(C') = C. Whenever a Reed-Muller code is Z4-linear, up to the case
r = 2, the following results determine how many nonisomorphic Z4-codes C there are
such that ¢(C) is permutation-equivalent to RM (r, m) and, in each case, the type of
these Z4-codes.

In this section, let ¢ be the extended Gray map defined as

¢(C) = (5(61)7 R ﬁ(cn)a 7(01)7 s 77(671))? (81)
where ¢ = (¢y,...,¢,) and the image of the usual Gray map of ¢; is (8(¢;),v(c;)).

Result 8.6. Forr =0, m — 1 and m, there exists a unique Zys-code C up to isomor-
phism such that ¢(C) is permutation-equivalent to RM (r,m). Moreover, ¢~ *(RM (r, m))

is of type 4921, 42" 1121 qnd 42" forr = 0,m — 1 and m respectively.



142 CHAPTER 8. CONCLUSION

Result 8.7. Let m > 3. Let the matriz Gy be the all columns vectors of the form
275 x {1 € Z4} and the matriz Gy, the all columns vectors of the form 275 *x{1 €
Zy} X Zy. Let Cy and Cqy be the Zy-code generated by Gy and Gy respectively. Then,
#(C1) = RM(1,m) and there exist m € Som such that wo ¢(Cy) = RM(1,m).

So, for r = 0,m — 1 and m, there is a unique quaternary code up to isomorphism
such that its image under ¢ is permutation-equivalent to RM (r, m) whereas for r = 1
there are two non-isomorphic codes.

Now, we consider RM(r,m) for 3 < r < m — 2; that is, when the code is not

Z4-linear.

Result 8.8. Let C be the minimum quaternary code such that RM(r,m) C ¢(C).
Then, for 3 <r <m—2, C = ¢(C) = {RM(r,m) U (U, 1<i1gs Lr(v1, - vm))},

and |C| = 2%, where
— (m—1 L/m—1
k:
(") 50

for t = min{m — 1,2r — 2}.

Note that last theorem gives the minimum quaternary code such that ¢(C) con-
tains RM (r,m), where ¢ is the Gray map defined in (8.1). If C is the minimum
Z4-linear code that contains RM(r,m), then C' is linear and ¢! o 7(C) is a quater-
nary code for some permutation coordinates m € Sym. Therefore, we obtain an upper

bound to the dimension of such code C'.
Result 8.9. Let C be the minimum Zs-linear code containing RM (r,m). Then,
— [m—1 N /m-1
dim(C) <
o< (") 2 ()

where t = min{m — 1,2r — 2}.

8.1.3 QRM codes

Results of Chapter 6 are published in [BFP05].
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Let r,m be integers such that 0 < r < m. Let QRM(r,m) be a quaternary
Reed-Muller code of length 2™. Remember the basic properties of QRM(r,m).

(i) QRM(r,m) is of type 4, where k =1+ (7) + (3) +- -+ (7).
(i) QRM(r,m) C QRM(r+ 1, m), ¥r < m.
(iii) QRM(r,m)t = QRM(m —r — 1,m), Vr < m.
(iv) a(QRM(r,m)) = RM(r,m).
(v) For m odd, m > 3, ¢(QRM(1,m)) is the Kerdock code K, of 271,

(vi) For m odd, m > 3, ¢(QRM(m—2,m)) is a Preparata-like code of length 2™+,

We have generalized QRM (r, m) codes to the class QRM(r,m). The definition

of this class is the following.

Definition 8.1.1. Let r,m be integers such that 0 < r < m. Let us define QRM(r,m)
a class of quaternary Reed-Muller codes where C € QRM(r,m) if and only if:

(i) The quaternary length of the code C is 2™.

(ii) C is of type 4%, where
b= () () 4 ()

(iii) o(C) = RM(r,m).
Define the related binary class
QRM(r,m) ={C =¢(C) | C € QRM(r,m)}.

Codes QRM(r, m) belong to QRM(r, m). However, in order to obtain different
codes in such class, we present two constructions of codes in QRM (r,m). The first
one is a generalized doubling construction. The second, is a contruction in terms of

generator matrices.
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Result 8.10. Let C € QRM(r + 1,m) and D € QRM(r,m). Then, the code C*
defined as {(u,u+v) | u € C,v € D} belongs to the class QRM(r +1,m + 1).

Result 8.11. Let C be a quaternary code of length 2™. C belongs to the class
QRM(r,m) if and only if there exist a binary (> ;_, (") x 2™) matriz, N, such

that the generator matrix of C is
G = G(r,m) + 2N,
where G(r,m) is the generator matriz of RM (r,m) defined in (5.7).

Define the set of matrices that are generator matrices of codes in QRM (r, m):

T

GQ(r,m) ={G(r,m) + 2N|N is a binary (Z (7?) x 2™) matrix }.

1=0

Result 8.12. Let My, My € GQ(r + 1,m) and My € GQ(r,m). The matriz

M, M
M = P (8.2)
ON; M,

where N is a binary (3.7_y () x 2™) matriz, belongs to GQ(r +1,m + 1)

We would like that codes in QRM (r, m) satisfy similar properties that the ones

of QRM(r,m) given at the beginning of the subsection. Properties of codes in
QRM(r,m) are presented in the subsequent results.

Result 8.13. Let C € QRM(r,m), with 1 <r < m.
(i) Ct € QRM(m —r —1,m).
(i) There exist D € QRM(r — 1,m) such that D C C.

Result 8.14. Let P, be a Z4-linear Preparata-like code and Ko, a Z-linear Kerdock-
like code of length n+1 = 2™, Py, € QRM (2m—3,2m—1) and K»,, € QRM (1,2m—
1).
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Recall that the image under the Gray map of codes in QRM(r, m) are not linear

codes. That way, we calculate the rank and the dimension of the kernel of such codes.
Result 8.15. Let C € QRM(r,m) and C = ¢(C). Then,
(i) dim(ker(C)) =>"i_, (") + 1, if r <m and dim(ker(C)) = 2™, for r =m.

(it) rank(C) =31, (7) + ZZ:O (™), where t = min{2r,m}.

For a fixed value of m, codes RM (r, m) conforms a chain of codes:
RM(0,m) C RM(1,m) C --- C RM(m —1,m) C RM(m,m).

Due to property (ii) in Result 8.13, we can construct a chain of codes in QRM (r, m).
Unlike the case of Reed-Muller codes, this chain is not unique. Given a code C €
QRM(r,m), there may exist Dy, Dy, € QRM(r — 1,m), such that D; # D, and
D1, Dy C C. Moreover, we also can construct a chain of QRM codes in terms of their
generator matrices as follows.

Let C € QRM(r,m), and M = G(r,m) + 2N € GQ(r,m) its generator matrix,

m
%

for some binary (>;_, (") x 2m) matrix, N. If r > 1, consider the matrix N_,

conformed by the first Z::_Ol (") row vectors of N, and, if r < m, N, is a binary

((TTI) x 2m) matrix. Hence,

M, =G(r—1,m)+2N_;, € GQ(r — 1,m),

and

N
M =G(r+1,m)+ € GQ(r+ 1,m).

Niy

Let C_.; € QRM(r —1,m) and C;1 € QRM(r + 1,m) be the codes generated by
M_y and M, respectively. Then,

C1CCCCyy.
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Again, with this construction, code C;; may not be unique, it depends on the
choice of the matrix N,;. We have obtained some results about the chain of codes in
QRM(r,m). First, recall some notation.

Let (Cy,Ci, . ..,Cn_1) be achain of codes, (Cy,Cy,...,Cn_1)* = (C+_,,C

m—1»%¥m—27 -

. Cy)
its dual chain, and d(Cy,Cy,...,Cpn_1) = (do,dy,-..,dp_1) the minimum distance of
the chain where d; is the minimum distance of C;. Define the set of chains where all

the codes belong to the class QRM:

]‘:‘:{(COaCla"'acm—l) |Cr S QRM(T,m),T:O,...,m—l}.

Result 8.16. [f (Co,cl, ce ,Cm_l) S f then, (Co,cl, ce ,Cm_l)l el.

Result 8.17. Let (CQ,Cl, Ce ,Cm_l) & 1:‘, d((CQ,Cl, e ,Cm_l)) = (do, dl> e adm—l)-
Then,

(i) 2™ < d, <2m7HL 0 < < m,
(i3) if m > 3 odd, d; < 2™ — 2(m=1)/2,

(#i) if m > 3 odd, d,,_o < 6.

8.1.4 ZRM codes

First, remember the two different definition of codes ZRM that can be found in the

literature.

ZRM(r,m) = (RM(r —1,m),2RM (r,m))

4

ZRM*(r,m) = ({Pr(v1,...,v0) | [I| <7 — 1}~>4 + ({2P(v1, ..., vm) | I < r}>4.

Note that we ZRM*(r,m) is defined in terms of its generator vectors but not
ZRM(r,m). That way, in order to compare both codes, we establish the generator
vectors of ZRM(r,m).
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Result 8.18. Let r,m be integers such that 2 < r < m+ 1. Then,
ZRM(r,m) = <{P1(211, e tm) [ < r = 1}>4 + <{2PI(1)1, N e AV t}>4,
where t = min{2r — 2, m}. Moreover,
ZRM(0,m) = <{2}>4,
ZRM(1,m) = ({1}), + ({2P(vi, ..., vm) | [T] < 1}),.
Now, from the last result and the definition of ZRM™(r, m) the next result follows:
Result 8.19. ZRM(r,m) = ZRM*(r,m) if and only if r = 0,1,2,m and m + 1.

Let ¢ be the extended Gray map defined in (8.1), let ZRM (r,m) = ¢(ZRM(r,m))
and ZRM*(r,m) = ¢(ZRM*(r,m)). When both codes ZRM (r, m) and ZRM*(r,m)
coincide, their binary image under ¢ is the Reed-Muller code RM (r,m+1). As these
codes differ for the other values of r, we studied their structure and their binary image

separately. First, we established the type of ZRM (r,m).

Result 8.20. ZRM(r,m) is a quaternary code of length 2™ and type 4¥12%2  where
by =20 () and ky = S, (), t = min{2r — 2,m}.

Binary image under ¢ map of such codes turned out to be linear codes for any

values of r and m.

Result 8.21. ZRM/(r,m) are linear codes and

r—

dim(ZRM (r,m)) = 2:: @) + zt: <T)

1
=0 =0

where t = min{2r — 2, m}.

Result 8.22. Let r,m be integers such that 0 < r < m. Then, ZRM(r,m—1) is the

minimum quaternary code such that ¢(ZRM(r,m — 1)) contains RM (r,m), where
¢ is the Gray map defined in (8.1).
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As it was said in the introduction of this dissertation, we would like to prove that
the minimum Zy-linear code containing a Reed-Muller code was a ZRM code. This
result has not been achieved, but we have found that the dimension of the minimum
Zy-linear code is less or equal to the dimension of the corresponding ZRM code.
Note that the dimension of ¢(ZRM(r,m — 1)) in Result 8.21 coincides with the
upper bound of the dimension of the minimum Zj4-linear code containing RM (r, m)
in Result 8.9.

ZRM*(r,m) are not linear codes. We found that the spanned code of ZRM*(r, m)
codes coincide with ZRM (r,m) codes and we calculated the type, the rank and the

dimension of the kernel of such codes.

Result 8.23. Let r,m be integers such that 0 < r < m+ 1.
(ZRM*(r,m)) = ZRM(r,m)

Result 8.24. ZRM*(r,m) is a quaternary code of length 2™ and type 45122 where
b= 3200 (7) and ks = (7).
Result 8.25. Let r,m be integers such that 3 <r < m — 1.
(i) dim(ker(ZRM*(r,m))) = 3 (m) Fml.
i
=0

(ii) rank(ZRM*(r,m)) = 31—, (™) + S, (™), where t = min{m, 2r — 2}.

7 )

Finally, we establish the relationship between ZRM (r,m), ZRM*(r,m) and the
class of quaternary codes QRM (r,m).
Recall the definition of codes SRM (r,m) € QRM(r, m)

SRM(r,m) = <{PI(U17 o) | ] < T}>4>

and let SRM (r,m) = ¢(SRM(r,m)).

Neither ZRM(r,m) nor ZRM*(r,m) belong to the class QRM (r,m) because
they are not quaternary codes of type 4%, where k = 1+ (7) + (3) +-- -+ (") (Results
8.20, 8.24).
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However, we obtain the following inclusions:
SRM(r—1,m) C ZRM*(r,m) C SRM(r,m),

and

SRM(r—1,m) C ZRM(r,m) C SRM(t,m),

where t = min{2r — 2, m}.
Finally, SRM(r—1,m) C ZRM(r, m) and rank(SRM(r—1,m)) = dim(ZRM(r,m)) =
rank(ZRM*(r,m)). Hence,

(SRM(r —1,m)) = (ZRM*(r,m)) = ZRM(r,m).

8.2 Future research

In this section, we point out some still open problems that derive from the dissertation.
The first block of open questions is about the relationship between Reed-Muller codes

and quaternary codes.

e We have determined how many nonisomorphic Z4-codes C there are such that
¢(C) is permutation-equivalent to RM (r,m) when r = 0,1, m — 1,m, and the
type of such codes is given. There is still remaining the case r = 2 in order to
determine the number and the type of nonisomorphic quaternary code C such

that ¢(C) is permutation-equivalent to RM (r, m) whenever it is Z4-linear.

e Among all the unsolved problems, the one we thought is the most important
is to find the minimum quaternary code containing RM (r,m). Even though
we supposed that ZRM (r,m) is such minimum quaternary code, we only have
proved that it is the minimum under a specific extended Gray map but not in

general.

e [f the minimum quaternary code of last point is found, it would be interesting

to determine, as in the case of Zy-linear Reed-Muller codes, the number and the
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types of nonisomorphic Z4-codes such that their image, under a general Gray
map, have the same dimension as the minimum quaternary code containing

RM (r,m).

We have seen that, given a code C € QRM(r,m), we can construct different

chains of codes in QRM (r, m) containing C. However, there are many open questions

related to the chains of codes in QRM(r, m).

e The chain I'graq is a self-dual chain, whereas I'sgaq is not. We would like to
determine if for any code C € QRM (r, m) there exist a self-dual chain of codes
containing C. And, otherwise, which are the properties of a code to be included

in a self-dual chain.

o If (Cy,...,Cpy) €T, and d(Cy,...,Cy) = (do,...,dn_1), we know that d;
and d,,,_s are the maximum possible minimum distance when C'; is a quaternary
Kerdock-like code and C,,_5 is a quaternary Preparata-like code. Note that for
m odd, m > 3, I'gra contains both, a quaternary Kerdock-like and Preparata-

like code.

We would like to determine if the minimum distance of codes in I'graq is the
maximum value for any minimum distance of a code in ORM with the same
parameters of r and m. If not, it would be nice to determine if it is possible
to construct a chain where all codes have the minimum distance as high as

possible.

From Reed-Muller codes, we obtain several constructions of quaternary codes re-
lated to them (via the Gray map or the modulo 2 map). Nevertheless, there are other
constructions of additive codes related to Reed-Muller codes; they are called Addi-
tive Reed-Muller codes, ARM, g(r,m) (see [PR97a]). Such a construction provides
codes that are subgroups of Z§ x Zf; that is, additive codes of type (o, 3). Moreover,
ARM, o(r,m) = RM(r,m) and ARM,3(r,m) = ZRM(r,m). In order to extend

some results of this dissertation, it would be interesting to calculate the rank and the
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kernel of ARM, (r, m) codes or determine the linearity of the image under ¢ of such

codes.
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