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in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer Science

by Cristina Fernández Córdoba
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Abstract

In this dissertation, we will study deeply Reed-Muller codes together with two families

of Z4-codes related to them. These families are QRM(r, m) and ZRM(r, m).

It is known thatQRM(r, m) modulo 2 is exactly, the Reed-Muller code RM(r, m).

Moreover, the Kerdock code and its Z4-dual code, a Preparata-like code, are obtained

as images of someQRM(r, m) codes via the Gray map. We will generalize such family

of codes to the class of codes QRM(r, m). Any code in this class modulo 2 is a Reed-

Muller code and it will be proven that any Kerdock-like and Preparata-like code is

the image of a code in QRM(r, m) via the Gray map. The properties of codes in the

class will be studied and we will calculate the rank and the dimension of the kernel of

these codes. Moreover, we also give different constructions of codes in QRM(r, m)

and consider chain of codes in such class. We will determine some properties of such

chains concerning the duality and minimum distance of codes in the chain.

Codes ZRM(r, m) were defined in order to determine the Z4-linearity of Reed-

Muller codes. There were two different definitions of ZRM(r, m) codes (denoted

ZRM(r, m) and ZRM∗(r, m)) that coincides if and only if the related RM(r, m)

code is Z4-linear. Thus we calculate the rank and the dimension of the kernel of both

ZRM(r, m) and ZRM∗(r, m) codes. Finally, we relate both codes with codes in

QRM(r, m) and Reed-Muller codes.

v
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Chapter 1

Introduction

The origin of codes was the aim of correcting errors on noisy communication channels.

It was in the late 1940’s when Golay, Hamming and Shannon studied that engineering

problem from a mathematical point of view and that marked the beginning of today’s

coding theory.

Historically, linear codes have been the most studied types of codes. Due to

their algebraic structure, they are easy to describe, construct, encode and decode.

Whenever a code is not linear, there are two parameters or invariants of the code

that give the information about how far is that code to be linear; these are the rank

and the dimension of the kernel. It was around 1970 that were constructed some

nonlinear codes having twice as many codewords as any known linear code with the

same length and minimum distance. Among these codes, there are the Nordstrom-

Robinson, Preparata and Kerdock codes.

About 20 years later, an important step in coding theory was achieved. It was

proven that nonlinear codes mentioned above could be considered as the image under a

called Gray map of additive codes over Z4 [HKC+94]. They are called Z4-linear codes.

The Preparata code is not a Z4-linear code but a code with the same parameters;

it is called a Preparata-like code. It also was given that the Z4-dual code of the

Kerdock code is the Preparata-like code mentioned above. In fact, there are many

1



2 CHAPTER 1. INTRODUCTION

nonequivalent codes with the same parameters of the Preparata code; that is many

nonequivalents Preparata-like codes [Kan83]. Z4-dual code of any Preparata-like code

is called a Kerdock-like code. Any additive Preparata-like and Kerdock-like code is

Z4-linear code.

In 1989 propelinear codes were introduced [RBH89]. The difference with linear

codes is that, given two codewords x and y, the sum of such codewords may not

belong to the code but it belongs the sum of x and a permutation (associated to x) of

y. Both linear and Z4-linear codes turn out to be propelinear codes. Among the most

important propelinear codes are those being 1-perfect with an Abelian structure that

corresponds to codes which are isomorphic to a subgroup of Z
k
2 × Z

n−k
2

4 .

One of the simplest and most important families of linear codes are the Reed-

Muller codes, RM(r, m). Recall that some photographies of Mars were transmitted

by the Mariner 9 spacecraft on 19 January 1972 using the first-order Reed-Muller

code RM(1, 5) (one of these pothografies can be found in [MS77, Figure 14.7]). The

importance of these codes lies in the fact that they are relatively easy to encode and

decode by using majority-logic circuits. Moreover, they are of mathematical interest

due to the fact that they are related to finite affine and projective geometries. In

general, RM(r, m) are not Z4-linear codes. However, there are some values for the

parameters r and m for which such codes are Z4-linear. There are two families of

Z4-codes related to them: QRM(r, m) and ZRM(r, m) codes. Let QRM(r, m) and

ZRM(r, m) denote their binary image under the Gray map.

The first family, QRM(r, m) codes, is important because Preparata-like and Ker-

dock codes are QRM(r, m) codes. The inverse image of Preparata-like and Kerdock-

like codes under the Gray map are called quaternary Preparata-like and Kerdock-like

codes respectively. RM(r, m) codes are obtained from QRM(r, m) codes by apply-

ing the modulo 2 map. The second family was defined to prove the Z4-linearity of

Reed-Muller codes, whenever they are Z4-linear. The purpose of this dissertation is

to study deeply both families of codes and establish the relationship between them

together with Reed-Muller codes.
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Firstly, due to the fact that Preparata-like and Kerdock codes are QRM(r, m)

codes and there are nonequivalent Preparata-like and Kerdock-like codes, we gener-

alize QRM(r, m) codes to the class QRM(r, m). All quaternary Preparata-like and

Kerdock-like codes belong to QRM(r, m) and, any code C in this class modulo 2

is a Reed-Muller code. Image under the Gray map of codes in QRM(r, m) are not

linear codes in general. Thus, we would like to establish which is the rank and the

dimension of the kernel of codes in the class QRM(r, m). In particular, we would

obtain the rank and the dimension of the kernel of the family of codes QRM(r, m).

Related to the Z4-linearity of RM(r, m) codes, we would like to determine which

is the minimum Z4-linear code containing RM(r, m) codes. ZRM(r, m) codes are

defined such that φ(ZRM(r, m− 1)) = RM(r, m)) when RM(r, m) is Z4-linear. We

would like to determine their rank and their dimension of the kernel and prove that

the minimum Z4-linear code containing RM(r, m) is, in fact, φ(ZRM(r, m)).

The organization of this dissertation is the following.

Chapter 2 is an overview of coding theory in general. It contains basic definitions

that will be used along the whole dissertation. There are, in particular, definitions

and some properties of linear codes, 1-perfect and propelinear codes. The Z4-codes

are studied in Chapter 3. The Gray map and its extensions are shown and the

binary image of these codes via the Gray map is considered. After that, the theory

of additive codes is given in Chapter 4. Starting from association schemes, we then

introduce some particular types of additive codes: Z2k-codes and binary mixed group

codes. Some of the most important class of additive codes, the 1-perfect additive

codes and extended 1-perfect additive codes, will be presented in Subsections 4.4

and 4.5 respectively. Last subsection, 4.6, corresponds to the punctured extended

1-perfect Z4-linear codes. The existence, the rank and the dimension of the kernel

are established for all these 1-perfect codes.

In Chapter 5, first of all we will review definitions, known properties and con-

structions of Reed-Muller codes. Then, we will present the known statements about

their Z4-linearity and will study the minimum Z4-code containing φ−1(RM(r, m)) for
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some specific extended Gray map φ. That way, we obtain an upper bound of the

number of codewords of the minimum Z4-linear code containing RM(r, m) codes.

Even though there are some contributions about Reed-Muller codes in Chapter

5 (specially, the part concerning quaternary codes), Chapters 6 and 7 are the main

core of this work.

The family of QRM(r, m) codes are studied in Chapter 6. We introduce the class

QRM and present definitions, properties and several constructions of codes in this

class. Then, we establish the rank and the dimension of the kernel of codes in this

class. Finally, we develop some construction of chains of codes in QRM and we

describe some of their properties.

In Chapter 7 we review the different definitions of ZRM codes. In the literature

there are two different definitions ([HKC+94], [Wan97]) of the family of ZRM codes.

Both families of codes are denoted ZRM(r, m) and ZRM∗(r, m). We establish that

the families ZRM(r, m) and ZRM∗(r, m) only coincide when the associated Reed-

Muller code is both linear and Z4-linear. Otherwise we have that the binary images

ZRM∗(r, m) and ZRM(r, m) of ZRM∗(r, m) and ZRM(r, m) respectively, satisfy

that
〈

ZRM∗(r, m)
〉

= ZRM(r, m). We prove that, for all r, ZRM(r, m) are linear

codes. ZRM∗(r, m) are not linear codes and we compute the rank and the dimension

of the kernel.

Finally, in Chapter 8 we summarize the obtained results and give the conclusions

of the dissertation together with the open problems and future lines of research.



Chapter 2

Coding theory

In this chapter we will give basic definitions and known results about general codes

which will be used in the subsequent chapters. Apart form general definitions in

Section 2.1, we will focus on some particular types of codes. First, an overview

of linear codes is given in Section 2.2. The next section is about 1-perfect codes:

definitions and existence, description of STS and invariants related to these codes,

constructions and, finally, some results about their rank and their dimension of the

kernel. Section 2.4 concludes the chapter with propelinear codes.

2.1 Basic definitions

Let F
n
q be a vector space of dimension n over the Galois Field Fq = GF (q), where

q ≥ 2 is a prime power. A subset C of F
n
q is called a code of length n, and the

elements c ∈ C are codewords. When C is a linear subspace of F
n
q , C is called a

linear code; in that case, the sum of any two codewords is also a codeword. If C is

a subgroup of F
n
q then C is called a group code. Unless stated otherwise, we shall

assume that q = 2; so that GF (2) = F2, and hence, we denote by Z
n
2 the additive

group of F
n = F

n
2 . C ⊂ F

n is called a binary code.

A code C is called a systematic code if there exist coordinates i1, · · · , ik, such that

5



6 CHAPTER 2. CODING THEORY

C restricted to these coordinates generates F
k and |C| = 2k.

The Hamming distance between vectors x, y ∈ F
n is the number of coordinates in

which x and y differ. We will denote the Hamming distance by d( , ). The Hamming

weight of a vector x is the number of nonzero coordinates and it is denoted by wt(x).

We define the Hamming weight by means of the Hamming distance as wt(x) = d(x, 0),

where 0 is the all-zeroes vector. If C ⊂ F
n is a binary code, then we assume, unless

it is said otherwise, that 0 ∈ C.

The metric used in codes as subsets of F
n will be the Hamming metric. Other

no-Hamming metrics can be found in [Mar01] .

For X ⊂ F
n and v ∈ F

n, we define the distance of v to X, denoted by d(v, X), as

the minimum distance of v to any vector in X:

d(v, X) = min{d(v, x)|x ∈ X}.

Let C be a code. The minimum distance of C is

dC = min{d(x, y)|x, y ∈ C, x 6= y},

and the minimum weight of C is

wtC = min{wt(x)|x ∈ C, x 6= 0}.

We denote dC as d when there is no ambiguity.

Let Ai be the number of codewords of Hamming weight i in C, then {A0, · · · , An}
is called the weight distribution of C. The weight enumerator of C is defined as the

polynomial

WC(X, Y ) =

n
∑

i=0

AiX
n−iY i. (2.1)

WC is an homogeneous polynomial of degree n in X and Y . There is another way

of writing this polynomial:

WC(X, Y ) =
∑

c∈C

Xn−wt(c)Y wt(c). (2.2)
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The error correcting capability e of a code C is e =

⌊

d− 1

2

⌋

. In this case, we say

that C is e-error correcting.

Consider the translate classes of C, C + x = {y + x|y ∈ C}, where x ∈ F
n. If C

is linear then the translate classes are also called cosets. Each vector of F
n of weight

less or equal to e is in a different translate of C. A code C is called distance invariant

if the weight distribution of C+x is the same for any x ∈ C. If C is distance invariant

and 0 ∈ C then the minimum weight and the minimum distance coincide.

For u = (u1, · · · , un), v = (v1, · · · , vn) ∈ F
n, the scalar product between u and v

is u · v = u1v1 + · · · + unvn. If u · v = 0 then u and v are called orthogonal. Let C

be a code, we define the orthogonal code of C, denoted by C⊥, as the set of vectors

which are orthogonal to all codewords of C

C⊥ = {u ∈ F
n|u · c = 0 ∀c ∈ C}.

When C is a linear code, C⊥ is called the dual of the code C.

If C ⊆ C⊥ then C is called a self-orthogonal code and, if C = C⊥ then C is called

a self-dual code.

Two structural properties of codes are the rank and the kernel. The rank of C,

rank(C), is the dimension of the subspace spanned by C. If C is a code of length n

and rank(C) = n, then we say that C is a full-rank code. The kernel of C is defined

as

ker(C) = {x ∈ C|C = C + x};

and it is the set of vectors in C that leave C invariant under translation. In general,

if 0 ∈ C, then ker(C) is a linear subspace. C can be written as the union of cosets

of ker(C), and ker(C) is the largest such linear code for which this is true (see

[BGH83]). The dimension of the kernel of C is denoted by dim(ker(C)). If C is

linear, then ker(C) = C and rank(C) = dim(ker(C)). In some sense, the rank and

kernel of a code give some information on its linearity.

The group of coordinate permutations π : C −→ C is denoted by Aut(C). An

isometry of a binary code is a distance-preserving 1-1 mapping ϕ : C −→ C. An
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isometry ϕ of F
n can always be represented by a translation plus a coordinate per-

mutation, i.e., ϕ(y) = x + π(y) (see [BE48]). Isometries of a code form a group,

Iso(C). Given two codes, C1, C2, we say that these codes are isomorphic if there

exists a coordinate permutation π such that C1 = π(C2). C1 is equivalent to C2 if

there exist an isometry ϕ such that C1 = ϕ(C2).

Let C be a code in F
n and ? an operation defined in C. We will write (C, ?) to

emphasize this operation. Assume the operation ? induces an action ? : C × F
n −→

F
n. The action ? is a Hamming-compatible action if

d(x, x ? v) = wt(v), (2.3)

for all x ∈ C and for all v ∈ F
n.

A binary code (C, ?) of length n is a Hamming-compatible group code if (C, ?) is

a group and it is possible to extend ? : C × F
n −→ F

n to a Hamming-compatible

action.

2.2 Linear codes

Let C ⊂ F
n be a code. If C is a linear code we will denote it by C(n, k), where n is

the length of the code and k is its dimension, that is, the dimension of the subspace C

in F
n. The number of codewords is |C| = 2k. Note that rank(C) = dim(ker(C)) = k.

If C is a linear code, then C + x = C for all x ∈ C; hence, every linear code

is a distance-invariant code. As a consequence, the minimum weight and distance

coincide. We can also consider the code as (C, +), where + is the usual sum of

vectors in F
n, that is, a Hamming-compatible group code.

Let C be a linear code. As C is a linear subspace in F
n of dimension k, there

exist k linearly independent codewords x1, · · · , xk in C such that

C =< x1, · · · , xk >,
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where xi = (xi1, · · ·xin) ∈ C. So, the matrix

G =





















x11, · · · , x1n

...
...

...

xi1, · · · , xin

...
...

...

xk1, · · · , xkn





















(2.4)

is called a generator matrix of C(n, k). In this way, any codeword c ∈ C is given by

a linear combination of the rows of G

c = λ1x1 + · · ·+ λkxk,

that is,

c = (λ1, · · · , λk)G,

where λ1, · · · , λk ∈ F.

The dual code C⊥ has dimension n− k; in fact, it is a linear code C⊥(n, n − k).

Let H be a generator matrix of C⊥. x ∈ F
n is a codeword of C if and only if xH t = 0,

where H t denotes the transposed matrix of H. H is called a parity check matrix of

the code C. Moreover, if G is the generator matrix of C, then G is the parity check

matrix of C⊥.

A linear code is a systematic code if it has a generator matrix that contains

the identity matrix of dimension k. We assume, without loss of generality, that the

identity matrix is given by the first k coordinates. Let C be a binary linear systematic

code with generator matrix

G =
(

Id P
)

where Id is the (k × k) identity matrix and P is a
(

k × (n − k)
)

matrix. Then, a

parity check matrix of C is the matrix given by

H =
(

P⊥ Id
)

where Id is the
(

(n− k)× (n− k)
)

identity matrix.
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Example 2.2.1. Hamming codes.

A Hamming code Hr is a linear code Hr(n = 2r − 1, k = 2r − 1− r) with minimum

distance d = 3, for r ∈ {2, 3, ...}. The
(

(n− k)× n
)

-matrix, H, with columns all the

different non-zero vectors of length n− k is a parity check matrix of Hr. Then,

Hr = {x ∈ F
n|xH t = 0}

Let r = 3, then n = 7 and k = 4. Let H be a parity check matrix of H3:

H =









0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1









A generator matrix of H3 is

G =















1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1















The codewords of H3, generated by the rows of G, are:

0000000 1111111

1000011 0111100

0100101 1011010

0010110 1101001

1110000 0001111

0011001 1100110

0101010 1010101

1001100 0110011

Note that the weight distribution of H3 is

{1, 0, 0, 7, 7, 0, 0, 1}.
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The following theorem, that can be found in [MS77], shows that the weight enu-

merator of the dual code C⊥(n, n − k) of a binary linear code C(n, k) is uniquely

determined by a linear transformation of the weight enumerator of C(n, k).

Theorem 2.1 (MacWilliams identity). Let C(n, k) be a linear code and C⊥(n, n−
k) its dual, then

WC⊥(X, Y ) =
1

|C|WC(X + Y, X − Y ).

Example 2.2.2. Let H3(7, 4) be the Hamming code defined in Example 2.2.1. Then

WH3(X, Y ) = X7 + 7X4Y 3 + 7X3Y 4 + Y 7

WH⊥

3
(X, Y ) = X7 + 7X3Y 4

It is easy to check that these weight enumerators verify the MacWilliams identity.

For more information about Hamming codes and linear codes in general, see

[MS77].

2.3 Perfect codes

A binary code C of length n is perfect if for some integer r ≥ 0 every x ∈ F
n is within

distance r from exactly one codeword of C. Note that this definition coincides with

the one given in the last section with r = e. C will be called perfect e-error correcting

code or e-perfect code to emphasize the parameter e.

It is shown in [Tie73] and [ZL73] that the only binary perfect codes of length n

are:

• trivial codes:

– F
n: d = 1 and e = 0.

– {x}: e = n.

• repetition code, {0, 1} (and equivalents): n odd, d = n and e =
n− 1

2
.
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• binary Golay code: n = 23, d = 7 and e = 3.

• 1-perfect codes: n = 2m − 1, d = 3 and e = 1.

For any m ≥ 2, there exists a Hamming code of length n = 2m − 1. Moreover,

if C is a 1-perfect code, then the weight distribution of C is the same as the weight

distribution of a Hamming code with the same length. For n = 3, the Hamming

code is, in fact, the repetition code of length 3. If n = 7, then the Hamming code is

the only 1-perfect code up to equivalence. In the case e = 3, the Golay code is also

unique up to equivalence (see [Ple68],[Sno73],[DG75]). Thus, the only parameters for

which there exists nonequivalent binary perfect codes are e = 1 and n = 2m − 1 with

m ≥ 4.

2.3.1 STS and invariants of 1-perfect codes

A 1-perfect linear code of length n = 2m − 1 is equivalent to a Hamming code. The

nonlinear 1-perfect codes are, however, not fully classified. There are many invariants

of 1-perfect codes that are used to study these codes and to try to distinguish between

nonisomorphic 1-perfect codes.

The two main invariants of such codes, even though they do not classify them

completely, are the rank and the dimension of the kernel. They were defined in

Section 2.1 and, due to the importance of these invariants, they are studied in greater

details along the dissertation. Other invariants are those related to the Steiner triple

systems. To give these invariants, it is necessary to define the Steiner triple system

and see its relationship with 1-perfect codes.

A Steiner triple system is an ordered pair (V, B) where V is a finite set of points

called vertices, and B is a set of 3-subsets of V called blocks such that each pair of

elements of V is contained in exactly one block of B. If n = |V |, then we say that n

is the order of the Steiner triple system and it is denoted by STS(n) or simply, STS.
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Example 2.3.1. Let V = {1, 2, · · · , 7} be the set of vertices and

B = {(1, 6, 7), (2, 5, 7), (3, 5, 6), (1, 2, 3), (3, 4, 7), (2, 4, 6), (1, 4, 5)}.

be the set of blocks. Then, (V, B) is a Steiner triple system of order 7 and it is called

the projective plane of order 2 or the Fano plane. The Figure 2.1 shows this STS(7).

Figure 2.1: STS(7)

Given two STS(n), (V, B) and (V, B ′), we say that they are isomorphic if there

exists a permutation π on the set V such that B = π(B ′).

Proposition 2.2 ([AJMJ67],[GvT75]). If C is a 1-perfect code of length n con-

taining the zero vector, then the minimum weight codewords (of weight 3) in the code

form an STS(n) by considering blocks as {(i, j, k)} where (i, j, k) are the support of

all the codewords of weight 3 in C.

The STS obtained in this way is denoted STS0.
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Example 2.3.2. Consider the Hamming code H3 of Example 2.2.1. The following

table shows the codewords of weight 3 in H3 and the blocks related to them:

1000011 − (1, 6, 7)

0100101 − (2, 5, 7)

0010110 − (3, 5, 6)

1110000 − (1, 2, 3)

0011001 − (3, 4, 7)

0101010 − (2, 4, 6)

1001100 − (1, 4, 5)

From H3, it yields the STS(7) (V, B), with V = {1, 2, · · · , 7}, and

B = {(1, 6, 7), (2, 5, 7), (3, 5, 6), (1, 2, 3), (3, 4, 7), (2, 4, 6), (1, 4, 5)}.

Note that this STS(7) coincides with the one given in 2.3.1. In fact, STS(7) is unique

up to isomorphism.

Let C be a 1-perfect code. Let v ∈ C. The set of codewords w ∈ C at distance

three from v is a Steiner triple system, denoted by STSv, taking as the set of blocks

B the support of all the vectors v + w, where w is at distance 3 from v.

Note that starting from a 1-perfect code C, we can obtain different STS’s; for

instance, STS0, STSv, etc. These STS’s may or may not be unique. In that sense,

we will give some algebraic results that limit the possibilities of the STS’s obtained.

Proposition 2.3. ([Bor98]) A 1-perfect code C of length n ≥ 3 is a linear code if

and only if

STSv = STSw, for all v, w ∈ C.

Proposition 2.4. ([Bor98]) Let C be 1-perfect code of length n ≥ 3 with kernel

ker(C). If v ∈ ker(C) + w, for v, w ∈ C, then STSv = STSw.

If two codes C, C ′ are isomorphic, then the Steiner triple systems obtained from C

and C ′ by Proposition 2.2 are isomorphic and the invariants related to them coincide.
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Nevertheless, two nonisomorphic codes can give the same STS and, hence, the same

invariants. In this way, invariants related with STS’s give information about the

nonisomorphism of 1-perfect codes.

On the other hand, the number of nonisomorphic STS(n) (see [MPR83]), N(n),

is given by

N(n) = nn2(1/6+o(1)).

Hence, there are 80 nonisomorphic STS(15), that are listed in [WCC19], but for

n = 31 there are ≈ 10200 nonisomorphic STS’s. That way, the only invariants related

with STS’s given in this section are those related to STS(15).

There are some invariants that do not distinguish completely the nonisomorphic

STS’s. Among these invariants, in [MPR83] we can find the cycle vector, cycles

through elements, the compact train or the representative k-coloring of triples. Also

in [Dej94] we find the STS-graph invariant, H(C), that belongs to this class.

Now we will list some complete invariants of STS’s which allow us to distinguish

completely nonisomorphic STS’s. The first complete invariants were the cycle struc-

ture and trains that appeared in [MPR83]. Later, we can find fragments in [LeV95]

and the characteristic vector in [Rif99]. Finally, in [DD02] there is a refinement of

H(C), Hker(C)(C), called the STS-graph of C modulo the kernel.

2.3.2 Constructions of 1-perfect codes

Nonlinear 1-perfect codes were first constructed by Vasil’ev. A generalization of the

Vasil’ev construction was given by Mollard. Other constructions of nonlinear 1-perfect

codes have been subsequently presented by Phelps, Solov’eva and Bauer et al. Some

of these constructions will be shown in this section. To obtain more information

about constructions of 1-perfect codes, see [EV94] and [Vil01].

A code C of length n + 1 = 2m is extended perfect if it is obtained from a perfect

code of length n by extending with either an even or odd parity coordinate.
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Vasil’ev construction

For v ∈ F
n, define p(v) = wt(v) (mod 2). Let Cn be a 1-perfect code of length

n = 2m − 1. Let f : Cn −→ {0, 1} be an arbitrary mapping such that f(0) = 0 and

f(c1) + f(c2) 6= f(c1 + c2) for all c1, c2 and c1 + c2 ∈ Cn.

Proposition 2.5 ([Vas62]). The code C2n+1 defined by

C2n+1 = {(v|v + c|p(v) + f(c)) : v ∈ F
n, c ∈ Cn},

where | denotes the concatenation, is perfect.

Mollard gives a construction that is, in a sense, a generalization of the one given

in Proposition 2.5. It is defined as follows.

Let x = (x11, x12, · · · , x1n2 , x21, x22, · · · , xn1n2) ∈ F
n1n2 . Define the generalized

functions p1(x) = (σ1, · · · , σn1) ∈ F
n1 and p2(x) = (σ′

1, · · · , σ′
n2

) ∈ F
n2 by setting

σi =
∑n2

j=1 xij and σ′
j =

∑n1

i=1 xij. Let C1 and C2 be two 1-perfect codes of lengths n1

and n2, respectively. Let f : C1 −→ F
n2 be an arbitrary mapping.

Proposition 2.6 ([Mol86]). The code F defined by

F = {(x|c1 + p1(x)|c2 + p2(x) + f(c1)) : x ∈ F
n1n2, c1 ∈ C1, c2 ∈ C2}

is a 1-perfect code of length n = n1n2 + n1 + n2.

Note that for n2 = 1 it coincides with the Vasil’ev construction.

Doubling construction

The following construction of 1-perfect codes of length 2n+1 from 1-perfect codes of

length n is due to Phelps and Solov’eva.

Let ei be the vector with 1 in the coordinate i and 0 elsewhere. Let X ⊂ F
n and

Y ⊂ F
m. Then, the direct sum of X and Y , denoted by X ⊕Y ∈ F

n+m is as follows:

X ⊕ Y = {(x, y)|x ∈ X, y ∈ Y }
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Let C1 be a 1-perfect code of length n and let C∗
2 be an extended 1-perfect code of

length n + 1.

Proposition 2.7 ([Phe83], [Sol81]). The code

C = (C1 ⊕ C∗
2 )

n
⋃

i=1

(C1 + ei ⊕ (C2 + eπ(i))
∗),

where π is a permutation on the set {1, 2, · · · , n}, is a 1-perfect code of length 2n+1.

The next proposition gives a more general variant of the above construction.

Let E
n be the set of all even weight vectors of F

n. Let C∗
0 , C

∗
1 , · · · , C∗

n and

D∗
0, D

∗
1, · · · , D∗

n be partitions of E
n+1 and F

n+1\En+1 respectively, into extended 1-

perfect codes by extending with an even parity coordinate the first ones and with

an odd parity coordinates the second ones. Let π be a permutation on the set

{0, 1, · · · , n}.

Proposition 2.8 ([Phe83], [Sol81]). The code C defined by

n
⋃

i=1

C = {(c|d) : c ∈ C∗
i , d ∈ D∗

π(i)}

is an extended 1-perfect code of length 2n + 2.

Puncturing any coordinate of C yields a 1-perfect code of length 2n + 1 .

Switching construction

This construction consists of starting with a 1-perfect code C of length n and switching

out one specially selected set of codewords S ⊂ C for another set of vectors S ′. The

resulting code C ′ = (C\S) ∪ S ′ is a 1-perfect code.

The first approach of this construction was due to Solov’eva in 1988 (see [Sol88]).

Others approaches can be found in [Sol00], [AS97] and [PL95]. We will present the

one due to Phelps and LeVan.
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For a 1-perfect code C of length n, we define the minimum distance graph of C

as a graph G(C) = (C, E) with the codewords in C as vertices and edges [x, y] ∈ E

if and only if d(x, y) = 3.

We define a subgraph Gi(C) = (C, Ei) as the subset Ei of all the edges in G(C)

where the codewords x and y disagree at the ith coordinate (see [Sol88]).

Define Ti to be the linear subcode of a Hamming code, H, generated by the

codewords of weight 3 having a 1 in the ith component. There will be a path from x to

y in Gi(H) if and only if there is a sequence of codewords of weight 3 t1, t2, · · · , ts ∈ Ti

such that x + t1 + t2 + · · ·+ ts = y, that is equivalent to y ∈ Ti + x. Thus, Ti + x is a

component of Gi(H).

Proposition 2.9 ([PL95]). Given a Hamming code Hm of length n = 2m− 1, let Ti

be the linear subcode of Hm, xi ∈ Hm. Then

C = (Hm\(Ti + xi)) ∪ (Ti + xi + ei)

is a nonlinear 1-perfect code of length n, ∀i ∈ {1, · · · , n}.

2.3.3 Rank and kernel of 1-perfect codes

Let C be a 1-perfect code. We have seen that if C is linear, then dim(ker(C)) is

equal to the dimension of the code. When C is a nonlinear code, then

dim(ker(C)) ≤ log2|C| − 2

Moreover, as 1-perfect codes are diametrically opposite, then 0 and 1 belong to the

kernel and hence, dim(ker(C)) is at least 1. Indeed, if n = 2m − 1 is the length of

the code, then dim(ker(C)) ∈ {1, 2, · · · , 2m −m− 3} or dim(ker(C)) = 2m −m− 1

and C is a linear code.

Etzion and Vardy proved in [EV94] that there exist 1-perfect codes with any

possible rank. In [PL95] Phelps and LeVan obtained 1-perfect codes with kernels of

all possible sizes:
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rank(C) ∈ {n−m, · · · , n}

dim(ker(C)) ∈ {1, 2, · · · , n−m− 2, n−m}

and they are related. The natural question, appeared in [EV98], was for which pairs of

values (r, k) there exist a 1-perfect codes having rank(C) = r and dim(ker(C)) = k.

There are some theorems in [VP02] that establish the exact upper and lower

bounds on the kernel dimension by means of the rank of codes of length n = 2m − 1

except for the case rank(C) = n and m ≥ 4. Lately, in [EV98], it is shown that

for m ≥ 10 this upper bound is tight for full-rank codes. Finally, Solov’eva et al.

have determined in [AHS03] all allowable parameters (r, k) except to in the case of

full-rank codes (r = n).

2.4 Propelinear codes

In 1989 the propelinear structure was introduced in [RBH89] with the purpose of

studying the algebraic structure of completely regular codes (not necessarily linear

codes) associated with distance-regular e-latticed graphs. Lately, this structure was

studied apart from graphs, in propelinear codes, as we will do in this dissertation.

Let C be a subset of F
n and let Sn denote the symmetric group of permutations of

the set {1, 2, · · · , n}. Let π ∈ Sn. For any vector v = (v1, · · · , vn) ∈ F
n, we write π(v)

to denote the vector (vπ−1(1), · · · , vπ−1(n)). We will denote the identity permutation

by Id.

Definition 2.4.1. C ⊆ F
n is called a propelinear code if ∀v ∈ C there exists πv ∈ Sn

such that:

i) ∀c ∈ C : v + πv(c) ∈ C,

ii) ∀c ∈ C : πv ◦ πc = πm, where m = v + πv(c).
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2.4.1 Algebraic structure of propelinear codes

Let C be a propelinear code. Given x, y ∈ C we define the binary operation ? as

x ? y = x + πx(y). (2.5)

The operation ? is closed in C and for all x ∈ C we have that x ? y = x ? z if and

only if y = z and hence, C ? C = C . The vector 0 is always a codeword in C with

permutation associated π0 = Id, the identity permutation. Thus, as we can see in

([RBH89]), (C, ?) is a group, which is not Abelian in general, with 0 as the identity

element, and x−1 = π−1
x (x) as the inverse element of x ∈ C. The set Π = {πx| x ∈ C}

is a subgroup of Sn with the usual composition of permutations. There are different

ways to refer to a propelinear code C: (C, Π) is used to emphasize the permutation

group Π whereas (C, ?) is used to emphasize the operation ?. A general propelinear

code is only denoted by C.

Note that if Π = {Id}, then C is a linear code. Hence, it is clear that every linear

code is a propelinear code. However, it is possible to construct a linear code with

different propelinear structures as we can see in ([PR97b]).

Let (C, ?) be a propelinear code. For any x ∈ C define φx : C −→ C by φx(y) =

x ? y = x + πx(y), for y ∈ C. φx ∈ Iso(C) for all x ∈ C. The following statements

can be found in [PR02].

Lemma 2.10. Let (C, ?) be a propelinear code. G = {φx|x ∈ C} is a subgroup of

Iso(C).

Proof: The operation in G is the composition of isometries; that is, φxφy(z) =

φx(y + πy(z)) = x + πx(y + πy(z)) = x ? y + πxπy(z) = x ? y + πx?y(z) = φx?y(z). φ0

is the identity element and φ−1
x = φx−1, where x−1 = π−1

x (x).

Proposition 2.11. Let (C, ?) ⊂ F
n be a group. C is a propelinear code if and only

if the group Iso(C) contains a regular subgroup acting transitively on C.
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Proof: Let (C, ?) be a propelinear code. By Lemma 2.10, G = {φx|x ∈ C} is a

subgroup of Iso(C). By definition of G it is clear that |G| = |C|. Now, given w, v ∈ C

there exist x ∈ C, x = w ? v−1, such that w = φx(v):

φx(v) = x + πx(v) = w + πw(v−1) + πwπv−1(v) = w + πw(v−1) + πw(v−1) = w.

Hence, G is a regular subgroup acting transitively on C.

Conversely, assume Iso(C) contains a regular subgroup, G, acting transitively on

C. Therefore |C| = |G|, and, for x ∈ C there exist a unique φ ∈ G such that

x = φ(0). Let call φx = φ, where x = φ(0). For x ∈ C, define πx(v) = x + φx(v) and

x ? v = x + πx(v) = φx(v). With this operation, we claim that (C, ?) is a propelinear

code. First of all, we have to prove that ∀x, v ∈ C, x + πx(v) ∈ C, but it is clear due

to the fact that x + πx(v) = φx(v) and φx ∈ Iso(C). Finally, we have to check that

πxπy = πx?y. Note that φxφy(0) = φx(φy(0)) = φx(y) = x ? y = φx?y(0) by definition

of φ, and hence φxφy = φx?y. Now, for all v ∈ C, πxπy(v) = πx(y + φy(v)) = πx(y) +

πx(φy(v)) = x + φx(y) + x + φx(φy(v)) = φx(y)+ φxφy(v) = x ? y + φx?y(v) = πx?y(v);

hence, πxπy = πx?y.

2.4.2 Translation-invariant propelinear codes

The operation defined in (2.5), ? : C × C −→ C, can be extended to

? : C × F
n −−−→ F

n

(u, v) −−−→ u ? v = u + πu(v)

Lemma 2.12. If (C, ?) is a propelinear code, then:

d(u, v) = d(x ? u, x ? v), ∀x ∈ C, ∀u, v ∈ F
n.

Proof: The claim is trivial and can be found in [RBH89] and [BR99].

Corollary 2.13. A binary propelinear code (C, ?) is a Hamming-compatible group

code.
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Proof: Let (C, ?) be a binary propelinear code. By Lemma 2.12 for every x ∈ C,

v ∈ F
n

d(x, x ? v) = d(0, v) = wt(v).

Therefore, the action ? is Hamming compatible and hence (C, ?) is a Hamming-

compatible group code.

A propelinear code (C, ?) is a translation-invariant code if

d(x, y) = d(x ? u, y ? u); ∀x, y ∈ C, ∀u ∈ F
n.

Translation-invariant codes have been studied by J. Pujol and J. Rifà in [PR97b]

where we find the characterization of conditions of propelinear codes to be translation-

invariant and a classification of these codes. Now we will show some of these results.

Lemma 2.14. Let (C, ?) be a propelinear code of length n. C is translation-invariant

if and only if for all x ∈ F
n and for all u ∈ C

wt(u) = d(x, u ? x).

As a corollary of this lemma, we obtain the following necessary condition for a

propelinear code to be a translation-invariant code.

Corollary 2.15. If C is translation-invariant propelinear code of length n, then |C| =
2k, for some k ≤ n.

For examples of non-translation-invariant propelinear codes see [PR97b].

A translation-invariant propelinear code C is a subgroup of the group Z
k1
2 ×Z

k2
4 ×

Qk3
8 , where k1 + 2k2 + 4k3 = n is the length of the code and Q8 is the non Abelian

quaternion group of eight elements (see [PR97b]). In this way, we make a partition

of the set of coordinates {1, · · · , n} in three subsets, X, Y, Z, such that:

• |X| = k1, |Y | = 2k2 and |Z| = 4k3

• CX = {(ci1 , · · · , cik1
)|(c1, · · · , cn) ∈ C, i1, · · · , ik1 ∈ X}, is a linear code,

CY = {(ci1, · · · , ci2k2
)|(c1, · · · , cn) ∈ C, i1, · · · , i2k2 ∈ Y } is a Z4-code and

CZ = {(ci1, · · · , ci4k3
)|(c1, · · · , cn) ∈ C, i1, · · · , i4k3 ∈ Z} is a quaternion code.
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We will say that such a code C, is a code of type (k1, k2, k3). Note that a code

of type (k1, 0, 0) is a linear code and a code of type (0, k2, 0) is a Z4-linear code.

Moreover, as Q8 is not Abelian, every translation-invariant Abelian propelinear code

is of type (k1, k2, 0).

Example 2.4.1 ([PR97b]). Let a = (1, 0, 1, 0) and b = (1, 0, 0, 1) be in F
4 with

permutations associated πa = (1, 2)(3, 4) and πb = (1, 3)(2, 4) respectively. Notice

that

a4 = Id, a2 = b2, a ? b ? a = b.

The propelinear code C generated by a and b is called the quaternion propelinear code

and it is isomorphic to the quaternion group Q8:

(C, Π) =< (a, πa), (b, πb) >= {(0, Id), (a, πa),

(a2, Id), (a3, πa),

(b, πb), (a ? b, πa?b),

(a2 ? b, πb), (a
3 ? b, πa?b)}

C is of type (0, 0, 1).

A code C not only have a unique representation as a code of type (k1, k2, k3);

that is, there exist codes of type (k1, k2, k3) that can be also seen as codes of type

(k′
1, k

′
2, k

′
3) 6= (k1, k2, k3). The Hamming code of length 7 is a 1-perfect linear code

and, hence, a translation-invariant propelinear code of type (7, 0, 0). In [PR97b], it is

shown that the Hamming code of length 7 is also a code of type (3, 2, 0) and a code

of type (3, 0, 1).

Example 2.4.2. The Hamming code H3 defined in Example 2.2.1 is isomorphic to

the following translation-invariant propelinear codes:

•
(C1, Π) = < ((1, 0, 0, 0, 0, 1, 1), Id),

((0, 1, 0, 0, 1, 0, 1), Id),

((0, 0, 1, 0, 1, 1, 0), Id),

((0, 0, 0, 1, 1, 1, 1), Id) >
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C1 is a linear code of type (7, 0, 0).

•
(C2, Π) = < ((1, 0, 1, 0 | 1, 0, 0), (1, 2)(3, 4)),

((1, 0, 0, 1 | 0, 1, 0), (1, 2)(3, 4)),

((1, 1, 1, 1 | 1, 1, 1), Id) >

C2 is of type (3, 2, 0) where the first four coordinates make up a Z4-linear code

and the last three coordinates correspond to the linear ones.

•
(C3, Π) = < ((1, 0, 1, 0 | 1, 0, 0), (1, 2)(3, 4)),

((1, 0, 0, 1 | 0, 1, 0), (1, 3)(2, 4)),

((1, 1, 1, 1 | 1, 1, 1), Id) >

C3 is of type (3, 0, 1). As in the last code, the three last coordinates are linear

but in this case, the first coordinates make up a quaternion code. Notice that

this code is not Abelian:

a ? b = (1, 1, 0, 0, 1, 1, 0) 6= (0, 0, 1, 1, 1, 1, 0) = b ? a.

Finally, within translation-invariant propelinear codes, we would like to charac-

terize those codes being 1-perfect. The different available values (k1, k2, k3) of such

codes were given in[PR97b].

Let C ⊂ F
n be a 1-perfect translation-invariant propelinear code of type (k1, k2, k3)

and length n. There are some conditions over k1, k2 and k3:

• k1 6= 0, because n is odd.

• k3 ≤ 1.

• If k3 = 1, k2 = 0.

Let C be a 1-perfect translation-invariant propelinear code of type (k1, k2, k3). If

k3 > 0 then, necessarily, k3 = 1 and also k2 = 0; hence, C is of type (n − 4, 0, 1).
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From [BR99] n = 2t− 1, with t ≥ 3; moreover, there is only one 1-perfect propelinear

code of type (n− 4, 0, 1).

Theorem 2.16 ([PR97b]). Let C be a 1-perfect translation-invariant propelinear

code of type (k1, k2, k3). If k3 > 0, then C is the Hamming code of length 7 and of

type (3, 0, 1).

Let C be a 1-perfect translation-invariant propelinear code. If the length of the

code is n ≥ 7 then, by Theorem 2.16, k3 = 0 or C is a Hamming code of length

7 and it also has an structure of type (7, 0, 0) or (3, 2, 0). If the length of the code

is 3, then it has a propelinear structure of type (1, 1, 0). Then, if C is a 1-perfect

translation-invariant propelinear code of length n, C is a code of type (k, n−k
2

, 0) with

an Abelian structure and it is isomorphic to a subgroup of Z
k
2 × Z

n−k
2

4 .
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Chapter 3

Z4-codes

Recently, Z4-codes have appeared in a large number of articles, for instance [HKC+94],

[BSBM97], [AGOS99], [BSC95], [CMKH96], ... There are, basically, two different

motivations to study these codes. Firstly, the best known nonlinear binary codes such

as the Nordstrom-Robinson, Kerdock, Preparata, Goethals, and Delsarte-Goethals

codes contain a larger number of codewords than any known linear codes with a fixed

block size. Hammons, Kumar, Caldermark, Sloane, and Sole [HKC+94] discovered

that these codes have a structure of Z4-codes via the Gray map. And secondly,

it was shown that self-dual Z4-codes are closely related to unimodular lattices via

Construction A4 (see, for example [BSC95] or [HSG99]).

This chapter is organized as follows. Section 3.1 include weights, distances and

weight enumerators. The different extensions of the usual Gray map is given in

Section 3.2. Then, binary images under the Gray map of quaternary codes are studied

in Section 3.3, and the linearity of such codes in Section 3.4. Cyclic codes over Z4

and Galois rings are presented in Section 3.5 to conclude, in Section 3.6 with the

most important example of cyclic code over Z4, the Kerdock code and, moreover, its

Z4-dual code, the Preparata-like code.

27
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3.1 Weights and distances

A quaternary code, or Z4-code, C of length n is a linear block code over Z4; that is, C
is an additive code of Z

n
4 . We define different weights in Z4 apart from the Hamming

weight, wt() defined in chapter 2, namely the Lee weight and the Euclidean weight.

The Lee weights of the elements 0, 1, 2, and 3 of Z4 are 0, 1, 2, and 1, respectively,

and the Lee weight wtL(x) of x ∈ C is the rational sum of the Lee weights of its

components. We define the Lee distance as we defined the Hamming distance by

means of the Hamming weight; in this sense, the Lee distance, dL(x, y) of two vectors

x, y ∈ C is wtL(x− y).

In the literature about Z4-codes, there are different definitions for the Euclidean

distance and the Euclidean weight. We show two versions where the weights of the

elements of Z4 are different from each other.

Usually, when the Z4-codes are used in communications, the elements 0, 1, 2 and

3 in Z4 are represented, respectively, as i0 = 1, i1 = i, i2 = −1 and i3 = −i in the

complex plane. In this way, in [HKC+94] and [Wan97], d2
E(ia, ib) is defined as the

square of the usual Euclidean distance between ia and ib in the complex plane. If

x = (x1, . . . , xn) ∈ Z
n
4 , then ix = (ix1 , . . . , ixn). Thus, the square of the Euclidean

distance between two vectors x, y ∈ C is given by

d2
E(ix, iy) =

n
∑

j=1

d2
E(ixj , iyj).

With this definition Zhe-Xian Wan obtained the Lee distance from the Euclidean

distance as

dL(x, y) =
1

2
d2

E(ix, iy).

Another definition was introduced in [BS94] (see also [BSC95]). The Euclidean

weight of the elements 0, 1, 2, and 3 of Z4 are respectively 0, 1, 4 and 1, and the

Euclidean weight of an element x ∈ C, wtE(x), is the rational sum of the Euclidean
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weights of its components. Hence, the Euclidean distance between two vectors x, y ∈
C, dE(x, y), is wtE(x− y).

Note that the Euclidean weights of the elements 0, 1, 2 and 3 of Z4 given in the

first definition are, respectively, 0,
√

2, 2 and
√

2 which are not the same values as

those given in the second one. The first definition is used with modulations while the

second one is used with lattices. In this section, we are going to use the first one that

is the one related with the Lee distance.

In the previous chapter, we defined the minimum (Hamming) weight and distance.

Similarly we define

min{wtL(c)|c ∈ C , c 6= 0}, min{dL(c, c′)|c, c′ ∈ C , c 6= c′}

and

min{wtE(c)|c ∈ C , c 6= 0}, min{dE(c, c′)|c, c′ ∈ C , c 6= c′}

to be the minimum Lee weight and distance and the minimum Euclidean weight and

distance of C, respectively.

For all x, y ∈ Z
n
4 , x = (x1, . . . , xn), y = (y1, . . . , yn) we define the inner product of

x and y by

x · y = x1y1 + · · ·+ xnyn mod 4.

Hence, the notions of dual code (C⊥), self-orthogonal code (C ⊆ C⊥), and self-dual

code (C = C⊥) are defined in the standard way (see [MS77]).

A self-dual Z4-code with Euclidean weight divisible by eight is called a Type II

code.

Two codes are equivalent if one can be obtained from the other by permuting

coordinates and (if necessary) changing the signs of certain coordinates. The auto-

morphism group Aut(C) of C is the group of all coordinate permutations and sign-

changes that preserve the set of codewords. Codes differing by only a permutation

coordinates are called permutation-equivalent.
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Any Z4-code C is permutation-equivalent to a code C ′ with generator matrix of

the form




Ik1 A B

0 2Ik2 2C



 ,

where A and C are matrices over Z2 and B is a matrix over Z4. We say that C is of

type 4k12k2 . Notice that C is of type 4k12k2 if and only if |C| = 22k1+k2 and the number

of order 2 codewords is 2k1+k2

We can obtain the type of a Z4-linear code when vectors in the generator matrix

have some specific properties. This is the case of the following lemma.

Lemma 3.1. Let v1, . . . , vk1, u1, . . . , uk2 be k1+k2 linearly independent binary vectors.

Then, the Z4-code generated by the matrix G with row vectors v1, . . . , vk1, 2u1, . . . , 2uk2

is of type 4k12k2.

Proof: In particular, v1, . . . , vk1 are linearly independent binary vectors and the

matrix with row vectors v1, . . . , vk1 is permutation equivalent to a matrix of the form

(

Ik1 A
)

As v1, . . . , vk1, u1, . . . , uk2 are linearly independent binary vectors, then the matrix

with these vectors as row vectors is permutation-equivalent to a matrix of the form




Ik1 A1 B1

0 Ik2 C1



 ,

where A = (A1 B1).

Similarly, we obtain that the matrix with row vectors 2v1, . . . , 2vk1, 2u1, . . . , 2uk2

is permutation-equivalent to a matrix of the form




2Ik1 2A1 2B1

0 2Ik2 2C1



 .

Therefore the Z4-linear code, C, generated by G is the Z4-linear code gener-

ated by the matrix with row vectors v1, . . . , vk1 , 2v1, . . . , 2vk1, 2u1, . . . , 2uk2 that is
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permutation-equivalent to a code with generator matrix









Ik1 A1 B1

2Ik1 2A1 2B1

0 2Ik2 2C1









.

Note that the code generated by the last matrix coincides with the code generated

by




Ik1 A1 B1

0 2Ik2 2C1



 ,

and, therefore, C is of type 4k12k2 .

3.1.1 Weight enumerators

Let C be a Z4-code of length n. There are different weight enumerators related to the

code C. First, we define the complete weight enumerator (or c.w.e.) of C by

cweC(W, X, Y, Z) =
∑

c∈C

W n0(c)Xn1(c)Y n2(c)Zn3(c),

where nk(c) is the number of components of c = (c1, . . . , cn) ∈ C that are congruent

to k (mod 4). Two codes differing by only a permutation of coordinates have the

same c.w.e., but equivalent codes may have different c.w.e.’s. We define then the

symmetrized weight enumerator (or s.w.e.), which is the appropriate weight enumer-

ator for an equivalence class of codes. The s.w.e. is obtained by identifying X and Z

in the c.w.e.:

sweC(W, X, Y ) = cweC(W, X, Y, X).

The Lee weight enumerator of C given by

LeeC(W, X) =
∑

c∈C

W 2n−wtL(c)XwtL(c)

is obtained from the s.w.e. as

LeeC(W, X) = sweC(W
2, WX, X2).
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It is a homogeneous polynomial of degree 2n. Finally, the Hamming weight enumer-

ator is also obtained from the s.w.e. as

HamC(W, X) = sweC(W, X, X).

The MacWilliams identity gives the weight enumerator for the dual code C⊥ in

terms of the weight enumerator for the code C ([MS77],[HKC+94],[Wan97]):

cweC⊥(W, X, Y, Z) =
1

|C|cweC(W + X + Y + Z, W + iX − Y − iZ, W −X + Y − Z, W − iX − Y + iZ),

sweC⊥(W, X, Z) =
1

|C|sweC(W + 2X + Y, W − Y, W − 2X + Y ),

LeeC⊥(W, X) =
1

|C|LeeC(W + X, W −X),

HamC⊥(W, X) =
1

|C|HamC(W + 3X, W −X).

3.2 The Gray map

It is known (see [HKC+94]) that binary codes such as the Nordstrom-Robinson, Ker-

dock, Preparata, Goethals, and Delsarte-Goethals codes have a structure of Z4-codes

via the Gray map. This mapping provides a one-to-one correspondence between a

Z4-code and a binary code. We will give the definition, applications and properties

of this important mapping.

First of all we will introduce the following three maps α, β and γ from Z4 to Z2

by the following table:

c α(c) β(c) γ(c)

0 0 0 0

1 1 0 1

2 0 1 1

3 1 1 0
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Note that α can be defined as the map

α(x) = x mod 2. (3.1)

Clearly, α is an additive group homomorphism from Z4 to Z2. For each element

x ∈ Z4 we have

x = α(x) + 2β(x), and

α(x) + β(x) + γ(x) = 0 mod 2, for all x ∈ Z4.

Note that γ(x) can be expressed as γ(x) = α(x) + β(x) mod 2.

Now we define the Gray map in terms of β and γ as follows:

ϕ(x) = (β(x), γ(x)) for all x ∈ Z4.

We obtain the following map:

Z4
ϕ−−−→ Z

2
2

0 −−−→ 00

1 −−−→ 01

2 −−−→ 11

3 −−−→ 10

(3.2)

We construct binary codes from quaternary codes using the extended Gray map

φ : Z
n
4 −→ Z

2n
2 given by

φ(c) = (ϕ(c1), . . . , ϕ(cn)),

where c = (c1, . . . , cn).

In the literature, one can find, basically, two different extensions of the Gray map.

The first one can be found in [BR99], [BPR03], [BPRZ03], etc, and it is given by

φ(c) = (β(c1), γ(c1), . . . , β(cn), γ(cn)), (3.3)

and the second one (see, for example, [HKC+94] and [Wan97]) is defined as

φ(c) = (β(c1), . . . , β(cn), γ(c1), . . . , γ(cn)), (3.4)
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where c = (c1, . . . , cn).

In fact, if c = (c1, . . . , cn), any coordinate permutation of

(β(c1), γ(c1), . . . , β(cn), γ(cn))

can be considered as an extension of the Gray map. That way, if φ1 and φ2 are

two different extensions of the Gray map, then there exists a coordinate permutation

π ∈ S2n such that φ1 = π ◦ φ2. In general, the properties concerning φ that will be

given in this chapter are true for any extension of the Gray map. In that case, we will

talk about a general Gray map or simply, the Gray map. Unless it is said otherwise

φ will denote a general Gray map. Whenever a specific extension of the Gray map is

needed we will refer to the exact arrangement of coordinates.

Let φ be an extended Gray map. If C is a quaternary code, then C = φ(C)
is the binary image of C under φ. We say that a binary code C is Z4-linear if its

coordinates can be arranged so that it is the image under the extended Gray map φ

of a quaternary code. Notice that this definition is equivalent to say that there exist

a different extended Gray map φ′ = π ◦ φ, π ∈ S2n, and a quaternary code C, such

that C = φ′(C).
The Gray map has the property that adjacent elements in Z4 differ by only one

binary digit. It is an important fact useful in communications systems employing

quadrature phase-shift keying (QPSK) (see Fig. 3.1). The advantage of using a

general Gray map in QPSK is that, when a codeword over Z4 is transmitted across

an additive white Gaussian noise channel, errors most likely to occur are those causing

a single erroneously decoded information bit.

The most important property of the Gray map is that φ is a weight-preserving

map from (Zn
4 , wtL), to (Z2n

2 ,wt); i.e.:

wtL(x) = wt(φ(x)), ∀x ∈ Z
n
4 ,

and φ is also a distance-preserving map from (Zn
4 , dL), to (Z2n

2 ,d); i.e.:

dL(x, y) = d(φ(x), φ(y)), ∀x, y ∈ Z
n
4 .
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2        11

3         01

1        10

0         00

{i}

{1}

{−i}

{−1}

Figure 3.1: QPSK

The minimum Lee weight and distance of C are equal to the minimum Hamming

weight and distance of C = φ(C), respectively.

The following examples provide Z4-linear codes with propelinear structure by

means of the Gray map. They can be found in [BR99].

Example 3.2.1. Let ϕ be the Gray map defined in (3.2). For all ϕ(i) ∈ Z
2
2, where

i ∈ Z4, we define the coordinate permutation σi = (12)i. (ϕ(Z4), ?) is a propelinear

code, where

ϕ(i) ? ϕ(j) = ϕ(i) + σi(ϕ(j)).

For example:

10 ? 01 = 10 + (12)3(01) = 10 + 10 = 00 ∈ ϕ(Z4).

It is easy to verify that, for i = 1, · · · , 4, ϕ(i) = ϕ(1)i = ϕ(1) ?ϕ(1) ? · · · i times, and

also

ϕ(i) ? ϕ(j) = ϕ(1)i ? ϕ(1)j = ϕ(1)i+j = ϕ(i + j).

Hence, the operation ? can also be defined as:

x ? y = ϕ(ϕ−1(x) + ϕ−1(y)),
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where x, y ∈ ϕ(Z4) and + is the usual sum in Z4. With this definition,

10 ? 01 = ϕ(3 + 1) = ϕ(0) = 00.

Example 3.2.2. Every Z4-code is a propelinear code: Let C = φ(C) be a Z4-code

where C is a subgroup of Z
n
4 . From the last example, (ϕ(Z4), ?) is a propelinear code

and it is easy to check that (φ(Zn
4 ), ?) is also a propelinear code and, consequently,

(C, ?) is a propelinear code where

x ? y = φ(φ−1(x) + φ−1(y)) (3.5)

is the operation defined in φ(Zn
4 ).

3.3 Binary images of a quaternary code

Let C be a quaternary code. Due to the linearity, C is distance invariant with respect

to the Lee weight. Hence, the binary image of C, C = φ(C) is distance invariant.

From a quaternary code C, we can define its dual code C⊥. Since in general

C = φ(C) is not linear, it need not have a dual. We define then the Z4-dual of φ(C)
to be the code C⊥ = φ(C⊥). We have the following diagram

C φ−−−→ C = φ(C)
dual





y

C⊥ φ−−−→ C⊥ = φ(C⊥)

that is not a commuting diagram in general. We call the binary codes C = φ(C) and

C⊥ = φ(C⊥) formally dual. If C is a self-dual code over Z4, then φ(C) is a formally

self-dual code, that is, a binary code whose weight enumerator is invariant under the

MacWilliams transform. We can give some information of C⊥ in terms of C by the

binary MacWilliams identity.
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Theorem 3.2. Let C and C⊥ be dual Z4-codes, and let C = φ(C) and C⊥ = φ(C⊥) be

their binary images. Then, the weight enumerators WC(X, Y ) and WC⊥
(X, Y ) of C

and C⊥, respectively, are related by the binary MacWilliams identity

WC⊥
(X, Y ) =

1

|C|WC(X + Y, X − Y ).

Proof: See [HKC+94].

If {A0, . . . , A2n} is the weight distribution of C, then its MacWilliams transform

is the weight distribution {A′
0, . . . , A

′
2n} of C⊥ and the MacWilliams transform of

{A′
0, . . . , A

′
2n} is exactly {A0, . . . , A2n}.

Hence, if C is a Z4-code and C = φ(C), then C and C⊥ are distance invariant and

the weight distribution of C and C⊥ are the MacWilliams transforms of each other.

3.4 Linearity conditions

Recall that a binary code C is called Z4-linear if, up to coordinate permutation, it

is the binary image of a quaternary code. In this section, we will give necessary and

sufficient conditions for a binary code to be Z4-linear and for a Z4-linear code to be

a binary linear code.

Let x ∈ Z4, we defined ϕ(x) as (β(x), γ(x)) (ϕ defined in (3.2)). Note that

ϕ(−x) = (γ(x), β(x)). Let σ′ = (12) ∈ S2, then σ′(ϕ(x)) = ϕ(−x). We define

the swap map, σ, as the product of all transpositions permuting the two binary

coordinates, corresponding to each Z4 coordinate. Notice that σ is related to the

extension of the Gray map.

Example 3.4.1. Let φ be the Gray map defined in (3.4). Therefore, σ is defined as

σ : (u1, . . . , un, v1, . . . , vn) −→ (v1, . . . , vn, u1, . . . , un). (3.6)
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Note that if c = (c1, . . . , cn) ∈ Z
n
4 , then

σ(φ(c)) = σ((β(c1), . . . , β(cn), γ(c1), . . . , γ(cn))) =

(γ(c1), . . . , γ(cn), β(c1), . . . , β(cn)) = φ(−c).

It is easy to check that if φ is a general Gray map, then σ(φ(x)) = φ(−x). As a

consequence, σ is a fixed-point-free involution in the automorphism group of C.

First, we will give necessary and sufficient conditions for a binary code to be

Z4-linear in the following theorem.

Theorem 3.3 ([HKC+94]). A binary, not necessarily linear, code C of even length

is Z4-linear if and only if its coordinates can be arranged so that

u, v ∈ C =⇒ u + v + (u + σ(u)) · (v + σ(v)) ∈ C,

where σ is the swap map and · is defined by

(x1, . . . , xn) · (y1, . . . , yn) = (x1y1, . . . , xnyn). (3.7)

Hence, if C is a binary linear code of even length, then C is Z4-linear if and only

if its coordinates can be arranged so that

u, v ∈ C =⇒ (u + σ(u)) · (v + σ(v)) ∈ C.

Let φ be an extended Gray map. Now we will give some linearity conditions

related to φ. Let C be a quaternary code and C = φ(C). Let x, y ∈ C. Consider the

following property (see [BPRZ03]):

φ(x) + φ(y) = φ(x + y + 2xy), (3.8)

where 2xy is 2x · y.

Note that if x, y ∈ C, then

φ(2x + y) = φ(2x) + φ(y). (3.9)
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C is a linear code if and only if for all pair of codewords x, y ∈ C, we obtain

φ(x) + φ(y) ∈ C. By (3.9), if x ∈ C is an order 2 codewords; that is, all nonzero

coordinate have value 2, then φ(x) + φ(y) = φ(x + y) ∈ C. In general, if x and y are

codewords in C, then φ(x) + φ(y) ∈ C if and only if φ(x + y + 2xy) ∈ C (by (3.8)) or,

equivalently, 2xy ∈ C.
The following theorem shows when the binary image of a Z4-linear code is linear.

Theorem 3.4. The binary image C = φ(C) of a Z4-linear code C is linear if and only

if

x, y ∈ C =⇒ 2xy ∈ C.

This Theorem can be found in [HKC+94], where instead of use 2xy, it is given the

equivalent expression 2α(x) · α(y).

3.5 Cyclic codes over Z4 and Galois Rings

A cyclic code of length n can be defined as an ideal in the ring of polynomials modulo

Xn − 1. A cyclic code of length n over the field Fq = GF (q) consists then, of all

multiplies of a certain generator polynomial g(X) which is the monic polynomial of

least degree in the code and it is divisor of Xn−1. If n and q are relative prime, then

zeros of Xn − 1 lie in the field GF (qm), where m is the least positive integer such

that n divides qm − 1. Then, to study cyclic codes over Fq we consider the Galois

field GF (qm).

Similarly, to study cyclic codes over Z4 of length n = 2m − 1 we construct the

Galois ring GR(4m) that is an extension of degree m of Z4 containing an nth root

of unity. Constructions of GR(4m) and all the statements in this subsection are in

[HKC+94] and [Wan97].

Note that GR(4m) is not a field, it contains zero divisors. We will construct

GR(4m) in two different ways: as an extension Z4[ξ] of Z4, where ξ is an nth root of

unity or as a residue classes of Z4[X] modulo Xn − 1.
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Let h2(X) ∈ Z2[X] be a primitive irreducible polynomial of degree m. There is a

unique monic polynomial h(X) ∈ Z4[X] of degree m such that h(X) ≡ h2(X) mod 2

and h(X) divides Xn − 1 mod 4 (see [CS95]). The polynomial h(X) is a primitive

basic irreducible polynomial. The way to find this polynomial by means of h2(X) is

the following. We write h2(X) as e(X)− d(X) where e(X) contains even powers and

d(X) the odd ones. Now, we obtain h(X) from h(X2) = ±(e2(X)− d2(X)). Finally,

let ξ be a root of h(X), so that ξn = 1. Then, GR(4m) is defined to be Z4[ξ]. Any

element c ∈ Z4[ξ] can be represented as (c0, . . . , cn−1), where

c =

n−1
∑

i=0

ciξ
i.

h(X) is called the Hensel lift of h2(X). The presented method is the Graeffe’s

method that is used to find a polynomial whose roots are the squares of the roots of

h2(X).

On the other hand, R = GR(4m) can be considered as

R =
Z4[X]

(Xn − 1)
.

Codewords c = (c0, . . . , cn−1) in C can be represented as polynomials in R as

c(X) =
n−1
∑

i=0

ciX
i.

A cyclic code C is an ideal in the domain R. In fact, R is a principal ideal domain

[CS95], and therefore, C =< g(X) >, where g(X) ∈ R is the generator polynomial of

the code.

Example 3.5.1. Let h2(X) = X6 +X5 +X4 +X +1. Then, e(X) = (X6 +X4 +1),

d(X) = (−X5−X) and h(X2) = e2(X)−d2(X) = X12+X10+X8+2X6+2X4−X2+1.

Hence, the Hensel lift of h2(X) is

h(X) = X6 + X5 + X4 + 2X3 + 2X2 −X + 1.

Note that h(X) = h2(X) mod2. h(X) generates a Z4-code of length n = 26−1 = 63.



3.6. PREPARATA-LIKE AND KERDOCK-LIKE CODES 41

Let f be the Frobenius map from R to R the ring automorphism defined as

R
f−−−→ F

c = a + 2b −−−→ cf = a2 + 2b2

The relative trace from R to Z4 is defined by

T (c) = c + cf + cf2

+ · · ·+ cfm−1

, c ∈ R. (3.10)

3.6 Preparata-like and Kerdock-like codes

The Preparata codes were introduced by Preparata in 1968 (see [Pre68]). This family

of nonlinear binary codes are 2-error correcting codes and generalize the Nordstrom-

Robinson code. For m ≥ 4, m even, the extended Preparata code of length 2m

denoted by Pm is a binary nonlinear code with parameters

(n, d, M) = (2m, 6, 22m−2m),

which is a union of 2(m−1)(m−2)/2 cosets of RM(m − 3, m) in RM(m − 2, m), where

RM(r, m) is the r-th order Reed-Muller code studied deeply in Chapter 5. Pm has

twice as many codewords as the 2-error correcting code BCH with the same length.

Actually, Pm has the maximum possible number of codewords in a binary code of

length 2m and minimum distance 6. The weight distribution of the family of Preparata

codes were given in 1969 in [SZZ71].

In 1972, another class of codes given by Kerdock generalized the Nordstrom-

Robinson code [Ker72]. For m ≥ 4, m even the extended Kerdock code of length 2m,

denoted by Km is a nonlinear code with parameters

(n, d, M) = (2m, 2m−1 − 2(m−2)/2, 22m),

which is the union of 2m−1 cosets of RM(1, m) in RM(2, m).

From now on, both codes, extended Preparata and extended Kerdock will be

called Preparata and Kerdock, respectively.
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Two relevant facts strongly suggested that Pm and Km were dual in some arith-

metic sense. First, the fact that

RM(1, m) ⊂ Km ⊂ RM(2, m),

RM⊥(2, m) = RM(m − 3, m) ⊂ Pm ⊂ RM(m− 2, m) = RM⊥(2, m).

The second fact, and the most important, is that in [Ker72] and [SZZ72] it was

found that the weight enumerator of Pm is the MacWilliams transform of the weight

enumerator of Km (see [MS77]).

Let x→ xσ be an automorphism of F, i.e., σ is a power of 2. We require that both

x → xσ+1 and x → xσ−1 are one-to-one mappings, i.e., (σ ± 1, 2m − 1) = 1. (This is

true, for example, for σ = 2).

For the admissible values of σ we shall define a code P (σ) of length 2n+2 = 2m+1.

The codewords will be described by pairs (X, Y ) where X ⊂ F, Y ⊂ F. As usual we

interpret the pair (X, Y ) as the corresponding pair of characteristic functions, i.e., as

a (0, 1)-vector of length 2m+1. We shall let the zero element of F correspond to the

first position in the X-part.

Definition 3.6.1. The Preparata code P̄ (σ) of length 2m+1 consist of the codewords

described by all pairs (X, Y ) satisfying

a) |X| is even, |Y | is even,

b)
∑

x∈X x =
∑

y∈Y y,

c)
∑

x∈X xσ+1 +
(
∑

x∈X x
)σ+1

=
∑

y∈Y yσ+1.

The code P (σ) is obtained by deleting the first coordinate.

Last definition is an alternative definition of Preparata code given in [BVLW83]

that generalize these codes. Actually, the usual definition of the Preparata codes

coincides with last definition for σ = 2:

Pm = P (2).
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There are nonequivalents codes given in the last generalized definition ([Kan83]).

All the codes P (σ) have the same weight enumerator (Goethals) and they have

the same parameters as the original Preparata code ([SZZ71]). They will be called

Preparata-like codes. The Preparata-like code differs from the standard Preparata

one in the fact that it is not a subcode of an extended Hamming code (for length

n ≥ 32) but of a nonlinear code with the same weight distribution as the extended

Hamming code ([SZZ73]).

In [HKC+94], it is shown that Kerdock codes are extended cyclic codes over Z4.

These codes are linear codes over the integers modulo 4. The known fact that the

weight distributions of the Kerdock and Preparata codes are the MacWilliams trans-

form of each other would suggest that theses codes are duals in some more algebraic

sense. In the same paper, it is proven that the Z4-dual code of a Kerdock code is not

a Preparata code but a Preparata-like code.

Let h(X) ∈ Z4[X] be a primitive basic polynomial of degree m and let g(X) be

the reciprocal polynomial to (Xn − 1)/
(

(X − 1)h(x)
)

, where n = 2m − 1.

Theorem 3.5 ([HKC+94]). Let K− be the cyclic code of length n over Z4 with

generator polynomial g(X), and let K be obtained from K− by adjoining a zero-sum

check symbol. Then for odd m ≥ 3 the binary image Km+1 = φ(K) of K under the

Gray map is a nonlinear code, of length 2m+1, with 4m+1 words and minimal distance

2m− 2(m−1)/2, that is equivalent to the Kerdock code. This code is distance invariant.

Theorem 3.6 ([HKC+94]). Let P− be the cyclic code of length n = 2m − 1 with

generator polynomial h(X), and let P be obtained from P− by adjoining a zero-sum

check symbol, so that P = K⊥. Then for odd m ≥ 3 the binary image Pm+1 = φ(P) of

P under the Gray map is a nonlinear code of length ` = 2m+1, with 2`−2m−2 codewords

and minimal distance 6. This code is distance invariant and its weight distribution

is the MacWilliams transform of the weight distribution of the Kerdock code of the

same length.

For odd m ≥ 3, K is called the quaternary Kerdock code, P is the quaternary
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Preparata-like code and Pm+1 = φ(P) is a Preparata-like code.

Example 3.6.1. The polynomial h(X) = X6 + X5 + X4 + 2X3 + 2X2 − X + 1

given in Example 3.5.1 is the generator polynomial of the code P− where P is the

Preparata-like code of length 64.

Following theorems gives generator matrices of quaternary Kerdock and Preparata-

like codes.

Theorem 3.7 ([HKC+94]). Let R = Z4[ξ] be the Galois ring GR(4m) where ξ is a

basic primitive root of unity, so that ξn = 1, n = 2m − 1. The (m + 1)× 2m matrix





1 1 1 1 · · · 1

0 1 ξ ξ2 · · · ξn−1



 =





















1 1 1 · · · 1

b1∞ b11 b12 · · · b1n−1

b2∞ b21 b22 · · · b2n−1

...
...

...
...

...

bm∞ bm1 bm2 · · · bmn−1





















(3.11)

is a generator matrix of K, where ξj is replaced in the second matrix by the m-tuple

(b1j , . . . , bmj) given by ξj = b1j + b2jξ + · · ·+ bmjξ
m−1.

Corollary 3.8. Matrix given in (3.11) is the parity check matrix of P.

The Kerdock and the Preparata-like codes of length 16, m + 1 = 4, coincide,

giving the Nordstron-Robinson code. In this case, the code K is called the octacode.

As the Kerdock and the Preparata-like codes are duals of each other, the octacode

is a self-dual code; in fact, it is the unique self-dual quaternary code of length 16 and

minimal Lee weight 6.

Theorem 3.9. The Nordstrom-Robinson code is the binary image of the octacode

under the Gray map.

Lately, it was found in [BPRZ03] that any additive Preparata-like code is Z4-

linear code. The Z4-dual codes of such codes are called Kerdock-like codes that are,
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therefore, Z4-linear codes. The rank and the kernel of these codes are computed and

the results are included in Sections 6.2.1 and 6.2.2.

Even though original Preparata codes are not Z4-linear codes, they have a group

propelinear structure as it was given in [PR97b] using Definition 3.6.1. Moreover, both

classes of codes, Z4-linear Preparata-like and Z4-linear Kerdock-like, have structure

of propelinear codes.
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Chapter 4

Additive codes

We will introduce additive codes by means of association schemes as it was introduced

by Delsarte (see [DL98]). Some kind of additive codes as linear codes or Z4-codes

were studied in previous chapters. In this chapter, we will deal with codes that

can be considered, in some sense, as a generalization of linear and Z4-codes. First,

we introduce Z2k-codes in Section 4.2. We generalize the Gray map ϕ, and define

an operation ·, so that (ϕ(Z2k), ·) is a Hamming-compatible code. Codes over Z2k

have structure as propelinear codes but, in general, these codes are not translation-

invariant codes. Codes as subgroups of Z
k1
2i1
×· · ·×Z

kr

2ir
are introduced in Section 4.3.

Their algebraic structure and their binary image will be studied and it will be given

for which cases such images are 1-perfect.

The different structure, the rank, and the dimension of the kernel of 1-perfect

additive codes and extended 1-perfect additive codes are given in Section 4.4 and 4.5.

If C is a 1-perfect additive code, then the extended code C? is an extended 1-perfect

Z4-linear or additive non Z4-linear code. Finally, codes obtained by puncturing a

binary coordinate of an extended 1-perfect additive codes are considered in Section

4.6.

47
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4.1 Association schemes

Let X be a finite set of cardinality n and let R = {R0, R1, · · · , Rd} be a set of

nonempty binary relations on X (i.e. Ri ⊆ X2) forming a partition of the Cartesian

square X2 of X. We shall use Ni to denote the set Ni = {x ∈ X|(0, x) ∈ Ri}.

Definition 4.1.1. The pair (X, R) is called an association scheme of class d on X

if:

(i) R0 = {(x, x)|x ∈ X},

(ii) Rt
i = Rj, where Rt

i = {(x, y) ∈ X2|(y, x) ∈ Ri}, for i, j ∈ {0, · · · , d},

(iii) for i, j, k ∈ {0, · · · , d}, the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈
Rj is a constant number whenever (x, y) ∈ Rk and it is denoted pk

ij. The numbers

pk
ij are called intersection numbers.

There are more restrictions to an association scheme that are useful in coding-

theory. If the condition (ii) is replaced by

(ii’) Rt
i = Ri

then (X, R) is called a symmetric or Bose-Mesner association scheme. Moreover,

when pk
ij = pk

ji for all i, j, k, the association scheme is commutative.

From now on, an association scheme (X, R) is a symmetric commutative associa-

tion scheme of class d on X. For more information about general association schemes

see [DL98] and [BI84].

Example 4.1.1. Let X = F
n
q be the nth Cartesian power of the finite alphabet Fq,

with |Fq| = q ≥ 2. Let x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ X. The Hamming

distance between x, y is d(x, y) = |{j ∈ {0, 1, · · · , n} | xj 6= yj}|. Hence, (X, R)

with d(x, y) is a symmetric class association scheme called the Hamming scheme and

denoted by Hn
q .
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Let (X, R) be an association scheme where X has an Abelian group structure.

(X, R) is a translation-invariant association scheme if for all Ri ∈ R

(x, y) ∈ Ri =⇒ (x + z, y + z) ∈ Ri

for all z ∈ X.

Note that the Hamming scheme is a translation-invariant association scheme due

to the fact that d(x, y) = d(x + z, y + z).

Let Y be a nonempty subset of the point set X of a Hamming scheme (X, R) = Hn
q .

Then, Y is a code. The inner distribution of Y in an n-class association scheme (X, R)

is the rational (n + 1)-tuple (a0, · · · , an) where |Y |ai counts the number of pairs of

points in Y 2 (codewords) that belong to the relation Ri:

ai = ai(Y ) =
1

|Y | |Y
2 ∩Ri|, for i ∈ {0, · · · , n}.

If (X, R) is a Hamming scheme, Hn
q , then a code Y in (X, R) is a q-ary code of length

n. The inner distribution of Y is its (Hamming) distance distribution. In this case,

|Y |ai counts the pairs of codewords x, y with d(x, y) = i. If Y is a linear code in Hn
q ,

then the inner distribution of Y is none other than its weight distribution.

An additive code, Y , in a translation-invariant association scheme (X, R) is a

subgroup of X. The weight of an element x ∈ X is the number wt(x) = k such that

x ∈ Nk. The weight distribution of the code Y ⊂ X is the vector (a0, · · · , an) defined

by

ai = |Y ∩Ni|

and coincides with the inner distribution. The numbers ak such that ak 6= 0 are called

the weights of the code. The degree of an additive code is the number of its distinct

nonzero weights.

4.2 Z2k-codes

The results in this section were presented in [BFR01].
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Let C be a subgroup of (Zn
2k, +) for some k, n ≥ 1, where + is the usual addition

in Z2k extended coordinatewise. We say that C is a Z2k-modulo code or, briefly, a

Z2k-code. If k = 1, then C is a linear code and if k = 2, C is a Z4-code or a quaternary

code.

We define the Lee weight and the Euclidean weight as a generalization of the

definition given for Z4-codes. The Lee weight of an element i ∈ Z2k is min{|i|, |2k −
i|} and the Lee weight wtL(x) of x ∈ C is the rational sum of the Lee weights of

its components. We define the Lee distance dL(x, y) of two vectors x, y ∈ C as

wtL(x− y). The Euclidean weight of an element i ∈ Z2k is min{i2, (2k− i)2} and the

Euclidean weight of x ∈ C, wtE(x), is the rational sum of the Euclidean weights of its

components. Hence, the Euclidean distance between two vectors x, y ∈ C, dE(x, y),

is wtE(x− y). Note that for k = 2, these definitions corresponds with the ones given

for Z4-codes.

For all x, y ∈ Z
n
2k, x = (x1, · · · , xn), y = (y1, · · · , yn) we define the inner product

of x and y by

x · y = x1y1 + · · ·+ xnyn mod 2k.

Definitions of minimum weight and distance, dual code, self-orthogonal code, and

self-dual code are the ones given in Chapter 3.

Two Z2k-codes are equivalent if one can be obtained from the other by permut-

ing coordinates and (if necessary) changing the signs of certain coordinates. Codes

differing by only a permutation of coordinates are called permutation-equivalent.

Let C be a Z2k-code of length n. The complete weight enumerator (or c.w.e.) of

C is

cweC(X0, X1, · · · , X2k−1) =
∑

c∈C

X
n0(c)
0 X

n1(c)
1 · · ·Xn2k−1(c)

2k−1 ,

where ni(c) is the number of components of c = (c1, · · · , cn) ∈ C that are congruent

to i modulo 2k. As in the case of Z4-codes, the appropriate weight enumerator for
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an equivalence class of codes is the symmetrized weight enumerator:

sweC(X0, X1, · · · , X2k−1) =
∑

c∈C

X
n′

0(c)
0 X

n′

1(c)
1 · · ·Xn′

k
(c)

k ,

where n′
i(c) is the number of components of c = (c1, · · · , cn) ∈ C that are congruent

to ±i modulo 2k.

4.2.1 Generalizations of the Gray map

There are different ways of giving a generalization of the standard Gray may. For

instance, Carlet gives in [Car97] a generalization to Z2k . We will give one preserving

the basic property that the distance between the images of two consecutive elements

is exactly one. In this section we will see that any Z2k-code accepts a representation

as a propelinear code via this generalization of the Gray map.

Consider the modulo Zk and let c ∈ Zk. c can be written as c = α(c) + 2r, where

α(c) = c mod 2 and r ∈ N. Define:

β1(c) = · · · = βr(c) = 1

βr+1(c) = · · · = βt−1(c) = 0,

where t =

⌊

k

2

⌋

. Let γ(c) the parity check of the vector

(α(c), β1(c), · · · , βt−1(c))

For each element c ∈ Zk we have

c = α(c) + 2(β1(c) + · · ·+ βt−1(c)), and

α(c) + β1(c) + · · ·+ βt−1(c) + γ(c) = 0 modulo 2.

Now we define the extended Gray map in terms of βi and γ as follows:

ϕ(c) = (β1(c), · · · , βt−1(c), γ(c)), for all c ∈ Zk.
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Example 4.2.1.

Z8
ϕ−−−→ Z

4
2

0 −−−→ 0000

1 −−−→ 0001

2 −−−→ 1001

3 −−−→ 1000

4 −−−→ 1100

5 −−−→ 1101

6 −−−→ 1111

7 −−−→ 1110

Note that d(ϕ(0), ϕ(k − 1)) 6= 1, for k > 2. In fact,

d(ϕ(0), ϕ(k − 1)) =

{

t, if t odd or k = 3,

t− 1, otherwise.

As in Z4-codes, this generalization is useful to work in communications systems

employing quadrature phase-shift keying (QPSK). Distance between two consecutive

elements is one but distance between the first and the last element is at least the

maximum minus 1.

If we want a generalization preserving the property that the distance between

images of two consecutives elements in Zk is 1, then d(ϕ(0), ϕ(k − 1)) = 1. In

that case, k has to be even ([BFR01]), so we will write Z2k. We define the second

generalization of the Gray map as ϕ : Z2k −→ Z
k
2 such that:

(i) ϕ(i) = (0(k−i) | 1(i)) ∀i = 0, . . . , k − 1, and

(ii) ϕ(i + k) = ϕ(i) + 1(k) ∀i = 0, . . . , k − 1.
(4.1)
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Example 4.2.2.

Z8
ϕ−−−→ Z

4
2

0 −−−→ 0000

1 −−−→ 0001

2 −−−→ 0011

3 −−−→ 0111

4 −−−→ 1111

5 −−−→ 1110

6 −−−→ 1100

7 −−−→ 1000

Note that this Gray map, ϕ, is distance-preserving and weight-preserving. In

Section 4.2.2 we will see more properties of this mapping.

Finally, we will see a generalization that can be found in [KS02]. Let c ∈ Z2k , and

consider its 2-adic expansion

c =

k−1
∑

i=0

ai(c)2
i,

where ai(c) is the ith bit of c represented as a k bit integer. We define

bi(c) =

{

ai+1(c) + ai(c), if i < k − 1,

ak−1(c), if i = k − 1.

Then we define the Gray map as follows:

ϕ(c) = (b1(c), · · · , bk−1(c)), for all c ∈ Z2k .
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Example 4.2.3.

Z8
ϕ−−−→ Z

3
2

0 −−−→ 000

1 −−−→ 100

2 −−−→ 110

3 −−−→ 010

4 −−−→ 011

5 −−−→ 111

6 −−−→ 101

7 −−−→ 001
This mapping has the property that the image of Z2k has the lowest length. Note

that d(2k − 1, 0) = 1, but, in general, ϕ is not a distance-preserving mapping as we

can see in the above example:

3 = dL(4, 7) 6= d(ϕ(4), ϕ(7)) = 2.

4.2.2 Z2k-codes as propelinear codes

We have seen that linear codes are propelinear codes. Also Z4-codes are propelinear

codes (Example 3.2.2). Now we will use the generalization of the Gray map given in

(4.1) to see that any Z2k-code is a propelinear code.

We denote by | the concatenation, i.e. if x = (x1, . . . , xr) and y = (y1, . . . , ys),

then (x | y) = (x1, . . . , xr, y1, . . . , ys). If πx ∈ Sr and πy ∈ Ss, then the permutation

π = (πx|πy) ∈ Sr+s is defined as

π(x|y) = (πx(x)|πy(y)).

Definition 4.2.1. Let ϕ be the Gray map defined in (4.1). For any two elements

ϕ(i), ϕ(j) ∈ ϕ(Z2k), define the product

ϕ(i) · ϕ(j) = ϕ(i) + σi(ϕ(j)), (4.2)
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where

σi = (1, k, k − 1, . . . , 2)i (4.3)

(i.e. i left shifts), for all vector ϕ(i), i = 0, . . . , 2k − 1.

Lemma 4.1. Let ϕ be the Gray map defined in (4.1). Let i ∈ Z2k and · the product

defined in (4.2). Then,

ϕ(i) = ϕ(1)i.

Proof: It is easy to verify that ϕ(i) = ϕ(i − 1) · ϕ(1) = ϕ(1) · ϕ(i − 1). Appliying

this repeadly yields the result.

Using this lemma is easy to check that the operation defined in 4.2 can be written

as:

ϕ(i) · ϕ(j) = ϕ(i + j)

Proposition 4.2. (ϕ(Z2k), ·) is a group, with ϕ and · defined in (4.1) and (4.2)

respectively.

Proof: We have that

(ϕ(i) · ϕ(j)) · ϕ(`) = (ϕ(1)i · ϕ(1)j) · ϕ(1)` = ϕ(1)i+j+` = ϕ(i) · (ϕ(j) · ϕ(`)),

for all i, j, ` ∈ Z2k. Therefore, the operation is associative.

It is clear that 0(k) = ϕ(0) acts as the identity element. Moreover, given ϕ(i) ∈
ϕ(Zk

2), we have that

ϕ(i) · ϕ(k − i) = ϕ(1)i+k−i = ϕ(1)k = ϕ(k) = ϕ(0) = 0(k).

Theorem 4.3. Let ϕ : Z2k −→ Z
`
2 be a Gray map. If (ϕ(Z2k), ·) is a Hamming-

compatible code where · is the operation defined in (4.2) then, ϕ is unique up to

coordinate permutation.
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Proof: See [BFR01]

From now on, we will consider the map defined in (4.1) as the (unique) general-

ization of the Gray map being Hamming-compatible (see 2.3).

Definition 4.2.2. We define the extended map φ : Z
n
2k −→ Z

kn
2 such that φ(j1, . . . , jn) =

(ϕ(j1), . . . , ϕ(jn)), where ϕ is defined in (4.1). Finally, we define the permutations

πx = (σj1 | · · · |σjn
), for x = φ(j1, . . . , jn), where σi is defined in (4.3).

Note that if k = 1, then φ is the identity map and, if k = 2, then φ is as defined

in (3.4).

Next theorem will prove that given a Z2k-code of length n, there exists a propelin-

ear code of lenght kn such that both codes are isomorphic. The isomorphism between

them extends the usual structure in (Z2k,+) to the propelinear structure in (Zk
2,·).

Theorem 4.4. If C is a Z2k-code, then φ(C) is a propelinear code with associated

permutation πx for all codeword x ∈ φ(C).

Proof: Let x = φ(j1, . . . , jn) = (ϕ(j1), . . . , ϕ(jn)) and y = φ(i1, . . . , in) = (ϕ(i1), . . . , ϕ(in))

be two codewords. Then,

x + πx(y) = (ϕ(j1) + σj1(ϕ(i1)), . . . , ϕ(jn) + σjn
(ϕ(in)).

For any coordinate, say r, we have that

ϕ(jr) + σjr
(ϕ(ir)) = ϕ(1)jrϕ(1)ir = ϕ(1)jr+ir = ϕ(jr + ir).

Thus,

x+πx(y) = (ϕ(j1+i1), . . . , ϕ(jn+in)) = φ((j1, . . . , jn)+(i1, . . . , in)) = φ(φ−1(x)+φ−1(y)).

Therefore, it is clear that x + πx(y) ∈ φ(C).
On the other hand, the associated permutation of φ(jr + ir) is

σjr+ir = (1, k, k − 1, . . . , 2)jr+ir = σjr
◦ σir ,

hence, if z = x + πx(y), then πz = πx ◦ πy.
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Corollary 4.5. The map φ : (C, +) −→ (φ(C), ?) is a group isomorphism, where

x ? y = x + πx(y) for all x, y ∈ φ(C).

Proof: As we have seen in the previous proof, x ? y = φ(φ−1(x) + φ−1(y)) and,

clearly, φ is bijective.

In [PR97b] it is shown that linear and Z4-linear codes are translation-invariant.

Now, we show that for k > 2 any Z2k-code, viewed as a binary propelinear code, is

not translation-invariant according to the classification given in [PR97b].

Proposition 4.6. If k > 2 and C ∈ Z
n
2k, then φ(C) is a propelinear but not translation-

invariant code.

Proof: Consider the vector z = (1, 0, . . . , 0, 1) ∈ F
k. Then, it is easy to check that

d(0(k) ? z, ϕ(1) ? z) = 3 6= d(0(k), ϕ(1)) = 1.

Now we will show that it is not possible to generalize the MacWilliams identity

given in (3.2) to Z2k if k > 2. This result is the conclusion of some discussion with

Patrick Solé and Ling San. Firstly, we will see the existence of a self-dual code in Z2k

for every k ≥ 1.

Proposition 4.7. (cf. [BDHO99]) There exists a self-dual code C of length n over

Z2k if n is a multiple of eight.

Proof: Consider the matrix

( I4 , M4 ),

where I4 is the identity matrix of order 4 and

M4 =















a b c d

b −a −d c

c d −a −b

d −c b −a















,

then M4 ·M4
t = (a2 + b2 + c2 + d2)I4 over Z. From Lagrange’s theorem on sums of

squares, there are elements a, b, c, d of Z such that 1 + a2 + b2 + c2 + d2 = 4k for any
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k with k > 0. The integers a, b, c, d are necessarily less that or equal to 2k so there

exist a, b, c, d of Z2k such that 1 + a2 + b2 + c2 + d2 = 4k for k > 0. Therefore these

elements a, b, c, d of Z2k give that the matrix ( I4 , M4 ) generates a self-dual code of

length 8 over Z2k for any positive k.

Theorem 4.8. Let C and C⊥ be dual Z2k-codes, and C = φ(C) and C⊥ = φ(C⊥) be

their binary images. Then, the weight enumerators WC(X, Y ) and WC⊥
(X, Y ) of C

and C⊥ respectively, are related by the binary MacWilliams identity

WC⊥
(X, Y ) =

1

|C|WC(X + Y, X − Y ) (4.4)

if and only if k = 1, 2; that is, C is linear or Z4-linear.

Proof: If k = 1 or 2 then, by Theorem 2.1 and Theorem 3.2 the MacWilliams

identity holds. Let C be a self-dual code of length a multiple of eight in Z2k (it exists

by Proposition 4.7 ). Let C = φ(C) and C⊥ = φ(C⊥) = C. When X = Y = 1, we

obtain from (4.4) the following result

|C⊥| =
1

|C|2
kn

and, hence, |C| =
√

2kn. As C is a self-dual code, |C| =
√

(2k)n. Finally, |C| = |C| if
and only if 2k = 2k and it is true only for cases k = 1 and k = 2.

4.3 Binary mixed group codes

Definition 4.3.1. A general mixed group code C is an additive subgroup of G1×· · ·×
Gr, where G1, . . . , Gr are finite groups. We say that a binary code C of length n is a

mixed group code of type (Zk1
2i1

, . . . , Zkr

2ir) and length n if C = φ(C), where i1, · · · , ir are

the minimum values such that C is a subgroup of Z
k1
2i1
× · · ·×Z

kr

2ir
and

∑r
j=1 ijkj = n.

We denote C ≤ Z
k1
2i1
× · · · × Z

kr

2ir .

Proposition 4.9. Let C be a mixed group code of type (Zk1
2i1

, . . . , Zkr

2ir
) and length n.

Then, C is a propelinear code.



4.3. BINARY MIXED GROUP CODES 59

Proof: C = φ(C) where C ≤ Z
k1
2i1
×· · ·×Z

kr

2ir . Then C = C1×· · ·×Cr, with Cj ≤ Z
kj

2ij
.

We can write φ(C) as (φ1(C1), · · · , φr(Cr)) with φj : Z
kj

2ij
−→ Z

kj ij
2 as in definition

4.2.2. We will denote x ∈ C as (x1| · · · |xr) where xj ∈ φj(Cj). By Theorem 4.4,

φj(Cj) is a propelinear code. Hence, we define the permutation πx as (πx1| · · · |πxr
),

where πxj
is the permutation associated to xj in φj(Cj). Now it is easy to verify that

C is a propelinear code with permutation associated πx for all x ∈ C.

Let (C, ?) be a propelinear code where C is a mixed group code of type (Zk1
2i1

, . . . , Zkr

2ir
).

By Theorem 4.4 and Corollary 4.5, it is easy to check that the operation ? is given

by

x ? y = φ
(

φ−1
1 (x1) + φ−1

1 (y1), · · · , φ−1
r (xr) + φ−1

r (yr)
)

, (4.5)

where x = (x1, · · · , xr), y = (y1, · · · , yr) ∈ C.

Theorem 4.10. Let C be a binary mixed group code of type (Zk1
2i1

, . . . , Zkr

2ir
) and length

n. If C is 1-perfect, then C is of type (Zk
2, Z

(n−k)/2
4 ) for some k ∈ N.

Proof: Let C be a binary mixed group code of type (Zk1
2i1

, . . . , Zkr

2ir). Assume there

exists j ∈ {1, · · · , r} such that ij > 2. Without loss of generality we will assume

j = 1 and kj = 1.

Let x = (10 · · ·01|0 · · ·0| · · · |0 · · ·0) ∈ F
n. If C is 1-perfect, then there exists

y ∈ C such that d(x, φ(y)) ≤ 1. As the minimum weight in C is 3 and the distance of

x must be at most 1, the only possibility is i1 = 3 and φ(y) = (111|0 · · ·0| · · · |0 · · ·0),

therefore C = G1 × · · · × Gr where G1 is a subgroup of Z6 and 3 ∈ G1. The only

subgroups of Z6 that contain 3 are {0, 3} and Z6. We assume G1 = Z6; otherwise,

G1 = {0, 3} would be isomorphic to Z2. Let u = (101100 · · ·0), v = (101010 · · ·0) ∈
F

n (where customary commas have been deleted); u, v 6∈ C. The only codewords

at distance 1 of u and v are, respectively, (111100 · · ·0) and (111010 · · ·0) but the

distance beetwen them is 2 which is not possible if C is 1-perfect.

The last theorem shows that the only 1-perfect binary mixed group codes of type

(Zk1
2i1

, . . . , Zkr

2ir
) are translation-invariant propelinear codes of type (k,

n− k

2
).
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4.4 1-perfect additives codes

An additive code of length n is a subgroup of (F n, ?), where (Fn, ?) is a translation-

invariant Abelian group. Notice that this definition coincides with the one given in

the last section using association schemes (see also [BCN89]).

Theorem 4.11. Let (Fn, ?) a Hamming-compatible group (see 2.3). The following

sentences are equivalents:

(i) (Fn, ?) is an Abelian group.

(ii) ? is a translation-invariant operation.

(iii) F
n is isomorphic to Z

k
2 × Z

n−k
2

4 , for some k.

From last theorem, if (Fn, ?) is a Hamming-compatible Abelian group and C is a

subgroup of F
n; that is, an additive code then, C can be considered as a translation-

invariant propelinear code of type (k1, k2, 0). If F
n is isomorphic to Z

k
2 × Z

n−k
2

4 then,

C is of type (k, (n− k)/2, 0) or, simply, (k, (n− k)/2).

Let (C, ?) be an additive code of length n and type (k, n−k
2

). We make a partition

of the set of coordinates {1, · · · , n} in only two subsets, X, Y, where |X| = k are the

coordinates in Z2 and |Y | = n − k are the binary coordinates of the Z4 part. We

suppose X = {1, 2, · · · , k} without loss of generality.

Every vector v ∈ F
n can be written as v = (vX |vY ), where | denotes the concate-

nation of coordinates. If vY = (v
(1)
Y , · · · , v(n−k)

Y ) we suppose that its coordinates are

well ordered in Z

n−k
2

4 ; that is

φ−1(vY ) = (ϕ−1(v
(1)
Y , v

(2)
Y ), · · · , ϕ−1(v

(n−k−1)
Y , v

(n−k)
Y )), (4.6)

where ϕ is the Gray map (3.2) and φ is the extended Gray map defined in (3.3). In

all this section, the extended Gray map used φ will be the one defined in(3.3).
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The operation ? defined in (2.5) is extended to F
n, considering F

n as Z
k
2 × Z

n−k
2

4

in the following way: If v = (v1, · · · , vn), u = (u1, · · · , un) ∈ F
n, then

v ? u =
(

v1 + u1, · · · , vk + uk,

φ(φ−1(vk+1, vk+2) + φ−1(uk+1, uk+2)), · · · , φ(φ−1(vn−1, vn) + φ−1(un−1, un))
)

,
(4.7)

where the sum is modulo 2 in the first k coordinates, modulo 4 in the last ones and

φ is the extended Gray map.

Theorem 4.12. Let C be a 1-perfect additive code of type (k, n−k
2

), where n = 2t− 1

and t ≥ 3. Then, there exists a natural number r, such that 2 ≤ r ≤ t ≤ 2r and

(i) k = 2r − 1; that is, C is of type (2r − 1, 2t−1 − 2r−1),

(ii) Ω ∼= Z
2r−t
2 × Z

t−r
4 , where Ω is the quotient group F

n/C.

In the group Ω = F
n/C every element has order 2 or 4, and hence, it is clear that

Ω ∼= Z
α
2 × Z

β
4 for some natural numbers α, β. The proof of these theorems can be

found in [BR99].

From Theorem 4.12 we obtain the following table where we find all the different

parameters of n and k of 1-perfect additive codes :

t n = 2t − 1 r k = 2r − 1 types: (k, n−k
2

)
2 3 1, 2 1, 3 (1, 1), (3, 0)
3 7 2, 3 3, 7 (3, 2), (7, 0)
4 15 2, 3, 4 3, 7, 15 (3, 6), (7, 4), (15, 0)
5 31 3, 4, 5 7, 15, 31 (7, 12), (15, 8), (31, 0)
6 63 3, 4, 5, 6 7, 15, 31, 63 (7, 28), (15, 24), (31, 16), (63, 0)
· · · · · · · · · · · · · · ·

Table 4.1: Type of 1-perfect additive codes

Note that for n = 3 we obtain two different types (1, 1) and (3, 0) refering to the

same code: the trivial code of length 3, {(000), (111)}. At the end of Section 2.4.2,

we saw that the Hamming code of length 7 has different algebraic structures as an
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additive code: (3, 2) and (7, 0). Only in the cases n = 3 and n = 7 there are two

codes having the same set of codewords, up to coordinate permutation, but having

different algebraic structure. We will see that there are no more cases.

Let us show that two additives codes of the same length n but with different

algebraic structures are non isomorphic for n > 7.

Assume C1 and C2 are 1-perfect additive codes of length n > 7 and of type (k, n−k
2

)

and (l, n−l
2

), respectively. Assume that there is a coordinate permutation σ ∈ Sn,

such that C1 = σ(C2) = C. Let ? be the operation such that (C, ?) is isomorphic to

a subgroup of Z
k
2 × Z

n−k
2

4 and let ⊥ be the operation such that (C,⊥) is isomorphic

to a subgroup of Z
l
2 × Z

n−l
2

4 .

Theorem 4.13. Let (C, ?) be a 1-perfect additive code of type (k, n−k
2

) and (C,⊥) be

a 1-perfect additive code of type (l, n−l
2

). Then it is not possible that l < k and n > 7.

Proof: (see [BR99]).

We have seen the parameters n, k allowed in order for a code to be a 1-perfect

additive code of type (k, n−k
2

) and, for a fixed length n, we know in which cases these

codes are non isomorphic. Now we will see some results about the existence of these

codes.

Let r and t be natural numbers such that 2 ≤ r ≤ t ≤ 2r. Consider F
n with the

additive propelinear structure such that it is isomorphic to the group Z
2r−1
2 ×Z

2t−1−2r−1

4

and has the coordinates as in (4.6). Let G be the group Z
2r−t
2 × Z

t−r
4 . There exists

an application

ϑ : F
n −→ G (4.8)

such that:

(i) ϑ(ei) 6= ϑ(ej), ∀i, j = 1 · · · , n such that i 6= j, and ϑ(0) = 0 .

(ii) ϑ(ei) = −ϑ(ej) ⇐⇒ ei ? ej = 0.
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(iii) For all vector x = ei1 ? · · · ? eit ∈ F
n,

ϑ(x) =
t

∑

j=1

ϑ(eij ).

Moreover, the map ϑ : F
n −→ G is well-defined and it is an homomorphism onto.

The following theorem gives a method to find any 1-perfect additive code with

admissible parametres. The proof can be found in [BR99] and, previously, in [Rif99]

with a slightly different notation.

Theorem 4.14. With the previous definition of G and ϑ : F
n −→ G, C = Ker(ϑ)

is a 1-perfect additive code of type (2r − 1, 2t−1 − 2r−1).

Now we will see that the 1-perfect additive code constructed in this way is unique,

up to isomorphism, with the given parametres.

Proposition 4.15. For all r and t, such that 2 ≤ r ≤ t ≤ 2r, there is exactly one

1-perfect additive code of type (2r − 1, 2t−1 − 2r−1), up to isomorphism.

Proof: See [BR99].

With Theorem 4.14 and Proposition 4.15 we have seen the existence and the

uniqueness of 1-perfect additive codes. As a conclusion, we give the exact number of

1-perfect additive codes of length n = 2t − 1. If n = 3, 7; that is, t = 2, 3, there is a

unique 1-perfect additive code, up to isomorphism. If n ≥ 15 (t > 3), the number of

such codes is exactly

⌊

t + 2

2

⌋

.

The unicity means that if ϑ′ is another homomorphism of F
n onto G such that

C ′ = ker(ϑ′) then there exists a permutation τ ∈ Sn such that τ(C) = C ′ and ϑ′ = ϑτ .

4.4.1 Rank and kernel

In Section 2.3.3 we have seen some bounds of the rank and the dimension of the kernel

of 1-perfect codes in general. In this section, we will see the values that arise these
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invariants in the case of 1-perfect additive codes. All theorems and propositions given

in this section can be found in [PR02].

Let C be a propelinear code. Let Cπ be the set

Cπ = {a ∈ C|πa = π}

Lemma 4.16. Let C be an additive code. Let σ ∈ Sn be the swap map (see Section

3.4). Then σ ∈ Aut(C). Moreover, if C is 1-perfect then, Cσ ⊂ ker(C).

Proposition 4.17. If C is a non-linear 1-perfect additive code then the dimension

of CId is 2t−1 + 2r−1 − r − 1.

Proposition 4.18. If C is a 1-perfect binary additive code then, either ker(C) =

CId = C when C is linear or ker(C) = CId ∪ Cσ when C is not linear. In the first

case, dim(ker(C)) = dim(CId) and in the second case dim(ker(C)) = dim(CId) + 1.

As a corollary of these two propositions, we obtain the following theorem.

Theorem 4.19. Let C be a binary 1-perfect additive code of type (2r−1, 2t−1−2r−1),

the kernel ker(C) of C has dimension:

dim(ker(C)) =

{

2r − r − 1, if t = r,

2r−1 + 2t−1 − r, if t 6= r.

Theorem 4.20. Let C be a binary 1-perfect additive code of type (2r−1, 2t−1−2r−1),

of length n = 2t − 1, where t ≥ 4, then the rank of C is:

rank(C) = n− r = 2t − r − 1.

In the following table, we can see the parameters of the rank and the kernel of

1-perfect additive codes:
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t r type: (k, n−k
2

) dim(ker(C)) rank(C)
2 1, 2 (1, 1), (3, 0) 3, 3 3, 3
3 2, 3 (3, 2), (7, 0) 4, 4 4, 4
4 2, 3, 4 (3, 6), (7, 4), (15, 0) 8, 9, 11 13, 12, 11
5 3, 4, 5 (7, 12), (15, 8), (31, 0) 17, 20, 26 28, 27, 26
6 3, 4, 5, 6 (7, 28), (15, 24), (31, 16), (63, 0) 33, 36, 43, 57 60, 59, 58, 57
· · · · · · · · · · · · · · ·

Table 4.2: Rank and dimension of the kernel of 1-perfect additive codes

4.5 Extended 1-perfect additive codes

Let C be a code of length n. The extended code C? of C is a code of length n + 1

obtained from C by adding the parity check coordinate.

For all this section, let C be a binary additive code of length n of type (α, β).

Theorem 4.21. If C? is an extended 1-perfect additive code of length n+1 = 2t, then

it is of type (α+1, β), where either α+1 = 0 and it is a Z4-linear code or α = 2r−1,

2 ≤ r ≤ t ≤ 2r.

In the next two subsections we give a characterization of extended 1-perfect ad-

ditive codes and we give the rank and the kernel of such codes. The first subsection

is about codes of type (α, β) with α > 0 and the second one is when α = 0 and the

code is Z4-linear. Theorems in these two sections can be found in [BPR03] unless it

is said otherwise.

4.5.1 Extended 1-perfect additive non Z4-linear codes

Theorem 4.22. For any r and t ≥ 4 such that 2 ≤ r ≤ t ≤ 2r there is exactly

one extended 1-perfect additive code C∗ of type (2r, 2t−1 − 2r−1), up to coordinate

permutation.

Proof: The statement follows directly from Proposition 4.15 and Theorem 4.21.



66 CHAPTER 4. ADDITIVE CODES

The following theorem gives the rank and the dimension of the kernel of such a

1-perfect additive code.

Theorem 4.23. Let C? be an extended 1-perfect additive code of type (2r, 2t−1−2r−1)

where t > 3, then

(i) dim(ker(C?)) = 2r−1 +2t−1− r if t 6= r and dim(ker(C?)) = 2r− r− 1 if t = r.

(ii) rank(C∗) = 2t − r − 1.

In Theorem 4.14 it is shown that an additive code can be constructed as the kernel

of a map ϑ : F
n −→ Z

α
2 × Z

β
4 . For any allowable parameter r and t, code C? could

be seen as the kernel of a group homomorphism:

F
n+1 = Z

α+1
2 × Z

β
4

θ−−−→ Z
γ
2 × Z

δ
4

where α + 1 = 2r, β = 2t−1− 2r−1, γ = 2r− t + 1 and δ = t− r. This homomorphism

could be represented by a matrix like

H =





(B1)γ×α+1 (B2)γ×β

(Q1)δ×α+1 (Q2)δ×β





The columns of this matrix are all the possible independent vectors in {1 ∈ Z2}×
Z

γ−1
2 × Z

δ
4. Bi are binary matrices, Q1 is a quaternary matrix with elements of order

2 and Q2 is a quaternary matrix with elements of order 4. H can be considered as a

parity check matrix of the code C?.

Example 4.5.1. Let C be a 1-perfect extended code of an additive code of length 31.

From Theorem 4.22 there are three different pairs of allowable parametres of such a

code: (3, 5), (4, 5) and (5, 5). Let C be of type (3, 5), then, C is the kernel of the

homomorphism F
32 = Z

8
2×Z

12
4 −→ Z

2
2×Z

2
4. A parity check matrix of the code given

by the homomorphism is

H =















1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

0 0 2 2 0 0 2 2 1 1 1 1 0 2 1 1 1 1 0 2

0 2 0 2 0 2 0 2 0 1 2 3 1 1 0 1 2 3 1 1














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The rank of C is 2t−r−1 = 28 and the dimension of the kernel is 2r−1+2t−1−r = 17.

In [BPR03] it is also constructed the parity check matrix when the code is of type

(4, 5) and (5, 5).

The following tables show the different values of γ and δ and the values of R =

rank(C?) and K = dim(ker(C?)) in each case for t equal to 4, 5 and the general case.

t = 4
R K

11 11

R K

12 9

R K

13 8

γ 4 3 1

δ 0 1 2

t = 5
R K

26 26

R K

27 20

R K

28 17

R K

∗ ∗
γ 6 4 2 0

δ 0 1 2 3

t

R K

2t − t− 2t−
1 + δ t− 1

R K

2t − t− 2t−δ−1 + 2t−1−
1 + δ t + δ

δ 0 ≥ 3

4.5.2 Extended 1-perfect additive Z4-linear codes

Let C? be an extended 1-perfect additive code of length n + 1 = 2t ≥ 16 of type

(0, β), where 2β = n + 1; that is, C? is a Z4-linear code of length n + 1.

Theorem 4.24. Let C? be an extended 1-perfect Z4-linear code of length n+1 = 2t ≥
16, such that F

n+1/C? is isomorphic to Z
γ
2 × Z

δ
4 for a fixed δ ∈ {1, · · · , b(t + 1)/2c}

and γ = t + 1− 2δ. Then, C? is unique, up to coordinate permutation.

Theorem 4.25. For every t ≥ 4, there are exactly b(t + 1)/2c extended 1-perfect

Z4-linear codes of length n + 1 = 2t.
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This theorem, that is a corollary of Theorem 4.24, was previously proved by

Krotov in [Kro01] using Hadamard codes. Each one of the nonequivalent codes of

length n+1 = 2t correspond to the b(t+1)/2c different quotient groups Z
γ
2×Z

δ
4 such

that γ + 2δ = t + 1.

As in Section 4.5.1, for any allowable parameters r, t we can construct an extended

1-perfect additive Z4-linear code C? as the kernel of the group homomorphism:

F
n+1 = Z

β
4

θ−−−→ Z
γ
2 × Z

δ
4

where β = 2t−1 and t + 1 = γ + 2δ. This homomorphism could be represented by a

matrix like

H =





(B)γ×β

(Q)δ×β





The columns of this matrix are all the possible independent vectors in Z
γ
2 × {1 ∈

Z4}×Z
δ−1
4 . B is a binary matrix and Q is a quaternary matrix. H can be considered

as a parity check matrix of the code C?.

Now we will see some theorems about the rank and the kernel of extended 1-perfect

additive Z4-linear codes.

Theorem 4.26. Let C? be an extended 1-perfect Z4-linear code of length n+1 = 2t >

16 and assume the quotient set is isomorphic to G = Z
γ
2 × Z

δ
4. Then, rank(C?) =

2t − t− 1 + δ. For the case t = 4, either G = Z
t−1
2 × Z4 and rank(C?) = 2t − t− 1;

i.e. C? is linear, or G = Z2 × Z
2
4 and rank(C?) = 2t − t− 1 + 2.

Theorem 4.27. Let C? be an extended 1-perfect Z4-linear code of binary length n +

1 = 2t.

For δ = 1 the dimension of the kernel is dim(ker(C?)) = 2t−1 + t− 1.

For δ = 2 the dimension of the kernel is dim(ker(C?)) = 2t−1 − δ + 2 = 2t−1.

For δ ≥ 3 the dimension of the kernel is dim(ker(C?)) = 2t−1 − δ + 1.

Example 4.5.2. Let C? be an extended 1-perfect additive Z4-linear code of length

32. C? is of type (0, 16). There are three possible pairs of values to the parameters
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(δ,γ): (0, 3), (2, 2) and (4, 1). Assume the case δ = γ = 2. C? is the kernel of the

homomorphism F
32 = Z

16
4 −→ Z

2
2×Z

2
4. Then, a parity check matrix of the code given

by the homomorphism is

H =















0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3















The rank of C is 2t − t− 1 + γ = 26 and the dimension of the kernel is 2t−1 = 16.

Parity check matrices of codes with the other parameters are constructed in [BPR03].

The following tables show the different values of γ and δ and the values of R =

rank(C?) and K = dim(ker(C?)) in each case, for t equals to 4, 5 and the general

case.

t = 4
R K

∗ ∗
R K

11 11

R K

13 8

γ 4 3 1

δ 0 1 2

t = 5
R K

∗ ∗
R K

27 20

R K

28 16

R K

29 14

γ 6 4 2 0

δ 0 1 2 3

t

R K

∗ ∗
R K

2t − t+ 2t−1+

δ − 1 t− 1

R K

2t − t 2t−1

δ − 1

R K

2t − t + δ − 1 2t−1 − δ + 1

((t, δ) 6= (4, 1))

δ 0 1 2 ≥ 3
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4.6 Punctured extended 1-perfect Z4-linear codes

Let C be a 1-perfect additive code. By Theorem 4.24 the extended code C? is an

extended 1-perfect Z4-linear or additive non Z4-linear code. If C? is the extended

1-perfect additive non Z4-linear code of C and we puncture a binary coordinate, then

(C?)′ is isomorphic to C. It is not true if we puncture a quaternary coordinate.

The aim of this section is to prove that a punctured extended Z4-linear code is

not a 1-perfect additive code up to the extended Hamming code of length 16. All the

results in this section can be found in [BF02] that contains the source code of the

implementations used in the proof of the results.

Lemma 4.28. Let C be a 1-perfect code and C? the extended code. Then, the rank

and the dimension of the kernel of C and C? coincide.

Lemma 4.29. Let C? be an extended 1-perfect Z4-linear code of length n+1 = 2t ≥ 16

such that F
n+1/C? ∼= Z

γ
2 × Z

δ
4, γ + 2δ = t + 1, and assume C = (C?)′ is a 1-perfect

additive code. Then, the allowable parameters of t and δ are:

(i) t = 4, δ = 1,

(ii) t = 4, δ = 2,

(iii) t = 5, δ = 1.

Proof: From Theorems 4.20 and 4.26 we obtain:

rank(C) = n− r = 2t − r − 1

rank(C?) =

{

2t − t− 1 or 2t − t + 1 if t = 4,

2t − t− 1 + δ if t > 4.

By Lemma 4.28 rank(C?) = rank(C) then,

• if t = 4, either r = t or r = t− 2,

• if t > 4, δ = t− r.
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Now, from Theorems 4.19 and 4.27 we obtain:

dim(ker(C)) =

{

2r − r − 1, if t = r,

2r−1 + 2t−1 − r, if t 6= r.

dim(ker(C?)) =

{ 2t−1 + t− 1 if δ = 1,

2t−1 if δ = 2,

2t−1 − δ + 1 if δ ≥ 3.

By Lemma 4.28 dim(ker(C)) = dim(ker(C?)), and hence,

• if t = 4 and r = t = 4, then 2r−r−1 = 2t−1 + t−1 and δ = 1, that corresponds

to the case (i),

• if t = 4 and r 6= t, then r = t − 2 = 2, 2r−1 + 2t−1 − r = 2t−1 and δ = 2, that

corresponds to the case (ii),

• if t > 4, then δ = t− r and there are three cases:

(1) 2r−1 + 2t−1 − r = 2t−1 + t− 1 and δ = 1.

We obtain the equations 2r−1 − r = t − 1 and 1 = t − r, and hence,

2t−2 = 2t− 2 that has solution if and only if t = 5, that corresponds to the

case (iii).

(2) 2r−1 + 2t−1 − r = 2t−1 and δ = 2.

2r−1 = r if and only if r = 1, 2, but for these values of r it is not possible

δ = t− r, t > 4 and δ = 2.

(3) 2r−1 + 2t−1 − r = 2t−1 − δ + 1 and δ ≥ 3.

2r−1 − r = −δ + 1 ≤ −2. But 2r−1 ≤ r − 2 has no solution.

Proposition 4.30. If C? is an extended 1-perfect Z4-linear code with parameters

t = 4 and δ = 2, then the punctured code (C?)′ is not a 1-perfect additive code.
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Proof: Assume C? is an extended 1-perfect Z4-linear code with parameters t = 4

and δ = 2. The rank of C? is 13 and the dimension of the kernel is 8. If C = (C?)′

is a 1-perfect additive code then, its rank and dimension of the kernel have the same

values than C?, and hence, C is necessarily of type (3, 6) (see Table (4.2)).

Constructing the STS(15) associated to (C?)′ and computing the pattern array

of fragments (see [LeV95]) we obtain that the pattern array of fragments from (C?)′

corresponds to the STS(15) number 3 whereas the pattern array of fragments from

the 1-perfect additive code of type (3, 6) corresponds to the STS(15) number 7. As

the STS(15)′s obtained from these two codes are not isomorphic, the codes are not

isomorphic, and hence, (C?)′ is not a 1-perfect additive code.

Proposition 4.31. If C? is an extended 1-perfect Z4-linear code with parameters

t = 5 and δ = 1, then the punctured code (C?)′ is not a 1-perfect additive code.

Proof: Assume C? is an extended 1-perfect Z4-linear code with parameters t = 5

and δ = 1. The rank of C? is 27 and the dimension of the kernel 20. If C = (C?)′

is a 1-perfect additive code then, its rank and dimension of the kernel have the same

values than C? and C is necessarily of type (15, 8) (see Table (4.2)).

Let S1 be the set of weight 3 codewords of the punctured extended 1-perfect Z4-

linear code, (C?)′ and S2 the set of weight 3 codewords of the extended 1-perfect

non Z4-linear code with parameters t = 5 and δ = 1 puncturing a binary coordinate.

Note that, as it is punctured a binary coordinate, this code coincides to the 1-perfect

additive code of type (15, 8).

Both, S1 and S2, contain 155 codewords of length 31 and weight 3 (results obtained

by computer test). Using GAP we compute the dimensions of these sets and we obtain

dim(S1) = 26 and dim(S2) = 27. As their dimensions are different, S1 and S2 are not

isomorphic, and hence, the punctured code (C?)′ is not a 1-perfect additive code.

Proposition 4.32. Let C be a 1-perfect code of length n = 2t − 1. Let Sn(C) be the

STS(n) associated to C. Let Hn be the Hamming code of length n. Hence, we obtain
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the following inequation:

rank(Hn) ≤ dim(Sn(C)) ≤ rank(C).

and r(Hn) = dim(Sn(C)) if and only if Sn(C) is isomorphic to Sn(Hn).

Proof: Clearly, dim(Sn) ≤ rank(C). The other inequation and the condition to the

equality can be found in ([AJK92, Theorem 8.2.1])

By the last proposition, if C is a code of lenght 31, then the dimension of the set

of its weight 3 codewords is equals to r(H31) = 26 if and only if this set is isomorphic

to the set of weight 3 codewords in H31. In the proof of Proposition 4.31, we have

obtained a code of rank 27; that is, a nonlinear code, but the set of its weight 3

codewords is isomorphic to the set of weight 3 codewords in a linear code.

Theorem 4.33. If C? is a binary extended 1-perfect Z4-linear code of length n+1 ≥ 16

then, the punctured code (C?)′ 1-perfect is not a 1-perfect additive code up to the case

that C? equals to the extended of the Hamming code of length 15.

Proof: Let C? be a binary extended 1-perfect Z4-linear code of length n+1 ≥ 16. If

C = (C?)′ is a 1-perfect additive code then, by Lemma 4.29 the allowable parameteres

of t and δ are:

(i) t = 4, δ = 1,

(ii) t = 4, δ = 2,

(iii) t = 5, δ = 1.

By Proposition 4.30, if C? is a binary extended 1-perfect Z4-linear code with the

parameters given in (ii), then the punctured code (C?)′ is not a 1-perfect additive

code. We obtain the same conclusion with Proposition 4.31 and the parameters

given in (iii). Finally, the parameters given in (i) correspond to the extended of the

Hamming code of length 15.
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Chapter 5

Reed-Muller codes

The family of Reed-Muller codes was introduced by Muller in 1954 in [Mul54]. Muller

presented a mathematical method to simplify switching circuit. This method can be

applied in those circuits that may be represented by using Boolean algebra. As a

result, a relationship between Boolean expressions and error-detecting codes of length

a power of two was given. The same year, Reed, in [Ree54], analyzed in depth these

codes and described a decoding algorithm. One of the most important properties of

this family of codes is the ease with which they can be implemented and decoded by

using majority-logic circuit. This fact makes these codes very useful even though their

minimum distance is relatively small (lower than BCH codes). Finally, we emphasize

the mathematical interest of Reed-Muller codes. They are the simplest example of

geometrical codes and they are related to affine and projective geometries.

Section 5.1 presents Boolean functions and analyze the connections between them

and Reed-Muller codes. In Section 5.2, definitions, constructions and properties of

Reed-Muller codes are given. Next, we will establish the relationship between such

codes and geometries in Section 5.3 and, finally, we will study the Z4-linearity of

Reed-Muller codes in Section 5.4.

75
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5.1 Boolean functions

As mentioned above, the first definition of Reed-Muller codes was given in terms

of Boolean functions. Thus, it is the purpose of this section to introduce Boolean

functions to conclude, in the next section, with the first definition of Reed-Muller

codes. The definitions of Boolean functions in this section are obtained from [MS77]

and [PHB98].

Let m be a positive integer and n = 2m. Any function f : F
m → F; that is, a

function in m variables that takes on the values 0 and 1 is called a Boolean function.

Let B be the set of all Boolean functions.

Any function f ∈ B can be identified with a vector f ∈ F
n with coordinates the

value of f in all 2m possible arguments. The m-tuples are lexicographically ordered;

that is, (a1, . . . , am) ≤ (b1, . . . , bm) if and only if there is an integer k such that ak = 0,

bk = 1 and ai = bi for k < i ≤ m.

The usual logical operations, ∪ (or), ∩ (and), ¬ (not) and ] (exclusive or), may

be applied to Boolean functions. These operations can also be defined in terms of

binary functions in the following way:

f ∩ g ≡ fg

f ∪ g ≡ f + g + fg

¬f ≡ 1 + f

f ] g ≡ f + g

(5.1)

Example 5.1.1. Let f : F
2 → F defined by f(x1, x2) = x1]x2 = x1+x2. The ordered

2-tuples are (0, 0), (0, 1), (1, 0) and (1, 1), and the corresponding vector of length 4 to

the function f is f = (0, 1, 1, 0).

Using equivalences given in (5.1) between logical and binary operations and due to

the fact that x2
i = xi, any Boolean function can be expressed as a linear combination

of

1, x1, . . . , xm, x1x2, . . . , xm−1xm, . . . , x1x2 · · ·xm. (5.2)
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Therefore, (5.2) is a basis of the set of Boolean functions and if f ∈ B, we can write

f(x1, . . . , xm) =
∑

(a1 ,...,am)∈Fm

c(a1 ,...,am)x
a1
1 · · ·xam

m ,

where c(a1,...,am) ∈ F. The degree of f is defined as

max
{

m
∑

i=0

ai|c(a1,...,am) 6= 0
}

.

Define the i-th coordinate function as f(x1, . . . , xm) = xi which takes the value

1 on all m-tuples (x1, . . . , xm) with xi = 1. Its corresponding vector in F
n will be

denoted vi and has weight 2m−1.

Let us order lexicographically all vectors uj in F
m. If we construct a matrix with

columns vectors uj then, row i is the vector vi corresponding to the i-th coordinate

function.

Example 5.1.2. m=3, n=8

u1 u2 u3 u4 u5 u6 u7 u8

v1 0 0 0 0 1 1 1 1

v2 0 0 1 1 0 0 1 1

v3 0 1 0 1 0 1 0 1

It is easy to check that the j-th coordinate, j = 1, . . . , n, of vi is 1 if and only if

2i−1 occurs in the binary expansion of j − 1.

Let f, g ∈ B with associated binary vectors f, g respectively. Then, f + g, fg ∈ B
and the corresponding binary vectors are, respectively, f + g and fg. As the vector

associated to the i-th coordiantes function is vm−i+1, the binary vectors corresponding

to the basis given in (5.2) is

1, v1, . . . , vm, v1v2, . . . , vm−1vm, . . . , v1v2 · · · vm. (5.3)
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5.2 Definitions and properties

Reed-Muller codes can be defined in a simple way in terms of Boolean functions.

Definition 5.2.1. The r-th order binary Reed-Muller code RM(r, m) of length n =

2m, for 0 ≤ r ≤ m is the set of all vectors f where f(x1, . . . , xm) ∈ B has degree at

most r.

A basis of B is given in (5.2), and therefore, the set of vectors corresponding to

this basis, (5.3), is a basis of the code. That way, RM(r, m) consits of all linear

combinations of the vectors corresponding to the products

1, v1, . . . , vm, v1v2, v1v3, . . . , vm−1vm, . . . (up to degree r).

The number of different vectors in the basis is

k = 1 +

(

m

1

)

+

(

m

2

)

+ · · ·+
(

m

r

)

.

Define

PI(v1, . . . , vm) =
∏

i∈I

vi, (5.4)

where I = {i1, . . . , is} ⊆ {1, . . . , m}, i1 < i2 < · · · < is, and PI = 1 if |I| = 0.

Therefore, the r-th order Reed-Muller code of length 2m can be defined as

RM(r, m) =
〈

{PI(v1. . . . , vm)}|I|≤r

〉

. (5.5)

Table 5.1 shows the basis vectors of a RM(r, 5). Vectors 1, v1, . . . , v5 correspond

to the basis vectors of RM(1, 5); 1, v1, . . . , v5,v1v2, . . . , v4v5 correspond to the basis

vectors of RM(2, 5); 1, . . . , v1v2v3, . . . , v3v4v5 to RM(3, 5), etc. In this example,

RM(0, 5) is the code generated by vector 1; that is, the repetition code. It is easy to

check that RM(1, 5) is the dual of the extended Hamming code and RM(5, 5) is the

whole space F
25

. We will see that these properties are, in fact, general properties for

any m ≥ 1.

The following theorem gives us a recursive definition of Reed-Muller codes, using

vectors or in terms of generator matrices.
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r = 0 1 1111 1111 1111 1111 1111 1111 1111 1111
r = 1 v1 0000 0000 0000 0000 1111 1111 1111 1111

v2 0000 0000 1111 1111 0000 0000 1111 1111
v3 0000 1111 0000 1111 0000 1111 0000 1111
v4 0011 0011 0011 0011 0011 0011 0011 0011
v5 0101 0101 0101 0101 0101 0101 0101 0101

r = 2 v1v2 0000 0000 0000 0000 0000 0000 1111 1111
v1v3 0000 0000 0000 0000 0000 1111 0000 1111
v1v4 0000 0000 0000 0000 0011 0011 0011 0011
v1v5 0000 0000 0000 0000 0101 0101 0101 0101
v2v3 0000 0000 0000 1111 0000 0000 0000 1111
v2v4 0000 0000 0011 0011 0000 0000 0011 0011
v2v5 0000 0000 0101 0101 0000 0000 0101 0101
v3v4 0000 0011 0000 0011 0000 0011 0000 0011
v3v5 0000 0101 0000 0101 0000 0101 0000 0101
v4v5 0001 0001 0001 0001 0001 0001 0001 0001

r = 3 v1v2v3 0000 0000 0000 0000 0000 0000 0000 1111
v1v2v4 0000 0000 0000 0000 0000 0000 0011 0011
v1v2v5 0000 0000 0000 0000 0000 0000 0101 0101
v1v3v4 0000 0000 0000 0000 0000 0011 0000 0011
v1v3v5 0000 0000 0000 0000 0000 0101 0000 0101
v1v4v5 0000 0000 0000 0000 0001 0001 0001 0001
v2v3v4 0000 0000 0000 0011 0000 0000 0000 0011
v2v3v5 0000 0000 0000 0101 0000 0000 0000 0101
v2v4v5 0000 0000 0001 0001 0000 0000 0001 0001
v3v4v5 0000 0001 0000 0001 0000 0001 0000 0001

r = 4 v1v2v3v4 0000 0000 0000 0000 0000 0000 0000 0011
v1v2v3v5 0000 0000 0000 0000 0000 0000 0000 0101
v1v2v4v5 0000 0000 0000 0000 0000 0000 0001 0001
v1v3v4v5 0000 0000 0000 0000 0000 0001 0000 0001
v2v3v4v5 0000 0000 0000 0001 0000 0000 0000 0001

r = 5 v1v2v3v4v5 0000 0000 0000 0000 0000 0000 0000 0001

Table 5.1: Generators of the code RM(r, 5)
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Theorem 5.1 ([MS77]). Let r, m be integers such that 0 ≤ r ≤ m. The Reed-Muller

code RM(0, m) is the repetition code {0, 1} and

RM(r + 1, m + 1) = {(u, u + v)|u ∈ RM(r + 1, m), v ∈ RM(r, m)}. (5.6)

If G(r, m) is the generator matrix of the Reed-Muller code RM(r, m) then, G(0, m) =

(1) and

G(r + 1, m + 1) =





G(r + 1, m) G(r + 1, m)

0 G(r, m)



 (5.7)

Note that G(r, m) can be defined as the all columns vectors of Z
m
2 .

Example 5.2.1.

GM(1, 4) =





















1

v4

v3

v2

v1





















=





















1111 1111 1111 1111

0101 0101 0101 0101

0011 0011 0011 0011

0000 1111 0000 1111

0000 0000 1111 1111





















,

GM(0, 4) =
(

1111111111111111
)

.

Using (5.7) we obtain the generator matrix of the code RM(1, 5)

GM(1, 5) =



























1111 1111 1111 1111 1111 1111 1111 1111

0101 0101 0101 0101 0101 0101 0101 0101

0011 0011 0011 0011 0011 0011 0011 0011

0000 1111 0000 1111 0000 1111 0000 1111

0000 0000 1111 1111 0000 0000 1111 1111

0000 0000 0000 0000 1111 1111 1111 1111



























=



























1

v5

v4

v3

v2

v1



























As a corollary of Theorem 5.1, and considering codes RM(r+1, m) and RM(r, m)

as subsets of Z
2m

4 , we obtain the following construction of RM(r + 1, m + 1), where

φ is the extended Gray map defined in (3.4).
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Corollary 5.2. Let r, m be integers such that 0 ≤ r ≤ m.

RM(r + 1, m + 1) = φ(2RM(r + 1, m)) + φ(RM(r, m)).

The following Lemma gives a property of the generator vectors of RM(r, m) codes.

It will allow us to build up a different recursive construction of RM(r, m), for r ≥ 2.

Lemma 5.3. Let I1, I2 ⊆ {1, 2, . . . , m}. Then,

PI1(v1, . . . , vm)PI2(v1, . . . , vm) = P(I1∪I2)(v1, . . . , vm)

Proof: By definition, PI1(v1, . . . , vm) =
∏

i∈I1
vi, PI2(v1, . . . , vm) =

∏

i∈I2
vi. Due to

the fact that vivi = vi for i ∈ {1, . . . , m}, PI1(v1, . . . , vm)PI2(v1, . . . , vm) =
∏

i∈(I1∪I2) vi =

P(I1∪I2)(v1, . . . , vm).

Proposition 5.4. Let r, s, m be integers such that 0 ≤ r, s ≤ m. Define

Cr+s = {xy | x ∈ RM(r, m), y ∈ RM(s, m)}.

Then,
〈

Cr+s

〉

= RM(t, m), where t = min{r + s, m}.

Proof: Let t = min{r + s, m}. Let x =
∑k

i=0 PIi
(v1, . . . , vm) ∈ RM(r, m), y =

∑k′

j=0 PJj
(v1, . . . , vm) ∈ RM(s, m). By definition, |Ii| ≤ r and |Jj| ≤ s. Thus, xy =

∑k
i=0

∑k′

j=0 PIi
(v1, . . . , vm)PJj

(v1, . . . , vm) that is equals to
∑k

i=0

∑k′

j=0 P(Ii∪Jj)(v1, . . . , vm)

due to Lemma 5.3. As |Ii ∪ Jj| = t, we obtain that, effectively, xy ∈ RM(t, m) and
〈

Cr+s

〉

⊆ RM(t, m).

Let PI(v1, . . . , vm) be a generator vector of RM(t, m). |I| ≤ t, and therefore, there

exist Iir , Iis such that |Iir | ≤ r, |Iis| ≤ s and (Iir∪Iis) = Ii. That way PI(v1, . . . , vm) =

P(Iir∪Iis)(v1, . . . , vm) = PIr
(v1, . . . , vm)PIs

(v1, . . . , vm) ∈ Cr+s. Hence, RM(t, m) ⊆
〈

Cr+s

〉

.

The next lemma summarizes the basic properties of Reed-Muller codes. The proof

of such properties can be found, for example, in [MS77] and [PHB98]. Nevertheless,

most of them are easily derived from the different definitions of the codes.
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Lemma 5.5. Let r, m be integers such that 0 ≤ r ≤ m. Let RM(r, m) be the r-th

order Reed-Muller code.

(i) The dimension of the code is k = 1 +
(

m
1

)

+
(

m
2

)

+ · · ·+
(

m
r

)

.

(ii) The minimum distance is d = 2m−r.

(iii) The weight of PI(v1, . . . , vm) is 2m−i, where i = |I|.

(iv) RM(r, m) ⊂ RM(r + 1, m), ∀r < m.

(v) RM(r, m)⊥ = RM(m− r − 1, m) ∀r < m.

As we have seen in the case of the Reed-Muller code of length 25, with some

specific values of r we obtain well-known codes. We present a list of such different

codes (the proof can also be found in [MS77] and [PHB98]):

• RM(0, m) is a repetition code.

• RM(1, m) is the dual of the extended Hamming code, (H ′)⊥.

• RM(1, m) ⊂ Km ⊂ RM(2, m), where Km is the Kerdock code if m ≥ 4, m

even.

• RM(m − 3, m) ⊂ Pm ⊂ RM(m − 2, m), where Pm is the Preparata code if

m ≥ 4, m even.

• RM(m− 2, m) is the extended Hamming code H ′.

• RM(m− 1, m) is the even code (all vectors in Z
2m

2 of even weight).

• RM(m, m) = Z
2m

2 .

Figure 5.1 shows the sequence of Reed-Muller codes.



5.3. REED-MULLER CODES AND GEOMETRIES 83

Figure 5.1: Sequence of Reed-Muller codes

5.3 Reed-Muller codes and geometries

In this section we briefly outline an introduction to projective geometries and the

connection of such geometries with RM(r, m) codes. All the information in this

section can be found in [MS77].

Definition 5.3.1. A finite projective geometry consist of a finite set V of points

p, q, . . . together with a collection of subsets L, M, . . . of V called lines, which satisfies

axioms (i)-(iv).

(i) There is a unique line pq passing through any two distinct points p and q.

(ii) Every line contains at least 3 points.

(ii) If distinct lines L, M have a common point p, and if q, r are points of L not

equal to p, and s, t are points of M not equal to p, then the lines (qt) and (rs)

also have a common point.

(iv) For any point p there are at least two lines not containing p, and for any line

L there are at least two points not on L.
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A subspace of the projective geometry is a subset S of V such that

(v) If p, q are distinct points of S then S contains all points of the line (pq)

Let GF (q) be a finite field and suppose m ≥ 2. The points of V are taken to be

the nonzero (m + 1)-tuple

(a0, a1, . . . , am), ai ∈ GF (q),

with the rule that

(a0, a1, . . . , am) and (λa0, λa1, . . . , λam)

are the same point, where λ is any nonzero element of GF (q). These are called

homogeneous coordinates for the points. There are qm+1 − 1 nonzero (m + 1)-tuples,

and each point appears q−1 times, so the number of points in V is (qm+1−1)/(q−1).

The lines through the points (a0, . . . , am) and (b0, . . . , bm) consist of the points

(λa0 + µb0, . . . , λam + µbm),

where λ, µ ∈ GF (q) are not both zero. The projective geometry defined in this way

is denoted by PG(m, q).

A hyperplane or subspace of dimension m− 1 in PG(m, q) consist of those points

(a0, . . . , am) which satisties a homogeneous linear equation

λ0a0 + λ1a1 + · · ·+ λmam = 0, λi ∈ GF (q).

It is denoted [λ0, . . . , λm] or λ0X0 + λ1X1 + · · · + λmXm = 0. The affine geometry

EG(m, q) is obtained from PG(m, q) by deleting the points of a hyperplane H. A

subspace S of EG(m, q) is called a flat. A flat of dimension r in EG(m, q) is a coset

of an EG(r, q), and will be referred as an EG(r, q) or an r-flat. A subspace PG(r, q)

of PG(m, q) is also called an r-flat.

Any subset S of the points of EG(m, 2) has associated with it a binary incidence

vector χ(S) of length 2m, containing a 1 in those components s ∈ S and zeroes

elsewhere.
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Similarly, any vector x = (x0, . . . , x2m−1) of length 2m describes a subset Sx of

EG(m, 2) consisting of those points Pi for which xi has value 1.

Therefore, we obtain a one-to-one correspondence between points of EG(m, 2)

and coordinate positions of binary vectors of length 2m.

For example, let us consider EG(3, 2). Such affine geometry contains 23 vectors

of length 3, said, P0, P1, . . . , P7

P0 P1 P2 P3 P4 P5 P6 P7

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

χ(S) = (1, 1, 0, 0, 0, 0, 1, 1)←− S = {P0, P1, P6, P7},

x = (1, 0, 0, 0, 1, 1, 1, 0) −→ Sx = {P0, P4, P5, P6}.

Consider v1, . . . , vm the generating vectors of RM(1, m) and v̄1, . . . , v̄m its com-

plements, v̄i = 1 + vi. Points of EG(m, 2), P0, P1, . . . , P2m−1, are columns of





















v̄1

v̄2

...

v̄m−1

v̄m





















=





















1 1 · · · 1 0 · · · 0 0

1 1 · · · 0 1 · · · 0 0
...

... · · · ...
... · · · ...

...

1 1 · · · 0 1 · · · 0 0

1 0 · · · 0 1 · · · 1 0





















Hyperplanes Xi = 0; that is, [λ0, . . . , λm−1], with λi = 1 and λj = 0, for j 6= i,

are hyperplanes that pass through the origin. Points in hyperplane Xi = 0 are those

(x0. . . . , xm−1) such that xi = 0.

With m = 3, we obtain three hyperplanes: X0 = 0, X1 = 0 and X2 = 0. Note

that the incidence vectors of such hyperplanes corresponds to the generator vectors

of RM(1, m):
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hyperplane H Set of points χ(H)

X2 = 0 {P4, P5, P6, P7} 00001111 = v1

X1 = 0 {P2, P3, P6, P7} 00110011 = v2

X0 = 0 {P1, P3, P5, P7} 01010101 = v3

Note that RM(1, m) is spanned by the incidence vectors of hyperplanes, or (m−1)-

flats, with equation Xi = 0.

Vectors vi themselves are called the characteristic vectors of such (m − 1)-flats,

vivj with i 6= j describes (m − 2)-flats and so on. That way, PI(v1, . . . , vm), are

characteristic vectors of (m− |I|)-flats. RM(r, m) is spanned by the incidence vector

of these (m − s)-flats, for 0 ≤ s ≤ r. We will see more general results with any

(m− r)-flats, not only the ones defined before.

Let H be any hyperplane in EG(m, 2), h = χ(H). Note that if v ∈ RM(r, m) is

an incidence vector of Sv, then hv ∈ RM(r + 1, m) and is incidence vector of Sv ∩H.

Theorem 5.6 ([MS77]). Let v be a minimum weight codeword of RM(r, m). Then,

Sv is an (m− r)-dimensional flat in EG(m, 2)that need not pass through the origin.

The converse of the last theorem is the following theorem.

Theorem 5.7 ([MS77]). The incidence vector of any (m − r)-flat in EG(m, 2) is

in RM(r, m). Moreover, they generate RM(r, m).

Finally, we obtain the following corollary.

Corollary 5.8 ([MS77]). The minimum weight codewords in RM(r, m) generate

RM(r, m).

5.4 Relationship with quaternary codes

In section 5.2, Reed-Muller codes were presented and their different definitions and

their basic properties were given. In this section, the relationship between Reed-

Muller codes and quaternary codes will be established. The first question one can
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formulate about this topic is when a Reed-Muller code is Z4-linear code. The answer

was partially given in 1994 in [HKC+94] with the following theorem.

Theorem 5.9. The r-th order binary Reed-Muller code RM(r, m) of length n = 2m,

m ≥ 1, is Z4-linear for r = 0, 1, 2, m− 1 and m.

This theorem was proved in terms of some quaternary codes denoted ZRM(r, m)

(further information of these codes in Chapter 7). In the same paper, the authors also

conjectured that these were the only values of r such that RM(r, m) was a Z4-linear

code. This fact was proved lately in [HLK98].

Recall the connection between RM(r, m) codes and k-flats in binary m-space.

Each coordinate in RM(r, m) corresponds to a binary m-tuple in m-space.

Theorem 5.10. [MS77, Theorem 24] The automorphism group of the Reed-Muller

codes is the general affine group GA(m) acting on the m-space,

Z
m
2 −−−→ Z

m
2

x −−−→ Ax + b

for 1 ≤ r ≤ m− 2. When r = 0, m− 1 and m, the automorphism group is S2m .

Lemma 5.11. Let π ∈ GA(m), π 6= Id, σ. Then, π has 2k < 2m fixed points.

Proof: Let π(x) = Ax+ b ∈ GA(m), (A 6= (0)). Assume b = 0 . S = {x ∈ Z
m
2 |Ax =

x} is a subspace of Z
m
2 , and hence, |S| = 2k for some k ≤ m.

If b 6= 0 then, if there exist an m-tuple a such that Aa + b = a, the set S ′ =

{x ∈ Z
m
2 |Ax + b = x} is exactly S + a, an affine subspace or a flat. Therefore,

|S ′| = |S| = 2k, for some k ≤ m.

Corollary 5.12. Let 1 ≤ r ≤ m− 2. The number of fixed coordinates in RM(r, m)

of any automorphism π 6= Id, σ is 2k < 2m.

Lemma 5.13. Let φ be a general Gray map, 1 ≤ r ≤ m − 2. The number of odd

coordinates of φ−1(x), x ∈ RM(r, m) is 0, 2m−2 or 2m−1.
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Proof: Let x ∈ RM(r, m). πx is an automorphism and σ is a fixed point free

involution on RM(r, m).

The number of odd coordinates of φ−1(0) and φ−1(u) are 0 and 2m−1 respectively,

where u ∈ RM(r, m) is such that πu = σ.

Assume x ∈ RM(r, m) different to 0 and u, 1 ≤ r ≤ m− 2.

Since πx is an automorphism, it fixes 2k coordinates (Corollary 5.12), and there-

fore, φ−1(x) has 2k−1 even coordinates. Moreover, σ ◦ πx is also an automorphism

on RM(r, m) and fixes 2k′

. Then, φ−1(x) has 2k′−1 odd coordinates. As 2k, 2k′

< 2m

and 2k + 2k′

= 2m, necessarily, 2k = 2k′

= 2m−1. That way, φ−1(x) has 2m−2 odd

coordinates.

Theorem 5.14. The r-th order binary Reed-Muller code RM(r, m) of length n = 2m,

m ≥ 1, is Z4-linear if and only if r = 0, 1, 2, m− 1 and m.

Proof: Clearly, for r = 0, 1, 2, m− 1 and m, RM(r, m) is Z4-linear due to Theorem

5.9.

To prove the inverse, first note that RM(r, m) is generated by minimum weight

codewords (Corollary 5.8); that is, is generated by the codewords of weight 2m−r. Let

1 ≤ r ≤ m − 2, it follows from Lemma 5.13 that the number of odd coordinates of

φ−1(x), x ∈ RM(r, m) is 0, 2m−2 or 2m−1. Thus, if r > 2 then, all minimum weight

codeword x in RM(r, m) is such that φ−1(x) is an order 2 codeword, and therefore,

the code generated has all codewords with φ−1(y) of order 2, y ∈ RM(r, m) which is

impossible.

Recall that we say a binary code C is Z4-linear if it is equivalent under coordinate

permutation to a general Gray map image φ(C) of some quaternary code C ⊆ Z
n
4 .

Lemma 5.15. For r = 0, m−1 and m, there exist an unique Z4-code C up to isomor-

phism such that φ(C) is permutation-equivalent to RM(r, m). Moreover, φ−1(RM(r, m))

is of type 4021, 42m−1−121 and 42m−1
, for r = 0, m− 1 and m respectively.
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Proof: By definition, RM(0, m) =
〈

1
〉

, RM(m − 1, m) is the even code and

RM(m, m) = Z
2m

2 . Therefore, if r = 0, m − 1 or m, for any coordinate permu-

tation π ∈ S2m , π(RM(r, m)) = RM(r, m). That way, for these values of r, if C
is a quaternary code such that φ(C) is permutation-equivalent to RM(r, m), then,

necessarily, C = φ−1(RM(r, m)).

Note that φ−1(RM(0, m)) =
〈

2
〉

4
and φ−1(RM(m, m)) = Z

2m−1

4 . Clearly,
〈

2
〉

4

and Z
2m−1

4 are Z4-codes of type 4021 and 42m−1
respectively.

Finally, as RM(m−1, m) is the even code and the Gray map is weight-preserving

then, C = φ−1(RM(m− 1, m)) is the even code in Z
2m−1

4 . The dimension of RM(m−
1, m) is 2m−1, and therefore, |C| = 22m−1. Moreover, the number of order 2 codewords

in C is the number of order 2 codewords in Z
2m−1

4 ; that is, 2m−1. Hence, if C is of type

4k12k2 then,

2k1 + k2 = 2m − 1

k1 + k2 = 2m−1

That way, k1 = 2m − 1− 2m−1 = 2m−1 − 1, k2 = 1 and C is of type 42m−1−121.

Let us consider RM(1, m). As mentioned in Section 5.2, it is the dual of the

extended Hamming code, and therefore, it is a Hadamard code. Z4-linear Hadamard

codes are characterized in [Kro01], [PRV04] and [PRV05] and we can obtain a char-

acterization of Z4-linear RM(1, m) codes.

Proposition 5.16. [PRV04, PRV05] Let δ, γ be positive integers such that m + 1 =

γ +2δ. For each possible value δ, there exits a unique Z4-dual code H of the extended

1-perfect Z4-linear code and all these codes H are pairwise non-equivalent, except for

δ = 1 and δ = 2, where the codes H coincides with the binary dual of the extended

Hamming code. The generator matrix for the corresponding Z4-linear code of H

consist of all columns vectors of the form {1 ∈ Z4} × Z
δ−1
4 × 2Z

γ
2 .

Corollary 5.17. Let C be a Z4-linear code such that φ(C) is equivalent to RM(1, m),

m ≥ 3. Then, up to isomorphism, C is of type 412m−1 and its generator matrix is



90 CHAPTER 5. REED-MULLER CODES

the all columns vectors of the form 2Z
m−1
2 × {1 ∈ Z4} or C is of type 422m−3 and its

generator matrix is the all columns vectors of the form 2Z
m−3
2 × {1 ∈ Z4} × Z4.

From last corollary, we obtain that there are only two non-isomorphic quaternary

codes, one of type 412m−1 and the other of type 422m−3, such that their image under

the Gray map is permutation-equivalent to RM(1, m). Let us consider φ the extended

Gray map defined in (3.4). In Lemma 5.19 it will be proved that φ−1(RM(1, m)) is,

in fact, the quaternary code of type 412m−1. First, the next lemma will give the image

of the generator vectors of RM(1, m) under the Gray map defined in (3.4).

Lemma 5.18. Let vi (i ∈ {1, 2, . . . , m}) be the generating vectors in RM(1, m) and

v′
i (i ∈ {1, 2, . . . , m + 1}) be the generating vectors in RM(1, m + 1). Let φ be the

extended Gray map defined in (3.4). Then, φ(vi) = v′
1v

′
i+1 and φ(2vi) = v′

i+1.

Proof: Notice that, by construction, vectors v ′
i can be expressed as v′

1 = (0, 1) and

v′
i+1 = (vi, vi) for i ∈ {1, 2, . . . , m}, where 0 and 1 are the all zeroes and all ones

vectors of length 2m respectively. Therefore, φ(2vi) = (vi, vi) = v′
i+1 and φ(vi) =

(0, vi) = v′
1v

′
i+1 for i ∈ {1, 2, . . . , m}.

Lemma 5.19. Let m ≥ 3. Let the matrix G1 be the all columns vectors of the form

2Z
m−1
2 ×{1 ∈ Z4} and the matrix G2, the all columns vectors of the form 2Z

m−3
2 ×{1 ∈

Z4} × Z4. Let C1 and C2 be the Z4-code generated by G1 and G2 respectively. Then,

φ(C1) = RM(1, m) and there exist π ∈ S2m such that π ◦ φ(C2) = RM(1, m), where φ

is the Gray map defined in (3.4).

Proof: By last corollary, φ(C1) and φ(C2) are equivalent to RM(1, m). Hence, we

only have to check that φ(C1) = RM(1, m) or, equivalently, the generator vectors

v1, . . . , vm of RM(1, m) are in φ(C1).
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Note that, by definition, G1 can be expressed as

G1 =





















2v′
1

2v′
2

· · ·
2v′

m−1

1





















,

where v′
1, . . . , v

′
m−1 are the generator vectors of RM(1, m−1). Thus, for i = 1, . . . , m−

1, we obtain φ(2v′
i) = (v′

i, v
′
i) = vi+1 (see Lemma 5.18). Finally, φ(1) = v1, and

therefore, v1, . . . , vm ∈ φ(C1).

Example 5.4.1. Let C1, C2 be the two non-isomorphic codes (obtained from the dif-

ferent values of δ) such that φ(C1) and φ(C2) are codes equivalent to RM(1, 4), φ

defined in (3.4). If δ = 1, then C1 is of type 4123. If G1 is the generator matrix of C1,
then

G1 =















0202 0202

0022 0022

0000 2222

1111 1111















For δ = 2, C2 is of type 4221 and the generator matrix, G2 is

G2 =









0000 2222

1111 1111

0123 0123









.

Note that





φ(22222222)

φ(G1)



 =





















1111 1111 1111 1111

0101 0101 0101 0101

0011 0011 0011 0011

0000 1111 0000 1111

0000 0000 1111 1111





















,

that is the generator matrix of RM(1, 4). Therefore, φ(C1) = RM(1, 4).
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As we have seen, RM(r, m) codes are Z4-linear if and only if r = 0, 1, 2, m − 1

and m. Let φ be the extended Gray map defined in (3.4). In [HKC+94] it was proved

that φ−1(RM(r, m)) is a Z4-code for r = 0, 1, 2, m− 1 and m. When 3 ≤ r ≤ m− 2,

φ−1(RM(r, m)) is not a quaternary code for any extended Gray map. Up to the end of

this chapter, the Gray map φ will be the specific extended Gray map defined in (3.4).

Using this Gray map we will study which are the codewords missing in φ−1(RM(r, m))

to be a quaternary code. In that case, we can construct the minimum quaternary

code C such that φ(C) contains the code RM(r, m).

First, we will study some properties of Reed-Muller codes related to its generator

basis and the Gray map φ.

Let x be a codeword in RM(r, m). The order of x in (Z2m

2 , ?), ? defined in (2.5),

is the order of φ−1(x) in (Z2m−1

4 , +) (due to (3.5)). The following lemma will show

that all vectors PI(v1, . . . , vm) are order 2 codewords if and only if 1 6∈ I.

Lemma 5.20. If 1 6∈ I then φ−1(PI(v1, . . . , vm)) is an order 2 codeword; otherwise,

all nonzero coordinates in φ−1(PI(v1, . . . , vm)) are of order 4.

Proof: By construction, φ−1(v1) = 1; that is, an order 4 codeword, and vj, for all

j 6= 1, is an order 2 codeword.

If 1 6∈ I, PI(v1, . . . , vm) is a componentwise product of vectors of order 2, and

therefore, an order 2 codeword. Assume 1 ∈ I, PI(v1, . . . , vm) = v1PI\{1}(v1, . . . , vm)

where PI\{1}(v1, . . . , vm) is an order 2 codewords and all coordinates in φ−1(v1) are of

order 4. Thus, all nonzero coordinates in such a product are of order 4.

Corollary 5.21. Let I ⊆ {2, . . . , m}. Then,

PI(v1, . . . , vm) = φ(2φ−1(v1PI(v1, . . . , vm))).
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Example 5.4.2. From Table 5.1, let us consider vector v1v3v5:

0000 0000 0000 0000 0000 0101 0000 0101

φ−1





y

00 00 01 01 00 00 01 01




y

00 00 02 02 00 00 02 02

φ





y

0000 0101 0000 0101 0000 0101 0000 0101

that is exactly vector v3v5.

Corollary 5.22. Let I, J ⊆ {1, 2, . . . , m}. Then,

φ
(

2φ−1(PI(v1, . . . , vm)PJ(v1, . . . , vm))
)

=







0, 1 6∈ I ∪ J,

P(I∪J)\{1}(v1, . . . , vm), 1 ∈ I ∪ J.

Proof: Clearly, if 1 6∈ I∪J , x = φ−1(PI(v1, . . . , vm)PJ(v1, . . . , vm)) is an order 2 code-

word and φ(2x) = 0. Assume 1 ∈ I ∪ J . Then, φ−1(PI(v1, . . . , vm)PJ(v1, . . . , vm)) =

φ−1(PI∪J(v1, . . . , vm)) = φ−1(v1P(I∪J)\{1}(v1, . . . , vm)) and the Corollary holds by

Corollary 5.21.

Lemma 5.23. Let σ be defined in (3.6).

σ(PI(v1, . . . , vm)) =







PI(v1, . . . , vm), 1 6∈ I,

PI(v1, . . . , vm) + PI\{1}(v1, . . . , vm), 1 ∈ I.

Proof: If 1 6∈ I, then PI(v1, . . . , vm) is an order 2 codeword and σ(PI(v1, . . . , vm)) =

PI(v1, . . . , vm). If 1 ∈ I, then PI(v1, . . . , vm) = v1PI\{1}(v1, . . . , vm) and, all nonzero

coordinates in φ−1(PI(v1, . . . , vm)) are of order 4. That case, σ(PI(v1, . . . , vm)) =

PI(v1, . . . , vm) + φ(2φ−1(PI(v1, . . . , vm))), and the lemma holds by Corollary 5.21.

Corollary 5.24. σ(RM(r, m)) = RM(r, m).



94 CHAPTER 5. REED-MULLER CODES

Proof: By Lemma 5.23, σ(RM(r, m)) ⊂ RM(r, m). As RM(r, m) and σ(RM(r, m))

has the same dimension, then σ(RM(r, m)) = RM(r, m).

Given two generator vectors PI1(v1, . . . , vm) and PI2(v1, . . . , vm), we can consider

the two different binary operations + and ? ( propelinear operation defined in (2.5)).

Any RM(r, m) code is a linear code and, therefore, closed with respect to the opera-

tion +. To prove that a Reed-Muller code is a Z4-linear code, we would have to show

that the code is closed with respect to the operation ?.

Proposition 5.25. Let I1, I2 ⊆ {1, 2, . . . , m} such that |I1|, |I2| ≤ r and 1 ∈ (I1∩I2).

Then,

PI1(v1, . . . , vm) ? PI2(v1, . . . , vm) =

PI1(v1, . . . , vm) + PI2(v1, . . . , vm) +

P(I1∪I2)\{1}(v1, . . . , vm).

Proof: Let I1, I2 ⊆ {1, 2, . . . , m} such that |I1|, |I2| ≤ r and 1 ∈ I1∩ I2. By equation

(2.5)

PI1(v1, . . . , vm) ? PI2(v1, . . . , vm) =

φ
(

φ−1(PI1(v1, . . . , vm)) + φ−1(PI2(v1, . . . , vm))
)

,

that can be written, by (3.8), as

φ
(

φ−1(PI1(v1, . . . , vm))
)

+ φ
(

φ−1(PI2(v1, . . . , vm))
)

+

φ
(

2φ−1(PI1(v1, . . . , vm))φ−1(PI2(v1, . . . , vm))
)

.

Thus, the equality is given if and only if

φ
(

2φ−1(PI1(v1, . . . , vm)
)

φ−1
(

PI2(v1, . . . , vm)
)

=

P(I1∪I2)\{1}(v1, . . . , vm),

that is true by Corollary 5.21.
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Lemma 5.26. Let C be a binary linear code, a, b ∈ C. Therefore a ? b ∈ C if and

only if φ(2φ−1(a)φ−1(b)) ∈ C.

Proof: By (3.8) a + b = φ(φ−1(a) + φ−1(b) + 2φ−1(a)φ−1(b)) = φ(φ−1(a) + φ−1(b)) +

φ(2φ−1(a)φ−1(b)) = a ? b + φ(2φ−1(a)φ−1(b)). Therefore, a ? b ∈ C if and only if

φ(2φ−1(a)φ−1(b)) ∈ C.

Proposition 5.27. Let a, b ∈ RM(a, b). There exist indexes I1, . . . , Is and J1, . . . , Js′,

|Ii| ≤ r and |Jk| ≤ r, such that a =
∑s

i=1 PIi
(v1, . . . , vm) and b =

∑s′

j=1 PJj
(v1, . . . , vm).

Hence, a ? b ∈ RM(r, m) if and only if for all pair i,j, where i ∈ {1, . . . , s} and

j ∈ {1, . . . , s′}, PIi
(v1, . . . , vm) ? PJj

(v1, . . . , vm) ∈ RM(r, m).

Proof: In all of the proof, we will omit variables vi writing PI instead of PI(v1, . . . , vm).

If a?b ∈ RM(r, m) for all a, b ∈ RM(r, m) then, in particular, PI ?PJ ∈ RM(r, m)

for all I, J ⊆ {1, . . . , m}.
To prove the converse assume that for all pairs I, J ⊆ {1, . . . , m} with |I| ≤

r, |J | ≤ r, PI ?PJ ∈ RM(r, m). First of all, since PI ?PJ = PI +πPI
(PJ) ∈ RM(r, m),

see (2.5) and PI ∈ RM(r, m) then, πPI
(PJ) ∈ RM(r, m). Hence, PI ? b = PI +

(
∑s

i=1 πPI
(PJi

)) ∈ RM(r, m) for any b =
∑s

i=1 PJi
∈ RM(r, m). Since PI?b = b?PI =

b+πb(PI) ∈ RM(r, m), it follows by a similar argument that πb(PI) ∈ RM(r, m) and

thus b ? a = a ? b ∈ RM(r, m)

From the last proposition, to prove that ? is closed it is enough to check the

operation ? on the generator vectors. From Proposition 5.25, if there exist two subsets

I1, I2 ⊆ {1, . . . , m} such that 1 ∈ (I1 ∩ I2), |I1|, |I2| ≤ r and |(I1 ∪ I2) \ {1}| > r, then

RM(r, m) is not a Z4-linear code. The following lemma shows for which values of r

this property is achieved.

Lemma 5.28. There exist two subsets I1, I2 of {1, 2, . . . , m} such that |I1|, |I2| ≤ r,

|I1 ∩ I2| ≥ 1 and |I1 ∪ I2| > r + 1 if and only if 3 ≤ r ≤ m− 2.

Proof: In cases r ≤ 2 and r = m− 1, it is clear that |I1 ∪ I2| − 1 ≤ r.
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Let us consider I1 = {1, 2, . . . , r}, I2 = {1, m, . . . , m− r + 1}. |I1 ∪ I2| = r + |{i |
i ≤ m, i > max(r, m− r + 1)}|.

If m− r + 1 > r, |I1 ∪ I2| = r + (m− (m− r + 1)) = 2r− 1 > r + 1 if and only if

r ≥ 3. In the case r ≥ m− r + 1 then, |I1 ∪ I2| = r + (m− r− 1) = m− 1 > r + 1 if

and only if r < m− 2. Finally, when r = m− 2 and r ≥ 3 then, |I1 ∪ I2| = r + 2.

Proposition 5.29. φ−1(RM(r, m)) is not a quaternary code if and only if 3 ≤ r ≤
m− 2.

Proof: For I1 ⊆ {2, 3, . . . , m}, |I1| ≤ r, PI1(v1, . . . , vm) is an order 2 codeword.

Then, for any I2 ⊆ {1, 2, . . . , m}, PI1(v1, . . . , vm)?PI2(v1, . . . , vm) = PI1(v1, . . . , vm)+

PI2(v1, . . . , vm) ∈ RM(r, m).

For all I1, I2 ⊆ {1, 2, . . . , m}, with 1 ∈ (I1∩I2), by Proposition 5.25, PI1(v1, . . . , vm)?

PI2(v1, . . . , vm) ∈ RM(r, m) if and only if P(I1∪I2)\{1}(v1, . . . , vm) ∈ RM(r, m); that is,

|(I1∪ I2)\{1}| ≤ r, but by Lemma 5.28, it is not true in general when 3 ≤ r ≤ m−2.

For the cases r ≤ 2 and r ≥ m − 1, RM(r, m) it was known to be a Z4-linear

code. We have seen that, in the rest of the cases, there are several vectors missing;

the ones given by P(I1∪I2)\{1}(v1, . . . , vm) in Proposition 5.29. Such vectors, indeed,

should belong to any Z4-linear code containing RM(r, m).

Theorem 5.30. Let C be the minimum quaternary code such that RM(r, m) ⊆ φ(C).
Then, for 3 ≤ r ≤ m − 2, C = φ(C) = {RM(r, m) ∪ (

⋃

r<|I|≤t,16∈I PI(v1, . . . , vm))},
and |C| = 2k, where

k =
r−1
∑

i=0

(

m− 1

i

)

+
t

∑

i=0

(

m− 1

i

)

,

for t = min{m− 1, 2r − 2}.

Proof: Let r, m be integers such that 3 ≤ r ≤ m− 2. By Proposition 5.25 and, as a

corollary of Proposition 5.29, C is a Z4-linear code containing RM(r, m) if and only
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if for all PI1(v1, . . . , vm), PI2(v1, . . . , vm) ∈ RM(r, m), P(I1∪I2)\{1}(v1, . . . , vm) ∈ C,

where |(I1 ∪ I2) \ {1}| ≤ min{m − 1, 2r − 2}. Therefore, the minimum Z4-linear

code is the one containing RM(r, m) and all vectors P(I1∪I2)\{1}(v1, . . . , vm) ∈ C,

where |(I1 ∪ I2) \ {1}| ≤ t, where t = min{m− 1, 2r− 2}; that is, C = {RM(r, m) ∪
(
⋃

r≤|I|≤t,16∈I PI(v1, . . . , vm))}. Finally, |C| = 2k, where k = dim(RM(r, m))+|{I | r <

|I| ≤ t}| =
∑r

i=0

(

m
i

)

+
∑t

i=r+1

(

m−1
i

)

As
∑r

i=0

(

m
i

)

=
∑

i = 0r−1
(

m−1
i

)

+
∑r

i=0

(

m−1
i

)

then, k =
∑

i = 0r−1
(

m−1
i

)

+
∑

i = 0t
(

m−1
i

)

.

Note that last theorem gives the minimum quaternary code such that φ(C) con-

tains RM(r, m), where φ is the Gray map defined in (3.4), that is not the minimum

Z4-linear code containing RM(r, m). There may exist a quaternary code C ′ with

dimension less than C and a coordinate permutation π such that π ◦ φ(C ′) contains

RM(r, m) (or, equivalently, a different extended Gray map φ′ = π ◦φ). Nevertheless,

with the last proposition we can assure the following statement.

Corollary 5.31. Let C be the minimum Z4-linear code containing RM(r, m). Then,

dim(C) ≤
r−1
∑

i=0

(

m− 1

i

)

+
t

∑

i=0

(

m− 1

i

)

,

where t = min{m− 1, 2r − 2}.

Proof: The minimum Z4-linear code containing a linear code is both, Z4-linear

and linear (see Lemma 7.11). Then, if C be the minimum Z4-linear code containing

RM(r, m), C is a linear code and the upper bound of its dimension is obtained from

Theorem 5.30.
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Chapter 6

QRM codes

In this chapter, we will study a special case of quaternary codes related with Reed-

Muller codes; QRM codes. In this case, however, the map relating both classes

of codes is not the Gray map but α (modulo 2) map. The original construction of

such codes ([HKC+94]) is given in Section 6.1. After that, in Section 6.2 we will

generalize these codes; we will construct the class of QRM codes (QRM). We will

calculate the dimension of the kernel and rank of this class in Subsections 6.2.1 and

6.2.2 respectively. Finally, chains of codes in QRM will be studied in Subsection

6.2.3.

6.1 Definitions and properties

QRM(r, m) codes were defined in [HKC+94] to be quaternary Reed-Muller codes of

length 2m, QRM(r, m) ⊆ Z
2m

4 . The main property of these codes is the fact that

their image, under the α map is RM(r, m).

Let R = Z4[ξ] be the Galois ring GR(4m) where ξ is a basic primitive root of

unity, so that ξn = 1, n = 2m − 1. Let us consider T the relative trace defined in

(3.10).

Definition 6.1.1. Let QRM(0, m) be the quaternary repetition code of length n = 2m

99
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and for 1 ≤ r ≤ m let QRM(r, m) be generated by QRM(0, m) together with all

vectors of the form

(0, T (λj), T (λjξ
j), T (λjξ

2j), . . . , T (λjξ
(n−1)j))

where j ranges over all representatives of cyclotomic cosets mod 2m − 1 for which

wt(j) ≤ r, and λj ranges over GR(4). Then, QRM(r, m) is a quaternary code of

length n = 2m and type 4k, where

k = 1 +

(

m

1

)

+

(

m

2

)

+ · · ·+
(

m

r

)

.

If m ≥ 3, m odd QRM(1, m) is a quaternary Kerdock code ([HKC+94]). In

(3.11) we obtain a generator matrix of a such code and, therefore, a generator matrix

of QRM(1, m). We can obtain a construction of a general QRM(r, m) starting from

a similar matrix (see [Wan97]). Let us consider the ((m + 1)× 2m) matrix:





1 1 1 1 · · · 1

0 1 ξ ξ2 · · · ξn−1



 =





















1 1 1 · · · 1

b1∞ b11 b12 · · · b1n−1

b2∞ b21 b22 · · · b2n−1

...
...

...
...

...

bm∞ bm1 bm2 · · · bmn−1





















=





















1

u1

u2

...

um





















,

where ξj is replaced in the second matrix by the m-tuple (b1j , . . . , bmj) ∈ Z
m
4 given

by ξj = b1j + b2jξ + · · · + bmjξ
m−1. Then, the quaternary r-th order Reed-Muller

QRM(r, m), 0 ≤ r ≤ m, of length 2m is the code generated by the 2m-tuples of the

form

1, u1, . . . , um, u1u2, u1u3, . . . , um−1vm, . . . (up to degree r).

Example 6.1.1. Let ξ be a root of h(X) = X3 +2X2 +X +1. The generator matrix

of QRM(r, m), obtained from ξ as in Section 3.5, is














1 1 1 1 1 1 1 1

0 1 0 0 1 2 3 1

0 0 1 0 3 3 3 2

0 0 0 1 2 3 1 1














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Let us define PI(u1, . . . , um) =
∏

i∈I ui, where
∏

is the componentwise product,

I ⊆ {1, . . . , m} and PI = 1 if |I| = 0. Then,

QRM(r, m) =
〈

{PI(u1, . . . , um)}|I|≤r

〉

4

Both definitions of QRM(r, m) (Definition 6.1.1 and the last one) are equivalent

(see [Wan97]).

Basic properties of QRM codes are grouped together in the next lemma.

Lemma 6.1 ([HKC+94]). Let r, m be integers such that 0 ≤ r ≤ m. Let QRM(r, m)

be a quaternary Reed-Muller code of length 2m.

(i) QRM(r, m) is of type 4k, where k = 1 +
(

m
1

)

+
(

m
2

)

+ · · ·+
(

m
r

)

.

(ii) QRM(r, m) ⊂ QRM(r + 1, m), ∀r < m.

(iii) QRM(r, m)⊥ = QRM(m− r − 1, m), ∀r < m.

(iv) α(QRM(r, m)) = RM(r, m).

As in the case of Reed-Muller codes, we can construct a chain or sequence of

QRM codes that includes some well-known codes. Such codes are listed below and

the proof can be found in [HKC+94] and [Wan97]. Figure 6.1 shows the sequence of

QRM codes.

• QRM(0, m) is a repetition code.

• QRM(1, m) is the code K defined in Theorem 3.5.

• QRM(m− 2, m) is the code P defined in Theorem 3.6.

• QRM(m, m) = Z
2m

4 .

Corollary 6.2. Let m ≥ 3 odd. Then,

(i) φ(QRM(1, m)) = Km+1,
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Figure 6.1: Sequence of QRM codes

(ii) φ(QRM(m− 2, m)) = Pm+1.

Let φ : Z
2m

4 −→ Z
2m+1

2 be a general Gray map. We define QRM(r, m) =

φ(QRM(r, m)) a binary Z4-linear code of length 2m+1, and the application:

Ψ : Z
2m+1

2 −→ Z
2m

2

grouped by Ψ(x) = α ◦ φ−1(x) (Image 6.2). That way Ψ(QRM(r, m)) = RM(r, m).

Figure 6.2: Psi map

Lemma 6.3. Ψ = α ◦ φ−1 is a homomorphism between Z
2k
2 and Z

k
2 .
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Proof: Let us consider φ(x), φ(y) ∈ Z
2k
2 . By [BPR03], φ(x)+φ(y) = φ(x+y +2xy).

Therefore, Ψ(φ(x) + φ(y)) = Ψ(φ(x + y + 2xy)) = α(x + y + 2xy) = α(x) + α(y) =

Ψ(φ(x)) + Ψ(φ(y)).

6.2 Class QRM(r, m) of codes

Even though the best-known Z4-linear Kerdock and Preparata codes are the ones

given in [HKC+94], there are many other nonequivalent Z4-linear Kerdock and Preparata

codes, called Kerdock-like and Preparata-like, all of which seem to have a common

set of basic properties ([SZZ71],[SZZ72], [SZZ73], [CCS97],[Kan83]). Hence, it is rea-

sonable to define a class of quaternary Reed-Muller codes which includes all these

nonequivalent codes as well as others.

Definition 6.2.1. Let r, m be integers such that 0 ≤ r ≤ m. Let us defineQRM(r, m)

a class of quaternary Reed-Muller codes where C ∈ QRM(r, m) if and only if:

(i) The quaternary length of the code C is 2m.

(ii) C is of type 4k, where

k = 1 +
(

m
1

)

+
(

m
2

)

+ · · ·+
(

m
r

)

.

(iii) α(C) = RM(r, m).

We also define the related binary class

QRM(r, m) = {C = φ(C) | C ∈ QRM(r, m)}.

Properties (i)-(iii) in the definition of the quaternary Reed-Muller codes class,

were given in Lemma 6.1 to the particular quaternary code QRM(r, m). Thus, the

quaternary code defined in [HKC+94] belongs to the QRM(r, m) class but other

codes belong to this class as well.
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Let {PI(v1, . . . , vm) | |I| ≤ r} be the generator vectors of RM(r, m) defined in

(5.4). Define the Z4-code

SRM(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
. (6.1)

By construction, length SRM(r, m) is 2m and SRM(r, m) is of type 4k, where

k = |{PI(v1, . . . , vm) | |I| ≤ r}| =
∑r

i=0

(

m
i

)

, by Lemma 3.1. Moreover, α(SRM(r, m)) =

RM(r, m) and, therefore, SRM(r, m) ∈ QRM(r, m).

The minimum distance of SRM(r, m) code coincides with the minimum distance

of RM(r, m); that is, has value 2m−r. Thus, SRM(m− 2, m) has minimum distance

4 whereas QRM(m − 2, m) has minimum distance 6 and, hence, they are different

codes in QRM(r, m). Note that if C ∈ QRM(r, m), then the minimum distance of

C is greater or equal to 2m−r due to the fact that α(C) = RM(r, m). As a result,

SRM(r, m) codes has the lowest minimum distance of codes in QRM(r, m).

In order to give more examples of codes in QRM(r, m) apart from QRM(r, m)

codes, the Doubling construction will be used. As with Reed-Muller codes, the Dou-

bling construction applied to these codes gives another code in this class; something

which is not generally true of the particular codes QRM(r, m).

Proposition 6.4. Let C ∈ QRM(r + 1, m) and D ∈ QRM(r, m). Then, the code

C∗ defined as {(u, u + v) | u ∈ C, v ∈ D} belongs to the class QRM(r + 1, m + 1).

Proof: By construction, the length of C∗ is 2m+1. Let (u, u + v) be a codeword in

C∗, where u ∈ C and v ∈ D. α(u, u + v) = (α(u), α(u + v)) = (α(u), α(u) + α(v)) ∈
RM(r +1, m+1). Therefore, α(C∗) = RM(r +1, m+1). We only have to check that

C∗ is of type 4k, where k =
∑r+1

i=0

(

m+1
i

)

. Recall that C∗ is of type 4k if and only if

|C∗| = 4k and the number of order 2 codewords in C∗ is 2k. As C ∈ QRM(r+1, m) and

D ∈ QRM(r, m), C is of type 4k1, where k1 =
∑r+1

i=0

(

m
i

)

, and D is of type 4k2 , where

k2 =
∑r

i=0

(

m
i

)

. Moreover, the number of order 2 codewords is 2k1 in C and 2k2 in D.

Note that |C∗| = |C||D| = 4k, where k = k1+k2 =
∑r+1

i=0

(

m
i

)

+
∑r

i=0

(

m
i

)

=
∑r+1

i=0

(

m
i

)

+
∑r+1

i=1

(

m
i−1

)

=
(

m
0

)

+
∑r+1

i=1

[

(

m
i

)

+
(

m
i−1

)

]

=
(

m+1
0

)

+
∑r+1

i=1

(

m+1
i

)

=
∑r+1

i=0

(

m+1
i

)

. Finally,
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order 2 codewords in C∗ are those (u, u+v) where both, u and v, are order 2 codewords

in C and D respectively. Therefore, the number of order 2 codewords in C∗ is 2k1+k2 =

2k.

Finally, we can define codes in QRM(r, m) class in terms of generator matrices.

If G is a quaternary matrix, with row vectors x1, x2, . . . , xk then, α(G), is defined

as

α(G) =















α(x1)

α(x2)
...

α(xk)















Lemma 6.5. Let C ∈ QRM(r, m) and let G be its generator matrix. Then, α(G) is

a generator matrix of RM(r, m).

Proof: Let k =
∑r

i=0

(

m
i

)

and x1, x2, . . . , xk be the row vectors of G. For any

y ∈ RM(r, m), there exist x ∈ QRM(r, m) such that α(x) = y. x can be expressed as

x = a1x1+a2x2+· · ·+akxk, where a1, . . . , ak ∈ Z4. Hence, y = α(x) = α(a1x1+a2x2+

· · ·+akxk) = α(a1)α(x1)+α(a2)α(x2)+ · · ·+α(ak)α(xk), where α(a1), . . . , α(ak) ∈ Z2

and α(x1), . . . , α(xk) are row vectors of α(G).

Proposition 6.6. Let C be a quaternary code of length 2m. C belongs to the class

QRM(r, m) if and only if there exist a binary (
∑r

i=0

(

m
i

)

× 2m) matrix, N , such that

the generator matrix of C is

G = G(r, m) + 2N,

where G(r, m) is the generator matrix of RM(r, m) defined in (5.7).

Proof: Let N be a binary (
∑r

i=0

(

m
i

)

× 2m) matrix, G(r, m) the generator matrix of

RM(r, m), and C the quaternary code generated by the matrix G = G(r, m) + 2N .

By construction, length C = 2m and α(C) = RM(r, m). Moreover any row vectors in
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G is an order 4 vector. Then, C is a quaternary code of type 4k, where k =
∑r

i=0

(

m
i

)

,

and hence, C ∈ QRM(r, m).

Let C ∈ QRM(r, m) and G a generator matrix of C with row vectors x1, . . . , xk,

where k =
∑r

i=0

(

m
i

)

. G can by written as α(G) + 2N , where

2N =















x1 − α(x1)

x2 − α(x2)
...

xk − α(xk)















.

Let G(r, m) be the generator matrix of RM(r, m) defined in (5.7). As α(G) is a

generator matrix of RM(r, m) by Lemma 6.5 then, after a linear row combination of

α(G) + 2N , we obtain G(r, m) + 2N ′ that is a generator matrix of C.

Define the set of matrices that are generator matrices of codes in QRM(r, m)

GQ(r, m) = {G(r, m) + 2N |N is a binary (

r
∑

i=0

(

m

i

)

× 2m) matrix }. (6.2)

Note that, if N = (0), the code generated by G(r, m) ∈ GQ(r, m) is the code

SRM(r, m) defined in (6.1).

Proposition 6.4 can be established in terms of generator matrices as it was done

in (5.7) of Theorem 5.1.

Proposition 6.7. Let M1, M2 ∈ GQ(r + 1, m) and M4 ∈ GQ(r, m). The matrix

M =





M1 M2

2N3 M4



 , (6.3)

where N3 is a binary (
∑r

i=0

(

m
i

)

× 2m) matrix, belongs to GQ(r + 1, m + 1).

Proof: If M1, M2 ∈ GQ(r+1, m) and M4 ∈ GQ(r, m) and N3 is a binary (
∑r

i=0

(

m
i

)

×
2m), then by (6.3)

M =





M1 M2

2N3 M4



 =





G(r + 1, m) G(r + 1, m)

0 G(r, m)



 +





2N1 2N2

2N3 2N4



 ,
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where N1, N2 and N4 are binary matrices. Dimension of N1 and N2 is (
∑r+1

i=0

(

m
i

)

×2m)

and dimension of N4 is (
∑r

i=0

(

m
i

)

× 2m). Note that if N is defined as

N =





N1 N2

N3 N4



 ,

then, the dimension of N is ((
∑r+1

i=0

(

m
i

)

+
∑r

i=0

(

m
i

)

)×(2m+2m)) that is, (
∑r+1

i=0

(

m+1
i

)

×
2m+1) and M = G(r + 1, m + 1) + 2N ∈ GQ(r + 1, m + 1).

When N3 = (0), the construction is exactly the Doubling construction of Propo-

sition 6.4.

We will study some general properties of the class QRM(r, m). In particular, is

it possible to generalize the rest of the properties of Lemma 6.1 to this class of codes?

When the parameters of codes RM,QRM,QRM, . . . are omitted, they are exactly

r and m.

Lemma 6.8. Let us consider RM as a subset in Z
2m

4 and C ∈ QRM. Then, 2C =

2RM .

Proof: Let C ∈ QRM and x ∈ C. By the properties of QRM class, α(x) ∈ RM

and 2x = 2α(x). Hence, 2C = 2α(C) = 2RM .

Corollary 6.9. Let C,D ∈ QRM. Then, 2C = 2D.

In particular, QRM ∈ QRM and, therefore, for any code C ∈ QRM, we obtain

2C = 2QRM. That way, we will denote 2QRM to refer any 2C such that C ∈ QRM.

Lemma 6.10. Let C ∈ QRM . Then, CId = φ(2QRM).

Proof: Let C = φ−1(C) ∈ QRM. Clearly, φ(2QRM) = φ(2C) ⊆ CId. Now, we will

prove that if x ∈ C such that πx = Id, then x ∈ φ(2C).
Codes inQRM are quaternary codes of type 4k; that is, are permutation-equivalents

to a code with generator matrix of the form

G =
(

Idk A
)

,



108 CHAPTER 6. QRM CODES

where A is a Z4-matrix (Chapter 3). Notice that all codewords in the generator matrix

have order 4 and, hence, if x ∈ C of order 2 then, there exist y ∈ C such that 2y = x.

Therefore, all codewords of order 2 in C, that is φ−1(CId), are in 2C = 2QRM.

We will write QRMId instead of CId for any code C ∈ QRM , (CId = QRMId, QRM ∈
QRM). In fact, QRMId = φ(2QRM).

Lemma 6.11. Let C ∈ QRM and let x, y ∈ C. Then, Ψ(x) = Ψ(y) if and only if

πx = πy.

Proof: If Ψ(x) = Ψ(y), then there exist z ∈ C of order 2, such that φ−1(x) =

z + φ−1(y). Therefore, πφ(z) = Id and x = φ(z) ? y. As (C, ?) is a propelinear code

([PR97b]), then πx = πφ(z) ◦ πy = Id ◦ πy = πy.

Conversely, if πx = πy then, x = y + z, where φ−1(z) is an order 2 codeword and

Ψ(x) = Ψ(y) + Ψ(z) = Ψ(y).

Lemma 6.12. Let C ∈ QRM. Then, C/2QRM ∼= RM .

Proof: Let us consider the map

α : (C, +) −→ (RM, +).

Clearly, α is a homomorphism. By the first isomorphism theorem, C/ker(α) ∼= Im(α).

Now, ker(α) = {x ∈ C | 2x = 0} = 2QRM and, by definition of QRM, Im(α) =

RM .

Lemma 6.13. Let C ∈ QRM . Then, C/QRMId
∼= RM .

Proof: Let us consider the map

Ψ : (C, ?) −→ (RM, +).

Let x, y ∈ C. Ψ(x ? y) = α ◦ φ−1(x ? y) = α ◦ φ−1(φ(φ−1(x) + φ−1(y))) =

α(φ−1(x))+α(φ−1(y)) = Ψ(x)+Ψ(y) and Ψ is a homomorphism. ker(Ψ) = {x ∈ C |
2(φ−1(x)) = 0} = φ({x ∈ C | 2x = 0}) = φ(2QRM) = QRMId and the lemma holds

using the same argument as in Lemma 6.12.
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As a corollary of the last lemma, for any code C ∈ QRM , we obtain |C|/|QRMId| =
|RM | and, consequently, |QRMId| = 4k/2k = 2k, where k =

∑r
i=0

(

m
i

)

. Therefore,

dim(QRMId) =
r

∑

i=0

(

m

i

)

. (6.4)

Moreover, QRMId not only has the same dimension that RM but also there exist

an isomorphism between them.

Lemma 6.14. (QRMId, ?) ∼= (RM, +).

Proof: From Corollary 6.8, 2QRM = 2RM and, by Lemma 6.10, QRMId =

φ(2QRM). Let define the map ϕ : RM → 2QRMId by ϕ(x) = φ(2x). ϕ is a

homomorphism due to the fact that φ(2x) and φ(2y) are order 2 codewords and then,

ϕ(x + y) = φ(2x + 2y) = φ(2x) + φ(2y) = φ(2x) ? φ(2y) = ϕ(x) ? ϕ(y). As QRMId

and RM have the same dimension, ϕ is an isomorphism.

Image 6.3 shows the relationship between cosets obtained from Lemmas 6.12 and

6.13 and codewords in a Reed-Muller code.

The following propositions give a generalization of properties (ii) and (iii) of

Lemma 6.1. That way, starting from the properties given in the definition of QRM,

we will prove that codes in such a class fulfill all properties of the initial QRM code.

Lemma 6.15. Let x, y ∈ Z
n
4 . Then, α(x · y) = α(x) · α(y).

Proof: α(x·y) = α
(
∑n

i=0 xiyi (mod 4)
)

=
∑n

i=0

(

α(xiyi)
)

(mod 2) =
∑n

i=0

(

α(xi)α(yi)
)

(mod 2) = α(x) · α(y).

Proposition 6.16. Let C ∈ QRM(r, m), r < m. Then, C⊥ ∈ QRM(m− r− 1, m).

Proof: Let C ∈ QRM(r, m). It is clear that the length of C⊥ is 2m. The number

of codewords is 4k′

= 42m−k, where k =
∑r

i=0

(

m
i

)

. Then, k′ = 2m −
∑r

i=0

(

m
i

)

=
∑m

i=r+1

(

m
i

)

=
∑m−r−1

i=0

(

m
i

)

. We have to check that α(C⊥) = RM(m − r − 1, m) =

RM(r, m)⊥. By definition of C, RM(r, m)⊥ = α(C)⊥ and, for all x in RM(r, m),
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Figure 6.3: Cosets of Reed-Muller and quaternary Reed-Muller codes

there exist x′ ∈ C such that α(x′) = x. Let y ∈ C⊥, then, using Lemma 6.15,

α(y) · x = α(y) · α(x′) = α(y · x′) = α(0) = 0.

Image 6.4 shows the applications involved in the relationship of codes in classes

QRM and QRM, Reed-Muller codes and their duals.

Code QRM(r, m) ∈ QRM(r, m) not only has the property that QRM⊥(r, m) ∈
QRM(m − r − 1, m), but also QRM⊥(r, m) = QRM(m− r − 1, m). That is, the

chain of codes QRM(r, m) in QRM(r, m), r = 0, . . . , m, contains both QRM(r, m)

and QRM⊥(r, m) codes.

This fact is not true in general. Let us consider codes SRM(r, m) ∈ QRM(r, m)

defined in (6.1). By construction, SRM(r, m) ⊂ SRM(r + 1, m) for 0 ≤ r ≤ m− 1,

forming a chain of codes in QRM(r, m). However, for a given code SRM(r, m), its

dual code does not belong to the chain. As SRM⊥(r, m) ∈ QRM(m− r− 1, m) (by

Proposition 6.16) and SRM(m− r − 1, m) ∈ QRM(m− r − 1, m) we only have to

check that SRM⊥(r, m) 6= SRM(m− r − 1, m).
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Figure 6.4: Applications between Reed-Muller codes and related codes.

Lemma 6.17. SRM(r, m)⊥ 6= SRM(m− r − 1, m).

Proof: Let PI(v1, . . . , vm) ∈ SRM(r, m) and PJ(v1, . . . , vm) ∈ SRM(m− r− 1, m)

(see (6.1)).

Note that

< PI(v1, . . . , vm), PJ(v1, . . . , vm) >4=

wL(PI(v1, . . . , vm) · PJ(v1, . . . , vm)) =

wt(P(I∪J)(v1, . . . , vm)) =

2m−|I∪J |.

If I = {m, m−1, . . . , m−r+1} and J = {1, 2, . . . , m−r−1} then, |I∪J | = m−1

and < PI(v1, . . . , vm), PJ(v1, . . . , vm) >4= 2 6= 0. Thus, SRM(r, m)⊥ 6= SRM(m −
r − 1, m).

Nevertheless, for all PI(v1, . . . , vm) ∈ SRM(r, m) and PJ(v1, . . . , vm) with |J | ≤
m − r − 2 we can assure that |I ∪ J | ≤ m − 2 and their inner product, 2m−|I∪J | is

0 modulo 4. Hence, even though SRM(m − r − 1, m) 6= SRM⊥(r, m), the code

SRM(m− r − 2, m) ⊂ SRM⊥(r, m).



112 CHAPTER 6. QRM CODES

Proposition 6.18. Let C ∈ QRM(r, m), with 1 ≤ r ≤ m. There exist D ∈
QRM(r − 1, m) such that D ⊂ C.

Proof: Let C ∈ QRM(r, m). By Lemma 6.12 we can write C as the union of

cosets, C = 2QRM(r, m) ∪ (2QRM(r, m) + x1) ∪ (2QRM(r, m) + x2) ∪ · · · , where

y ∈ 2QRM(r, m) + xi if and only if α(y) = α(xi).

We define 2D as 2QRM(r − 1, m) = 2RM(r − 1, m) (Corollary 6.8). Clearly,

2D ⊂ 2C. For every coset 2QRM(r, m) + xi such that α(xi) ∈ RM(r − 1, m) ⊂
RM(r, m) we get the coset 2QRM(r − 1, m) + xi of D.

By construction, D ⊂ C, the length of D is 2m and α(D) = RM(r − 1, m). The

number of codewords is |2QRM(r − 1, m)| · |{xi such that α(xi) ∈ RM(r − 1, m)}|;
that is, 2k′ · 2k′

= 4k′

, where k′ =
∑r−1

i=0

(

m
i

)

. Therefore, D ∈ QRM(r − 1, m).

As we have seen in the last proposition, we can construct a chain of codes in

QRM codes. Nevertheless, this chain is not unique; given a code C ∈ QRM(r, m),

there may exist D1,D2 ∈ QRM(r − 1, m), such that D1 6= D2 and D1,D2 ⊂ C.
This is due to the fact that, for a given coset 2QRM(r, m) + xi and taking yi in

this coset, we obtain 2QRM(r, m) + xi = 2QRM(r, m) + yi but not necessarily

2QRM(r − 1, m) + xi = 2QRM(r − 1, m) + yi. We also can construct a chain of

QRM codes in terms of their generator matrices.

Let C ⊂ QRM(r, m), and M ∈ GQ(r, m) its generator matrix. By definition (see

(6.2)), M = G(r, m) + 2N for some binary (
∑r

i=0

(

m
i

)

× 2m) matrix, N . If r ≥ 1,

consider the matrix N−1 formed by the first
∑r−1

i=0

(

m
i

)

row vectors of N . Hence,

M−1 = G(r − 1, m) + 2N−1 ∈ GQ(r − 1, m). (6.5)

Moreover, if r < m, for any binary (
(

m
r+1

)

× 2m) matrix, N+1, we obtain

M+1 = G(r + 1, m) +





N

N+1



 ∈ GQ(r + 1, m). (6.6)

Let C−1 ∈ QRM(r− 1, m) and C+1 ∈ QRM(r + 1, m) be the codes generated by
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M−1 and M+1 respectively. Then,

C−1 ⊂ C ⊂ C+1.

Note that, with this construction, code C+1 may not be unique, it depends on the

choice of matrix N+1

6.2.1 Kernel of codes in QRM(r, m)

Lemma 6.19. Let C ∈ QRM , and let x ∈ ker(C), y ∈ C such that Ψ(x) = Ψ(y).

Then, y ∈ ker(C).

Proof: There exist σ1, · · · , σj ∈ S2m such that ker(C) = CId ∪ Cσ1 ∪ · · · ∪ Cσj
. If

x ∈ ker(C), then Cπx
⊆ ker(C). Hence, by Lemma 6.11, if Ψ(x) = Ψ(y), y ∈ Cπx

⊆
ker(C).

Let C ∈ QRM. We define the coset u = x+2QRM ∈ C, where α(x) = 1 ∈ RM .

Notice that for all u ∈ u, α(u) = 1 ∈ RM , 2u is the all two’s vector and πu = σ.

Lemma 6.20. Let C ∈ QRM . Then, Cσ ⊂ ker(C).

Proof: Let C ∈ QRM and u ∈ u. For any y ∈ C, where y = φ(x), x ∈ C,
φ(u) + y = φ(u) + φ(x) = φ(u + x + 2ux) ∈ C by (3.8) and, hence, φ(u) ∈ ker(C).

Finally, using Lemmas 6.11 and 6.19, Cσ = Cπφ(u)
⊂ ker(C).

Lemma 6.21. Let C ∈ QRM, where 1 ≤ r ≤ m− 1, then for all pair of coordinate

positions i, j ∈ {1, . . . , 2m}, there exists x ∈ C with exactly 2m−r odd coordinates and

such that x has odd coordinates in positions i and j.

Proof: For 1 ≤ r ≤ m − 2, RM(r, m) is invariant under the group of all affine

transformation of the 2m-dimensional binary space which is triply transitive (see

[MS77]). As a consequence, the nonzero codewords of any weight in RM form a

3-design, and hence a 2-design as well. For r = m − 1, RM contains all weight two

vectors. Then the claim follows taking into account that α(C) = RM .
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Proposition 6.22. Let C ∈ QRM . For 0 ≤ r ≤ m− 1, ker(C) = QRMId ∪ Cσ.

Proof: Clearly, CId ⊂ ker(C) and therefore, by Lemma 6.20, CId ∪ Cσ ⊆ ker(C).

If r = 0, then C = {0, 1, φ(u), φ(−u)}, where φ(u) ∈ Cσ, therefore ker(C) = C =

CId ∪ Cσ.

If 1 ≤ r ≤ m − 1, assume that there is some other codeword v ∈ ker(C), such

that v /∈ CId ∪ Cσ. Note that v ∈ ker(C) if and only if πv ∈ Aut(C) [BPRZ03].

For any x ∈ C = φ−1(C), note that φ−1πvφ(x) ∈ C would be a codeword like

x with some coordinates, but not all, with a sign change. Let i be one of these

coordinate positions and let j be a coordinate position without sign change. By

Lemma 6.21 we can assume that x has exactly 2m−r odd coordinates and x has odd

coordinates in positions i and j. Now, let z = x + φ−1πvφ(x) ∈ C. If φ(z) has

weight w, it is clear that 0 < w < 2m−r+1. But z is an order two codeword, thus

φ(z) ∈ CId = φ(2QRM). But also CId = φ(2RM), hence CId has minimum weight

2m−r+1 and we get a contradiction.

Corollary 6.23. For 0 ≤ r ≤ m− 1, if C ∈ QRM , then

dim(ker(C)) =
r

∑

i=0

(

m

i

)

+ 1,

and dim(ker(C)) = 2m+1, for r = m.

Proof: For r ≤ m − 1, we obtain the result from Proposition 6.22 and (6.4), using

Cσ = {CId +φ(u)}, for all C ∈ QRM , u ∈ u. And for r = m we have that C = Z
m+1
2 .

Let P and K be the quaternary Preparata-like and Kerdock codes defined in

[HKC+94]. In that article, it is proved that P = QRM(2m − 3, 2m − 1) and K =

QRM(1, 2m−1) and, therefore P ∈ QRM(2m−3, 2m−1) and K ∈ QRM(1, 2m−
1). Moreover, we obtain φ(P) ∈ QRM(2m−3, 2m−1) and φ(K) ∈ QRM(1, 2m−1).

Next Lemma shows that this result is true for any Preparata-like and Kerdock-like

code.
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Lemma 6.24. Let P2m be a Z4-linear Preparata-like code and K2m a Z4-linear Kerdock-

like code of length n+1 = 22m. P2m ∈ QRM (2m−3, 2m−1) and K2m ∈ QRM(1, 2m−
1).

Proof: K2m has the same parameters as the Z4-linear Kerdock code defined in

[HKC+94] and, therefore, K2m ∈ QRM (1, 2m−1) if and only if Ψ(K2m) = RM(1, 2m−
1). By [BPRZ03],

ker(K2m) = RM(1, 2m) =
〈

φ(RM(0, 2m− 1)), φ(2RM(1, 2m− 1))
〉

.

As φ(2RM(1, 2m − 1)) ⊂ K2m and φ−1(K2m) is a quaternary code of type 42m−1

then, RM(1, 2m − 1) ⊂ φ−1(K2m). Hence, RM(1, 2m − 1) = α(RM(1, 2m − 1) ⊂
Ψ(K2m). Finally, as |RM(1, 2m−1)| = 22m+1 and |φ−1(K2m)| = 42m+1 it follows that

RM(1, 2m− 1) = Ψ(K2m). If P2m is a Z4-linear Preparata-like, then P2m = (K2m)⊥

where K2m ∈ QRM(1, 2m−1). Then, by Proposition 6.16 P2m ∈ QRM(2m−3, 2m−
1).

As a corollary, φ−1(P2m) ∈ QRM(2m−3, 2m−1) and φ−1(K2m) ∈ QRM(1, 2m−
1).

From [BPRZ03], ker(K2m) = RM(1, 2m) and, therefore, dim(ker(K2m)) = 2m +

1. Moreover, dim(ker(P2m)), dim(PId(2m)) and dim((K2m)Id) can also be found

in such article. Nevertheless, the following proposition will present all these results

considering such codes as particular cases of codes in the QRM class.

Proposition 6.25. Let P2m be a Z4-linear Preparata-like code and K2m a Z4-linear

Kerdock-like code of length n + 1 = 22m. Then

(i) dim((P2m)Id) = 22m−1 − 2m, and dim(ker(P2m)) = 22m−1 − 2m + 1,

(ii) dim((K2m)Id) = 2m, and dim(ker(K2m)) = 2m + 1.

Proof: P2m ∈ QRM(2m − 3, 2m − 1) and K2m ∈ QRM(1, 2m − 1). Using (6.4)

dim((P2m)Id) =
∑2m−3

i=0

(

2m−1
i

)

= 22m−1−2m and dim((K2m)Id) =
∑1

i=0

(

2m−1
i

)

= 2m.

In both cases, the dimension of the kernel follows directly from Proposition 6.22.
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6.2.2 Rank of codes in QRM(r, m)

Let C be a quaternary code. Let C̄ be defined as the span of the subset containing

2xy for all x, y ∈ C;
C̄ =

〈

2xy | x, y ∈ C
〉

4
. (6.7)

Proposition 6.26. Let C be a quaternary code, C = φ(C) and C̄ defined in (6.7).

Then,
〈

C
〉

= φ
(

C + C̄
)

.

Proof: φ
(

C + C̄
)

is a Z4-linear code, and, moreover, for all pair of elements x, y ∈
C + C̄, 2xy ∈ C + C̄. Hence, by Theorem 3.4, φ

(

C + C̄
)

is a linear code. Clearly,

C ⊆ φ
(

C + C̄
)

and, then, we obtain
〈

C
〉

⊆ φ
(

C + C̄
)

.

Let x, y ∈ C. Using (3.8) we obtain φ(2xy) = φ(x)+φ(y)+φ(x+y) ∈
〈

C
〉

. For any

z ∈ C̄, z can be expressed as z = 2x1y1+2x2y2+· · ·+2xkyk, where k ≥ 0 and xi, yi ∈ C,
i ∈ {1, . . . , k}. Image under the Gray map of z is φ(z) = φ(2x1y1) + · · ·+ φ(2xkyk) ∈
〈

C
〉

and, then, φ(C̄) ⊆
〈

C
〉

. Finally, if x ∈ C + C̄ then, x = c + z where c ∈ C and

z ∈ C̄ and φ(x) = φ(c) + φ(z) ∈
〈

C
〉

.

Lemma 6.27. Let C ∈ QRM, C̄ defined in (6.7). Then, |C̄| = 2k, where k =
∑t

i=0

(

m
i

)

, t = min{2r, m}.

Proof: C̄ can be defined as
〈

2α(x)α(y) | x, y ∈ C
〉

4
that is isomorphic to

〈

α(x)α(y) |
x, y ∈ C

〉

where α(x), α(y) ∈ RM . Considering the basis of RM and being k such

that |C̄| = 2k, we obtain

k = |{PI(v1, . . . , vm)PJ(v1, . . . , vm)|I, J ⊆ {1, . . . , m}, |I|, |J | ≤ r}| =
= |{P(I∪J)(v1, . . . , vm) | I, J ⊆ {1, . . . , m}, |I|, |J | ≤ r}| by Lemma 5.3. Hence,

k = |{I ∪ J | I, J ⊆ {1, . . . , m}, |I|, |J | ≤ r}| = |{I | I ⊆ {1, . . . , m}, |I| ≤ t}| where

t = min{2r, m} and this value is exactly
∑t

i=0

(

m
i

)

.

Lemma 6.28. Let C be a quaternary code and C̄ defined in (6.7). Then,

|C + C̄| = |C||C̄|
|C ∩ C̄| .
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Proof: By the second isomorphism theorem, C/(C ∩ C̄) ∼= (C + C̄)/C̄ and, therefore,
|C|

|C∩C̄|
= |C+C̄|

|C̄|
.

Proposition 6.29. Let C ∈ QRM . Then,

rank(C) =

r
∑

i=0

(

m

i

)

+

t
∑

i=0

(

m

i

)

,

where t = min{2r, m}.

Proof: Let C ∈ QRM, C = φ(C) and C̄ defined in (6.7). By Proposition 6.26,
〈

C
〉

= φ
(

C + C̄
)

. Clearly, rank(C) = dim
〈

C
〉

and |
〈

C
〉

| = |φ
(

C + C̄
)

| = |C + C̄|.
It is easy to check that C∩C̄ = 2QRM and then, |C|/|C+C̄| = |C/2QRM| = |RM |

using Lemma 6.12. That way, |C + C̄| = |RM ||C̄| applying Lemma 6.28 that is

equal to 2k12k2 = 2k1+k2 where k1 = dim(RM) =
∑r

i=0

(

m
i

)

and k2 =
∑t

i=0

(

m
i

)

,

where t = min{2r, m} by Lemma 6.27. Finally, rank(C) = dim
〈

C
〉

= k1 + k2 =
∑r

i=0

(

m
i

)

+
∑t

i=0

(

m
i

)

.

As in the case of the kernel of quaternary Kerdock-like and Preparata-like codes,

the results of their ranks can be found in [BPRZ03]. These results are obtained as a

corollary of the last theorem.

Corollary 6.30. Let P2m be a Z4-linear Preparata-like code and K2m a Z4-linear

Kerdock-like code of length n + 1 = 22m. Then

(i) rank(P2m) = 22m − 2m,

(ii) rank(K2m) = 2m2 + m + 1.

Proof: P2m ∈ QRM(2m − 3, 2m − 1), therefore rank(P2m) =
∑2m−3

i=0

(

2m−1
i

)

+
∑2m−1

i=0

(

2m−1
i

)

= 22m−1 −
(

2m−1
2m−2

)

−
(

2m−1
2m−1

)

+ 22m−1 = 22m − 2m.

Similarly, K2m ∈ QRM(1, 2m− 1) and rank(K2m)=
∑1

i=0

(

2m−1
i

)

+
∑2

i=0

(

2m−1
i

)

= 2
(

2m−1
0

)

+ 2
(

2m−1
1

)

+
(

2m−1
2

)

= 2m2 + m + 1.
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We present a table with all properties of the Preparata-like, Pm, and Kerdock-like,

Km, codes:

C Km Pm

length 2m 2m

d 2m−1 − 2(m−2)/2 6

|C| 22m 22m−2m

dim(CId) m 2m−1 −m

dim(ker(C)) m + 1 2m−1 −m + 1

rank(C) (m2 + m)/2 + 1 2m −m

φ−1(C) in QRM(1, m− 1) QRM(m− 3, m− 1)

6.2.3 Chain of codes in QRM(r, m)

A chain of codes C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 is denoted (C0, C1, . . . , Cm−1).

We define the set of chain of codes where all codes in the chain belongs to the

QRM(r, m) class.

Γ̄ = {(C0, C1, . . . , Cm−1) | Cr ∈ QRM(r, m), r = 0, . . . , m− 1} (6.8)

Due to the fact that if C ⊂ D, then D⊥ ⊂ C⊥, we can consider the dual of a chain.

Definition 6.2.2. The dual of a chain of codes (C0, C1, . . . , Cm−1) is

(C0, C1, . . . , Cm−1)
⊥ = (C⊥m−1, C⊥m−2, . . . , C⊥0 ). (6.9)

If (C0, C1, . . . , Cm−1)
⊥ = (C0, C1, . . . , Cm−1), then it is called a self-dual chain of codes.

Lemma 6.31. If Γ ∈ Γ̄ then, Γ⊥ ∈ Γ̄.

Proof: Let Γ ∈ Γ̄; that is, Γ = (C0, C1, . . . , Cm−1), where Ci ∈ QRM(i, m). As

Γ⊥ = (C⊥m−1, C⊥m−2, . . . , C⊥0 ), we only have to check that C⊥i ∈ QRM(m− i− 1, m) for

all 0 ≤ i ≤ m− 1, but this is true due to Proposition 6.16.
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Two different chains of codes can be found in last section. The class QRM(r, m)

was introduced in order to generalize the well-known QRM(r, m) codes. From Lemma

6.1, such codes can be arranged to form a chain of codes (see Image 6.1). Denote

ΓQRM = (QRM(0, m),QRM(1, m), . . . ,QRM(m− 1, m)). (6.10)

Therefore, ΓQRM ∈ Γ̄.

A chain of codes can also be constructed with SRM(r, m) codes defined in (6.1).

It will be denote

ΓSRM = (SRM(0, m),SRM(1, m), . . .SRM(m− 1, m)). (6.11)

Again, note that ΓSRM ∈ Γ̄.

By Lemma 6.1, the dual code of QRM(r, m) is QRM(r, m)⊥ = QRM(m −
r − 1, m) that also belongs to the chain. Therefore, Γ⊥

QRM = ΓQRM and ΓQRM is a

self-dual chain.

This property of ΓQRM is not a general property. Even though given a code

C ∈ QRM(r, m), its dual code belongs to QRM(m − r − 1, m), there may exist a

chain Γ ∈ Γ̄ containing C that do not contains C⊥. This is the case, for example of

ΓSRM.

Lemma 6.32. ΓSRM 6= Γ⊥
SRM.

Proof: By Proposition 6.16, SRM(r, m)⊥ belongs to the chain of SRM(r, m) codes

if and only if SRM(r, m)⊥ = SRM(m− r− 1, m), that is not true by Lemma 6.17.

Construction of chains

Let 1 ≤ r ≤ m, Cr ∈ QRM(r, m). We have presented different methods to obtain

codes Cr−1 ∈ QRM(r−1, m) and Cr+1 ∈ QRM(r+1, m) such that Cr−1 ⊂ Cr ⊂ Cr+1.

First, in Proposition 6.18, a code Cr−1 ∈ QRM(r − 1, m) is given. However, this

construction of codes is not unique. We can obtain C ′r−1 ∈ QRM(r− 1, m) such that

C ′r−1 6= Cr−1 and C ′r−1 ⊂ C.
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The second construction is given in terms of generator matrix. From Mr ∈
GQ(r, m) the generator matrix of Cr, we obtain Mr−1 ∈ GQ(r − 1, m) and Mr+1 ∈
GQ(r+1, m) ((6.5) and (6.6)) that are generator matrices of some codes Cr−1 and Cr+1

respectively. In that case, the construction of Cr−1 is unique but not the contruction

of Cr+1.

As a conclusion, we obtain the following lemma.

Lemma 6.33. Given a code C ∈ QRM(r, m), we can construct different Γ ∈ Γ̄ such

that C is in Γ.

Minimum distance of chains

Definition 6.2.3. Let Γ = (C0, C1, . . . , Cm−1) ∈ Γ̄. Define the minimum distance of

Γ as

d(Γ) = (d0, d1, . . . , dm−1), (6.12)

where di is the minimum distance of Ci.

Lemma 6.34. Let Γ ∈ Γ̄, d(Γ) = (d0, d1, . . . , dm−1). Then,

(i) 2m−r ≤ dr ≤ 2m−r+1, 0 ≤ r ≤ m,

(ii) if m ≥ 3 odd, d1 ≤ 2m − 2(m−1)/2,

(iii) if m ≥ 3 odd, dm−2 ≤ 6.

Proof: Let C ∈ QRM(r, m), with 0 ≤ r ≤ m, and dr be the minimum distance of

C.
In order to establish bounds to dr, notice that, as α(C) = RM(r, m), dr is, at

least, the minimum distance of RM(r, m). By Lemma 5.5 and due to the fact that

0 ∈ RM(r, m), the minimum distance of RM(r, m) is 2m−r and, therefore, dr ≥ 2m−r.

Let v ∈ C such that α(v) is a minimum weight codeword, 2m−r, in RM(r, m).

Codeword 2v also belongs to C and wL(2v) = 2wt(α(v)) = 2m−r+1. Hence d ≤ 2m−r+1

yielding (i).
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To prove (ii) and (iii), we first note that if m ≥ 3 odd, then φ(QRM(1, m)) =

Km+1 and φ(QRM(m − 2, m)) = Pm+1 (Corollary 6.2). Any code with the same

number of codewords than Km+1 and Pm+1 has minimum distance lower than 2m −
2(m−1)/2 and 6 respectively ([MS77]). Then, d1 ≤ 2m − 2(m−1)/2 and dm−2 ≤ 6.

Lemma 6.35. d(ΓSRM) = (2m, 2m−1, . . . , 2m−r, . . . , 2).

Note that the minimum distance of any code in ΓSRM is the least possible for

codes in QRM(r, m) with the same parameters r and s.
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Chapter 7

ZRM codes

In the literature, there are two different definitions of ZRM codes. The first defini-

tion was given in [HKC+94] in 1994 and these codes will be denoted ZRM(r, m).

The second one can be found in [Wan97] (1997) and codes in this case are denoted

ZRM∗(r, m). Even though they are not equivalent definitions, in both cases they

are used to prove the Z4-linearity of RM(r, m) (whenever it is a Z4-linear code). For

r = 0, 1, 2, m− 1 and m, the image of both families of codes under φ are Reed-Muller

code, where φ is the extended Gray map defined in (3.4).

Definitions and constructions of both families of codes are in Section 7.1. The

linearity of φ(ZRM(r, m)) is given in Section 7.2 whereas the computation of the

rank and the dimension of the kernel of φ(ZRM∗(r, m)) is in Section 7.3. Finally,

Sections 7.4 and 7.5 relate ZRM(r, m) codes with the family of Reed-Muller codes

and codes in the class QRM(r, m), respectively.

Note that if C is a binary code, then rank(C) = rank(π(C)) and dim(ker(C)) =

dim(ker(π(C))) for any coordinate permutation π. Moreover, if C is a linear code

then, π(C) is also a linear code. That way, in order to obtain the rank and the

dimension of the kernel and study the linearity of φ(ZRM(r, m)) codes, we can

apply a specific extended Gray map (a general Gray map is the composition of a

coordinate permutation and an extended Gray map). For this reason, in all this

123
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chapter, unless it is said otherwise, φ is the extended Gray map defined in (3.4).

7.1 Definitions of ZRM(r, m) and ZRM∗(r, m) codes

Let m, r be integers such that −1 ≤ r ≤ m + 1. Let RM(r, m) be a r-th order

binary Reed-Muller code, G(r, m) its generator matrix and PI(v1 . . . , vm) its generator

vectors for |I| ≤ r (Theorem 5.1), where RM(−1, m) = RM(m + 1, m) = {0} and

G(−1, m) = G(m + 1, m) = (0).

Let ZRM(r, m) be the quaternary code of length 2m generated by RM(r− 1, m)

and 2RM(r, m);

ZRM(r, m) =
〈

RM(r − 1, m), 2RM(r, m)
〉

4
. (7.1)

Denote by ZRM(r, m) = φ(ZRM(r, m)) the Z4-linear code of length 2m+1.

Let ZRM∗(r, m) be the Z4-code of length 2m generated by the matrix




G(r − 1, m)

2G(r, m)



 .

Note that ZRM∗(r, m) can be defined as

ZRM∗(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r − 1}
〉

4
+

〈

{2PI(v1, . . . , vm) | |I| ≤ r}
〉

4
.

(7.2)

Denote by ZRM ∗(r, m) = φ(ZRM∗(r, m)) the Z4-linear code of length 2m+1.

In [HKC+94] and [Wan97] can be found the proof of the following Proposition.

Proposition 7.1. Let r = 0, 1, 2, m− 1 and m.

(i) ZRM(r, m− 1) = RM(r, m),

(ii) ZRM∗(r, m− 1) = RM(r, m).

As a corollary, for the values of r, m such that RM(r, m) is a Z4-linear code, both

definitions, ZRM(r, m− 1) and ZRM∗(r, m− 1), coincide and the binary image of

such codes under the Gray map is, exactly, RM(r, m).
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Example 7.1.1. ZRM(2, 3) and ZRM∗(2, 3) are generated by the matrix

































1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 2 2

0 0 0 0 0 2 0 2

0 0 0 2 0 0 0 2

































=

































v0

v3

v2

v1

2v3v2

2v3v1

2v2v1

































.

So we have seen that for some values of r, m, ZRM(r, m) and ZRM∗(r, m)

codes coincide. What is the difference between such codes? Let u1, u2 be codewords

in RM(r − 1, m). Since u1 and u2 belong to both codes, so does their quaternary

sum. Now consider their binary sum u3. By definition, u3 belongs to RM(r−1, m) ⊆
ZRM(r, m) but it may not belong to ZRM∗(r, m). Thus, some of the codewords

in ZRM(r, m) (obtained from the binary sum of codewords) may not be generated

in Z4 by the generator vectors of ZRM∗(r, m) (Equation (7.2)). We will give a set

of generator vectors of ZRM(r, m) and will see that these codes are equivalent only

for the values of r, m of the Proposition 7.1.

Note that, given codewords with all nonzero coordinates equal to one, we may be

interested in both, their binary and their quaternary sum. In order to avoid confusion,

any binary sum of such codewords x and y will be denoted x+b y and the quaternary

sum is denoted simply x + y.

Lemma 7.2. Let x1, x2, . . . , xs vectors in Z
n
4 with all nonzero coordinates equal to 1.

Then,

x1 +b x2 +b · · ·+b xs = (x1 + x2 + · · ·+ xs) + 2
(

∑

1≤i<j≤s

xixj

)

.

Proof: Let ai be the `-th coordinate of xi, i = 1, . . . , s. Let i1, . . . ik ⊂ {1, 2, . . . , s}
be indexes of vectors with nonzero `-th coordinate. The `-th coordinate of x1 +b x2 +b

· · ·+b xs is k = a1 + a2 + · · ·+ as mod 2. Moreover, the product aiaj is nonzero if and
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only if both ai and aj are nonzero coordinates; that is, i, j ∈ {i1, . . . , ik}. That way,
∑

1≤i<j≤s 2xixj is exactly 2
(

k
2

)

= k(k − 1) and we only have to check that

k mod 2 =
(

k + k(k − 1)
)

mod 4 = k2 mod 4.

If k = 2m, m ≥ 0 we obtain k2 = 4m2 = 0 mod 4 whereas if k = 2m + 1, k2 =

4m2 + 4m + 1 = 1 mod 4; so that, k mod 2 is, effectively, k2 mod 4.

Let us consider PI(v1, . . . , vm), PJ(v1, . . . , vm) generator vectors in RM(r, m). Clearly,

their binary sum belongs to RM(r, m) and, therefore, to
〈

RM(r, m)
〉

4
. As these gen-

erator vectors also belongs to
〈

RM(r, m)
〉

4
so do their (quaternary) sum.

Thus, both the binary and quaternary sum are codewords in the Z4-spanned code

of RM(r, m) and they are related by the last lemma as follows:

PI(v1, . . . , vm) +b PJ(v1, . . . , vm)
)

=

PI(v1, . . . , vm) + PJ(v1, . . . , vm) + 2PI(v1, . . . , vm)PJ(v1, . . . , vm)

Corollary 7.3. Let x1, x2, . . . , xs be vectors in Z
n
4 and let φ be a general Gray map.

Then,

φ(x1 + x2 + · · ·+ xs) = φ(x1) +b φ(x2) +b · · ·+b φ(xs) +b 2
(

∑

1≤i<j≤s

φ(xixj)
)

.

Lemma 7.4. Let r, m, t be integers such that 0 ≤ r ≤ m and t = min{2r, m}. Then,

2PI(v1, . . . , vm) ∈
〈

RM(r, m)
〉

4
for all I ⊆ {1, 2, . . . , m} where |I| ≤ t.

Proof: Let I ⊆ {1, 2 . . . , m} such that |I| ≤ t. There exist I1, I2 ⊆ {1, 2 . . . , m},
with |I1|, |I2| ≤ r such that I1 ∪ I2 = I. As PI1(v1, . . . , vm), PI2(v1, . . . , vm) are code-

words in RM(r, m) their binary sum, called s, also belongs to RM(r, m). There-

fore, s − PI1(v1, . . . , vm) − PI2(v1, . . . , vm) ∈
〈

RM(r, m)
〉

4
that is, by Lemma 7.2

2PI1(v1, . . . , vm)PI2(v1, . . . , vm) ∈
〈

RM(r, m)
〉

4
. Using Lemma 5.3,

2PI1(v1, . . . , vm)PI2(v1, . . . , vm) = 2PI1∪I2(v1, . . . , vm) = 2PI(v1, . . . , vm) ∈
〈

RM(r, m)
〉

4
.

As
〈

RM(r−1, m)
〉

4
⊆ ZRM(r, m) by definition, we obtain directly the following

corollary.
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Corollary 7.5. Let r, m, t be integers such that 0 ≤ r ≤ m and t = min{2r − 2, m}.
Then, 2PI(v1, . . . , vm) ∈ ZRM(r, m) for all I ⊆ {1, 2, . . . , m} where |I| ≤ t.

Proposition 7.6. Let r, m be integers such that 0 ≤ r ≤ m. Then,

〈

RM(r, m)
〉

4
=

〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
+

〈

{2PI(v1, . . . , vm) | r + 1 ≤ |I| ≤ t}
〉

4
,

where t = min{2r, m}.

Proof: Let x ∈ RM(r, m). x can be expressed as the binary sum of some generator

vectors PI1(v1, . . . , vm), . . . , PIs
(v1, . . . , vm) and, by Lemma 7.2, x = PI1(v1, . . . , vm)+

· · · + PIs
(v1, . . . , vm) + 2

(
∑

1≤i<j≤s PIi
(v1, . . . , vm)PIj

(v1, . . . , vm)
)

∈
〈

RM(r, m)
〉

4
.

As |Ii| ≤ r, PIi
(v1, . . . , vm)PIj

(v1, . . . , vm) = PIi∪Ij
(v1, . . . , vm) with 0 ≤ |Ii ∪ Ij| ≤

min{2r, m}. Thus, if t = min{2r, m},
x ∈

〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
+

〈

{2PI(v1, . . . , vm) | |I| ≤ t}
〉

4
=

〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
+

〈

{2PI(v1, . . . , vm) | r + 1 ≤ |I| ≤ t}
〉

4
.

That way, if x ∈ RM(r, m) there exist a ∈
〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
and

b ∈
〈

{2PI(v1, . . . , vm) | r + 1 ≤ |I| ≤ t}
〉

4
such that x = a + b.

Let us consider λ1x1 + · · · + λkxk ∈
〈

RM(r, m)
〉

4
where xi ∈ RM(r, m) and

λi ∈ Z4. Then, λ1x1 + · · · + λkxk = (λ1a1 + · · · + λkak) + (λ1b1 + · · · + λkbk),

where λ1a1 + · · · + λkak ∈
〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
and λ1b1 + · · · + λkbk ∈

〈

{2PI(v1, . . . , vm) | r + 1 ≤ |I| ≤ t}
〉

4
. As a result,

〈

RM(r, m)
〉

4
⊆

〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
+

〈

{2PI(v1, . . . , vm) | r + 1 ≤ |I| ≤ t}
〉

4
.

Clearly,
〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
⊆

〈

RM(r, m)
〉

4
, therefore, to prove the converse

we only have to check that
〈

{2PI(v1, . . . , vm) | r + 1 ≤ |I| ≤ t}
〉

4
⊆

〈

RM(r, m)
〉

4
but

this is true due to Lemma 7.4.

Proposition 7.7. Let r, m be integers such that 2 ≤ r ≤ m + 1. Then,

ZRM(r, m) =
〈

RM(r − 1, m)
〉

4
.
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Proof:

By definition, ZRM(r, m) =
〈

RM(r− 1, m), 2RM(r, m)
〉

4
=

〈

RM(r− 1, m)
〉

4
+

〈

2RM(r, m)
〉

4
.

Clearly,
〈

RM(r − 1, m)
〉

4
⊆ ZRM(r, m). Hence, we only have to check that

〈

2RM(r, m)
〉

4
⊆

〈

RM(r − 1, m)
〉

4
.

Now, let PI1(v1, · · · , vm), . . . , PIs
(v1, · · · , vm) ∈ RM(r, m). Note that 2PI1(v1, · · · , vm)+

· · · + 2PIs
(v1, · · · , vm) = 2

(

PI1(v1, · · · , vm) +b · · · +b PIs
(v1, · · · , vm)

)

. Therefore, by

Proposition 7.6,
〈

2RM(r, m)
〉

4
=

〈

{2PI(v1, . . . , vm) | |I| ≤ r}
〉

4
⊆

〈

RM(r − 1, m)
〉

4

if and only if r ≤ min{2r − 2, m}; that is, r ≤ m and r ≤ 2r − 2 or, equivalently,

2 ≤ r ≤ m. Thus, for r ≤ 2r − 2, ZRM(r, m) =
〈

RM(r − 1, m)
〉

4
.

Finally, if r = m + 1, ZRM(m + 1, m) =
〈

RM(m, m), 2RM(m + 1, m)
〉

4
=

〈

RM(m, m)
〉

4
by definition of RM(m + 1, m).

Corollary 7.8. Let r, m be integers such that 2 ≤ r ≤ m + 1. Then,

ZRM(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r − 1}
〉

4
+

〈

{2PI(v1, . . . , vm) | r ≤ |I| ≤ t}
〉

4
,

where t = min{2r − 2, m}. Moreover,

ZRM(0, m) =
〈

{2}
〉

4
,

ZRM(1, m) =
〈

{1}
〉

4
+

〈

{2PI(v1, . . . , vm) | |I| ≤ 1}
〉

4
.

Proof: When 2 ≤ r ≤ m, the equality follows from propositions 7.6 and 7.7. The

rest of the cases are obtained applying the definition of ZRM(r, m).

Proposition 7.9. ZRM(r, m) = ZRM∗(r, m) if and only if r = 0, 1, 2, m and

m + 1.

Proof: From Proposition 7.1, if r = 0, 1, 2, m and m + 1, then ZRM(r, m) =

ZRM∗(r, m).

By equation (7.2) and Corollary 7.8, ZRM(r, m) = ZRM∗(r, m) if and only

if
〈

{2PI(v1, . . . , vm) | r ≤ |I| ≤ t}
〉

4
=

〈

{2PI(v1, . . . , vm) | |I| ≤ r}
〉

4
, where t =

min{2r − 2, m}; that is, if and only if r ≥ min{2r − 2, m}. The equality is given if

and only if r ≥ 2r − 2 or r ≥ m; equivalently, for values r = 0, 1, 2, m and m + 1.
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7.2 Linearity of ZRM(r, m) codes

Proposition 7.10. ZRM(r, m) is a quaternary code of length 2m and type 4k12k2,

where k1 =
∑r−1

i=0

(

m
i

)

and k2 =
∑t

i=r

(

m
i

)

, t = min{2r − 2, m}.

Proof: By Corollary 7.8,

ZRM(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r − 1}
〉

4
+

〈

{2PI(v1, . . . , vm) | r ≤ |I| ≤ t}
〉

4
,

where t = min{2r− 2, m}. Note that {PI(v1, . . . , vm) | |I| ≤ t}, are linearly indepen-

dent binary vectors and, applying Lemma 3.1, ZRM(r, m) is of type 4k12k2 where

k1 =
∑r−1

i=0

(

m
i

)

and k2 =
∑t

i=r

(

m
i

)

.

Lemma 7.11. Let C be a binary linear code and C =
〈

C
〉

4
. Then, φ(C) is a linear

code, where φ is a general Gray map.

Proof: Let x, y ∈ C. By Lemma 7.2, 2xy = x +b y − (x + y) ∈ C.
Now, consider two codewords x, y ∈ C. As C =

〈

C
〉

4
, x = x1 + · · · + xs and

y = y1 + · · ·+ yt, where xi, yj ∈ C for all i = 1, . . . , s; j = 1, . . . , t. 2xy = 2(x1 + · · ·+
xs)(y1 + · · ·+ yt) =

∑

i,j 2xiyj ∈ C. Therefore, φ(C) is a linear code by Theorem 3.4.

Proposition 7.12. ZRM(r, m) are linear codes and

dim(ZRM(r, m)) =

r−1
∑

i=0

(

m

i

)

+

t
∑

i=0

(

m

i

)

,

where t = min{2r − 2, m}.

Proof: ZRM(r, m) =
〈

RM(r − 1, m)
〉

4
by Proposition 7.7. Then, using Lemma

7.11, ZRM(r, m) = φ(ZRM(r, m)) is a linear code.

dim(ZRM(r, m)) = k, where 2k is the number of codewords of ZRM(r, m). By

Proposition 7.10, the number of codewords of ZRM(r, m) is 4k12k2 = 22k1+k2, where

k1 =
∑r−1

i=0

(

m
i

)

and k2 =
∑t

i=r

(

m
i

)

, t = min{2r − 2, m}. Then, dim(ZRM(r, m)) =

2
∑r−1

i=0

(

m
i

)

+
∑t

i=r

(

m
i

)

=
∑r−1

i=0

(

m
i

)

+
∑t

i=0

(

m
i

)

.
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7.3 Rank and kernel of ZRM ∗(r, m) codes

First, we establish the type of the quaternary code ZRM∗(r, m).

Proposition 7.13. ZRM∗(r, m) is a quaternary code of length 2m and type 4k12k2,

where k1 =
∑r−1

i=0

(

m
i

)

and k2 =
(

m
r

)

.

Proof. By definition (7.2) of ZRM∗(r, m) and applying Lemma 3.1.

By Proposition 7.1 for r = 0, 1, 2, m, m + 1, ZRM ∗(r, m) is a linear code and,

therefore, rank(ZRM ∗(r, m)) = dim(ker(ZRM ∗(r, m)) =
∑r

i=0

(

m+1
i

)

. We will es-

tablish the value of the rank and the dimension of the kernel for the rest of the values

of r.

Recall that ZRM ∗(r, m) is the image of ZRM∗(r, m) under a general Gray map,

that is, a composition of the extended Gray map and a coordinate permutation.

Note that if C is a binary code, then rank(C) = rank(π(C)) and dim(ker(C)) =

dim(ker(π(C))) for any coordinate permutation π. That way, in order to obtain the

rank and the dimension of the kernel of ZRM ∗(r, m) codes, we can apply a specific

coordinate permutation to the extended Gray map. In all this section, the Gray map

φ will be the Gray map defined in 3.4.

Let I ⊆ {1, 2, . . . , m} be a set of indexes. We define the sets I+, I? ⊆ {1, 2, . . . , m+

1} as:

I+ = {i + 1 | i ∈ I},

I? = {1} ∪ {i + 1 | i ∈ I}.

Lemma 7.14. Let I, J ⊆ {1, 2, . . . , m}. Then,

φ(PI(v1, . . . , vm)PJ(v1, . . . , vm)) = φ(PI(v1, . . . , vm))φ(PJ(v1, . . . , vm)),

φ(2PI(v1, . . . , vm)PJ(v1, . . . , vm)) = φ(2PI(v1, . . . , vm))φ(2PJ(v1, . . . , vm)).

Proof: Let consider xj, yj the j-th coordinate of PI(v1, . . . , vm) and PJ(v1, . . . , vm)

respectively. Assume xj = 0; then, by one hand, φ(xjyj) = φ(0) = (00) and
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φ(xj)φ(yj) = (00)φ(2yj) = (00) and, by other hand, φ(2xjyj) = φ(0) = (00) and

φ(2xj)φ(2yj) = (00)φ(yj) = (00). Finally, if xj = yj = 1 then, in the first equation of

the lemma, we obtain φ(xjyj) = (01) and φ(xj)φ(yj) = (01)(01) = (01) and, in the

second equation, φ(2xjyj) = (11) and φ(2xj)φ(2yj) = (11)(11) = (11).

Corollary 7.15. Let I ⊆ {1, 2, . . . , m}. Then, φ(PI(v1, . . . , vm)) = PI?(v′
1, . . . , v

′
m+1)

and φ(2PI(v1, . . . , vm)) = PI+(v′
1, . . . , vm+1′).

Proof: By Lemma 5.18 and Lemma 7.14 and due to the fact that v2
i = vi for all

i = 1, . . . , m.

Next theorems will give the values of the rank and the dimension of the kernel of

ZRM∗(r, m) codes for the other values of r.

Proposition 7.16. Let r, m be integers such that 0 ≤ r ≤ m + 1.

〈

ZRM∗(r, m)
〉

= ZRM(r, m)

Proof: It follows from definitions (5.5), (7.1) and (7.2).

Theorem 7.17. Let r, m be integers such that 3 ≤ r ≤ m− 1.

rank(ZRM ∗(r, m)) =

r−1
∑

i=0

(

m

i

)

+

t
∑

i=0

(

m

i

)

,

where t = min{m, 2r − 2}.

Proof: Due to Propositions 7.16 and 7.12.

By Proposition 7.19, φ image of generator vectors of ZRM∗(r, m) are generator

vectors of RM(r, m + 1). That way, ker(ZRM ∗(r, m)) ⊆ RM(r, m + 1). Moreover,

order 2 codewords in ZRM ∗(r, m) belongs to its kernel, and then, φ(2RM(r, m)) ⊆
ker(ZRM∗(r, m)). Therefore, we obtain the following bounderies to the dimension

of the kernel of ZRM ∗(r, m):

r
∑

i=0

(

m

i

)

≤ dim(ker(ZRM ∗(r, m))) ≤
r

∑

i=0

(

m + 1

i

)

.
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Theorem 7.18. Let r, m be integers such that 3 ≤ r ≤ m− 1.

dim(ker(ZRM ∗(r, m))) =
r

∑

i=0

(

m

i

)

+ m + 1.

Proof: As φ(2RM(r, m)) ⊆ ker(ZRM ∗(r, m)), we have to check which vectors of

φ(RM(r − 1, m)) belong to the kernel of ZRM ∗(r, m).

Let PI(v1, . . . , vm), PJ(v1, . . . , vm) ∈ RM(r − 1, m).

φ(PI(v1, . . . , vm)) +b φ(PJ(v1, . . . , vm)) = PI∗(v1, . . . , vm+1) +b PJ∗(v1, . . . , vm+1) ∈
ZRM∗(r, m) if and only if P(I∗∪J∗)\{1}(v1, . . . , vm+1) = PI+∪J+(v1, . . . , vm+1) ∈ ZRM∗(r, m).

That is, φ−1(PI+∪J+(v1, . . . , vm+1)) = 2PI∪J(v1, . . . , vm) ∈ ZRM∗(r, m) or, equiva-

lently, PI∪J(v1, . . . , vm) ∈ RM(r, m). So, φ(PI(v1, . . . , vm)) +b φ(PJ(v1, . . . , vm)) ∈
ZRM∗(r, m) if and only if |I ∪ J | ≤ r. As |J | ≤ r − 1 and 3 ≤ r ≤ m − 1,

PI(v1, . . . , vm) ∈ ker(ZRM ∗(r, m)) if and only if |I| ≤ 1.

Therefore, for 3 ≤ r ≤ m− 1,

ker(ZRM∗(r, m)) = φ(2RM(r, m)) + {PI(v1, . . . , m) | |I| ≤ 1}

and dim(ker(ZRM ∗(r, m))) =
∑r

i=0

(

m
i

)

+ m + 1.

7.4 Relationship between ZRM(r, m) and RM(r, m)

codes

Proposition 7.1 established that for r = 0, 1, 2, m and m+1, ZRM(r, m) = RM(r, m+

1). Whereas both codes, ZRM(r, m) and RM(r, m), are linear codes, only ZRM(r, m)

is Z4-linear code for all values of 0 ≤ r ≤ m + 1, m ≥ 0. In this section we will see

that ZRM(r, m), in fact, contains RM(r, m + 1).

Example 7.4.1. Let v0 = 1, v1, v2, v3, v4 generator vectors of RM(1, 4).Consider the

set {PI(v1, . . . , v4) | |I| ≤ 1} ∪ {2PI(v1, . . . , v4) | |I| ≤ 2} that is, by definition, the

set of generator vectors of ZRM(2, 4). Such vectors are represented in Table 7.1
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whereas their φ image and its correspondence with vectors of length 25 PI(v
′
1, . . . , v

′
5),

by Corollary 7.15, are given in Table 7.2. It is easy to check that in this case

{φ(PI(v1, . . . , v4)) | |I| ≤ 1} ∪ {φ(2PI(v1, . . . , v4)) | |I| ≤ 2} is exactly

{PI(v
′
1, . . . , v

′
5) | |I| ≤ 2}. That is, the generator vectors of RM(2, 5).

v0 11 11 11 11 11 11 11 11
v4 00 00 00 00 11 11 11 11
v3 00 00 11 11 00 00 11 11
v2 00 11 00 11 00 11 00 11
v1 01 01 01 01 01 01 01 01

2v0 22 22 22 22 22 22 22 22
2v4 00 00 00 00 22 22 22 22
2v3 00 00 22 22 00 00 22 22
2v2 00 22 00 22 00 22 00 22
2v1 02 02 02 02 02 02 02 02

2v3v4 00 00 00 00 00 00 22 22
2v2v4 00 00 00 00 00 22 00 22
2v1v4 00 00 00 00 02 02 02 02
2v2v3 00 00 00 22 00 00 00 22
2v1v3 00 00 02 02 00 00 02 02
2v1v2 00 02 00 02 00 02 00 02

Table 7.1: Generator vectors of ZRM(2, 4)

As we have seen in the last example, r = 2 and m = 4, the Gray map image of

generator vectors of ZRM(r, m) codes are generator vector of RM(r, m + 1). This

fact is not true in general; only in the cases that RM(r, m + 1) is a Z4-linear code,

that is r = 0, 1, 2, m, do RM(r, m + 1) and ZRM(r, m) = φ(ZRM(r, m)) coincide.

In the other cases, however, RM(r, m + 1) ⊆ ZRM(r, m). These statements will be

proven in the following propositions.

Proposition 7.19. Let r, m be integers such that 0 ≤ r ≤ m + 1.

{PI(v
′
1, . . . , v

′
m+1) | |I| ≤ r} =

{φ(PI(v1, . . . , vm)) | |I| ≤ r − 1} ∪ {φ(2PI(v1, . . . , vm)) | |I| ≤ r}.
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Proof: Let be PI(v
′
1, . . . , v

′
m+1) where I ⊆ {1, . . . , m + 1} and |I| ≤ r.

If 1 ∈ I, then let be J = {i − 1 | i ∈ I, i 6= 1}. By definition, J ? = I and,

using Corollary 7.15 φ(PJ(v1, . . . , vm)) = PI(v
′
1, . . . , v

′
m+1) where PJ(v1, . . . , vm) ∈

RM(r − 1, m).

If 1 6∈ I, then J+ = I, where J = {i− 1 | i ∈ I}. By Corollary 7.15

φ(2PJ(v1, . . . , vm)) = PI(v
′
1, . . . , v

′
m+1) where 2PJ(v1, . . . , vm) ∈ 2RM(r, m).

From the last proposition, all the generators vectors of RM(r, m + 1) are in

ZRM(r, m). Hence, as both RM(r, m + 1) and ZRM(r, m) are linear codes, we

obtain the following inclusion.

Corollary 7.20. Let r, m be integers such that 0 ≤ r ≤ m + 1. RM(r, m + 1) ⊆
ZRM(r, m) and the equality is given for r = 0, 1, 2, m.

Proof: Propositions 7.1 and 7.19.

Proposition 7.21. Let r, m be integers such that 0 ≤ r ≤ m. Then, ZRM(r, m−1)

is the minimum quaternary code such that φ(ZRM(r, m − 1)) contains RM(r, m),

where φ is the Gray map defined in (3.4).

Proof: Let r, m be integers such that 0 ≤ r ≤ m. Let φ be the Gray map defined in

(3.4) and ZRM(r, m) = φ(ZRM(r, m)). If r ≤ 2 or r ≥ m−1, then ZRM(r, m−1) =

RM(r, m) and the statement is given.

Assume 3 ≤ r ≤ m − 2 and let C be the minimum quaternary code such that

φ(C) contains RM(r, m). As ZRM(r, m − 1) is a quaternary code and RM(r, m) ⊆
ZRM(r, m − 1) by Corollary 7.20, φ(C) is a subset of ZRM(r, m − 1). Now, the

equality follows from the fact that |φ(C)| = |ZRM(r, m− 1)| (see Theorem 5.30 and

Proposition 7.12).

In fact, if we consider the construction of RM(r, m) of Corollary 5.2:

RM(r, m) = φ(RM(r − 1, m− 1)) + φ(2RM(r, m− 1)) =

φ(RM(r − 1, m− 1) + 2RM(r, m− 1)).
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we obtain C = φ−1(RM) = RM(r − 1, m − 1) + 2RM(r, m − 1). Therefore, the

minimum quaternary code containing φ−1(RM) is
〈

C
〉

4
=

〈

RM(r − 1, m − 1) +

2RM(r, m− 1)
〉

4
= ZRM(r − 1, m) by definition of ZRM(r, m).

Moreover, note that ZRM(r, m) is the code C of Theorem 5.30. The dimension

obtained in that theorem coincides, effectively, with the dimension of φ(ZRM(r, m))

of Proposition 7.12.

7.5 Relationship between ZRM(r, m) and QRM (r, m)

codes

In order to establish the relationship between ZRM∗(r, m) and QRM(r, m) codes,

we will consider the definition (7.2) of ZRM∗(r, m) codes and definition (6.1) of

SRM(r, m) codes; that is,

ZRM∗(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r − 1}
〉

4
+

〈

{2PI(v1, . . . , vm) | |I| ≤ r}
〉

4
,

SRM(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
.

By definition of α(), α(
〈

{2PI(v1, . . . , vm) | |I| ≤ r}
〉

4
) = 0. Thus, α(ZRM ∗(r, m))

is equal to α(SRM(r−1, m)). Moreover, as SRM(r, m) belongs to the classQRM(r, m)

we obtain α(ZRM∗(r, m)) = RM(r − 1, m). Even though, ZRM∗(r, m) does not

belong to QRM(r − 1, m) class due to the fact that it is of type 4k12k2 , where

k1 =
∑r−1

i=0

(

m
i

)

and k2 =
(

m
r

)

. However, with the above definitions, it is easy to check

that

SRM(r − 1, m) ⊂ ZRM∗(r, m) ⊂ SRM(r, m).

where SRM(r − 1, m) and SRM(r, m) belong to the classes QRM(r − 1, m) and

QRM(r, m) respectively.

Similarly, if we consider the definition of ZRM(r, m) given in Corollary 7.8, we

obtain

SRM(r − 1, m) ⊂ ZRM(r, m) ⊂ SRM(t, m),
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Figure 7.1: Relationship between ZRM(r, m), ZRM ∗(r, m) and QRM(r, m) codes

where t = min{2r − 2, m}, and SRM(t, m) ⊂ QRM(t, m).

Finally, SRM(r − 1, m) ⊂ ZRM(r, m) and rank(SRM(r − 1, m)) =

rank(ZRM∗(r, m)) = dim(ZRM(r, m)) by Propositions 6.29, 7.12 and Corollary

7.16. Hence, if SRM(r − 1, m) = φ(SRM(r − 1, m)), then

〈

SRM(r − 1, m)
〉

=
〈

ZRM∗(r, m)
〉

= ZRM(r, m).
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φ(v0) 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 v ′
1

φ(v4) 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 01 v ′
1v

′
5

φ(v3) 00 00 00 00 01 01 01 01 00 00 00 00 01 01 01 01 v ′
1v

′
4

φ(v2) 00 00 01 01 00 00 01 01 00 00 01 01 00 00 01 01 v ′
1v

′
3

φ(v1) 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 v ′
1v

′
2

φ(2v0) 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 v ′
0

φ(2v4) 00 00 00 00 00 00 00 00 11 11 11 11 11 11 11 11 v ′
5

φ(2v3) 00 00 00 00 11 11 11 11 00 00 00 00 11 11 11 11 v ′
4

φ(2v2) 00 00 11 11 00 00 11 11 00 00 11 11 00 00 11 11 v ′
3

φ(2v1) 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 v ′
2

φ(2v3v4) 00 00 00 00 00 00 00 00 00 00 00 00 11 11 11 11 v ′
4v

′
5

φ(2v2v4) 00 00 00 00 00 00 00 00 00 00 11 11 00 00 11 11 v ′
3v

′
5

φ(2v1v4) 00 00 00 00 00 00 00 00 00 11 00 11 00 11 00 11 v ′
2v

′
5

φ(2v2v3) 00 00 00 00 00 00 11 11 00 00 00 00 00 00 11 11 v ′
3v

′
4

φ(2v1v3) 00 00 00 00 00 11 00 11 00 00 00 00 00 11 00 11 v ′
2v

′
4

φ(2v1v2) 00 00 00 11 00 00 00 11 00 00 00 11 00 00 00 11 v ′
2v

′
3

Table 7.2: φ image of generator vectors of ZRM(2, 4)
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Chapter 8

Conclusion

8.1 Results of the dissertation

8.1.1 Additive codes

Define the generalization of the Gray map as ϕ : Z2k −→ Z
k
2 such that:

(i) ϕ(i) = (0(k−i) | 1(i)) ∀i = 0, . . . , k − 1, and

(ii) ϕ(i + k) = φ(i) + 1(k) ∀i = 0, . . . , k − 1.

For any two elements ϕ(i), ϕ(j) ∈ ϕ(Z2k), define the product

ϕ(i) · ϕ(j) = ϕ(i) + σi(ϕ(j)),

where

σi = (1, k, k − 1, . . . , 2)i

(i.e. i left shifts), for all vector ϕ(i), i = 0, . . . , 2k − 1.

Among all possible generalizations of the Gray map to Z2k, the one defined above

is the only (up to coordinate permutation) that (ϕ(Z2k), ·) is a Hamming-compatible

code.

Let us define the extended map φ : Z
n
2k −→ Z

kn
2 such that φ(j1, . . . , jn) =

(ϕ(j1), . . . , ϕ(jn)), where ϕ is defined in (4.1). Finally, we define the permutations

πx = (σj1 | · · · |σjn
), for x = φ(j1, . . . , jn), where σi is defined above.

139
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Result 8.1. If C is a Z2k-code, then φ(C) is a propelinear code with associated per-

mutation πx for all codeword x ∈ φ(C). Moreover, if k > 2 and C ∈ Z
n
2k, then φ(C) is

a propelinear but not translation-invariant code.

Thus, the only codes being translation-invariant are linear codes and Z4-linear

codes.

Result 8.2. Let C and C⊥ be dual Z2k-codes, and C = φ(C) and C⊥ = φ(C⊥) be their

binary images. Then, the weight enumerators WC(X, Y ) and WC⊥
(X, Y ) of C and

C⊥ respectively, are related by the binary MacWilliams identity

WC⊥
(X, Y ) =

1

|C|WC(X + Y, X − Y )

if and only if k = 1, 2; that is, C is linear or Z4-linear.

A binary code C of length n is a mixed group code of type (Zk1
2i1

, . . . , Zkr

2ir) and

length n if C = φ(C), where i1, · · · , ir are the minimum values such that C is a

subgroup of Z
k1
2i1
× · · · × Z

kr

2ir
and

∑r
j=1 ijkj = n.

Result 8.3. Let C be a mixed group code of type (Zk1
2i1

, . . . , Zkr

2ir
) and length n. Then,

(i) C is a propelinear code.

(ii) If C is 1-perfect, then C is of type (Zk
2, Z

(n−k)/2
4 ) for some k ∈ N.

Hence, the only 1-perfect binary mixed group codes of type (Zk1
2i1

, . . . , Zkr

2ir
) are

translation-invariant propelinear codes of type (k,
n− k

2
). In fact, any 1-perfect ad-

ditive code is a translation-invariant propelinear code of type (k,
n− k

2
).

The different structures, the rank, and the dimension of the kernel of 1-perfect

additive codes and extended 1-perfect additive codes are known. If C is a 1-perfect

additive code, then the extended code C? is an extended 1-perfect additive (Z4-linear

or non Z4-linear) code. If C? is the extended 1-perfect additive non Z4-linear code of

C and we puncture a binary coordinate, then (C?)′ is isomorphic to C. This is not

true if we puncture a quaternary coordinate. In fact, a punctured extended Z4-linear

code is not, in general, a 1-perfect additive.
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Result 8.4. If C? is a binary extended 1-perfect Z4-linear code of length n + 1 ≥ 16

then, the punctured code (C?)′ 1-perfect is not a 1-perfect additive code up to the case

that C? equals to the extended of the Hamming code of length 15.

8.1.2 Reed-Muller codes

The main results obtained concerning Reed-Muller codes are those related with their

Z4-linearity. Even though, we first present a new construction of RM(r, m).

Result 8.5. Let r, s, m be integers such that 0 ≤ r, s ≤ m. Define

Cr+s = {xy | x ∈ RM(r, m), y ∈ RM(s, m)}.

Then,
〈

Cr+s

〉

= RM(t, m), where t = min{r + s, m}.

It is known that RM(r, m) codes are Z4-linear if and only if r = 0, 1, 2, m − 1

and m. If C is a Z4-linear code, then there exists an extended Gray map, φ, and

a coordinate permutation, π, such that π ◦ φ(C) = C for some quaternary code C.
Nevertheless, there may exist a nonisomorphic code C ′ and a coordinate permutation

π′ such that π′ ◦φ(C ′) = C. Whenever a Reed-Muller code is Z4-linear, up to the case

r = 2, the following results determine how many nonisomorphic Z4-codes C there are

such that φ(C) is permutation-equivalent to RM(r, m) and, in each case, the type of

these Z4-codes.

In this section, let φ be the extended Gray map defined as

φ(c) = (β(c1), . . . , β(cn), γ(c1), . . . , γ(cn)), (8.1)

where c = (c1, . . . , cn) and the image of the usual Gray map of ci is (β(ci), γ(ci)).

Result 8.6. For r = 0, m− 1 and m, there exists a unique Z4-code C up to isomor-

phism such that φ(C) is permutation-equivalent to RM(r, m). Moreover, φ−1(RM(r, m))

is of type 4021, 42m−1−121 and 42m−1
, for r = 0, m− 1 and m respectively.
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Result 8.7. Let m ≥ 3. Let the matrix G1 be the all columns vectors of the form

2Z
m−1
2 ×{1 ∈ Z4} and the matrix G2, the all columns vectors of the form 2Z

m−3
2 ×{1 ∈

Z4} × Z4. Let C1 and C2 be the Z4-code generated by G1 and G2 respectively. Then,

φ(C1) = RM(1, m) and there exist π ∈ S2m such that π ◦ φ(C2) = RM(1, m).

So, for r = 0, m− 1 and m, there is a unique quaternary code up to isomorphism

such that its image under φ is permutation-equivalent to RM(r, m) whereas for r = 1

there are two non-isomorphic codes.

Now, we consider RM(r, m) for 3 ≤ r ≤ m − 2; that is, when the code is not

Z4-linear.

Result 8.8. Let C be the minimum quaternary code such that RM(r, m) ⊆ φ(C).
Then, for 3 ≤ r ≤ m − 2, C = φ(C) = {RM(r, m) ∪ (

⋃

r<|I|≤t,16∈I PI(v1, . . . , vm))},
and |C| = 2k, where

k =

r−1
∑

i=0

(

m− 1

i

)

+

t
∑

i=0

(

m− 1

i

)

,

for t = min{m− 1, 2r − 2}.

Note that last theorem gives the minimum quaternary code such that φ(C) con-

tains RM(r, m), where φ is the Gray map defined in (8.1). If C is the minimum

Z4-linear code that contains RM(r, m), then C is linear and φ−1 ◦ π(C) is a quater-

nary code for some permutation coordinates π ∈ S2m . Therefore, we obtain an upper

bound to the dimension of such code C.

Result 8.9. Let C be the minimum Z4-linear code containing RM(r, m). Then,

dim(C) ≤
r−1
∑

i=0

(

m− 1

i

)

+
t

∑

i=0

(

m− 1

i

)

,

where t = min{m− 1, 2r − 2}.

8.1.3 QRM codes

Results of Chapter 6 are published in [BFP05].
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Let r, m be integers such that 0 ≤ r ≤ m. Let QRM(r, m) be a quaternary

Reed-Muller code of length 2m. Remember the basic properties of QRM(r, m).

(i) QRM(r, m) is of type 4k, where k = 1 +
(

m
1

)

+
(

m
2

)

+ · · ·+
(

m
r

)

.

(ii) QRM(r, m) ⊂ QRM(r + 1, m), ∀r < m.

(iii) QRM(r, m)⊥ = QRM(m− r − 1, m), ∀r < m.

(iv) α(QRM(r, m)) = RM(r, m).

(v) For m odd, m ≥ 3, φ(QRM(1, m)) is the Kerdock code Km+1 of 2m+1.

(vi) For m odd, m ≥ 3, φ(QRM(m−2, m)) is a Preparata-like code of length 2m+1.

We have generalized QRM(r, m) codes to the class QRM(r, m). The definition

of this class is the following.

Definition 8.1.1. Let r, m be integers such that 0 ≤ r ≤ m. Let us defineQRM(r, m)

a class of quaternary Reed-Muller codes where C ∈ QRM(r, m) if and only if:

(i) The quaternary length of the code C is 2m.

(ii) C is of type 4k, where

k = 1 +
(

m
1

)

+
(

m
2

)

+ · · ·+
(

m
r

)

.

(iii) α(C) = RM(r, m).

Define the related binary class

QRM(r, m) = {C = φ(C) | C ∈ QRM(r, m)}.

Codes QRM(r, m) belong to QRM(r, m). However, in order to obtain different

codes in such class, we present two constructions of codes in QRM(r, m). The first

one is a generalized doubling construction. The second, is a contruction in terms of

generator matrices.
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Result 8.10. Let C ∈ QRM(r + 1, m) and D ∈ QRM(r, m). Then, the code C∗

defined as {(u, u + v) | u ∈ C, v ∈ D} belongs to the class QRM(r + 1, m + 1).

Result 8.11. Let C be a quaternary code of length 2m. C belongs to the class

QRM(r, m) if and only if there exist a binary (
∑r

i=0

(

m
i

)

× 2m) matrix, N , such

that the generator matrix of C is

G = G(r, m) + 2N,

where G(r, m) is the generator matrix of RM(r, m) defined in (5.7).

Define the set of matrices that are generator matrices of codes in QRM(r, m):

GQ(r, m) = {G(r, m) + 2N |N is a binary (
r

∑

i=0

(

m

i

)

× 2m) matrix }.

Result 8.12. Let M1, M2 ∈ GQ(r + 1, m) and M4 ∈ GQ(r, m). The matrix

M =





M1 M2

2N3 M4



 , (8.2)

where N3 is a binary (
∑r

i=0

(

m
i

)

× 2m) matrix, belongs to GQ(r + 1, m + 1)

We would like that codes in QRM(r, m) satisfy similar properties that the ones

of QRM(r, m) given at the beginning of the subsection. Properties of codes in

QRM(r, m) are presented in the subsequent results.

Result 8.13. Let C ∈ QRM(r, m), with 1 ≤ r ≤ m.

(i) C⊥ ∈ QRM(m− r − 1, m).

(ii) There exist D ∈ QRM(r − 1, m) such that D ⊂ C.

Result 8.14. Let P2m be a Z4-linear Preparata-like code and K2m a Z4-linear Kerdock-

like code of length n+1 = 22m. P2m ∈ QRM (2m−3, 2m−1) and K2m ∈ QRM(1, 2m−
1).
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Recall that the image under the Gray map of codes in QRM(r, m) are not linear

codes. That way, we calculate the rank and the dimension of the kernel of such codes.

Result 8.15. Let C ∈ QRM(r, m) and C = φ(C). Then,

(i) dim(ker(C)) =
∑r

i=0

(

m
i

)

+ 1, if r < m and dim(ker(C)) = 2m+1, for r = m.

(ii) rank(C) =
∑r

i=0

(

m
i

)

+
∑t

i=0

(

m
i

)

, where t = min{2r, m}.

For a fixed value of m, codes RM(r, m) conforms a chain of codes:

RM(0, m) ⊂ RM(1, m) ⊂ · · · ⊂ RM(m− 1, m) ⊂ RM(m, m).

Due to property (ii) in Result 8.13, we can construct a chain of codes inQRM(r, m).

Unlike the case of Reed-Muller codes, this chain is not unique. Given a code C ∈
QRM(r, m), there may exist D1,D2 ∈ QRM(r − 1, m), such that D1 6= D2 and

D1,D2 ⊂ C. Moreover, we also can construct a chain of QRM codes in terms of their

generator matrices as follows.

Let C ⊂ QRM(r, m), and M = G(r, m) + 2N ∈ GQ(r, m) its generator matrix,

for some binary (
∑r

i=0

(

m
i

)

× 2m) matrix, N . If r ≥ 1, consider the matrix N−1

conformed by the first
∑r−1

i=0

(

m
i

)

row vectors of N , and, if r < m, N+1 is a binary

(
(

m
r+1

)

× 2m) matrix. Hence,

M−1 = G(r − 1, m) + 2N−1 ∈ GQ(r − 1, m),

and

M+1 = G(r + 1, m) +





N

N+1



 ∈ GQ(r + 1, m).

Let C−1 ∈ QRM(r− 1, m) and C+1 ∈ QRM(r + 1, m) be the codes generated by

M−1 and M+1 respectively. Then,

C−1 ⊂ C ⊂ C+1.
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Again, with this construction, code C+1 may not be unique, it depends on the

choice of the matrix N+1. We have obtained some results about the chain of codes in

QRM(r, m). First, recall some notation.

Let (C0, C1, . . . , Cm−1) be a chain of codes, (C0, C1, . . . , Cm−1)
⊥ = (C⊥m−1, C⊥m−2, . . . , C⊥0 )

its dual chain, and d(C0, C1, . . . , Cm−1) = (d0, d1, . . . , dm−1) the minimum distance of

the chain where di is the minimum distance of Ci. Define the set of chains where all

the codes belong to the class QRM:

Γ̄ = {(C0, C1, . . . , Cm−1) | Cr ∈ QRM(r, m), r = 0, . . . , m− 1}.

Result 8.16. If (C0, C1, . . . , Cm−1) ∈ Γ̄ then, (C0, C1, . . . , Cm−1)
⊥ ∈ Γ̄.

Result 8.17. Let (C0, C1, . . . , Cm−1) ∈ Γ̄, d
(

(C0, C1, . . . , Cm−1)
)

= (d0, d1, . . . , dm−1).

Then,

(i) 2m−r ≤ dr ≤ 2m−r+1, 0 ≤ r ≤ m,

(ii) if m ≥ 3 odd, d1 ≤ 2m − 2(m−1)/2,

(iii) if m ≥ 3 odd, dm−2 ≤ 6.

8.1.4 ZRM codes

First, remember the two different definition of codes ZRM that can be found in the

literature.

ZRM(r, m) =
〈

RM(r − 1, m), 2RM(r, m)
〉

4
.

ZRM∗(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r − 1}
〉

4
+

〈

{2PI(v1, . . . , vm) | |I| ≤ r}
〉

4
.

Note that we ZRM∗(r, m) is defined in terms of its generator vectors but not

ZRM(r, m). That way, in order to compare both codes, we establish the generator

vectors of ZRM(r, m).
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Result 8.18. Let r, m be integers such that 2 ≤ r ≤ m + 1. Then,

ZRM(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r − 1}
〉

4
+

〈

{2PI(v1, . . . , vm) | r ≤ |I| ≤ t}
〉

4
,

where t = min{2r − 2, m}. Moreover,

ZRM(0, m) =
〈

{2}
〉

4
,

ZRM(1, m) =
〈

{1}
〉

4
+

〈

{2PI(v1, . . . , vm) | |I| ≤ 1}
〉

4
.

Now, from the last result and the definition of ZRM∗(r, m) the next result follows:

Result 8.19. ZRM(r, m) = ZRM∗(r, m) if and only if r = 0, 1, 2, m and m + 1.

Let φ be the extended Gray map defined in (8.1), let ZRM(r, m) = φ(ZRM(r, m))

and ZRM∗(r, m) = φ(ZRM∗(r, m)). When both codes ZRM(r, m) and ZRM∗(r, m)

coincide, their binary image under φ is the Reed-Muller code RM(r, m+1). As these

codes differ for the other values of r, we studied their structure and their binary image

separately. First, we established the type of ZRM(r, m).

Result 8.20. ZRM(r, m) is a quaternary code of length 2m and type 4k12k2, where

k1 =
∑r−1

i=0

(

m
i

)

and k2 =
∑t

i=r

(

m
i

)

, t = min{2r − 2, m}.

Binary image under φ map of such codes turned out to be linear codes for any

values of r and m.

Result 8.21. ZRM(r, m) are linear codes and

dim(ZRM(r, m)) =
r−1
∑

i=0

(

m

i

)

+
t

∑

i=0

(

m

i

)

,

where t = min{2r − 2, m}.

Result 8.22. Let r, m be integers such that 0 ≤ r ≤ m. Then, ZRM(r, m−1) is the

minimum quaternary code such that φ(ZRM(r, m − 1)) contains RM(r, m), where

φ is the Gray map defined in (8.1).
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As it was said in the introduction of this dissertation, we would like to prove that

the minimum Z4-linear code containing a Reed-Muller code was a ZRM code. This

result has not been achieved, but we have found that the dimension of the minimum

Z4-linear code is less or equal to the dimension of the corresponding ZRM code.

Note that the dimension of φ(ZRM(r, m − 1)) in Result 8.21 coincides with the

upper bound of the dimension of the minimum Z4-linear code containing RM(r, m)

in Result 8.9.

ZRM∗(r, m) are not linear codes. We found that the spanned code of ZRM ∗(r, m)

codes coincide with ZRM(r, m) codes and we calculated the type, the rank and the

dimension of the kernel of such codes.

Result 8.23. Let r, m be integers such that 0 ≤ r ≤ m + 1.

〈

ZRM∗(r, m)
〉

= ZRM(r, m)

Result 8.24. ZRM∗(r, m) is a quaternary code of length 2m and type 4k12k2, where

k1 =
∑r−1

i=0

(

m
i

)

and k2 =
(

m
r

)

.

Result 8.25. Let r, m be integers such that 3 ≤ r ≤ m− 1.

(i) dim(ker(ZRM ∗(r, m))) =
r

∑

i=0

(

m

i

)

+ m + 1.

(ii) rank(ZRM ∗(r, m)) =
∑r−1

i=0

(

m
i

)

+
∑t

i=0

(

m
i

)

, where t = min{m, 2r − 2}.

Finally, we establish the relationship between ZRM(r, m), ZRM∗(r, m) and the

class of quaternary codes QRM(r, m).

Recall the definition of codes SRM(r, m) ∈ QRM(r, m)

SRM(r, m) =
〈

{PI(v1, . . . , vm) | |I| ≤ r}
〉

4
,

and let SRM(r, m) = φ(SRM(r, m)).

Neither ZRM(r, m) nor ZRM∗(r, m) belong to the class QRM(r, m) because

they are not quaternary codes of type 4k, where k = 1+
(

m
1

)

+
(

m
2

)

+ · · ·+
(

m
r

)

(Results

8.20, 8.24).
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However, we obtain the following inclusions:

SRM(r − 1, m) ⊂ ZRM∗(r, m) ⊂ SRM(r, m),

and

SRM(r − 1, m) ⊂ ZRM(r, m) ⊂ SRM(t, m),

where t = min{2r − 2, m}.
Finally, SRM(r−1, m) ⊂ ZRM(r, m) and rank(SRM(r−1, m)) = dim(ZRM(r, m)) =

rank(ZRM ∗(r, m)). Hence,

〈

SRM(r − 1, m)
〉

=
〈

ZRM∗(r, m)
〉

= ZRM(r, m).

8.2 Future research

In this section, we point out some still open problems that derive from the dissertation.

The first block of open questions is about the relationship between Reed-Muller codes

and quaternary codes.

• We have determined how many nonisomorphic Z4-codes C there are such that

φ(C) is permutation-equivalent to RM(r, m) when r = 0, 1, m − 1, m, and the

type of such codes is given. There is still remaining the case r = 2 in order to

determine the number and the type of nonisomorphic quaternary code C such

that φ(C) is permutation-equivalent to RM(r, m) whenever it is Z4-linear.

• Among all the unsolved problems, the one we thought is the most important

is to find the minimum quaternary code containing RM(r, m). Even though

we supposed that ZRM(r, m) is such minimum quaternary code, we only have

proved that it is the minimum under a specific extended Gray map but not in

general.

• If the minimum quaternary code of last point is found, it would be interesting

to determine, as in the case of Z4-linear Reed-Muller codes, the number and the
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types of nonisomorphic Z4-codes such that their image, under a general Gray

map, have the same dimension as the minimum quaternary code containing

RM(r, m).

We have seen that, given a code C ∈ QRM(r, m), we can construct different

chains of codes in QRM(r, m) containing C. However, there are many open questions

related to the chains of codes in QRM(r, m).

• The chain ΓQRM is a self-dual chain, whereas ΓSRM is not. We would like to

determine if for any code C ∈ QRM(r, m) there exist a self-dual chain of codes

containing C. And, otherwise, which are the properties of a code to be included

in a self-dual chain.

• If (C0, . . . , Cm−1) ∈ Γ̄, and d(C0, . . . , Cm) = (d0, . . . , dm−1), we know that d1

and dm−2 are the maximum possible minimum distance when C1 is a quaternary

Kerdock-like code and Cm−2 is a quaternary Preparata-like code. Note that for

m odd, m ≥ 3, ΓQRM contains both, a quaternary Kerdock-like and Preparata-

like code.

We would like to determine if the minimum distance of codes in ΓQRM is the

maximum value for any minimum distance of a code in QRM with the same

parameters of r and m. If not, it would be nice to determine if it is possible

to construct a chain where all codes have the minimum distance as high as

possible.

From Reed-Muller codes, we obtain several constructions of quaternary codes re-

lated to them (via the Gray map or the modulo 2 map). Nevertheless, there are other

constructions of additive codes related to Reed-Muller codes; they are called Addi-

tive Reed-Muller codes, ARMα,β(r, m) (see [PR97a]). Such a construction provides

codes that are subgroups of Z
α
2 ×Z

β
4 ; that is, additive codes of type (α, β). Moreover,

ARMα,0(r, m) = RM(r, m) and ARM0,β(r, m) = ZRM(r, m). In order to extend

some results of this dissertation, it would be interesting to calculate the rank and the
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kernel of ARMα,β(r, m) codes or determine the linearity of the image under φ of such

codes.
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