
1
Introduction

1.1 A bit of history
The flow of a homogeneous viscous incompressible fluid in a long tube of circular cross section
was studied first by Hagen (1839) and Poiseuille (1840) in what today is known as the Hagen–
Poiseuille flow. Jean Léonard Marie Poiseuille (Paris 1797–1869) worked on a variety of fields
including engineering, physics, medicine, and biology. He was very interested in the study of the
flow of liquids in small diameter glass capillaries where he considered the effects of pressure drop,
tube length, tube diameter, and temperature. Gotthilf Heinrich Ludwig Hagen (1797–1884) was
a German hydraulic engineer who published a paper in 1839 on the flow of water in cylindrical
tubes, and obtained similar results to those of Poiseuille, but less extensive and less accurate.
Hagen and Poiseuille established empirically the Hagen–Poiseuille law or Poiseuille’s law, as is
more commonly known. This law provides a formula to calculate the mass flux of fluid

�
, for the

laminar flow as
���������
	���
����������

, i.e. it is proportional to the drop of pressure
���

and the fourth
power of the radius

	
of the tube, where

�
represents its length and

�
the kinematical viscosity

of the fluid. Sir George Gabriel Stokes (1813–1903) of Cambridge University, apparently solved
the problem of Poiseuille’s law as an application of the Navier–Stokes equations which he derived
in Stokes (1845). However, he did not publish the result because he was unsure of the boundary
condition of zero velocity at the tube wall. Stokes (1845) also discussed the flow in channels
(which is called plane Poiseuille flow, and is the main subject of this work) and pointed out the
similarity to pipe flow under gravity at constant pressure.

One of the interesting uses of Poiseuille’s law was to furnish evidence as to the correct no-slip
boundary condition for a viscous flow at a solid boundary. It can be also used for the experimental
determination of the viscosity by measuring the rate of flow and the pressure drop across a fixed
portion of a capillary tube of known radius. These and other details on Poiseuille’s law can be
enlarged in Sutera & Skalak (1993).
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1.2 Hydrodynamic stability
The theory of hydrodynamic stability is one of the main topics in fluid mechanics. Their essential
problems were recognized and formulated in the nineteenth century, notably by Helmholtz, Kelvin,
Rayleigh and Reynolds. The origin of turbulence and accompanying transition from laminar to
turbulent flow is also of fundamental importance in fluid mechanics. The incidence of turbulence
was first recognized in relation to flows through straight pipes and channels: Hagen–Poiseuille
flow and plane Poiseuille flow (see � 1.5) respectively. These are two examples of test problems
where it is possible the evaluation of different analytical and numerical methods, due essentially to
the simplicity of their geometry. Reynolds (1883) studied the stability of flow in a pipe by means
of experiments and showed that the laminar flow breaks down when the dimensionless number

	��
,

which after him is called the Reynolds number, exceeds a critical value, and that turbulence quickly
ensues. For the case of Hagen–Poiseuille flow, Reynolds’s estimate of the critical value of

	��
was

about ������� . About the same time, Rayleigh (1880) studied the stability characteristics of inviscid
plane-parallel channel flows to infinitesimal perturbations. His results, though, cannot explain
experimentally observed transitions. Rayleigh’s necessary condition for inviscid linear instability
states that the laminar flow must have an inflexion point interior to the channel. This condition
applied to plane Poiseuille flow immediately indicates global stability. Therefore viscosity should
be the cause of a linear instability.

One of the main steps in understanding the stability of viscous flows was taken by Orr (1907)
and Sommerfeld (1908), who derived the celebrated equation that now bears their names. The
Orr–Sommerfeld equation arose from the research of the stability to infinitesimal disturbances
in a linear approximation of plane Poiseuille flow (see � 3.1). Much of the subsequent work on
stability of viscous flows is based on it. For instance, as it is known, plane Poiseuille flow is stable
for small Reynolds numbers, but Heisenberg (1924) was the first to propose that it is unstable
for large Reynolds numbers. He calculated four points of the neutral curve of stability by an
heuristic method of approximating the solution of the Orr–Sommerfeld equation. Nevertheless
Heisenberg did not arrive at a critical value beyond which instability begins. The first numerical
solution of the Orr–Sommerfeld equation was obtained by Thomas (1953) trying to clarify the
controversies concerning the existing asymptotic methods of approximation and confirming the
instability of plane Poiseuille flow. Using a finite difference method to approximate derivatives, he
obtained the critical Reynolds number for instability at

	�� �
	���� � for � ��
�� ����� . Calculations
of Lin (1944) and Shen (1954) on the neutral curve of the Orr-Sommerfeld equation by means
of analytical methods, found the minimum critical

	��
to be

	�� ��� . Subsequently the equation has
been studied by other authors as Lin (1955), Orszag (1971), Drazin & Reid (1982) and Maslowe
(1985) among many others, and it is well understood. The critical Reynolds number of the linear
theory,

	������ ��	���� � � ��� for the wavenumber � ��
�� ����� 	 � , has been obtained accurately in Orszag
(1971) by this approach.

However, as noted in Orszag & Patera (1983a), the maximum linear growth rate for plane
Poiseuille flow is approximately � � ��� � � at

	���� � ����� . For a normal mode perturbation to grow
by a factor of


 � , requires the disturbance wave to travel around
	 � channel widths, which is

clearly inconsistent with the explosive instabilities seen experimentally. In addition, as experi-
ments of Carlson, Widnall & Peeters (1982), Nishioka & Asai (1985), and Alavyoon, Henningson
& Alfredsson (1986) showed, transition to turbulence is observed for Reynolds number

��
 ����� ,
what motivates that finite-amplitude disturbances originate the transition. The understanding of the
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transition to turbulence has been conjectured by Saffman (1983) to depend on intermediate vortical
states and turbulence takes place due to their three-dimensional instability. Examples of vortical
states are periodic flows in time or space, among which can be mentioned: two-dimensional
travelling waves, secondary flows in two or three dimensions (for them the flow rate and the
pressure gradient are constants) and quasi-periodic flows. Ehrenstein & Koch (1991) discovered a
new family of secondary bifurcation branches in dimension 3 which contains only even spanwise
Fourier modes and it reduces the critical Reynolds number to

	������ � 
 ����� (defined in terms of
the averaged velocity across the channel) as observed in experiments.

Two-dimensional disordered motion is associated with the large scales of some turbulent flows,
so there probably exist attractors for those two-dimensional flows. Besides, two-dimensional and
three-dimensional states can compete and coexist in the final flow (cf. Jiménez 1987, and the
references therein). In spite of the fact that transition to turbulence is a three-dimensional phe-
nomenon, there are many properties of the two-dimensional flows observed in fully turbulent
three-dimensional flows such as wall sweeps, ejections, intermittency and bursting, as Jiménez
(1990) showed. The two-dimensional case has attracted the attention of many authors but it is not
completely understood as the problem of two-dimensional transition to turbulence proves. Due to
Squire’s (1933) theorem, to every three-dimensional perturbation of the linearized Navier–Stokes
equations for a given

	���� � , it corresponds a two-dimensional one (for detailed formulas see for
instance Drazin & Reid 1982 p. 155) for some ����
� and �	��
	 	��

, so the critical
	��

for the
linear theory must be attained by a two-dimensional flow. However the theorem does not imply
that the most unstable mode for

	���� 	�� ���
is necessarily two-dimensional. Squire’s theorem has

been one of the main reasons to firstly try to understand the two-dimensional case, apart from
the obvious easiness of computations compared to the three-dimensional situation. In addition,
some of the properties obtained from the two-dimensional case can also provide new insight for
three-dimensional flows.

1.3 Some works on finite-amplitude solutions
Following we summarize some papers concerning finite-amplitude solutions of plane Poiseuille
flow in two and three dimensions, which have been taken as a reference in the course of the present
work.


The first attempt to compute them was carried out by Noether (1921), who expanded equi-
librium waves disturbances in Fourier series, considering only one Fourier mode in the periodic
direction (the so called mean-field).


Using also the mean-field, Meksyn & Stuart (1951), by means of asymptotic expansions,
solved simultaneously the Orr–Sommerfeld equation and a non-linear equation of mean motion,
to find periodic solutions of finite amplitude. They found for each Reynolds number

	��
the corre-

sponding value of the amplitude and the wavenumber for which
	��

is the minimum value, yielding
a curve of periodic solutions which borns subcritically from the basic flow at

	���� 	 ����� , attains
a minimum

	�� � ������� and then grows with
	��

. The critical wavenumber for periodic flows at	�� � ������� was found � � 
�� ��� to be larger than for infinitesimal disturbances at
	�� ��	 ����� ,

which is � ��
�� 
 � .

Based on the perturbation theory of Joseph & Sattinger (1972), Chen & Joseph (1973) de-

termine the form of the time-periodic solutions which bifurcate from plane Poiseuille flow. They
expand a flow, periodic in time and streamwise direction, as a power series and, by means of
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Runge–Kutta integration of the resulting equations of vorticity, they solve for the first two order in
the series. From these calculations they present the neutral curve of stability of the linear theory
and schematic sketch of the surface of periodic solutions. From the theory of Joseph & Sattinger
(1972), they showed that the only time-periodic solution which bifurcates from laminar Poiseuille
flow is a two-dimensional wave, which is unstable for the lowest Reynolds and small values of
the amplitude. This instability makes perturbations of laminar flow snap through the unstable
time-periodic flow to solutions of larger amplitudes.


Zahn, Toomre, Spiegel & Gough (1974) constructed a numerical integrator in time and space,
using one and two Fourier modes in the streamwise coordinate � in two-dimensions and only
one Fourier mode in three-dimensions. The cross-stream variable � was transformed to improve
accuracy on boundary layers: their derivatives were approximated by means of finite differences.
The time discretization was implemented by an implicit scheme. Using a constant mean pressure
gradient, they compute travelling waves as steady flows in an appropriate Galilean reference. For
the two-dimensional case they found the region in the

	����
- � plane where there exist travelling

waves and in turn the instability region of the linear theory. They obtained a surface of the energy
of disturbances for each pair

	���� � , given rise to an upper and lower branch of solutions. By
perturbing these two sets of solutions and following them in time, they estimated their stability to
find that the lower branch is unstable and the upper stable, at least to the disturbances employed.


Herbert (1976) employed a spectral method to approximate the vorticity equation for plane
Poiseuille flow in two dimensions. For the stream variable he used Galerkin–Fourier with

� 	 �
modes, and for the cross-stream variable � –Chebyshev and collocation–Chebyshev with � 	
� � modes. He imposed the solution to be a periodic secondary flow with even or odd Fourier
harmonics according to the parity of its order, to obtain a finite system of algebraic equations. The
mean pressure gradient was assumed to be constant. For this discretization he found the neutral
surface of periodic flows and the minimum value of

	�� �
, pointing out the slow convergence of

the Fourier series. He also made some comparisons between experimental data and stable periodic
solutions, with good overall agreement.


Rozhdestvensky & Simakin (1984) implemented a numerical integrator to simulate the flow
over different time intervals. By observing the flow rate and the pressure gradient they obtain
secondary flows. They found secondary flows non-periodic in time in two dimensions for long
wave-lengths ( � � � � � ) and also in three dimensions for different wave-lengths.


Jiménez (1987) proposed to study the existence of bifurcations leading to limit cycles in plane
Poiseuille flow as possible early steps in the appearance of disorder. At

	�� � � 	 ����� (always
� � 
�� � ) he followed the upper branch of time-periodic orbits and found that for

	�� � �
	 ����� -
������� the periodic flow shed a limit cycle. The number of Fourier–Chebyshev modes used, varies
from

��� ���
to

�	�� � 	 . For

	�� � � ������� , the limit cycle becomes disordered and bifurcates into
new solutions that include tori and, later, chaos.


Jiménez (1990) does full numerical simulation of spatially periodic channels with fairly large
longitudinal aspect ratios. He finds travelling waves, one and two frequency tori and chaos for sev-
eral values of

	�� �
and � . Computations were mostly performed using � 
	����	 Fourier–Chebyshev

modes. With this approach he was only able to obtain attracting solutions.

Soibelman & Meiron (1991) studied the stability of the basic flow by analysing the Orr–

Sommerfeld equation. They found the marginal curve of stability and the critical
	�� � 	���� � � ��� .

Next they compute steady two-dimensional travelling waves in the streamwise direction with phase
speed 
 . They considered both boundary conditions by prescribing the average flux or pressure
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gradient and calculated the critical
	��

of travelling waves. To analyse the stability of travelling
waves they set up an eigenvalue problem in finite dimensions. All the calculations were performed
with � � 
�� 


,
� � 


– � (Fourier modes in the streamwise direction), and � ��� � (Chebyshev
modes in the cross-stream direction). For constant flux the lower branch is unstable with a stability
transition occurring at the limit point of the bifurcation curve. Two Hopf bifurcations were found
on the upper branch. For constant pressure they detected a first Hopf bifurcation on the upper
branch, together with other two further on this branch. Branches of quasi-periodic solutions which
bifurcate from the two-dimensional travelling waves were found in a frame of reference moving
with speed 
 . The main results were obtained for � ��
�� 
 but they also calculated branches for � �
�� 
 	

,

�� � 
 . The maximum number of Fourier modes used were

� � � , �
� � (temporal modes),

and � � � � . For constant pressure they found that the first Hopf bifurcation is subcritical and
therefore locally stable, but they do not implement a Floquet analysis due to memory requirements.
This branch of quasi-periodic orbits reaches a limit point above the limit point of two-dimensional
travelling waves for all the wavenumbers studied. Similar results were obtained for the other Hopf
bifurcations even for constant flux:

	��
increases with increasing amplitude so the quasi-periodic

flows are locally stable. Instead, the periods of the orbits decreases with increasing amplitude.
The time scale of these orbits is of the same order as three-dimensional flows and they exhibit
phenomena which are reminiscent of “bursting”.


Drissi, Net & Mercader (1999) analysed superharmonic and subharmonic instabilities of
two-dimensional shear travelling waves, contained in boxes of a given periodicity. They extended
to any value of � the studies of Herbert (1976), Pugh & Saffman (1988) and Soibelman & Meiron
(1991). They considered sequences of subharmonic bifurcations of the wave train that led to stable
wave packets. They also found that for some values of

	��
and � there exist uniform wave trains

for long boxes.

1.4 Purpose of the work and results
In this work we try to analyse the dynamics of an easily treatable problem without domain com-
plexities as is the case of the two-dimensional plane Poiseuille flow. Different levels of bifurcation
to respective vortical states are considered, starting at the basic parabolic profile. From it, a family
of travelling waves is born subcritically for a certain range of wavenumbers � � 


. There are
many papers concerning this kind of waves as was presented in � 1.3.

We also reproduce the calculations to find the travelling waves for several values of � . Jiménez
(1987, 1990) and Soibelman & Meiron (1991) obtained the next level of bifurcation to quasi-
periodic solutions. As was pointed in � 1.3, employing full numerical simulation of the Navier–
Stokes equations, Jiménez (1987, 1990) computed different attracting flows with a moderate
number of Chebyshev and Fourier modes. On the other hand Soibelman & Meiron (1991) imple-
mented an algebraic approach to capture stable and unstable quasi-periodic flows, but the number
of modes used were not enough to give good results and they were not able to carry out the stabil-
ity analysis. The method implemented in the present work combines both: We solve a stationary
problem to compute travelling waves for an observer moving at an appropriate speed, whereas the
quasi-periodic flows are found by means of full numerical integration of the Navier–Stokes equa-
tions. We have used a Poincaré section of the flow in order to obtain also unstable quasi-periodic
solutions from the numerical integrator. These unstable intermediate states of the flow provide a
highly useful insight into the transition process, as exemplified by secondary bifurcations in shear
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flows. The spatio-temporal symmetries of the channel allows the reduction of two-frequencies
quasi-periodic flows to periodic flows in the appropriate Galilean reference. The quasi-periodic
solutions found in this work correspond to the first two Hopf bifurcations of travelling waves,
for the case of pressure drop through the channel held constant and the first Hopf bifurcation
when the max flux is held constant. The property of behaving as time-periodic flows if we take a
suitable Galilean reference, simplifies enormously the search of this kind of solutions. In this case,
the associated return time to the Poincaré section is roughly


 ������� at the first Hopf bifurcation
for constant pressure, what makes the temporal integration very costly. The employed numerical
procedure utilizes a parallel algorithm to evaluate the different columns of a Jacobian matrix,
needed in the application of Newton’s method to the continuation of quasi-periodic solutions. We
find that on the analysed Hopf bifurcations for both constant pressure and constant flux, there
exist quasi-periodic flows with increasing

	��
, so the bifurcations are all supercritical. On the

first bifurcation for constant pressure all the quasi-periodic solutions found are unstable. On the
remaining bifurcations, there are stable quasi-periodic solutions to disturbances with the same
wavenumber � and likewise, we have obtained unstable solutions.


Once we have situated the different studies concerning plane parallel flows, in the next sec-
tions of this chapter we pose the concrete terms that define the plane Poiseuille problem in
two-dimensions, together with their equations and the most common boundary conditions used
to drive the fluid: mean constant pressure gradient or constant flux through the channel. We also
establish the relationship between those two settings.


Next in chapter 2 we give the details of the direct numerical solution of the full two-
dimensional, time-dependent, incompressible Navier–Stokes equations. Unlike other authors we
have considered the classical formulation in terms of primitive variables for velocity and pressure.
We also describe the approach adopted to eliminate the pressure and the cross-stream component
of the velocity, obtaining thus a reduced system of ordinary differential equations from an original
system of differential-algebraic equations. This is translated to a reduction of two thirds in the
dimension of the system and in addition, it allows us to study the stability of fixed points by means
of the analytical Jacobian matrix. Likewise in this chapter are included other implemented numer-
ical tools, some imported from dynamical system theory, like Poincaré sections or continuation
methods.


Chapter 3 is devoted to the computation of travelling waves and its stability to superharmonic
disturbances. We begin by reviewing some results of the Orr–Sommerfeld equation which serve
as a starting point to obtain the bifurcating solutions of time-periodic flows for several values of
� . In turn, we also calculate several Hopf bifurcations that appear on the branch of periodic flows,
for both cases of imposed constant flux or pressure. Likewise for each unstable periodic flow we
study the connection of its unstable manifold to other attracting solutions.


Starting at the Hopf bifurcations found in chapter 3, we analyse in chapter 4 the bifurcating
branches of quasi-periodic solutions at the two first Hopf bifurcations for the case of imposed
constant pressure and the first one for constant flux. Those solutions are found as fixed points of
an appropriate Poincaré map, since, by the symmetry of the channel, they are modulated waves
(cf. � A.3). We also study their stability by analysing the linear part of the Poincaré map. In the
case of constant flux we have found a branch of quasi-periodic solutions, which on increasing the
Reynolds number changes from stable to unstable, giving rise to an attracting family of quasi-
periodic flows with

�
frequencies. The results of this chapter referring to the first Hopf bifurcation

for constant pressure, are not in qualitative agreement with those of Soibelman & Meiron (1991),
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which yield a different bifurcation picture and stability properties of the obtained quasi-periodic
flows. From the computed unstable flows we follow their unstable invariant manifold and describe
what new attracting solution they are conducted to.


Finally in chapter 5 we point out some conclusions and comments about the employed
techniques, its advantages and drawbacks, and future work.

1.5 Poiseuille flow formulation

yy

xx

hh

−−hh

00 LL
FIGURE 1.1. Sketch of Poiseuille flow. The fluid moves between the vertical plates at � �����

and is
considered periodic in � of period � .

The Poiseuille problem is described as the flow of a viscous incompressible fluid, in a channel
between two infinite parallel plates. In this work we consider this problem in two dimensions as
shown in figure 1.1. We suppose the fluid governed by the Navier–Stokes equations together with
the incompressibility condition

� �
	��	�
�� � ����� � ��� ������� ����� � � ��� � � � �
or expressed in coordinates

�"! 	$#	�
%� # 	�#	 � �'& 	�#	�(*) ��� 	 �	 � �'� ! 	�+,#	 � + � 	�+,#	�( + ) �
1
�
1a
�

�"! 	 &	�
 � # 	 &	 � ��& 	 &	�( ) ��� 	 �	�( ��� ! 	�+ &	 � + � 	�+ &	�( + ) �
1
�
1b
�	�#	 � � 	 &	$( � � � �

1
�
1c
�

where
� � � � � � ( � 
 � � � # � & � � � � ( � 
 � , are the components of the velocity,

� � � � � � ( � 
 � the
pressure and � � � the constant density and viscosity respectively. As boundary conditions we
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suppose no-slip on the channel walls at
( � � �

and, at artificial boundaries in the stream direction
� , a fixed period � , i.e.# � � � � � � 
 � � & � � � � � � 
 � � �� # � & ����� � � � � � � ( � 
 � � � # � & ����� � � � � ( � 
 � �

���	� � ( ��
 � � � �
� � 
 � � � �
1
�
2
�

being
��� � � ��� � , for � � � � 
 � the mean pressure gradient on the channel length � in the

streamwise direction. In terms of the change in pressure,
��� � � � � � ( � � � � � � ( � , supposed

uniform in
(

, we can obtain � as� ���� ��� 

� � ������ �

����� ( � 

� � ������ � ���� � � 	 �	 � � � � � (

� 

� � ������ � ���� ! � � 	 ���	 � ) � � � ( � � � �

1
�
3
�

The last equality holds from boundary conditions (1.2) in
� �

.

The laminar solution. For system (1.1) there is a time-independent solution known as the basic
or laminar flow. We deduce it by imposing

� � � #�� � � � ( � � � � to be a solution of (1.1). By (1.1c)
we have 	�#	 � � � ��� #�� � #�� � ( � �
and from (1.1b)

� ��� 	 �	$( ��� � � � � � � �

Finally (1.1a) drives us to

� ��� � � � � � ��� # � �� � ( � ��� � � � � � � � # � �� � ( � ��� � �
where � has the same meaning as in (1.3) and in this case is constant, because a function of �
can coincide with a function of

(
, only if both functions are constant. Solving this last equation

for
#�� � ( �

and imposing no-slip boundary conditions, it turns out a parabolic profile of velocities,
namely #�� � ( � �"! � � 
 �$# (�&% + � � & � � � � ��� � � � � � � � � � �

1
�
4
�

where
! � � � � + 
 � � � � is the centreline velocity.

Non-dimensional equations. For given values of viscosity � , density � , the channel half-length�
and the centre velocity of the basic flow

! �
, we scale lengths as '� � � 
 � � '( � ( 
 �

, velocity as'� � � 
(! �
, time as '
 �$! � 
 
 �

and pressure as '� � � 
�� � ! +� �
. Applying this rescaling to (1.1) we

arrive at )*******+ *******,
	 '#	�
%� '# 	 '#	 � � '& 	 '#	�( � � 	 '�	 � � 


	�� ! 	�+ '#	 � + � 	�+ '#	�( + ) �
	 '&	�
 � '# 	 '&	 � � '& 	 '&	�( � � 	 '�	�(�� 


	�� ! 	 + '&	 � + � 	 + '&	�( + ) �	 '#	 � � 	 '&	�( � � �
�
1
�
5
�
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where
	���� � ! � 
 �

is the Reynolds number for
� � � 
 � , the kinematic viscosity. The boundary

conditions are analogous to (1.2)'# � � � � 
�� 
 � � '& � � � � 
�� 
 � � �� '# � '& � '��� � � � � � � ( � 
 � � � '# � '& � '��� � � � � ( � 
 � �
��� � � ( � 
 � 
�� 
 � � 
 � � � �

1
�
6
�

and the basic flow in non-dimensional form is written as

'#�� � ( � � 
 � ( + � '& � � � � � '� � � � � �	�� � � � �

Moving observer. We will justify later that periodic conditions at artificial boundaries in the
stream direction � , yield a great simplification in the structure of the flow: quasi-periodic solutions
may be viewed as periodic flows, and periodic solutions as stationary flows, if the observer moves
at an adequate speed 
 in the stream direction. Consequently we write system (1.5) performing the
change of variable �� � � � 
 
 , and in this way we define the transformed velocity

�# � �� � ( � 
 � def� '# � �� � 
 
 � ( � 
 � �
We obtain the following relations among the respective derivatives	 �#	�
 � �� � ( � 
 � � 


	 '#	 � � �� � 
 
 � ( � 
 � � 	 '#	�
 � �� � 
 
 � ( � 
 � �	 � �#	 �� �
� �� � ( � 
 � � 	 � '#	 � �

� �� � 
 
 � ( � 
 � � 	 � �#	�( �
� �� � ( � 
 � � 	 � '#	�( �

� �� � 
 
 � ( � 
 � � � ��
�� � �

Analogous formulae hold for �& and �� . Substituting these derivatives, (1.5) becomes)*******+ *******,
	 �#	$
 � � �# � 
 �

	 �#	 �� � �& 	 �#	�( ��� 	 ��	 �� � 

	�� ! 	 + �#	 �� + � 	 + �#	$( + ) �

	 �&	�
 � � �# � 
 �
	 �&	 �� � �& 	 �&	�( ��� 	 ��	�( � 


	�� ! 	�+ �&	 �� + � 	�+ �&	�( + ) �	 �#	 �� � 	 �&	�( � � �
�
1
�
7
�

together with boundary conditions identical to (1.6) in terms of the new variable �� . We can recover
(1.5) by simply putting 
 � � in (1.7).
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1.6 Different flow conditions: Constant pressure gra-
dient or constant flux

As we have seen in (1.4), for given � � � and � , varying
! �

, we have a family of laminar flows,
solutions of (1.1)–(1.2), where � � � � ! � 
 � +

. We avoid this lack of uniqueness in the basic flow
by fixing typical quantities associated to the fluid such as the total flux

�
or the mean pressure

gradient � through the channel. For each choice let us show that there is only one value
! �

which
defines the basic flow.

Given a profile of velocities
� � � # � & � for Poiseuille flow, the flux

�
through the channel is

obtained by
��� ���� �

# � � � ( � � ( �
Due to the incompressibility condition (1.1c),

�
does not depend on � for	 �	 � � ���� �

	�#	 � � � � ( � � ( � � ���� �
	 &	$( � � � ( �
� ( � & � � � � � � � & � � � � � � � �

The last step is consequence of the no-slip boundary conditions (1.2). In this way if for � � � � 
 �
we expand

# � � � ( � as

# � � � ( � ���
�������# �

� ( ���
	 ����
 ��� ��� ���� � �# � � ( �
� ( � �
1
�
8
�

On the other hand we can compute the mean pressure gradient � on the channel by

� � 

� � � ���� ���� �

� � 	 �	 � � � ( � �
1�


� � ������ ���� �

� � ! 	�#	�
%� # 	�#	 � ��& 	�#	�( ) � � ! 	�+,#	 � + � 	�+ #	�( + ) � � ( � �
2�


� � � � � 		�
 ���� ���� �

# � ( � � � � ���� �
�,# +
�
� �� � ( � � ���� ���� �

# 	 &	$( � ( � �
� � ���� �

� 	$#	 � � �� � ( � � ���� � 	�#	�( � � � �
� ���

3�


� � � � � 		�
 ���� � � � � � ���� ���� �

# 	�#	 � � ( � � � � ���� �
	�#	�( � � � �
� � �

4� �
� � ���� �

	 �# �	$
 � ( � �
� � �
	 �# �	�( � � � �

� �
1
�
9
�

Step 1: By substitution according to the momentum equation (1.1a).
Step 2: Derivating under the integral sign, integrating, integrating by parts, and integrating respec-

tively at each term, bearing in mind boundary conditions (1.2).
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Step 3: Due to the incompressibility condition (1.1c).
Step 4: Using the Fourier expansion in � for

#
.

Let us now suppose that a constant flux
� � is imposed through the channel. For the laminar

flow
#��

, the total flux is

��� ���� �
#�� � ( �
� ( � ���� �

! � � 
 � # ( � % + � � ( � � � � ! � �
In order to obtain flux

� � we set
! � � ��� � 
�� � � �

. According to (1.9) we derive the mean pressure
gradient � for the basic flow as

� ��� �
� � 
 # � � � � � � �

�
�
� � ���� �

Finally we calculate
	�� �

, the Reynolds number

	�� � � � ! � 
 � � ��� �
� �

�

Analogously if we impose a mean constant pressure gradient � � we find the centreline velocity
for the basic flow

! � � � � � + 
 � � � � and the flux
��� � � � � � 
�� � � � . Now for the Reynolds number	�� �

we have
	�� � � � ! � 
 � � � � � � �

� � + �

For a given laminar flow, i.e. if we fix
! �

, then both definitions of the Reynolds number
coincides with

	���� � ! � 
 �
. That is not the case for secondary flows, defined as the ones for which

the flux and mean pressure gradient through the channel are kept constant. We consider the case of
constant flux

�
and the associated laminar flow

# �� �"! � � 
 � ( + 
 � + �
with

! � ��� � 
 � � � �
. Let

us suppose that
# �

is a secondary flow given by (we ignore for the moment the time-dependence)# � � � � ( � � �
��� � �# �� � ( ��� 	 � ��
 �

which has constant flux
�

and constant mean pressure gradient

� � ��� �
� � � 	 �# ��	�(�� � � �

�

in view of (1.9). Taking the laminar flow which attain � � as its mean pressure gradient, the
centerline velocity

! �
has the expression

! � � � � � +
� � ��� �

�
� 	 �# ��	$( � � � �

�
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imposed
� �

flux
� �

���
� 	�� �

pressure
� 
 ���� � �

��	�� �
TABLE 1.2. Expressions of � and � for non-dimensional secondary flows in cases where the flux or the
average pressure gradient is held constant. In this formulas � and the relation between ��� � and �	� � is given
in (1.10).

Writing this last expression in non-dimensional form we have

	�� �
	�� � � ! �! � ��� �

� ! � � 	 �# ��	�( � � � �
��� 


�
� 	 �'# ��	 '( � 
� 
 �

being �'# �� � '( , non-dimensional magnitudes, so the relation between both Reynolds numbers can be
set as

	�� � � � 	�� �
�

� � �
� 	 �'# ��	�( � 
� 
 � �

1
�
10
�

We remark that if we put �'# �� ��
 � ( +
in (1.10) we get

	�� � � 	�� �
and therefore both definitions

of Reynolds number coincides for laminar flows as stated previously.
Conversely if

# �
is a secondary flow for fixed � over the channel, let us consider its constant

flux
� � � ���� �

# � � � � ( �
� ( �
The laminar flow associated to this flux attains a centreline velocity

! � ��� � � 
 � � � �
, and anal-

ogously let
! �

be the centreline velocity for the laminar flow which preserves � . The relation
between

! �
and

! �
gives the ratio of the Reynolds numbers as

	�� �
	�� � � ! �! � � ��� �

� � ! � � �
� ���� �

# � � � � ( �! � � (� � �
� � 
� 
 '# � � '� � '( �
� '( � �

1
�
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�

In the last integral we have changed the integrand to non-dimensional form. In this way (1.11)
establishes the ratio between

	�� �
and

	�� �
as proportional to the flux of the non-dimensional flow'# � � '� � '( � �

Because centreline velocities
! �

and
! �

for basic flows associated to secondary flows are
different, each of them give rise to a distinct scaling of the same flow. In terms of dimensional
variables a secondary flow can be equally expressed from both points of view. Indeed if the
same flow

# � � � ( � � # � � � � ( � � # � � � � ( � is non-dimensionalized using two different centerline
velocities

! �
,

! �
, then we have# � � � � ( �! � � ! �! � # � � � � ( �! � � � '# � � '� � '( � � 	�� �

	�� � '# � � '� � '( � � �
1
�
12
�
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being '# � � '� � '( � , '# � � '� � '( � the non-dimensional velocities in the scales of
! �

and
! �

respectively.
Therefore, if '# � � '� � '( � represents a non-dimensional secondary flow for

	�� �
, then '# � � '� � '( � �	�� � 
�	�� � '# � � '� � '( � is also a secondary flow for

	�� �
and the relation between

	�� �
and

	�� �
is

given in (1.10) or (1.11). The different possibilities for
�

and � in both cases are presented
in table 1.2. Following the same procedure we find the relation between pressures

� � � � ( � �� � � � � ( � � � � � � � ( � in dimensional coordinates, which yields

� � � � � ( �� ! +� �
! +�! +� � � � � � ( �� ! +� � � '� � � '� � '( � � 	�� + �

	�� +� '� � � '� � '( � � �
1
�
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�
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