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2.1 Numerical approach: choice of the method
The choice of the numerical method is always a difficult task. In our case the main part of the work
is heavily supported by the numerical approximation of system (1.7) and boundary conditions
(1.6): this can give an idea of their importance. For the spatial discretization of the channel we
have adopted spectral methods and for the temporal discretization we use conventional finite
differences.

Spectral methods make use of global representation of functions, usually by high order poly-
nomials or Fourier series, in contrast with finite differences or finite elements in which the
representation is local. With a properly designed spectral method, if the approximated solution is
infinitely differentiable, errors go to zero faster than any negative power of the number of retained
modes (cf. proposition B.1). Instead, finite differences and finite elements only yield finite order
rates of convergence and thus the spatial resolution must be increased so as to get comparable
precision to spectral methods. Besides, spectral methods also have great resolution in boundary
layers as the ones close to the channel walls in our situation.

One of the main source of difficulties of spectral methods are irregular domains, but that is not
the case for the channel flow. The possibility of using fast Fourier transform have made spectral
methods suitable for fluid problems where high accuracy is important to simulate complicated
solutions. Typical discretizations employ Fourier series for periodic boundary conditions, as in
the stream direction in our model, and Chebyshev polynomials for rigid boundary conditions, on
the channel walls in our case. For both approximations the possibility of applying fast Fourier
transforms suppose a great improvement in the computations.

Let us now describe the numerical procedure. We want to follow the temporal evolution of an
initial flow subjected to the incompressibility condition,

���������
, and boundary conditions (1.6).

To this end we use a spectral method to approximate velocities 	�

� and pressure deviation ��� ,
which from now on we consider non-dimensional quantities. We recall from (1.3) that � � � �������
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and from (1.9) and table 1.2.

� � �
�������� �
	��	�
	������� � or � �

������ 

respectively for the constant flux or pressure cases, so in the first case the mean pressure gradient
varies with time and it is constant for the second one. The approximation chosen of the periodic
variable � relies on Galerkin method and Fourier series (see � B.1).

Galerkin method. Since we are supposing 	�
 � 
 � � periodic in � , we replace them by their Fourier
series truncated at some positive integer � :� 	�

� 
 � ��� � � 
 � 
�� � � �� 
! � � � �	  
 ��  
 ��  � � � 
�� �#"%$  '&)( 
 �

2 * 1 �
for �,+.- ,

� +0/ � � 
 ��1 and �32 �
. This finite series substituted in system (1.7) eliminates � -

derivatives and gives rise to a system of partial differential equations in variables
�

and � for the
Fourier coefficients
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where � � U @ UV� 
�W/YX 1  stands for the @ th-order Fourier coefficient of /ZX 1 
 K 
[
 � �
, andK  
 � �

for @N\���
. This constitutes the spectral Fourier–Galerkin method, a process which may

be also viewed as the orthogonal projection by means of the scalar product of ] F / � 
[] 1 , over the
space generated by "_^a` � >T@GA�� � for @ � � � 

*_*
* 
b� . The projected object consists of the residual
obtained upon the substitution of the previously defined truncated series in system (1.7).

As 	 is supposed to be a real function, it follows that
�	Pc � �	 �  (‘*’ denotes complex conjugate)

and analogously for � and � � . Therefore we may write (2.2) for negative modes @ � � � 
_*
*
* 
 � �
in terms of nonnegative modes @ � � 

*_*
* 
[� and their conjugates. It is enough then to consider
modes in

�	  
 ��  
 ��  and equations in (2.2) for @ � � 
_*
*_* 
b� . For the no-slip boundary conditions
in (1.6) it turns out
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and applying the same to � , from proposition B.2 in appendix B, we obtain� �	  
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Collocation method. To get rid of derivatives in the transversal variable
�

, we employ the col-
location method, in which every equation is imposed at selected (collocation) points: we have
chosen the Chebyshev abscissas because of their good convergence properties and the possibility
of utilizing fast Fourier transforms as previously mentioned (see � B.2 for more details).

We express the Fourier coefficients
�	  
 ��  
 ��  for @ � � 

*_*
* 
[� 
 as a truncated Chebyshev

series �	  � � 
e� � ����
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 �	  � � � ��� � � � � 
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being � � � � � ���
	�� ��
���� ���
	�� � � �b� for


 � � 
_*
*
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�� the Chebyshev polynomials, and � a positive
integer. In contrast to Galerkin method, in this case we interpolate these truncated series at selected
collocation points. The choice of those points is detailed in � B.2. In our case we need two different
sets of collocation points��� ����	�� ������� � � 
�� � ����	�� ��� � � 9 � � � � � � � 
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To obtain a system of ordinary differential equations in � , momentum equations in (2.2) are

enforced on the first grid,
� �

, whereas the second one,
�� �

, is taken for the continuity equation. If
we used the same collocation points for the pressure,

��  and continuity equation as for the velocity,�	  
 ��  and momentum equations, then we would obtain an undetermined linear system for the
discrete dependent variables

�	  � 
 ��  � 
 ��  � (cf. Canuto, Hussaini, Quarteroni & Zang 1988, p.
295, for a theoretical point of view). The reason for this is that the gradient of the pressure mode�� 
 � � � ��� �

� � � vanishes at the points
� � 
 � � � 

*
*_* 
!� � � and thus

�� 
 � has no effect upon the
velocity in the momentum equations. Indeed		 � � �� 
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� ��
� � � � � � >�# � � �"� ����	�� � � �b�$ � � � F ��% � ��

� � � � � � 
 for
� � � 
_*
*
* 
�� � � *

There is also another spurious mode,
�� 
[
 � � ��� 
 � � � , which is related to the mean value of the

pressure and it will be reviewed in � 2.4.
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Boundary conditions (2.3) are easily imposed, as for @ � � 
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and thus on the first grid
� �

, we only consider
� � � 

*
*_* 
!� � � in (2.2) for momentum equations

and unknowns
�	  � 
 ��  � . The evaluation of (2.2) at the respective grids

� �
and

�� �
gives rise to

a system of differential-algebraic equations in � with
� � � 9 � � ��� � � � � real equations and

unknowns.

2.2 Evaluation of linear terms
We analyse the evaluation of linear terms in (2.2) by means of cosine transforms described below.
To be precise we are referring to the following terms	 F �	  	�� F � � � � 
 	 F ��  	�� F � � � � 
 ��  � � � � 
 	?��  	O� � � � � 
 on the first grid,�	  � �� � � 
 	 ��  	�� � �� � � 
 on the second grid *
We suppose that the values of the discrete unknowns defined in (2.5), are given. The outline of the
process consists of the construction of the Chebyshev interpolating polynomial at the given values
of the unknowns on its own grid, the computation of analytic derivatives for this polynomial if
necessary, and finally the evaluation of the resulting polynomial at the appropriate grid. Let us
detail those steps.

Interpolation of the first grid. Given values � 
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then the interpolating Chebyshev polynomial �
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These are two linear transforms which can be abbreviated as
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� � � � due to (2.6). Thus
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	 � � 9 � � respectively.
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Interpolation of the second grid. Analogously if we want to interpolate �Q
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 \� � , as it is shown in theorem B.9. For the inverse transform we get
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The abbreviation of the linear transforms is now
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*_*
* 
 �� �
� � � � . The dimensions of matrices

� F and�
� �F is � 	 � .

Derivative of Chebyshev polynomials. The last step in the calculation of linear terms involves
evaluation of derivatives.

Proposition 2.1. Let us suppose that �
� � � , � � � � � and � � � � � � can be expanded in Chebyshev series
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Then, for


 2 � , the relations between coefficients are given by the recurrences< � �� �� � �� ���� F 9 � ��
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and also by the formulae
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and therefore the trigonometric identity
� � > # � �
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Deriving formally the expansion of �
� � � , equating to the expansion of � � � � � and using (2.10) we
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Hence it follows (2.9) for � � , which is easily extended to � � � . We employ (2.9) for
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From the theorem, when �

� � � is represented as a finite series, its first and second derivatives
can be represented by a matrix-vector product
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Gathering matricial operations (2.7), (2.8) and (2.11), and taking ‘ W ’ out of W/ZX 1  , �	  , ��  and��  for convenience, for @ � � 
_*
*_* 
b� we may write system (2.2) as
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 �  � � � � . The ma-
trix

� (� is defined as
� (� �  � >T@GA �  . The dimension of the matrices is adjusted according to

each particular case. For instance, in the term
� (� � � �F � � 	  , the matrices

� (� , � � �F and
� � have

respective dimensions � 	 � , � 	
� � 9 � � and

� � 9 � � 	 � � � � � . We remark that we do
not take advantage of fast Fourier transforms for linear terms, because the corresponding matrices
are constant at each time step as we will see below.

2.3 Evaluation of nonlinear terms
One of the main difficulties in the application of a spectral Galerkin method is the evaluation
of non-linear terms. In the following development we follow section 3.2 of Canuto et al.(1988)
for the case of quadratic non-linearities (the ones that appear in the Navier–Stokes equations),
so as to obtain an efficient algorithm for the evaluation of convolution sums. At this point we
show some of the actual complexities in implementing the method. We have chosen the method
of Galerkin–Fourier in � and collocation–Chebyshev in

�
, as opposed to Galerkin in both Fourier

and Chebyshev, because the non-linear terms are much more awkward and expensive to evaluate
in this latter case.

Let us describe how to evaluate convolution sums. We consider two truncated Fourier series
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which we extent up to order

� 
 � by defining
�	  � ��  � � , for ����� @ � U �

, and we want to
calculate �

� � � � 	 � � � � � � � , the product series truncated up to order �
�
� � � � �� _! � � �

�  "%$  _&)( 
 �
�  � �

� � � !  � � �	�
� � �	�
�
�	 � �� � 
 �

2 * 14 �
where

�
�  is obtained by multiplying the series in (2.13) and grouping terms. This direct method for

evaluating convolution sums requires � � � F � operations. From proposition B.2 we can consider
the trigonometric interpolating polynomial of �

� � � at the points
�� � � 
 ] �G� � � 9 � � , for


 �



24 2 Numerical implementation
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The last step is a consequence of (B.2) in proposition B.2 with � � � 9
� � @ . It is now clear
from these formulae that this second method for calculating convolution sums is not exact. The
discrepancy term from

�
�  in (2.14) is called the aliasing error. Our task now is to find a condition

on
�

, in order to cancel out the aliasing error. We use the property
�	 � � �� � � �

, for � �
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and in this way we will have guaranteed that the aliasing error is canceled. For � � � 
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implies � � 9�� � U � � , the condition for
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 for � @ �)U �g*

Thus the worst cases in @ are
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Both possibilities drive us to choose

�
such that� � 9 � 
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For
��� � � � �

, with the help of fast Fourier transforms, the operation count of this procedure to
evaluate convolution sums is � � ��� 	�� F � � , substantially better than � � � F � for (2.14).

Algorithm to compute non-linear terms. From the previously described method to calculate
convolution sums, let us precise the steps to evaluate non-linear terms in (2.2), namely

;� � 	 �N< � 	 		 � 9 � 	 		O� �  
 ;� � 	 �=< � 	 �	 � 9 � 	 �	��H�  * �
2 * 16 �

We start from values of the Fourier harmonics
�	  and

��  at
� �

defined in (2.4)–(2.5).
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1) Evaluate
	 	 � 	 � and

	 � � 	 � by means of the linear transforms
� (� �	  � >�@BA �	  , � (� ��  �>T@GA ��  for @ ��� 

*_*
* 
[� .

2) Evaluate
	 	 � 	��

and
	 � � 	�� . We take the transform

� � in (2.7) by means of fast cosine
transform described in proposition B.3, then algorithm (2.9) to evaluate

�
-derivatives and

finally another fast cosine transform to perform
�
� �� .

3) Pad with zeros the harmonics of 	�
 � 
 	 	 � 	 � 
 	 	 � 	�� 
 	 � � 	 � and
	 � � 	�� from order � 9 �

till
� 2 � � � �

, at each
���

for
� � � 

*_*
* 
!� � �

.
4) Use the inverse fast Fourier transform (IFFT) to transform

�	  , ��  , 	��	  � 	 � ,
	��	  � 	O� ,

	��	  � 	 �
and

	M��  � 	O� back to physical space, in order to get 	 , � ,
	 	 � 	 � ,

	 	 � 	��
,
	 � � 	 � and

	 � � 	��
at
� �� � 
 � � � for


 � � 
_*
*
* 
 � � ,
� � � 

*_*
* 
!� � �

.
5) At the points

� �� � 
 � � � for

 ��� 

*
*_* 
 � � ,

� � � 

*
*_* 
!� � �
, compute� 	 �=< � 	 		 � 9 � 	 		�� 
 � 	 �=< � 	 �	 � 9 � 	 �	�� *

6) Take fast Fourier transforms (FFT) of the values from the last step at each
� �

for
� �� 
_*
*_* 
�� � �

, to return to Fourier space and so finally obtain for @ ��� 
_*
*_* 
b� the desired
harmonics (2.16).

We remark that all the Fourier transforms employed in this algorithm, even to evaluate cosine
transforms, are of type complex to real or vice versa, which cost roughly one half of a complex to
complex Fourier transform.

2.4 Reduced equations. Temporal evolution
Up to now in system (1.7), we have discretized spatial derivatives to obtain system (2.12), in which
only remain temporal derivatives in (2.12a) and (2.12b), together with the algebraic equation
(2.12c) corresponding to divergence free condition. Therefore (2.12) is a system of differential-
algebraic equations. To simplify the study of the dynamics of (2.12), we convert it to a system of
ordinary differential equations through several algebraic manipulations. From here, the stability
of equilibrium solutions will be determined by the eigenvalues of the linear part of the system. In
passing we reduce the dimension of system (2.12) from

� � � 9 � � � � � � � � to
� � � 9 � � � � � � � 9 �in the final equations, i.e. roughly one third of the original dimension. In this section the study is

made for the case of constant pressure gradient. In � 2.5 we consider the case of constant flux.

Reduced equations. Our goal is to get rid of � and � in (2.12). We start from vectors of com-
plex values 	  � � 	  � 

*
*_* 

	  � � � � � , �  � � �  � 

*_*
* 

�  � � � � � and �  � � �  
 

*_*
* 
 �  � � � � �for @ � � 

*
*_* 
[� , corresponding to the Fourier coefficients of 	 , � and � � as defined in (2.5).
In particular 	 
 , � 
 and �O
 are real vectors and the rest are complex. Likewise we define

�	  �� 	  � 

*_*
* 

	  � � F � � and
��  � � 	  � � � 

�  � 

*_*
* 

�  � � � � � for @ � � 

*
*_* 
[� . With this split of

variables, from (2.12c)
��  may solved from

�	  and thus we can obtain a matrix �  that carries
out the transformation

��  � �  �	  . The dimension of �  is � 	
� � � � � , the entries on its first

row are real and on the rest purely imaginary, as can be verified directly. For @ � �
, (2.12c) is

written as
	 � 
 � 	O� � � which together with (2.6), � 
 � d � � � � , gives � 
 � � � � � and therefore we

set � 
 � � X
X
X � � 
 � � � � � �
. As a consequence, since in (2.12a) there are no pressure terms for@ � � , this is the only equation which we need to be consider and it only depends on 	 , once the

substitution
��  � �  �	  is applied.
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For @ � � 

*_*
* 
[� we introduce the notation

�  � �
� � 	 �=< � 	 		 � 9 � 	 		�� �  9 ���� � � F(  9 �

� �� � F	 � � � 	  9LK  
 �
�  � �

� � 	 �=< � 	 �	 � 9 � 	 �	��R�  9 ���� � � F(� 9 �
� �� � F	 � � � �  
��  � � �  ��� � ������� � � � F � 
��  � C � �  � � � � � ��  I 


��  � � � (� � � �� � F � � � ������� � � � F � 
�  � C � � (� � � �� � F � � � � � ��
� �� � 	 � F I 


where 	 ��

� ������� � 
�� � stands for rows � � 

*_*
* 
�� � of matrix 	 . Equations (2.12a) and (2.12b) are now
expressed as � ��	  � ��  � ��  �  ���  � ��  � �  �  *
The matrix

�  turns out to be an � 	 � invertible matrix, so from the second equation we obtain
�  � � � � � ��  � ���  � , which substituting on the first yields

��	  � ��  � ��  � � � � ��  � ���  � � ��  � ��  � � � � ��  � �  ��	  � 

and finally letting

�  � ��  � � � , it is also possible to invert � � �  �  , and thus we may solve for��	  � �	 
 ��� 
��	  � � � � �  �  � � � � ��  � �  ��  � 
 @ � � 

*_*
* 
[� ,
�
2 * 17 �

where � is the identity matrix of dimension � � � and we have extended the definition of
�  

for @ � �
. Bearing in mind the substitution

��  � �  �	  , we observe that system (2.17) does not
depend on

��  and �  : it only depends on 	 
 and
�	  for @ � � 
_*
*_* 
b� . As was announced at the

beginning of this section the real dimension of (2.17) is
� � � 9 � � � � � � � 9 � . In addition, due to

the elimination of pressure in (2.17), we avoid the indeterminacy caused by an additive constant,
which has no effect on the pressure gradient.

Temporal evolution. Once removed � and � from (2.12), in (2.17) it just remains to discretize
temporal derivatives. We have chosen a semi-implicit finite difference method, attending several
factors as computational cost, stability, accuracy and storage requirements. The scheme adopted
is typical for Navier–Stokes equations and employs the implicit Crank–Nicolson’s method

�
� � � � �

� 9 � �� ��� �
�
� � � � 9 � �

�
� � � 
 �

2 * 18 �
for diffusion (linear terms: pressure and viscosity), and the explicit Adams–Bashforth’s method

�
� � � � �

� 9 � �� � � � �
�
� � � � �

�
� � � � � 
 �

2 * 19 �
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for advection (non-linear terms), being �
� �

�
� � � � for � � � � � � , and

�
�
� � �

� � the ODE being
approximated. To apply different methods on each term of

�
, we suppose

� �
� � ��� � � � 9 � �

� �
and thus we write

�
�
� � �

� � in integral form as

�
� � � � � � � �

� � � � 9 � � ��� �
� �

� �
�
� � �b��� � 9 � � ��� �

� �
� �

�
� � �e��� �

� �
� 9 � �� � � �

�
� � � � 9 � � � � � � 9 � �� � � � �

�
� � � � �

�
� � � � � 


where the approximation of the integrals is based on methods (2.18) and (2.19) respectively.
Arranging terms, we take a step of the method by solving

�
� � � � � �� � � � � � � � � �

� 9 � �� � � �
�
� � 9 � � �

�
� � � � �

�
� � � � � * �

2 * 20 �
Recurrence (2.20) is a two-step method, so it needs the solution at two consecutive time values� � � � , � � in order to get it at � � � � . When (2.20) begins, � 
 comes from initial conditions and to
generate � � we construct a one-step method. In this case linear and non-linear terms are discretized
by means of implicit and explicit Euler’s method respectively

�
� � � � �

� 9 � � � � � � � � � 
 �
� � � � �

� 9 � � � � � � � 

which, each time step of length

� � � � , yield the semi-implicit method

�
� � � � � �� � � � � � � � � �

� 9 � �� � �
�
� � * �

2 * 21 �
The error incurred in (2.18) and (2.19) with respect to the exact solution is � �b� � � � F � , as

is straightforward to check. Crank–Nicolson’s method is absolutely stable in the entire left-half
plane, i.e. if 	 " ��
 � � � U �

then the approximated solution � � of the scalar problem
�� � 


� is
bounded as �
��� . Instead for Adams–Bashforth’s method the stability region is an area of the
complex plane included in / � � 
 � 1 	 / � � 
 ��1 . The stability in this case depends on the eigenvalues


of the linear part of the spatial discretization in (2.12) and
� � must be restricted according to

	 " ��
 � � � U � so as to get stability. As we will see in � 2.6, for the kind of solutions considered in
our study, the time step

� � employed is in the stability region, since the estimated errors are kept
small.

Let us see how the actual implementation is tackled. We can express (2.17) as

��	  ���  � �	  � 9 �  � �	 
 
_*
*_* 
 �	 � � 
 @ ��� 

*_*
* 
[� 
 �
2 * 22 �

where
�	 
 � 	 
 and

�  , �  corresponds respectively to linear and nonlinear terms in
�	 
 
_*
*_* 
 �	 �on the right hand side of (2.17). At this point we consider only the case when a constant pressure

gradient � is held constant and put
���'�

as the corresponding Reynolds number. The equations for
constant flux are studied in � 2.5. To emphasize the dependence on each of the variables in (2.22),
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we precise their formulae:����� � 
 � �	 
 � ���
� �� � F	 � � �	 
 
��� � � � � �  �  � �  � �	  � � � � F(� 9 �

� �� � F	 � � � � � ������� � � � F � C �� �  � � � � I� �  C � � F(� 9 �
� �� � F	 � � ��� � � � � �
� � F(� 9 �

� �� � F	 � � I C �
�  I �	  


� 
 � �	 
 
_*
*
* 
 �	 � � � �
� � 	 �N< � 	 		 � 9 � 	 		O� � 
 9 � 
� � � �  �  � �  � �	 
 
_*
*
* 
 �	 � � � � C � � 	 �N< � 	 		 � 9 � 	 		�� �  I � � ������� � � � F �9 �  ����� C

� � 	 �N< � 	 		 � 9 � 	 		�� �  I � �
� � �� � 	 �N< � 	 �	 � 9 � 	 �	��R�  

����� 
 �
2 * 23 �

for @ � � 
_*
*
* 
b� . It is easy to check that
�  � ��  � � � has its first column real and the remaining

ones purely imaginary. Then
�  �  is a real matrix and thus the matrix of

�  for @ � � 

*
*_* 
[� is
also real. The substitution of (2.22) in (2.20) gives for @ ��� 

*_*
* 
[�

�	 � � � �
� �� �  � �	 � � � � � �	 �  9 � �� � �  � �	 �  � 9 � � � � � � � � � 


which can be abbreviated as
	  �	 � � � �	� � � � 
 �

2 * 24 �
where

	  � � �
� �� �  
 � � � � � �	 �  9 � �� � �  � �	 �  � 9 � � � � � � � � � 


and
� � � �  � �	 � 
 

*_*
* 
 �	 � � � . For @ � �

the identity matrix � has dimension � � �
. We remark

that 	  is a real matrix of size � � �
for @ � �

and � � �
for @ � � 
_*
*
* 
b� and that it only

depends on � and
� � which are kept constant on each flow simulation. Thus we simply have

to compute once the ] �
decomposition of 	  . Recurrence (2.24) needs

�	 
 

*_*
* 
 �	 � at two time
instants. The first one is taken from initial conditions and for the second one, adapting (2.21) to
our case, we have �	 � � � �

� �� �  � �	 � � � � � �	 �  9 � �� � � 
 �
2 * 25 �

which must be applied twice in order to get the solution
�	 � at � � � � . It is not a coincidence that

	  is also the matrix of the system to be solved in (2.25). In this way we can take advantage of
the same ] �

decomposition and the corresponding storage.

Time marching scheme. We start from fixed values of
� � , � , � , 
 � � � � 9 � � � � � � � 9 � and� �	 

 

*
*_* 
 �	 
 � � + -�� at the time instant � ���

. In the following algorithm for the time evolution,
all the steps refer to @ � � 
_*
*
* 
b� . It is based on (2.24) and (2.25):
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1) Calculate matrices 	  together with their ] �
decomposition.

2) Evaluate
� ����� � �	 
  9 � � � 
 � �

and solve 	  �	 ����� �	� ����� for
�	 ����� .

3) Evaluate
� � � �	 ����� 9 � � � ����� � �

and solve 	  �	 � � � � for
�	 � .4) For � � � 
 � 
 � *
*_* obtain

� � � � � � �	 �  � � �  9 � � � � � � � � � � � � � �
and solve 	  �	 � � � �� � � � for

�	 � � � .

To sum up, each time step the computational cost consist of evaluating
� � , solving a linear

system of size � � � and
� � linear systems of size � � � , whose ] �

decomposition is already
computed. The main storage requirements are the ] �

decompositions of matrices 	  , i.e.
� � �� � F 9 � � � � � � � F real coefficients. This has been an important reason to choose the numerical

discretization as Fourier–Galerkin in � and Chebyshev–collocation in
�

(see � 2.1), instead of
Chebyshev–Galerkin in

�
and Fourier–collocation in � . With this latter approach the linear terms

are coupled in one whole matrix, as contrasted with one block of size � � � and
� � of size � � �

in the implemented method as we have seen in (2.24).
It is also worth to mention the use of some library routines in the implementation of (2.24). Fast

Fourier transforms have been calculated by means of the library functions FFTW (Fast Fourier
Transform in the West, http://www.fftw.org), which authors claim to be usually faster than all
other freely-available Fourier transform programs found on the Net. From the authors’ manual:
FFTW is unique in that it automatically adapts itself to your machine, your cache, the size of your
memory, the number of registers, and all the other factors that normally make it impossible to
optimize a program for more than one machine. To implement operations which imply vectors and
matrices we have chosen ATLAS (Automatically Tuned Linear Algebra Software, http://math-
atlas.sourceforge.net), which are also adapted routines to the specific architecture where the
code is going to be exploited. Both sets of library functions have meant a worthy increase in the
performance of the numerical integrator (2.24).

2.5 The constant flux numerical integrator
We have to make little changes in equations of � 2.4 to implement a numerical integrator which
keeps the flux

�
constant in time. According to table 1.2 we have to impose

� � � � �
and from

(1.9) applied to the non-dimensional case it turns out

� � �� � �� �
	��	 
	 � � � � �������� �_	��	 
	O�f� �� � �

�� 		 � � �� � �	 
 � � �
�������� �
	��	 
	������� �� �� 	 �	 � � �� ��� � �%	8�	 
	�� � �� � � �

������ � �%	8�	 
	�� � �� � 

�
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for
�	 
 as was defined in (2.1). Therefore, from the last expression, the restriction in � has implicit

a constant flux, as we have used
	 � � 	 � � �

in its obtaining. Nevertheless, numerically (2.26) is
not enough to keep the flux constant because, due to rounding errors, the flux is slightly varied each
time step, producing substantial errors in long time integrations. Hence, in addition to imposing
(2.26) as the mean pressure gradient, we also restrict the solution to

� � � � �
each time instant.

Both restrictions affect mainly the equation for 	 
 � � 	 
 � 

*_*
* 

	 
 � � � � in (2.17), because
�

and
� depend only on

�	 
 and the dependence is linear. We incorporate them to
� 
 � 	 
 � of (2.23).
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Calculation of � . By means of the transformations
� � and

�
	
defined in (2.7) and (2.11) respec-

tively, the linear operation 	 �
 � � 	 �
[
 
_*
*
* 
 	 �
 � � � � � � 	 � � 	 
 computes the coefficients of the
Chebyshev polynomial

	��	 
 � 	�� ��� �
� �� ! 
 	 �
 � � � � � � . From it we obtain

� � � �������� �_	��	�
	��f� �� � � � �������� �
� ��

� ! 
 	 �
 � � � � � � � � � � � � � �b�
� � �������� �

� ��
� ! 
 	 �
 � � ��	�� � � � ��	�� � � � � � �� ����� �

� ��
� ! 
 	 �
 � � � � � � � � � � � � ������ �

� ��
� ! ��

odd

	 �
 � 

and thus we modify the linear terms adding ������ � 
 � 	 
 � ���

� �� � F	 � � 	 
 9 � � � � � �� � F	 � � � � � 	 � � � 	 
 

where � � ��� 
 � � is a

� � � � �
	 � matrix with
� 
 � � �

if



odd and
� 
 � ��� otherwise.

Calculation of
�

. We put
�	 
 ��� � 	 
 and as we have seen in (1.8)

� � � �� � �	 
 � � � � � �
� �� � ��� ! 
 �	 
 � � � � � ��� � � ��� ! 
 �	 
 � � �� � �
	�� � � ��� ���
	�� � � �b��� �

� ��� ! 
 �	 
 � ���
 �
	�� ��� � � � >�# � � � � ��� ! 
�
even

� �	 
 �� � � F ��� � 	 
 
 �
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where
� � � � � 

*
*_* 
 � � � � � � � � � �
 

*
*_* 
 � �� � � � , for

� �� � � �G� � � � F � if
�

even and
� �� � �

otherwise. Now the condition
� � � � �

is transformed to
� � 	 
 ��� � � , which taking � even can

be solved for 	 
 �	� F by

	 
 �	� F � �
�
�	� F C � � � �� � �	 
 I 
 �
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where

��
and

�	 
 represent vectors
�

and 	 
 without the � � �
–th component. Putting

� � 
 � � �	� F � as
the � � �

–th column of
� 
 , and

�� 
 as
� 
 without

� � 
 � � �	� F � , then we may eliminate 	 
 �	� F from� 
 since � 
 � 	 
 � � �� 
 � �	 
 � 9 � � 
 � � �	� F � 	 
 �	� F� C �� 
 � �
�
�	� F � � 
 � � �	� F � �� � I � �	 
 � 9 �

� �
�	� F � � 
 � � �	� F � *

Finally letting
�� 
 be

�� 
 � � � 
 � � �	� F � �� � � � �	� F but its � � �
–th row, the equation for

�	 
 is
��	 
 � �� 
 � �	 
 � 9 � 
 � �	 
 

*_*
* 
 �	 � � 


where � 
 � �	 
 
_*
*
* 
 �	 � � � �
� � 	 �N< � 	 		 � 9 � 	 		O� � 
 9 �

� �
�	� F � � 
 � � �	� F � *

The dimension of the system is reduced by one with respect to (2.17). Equations for
�	 � 

*
*_* 
 �	 �have linear terms as in (2.17). In the evaluation of convective terms 	 
 �	� F is substituted from

(2.28). The temporal evolution is implemented as in (2.24).
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2.6 Check of the numerical integrator
In this section we verify that local errors originated in (2.24) from the time discretization, behave
reasonably for the kind of solutions considered in this work and moderate values of

���
. To that

purpose, we approximate temporal derivatives by central finite differences and then we extrapolate
those approximations.

Extrapolation method. Let us consider a given an expansion in powers of � , evaluated at � and
 �
� � � � ��� 
 9 � � ��� 9 � � ��� � � � 
 � ��
 � � ��� 
 9 � � 
 ����� 9 � � ��� � � � *

We combine both expansion to cancel out terms of order � by

 �� � 
 � C � ��
 � �
 � � � � � � I ��� 
 9 � � ��� � � � * �
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To approximate derivatives we use the central difference formula

� � � � ��� � � 9 � � � � � � � � �� � 
 �
2 * 30 �

which from Taylor’s expansions we know that� � � � �
	 
 9 	 � � F 9 *
*_* 9 	 � � F � 9 � F � � F�� � � � � � � 

where

	 F  � � � � F  � � � � � �B� � @ 9 � ��
 for @ � � 
 � 

*_*
* 
 � 9 �
and � � � � � � � � 	 � � � as � �

�
.

Putting

 � � � �

and � � �
, the extrapolation method applied to

� � � � is written as

� � � � � � 9 � � � � � � � � � � �� � � � � � � 9 � � ��� � * �
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Effective formula for the error in time. We denote 	 � � 	 � � � � � for � � � 
 � 
_*
*_* and 	 �� �	 
 
_*
*_* 
 �	 � � in its discrete form as defined in � 2.4. The procedure adopted to estimate the errors
committed in the temporal evolution considers five consecutive instants of 	 , namely 	 �

� F , 	 � � � ,	 � , 	 � � � , and 	 � � F . Using (2.30) for � � � � � and � � � � , we approximate respectively
�	 � by

	 � � F � 	 � � F� � � � �	 � 9 � �b� � � � F � 
 	 � � � � 	 � � �� � � � �	 � 9 � �e� � � � F � 

which combined through (2.31) yield

	 � � � � 	 � � �� � � 9 �
� C 	 � � � � 	 � � �� � � � 	 � � F � 	 � � F� � � I � �	 � 9 � �b� � � � � � * �
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We condense (2.22) as

�	 � � � 	 � 9 � � 	 � , putting
� � � � 
 

*_*
* 
 � � � and

� � � � 
 

*
*_* 
 � � � .On the other hand, (2.24) can be transformed in

� � 	 � � � �
� � � 	 � � � � � 
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FIGURE 2.1. Field of velocities
��� ��� � for one time instant of flows marked as � ,

�
in table 2.3. The represented

frame corresponds to / � ��� 1 	 / � � � ��1 .
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FIGURE 2.2. Analogous of figure 2.1 for flows marked as � ,
�

in table 2.3.
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where
� � � � 
 
_*
*
* 
 � � � . Because (2.18) and (2.19) produce � �e� � � � F � errors, this is also so for

(2.24). Consequently the time evolution using (2.24) yields
�	 � � � � 	 � � 9 � � 	 � � 9 � �b� � � � F � ,which substituted in (2.32) gives a final expression for the error�� � � � � 	 � � F ��� 	 � � � 9 � � � � � � � 	 � � � � � � � � 9 � 	 � � � � 	 � � F � � � �e� � � � F � * �
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Norm of a flow. To measure the size of a flow, and in particular the expression in (2.33), we need a
norm. Given a profile of velocities

� 	�

� � � � 
 � � , based on the ] F -norm, we define its norm � � 	�

� � �
as

� � 	�

� � � F def� �] ���
 � �� � � 	 � � 
 � � F 9 � � � 
 � � F � � � � � * �
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In order to evaluate (2.34) for a discretized flow
� 	�

� � as in (2.1) and (2.5), if we put �

� � 
 � � �
	 � � 
 � � F 9 � � � 
 � � F , expressed as Fourier series �

� � 
 � � � �  ���� �  � � � " $  '&)( , then

� � 	�
 � � � F � �] ���
 � �� � � � � 
 � ��� � � � �
� �� �

� 	�
� �  � � �] ���
 " $  _&)( � � � �
� � �� � ��
 � � � � � ��� � ��
 *

�
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The last step is a direct consequence of (2.27), where � 
 � �
� 
 � 

*_*
* 
�� 
 � � � � , corresponding to

notation (2.5). Moreover, for the truncated series of �
� � 
 � � , from the definition of convolution

sums in (2.14), we obtain for
� � � 

*_*
* 
!� � �

� 
 � � �� _! � � � 	  � 	 �  � 9 �  � � �  � � � 	 F
 � 9 � �� _! �
� � 	  � � F 9 � �  � � F � 


which finally allows us to evaluate (2.35).

In order to evaluate the error formula in (2.33), we first need to apply the transforms �  defined
in � 2.4 to compute the components of 	 , � not present in

� 	 
 
 �	 � 

*_*
* 
 �	 � � , and then we can apply
(2.35). In table 2.3 we present errors, according to (2.33), for different flows. We observe that
for fixed values of

���
and � 	 � , errors depends on

� � � � F as, when
� � is halved, they are

roughly divided by
�
. This is in agreement with (2.33). Errors are increased with

���
and slightly

with � 	 � . Data in table 2.3 give only a reference of the precision of the numerical integrators,
because errors depends strongly on the type solution being integrated: in this case it is about
quasi-periodic flows which is the subject of chapter 4.

In figures 2.1 and 2.2 we plot vectors
� 	�

� � � � � 
 � � � for � � � 
 ] � � ,


 � � 
 � 
_*
*_* 
!� � �
and

� �
as defined in (2.4). From (2.1), (2.5) and because 	 , � are real functions, their obtaining at� � � 
 � � � is accomplished by

	 � � � 
 � � � � 	 
 � 9 � �� _! � 	 "
� 	  � " $  _&)( � � � 	 
 � 9 � �� 
! �

� 	 �  � �
	�� � @BA�� � � � 	 $  � � >�# � @BA � � � �
� � � � 
 � � � � � �� _! � 	 "

� �  � " $  _&)( � � � � �� 
! �
� � � � ��	�� � @GA�� � � � � $ � � >�# � @BA�� � � � 


where 	 "�� � � � represent both the real part of � , and 
�� � � � $ its imaginary part. Again in this
case we have employed transforms �  .
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� * � � 	 � � ��� � 	 � � � � � � * � � � * � �	� � * ��� 	 � � ���� 	 � �
� ��� �B* � � � * � � � � * � � 	 � � ��� � 	 � � ��� ���B* �)� � * � � � � * � � 	 � � ���� 	 � �
� ��� �B* � � � * � � � � * � � 	 � � ��� � 	 � � ��� ���B* �)� � * � � �
� * � � 	 � � ���� 	 � �
� ��� �B* � � � * � �	� � * ��� 	 � � ��� � 	 � � ��� ���B* �)� � * � �	� � *�� � 	 � � ���� 	 � �
� � � � * � ��� � * � � � � * � � 	 � � ��� � 	 � �
��� � �B* �	� � * � � � � * �%� 	 � � ���� 	 � �
� � � � * � � � * � � � � * � � 	 � � ��� � 	 � �
��� � �B* �	� � * � � �
� * � � 	 � � ���� 	 � �
� � � � * � � � * � �	�
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TABLE 2.3. Errors, according to (2.33)–(2.35), committed during the integration of different flows for the
specified values of ��� � , ��� � , � 	�� ,

���
and for fixed � � �� � � ��� �

. The error is computed as an
average of several measurements of (2.33). For fixed values of ��� and � 	!� the same flow is integrated
for values of

��� � �  � �
,
�  � �

,
�  � �	�

. Reynolds numbers marked with a superindex are also plotted in the
corresponding graph of figures 2.1 and 2.2.

2.7 Poincaré sections
In order to study periodic and quasi-periodic orbits on time, we define a Poincaré section, " � ,of the fluid in terms of discrete variables defined in (2.5) and � 2.4. This is a fundamental tool in
analysing the behaviour of the fluid, so we need an accurate calculation to know the solution on
" � . In this section we detail the algorithm implemented to carry out this calculation. The actual
definition of the Poincaré section is

" � �$# � � � �	 
 
_*
*
* 
 �	 � � �&% � ��' 

where % � 	 " � �	 �[� � �)( � , for ( � +g- , a fixed value which we adapt according to the fluid being
integrated. We are interested in finding 	 � �� � + " � , only for

�� such that % � �� � � � and
	 % � 	 � � �� � 
 � ,

i.e. we only search a crossing through
�

of % if at the crossing point % is growing.
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Algorithm to approach the Poincaré section. Let us suppose we are following the evolution
of the fluid by means of algorithm (2.24) using a time step

� � . We denote by � � � � � � and
% � � % � � � � for � � � 
 � 
 � 

*_*
* . If for some � +�� we detect % � � � and % � � � 
 � , then:

1) Using a smaller time step as
� � � � F and 	 � � � � as the initial condition, obtain % � � � from two

applications of algorithm (2.25) and successive of (2.24) until % � �� � 
 � for some
�� 
 � � . In

this way we stay closer to " � .2) By means of Newton’s method applied to % � � � ��� , select a new time step
� � � � % � �� � � % � � �� � .

The derivative % � � �� � � 	 " � ��	 �[� � is obtained from the right hand side of (2.22).
3) Apply one iteration of (2.25) with

� � computed in 2) and return to step 2) while � % � � � � 
��
where

� 
 �
is some fixed tolerance.

For
� � � � � �[� we usually need from

�
to
�

Newton’s iterations to reach � % �)U � .
2.8 Pseudo-arclength continuation method
In this section we treat basic ideas on continuation methods needed to traverse bifurcating curves
of periodic and quasi-periodic solutions. They are an extract of chapters 1–9 of Allgower & Georg
(1990).

Basic ideas. We consider ��� - � � � � - � a smooth mapping for which we want to find a curve of
points � +f- � � � such that � � � � � � . If we know � 
 such that � � � 
 � � � and

� � #	� � � � � � 
 �e� �� , then by the implicit function theorem there exists an open interval, 
�� � and a smooth curve
 + 
��� � � 
 � +D- � � � such that for all

 + 
 : a) � � � � � � 
 , b) � � � � 
 �e� � �

, c)
� � � � � 
 �b� +� � � #�� +�� ��� � � � � � � �!� #	� � � � � � ' and d) � � � 
 � \��� .

By derivating � � � � 
 �b� � � , the tangent vector to the curve, ��� � 
 � , satisfies
� � � � � 
 �b� � � � 
 � ��

and thus � � � 
 � is orthogonal to all rows of
� � � � � 
 �e� , or equivalently the

� �f9 � � 	 � � 9 � �
matrix

� � 
 � � C � � � � � 
 �e�� � � 
 � � I
is nonsingular for all


 + 
 . We introduce the parameter arclength ( by ( � 
 � �����
 ��� � � � � � � � . For
this new parameter ( the tangent vector satisfies � � � � � ( � ( � � � � �� � ( � � � �

, for ( + � and �
some new interval. We call the orientation of the curve positive when �G"�� � � ( � 
 � for (S+ � .

Definition 2.2. Let 	 + � � . The unique vector � � 	 � + - � � � which satisfies the conditions:

	Q� � � 
 �b�	� � � 
 �G"�� C 	 � � I 
 � 

is called the tangent vector induced by 	 .

Again using the implicit function theorem it is easy to prove that the map 	 + � � �� � � 	 � has
open domain and is smooth. This fact allows us to transform the problem of finding the positively
oriented curve � � ( � + � � � � � � , into the initial value problem

�� � � � � � � � �e� 
 � � � � � � 
 
 �
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which suggest the application of numerical methods for solving this kind of problems. This will
be the first step to predict an approximate solution. For instance we can apply the Euler method to
(2.36): from a known point � 
 on the curve, we estimate � 
 � � by

� 
 � � � � 
 9 �B� � � � � � 
 �b� 
 �
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where � 
 � represents the step size, whose choice is described below. This first approximation
of � 
 � � is what we call a predictor step. To improve its precision on the curve �

� � � � � , we use a
Newton-like method detailed in what follows.

Obtaining of tangent vector and Moore–Penrose inverse. Since the Jacobian matrix
� � +

� ��� � � � � � is not square, in order to apply Newton’s method to � � � � � � we need to introduce a
special right inverse of

� � .

Definition 2.3. Let 	 + � � (this implies that 	 	 � is nonsingular). Then the Moore–Penrose
inverse of 	 is defined by 	 � � 	 � � 	 	 � � � � .

The proof of the following lemmas can be found in Allgower & Georg (1990) p. 19.

Lemma 2.4. Let 	 + � � . Then, for all
� + - � and � + - � � � , the following statements are

equivalent: a) 	 � � � , � � 	 � � � � � ; b) � � 	 � �
; c) � solves the problem: � > #�� # � � � � 	 � � � '

.

Lemma 2.5. If 	 + � � then: a) 	 � 	 is the orthogonal projection from - � � � onto � � 	 � � �
range

� 	 � � , i.e. 	 � 	 � � � � � 	 � � � 	 � � ; b) 	 	 � � � ; c) If
�

is any right inverse of 	 , then
	 � � � � � � � 	 � � � 	 � � � � .

We consider 	 + � � for which we have calculated an ] �
decomposition of the form

� 	 � � ] C �
� � I 


where ] + � � � � � � � � � � � � is lower triangular,
� + � ��� � is upper triangular and

� +
� � � � � � � � � � � � is a permutation matrix, arising from a partial pivoting for instance. From this
decomposition we can write

	 � � � � 
 � � ] � � �
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and defining
� � � � � ] � � � � � � � � , for

� � � � � � � 

*_*
* 
 � 
 � � � , then
� \� �

and 	 � � �
. From

definition 2.2 � � 	 � � d � � � � � . The vector
�

is obtained by one backsolving and a permutation of
its coordinates. The sign of

�
has to be set such that �G"�� � 	 � 
 � � 
 � . We observe that� 	 � 
 � � � C � � ] C �
� � I 
 � � � ] � � � � � � � � I � � � ] C?C �

� � I 
b] � � � ] � � � � � � � � * I
Since for � \��� one has � � ] � ] � � � ] � � F 
 � , then ] � ] is positive definite and so is ] � � � ] �e� � �� � ] � ] � � � . Hence the last entry in ] � � � ] � � � � � � � � is positive and

� > � # � �B" � � 	 � 
 � �e� ��� > � # � �B" � � � ���B" � � ] ���G"�� � � �e� *
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We can easily compute the right hand side from the ] �
decomposition of 	 and from here � � 	 � .

By (2.38) the matrix
��� � � � ] � � � � C � � ��� � �� � I

is a right inverse of 	 and from lemma 2.5 c) it turns out that 	 � � � � � � � 	 � � � 	 � � � � . Finally
the obtaining of � � 	 � �

consists of solving two triangular systems, a permutation and a scalar
product together with a sum for the orthogonal projection with

� � � � � 	 � � � 	 � � � .
Newton’s method as a corrector. Given a predicted point

�� close to the curve � � � � � �
as in

(2.37), we want to approach it finding the nearest point to
�� on the curve, i.e. the solution of

� >�#�

# � � � �� � � � � � � � ��' *
A necessary condition to solve this problem is achieved by means of the method of Lagrange
multipliers. Thus we want to find � such that

� � � � � � 
 � � �� � � � � � � � 
 

for some vector of multipliers


 +=- � � � . Because range
� 	 �e� � � � 	 � � , the last condition may

rewritten as � � � � � � �b� � � � � �� � � �
. Now, by means of Taylor’s expansions of this equation and

� � � � � � around
�� up to order one, we immediately have

� � �� � 9 � � � �� � � � � �� � � � 
 � � � � � �� �b� � � � � �� � � � *
These equations correspond to condition a) of lemma 2.4 and hence they are equivalent to b) of
the same lemma

� � �� � � � � �� � � � � �� � 
 �
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which represents a step of Newton’s method, modified for the case of ��� - � � � � - � . As in the
classical Newton’s method, (2.39) provides local quadratic convergence (see Allgower & Georg
(1990) p. 22).

Step length adaptation. A predictor method like (2.37) can give good approximations
�� � � � of

the curve � � � � � �
, which next will be refined by Newton’s method (2.39). For the selection of

the step length � is desirable to choose it as big as possible, meanwhile the corrector step achieves
convergence in a a reasonable number of iterations. To this end we have adopted two strategies: by
improving the precision of the predictor step, thus allowing a bigger step size � , and by adapting
� according to the number of iterations of the corrector step.

Let us suppose that we have already computed points � 
 , � � , *
*_* , �  + � � � � � � . We use a
local pseudo-arclength parameterization of those points with parameter


 � � � � � 
 � �  � for � �� � � � � �  �b� , �b�	� � �
and � � � 
 � 

*_*
* 
 @ , in such a way that the curve � � 
 � satisfies � � 
 
 � � � 
 .

Next we construct the interpolating polynomial
�  � � of degree

�
of those points by

�  � �
� � � � � / 
  1 9 � / 
  
 
  � � 1 � � � 
  � 9 � / 
  
 
  � � 
 
  � F 1 � � � 
  � � � � 
  � � �9 *
*
* 9 � / 
  

*_*
* 
 
  � � 1 � � � 
  � *_*
* � � � 
  � � � � � 
 �
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where the coefficients are computed recursively by divided differences

� / 
 
 1 � � 
 
 � / 
 
 

*
*_* 
 
 � 1 � � / 
 
 

*
*_* 
 
 ��� � 1 � � / 
 
 � � � *_*
* 
 
 � 1
 
 � 
 � 
 � 
 
 *
We employ the a priori estimates

� �  � � � � � � � � �  � �
� � � � � distance

� �  � �
� � � 
 � � � � � �b� *

If
��� ��� represents the maximum allowed distance from

�  � �
� � � to �

� � � � � , according to the previous
estimate, for given

�
we select � such that the error satisfies� � � 
 @ 
 � � def� � �  � � � � � � � � �  � �

� � � � � ��� / 
  
_*
*_* 
 
  � �
� � 1 � � � � 
  � *_*
* � � � 
  � � � � ��� ��� *

The error term
� � � 
 @ 
 � � is a polynomial of degree

� 9 �
. In order to solve

� � � 
 @ 
 � � � ��� ���
for � 
 �

, we apply the secant method using as starting values � � �
and � � � � � ��� ��� �

��� / 
  

*_*
* 
 
  � �
� � 1 � . If

�� represents the previous step length, in order to increase the stability of
the predictor, the selection of

�
is made as the lowest possible value, which together with � are

obtained from the algorithm:
1) Set

��� �
.

2) If
� � � �� 
 @ 
 � � U ��� ��� then set ���	��
 � � and

�
����


���
.

3) If condition 2) is not fulfilled we solve
� � � 
 @ 
 � � � ��� ��� for � , and save �  � � � � .

4) Repeat steps 2), 3) increasing
�

until �  � � 2 �  � � � � . Then set �
�	��
 � �  � � and
�
�	��


���
.

In summary, this algorithm selects the highest new step length ���	��
 , at most double of the previous
one

�� , and the lowest degree
�

such that
� � � ����
 
 @ 
 � � U � � ��� . If the predictor-corrector procedure

failed we repeated it with initial step length
�� � � .

The value of
��� ��� is actualized once the corrector step has converged, as a function of the

number of iterations needed. Using the preceding algorithm, from � 
 
 � � 

*
*_* 
 �  + � � � � � � ,we obtain a predictor approximation � 
 � � � and we call � 
 � � � � � � � �
� 
 � � �e� to the recurrence

which carries out the corrector steps. We further suppose that, for � 
 � small enough, the limit
�
�
� � � � � > � 
��

�
� 
 � � � exists. For certain constant � 
 �

(independent of � ) we suppose that
errors

� 
 � � � � � ���
�
� � � � � 
 � � � � satisfy the inequalities

� 
 � � � � � U � � � 
 � � �e� , where
� � - � -

is a known monotone function such that
� � � � � � . The more realistic function

�
for the corrector

process
�

, the more reliable step length adaptation will be.
Let us suppose now that we want to choose

�� such that the corrector step finishes in
�� iterations.

If for a given step length � we have needed � iterations to attain convergence, then

� � � � def� ��� � � � � � � � � � � � � ���� � � � � � � 
 � � � � � ���
�
� � � � � � � � � � � ����
�
� � � � � 
 � � � � � � � � � � � �� 
 � � � U � � � � � � 
 � � �b�� 
 � � � 


from which we may estimate
� 
 � � � as the solution

�
of � � � � � � � � � � � � ��� . For the new step

length
�
� and the desired number of corrector iterations

�� , from the definition of
�

, we have���� � �� � U � �� � ���� � �� �e� , so by imposing
��

the solution of
� �� � �� � � � � � � 
 � � �e� , we find an estimation

of
� 
 � �� � . � 
 � � � represents the observed distance to the curve from the corrector value, meanwhile� 
 � �� � corresponds to the desired distance to the curve. From here we set the new value of

��� ��� as��� ��� � 
 � �� � � � 
 � � � .
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For the particular case when the corrector process yields linear convergence, the error model
is given by

� 
 � � � � � U 
 � 
 � � � for

 + � � 
 � � . Now the equation for

� 
 � � � is written as � �
 � � � � 
 � � � � � 
 � � � which implies

 � � � � � � � . On the other hand for

� 
 � �� � we have

 �� � 
 � �� � �
 � � 
 � � � . Therefore it turns out � 
 � �� �� 
 � � � � ��� ����� � � 


as the factor to be multiplied by
��� ��� to obtain the tolerance for the new corrector step.

Computation of the Jacobian matrix. Due to usual difficulties in the obtaining of the analytical
Jacobian matrix

� � � � � in (2.39), we resort to its approximation by means of finite differences.
In this way for each column of

� � � � � we select � +f- and estimate

� � � � � � � � � � 9 � � � � � � � � �� 
 �
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where
� � is the vector of the canonical basis with

�
in the


 � �
position, for


 � � 
_*
*_* 
 �g9 �
.

This is a quite economical formula in what we only have to evaluate � 9 �
additional times

� to approximate the whole Jacobian
� � � � � . The proper choice of � is the main concern in

finite difference approximations of derivatives. If � is too large, then (2.41) can furnish a bad
approximation. Conversely, for small � cancellations in the numerator of (2.41) can be produced
because � � � 9 � � � � � � � � � . A general compromise, that seems to work the best, is choosing �
such that � � � 9 � � � � and � � � � have the first

� � �
digits in common, if

�
represents the relative

precision with which � is evaluated.
An effective value of � is obtained by minimizing the sum of roundoff error

�
� and truncation

error
�
� in (2.41). If �	� represents the relative precision with which � is evaluated then (2.41)

leads to a roundoff error
�
�
� �	� � � � � � � � � and to a truncation error (from Taylor’s formula)�

�
� ��� � F� � � � � � . The minimum of

�
� 9 � � is attained at � ��
 � � � � for � F� � � ��� � � � F� ��� . A

usual approach is assuming that � � � � .
If we approximate

� � � � � � by means of the central difference formula

� � � � � � � � � � � � � � � 9 � � � � � � � � � � � � �� � 
 �
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then, as before,
�
�
� �
� � � � � � � � � and

�
�
� ��� F ���� � � � � � . The optimal value is � � �

� � � � � � � �for � �� � � ��� � � ���� ��� . We usually take � � � � . The use of (2.42) implies
� � � 9 � � evaluations

of � to estimate
� � , even though in this case

�
� is better than for (2.41).

If we need even more precision, we can extrapolate (2.42) as in (2.29), whose successive
application provides the recurrence

��� � 
 ��� � 
 � � � 
 ��� � � � ��� � � � � 9 �

 � F � � � � ��� � � � � � ��� � � � � � � � 


for
� � 
 � �

, � � � 
 � 
 � 

*
*_* and
� � � 
 � 

*
*_* 
	� . We keep generating ��� � � while � ��� � � �

��� � � � � � � � � � ��� � � � � � ��� � � � � � � � �B� � � 
 F � � is decreasing or small enough.
It is also worth to mention that the necessary evaluations of � in (2.41) and (2.42) are obtained

using a Beowulf cluster (a set of computers working in parallel), since for each column

 �� 

*_*
* 
 �39 �

the evaluation of � � � 9 � � � � is independent of each other.
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Broyden’s “good” update formula. In the corrector steps (2.39), even the numerical evaluation
of
� � previously described could be very expensive and, for this reason, we complement it

with another approach much faster, when the cost per evaluation of � is high. We consider first
a function

� � - � � - � and then we extend the ideas for � � - � � � � - � . By means of
Taylor’s formula neglecting terms of order two and higher we have 	  (  � �  for 	  � � � � �  � ,
(  � �  � � � �  and

�  � � � �  � � � � � � �  � . In the same way, up to order one 	  � � (  � �  
for 	  � � � � � � �  � � � . This idea suggest that if 	  � � � � �  � satisfies 	  (  � �  , then we
require that 	  � � � � � � �  � � � solves the problem

� > #� # ��	 � 	  ��� � 	 (  � �  ' 
 ��	 � F� � ��

 � � ! �

	 F
 � *
By a straightforward calculation using orthogonal projections, the solution of the minimization
problem is given by

	  � � � 	  9 �  � 	  (  
� (  � F ( �  
 �
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which is referred to as Broyden’s “good” update formula or Broyden’s rank one update. It is easy
to proof (see Stoer & Bulirsch (1983) p. 267) that

��	  � � � � � � �  � � F U ��	  � � � � �  � � F 
 ��	 � F � ��� `� ( � � ! � � 	 � � F 

where � X � F stands for the Euclidean norm. In spite of the superlinear convergence of Broyden’s
method proclaimed in the next theorem (for a proof see Allgower & Georg (1990) p. 64), it need
not necessary hold that � 	  � � � � �  � � � �

as @ � � .

Theorem 2.6. Let
� � - � � - � be a smooth map and

�� + - � be a regular zero point of
�

.
Suppose �  � � � �  � 	

� � � � �  � is the Newton-type method where 	  is updated according to
Broyden’s formula (2.43). If � 
 is sufficiently near

�� , and if 	 
 is sufficiently near
� � � � 
 � , then

the sequence
# �  ' converges superlinearly to

�� i.e.

� > � �
�

� �  � � � �� �
� �  � �� �

��� *
The above ideas can be applied to traversing of the curve �

� � � � � . As before we consider two
approximate zero points �  , �  � � and put (  � �  � � � �  , �  � � � �  � � � � � � �  � . If 	  satisfies
the secant equation 	  (  � �  , we update 	  � � by means of (2.43). The following properties are
demonstrated in Allgower & Georg (1990) p. 70.

Theorem 2.7. Suppose
	  + - � ,

�  + - � � � and 	  + � � � # � + � ��� � � � � � � �!� #	� � � � �� ' . Define 	  � � � 	  9 	  � �  , �  � � 9 � �  	 � 	  , �  � � � 	  � and assume
�  \� � . Then:

1)
�!� # � 	  � � � � .

2) �  � � � �  � �  � � �  �  	 � 	  � �  � for some �  +f- with � �  � + � � 
 ��1 .
3) 	 � � � � � � � �  � � � �  � � � � � � 	 � 	  � �  � �  � 	 � .
4) �G"�� �	  � � � �  �G"�� �	  � �  , where

�	 means matrix 	 completed with � � 	 � � in the last row.
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In order to apply (2.43), following the notation of the theorem, we put
	  � � �  � 	  (  � � � (  �

and
�  � (  � � (  � . We have to distinguish between predictor and corrector steps. For the first

case �  � � � � � � �
� � � for

� � � � as defined in (2.40) and

 
 � + � with

� U 

. For the corrector

step as in (2.39) we have �  � � � �  � 	 � � � �  � , which yields
	  � � � �  � � � � � 	 � � � �  � � ,�  � � 	 � � � �  � � ��	 � � � �  � � and 	  � � � 	  � � � �  � � � � 	 � � � �  �b� � � ��	 � � � �  � � F . Like-

wise from
� �  �  � � it results �  � � � dE�  . Furthermore ��	 � 	  � � � 	 � � � �  � � � � � � 	 � � � �  � �

gives a reasonable measure for the contraction rate of the corrector step. It can be large because
either the predictor point was too far from �

� � � � � or
� � � �  � was poorly approximated by 	  .

From here we have an estimation of the quality of the approximation of the Jacobian which should
be monitored at each update.

Detection of simple bifurcation points. We are going to describe how to detect simple bifurcation
points along the curve � � ( � + � � � � � � . At these points

�!� #	� � � � � � � .

Definition 2.8. Let � � - � � � � - � be sufficiently smooth. Suppose that � � ( � + - � � � is
a smooth curve for ( + 
 the parameter arclength, and 
 � �

some open interval, such that
� � � � ( �e� � � for (S+ 
 . The point � � � � is called a bifurcation point of � � �

if there exists
� 
 �

such that every neighborhood of � � � � contains zero-points of � which are not on � � � � 
 � � .
Definition 2.9. Let � � - � � � � - � be sufficiently smooth. A point

�� +f- � � � is called a simple
bifurcation point of � � �

if the following conditions hold: a) � � �� � � � , b) � > � � " � � � � �� � ��
, and c)

� � � � F � �� � � ��� ����� � � �� � � � has one positive and one negative eigenvalue, where
�

spans
� " � � � � �� � .

The proof of the following theorems can be found in Allgower & Georg (1990) p. 79.

Theorem 2.10. Let
�� + - � � � be a simple bifurcation point of � � �

. Then there exists two
smooth curves � � � ( � , � F � ( � +=- � � � parameterized with respect to arclength ( , defined for ( +� � � 
 � � and

�
sufficiently small, such that the following holds: a) � � � 
 � ( �e� � �

, � � � 
 � , ( +� � � 
 � � , b) � 
 � � � � �� , � � � 
 � , c)
�� � � � � and

�� F � � � are linearly independent, and d)
�� is not in

the closure of �
� � � � � �B� � � # � " � � � ��� �!� # � " � � F �b� .

Theorem 2.11. Let
�� +D- � � � be a simple bifurcation point of � � �

. Then the determinant of
the augmented Jacobian

�G"�� C � � � � 
 � ( �e��� 
 � ( � � I 

changes sign at ( � � for � � � 
 � .
This theorem furnishes a criteria to detect simple bifurcation points of �

� � � � � . The determinant
of the augmented Jacobian is easily obtained from decomposition (2.38).

Searching of special points along the curve. Let us consider a smooth function � � - � � � � -
defined on points � +D- � � � such that � � � � � �

for � � - � � � � - � a given smooth mapping.
We suppose that the curve �

� � � � � is parameterized with the arclength ( . First we want to find
� + � � � � � � such that � � � � � � . To that end we define 	

� ( � � � � � � ( �e� and search for solutions of
	
� ( � � �

. Given � � ( � � 
 � � ( F � + � � � � � � , we put 	 
 � 	
� ( 
 � for � � � 
 � and applying the secant

method, for the previous steplength � � ( F � ( � , we impose

	 F 9 	 F � 	 ��
� ( � ( F � ��� ��% � ����
 � ( � ( F � 	 F

	 � � 	 F � 
 �
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where � ����
 is the new steplength to obtain � � ( F 9 � ����
 � as the approximated solution of 	
� ( � � � .

As a second problem we want to find a local minimum of � � ( � � � � � � ( �e� and thus we look for
solutions of � � � ( � � � � � � � ( �b� � � � ( � � � . In particular we are interested in the case when � � � � � � �
where � � � � � 

*_*
* 
 � � � � � and � + # � 

*_*
* 
 � 9 � '

. Defining 	
� ( � � � �� � ( � , it corresponds to the

�
� �

coordinate of the tangent vector at � � ( � . We approximate the solution of 	
� ( � � � by applying

again the secant method (2.44).

2.9 Minimization without derivatives
Following we describe the approach employed to obtain the minimum

���
for which exists a

rotating wave and likewise, given an approximate fixed point of a Poincaré map as defined in � 4.1,
how to obtain the best value of < that makes it a modulated wave. The procedure is based on first
bracketing the minimum and then a golden section search method combined with inverse parabolic
interpolation (for more details see Press, Teukolsky, Vetterling & Flannery 1992, chapter 10).

We consider a function � � - � - and we want to find a triplet
� 	 
 � 
 < � such that � � � � � � � 	 �

and � � � � � � � < � : this is called the bracketing of a minimum. If � � � � � � � 	 � we proceed in the
direction

� � 	 taking larger steps meanwhile � is decreasing. Given < such that � � < � � � � � � �
� � 	 � we extrapolate the minimum by the interpolating polynomial of � at the points

	
,
�

and < .
We combine a constant increase in the descendent direction with parabolic extrapolation, until a
minimum is bracketed.

If the triplet
� 	 
 � 
 < � with

	 � � � < bracket the minimum
�

of � , the best choice for a better
approximation of

�
is selected taking � � < � � � � 	 � as is checked by a simple equation. If we

always follows this policy, we find that the constant ratio � at which � must be placed satisfies the
quadratic equation � F � � � 9 � � � , whose solution � � � * � � � � � is closely related to the so called
golden mean. If the starting triplet

� 	 
 � 
 < � has not the golden ratio, the procedure of choosing
successive points at the golden mean point will quickly converge to the golden ratio. The reduction
rate of the uncertainty interval is

� * � � � � � at each iteration. We accelerate the convergence by
taking advantage of parabolic extrapolations as in Brent’s method described in Press et al. (1992).
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