
5
Conclusions

5.1 Main achieved results
The present work is devoted to the study of some bifurcations of plane Poiseuille flow. The main
part is carried out by the full numerical integrator of the Navier–Stokes equations formulated in
terms of velocity and pressure. It is described in sections 2.1–2.6. We have implemented two
slightly different versions for the cases when the average flux or the mean pressure gradient
through the channel are held constant. We have adopted a spectral discretization for spatial deriva-
tives by means of Fourier series and Chebyshev polynomials for the stream and cross-stream
variables respectively. A typical scheme in finite differences has been employed for the temporal
discretization, whose precision has been checked using extrapolation methods for different initial
conditions, Reynolds numbers, and discretizations: they proved the predicted theoretical order

�
of

the method. Likewise, the reduction to one third of the original dimension as detailed in � 2.4, has
greatly increased the computation speed of the numerical integrator. We have applied dynamical
system techniques, such as Poincaré sections and continuation methods, to the numerical integrator
in order to obtain different flow configurations: time-periodic flows, tori of

�
and � frequencies,

and more disordered solutions.
In chapter 3 we have solved an algebraic problem corresponding to the stationary version of

the numerical integrator previously mentioned. According to the theoretical results of appendix A,
these stationary flows in the appropriate Galilean reference are rotating waves. Using ��� as a
continuation parameter, by means of the results in � 2.8, we traverse the curve of rotating waves
for several values of the wavenumber � . The minimum values found for ��� are in good agreement
with those reported by Herbert (1976). No secondary two-dimensional flow were obtained for
�����
	 ����
�� and ������	 ��
 � � . The stability of the rotating waves to disturbances with the same
� has been carried out using the analytical linearization of the system of equations around the
stationary solution. From the stability analysis we have detected several Hopf bifurcations on the
upper branch of secondary flows. Numerical values for the first three Hopf bifurcations are reported
in � 3.4 for ��������� and ������� for � � �"! �#�$� !&% as the spatial discretization. As Herbert (1976)
pointed out, we also found slow convergence of the Fourier series for secondary flows, as � is
increased. This is one of the reasons for the disagreement between Soibelman & Meiron’s (1991)
results and ours, together with the different formulation of the equations employed. Convergence
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on the location of the Hopf bifurcations is better for the lower values of ��� . In spite of this we
have achieved similar qualitative results about the Hopf bifurcations as Soibelman & Meiron’s
(1991), in what concerns to their number and location on the upper branch of secondary flows.

We have computed the curve of periodic flows for ��� � � � � � ! ��� � ��� , ���#��� � ��
 ��� ! � � ������� and� � � � as the spatial resolution. As a remarkable fact for ��� � , is that the first Hopf bifurcation
appears on the upper branch, meanwhile there is no stability change at the minimum ��� � of the
curve. Up to ������� � � ����� for � � ����� we have only found two Hopf bifurcations. On the other
hand for ��� � , at the minimum point of the curve there is a stability change, which corresponds
to a simple real eigenvalue crossing the imaginary axis and hence there is no bifurcating branch
at this point. Further on the upper branch, for ������� � ������� , we have observed about

�
Hopf

bifurcations in which a complex eigenvalue crosses the imaginary axis from negative real part to
positive on increasing ����� . Unfortunately we have not achieved convergence in their values for
�
	 % . In the case of ��� � analogous bifurcations seem to occur for larger values of ���$� . But this
analysis needs more number of nodes and it has not been carried out in the present work, since we
are mainly interested in moderate values of ��� .

Taking � � ��� � , � � ��� � � � ��� , % � ��� as the spatial resolution, and 
�� � � � � � , we have
analysed the unstable manifold of secondary flows with just one unstable real eigenvalue or two
unstable complex conjugate eigenvalues. To this end, we first approach the unstable manifold
by perturbing the rotating wave in the direction of the linear subspace associated to the unstable
eigenvalue/s and then we follow the time evolution of the perturbed flow until it reaches a new
attracting state. In the lower branch we have found secondary flows whose unstable manifold drives
the fluid to the laminar flow, or to the periodic flow on the upper branch, or to a quasi-periodic
flow, or even to more disordered configurations. We have detailed the different situations obtained
in � 3.5. On the contrary, the unstable manifold on the upper branch after the Hopf bifurcation is
always connected with a

�
-torus of the bifurcating family considered in chapter 4. This kind of

instability is analogous to the situation mentioned by Chen & Joseph (1973), when disturbances
of a stable laminar flow escape its domain of attraction, eventually snap through the unstable
periodic solution and then are attracted by other flow with larger amplitude. The case of ��� � for
������� � � � ��� is qualitatively similar to ��� � for � � ��� � as is shown in tables 3.15 and 3.16.

For the first two Hopf bifurcations of time-periodic flows, we have studied in chapter 4 the
bifurcating branch of quasi-periodic flows in the case of ��� � and the first Hopf bifurcation for
����� . Quasi-periodic solutions are obtained as time-periodic flows in a suitable Galilean reference
and this is numerically implemented as the search of fixed points of a Poincaré map. Again, by
means of numerical continuation, we traverse the curve of quasi-periodic orbits as ��� varies.
The first Hopf bifurcation for constant pressure at ���#��� presents severe numerical restrictions
originated by the instability of the quasi-periodic flows and by the large values of the return time� to the considered Poincaré section. The best situation has minimum � � ������� for � � ��� � % ,
meanwhile for � ����� � it is � ���$������� . Because the restrictions of long time integration, we have
only been able to trace locally the curve of quasi-periodic solutions from ���$��� . The further we
advanced in ��� � , the larger values of � we encountered. Close to ���$��� and with the discretization
employed ( � � % !�� � ��� ! 
�� ��� � � � ), it seems that we have achieved both qualitative
and quantitative convergence. By observing figure 4.2 we can conjecture that, for the range of
��� � � ! ������� considered, the minimum ����� ��
 ��� attained with travelling waves is not lowered
by quasi-periodic flows. This question still remains open for two-dimensional flows although
Ehrenstein & Koch (1991) solved the gap between experiments and numerical results in the case



5.2 Limitations of the search method of quasi-periodic flows. Future work 101

of three-dimensional flows.
Comparing Soibelman & Meiron’s (1991) computations and ours, we find the main quantita-

tive differences due to the larger number of Fourier modes we have taken, together with the distinct
formulations of the Navier–Stokes equations employed. The important qualitative difference is
the kind of bifurcation found at ��� ��� : in their results (see � 1.3 for a summary) this bifurcation is
subcritical, but improving the precision of the numerical approach we obtain that it is supercritical.
Then, the bifurcating quasi-periodic orbits that we have obtained are unstable. This has also been
confirmed by numerical simulations.

For ��� ��� ��� ��� the quasi-periodic flows encountered are attracting and the return time �
is of the order of tens, so in this case the computational cost is drastically reduced compared
with the bifurcation at ��� ��� . The range of ��� � traversed in the curve of attracting flows moves
now to several thousands. However, in spite of keeping qualitative convergence, the use of larger
Reynolds numbers, makes necessary an increase in spatial precision to get furthermore quantita-
tive convergence. In the interval of ���#� analysed we have not detected any change of stability:
bifurcated solutions at ��� ��� are always unstable, meanwhile on the bifurcation at ��� ��� they are
stable to disturbances of the same wavelength.

When the flux is kept constant we have also analysed the first Hopf bifurcation at ��� � � to
quasi-periodic flows mainly for � ����� � . We have found the bifurcating branch of two-dimensional
tori at the Hopf bifurcation. The located

�
-tori are attracting up to ������� � 
 � � , considering only

disturbances with the same wavenumber � ����� � . At this point the family of tori has a Hopf
bifurcation changing to unstable solutions and giving rise to a family of attracting tori with �
frequencies. As was mentioned in � 1.3, Jiménez (1987) also obtained these families of attracting
solutions for � � ��� � , but not the unstable ones. We have not found unstable quasi-periodic
solutions which bifurcate from ��� ��� , but bearing in mind that the Hopf bifurcations of periodic
flows occur for ����� further away than for ����� and apparently in the same quantity, we can
conjecture the instability of

�
-tori at larger values of ���$� .

We have also analysed the unstable manifold of
�
-tori for ����� and � ����� � . For ������� 
 �����

this manifold is connected with � -torus, but for greater ����� we have obtained other kind of
apparently strange sets. The backward continuation of this strange sets have shown the exitence of
two different attracting flows for ����� � � % ��� : namely a

�
-torus and an ordered but complicated

solution.
Comparing the different configurations found for ���#� and ����� we can say that the kind of

configurations for both settings are the same, namely, periodic flows,
�

and � -tori and strange sets.
The main qualitative differences are due to the existence of a first Hopf bifurcation for ��� � not
present for ����� . For the range of ��� considered, the kind of solutions detected for ����� also exists
for a larger value of ��� � .

5.2 Limitations of the search method of quasi-periodic
flows. Future work

The implemented approach to search quasi-periodic solutions is based on the numerical integrator
of the Navier-Stokes equations developed in chapter 2. For this reason, at ��� ��� we encounter great
difficulties in the search of these flows. We have had to stop the search after a short interval of
����� , because of the bad conditioning of the Jacobian matrix of the Poincaré map. At this limit



102 5 Conclusions

value of ��� � , very small variations of simply one coordinate of the initial flow, produces an image
point of the Poincaré map very distant of the unperturbed flow. This implies a poorly estimated
Jacobian matrix and hence divergence of Newton iterations. In addition, the instability of these
solutions obstructs even more their search. A possibility to overcome this problem can be the
application of a parallel shooting technique: The main idea consists of the split of the Poincaré
map in several intermediate maps, say � , so the number of degrees of freedom is multiplied by

�
� � , but the instability of the flow is reduced with shorter integration times. For the remaining

Hopf bifurcations � is substantially lower, what makes that, for the range of ��� considered, this
problem is not detected. We believe that this methodology can also be applied to similar problems.

As future work, it would be of interest the extension of the quasi-periodic flows found at ���$���
to a wide range of ��� � and their bifurcations, and analogously for the other considered bifurcations
of ����� and ����� to

�
-tori and � -tori; whether they bifurcate into other class of more complicated

solutions: a new vortical state which could approach more the transition to turbulence. It is also
of interest to consider disturbances of different wavelength, in order to confirm the stability of
attracting solutions for a fixed wavelength. Finally, a challenging study is the transition problem
in three dimensions and the stability of two-dimensional flows to three-dimensional disturbances,
which has been considered in Orszag & Patera (1983b).
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Appendix

Spatio-temporal symmetries
This appendix justify the important reduction that allows periodic flows to be considered as station-
ary solutions if the observer moves in the stream direction at an adequate speed and, analogously,
quasi-periodic flows behave as periodic for an appropriate speed of the observer. Those reductions
are connected respectively with the approach adopted in the calculations of chapters 3 and 4. The
results presented here are a modified and detailed version of some results of Rand (1982).

A.1 Generalities
Let � be a Hilbert space whose inner product ��� ! ��� generates a norm ����� which has 	�
 dependence
upon � �
����� ��� .

Definition A.1. A smooth semiflow � on � is a one-parameter family of maps ��� , for ��� � ,
whose domains are open subsets of � and which possess the following properties:
a) The mapping � � ! ����� ����� ��� is defined on an open subset of

� � !"! � �#� which contains
� ��� �$� and is jointly continuous in � and � .

b) For all � �
� , �&%'� ��� �(� . For all � in the domain of �*),+ � , �*),+ � � ��� �-�.)/�0� � � ���1� .
c) If 2 is a bounded subset of � and �&���3�4� lies in 2 for all � for which �&�5� ��� is defined, then

�6���3�4� is defined for all �7�
� .
d) For all �7� � the mapping � � is of class 	 
 .

The proof of the next theorem can be found in Marsden & McCracken (1976) p. 289.

Theorem A.2. The Navier–Stokes equations8:9
8 �

� � 9 �<;#� 9 �=�?>A@ � �
���

B 9 !
on a compact Riemannian manifold

�
in dimension C � � or � , define a smooth semiflow on

� �ED 9GF � �:�IHKJ�L 9 �NM �PO � !1Q�RTS 9 � � ! 9 � � on
8 �VU !

where M �PO � is the Sobolev space of functions on
�

whose derivatives up to order
�

are in W � .
For the Poiseuille problem (1.5)–(1.6), we consider

� � � � ! W � � � � � ! ��� identifying points
� � !,X � , �YW !ZX � � � in order to obtain periodic boundary conditions.
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Definition A.3. Let � denote the circle group H�� W�� . A representation of � on � is a homomor-
phism � of � into the group of continuous linear isomorphisms of � .

Thus if � ��� we denote ��� �����	��� as the continuous linear isomorphism on � defined by
� . By definition, � must satisfy � % � ��
 and ��� +
� � ����� � � . We will also define for � �N�
its � -orbit and � –orbit respectively as ��� �3�4� � �����'� ��� F �����.� and ���6� ��� � �/� � �3�4� F �7� ��� .

Definition A.4. A representation � of � on � is said to be continuous if for each � ��� , the
map ���� � � �3�4� is continuous.

For the case of Poiseuille problem, we define ����� 9 ��� !ZX ! �Z�1� � 9 ��� ��� !,X ! �1� as the repre-
sentation of � on � . ��� corresponds to a translation of � in the observer’s position in the stream
direction. This is easily verified to be a continuous representation. Furthermore, since

9 ���7��� !,X ! �1�
is a solution, provided this is so for

9 ��� !ZX ! �Z� , then

���<� � � 9 ��� !ZX ! �'�1� � 9 ��� ��� !,X ! �1� �-� � � 9 ��� ��� !,X ! �'�Z� �-� � ���'� 9 ��� !ZX ! �'�1���
Hence the semiflow � � commutes with � for all � ��� ,

9 � � and � such that � � � 9 � is defined.
We will also use this hypothesis in the results of this appendix.

For � � � let

� �3�4� � ������� F ����� �4� �(� � ! + �3�4� � � � � ! �'� � � � ! ! � �!� F ����� �4� � � � �3�4�"� �
� � ����"#� represents the spatial symmetries of � , meanwhile

 + �3�4� defines the spatio-temporal
symmetries of � . We can consider � �3�4�$"  + � �4� by identifying � �%� with � � ! �'� �  + �3�4� . We
need the following lemmas.

Lemma A.5. If 	&"�H is an additive subgroup of H then 	 � � � for some � � � or 	 is dense
in H .

Proof: See for instance Sotomayor (1979) p. 218.

Lemma A.6. If � � ���('�)� then � � ��� � � W���* �+� for some * �!� .

Proof: It is immediate that � �3�4� is a subgroup of � . We check that � � ��� is also closed. Let �-, �.�
as � � !

, such that � , ��� � �4� . Then, because � is continuous,

� � ���0/:� �4� �5�4�4�4�Z�,21 
 ����� �4� � � !

and thus � �3�4� is closed. Now applying lemma A.5 we obtain the result.
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A.2 Rotating waves
Lemma A.7. If

 + � ���('�)� � ��� then � � � � � �3�4� is defined for all �7� � and has a unique extension
to a solution defined for all � � H .

Proof: Since
 + �3�4��'� � �3�4� , there exists � � � and � �%� such that � � �=� � � �4� � ���'� ��� . For� � H we put � � � � ���

, for ����� and � 	 � 	 � , and thus we define � ) � ��, � �
� � �4� . If for

some � � H there exists � � �-� � �3�4� , then writing � � � � ���
, for � � � and ��	 � 	 � , we have

� � � � , � �
� � �4� � � � � , � �3�4� �-� , � + � � ��� �-� � �3�4� �(� � �

Now considering the map � � ! W � � � � ! � � � � �
� � ! �1� � � � �	�6�0� � � ���1� !

we have from hypothesis a) of definition A.1 and definition A.4 that it is continuous and therefore
2 �=� �	�6�0�6��� ���1� F � � ! �1� � � � ! W � � � � ! � �Y� is bounded. As � ) �N2 for every � , from hypothesis
c) of definition A.1, we conclude that � � �
� � is defined for all � � � . Finally, if � � satisfies the
evolution equation

Q � � Q � � � �3�4� for � ��� , then by means of the definition of derivative it is
easy to verify that Q �Q � � �1� �
� R��� 1 %

� � + � ��� �� � � ��� � �
!

also for ��	 � . By uniqueness of solutions we conclude that � � is the unique extension of � �
defined for all � � H .

If
 + � ���('�)� � ��� and � � is the uniquely defined solution extending � � � �����3�4� to � � H , then + �3�4� generates the subgroup

 � ��� � � � � ! �'� � H ��� F � � � ������� % � � . If
 +K� ��� �#� � ��� then + �3�4� is a subgroup of H � � which we also denote by

 � �4� . In both cases the subgroup
 �3�4� of

H � � is called the spatio-temporal symmetry group of � .

Lemma A.8. If � ��� � ����� � �4� then
 �3� ��� � �

 � ��� .
Proof: Let us first suppose that there exists � '� � such that � � ! �'� �  � ��� , and consequently let
� � be the uniquely defined solution extending � � , for which � ) � � � � ��� . Defining �� � ��� � + � �
for � � H , it turns out that �� � is the unique extension of the solution ����� � � ��� . Because now ��� is a
flow, we can then write

� � ! ��� �  �3�4� ��� � ) � ���'�3�4� ��� � � � ��� ) � � � � � � ���'�3�4�Z�
��� �� ) ��� ),+ ��� � ���'�0� ��� �3�4�1� � ���'�3� ��� � ��� � � ! �'� �  � � ��� � �

Thus, we have shown that if
 + �3�4�('� � �3�4� then

 � � � � � �
 �3�4� . If

 + � ��� � � � �4� , by uniqueness
of solutions we have

����� � � ��� � ��� �����3� ��� � �(� ��� ��� � ��� ����� ��� �-� ��� �3�4�
��� � � �3�4� � � ��� ����� � �4� !

and again it is shown that
 �3� ��� � �

 �3�4� .
We introduce the lifts

�
� �3�4� � ��� � H F ���'� ��� � � � of � � ��� and

� � ��� � ��� � ! ����� H � F
����� ��� �-� � � �4� � of

 � ��� , where ��� stands for � � mod  , convention we adopt henceforth.
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Lemma A.9. a) If � � �3�4� �)� � �3�4� and
�
� �3�4� � �YW � * �+� , then for some ��� H ,

� � �4� � ��� � ! �'� F
� � � � mod W � *N� . b) If ��� �3�4��'�#���6�3�4� ,  + �3�4��'� � � �4� and

�
� �3�4� � �YW � � � � , then there exists� � � and ��� H such that

� � ��� � � � � � ! ��� � W @ � � � F
�
! @ � � � .

Proof: a) Since
�
� � ��� � � W���* �+� , then ��� �3�4� � � ����� �4� F ��� � � ! W � * �"� and the map

� F � � ! W � * �7� �.� � �3�4�
� � � � ����� ��� !

is bijective and continuous by the hypothesis of definition A.4. Treating
� � ! W � * � as a circle,

we consider it as a compact set and thus ��� � ��� is also compact, so we conclude that ��� � is
continuous. This fact allows us to define for each � where there exists � � �3�4� � �����3�4� � ��� � ��� , a
continuous function �4� �1� � ��� � �0�6��� ���1� � � � ! W � * � such that �����3�4� � � ��� � � �3�4� . Hence �4� �'� � �
and

� ��� ),+ � � � ��� �-� )Z+ � �3�4� � � ) �Y� � �3�4�Z� � � ) � � ��� � � � ���1� � � ��� ) � � � ��� � � � �4�Z� � � ��� ) �3+ ��� � � �3�4���
Bearing in mind that � is a bijection we obtain ��� � � �1� �)��� � � � ��� �1� . From the linearity of ��� �1�
we may express �4� �1� � � � for � � �4� � � and a) is proved.

b) From the hypothesis ��� � ���('� ���6� ��� and
 + � ��� '�)� �3�4� , there exists � � ! � � such that � � �3�4� �

�	� �3�4� and �6��� ��� ��)��� �3�4� for � 	 � 	 � , i.e. we select � � � as the minimum � for which
�6��� ��� � �	� �3�4� for some ��� H . We consider now � � ! �'� � � � �4� , so that ���5� �4� � ���'�3�4� . Taking

��� � such that � 	 � �
� � 	 � , then � � + , � � ��� � � � + ,
� � �4� , so it must be � �

� � � � and
� �

��� ��� mod W�� � , or in other words � � � �?� ��� � , ��� � �?� ����� � W � � @ for @ ��� . This
proves b).

Definition A.10. A solution � � � � � � �4� is called a rotating wave if
� �3�4��� � � � ! �'� F � �


 � mod W � *N� for some 
 � H and * ��� .

Lemma A.11. If � � � �6��� �4� is a rotating wave with period � and
�
� � �4� � �YW � * � � , then � � ���� � � �4� for 
 ��� W�� � * .

Proof: From definition A.10 ���'�3�4� � �6��� ��� for ��� 
 � mod W � * , 
 � H and * ��� . This
implies ���5� �4� � � � � � �4� , provided

�
� � ��� � � W���* �+� . On the other hand by the periodicity of � ,

�����K� ��� � � � � ��� �=� and ��� � � �4� �E� � � ��� '� � if � 	 � 	�� . As a consequence 
 ����� W���*
and the result follows.

Theorem A.12. If for � � � , � � �4� '� � and � � � �����3�4� is an isolated periodic solution of �&� ,
then � � is a rotating wave.

Proof: If � � � �����3�4� is a periodic orbit of period, say � , then for all ����� one has � � � ���'� ���1� �
�����0� � �3�4�1� � �����3�4� and therefore ����� ���'�3�4�Z� is also a periodic orbit. Since, as a function of � ,
� � � ��� is continuous and � � is suppose to be an isolated periodic orbit, then � � �3�4� �&� � � ��� and
applying a) of lemma A.9 the theorem is proved.
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A.3 Modulated waves

Definition A.13. A solution � � �-� � � ��� is a modulated wave if
�
� � �4� � � W�� � � � for some � � �

and there exists � � � and � � H such that
� � �4� � � � � � ! ��� � W @ � � � F

�
! @ ���*� . The vector

� � ! � ! � � is called the modulation data.

Theorem A.14. If � lies on an isolated invariant
�
-torus

�
, � �3�4�!'� � and � � � ���5� ��� is not

asymptotic to a rotating wave, then � � is a modulated wave.

Proof: Since
�

is an invariant 2-torus and ��� is an automorphism for � � � , ��� � is also an
invariant 2-torus. The supposition of

�
being isolated implies � � � � � for � � � . Let

� �-� �
� �(� � �4� F � � � � denote all � -orbits in

�
, endowed with the quotient topology. As � � ��� '� � ,

it turns out that � � � ��� is a circle. In this way we have
� � � split in one frequency sets � � � ��� .

Consequently
� � � is also a circle, because

�
is a 2-torus. The semiflow �*� on

�
is defined for all

�7� � provided that
�

is bounded and invariant. Restricted to
�

, � � induces a semiflow � � on
� � �

given by �A�5� �(� ��� �1� � �(� �Y������� �1� , as can be checked easily.
Let � be the set of fixed points of � � . If ��� ��� � ��� , then ��� �0�6����� �Z� � �(� ��� � for all �7�
� ,

what implies ��� ��� � � ���6��� � and by a) of lemma A.9 �&����� � is a rotating wave. In addition,
if � '��� then � � � � � ��� �1��� � as � � !

for all � in
�

, i.e. � is asymptotic to a rotating
wave. Therefore from the hypothesis � ��� and since

� �-� is a circle and � � a semiflow, there
exists � � � such that � � � �(� ��� �1� � �(� ��� � for some � � � : �(� ��� � is a periodic solution
for �A� on

� � � . This means for instance that � � ��� � � ������� � for some � � � , or equivalently + ��� ��'� � ��� � . From lemma A.7 we know that � � ��� � has a unique extension � � defined for all
� � H . Thus � � is actually a flow, putting ��� ��� �(� ��� ) �1� � �(� ��� ) � � � . Moreover, every � -orbit
on
�

contains � � for some � , seeing that � � �	� � ��� �1� traverses the whole circle
� � � . Hence if

� � � , there exists � such that � � ���(� � �4� . This implies ������� � � �	�� �3�4� , for some ������ . On the
other hand

� � ��� � � � � ��� � � � � � + � ��� � �-� � � � � ��� �Z� � � � � �Y� � ��� �1� � � � �0� � ��� �Z�
� � � � � � �� � �4�Z� � � � � � �� � �4�Z� � � � � �3�4� � � � � ��� !

and from here
 + �3�4� '� � �3�4� , which together with ��� �3�4� '� �����3�4� prove the result using b) of

lemma A.9.

In the following we consider a modulated wave with modulation data � � ! � ! � � and associated
invariant torus

�
. We also take * a fixed multiple of � , which represent the number of wave peaks

the wave pattern has.

Definition A.15. A continuous function 
 F � � � � is a phase-function if 
�� �����3�4�1� ���
 ��� � 
�� ��� for all � � � and � � ��� � W .

If � � is a rotating wave with order of symmetry * , i.e.
�
� �3� � � � �YW � * �+� , and � � � � �

F �7� ��� ,
then any function 
 F � ��� � satisfies 
�� ��� ��
�� �  �� � �3�4�Z� , what justifies the inclusion of *
in definition A.15, together with the need that measurements in the modulated régime are to
correspond to those in any previous rotating wave régime.
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Definition A.16. Given a phase function 
 and a solution � � �-�6�5� �4� , � � � , let �A� �1� a continuous
function such that � � ��� � � and ����� � R ��� � �1�1� � 
�� � � � 
�� � % � � � . We define the phase velocity for

 as 
�� � � R�� � 1 
 � � �1�0� * � .
Lemma A.17. The phase velocity is related to the modulation data by 
�� � ��� � � W���* � � � for
some

� �!� . Furthermore 
�� is independent on � � � .

Proof: From the modulation data, � � � ����� � �*� � % � and then 
��3� � � � � 
 ��� � 
�� � % � . Hence
�A� � � � * � � � W for some

� � � . Analogously for � � �
�	�
� � R ��� � � � � �Z�1� � 
��3� , � + � � 
��3� % � � � � 
�� �(,
� �3� � �1� 
��3� % � � � � � 
 ����,
� 
�� � � � 
�� � % � � �

�
� 
�� � � � 
�� � % � � ���
, 
��3� � � 
�� � % � � � � ����� � R �K� ���A� � � � �A� �1�Z�1� !

which yields �A� � � � �1��� ���A� � � � �A� �Z� ��� � �1�ZW for
� � �1� � � . This relation for � � � gives

�A� � � �1� ���A� � � � �A� �1� ��� � �1�,W and due to the continuity of � � �1� and that
� � �'� � � , we get� � �Z� � � for all � . In the general case, by induction on � , it also results

� � �1� � � for all � . The
phase velocity is now readily obtained by


	� � � R��� 1 

� � �Z�
* � � � R��,21 
%�� ��� �

���A� � � � � � �Z�
* � � � � �1� �

� � � �
* � �

�
� �

� W
* � �

In the proof of theorem A.14 it is shown that if � ! � � � then � � ���<� ��5� ��� for some ��7� � and
some � � � . As in definition A.16 we introduce a continuous function ��A� �Z� such that �� � �'� � �
and �	��� � R � �� � �1�Z� � 
���� � � 
���� % � � � . The relation with �A� �Z� is given by

����� � R � �� � �1�Z� � 
���� � � 
���� % � � � � 
��0� � ���'�3� �� �1� 
�� ���'�3� �� �1� � � � 
�� � �� + � � 
��3���� � � �
� 
�� � �� + � � 
��3� % � � � � 
��3���� � 
�� � % � � � � �

� � �	�
� � R �K��� � �� � �1�&��� � ��1�1� � !

and so ��A� �1� ���A� �� � �1�.��� � ��Z� ��� � �1�ZW for
� � �Z� �!� . Since

� � �1� must be continuous and integer
and

� � ��� � � , then
� � �1� � � for all � . The phase velocity �
�� for �� is

�
	� � � R �� 1 

�� � �1�
* � � � R �� 1 


�A� �� � �1�&��� � ��Z�
* � � � R �� 1 


� � �� � �Z�
* � � 
	� �

Theorem A.18. For an observer in a frame of reference which translates in the stream direction
with constant velocity 
�� , the state of the system at time � � � is the state at time � translated by

�6W � * , for � �!� such that � � � mod *�� � and ��	 � 	 *�� � .
Proof: Let us choose � �!� such that

� � � mod *�� � ! ��	 � 	 *�� � ��� � � � *�� � �
�
! � �!� ! ��	 � 	 *�� �

��� � W���* � � W � � �
�6W���* ! � �!� ! ��	 �6W � * 	 W � � �

From the modulation data � � ! � ! � � , � � 9 � � W�� � � , and therefore � �  �� � � � ,  �� � . As in the
comments following definition A.4, we consider a translation of � in the stream direction � by
����� 9 ��� !ZX ! �1�1� � 9 � � � � !ZX ! �1� . We denote as

�� � ��� 
�� � , the position of � at time � viewed
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by the observer and
�9 � �� !ZX ! �1� the state of the system in the moving frame of reference. The

relationship between both systems of coordinates is given by
�9 � �� !ZX ! �Z� � 9 � �� � 
	� � !ZX ! �Z� �

� � ��� � �
9 ��� !ZX ! �Z�1� , and hence at time � , applying lemma A.17, we have

�9 � �� !ZX ! � � � � � ��� � �
9 ��� !ZX ! � �1� � � � � ��� � �

9 ��� !ZX ! ���1�
� � �  �� � � 9 � � !,X ! �'�Z� � � ,  �� � � 9 ��� !ZX ! ���1� !

and the proof is completed.
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B
Appendix

Interpolation
In this appendix we review some basic results on interpolation by means of periodic functions and
Chebyshev polynomials.

B.1 Discrete Fourier series
We consider in this section some properties of Fourier series which are relevant to the application
of Galerkin’s spectral method (see � 2.1 and � 2.3). One of the main convergence properties of
spectral methods are based upon the

Proposition B.1. Let us suppose �.���:� an infinitely differentiable function in
� � ! W � and W -periodic

for which

�.���:� � 
�
���
� 


�� � � 
 � ��� ! �� � � �W
�  
%
�.� � � � � 
 � ��� Q � ! ���

���
W �

Then
�� � � ��� � � � � for all * � � , i.e.

�� � decays faster than any negative power of
�

. If in
addition �.���:� is analytic, then

�� � � ��� �	�
� �,� 
 L � L � for some positive constant 
 .

Proof: Integrating by parts we have

W �� � �
�  
%
�.���:� � � 
 � ��� Q � � � �R � � ���.�YW � �&� �.� � + �1� � � �R � �

�  
%
�	�Y� � � � � 
 � ��� Q �

� � �R � �
�  
%
�	�Y���:� � � 
 � ��� Q � �

This proves that
�� � �.� � � � � � . Applying the same process * times to the last integral, we

conclude that
�� � � ��� � � � � for all * � � .

We suppose first that
� 	 � . If �.���:� is analytic in H then it is also analytic as a complex function

in the rectangle 
 � � � ! W � � � � !�� � , for
� � � . Let � � 8 
 be the positively oriented boundary of

111
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 and put � � � ��� � ��� ��� � ��� , such that � � � ��� ! � � � � ! W � � , ��� � � � � � R ! � � � � ! W �Y� ,
� � � �<W � X R ! X � � � !�� �Y� and � � � � X R ! X � � � !�� �Y� . If �.� � � W � X R � ���&��� � X R � for � !ZX � H ,
it turns out that �

�
	 �.��� � Q � � ��

%

�.� W � � R � R Q � � R ��

%

�&� � R � Q �
�=� R ��


%
�&�1� � � � � R � Q � �=�

�
��� �&��� � Q � �

By the theory of analytic functions we know that ����� � � if � is a path homotopic to a point
and � analytic on an open set � such that ��"�� . We can apply this result to our situation for
� � � , �&��� � � �.���'� � 
 � ��� and �&��� � W � X R � ���&��� � X R � , and we have

� �
�
� �.��� � � 
 � ��� Q � � � �

��� �
�
� 	 �

�
��� �

�
� � � �.��� � � 
 � ��� Q �

�
� �
� � �

�
� � � �.��� � � 
 � ��� Q � � �  

%
�.���:� � 
 � ��� Q � �

�
� � �.��� � � 
 � ��� Q � �

Therefore

L �� � L�� �W"!!!!!
�  
%
�.���:� � � 
 � ��� Q � !!!!!

� �W !!!!
�
� � �.���'� � � 
 � ��� Q � !!!!� �W !!!!

�
� � �.��� � � � 
 � ��� Q � !!!!

� �W#!!!!!
�  
%
�.��� � ��R � � � 
 � � � � + 
 
 � Q � !!!!!	 �W

�  
% !!!

�.��� � � R � � � 
 � � � � + 
 
 � !!!
Q � 	 �

W
�  
%
� � � 
 Q � �$� � � � 
 !

being � an upper bound of �.� � � � R � for ��� � � ! W � . If
� ��� the result follows the same lines

taking 
 � � � ! W � � � � ! � � for
� 	 � .

Now we state a result about polynomial interpolation by trigonometric functions, which is
used for instance in the evaluation of convolution sums (2.14).

Proposition B.2. Given
� � � � complex values � %

! �#�$� ! � �&% of certain function �����:� at the
abscissae �(' �*) W ��� � � � �<� , for ) � � ! �$�$� !&� � We construct

@����:� def�
%�

� �
� % �� � � 
 � ��� ! �� � def� �� � � �

�&%�' � %
��' � � 
 � ��� + � B � 1 �

Then the coefficients
�� � are the only ones such that @����:� interpolates ��� � � , i.e. @����,'<� � ��' for) � � ! �$�#� !&� � .

Proof: Let us verify that @���� ' � ��� ' if and only if
�� � are as defined in (B.1) and this will prove

existence and uniqueness of @�� � � . We define � ! �-' and � � � � by� � � 
 ��� ! � ' � � 
 ��� + ! ) � � ! �$�#� ! � � !� � � � � � � ! � �� ! �#�$� ! � ��&% � �/. �&% + � ! � � � ! �$�#� ! � � �
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From the standard scalar product in . �&% + � we have for
� !�� � � ! �$�#� !&� � and @ � � � �

, the
orthogonality relation

� � � � � ! � ��� � � � �&%�' � %
� �' � � �' � �&%�' � %

� 
 � ��� + � �&%�' � %
� � 
 � ����&% + ��� '

�	� � � � � ! if @ � * � � � � � � ! * � �
� ! otherwise.

� B � 2 �

If we put M � ��� %
! �$�#� ! � �&% � � then

��' � @���� '<� � %�
���
� % �� � � 
 � ��� + � �&%�

� � %
�� � � '� ! ) � � ! �#�$� ! � � !

is equivalent to
M � �� % � � % � � �P� � � �� �&% � � �&% � �

Therefore from (B.2)

�� � � �
�&%�' � %
��' � � 
 � ���-+ � �� � � �

�&%�' � %
��'�
 � �' � �� � � � �YM

! � � � � �
� �� � � � �

�� % � � % � � � �P� � �� �&% � � �&% � ! � � � � � � �� � �
The finite series in (B.1) define the inverse and direct discrete Fourier transforms of a set of

complex values
�� � % ! �#�$� ! �� % and � %

! �$�#� ! �� �&% respectively. To compute those transforms we
make use of fast Fourier transforms (FFT). We now show an application of FFT to compute cosine
transforms.

Proposition B.3. Supposing
�

even for simplicity and given real numbers � %
! �#�$� ! �
� , the

values
�� %
! �#�$� ! �� � of the cosine transform 	 � defined in (2.7), can be extracted by applying a

discrete Fourier transform to
X �

X � def� �� ��� � � � � � � �&��� R�� � *� ��� � � � � � � � ! * � � ! �#�$� ! � �
���
More precisely, if we put as in (B.1)

�X ' � � ' � R�� ' � �� � � ��
� � %

X � � � ��� 
 ' � � � ! ) � � ! �#�$� ! � � !
then we have the recurrence

�� � �
�
�

��
� � %

� �
�
 ����� �

� *� !

�
 � ' + � �� � ' + � � �
 � ' � � �� � ' � � � ��� ' !�� � ' � � � �
 � ' � ' ! ) � � ! �#�$� ! � � � � � !) � � ! �#�$� ! � � � !
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where �
 % � �
 � � � , �
 ' � � if ) '� � ! � . Conversely, if we reverse this algorithm, from starting
values

�� %
! �#�$� ! �� � , we recover � %

! �$�#� ! �
� , i.e. the inverse cosine transform.

Proof: The recurrence follows at once from the following formulas for ) � � ! �$�$� ! � � �
� � ' �=�

� � ��
� � %

X � � R�� ��� ) *�
�=�

� � ��
� � �

� �� ��� � � �
� � � �&� � R�� � *� ��� �(���
� � � ��� � R�� ��� ) *�
�=�

� � ��
� � �

� �� � R�� ��� ) *� �
� � ��
� � �

� �� � R�� ��� ) *�
�
� � ��
� � � � � � R��

� *� � R�� ��� ) *� �
� � ��
� � � � � � R��

� *� � R�� ��� ) *�
� �

� � ��
� � � � � � R��

� *� � R�� ��� ) *�
�
� � ��
� � � � �

� ��� � � *� � � ) �
� �&� ��� � � *� � � ) � �<� �
�
� �
 � ' � �� �� � ' � � �

� �
 � ' + �� �� � ' + � !
� � ' � � � ��

� � %
X � ��� � ��� ) *�

�
� � ��
� � %

� �� ��� � � �
� � � ����� R�� � *� ��� �(� �
� � � � � ��� � ��� ) *�
�
� � ��
� � %

� �� ��� � ��� ) *� �
��
� � �

� �� ��� � ��� ) *�
�

��
� � � � � � R��

� *� � � � ��� ) *� �
� � ��
� � %

� � � R�� � *� ��� � ��� ) *�
�

��
� � %

� �
�
 ����� �

��� ) *� �
� �
 � '� �� � '��

In order to reverse the algorithm, we first utilize the recurrence to find
�X ' for ) � � ! �#�$� ! � � � . By

means of a inverse discrete Fourier transform we deduce
X
%
! �#�$� !ZX � � � , and from the definition ofX � we get the relations

X � � X � � � ��� � � �
� � � !X � � X � � � � � � � R�� � � *�� � �P��� � � � � � � � !
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which combined for * � � ! �#�$� ! � finally give

� � � �� � X � � X � � � �&�
X � � X � � �� � R�� � � *�� � � �

From this proposition and recurrence (2.9) we have an efficient algorithm to calculate
X

-
derivatives of � and � on the first grid

X � defined in (2.4).

B.2 Basic results on orthogonal polynomials
The results in this section are connected with � 2.2. We show the importance of Chebyshev ab-
scissae as collocation points in spectral methods. Let us first consider basic facts about Gaussian
quadratures and orthogonal polynomials. On the linear space W �� ��� !�� � of functions for which� �� � �&���:�1� ��� ���:� Q � is finite, we define the scalar product

��� !
	 � def�
� �
� �&���:� 	 ���:� � ���:� Q � ! � B � 3 �

where � � � � is a positive continuous function on � � !�� � . The associated norm is defined by � � � � �
��� ! � � . Let ��, the set of polynomials of degree � or less. The following three results are proved
on almost any book on numerical methods (see for instance Johnson & Riess 1977).

Theorem B.4. For the scalar product (B.3) there exists a family of monic orthogonal polynomials
@ , ���:� for � � � ! � ! � ! �#�$� , such that @ , ���$, and satisfy the recurrence

@ % ���:� � � ! @ �<� � � � � ! @ , ���:� � ��� � � ,4�3@ , � �/� � �&� � , @ , � �����:� ! � � � ! � B � 4 �
where

� , �E� �'@ , � �
! @ , � ���0�4� @ , � �

! @ , � �5� and
� , �E� @ , � �

! @ , � �5� �4� @ , � �
! @ , � � � . Besides @ , has

� real distinct roots in � � !
� � .
Theorem B.5. The quadrature formula � �� @�� � � � ���:� Q � ��� , � � %

� ��@&� � �3� holds for all @ ��� � , + �
if and only if ��� �Y� , � � % are the zeros of @ , + � and

� � �V� W � ! � � for
� � � ! �$�#� ! � , where W � ���$, is

such that W ����� � � ��� � � .

Theorem B.6. Let � �
W �� ��� !�� � , then the polynomial @��, ���$, which satisfies � � � @��, � 	 � � � @*�
for all @ ����, is given by

@ �, ���:� �
,�' � %

��� ! �@ '/� �@ ' � � � !

where �@(' � @ ' � �0@ ' � , are orthonormal polynomials. In addition � R � ,21 
 � ��� @��, � � � ! that is to
say, @ �, converges to � in W �� ��� !�� � .

When
� � !�� � � � � � ! ��� and � � X � � � �?� X � � � � � � then the Chebyshev polynomials � ��� X � ���� � � *���� � � � �<� X �1� for * � � ! � !&� ! �#�$� are a family of non-monic orthogonal polynomials. The

trigonometric relation ��� �<� * � � �0� � � � � � * �
�<� � � � ��� � � ��� � *!� gives rise to the recurrence

� % � X � ��� ! � �<� X � � X ! � � + � �
X � � �/X � ��� X �&� � � � �/�

X � ! * � � ! � ! �#�$�
Moreover, it is easily check that � � %

! � % � �
�

, � � � ! � � � � � � � , for * � � , � � � ! � , � � �
for * '� � . The rapid convergence of Chebyshev expansions is a direct consequence of proposi-
tion B.1.
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Proposition B.7. Let �&� X � be an infinitely differentiable function in
� � � ! ��� , such that it can be

expanded in Chebyshev series (cf. theorem B.6)

�.� X � � 
�
��� %

�� � � � � X � ! �� � � ��� ! � � �
� � � ! � � � �

�
� 
 �

� �
� �

�.� X � � � � X �� � � X � Q�X ! � B � 5 �

where 
 % �
�

and 
 � � � for
� � � . Then

�� � � ��� � � � � for every *
� � . If in addition �.���:� is
analytic, then

�� � �)� � �	��� ��� 
 L � L � for some positive constant 
 .
Proof: By means of the change � � � � � � , we define

��.���'� def���&� � � � �'� � 
�
��� %

�� � � � � ��� � �'� � 
�
��� %

�� � � � �<� � �'���
For this is a particular case of a Fourier series, applying proposition B.1 we obtain the result.

Once the interesting convergence property of Chebyshev expansions (B.5) is shown, we focus
on the truncated series up to order say

�
and how to approximate the Chebyshev coefficients

��� ! � � � . Because such coefficients are defined by an integral, this will be accomplished by Gauss
quadrature formulas as in theorem B.5. To that end we need to know the roots � � of the or-
thogonal polynomials and the weights

� � . For the case of Chebyshev polynomials the roots are
straightforward to find as

� � � �X � � � � ��� �X � � ��� � � � � * � �<���� ! * � � ! �#�$� ! � � ��� � B � 6 �
To compute the weights

� � we need the

Theorem B.8. Introducing the sequence of polynomials

�
% ���:� � � ! � �/� � � � � �� � � �Z� Q � !

� � ���:� � ��� � � � � � �
� � ���:�.� � � � �

� � ���:� ! for
� � � !

and
� � and

� � as defined in (B.4), then one has
� � � � , + �/� � �3� �"@ �, + � � � �3� , for

� � � ! �#�$� ! � .

Proof: Let first check by induction that

� , ���:� �
� �
�

@ , � �1�&�$@ , ���:�
�&���

� � �1� Q � � � B � 7 �
This is evidently true for � � � ! � . Assume (B.7) is valid for

� 	 � . From (B.4)
� , � � � � � � � � , � � , � � ���:�.� � , � , � � ���:�

�
� �
�

�
� � � � ,4� @ , � �/� �Z�&�$@ , � �/� � �

�&��� � � , @ , � �'� �1���$@ , � �����:�
����� � � � �Z� Q �

�
� �
�

� �&� � , � @ , � � � �Z�&�$@ , � � � �1�&� � � � � , �3@ , � � ���:�&�$@ , � � ���:�
�&���

� � �1� Q �

�
� �
�

@ , � �1�&� @ , ���:�
�&���

� � �Z� Q � �
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Now W � ���:� � @ , + � � � �0� � ��� ��� � �3@ �, + � � � � � � for
� � � ! �$�#� ! � , as it is easily verified, and then

� , + �<��� � �@ �, + � ��� � � �
� �
�

@ , + �<� �1�&� @ , + �/� � �3�� ����� � �3@ �, + � � � � � � � �1� Q � �
� �
� W � � �1� � � �Z� Q � � � � �

Let us return to the computation of the weights
� � for the case of Chebyshev polynomials. The

associated monic orthogonal polynomials are simply

@ % � X � ��� ! @ � � X � � � � � � � � � X � ! * � � !

which in view of the recurrence of Chebyshev polynomials drives to

@ % � X � � � ! @ �<� X � � X ! @ ��� X � � X @ � � �<�
X �&� � �7@ � � ��� X � ! * � � !

being
� � � ��� � and

� � � ��� � for * � � . As a result the recurrence for
� � is

�
% � X � � � ! � � � X � �

� �
� �

Q �� � � � � � � � %
! � % � �

� !
� � � X � � X � � � � �

X �&� � � � � � � �
X � ! * � � �

We need to introduce the second kind Chebyshev polynomials � ��� X � ��� �� + � �
X �0��� * � �<� �� R�� �Z� * � � �0�'�0� � R�� �	�'� for � � � � ����� �<� X � , which in view of the identity � R�� �1� * � � � �'� � � R�� � *!��� �� ��� � � � R�� �Z� * � �<� �'� , satisfy the recurrence � % � X � ��� ! ���<� X � � �/X ! � ��� X � � �/X � � � � �

X �&�
� � � ��� X � for * � � . Thus, defining � ��� X � � � � � ��� X � we obtain � % � X � � � , ���<� X � � X

,
� ��� X � � X � � � � �

X � ��� � � ��� X �0� � for * � � , a recurrence very similar to the one for
� � . In

particular
� � � � X � � � � , � � � � � X � � ��� � � � � � � , and since the recurrence for

� � and � �
coincides for * �
� we conclude that

� � � � � � � � for * � � . Finally we can derive, according
to theorem B.8, the expression of

� � associated with �X � , defined in (B.6), by

� � � � � � �X �3�
@ � � � �X �3� � � � � � � � � � �<� �X � �� � � � � � � � �/� �X � � �

�
� ! � � � ! �#�$� ! � �
���

The cuadrature formula is expressed as

� �
� �

@�� X �� � � X � Q X �
�
�

� � ��
� � %

@�� �X � � ! � B � 8 �

which is exact for @ ��� � � � � . Cuadrature formula of theorem B.5 allows us to introduce a discrete
scalar product for any two functions � !
	 defined in

� � !
� � by

��� ! 	 � J def�
,� � � %
� � �.� � � � 	 ��� � � !

and from here the result on interpolating polynomials.
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Theorem B.9. Let ��� � � , � � % be the zeros of @ , + � (as in theorem B.5), and ��� � � ��� , � � % � � @ � � � � .
The condition � � � � @ � ! � � J ��� @ � ! @ � � J for

� � � ! �#�$� ! � , is equivalent to ����� � ��� �.� � � � for� � � ! �$�#� ! � .

Proof: As it is well known the interpolating polynomial exists and is unique and thus can be
written in the form � � � � ��� , ��� % � � @ � ���:� . If for

� � � ! �#�$� ! � , ����� � � ���.� � �3� , then

� @ � ! � � J �
,� � � %
� ��@ ����� � � �&��� � � � ,� � � %

� � @ ��� � � � ,���� %
� � @ � � � �3�

�
,�
��� %

� � ,� � � %
� � @ � ��� � �3@ � ��� � � � ,�

� � %
� � � @ � ! @ � � J � � � � @ � ! @ � � J �

The last equality is a consequence of the ortogonality of @ � for the continous scalar product and
� @ � ! @ � � J � � @ � ! @ � � , if @ � @ � ��� � , + � , which is another statement of the cuadrature formula in
theorem B.5.

Another interpretation of this theorem is that, if for expansion (B.5) we truncate it up to order� �
� and approximate
�� � for

� � � ! �$�#� ! � �
� by means of (B.8), we find that

�� � � ��� ! � � �
� � � ! � � � �

�
� 
 �

� �
� �

�.� X � � � � X �� � � X � Q X �
�
� 
 �

� � ��
� � %

�&� �X � � � � � �X � �

� ��� ! � � � J� � � ! � � � J
�
�
� 
 �

� � ��
� � %

�&� �X � � ��� � � � � * � �<� ���� def� �� � ! � B � 9 �
and so the approximating series is precisely the interpolating polinomial of theorem B.9. We derive
the relation between

�� � and
�� � by

�� � � �
� 
 �

� � ��
� � %

�&� �X � � � � � �X � � �
�
� 
 �

� � ��
� � %

� 
�' � %
�� ' � ' � �X � � � � � � �X � �

�
�
� 
 � 
�' � %

��-' � � ��
� � %

�,' � �X � � � � � �X � � �
�
� 
 � 
�' � %

��-'�� �,' ! � � � J
� �� � � � �� � � � � � �� � � + � � � � �� � � � � � �� � � + � �&� �P� �$�

The reason for the last step is that � ��� ��� ��� �X � � � �,� �<� � ��� � � � �X � � and hence � ��� � � ! � � � J ���� �<� � � � � � ��� � ! � � � J . As a consequence the error L �� � � �� � L decrease with the Fourier coefficients�� ' .
As we have seen, the Chebyshev abscisae �X ���#�,� � ! �<� for * � � ! �$�#� ! � � � , are important

points for interpolating a function, but for some cases it is important to include also � � and �
among those points. Consider

X � the zeros of � �� together with � � and � , i.e.
X � � � � �<� � *�� � �

for * � � ! �$�$� ! � . Given two functions � and
	

in
� � � ! � � , we define another discrete scalar

product

��� !
	 � J � def�
��
� � %

�.� X � � 	 � X � �
�
 �

! � B � 10 �
where �
 % � �
 � � � , and �
 � ��� for * ��� ! �#�$� ! � � � . To prove that � � are orthogonal
polynomials for this scalar product we need the
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Lemma B.10. Let � � � � � ��� �' � � � � ��)2� and � � ���:� ��� �' � % ��� ��)2� � �
 ' . Then

� � � � � � ��
� � R�� � � � ��� � �+�� R�� � � � �
� � ! � � ���:� � � R�� � � ��� � � � �� � R�� � � � �

Proof: If � � � � � for
� �!� we can verify the formulae by L’Hôpital’s rule. For ��'� � � � , using

the identity
� � R�� � � � ��� � )2� � � R�� � ) � ��� � � � ��� R�� � ) �
� � � � � , yields

� � ���:� �
��' � � ��� � )2� � �� � R�� � � �

��' � � � � R�� � ) � ��� � �+� ��� R�� � ) �
��� � � �:�

� � R�� � � � � � � �+� � � R�� � � �� � R�� � � �
� � ���:� �

��' � %
� � ��)2��
 ' � �� � � � ���:�.� � � � � ��

� � R�� � � � � � � �+� � ��� � � �
� R�� � � �� � R�� � � � � � R�� � � ��� � � � �� � R�� � � � �

Theorem B.11. For the scalar product (B.10), and ��	 � ! * 	 � it is satisfied

� � � ! � � � J � �
�
�

� � ! � '� *
� ! � � * ! � 	 � 	 � �
�� ! � � * ! � � � ! � .

Proof: According to the lemma, for ��	 � 	�* 	 � we have,

� � � ! � � � J � �
��' � %
� � � X '<� � ��� X '<�

�
 ' �
��' � %
�
�
 '
��� � � � )� � � � � * )�

� ��
��' � %
�
�
 ' �

� � �
� � * ��� ��)� � � � �

� � * � � ��)� �
� � R�� � � * ��� � � � �

� � * ��� �� �
� � R�� � � * � � �� �

�
� R�� � � * � � � ��� �

� � * � � ����
� � R�� � � * � � �� �

�

If * '� �
then both terms in the last expression vanishes, because the numerator is null and the

denominator is not null. Conversely if
� � * evaluating � � directly, we obtain the announced

result.

We are in a position to formulate the interpolation result for the new abscisae
X � and a

quadrature property, analogous to theorems B.9 and B.5 respectively.
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Theorem B.12. Let ��� X � � � �' � % � ' � ' � X � . The condition � ' � � � ' ! � � J � �4� � ' ! � ' � J � for ) �
� ! �#�$� ! � , is equivalent to ��� X � � ���&� X � � for * � � ! �$�$� ! � .

Proof: We may express the unique interpolating polynomial as ��� X � � � �' � % � '1@ ''� X � . Because
the orthogonality relations of theorem B.11 and imposing � � X � � � �.� X � � for * � � ! �#�$� ! � ,
we have

� � ' ! � � J � �
��
� � %

� ''� X � � �&� X � �
�
 � �

��
� � %

�,''� X � �
�
 �

�� � � %
� � � ��� X � �

�
�� � � %
� � ��
� � %

�,'�� X � � � ��� X � �
�
 � �

��' � %
� ��� �,' ! � � � J � � � ' � �,' ! �,'<� J � �

Theorem B.13. The quadrature formula� �
� �

�.� X �� � � X � Q�X �
�
�

��
� � %

�.� X � �
�
 �
! � B � 11 �

is exact for @ ��� � � � � but not for @ ��� ��� .

Proof: We compare both formulae by means of respective scalar products, since

� � %
! � � �

� �
� �

�&� X �� � � X � Q�X ! � � %
! � � J � �

��
� � %

�.� X � �
�
 � �

Truly from theorem B.11 and the orthogonality relations of Chebyshev polynomials,
� �E� � %

! � % �� � � � � � %
! � % � J � , and � � � � %

! � ' � for )(� � . On the other hand � � %
! �,'<� J � ��� , for ) �

� ! �#�$� ! � . Futhermore, because � � + ' � X � � � � � � X � � � ' � X � � then � � %
! � � + ' � J � � � � � ! � ' � J �� � , for ) � � ! �$�#� ! � � � and the formula is exact up to order

� � � � . However � � %
! � � � � J � �� � � ! � �$� J � �

�
and as a result the formula is not exact for every @ ��� ��� .

The cuadrature formula (B.11) is not as in theorem B.5, as that would imply (B.11) to be
of order

��� � � . In spite of this we find similar properties. Considering again expansion (B.5),
truncated up to order

�
and approximating

�� � for
� � � ! �$�#� ! � by means of (B.11) we find that

�� � � ��� ! � � �
� � � ! � � � �

�� � def� ��� ! � � � J �� � � ! � � � J �
�
�
� �
 �

��
� � %

�&� X � �
�
 � ��� �

� � *� ! � B � 12 �
and so the approximating series is precisely the interpolating polinomial of theorem B.12. We
derive the relation between

�� � and
�� � by

�� � � �
� �
 �

��
� � %

�.� X � � � � � X � �
�
 � �

�
� �
 �

��
� � %

� 
�' � %
�� ' � ' � X � � � � � � X � �

�
 �

�
�
� �
 �


�' � %
��-' ��
� � %

� ' � X � � � � � X � �
�
 � �

�
� �
 �


�' � %
��-'�� � ' ! � � � J �

� �� � � � �� � � � � � �� � � + � � � � �� � � � � � �� � � + � � � � � �$�
The reason for the last step is that � � � ��� � � X � � � ��� � � � X � � and so � ��� � � ! � � � J � �E� � � � ��� � ! � � � J � .
From this relation we observe that the error L �� � � �� � L decrease with the Fourier coefficients
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