
CHAPTER 4

Sliding Bifurcations in a dry friction

oscillator

“Une cause trés petite qui nous échape détermine un effect considérable

que nous ne pouvons pas ne pas voir,

et alors nous disons que cet effet est du au hasard.”

J.H.Poincaré (1854-1912)

In this chapter a dry friction oscillator is investigated. This system is af-
fected by discontinuity-induced bifurcations (DIBs) due to “stick-slip” mo-
tions. Such bifurcations have been recently classified as sliding bifurcations

and are a characteristic feature of so-called Filippov systems. Basically,
four distinct cases of such bifurcations can be identified: crossing-sliding,
grazing-sliding, switching-sliding and adding-sliding. We present detailed
examples of all these different bifurcation scenarios. Furthermore, a de-
generate switching-sliding bifurcation is shown. In that case of degenerate
switching-sliding bifurcation two curves of codimension-one sliding bifurca-
tion, crossing-sliding and adding-sliding, branch out from the codimension-
two point. Also, a smooth codimension-two cusp bifurcation is presented.
Coexistence of periodic orbits in the region between both fold codimension-
one curves is shown to exist by means of domain of attraction diagrams
using a cell-to-cell mapping method.
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4. Sliding Bifurcations in a dry friction oscillator

4.1 Introduction

Dry friction is a very common phenomenon in nature and in many mecha-
nical systems such as bearings, transmissions, hydraulic and pneumatic
cylinders, valves, gratings brakes and wheels... It appears at the physical
interface between two surfaces in contact and is the source of self-sustained
oscillations, also known as stick-slip vibrations. Furthermore, friction con-
stitutes an important aspect of many other disciplines such as seismology
and tectonic fault dynamics [26, 32, 85, 113], acoustics [102, 127] and more.

Systems with friction have been studied extensively by researchers since
the historical works of Amontons [5] and Coulomb [37] but not been fully
understood yet. Indeed, new friction models are continuously being pre-
sented [4]. However, only in the last 10-15 years, these systems and their
bifurcations have been investigated as nonsmooth dynamical systems.

A simple single-degree-of-freedom nonsmooth oscillator under self and/or
external-excitation is commonly used to describe the behaviour of stick-slip
systems. In [124] it is shown that beside the well-know periodic limit cycle,
chaotic motion is also possible in oscillators with external forcing. A rich
bifurcational behaviour (period-doubling, intermittency) under parameter
variations is exhibited. In further investigations [83, 125] such bifurcational
behaviour predicted by numerical simulations is compared with experimen-
tal results showing a good agreement. In others works a damper is also
included in the model. For this type of system non-standard bifurcations
such as discontinuous fold bifurcations are detected in [73, 98].

Several works consider the problem of bifurcations and chaos in a two
block stick-slip system as [70, 72, 73, 75, 103]. A one-dimensional dis-
continuous map termed as event-map is introduced in order to explain
discontinuity-induced bifurcations (DIBs). In [10] a smoothing procedure
is applied to illustrate different bifurcational behaviours such as period-
doubling route to stick-slip chaos, stick-slip hyper-chaos and quasi-periodic
attractors.

Stick-slip systems are important examples of Filippov systems (systems
with discontinuous vector fields). The stick phase in these systems can be
considered as a motion constrained to some subset of the state space. Then,
such constrained motion can be linked with the so-called sliding mode stud-
ied in [64, 143, 144]. Thus, periodic stick-slip motion in friction oscillators
corresponds to periodic orbits characterised by segments of sliding modes,
or sliding orbits as they were recently termed in the literature.

Nonsmooth dynamical systems can undergo not only standard bifurca-
tions (such as fold, flip and Hopf bifurcations) but also can exhibit an en-
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4. Sliding Bifurcations in a dry friction oscillator

tirely novel class of bifurcations that cannot be explained in terms of classi-
cal bifurcation theory for smooth systems. These are often termed as DIBs

(also referred to as nonsmooth bifurcations or C-bifurcations) to distin-
guish them from the bifurcations also occurring in smooth systems. In par-
ticular, Filippov systems can exhibit four generic types of codimension-one
DIBs of limit cycles termed as sliding bifurcations, namely, the crossing-sliding,
grazing-sliding, switching-sliding and adding-sliding bifurcations [51, 95].
Only the grazing-sliding bifurcation scenario might cause an abrupt tran-
sition to different attractors under small variation of the bifurcation pa-
rameter. For instance, in [52] it is shown that the sudden onset of chaotic
stick-slip oscillations observed in [149] is due to the grazing-sliding sce-
nario. In the others scenarios stability properties and period of the cycles
remain unchanged.

Several examples have illustrated each case of sliding bifurcation. For
instance, in [51] a third-order relay system is used as numerical example.
In [91] a example of a friction oscillator with Coulomb friction consisting
of a static friction coefficient equal to the kinetic friction coefficient is
considered, while a modified Coulomb friction with a cubic nonlinearity,
firstly introduced by Yoshitake and Sueoka in [149], is the subject of study
in [52]. In this paper an approximation to a measured friction characteristic
introduced by [125] will be considered to investigate each type of sliding
bifurcation.

Most of the analysis of DIBs has focused so far on the transitions that
can be observed under variation of one of the system parameter. Although
a classification of smooth codimension-two bifurcations is completely es-
tablished, see [77, 96, 147], only recent works have been addressed to the
classification of nonsmooth codimension-two bifurcations. In [92] a first at-
tempt of classification is suggested. A codimension-two DIB can be put into
one of three general types: (a) degenerate limit cycles, (b) non-hyperbolic
critical cycles or (c) simultaneous occurrence of two grazings. Degenerate
sliding bifurcations that belong to the first general type are discussed in [91]
and a degenerate crossing-sliding bifurcation is shown in a dry-friction os-
cillator with Coulomb friction. Bifurcations belonging to the second class
have been illustrated in the mentioned dry-friction oscillator introduced
by Yoshitake and Sueoka. A flip-grazing and a fold-grazing bifurcation is
shown in [92] and [110] respectively.

This chapter will deal with sliding bifurcations of codimension-one and
two in an external-excited dry-friction oscillator. An event-driven method
to simulate Filippov systems is used to illustrate such bifurcations. Also,
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Figure 4.1: Block subject to a spring force, a friction force with a moving
belt and an harmonic force of angular frequency ω.

a smoothed version based on the use of an arctan function is considered
in order to compare both numerical techniques. A cell mapping method
serves to study coexistence of solutions in the region between two fold
codimension-one curves merging in a smooth cusp codimension-two bifur-
cation.

The chapter is organized as follows. Section 4.2 introduces the me-
chanical model that we use in this paper and discusses the friction force.
Section 4.3 is a brief introduction to Filippov systems and sliding motion,
while Section 4.5 gives an overview of the algorithms available to simulate
Filippov systems. In Section 4.6 we present the numerical simulations for
our system and study the bifurcation diagrams for both the discontinuous
and smoothed versions of the friction force. Section 4.7 is devoted to show
the existence of a degenerate switching-sliding bifurcation. In Section 4.8
a smooth cusp codimension-two is shown and coexistence of periodic or-
bits in the region between both fold codimension-one curves is manifested
by means of domain of attraction diagrams using a cell-to-cell mapping
method. Finally, we summarize our conclusions in Section 4.9.

4.2 Description of the model

The nonsmooth system to be investigated, shown in Figure 4.1, is composed
of a block of mass m on a belt which moves with constant velocity Vdr.
The block is connected to a fixed support by a linear spring of stiffness k
and is under the action of a sinusoidal external force of magnitude A and
frequency ω. The origin of the displacement of the block y is taken where
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4. Sliding Bifurcations in a dry friction oscillator

the spring is unstretched. The block can either ride on the belt, with zero
relative velocity with respect to it, or slip on it. In the first case, called
the stick phase, the motion of the block is uniform and obeys the following
algebraic equation

y(t) = y(t0) + Vdr(t− t0), (4.1)

The static friction force Ffr,s is then in equilibrium with the other forces
acting on the block, so that

−µsmg < Ffr,s = ky −Acos(ωt) < µsmg. (4.2)

In the second case, referred to as slip phase, the motion is governed by
the following ordinary differential equation:

mÿ + ky = Acos(ωt) + Ffr,k, Ffr,k = µ(vrel)mg (4.3)

The transition between the stick motion of equation (1) and the slip
motion of equation (3) occurs when the static friction force required for
equilibrium in equation (2) overcomes either of its threshold values ±µsmg,
where µs is the static friction coefficient and mg is the weight of the block.
When such a transition occurs an accelerated motion begins for the block.
The dynamic behavior of the system will be determined by the choice of
the model for the kinetic friction force Ffr,k(vrel), where vrel = Vdr − ẏ is
the relative velocity. The kinetic force may assume different forms, being
the Coulomb friction one of the most common. The expression is given by
a constant friction coefficient µ0 smaller than the static friction coefficient
µs:

µI(vrel) =

{

µ0 if vrel > 0
−µ0 if vrel < 0

(4.4)

Because of the jump in the characteristic, the transition from stick to
slip is not continuous. A different version of Coulomb friction is given by:

µII(vrel) =







α
1 + γ |vrel|

+ β + η · v2
rel if vrel > 0

−α
1 + γ |vrel|

− β − η · v2
rel if vrel < 0

(4.5)

This kinetic friction is an approximation to a measured friction char-
acteristic [125]. Here, the transition from static to kinetic friction is con-
tinuous but not differentiable. In the present chapter this later friction
characteristic will be adopted.
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4. Sliding Bifurcations in a dry friction oscillator

In the simulations presented below some of the parameters are kept
fixed, namely m = 1, k = 1, g = 10, Vdr = 1, α = 0.3, γ = 1.42, β = 0.1,
η = 0.01, whereas A and ω will be varied.

4.3 Filippov systems

As mentioned in the Introduction, the dry friction oscillator considered
is an example of systems with a discontinuous vector field, the so called
Filippov systems. What characterizes such a system is the division of the
state space into disjoint subregions, such that in each region the defining
vector field is smooth. The boundaries between the different regions will be
referred to as discontinuity surfaces. In this section only a brief introduc-
tion to Filippov systems will be given, and for a more thorough exposition
of this topic the reader is referred to [51, 64, 98, 95].

We consider a sufficiently small region D ∈ R
n of phase space. To

simplify, let us assume that the state space consists of only two subspaces,
S1 and S2, separated by a discontinuous surface Σ, which is defined by a
smooth scalar function h(x) such that

Σ = {x ∈ R
n : h(x) = 0}, (4.6)

and where

S1 = {x ∈ R
n : h(x) > 0}, and S2 = {x ∈ R

n : h(x) < 0}, (4.7)

Hence, the equations governing the system flow can be written as

ẋ =

{

F1(x, µ) for S1,
F2(x, µ) for S2,

(4.8)

where F1, F2 are sufficiently smooth vector functions and µ ∈ Rm is the
vector of system parameters.

If the vector fields F1 and F2 are locally both pointing away from or
towards the discontinuity surface Σ, as depicted in Fig. 4.2 the dynamics is
assumed to be locally constrained to the surface until reaching some point
on it where one of the two vector fields, F1 or F2, changes its direction. The
solution which lies within the discontinuity surface is termed as a sliding
motion (as mentioned in 4.1, for mechanical systems with friction the term
“sticking” is used). The open subset Σ̂ of the surface Σ where the vector
fields are both pointing towards or away from Σ is often referred to as the
sliding surface. If it holds that

〈∇h, F1〉 − 〈∇h, F2〉 < 0 (4.9)
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Figure 4.2: Stable sliding mode

then Σ̂ is stable, while if

〈∇h, F1〉 − 〈∇h, F2〉 > 0 (4.10)

the sliding surface is unstable. Here ∇h denotes a vector which is normal
to Σ and 〈∇h, Fi〉 denotes the component of the vector field Fi along the
normal to Σ.

Using Utkin’s equivalent control method [143, 144] the dynamical sys-
tem (4.8) can be extended to include the vector field Fs on the sliding
surface. We can derive the vector field Fs as a vector function belonging
to the convex hull of F1 and F2

Fs(x) =
F1(x) + F2(x)

2
+

F2(x)− F1(x)

2
s(x), (4.11)

where −1 ≤ s(x) ≤ 1. Since the motion is constrained to the sliding surface
Σ̂, Fs must be tangent to Σ, i.e. 〈∇h, Fs〉 = 0, which yields

s(x) = −
〈∇h, F1〉+ 〈∇h, F2〉

〈∇h, F2〉 − 〈∇h, F1〉
. (4.12)

We can now define the sliding region as

Σ̂ = {x ∈ Σ : |s(x)| < 1}, (4.13)

with boundaries
∂Σ = {x ∈ Σ : |s(x)| = 1}, (4.14)

∂Σ+ = {x ∈ Σ : s(x) = 1}, (4.15)

∂Σ− = {x ∈ Σ : s(x) = −1}. (4.16)
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4. Sliding Bifurcations in a dry friction oscillator

The general setting presented above takes the following particular form
for the system under investigation:

x = {y, ẏ}T ∈ R
2, (4.17)

Σ = {x ∈ R
2 : h(x) = ẏ − Vdr = 0}, (4.18)

S1 = {x ∈ R
2 : h(x) = ẏ−Vdr < 0}, and S2 = {x ∈ R

2 : h(x) = ẏ−Vdr > 0},
(4.19)

ẋ =

{

ẏ
ÿ

}

= F1(x, ω) =

{

ẏ,
−y +A cos(ωt) + Ffr,k for S1,

(4.20)

ẋ =

{

ẏ
ÿ

}

= F2(x, ω) =

{

ẏ,
−y +A cos(ωt)− Ffr,k for S2,

(4.21)

∇h = (0, 1)T , (4.22)

Σ̂ = {x ∈ Σ : |(−y +A cos(ωt))/Ffr,s| < 1}. (4.23)

From a bifurcation point of view, sliding bifurcations are characteristic
features of Filippov systems. In [51, 52] sliding bifurcations are defined as
bifurcations due to interactions between a periodic orbit and the boundary
of the sliding region. Following this definition we can distinguish the four
possible bifurcations scenarios involving sliding: crossing-sliding, grazing-
sliding, switching-sliding and adding-sliding (see section 4.4).

4.4 Sliding Bifurcations: an overview

References [51, 52] define sliding bifurcations as bifurcations due to inter-
actions between a periodic orbit and the boundary of the sliding region.
Following this definition we can distinguish four possible bifurcations sce-
narios involving sliding (see Fig. 4.3). We will present a briefly description
and the analytical conditions that must hold for each case.

4.4.1 Crossing-sliding

Figure 4.3 depicts the scenario that is termed as crossing-sliding. Under
parameter variation the trajectory, initially composed of three branches,
one in the subspace S1, one in the sliding region and one in the subspace
where S2, intersects the boundary of the sliding region and then switches
from a subspace to the other with no sliding portion. For this scenario
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4. Sliding Bifurcations in a dry friction oscillator

Figure 4.3: Four possible scenarios of sliding bifurcations.

we can associate the following analytical conditions describing the system
properties at the bifurcation point:

h(x∗) = 0,∇h(x∗) 6= 0, (4.24)

〈∇h, F1〉(x
∗) = 0, (4.25)

〈∇h,
∂F1

∂x
F1〉(x

∗) > 0. (4.26)

4.4.2 Grazing-sliding

A different bifurcation event, which is called switching-sliding, is depicted
in Fig. 4.3. In the case presented in Fig. 4.3, instead, a section of trajectory
lying in one region grazes the boundary of the sliding region. This causes
the formation of a section of sliding motion. This bifurcation is termed as
grazing-sliding. This kind of bifurcation may cause a sudden jump to chaos
(see [52] for further details).

In this case the same analytical conditions (4.24), (4.25) and (4.26)
given to describe crossing-sliding bifurcations do supply.

4.4.3 Switching-sliding

Under parameter variation the trajectory, initially completely contained
in the subspace S1 and in the sliding region, intersects its boundary and
then passes from the subspace S1 to the other, S2, and from this to the
sliding region.
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4. Sliding Bifurcations in a dry friction oscillator

Conditions (4.24) and (4.25) hold for this case as well, since at the
bifurcation point Fs = F1. Moreover, we require an extra condition given
by

〈∇h,
∂F1

∂x
F1〉(x

∗) < 0. (4.27)

4.4.4 Adding-sliding

The fourth and last case is the so-called adding-sliding, shown also in
Fig. 4.3. It differs from the scenarios presented above because the segment
of the trajectory that undergoes the bifurcation lies entirely within the
sliding region. As a parameter is varied a sliding portion of the trajectory
hits tangentially the boundary of the sliding region. Further variation of
the parameter causes the formation of a additional segment of trajectory
above (or below) the sliding region.

In the case of adding-sliding, conditions (4.24) and (4.25) are still valid
but are not sufficient to describe the tangency of the sliding flow to the
boundary of the sliding region typical of this scenario. Instead, the follow-
ing additional condition must also hold:

〈∇h,
∂F1

∂x
F1〉(x

∗) = 0. (4.28)

Moreover, in this case the sliding flow has a local minimum with respect
to the boundary ∂Σ−. Thus, we have

〈∇h, (
∂F1

∂x
)2F1〉(x

∗) < 0. (4.29)

4.5 Numerical simulations methods

If the friction characteristic follows a Coulomb’s friction law it is possible
to find explicit expressions for the solutions of (4.20) and (4.21). However,
considering the friction law given by (4.5) a different numerical treatment
for simulation is needed because no analytical solution is available. Basi-
cally, simulation techniques for nonsmooth dynamical systems can be clas-
sified into three different approaches: event-driven methods, time-stepping
methods and smoothing methods.

Event-driven methods are based on the location of any nonsmooth
events as accurately as possible. This idea can be compared with the idea
for simulating nonsmooth systems with a time-stepping method, which is
to recast the nonsmoothness in terms of a complementarity formulation.
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Then, one can use time stepping methods accompanied with nonsmooth
problem (NSP) solvers to simulate the systems without the need for ac-
curate event detection. That is, the solver can only note that one or more
events have occured during a time step without finding the actual event
time and location. Such methods have been proven to be effective in sim-
ulating mechanical systems with a large number of constraints. However,
they suffer from the disadvantage that they are typically only low-order
algorithms and some nonsmooth events can be lost. Another strategy to
simulate nonsmooth systems, that has been followed in different papers,
is to approximate the nonsmooth system with a smooth one. Then, the
dynamics of the resulting approximate system is governed by differential
equations with sufficient smoothness to be handled through standard nu-
merical techniques. However, a drawback of this method is that an accurate
simulation requires the use of very stiff approximate laws. Therefore, the
result is a time consuming simulation because the time-stepping proce-
dures have to resort to a very small step-length. Moreover, the effect of the
artificial modifications may blur the simulation results.

In [123] an event-driven method to simulate Filippov systems with
accurate computing of sliding motions is implemented in a general way
in MatLab. We will use this event-driven method in order to perform
simulations for our system. The choice of a suitable method to integrate
the smooth ODE system to a desired tolerance (within certain limitations)
is then required. We have used the fourth-order Runge-Kutta solver that is
frequently used for dissipative systems. The routines to locate the surface
crossings are the ones built in MatLab. We will also use a smoothing
method in order to compare with the event-driven method. The nonsmooth
law (4.5) will be uniformly recovered with the following smoothed version

µIII(vrel) =
2

π
arctan(c1vrel)µII(vrel). (4.30)

The parameter c1 > 0 controls the shape of the smooth approximation. In
Fig. 4.4 the friction law (4.30) is used with several values of c1. It is seen
that, for c1 large enough, (4.30) describes almost exactly the properties of
the function (4.5). In this paper we will use stiff integration methods built
in MatLab, such as ode23tb and ode23s, to simulate our system with this
smooth friction law and c1 = 108 in order to obtain accurate results.

We are also interested in the understanding of qualitative changes in the
dynamical behaviour by variation of the parameters A and ω. Therefore,
numerical simulation techniques for stability and bifurcation analysis will
be used.
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Figure 4.4: Influence of c1 for the friction approximation given by (4.30).

In order to study the stability of our system we will use a discontinuous
one-dimensional map Ptrans derived from the numerical computation of the
exact states of transition from the stick mode to the slip mode (see [125] for
further details and [70] for a similar application). This map gives stable
solutions but also the unstable solutions of any periodicity and can be
defined by

Ptrans : [0, 2π] → [0, 2π]

Ptrans : φ = ωt0 → φ′ = ωt1

where φ is the phase angle at a stick-slip transition and φ′ is the phase an-
gle at the next stick-slip transition. Intersection points of the map Ptrans

with the bisection line D = {(x, x)|x ∈ R} indicate period-one orbits co-
rresponding to the equation Ptrans(φ) = φ. In addition, intersection points
of the bisection line D with the graph P k

trans indicate k-periodic orbits.
Then, the stability of periodic solutions can be evaluated by the slope of
the map P k

trans in the intersection point.

In contrast to the nonsmooth characteristic (4.5), for the smoothed
version (4.30) a stick mode does not exist, and a different approach for the
map Ptrans is needed in order to study the stability in the same way. There-
fore, the region of small velocity defined as |vrel| < ε will be considered as
the stick mode while we will consider that we have a slip mode when the
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relative velocity lies outside of this narrow band. The map Ptrans is well
defined if stick-slip transitions occur for all transient and steady state mo-
tions. This condition is satisfied for our system with the parameter values
that we use.

To calculate one-parameter bifurcation diagrams, a brute-force method
has been used. For each value of ω an initial condition is considered. Then,
the system is simulated during a certain time (1200 periods, i.e. 1200 · 2·π

ω
)

and we plot the transition points from stick to slip for the last 1000 periods.
The drawback of this method is that it only shows stable solutions. For
calculating the unstable solutions we will use the map described before.

Simulations of two-parameter bifurcation diagrams have been obtained
using numerical continuation techniques based on shooting. For the case
of the degenerate switching-sliding bifurcation algorithms, developed for
sliding bifurcations [54] have been used. The smooth cusp codimension-two
bifurcation has been detected and continued using smooth continuation
methods [130].

Finally, in order to get a complete global analysis of the system we need
to give the entire phase portrait, with attractors, their basins of attrac-
tions, invariant manifolds, unstable limit set, etc. By means of a standard
cell-to-cell mapping algorithm we simulate domains of attraction (DOAs)
of coexisting solutions. The method of cell mapping for the study of dy-
namical systems was developed by Hsu [84], who also provided a detailed
mathematical foundation for the technique. In this method the domain of
interest is divided into a number of equally sized squares. The center point
of each square is mapped forward in time one period and the location of
the trajectory at this point is recorded. This is done for each square and
finally all data is post-processed to build the complete picture, displaying
where initial conditions will end up as t→∞. Obviously, the smaller each
cell is, the more refined the final picture will be.

4.6 Numerical analysis of the system

In this section we will show different dynamical scenarios related with the
four distinct cases of sliding bifurcations. The first scenario is depicted in
Fig. 4.5 (a). This picture shows a bifurcation diagram for A = 0.5 and
ω ∈ [2.84, 2.94].

As can be observed, different behaviors are exhibited in this range and
DIBs are found, such as adding-sliding and grazing-sliding bifurcations.
Looking at the bifurcation diagram a stable period-one orbit is initially
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Figure 4.5: Bifurcation diagram: (a) Event-driven method (b) Smoothing
method

found for ω = 2.94. However an unstable period-one solution is also found
as can be seen in Fig. 4.6(a). There are two points lying on the bisection
line: one orbit (φ ≈ 0.5) is stable because the slope of the map Ptrans at
this point is less than 1; the other orbit (φ ≈ 3.5) is unstable because
the slope at this point is larger than 1. Decreasing the value of ω, these
solutions exist until the value ω = 2.904315905. Then, an adding-sliding
bifurcation occurs, for which the system presents a stable periodic orbit
with two transition points from stick to slip. Fig. 4.7 shows how the periodic
orbit hits tangentially the boundary of the sliding region and hence, further
variation of the parameter splits the initially unique stick phase into two
stick phases separated by a slip phase. In this figure the stick motion
is represented by the black line and ∂Σ−is the blue line. Fig. 4.7(c)-(d)
show how the velocity time-history is affected by the bifurcation. After
the bifurcation, the stable periodic orbit is characterised by two stick-slip
transition points whereas the unstable periodic orbit remains with the same
shape. Fig. 4.6 (b) shows the second iterate of the map Ptrans for ω = 2.9
in order to illustrate the new scenario.

To carry out the analytical investigation of the bifurcation point under
consideration, we will check that the set of analytical conditions (see [51])
are satisfied at the bifurcation point under investigation. The bifurcation
occurs when ω = 2.904315905 and the bifurcation point is (x∗1, x∗2, x∗3) =
(4 + 0.5 cos(x∗3), 1, x∗3) = (3.63744370156881, 1, 3.9011910917405). There-
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Figure 4.6: (a) Map of the phase angle φ at the stick-slip transition (ω =
2.94). (b) Second iterate of the map at the stick-slip transition (ω = 2.9).
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Figure 4.7: (a) Map of the phase angle φ at the stick-slip transition (ω =
2.94). (b) Second iterate of the map at the stick-slip transition (ω = 2.9).
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fore, we calculate the following set of analytical conditions:

1. h(x∗)=0,

2. s(x∗)=-1,

3. 〈∇h, F1xF1〉|x∗=1 + 0.5 · 2.904315905 · sin(3.9011910917405) = 0,

4. 〈∇h, F 2
1xF1〉|x∗=3·1.42·(1+0.5·2.904315905·sin(3.9011910917405))=0,

5. 〈∇h, F1xF1xxF1F1〉|x∗+〈∇h, F 3
1xF1〉|x∗=3·1.42·0.5·ω

∗ ·cos(3.9011910917405) <
0.

Thus, we have checked the analytical conditions and observed a degenerate
adding-sliding bifurcation (see [51] for further details).

Decreasing the parameter value ω to 2.8942, we found a grazing-sliding
at this point. As can be seen in Fig. 4.8 both stable and unstable perio-
dic orbit disappear when a further variation of the bifurcation parameter
is carried out. This happens because a section of trajectory grazes the
boundary of the sliding region (see Fig. 4.8 (c)-(d)).

The bifurcation point is (x∗1, x
∗

2, x
∗

3) = (4+0.5cos(x∗3), 1, x
∗

3) = (4.49954991480195,
1, 0.04243360648476) and the analytical conditions at the bifurcation point
are:

1. h(x∗)=0,

2. s(x∗)=-1,

3. 〈∇h, F1xF1〉|x∗=1 + 0.5 · 2.8942 · sin(0.04243360648476) > 0.

Thus, at the aforementioned value of x∗, the system satisfies all three con-
ditions and it is therefore proven that the bifurcation event is due to a
grazing-sliding bifurcation. We can observe the sudden appearance of a
chaotic attractor when ω is decreased, which can be explained analyti-
cally using the theory of border-collisions [120]. In order to classify this
bifurcation a Poincaré map is needed and a discontinuity map must be ob-
tained. This map has a piecewise linear functional form and therefore, the
grazing-sliding bifurcation under investigation corresponds to a so-called
border-collision bifurcation. Then, counting the number of real eigenvalues
of the piece-wise linear map on both sides of the discontinuity boundary
we can classify such bifurcation using the classification scheme proposed
in [?].

Figure 4.5 (b) shows the bifurcation diagram in the same range for
ω but we have used a smoothing method. As explained in section 4.5 a
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Figure 4.8: (a) Second iterate of the map at the stick-slip transition (ω =
2.895) (b) Second iterate of the map at the stick-slip transition (ω = 2.893).

stick mode does not exist and in order to obtain a similar map we consider
that the stick mode is defined by the relative velocity lying inside of a
narrow band given by |vrel| < ε. The two pictures are very similar but
nevertheless there are some differences. For example, the bifurcation event
due to the adding-sliding is found at a different value of ω. However, we
can conclude that the smoothing approach gives us the same behaviour as
using an event-driven method but more time for the simulation is needed.

Now we will show the other two sliding bifurcations considering A = 5.
In Fig. 4.9 we depict a periodic orbit without a sticking mode for ω = 1.6.
This orbit continues until ω = 1.65768 and then a crossing-sliding bifurca-
tion occurs. The periodic orbit intersects the boundary of the sliding region
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Figure 4.9: (a) Periodic orbit (ω = 1.6) (b) Time evolution (ω = 1.6) (c)
Periodic orbit (ω = 1.72) (d) Time evolution ω = 1.72).

and further variations of ω give a periodic orbit with a sliding segment (see
Fig. 4.9).

Analytically we can check the conditions for a crossing-sliding bifur-
cation. The bifurcation point is (x∗1, x∗2, x∗3) = (4 + 5cos(x∗3), 1, x∗3) =
(2.19098042496318, 1, 4.34218680843852), and we have that the following
three analytical conditions

1. h(x∗)=0,

2. s(x∗)=-1,

3. 〈∇h, F1xF1〉|x∗=1 + 5 · 1.65768 · sin(4.34218680843852) > 0.
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Figure 4.10: (a) Periodic orbit (ω = 2.5) (b) Periodic orbit (ω = 2.8).

are satisfied.

Finally we present a switching-sliding bifurcation at ω = 2.7992. In this
case the periodic orbit hits the sliding boundary ∂Σ+ at the bifurcation
point. For ω = 2.5 the periodic orbit goes from negative relative velocity to
positive and from this to the sliding region. Past the bifurcation event the
periodic orbit is completely contained in the subspace of negative relative
velocity and the sliding region (see Fig. 4.10).

The bifurcation point is (x∗1, x
∗

2, x
∗

3) = (−4+5cos(x∗3), 1, x
∗

3) = (0.99907076368474,
1, 0.01927967945125), and it must verify the following analytical condi-
tions:

1. h(x∗)=0,

2. s(x∗)=1,

3. 〈∇h, F2xF2〉|x∗=1 + 5 · 2.7991 · sin(0.01927967945125) > 0.

Thus, at the aforementioned value of x∗, the system satisfies all three con-
ditions and it is therefore proven that the bifurcation event is due to a
switching-sliding bifurcation. Notice that the analytical conditions (2) and
(3) do not correspond with (4.25) and (4.27) because we have considered
the sliding boundary ∂Σ+ instead ∂Σ−. Using condition (4.27) with F2

changes the sign, which must be positive at the switching-sliding bifurca-
tion point, as it is.
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Figure 4.11: Two parameter bifurcation diagram around the codimension-
two points.

4.7 Two-parameter Nonsmooth Bifurcation

In [92] a first classification approach for codimension-two DIB is proposed.
Basically, codimension-two DIB for limit cycles can be put into one of
the following three types: degenerate points, C-bifurcations of degenerate
cycles and simultaneous occurrence of two bifurcations. In this section we
will show a codimension-two C-bifurcation due to a degenerate sliding
bifurcation.

As we have previously seen a switching-sliding bifurcation occurs for
A = 5 and ω = 2.7992. Varying A we found a bifurcation curve in-
cluding the aforementioned bifurcation point that we will term Γs (see
Fig. 4.11). Following the periodic orbits along Γs the analytical condi-
tions for the switching-sliding bifurcation scenario presented in section 4.6
are verified for A > 4.82. However, considering A = 4.82 the condition
〈∇h, F2xF2〉|x∗ > 0 is violated because it becomes zero. The condition
〈∇h, (F2x)

2F2〉|x∗ > 0 is satisfied and therefore the set of analytical con-
ditions determine a degenerate codimension-two switching-sliding bifurca-
tion.

The switching-sliding bifurcation curve branches out from the point B1

and two new curves of codimension one are generated. These are crossing-
sliding and adding-sliding bifurcation curves and we will denote them by
Γc and Γa respectively. In Fig. 4.11 the three curves are depicted using
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numerical continuation techniques. We have plotted different points around
the codimension-two point B1 in order to explain the behaviour in each
part of the two parameter bifurcation diagram. Periocidity and stability of
such periodic orbit remain unchanged and the only effect is the creation
of additional segments of the orbit due to interactions with the sliding
boundaries.

Points 1 and 2 represent the orbits before and after crossing the bifur-
cation curve Γs for (ω,A) = (2.4, 4.9) and (ω,A) = (2.7, 4.9) respectively.
These orbits are depicted in Fig. 4.12 (a)-(b) and correspond to the typical
switching-sliding bifurcation scenario that we have presented in Section 4.6.

Fig. 4.12 (c)-(e) depict the orbits in points 3, 4 and 5. The periodic mo-
tion of Point 3, (ω,A) = (1.6, 4.4), has two slipping phases and a sticking
phase. An increase in ω to Point 4, (ω,A) = (1.8, 4.4), crosses the bifur-
cation curve Γc where a crossing-sliding bifurcation occurs. The periodic
motion of Point 4 has 2 slip phases alternated with two stick phases. A
new increase in ω brings about an adding-sliding bifurcation, crossing the
curve Γa. The orbit of Point 5 is completely contained in the region defined
by |vrel| ≤ 0 (see point 5, (ω,A) = (2, 4.4)).

4.8 Cusp bifurcation and coexistence of attractors

In this section we present a smooth cusp codimension-two bifurcation. As
can be seen in Fig. 4.13, from the codimension-two point B2, a cusp point,
two branches of fold bifurcation merge tangentially (which we shall denote
by Γf1 and Γf2). The resulting wedge divides the parameter plane into
two regions. In region 1, inside the wedge, there are three solutions (see
Fig. 4.14), two stable and one unstable, while in the other region, outside
the wedge, there is a single solution, which is stable.

Varying ω and crossing either Γf1 or Γf2 away from the cusp point we
find a nondegenerate fold bifurcation. However, if we approach the cusp
point from inside region 1, all three solutions merge together into a triple

root solution, see Fig. 4.14. Figures 4.14 (c)-(d) show the fold scenarios of
each curve Γf1 and Γf2.

By means of the simple cell-to-cell mapping method, a domain of at-
traction diagram is depicted in Fig. 4.15 for (A,ω) = (3.6, 1.067). We have
divided the phase space region into 500 × 500 cells to plot the scenario in
this point which is inside the wedge of the parameter space and therefore,
three fixed points are found. The three orbits are period one and have been
depicted in Fig. 4.15 (a). Black points represent the stable solutions and
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Figure 4.12: Phase space corresponding to: (a) Point 1, (b) Point 2, (c)
Point 3, (d) Point 4, (e) Point 5.

the green point is the unstable one.

Figure 4.15 (a) shows the different basins of attraction for the two sta-
ble solutions of Fig. 4.16. The yellow region yields the solution of Fig. 4.16
(a), and initial conditions from the dark red lead to the solution of Fig. 4.16
(b). The basins of attraction are separated by the stable invariant mani-
fold of the saddle-node solution. As can be seen such invariant manifold
seems continuous but does not appear to be continuously differentiable
because of the appearance of corners. In Fig. 4.15 (b) we have plotted
the number of iterates (transient times) of each cell before landing on one
of the stable cycles. In this picture we can see the global time behaviour
of the phase portrait, i.e., the time needed for each initial condition to
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Figure 4.13: Two-parameter bifurcation diagram showing the cusp bifur-
cation.
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Figure 4.14: Different scenarios of the map P 2
trans: (a) Region 1 (b) Cusp

point (c) Curve Γf1 (d) Curve Γf2.

reach its attractor. For example, we can observe that the points near to
the mentioned invariant manifold take more than 60 iterations (dark red)
to stabilize while the periodic orbits have zero transient time (dark blue).

4.9 Conclusions

In this chapter we have investigated a dry friction oscillator using a mea-
sured friction characteristic introduced in [125]. This system is affected
by sliding bifurcations and an example of each of the four possible cases
(crossing-sliding, grazing-sliding, switching-sliding and adding-sliding) has
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Figure 4.15: Domain of attraction using a cell-to-cell mapping method for
(A,ω) = (3.6, 1.067) (a) Basins of attraction (b) Transient time.
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Figure 4.16: Coexistence of periodic solutions for (A,ω) = (3.6, 1.067)
with initial conditions (a) (x10, x20) = (−0.685, 3.01) (b) (x10, x20) =
(−0.295, 0.99) (c) (x10, x20) = (−0.445, 1.27).

been identified.

Codimension-two bifurcations have been also calculated. Firstly, a de-
generate switching-sliding bifurcation has been shown. Furthermore, a smooth
cusp codimension-two bifurcation has also been presented. Coexistence of
two stable solutions and an unstable solution in the parameter region have
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been depicted in a domain of attraction diagram. The stable invariant man-
ifold of the saddle-node point splits the basins of attraction of each stable
solution. This invariant manifold is continuous but not differentiable, i.e.

a nonsmooth invariant manifold. The study of this kind of invariant mani-
folds, that are typically found in nonsmooth systems, is a subject of further
research.
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