CHAPTER 5

Bifurcations in a two-block stick-slip
system

“The most exciting phrase to hear in science, the one that heralds new
discoveries, is not Fureka! but That’s funny ... 7.

Isaac Asimov (1920-1992)

In this chapter the dynamic behaviour of the two-block Burridge-Knopoff
model for earthquake simulations is investigated. Previous numerical stud-
ies investigated in [113] verified that, with a friction force of Coulomb
type (that is the dynamic friction coefficient being constant), the system
presents only periodic behaviour. We will show that chaotic regions can
be observed in a symmetric configuration even if a Coulomb friction is
considered with the relaxation of the assumption that the driving block
does not move during the slipping events. Furthermore, we will study the
behaviour of the system with asymmetric configuration. Different periodic
solutions and regions of chaos can be observed varying the asymmetry of
the system. With respect to the bifurcation point of view, this system can
exhibit smooth and discontinuity-induced bifurcations as we will present
in this chapter.

5.1 Introduction

Along the Earth’s plate boundaries, such as the San Andreas fault (see
Fig. 5.1), segments exist where no large earthquakes have occurred for
long intervals of time. Scientists term these segments ”seismic gaps” and,
in general, have been successful in forecasting the time when some of the
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Figure 5.1: San Andreas fault

seismic gaps will produce large earthquakes. Geologic studies show that
over the past 1500 years large earthquakes have occurred at about 150-year
intervals on the southern San Andreas fault. As the last large earthquake
on the southern San Andreas occurred in 1857, that section of the fault is
considered a likely location for an earthquake within the next few decades.

Therefore, deterministic models of earthquake faults are important for
understanding the mechanism for their observed behaviour in nature, such
as Gutenberg-Richter scaling. These models are used with the hope of
simulating seismic patterns, and observing such features as a reasonable
frequency-magnitude relationship. To address the spatial aspect of seismic-
ity patterns, Burridge and Knopoff [26] (1967) studied (experimentally and
numerically) a one-dimensional chain of blocks connected by springs. Since
this work, several papers have investigated the behaviour of the Burridge-
Knopoff model for earthquakes using similar models, different friction laws,
elastic properties, initial states, and loading conditions.

The occurrence of an earthquake involves the formation of a pressure
bond between adjacent crustal blocks, which allows for a build up of elastic
strain potential energy. Once the potential energy exceeds the strength of
the pressure bond, brittle fracture occurs to release the strain, and the po-
tential energy is converted into kinetic energy. When a slider-block system
to model faults is used, it is usually assumed that each block represents a
segment of a fault and the system can be considered analog to an inter-
acting system of faults. Then, the extension of the springs is analogous to
the elastic strain in the rock adjacent to a fault and the slip is analogous
to an earthquake on a fault.
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5. Bifurcations in a two-block stick-slip system

In this chapter we have simulated a two-block mass-spring model with
static/dynamic friction. The papers concerned with the seismological in-
terpretation of the model focus mainly on chaotic attractors, the only at-
tractors that are of relevance to seismology. With respect to the chaotic
properties of the model, we are aware of the numerical studies performed
by Nussbaum and Ruina [113], Huang and Turcotte [85], Lacorata and
Paladin [119], and Sousa [134] using different assumptions. In [113] the
following assumptions are considered:

1. The driver is assumed to move slowly, so slowly that it may be con-
sidered stationary during any block motion (as in [26]). Therefore,
the driving block does not move during the slipping events.

2. A symmetric model is considered (3 = 1). Therefore, the friction
forces in both blocks are the same.

3. A Coulomb friction force is assumed, i.e., static/dynamic friction
forces are considered constants.

4. Slip occurs in only one direction (block velocities are never positive
during slip), i.e., back-slip is prevented.

Under these assumptions, it was verified in [113] that the system presents
only periodic behaviour. In [85] a chaotic behaviour was found with the
presence of an asymmetry in the system but considering a velocity weak-
ening friction force. In particular, [85] considered the friction force in one
block to be different from the friction force in the other block. Using the
same friction law, Lacorata and Paladin [119] showed also a chaotic be-
haviour in an asymmetric model but with assumption 1 rejected. Further-
more, Sousa [134] showed that the two-block Burridge-Knopoff model given
in [85] in a symmetric configuration is also chaotic but also rejecting the
assumption 1. However, there is no evidence of chaos using a Coulomb
friction force law, as in [113], in the symmetric model. In this chapter,
we will show that the symmetric configuration has also chaotic regions if
assumption 1 is not considered.

Galvanetto [76] highlighted the possible consequences of considering
the assumption of symmetry (assumption 2) frequently made in the pa-
pers that are more seismologically oriented. In particular, in his opinion
asymmetric systems are preferable in order to simulate more closely the
real behaviour of earthquake faults. Therefore, in this work we will present
the different solutions varying the asymmetry parameter in the model used
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Figure 5.2: Illustration of the two blocks model with a constant velocity
driver.

by [113]. Indeed, we have simulated a “brute-force” two-dimensional bifur-
cation diagram in order to see the different attractors.

As it is outlined also in [76], chaotic attractors are not the only attrac-
tors of Burridge-Knopoff systems but in seismological literature there is
almost no mention of periodic and quasi-periodic attractors. Indeed, the
two-block stick-slip system is an interesting example of nonsmooth sys-
tem and therefore it should be better investigated from a bifurcation point
of view. In [71, 72, 74, 75], disregarding assumptions 1,2 and 4, different
smooth and nonsmooth bifurcations have been produced. In this chap-
ter, we will show that discontinuity-induced bifurcations (DIBs) are also
possible considering the model used in [113].

After describing the mechanical model in section 5.2, we will describe
the different analytical solutions depending on the state of each mass and
whether assumption 1 is considered or not. In section 5.4 a one-dimensional
map, which characterizes the system, is presented. In section 5.5 we will
show that chaotic regions can be present in a symmetric configuration if
we allow the driving block to move during the slipping events. A two-
dimension bifurcation diagram will be depicted in section 5.6 in order to
show the different behaviours exhibited when the asymmetry parameter is
varied. Furthermore, some smooth and sliding bifurcations are explained
in section 5.7. Finally, we summarize our conclusions in section 5.8.
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5.2 The Mechanical Model

The nonsmooth mechanical model usually presented in the papers that
are more seismologically oriented is illustrated in Fig. 5.2. Such model
considers of two blocks of masses m; and msy attached to each other by
a spring with constant k. and attached to a constant velocity driver with
velocity v, by springs with constants ki and ko. The position coordinates
for each block, referred to the constant velocity driver, are y; and y,. The
surface between the blocks and the belt is rough and it exerts a dry friction
force on each block so that they stick to the surface until the point where
the elastic forces due to the springs exceed the maximum static force. At
this point the block starts slipping and the slipping motion will continue to
the point were the velocity of the block will be equal to that of the driver
and the elastic forces will be equilibrated by the static friction force. In
this chapter no back-slip is considered and the dynamic of the system is
described in what follows.

During a stick phase the displacement of a block is given as a function
of time:

yi(t) = yi(to) +v - (t —to), 1=1,2 (5.1)

where y;(to) is the initial displacement. The blocks can stick only if the
following relations are true:

kiyi + ke(y1 — y2) < fs1, (5.2)

koyo + kc(y2 — 1) < fs2, (5.3)

where f4; is the maximum static friction force acting on block i. The stick
phase will end when one of the following conditions

kiyi + ke(y1 — y2) = fs1, (5.4)

koys + ke(y2 — y1) = fs2 (5.5)

is satisfied. If the first condition is verified then block 1 will start slipping,
whereas the second condition indicates the impending slip condition for
the block 2. At one of these points a slip phase will begin according to the
following equations of motion:

mgi(t) + k1yi(t) + ke(y1(t) — y2(t)) = fra(tr — v), (5.6)
madia(t) + kaya(t) + ke(y2(t) — y1(t)) = fra(y2 — v), (5.7)
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where fr;(Z; — v) is the kinetic friction force, which is a function of the
relative velocity of the block with respect to the driver. In general, the
two blocks are not slipping at the same time and therefore there will be
intervals of time in which the motion of one block is described by equation
(5.1) and the motion of the other by equation (5.6) or (5.7). For that
reason the phase space dimension of the system may be 2 if both blocks
are stopped, 3 when one block is slipping and the other is sticking, and 4
when both blocks are slipping.

In order to simplify the model further, we assume that mi = mo = m,
and k1 = k9 = k. Let us consider the dimensionless form of the above
system given by the following equations:

Slip phases:

}/1(7') +Y1(T) + Ot(Yl(T) — YQ(T)) = Fkl(Yl — Vd'r’)’ (58)

Vo (7) + Ya(7) + a(Ya(r) = Yi(1)) = Fia(Ya — V), (5.9)
Slipping conditions:

Y1 +a(Ys —Ye) =1 (block one), (5.10)
Yo+ a(Yo—Yy) =03 (block two), (5.11)
Stick phase:
Yi(r) =Yi(r,) + Var(T — 1), i=1,2. (5.12)
_fo ke vy _kui __ |k _ vVkm ;
where 5 = o= Y; = fu T = Vo Vir = T Notice that

the system is symmetric if g = 1.

Inequalities Y7 + (Y1 —Ys) < 1 and Yo+ a(Y2 —Y7) < (3 define an open
convex region in the space of the displacement variables (Y7, Y3) as shown
in Fig. 5.3. Such region is the locus where both blocks are simultaneously
sticking and will be called the global stick phase locus.

The friction force characteristic may assume different forms, the most
common of which is the Coulomb friction that, in dimensionless terms, is
given by the following expression:

1 ifVy -V =0

we Vg —Y >0 (5.13)

Fe(Y —Vg) = {

where 0 < pup < 11is a constant and therefore the kinetic friction is a con-
stant force opposing the relative motion between block and driver, smaller
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Y, +o(Y,=Y, )=
2oV Y)%8 Y ra(Y,-Y,)=1

Figure 5.3: The open convex region of the plane limited by the blue lines
is the global stick phase locus of the system.

in magnitude than the maximum static friction force Fy ( Fy = 1 in di-
mensionless terms). Note that for our system pgo = B .

Another commonly used friction characteristic [85, 134, 32| is given by
the velocity weakening friction force:

1

F}. Y—Vdr =
( ) 1+’Y—Vdr|

(5.14)

In this chapter we will use the Coulomb friction characteristic in order
to show that using this friction law it is possible to find different complex
behaviours as well of those that have been reported in the literature with
a velocity weaking friction force.

5.3 Dynamics of the model

The dynamics of the model can be splitted in four different states depend-
ing on which block is slipping. In this section, we will give the analytical
solution of each state with and without considering the assumption 1 given
in 5.1. Let us denote ¢ = ﬁ in what follows. Then, we can consider the
following states:

e STATE 1: This state is when both masses are stopped. Then the
system is ruled by the analytical solutions given in (5.12). As both
masses are stopped the system will remain in this state until one of
them begin its movement, i.e., until condition (5.10) or (5.11) hold.
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e STATE 2: This state appears when the second block is slipping while
the first one is stopped. The system is determined by the following
analytical solution:

Yi(r) = Yio + Vi - 7, (5.15)
' aVar | .
Y( ) . Oé(YlO + VdrT) + Bl N (Y20 — . +da)sln((\/l—|——a) . 7—)_
) Vita
(Y0 + Bk — Yao(1 4+ @) cos((V1 + ) - 7)
1+«

(5.16)

where Y10 = Yl(t()), Y20 = Yg(to), and YQO = Yg(to) are the initial
conditions in this state. In this case, the change of state happens if
the first mass starts to move or the second one stops. Therefore in
this state, the conditions for the change of state are:

Yi(7) + a(Yi(r) = Ya(r)) = 1 (5.17)
W2 ) = Var (5.18)

If the first equation is satisfied, the first block will start to move,
and if the second equation is satisfied, the second mass will stop
(therefore we change to the state 1).

Note that V. = 0 in equations (5.15), (5.16) and (5.18) of this state
if the assumption 1, introduced in section 5.1, is considered.

e STATE 3: This state correspond to both masses slipping. The system
is ruled by these analytical solutions:

+ ( — (14 0) + (Yio + Yoo) - ¢) -cos(7)+

+ (Ylo—i-YQO).qg.Sin(m_T)—i_

V142«
N (B—1+(1+2a) ¢-(Yio— Ya)) -cos(\/1—|—2a-7')]
1+ 2a

(5.19)

110 Ivan Merillas Santos



5. Bifurcations in a two-block stick-slip system

Yalr) = P D o [(CFio o+ o) -6 sin(r) ¢
+ (= (14 8) + (Y10 + Yag) - ¢) - cos(1)—

(Yip + Yaq) - ¢ - sin(v/1 + 2a - 7)

V142«
B (B—=1+(1+2a) ¢ (Y10 — Ya0)) -cos(\/1+204-7)]
14 2«

(5.20)

where Y10 = }q(to), Y20 = Yg(to), }/10 = }/1(750), and Y20 = Yg(to) are
the initial conditions in this state. As both masses are slipping the
system will remain in this state until one of them stops. The first
mass stops when the equation:

dY;
L) =V, (5.21)
dr

holds. For the another block the condition is:
dYs
222 (1) = Vg (5.22)
dr

e STATE 4: The first block is slipping while the second one is stopped.
The analytical solutions are given by

y anr .
_ Yo+ Var) 4 | 07 737V +a) )

it 1+a + Jita -
(Y + p — Yio(1 +a)) cos((VI +a) - 7)
e (5.23)
Yo(r) =Yoo + Vi - 7 (5.24)

with the following initial conditions: Y19 = Y7 (to), Y20 = Ya(to), and
Yip = Yl(to). In this case, the change of state happens if the second
mass starts to move or the first one stops. Therefore in this state,
the conditions for the change of state are:

) =i (5.25)
Yo(r) + a(Ya(r) = Yi(7)) = (5.26)
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Figure 5.4: Differences between considering or preventing assumption 1
(a=3,8=1, ¢ =125 and Vg = 0.025): (a) Periodic orbit considering
assumption 1; (b) Period orbit being prevented assumption 1.

If the second equation is satisfied, the second block will start to move
(therefore we change to state 3), and if the first equation is satisfied,
the first mass will stop (therefore we change to the state 1).

Note that Vy = 0 in the equations (5.23), (5.24) and (5.25) of this
state if the assumption 1, introduced in section 5.1, is considered.

Notice that only during state 2 and 4 the assumption 1 has conse-
quences. In Fig. 5.4 (a),(b) we have simulated a periodic orbit with and
without considering assumption 1 under the same parameter values. As
can be observed, the shape of the orbit is different in both cases, although
the periodicity is the same. However, we will show later that structural
changes can be also possible. States 1, 2 and 4 are depicted by black, pink
and red lines respectively. In Fig. 5.4 (a) the assumption 1 is considered
and both pink and red lines are straight because V. = 0 in the solution.

5.4 One-dimensional event map

The two-block stick-slip system can be studied using a one-dimensional
map. The one-dimensional map was first introduced in the seismological
field [113] and for that reason it is called the event-map, since each iteration
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Event map

Figure 5.5: Illustration of the one-dimensional event map.

corresponds to a seismic event (earthquake) of the stick-slip model. As we
have mentioned before the system has dimension 2 when both blocks are
simultaneously sticking (state 1). Such phase of motion is usually called
global stick phase whereas a slip phase is defined by the slipping of at least
one block. During a global sticking phase (GSP) the relative displacement
between the two blocks is fixed; therefore the GSP may be characterised
by the constant value of a variable d:

d=Y,-Y;

The GSP will finish when one of the two blocks starts slipping. If V.
is sufficiently small [70, 74] the system will reach again the state 1 after
a while. The new GSP, in general, will be characterised by a value of the
relative displacement d different from the one assumed during the previous
GSP In this way a motion of the system generates an infinite sequence of

values of the variable d = dy,ds,...,dpm, ..., which can be interpreted as a
map expressing diy1 as function of dy:
dr1 = f(dy)

The map is well defined if a GSP is always followed by another GSP In
some cases the steady state motion has no GSP and therefore cannot be
represented by the 1-dim map, but these cases require driving velocities
higher than those used the literature. Moreover, the map is single valued
because a value of the variable d uniquely determines the initial conditions
at which one of the blocks will start slipping (see figure 5.5).

A periodic motion of period m exists if there is a value n € N where
dntm = dn. We denote such periodic orbit as m-periodic orbit. In a periodic
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motion the map is also periodic, whereas if a motion is not periodic it will
generate a non-periodic map. As can be observed, in Fig. 5.5 the event-map
is discontinuous. Therefore, this one-dimensional map is used to describe
nonsmooth bifurcations of the two-blocks model. We will show later that,
in order to find nonsmooth bifurcations, it is specially interesting to study
the cases in which the discontinuity points coincide with steady states of
the map.

5.5 Chaos in a symmetric configuration

Using the event-map explained above we will show that chaotic solutions
can be also found in the symmetric model introduced by [113] by just
rejecting assumption 1. In Fig. 5.6 a bifurcation diagram for the event
map, (Yo — Y1), is plotted taking V. as the bifurcation parameter. Having
fixed an initial condition, successive 350 iterates of the event map are
taken, and to avoid the transient dynamics only the last 100 values dj are
plotted. This process is repeated for every discrete value of the bifurcation
parameter in the interval Vg € [0.015,0.025]. We have considered the
following parameter values: a = 2.9,3 =1,¢ = 1.25,dy = 0.02.

For Vg = 0.025, a stable 2-periodic orbit is initially found and con-
tinued until some value near 0.021. Then, a period-doubling bifurcation
occurs, and the stability of the 2-periodic orbit is lost in favour of the
4-periodic orbit which appears at this value. Decreasing the bifurcation
parameter V. a cascade of period-doublings is found until a chaotic zone
is reached. After reaching such zone several jumps in the chaotic region
occur for smaller values of V.. Finally, there is a jump from the chaotic
region to a 2-periodic orbit.

We have thus shown that chaotic attractors are also possible in a sym-
metric configuration using a Coulomb friction force law if assumption 1 is
not considered. However, as it is said in [76], the symmetric model appears
to be unlikely from a physical point of view and earthquake dynamics could
be probably better simulated by non-symmetric models. For this reason,
in the following section we will study our system under an asymmetric
configuration.

5.6 Observed behaviours in an asymmetric model

In order to study the behaviour of the system given by [113] in a asymmet-
ric configuration we have computed two-dimensional bifurcation diagrams.
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Figure 5.6: Bifurcation diagram

The bifurcation patterns will be obtained from different pairs of parame-
ters. In particular, we have chosen («, ) as varying parameters whereas
the parameter ¢ will be constant (¢ = 1.25).

The two-dimensional bifurcation diagrams shown in this section are
color-coded depending on the periodicity of the fixed points given by the
event-map corresponding to the point in the parameter space. Due to the
possibility of coexisting attractors, only one of them can be identified at
each point of the parameter space. Indeed, the diagrams are produced as
follows: first we give the extreme values of both varying parameters and an
initial condition is fixed. In particular, we have taken the system starting
in the state 1 and both initial positions equal to 0. Then, we compute
the periodicity of the limit cycle obtained for each point in the parameter
space. Finally, we assign a color depending on the periodicity. Notice that
there can exist some parameter points with high periodicity and in order to
simplify the diagram we plot chaos, quasiperiodicity and high periodicities
(> 16) with the same color (see Fig. 5.7).

Notice that the periodicity of the limit cycle has been computed using
the event map described in section 5.4. Therefore, we have considered as the
period the number of times that the limit cycle is in different states 1. This
implies that changes of periodicity can be due to smooth bifurcations or
discontinuity-induced bifurcations such as sliding bifurcations (see chapter
4 for further details).

Using such numerical considerations we have calculated a two-dimensional
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Figure 5.7: Two-dimensional bifurcation diagrams.

bifurcation diagram for the range « € [1,20] and 5 € [1,20] (see Fig. 5.7
(a)). Two main characteristics can be observed in this figure. Firstly, we
see that increasing 0 makes appear some regions with a higher periodicity.
This gives us the idea that systems with a high asymmetry have more com-
plexity. Secondly, we can distinguish a certain structure with respect to a.
Between o = 1.5 and o = 7.5 there is a region of different behaviours that
is repeated with a little vertical and horizontal expansion for higher values
of . This implies that all the information of this system is contained in
this region (see Fig. 5.7 (b)). Moreover, inside of such region a pattern can
be observed by varying f.

In Fig. 5.7 (b) a zoom of Fig. 5.7 (a) is depicted. It is also possible to
see several windows inside of different regions of periodicity where there
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0.3

Figure 5.8: Bifurcation diagram

are coexisting solutions.

Although different one-dimensional bifurcation curves can be distin-
guished in both pictures, it is necessary to check in detail such regions in
order to understand the bifurcation patterns better. In the next section we
will describe some different bifurcation scenarios found in the asymmetric
configuration.

5.7 Description of some bifurcations

As have been mentioned in section 5.1 the system under investigation can
exhibit both smooth and discontinuity-induced bifurcations. In this section
we will explain in detail some of the different observed behaviours presented
in section 5.6. Four different bifurcation scenarios varying the parameter
«a will be studied. They are two smooth bifurcations, a flip and a fold
bifurcation, and two sliding bifurcations, a crossing-sliding and a grazing-
sliding bifurcation.

In Fig. 5.8 a one-parameter bifurcation diagram is depicted for the
event-map. To calculate it we have used a brute-force method and the
parameters assume the following values: § = 2.5 and ¢ = 1.25, while « is
varied in the range [2.8, 4]. For each value of « an initial condition is taken
from the final state of the previous parameter value. Then, the system is
simulated during a certain time (400 changes of state) and we plot the
value of Y5 — Y] during a GSP (state 1) for the last 150 changes of state.
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As we have mentioned in previous chapters this method only finds stable
solutions. In the next subsections will explain some different bifurcation
scenarios that can be seen in such bifurcation diagram. Firstly, we will show
two smooth bifurcations, a period doubling and a saddle-node bifurcation.
Then, we will show two sliding bifurcations, namely a crossing-sliding and
a grazing-sliding bifurcation.

5.7.1 Flip bifurcation

In the range 3 < a < 3.2 the system dynamics seem to undergo a period
doubling cascade which is clearly described and confirmed by the use of
the one-dimensional event-map. In Fig. 5.9 (a) the second iterated map is
shown to have two stable attractors and an unstable fixed point. As the
value of « increases, a period-doubling bifurcation occurs and the shape of
the fourth iterated map changes in such a way that four stable attractors
separated by two unstable points appear. Then, this periodic orbit loses
stability in a period-doubling bifurcation for higher values of a and it
follows a cascade of period-doublings until an apparently chaotic zone is
reached.

5.7.2 Fold bifurcation

There is a fold bifurcation of the sixth iterated map for @ ~ 3.215 and
a =~ 3.38. Figure 5.10 (a) shows f% for a = 3.19. For such value of « there
is only an unstable fixed point out of the range shown in Fig. 5.10 (a). As
we increase « the shape of the sixth iterated map changes and other six
points of the map intersect with the bisection line for o« &~ 3.215. Then,
a further increase of « gives six stable fixed points and six unstable fixed
points (see Fig. 5.10 (b)) together with the unstable fixed point previously
mentioned. Such stable and unstable period orbits disappear in another
fold bifurcation for o ~ 3.38. Indeed, if we decrease also the parameter
we find a codimension-two cusp bifurcation as in the previous chapter.

This system has also discontinuity-induced bifurcations such as slid-
ing bifurcations. For o &~ 3.855 there is a grazing-sliding bifurcation (see
Fig. 5.8). In Fig. 5.11 (a)-(b) the event map for o = 3.85 and o = 3.86 is
depicted. The stable periodic orbit disappears when « is increased, due to
the discontinuity in the event-map. In what follows we will show another
grazing-sliding bifurcation and therefore, we will not explain the present
case in more detail.
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Figure 5.9: Flip bifurcation:
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In order to show two sliding bifurcations in detail we have calculated an-
other one-dimensional bifurcation diagram for the event-map, see Fig. 5.12,
considering the following parameters: § = 3.2 and ¢ = 1.25, while « is var-
ied in the range [5, 6.5]. We have also used the brute-force method but in
this case we have varied « in both directions, i.e. we have firstly calculated
the bifurcation diagram increasing the « parameter value from 5 to 6.5
and after that decreasing it from 6.5 to 5.
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Figure 5.10: Fold bifurcation: (a) Sixth iterated map for @ = 3.19 and
(b) Sixth iterated map for oo = 3.2
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Figure 5.11: Grazing-sliding bifurcation: (a) Fourth iterated map for o =
3.85, and (b) Fourth iterated map for ov = 3.86.
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Figure 5.12: Bifurcation diagram

5.7.3 Crossing-sliding bifurcation

For a = 5 there is a periodic orbit with two different GSP (a periodic
motion of period 2 for the event-map). As we increase « the dynamical
system undergoes to a crossing-sliding bifurcation. For « ~ 5.6 one of
the GSP disappears and therefore, the periodic motion for the event-map
changes the periodicity. We can better observe such sliding bifurcation
plotting the difference between the relative velocities of both masses (see
Fig. 5.13). The periodic orbit intersects the boundary of the sliding region
and one of the GSP is removed.

5.7.4 Grazing-sliding bifurcation

There is a coexistence of solutions for values of o between 5.6 and 5.7.
We have the periodic orbit mentioned before and another period orbit
with three different GSP. For a =~ 5.7 the periodic orbit with one GSP
undergoes a grazing-sliding bifurcation. Such bifurcation is due to the fact
that the relative velocity of the mass 1 grazes the boundary of the sliding
region (relative velocity equal to zero). In Figure 5.14 the evolution in time
of the relative velocity of the mass 1 is depicted, just before that bifurcation
occurs. For further increases of « the stable periodic orbit disappears, and
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Figure 5.13: Crossing-sliding bifurcation: Difference between the relative
velocities of both masses (a) o = 5.58, and (b) a = 5.62.

therefore, the dynamics is governed by the other stable attractor. Notice
also that the stable periodic orbit corresponding to the periodic orbit with
period 3 in the event-map undergoes a fold bifurcation for o ~ 5.6.

0.1

dy

Figure 5.14: Grazing-sliding bifurcation: Relative velocities of mass 1 for
a = 5.69.
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5.8 Conclusions

We have presented a numerical study of a two-block Burridge-Knopoff
model considering the model introduced in [113]. A period-doubling cas-
cade route to chaos has been found in a symmetric configuration and
therefore, we have proved that chaotic regions can be observed even if a
Coulomb friction is considered. A two-dimension bifurcation diagram gives
an idea of the complexity of our system in an asymmetric configuration.
Furthermore, analysing in more detail some regions we have found smooth
and discontinuity-induced bifurcations. We have presented smooth bifur-
cations, a period-doubling and a saddle-node, and two sliding bifurcations,
a crossing-sliding and a grazing-sliding.
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