CHAPTER 6

SICONOS Platform

“Part of the inhumanity of the computer is that,
once it is competently programmed and working smoothly,
it 1s completely honest.”

Isaac AsiMov (1920-1992)

In this chapter the SICONOS software, dedicated to simulation of non-
smooth dynamical systems (NSDS), is presented. After motivating the de-
velopment of this tool, we give a overview of the SICONOS software and
the way NSDS are modeled and simulated within the platform. Routines
for analysis (stability, bifurcations, invariant manifolds, ...) of NSDS im-
plemented in the platform are explained in detail. To conclude, several
representative samples are shown in order to illustrate the SICONOS plat-
form capabilities.

6.1 Introduction and motivation

SICONOS software development is part of an European project involving
different research teams (more details on http://siconos.inrialpes.fr) and
is dedicated to modeling, simulation, analysis and control of nonsmooth
dynamical systems (NSDS). Basically, the SICONOS platform aims at pro-
viding a general and common tool for NSDS present in various scientific
fields as applied mathematics, electrical networks, mechanics, robotics, etc.
Currently, researchers in different areas of engineering and applied science
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6. SICONOS Platform

often write their own numerical codes for dealing with systems charac-
terised by nonsmooth nonlinearities. These codes are typically specific to
the system of interest. The SICONOS platform will try to fill this gap
creating a new software for solving nonsmooth problems under a common
framework.

The scarcity of theoretical results connected to the characterisation of
nonsmooth dynamics has made impossible the development of a general
simulation tool for NSDS similar to those available for their smooth coun-
terpart. For smooth systems, software packages such as MATLAB, SCILAB,
SIMULINK, DsToOL, CONTENT and AUTO97 (and its more recent ver-
sion AUTO2000) allow the time-simulation of smooth systems as well as
the continuation of trajectories and their bifurcations. Up to now, only a
recently numerical tool called SLIDECONT, an AUTQ97 driver for sliding
bifurcation analysis of Filippov systems, has been developed. SLIDECONT
has the ability to continue equilibria, limit cycles, and their sliding bifur-
cations but to date it still lacks the capability to perform direct numerical
simulations of Filippov systems and automatically switch between sliding
and nonsliding motions. Moreover, this tool is only useful for Filippov sys-
tems and therefore mechanical systems with impact and other NSDS are
not included.

In parallel to numerical analysis studies of NSDS, a few pieces of soft-
ware incorporating specific nonsmooth tools for complementarity systems
have been developed. The existing software developed either for hybrid
systems (MODELLICA, MatLab/Simulink/Stateflow, Dymola, etc.) or
mechanical systems (Adams, Mechanica, Simpack) do not include specific
tools for the simulation of complementarity systems (like LCP or NCP
solvers, state re-initialization rules, and/or event detection modules), or
propose inadequate models (like contact models in mechanics with hardly
identifiable parameters or contact models yielding odd results like con-
tact forces with the wrong sign during the course of the integration), to
say nothing of how accumulations of state jumps (Zeno behaviour) are
treated numerically. Consequently potential users of nonsmooth mecha-
nical or electrical systems with state reinitializations and unilateral con-
straints, most often either have to develop their own code, or to adapt
existing software not dedicated to their application. Except for very simple
cases (one degree of freedom mechanical systems with separated impacts),
such tasks rapidly grow cumbersome and unreliable.

None of the codes mentioned above includes routines for continuation
of the trajectories and their bifurcations. Issues such as the structural
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stability of these systems as well as their robustness to parameter varia-
tions and external disturbances are therefore difficult to assess numerically.
Consequently there is an urgent need for appropriate numerical simulation
packages, both for academic use in control, robotics, civil and mechanical
engineering departments, and for industrial use for virtual prototyping and
testing of complementarity systems of relevance in applications.

This chapter is devoted to present an overview of the SICONOS soft-
ware and the capacities developed until now. The chapter is organized as
follows. An overview of the software, the different NSDS models and the
simulation techniques considered in the platform are described in section
2. Section 3 is devoted to the presentation of the tools for numerical anal-
ysis, such as calculations of basins of attraction and bifurcation diagrams,
implemented in the software. Finally, three specific examples of nonsmooth
problems, solved with the SICONOS platform, are briefly presented in sec-
tion 4. We study two electrical systems, a buck converter and a parallel
resonant converter (PRC), and a mechanical system, an impact oscillator,
in order to show the accuracy of the platform.

6.2 NSDS in SICONOS platform

6.2.1 Overview of SICONOS platform

The SICONOS platform is mainly dedicated to modeling and simu-
lation of NSDS. SICONOS is a free software, under GPL GNU license,
available on the Gforge web pages (http://siconos.gforge.inria.fr/) of the
project, where one can also find documentation, support and all that sort
of utilities. SICONOS is mainly composed in four parts: Front-End, Nu-
merics, Analysis and Kernel.

Front-End provides interfaces with some specific command-languages
such as PHYTON or SCILAB. This supplies more pleasant and easy-access
tools for users during pre and post treatment. The Numerics part holds
all low-level algorithms to compute basic well-identified problems (ordi-
nary differential equations, LCP, QP solvers, Blas-Lapack linear algebra
routines...). The Analysis part supplies a toolbox for analysis of NSDS as
stability, bifurcations, domains of attractions, etc. Finally, the Kernel is
the core of the software, providing high level description of the studied
system and numerical solving strategies. It is fully written in C++, and
is composed of several modules. The Utils module contains tools, mainly
to handle classical objects such as matrices or vectors. The Input-Output
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module is concerned with objects for data management in XML format,
thanks to the libxml2 library. Finally, a plugin system is also available, es-
sentially to allow users to provide his own computation methods for some
specific functions (vector fields of the dynamical system, mass, viscosity
matrix,...) without having to re-compile the whole platform.

6.2.2 NSDS modeling in SICONOS platform

As has been explained during this thesis, a nonsmooth dynamical system

is a set of dynamical systems that interact altogether in a nonsmooth
way. Therefore, three objects are mainly needed: the Dynamical System,
the Relations between constrained variables and state variables, and the
definition of the Nonsmooth Law between the constrained variables.

The role of the Kernel modeling part is to provide tools for these sys-
tems description. Main objects are the above mentioned DynamicalSystem,
Relation and NonSmoothLaw, both embedded in Iteraction. In the following
paragraphs, the types of systems, relations and laws implemented in the
SICONOS software will be described in more detail.

6.2.2.1 Dynamical Systems

The most general case available in the platform is a first order system of
the form

T = f(x,2,t) + T(z)u(x,z,t) +r (6.1)

where r is the nonsmooth part (typically contact forces for mechanical
systems). The terms T'u introduce the control variable into the system.

All other dynamical systems in the software are derivations from the
one above. They are:

e Linear Dynamical Systems:

& = A(t)z + Tu(t) + b(t) + 7 (6.2)

e Lagrangian (second order) systems, which usually appear in
mechanical problems:

M(q)q + C(Q7 Q) = Fint(Qa q.a t) + Femt(t) +r (63)

where g denotes the generalized coordinates, M the mass matrix, C'
the nonlinear inertia operator, Fj,; the internal nonlinear forces and
F..; the external forces depending only on time.
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e Lagrangian Linear Time Invariant systems:
Mq.+cq+Kq:Fewt(t)+T (64)

where C' and K are respectively the classical viscosity and stiffness
matrices.

The dimension of the state vector can range from a few degrees of
freedom to more than several hundred thousand.

6.2.2.2 Relations

In a general way, the dynamical system is completed by a set of nonsmooth
laws. The set of such variables, denoted by y, on which we apply the
constraints, depends, in a very general way, of the state vector x, the time
t and possibly the force r:

y = h(z,r1t) (6.5)

In the same way, we have to specify the relation between r, the force due
to the constraints, and A\ (X is associated to y through a nonsmooth law):

r=g(x,\t) (6.6)
Any other relation is derived from this general one. Possible cases are:

e Linear Time Invariant Case. In the linear time invariant case the
relations are directly given by matrices defined by:

y=Czx+ Fu+ D\ +e, (6.7)
r=DB\+a (6.8)

e Lagrangian system. In Lagrangian systems, the structure of these
relations is very particular and we assume that they can be written

| v = h(a). (6.9)
i = H()id (6.10)
r=H(q)\ (6.11)
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e Lagrangian Linear system. We can also consider the linear case

such as
y=HTq+0, (6.12)
j=HT, (6.13)
r=H\ (6.14)

which can be stated from the beginning or derived by a linearization
procedure of (6.9).

6.2.2.3 NonSmooth Laws

Several nonsmooth laws may be formulated in the SICONOS platform.
The different laws are:

e Complementarity condition or unilateral contact:

0<ylA>0 (6.15)
e Newton impact law:
if yt)=0, 0<y@t")+eyt™) LA>0 (6.16)
e Relay
{5203 Sonty 617

e Unilateral contact and Coulomb’s Friction, y = [y, y¢]T, A = [An, Ae]T,
0<yn LA >0

Yt # 0, A = —pApsign(ye)

e Piece-wise linear relations associated to saturation, relay with dead
zone, etc.
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6.2.3 Simulation techniques in SICONOS platform

A first step towards understanding dynamics of nonsmooth transitions is
often to perform direct numerical simulations, where it is of great impor-
tance that the time and location of any nonsmooth events are resolved as
accurately as possible. This idea can be compared with an alternative one
for simulating nonsmooth systems, which is to recast the nonsmoothness in
terms of a complementarity formulation. Then one can use time stepping
methods accompanied with nonsmooth problems (NSP) solvers to simu-
late the systems without the need for accurate event detection. That is,
the solver can only note that one or more events have occured during a
time step without finding the actual event time and location. Such meth-
ods have been proven to be effective in simulating mechanical systems with
a large number of constraints. However, they suffer from the disadvantage
that they are typically only low-order algorithms and nonsmooth events
can be lost. Another strategy to simulate nonsmooth systems, that has
been adopted in different papers [], is to approach the non-smooth system
by a smooth one. The dynamics of the resulting approximate system is
then governed by differential equations with sufficient smoothness to be
handled through standard numerical techniques. However, a drawback of
this method is that an accurate simulation requires the use of very stiff
approximate laws. This results a long time simulation because the time-
stepping procedures have to resort to a very small step-length. Moreover,
the effect of the artificial modifications may blur the simulation results.

For the time being, time stepping is the only method implemented in
the SICONOS platform together with nonsmooth problem solvers to sim-
ulate the systems and Moreau time-stepping is the only available strategy.
Several strategies as Adams or Lsodar will be available in the future as
well as event-driven squemes. The nonsmooth problems solvers available
in SICONOS software can be classify as follows:

e Linear Complementarity Problem solvers. The available solvers are
Lemke method, Lemke lexicographic method, Latin method, Non-
Smooth Newton method, Non Linear Gauss-Seidel method and Con-
jugated Projected Gradient method.

e Primal relay problems solvers. The only available solver use a Latin
method.

e Primal resolution of contact problems with friction. There are several
algorithms depending on the dimension of the problem.
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e Resolution of problems with impacts. A Newton impact law is ap-
plied.

6.3 Routines for analysis in SICONOS

The numerical tools for the analysis of NSDS implemented in the SICONOS
software until now are aimed to the calculations of bifurcation diagrams
and domains of attraction. The numerical algorithms presented in this sec-
tion have been partially developed during my stages at the University of
Bristol (England) and INRIA Rhone-Alpes (France), with the collabora-
tion of Petri Piiroinen and Franck Pérignon.

6.3.1 Domain of attraction routines

In order to get a complete global analysis for non-smooth dynamical sys-

tems we need to give the entire phase portrait, with attractors, their basins
of attraction, invariant manifolds, unstable limit sets, etc. Basically, there
are two different methods to simulate domains of attraction (DOA), namely
the brute force method and the cell mapping method. The method of brute
force consists in trying a large number of initial conditions given by the
region of interest and watching what comes out. The drawback of this
method is the necessity of simulating a large number of initial conditions
for a long time in order to obtain interesting features. On the contrary, the
brute force method [84], technique of approximating a map using discrete
cells, reduces the amount of computational work needed to get a reason-
ably accurate picture of basins of attraction for dynamical systems. The
method implemented in the SICONOS platform is the cell mapping and
in the following part will be explained in detail.

6.3.1.1 Cell mapping method

The method of cell mapping for the study of dynamical systems was
developed by Hsu [84] who also provided a detailed mathematical foun-
dation for the technique. The dynamic of the system is formulated as a
mapping using, for example, a Poincaré map or a stroboscopic map. Then
the region of interest is divided into a cell grid and we map cells to cells
using the center point of each cell. We map each center point (initial con-
dition) under the point mapping and locate the cell containing the image.
This defines a cell mapping. A sketch is given in Figure 6.1. The cells have
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been numbered from left to right and from bottom to top, and the cell
number 0 has been given to the region outside of the cell grid, the so called
sink cell. The sink cell is conventionally mapped to itself. In Table 6.1 and
Table 6.2, it is shown part of the outputs for the global analysis of the cell
mapping. In the cell table, for each cell its image under the cell mapping is
given, which periodic cycle it will be attracted to (i.e. the group it belongs
to), the period of this attractor cycle and the number of iterates before
landing on the cycle. The group table records for each periodic cycle its
period and the cells that form each periodic cycle.

21 22 23 24 25
(@

7 10
/6 i 9
s
/ 1 2 3 4 5
/|

0

Figure 6.1: Sketch of a cell mapping method.

Cell | Image | Group | Transient | Period
0 0 0 0 0
1 16 1 2 1
2 7 2 0 3
7 8 2 0 3
8 2 2 0 3
10 0 0 1 0
16 22 1 1 1
22 22 1 0 1
23 22 1 1 1

Table 6.1: The cell table

Ivan Merillas Santos 133



6. SICONOS Platform

Group | Period | Zero transient cells

0 0 0
1 1 22

2 3 2,7,8

Table 6.2: The group table

In the same way, the user can find an explanation of the cell mapping
method following the flowcharts given by figure 6.2.

6.3.1.2 Specifications

In this part we will describe all the tool specification that the user need to
provide in order to simulate DOAs with the SICONOS software. The stan-
dard cell-to-cell mapping algorithm have been implemented in PHYTON to
be used together with the SICONOS platform. Basically, inputs are the
same that the inputs required by the simulator except that the user has to
specify the following inputs (see flowchart in figure 6.3):

1. Functions defining the Poincaré surface (Poincaré map case) or time
T for sampling the flow (Stroboscopic map case).

2. Boundaries of the Poincaré surface (Poincaré map case) or the phase
space (Stroboscopic map case) where the initial conditions will be
taken.

3. Number of cells and their distribution:

e Cells uniformly distributed.
e The user provides the cell distribution.

e Random cells (Montecarlo method, ...).

4. Criterion to join disjoint cell cycles that represent the same attractor.

6.3.1.3 Output
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Figure 6.2: The main organization of Cell Mapping method.
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Figure 6.3: The main organization of Cell Mapping input data.

Output is divided in two parts. The first one is composed by two tables,
as the Table 6.1 and the Table 6.2. In these tables the user can find the
following data:

1. The cell table:

e Cell list. The numbered cells recorded in a list.

Image list. The image cell of every cell under the cell mapping.

Group list. The group which every cell belongs to (which perio-
dic cycle it will be attracted to).

Transient list. The number of iterates of every cell before landing
on the cycle.

e Period list. The period of the attractor cycle of every cell.
2. The group table:

e Group list. All the different groups.
e Period list. The period of each group.

e Zero transient cells. The cells that form each periodic cycle.

The other part is given by a graphical output. Each basin of attraction
and its periodic cycle is plotted with one different colour in a picture, see
example in Figure 6.4.
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11 11.5 12

Figure 6.4: Examples of the graphical output.

6.3.2 Bifurcation diagram routines

The changes of the phase portrait as one parameter is varied can be
a fundamental reason by which we are interested in studying one specific
dynamical system. This can be done by mean of bifurcation diagrams. Ba-
sically, there are two different approaches to constructing bifurcation dia-
grams, using “brute force” methods or using continuation methods. The
brute force method simulates the system for a certain time to watch what
comes out for every chosen parameter value. This method has the drawback
that long simulation times are generally necessary so that the transient dies
out. Another drawback is due to the fact that this method only can find
stable solutions, i.e. unstable solutions are not observable directly. How-
ever, using a continuation method, one can track unstable and stable solu-
tions varying a parameter and the amount of computational work needed
is reduced. Some tools that indicate whether a bifurcation point appear
are needed. Therefore, numerical algorithms for the automatic detection
of parameter tracing and branch switching at the bifurcations identified
during a numerical analysis of solutions of complementarity systems must
be implemented. However, the development of this numerical algorithms
are still under investigation. For this reason, the only tool implemented in
the SICONOS platform for the moment is the “brute force” method. In
the following part we will explain the brute force method in detail and how
is implemented in the SICONOS Platform.
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6.3.2.1 Bifurcation diagram using the brute force method

To simulate bifurcation diagrams using a brute force method the user has
to specify the region of interest that he wants to study. Once decided
that, a partition of the region must be created. Then, for every parameter
value a initial condition is chosen (there are several ways to do this, e.g.
fixing an initial condition, using random initial conditions, etc.). After
that, the system is simulated a certainly time to watch what comes out
for every chosen parameter value. An explanation of the program that
calculates bifurcation diagrams under one-parameter variation is given by
the flowchart in Figure 6.5.

There are some things to take into account. One of them is the time
that we simulate every initial condition. If we simulate for a long time
from a given initial condition, the motion can be close to an attractor or
not depending on the features of the attractor. Then we would need to
simulate so long to be sure that transients have died out.

Another thing that the user has to take into account is how to choose
the initial condition. Sometimes one can be confused because of the co-
existence of attractors. For example, if a fixed initial condition is chosen
for every parameter value, that initial condition can belong to the basin of
different attractors as the parameter value is varied. One example of that
can be seen in Figure 6.6.

The following possibilities for choosing initial conditions are imple-
mented:

e Fix an initial condition for every parameter value.

e Fix the initial condition for the first parameter value. After that, the
following initial conditions will be taken using the last value of the
previous simulation.

e Take random initial conditions for every parameter value.

e The user gives the initial condition for every parameter value.

6.3.2.2 Specifications

In this part we will describe all the data that the user needs to provide in
order to simulate DOAs with the SICONOS software. Basically, the inputs
are the same that the inputs required by the simulator except that the
user needs to specify the following extra items:
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Figure 6.5: Explanation of the bifurcation diagram program.
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Slip-Stick Beta=2.5 Fi=1.25

25 3 35 4 Alpha

Figure 6.6: Bifurcation diagrams: Difference between to take a fixed initial
condition (left picture) or a variable initial condition (right picture).

1. Functions defining the Poincaré surface (Poincaré map case) or time
T for sampling the flow (Stroboscopic map case)

2. The parameter or parameters under variation (depending on the
choice).

3. The interval of the parameters under variation.

4. Distribution of the parameters values in the interval. There are sev-
eral ways to do that:
e Parameters values uniformly distributed.
e The user provides the distribution.

e Random values (Montecarlo method, ...).
5. How to take the initial conditions:

e Fix an initial condition for every parameter value.

e Fix the initial condition for the first parameter value. After that,
the following initial conditions will be taken using the last value
of the previous simulation.

e Take random initial conditions for every parameter value.

e The user gives the initial condition for every parameter value.
6. Number of transient iterations.

7. Number of iterations after the transient.
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8. Criterion of convergence (parameter to identify points very closed).

In the flowchart shown in figure 6.7 it is possible to see an outline of
all the inputs.

‘ UNIFORMLY DISTRIBUTED‘ ‘ USER DISTRIBUTION ‘

PARAMETER VALUES excepling % %

INPUTS from2 t0 7 the parameter under variation DISTRIBUTION [—=>| RANDOM DISTRIBUTION
PARAMETER ERV. N

SIMULATOR INPUT <3 INTERVAL SPECIFICATION

SPECIFICATION

POINCARE MAP $ $ TRANSIENT ITERATIONS

——>| I"PARAMETER |3 | NUMBER OF ITERATIONS | =}

variation INPUT
ITERATIONS AFTER
TRANSIENT

STROBOSCOPIC MAP ? ?

INITIAL CONDITIONS
SPECIFICATION

; Jz

INITIAL CONDITION FIXED USER DISTRIBUTION
USING PREVIOUS SIMULATION | [ RANDOM CONFIGURATION

Figure 6.7: The main organization of Bifurcation input data.

it

MAPPING SPECIFICATION

I-

CRITERION OF CONVERGENCE

6.3.2.3 Output

Output is provided both graphically and by mean of a table. The ta-
ble shows all the parameter values and the period of the limit cycle (see
example in Table 6.3):

Parameter value o | Period

1.00 1
1.01 2

1.02 4

Table 6.3: Table of bifurcation diagram under one-parameter variation.

On the other hand, in the graphical output the user can visualize the
changes of the attractor when varying the chosen parameter (see example
in Figure 6.8):
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Figure 6.8: Example of the graphical output.

6.4 Benchmarks

6.4.1 Buck converter

As first example we have simulated a DC-DC buck converter whose out-
put voltage is controlled by a PWM with natural sampling and constant
frequency using the framework of linear complementarity systems (LCS) in
the SICONOS software. This circuit is one of the simplest but most useful
power converters, a chopper circuit that converts a dc input to a dc output
at a lower voltage (many switched mode power supplies employ circuits
closely related to it). An application of current importance is conversion
of the standard 5V dc supply used in computers to the 3.3V needed by
a Pentium CPU chip. A buck converter for this purpose can achieve a
practical efficiency of 92%, whereas a linear regulator would be only 66%
efficient, producing six times as much waste heat. Although this example
is at a low power level, buck converters are also used at several kilowatts.

The circuit we study is of second order and its block diagram is shown
in Fig 6.9. We assume throughout that the components in the circuit are
ideal. The comparator A, has infinite gain, the switch S has zero on, and
infinite off resistance, and can switch instantly. During the interval when
switch S is on, the input provides energy to the load as well as to the
inductor. During the interval when switch S is off, the inductor current
transfers some of its stored energy to the load. One of the methods for
controlling the output voltage employs switching at a constant frequency
(hence, a constant switching time period T" = to, + toff), and adjusting
the on-duration of the switch to control the average output voltage. In this
method, called pulsewidth modulation (PWM) switching, the switch duty
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Figure 6.9: Buck converter diagram

ratio d, which is defined as the ratio of the on-duration to the switching
time period, is varied. Discontinuous conduction mode is allowed as well.
Considering that the linear amplifier A; has gain a, we can write

Uco(t) =a- (U(t) - V;”ef)

Then, both v., and vrqmp, the voltage of the ramp, are applied to
the comparator, and every time the output difference changes its sign the
position of the switch S is commuted in such a way that S is open when
the control voltage exceeds the ramp voltage; otherwise S is closed.

6.4.1.1 Modeling

The general form of an LCP is given by

t = Ax+ Bu+ FE,
y = Cx+ Du+F,

with € R™. Here y, u are p pairs of complementarity variables
0<ylu>0,
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and A, B, C, D, FE and F are (constant) matrices and vector of suitable
dimensions.

For each switch position of the buck converter we obtain an LCS given
by

S closed: veo(t) < Vpamp(t)

Liy = —x9+ Vi,
Cig = !
To = T1— §$27
Ty = Z.D7

0<ip L wp>0,

S open: Ueo(t) > Vramp(t)

Li’l = —T2 —Up,
. 1
Cl‘g = T — El‘g,

r1 = 1p,

0<i:p 1 wvp=>0.

where 1 = i7, and x9 = v are the current in the inductance and
the voltage in the capacitor and ip and vp are the current and the
voltage in the diode.

6.4.1.2 Simulations

Here we show simulations of the buck converter using the complementar-

ity framework in the SICONOS Platform. The numerical simulations are
performed with the following parameter values: L = 20mH, C' = 47uF,
R=220,a=84, Viey =113V, V, =38V, Vy = 8.2V, and T = 400us,
as in [78],[118]. In Fig. 6.10 we present a one-periodic and a two-periodic
orbit for V;, equal to 15V and 25V respectively.

In Fig. 6.11 (a) a bifurcation diagram of this system using a brute
force method is shown. We have used the SICONOS platform together with
algorithms developed in PHYTON. For each value of V;, in a range between
12V and 40V a fixed initial condition was simulated with the SICONOS
Platform. This process was done for 300 periods without plotting and then
the dynamics plotted for a further 100 periods. As we have remarked before,
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Figure 6.10: Time simulations of a Buck Converter in SICONOS Platform.

this procedure is effective in capture the range of possible stable asymptotic
behaviours of the system, though it will miss unstable behaviour.

In the bifurcation diagram we observe that a stable 1T-periodic orbit is
initially found and continued until some value near 24.5V. Then, a period-
doubling bifurcation occurs, and the stability of the 1T-periodic orbit is
lost in favour of the 2T-periodic orbit which appears at this value. This
2T-periodic orbit also loses stability in a period-doubling bifurcation near
31.5V. Near the last period-doubling bifurcation, suddenly and at approx-
imately 32.5V, there is a large chaotic behaviour. This occurs because of
a corner-collision bifurcation [118].

L s s N N L v
in : i 20 25 30 3 w

Figure 6.11: Bifurcation simulations (a) Using SICONOS Platform. (b)
Using an own MatLab code.
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In Fig. 6.11 (b) we have performed the same bifurcation diagram as in
Fig. 6.11 (a) with MATLAB. We have employed our own codes developed
in MATLAB using event-driven methods. As can be seen the pictures have
the same appearance. This provides some evidence that simulations in
SICONOS give results comparable to commercial packages.

In Fig. 6.12 (a) we have computed the domains of attraction for the two
stable periodic orbits at V;, = 13.8V using the SICONOS software. We
have used the standard cell-to-cell mapping algorithm explained before. We
have considered the domain of interest divided into a number of equally
sized squares (1000 x 1000 cells). The center point of each square has been
mapped forward in time one forced period, T, and the location of the
trajectory at this point has been recorded. This was done for each square
and finally all data was post-processed to build the complete picture. We
have obtained the basin of the 1T-periodic orbit shown before (green color)
and the basin of a 3T-periodic orbit (red color).

0.7

0.65

0.6 -
06

0.55 :
0.55 =

0.5
05=207

0.45

0.45”” S : / / L

108 1" 12 114 116 118 12 122 124

Figure 6.12: Domains of attraction simulations (a) Using SICONOS Plat-
form. (b) Using an own MatLab code.

In Fig. 6.12 (b) a basin of attraction calculation of the same region is
shown using a MATLAB code of our own. The similar appearance between
the domain of attraction pictures confirms the good results obtained by
the platform.
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6.4.2 Forced Harmonic Oscillator

As second example we have simulated in collaboration with Petri Pi-
iroinen, an unforced harmonically oscillating particle u satisfying the dif-

ferential equation
d*u
W—i—uzo, u>z (6.19)
impacting with a smoothly oscillating wall at z(t) = sin(wt). We take
r = 0.8 to be the restitution coefficient, so that
+ —

% = —T%, u=z (6.20)
leading to energy loss at each impact and consequently to a dissipative
system. This example has been widely studied, see for instance [| and it is
known that w can exhibit periodic or chaotic motion depending upon the

value of w.

6.4.2.1 Modeling

Our system belongs to the abstract class of Lagrangian Linear Time In-
variant systems described in section 3. The general equation of this class
is governed by the equation

Mi+Cq+ Kq= Fene(t)+r

where C and K are respectively the classical viscosity and stiffness matri-
ces. Then, in our case, g = u, M = 1,C = 0 and K = 1. The external force
is given by Feyy = sin(wt).

The unilateral constraint requires that v > 0, so we identify the terms
of the equation (6.12):

y=HTq+b
H'=1,b=0
In the same way, the reaction due to the constraint is written as follows:
r=H\
with H = 1.
In this case, there is just one unilateral constraint such that
0<yl>0

Newton’s impact law is given by :

if y=0, yt")=—ey(t7)

Ivan Merillas Santos 147



6. SICONOS Platform

6.4.2.2 Simulations

In Fig. 6.13 (a) a bifurcation diagram of this system using a brute force
method is shown. We have used the SICONOS platform together with al-
gorithms developed in PHYTON. For each value of w a fixed set of initial
conditions (u, flj—?) was chosen at t = 0. The trajectories resulting from each
such condition were then computed with the SICONOS Platform. This
process was continued for 50 periods, where one period is %’r time units
long, without plotting and then the dynamics was plotted for a further
20 periods. This was then repeated for other values of w. As we have re-
marked before, this procedure is effective in capturing the range of possible
stable asymptotic behaviours of the system, though it will miss unstable
behaviour.

In the bifurcation diagram we observe simple (resonant) periodic mo-
tion, when w = 2 and w = 4, surrounded by more complex dynamics,
including chaotic behaviour for w close to 3. Such complex dynamics can
arise either through smooth bifurcations, in particular period-doubling bi-
furcations, or through grazing bifurcations which appear when u has a
grazing impact with z with % =0.

In Fig. 6.13 (b) we have performed the same bifurcation diagram as
in Fig. 6.13 (a) with MATLAB. We have used own codes developed in
MATLAB using event-driven methods. As can be seen the pictures have
the same appearance. This implies again that simulations in SICONOS
give good results.

5 . ; . 5

b . b

4 i 4

3 3

2 2 >
in Tk s 4 : Y .'. 1
/ ] / . & . LY )
R R Ofy il \_\:ﬁ

1 2 3 4 o 1 2 3 4 o 5
Figure 6.13: Bifurcation simulations (a) Using SICONOS Platform. (b)
Using an own MatLab code.

In Fig. 6.14 (a) we have computed the domains of attraction for the
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two stable periodic orbits at w = 2.6 using the SICONOS software. We
have used the standard cell-to-cell mapping algorithm explained before.
We have considered the domain of interest divided into a number of equally
sized squares (1000 x 1000 cells). The center point of each square has been
mapped forward in time one forced period (%r), and the location of the
trajectory at this point has been recorded. This was done for each square
and finally all data was post-processed to build the complete picture. Ob-
viously, the smaller each cell square is, the more refined the final picture
will be.

Figure 6.14: Domains of attraction simulations (a) Using SICONOS Plat-
form. (b) Using an own MatLab code.

Figure 6.14 compares again the results of the SICONOS platform and
the same MATLAB code of the first example. The similar appearance be-
tween the domain of attraction pictures confirms the good results obtained
by the platform.

6.4.3 Parallel Resonant Converter

In this last example a Parallel Resonant Converter (PRC) has been sim-
ulated using the SICONOS software. Basically, a Parallel Resonant Con-
verter is a dc-dc power converter. The schematic of the PRC is shown in
Figure 6.15. As can be seen, it consists of four parts: an inverter block, a
resonant tank in series, a rectifier block and an output filter. In our case,
the inverter block is a full-bridge inverter. It is called parallel resonant
converter because the load is in parallel with the resonant capacitor. More
accurately, this converter should be called series resonant converter with
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mE T S

Figure 6.15: A Parallel Resonant Convert diagram

parallel load. Since the transformer primary side is a capacitor, an inductor
is added on the secondary side to match the impedance.

6.4.3.1 Modeling

The general form of an LCS is given by

&(t) = Az(t) + Bu(t) + Ew(t),
y(t) = Cx(t) + Du(t) + Fw(t), (6.21)
0<ylu=>0

with z € R", w € R¥, and y,u are p pairs of complementarity variables.
Here z denotes the state (the voltage across the capacitors and the currents
through the inductors), w denotes the external source, (u;,y;) denotes ei-
ther the voltage-current of the current-voltage pairs of the ith port, and
A,B,C, D, E, F are (constant) matrices and vectors of suitable dimensions.

According to the general form of an LCS we can model our parallel
resonant converter (PRC) as follows.

We take as state variables x1 = i,,22 = v,,2x3 = i1, and x4 = vg, and
uy = ip1,U2 = 1p3,U3 = UD2,U4 = UD4,Y1 = UD1,Y2 = UD3,Y3 = ip2 and
Y4 = ip4 as complementarity variables. Then, in matrix notation, we have

&(t) = Ax(t) + Bu(t) + ESign(sin(wt)),
y(t) = Cx(t) + Du(t) + F Sign(sin(wt)), (6.22)
0<ylu=>0
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6.4.3.2 Simulations

We present different dynamical behaviours when the load (R;) and the
frequency (Fp) of the input voltage are changed. The numerical simulations
are performed with the following parameter values: L, = 150 uH., Ly = 0.4
mH., C,. =68 nF., Cy = 2.2 pF.

Figure 6.16 shows the different behaviours of the PRC with a frequency
Fy = 55k H z. and different loads. Figure 6.16 (a),(b) are displayed with a
load 3Q. In particular, it is shown in Figure 6.16 (a) that the orbit has a
sliding region in z9 = v, = 0 due to a generalised discontinuous conduction
mode (GDCM). For a load value of 3392 such GDCM disappears as can be
observed in Figure 6.16 (c).

Figures 6.17 (a)-(f) show different behaviours with a frequency Fy =
75kH z. and different loads.
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Figure 6.16: Simulations in SICONOS Platform.

Ivan Merillas Santos



6. SICONOS Platform

PRC R =30Q; F =75kHz PRC R=3Q; Fy=75kHz
15 454
1ol ] 4.535 _ q
453 q
51 ]
4525 ]
> of ] o
452 q
st ]
4515 q
-tor 1 451 B
15 . . . . . . . . 4.505 . . . . .
25 -2 -15 -1 -05 0 05 1 15 2 25 1.48 1.49 15 151 152 153 1.54
e L
(a) (b)
PRC R =33Q; F =75kHz PRC R =33Q; F =75kHz
80 T T T T T 349 T T T T T T T T
601 q 34.88 q
40 q 34.86
201 1 34.841
>~ o q >° 34821
-20F q 3481
-40+ q 34.78
-60 q 34761
80 . . . . . 2474 . . . . . . . .
-3 -2 -1 0 1 2 3 096 098 1 102 104 106 108 11 112 114
i i
i L
(c) (d)
PRC R =3300Q; F =75kHz PRC R =3300Q; F =75kHz
150 T T T T T T T 67.25 T
100l 1 67.2 q
67151 q
50 q
67.11 q
> of ] o
67.051 q
_s0f ]
671 q
100 1 66.95 q
150 . . . . . . . 66.9 . . . h . .
-4 -3 -2 -1 0 1 2 3 4 0.05 0.1 0.15 02 0.25 03 0.35 04

Figure 6.17: Simulations in SICONOS Platform 2.
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CHAPTER 7

Conclusions and future research

“It is better to know some of the questions than all of the answers.”

JAMES THURBER (1894-1961)

This chapter gives an overview of the thesis indicating the contribu-
tions. The thesis is closed with recommendations for further research.

7.1 Overview and Summary of Contributions.

The work developed for this Ph.D. thesis contributes to the study of non-
smooth dynamical systems with emphasis on the numerical computing side.
This thesis can be divided into two parts, one concerned with the modeling
of power converters using the complementarity formalism and the other one
dedicated to the numerical study of mechanical systems with impact and
dry friction. Also, from a engineering point of view, this thesis contributes
to answering some questions about the behaviour observed in experiments,
and to generating new questions to be answered by the engineering and
applied math community. Among these, the experimental search for some
discontinuity-induced bifurcations detected numerically and the develop-
ment of a general control theory for complementarity systems.

Chapter 1 gives some background information on nonsmooth dynamical
systems after motivating this work. We have defined the objective and
scope of the thesis and finally, we have outlined the structure and contents.
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Chapter 2 contains some background of the theory for modeling non-
smooth dynamical systems using the complementarity formalism. Then,
we have modeled some basic dc-dc power converters with a single diode
(buck, boost, buck-boost and Cuk) as linear cone complementarity sys-
tems. It is shown that, for each position of the switches, the dynamics is
given by a linear complementarity problem to which standard techniques
can be applied. For systems with a single diode, an analytical condition
for the presence of generalised discontinuous conduction modes (GDCM),
characterised by a reduction of the dimension of the effective dynamics,
have been stated. We have presented analytical state-space conditions for
the presence of a GDCM in each example and simulation results, showing
a variety of behaviours, such as persistent or re-entering GDCM. A Paral-
lel Resonant Converter, which has four diodes, has been also modeled as
a linear complementarity system. In this converter the diodes are in par-
allel, therefore, known results about existence and uniqueness cannot be
applied because some assumptions do not hold. However, we have proved
that the state-space solution is unique although the solutions of the com-
plementarity variables are not. Finally, we have presented the simulation
of a boost converter with a sliding mode control in the complementarity
formalism, even though control theory for complementarity systems is not
still developed.

The main contributions of this Chapter are:

e Modeling of some basic dec-dc power converters with a single diode
(buck, boost, buck-boost and Cuk) in the complementarity forma-
lism.

e Analytical state-space conditions for GDCM in systems with a single
diode. We have applied such results for each example and we have
presented simulation results, showing a variety of behaviours, such
as persistent or re-entering GDCM.

e Modeling, analysis and simulation of a Parallel Resonant Converter
(PRC) which has four diodes. We have also proved that the state-
space solution is unique although the solutions of the complementar-
ity variables are not unique.

e Simulation of a boost converter with a sliding mode control in the
complementarity formalism.
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In Chapter 3 the analysis of a cam-follower system has been presented.
Specifically, we have studied a simplified model of an automotive camshaft
system. This kind of system can be considered as a forced impact oscil-
lator. Therefore, several nonsmooth phenomena as first detachment, tran-
sition from complete to uncomplete chattering, and discontinuity-induced
bifurcations of periodic orbits can be exhibited. We have analysed these
complex behaviours under variations of the rotational speed of the cam. In
order to have a better understanding of the dynamical behaviour we have
constructed bifurcation diagrams. Once we have observed the different be-
haviours occurring in our system, we have stated analytical explanations of
some phenomena. We have calculated the regions with possible detachment
points and, particularly, the rotational speed for the first detachment. After
the first detachment occurs, we have a sequence of chattering in the sys-
tem. We have study analytically the accumulation points of such impacts
explaining some phenomena that happen in our system. Another pheno-
mena is the nonsmooth transition from complete to uncomplete chattering.
We have observed the destruction of the period one chattering sequence
for a certain value of the rotational speed parameter due to the crossing of
the accumulation point to the next forcing period. A detailed study of this
discontinuity-induced bifurcation is a subject of further research. We have
also given necessary conditions for periodic orbits with a single impact.
Using these necessary conditions we have continued a periodic orbit of pe-
riod one and one impact. Such periodic orbit has a suddenly jump to chaos
due to a corner-impact bifurcation, and we have been able to explain this
bifurcation in an analytical way. Another corner-impact bifurcation of a
period 2 orbit is also explained. Finally, coexistence of attractors is shown
using domains of attraction calculated with a standard cell-to-cell mapping
method.

The main contributions of this Chapter are:

e Simulation of a cam-follower system, which is a class of forced impact
oscillator.

e Detection of several nonsmooth phenomena such as first detachment,
transition from complete to uncomplete chattering and discontinuity-

induced bifurcation of periodic orbits.

e Calculation of the regions with detachment points and in particular,
the rotational speed value for the first detachment.
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e Calculation of the accumulation points in the sequence of chattering
occurring after the first detachment.

e Description of a nonsmooth behaviour due to the transition from
complete to uncomplete chattering.

e Necessary conditions for periodic orbits with a single impact.

e Explanation of the suddenly jump from a periodic orbit to chaos
(corner-impact bifurcation) using analytical calculations.

e (Calculations of basins of attraction using a standard cell-to cell map-
ping in order to show coexisting solutions.

Chapter 4 deals with a dry friction oscillator introduced by Popp [?].
This kind of systems can be studied using Filippov theory and is affected by
discontinuity-induced bifurcations (DIBs) due to “stick-slip” motions. Such
bifurcations have been recently classified as sliding bifurcations. Basically,
four distinct cases of such bifurcations can be identified: crossing-sliding,
grazing-sliding, switching-sliding and adding-sliding. We have presented de-
tailed examples of all these different bifurcation scenarios. Furthermore,
a degenerate switching-sliding bifurcation has been shown. In that case
of degenerate switching-sliding bifurcation two curves of codimension-one
sliding bifurcation, crossing-sliding and adding-sliding, branch out from the
codimension-two point. Also, a smooth codimension-two cusp bifurcation
has been presented. Coexistence of periodic orbits in the region between
both fold codimension-one curves have been shown to exist by means of do-
main of attraction diagrams computed using a cell-to-cell mapping method.

The main contributions of this Chapter are:

e Simulation of a dry friction oscillator introduced by Popp [?], which
can be studied using Filippov theory.

e Detection of the four distinct cases of sliding bifurcations: adding-
sliding, grazing-sliding, crossing-sliding and switching-sliding.

e A degenerate codimension-two switching-sliding bifurcation have been
explained.

e Detection of a smooth codimension-two cusp bifurcation.
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e Calculations of basins of attraction using a standard cell-to cell map-
ping in order to show coexisting solutions.

In Chapter 5 the dynamic behaviour of the two-block Burridge-Knopoff
model for earthquake simulations has been investigated. This model can
be studied as a Filippov system with two discontinuity surfaces. Previous
numerical studies investigated in [?] verified that, with a friction force of
Coulomb type (that is the dynamic friction coefficient being constant),
the system presents only periodic behaviour. We have shown that chaotic
regions can be observed in a symmetric configuration even if a Coulomb
friction is considered with the relaxation of the assumption that the driv-
ing block does not move during the slipping events. Furthermore, we have
studied the behaviour of the system with asymmetric configuration. Dif-
ferent periodic solutions and regions of chaos can be observed varying the
asymmetry of the system. With respect to the bifurcation point of view,
this system can exhibit smooth and discontinuity-induced bifurcations as
we have presented in this chapter.

The main results are

e Simulation of a two-block Burridge-Knopoff model for earthquake
simulations.

e We have proven that chaotic regions can be observed considering a
symmetric configuration and Coulomb friction with the relaxation
of the assumption that the driving block does not move during the
slipping events.

e Simulation of codimension-two bifurcation diagram in order to show
the complex behaviours in an asymmetric configuration.

e Explanation of some smooth and discontinuity-induced bifurcations.

Chapter 6 presents the SICONOS software, dedicated to simulation of
nonsmooth dynamical systems (NSDS). After motivating the development
of this tool, we have given a overview of the SICONOS software and the
way NSDS are modeled and simulated within the platform. Routines for
analysis (stability, bifurcations, invariant manifolds, ...) of NSDS imple-
mented in the platform have been explained in detail. To conclude, several
representative samples have been shown in order to illustrate the Siconos
platform abilities.

Results are milestones of this chapter include
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e Participation of this Ph.D. candidate in the development of the SICONOS
Platform as an expert user.

e Development of some routines for analysis such as calculations of
bifurcation diagrams and domains of attraction.

e Implementation of several examples in the SICONOS Platform such
as a Buck converter and a Parallel Resonant Converter (PRC).

7.2 Publications

The main contributions of this thesis have been published in the following
journals and congresses:

e Generalized Discontinuous Conduction Modes in the Com-
plementarity Formalism, C. Batlle, E. Fossas, I. Merillas and A.
Miralles, IEEE Transactions on Circuits and Systems II, 52 (8), pp.
447-451, 2005.

e Complex Dynamics of Cam Follower Systems, I. Merillas, G.
Osorio, P.T. Piiroinen, M. di Bernardo and E. Fossas. To be sub-
mitted to International Journal Bifurcation and Chaos.

e Sliding Bifurcations in a stick-slip system, I. Merillas, U. Gal-
vanetto and C. Battle. To be submitted to International Journal Bi-
furcation and Chaos.

e Bifurcations in a two-block stick-slip system, I. Merillas and
G. Olivar, In preparation.

e Simulation of a boost converter with sliding mode control
using the complementarity formalism, I. Merillas, E. Fossas
and C. Batlle, SICONOS Internal report, 2004.

e Modeling and Numerical Study of Nonsmooth Dynamical
Systems, I. Merillas, DDays workshop, Sevilla-Islantilla, 18-21 Oc-
tuber 2006.

e Sliding Bifurcations in a Stick-slip System, I. Merillas, U.
Galvanetto and C. Battle, SICONOS General Meeting, Capri, 14-15
September 2006.
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e Some Non-smooth Bifurcations in a stick-slip system, I. Mer-
illas and G. Olivar, Proceedings of Workshop on Bifurcations in Non-
smooth and Hybrid Dynamical Systems, Milano, 21-22 Octuber 2004.

e Bifurcaciones No Suaves en Sistemas Stick-slip, I. Merillas
and G. Olivar, Proceedings of NO LINEAL 2004, Toledo, 1-4 Juny
2004.

e Non-Smooth Continuation of Periodic Orbits in a Chaotic
Buck Converter, I. Merillas and G. Olivar, Proceedings of Work-
shop on Analysis and Continuation of Bifurcations, Sevilla, 19-21
May 2004.

e Bifurcations in a Two-Block Stick-Slip Model, I. Merillas and
G. Olivar, Proceedings of SCICADE 2003, Trondheim, 30 Juny 2003
- 04 July 2003.

7.3 Future research

Although the work presented in this Ph.D. thesis has achieved some in-
teresting results for the modeling, simulation and analysis of nonsmooth
dynamical systems, many problems remain still open and will be the sub-
ject of future investigations.

As has been seen in Chapter 2, two main problems are still open to
investigate in this part. First, known results can not assure existence and
uniqueness of solutions for power electronic switches with diodes in par-
allel. This is due the fact that the results in the literature only consider
the existence and uniqueness of solutions with P-matrices. We believe that
having a Py-matrix in the Rational Complementarity Problem is a neces-
sary and sufficient condition to assure the existence and uniqueness.

Another open problem in this part is concerned with control theory
for complementarity systems. Design of robust and efficient controllers for
complementarity systems is now being investigated but still there are no
general results. In order to get some ideas for the development of a general
control theory we have considered the particular case of controlling a boost
converter with coupled inductors.

For Chapter 3 we propose different open problems. As we have outlined
before, the theoretical study of discontinuity-induced bifurcations due to
the transition from complete to uncomplete chattering is still an open
question. In this thesis only a first numerical approximation to this problem
has been considered.
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Another discontinuity-induced bifurcation explained in this chapter is
due to an impact in the discontinuity point of the acceleration of cam
profile. It is also interesting to study cam-follower systems with other cam
profiles which can present discontinuities in the position, velocity, etc. This
study can contribute to the classification of corner-impact bifurcations in
these systems. In relation with this problem we have begun to study the
behaviour of a grain down a rough inclined staircase.

We can also consider the study of invariant manifolds in systems with
impacts as subject for a future research. Up to our knowledge there is
nothing written about this field and it is an interesting problem from a
mathematical point of view.

The study of invariant manifolds for Filippov systems is an open prob-
lem which arises from Chapter 4. These systems are characterised by not
being integrable backward in time and therefore, the techniques available
for smooth systems to calculate stable manifolds cannot be used.

Detection of other nonsmooth codimension-two bifurcation points in
dry-friction oscillators or power converters is an interesting subject in order
to complete the first tentative classification given in [92]. In this thesis, we
have presented a degenerate codimension-two switching-sliding bifurcation
that has been never reported before, but other codimension-two bifurcation
points has not been found yet.

A two-block Burridge-Knoppoff is an example of Filippov system with
two discontinuity surfaces if back-slip is allowed. This example can be used
as a workbench to find discontinuity-induced bifurcations only possible due
to the two discontinuity surfaces.

Concerning to the SICONOS Platform, several things need to be im-
plemented. We need to add routines for continuation of periodic orbits and
detection of bifurcation points. Also, it is necessary the implementation of
more examples in order to test the Platform.

Finally, a detailed study of the consequences about approximating non-
smooth systems by smooth ones is needed, in order to get a better under-
standing of this technique.
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Appendix A: Moreau’s Time-stepping

This appendix is concerned with the simulation of complementarity sys-
tems using a Moreau’s Time-stepping scheme.

Dynamical system and Boundary conditions Consider the La-
grangian (second order) system:

M(Q)q + C(Qa Q) = Fint(Q7 47 t) + Fe:r:t(t) +r (1)

where ¢ denotes the generalized coordinates, M the mass matrix, C' the
nonlinear inertia operator, Fj,; the internal nonlinear forces, F,,; the ex-
ternal forces depending only on time and r is the possible force due to the
constraints.
A particular case is the Lagrangian Time Invariant system which is
defined by
Mi+Cq+Kq= Fene(t)+r (2)

where C' and K are respectively the classical viscosity and stiffness matri-
ces.

In a general way, the dynamical system is completed by a set of non-
smooth laws. The set of such variables, denoted by y, on which we apply
the constraints, depends, in a very general way, of the state vector x, the
time ¢ and possibly the force 7:

y = h(z,rt) (3)
In the same way, we have to specify the relation between r, the force due
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to the constraints, and A (X is associated to y through a nonsmooth law):
r = glz, A1) (4)

In this appendix we only consider a complementarity nonsmooth law:
0<ylLA>0 (5)

However, the same method can be used for other nonsmooth laws such
as a Newton impact law.

Description of the numerical strategy: the Moreau’s Time-
stepping scheme.

We provide in this section a time discretization method of the Lagrange
dynmical system (1), consistent with the non smooth character of the solu-
tion. Let us consider here only the linear time invariant case. The equation
may be reformulated equivalently in terms of an integral over a time step
[ti,tiv1] of length h such that :

/ Mi+ Cq+ Kqdt = / Femt(t)dIH—/ rdv (6)
[tistit1] [tistiy1]

[tistit1]

Due to the non smooth character of the motion, the first term is integrated
by an one order scheme( backward Euler-like) such that :

[ Mim M) - i) ™)
[titit1]
For the other terms, a 6-method is used :

/[t. ..., Gt Kadt % HOCiltinn) + Kiti) + (1= 0)(Cilt) + Ki(t)]

(8)
/[ o0 IO Fe(12) + (14 0) o1 )

Descretizating the Nonsmooth laws and considering § = 1 we obtain
the Backward-Euler Time-stepping method used in Chapter 2.
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Backward-Euler Time-stepping method

This method comes down to the computation of uZ 41 y,’; 41, and xZ 41
given xZ through the linear complementarity problem given by

h h
xr — T
% = Awjyq + Buip (10)
h h h
Yey1 = Crpyg + Dugyy (11)
0<yppy Lujg >0 (12)

Here OZ denotes the value at the kth step of the corresponding variable
for the step size h > 0. Based on this scheme, one can construct approx-
imations of the transient response of a LCS by applying the algorithm
below.

Algorithm 1 : ({uzﬂ}, {xZH}, {yZH}):LCPsimulator(A, B,C,D,Tepng, h,xo).

4. solve the one-step problem

Ypy = C(I —hA) '} + [D +hC(I — hA)' Blup
0 S UZ—l-l 1 yZ+1 Z 0

5. af = —hA) "zl + h(I — hA)'Bu},
6. k:=k+1.

7. if k < Ny goto 4.

8. stop.
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The one-step problem is given by a linear complementarity problem in
step 4. In general a linear complementarity problem may have multiple
solutions or have no solutions at all. We shall proceed by assuming unique
solvability of the problem. The assumption is introduced here for reasons
of generality, but this assumption is implied by passivity. In [?7], [?] is
described the consistency of the algotithm when we have passivity.
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In this appendix the method of sliding mode control for controlling power
electronics systems is reviewed.

Dynamical systems with sliding mode control. Consider the non-
linear dynamical system:

&= f(z)+g(z)u (13)

where z € X, an open set of R"; the control input function u : R” — R
is a discontinuous function; and f, g are smooth vector fields defined on X
with g(z) # 0,Vx € X. Let s denote a smooth function s : X — R, with
non-zero gradient on X. The set

S={zeR":s(x) =0} (14)

defines a locally regular (n-1)-dimensional sub-manifold in X (the sliding

manifold or switching surface). The scalar function s will often be ad-
dressed as the sliding surface coordinate function.

A variable structure control law is obtained by letting the control func-

tion u take one of two values according to the sign of s(z)!, as defined by

[ uT(z) fors(z) >0

“= { u™(x) for s(z) <0 (15)

! Actually, the control function values depend on the sign of (Vs)-g which can locally
be assumed positive, without loss of generality.
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The control laws ™" (x),u™ (z) are assumed to be smooth functions of .
Let Lo denote the directional derivative of the scalar function o with
respect to the vector field h. Suppose that as a result of the control policy
(3) the state trajectories of (1) locally reach the sliding surface S and, from
there on, their motion is constrained to the immediate vicinity of S. We
say that the sliding regime exists on S whenever

Sli)%l_'_ Lf+gu+5 < 0, sli)%l_ Lf+gu_5 >0 (16)
i.e. the rate of the change of the scalar surface coordinate function s(x),
measured in the direction of the controlled field, is such that a crossing
of the surface is guaranteed, from each side of the surface, by use of the
switching policy (15).

Let ds denote the one-form corresponding to the gradient of s(x) and
let <,> denote the standard scalar product of vectors and co-vectors in
their functional relationship. Conditions (16) are equivalent to

Sl_i%l+<d$’ f+gut) <O, Sl_i)%l, (ds,f+gu™) >0 (17)
which alternatively explains that, on S, the projections of the controlled
vector fields f + gu™ and f + gu™ on the gradient vector to s are opposite
in sign and hence the controlled fields locally point towards the surface S.

These definitions are equivalent to:

S is said to be a sliding surface for the dynamical system defined by
(13), (14) and (15) if there exists 6, an open set in U containing .S, in such
a way that Vo € 6\ S, one of the following conditions holds.

1. there exists a finite time ¢5 > 0 such that

s(d(x,t)) #0 0<t<ts and s(p(x,t))=0 t>tg

2. there exist t; and fs, 0 <ty <ty < 0o such that
s(p(z,1) #0 0<t<ty and s(p(x,t) =0 ts<t<tiy
and ¢(z,ts) € A(SNU)

Roughly speaking, the trajectories starting in a neighbourhood of S
must fall down to S and remain there or, should one escape, it must go
through 9(SNU).

As a first consequence of the definition, two questions arise, namely
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1. Existence. Which conditions on f, g, u, o and S, if any, guarantee
that S is a sliding surface?

2. Ideal sliding dynamics. On the one hand the dynamics defined
by (13), (14) and (15) does not consider S; on the other hand, if S
is a sliding surface for this dynamics, which vector field governs the
system on S7

Manifold invariance conditions

A definition of the ideal sliding dynamics was given by Utkin. This def-
inition is based on the method of equivalent control. In this approach, ideal
sliding motions are described by using the manifold invariance conditions
s =0 and s = 0. Namely,

s=0, Lt gueyg(z)s = (ds, f + gueg(z)) =0 (18)

where uq(x) is a smooth control law for which S is a local integral manifold
or a local invariant manifold of (1). The control function u.q(x) is called
the equivalent control. From the definition of the directional derivative and
(6), the equivalent control is explicitly given by

_ Lys  (ds, f) ds \ " Bs

o (19)

The dynamical system s = 0 and & = f(x) + g(x)ueq(2) is said to describe
the ideal sliding dynamics.

Existence conditions

Now, some results on existence for the equivalent control and sliding
motion will be given.
The equivalent control is said to be well defined whenever it exist and it is
uniquely determined from the invariance conditions.

Lemma 1

A necessary and sufficient condition for the equivalent control to be well
defined is that the transversality condition

<ds,g >#0 (20)
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be locally satisfied on S

Lemma 2

Let us assume there are no restrictions on the control action. Then, a
necessary condition for the existence of a local sliding motion on S is that
the equivalent control be well defined on S

Theorem 1

A necessary and sufficient condition for the local existence of a sliding
regime on S is that locally in X, for x € S,

min{u ™ (z),u" (2)} < teq(z) < max{u™(z),u’ (x)} (21)
Corollary 1

Suppose a sliding regime locally exists on S and % -g > 0, then a
switching logic which achieves the sliding regime is given by

u = (—k + ueq(x)) sign(s(x)) (22)
with k> 1.
The proofs of these results can be found in [64], [133].
In practice, sliding motion is not attainable; imperfections such as hys-

teresis, delays, sampling and unmodelled dynamics will result in a chatter-
ing motion in a neighbourhood of the sliding surface.
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