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Abstract

This work is a contribution to the study of various problems that arise from
two strongly connected areas of the Graph Theory: graph labelings and
graph decompositions.

Most graph labelings trace their origins to the ones presented in 1967 by
Rosa. One of these labelings, widely known as the graceful labeling, orig-
inated as a means of attacking the conjecture of Ringel, which states that
the complete graph K2m+1 can be decomposed into m copies of a given
tree of size m. Here, we study related labelings that give some approaches
to Ringel’s conjecture, as well as to another conjecture by Graham and
Häggkvist that, in a weak form, asks for the decomposition of a complete
bipartite graph by a given tree of appropriate size.

Our main contributions in this topic are the proof of the latter conjecture
for double sized complete bipartite graphs being decomposed by trees with
large growth and prime number of edges, and the proof of the fact that
every tree is a large subtree of two trees for which both conjectures hold
respectively. These results are mainly based on a novel application of the
so-called polynomial method by Alon.

Another kind of labelings, the magic labelings, are also treated. Motivated
by the notion of magic squares in Number Theory, in these type of labelings
we want to assign integers to the parts of a graph (vertices, edges, or vertices
and edges) in such a way that the sums of the labels assigned to certain
substructures of the graph remain constant. We develop techniques based
on partitions of certain sets of integers with some additive conditions to
construct cycle-magic labelings, a new brand introduced in this work that
extends the classical magic labelings.
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Magic labelings do not provide any graph decomposition, but the techniques
that we use to obtain them are the core of another decomposition problem,
the ascending subgraph decomposition (ASD).

In 1987, was conjectured by Alavi, Boals. Chartrand, Erdős and Oellerman
that every graph has an ASD. Here, we study ASD of bipartite graphs, a
class of graphs for which the conjecture has not been shown to hold. We
give a necessary and a sufficient condition on the one sided degree sequence
of a bipartite graph in order that it admits an ASD by star forests. Here the
techniques are based on the existence of edge-colorings in bipartite multi-
graphs.

Motivated by the ASD conjecture we also deal with the sumset partition
problem, which asks for a partition of [n] in such a way that the sum of
the elements of each part is equal to a prescribed value. We give a best
possible condition for the modular version of the sumset partition problem
that allows us to prove the best known results in the integer case for n a
prime. The proof is again based on the polynomial method.
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Introduction

In this chapter we first introduce the basic notation and terminology that will
be eventually used in the forthcoming chapters. In Section 1.2 we present
the general framework and the main motivations of this work. Finally, in
Section 1.3, the polynomial method of Alon is described. We will use this
general technique to develop different key parts of our work and this is the
reason why we introduce it here.

1.1 Basic structures and definitions

We denote by Z the set of integer numbers. For any two integers n < m we
denote by [n,m] the interval of all integers n ≤ x ≤ m. The set of the first
n positive integers [1, n] can be denoted simply by [n]. The ring Z/nZ of
integers modulo n is denoted by Zn. For a real number x we write bxc for
the greatest integer ≤ x and dxe for the least integer ≥ x. Given a finite set
X, we denote its cardinality by |X|. A collection P of k non-empty subsets
of X, P = {X1, . . . , Xk} is a partition of X if ∪k

i=1Xi = X and Xi ∩Xj = ∅
for all 1 ≤ i < j ≤ k. If we want to emphasize |P|, we say that P is a
k-partition of X. If all the elements of P have the same cardinality, then
P is said to be a k-equipartition of X. For a finite subset X of Z or Zn we
write,

∑
X =

∑
x∈X x. The symmetric group of all permutations of a set of

cardinality k will be denoted by Sym(k) and for a particular σ ∈ Sym(k)
we write sgn(σ) to denote its sign.
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1.1.1 Graphs

The basic objects that we will deal with are simple finite graphs. Notation in
Graph Theory is not uniform in the literature. We use the basic terminology
for these objects following the notation found in the textbook by Diestel
[15]. We recall some basic notations here for the commodity of the reader.
A graph G = (V, E) is a pair of sets satisfying E ⊆ [V ]2, where [V ]2 is the
set of all 2-element subsets of V . Thus we will assume that a graph has
no loops or multiple edges, otherwise we will use the term multigraph. The
sets V = V (G) and E = E(G) are respectively the vertices and edges of G.
The order of the graph is |V | and the size is |E|. If u, v ∈ V define an edge
e = {u, v} ∈ E of G, we denote this edge simply by e = uv and say that
u and v are adjacent. Given a vertex u ∈ V , the edges incident with u are
precisely e ∈ E such that u ∈ e. The complement G of G is the graph with
V (G) = V (G) and uv ∈ E(G) ⇐⇒ uv /∈ E(G).

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We call G1 and G2

isomorphic, and write G1 ' G2, if there exists a bijection φ : V1 −→ V2 with

uv ∈ E1 ⇐⇒ φ(u)φ(v) ∈ E2 for all u, v ∈ V1;

φ is called an isomorphism.

G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G) ∩ [V (G′)]2; if
E(G′) = E(G)∩ [V (G′)]2 we say that G′ is an induced subgraph of G. Given
a set of vertices V ′ ⊆ V of a graph G = (V, E), we say that the graph
G′ = (V ′, E′) is the graph induced by V ′ if

E′ = {e ∈ E : ∃u, v ∈ V ′ with e = uv}.

Similarly, given a set of edges E′ ⊆ E, the graph G′ = (V ′, E′) is the graph
induced by E′ if

V ′ = {u ∈ V : ∃e ∈ E′ with u ∈ e}.

If A ⊆ V is any set of vertices of G = (V,E), we denote by G−A the graph
obtained from G by deleting all the vertices in A and their incident edges.
If F ⊆ E is any set of edges, we write by G − F the graph (V,E \ F ). We
will use the following notation that describes a special deletion scheme. If
A ⊆ V is a set of vertices of G, G \ A is the set (V (G) \ A) ∪ E(G), that
is, we do not remove the edges incident to the vertices in A as in the usual
vertex deletion process. In general, the remaining object is not a graph but
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Figure 1.1 Vertex deletion processes.

we will still talk about its set of vertices and edges. Fig. 1.1 shows the two
vertex removing schemes considered.

Given a vertex u ∈ V of a graph G = (V,E), the neighborhood of u are
the vertices v ∈ V such that there exists an edge joining them. We denote
this set by NG(u) or briefly by N(u). The cardinality of N(u) is the degree
of the vertex u that we usually denote by dG(u) or d(u) if there is no risk
of confusion. A vertex of degree 1 is called an end vertex or a leaf . The
number

δ(G) = min{d(u) : u ∈ V }
is the minimum degree of G and

∆(G) = max{d(u) : u ∈ V }

is the maximum degree of G. If all the vertices have the same degree d, then
we say that G is d-regular or simply regular .

A graph is said to be the complete graph on n vertices, and is denoted by Kn,
if its order is n and has all the possible adjacencies between the vertices. A
graph G is bipartite if it is possible to partition the set V (G) into two sets A
and B, called the partite sets of G, such that no edge of G has both endpoints
in the same partite set. A t-partite graph is similarly defined. We will often
denote a bipartite graph with partite sets A and B by G(A,B). If a bipartite
graph G(A,B) has all the possible adjacencies between the vertices of the
two partite sets, then it is called complete bipartite and denoted by Kn,m if
|A| = n and |B| = m. The graph K1,n is called a star with n spokes and
denoted by Sn. Some examples are displayed in Fig. 1.2.

A path Ph is a graph with vertex set V = {v0, v1, . . . , vh}, with vi 6= vj if
i 6= j, and edge set E = {v0v1, v1v2, . . . , vh−1vh}. The length of the path is
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Figure 1.2 (a) The complete graph K6. (b) The complete bipartite
graph K2,3. (c) The star S4 = K1,4.

its number of edges h. A cycle Ch is a closed path (v0 = vh) with h different
vertices and h denotes the length of the cycle. A cycle of length n with an
extra vertex connected to each of the vertices of the cycle is called a wheel
and denoted by Wn.

We say that a graph G is connected if for each pair of vertices there exists a
path joining them. A maximal connected subgraph of G is called a compo-
nent of G. G is called k-connected if |V (G)| > k and G−X is connected for
every set X ⊂ V (G) with |X| < k. The distance between any pair of vertices
u and v of a connected graph G is defined as the minimum length of a path
joining them and denoted by dG(u, v) or simply by d(u, v). The eccentricity
of a vertex u ∈ V (G) is the maximum distance between u and any other
vertex of V (G), and the diameter of G is the maximum eccentricity of the
vertices of G.

One of the most important class of graphs that we will deal with is the class
of trees. An acyclic graph is called a forest , and a connected forest is a tree.
Recall that a connected graph with n vertices is a tree if and only if it has
n−1 edges and also that trees are bipartite. These facts will be used later on.
The base tree of a tree is obtained by deleting all leaves and their incident
edges; see Fig. 1.3 for an example. A caterpillar is a tree whose base tree
is a path. Similarly, a lobster is a tree whose base tree is a caterpillar. A
matching is a forest in which each component is K2.

We finish this section with a key definition for our study. A decomposition
of a graph G is a partition P of its set of edges. The graph induced by
each part of P is called a factor . When each factor of the decomposition is
isomorphic to a graph H, we say that H decomposes G and write H|G. An
H-decomposition of Kn is also known as an H-design of order n. Fig. 1.4
shows a graph that can be decomposed by K3.
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Graph decompositions will be our main study in Chapters 3 and 5. If we
admit that some edges can overlap, then we are talking about graph cover-
ings. A covering of G is a family of subgraphs H1, . . . , Hk such that each
edge of E(G) belongs to at least one of the subgraphs. In this case, it is said
that G admits an (H1, . . . , Hk)-covering. If every Hi is isomorphic to a given
graph H, we say that G has an H-covering. Graph coverings will be used to
define an important graph labeling object of our study in Chapter 2. Finally,
a packing of G is a family of subgraphs H1, . . . , Hk such that each edge of
E(G) belongs to at most one of the subgraphs, and E(Hi) ∩ E(Hj) = ∅,
1 ≤ i < j ≤ k.

1.2 Framework and motivations

This work is devoted to the study of various problems that arise from two
main subjects in Graph Theory: graph labelings and graph decompositions.
We will see in the development of the thesis the connection between these
subjects but, roughly speaking, appropriate graph labelings provide graph
decompositions.
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A graph labeling is the assignment of integers to the edges or vertices, or
both, subject to certain conditions. Most graph labelings trace their origins
to the labelings presented by Rosa in his 1967 paper [47]. Rosa identified
four types of successively weaker labelings, which he called α-, β-, σ- and
ρ-valuations. β-valuations were later renamed graceful by Golomb [26] and
the name has been popular since then. A β-valuation of a graph G with q
edges is an injection f from the vertices of G to the set {0, 1, . . . , q} such
that, when each edge xy is assigned the label |f(x) − f(y)|, the resulting
edge labels are distinct. Rosa introduced β-valuations as well as the other
mentioned labelings as tools for decomposing the complete graph into iso-
morphic subgraphs. In particular, β-valuations originated as a means of
attacking the conjecture of Ringel [46], which says that the complete graph
K2m+1 can be decomposed into 2m+1 subgraphs each isomorphic to a given
tree with m edges. It is proved that a graph with m edges having a graceful
labeling decomposes K2m+1.

There are a lot of variants of these graceful-type labelings, for instance, the
k-graceful labelings, the cordial labelings or the Hamming-graceful labelings.
The survey of Gallian [24], which contains more than 1000 references on the
subject, is a good guideline for all them. A related labeling is the also well-
known harmonious labeling which naturally arises in the study of Graham
and Sloane [27] on modular versions of additive basis problems stemming
from error-correcting codes.

We study similar labelings as a tool to decompose graphs in smaller pieces
and also as interesting problems on their own. This is the case of the magic-
type labelings, motivated by the notion of magic squares in number theory.
In these kind of labelings we want to assign integers, under some conditions,
to the parts of a graph (vertices, edges, or vertices and edges) in such a way
that the sums of the labels assigned to certain substructures of the graph
remain constant. A good example is the edge-magic total labeling defined
in 1970 by Kotzig and Rosa [37], which given a graph G(V,E) asks for a
bijection f : V ∪ E → {1, 2, . . . , |V | + |E|} such that for all edges xy ∈ E,
f(x) + f(y) + f(xy) is constant. The textbook on magic graphs by Wallis
[49] is a good reference for this and other closely related magic labelings.

On the other hand, graph decompositions, known for its applications in
combinatorial design theory, have been studied since the mid nineteenth
century. There are a lot of decomposition problems but, among all of them,
stand out the decompositions of complete or complete bipartite graphs by
a given tree and the ascending subgraph decomposition of a graph. Both
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decompositions will be treated here.

The origin of the decomposition of a complete graph by a given tree is the
already mentioned Ringel’s conjecture, which gives rise to the conjecture
of Graham and Häggkvist (see, e.g., [30]) that, in a weak form, says that
every tree with m edges decomposes the complete bipartite graph Km,m.
Many partial results are known on both conjectures that motivate our work,
mainly the ones that state that the addition of a certain number of vertices
and edges to the tree results on a tree for which one of the conjectures hold
[33, 35, 40]. The attempt to decompose larger complete graphs [30, 40] has
also been a starting point for us.

The philosophy of the ascending subgraph decomposition is quite different
from the above one. Introduced in 1987 by Alavi, Boals, Chartrand, Erdös
and Oellerman [2], asks for a decomposition of a graph G of size

(
n+1

2

)
into

n subgraphs H1, . . . ,Hn such that Hi has i edges and is isomorphic to a
subgraph of Hi+1, i = 1, . . . , n − 1. In the same paper, they conjectured
that every graph with the stated size has such a decomposition and that a
star forest with each component having size between n and 2n − 2 has an
ascending subgraph decomposition with each Hi being a star. Nowadays,
the first conjecture is still open and the second one was proved in 1994 by
Ma, Zhou and Zhou [44]. The first conjecture gives us the motivation to
study the problem for the class of bipartite graphs, a class for which the
conjecture has not been shown to hold yet. But is in the proof of the second
conjecture where a related problem arises: the sumset partition problem.

The sumset partition problem asks for a partition of a certain set of positive
integers, in such a way that the sum of the elements inside each part is
equal to a prescribed value. To characterize the structure of the sequence of
prescribed values when the set to partition is [n], has been a hard topic up to
now. Some sufficient conditions can be found in the literature, [7, 21, 44, 12],
each one being more general than the preceding. One of the reasons for us
to study this problem, as well as the interest by itself, is the connection with
the ascending subgraph decomposition problem for bipartite graphs and the
study of a generalization of magic labelings.

We next summarize the contents of the forthcoming chapters, which contain
the bulk of the work.

Chapter 2 deals with the magic-type labelings described above. We present
a generalization of the concept introduced by Gutiérrez and Lladó [28], in
which the labeling is required to be constant on each member of a covering
of the target graph (the classical magic valuations correspond to the decom-
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position of a graph by its edges). In this chapter we show the connection
between the partition of certain sets of integers and this general kind of
magic labelings. Finally, we focuss on the special case where the members
of the covering are cycles.

In Chapter 3 we study the conjectures by Ringel and by Graham and
Häggkvist stated above. The first part of the chapter is motivated by a
paper of Lladó and López [40] where it is shown that a tree with m edges
and it growth ratio at least

√
2 decomposes K2m,2m. Our approach to the

problem uses an extension of the bigraceful labeling (see e.g. [40]) that leads
us to the G-bigraceful labeling. We can improve the last bound for trees
with a prime number of edges. To obtain appropriate labelings, we use the
polynomial method of Alon [3, 4, 5], an algebraic method based on find-
ing nonzero valuations of a multivariate polynomial over a field that will
be described in the following section. In the last part of the chapter, we
consider an arbitrary tree T and show that it can be embedded into two
trees with n and n′ edges, bounded with respect to the size of T , such that
decompose K2n+1 and Kn′,n′ respectively. These last results are based on
the well-known Kneser’s theorem (see, e.g., [45]) from Additive Theory.

Chapter 4 is completely devoted to the sumset partition problem. We obtain
general sufficient conditions for sequences of prescribed sums, and we also
completely characterize the sequences of length at most 4. The obtained
results have direct consequences on Chapter 5. At the end, we consider
a modular version of the problem and show that for p an odd prime, Zp,
except one element in some cases, can be partitioned in such a way that
each part adds up to any prescribed sum, being the sequence of prescribed
sums of length at most p−1

2 . The result is obtained from the application of
the polynomial method.

Finally, in Chapter 5, we first show the strong connection between the sum-
set partition problem and the ascending subgraph decompositions. We use
the results obtained in Chapter 4 to obtain ascending decompositions of
bipartite graphs in which each subgraph is a star. We also construct as-
cending subgraph decompositions for bipartite graphs with one partite set
of cardinality at most 4. We finish the chapter by finding ascending sub-
graph decompositions of bipartite graphs in which each factor is a forest of
stars. The techniques of this part are based on the construction of adequate
bipartite multigraphs that admit a proper edge-coloring subject to certain
conditions.
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1.3 Polynomial method

Among the variety of tools presented in this thesis, which range from Ad-
ditive Theory to purely combinatorial ones, the polynomial method of Alon
stands out. We next present the main result of Alon, and a pair of facts,
that will be used many times in the sequel.

The use of polynomial methods in combinatorics can be traced back to the
applications in combinatorial geometry in the late 1970’s, see the survey of
Blokhuis [9] on this kind of applications. A particular kind of these methods
was elaborated by Alon and his collaborators in a series of applications, first
in the works of Alon and Tarsi on the list chromatic number of a graph [6] in
the late 1980’s and then in Combinatorial Number Theory, in the solution
of the Erdös-Heilbron conjecture on distinct sums by Alon, Nathanson and
Rusza [5]. These applications led Alon to establish a quite powerful tool
which he named Combinatorial Nullstellensatz [3] for its connection with
the Nullstellensatz by Hilbert, but it is usually referred to as the polynomial
method of Alon (see also the survey by Kàrolyi on this topic [32]).

The basic idea of one part of the method is based in the simple observation
that a nonzero polynomial of degree n can not vanish in a set of more than
n points. For multivariate polynomials an analogous less trivial result holds
which is in the basis of many of the applications. Its statement is summarized
in the following theorem.

Theorem 1.1 (Alon, [3]) Let F be an arbitrary field, and let f(x1, . . . , xn)
be a polynomial in F [x1, . . . , xn]. Suppose that the degree deg(f) of f is∑n

i=1 ti, where each ti is a nonnegative integer, and suppose that the coeffi-
cient of

∏n
i=1 xti in f is nonzero. Then, if S1, . . . , Sn are subsets of F with

|Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

f(s1, . . . , sn) 6= 0.

2

In our applications we usually build polynomials which contain Vandermonde
polynomials as factors. We denote by V (x1, . . . , xn) =

∏
1≤i<j≤n(xi − xj)

the Vandermonde polynomial on the variables x1, . . . , xn over some field F .
The polynomial takes nonzero value in a point (a1, . . . , an) ∈ Fn if and only
if the coordinates are pairwise distinct. Recall that the expansion of the
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polynomial has the form

V (x1, . . . , xn) =
∑

σ∈Sym(n)

sgn(σ)xn−1
σ(1)x

n−2
σ(2) · · ·x0

σ(n). (1.1)

It can be shown that, in the homogeneous polynomial V (x1, . . . , xn)2 =∏
1≤i<j≤n(xi − xj)2, the monomial in which the exponents of each variable

are balanced has coefficient ±n!, that is,

[xn−1
1 · · ·xn−1

n ](V (x1, . . . , xn))2 = (−1)(
n
2)n!, (1.2)

see, e.g., Alon [4]. We shall use this fact later on.



2
H-magic labelings

This chapter is devoted to the study of a generalization of magic labelings.
We first present the generalization introduced by Gutiérrez and Lladó [28]
of the classical concept of magic graph. In this generalization, the labeling
is required to be constant on each member of a covering of the target graph,
while the classical magic valuations correspond to the covering of the graph
by its edges. In Section 2.2, we summarize some of the results obtained in
[28] to describe the general framework for a complete understanding of the
problem. Then, in Section 2.3, we show the connection between the partition
of certain sets of integers and this general kind of magic labelings. In the
last section, we focuss on the special case where the members of the covering
are cycles. The results of this section appear in [42].

2.1 Introduction

Let G = (V, E) be a finite simple graph. An (edge)covering of G is a family
of subgraphs H1, . . . ,Hk such that each edge of E belongs to at least one
of the subgraphs Hi, 1 ≤ i ≤ k. In this case, it is said that G admits an
(H1, . . . , Hk)-(edge)covering. If every Hi is isomorphic to a given graph H,
we say that G has an H-covering.

Suppose that G = (V,E) admits an H-covering. A bijective function

f : V ∪ E → {1, 2, . . . , |V |+ |E|},
is an H-magic labeling of G whenever, for every subgraph H ′ = (V ′, E′) of
G isomorphic to H,

f(H ′) def=
∑

v∈V ′
f(v) +

∑

e∈E′
f(e)
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Figure 2.1 (a) P3-supermagic labeling of P6. (b) C3-supermagic
labeling of W5.

is constant. In this case we say that the graph G is H-magic. If the restriction
of f on the vertices takes the first |V | possible values, f(V ) = {1, . . . , |V |},
then G is said to be H-supermagic. The constant value that every copy of
H takes under the labeling f is denoted by m(f) in the magic case and by
s(f) in the supermagic case. Fig. 2.1 shows an example of a P3-supermagic
labeling with s(f) = 28 and a C3-supermagic labeling with s(f) = 41.

The notion of H-magic graphs was first introduced by Gutiérrez and Lladó
[28] as an extension of the magic valuation given by Rosa [47] in 1967 (see
also [37]), which corresponds to the case H = K2. Supermagic labelings
have been considered in [16] (see also [1]). There are other closely related
notions of magic labelings in the literature; see the survey of Gallian [24]
and the references therein, and the textbook on Magic Graphs by Wallis [49]

When H = K2, we say that a K2-magic or a K2-supermagic graph is simply
magic or supermagic. Some authors in this case use the terminology total-
magic or super total-magic labeling, in order to stress the fact that both
vertices and edges are labeled.

2.2 Star and path-magic graphs

In this section we summarize some of the results obtained by Gutiérrez and
Lladó [28] concerning H-magic graphs for H a star K1,h or a path Ph.
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2.2.1 Star-magic coverings

It is clear that, for any pair of positive integers n ≥ h, the star K1,n can be
covered by a family of

(
n
h

)
stars K1,h. The very first result obtained in [28]

is that the star K1,n is K1,h-supermagic for any 1 ≤ h ≤ n.

The authors next study the H-(super)magic behavior of complete graphs
and complete bipartite graphs when H is a star. It is well-known that the
complete graph Kn is not magic for any order larger than six [13, 36, 38].
It is also known [37] that complete bipartite graphs of any order are magic.
Using local arguments, they conclude that if G is a d-regular graph, then
G is not K1,h-magic for any 1 < h < d. As a direct consequence of the
last fact, they obtain that the complete graph Kn is not K1,h-magic for any
1 < h < n− 1 and the complete bipartite graph Kn,n is not K1,h-magic for
any 1 < h < n.

Using a classical result about the existence of magic squares, they show the
extremal case for complete bipartite graphs.

Theorem 2.1 ([28]) The complete bipartite graph Kn,n is K1,n-magic for
n ≥ 1. 2

The extremal case for complete bipartite graphs with respect to the star-
supermagic property is also proved. For that, they use a result dealing with
2-partitions of sets of consecutive integers.

Theorem 2.2 ([28]) For each integer n > 1, the complete bipartite graph
Kn,n is not K1,n-supermagic. 2

They next study the same question for general complete bipartite graphs
Kr,s when 1 < r < s. In [16] it is proved that the only complete bipartite
graphs that are supermagic are the stars. Next theorem says that in fact
there is no integer 1 < h < s for which Kr,s admits a K1,h-supermagic
labeling. It also states that Kr,s is K1,s-supermagic, which is an extension
of the result given in [16].

Theorem 2.3 ([28]) For any pair of integers 1 < r < s, the complete
bipartite graph Kr,s is K1,h-supermagic if and only if h = s. 2
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2.2.2 Path-magic coverings

The second part of [28] studies the H-(super)magic behavior of paths, com-
plete graphs and cycles when H is a path.

The first result on this problem concerns the path-supermagic behavior of
paths and states that the path Pn is Ph-supermagic for every 2 ≤ h ≤ n.

It has already been mentioned that the complete graph Kn is not magic for
any integer n > 6. They prove that if G is a Ph-magic graph with h > 2,
then G is Ch-free, implying that complete graphs are not path-magic for any
path of length larger than 2.

All cycles are magic, see [25]. It is also known that only the odd cycles
are supermagic [16]. By adding an additional divisibility condition they get
path-supermagic labelings of cycles as shown in the next theorem.

Theorem 2.4 ([28]) Let n and h be positive integers with 2 ≤ h < n. If
gcd(n, h(h− 1)) = 1 then the cycle Cn is Ph-supermagic. 2

2.3 Equipartitions with given sums

In this section we describe additional results from [28] that motivate our
partition method to obtain cycle-magic labelings of the target graph that
will be shown in the next section. The authors prove that for every graph
H, verifying some weak conditions, there are infinite families of connected
and non-connected H-magic graphs using results about set equipartitions.
We extend here these results about set equipartitions and we also introduce
the concept of well-distributed equipartition, that will be very useful to show
the supermagic behavior of certain classes of graphs.

We first need some preliminary notation.

Let P = {X1, . . . , Xk} be a partition of a set X of integers. The set of
subset sums of P is denoted by

∑P = {∑X1, . . . ,
∑

Xk}. If all elements
of P have the same cardinality, then P is said to be a k-equipartition of X.

We shall describe a partition P = {X1, . . . , Xk} of a set X = {x1, x2, . . . , xn}
by giving a k-coloring on the elements of X in such a way that Xi contains all
the elements with color i, 1 ≤ i ≤ k. For example, the coloring (1, 2, 1, 2, 2, 1)
means that X1 = {x1, x3, x6} and X2 = {x2, x4, x5}. When some pattern
of colors (c1, c2, . . . , cr) is repeated t times we write (c1, c2, . . . , cr)t. For
instance, the coloring (1, 2, 1, 2, 2, 1) is denoted by (1, 2)2(2, 1).
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We say that a k-equipartition P = {X1, . . . , Xk} of a set of integers X =
{x1 < x2 < · · · < xhk} is well-distributed if for each 0 ≤ j < h, the elements
xl ∈ X, with l ∈ [jk + 1, (j + 1)k], belong to distinct parts of P. In other
words, the coloring which gives the partition is bijective on each of the h
disjoint blocks of length k of consecutive elements in X.

For instance, P1 = {{1, 4, 5}, {2, 3, 6}} and P2 = {{1, 3, 5}, {2, 4, 6}}, are
well-distributed 2-equipartitions of X = [1, 6] (the associated colorings are
(1, 2, 2, 1, 1, 2) and (1, 2, 1, 2, 1, 2) respectively) while P3 = {{1, 2, 3}, {4, 5, 6}}
is not.

We will use the next two lemmas for k-equipartitions. It can be easily checked
that the proofs given in [28] provide in fact well-distributed equipartitions.

Lemma 2.5 ([28]) Let h and k be two positive integers. For each integer
0 ≤ t ≤ bh/2c, there exists a well-distributed k-equipartition P of [1, hk]
such that

∑P is an arithmetic progression of difference d = h− 2t. 2

Lemma 2.6 ([28]) Let h and k be two positive integers. If h or k are not
both even, there exists a well-distributed k-equipartition P of [1, hk] such that∑P is a set of consecutive integers. 2

Lemmas 2.5 and 2.6 allow us to obtain infinite families of H-magic graphs
for a given graph H under some weak conditions.

Lemma 2.5 has a simple application for the construction of an infinite family
of H-magic non-connected graphs as it is shown in the following result.

Theorem 2.7 ([28]) Let H be a graph with |V (H)| + |E(H)| even. Then
the disjoint union G = kH of k copies of H is H-magic. 2

As an application of Lemma 2.6, they obtain the following result that pro-
vides infinite families of connected H-magic graphs. It is based on the fol-
lowing graph operation. Let G and H be two graphs and e ∈ E(H) a
distinguished edge in H. We denote by G ∗ eH the graph obtained from G
by gluing a copy of H to each edge of G by the distinguished edge e ∈ E(H).

Theorem 2.8 ([28]) Let H be a 2-connected graph and let G be an H-free
supermagic graph. Let k be the size of G and h = |V (H)|+ |E(H)|. Assume
that h and k are not both even. Then, for each edge e ∈ E(H), the graph
G ∗ eH is H-magic. 2
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Figure 2.2 A supermagic labeling of C5 and the C3-magic labeling
of C5 ∗ eC3.

Fig. 2.2 depicts a labeling obtained from the proof of Theorem 2.8 given in
[28] for G = C5 and H = C3.

We finish this section with a key lemma that will be very useful to obtain
the results of the next section. It provides well-distributed equipartitions
where all the parts have the same sum.

Lemma 2.9 Let h ≥ 3 be an odd integer. If either

(1) k is odd and X = [1, hk], or

(2) k is even and X = [1, hk + 1] \ {k/2 + 1},

then there is a well-distributed k-equipartition P of X such that |∑P| = 1.

Proof.

(1) By Lemma 2.6 there exists a well-distributed k-equipartition P ′ =
{Y1, . . . , Yk} of the interval Y = [1, (h− 1)k] such that

∑
P ′ = {

∑
Y1 + (i− 1) : 1 ≤ i ≤ k}.

Consider the partition P = {X1, . . . , Xk} of [1, hk], where

Xi = Yi ∪ {(1− i) + hk}, 1 ≤ i ≤ k.
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It is clear that P is a k-equipartition of [1, hk].

As P ′ is a well-distributed k-equipartition of [1, (h− 1)k] and there is
one element of each part in [(h−1)k+1, hk], P is also well-distributed.

In addition, for any 1 ≤ i ≤ k we have,
∑

Xi =
∑

Y1 + (i− 1) + (1− i) + hk =
∑

Y1 + hk,

which is independent of i and therefore |∑P| = 1.

(2) Let k be an even positive integer and X = [1, hk + 1] \ {k/2 + 1}.
Set A = [1, k +1] \ {k/2+1} and B = [k +2, hk +1]. Clearly, |A| = k,
|B| = (h− 1)k and X = A ∪B.

Consider now the partition P = {X1, . . . , Xk} given by the following
k-coloring of A ∪B.

Color the k elements of A by

(k/2, k/2− 1, . . . , 1)(k, k − 1, . . . , k/2 + 1).

Now color the (h− 1)k elements of B by

(k/2 + 1, 1, k/2 + 2, 2, . . . , k, k/2)(k, k − 1, . . . , 1)
h−3

2
+1(1, 2, . . . , k)

h−3
2 .

It is clear by the coloring that P is well-distributed. Moreover, for
1 ≤ i ≤ k/2, we have,

∑
Xi −

∑
X1 = (k/2 + 1− i− k/2) + (k + 1 + 2i− k − 3)+

+
(

h− 3
2

+ 1
)

(1− i) +
h− 3

2
(i− 1) = 0.

A similar computation shows that
∑

Xi −
∑

X1 takes the same value
when k/2 < i ≤ k, so that |∑P| = 1.

2

Remark 2.10 Note that the statements of the three above lemmas can be
extended to any integer translation a + X = {a + x1, . . . , a + xn} of the set
X = {x1, . . . , xn}. 2
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2.4 Cycle-magic graphs

In this section we study H-magic labelings when H is a cycle Cr. In this case
we speak of cycle-magic labelings and cycle-magic graphs. A related notion
of face-magic labelings of a planar graph G asks for a total labeling such that
the sum over the vertices and edges of each face of a planar embedding of G
is constant; see, for instance, Bacca [8]. When G has a planar embedding in
which all faces have the same number r of edges, a Cr-magic labeling of G
is also a face magic labeling of the graph.

The section continues with the following new results. We prove that the
wheel Wn with n ≥ 5 odd is C3-magic and that the cartesian product of a
C4-free supermagic graph with K2 is C4-magic. In particular the odd prisms
and books are C4-supermagic. We also show that the windmill W (r, k) is Cr-
magic, thus providing a family of Cr-magic graphs for each r ≥ 3. Finally, it
is also shown that subdivided wheels and uniform Θ-graphs are cycle-magic.
All these results rely on the application of the partition lemmas described
in the previous section.

2.4.1 C3 and C4-magic graphs

Let Wn = Cn + {v} denote the wheel with a rim of order n. Clearly Wn

admits a covering by triangles. As an another application of Lemma 2.6, we
next show that any odd wheel is a C3-supermagic graph.

Theorem 2.11 The wheel Wn for n ≥ 5 odd, is C3-supermagic.

Proof. Denote by v1, v2, . . . , vn the vertices in the n-cycle of the wheel Wn

and by v its central vertex. For 1 ≤ i ≤ n let Ni = {vi, viv}.
Define a total labeling f of Wn on [1, 3n + 1] as follows. Set f(v) = 1,
f(vnv1) = 2n + 2 and for 1 ≤ i < n, f(vivi+1) = 3n + 2 − i. Therefore,
f(E(Cn)) = [2n + 2, 3n + 1].

We have to define f on N = ∪n
i=1Ni in such a way that f(N) = [2, 2n + 1].

Since n is odd, by Lemma 2.6 there is a well-distributed n-equipartition
P = {X1, . . . , Xn} of the set X = 1+[1, 2n], such that

∑
Xi =

∑
X1+(i−1).

Let Xi = {xi,1 < xi,2}. Since P is well-distributed, we have 1 < xi,1 ≤ n + 1
and n + 1 < xi,2 ≤ 1 + 2n.
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Let α be the permutation of [1, n] given by

α(i) =
{

i/2, i even;
(n + i)/2, i odd.

Since n is odd, α is a permutation of [1, n]. Moreover α(i) + α(i + 1) =
i + (n + 1)/2 for 1 ≤ i ≤ n− 1 and α(n) + α(1) = (3n + 1)/2.

Define f on each Ni by the bijection from Ni to Xα(i) given by

f(vi) = xα(i),1 and f(vvi) = xα(i),2.

Note that 1 < f(vi) ≤ n+1 and n+1 < f(vvi) ≤ 2n+1, so that f(V (N)) =
[2, n + 1] and f(E(N)) = [n + 2, 2n + 1]. Hence, if f is C3-magic, then it is
C3-supermagic.

Let us show that
∑

f(H) is constant in every triangle H of Wn. Now we
prove that f take the same sum in every subgraph H of Wn isomorphic to
C3. Since n ≥ 5, each triangle H has vertex set either {v, vi, vi+1} for some
1 ≤ i < n, or {v, vn, v1}. Therefore,

∑
f(H) =

∑
f(Ni) +

∑
f(Ni+1) + f(vivi+1) + f(v)

= 2
∑

X1 + α(i) + α(i + 1)− 2 + (3n + 2− i) + 1

= 2
∑

X1 + i + (n + 1)/2 + (3n + 1)− i

= 2
∑

X1 + (7n + 3)/2

=
∑

f(Nn) +
∑

f(N1) + f(vnv1) + f(v),

which is independent of i as claimed. This completes the proof. 2

Fig. 2.3 shows an example of the C3-supermagic labeling defined in the
above proof.

Remark 2.12 Fig. 2.4 shows two quite different C3-magic labelings of the
wheels W4 and W6. We do not know if the wheel W2r with r > 3 is a
C3-magic graph. 2

Another application of Lemma 2.6 provides a large family of C4-supermagic
graphs. The cartesian product of two graphs G1 and G2 is the graph G =
G1 ×G2 with

V (G) = V (G1)× V (G2)
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Figure 2.4 C3-magic labelings of W4 and W6.

and

(x1, y1)(x2, y2) ∈ E(G) ⇐⇒
{

x1 = x2 and y1y2 ∈ E(G2) or
y1 = y2 and x1x2 ∈ E(G1).

Clearly, for any graph G, the cartesian product G ×K2 can be covered by
4-cycles.

Theorem 2.13 Let G be a C4-free supermagic graph of odd size. Then, the
graph G×K2 is C4-supermagic.

Proof. Let n and m be, respectively, the order and size of G = (V, E). We
have to show a C4-supermagic total labeling of G×K2 with the integers in
[1, 3n + 2m].

For each vertex x ∈ V (G) denote by x0, x1 ∈ V (G×K2) the corresponding
vertices in the two copies of G and x0x1 ∈ E(G × K2) the edge joining
them. Denote by Ax = {x0, x1, x0x1} and by A = ∪x∈V Ax ⊂ V (G ×K2) ∪
E(G × K2). We have |A| = 3n. Now, for each edge xy ∈ E(G), denote
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by Bxy = {x0y0, x1y1} the corresponding edges in the two copies of G and
B = ∪xy∈E(G)Bxy. We have |B| = 2m. Clearly, {A,B} is a partition of the
set V (G×K2) ∪ E(G×K2).

By Lemma 2.6 there is a well-distributed n-equipartition P1 = {X1, . . . , Xn}
of the set [1, 3n], such that

∑
Xi = a + i for some integer a.

Since m is odd, Lemma 2.6 also ensures a well-distributed m-equipartition
P2 = {Y1, . . . , Ym} of 3n + [1, 2m] such that

∑
Yi = b + i for some integer b.

Let f be a supermagic labeling of G with supermagic sum s(f). Define
a total labeling f ′ of G × K2 as follows. For x ∈ V (G) define f ′ on Ax

by any bijection from Ax to Xf(x) (the bijection depends on f). Similarly,
for xy ∈ E(G) define f ′ on Bxy by any bijection from Bxy to Yf(xy)−n

(again the bijection depends on f). Then, the map f ′ is a bijection from
V (G×K2)∪E(G×K2) to [1, 3n+2m]. In addition, as P1 is well-distributed
in [1, 3n], we can choose f ′ verifying f ′(V (G×K2)) = [1, 2n].

Now, let H be a subgraph of G × K2 isomorphic to a 4-cycle. Since G is
C4-free, every 4-cycle H of G×K2 has the form,

V (H) ∪ E(H) = Ax ∪Ay ∪Bxy,

where x, y ∈ V (G) and xy ∈ E(G). Then, the sum of the elements in any
4-cycle H of G×K2 is

f ′(H) = f ′(Ax) + f ′(Ay) + f ′(Bxy)
= 2a + f(x) + f(y) + b + f(xy)− n,

= 2a + b + s(f)− n.

independent of H. 2

As an application of Theorem 2.13 we have the next corollary.

Corollary 2.14 The following two families of graphs are C4-supermagic for
n odd.

(1) The prims, Cn ×K2.

(2) The books, K1,n ×K2. 2
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2.4.2 Cr-magic graphs

Here, we give a family of Cr-supermagic graphs for any integer r ≥ 3. Let
Cr be a cycle of length r ≥ 3. Consider the graph W (r, k) obtained by
identifying one vertex in each of the k ≥ 2 disjoint copies of the cycle Cr.
The resulting graphs are called windmills, and W (3, k) is also known as the
friendship graph. Note that windmills clearly admit a Cr-covering. We next
show that they are Cr-supermagic graphs.

A remark to keep in mind is that, for the proofs of the last part of this
chapter, we shall use the notation introduced in Chapter 1 for G \ A where
A ⊆ V (G). Recall that this is defined by the deletion of the vertices in A
but not the incident edges.

Theorem 2.15 For any two integers r ≥ 3 and k ≥ 2, the windmill W (r, k)
is Cr-supermagic.

Proof. Let G1, . . . , Gk be the r-cycles of W (r, k) and let v their only com-
mon vertex. Denote by G∗ = W (r, k) \ {v} and its set of vertices and edges
by V ∗ and E∗ respectively. Therefore, we have |V ∗| = (r−1)k and |E∗| = rk.

We want to define a Cr-supermagic total labeling f of W (r, k) with the
integers from [1, (2r − 1)k + 1] such that f(V (W (r, k))) = f(V ∗ ∪ {v}) =
[1, (r − 1)k] + 1.

Suppose first that k is odd. Let f(v) = 1.

By Lemma 2.9 (1) there is a k-equipartition P = {X1, . . . , Xk} of the set
1+[1, (2r−1)k] such that |∑P| = 1. Furthermore, as it is well-distributed,
in each set Xi there are r − 1 elements less or equal than 1 + (r − 1)k.

Define f on each G∗
i = Gi \ {v}, 1 ≤ i ≤ k, by any bijection from G∗

i to Xi

such that f(V ∗
i ) ⊂ [1, (r − 1)k] + 1, where V ∗

i is the set of vertices of G∗
i .

Suppose now that k is even. In this case, let f(v) = k/2 + 1.

By Lemma 2.9 (2) there is a k-equipartition P = {X1, . . . , Xk} of the set
[1, (2r − 1)k + 1] \ {k/2 + 1} such that |∑P| = 1. Furthermore, there are
r − 1 elements less or equal than 1 + k(r − 1) in each set Xi.

In this case, define also f(G∗
i ) by any bijection from G∗

i to Xi such that
f(V ∗

i ) ⊂ [1, (r − 1)k + 1] \ {k/2 + 1}.
In both cases, for each 1 ≤ i ≤ k,

f(Gi) =
∑

Xi + f(v).
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Figure 2.5 Ck-supermagic labelings of W (k, k), for k = 3, 4.

Hence f is a Cr-supermagic labeling of the windmill W (r, k). 2

See Fig. 2.5 for examples of cycle-supermagic labelings of windmills for
different parities of the cycles.

Next, we consider a family of graphs obtained by subdivisions of a wheel.
Given the wheel Wn, we denote by v1, v2, . . . , vn the vertices in the n-cycle
and by v its central vertex, as in the proof of Theorem 2.11. The subdivided
wheel Wn(r, k) is the graph obtained from the wheel Wn by replacing each
radial edge vvi, 1 ≤ i ≤ n by a vvi-path of size r ≥ 1, and every external
edge vivi+1 by a vivi+1-path of size k ≥ 1. It is clear that, |V (Wn(r, k))| =
n(r + k) + 1 and |E(Wn(r, k))| = n(r + k).

Fig. 2.6 shows a subdivided wheel from W6.

Theorem 2.16 Let r and k be two positive integers. The subdivided wheel
Wn(r, k) is C2r+k-magic for any odd n 6= 2r

k + 1. Furthermore, Wn(r, 1) is
C2r+1-supermagic.

Proof. Let n ≥ 3 be an odd integer.

Denote by v the central vertex of the subdivided wheel Wn(r, k) and by
v1, v2, . . . , vn the remaining vertices of degree > 2. For 1 ≤ i ≤ n let Pi be
the vvi-path of length r ≥ 1.

Let P ∗
i = Pi \ {v}, 1 ≤ i ≤ n and P ∗ = ∪n

i=1P
∗
i .



26 Chapter 2. H-magic labelings

r

r r r r

r r r

r r r r

r

r r r r

r

r

r

r

r

r

r

r
@

@@¡
¡¡

C
C
CC
¤
¤
¤¤

@
@@¡

¡¡
C
C
CC
¤
¤
¤¤

¶
¶

¶¶

S
S

SS

¶
¶

¶¶

S
S

SS

v

v1

v2

v3v4

v5

v6

Figure 2.6 The subdivided wheel W6(3, 2).

Suppose first k = 1.

In this case, we want a C2r+1-magic labeling f on Wn(r, 1) with the integers
in [1, 1 + 2nr + n] such that f(V ) = [1, nr + 1]. Let f(v) = 1 and f(vnv1) =
2nr + 2, and label the remaining edges of the external cycle of Wn(r, 1) by
f(vivi+1) = 2nr + 2 + n− i, 1 ≤ i < n.

The only elements left to label are the ones in P ∗, with |P ∗| = 2nr. Since
n ≥ 3 is odd, Lemma 2.6 ensures the existence of a well-distributed n-
equipartition P1 = {X1, . . . , Xn} of the set 1 + [1, 2nr] such that

∑
Xi =

a + i, 1 ≤ i ≤ n for some constant a. Moreover, as P1 is well-distributed,
each Xi has r elements in 1 + [1, nr + 1]. Now define f on each P ∗

i by a
bijection with Xα(i) that assigns the first r values of [1, nr] to the vertices,
where α is the following permutation of [1, n].

α(i) =
{

i/2, i even;
(n + i)/2, i odd.

Note that, as n is odd, α(n) + α(1) = n + (n + 1)/2 and, for 1 ≤ i < n, we
have α(i) + α(i + 1) = i + (n + 1)/2.

Therefore, f is clearly a bijection from Wn(r, 1) to [1, n(2r + 1) + 1], and
f(V ) = [1, nr + 1].

Now, since n 6= 2r+1, for every subgraph H of Wn(r, 1) isomorphic to C2r+1,
we have either

V (H) ∪ E(H) = {v} ∪ P ∗
n ∪ {vnv1} ∪ P ∗

1 or
V (H) ∪ E(H) = {v} ∪ P ∗

i ∪ {vivi+1} ∪ P ∗
i+1, for some 1 ≤ i < n.
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Then, for each 1 ≤ i < n, we have
∑

f(H) =
∑

f(P ∗
i ) +

∑
f(P ∗

i+1) + f(vivi+1) + f(v)

= 2a + α(i) + α(i + 1) + (n(2r + 1) + 2− i) + 1

= 2a + 2nr +
3n + 7

2
,

which is independent of i. A similar computation shows that
∑

f(P ∗
n) +∑

f(P ∗
1 )+f(vnv1)+f(v) has the same value. Hence f is a C2r+1-supermagic

labeling of Wn(r, 1).

Suppose now k > 1.

In this case, for each 1 ≤ i ≤ n, let Qi be the vivi+1-path of length k ≥ 1.
Denote by Q∗

i = Qi \ {vi, vi+1} and Q∗ = ∪iQ
∗
i .

By Lemma 2.6 there is a well-distributed n-equipartition P2 = {Y1, . . . , Yn},
of the set 2nr + [1, n(2k− 1)] such that, for 1 ≤ i ≤ n,

∑
Yi = b+ i for some

constant b.

Define a total labeling f of Wn(r, k) on [1, n(2k − 1)] as follows. Set f(v) =
2n(r + k)− n + 1. Define f on P ∗

i by any bijection from P ∗
i to Xα(i), where

P1 = {X1, . . . , Xk} and α are defined as in the above case. Define f on Q∗
i

by any bijection to Yn+1−i.

Since n 6= 2r
k +1, every subgraph H of Wn(r, k) isomorphic to C2r+k verifies

either

V (H) ∪ E(H) = {v} ∪ P ∗
n ∪Q∗

n ∪ P ∗
1 or

V (H) ∪ E(H) = {v} ∪ P ∗
i ∪Q∗

i ∪ P ∗
i+1, for some 1 ≤ i < n.

Then, for each 1 ≤ i < n we have,
∑

f(H) =
∑

f(P ∗
i ) +

∑
f(P ∗

i+1) + f(Q∗
i ) + f(v)

= 2a + α(i) + α(i + 1) + b + (n + 1− i) + 2n(r + k)− n + 1

= 2a + b + 2n(r + k) +
n + 5

2
.

It is also immediate to check that the labels of the remaining (2r + k)-cycle
have also the same sum. 2

Fig. 2.7 shows examples of cycle-supermagic labelings defined in the above
proof.
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Figure 2.7 (a) C5-supermagic labeling of W7(2, 1). (b) C8-magic
labeling of W3(3, 2).

We finish by giving another family of cycle-supermagic graphs. Recall that,
for a sequence k1, . . . , kn of positive integers, the graph Θ(k1, . . . , kn) consists
of n internally disjoint paths of orders k1 + 1, . . . , kn + 1 joined by two end
vertices u and v. When all the paths have the same size p, this graph,
denoted by Θn(p), admits a C2p-covering. We next show that such a graph
is cycle-supermagic.

Theorem 2.17 The graph Θn(p) is C2p-supermagic for n, p ≥ 2.

Proof. Let u and v be the common end vertices of the paths P1, . . . , Pn in
Θn(p) = (V, E). Denote by P ∗

i = Pi \ {u, v}, 1 ≤ i ≤ n.

We want to define a total labeling f of Θn(p) with integers from the interval
[1, (2 + (p− 1)n) + np] such that f(V ) = [1, 2 + (p− 1)n].

If n is odd, Lemma 2.9 (1) provides an n-equipartition P = {X1, . . . , Xn}
of the set 2 + [1, (2p − 1)n] such that

∑
X1 = · · · =

∑
Xn = a, for some

constant a, and, as it is well-distributed, in each Xi there are p− 1 integers
less or equal than 2 + (p− 1)n.

Define a total labeling f on Θn(p) as follows. Set f(u) = 1, f(v) = 2 and
f on P ∗

i by a bijection from P ∗
i to Xi such that the p − 1 numbers in each

Xi that are less or equal than 2 + (p− 1)n are used for the p− 1 vertices in
each P ∗

i .
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Figure 2.8 C6-supermagic labeling of Θ4(3) and C8-supermagic la-
beling of Θ3(4).

Every subgraph H of Θn(p) isomorphic to C2p is of the form

V (H) ∪ E(H) = {u} ∪ P ∗
i ∪ {v} ∪ P ∗

j ,

for 1 ≤ i < j ≤ n.

It is easy to check that
∑

f(H) = 2a + 3.

Assume now that n is even. By Lemma 2.9 (2) there exists an n-equipartition
P = {X1, . . . , Xn} of the set [1, (2p − 1)n + 2] \ {1, n/2 + 2} such that∑

X1 = · · · =
∑

Xn = a, for some constant a. Moreover, since P is well-
distributed, in each Xi there are p−1 numbers less or equal than 2+(p−1)n.

Now, we proceed as before but setting f(v) = n/2 + 2. It is immediate to
check that we indeed get a C2p-supermagic labeling of Θn(p). 2

In Fig. 2.8 two supermagic labelings of Θn(p) for different parities of n and
p are displayed.





3
Decomposing by trees

A conjecture of Graham and Häggkvist states that every tree with m edges
decomposes every 2m-regular graph and every bipartite m-regular graph. In
this chapter we present two results that can be seen as approximations to
the complete solution of the conjecture.

Let T be a tree with a prime number p of edges. In Section 3.3 we show that
if the growth ratio of T at some vertex v0 satisfies ρ(T, v0) ≥ φ1/2, where
φ = 1+

√
5

2 is the golden ratio, then T decomposes K2p,2p. We also prove
that if T has at least p/3 leaves then it decomposes K2p,2p. This improves
previous results by Häggkvist [30] and by Lladó and López [40]. The results
follow from an application of Alon’s Combinatorial Nullstellensatz [3] to
obtain bigraceful labelings and they are collected in [11].

In Section 3.4 we consider a tree T of size m (not necessarily prime) and we
show that there exists an integer n with n ≤ d(3m − 1)/2e and a tree T1

with n edges such that decomposes K2n+1 and contains T . We also show
that there exists an integer n′ with n′ ≤ 2m− 1 and a tree T2 with n′ edges
such that T2 decomposes Kn′,n′ and contains T . In the latter case, we can
improve the bound if there exists a prime p such that d3m/2e ≤ p < 2m−1.
The results of this part can be found in [41].

3.1 Introduction

A decomposition of a graph G is a partition P of its set of edges. When the
graph induced by each part of P is isomorphic to a graph H, we say that H
decomposes G and write H|G.

A famous conjecture of Ringel from 1963 states that every tree with m edges
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decomposes the complete graph K2m+1 [46]. In spite of the hundreds of
papers that have appeared in the literature on the subject (see the dynamic
survey of Gallian [24]), Ringel’s conjecture is still wide open. Graham and
Häggkvist proposed the following generalization of Ringel’s conjecture; see,
e.g., [30]:

Conjecture 3.1 (Graham and Häggkvist) Every tree with m edges de-
composes every 2m-regular graph and every bipartite m-regular graph. 2

Conjecture 3.1 in particular asserts that every tree with m edges decom-
poses the complete bipartite graph Km,m. In the sequel we will refer to this
particularization of Conjecture 3.1.

Some partial results are known on Conjecture 3.1 that motivate our study.
Concerning the bipartite case, Häggkvist [30] showed, among other results,
that any tree with m edges and at least (m+1)/2 leaves decomposes K2m,2m.
The authors of [40] showed that some families of trees, like trees whose base
tree is a caterpillar, d-ary trees with d odd or trees of diameter at most
five, decompose Km,m where m is the number of edges of the tree. In the
same paper the authors also showed that a tree with m edges and growth
ratio ρ(T, v0) ≥

√
2 ≈ 1.414 . . . at some vertex v0 decomposes K2m,2m. The

growth ratio of T at vertex v0 is defined as

ρ(T, v0) = min{|Vi+1|
|Vi| , i = 0, 1, . . . , h− 1},

where Vi denote the set of vertices at distance i from v0 and h denotes the
eccentricity of v0. In Section 3.3 we show the following improvement of this
result.

Theorem 3.2 Let T be a tree with a prime number p of edges. If the growth
ratio of T at some vertex v0 satisfies ρ(T, v0) ≥ φ1/2 ≈ 1.272 . . ., where
φ = 1+

√
5

2 is the golden ratio, then T decomposes K2p,2p. 2

We also prove a similar but independent result. The base tree of a tree T is
obtained by removing all its end vertices. Let T = T (0) and define T (i) as
the base tree of T (i−1) for i ≥ 1. The base growth ratio of T is defined as

ρb(T ) = min{|Li−1|
|Li| , i = 1, . . . , h′},

where Li is the set of leaves of T (i) for 0 ≤ i < h′, |Lh′ | = 1, and h′ is the
minimum positive integer k such that T (k) is a tree with at most one leaf.
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Theorem 3.3 Let T be a tree with a prime number p of edges. If the base
growth ratio of T satisfies ρb(T ) ≥ φ, where φ = 1+

√
5

2 , then T decomposes
K2p,2p. 2

The following examples show that Theorems 3.2 and 3.3 are independent.
Let T be a binary tree with eccentricity h such that p = 2h+1− 1 is a prime
and let T ′ be the tree obtained from T by adding a new leaf to a vertex in
the last level. Then T ′ has size p and we clearly have ρb(T ) = 2 so that
T ′ decomposes K2p,2p by Theorem 3.3. However, one can easily check that
ρ(T ′, v) ≤ 1 for each vertex v so that T ′ does not satisfy the hypothesis of
Theorem 3.2. On the other hand, let T be a tree with p edges, p a prime, and
a vertex v with eccentricity h such that the levels from v satisfy |V2| = c|V1|,
|Vi| ≥ c|Vi−1|, 2 < i ≤ h, and with all leaves in Vh, where φ1/2 < c < φ.
Then ρb(T ) = ρ(T, v) = c so that T satisfies the hypothesis of Theorem 3.2
but not the ones of Theorem 3.3.

Theorems 3.2 and 3.3 will be derived from the stronger statements of Theo-
rems 3.11 and 3.15 respectively, which provide the same conclusion depend-
ing essentially on the cardinality of the last two levels of growth in each
case.

We also improve the result of Häggkvist above mentioned on the decompo-
sition by trees with large number of leaves in the case of trees with a prime
number of edges.

Theorem 3.4 Let p be a prime and let T be a tree with p edges. If T has
at least p/3 leaves then it decomposes K2p,2p. 2

In one of the early papers on the subject, Kotzig [35] showed that the sub-
stitution of an edge by a sufficiently large path in an arbitrary tree results in
a tree T for which Ringel’s conjecture holds. Thus every tree is homeomor-
phic to a tree for which the conjecture holds. On the other hand Kézdy [33]
showed that the addition of an unspecified number of leaves to a vertex of
a tree results in a tree with n edges that decomposes K2n+1. An analogous
result for the decomposition of Kn,n was proved in [40]. Therefore, every
tree contains the base tree of some tree for which both conjectures hold.
However, neither result gives a quantitative estimate of the number of ad-
ditional vertices that will suffice to make a tree decompose the appropriate
complete graph.

In Section 3.4 we consider an approximation to both conjectures and prove
that every tree is a large subtree of two trees for which the conjectures hold



34 Chapter 3. Decomposing by trees

respectively. Specifically we prove:

Theorem 3.5 Let T be a tree with m edges.

(1) For every odd n ≥ 2m − 1, there exists a tree T ′ with n edges that
contains T and T ′ decomposes Kn,n.

(2) For every prime p ≥ d3m/2e, there exists a tree T ′ with p edges that
contains T and T ′ decomposes Kp,p. 2

Theorem 3.6 Let T be a tree with m edges. For every n ≥ d(3m − 1)/2e,
there exists a tree T ′ with n edges that decomposes K2n+1 and contains T . 2

The results of this chapter follow by an application of a general technique
to obtain cyclic decompositions of complete bipartite graphs, which will be
described in the following section.

3.2 Labelings and cyclic decompositions

The classical approach to the decomposition problem of graphs uses labeling
techniques that aim to find cyclic decompositions. A tree T with m edges
cyclically decomposes K2m+1 if there is an injection φ : V (T ) → [0, 2m] such
that, for each edge xy of T , the 2m + 1 pairs

{φ(x) + k (mod 2m + 1), φ(y) + k (mod 2m + 1)},

for k = 0, 1, . . . , 2m, are pairwise disjoint. Thus the translations

φ(V (T )) + k (mod 2m + 1),

for k = 0, 1, . . . , 2m, give 2m + 1 edge-disjoint copies of T in K2m+1. Simi-
larly, T cyclically decomposes Km,m if there is a map φ : V (T ) → [0,m− 1]
that is injective on each partite set of T such that the translations

φ(V (T )) + k (mod m)

produce m edge-disjoint copies of T in Km,m.

In this section we recall the well-known graph labelings that make possible
the cyclic decompositions and we introduce new generalizations of them that
will allow us to prove the main results of this chapter.
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One of the ingredients of the proofs of this chapter is the polynomial method
of Alon [3]. We will use Theorem 1.1 described in Chapter 1 to obtain
the graph labelings used for the decompositions. The application of the
polynomial method to other related graph labeling problems can be seen in
[31], [33] and [34].

3.2.1 Bigraceful labelings

An appropriate bipartite labeling, the bigraceful labeling, was first intro-
duced by Ringel and Lladó, see, e.g., [40]. A bigraceful labeling of a tree
T with m edges and partite sets A and B is a map f of V on the integers
{0, 1, . . . , m− 1} such that the restriction of f to each partite set is injective
and the induced edge values, fE(uv) = f(u)− f(v)v for an edge uv ∈ E(T )
and u ∈ A, are pairwise distinct and must lie in {0, 1, . . . ,m− 1}. These au-
thors conjectured that all trees are bigraceful. Since a tree T that admits a
bigraceful labeling cyclically decomposes Km,m, this conjecture would imply
Conjecture 3.1 for the complete bipartite graph.

Here we consider the following modification of the bigraceful labeling intro-
duced above, which take values in an arbitrary abelian group (see [11]).

Let H = H(A, B) be a bipartite graph with partite sets A and B and let
(G, +) be an abelian group. A map f : A ∪B → G is G-bigraceful if

(i) the restrictions of f to each partite set are injective maps, and

(ii) the induced values of f over the edges of H are pairwise distinct, where
for an edge e = uv, the induced value of f on e is fE(uv) = f(u)+f(v).

We will say that a Zm-bigraceful map of a bipartite graph H with m edges is
a modular bigraceful labeling. Note that if H admits a bigraceful labeling f
then it admits a modular bigraceful labeling f ′: if A and B are the two partite
sets of H just define f ′(x) = f(x) (mod m) if x ∈ A and f ′(x) = −f(x)
(mod m) if x ∈ B.

Note also that in the definition of the bigraceful labeling, the two partite
sets of the bipartite graph play an asymmetric role, since the induced edge
values are defined as the difference between labels of vertices in A minus the
labels of the vertices in B and must be positive or zero, implying that the
labels in A should be greater than the ones in B. We avoid this asymmetry
in condition (ii) above since the labels are in a group. In order to perform
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the cyclic decompositions from a G-bigraceful map f we can use the auxiliary
labeling f1 defined as f in A and as −f in B. Fig. 3.1 shows an example.
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Figure 3.1 Modular bigraceful labeling of a tree and the correspond-
ing auxiliary labeling

With this remark in mind, it is shown in [40, Lemma 1.1] that, if a bipartite
graph H admits a G-bigraceful map on a group G of order m, then the
complete bipartite graph Km,m contains m edge-disjoint copies of H. In
particular, if H has m edges then H decomposes Km,m. Nevertheless, instead
of trying to construct a Zm-bigraceful labeling for an arbitrary tree of size
m, and thus decompose Km,m, we will work with larger groups in order
to decompose K2m,2m, a somewhat easier task for which our tools provide
positive results.

Fig. 3.2 shows the cyclic decomposition of K5,5 by the tree of Fig. 3.1.
The auxiliary labeling obtained from the modular bigraceful map gives five
different slopes for the edges of the tree and therefore, when performing the
translations of the tree, there will be no edge overlaps.

Remark 3.7 In [41] a slight modification of the definition of the G-bigraceful
labelings is considered. This modification consists in defining the induced
edge values by fE(uv) = f(v)− f(u), with u ∈ A and v ∈ B. It is clear that
both definitions are equivalent since we can switch from one to the other sim-
ply by changing the labels of one partite set by their inverses in G. Therefore,
all the decomposition properties also hold with this modification.

Throughout this chapter, and for the sake of simplicity, we shall use the
original additive definition from [11]. 2
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Figure 3.2 Cyclic decomposition of K5,5.

3.2.2 ρ-valuations

A ρ-valuation of a graph H on m edges is an injection ρ : V (H) → Z2m+1

such that the induced edge labels ρE(uv) := ρ(u) − ρ(v), for uv ∈ E(H),
satisfy

ρE(e) 6= ±ρE(f) (mod 2m + 1),

for all distinct pairs of edges e, f ∈ E(H). Rosa [47] proved that a graph
H with m edges cyclically decomposes K2m+1 if and only if it admits a
ρ-valuation.

For our present purposes we define a relaxation in the definition of a ρ-
valuation. Given a graph H with m edges and given n ≥ m, a ρn-valuation
is an injection ρn : V (H) → Z2n+1 such that the induced edge labels defined
as above (but now taking the differences modulo 2n+1) are pairwise distinct
(see [41]).
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3.3 Decomposing K2p,2p

In this section we prove Theorems 3.2, 3.3 and 3.4.

3.3.1 The basic lemmas

The main results are based on the following two lemmas. They are obtained
through an application of the polynomial method.

Lemma 3.8 Let p be a prime and let T be a tree with m edges and partite
sets A and B. Let A0 ⊂ A be a set of end vertices of T . If

p−m ≥ |A \A0|,

then every Zp-bigraceful map of T − A0 can be extended to a Zp-bigraceful
map of T .

Proof. Let f ′ be a Zp-bigraceful map of T ′ = T − A0. Set r = |A0| and
r′ = |A \A0|.
Let x1, . . . , xr be the vertices of A0. Denote by gB(xi) the vertex in B adja-
cent to xi, i = 1, . . . , r. Consider the following polynomials in Zp[z1, . . . , zr]:

P1 = V (z1, . . . , zr),
P2 = V (z1 − f ′(gB(x1)), . . . , zr − f ′(gB(xr))),

P3 =
r∏

i=1

∏

a∈A\A0

(zi − f ′(gB(xi))− f ′(a)).

Let P = P1P2P3. Note that

P = (V (z1, . . . , zr))2zr′
1 · · · zr′

r + terms of lower degree.

By (1.2), the polynomial P has the monomial of maximum degree

zr+r′−1
1 · · · zr+r′−1

r ,

with coefficient ±r!, and since r < p, it is nonzero modulo p.

Let C ⊂ Zp be the set of edge values of f ′ on T ′. Since p − m ≥ r′ and
|A| = r + r′, we have

p−|C| = (|A|+ |B|− 1)+ (p−m)− (r′+ |B|− 1) = r +(p−m) > r + r′− 1.
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By Theorem 1.1, there exists a = (a1, . . . , ar) such that ai ∈ Zp\C, 1 ≤ i ≤ r,
with P (a) 6= 0.

Define f on A0 by f(xi) = ai− f ′(gB(xi)), 1 ≤ i ≤ r. In this way, a1, . . . , ar

are precisely the edge values of f on the edges connecting B with A0, which
are different from the edge values of f ′ on T ′ (since ai 6∈ C). Since P1(a) 6= 0
these edge values ai are pairwise distinct. Since P2(a) 6= 0, f is injective
on A0. Finally, since P3(a) 6= 0, the values gB(xi) + ai do not belong to
f ′(A \ A0) and f is injective on the whole set A. Thus f is a Zp-bigraceful
map of T . 2

Next lemma shows the way to decompose K2p,2p.

Lemma 3.9 Let T be a tree with a prime number p of edges and partite sets
A and B. Let T0 = T −B0 −A0 where B0 ⊂ B is a set of end vertices of T
and A0 ⊂ A is a set of end vertices of T −B0. If T0 admits a Zp-bigraceful
map then T decomposes K2p,2p.

Proof. Consider the graph G with vertex set Zp × Z4 and vertex (α, β) is
adjacent to (α + i, β + 1) for each i ∈ Zp. This graph G is isomorphic to
K2p,2p. We consider G as an edge-colored graph, the edge (α, β)(α+ i, β +1)
being colored i ∈ Zp.

Let f0 be a Zp-bigraceful map of T0. Consider the map f ′0 : V (T0) → Zp×Z4

defined as f ′0(x) = (f0(x), 1) for x ∈ A \ A0 and f ′0(y) = (f0(y), 2) for
y ∈ B \B0. Thus f ′0 is an embedding of T0 in G such that the colors of the
edges, which are the edge-values of f0, are pairwise distinct.

We will extend f ′0 to an embedding f ′ of T in G in such a way that the colors
of the edges will be pairwise distinct. The argument follows the same lines
as the proof of Lemma 3.8.

Let C0 be the edge values of f0 on T0. Set r = |A0|, r′ = |A \ A0|, s = |B0|
and s′ = |B \B0|.
Let x1, . . . , xr be the vertices in A0. Consider the polynomials

PA
1 = V (z1, . . . , zr),

PA
2 = V (z1 − f0(gB(x1)), . . . , zr − f0(gB(xr))),

where gB(xi) is the vertex in B \B0 adjacent to xi, 1 ≤ i ≤ r. By (1.2), the
polynomial

PA = PA
1 PA

2 = (V (z1, . . . , zr))2 + terms of lower degree
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has a monomial of maximum degree

zr−1
1 · · · zr−1

r

with coefficient ±r! 6≡ 0 (mod p), as r < p. Since

p− |C0| = (r + r′ + s + s′ − 1)− (r′ + s′ − 1) > r − 1,

by Theorem 1.1 there is a = (a1, . . . , ar) with ai ∈ Zp \ C0 with PA(a) 6= 0.

Define an extension f1(x) of f0 to T1 = T0 + A0 by f1(v) = f0(v) if v ∈ T0

and f1(xi) = ai − f0(gB(xi)) if xi ∈ A0.

Define f ′(xi) = (f1(xi), 3) = (ai−f0(gB(xi)), 3), 1 ≤ i ≤ r. Since PA
2 (a) 6= 0,

the values of f ′ on A0 are pairwise distinct, and since PA
1 (a) 6= 0 the ai’s are

pairwise distinct (and different from the edge values of f0 since ai 6∈ C0).

Similarly, let {y1, . . . , ys} = B0 and now let gA(yi) denote the vertex in A
adjacent to yi, 1 ≤ i ≤ s. The polynomial PB = PB

1 PB
2 , where

PB
1 = V (z1, . . . , zs),

PB
2 = V (z1 − f1(gA(y1)), . . . , zs − f1(gA(ys))),

has a monomial of maximum degree

zs−1
1 · · · zs−1

s

with coefficient ±s! 6≡ 0 (mod p), as s < p. Let C1 = C0 ∪ {a1, . . . , ar}.
Since

p− |C1| = (r + r′ + s + s′ − 1)− (r + r′ + s′ − 1) > s− 1,

again by Theorem 1.1 there is b = (b1, . . . , bs) with bi ∈ Zp \ C1 with
PB(b) 6= 0. Define f ′(yi) = (bi− f1(gA(yi)), 0), 1 ≤ i ≤ s. Since PA

2 (b) 6= 0,
the values of f ′ on B0 are pairwise distinct, and since PB

1 (b) 6= 0 the bi’s
are pairwise distinct (and they do not belong to C1).

Thus we have extended f ′0 to an embedding f ′ of the whole tree T in G in
such a way that the colors of the edges are pairwise distinct.

Each translation (α, β) 7→ (α, β) + (i, j) with fixed (i, j), preserves the edge
colors. Hence, the translations by the vectors (i, 0), 1 ≤ i ≤ p and the
vectors (0, j), 0 ≤ j ≤ 3, give 4p edge-disjoint copies of T covering all the
edges of G exactly once, so that T decomposes G ' K2p,2p. 2
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3.3.2 Trees with large growth ratio

In this section we shall prove Theorem 3.2. The result will be derived from
the more general Theorem 3.11 below.

In what follows we use the following notation. Let T be a tree with partite
sets A and B, and let v0 ∈ A be a fixed vertex of T with eccentricity h.
Denote by Vi, 0 ≤ i ≤ h, the set of vertices of T at distance i from v0. We
also define, for 0 ≤ r ≤ h, A+

r = A ∩⋃
j≤r Vj and B+

r = B ∩⋃
j≤r Vj . Note

that, since v0 ∈ A, we have A+
r =

⋃
j≤r, j even Vj and B+

r =
⋃

j≤r, j odd Vj .

Lemma 3.10 Let p be a prime and let T be a tree with m edges. Let v0 be
a vertex of the tree with eccentricity h ≥ 2. If

p−m ≥ max{|A+
h−2|, |B+

h−2|}

then T admits a Zp-bigraceful map.

Proof. For k = 1, 2, . . . , h, let Tk = T − (Vk+1 ∪ · · · ∪ Vh) denote the
subtree of T induced by the first k levels of T . Suppose that Tk−1 admits a
Zp-bigraceful labeling f ′.

If m′ is the size of Tk then p − m′ ≥ p − m ≥ max{|A+
h−2|, |B+

h−2|} ≥
max{|A+

k−2|, |B+
k−2|}. Hence Tk satisfies the hypothesis of Lemma 3.8 (with

A0 = Vk) and there is a Zp-bigraceful labeling of Tk. Since T1 is a star, which
clearly admits a Zp-bigraceful labeling, the result follows by an iterated
application of Lemma 3.8. 2

Theorem 3.11 Let p be a prime and let T be a tree with p edges. Let v0 be
a vertex of the tree with eccentricity h ≥ 4. If

|Vh|+ |Vh−1| ≥ max{|A+
h−4|, |B+

h−4|}

then T decomposes K2p,2p.

Proof. Let T ′ = T − Vh − Vh−1. Since p − |E(T ′)| = |Vh| + |Vh−1| ≥
max{|A+

h−4|, |B+
h−4|}, Lemma 3.10 implies that T ′ admits a (Zp)-bigraceful

labeling and then by Lemma 3.9, T decomposes K2p,2p. 2

The hypothesis of Theorem 3.11 are illustrated in Fig. 3.3.

To prove that a tree with growth ratio
√

1+
√

5
2 and p edges decomposes

K2p,2p we will need the following technical lemma.
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Figure 3.3 Hypothesis of Theorem 3.11

Lemma 3.12 Let T be a tree with growth ratio α ≥ 1 at some vertex v0

with eccentricity h ≥ 4. Then

max{|A+
h−4|, |B+

h−4|} <
c

α4
,

where c = |A| if h is even and c = |B| if h is odd.

Proof. Suppose first that h is even. We have

|A+
h−4| − |B+

h−4| =
∑

j≤h−4
j even

|Vj | −
∑

j≤h−4

j odd

|Vj |

= |V0|+ (|V2| − |V1|) + · · ·+ (|Vh−4| − |Vh−5|) ≥ 0

since |Vi+1| ≥ |Vi| for each i = 0, 1, . . . , h − 1. Thus max{|A+
h−4|, |B+

h−4|} =
|A+

h−4|.
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On the other hand,

|A+
h−4| =

∑

j≤h−4
j even

|Vj | ≤ 1
α

∑

j≤h−3

j odd

|Vj | < 1
α2

∑

j≤h−2
j even

|Vj |

≤ 1
α3

∑

j≤h−1

j odd

|Vj | < 1
α4

∑

j≤h
j even

|Vj | = 1
α4
|A|,

which proves the inequality.

The case h odd can be similarly seen by exchanging the roles of A+
h−4 and

B+
h−4. 2

Proof of Theorem 3.2. Since trees with diameter at most 7 decompose
K2p,2p [40, Corollary 3.2], we can assume that the eccentricity of v0 is h ≥ 4.

Suppose that h is even. By Lemma 3.12,

max{|A+
h−4|, |B+

h−4|} <
1
α4
|A|

≤ |Vh|
α4

(1 +
1
α2

+
1
α4

+ · · ·+ 1
αh

)

=
|Vh|
α4

(
1− 1/αh+2

1− 1/α2

)
.

Therefore, if 1−1/αh+2

α4(1−1/α2)
≤ 1 then we are on the hypothesis of Theorem 3.11.

Last inequality holds if α4(1 − 1
α2 ) = α4 − α2 ≥ 1, and this is true for all

α ≥
√

1+
√

5
2 .

A similar reasoning for h odd gives the same conclusion. 2

3.3.3 Trees with large base growth ratio

We can study the decomposition of K2p,2p from a similar, but not equivalent,
point of view that leads to the proof of Theorems 3.3 and 3.4. These two
theorems will be derived from the more general Theorem 3.15 below. We
first state the following direct consequences of Lemma 3.8.

Lemma 3.13 Let p be a prime and let T be a tree with m edges. Let f ′ be
a Zp-bigraceful map of the base tree T ′ of T . If p − m ≥ max{|A′|, |B′|},
where A′ and B′ are the two partite sets of T ′ then f ′ can be extended to a
Zp-bigraceful map of T .
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Proof. Let A ⊃ A′ and B ⊃ B′ be the partite sets of T . Let A0 = A \ A′

and B0 = B \B′.

Since p− (m− |B0|) ≥ p−m ≥ |A′| = |A \ A0|, it follows from Lemma 3.8
that f ′ can be extended to a Zp-bigraceful labeling f1 of T ′ + A0. Similarly,
since p − m ≥ |B′| = |B \ B0|, Lemma 3.8 implies again that f1 can be
extended to a Zp-bigraceful labeling of the whole tree T . 2

Corollary 3.14 Let p be a prime and let T be a tree with m edges. If
p−m ≥ max{|A′|, |B′|}, where A′ and B′ are the two partite sets of the base
tree T ′ of T , then T admits a Zp-bigraceful map.

Proof. Note that the condition p−m ≥ max{|A′|, |B′|} is also satisfied by
T ′: if m′ is the number of edges of T ′ then p−m′ > p−m ≥ max{|A′|, |B′|} >
max{|A′′|, |B′′|}, where A′′ and B′′ are the two partite sets of the base tree
T ′′ of T ′. In particular, this condition is also satisfied by each tree in the
sequence T, T ′, T ′′, . . . , T (i), . . . , T (h′), where T (i) is the base tree of T (i−1),
1 ≤ i ≤ h′. Since T (h′) consists eventually of an edge or a single vertex,
which trivially admits a Zp-bigraceful labeling, the iterated application of
Lemma 3.13 gives the result. 2

Theorem 3.15 Let p be a prime and let T be a tree with p edges. Let T ′ be
the base tree of T and let T ′′ be the base tree of T ′. If

|E(T ) \E(T ′)| ≥ max{|A′′|, |B′′|},

where A′′ and B′′ are the partite sets of T ′′, then T decomposes K2p,2p.

Proof. Let m′ = |E(T ′)|. By Corollary 3.14 and the condition p − m′ =
|E(T ) \ E(T ′)| ≥ max{|A′′|, |B′′|}, the base tree T ′ of T admits a Zp-
bigraceful labeling. Then, the result follows by Lemma 3.9. 2

Fig. 3.4 depicts an example of two trees that show that the statements of
Theorems 3.11 and 3.15 are independent. The tree T1 satisfies the hypothesis
of Theorem 3.15 but not the ones of Theorem 3.11, whereas T2 fulfills the
requirements of Theorem 3.11 but not the ones in Theorem 3.15.

Proof of Theorem 3.3. Recall that we denote by Li the set of leaves of
T (i), i = 0, 1, . . . , h′ − 1, |Lh′ | = 1, where T (i) is the base tree of T (i−1) for
i ≥ 1 and h′ is the minimum positive integer k such that T (k) is a tree with
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Figure 3.4 Example of trees illustrating the independence of Theo-
rems 3.11 and 3.15.

at most one leaf. We have

max{|A′′|, |B′′|} ≤
h′∑

i=2

|Li| ≤ 1
α2

h′∑

i=0

|Li|

≤ 1
α2
|L0|

(
1 +

1
α

+ · · ·+ 1
αh′

)

=
1
α2
|L0|1− 1/αh′+1

1− 1/α
,

where |L0| = |E(T ) \ E(T ′)|. Hence, if 1
α2

1−1/αh′+1

1−1/α ≤ 1 we are on the

hypothesis of the Theorem 3.15. Since 0 < 1− 1/αh′−1 ≤ 1, it suffices that
α2(1− 1/α) ≥ 1. This last inequality holds for α ≥ φ. 2

Proof of Theorem 3.4. We may assume that T ′, the base tree of T , is
not a caterpillar since otherwise we know that T decomposes Kp,p [40].

Let m ≥ p/3 be the number of leaves of T and let T ′′ the base tree of T ′

and A′′, B′′ its partite sets with |A′′| ≥ |B′′|. Note that the number m′′ of
leaves of T ′′ satisfies m′′ ≥ |A′′| − |B′′|+ 1 and that the number of leaves of
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T ′ satisfies m′ ≥ m′′. Hence,

p + 1 = m + m′ + |A′′|+ |B′′| ≥ p/3 + 2|A′′|+ 1,

which implies |A′′| ≤ p/3 ≤ m. Therefore T satisfies the hypothesis of
Theorem 3.15 and thus it decomposes K2p,2p. 2

3.4 Large subtrees

To prove Theorems 3.5 and 3.6 we shall show that a tree T with m edges
can be embedded in a tree of the stated size that admits either a modular
bigraceful labeling or a ρ-valuation.

We also use a well-known theorem by Kneser. The stabilizer H(C) of a
subset C in an abelian group G is defined by

H(C) = {g ∈ G : C + g = C}.

In other words, H(C) is the largest subgroup of G that has the property
H(C) + C = C. If G is finite, then |H(C)| divides both |G| and |C|.

Theorem 3.16 (Kneser; see, e.g., [45]) If A and B are finite non-empty
subsets of an abelian group satisfying |A + B| ≤ |A|+ |B| − 1, and H is the
stabilizer of A + B, then

|A + B| = |A + H|+ |B + H| − |H|.

2

The next lemma, which is based on Kneser’s theorem, will be used later to
prove the existence of appropriate labelings.

Lemma 3.17 Let r be a positive integer and let X1, X2, Y be non-empty
subsets of Zr with |X1| ≥ |X2| and |Y | > 1. If the following condition holds

r − |X1| − |X2| = |Y | − 1, (3.1)

then |X1 + Y | > |X2|.
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Proof. If |X1 + Y | ≤ |X2|, then we must have |X1 + Y | = |X2| = |X1| <
|X1|+ |Y | − 1. By Theorem 3.16,

|X1 + Y | = |X1 + H|+ |Y + H| − |H|,

where H is the stabilizer of X1 + Y . From this relation and |X1 + Y | = |X1|
we deduce that |Y + H| = |H| and therefore |Y | ≤ |H|.
Now, since |H| divides the left hand-side of (3.1), |H|must also divide |Y |−1.
Finally, |Y | > 1 implies that |H| ≤ |Y | − 1, contradicting |Y | ≤ |H|. 2

3.4.1 Proof of Theorem 3.5

We first show that a tree that admits a Zn-bigraceful map can be embedded
in a tree with n edges that decomposes Kn,n.

Lemma 3.18 Every tree T that admits a Zn-bigraceful map with n odd is
a subtree of a tree T ′ with n edges that admits a modular bigraceful labeling.

Proof. Let m be the number of edges of T . Let f be a Zn-bigraceful map
of T . Clearly n ≥ m. We define a sequence of trees Tm, Tm+1, . . . , Tn, with
Tm = T and Tn = T ′, by adding one leaf at each step and extend f on T ′ as
a modular bigraceful map.

Suppose we have defined Ti and a Zn-bigraceful map f on Ti for some i such
that m ≤ i < n. Let Ai and Bi be the two partite sets of Ti with |Ai| ≥ |Bi|.
Let

A′i = −f(Ai),
B′

i = f(Bi),
Ci = {f(x) + f(y) : xy ∈ E(Ti)},
Di = Zn \ Ci.

Since Ti is a tree, we have the following relation among these sets:

|A′i|+ |B′
i| = n− |Di|+ 1. (3.2)

It suffices to prove that |Di +A′i| > |B′
i|. In this case there exists d ∈ Di and

some a ∈ f(Ai) such that d−a ∈ Zn\B′
i. Define Ti+1 = Ti+ei+1, where ei+1

joins the vertex in Ai labeled a to a new vertex vi+1 and f(vi+1) = d − a;
this gives the extension of f to Ti+1.
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Since |Di| = n − |Ci| = n − i ≥ 1, either |Di| = 1 or |Di| > 1. In the
former case (i = n − 1), since n, which equals |A′n−1| + |B′

n−1|, is odd,
|Dn−1 + A′n−1| = |A′n−1| > |B′

n−1|. In the latter case we apply Lemma 3.17
with r = n, X1 = A′i, X2 = B′

i and Y = Di; the condition (3.1) of the lemma
holds by (3.2). 2

In view of Lemma 3.18, and using the cyclic decomposition from [40], to
prove the statement (1) of Theorem 3.5 it suffices to show that every tree
T with m edges admits a Zn-bigraceful labeling for every odd n ≥ 2m − 1.
The next lemma shows that this is indeed the case.

Lemma 3.19 Every tree T with m edges admits a Zn-bigraceful map for
every n such that n ≥ m+max{|A|, |B|}− 1, where A and B are the partite
sets of T .

Proof. The proof is by induction on m, the result being obvious for m = 1.
Let u be a leaf of T with neighbor v. Suppose first that u ∈ A. Let T ′ = T−u,
choose an integer n such that n ≥ m + max{|A|, |B|} − 1, and let f be a
Zn-bigraceful map on T ′. Let

C = {f(x) + f(y) : xy ∈ E(T ′)},
D = Zn \ C.

Since |D − f(v)| = |D| = n − m + 1 ≥ max{|A|, |B|} ≥ |A|, there exists
d ∈ D such that d − f(v) 6∈ f(A \ {u}). Extending f to T by defining
f(u) = d − f(v) produces a Zn-bigraceful labeling of T . If u ∈ B, we can
perform an analogous reasoning. 2

Statement (2) of Theorem 3.5 may give a better upper bound for the mini-
mum n for which we can ensure that there is a tree T ′ with n edges contain-
ing a given tree T with the property that T ′ decomposes Kn,n. We use the
following simple lemma.

Lemma 3.20 A tree T with partite sets A and B such that |A| ≥ |B| has
at least |A| − |B|+ 1 leaves in A.

Proof. Let A′ ⊂ A be the set of non-leaves in A, and let T ′ = T − (A \A′).
Then |A′| + |B| − 1 = |E(T ′)| = ∑

x∈A′ d(x) ≥ 2|A′|. Hence |A′| ≤ |B| − 1,
and T has at least |A| − |A′| ≥ |A| − |B|+ 1 leaves in A. 2
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Lemma 3.21 Let T be a tree with m edges. If p is a prime such that
p ≥ d3m/2e, then there is a Zp-bigraceful map of T .

Proof. Let A and B be the partite sets of T with |A| ≥ |B|. By Lemma
3.20 there is a set A0 ⊂ A of leaves such that |A′| = |A \ A0| = |B|. Let
T ′ = T − A0. Since |B| ≤ dm/2e and p ≥ m + |B|, it follows from Lemma
3.19 that there is a Zp-bigraceful map f ′ of T ′. If A0 = ∅ we are done.
Otherwise, let C ′ denote the set of edge values of f ′. Thus C ′ is a subset of
Zp of cardinality 2|A′| − 1.

Let A0 = {a1, . . . , ak}. Let bσ(i) be the vertex in B adjacent to ai, for
1 ≤ i ≤ k. Consider the polynomial P ∈ Zp[z1, . . . , zk] defined as

P =
∏

1≤i<j≤k

(zi−zj)
∏

1≤i<j≤k

(zi−b′σ(i)− (zj−b′σ(j)))
∏

1≤i≤k

∏

a∈A′
(zi−b′σ(i)−a′),

where b′σ(i) = f ′(bσ(i)) and a′ = f ′(a). We can write

P =
∏

1≤i<j≤k

(zi − zj)2
∏

1≤i≤k

z
|A′|
i + terms of lower degree.

It is known that the coefficient of the monomial
∏k

i=1 zk−1
i in the expansion

of
∏

1≤i<j≤k(zi − zj)2 is (−1)(
k
2)k! (see, e.g., [4]), which is nonzero modulo

p. Therefore P has a monomial

z
k+|A′|−1
1 · · · zk+|A′|−1

k

of maximum degree with nonzero coefficient. Let D = Zp \ C ′. Note that
|D| = p − |C ′| ≥ d3(2|A′| + k − 1)/2e − 2|A′| + 1 ≥ |A′| + k. By Theorem
1.1, there exist d1, . . . , dk ∈ D such that P (d1, . . . , dk) 6= 0. Extend f ′ on T ′

to f on T by defining f(ai) = di − f ′(bσ(i)). Since
∏

1≤i≤k

∏

a∈A′
(di − b′σ(i) − a′) 6= 0,

the values of f on A0 are different from the ones on A′; since
∏

1≤i<j≤k

(di − b′σ(i) − (dj − b′σ(j))) 6= 0,

these values are pairwise distinct. Finally, since
∏

1≤i<j≤k

(di − dj) 6= 0,
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the edge values d1, . . . , dk of the edges incident to a1, . . . , ak are distinct and,
since di ∈ Zp \ C ′, they are also different from the ones taken by f on T ′.
Thus f is a Zp-bigraceful map of T . 2

Theorem 3.5 (2) follows from Lemmas 3.21 and 3.18, and using the cyclic
decomposition from [40].

3.4.2 Proof of Theorem 3.6

Following the ideas of the proof of Theorem 3.5, we give an upper bound for
the number of edges that have to be added to an arbitrary tree T to obtain
a tree that admits a ρ-valuation in terms of the size of T .

Lemma 3.22 Every tree T with m edges has a ρn-valuation for every n ≥
d(3m− 1)/2e.

Proof. Let T1, T2, . . . , Tm be trees such that Tm = T , T1 has one edge
v0v1, and Ti+1 is obtained from Ti by adding a leaf vi+1 adjacent to some
u ∈ V (Ti). Define a ρn-valuation of T inductively as follows.

Define f(v0) = x0 ∈ Z2n+1, f(v1) = x1 ∈ Z2n+1 arbitrarily, with x0 6= x1.
Suppose f is defined on Ti for 1 ≤ i < m, and let

Vi = f(V (Ti)),
Ci = {±(f(x)− f(y)) : xy ∈ E(Ti)} ∪ {0},
Di = Z2n+1 \ Ci.

Since |Di +f(u)| = |Di| = 2n+1−2i−1 ≥ m+1 > |Vi|, there exists d ∈ Di

such that d + f(u) ∈ Z2n+1 \ Vi. Thus we can define f(vi+1) = d + f(u). At
the end, we have a ρn-valuation of T . 2

Lemma 3.23 Every tree T of size m that admits a ρn-valuation for n ≥ m
can be embedded into a tree T ′ of size n that admits a ρ-valuation.

Proof. If n = m we are done. Otherwise, let f be the ρn-valuation of T .
We define a sequence of trees Tm, Tm+1, . . . , Tn with Tm = T and Tn = T ′,
by adding one leaf at each step and extend f to T ′ as a ρ-valuation.
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Suppose we have defined Ti and a ρn-valuation f on Ti for some i such that
m ≤ i < n. Let

Vi = f(V (Ti)),
Ci = {±(f(x)− f(y)) : xy ∈ E(Ti)} ∪ {0},
Di = Z2n+1 \ Ci.

Since Ti is a tree, we have the following relation:

2|Vi| − 1 = 2n + 1− |Di|. (3.3)

Since |Di| = 2n + 1 − |Ci| = 2n − 2i ≥ 2 we can apply Lemma 3.17 with
r = 2n + 1, X1 = X2 = Vi, and Y = Di to obtain |Di + Vi| > |Vi|. By
(3.3), condition (3.1) of Lemma 3.17 holds. Therefore there exists d ∈ Di

and some a ∈ Vi such that d + a ∈ Z2n+1 \ Vi. Let Ti+1 = Ti + ei+1 where
ei+1 joins the vertex in Vi labeled with a to a new vertex vi+1. By defining
f(vi+1) = d + a we extend f to a ρn-valuation of Ti+1. By iterating this
procedure we eventually get a ρ-valuation of a tree T ′ that contains T as a
subtree. 2

Theorem 3.6 is a direct consequence of Lemmas 3.22 and 3.23, and the fact
that a graph with m edges cyclically decomposes K2m+1 if and only if it
admits a ρ-valuation (Rosa, [47]).

Another related result is given by Van Bussel [10, Theorem 1]; it implies that
every tree with m edges has a ρn-valuation, with n = 2m−diam(T ). Since a
random tree has diameter of order

√
m, this lower bound is in general worse

than the one obtained in Theorem 3.6 (see also Lemma 3.22).





4
Sumset partition problem

A sequence m1 ≥ m2 ≥ · · · ≥ mk of k positive integers is n-realizable
if there is a partition X1, . . . , Xk of the set [n] such that the sum of the
elements in Xi is mi for each i = 1, 2, . . . , k. In Section 4.2 we study the n-
realizable sequences by adopting a different viewpoint from the one that has
been previously used in the literature. We consider the n-realizability of a
sequence in terms of the length k of the sequence or the values of its distinct
elements. We characterize all n-realizable sequences with k ≤ 4 and, for k ≥
5, we prove that n ≥ 4k−1, mk > 4k−1 and

∑k
i=1 mi =

(
n+1

2

)
are sufficient

conditions for a sequence to be n-realizable. We also obtain characterizations
for n-realizable sequences whose elements are almost all below n using some
results on complete sets. These characterizations complement the one used
in connection with the ascending subgraph decomposition conjecture of Alavi
et al. [2]. Finally, in Section 4.3, we consider the modular version of the
problem and prove that all sequences in Zp of length k ≤ (p − 1)/2 are
realizable for any prime p ≥ 3. The bound on k is best possible. The main
results of this chapter are summarized in [43].

4.1 Introduction

The sumset partition problem consists, given a sequence m1,m2, . . . , mk of
k positive integers and a set X of positive integers, in finding a partition of
X into k subsets X1, X2, . . . , Xk such that the sum of the elements in Xi is
mi, for each i = 1, 2, . . . , k.

For the sequences we will follow the notation of [12]. A sequence of positive
integers m1,m2, . . . ,mk that is ordered in a non-increasing way, that is,
m1 ≥ m2 ≥ · · · ≥ mk, will be denoted by 〈m1,m2, . . . , mk〉. If the ordering
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is not specified, we will simply denote a sequence by (m1, m2, . . . , mk). The
parameter k is the length of the sequence. A sequence 〈m1, . . . , mk〉 may
be also denoted as 〈uα1

1 , . . . , uαr
r 〉, where ui < ui+1, 1 ≤ i ≤ r − 1 and∑r

i=1 αi = k. We also assume that for all i, αi ≥ 1. Note that in the latter
form, the sequence is depicted in increasing way. For example 〈7, 7, 7, 4, 2, 2〉
can be also denoted by 〈22, 4, 73〉. From here on we will use the two notations
indistinctively if there is no risk of confusion.

As said at the beginning of the chapter, a sequence (m1,m2, . . . , mk) is said
to be n-realizable if the set X = [n] can be partitioned into k mutually
disjoint subsets X1, . . . , Xk such that

∑
Xi = mi for each 1 ≤ i ≤ k. In this

context, a sequence (m1,m2, . . . ,mk) that verifies
∑k

i=1 mi =
(
n+1

2

)
(=

∑
[n])

is said to be n-feasible. Obviously, if a sequence is n-realizable, then it is
n-feasible. Here we want to characterize the n-feasible sequences that are
n-realizable.

The study of n-realizable sequences was motivated by the ascending sub-
graph decomposition problem posed by Alavi, Boals, Chartrand, Erdös and
Oellerman in [2], which asks for a decomposition of a given graph G of size(
n+1

2

)
by subgraphs H1, . . . , Hn where Hi has size i and is a subgraph of

Hi+1 for each i = 1, . . . , n − 1. These authors conjectured that a forest of
stars of size

(
n+1

2

)
with each component having at least n edges admits an

ascending subgraph decomposition by stars. This is equivalent to the fact
that every n-feasible sequence 〈m1,m2, . . . ,mk〉 with mk ≥ n is n-realizable,
a result proved by Ma, Zhou and Zhou [44]. We will deal with the ascending
subgraph decomposition problem of bipartite graphs in Chapter 5. Other
instances of the sumset partition problem have been also considered in the
literature, some of them related to graph decomposition problems; see for in-
stance [7, 18, 21, 22, 23, 42]. In particular, the following n-feasible sequences
have been shown to be n-realizable.

(1) 〈m,m, . . . , m, l〉, where m ≥ n [7];

(2) 〈m + 1, m + 1, . . . , m + 1, m,m, . . . , m〉, where m ≥ n [21];

(3) 〈m + k − 2,m + k − 3, . . . , m + 1,m, l〉, where m ≥ n [21];

(4) 〈m1,m2, . . . , mk〉, where mk ≥ n [44];

(5) 〈m1,m2, . . . , mk〉, where mk−1 ≥ n [12].

The condition mk ≥ n is far from being necessary for a sequence to be n-
realizable. Chen, Fu, Wang and Zhou [12] showed that mk−1 ≥ n (sequence
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(5) above) is a weaker sufficient condition, which is somewhat best possible
in view of the fact that a sequence with mk−1 = mk = 1 is never n-realizable.
However the characterization of n-realizable sequences is still a wide open
problem. In our work we adopt a different viewpoint and consider the n-
realizability of a sequence in terms of the length k of the sequence or the
values of its distinct elements.

4.2 Sequences in Z

Here we consider the classic treatment of the problem where the set to be
partitioned is [n] ⊂ Z. The partition of Zn into subsets with prescribed
sums shall be considered in Section 4.3. We first introduce the notion of
forbidden sequences, which are used to discard an n-feasible sequence when
exactly it contains a forbidden subsequence. Then, we will use some results
on complete sets of integers, sets whose subset sums realize all possible values
(see, e.g., [48]), to obtain new characterizations for n-realizable sequences.

4.2.1 Forbidden subsequences

We say that a sequence 〈m1,m2, . . . , mk〉 is simply realizable if there exist
pairwise disjoint subsets X1, . . . , Xk of [m1] such that

∑
Xi = mi for each

i = 1, 2, . . . , k. We say that a sequence is forbidden if it is not realizable. Note
that if an n-feasible sequence contains a forbidden sequence as a subsequence
then it is obviously not n-realizable. A remark to keep in mind is that an n-
feasible sequence not containing any forbidden sequence, does not necessarily
have to be n-realizable, as shown in the following example.

Example 4.1 Consider the sequence 〈13, 12, 11, 9, 4, 3, 2, 1〉. It is 10-feasible
and clearly does not have any forbidden subsequence since all the elements
of the sequence are pairwise distinct. We can easily check that the sequence
is not 10-realizable. The only possibility for the last 6 elements is X8 = {1},
X7 = {2}, X6 = {3}, X5 = {4}, X4 = {9} and X3 = {5, 6}. Therefore,
there is only left the set {7, 8, 10} to obtain 〈13, 12〉, which is impossible. 2

Let Fk be the set of minimal forbidden sequences of length k, that is, every
sequence in Fk does not contain any proper forbidden subsequence. For
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example,

F2 = {〈1, 1〉, 〈2, 2〉};
F3 = {〈3, 3, 1〉, 〈3, 3, 2〉, 〈3, 3, 3〉, 〈4, 4, 1〉, 〈4, 4, 3〉, 〈4, 4, 4〉}.

Realizable sequences of small length can be characterized only in terms of
minimal forbidden sequences.

For small values of n a computer search shows that, for n ≤ 7, the only
n-feasible sequences of length three which are not n-realizable are the ones
that contain a subsequence in F2. Similarly, for n ∈ {4, 5, 6, 7}, an n-feasible
sequence 〈m1,m2,m3,m4〉 is n-realizable if and only if it does not contain a
subsequence in F2 ∪ F3, and is not any of the sequences in

S = {〈6, 6, 2, 1〉, 〈8, 7, 3, 3〉, 〈8, 8, 3, 2〉, 〈10, 10, 4, 4〉, 〈14, 8, 3, 3〉},

where the first sequence in S is 5-feasible and belongs to F4, the next two
sequences are 6-feasible and the last two sequences are 7-feasible. By com-
puter search one may verify that, for n = 8, the only sequences of length
four which are n-feasible and not n-realizable contain a forbidden sequence
of length at most three. The algorithms which have been used to perform
the computer search giving these results for n ≤ 8 and k ≤ 4 are detailed in
the Appendix A.

Theorem 4.2 An n-feasible sequence 〈m1, m2,m3〉 is n-realizable if and
only if it does not contain the subsequences in F2.

Proof. The proof is by induction on n. By the above remarks we may
assume n > 7.

Let m = 〈m1,m2,m3〉 be an n-feasible sequence not containing the subse-
quences 〈1, 1〉 nor 〈2, 2〉 with n > 7. Since the length of the sequence is 3,
the greatest element of the sequence, m1, should be at least n + 1. If not,
we would have n(n + 1)/2 = m1 + m2 + m3 ≤ 3n, which implies n ≤ 5.

Then, we can define m′ = (m1 − n,m2,m3), which is a (n − 1)-feasible se-
quence. If m′ is (n−1)-realizable, then by adding n to the set with sum m1−n
we get a partition of [1, n] that fits with the given sequence. Otherwise, the
sequence m′ has a subsequence in F2 implying that our original sequence is
〈n+1,m2, 1〉 with 1 ≤ m2 ≤ n+1 or 〈n+2,m2, 2〉 with 2 ≤ m2 ≤ n+2. In
either case, n(n + 1)/2 = m1 + m2 + m3 ≤ 2 + 2(n + 2) implying n ≤ 7. 2
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Theorem 4.3 Let n > 7. An n-feasible sequence 〈m1,m2,m3,m4〉 is n-
realizable if and only if it does not contain a subsequence in F = F2 ∪ F3.

Proof. The proof is by induction on n. By the above remarks we know
that the result is true for n = 8. Let m = 〈m1,m2, m3,m4〉 be an n-feasible
sequence that does not contain a subsequence in F and n > 8. Since the
length of the sequence is 4, the greatest element of the sequence, m1, should
be at least n + 1. If not, we would have n(n + 1)/2 = m1 + m2 + m3 +
m4 ≤ 4n, which implies n ≤ 7. Consider the (n − 1)-feasible sequence
m′ = (m1 − n, m2, m3,m4). If m′ is (n − 1)-realizable then by adding n to
the part with sum m1− n we get a partition of [1, n] with the desired sums.
Otherwise, by the induction hypothesis, it contains a subsequence in F , so
that m1 − n ∈ {1, 2, 3, 4}.
If m1−n = 1, then the original sequence is m = 〈n+1,m2,m3, 1〉. Therefore,
n(n + 1)/2 = m1 + m2 + m3 + m4 ≤ 1 + 3(n + 1) implying n ≤ 7.

If m1 − n = 2, then m = 〈n + 2,m2,m3, 2〉 or m = 〈n + 2,m2, 2, 1〉 or
m = 〈n + 2,m2, 3, 3〉. In either case, n(n + 1)/2 ≤ 2 + 3(n + 2) obtaining
that n ≤ 7.

If m1−n = 3, then m = 〈n+3,m2, 4, 4〉 or others with lower sum. In either
case, n(n + 1)/2 ≤ 8 + 2(n + 3) and n ≤ 7.

If m1 − n = 4 then m = 〈n + 4,m2, 4, 4〉 or others with lower sum. In either
case, n(n + 1)/2 ≤ 8 + 2(n + 4) and n ≤ 7. 2

For k ≥ 5 we have the following sufficient condition:

Theorem 4.4 All n-feasible sequences 〈m1, . . . ,mk〉 with n ≥ 4k − 1 and
mk > 4k − 1 are n-realizable for k ≥ 5.

Proof. The proof is by induction on n. If n = 4k − 1, is the result of Ma,
Zhou and Zhou [44].

Suppose n > 4k− 1 and let 〈m1,m2, . . . , mk〉 be an n-feasible sequence with
mk > 4k − 1.

Since the length of the sequence is k, the greatest element of the sequence,
m1, must be at least n+1, otherwise we would have n(n+1)/2 = m1 + · · ·+
mk ≤ kn, which implies n ≤ 2k − 1.

Consider the sequence (m1 − n,m2, . . . ,mk), which is (n − 1)-feasible. If
m1 − n > 4k − 1 then, by the induction hypothesis, we can realize this
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sequence in [n − 1]. That is, there is a partition X1, . . . , Xk of [n − 1] such
that ∑

(X1) = m1 − n,
∑

(X2) = m2, . . . ,
∑

(Xk) = mk.

Then, by taking X ′
1 = X1 ∪ {n} and X ′

2 = X2, . . . , X
′
k = Xk, we obtain an

n-realization of our original sequence.

Suppose now that m1 − n ≤ 4k − 1. Therefore, m1 ≤ 4k + n− 1. Since the
original sequence is n-feasible, we know that

n(n + 1)/2 = m1 + · · ·+ mk ≤ km1 ≤ k(4k + n− 1),

implying n2 + (1 − 2k)n + (2k − 8k2) ≤ 0. This last inequality is satisfied
when

n ≤ 2k − 1 +
√

(1− 2k)2 − 8k + 32k2

2
= 4k − 1.

But we were in the case n− 1 ≥ 4k− 1, contradicting the last inequality. 2

Theorem 4.4 shows that, for n sufficiently large, the condition on the smaller
term of an n-realizable sequence which ensures its n-realizability, can be
expressed as a function of its length k instead as a function on n itself,
as it is in the previously known results. We believe that essentially the
same lower bound on n should suffice to ensure n-realizability as long as the
sequence does not contain forbidden subsequences. The conjectured value
of the lower bound for n is given at the end of this section after collecting
some additional evidence. This also raises the question of characterizing the
family of minimal forbidden sequences of a given length. We also formulate
a conjecture at the end of this section which states that such sequences must
be somewhat dense.

We now continue by characterizing realizable sequences. Note that sequences
with no repeated elements are not forbidden by definition. Therefore non-
realizable sequences contain repetitions. Clearly, if a sequence 〈uα1

1 , . . . , uαr
r 〉

of length k is realizable, we must have ur ≥ k. The following lemma states a
non-trivial lower bound on ur when the sequence 〈uα1

1 , . . . , uαr
r 〉 is realizable.

For an element ui from a sequence 〈uα1
1 , . . . , uαr

r 〉, we denote by ρi = bui+1
2 c,

which is the number of representations of ui as a sum of two nonnegative
integers,

ρi = |{{a, b} : 0 ≤ a < b ≤ ui and a + b = ui}| .
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Lemma 4.5 Suppose that m = 〈uα1
1 , . . . , uαr

r 〉 is realizable. Then

ρr − 1 ≥
r∑

i=1

(αi − 1) +
r′∑

i=1

αi,

where r′ is the number of ui’s less than ρr. Moreover, if the equality holds
then all sets in a realization of m have cardinality at most two.

Proof. Let X = {Xj
i : 1 ≤ i ≤ r, 1 ≤ j ≤ αi and

∑
(Xj

i ) = ui} be a
realization of m. Then,

ρr − 1 ≥
∑

1≤i≤r
1≤j≤αi

∣∣∣Xj
i ∩ [1, ρr − 1]

∣∣∣

≥
r′∑

i=1

(|X1
i |+ · · ·+ |Xαi

i |) +
r∑

i=r′+1

(|X1
i | − 1 + · · ·+ |Xαi

i | − 1)

≥
r′∑

i=1

(2αi − 1) +
r∑

i=r′+1

(αi − 1)

=
r∑

i=1

(αi − 1) +
r′∑

1

αi.

The second inequality can be seen in the following way. If i ∈ [1, r′], then the
corresponding ui is less than ρr and therefore the sets Xj

i , for 1 ≤ j ≤ αi,
have all its elements in the interval [1, ρr − 1]. If i ∈ [r′ + 1, r], one element
of each set may be outside of the interval. Finally, the third inequality is
obtained since the cardinality of the sets X1

i , . . . , Xαi
i , for all 1 ≤ i ≤ r,

is always at least two, except one of them that may contain only a single
element. The equality is attained if all the sets have cardinality at most two.

2

Given a sequence m = 〈uα1
1 , . . . , uαr

r 〉, we introduce the edge-colored graph
G = Gu1,...,ur . The set of vertices is [0, ur], and the set E of edges is defined as
E = E1∪· · ·∪Er where for each 1 ≤ i ≤ r, Ei = {{l, ui−l} : 0 ≤ l ≤ bui+1

2 c}
and we color the edges of Ei with ui. Each realization of m by sets of
cardinality at most two corresponds to a matching in Gu1,...,ur except that
two or more edges can meet at 0. In Fig. 4.1 two examples of these graphs
are depicted.

Using these graphs, we can obtain sufficient conditions for the realizability
of an arbitrary sequence.
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Figure 4.1 (a) The graph G4,11. (b) The graph G11,15.

Theorem 4.6 A sequence m = 〈uα1
1 , . . . , uαr

r 〉 is realizable if the following
conditions hold:

α1 ≤ ρ1,

αt +
t−1∑

i=1

2αi ≤ ρt + (t− 1), t = 2, . . . , r.

Moreover, in this case there exists a realization with r sets of cardinality one
and the remaining sets of cardinality two.

Proof. Consider the subsequences mt = 〈uα1
1 , . . . , uαt

t 〉. For t = 1, if α1 ≤ ρ1

it is clear that m1 is realizable by α1 − 1 sets of cardinality two and the set
{u1} of cardinality one.

Let t ≥ 2, and suppose that mt−1 is realizable by sets of cardinality two and
the sets {u1}, . . . , {ut−1}. This realization of mt−1 induces a matching in the
graph Gu1,...,ut . Now, we want to obtain αt sets that add up to ut using free
elements, that is, vertices that are not in any edge of the matching except
0. We pick up the edge {0, ut}. The number of remaining edges colored ut

is ρt − 1 =
⌊

ut+1
2

⌋ − 1. In the worst case, we can assume that every edge
of the matching touches two different ut-edges, except the t− 1 edges of the
matching incident with 0, which only touch one ut-edge. Then, the number
ρt− 1 of remaining ut-edges minus the number of ut-edges touching an edge
of the matching is at least

ρt − 1−
t−1∑

i=1

(2αi − 1) = ρt − 1−
t−1∑

i=1

2αi + t− 1.

From the t-th restriction we have that αt − 1 is precisely less or equal than
this quantity and therefore, we can select αt − 1 free ut-edges to complete
the realization of mt. 2
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The converse of Theorem 4.6 is not true in general. For instance, take the
sequence 〈uα1

1 , . . . , uα5
5 〉 = 〈1, 5, 6, 7, 92〉, for which 10 = α5 +

∑4
i=1 2αi >⌊

u5+1
2

⌋
+ 4 = 9. But the sequence is realizable with X1

1 = {1}, X1
2 = {5},

X1
3 = {6}, X1

4 = {7}, X1
5 = {9}, X2

5 = {2, 3, 4}. Next theorem characterizes
completely the sequences with large gaps showing that, for these sequences,
the converse of Theorem 4.6 is indeed true.

Theorem 4.7 A sequence m = 〈uα1
1 , . . . , uαr

r 〉 with ui+1 > 2ui for each
1 ≤ i ≤ r− 1, is realizable if and only if the the restrictions of the statement
of Theorem 4.6 hold. In this case, the sequence can be realized by sets of
cardinality at most two.

Proof. If the sequence is realizable, the subsequences mt = 〈uα1
1 , . . . , uαt

t 〉
are also realizable for each 1 ≤ t ≤ r. We can apply Lemma 4.5 for each mt,
implying

ρt − 1 ≥
t∑

i=1

(αi − 1) +
t−1∑

i=1

αi, 1 ≤ t ≤ r,

where the second sum adds up to t− 1 since for all t, ut > 2ut−1. Therefore,

ρt + (t− 1) ≥ 2α1 + · · ·+ 2αt−1 + αt 1 ≤ t ≤ r.

2

In order to show the complexity in the characterization of realizable se-
quences 〈uα1

1 , . . . , uαr
r 〉 when ui+1 ≤ 2ui for some 1 ≤ i ≤ r − 1, we present

the following case that gives a tighter sufficient condition for a very specific
sequence.

Theorem 4.8 The sequence m = 〈uα, vβ〉 with u, v odd and u < v < 2u is
realizable by sets of cardinality at most two if

(1) α = 0 and

β ≤ v + 1
2

;

(2) kA + 1 ≤ α ≤ (k + 1)A for some 0 ≤ k ≤ N1 − 1, and

α + β ≤ v + 1
2

− k;
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(3) (N1+k)A−k+1 ≤ α ≤ (N1+k+1)A−k−1 for some 0 ≤ k ≤ N2−1,
and

α + β ≤ v + 1
2

−N1 − k;

where A =
⌈

u+1
v−u

⌉
, N1 = v−p+1

2 , N2 = p−1−u
2 and p =

⌈
u+1
v−u

⌉
(v − u).

Proof. We start the proof by analyzing the basic properties of the compo-
nents of the graph Gu,v.

Each one of the components is a path that starts at a vertex x of the interval
[u + 1, v] and, by alternating v-edges and u-edges, finishes at another point
of the same interval. Let P (x) denote the path that starts at vertex x ∈
[u + 1, v]. We have that

P (x) = {x1 = x, x2 = v − x1, x3 = u− x2, x4 = v − x3, . . . , l(x)}.

Since the path finishes always with a v-edge, we know that the last vertex of
the path is l(x) = Q(x)(v−u)+ (v−x), where Q(x) is the minimum integer
such that l(x) ∈ [u + 1, v]. Therefore, Q(x) =

⌈
u+x+1−v

v−u

⌉
and

l(x) =
⌈

u + x + 1− v

v − u

⌉
(v − u) + (v − x), x ∈ [u + 1, v]. (4.1)

To see the behavior of the function l(x) we should focuss on the quotient
Q(x). It takes its maximum value at the point x = v, that is, Q(v) =

⌈
u+1
v−u

⌉
,

and takes its minimum value at the point x = u + 1, Q(u + 1) =
⌈

2u−v+2
v−u

⌉
.

The difference between the numerators of Q(v) and Q(u + 1) is v − u − 1,
and this means that Q(v) = Q(u + 1) + 1. From this observation, the fact
that l is an involution and equation (4.1), we can partition the interval of
vertices [u + 1, v] in two parts.

[u + 1, v] = [u + 1, l(u + 1)]︸ ︷︷ ︸
Γ2

∪ [l(v), v]︸ ︷︷ ︸
Γ1

,

such that for each vertex x ∈ Γi, l(x) is the symmetric of x inside Γi,
i = 1, 2. If we define p = l(v) =

⌈
u+1
v−u

⌉
(v − u), we have that Γ1 = [p, v] and

Γ2 = [u + 1, p− 1].

The components of the graph Gu,v can be partitioned in two classes C1 and
C2, being Ci the components that have the end vertices in Γi, i = 1, 2. The
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number of components that are in each class is N1 = |C1| = v−p+1
2 and

N2 = |C2| = p−u−1
2 .

Consider now the total number of u-edges belonging to a component P (x),
x ∈ [u + 1, v], which is precisely Q(x). Since Q(x) is constant inside each
interval Γi, i = 1, 2, we have that the number of u-edges for a component in
C1 is A = Q(v) =

⌈
u+1
v−u

⌉
, and the number of u-edges for a component in C2

is A− 1.

Once we have defined all the parameters about the components of Gu,v, we
can continue by characterizing the exponents (α, β) for which the sequence
〈uα, vβ〉 is realizable.

By choosing all the v-edges in each of the components we get the maximal
exponent (0, β) with β = v+1

2 . Therefore, all the exponents described by
restriction (1) will be also realizable.

We start with the components in C1 and concretely with P (v). Replace
the second v-edge by the first u-edge to obtain (α, β) = (1, v+1

2 − 1). We
proceed by exchanging v-edges by u-edges one by one along the path until
(α, β) = (A, v+1

2 − A). This gives the following restriction: if 1 ≤ α ≤ A,
then α + β ≤ v+1

2 , which corresponds to restriction (2) with k = 0. We next
proceed with the rest of the components of C1, and doing, one by one, the
same procedure of interchanging v-edges by u-edges. With these components
we must be careful because we have to remove the first v-edge to be able
to add the first u-edge, since they do not meet at 0 like it was with the
component P (v). Therefore, we obtain the following set of restrictions:

If A + 1 ≤ α ≤ 2A, then α + β ≤ v + 1
2

− 1,

if 2A + 1 ≤ α ≤ 3A, then α + β ≤ v + 1
2

− 2,

...

if (N1 − 1)A + 1 ≤ α ≤ N1A, then α + β ≤ v + 1
2

− (N1 − 1).

All these restrictions, together with the one for P (v), are precisely the ones
in (2).

At this point, we continue the edge interchanging with the components of
the class C2. Now, we should take in account that the number of u-edges in
each component is A − 1. One can easily see that the resulting restrictions
are the ones in (3). 2
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Note that the restrictions of Theorem 4.8 are more accurate than the general
restrictions of Theorem 4.6. For the sequence 〈uα, vβ〉 = 〈52, 72〉, the condi-
tions of Theorem 4.6 do not hold since 6 = β + 2α >

⌊
v+1
2

⌋
+ (2 − 1) = 5.

Dealing with the hypothesis of Theorem 4.8 we have that A = 3, N1 = 1
and N2 = 0 and therefore we have to look at restriction (2) since for
k = 0(≤ N1 − 1), 1 = 0A + 1 ≤ α = 2 ≤ (0 + 1)A = 3. In this case, we can
conclude that the sequence is definitively realizable as 4 = α +β ≤ v+1

2 = 4.
In fact, X1

1 = {5}, X2
1 = {2, 3}, X1

2 = {7}, and X2
2 = {1, 6} is a realization.

A corollary of Theorem 4.7 is that the largest element ur in a forbidden
sequence 〈uα1

1 , . . . , uαr
r 〉 of Fk, where the distinct elements have the growth

established in the statement of the theorem, verifies ur < 4k. This bound
appears also in Theorem 4.4.

Corollary 4.9 Let m = 〈uα1
1 , . . . , uαr

r 〉 ∈ Fk with ui+1 > 2ui, 1 ≤ i ≤ r− 1.
Then ur < 4k.

Proof. Since the sequence m is not realizable, by Theorem 4.7, one or more
of the following restrictions must fail:

2α1 + · · ·+ 2αi−1 + αi ≤ ρi + (i− 1)

for 1 ≤ i ≤ r.

We consider the sequence m′ = 〈uα1
1 , . . . , u

αr−1

r−1 〉, which is realizable. Now,
again from Theorem 4.7, the above restrictions should be attained for 1 ≤
i ≤ r−1. Therefore, only the last restriction, for i = r, must be false. Then,

ρr + (r − 1) < 2α1 + · · ·+ 2αr−1 + αr < 2(α1 + · · ·+ αr) = 2k,

implying ur+1
2 − 1

2 < 2k − r + 1 < 2k. Finally, we get ur < 4k. 2

These results suggest the following problem. Let f(k) be the largest element
in a sequence of Fk. We have,

Proposition 4.10 For k ≥ 3, f(k) ≥ 4k − 9.

Proof. For k ≥ 3, define a = 2k− 5. Take the sequence m = 〈aa+1
2 , 2a+12〉

of length k. It is easy to check that the inequality of Lemma 4.5 does not
hold for m and thus, m is not realizable. We will see that all its subsequences
of length k − 1, and therefore all its proper subsequences, are realizable.

Case 1, m′ = 〈aa+1
2
−1, 2a + 12〉.
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Take X = {{a, a+1}, {2a+1}, {1, a−1}, {2, a−2}, {3, a−3}, . . . , {a−1
2 , a+1

2 }}.
Clearly, the first two sets add up to 2a + 1 and the last a+1

2 − 1 add up to a.

Case 2, m′ = 〈aa+1
2 , 2a + 1〉.

Take X = {{2a + 1}, {a}, {1, a − 1}, {2, a − 2}, {3, a − 3}, . . . , {a−1
2 , a+1

2 }}.
In this case, the first set adds up to 2a + 1 and the remaining a+1

2 sets add
up to a.

So clearly m ∈ Fk and its maximum value is 2a+1 = 2(2k−5)+1 = 4k−9,
implying that for all k, f(k) ≥ 4k − 9. 2

We conjecture that the above lower bound is close to the true value.

Conjecture 4.11 For all k ≥ 2, f(k) < 4k. 2

A conjecture that implies Conjecture 4.11, as we will next see, is the following
one.

Conjecture 4.12 Let 〈m1, . . . ,mk〉 be a realizable sequence. Then there
exists a realization X1, . . . , Xk with | ∪k

i=1 Xi| ≤ 2k. 2

It is easy to show that if Conjecture 4.12 is true, then f(k) < 4k. Let
m = 〈uα1

1 , . . . , uαr
r 〉 ∈ Fk. As the sequence 〈uα1

1 , . . . , u
αr−1

r−1 〉 is realizable, by
Conjecture 4.12 there exists a realization

X = {Xj
i : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ αi and

∑
(Xj

i ) = ui}

with
∑

i,j |Xj
i | ≤ 2α1 + · · ·+2αr−1. Using the same reasoning as in the proof

of Theorem 4.6, if
ρr −

∑

i,j

|Xj
i | ≥ αr,

the sequence m would be realizable. Therefore,

ur

2
≤

⌊
ur + 1

2

⌋
<

∑

i,j

|Xj
i |+ αr ≤ 2α1 + · · ·+ 2αr−1 + αr < 2k,

implying that ur < 4k.

At this point, we pose the following key conjecture that shows the close
connection between the realizable sequences and the n-realizable sequences.

Conjecture 4.13 Let m = 〈m1, . . . , mk〉 be an n-feasible sequence. If m is
realizable and n ≥ 4k then m is n-realizable. 2
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In other words, the above conjecture states that, for n ≥ 4k, a sequence of
length k is n-realizable if and only if it does not contain minimal forbidden
sequences.

4.2.2 Using complete sets

This section is devoted to analyze the n-realizability of sequences with small
values. The main tool is the use of so-called complete sets of integers, a
notion related to a vast area in Additive Number Theory.

Let S(X) = {∑Y, Y ⊆ X} denote the set of all subset sums of X. We say
that a set X of positive integers is complete if

S(X) = {0, 1, 2, . . . ,
∑

X},
that is, the subset sums cover all the interval from 0 to

∑
X. It is clear that

S([n]) = {0, 1, 2, . . . , n(n + 1)/2},
that is, [n] is a complete set.

There are several results on complete sets in Zn and in the integers, see for
example the book of Tao and Vu [48].

We will start with the following key observation:

Proposition 4.14 Let X be a complete set. Then X ∪ {a} is complete if
and only if a ≤ ∑

X + 1.

Proof. Since X is complete, the set S(X ∪ {a}) is clearly the union of two
intervals, I1 = {0, 1, . . . ,

∑
X} and I2 = {a, a + 1, . . . , a +

∑
X}. Therefore,

I1 ∪ I2 is another interval, and thus X ∪ {a} is complete, if and only if
a ≤ ∑

X + 1. 2

Using the above proposition, we are able to state the following result.

Theorem 4.15 Let be X = {1, 2, . . . , m} ∪ {a1} ∪ {a2} ∪ · · · ∪ {ak} with
m + 1 < a1 < · · · < ak and let l = m(m+1)

2 . If

a1 ≤ l + 1, (4.2)

and
ai − ai−1 ≤ l + 1, 1 < i ≤ k, (4.3)

then X is complete.
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Proof. From condition (4.2) and Proposition 4.14, the set {1, 2, . . . , m} ∪
{a1} is complete. Then, from condition (4.3) and again by Proposition 4.14,
we can add successively the elements a2, a3, . . . , ak and the resulting set will
be still complete. 2

First, we are going to analyze how is the construction suggested by Theorem
4.15.

Given n, we want to remove the maximum number of elements of [n] in such
a way that the remaining set is still complete. The naive approximation is
the following one:

Take the minimum m = m1 such that (m1+1)m1

2 ≥ n− 1 and remove all the
elements from m1 + 1 to n− 1. The remaining set will be

X1 = {1, 2, . . . , m1} ∪ {n}.

It is easy to check that

m1 =
⌈−1 +

√
8n− 7

2

⌉
,

and that the number of removed elements from [n] is

hn,1 = n−m1 − 1 =
⌊
n− 1 +

√
8n− 7
2

⌋
.

But Theorem 4.15 gives us a better construction:

We can reduce substantially this m = m1 if we do not remove all the numbers
from m + 1 to n− 1, but almost all. The construction is the following.

X2 = {1, 2, . . . , m2} ∪ {l + 1} ∪ {2l + 2} ∪ · · · ∪ {sl + s} ∪ {n},

where l = (m2+1)m2

2 , s is the maximum value such that sl+s ≤ n (s =
⌊

n
l+1

⌋
),

and m2 will be taken as the point that maximizes the number of holes given
by

hn,2(m) = (l −m) + l + · · ·+ l︸ ︷︷ ︸
s−1

+(n− 1− sl − s). (4.4)

If we put the values of l and s inside (4.4), we obtain

hn,2(m) = n−m− 1−
⌊

n
m(m+1)

2 + 1

⌋
. (4.5)
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n m1 hn,1 m2 hn,2 hn,2 − hn,1

20 6 13 3 14 1
50 10 39 5 41 2
100 14 85 6 89 4
1000 45 954 15 976 22
10000 141 9858 33 9949 91
100000 447 99552 73 99889 337
1000000 1414 998585 158 999762 1177

Table 4.1 Comparing constructions.

Finally, in order to work numerically with hn,2, we will take the approxima-
tion given by

hn,2(m) ' −m3 + (n− 2)m2 + (n− 3)m− 2
m2 + m + 2

. (4.6)

The desired m2 will be the point that maximizes (4.6).

In Table 4.1 there are computed the parameters m1 and m2 for each con-
struction and the corresponding number of holes for different values of n.
For n = 20, 50, 100 the values for m2 and hn,2 are exact. For the rest, the
approximation by (4.6) is used.

For example, the sets constructed for n = 100 are

X1 = {1, . . . , 14} ∪ {100}, h100,1 = 85,

and

X2 = {1, 2, 3, 4, 5, 6} ∪ {22} ∪ {44} ∪ {66} ∪ {88} ∪ {100}, h100,2 = 89.

This analysis motivates the interesting subject of describing the structure
of complete sets over the nonnegative integers. The natural question that
arises is: what is the maximum number of elements that can be removed
from [n], except n, and how should they be eliminated so that the resulting
set is still complete. However, it is not the objective of this work to study
this issue in depth.

Next, we present the following corollary of Theorem 4.15 as a means to say
something about the sequences.
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Corollary 4.16 Let H ⊂ [n] with n /∈ H. If minH ≥ 3+
√

8|H|+1

2 , then
X = [n] \H is complete.

Proof. If we define m + 1 = minH, the set X can be described in the
following way.

[n] \H = {1, 2, . . . , m} ∪ {a1} ∪ · · · ∪ {ak = n},

with m + 1 < a1 < · · · < ak.

From the condition minH ≥ 3+
√

8|H|+1

2 , we can deduce that |H| ≤ m(m−1)
2 .

Now, for a pair of consecutive numbers ai−1 and ai, we have

ai − ai−1 ≤ |H|+ 1 ≤ m(m− 1)
2

+ 1 ≤ m(m + 1)
2

+ 1,

satisfying the condition (4.3) of Theorem 4.15, and

a1 ≤ |H|+ m + 1 ≤ m(m− 1)
2

+ m + 1 =
m(m + 1)

2
+ 1,

satisfying also the condition (4.2) of Theorem 4.15. 2

Example 4.17 For n = 100, and |H| = 50, the bound given by the corollary
is minH ≥ (3 +

√
8 · 50 + 1)/2 ' 11.52, so we can remove up to 50 numbers

from 12 to 99 and the remaining set is still complete. 2

This corollary of Theorem 4.15 leads us to the following consequence about
sequences.

Theorem 4.18 Let S = 〈m1, . . . , mk〉 be a non-increasing n-feasible se-
quence. If

n > m3 > · · · > mk ≥ 3 +
√

8k − 15
2

,

then S is n-realizable.

Proof. Let Xi = {mi}, 3 ≤ i ≤ k. Let H = {m3, . . . , mk}, which has
cardinality k − 2. Since

minH = mk ≥ 3 +
√

8k − 15
2

=
3 +

√
8|H|+ 1
2

,
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by Corollary 4.16, [n] \ {m3, . . . , mk} is complete. Therefore, there exists a
subset X2 ⊆ [n] \ {m3, . . . , mk} such that

∑
X2 = m2. Finally, with the

remaining elements, define the set X1 = [n]\ (X2∪{m3, . . . ,mk}), for which
∑

X1 = n(n + 1)/2− (m2 + m3 + · · ·+ mk) = m1.

2

Using the following result of Lev, we can eliminate the bound on mk by
adding a new condition on n.

Theorem 4.19 (Lev, [39]) Let A ⊆ [n] be a set of a ≥ 1 integers, and
assume that a ≥ 2n+4

3 . Then

[2n− 2a + 1,
∑

A− (2n− 2a + 1)] ⊆ S(A).

2

Theorem 4.20 Let m = 〈m1, . . . , mk〉 be a non-increasing n-feasible se-
quence. If n ≥ 3k − 2 and n > m3 > · · · > mk then m is n-realizable.

Proof. Since n > m3 > · · · > mk we can take the sets Xi = {mi} for each
3 ≤ i ≤ k. Assume that m2 > n, otherwise we can take X2 = {m2} and the
remaining elements add up to m1 (as m is n-feasible) and we are done.

Let A = [n] \ {m3, . . . , mk} be the set of remaining elements of the interval.
Then, since the sequence is n-feasible, we have

∑
A = m1 + m2.

Now, |A| = n − k + 2 and, as n ≥ 3k − 2, we have |A| ≥ 2n+4
3 . So we can

apply Theorem 4.19 obtaining that

[2n− 2|A|+ 1,m1 + m2 − (2n− 2|A|+ 1)] ⊆ S(A)
=⇒ [2n− 2(n− k + 2) + 1, m1 + m2 − (2n− 2(n− k + 2) + 1)] ⊆ S(A)
=⇒ [2k − 3, m1 + m2 − (2k − 3)] ⊆ S(A)
=⇒ [n,m1 + m2 − n] ⊆ S(A).

Since m1 ≥ m2 > n, clearly both m1 and m2 belong to the interval and we
can obtain, for instance, X2 ⊆ A with

∑
X2 = m2. The remaining elements

X1 = [n] \ ({m3, . . . ,mk} ∪X2) will add up to m1. 2

Theorems 4.18 and 4.20 complement the result of Chen, Fu, Wang and Zhou
[12] in the sense that in the latter almost all elements of the sequence must
be larger than n, while here we require that almost all should be below n.



4.3. Modular sumset partition problem 71

4.3 Modular sumset partition problem

We conclude the chapter by considering the modular version of the problem.
A sequence (m1, . . . , mk) of elements in Zn is realizable modulo n if there
is a family X1, . . . , Xk of pairwise disjoint sets of Zn such that

∑
Xi = mi

for each i = 1, 2, . . . , k. Note that, for n odd, the sequence (m,m, . . . , m)
of length (n + 1)/2 is clearly not realizable for every m 6= 0. Theorem 4.21
shows that sequences in Zp of length at most (p−1)/2 for any prime p ≥ 3 are
always realizable. Its proof uses the polynomial method of Alon described in
Chapter 1. The application of the Combinatorial Nullsetellensatz to similar
problems can be seen in [4] and [14].

Theorem 4.21 Let p ≥ 3 be a prime number and k = (p − 1)/2. For
each sequence (m1, . . . , mk) of elements in Zp with

∑k
i=1 mi = M , there

is a partition X1, . . . , Xk of Zp \ {−M} with |Xi| = 2 and
∑

Xi = mi,
i = 1, . . . , k.

Proof. Consider the following polynomial in Zp[x1, . . . , xk, y1, . . . , yk]:

f = V (x1, . . . , xk, y1, . . . , yk)
k∏

i=1

(
1− (xi + yi −mi)p−1

)
.

The polynomial f takes a nonzero value if and only if there are pairwise
distinct elements (a1, . . . , ak, b1, . . . , bk) such that ai + bi = mi, 1 ≤ i ≤ k. If
this is the case, the sets Xi = {ai, bi} fulfill the conclusion of the statement.
Indeed, the Xi’s have cardinality two and they are pairwise disjoint, so they
form a partition of Zp \ {γ} for some γ. Since γ +

∑k
i=1 mi =

∑
x∈Zp

x = 0,

we have γ = −∑k
i=1 mi = −M .

Consider the monomial

xp−1
1 · · ·xp−1

k yp−2
1 · · · yp−2

k (4.7)

in the expansion of f , which is a monomial of maximum degree. Let us show
that this monomial has a nonzero coefficient, so that, by the Theorem 1.1,
f takes a nonzero value in (Zp)2k.

We identify every monomial xα1
1 · · ·xαk

k yβ1
1 · · · yβk

k by its exponent sequence
(α1, . . . , αk; β1, . . . , βk).

The monomial (4.7) arises in the expansion of f whenever we multiply
one monomial with exponent sequence (α1, . . . , αk; β1, . . . , βk) in the ex-
pansion of V (x1, . . . , xk, y1, . . . , yk) by a monomial with exponent sequence
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(α′1, . . . , α
′
k; β

′
1, . . . , β

′
k) in the expansion of

∏k
i=1

(
1− (xi + yi −mi)p−1

)
ver-

ifying

αi + α′i = p− 1, i = 1, . . . , k;
βi + β′i = p− 2, i = 1, . . . , k.

Since α′i + β′i = p− 1, the above relations lead to

αi + βi = p− 2, i = 1, . . . , k. (4.8)

The last relation implies that these are precisely the only monomials from
the Vandermonde polynomial that contribute to monomial (4.7). Moreover,
this monomial arise in the decomposition by multiplying each monomial from
the Vandermonde polynomial

(α1, . . . , αk; β1, . . . , βk) with αi + βi = p− 2, 1 ≤ i ≤ k,

by the following monomial from the remaining factor of f :

(−1)
(

p− 1
α1

)
xp−1−α1

1 yp−2−β1
1 · · ·

(
p− 1
αk

)
xp−1−αk

k yp−2−βk
k . (4.9)

We know that the expansion of the Vandermonde polynomial is

V (x1, . . . , xk, y1, . . . , yk) =

=
∑

τ∈Sym(2k)

sgn(τ)xτ(0)
1 x

τ(1)
2 · · ·xτ(k−1)

k y
τ(k)
1 y

τ(k+1)
2 · · · yτ(2k−1)

k (4.10)

(see Chapter 1, (1.1)). Observe that for a given τ we have αi = τ(i− 1) and
βi = τ(k + i− 1) for each 1 ≤ i ≤ k. Now, from relation (4.8), we have that
the only permutations τ in which we are interested are precisely the ones
that satisfy τ(i) + τ(k + i) = p − 2 for each 0 ≤ i ≤ k − 1. We can obtain
such permutations by considering every permutation σ of [0, k − 1] and, for
each i ∈ [0, k − 1], one of the two choices:

τ(i) = σ(i) and τ(k + i) = p− 2− σ(i), or

τ(i) = p− 2− σ(i) and τ(k + i) = σ(i).

With exactly these permutations, we obtain the desired exponent sequences
from the Vandermonde polynomial. Each one of these exponent sequences
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combined with the corresponding one from (4.9) will verify all the above
relations. Thus, we have 2kk! such pairs of monomials.

Observe that given a permutation σ of [0, k − 1], one particular exponent
i ∈ [0, k − 1] is initially in position ασ−1(i)+1, and then we have the two
choices for this position:

ασ−1(i)+1 ∈ {i, p− 2− i}.

A pair of monomials corresponding to the permutation σ and all the choices
being ασ−1(i)+1 = i for all 1 ≤ i ≤ k, has coefficient

Cσ = ρ(k)
k−1∏

i=0

(
p− 1

ασ−1(i)+1

)
= ρ(k)

k−1∏

i=0

(
p− 1

i

)
, (4.11)

where ρ(k) = (−1)b k
2c+1 is the sign of τ from (4.10) with an extra −1 from

(4.9). Note that τ , when all the choices are the first option, is a permutation
by σ of the first k elements and the same permutation, but inverted, of the
last k elements. Therefore, (−1)b k

2c is the number of transpositions that
should be applied to τ in order to obtain the same permutation σ of the last
k elements, implying sgn(τ) = (sgn(σ))2(−1)b k

2c = (−1)b k
2c.

Observe that the coefficient Cσ does not depend on the permutation σ.

A pair corresponding to the permutation σ and a particular choice for every
exponent i ∈ [0, k− 1], which is initially in position ασ−1(i)+1, has coefficient

Cσ;q1,...,qs = (−1)sρ(k)
k−1∏

i=0

(
p− 1

i

)(
p− 1− q1

q1 + 1

)
· · ·

(
p− 1− qs

qs + 1

)
,

where ql ∈ [0, k − 1], 1 ≤ l ≤ s, are the exponents for which the choice has
been ασ−1(ql)+1 = p− 2− ql. We next show that this expression arises from
(4.11) and the relation

(
n

i+1

)
=

(
n
i

)
n−i
i+1 for n > i. Indeed, when in the pair

(ασ−1(i)+1, βσ−1(i)+1) we choose the second option (ασ−1(i)+1 = p−2− i), we
are changing the corresponding coefficient

(
p−1

i

)
of the first option by

(
p− 1

p− 2− i

)
=

(
p− 1
i + 1

)
=

(
p− 1

i

)
p− 1− i

i + 1
.

The factor (−1)s shows the fact that when we choose the second option for
one particular exponent, the sign of the permutation τ changes by −1.
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Again, the coefficients Cσ;q1,...,qs do not depend on the permutation σ, and
thus all the k! permutations with the same choices will contribute the same
to the coefficient. If we denote jl = ql + 1, 1 ≤ l ≤ s, the contribution of
these k! permutations to the coefficient is

Cj1,...,js = k!(−1)sρ(k)
k−1∏

i=0

(
p− 1

i

) (
p− j1

j1

)(
p− j2

j2

)
· · ·

(
p− js

js

)
.

Finally we have to consider all the possible choices and therefore the coeffi-
cient of the monomial (4.7) is

C = k!ρ(k)
k−1∏

i=0

(
p− 1

i

)
+

k∑

s=1

∑

1≤j1<j2<···<js≤k

Cj1,...,js

= k!ρ(k)
k−1∏

i=0

(
p− 1

i

)(
1 +

k∑

s=1

(−1)sλ(s, k)

)
,

where

λ(s, k) =
∑

1≤j1<j2<···<js≤k

(
p− j1

j1

)(
p− j2

j2

)
· · ·

(
p− js

js

)
.

The goal now is to prove that C is nonzero modulo p. We have that

λ(s, k) ≡
∑

1≤j1<j2<···<js≤k

(−j1)(−j2) · · · (−js)
1

j1j2 · · · js

≡
∑

1≤j1<j2<···<js≤k

(−1)s

≡ (−1)s

(
k

s

)
(mod p).

Then, the coefficient C of the monomial (4.7) can be expressed modulo p as
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C ≡ k!ρ(k)
k−1∏

i=0

(
p− 1

i

) (
1 +

k∑

s=1

(−1)sλ(s, k)

)

≡ k!ρ(k)
k−1∏

i=0

(
p− 1

i

) (
1 +

k∑

s=1

(−1)2s

(
k

s

))

≡ k!ρ(k)
k−1∏

i=0

(
p− 1

i

) k∑

s=0

(
k

s

)

≡ k!ρ(k)
k−1∏

i=0

(
p− 1

i

)
2k,

which is nonzero since
∏k−1

i=0

(
p−1

i

) ≡ ±1 (mod p), k! 6≡ 0 (mod p) and 2k is
obviously nonzero modulo p. This completes the proof. 2

Theorem 4.21 also applies for shorter sequences as we can see in the following
corollary.

Corollary 4.22 Let p be an odd prime. For each sequence (m1, . . . , mr) of
elements in Zp with r ≤ (p − 1)/2 and

∑r
i=1 mi = M , there is a partition

X1, . . . , Xr of Zp \ {−M} with |Xi| > 1 and
∑

Xi = mi, i = 1, . . . , r.

Proof. If r = k then it is Theorem 4.21. Assume that r < k, and consider
the following sequence of length k

m′
1 = m1, . . . , m

′
r = mr,m

′
r+1 = 0, . . . ,m′

k = 0.

Now, we apply Theorem 4.21 that gives a partition X ′
1, . . . , X

′
k of Zp\{−M}

such that
∑

X ′
i = m′

i and |X ′
i| > 1, 1 ≤ i ≤ k. Finally, the following sets

X1 = X ′
1 ∪

(
∪k

i=r+1X
′
i

)
and X2 = X ′

2, . . . , Xr = X ′
r

are a partition of Zp \ {−M} with |Xi| > 1 and the desired sumset. 2

If a sequence (m1, . . . , mr) is feasible modulo p, that is, if
∑r

i=1 mi = 0, we
can extend the result to length (p + 1)/2.

Corollary 4.23 Let p be an odd prime and k = (p−1)/2. For each sequence
(m1, . . . , mr) of elements in Zp with r ≤ k + 1 and

∑r
i=1 mi = 0, there is a

partition X1, . . . , Xr of Zp with
∑

Xi = mi, i = 1, . . . , r and
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(1) if r ≤ k, |Xi| > 1, 1 ≤ i ≤ r;

(2) if r = k + 1, we can choose mi, 1 ≤ i ≤ r, for which |Xi| = 1. The
remaining sets will have cardinality two.

Proof. If r ≤ k = (p − 1)/2, we can apply Corollary 4.22 and obtain a
partition of Zp \ {0}. Therefore we can add 0 to any set without changing
its sum to obtain the total partition.

If r = k + 1, select the desired mi, 1 ≤ i ≤ r, and take the truncated
sequence (m1, . . . ,mi−1,mi+1, . . . , mr) of k elements. Let J = {1, . . . , i −
1, i + 1, . . . , r}. Note that

∑
j∈J mj = −mi. So we can apply Theorem

4.21 to this sequence and obtain a partition X1, . . . , Xi−1, Xi+1, . . . , Xr of
Zp \ {mi} with |Xj | = 2 and

∑
Xj = mj , j ∈ J . Finally define Xi = {mi}.

The collection X1, . . . , Xr is a partition of Zp and
∑

Xj = mj , 1 ≤ j ≤ r.
2

We finish this chapter by providing an alternative simple proof of the result
of Chen, Fu, Wang and Zhou for n = p prime.

Theorem 4.24 ([12]) Let p ≥ 3 be a prime and let m = 〈m1, . . . , mk〉 be a
p-feasible sequence. If mk−1 ≥ p then m is p-realizable.

Proof. We can assume that mk < p, otherwise we are done by the result of
Ma, Zhou and Zhou [44].

Suppose now that mk−1 = p. Consider the sequence 〈m1, . . . , mk−2,mk〉,
which is (p − 1)-feasible and mk−2 ≥ p. By the inductive hypothesis, we
can obtain a partition X1, . . . , Xk−2, Xk of [p − 1] such that

∑
Xi = mi,

i = 1, . . . , k − 2, k. Adding the set Xk−1 = p to the collection, we obtain a
partition of [p] with

∑
Xi = mi, 1 ≤ i ≤ k. Therefore, we can also assume

that mk−1 ≥ p + 1.

Now, p(p + 1)/2 > m1 + · · ·+ mk−1 ≥ (k − 1)(p + 1) implies k ≤ (p + 1)/2.
Denote by m′

i the representative modulo p of mi in [1, p], 1 ≤ i ≤ k. Observe
that m′

k = mk. Let t = (p+1)/2−k (can be zero) and consider the sequence

(m′
1, . . . , m

′
k, p, . . . , p︸ ︷︷ ︸

t

)

of length (p + 1)/2. Since
∑k

i=1 m′
i + tp ≡ p(p + 1)/2 + tp ≡ 0 (mod p), by

Corollary 4.23 (2) there is a partition

X ′
1, . . . , X

′
k, Y1, . . . , Yt
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of [1, p] with
∑

X ′
i ≡ m′

i (mod p) for i = 1, . . . , k,
∑

Yj ≡ 0 (mod p) for
j = 1, . . . , t, |X ′

k| = 1 and |X ′
1| = · · · = |X ′

k−1| = |Y1| = · · · = |Yt| = 2.
Therefore, we have that X ′

k = {mk},
∑

X ′
i ∈ {m′

i,m
′
i+p} for i = 1, . . . , k−1,

and
∑

Yj = p for j = 1, . . . , t. Moreover,

{X ′
1, X

′
2, . . . , X

′
k−1, X

′
k = {mk}, Y1, . . . , Yt}

is a partition of [1, p], implying

k∑

i=1

(
∑

X ′
i) +

t∑

j=1

(
∑

Yj) = p(p + 1)/2 = m1 + · · ·+ mk. (4.12)

Since mk−1 > p we have
∑

X ′
i ≤ mi for each i = 1, . . . , k, mi −

∑
X ′

i is a
multiple of p for i = 1, . . . , k, and it follows from (4.12) that

t∑

j=1

(
∑

Yj) =
k∑

i=1

(mi −
∑

X ′
i).

Hence, by joining the Yj ’s to the X ′
i’s appropriately, we can obtain a partition

X1, . . . , Xk of [1, p] with
∑

Xi = mi for each 1 ≤ i ≤ k. 2





5
Ascending subgraph

decompositions of bipartite
graphs

Let G be a graph of size
(
n+1

2

)
for some integer n ≥ 1. G is said to have an

ascending subgraph decomposition if can be decomposed into n subgraphs
H1, . . . , Hn such that Hi has i edges and is isomorphic to a subgraph of
Hi+1, i = 1, . . . , n − 1. In this chapter we deal with ascending subgraph
decompositions of bipartite graphs, considering two different approaches.

In Section 5.2 we obtain sufficient conditions for a bipartite graph to have
an ascending subgraph decomposition into stars, mainly based on the re-
sults about the sumset partition problem from Chapter 4. The connection
between these two problems is shown in Section 5.1. In the same vein, in
Section 5.3, we obtain an ascending subgraph decomposition for a bipartite
graph G(A,B) when |A| ≤ 4 using the results for short sequences also from
Chapter 4.

The second approach consists in finding ascending subgraph decompositions
for a bipartite graph in which each factor of the decomposition is a forest
of stars. In Section 5.4 we show that every bipartite graph G with

(
n+1

2

)
edges such that the degree sequence (d1, . . . , dk) with di > di+1 for each
1 ≤ i ≤ k − 1, of one of the partite sets satisfies d1 ≥ (k − 1)(n − k + 1)
and di ≥ n − i + 2 for each 2 ≤ i ≤ k, admits an ascending subgraph
decomposition into star forests. We also give a necessary condition on the
degree sequence of G to have an ascending subgraph decomposition into star
forests that is not far from the above sufficient one. Our results are based on
the existence of certain matrices that we call ascending, and the construction
of edge-colorings for some bipartite graphs with parallel edges.
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5.1 Introduction

Let G be a graph of positive size q, and let n be the positive integer with(
n+1

2

) ≤ q ≤ (
n+2

2

)
. Then G is said to have an ascending subgraph de-

composition, which we will denote by ASD, if G can be decomposed into n
subgraphs H1, . . . , Hn without isolated vertices such that Hi is isomorphic
to a proper subgraph of Hi+1 for i = 1, . . . , n − 1. Furthermore, if every
subgraph Hi is a star (matching, path, star forest, . . .), then we say that
G admits an ascending star (matching, path, star forest, . . .) subgraph de-
composition or simply a star (matching, path, star forest, . . .) ASD. In Fig.
5.1 an ascending subgraph decomposition of a graph G of size

(
4+1
2

)
= 10 is

shown.

G

J
J

JJ











J
J

JJ

A
A
A
A
A
A
A¢

¢
¢
¢
¢
¢
¢

s s
H1 J

J
JJ






s

s

s

H2






J
J

JJ

A
A
A
A
A
A
A

s

s

s

s

H3

¢
¢
¢
¢
¢
¢
¢

s s

s s

H4

s

s

s

s

s

s

Figure 5.1 ASD of G

In 1987 Alavi, Boals, Chartrand, Erdös and Oellerman proposed two con-
jectures:

Conjecture 5.1 (Alavi et al., [2]) A graph of positive size has an ASD. 2

Conjecture 5.2 (Alavi et al., [2]) A star forest of size
(
n+1

2

)
with each

component having size between n and 2n− 2 inclusively has a star ASD. 2

In the same paper they reduced the verification of the first conjecture to the
following equivalent version:
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Conjecture 5.3 (Alavi et al., [2]) Every graph of size
(
n+1

2

)
for n ≥ 1,

has an ASD. 2

Conjecture 5.2 was proved by Ma, Zhou and Zhou in [44], and it is equivalent
to the n-realizability of sequence (4) in page 54. The condition was later
weakened to the effect that the smallest component of the star forest can
have size below n; this was obtained by Chen, Fu, Wang and Zhou in [12]
and it is equivalent to the n-realizability of sequence (5) in page 54. In order
to obtain their proofs, they used the connection between the ASD problem
and the sumset partition problem treated in Chapter 4.

Let us show the connection between these two problems. Consider a graph
G with

(
n+1

2

)
edges and N vertices. If G admits a star ASD, by orienting

the edges of each star of the decomposition towards the leaves we get an
orientation of the edges of G. Let mi = d+(vi), 1 ≤ i ≤ N , where d+(vi) is
the out-degree of vi in this orientation for some ordering of the vertices of G.
Then the sequence (m1,m2, . . . , mN ) is n-realizable (the sizes of the stars in
the star ASD provide a realization). Conversely, if G admits an orientation
such that the sequence (d+(v1), d+(v2), . . . , d+(vN )) is n-realizable then G
clearly admits a star ASD.

Conjecture 5.1 and its equivalent Conjecture 5.3 have turned out to be much
more difficult. We can find three main directions to deal with them in the
literature.

The first one concerns the number of vertices of the graph. Note that a
graph G with

(
n+1

2

)
edges has at least n + 1 vertices, which corresponds to

the complete graph. Faudree, Gyárfás and Schelp proved in [18] that the
complete graph Kn+1 has a star and a path ASD. They also showed that a
graph with n + 2 vertices has a star ASD.

The second direction is related with the maximum degree ∆(G). In 1990,
Fu [19] proved that a graph G of size

(
n+1

2

)
and ∆(G) ≤ n−1

2 has a matching
ASD. Moreover, in the same paper showed that if ∆(G) ≤ n+1

2 then G has an
ASD. These results extend pervious partial results concerning the maximum
degree of G that can be found in [2, 18].

Finally, some authors have studied the conjecture for certain classes of
graphs. It has already been commented that [12] and [44] are devoted to
star ASD of star forests. Faudree and Gould [17] proved that a forest with(
n+1

2

)
edges has an ASD with each member a star forest. In 2002 Fu and Hu

obtained that regular graphs have an ASD [23]. The same authors showed
that complete multipartite graphs also admit an ASD [22], which extends
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the result given by Fu [20] for complete bipartite graphs.

In the definition of an ASD of a graph, we require that each subgraph of the
decomposition must be isomorphic to a proper subgraph of a greater factor.
A closely related packing problem is considered in [29] by loosening this
requirement. The authors conjectured that the complete graph K2n+1 can
be decomposed into n trees of sizes 1, 2, . . . , n. Observe that this conjecture
is also related with Ringel’s conjecture, treated in Chapter 3, which asks for
the decomposition of K2n+1 into 2n + 1 copies of a given tree of size n.

Our work is focused on the existence of ASD of bipartite graphs. In partic-
ular, we know from the above results that a bipartite graph G with

(
n+1

2

)
edges has an ASD if:

(1) G is regular;

(2) G is complete bipartite;

(3) ∆(G) ≤ n+1
2 .

Therefore, our main objective is to obtain sufficient conditions for a non-
complete, not necessarily regular, bipartite graph G with ∆(G) > n+1

2 to
have an ASD. Moreover, in view of the equivalence between Conjectures 5.1
and 5.3, we will always consider graphs of size

(
n+1

2

)
.

For this chapter we use the definition and the notation as well as the known
results of the sumset partition problem described in Chapter 4.

5.2 Star ASD

There is a strong connection between the sumset partition problem and the
star ASD of a bipartite graph. Let G(A, B) be a bipartite graph of size(
n+1

2

)
and A = {a1, . . . , ak}. We denote by dA = 〈d1, d2, . . . , dk〉 the degree

sequence of the vertices in A, which are ordered in such a way that dA is a
non-increasing sequence. By the definition, dA is an n-feasible sequence, and
it is clear that dA is n-realizable if and only if G admits a star ASD with every
star centered at the vertices of A. Therefore, we can translate every result
obtained on the sumset partition problem about n-realizable sequences to
the current problem. We have directly, from the result of Chen, Fu, Wang
and Zhou [12], that if dk−1 ≥ n then G(A,B) admits a star ASD. Moreover,
from Theorem 4.4 we have the following corollary.
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Corollary 5.4 Let G(A,B) be a bipartite graph of size
(
n+1

2

)
and degree

sequence dA = 〈d1, d2, . . . , dk〉. If n ≥ 4k − 1 and dk ≥ 4k then G admits a
star ASD. 2

Using results on complete sets of positive integers, we obtained Theorems
4.18 and 4.20, which have the following direct implications on the star ASD
problem for bipartite graphs.

Corollary 5.5 Let G(A,B) be a bipartite graph of size
(
n+1

2

)
and degree

sequence dA = 〈d1, d2, . . . , dk〉. If

n > d3 > · · · > dk ≥ 3 +
√

8k − 15
2

,

then G admits a star ASD. 2

Corollary 5.6 Let G(A,B) be a bipartite graph of size
(
n+1

2

)
and degree

sequence dA = 〈d1, d2, . . . , dk〉. If n ≥ 3k − 2 and n > m3 > · · · > mk then
G admits a star ASD. 2

5.3 Small partite set

We can obtain ASD of bipartite graphs G(A,B) when |A| ≤ 4 using the
results for short sequences from Chapter 4. In particular, we will use The-
orems 4.2 and 4.3 to obtain that every bipartite graph G(A,B) with

(
n+1

2

)
edges and |A| ≤ 4 has an ASD if n ≥ 11. For the proof of this result, we will
denote by ASDm a partial ASD of a graph with

(
n+1

2

)
edges and n ≥ m,

consisting on the m first subgraphs of the total ASD(= ASDn).

Proposition 5.7 Let G(A,B) be a bipartite graph with M =
(
n+1

2

)
edges.

Then G admits an ASD if

(1) |A| = 1 and n ≥ 1;

(2) |A| = 2 and n ≥ 2;

(3) |A| = 3 and n ≥ 3;

(4) |A| = 4 and n ≥ 11.
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Proof.

(1) If |A| = 1, then for every n ≥ 1 G is a star with M edges, which admits
a star ASD.

(2) If |A| = 2, every n-feasible degree sequence dA = 〈d1, d2〉 for n ≥ 2 is
n-realizable and G admits a star ASD.

(3) If |A| = 3 we consider the degree sequence dA = 〈d1, d2, d3〉 of the vertices
{a1, a2, a3} of A. From Theorem 4.2, dA is n-realizable and thus G admits
a star ASD unless 〈d2, d3〉 ∈ F2 = {〈1, 1〉, 〈2, 2〉}. Therefore, for n ≥ 3, we
have three cases:

• 〈d1, d2, d3〉 = 〈2, 2, 2〉
This case, which corresponds to n = 3, clearly admits an ASD.

• 〈d2, d3〉 = 〈1, 1〉
Form the vertex a2 we can obtain a star S1. There are M ′ =

(
n+1

2

)− 2
edges incident with a1 and, since n ≥ 3, we have that

2 + · · ·+ (n− 1) + (n− 1) = M ′.

Take stars S2, . . . , Sn−1 centered at a1, which together with S1 form
an ASDn−1 of G. The last graph in the ASDn of G is the star induced
by the (n− 1) remaining edges from a1 an the edge incident with a3.

• 〈d2, d3〉 = 〈2, 2〉
From the vertices a2 and a3 we can obtain an ASD2 consisting of stars
S1 and S2, and remains a single edge e. There are M ′ =

(
n+1

2

) − 4
edges incident with a1 and, since n ≥ 4 (the case n = 3 corresponds to
〈d1, d2, d3〉 = 〈2, 2, 2〉), we have that

3 + · · ·+ (n− 1) + (n− 1) = M ′.

Take stars S3, . . . , Sn−1 centered at a1, which together with the stars
S1 and S2 form an ASDn−1 of G. The star induced by the (n − 1)
remaining edges of a1 and the edge e is the last factor of G.

(4) If |A| = 4 and n ≥ 11 we consider the degree sequence dA = 〈d1, d2, d3, d4〉
of the vertices {a1, a2, a3, a4} of A. From Theorem 4.3, dA is n-realizable and
thus G admits a star ASD unless 〈d1, d2, d3, d4〉 has a subsequence in

F2 ∪ F3 = {〈1, 1〉, 〈2, 2〉, 〈3, 3, 1〉, 〈3, 3, 2〉,
〈3, 3, 3〉, 〈4, 4, 1〉, 〈4, 4, 3〉, 〈4, 4, 4〉}.



5.3. Small partite set 85

We need now to check all these cases one by one:

• 〈d3, d4〉 = 〈1, 1〉
If n ≥ 7 we can choose (n − 2) + (n − 1) edges incident with a1 and
not touching the two remaining edges incident with a3 and a4. Since
the sequence (d1− (n− 2)− (n− 1), d2) is (n− 2)-feasible we can take
a star ASDn−2 of the remaining edges incident with a1 and a2. The
last two graphs in the ASDn of G are the star induced by the (n− 2)
chosen edges and the edge incident with a3, and the star induced by
the (n− 1) chosen edges and the edge incident with a4.

• 〈d3, d4〉 = 〈2, 2〉
If n ≥ 11 we can choose (n − 3) + (n − 2) + (n − 2) edges incident
witha1 and not touching the four edges incident with a3 and a4. Since
the sequence (d1 − (n − 3) − (n − 2) − (n − 2), d2) is (n − 3)-feasible
we can take a star ASDn−3 of the remaining edges incident with a1

and a2. The last three graphs in the ASDn of G are the star induced
by the (n − 3) chosen edges and one edge incident with a3, the star
induced by the first (n − 2) chosen edges and the other edge incident
with a3, and the star induced by the last (n− 2) chosen edges and the
two edges incident with a4.

• 〈d2, d3, d4〉 = 〈2, 2, 1〉
From the vertices a3 and a4 we can obtain an ASD2 consisting of the
stars S1 and S2. There are M ′ =

(
n+1

2

)− 5 edges incident with a1. If
n ≥ 5, we have that

3 + · · ·+ (n− 2) + (n− 2) + (n− 1) = M ′,

and we can take (n − 2) + (n − 1) edges incident with a1 and not
touching the two edges incident with a2. From the remaining edges
of a1 take stars S3, . . . , Sn−2, which together with the stars S1 and S2

form an ASDn−2 of G. Finally, the last two factors of G will be the
star induced by the (n− 2) chosen edges and one of the edges incident
with a2, and the star induced by the (n−1) chosen edges and the other
edge incident with a2.

• 〈d2, d3, d4〉 = 〈3, 3, 1〉
From the vertices a2 and a3 we can obtain an ASD3 consisting of the
stars S1, S2 and S3. There are M ′ =

(
n+1

2

)− 7 edges incident with a1.
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If n ≥ 5, we have that

4 + · · ·+ (n− 1) + (n− 1) = M ′,

and we can take stars S4, . . . , Sn−1 centered at a1, which together with
the stars S1, S2 and S3 form an ASDn−1 of G. The star induced by
the (n− 1) remaining edges of a1 and the edge incident with a4 is the
last factor of G.

• 〈d2, d3, d4〉 = 〈3, 3, 2〉
From the vertices a2 and a3 we can obtain an ASD3 consisting of the
stars S1, S2 and S3. There are M ′ =

(
n+1

2

)− 8 edges incident with a1.
If n ≥ 6, we have that

4 + · · ·+ (n− 2) + (n− 2) + (n− 1) = M ′,

and we can take (n − 2) + (n − 1) edges incident with a1 and not
touching the two edges incident with a4. From the remaining edges of
a1 take stars S4, . . . , Sn−2, which together with the stars S1, S2 and
S3 form an ASDn−2 of G. Finally, the last two factors of G will be the
star induced by the (n− 2) chosen edges and one of the edges incident
with a4, and the star induced by the (n−1) chosen edges and the other
edge incident with a4.

• 〈d2, d3, d4〉 = 〈3, 3, 3〉
From the vertices a2 and a3 we can obtain an ASD3 consisting of the
stars S1, S2 and S3. There are M ′ =

(
n+1

2

)− 9 edges incident with a1.
If n ≥ 6, we have that

4 + · · ·+ (n− 2) + (n− 2) + (n− 2) = M ′,

and we can take (n − 2) + (n − 2) edges incident with a1 and not
touching the three edges incident with a4. From the remaining edges
of a1 take stars S4, . . . , Sn−2, which together with the stars S1, S2 and
S3 form an ASDn−2 of G. Finally, the last two factors of G will be
the star induced by the first (n− 2) chosen edges and one of the edges
incident with a4, and the star induced by the last (n− 2) chosen edges
and the two remaining edges incident with a4.
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• 〈d2, d3, d4〉 = 〈4, 4, 1〉
From the vertices a2 and a3 we can obtain stars S1, S3 and S4. There
are M ′ =

(
n+1

2

)− 9 edges incident with a1. If n ≥ 6, we have that

2 + 5 + · · ·+ (n− 1) + (n− 1) = M ′.

Take stars S2, S5, . . . , Sn−1, which together with the stars S1, S3 and
S4 form an ASDn−1 of G. The star induced by the (n− 1) remaining
edges of a1 and the edge incident with a4 is the last factor of G.

• 〈d2, d3, d4〉 = 〈4, 4, 3〉
From the vertices a2, a3 and a4 we can obtain stars S1, S2, S3 and S4,
and remains a single edge e. There are M ′ =

(
n+1

2

)−11 edges incident
with a1. If n ≥ 6, we have that

5 + · · ·+ (n− 1) + (n− 1) = M ′.

Take stars S5, S6, . . . , Sn−1, which together with the stars S1, S2, S3

and S4 form an ASDn−1 of G. The star induced by the (n − 1) re-
maining edges of a1 and the edge e is the last factor of G.

• 〈d2, d3, d4〉 = 〈4, 4, 4〉
From the vertices a2 a3 and a4 we can obtain an ASD4 consisting of
the stars S1, S2, S3 and S4, and remain two edges e and f . There are
M ′ =

(
n+1

2

)− 12 edges incident with a1. If n ≥ 7, we have that

5 + · · ·+ (n− 2) + (n− 2) + (n− 1) = M ′,

and we can take (n − 2) + (n − 1) edges incident with a1 and not
touching the two edges e and f . From the remaining edges of a1 take
stars S5, S6, . . . , Sn−2, which together with the stars S1, S2, S3 and S4

form an ASDn−2 of G. Finally, the last two graphs in the ASDn of G
will be the star induced by the (n − 2) chosen edges and the edge e,
and the star induced by the (n− 1) chosen edges and the edge f .

2

We can observe from the above proof, that in almost all of the cases (in-
cluding when de degree sequence dA is n-realizable) we are decomposing the
graph with stars. In some cases we need star forests, and for cases 〈1, 1〉 and
〈2, 2〉 for length 3, and 〈3, 3, 1〉, 〈4, 4, 1〉 and 〈4, 4, 3〉 for length 4, the last
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factor may be a star and an edge hanging from a spoke. Should be pointed
out that for these cases the proof can be slightly modified to obtain star
forest decompositions. Another observation is that, for |A| = 4, the bound
n ≥ 11 is given by the single case 〈d3, d4〉 = 〈2, 2〉. Hence, if the degree
sequence does not contain it, n > 7 is enough.

5.4 Star forest ASD

In order to weaken the sufficient conditions for a bipartite graph to obtain
an ASD, here we consider star forest decompositions instead of star decom-
positions. In all this section we will consider that a star forest of G(A,B)
has the centers of all the stars in the partite set A.

5.4.1 Reduction lemma

Given a bipartite graph G(A,B) with degree sequence dA = 〈d1, . . . , dk〉, we
define the reduced graph GdA

(A,R) as the bipartite graph with same partite
set A and R = {r1, . . . , rd1} such that every vertex ai is adjacent to the di

first vertices r1, . . . , rdi of R, 1 ≤ i ≤ k. In Fig. 5.2 a bipartite graph and
its reduced graph are shown.
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Figure 5.2 The bipartite graph G(A,B) and its reduced graph
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(A,R).



5.4. Star forest ASD 89

Since in the reduced graph we are collapsing all the edges into the first
vertices, it seems plausible that if the reduced graph admits a star forest
ASD then the original graph must admit also a star forest ASD. Lemma 5.9
below shows that this is indeed true. In order to prove it, we first need the
following notions.

A proper edge-coloring of a graph (or multigraph) is and assignment of col-
ors to its edges in such a way that two edges that are incident with the
same vertex should have different colors. From here on, we will consider a
multigraph as a graph with parallel edges but without loops.

Let G(A,B) be a bipartite multigraph and let L = {La : a ∈ A} be a family
of lists of colors. We say that G can be properly edge-colored with L if the
graph admits a proper edge-coloring and, for every a ∈ A, the edges incident
with a are colored with a color from the list La.

To prove Lemma 5.9 we use the following result.

Theorem 5.8 (Häggkvist, [30]) Let H(V, W ) be a bipartite multigraph.
If H admits a proper edge-coloring such that each vertex v ∈ V is incident
with edges colored {1, 2, . . . , d(v)}, then H can be properly edge-colored for
an arbitrary assignment of lists {L(v) : v ∈ V } such that |L(v)| = d(v) for
each v ∈ V . 2

Lemma 5.9 (Reduction lemma) Let G(A,B) be a bipartite graph with
partite set A = {a1, . . . , ak} and degree sequence dA = 〈d1, . . . , dk〉. If the
reduced graph GdA

(A,R) has a decomposition

F ′
1, . . . , F

′
t ,

where F ′
i is a star forest for each i = 1, . . . , t, then G has a decomposition

F1, . . . , Ft

where each Fi is a star forest and dFi(ai) = dF ′i (ai) for i = 1, . . . , t.

Proof. Let C be the k × t matrix whose entry cij is the number of edges
incident to ai in the star forest F ′

j of the decomposition of GdA
(A,R).

Consider the bipartite graph H(A,U), U = {u1, . . . , ut}, where ai is joined
with uj with cij parallel edges. Now, for each pair (i, j), color the cij parallel
edges of H with the neighbors of ai in the forest F ′

j . Note that in this way we
get a proper edge-coloring of H: two edges incident with a vertex ai receive



90 Chapter 5. Ascending subgraph decompositions of bipartite graphs

different colors since the original bipartite graph has no multiple edges, and
two edges incident to a vertex uj receive different colors since F ′

j is a star
forest.

Consider the original graph G(A,B) with partite sets A = {a1, . . . , ak} and
B = {b1, . . . , bq}. By the definition of the bipartite multigraph H, each
vertex ai in A is incident with edges colored 1, 2, . . . , di. By Theorem 5.8,
there is a proper edge-coloring of H in which the edges incident to vertex ai

in A receive the colors from the list L(ai) of neighbors of ai in the original
graph G. Now construct Fs for s = 1, . . . , t by letting the edge aibj , 1 ≤ i ≤ k
and 1 ≤ j ≤ q, be in Fs, whenever the edge aius is colored bj in the latter
edge-coloring of H. Hence, Fs has the same number of edges than F ′

s and
the degree of ai in Fs is dFs(ai) = cis, the same as in F ′

s. Moreover, since
the coloring is proper, F ′

s is a star forest. This concludes the proof. 2

Example 5.10 To illustrate how is the decomposition of a graph from the
decomposition of the reduced graph we consider the following example. Let
G(A,B) be the bipartite graph depicted in Fig. 5.3, which has degree sequence
dA = 〈5, 3, 1, 1〉.
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Figure 5.3 The graph G(A,B).

For this graph we can obtain a star forest decomposition F ′
1, F

′
2, F

′
3, F

′
4 of its

reduced graph as shown in the first part of Fig. 5.4. From this decomposition
we have that the k × t matrix C defined in the above proof is

C =




0 2 0 3
1 0 2 0
0 0 1 0
0 0 0 1


 .
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The bipartite multigraph H(A,U) obtained from matrix C is shown in Fig.
5.5, where it is properly edge-colored. In the same figure we can see a proper
edge-coloring guaranteed by Theorem 5.8 in which each vertex from A is
incident with colors from its neighbors in G(A, B).
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Figure 5.4 The reduced graph GdA
(A,R) with its star forest decom-

position and the translation to the graph G(A,B).

Finally, we return to Fig. 5.4 to view the translation of the star forest
decomposition of the reduced graph to the original graph via the edge-coloring
of the bipartite multigraph H(A,U). 2

We will obtain later on sufficient conditions for the decomposition of reduced
graphs but first we present a necessary condition for every bipartite graph
to admit a star forest ASD.

As said in the beginning of this section, for a bipartite graph G(A,B), we
only consider star forest decompositions with the stars centered at the ver-
tices of A. We say that a degree sequence d = 〈d1, . . . , dk〉 with

∑k
i=1 di =(

n+1
2

)
is strongly decomposable if every bipartite graph G(A,B) with dA = d

admits a star forest ASD with the centers of the stars in A.
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(b) H(A, U) properly edge-colored with the vertices of B.

Lemma 5.11 If the sequence 〈d1, . . . , dk〉 is strongly decomposable then

t∑

i=1

di ≥
t∑

i=1

(n− i + 1) (5.1)

for each t = 1, . . . , k.

Proof. Consider the bipartite graph G = G(A,B) with partite sets A =
{a1, . . . , ak} and B = {b1, . . . , bd1} such that ai ∈ A is adjacent to the first
di elements {bj : 1 ≤ j ≤ di}, i = 1, . . . , k. Let F1, . . . , Fn be a star forest
ASD of G. Since Fn has n leaves in B we clearly have |B| = d1 ≥ n.

Suppose that d1 + · · · + dt−1 ≥ n + (n − 1) + · · · + (n − t + 2) for some
t ≥ 2. If dt ≥ n− t + 1 then the inequality extends to d1 + · · ·+ dt−1 + dt ≥
n + (n− 1) + · · ·+ (n− t + 2) + (n− t + 1). Suppose that

n− t− dt ≥ 0. (5.2)

We will compute the minimum number of edges incident with the vertices
a1, . . . , at and thus give a bound for d1 + · · ·+ dt.

Fn has n edges, and at least (n − dt) edges are adjacent to the vertices
{bdt+1, . . . , bd1} and therefore adjacent to the vertices {a1, . . . , at−1}. Like-
wise, Fn−i has at least (n − i + 1 − dt) edges adjacent to the vertices
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{a1, . . . , at−1}, i = 1, . . . , t. From (5.2) we know that all these quantities
are positive. Moreover, every vertex ai, with 1 ≤ i ≤ t, has dt edges incident
with the vertices b1, . . . , bdt still not counted. Hence,

t∑

i=1

di ≥ tdt + (n− dt) + (n− 1− dt) + · · ·+ (n− t + 1− dt)

= n + (n− 1) + · · ·+ (n− t + 1).

2

5.4.2 Ascending matrices

Given two k-dimensional vectors c = (c1, . . . , ck) and c′ = (c′1, . . . , c
′
k), we

say that c ¹ c′ if there is a permutation σ ∈ Sym(k) such that ci ≤ c′σ(i)
for i = 1, 2, . . . , k. In other words, after reordering the components of each
vector in non-increasing order, the i-th component of c is not larger than the
i-th component of c′. This definition is motivated by the following remark.

Remark 5.12 Let F, F ′ be two forests of stars with centers x1, . . . , xk and
x′1, . . . , x

′
k respectively. Then F is isomorphic to a subgraph of F ′ if and only

if (dF (x1), . . . , dF (xk)) ¹ (dF ′(x′1), . . . , dF ′(x′k)). 2

Given a sequence d = 〈d1, . . . , dk〉 of positive integers with
∑k

i=1 di =
(
n+1

2

)
,

we say that a k×n matrix C with nonnegative integer entries is a d-ascending
matrix if it satisfies the following three properties:

(A1)
∑n

j=1 cij = di, i = 1, . . . , k,

(A2)
∑k

i=1 cij = n− j + 1, j = 1, . . . , n,

(A3) cj º cj+1, j = 1, . . . , n− 1, where cj denotes the j-th column of C.

Example 5.13 The following 4 × 7 matrix is d-ascending for the sequence
d = 〈10, 8, 5, 5〉, which is 7-feasible.

C =




3 2 2 1 1 1 0
2 2 2 1 1 0 0
1 1 1 2 0 0 0
1 1 0 0 1 1 1




2
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We next show that the existence of these matrices give, in fact, star forest
ASD of reduced graphs and therefore, by Lemma 5.9, of every bipartite
graph with the same degree sequence on a partite set. To show this we
will need the following well-known theorems by König and Hall, which can
be easily seen that also hold for bipartite graphs with parallel edges. The
edge-chromatic number χ′(G) of a graph (or multigraph) G is the minimum
number of colors needed to obtain a proper edge-coloring of G.

Theorem 5.14 (König, see, e.g., [15]) If G is a bipartite graph then

χ′(G) = ∆(G).

2

A matching of A in a bipartite graph G(A,B) is a matching of G such that
each vertex of A is incident to an edge of the matching. For a subset X
of the vertices of a graph, we denote by N(X) to all the neighbors of the
vertices of X, that is,

N(X) = ∪v∈XN(v).

Theorem 5.15 (Hall, see, e.g., [15]) A bipartite graph G(A,B) contains
a matching of A if and only if

|N(X)| ≥ |X| (marriage condition)

for all X ⊆ A. 2

Before proving the main result, we will show the following technical lemma
by using Theorems 5.14 and 5.15.

Lemma 5.16 Let H(A,U) be a bipartite multigraph. If

δ(A) ≥ ∆(U),

where δ(A) = mina∈A d(a) and ∆(U) = maxu∈U d(u), then there is a proper
edge-coloring of H such that each vertex a ∈ A is incident to edges colored
with {1, 2, . . . , d(a)}.

Proof. Given a X ⊆ A we denote by e(X,N(X)) the set of edges that join
the vertices of X with their neighbors.
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We have that

|N(X)|∆(U) ≥ e(X, N(X)) ≥ |X|δ(A) ≥ |X|∆(U),

which implies |N(X)| ≥ |X| and the marriage condition holds. By Theorem
5.15 there is a matching M from A to U in H. Let A∆(A) ⊂ A be the
set of vertices with degree ∆(A) in A. If ∆(A) > ∆(U), then color the
edges in M incident to vertices in A∆(A) with ∆(A) and remove these edges
from H. The resulting multigraph H ′ still satisfies δH′(A) ≥ ∆H′(U) but
now ∆H′(A) = ∆H(A) − 1. By iterating this process we eventually reach
a multigraph H0 with m0 = ∆H0(A) = δH0(A) = ∆H(U), which can be
properly edge-colored, by using Theorem 5.14, with m0 colors. At the end,
it is clear that the edges incident with each vertex a in A are colored with
{1, 2, . . . , dH(a)}. 2

Recall that a non-increasing degree sequence (d1, . . . , dk) is usually denoted
by 〈d1, . . . , dk〉. We introduce here a similar notation for strictly decreasing
sequences. If di > di+1 for each i = 1, . . . , k − 1 we denote the sequence by

〈d1, . . . , dk〉S .

With the stated previous results we are now able to prove the main decom-
position theorem.

Theorem 5.17 Let G(A,B) be a bipartite graph with
(
n+1

2

)
edges and degree

sequence dA = 〈d1, . . . , dk〉S. Suppose that there is a dA-ascending matrix
C such that cij ≥ 1 for each pair (i, j) with i + j ≤ k. If di ≥ n − i + 1,
i = 1, . . . , k, then G admits a star forest ASD.

Proof. Let H(A,U) be the bipartite multigraph with U = {u1, . . . , un} and
cij parallel edges joining ai ∈ A with uj ∈ U .

Suppose that H admits a proper edge-coloring in which each vertex ai in A
is incident with the colors {1, 2, . . . , di}, 1 ≤ i ≤ k. This coloring can be
used to obtain a family of subgraphs

F1, . . . , Fn

of the reduced graph GdA
(A,R) by letting Fs, s = 1, . . . , n, consist of the

edges airj , 1 ≤ i ≤ k and 1 ≤ j ≤ d1, such that aiun−s+1 is colored j in the
edge-colored multigraph H(A, U). Thus Fs is a star forest and has degree
sequence dA(Fs) = (c1,n−s+1, . . . , ck,n−s+1) in GdA

(A,R). By the column
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sum property (A2) of the matrix C, the star forest Fs has
∑k

i=1 ci,n−s+1 = s
edges and, by the ascending column property (A3) and Remark 5.12, it is
isomorphic to a subgraph of Fs+1. Finally, by the row sum property (A1),
dF1(ai) + · · · + dFn(ai) = di for each i = 1, . . . , k, therefore the collection
F1, . . . , Fn of star forests forms an ASD of GdA

(A,R).

It follows from Lemma 5.9 that the given graph G(A,B) admits an analogous
star forest decomposition.

Therefore, we only need to prove that H(A,U) admits such a coloring.

For each s = 1, . . . , k− 1 denote by Ms the matching formed by the s edges
aius−i+1, 1 ≤ i ≤ s, in H (such matchings exist by the condition cij ≥ 1 for
each pair (i, j) with i + j ≤ k).

Consider first the bipartite multigraph

H ′(A,U) = H − (M1 ∪ · · · ∪Mk−1)

consisting of the remaining edges, and let d′A = 〈d′1, . . . , d′k〉 be the degree
sequence of A in H ′. Since di ≥ n − i + 1 and from each vertex ai we have
removed k−i incident edges, 1 ≤ i ≤ k−1, we have d′i = di−(k−i) ≥ n−k+1
for each i = 1, . . . , k − 1, and d′k = dk ≥ n− k + 1. On the other hand, each
vertex ui, i = 1, . . . , n, has dH(ui) = n− i + 1 by the property (A2). Hence,
the vertices ui with i = k, . . . , n, have degree in H (and H ′) at most n−k+1.
Moreover, each one of the remaining vertices ui (i = 1, . . . , k− 1) belongs to
k− i colored matchings, so that its degree is dH′(ui) = n− k +1. Therefore,
for H ′, δ(A) = n−k+1 ≥ ∆(U) and by Lemma 5.16 there is an edge-coloring
such that each vertex ai is incident with edges colored {1, . . . , d′i}, 1 ≤ i ≤ k.

Now, we will successively add the removed matchings Mk−1,Mk−2, . . . , M1

to H ′ in the following way.

Let t = min{d′i : 1 ≤ i ≤ k} and r = max{d′i : 1 ≤ i ≤ k}. Since the
sequence dA is strictly decreasing we have that t = d′k.

If t = r, we can add all the matchings Mk−1, . . . , M1 to H ′ by assigning the
color r + k − s to the edges of Ms, and we have obtained a proper edge-
coloring of H such that each vertex ai in A is incident with edges colored
{1, 2, . . . , di}, 1 ≤ i ≤ k.

Suppose that t < r. Since H ′ is proper edge-colored, the edges colored with
j define a matching Qj of H ′ for each 1 ≤ j ≤ r. Consider the set of edges

Q = Qt+1 ∪ · · · ∪Qr.
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Now, we increase one unity the color of each edge in Q and then we add
the matching Mk−1 to H ′ by assigning to its edges the free color t + 1. In
this way, each vertex ai is incident with edges colored {1, . . . , d′i + 1} for
i = 1, . . . , k − 1, and its degree has also increased one unity. The vertex ak

is incident with edges colored {1, . . . , t} = {1, . . . , d′k = dk}.
At this point we can repeat the same procedure and successively add the
matchings Mk−2, . . . ,M1. At the end, we obtain a proper edge-coloring of
H such that each vertex ai in A is incident with edges colored {1, 2, . . . , di},
1 ≤ i ≤ k. 2

Note that the condition di ≥ n − i + 1, 1 ≤ i ≤ k, from the hypothesis of
Theorem 5.17, is not far from the necessary condition (5.1) from Lemma
5.11.

Now, our main goal is to prove the existence of an adequate ascending matrix
for a given degree sequence. We actually believe that such matrices always
exists.

Conjecture 5.18 For every n-feasible sequence d = 〈d1, . . . , dk〉 with di ≥
n − i + 1, 1 ≤ i ≤ k, there exists a k × n ascending matrix C = (cij) with
cij ≥ 1 for each pair (i, j) with i + j ≤ k. 2

We have obtained two approximations to Conjecture 5.18, which in turn, by
Theorem 5.17, will provide star forest ASD for some degree sequences. The
first result is the following.

Theorem 5.19 Let G(A,B) be a bipartite graph with
(
n+1

2

)
edges and degree

sequence dA = 〈d1, . . . , dk〉S. If

(1) d1 ≥ (k − 1)(n− k + 1),

(2) di ≥ n− i + 2, i = 2, . . . , k;

then there exists a star forest ASD of G.

Proof. Define a matrix C ′ in the following way. Let the first row be

(n− k + 1, . . . , n− k + 1︸ ︷︷ ︸
k−1

, n− k + 1, n− k, n− k − 1, . . . , 2, 1),

and the i-th row be (1, . . . , 1︸ ︷︷ ︸
k−i+1

, 0, . . . , 0), for i = 2, . . . , k.
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From this construction we have that C ′ has the ascending column property
(A3).

It is clear that the sum of the elements of the column j is (n−k+1)+(k−j) =
n− j +1 for j = 1, . . . , k−1, and for j = k, . . . , n, the only nonzero elements
are the n− j + 1 elements of the first row. Therefore the matrix C ′ has the
column sum property (A2).

Let d′2, . . . , d
′
k be the row sums of C ′. From condition (2):

di − d′i ≥ n− i + 2− (k − i + 1) = n− k + 1.

Let d′1 = (k − 1)(n− k + 1). From condition (1):

d1 − d′1 ≥ 0.

Consider the sequence

S = (d1 − d′1, d2 − d′2, . . . , dk − d′k).

Then,

k∑

i=1

(di − d′i) =
(

n + 1
2

)
− (k − 1)(n− k + 1)−

k∑

i=2

k − i + 1

=
n2 + 3n + k2 − 3k − 2nk + 2

2

=
(

n− k + 1
2

)
.

Therefore, S is (n − k + 1)-feasible. Since all the elements of the sequence
are above n− k + 1 with the possible exception of d1 − d′1, by the result of
Chen et al. (sequence (5) in page 54), there is a partition X1, . . . , Xk of the
set [n − k + 1] such that

∑
(Xi) = di − d′i, 1 ≤ i ≤ k. The elements of this

set appear precisely in the last positions of the first row, which have zeros
below them. Observe that if d1−d′1 = 0, we can consider the same sequence
and set X1 = ∅.
We define the matrix C = (cij) to be the same matrix as C ′ but applying the
following switchings to the last n− k +1 columns. For every x ∈ [n− k +1],
which is in the set Xi for some 1 ≤ i ≤ k, switch it with the corresponding
zero in the same column and row i. In this way, we are not altering the
ascending column property (A3) and the column sum property (A2) since
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we are permuting elements in the same column; and finally, for each row
i = 1, . . . , k,

n∑

j=1

cij = d′i +
∑

Xi = di.

Therefore, the matrix C has the row sum property (A1) and it is clear that
cij ≥ 1 for each pair (i, j) with i + j ≤ k. Thus we are in the hypothesis of
Theorem 5.17 and G admits a star forest ASD. 2

Example 5.20 Let dA = 〈16, 8, 7, 5〉S, for which k = 4 and n = 8. The
constructed matrices from the proof of Theorem 5.19 are the following.

C ′ =




5 5 5 5 4 3 2 1
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


 C =




5 5 5 0 0 0 0 1
1 1 1 5 0 0 0 0
1 1 0 0 0 3 2 0
1 0 0 0 4 0 0 0




2

The second result is:

Theorem 5.21 Let G(A,B) be a bipartite graph with
(
n+1

2

)
edges and degree

sequence dA = 〈d1, . . . , dk〉S. If

(1) di ≥ n− i + 1, 1 ≤ i ≤ k, and

(2) the (n− k)-feasible sequence (d1−n, d2− (n− 1), . . . , dk − (n− k + 1))
is (n− k)-realizable,

then there exists a star forest ASD of G.

Proof. Let εi denote the n dimensional vector with entries 1 till the i-th
coordinate and entries 0 for the rest:

εi = (1, 1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
n−i

)

Construct an n× n matrix C ′ with row i the vector εn−i+1.
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From condition (1), the sum of each of the first k rows of C ′ is at most the
value di, so the first k rows have to be completed and the last n− k deleted.
To do this, we consider the sequence

d′ = (d1 − n, d2 − (n− 1), . . . , dk − (n− k + 1)),

which is clearly (n− k)-feasible. In the case that for some i, di = n− i + 1,
the row is completed and we consider the sequence d′ of length k − 1 by
removing the 0.

We know from condition (2) that d′ is (n−k)-realizable, so there is a partition
P = {X1, . . . , Xk} of the set [n− k] such that

∑
Xi = di− (n− i+1). Now,

we construct the ascending matrix C = (cij) from C ′ in the following way:

For every set Xi = {α1, . . . , αt}, we remove the rows of C ′ with vectors
εα1 , . . . , εαt and add all them to the row i. Since P is a partition of the set
[n− k], we are deleting the n− k last rows of C ′, thus C is a k × n matrix.
Moreover,

n∑

j=1

cij = n− i + 1 +
∑

(Xi) = di, 1 ≤ i ≤ k,

and the matrix C has the row sum property (A1). The column sum property
(A2) is obvious since every column j of C ′ has n− j +1 unities. Finally it is
clear that every time that we add a row εαj to another row, we do not break
the ascending column property (A3).

Hence, C = (cij) is a k× n dA-ascending matrix and clearly cij ≥ 1 for each
pair (i, j) with i + j ≤ k. Thus we are in the hypothesis of Theorem 5.17
and G admits a star forest ASD. 2

Example 5.22 Let dA = 〈19, 17, 11, 8〉S, for which k = 4 and n = 10. The
starting matrix C ′ is

C ′ =




1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0




.
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The sequence d′ = (19− 10, 17− 9, 11− 8, 8− 7) = (9, 8, 3, 1) is 6-realizable.
Consider the following realization:

X1 = {5 + 4}, X2 = {6 + 2}, X3 = {3}, X4 = {1}.

Thus, once deleted the last 6 rows and added properly to the first k rows, the
matrix C ′ is transformed to the ascending matrix

C =




3 3 3 3 2 1 1 1 1 1
3 3 2 2 2 2 1 1 1 0
2 2 2 1 1 1 1 1 0 0
2 1 1 1 1 1 1 0 0 0


 .

2





A
Non-realizable sequences

In Chapter 4, Section 4.2, we need to do some verifications. Specifically, we
want to check the n-feasible but not n-realizable sequences of length k = 3,
n = 4, 5, 6, 7 and the same sequences of length k = 4, n = 4, 5, 6, 7, 8. In
order to do these calculations that would be tedious by hand, we present a
simple algorithm that given n and k computes the n-feasible sequences of
length k that are not n-realizable. We call it NonReal(n, k). In order to
describe this algorithm, we will need the following technical function Φ that
adds one element in each sequence of a sequence list. It is defined as

Φ(∅,m) = ∅,

Φ({(a1
1, . . . , a

1
l1), . . . , (a

s
1, . . . , a

s
ls)},m) =

= {(a1
1, . . . , a

1
l1 ,m), . . . , (as

1, . . . , a
s
ls ,m)},

where m is an arbitrary integer and ai
j are also arbitrary integers indexed

by the sequence in which belong (the total number of sequences is s ≥ 1)
and the position in each sequence (the length of each sequence is li ≥ 0). A
sequence of length zero is denoted by ().

NonReal(n, k) is split into two main procedures. The first procedure is
a well-known recursive algorithm that gives all the partitions of the set [n]
into k non-empty parts. The entries of the procedure are n and k and it
returns a set of sequences of length n, each one representing one specific
k-partition, in such a way that the element aj ∈ {1, . . . , k} of a returned
sequence (a1, . . . , an) says that the element j lies in part aj . The procedure
is detailed in Algorithm 1. To obtain all the different n-realizable sequences
of length k we only have to sum all the parts of each k-partition and discard
the repeated sequences.
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Algorithm 1 Partitions of [n] in k parts

1: procedure SetPartitions(n, k)
2: var i, out
3: if n = 1 and k 6= 1 then RETURN(∅) end if
4: if n = 1 and k = 1 then RETURN({(1)}) end if
5: if n 6= 1 then
6: out := Φ(SetPartitions(n− 1, k − 1), k)
7: for i = 1 to k do
8: out := out ∪ Φ(SetPartitions(n− 1, k), i)
9: end for

10: RETURN(out)
11: end if
12: end procedure

The second procedure is another well-known recursive algorithm that gives
all the integer partitions of a positive integer m, that is, all the possible
ways to add up to m with nonzero summands. Algorithm 2 takes an integer
m and returns the set of all different sequences such that the sum of the
elements of each sequence is m. To obtain the partitions of the integer m,
the procedure should be called as Partitions(m,m).

Algorithm 2 Integer partitions of m

1: procedure Partitions(m, l)
2: var i, out
3: if m = 0 then RETURN({()}) end if
4: if m 6= 0 then
5: out := ∅
6: for i = 1 to min(m, l) do
7: out := out ∪ Φ(Partitions(m− i, i), i)
8: end for
9: RETURN(out)

10: end if
11: end procedure

Since we want the n-feasible sequences of length k, we should only keep the
sequences of length k from Partitions

(
n(n+1)

2 , n(n+1)
2

)
.
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The final algorithm NonReal(n, k) that returns all the n-feasible sequences
of length k that are not n-realizable can be done by simply comparing the n-
feasible sequences given by the first procedure with the n-realizable sequences
given by the second one.

For Theorem 4.2, we run the algorithm NonReal(n, k) for k = 3 and n =
4, 5, 6, 7 with the following results.

NonReal(4, 3) = {〈6, 2, 2〉, 〈8, 1, 1〉}
NonReal(5, 3) = {〈11, 2, 2〉, 〈13, 1, 1〉}
NonReal(6, 3) = {〈17, 2, 2〉, 〈19, 1, 1〉}
NonReal(7, 3) = {〈24, 2, 2〉, 〈26, 1, 1〉}

For Theorem 4.3, we run the algorithm for k = 4 and n = 8 with the
following result.

NonReal(8, 4) = {〈16, 16, 2, 2〉, 〈17, 15, 2, 2〉, 〈17, 17, 1, 1〉, 〈18, 14, 2, 2〉,
〈18, 16, 1, 1〉, 〈19, 13, 2, 2〉, 〈19, 15, 1, 1〉, 〈20, 12, 2, 2〉,
〈20, 14, 1, 1〉, 〈21, 11, 2, 2〉, 〈21, 13, 1, 1〉, 〈22, 10, 2, 2〉,
〈22, 12, 1, 1〉, 〈23, 9, 2, 2〉, 〈23, 11, 1, 1〉, 〈24, 4, 4, 4〉,
〈24, 8, 2, 2〉, 〈24, 10, 1, 1〉, 〈25, 4, 4, 3〉, 〈25, 7, 2, 2〉,
〈25, 9, 1, 1〉, 〈26, 6, 2, 2〉, 〈26, 8, 1, 1〉, 〈27, 3, 3, 3〉,
〈27, 4, 4, 1〉, 〈27, 5, 2, 2〉, 〈27, 7, 1, 1〉, 〈28, 3, 3, 2〉,
〈28, 4, 2, 2〉, 〈28, 6, 1, 1〉, 〈29, 3, 2, 2〉, 〈29, 3, 3, 1〉,
〈29, 5, 1, 1〉, 〈30, 2, 2, 2〉, 〈30, 4, 1, 1〉, 〈31, 2, 2, 1〉,
〈31, 3, 1, 1〉, 〈32, 2, 1, 1〉, 〈33, 1, 1, 1〉}

Finally, to obtain the set S in page 56, we run the algorithm for k = 4 and
n = 4, 5, 6, 7.

NonReal(4, 4) = {〈3, 3, 2, 2〉, 〈3, 3, 3, 1〉, 〈4, 2, 2, 2〉, 〈4, 4, 1, 1〉,
〈5, 2, 2, 1〉, 〈5, 3, 1, 1〉, 〈6, 2, 1, 1〉, 〈7, 1, 1, 1〉}
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NonReal(5, 4) = {〈4, 4, 4, 3〉, 〈6, 3, 3, 3〉, 〈6, 4, 4, 1〉, 〈6, 5, 2, 2〉,
〈6, 6, 2, 1〉∗, 〈7, 3, 3, 2〉, 〈7, 4, 2, 2〉, 〈7, 6, 1, 1〉,
〈8, 3, 2, 2〉, 〈8, 3, 3, 1〉, 〈8, 5, 1, 1〉, 〈9, 2, 2, 2〉,
〈9, 4, 1, 1〉, 〈10, 2, 2, 1〉, 〈10, 3, 1, 1〉, 〈11, 2, 1, 1〉,
〈12, 1, 1, 1〉}

NonReal(6, 4) = {〈8, 7, 3, 3〉∗, 〈8, 8, 3, 2〉∗, 〈9, 4, 4, 4〉, 〈9, 8, 2, 2〉,
〈10, 4, 4, 3〉, 〈10, 7, 2, 2〉, 〈10, 9, 1, 1〉, 〈11, 6, 2, 2〉,
〈11, 8, 1, 1〉, 〈12, 3, 3, 3〉, 〈12, 4, 4, 1〉, 〈12, 5, 2, 2〉,
〈12, 7, 1, 1〉, 〈13, 3, 3, 2〉, 〈13, 4, 2, 2〉, 〈13, 6, 1, 1〉,
〈14, 3, 2, 2〉, 〈14, 3, 3, 1〉, 〈14, 5, 1, 1〉, 〈15, 2, 2, 2〉,
〈15, 4, 1, 1〉, 〈16, 2, 2, 1〉, 〈16, 3, 1, 1〉, 〈17, 2, 1, 1〉,
〈18, 1, 1, 1〉}

NonReal(7, 4) = {〈10, 10, 4, 4〉∗, 〈12, 12, 2, 2〉, 〈13, 11, 2, 2〉, 〈13, 13, 1, 1〉,
〈14, 8, 3, 3〉∗, 〈14, 10, 2, 2〉, 〈14, 12, 1, 1〉, 〈15, 9, 2, 2〉,
〈15, 11, 1, 1〉, 〈16, 4, 4, 4〉, 〈16, 8, 2, 2〉, 〈16, 10, 1, 1〉,
〈17, 4, 4, 3〉, 〈17, 7, 2, 2〉, 〈17, 9, 1, 1〉, 〈18, 6, 2, 2〉,
〈18, 8, 1, 1〉, 〈19, 3, 3, 3〉, 〈19, 4, 4, 1〉, 〈19, 5, 2, 2〉,
〈19, 7, 1, 1〉, 〈20, 3, 3, 2〉, 〈20, 4, 2, 2〉, 〈20, 6, 1, 1〉,
〈21, 3, 2, 2〉, 〈21, 3, 3, 1〉, 〈21, 5, 1, 1〉, 〈22, 2, 2, 2〉,
〈22, 4, 1, 1〉, 〈23, 2, 2, 1〉, 〈23, 3, 1, 1〉, 〈24, 2, 1, 1〉,
〈25, 1, 1, 1〉}

The sequences marked with ∗ are precisely the only ones not containing any
subsequence from F2 ∪ F3.
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edge-coloring, 59
proper edge-coloring, 89

complement, 4
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H-covering, 7, 13

decomposition, 6, 31
ASD, 9, 54, 80
cyclic decomposition, 34
factor, 6
H-decomposition, 6
H-design, 6
star ASD, 82–83
star forest ASD, 88–101

degree, 5
maximum, 5
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eccentricity, 6
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deletion, 4

forest, 6

Graham and Häggkvist’s conj., 9,
32

graph, 4
bipartite, 5
complete, 5
complete bipartite, 5
connected, 6
cycle, 6

length, 6
d-regular, 5
friendship graph, 24
k-connected, 6
order, 4

path, 5
length, 5

regular, 5
size, 4
star, 5
subdivided wheel, 25
Θ-graph, 28
t-partite, 5
wheel, 6
windmill, 24

graph isomorphism, 4

Häggkvist’s theorem, 89
Hall’s theorem, 94

König’s theorem, 94
Kneser’s theorem, 46

labeling
β-valuation, 8
bigraceful, 35
cycle-magic, 20
edge-magic total labeling, 8
face-magic, 20
G-bigraceful, 35
graceful, 8
H-magic, 13
H-supermagic, 14
magic, 14
modular bigraceful, 35
ρ-valuation, 37
ρn-valuation, 37
super total-magic, 14
supermagic, 14
total-magic, 14

Lev’s theorem, 70

marriage condition, 94
matching, 6

matching of A, 94
multigraph, 4, 89

packing, 7
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Ringel’s conjecture, 8, 31, 82
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degree sequence, 82

strongly decomposable, 91
feasible modulo n, 75
forbidden, 55
n-feasible, 54
n-realizable, 53
non-increasing, 53
realizable, 55
realizable modulo n, 71
strictly decreasing, 95

set
complete, 66–70
k-equipartition, 3, 16

well-distributed, 17
k-partition, 3, 53
partite, 5
partition, 3

stabilizer, 46
subgraph, 4

induced, 4

tree, 6
base growth ratio, 32, 43–46
base tree, 6, 32
caterpillar, 6
growth ratio, 32, 41–43
lobster, 6

vertex
deletion, 4
end vertex, 5
leaf, 5


