ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha estat autoritzada pels titulars dels drets de propietat intel-lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author

GRAPH LABELINGS AND GRAPH DECOMPOSITIONS BY PARTITIONING SETS OF INTEGERS

GRAPH LABELINGS AND GRAPH DECOMPOSITIONS BY PARTITIONING SETS OF INTEGERS

Jordi Moragas Vilarnau

Thesis Advisor
Anna Lladó

Universitat Politècnica de Catalunya

GRAPH LABELINGS AND GRAPH DECOMPOSITIONS BY PARTITIONING SETS OF INTEGERS

Jordi Moragas Vilarnau

A Thesis submitted
for the degree of Doctor of Mathematics
in the Universitat Politècnica de Catalunya

Thesis Advisor
Anna Lladó

Doctoral Program
APPLIED MATHEMATICS

Barcelona, June 2010

Facultat de Matemàtiques
i Estadística

```
Jordi Moragas Vilarnau
Departament de Matemàtica Aplicada IV
Universitat Politècnica de Catalunya
Edifici C3, Jordi Girona 1-3
E-08034, Barcelona
<jmoragas@ma4.upc.edu>
```


Acknowledgements

Foremost, I would like to express deep appreciation to my advisor, Anna Lladó, firstly for accepting me as a Ph.D. student and for all her effort, dedication and patience. Anna has also aroused in me the interest for mathematics, and in particular, for Graph Theory, since the times of my undergraduate studies. Her brilliant mathematical abilities never fail to amaze me, specially when I thought we were in a dead end.

In the academic field, I have to mention Marc Cámara, Susana C. López and Slamin, who have collaborated with Anna and me in some of the topics of our work.

The institutional acknowledgements invariably go to the Departament de Matemàtica Aplicada IV of the Universitat Politècnica de Catalunya. Specially, to Oriol Serra, the current director, and Josep Fàbrega, the former one, who welcomed me as another member. I also want to thank the support from all the people from the COMBGRAF, our research group in the department. Not less important is the financial support by the Ministerio de Ciencia y Tecnología (currently named Ministerio de Educación y Ciencia) through an FPI grant under the direction of Marc Noy, who kindly accepted my application.

Some of my office workmates and friends, Javier Barajas, Marc Cámara, Cristina Dalfó, Guillem Perarnau and Lluís Vena, should be also mentioned for their help in many issues as well as for the mathematical discussions that greatly improved my point of view in some particular problems.

Ja fora del terreny científic, voldria en primer lloc donar les gràcies als meus pares per donar-me sempre el millor sense esperar res a canvi i perquè sempre m'han aconsellat amb saviesa en totes les decisions importants que he pres.

A la Lidia, que ha estat sempre al meu costat amb infinita paciència i amor, per compartir amb mi els bons i els mals moments dels últims anys i per ser aquella persona especial que només es troba un cop a la vida.
Finalment, voldria agrair també als meus amics de la FME: Dege, Johnny, Litus, Marconi, Morganillo, Pep, Rubén i Venao per els grans moments que hem passat junts, i en particular, per les nits de Texas Hold'em que m'han ajudat subtancialment a millorar el càlcul mental de probabilitats; i als meus dos grans amics de Mataró, Garu i Marc, que d'una o altra manera sempre he sabut que estaven allí.

Abstract

This work is a contribution to the study of various problems that arise from two strongly connected areas of the Graph Theory: graph labelings and graph decompositions.

Most graph labelings trace their origins to the ones presented in 1967 by Rosa. One of these labelings, widely known as the graceful labeling, originated as a means of attacking the conjecture of Ringel, which states that the complete graph $K_{2 m+1}$ can be decomposed into m copies of a given tree of size m. Here, we study related labelings that give some approaches to Ringel's conjecture, as well as to another conjecture by Graham and Häggkvist that, in a weak form, asks for the decomposition of a complete bipartite graph by a given tree of appropriate size.

Our main contributions in this topic are the proof of the latter conjecture for double sized complete bipartite graphs being decomposed by trees with large growth and prime number of edges, and the proof of the fact that every tree is a large subtree of two trees for which both conjectures hold respectively. These results are mainly based on a novel application of the so-called polynomial method by Alon.

Another kind of labelings, the magic labelings, are also treated. Motivated by the notion of magic squares in Number Theory, in these type of labelings we want to assign integers to the parts of a graph (vertices, edges, or vertices and edges) in such a way that the sums of the labels assigned to certain substructures of the graph remain constant. We develop techniques based on partitions of certain sets of integers with some additive conditions to construct cycle-magic labelings, a new brand introduced in this work that extends the classical magic labelings.

Magic labelings do not provide any graph decomposition, but the techniques that we use to obtain them are the core of another decomposition problem, the ascending subgraph decomposition (ASD).
In 1987, was conjectured by Alavi, Boals. Chartrand, Erdős and Oellerman that every graph has an ASD. Here, we study ASD of bipartite graphs, a class of graphs for which the conjecture has not been shown to hold. We give a necessary and a sufficient condition on the one sided degree sequence of a bipartite graph in order that it admits an ASD by star forests. Here the techniques are based on the existence of edge-colorings in bipartite multigraphs.

Motivated by the ASD conjecture we also deal with the sumset partition problem, which asks for a partition of $[n]$ in such a way that the sum of the elements of each part is equal to a prescribed value. We give a best possible condition for the modular version of the sumset partition problem that allows us to prove the best known results in the integer case for n a prime. The proof is again based on the polynomial method.

Contents

1 Introduction 3
1.1 Basic structures and definitions 3
1.1.1 Graphs 4
1.2 Framework and motivations 7
1.3 Polynomial method 11
2 H -magic labelings 13
2.1 Introduction 13
2.2 Star and path-magic graphs 14
2.2.1 Star-magic coverings 15
2.2.2 Path-magic coverings 16
2.3 Equipartitions with given sums 16
2.4 Cycle-magic graphs 20
2.4.1 $\quad C_{3}$ and C_{4}-magic graphs 20
2.4.2 $\quad C_{r}$-magic graphs 24
3 Decomposing by trees 31
3.1 Introduction 31
3.2 Labelings and cyclic decompositions 34
3.2.1 Bigraceful labelings 35
3.2.2 ρ-valuations 37
3.3 Decomposing $K_{2 p, 2 p}$ 38
3.3.1 The basic lemmas 38
3.3.2 Trees with large growth ratio 41
3.3.3 Trees with large base growth ratio 43
3.4 Large subtrees 46
3.4.1 Proof of Theorem 3.5 47
3.4.2 Proof of Theorem 3.6 50
4 Sumset partition problem 53
4.1 Introduction 53
4.2 Sequences in \mathbb{Z} 55
4.2.1 Forbidden subsequences 55
4.2.2 Using complete sets 66
4.3 Modular sumset partition problem 71
5 Ascending subgraph decompositions of bipartite graphs 79
5.1 Introduction 80
5.2 Star ASD 82
5.3 Small partite set 83
5.4 Star forest ASD 88
5.4.1 Reduction lemma 88
5.4.2 Ascending matrices 93
A Non-realizable sequences 103
Bibliography 107
Index 111

Introduction

In this chapter we first introduce the basic notation and terminology that will be eventually used in the forthcoming chapters. In Section 1.2 we present the general framework and the main motivations of this work. Finally, in Section 1.3, the polynomial method of Alon is described. We will use this general technique to develop different key parts of our work and this is the reason why we introduce it here.

1.1 Basic structures and definitions

We denote by \mathbb{Z} the set of integer numbers. For any two integers $n<m$ we denote by $[n, m]$ the interval of all integers $n \leq x \leq m$. The set of the first n positive integers $[1, n]$ can be denoted simply by $[n]$. The ring $\mathbb{Z} / n \mathbb{Z}$ of integers modulo n is denoted by \mathbb{Z}_{n}. For a real number x we write $\lfloor x\rfloor$ for the greatest integer $\leq x$ and $\lceil x\rceil$ for the least integer $\geq x$. Given a finite set X, we denote its cardinality by $|X|$. A collection \mathcal{P} of k non-empty subsets of $X, \mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ is a partition of X if $\cup_{i=1}^{k} X_{i}=X$ and $X_{i} \cap X_{j}=\emptyset$ for all $1 \leq i<j \leq k$. If we want to emphasize $|\mathcal{P}|$, we say that \mathcal{P} is a k-partition of X. If all the elements of \mathcal{P} have the same cardinality, then \mathcal{P} is said to be a k-equipartition of X. For a finite subset X of \mathbb{Z} or \mathbb{Z}_{n} we write, $\sum X=\sum_{x \in X} x$. The symmetric group of all permutations of a set of cardinality k will be denoted by $\operatorname{Sym}(k)$ and for a particular $\sigma \in \operatorname{Sym}(k)$ we write $\operatorname{sgn}(\sigma)$ to denote its sign.

1.1.1 Graphs

The basic objects that we will deal with are simple finite graphs. Notation in Graph Theory is not uniform in the literature. We use the basic terminology for these objects following the notation found in the textbook by Diestel [15]. We recall some basic notations here for the commodity of the reader. A graph $G=(V, E)$ is a pair of sets satisfying $E \subseteq[V]^{2}$, where $[V]^{2}$ is the set of all 2-element subsets of V. Thus we will assume that a graph has no loops or multiple edges, otherwise we will use the term multigraph. The sets $V=V(G)$ and $E=E(G)$ are respectively the vertices and edges of G. The order of the graph is $|V|$ and the size is $|E|$. If $u, v \in V$ define an edge $e=\{u, v\} \in E$ of G, we denote this edge simply by $e=u v$ and say that u and v are adjacent. Given a vertex $u \in V$, the edges incident with u are precisely $e \in E$ such that $u \in e$. The complement \bar{G} of G is the graph with $V(\bar{G})=V(G)$ and $u v \in E(\bar{G}) \Longleftrightarrow u v \notin E(G)$.
Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. We call G_{1} and G_{2} isomorphic, and write $G_{1} \simeq G_{2}$, if there exists a bijection $\phi: V_{1} \longrightarrow V_{2}$ with

$$
u v \in E_{1} \Longleftrightarrow \phi(u) \phi(v) \in E_{2} \text { for all } u, v \in V_{1}
$$

ϕ is called an isomorphism.
G^{\prime} is a subgraph of G if $V\left(G^{\prime}\right) \subseteq V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G) \cap\left[V\left(G^{\prime}\right)\right]^{2}$; if $E\left(G^{\prime}\right)=E(G) \cap\left[V\left(G^{\prime}\right)\right]^{2}$ we say that G^{\prime} is an induced subgraph of G. Given a set of vertices $V^{\prime} \subseteq V$ of a graph $G=(V, E)$, we say that the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is the graph induced by V^{\prime} if

$$
E^{\prime}=\left\{e \in E: \exists u, v \in V^{\prime} \text { with } e=u v\right\} .
$$

Similarly, given a set of edges $E^{\prime} \subseteq E$, the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is the graph induced by E^{\prime} if

$$
V^{\prime}=\left\{u \in V: \exists e \in E^{\prime} \text { with } u \in e\right\} .
$$

If $A \subseteq V$ is any set of vertices of $G=(V, E)$, we denote by $G-A$ the graph obtained from G by deleting all the vertices in A and their incident edges. If $F \subseteq E$ is any set of edges, we write by $G-F$ the graph $(V, E \backslash F)$. We will use the following notation that describes a special deletion scheme. If $A \subseteq V$ is a set of vertices of $G, G \backslash A$ is the set $(V(G) \backslash A) \cup E(G)$, that is, we do not remove the edges incident to the vertices in A as in the usual vertex deletion process. In general, the remaining object is not a graph but

Figure 1.1 Vertex deletion processes.
we will still talk about its set of vertices and edges. Fig. 1.1 shows the two vertex removing schemes considered.

Given a vertex $u \in V$ of a graph $G=(V, E)$, the neighborhood of u are the vertices $v \in V$ such that there exists an edge joining them. We denote this set by $N_{G}(u)$ or briefly by $N(u)$. The cardinality of $N(u)$ is the degree of the vertex u that we usually denote by $d_{G}(u)$ or $d(u)$ if there is no risk of confusion. A vertex of degree 1 is called an end vertex or a leaf. The number

$$
\delta(G)=\min \{d(u): u \in V\}
$$

is the minimum degree of G and

$$
\Delta(G)=\max \{d(u): u \in V\}
$$

is the maximum degree of G. If all the vertices have the same degree d, then we say that G is d-regular or simply regular.
A graph is said to be the complete graph on n vertices, and is denoted by K_{n}, if its order is n and has all the possible adjacencies between the vertices. A graph G is bipartite if it is possible to partition the set $V(G)$ into two sets A and B, called the partite sets of G, such that no edge of G has both endpoints in the same partite set. A t-partite graph is similarly defined. We will often denote a bipartite graph with partite sets A and B by $G(A, B)$. If a bipartite graph $G(A, B)$ has all the possible adjacencies between the vertices of the two partite sets, then it is called complete bipartite and denoted by $K_{n, m}$ if $|A|=n$ and $|B|=m$. The graph $K_{1, n}$ is called a star with n spokes and denoted by S_{n}. Some examples are displayed in Fig. 1.2.
A path P_{h} is a graph with vertex set $V=\left\{v_{0}, v_{1}, \ldots, v_{h}\right\}$, with $v_{i} \neq v_{j}$ if $i \neq j$, and edge set $E=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{h-1} v_{h}\right\}$. The length of the path is
(a)

(b)

(c)

Figure 1.2 (a) The complete graph K_{6}. (b) The complete bipartite graph $K_{2,3}$. (c) The star $S_{4}=K_{1,4}$.
its number of edges h. A cycle C_{h} is a closed path $\left(v_{0}=v_{h}\right)$ with h different vertices and h denotes the length of the cycle. A cycle of length n with an extra vertex connected to each of the vertices of the cycle is called a wheel and denoted by W_{n}.

We say that a graph G is connected if for each pair of vertices there exists a path joining them. A maximal connected subgraph of G is called a component of $G . G$ is called k-connected if $|V(G)|>k$ and $G-X$ is connected for every set $X \subset V(G)$ with $|X|<k$. The distance between any pair of vertices u and v of a connected graph G is defined as the minimum length of a path joining them and denoted by $d_{G}(u, v)$ or simply by $d(u, v)$. The eccentricity of a vertex $u \in V(G)$ is the maximum distance between u and any other vertex of $V(G)$, and the diameter of G is the maximum eccentricity of the vertices of G.
One of the most important class of graphs that we will deal with is the class of trees. An acyclic graph is called a forest, and a connected forest is a tree. Recall that a connected graph with n vertices is a tree if and only if it has $n-1$ edges and also that trees are bipartite. These facts will be used later on. The base tree of a tree is obtained by deleting all leaves and their incident edges; see Fig. 1.3 for an example. A caterpillar is a tree whose base tree is a path. Similarly, a lobster is a tree whose base tree is a caterpillar. A matching is a forest in which each component is K_{2}.
We finish this section with a key definition for our study. A decomposition of a graph G is a partition \mathcal{P} of its set of edges. The graph induced by each part of \mathcal{P} is called a factor. When each factor of the decomposition is isomorphic to a graph H, we say that H decomposes G and write $H \mid G$. An H-decomposition of K_{n} is also known as an H-design of order n. Fig. 1.4 shows a graph that can be decomposed by K_{3}.

Figure 1.3 A tree and its base tree.

Figure $1.4 K_{3} \mid G$.

Graph decompositions will be our main study in Chapters 3 and 5. If we admit that some edges can overlap, then we are talking about graph coverings. A covering of G is a family of subgraphs H_{1}, \ldots, H_{k} such that each edge of $E(G)$ belongs to at least one of the subgraphs. In this case, it is said that G admits an $\left(H_{1}, \ldots, H_{k}\right)$-covering. If every H_{i} is isomorphic to a given graph H, we say that G has an H-covering. Graph coverings will be used to define an important graph labeling object of our study in Chapter 2. Finally, a packing of G is a family of subgraphs H_{1}, \ldots, H_{k} such that each edge of $E(G)$ belongs to at most one of the subgraphs, and $E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$, $1 \leq i<j \leq k$.

1.2 Framework and motivations

This work is devoted to the study of various problems that arise from two main subjects in Graph Theory: graph labelings and graph decompositions. We will see in the development of the thesis the connection between these subjects but, roughly speaking, appropriate graph labelings provide graph decompositions.

A graph labeling is the assignment of integers to the edges or vertices, or both, subject to certain conditions. Most graph labelings trace their origins to the labelings presented by Rosa in his 1967 paper [47]. Rosa identified four types of successively weaker labelings, which he called $\alpha-, \beta$-, σ - and ρ-valuations. β-valuations were later renamed graceful by Golomb [26] and the name has been popular since then. A β-valuation of a graph G with q edges is an injection f from the vertices of G to the set $\{0,1, \ldots, q\}$ such that, when each edge $x y$ is assigned the label $|f(x)-f(y)|$, the resulting edge labels are distinct. Rosa introduced β-valuations as well as the other mentioned labelings as tools for decomposing the complete graph into isomorphic subgraphs. In particular, β-valuations originated as a means of attacking the conjecture of Ringel [46], which says that the complete graph $K_{2 m+1}$ can be decomposed into $2 m+1$ subgraphs each isomorphic to a given tree with m edges. It is proved that a graph with m edges having a graceful labeling decomposes $K_{2 m+1}$.

There are a lot of variants of these graceful-type labelings, for instance, the k-graceful labelings, the cordial labelings or the Hamming-graceful labelings. The survey of Gallian [24], which contains more than 1000 references on the subject, is a good guideline for all them. A related labeling is the also wellknown harmonious labeling which naturally arises in the study of Graham and Sloane [27] on modular versions of additive basis problems stemming from error-correcting codes.

We study similar labelings as a tool to decompose graphs in smaller pieces and also as interesting problems on their own. This is the case of the magictype labelings, motivated by the notion of magic squares in number theory. In these kind of labelings we want to assign integers, under some conditions, to the parts of a graph (vertices, edges, or vertices and edges) in such a way that the sums of the labels assigned to certain substructures of the graph remain constant. A good example is the edge-magic total labeling defined in 1970 by Kotzig and Rosa [37], which given a graph $G(V, E)$ asks for a bijection $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ such that for all edges $x y \in E$, $f(x)+f(y)+f(x y)$ is constant. The textbook on magic graphs by Wallis [49] is a good reference for this and other closely related magic labelings.

On the other hand, graph decompositions, known for its applications in combinatorial design theory, have been studied since the mid nineteenth century. There are a lot of decomposition problems but, among all of them, stand out the decompositions of complete or complete bipartite graphs by a given tree and the ascending subgraph decomposition of a graph. Both
decompositions will be treated here.
The origin of the decomposition of a complete graph by a given tree is the already mentioned Ringel's conjecture, which gives rise to the conjecture of Graham and Häggkvist (see, e.g., [30]) that, in a weak form, says that every tree with m edges decomposes the complete bipartite graph $K_{m, m}$. Many partial results are known on both conjectures that motivate our work, mainly the ones that state that the addition of a certain number of vertices and edges to the tree results on a tree for which one of the conjectures hold [33, 35, 40]. The attempt to decompose larger complete graphs [30, 40] has also been a starting point for us.

The philosophy of the ascending subgraph decomposition is quite different from the above one. Introduced in 1987 by Alavi, Boals, Chartrand, Erdös and Oellerman [2], asks for a decomposition of a graph G of size $\binom{n+1}{2}$ into n subgraphs H_{1}, \ldots, H_{n} such that H_{i} has i edges and is isomorphic to a subgraph of $H_{i+1}, i=1, \ldots, n-1$. In the same paper, they conjectured that every graph with the stated size has such a decomposition and that a star forest with each component having size between n and $2 n-2$ has an ascending subgraph decomposition with each H_{i} being a star. Nowadays, the first conjecture is still open and the second one was proved in 1994 by Ma, Zhou and Zhou [44]. The first conjecture gives us the motivation to study the problem for the class of bipartite graphs, a class for which the conjecture has not been shown to hold yet. But is in the proof of the second conjecture where a related problem arises: the sumset partition problem.
The sumset partition problem asks for a partition of a certain set of positive integers, in such a way that the sum of the elements inside each part is equal to a prescribed value. To characterize the structure of the sequence of prescribed values when the set to partition is $[n]$, has been a hard topic up to now. Some sufficient conditions can be found in the literature, [7, 21, 44, 12], each one being more general than the preceding. One of the reasons for us to study this problem, as well as the interest by itself, is the connection with the ascending subgraph decomposition problem for bipartite graphs and the study of a generalization of magic labelings.

We next summarize the contents of the forthcoming chapters, which contain the bulk of the work.
Chapter 2 deals with the magic-type labelings described above. We present a generalization of the concept introduced by Gutiérrez and Lladó [28], in which the labeling is required to be constant on each member of a covering of the target graph (the classical magic valuations correspond to the decom-
position of a graph by its edges). In this chapter we show the connection between the partition of certain sets of integers and this general kind of magic labelings. Finally, we focuss on the special case where the members of the covering are cycles.

In Chapter 3 we study the conjectures by Ringel and by Graham and Häggkvist stated above. The first part of the chapter is motivated by a paper of Lladó and López [40] where it is shown that a tree with m edges and it growth ratio at least $\sqrt{2}$ decomposes $K_{2 m, 2 m}$. Our approach to the problem uses an extension of the bigraceful labeling (see e.g. [40]) that leads us to the \mathcal{G}-bigraceful labeling. We can improve the last bound for trees with a prime number of edges. To obtain appropriate labelings, we use the polynomial method of Alon [3, 4, 5], an algebraic method based on finding nonzero valuations of a multivariate polynomial over a field that will be described in the following section. In the last part of the chapter, we consider an arbitrary tree T and show that it can be embedded into two trees with n and n^{\prime} edges, bounded with respect to the size of T, such that decompose $K_{2 n+1}$ and $K_{n^{\prime}, n^{\prime}}$ respectively. These last results are based on the well-known Kneser's theorem (see, e.g., [45]) from Additive Theory.

Chapter 4 is completely devoted to the sumset partition problem. We obtain general sufficient conditions for sequences of prescribed sums, and we also completely characterize the sequences of length at most 4 . The obtained results have direct consequences on Chapter 5 . At the end, we consider a modular version of the problem and show that for p an odd prime, \mathbb{Z}_{p}, except one element in some cases, can be partitioned in such a way that each part adds up to any prescribed sum, being the sequence of prescribed sums of length at most $\frac{p-1}{2}$. The result is obtained from the application of the polynomial method.

Finally, in Chapter 5, we first show the strong connection between the sumset partition problem and the ascending subgraph decompositions. We use the results obtained in Chapter 4 to obtain ascending decompositions of bipartite graphs in which each subgraph is a star. We also construct ascending subgraph decompositions for bipartite graphs with one partite set of cardinality at most 4 . We finish the chapter by finding ascending subgraph decompositions of bipartite graphs in which each factor is a forest of stars. The techniques of this part are based on the construction of adequate bipartite multigraphs that admit a proper edge-coloring subject to certain conditions.

1.3 Polynomial method

Among the variety of tools presented in this thesis, which range from Additive Theory to purely combinatorial ones, the polynomial method of Alon stands out. We next present the main result of Alon, and a pair of facts, that will be used many times in the sequel.

The use of polynomial methods in combinatorics can be traced back to the applications in combinatorial geometry in the late 1970's, see the survey of Blokhuis [9] on this kind of applications. A particular kind of these methods was elaborated by Alon and his collaborators in a series of applications, first in the works of Alon and Tarsi on the list chromatic number of a graph [6] in the late 1980's and then in Combinatorial Number Theory, in the solution of the Erdös-Heilbron conjecture on distinct sums by Alon, Nathanson and Rusza [5]. These applications led Alon to establish a quite powerful tool which he named Combinatorial Nullstellensatz [3] for its connection with the Nullstellensatz by Hilbert, but it is usually referred to as the polynomial method of Alon (see also the survey by Kàrolyi on this topic [32]).
The basic idea of one part of the method is based in the simple observation that a nonzero polynomial of degree n can not vanish in a set of more than n points. For multivariate polynomials an analogous less trivial result holds which is in the basis of many of the applications. Its statement is summarized in the following theorem.

Theorem 1.1 (Alon, [3]) Let F be an arbitrary field, and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $F\left[x_{1}, \ldots, x_{n}\right]$. Suppose that the degree $\operatorname{deg}(f)$ of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer, and suppose that the coefficient of $\prod_{i=1}^{n} x^{t_{i}}$ in f is nonzero. Then, if S_{1}, \ldots, S_{n} are subsets of F with $\left|S_{i}\right|>t_{i}$, there are $s_{1} \in S_{1}, s_{2} \in S_{2}, \ldots, s_{n} \in S_{n}$ so that

$$
f\left(s_{1}, \ldots, s_{n}\right) \neq 0
$$

In our applications we usually build polynomials which contain Vandermonde polynomials as factors. We denote by $V\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$ the Vandermonde polynomial on the variables x_{1}, \ldots, x_{n} over some field F. The polynomial takes nonzero value in a point $\left(a_{1}, \ldots, a_{n}\right) \in F^{n}$ if and only if the coordinates are pairwise distinct. Recall that the expansion of the
polynomial has the form

$$
\begin{equation*}
V\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in \operatorname{Sym}(n)} \operatorname{sgn}(\sigma) x_{\sigma(1)}^{n-1} x_{\sigma(2)}^{n-2} \cdots x_{\sigma(n)}^{0} . \tag{1.1}
\end{equation*}
$$

It can be shown that, in the homogeneous polynomial $V\left(x_{1}, \ldots, x_{n}\right)^{2}=$ $\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2}$, the monomial in which the exponents of each variable are balanced has coefficient $\pm n$!, that is,

$$
\begin{equation*}
\left[x_{1}^{n-1} \cdots x_{n}^{n-1}\right]\left(V\left(x_{1}, \ldots, x_{n}\right)\right)^{2}=(-1)^{\binom{n}{2}} n! \tag{1.2}
\end{equation*}
$$

see, e.g., Alon [4]. We shall use this fact later on.

H-magic labelings

This chapter is devoted to the study of a generalization of magic labelings. We first present the generalization introduced by Gutiérrez and Lladó [28] of the classical concept of magic graph. In this generalization, the labeling is required to be constant on each member of a covering of the target graph, while the classical magic valuations correspond to the covering of the graph by its edges. In Section 2.2 , we summarize some of the results obtained in [28] to describe the general framework for a complete understanding of the problem. Then, in Section 2.3, we show the connection between the partition of certain sets of integers and this general kind of magic labelings. In the last section, we focuss on the special case where the members of the covering are cycles. The results of this section appear in [42].

2.1 Introduction

Let $G=(V, E)$ be a finite simple graph. An (edge)covering of G is a family of subgraphs H_{1}, \ldots, H_{k} such that each edge of E belongs to at least one of the subgraphs $H_{i}, 1 \leq i \leq k$. In this case, it is said that G admits an $\left(H_{1}, \ldots, H_{k}\right)$-(edge)covering. If every H_{i} is isomorphic to a given graph H, we say that G has an H-covering.

Suppose that $G=(V, E)$ admits an H-covering. A bijective function

$$
f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}
$$

is an H-magic labeling of G whenever, for every subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to H,

$$
f\left(H^{\prime}\right) \stackrel{\text { def }}{=} \sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)
$$

Figure 2.1 (a) P_{3}-supermagic labeling of P_{6}. (b) C_{3}-supermagic labeling of W_{5}.
is constant. In this case we say that the graph G is H-magic. If the restriction of f on the vertices takes the first $|V|$ possible values, $f(V)=\{1, \ldots,|V|\}$, then G is said to be H-supermagic. The constant value that every copy of H takes under the labeling f is denoted by $m(f)$ in the magic case and by $s(f)$ in the supermagic case. Fig. 2.1 shows an example of a P_{3}-supermagic labeling with $s(f)=28$ and a C_{3}-supermagic labeling with $s(f)=41$.

The notion of H-magic graphs was first introduced by Gutiérrez and Lladó [28] as an extension of the magic valuation given by Rosa [47] in 1967 (see also [37]), which corresponds to the case $H=K_{2}$. Supermagic labelings have been considered in [16] (see also [1]). There are other closely related notions of magic labelings in the literature; see the survey of Gallian [24] and the references therein, and the textbook on Magic Graphs by Wallis [49]

When $H=K_{2}$, we say that a K_{2}-magic or a K_{2}-supermagic graph is simply magic or supermagic. Some authors in this case use the terminology totalmagic or super total-magic labeling, in order to stress the fact that both vertices and edges are labeled.

2.2 Star and path-magic graphs

In this section we summarize some of the results obtained by Gutiérrez and Lladó [28] concerning H-magic graphs for H a star $K_{1, h}$ or a path P_{h}.

2.2.1 Star-magic coverings

It is clear that, for any pair of positive integers $n \geq h$, the star $K_{1, n}$ can be covered by a family of $\binom{n}{h}$ stars $K_{1, h}$. The very first result obtained in [28] is that the star $K_{1, n}$ is $K_{1, h}$-supermagic for any $1 \leq h \leq n$.

The authors next study the H-(super)magic behavior of complete graphs and complete bipartite graphs when H is a star. It is well-known that the complete graph K_{n} is not magic for any order larger than six [13, 36, 38]. It is also known [37] that complete bipartite graphs of any order are magic. Using local arguments, they conclude that if G is a d-regular graph, then G is not $K_{1, h}$-magic for any $1<h<d$. As a direct consequence of the last fact, they obtain that the complete graph K_{n} is not $K_{1, h}$-magic for any $1<h<n-1$ and the complete bipartite graph $K_{n, n}$ is not $K_{1, h}$-magic for any $1<h<n$.

Using a classical result about the existence of magic squares, they show the extremal case for complete bipartite graphs.

Theorem 2.1 ([28]) The complete bipartite graph $K_{n, n}$ is $K_{1, n}$-magic for $n \geq 1$.

The extremal case for complete bipartite graphs with respect to the starsupermagic property is also proved. For that, they use a result dealing with 2 -partitions of sets of consecutive integers.

Theorem 2.2 ([28]) For each integer $n>1$, the complete bipartite graph $K_{n, n}$ is not $K_{1, n}$-supermagic.

They next study the same question for general complete bipartite graphs $K_{r, s}$ when $1<r<s$. In [16] it is proved that the only complete bipartite graphs that are supermagic are the stars. Next theorem says that in fact there is no integer $1<h<s$ for which $K_{r, s}$ admits a $K_{1, h}$-supermagic labeling. It also states that $K_{r, s}$ is $K_{1, s}$-supermagic, which is an extension of the result given in [16].

Theorem 2.3 ([28]) For any pair of integers $1<r<s$, the complete bipartite graph $K_{r, s}$ is $K_{1, h}$-supermagic if and only if $h=s$.

2.2.2 Path-magic coverings

The second part of [28] studies the H-(super)magic behavior of paths, complete graphs and cycles when H is a path.

The first result on this problem concerns the path-supermagic behavior of paths and states that the path P_{n} is P_{h}-supermagic for every $2 \leq h \leq n$.
It has already been mentioned that the complete graph K_{n} is not magic for any integer $n>6$. They prove that if G is a P_{h}-magic graph with $h>2$, then G is C_{h}-free, implying that complete graphs are not path-magic for any path of length larger than 2.
All cycles are magic, see [25]. It is also known that only the odd cycles are supermagic [16]. By adding an additional divisibility condition they get path-supermagic labelings of cycles as shown in the next theorem.

Theorem 2.4 ([28]) Let n and h be positive integers with $2 \leq h<n$. If $\operatorname{gcd}(n, h(h-1))=1$ then the cycle C_{n} is P_{h}-supermagic.

2.3 Equipartitions with given sums

In this section we describe additional results from [28] that motivate our partition method to obtain cycle-magic labelings of the target graph that will be shown in the next section. The authors prove that for every graph H, verifying some weak conditions, there are infinite families of connected and non-connected H-magic graphs using results about set equipartitions. We extend here these results about set equipartitions and we also introduce the concept of well-distributed equipartition, that will be very useful to show the supermagic behavior of certain classes of graphs.

We first need some preliminary notation.
Let $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ be a partition of a set X of integers. The set of subset sums of \mathcal{P} is denoted by $\sum \mathcal{P}=\left\{\sum X_{1}, \ldots, \sum X_{k}\right\}$. If all elements of \mathcal{P} have the same cardinality, then \mathcal{P} is said to be a k-equipartition of X.

We shall describe a partition $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ by giving a k-coloring on the elements of X in such a way that X_{i} contains all the elements with color $i, 1 \leq i \leq k$. For example, the coloring $(1,2,1,2,2,1)$ means that $X_{1}=\left\{x_{1}, x_{3}, x_{6}\right\}$ and $X_{2}=\left\{x_{2}, x_{4}, x_{5}\right\}$. When some pattern of colors $\left(c_{1}, c_{2}, \ldots, c_{r}\right)$ is repeated t times we write $\left(c_{1}, c_{2}, \ldots, c_{r}\right)^{t}$. For instance, the coloring $(1,2,1,2,2,1)$ is denoted by $(1,2)^{2}(2,1)$.

We say that a k-equipartition $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ of a set of integers $X=$ $\left\{x_{1}<x_{2}<\cdots<x_{h k}\right\}$ is well-distributed if for each $0 \leq j<h$, the elements $x_{l} \in X$, with $l \in[j k+1,(j+1) k]$, belong to distinct parts of \mathcal{P}. In other words, the coloring which gives the partition is bijective on each of the h disjoint blocks of length k of consecutive elements in X.

For instance, $\mathcal{P}_{1}=\{\{1,4,5\},\{2,3,6\}\}$ and $\mathcal{P}_{2}=\{\{1,3,5\},\{2,4,6\}\}$, are well-distributed 2-equipartitions of $X=[1,6]$ (the associated colorings are $(1,2,2,1,1,2)$ and $(1,2,1,2,1,2)$ respectively) while $\mathcal{P}_{3}=\{\{1,2,3\},\{4,5,6\}\}$ is not.

We will use the next two lemmas for k-equipartitions. It can be easily checked that the proofs given in [28] provide in fact well-distributed equipartitions.

Lemma 2.5 ([28]) Let h and k be two positive integers. For each integer $0 \leq t \leq\lfloor h / 2\rfloor$, there exists a well-distributed k-equipartition \mathcal{P} of $[1, h k]$ such that $\sum \mathcal{P}$ is an arithmetic progression of difference $d=h-2 t$.

Lemma 2.6 ([28]) Let h and k be two positive integers. If h or k are not both even, there exists a well-distributed k-equipartition \mathcal{P} of $[1, h k]$ such that $\sum \mathcal{P}$ is a set of consecutive integers.

Lemmas 2.5 and 2.6 allow us to obtain infinite families of H-magic graphs for a given graph H under some weak conditions.

Lemma 2.5 has a simple application for the construction of an infinite family of H-magic non-connected graphs as it is shown in the following result.

Theorem 2.7 ([28]) Let H be a graph with $|V(H)|+|E(H)|$ even. Then the disjoint union $G=k H$ of k copies of H is H-magic.

As an application of Lemma 2.6, they obtain the following result that provides infinite families of connected H-magic graphs. It is based on the following graph operation. Let G and H be two graphs and $e \in E(H)$ a distinguished edge in H. We denote by $G * e H$ the graph obtained from G by gluing a copy of H to each edge of G by the distinguished edge $e \in E(H)$.

Theorem 2.8 ([28]) Let H be a 2-connected graph and let G be an H-free supermagic graph. Let k be the size of G and $h=|V(H)|+|E(H)|$. Assume that h and k are not both even. Then, for each edge $e \in E(H)$, the graph $G * e H$ is H-magic.

Figure 2.2 A supermagic labeling of C_{5} and the C_{3}-magic labeling of $C_{5} * e C_{3}$.

Fig. 2.2 depicts a labeling obtained from the proof of Theorem 2.8 given in [28] for $G=C_{5}$ and $H=C_{3}$.
We finish this section with a key lemma that will be very useful to obtain the results of the next section. It provides well-distributed equipartitions where all the parts have the same sum.

Lemma 2.9 Let $h \geq 3$ be an odd integer. If either
(1) k is odd and $X=[1, h k]$, or
(2) k is even and $X=[1, h k+1] \backslash\{k / 2+1\}$,
then there is a well-distributed k-equipartition \mathcal{P} of X such that $\left|\sum \mathcal{P}\right|=1$.

Proof.

(1) By Lemma 2.6 there exists a well-distributed k-equipartition $\mathcal{P}^{\prime}=$ $\left\{Y_{1}, \ldots, Y_{k}\right\}$ of the interval $Y=[1,(h-1) k]$ such that

$$
\sum \mathcal{P}^{\prime}=\left\{\sum Y_{1}+(i-1): 1 \leq i \leq k\right\} .
$$

Consider the partition $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ of $[1, h k]$, where

$$
X_{i}=Y_{i} \cup\{(1-i)+h k\}, 1 \leq i \leq k .
$$

It is clear that \mathcal{P} is a k-equipartition of $[1, h k]$.
As \mathcal{P}^{\prime} is a well-distributed k-equipartition of $[1,(h-1) k]$ and there is one element of each part in $[(h-1) k+1, h k], \mathcal{P}$ is also well-distributed.
In addition, for any $1 \leq i \leq k$ we have,

$$
\sum X_{i}=\sum Y_{1}+(i-1)+(1-i)+h k=\sum Y_{1}+h k
$$

which is independent of i and therefore $\left|\sum \mathcal{P}\right|=1$.
(2) Let k be an even positive integer and $X=[1, h k+1] \backslash\{k / 2+1\}$.

Set $A=[1, k+1] \backslash\{k / 2+1\}$ and $B=[k+2, h k+1]$. Clearly, $|A|=k$, $|B|=(h-1) k$ and $X=A \cup B$.

Consider now the partition $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ given by the following k-coloring of $A \cup B$.
Color the k elements of A by

$$
(k / 2, k / 2-1, \ldots, 1)(k, k-1, \ldots, k / 2+1)
$$

Now color the $(h-1) k$ elements of B by

$$
(k / 2+1,1, k / 2+2,2, \ldots, k, k / 2)(k, k-1, \ldots, 1)^{\frac{h-3}{2}+1}(1,2, \ldots, k)^{\frac{h-3}{2}} .
$$

It is clear by the coloring that \mathcal{P} is well-distributed. Moreover, for $1 \leq i \leq k / 2$, we have,

$$
\begin{gathered}
\sum X_{i}-\sum X_{1}=(k / 2+1-i-k / 2)+(k+1+2 i-k-3)+ \\
+\left(\frac{h-3}{2}+1\right)(1-i)+\frac{h-3}{2}(i-1)=0
\end{gathered}
$$

A similar computation shows that $\sum X_{i}-\sum X_{1}$ takes the same value when $k / 2<i \leq k$, so that $\left|\sum \mathcal{P}\right|=1$.

Remark 2.10 Note that the statements of the three above lemmas can be extended to any integer translation $a+X=\left\{a+x_{1}, \ldots, a+x_{n}\right\}$ of the set $X=\left\{x_{1}, \ldots, x_{n}\right\}$.

2.4 Cycle-magic graphs

In this section we study H-magic labelings when H is a cycle C_{r}. In this case we speak of cycle-magic labelings and cycle-magic graphs. A related notion of face-magic labelings of a planar graph G asks for a total labeling such that the sum over the vertices and edges of each face of a planar embedding of G is constant; see, for instance, Bacca [8]. When G has a planar embedding in which all faces have the same number r of edges, a C_{r}-magic labeling of G is also a face magic labeling of the graph.

The section continues with the following new results. We prove that the wheel W_{n} with $n \geq 5$ odd is C_{3}-magic and that the cartesian product of a C_{4}-free supermagic graph with K_{2} is C_{4}-magic. In particular the odd prisms and books are C_{4}-supermagic. We also show that the windmill $W(r, k)$ is $C_{r^{-}}$ magic, thus providing a family of C_{r}-magic graphs for each $r \geq 3$. Finally, it is also shown that subdivided wheels and uniform Θ-graphs are cycle-magic. All these results rely on the application of the partition lemmas described in the previous section.

2.4.1 $\quad C_{3}$ and C_{4}-magic graphs

Let $W_{n}=C_{n}+\{v\}$ denote the wheel with a rim of order n. Clearly W_{n} admits a covering by triangles. As an another application of Lemma 2.6, we next show that any odd wheel is a C_{3}-supermagic graph.

Theorem 2.11 The wheel W_{n} for $n \geq 5$ odd, is C_{3}-supermagic.

Proof. Denote by $v_{1}, v_{2}, \ldots, v_{n}$ the vertices in the n-cycle of the wheel W_{n} and by v its central vertex. For $1 \leq i \leq n$ let $N_{i}=\left\{v_{i}, v_{i} v\right\}$.
Define a total labeling f of W_{n} on $[1,3 n+1]$ as follows. Set $f(v)=1$, $f\left(v_{n} v_{1}\right)=2 n+2$ and for $1 \leq i<n, f\left(v_{i} v_{i+1}\right)=3 n+2-i$. Therefore, $f\left(E\left(C_{n}\right)\right)=[2 n+2,3 n+1]$.
We have to define f on $N=\cup_{i=1}^{n} N_{i}$ in such a way that $f(N)=[2,2 n+1]$.
Since n is odd, by Lemma 2.6 there is a well-distributed n-equipartition $\mathcal{P}=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $X=1+[1,2 n]$, such that $\sum X_{i}=\sum X_{1}+(i-1)$. Let $X_{i}=\left\{x_{i, 1}<x_{i, 2}\right\}$. Since \mathcal{P} is well-distributed, we have $1<x_{i, 1} \leq n+1$ and $n+1<x_{i, 2} \leq 1+2 n$.

Let α be the permutation of $[1, n]$ given by

$$
\alpha(i)= \begin{cases}i / 2, & i \text { even } \\ (n+i) / 2, & i \text { odd }\end{cases}
$$

Since n is odd, α is a permutation of $[1, n]$. Moreover $\alpha(i)+\alpha(i+1)=$ $i+(n+1) / 2$ for $1 \leq i \leq n-1$ and $\alpha(n)+\alpha(1)=(3 n+1) / 2$.
Define f on each N_{i} by the bijection from N_{i} to $X_{\alpha(i)}$ given by

$$
f\left(v_{i}\right)=x_{\alpha(i), 1} \text { and } f\left(v v_{i}\right)=x_{\alpha(i), 2} .
$$

Note that $1<f\left(v_{i}\right) \leq n+1$ and $n+1<f\left(v v_{i}\right) \leq 2 n+1$, so that $f(V(N))=$ $[2, n+1]$ and $f(E(N))=[n+2,2 n+1]$. Hence, if f is C_{3}-magic, then it is C_{3}-supermagic.
Let us show that $\sum f(H)$ is constant in every triangle H of W_{n}. Now we prove that f take the same sum in every subgraph H of W_{n} isomorphic to C_{3}. Since $n \geq 5$, each triangle H has vertex set either $\left\{v, v_{i}, v_{i+1}\right\}$ for some $1 \leq i<n$, or $\left\{v, v_{n}, v_{1}\right\}$. Therefore,

$$
\begin{aligned}
\sum f(H) & =\sum f\left(N_{i}\right)+\sum f\left(N_{i+1}\right)+f\left(v_{i} v_{i+1}\right)+f(v) \\
& =2 \sum X_{1}+\alpha(i)+\alpha(i+1)-2+(3 n+2-i)+1 \\
& =2 \sum X_{1}+i+(n+1) / 2+(3 n+1)-i \\
& =2 \sum X_{1}+(7 n+3) / 2 \\
& =\sum f\left(N_{n}\right)+\sum f\left(N_{1}\right)+f\left(v_{n} v_{1}\right)+f(v),
\end{aligned}
$$

which is independent of i as claimed. This completes the proof.
Fig. 2.3 shows an example of the C_{3}-supermagic labeling defined in the above proof.

Remark 2.12 Fig. 2.4 shows two quite different C_{3}-magic labelings of the wheels W_{4} and W_{6}. We do not know if the wheel $W_{2 r}$ with $r>3$ is a C_{3}-magic graph.

Another application of Lemma 2.6 provides a large family of C_{4}-supermagic graphs. The cartesian product of two graphs G_{1} and G_{2} is the graph $G=$ $G_{1} \times G_{2}$ with

$$
V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)
$$

Figure $2.3 C_{3}$-supermagic labeling of W_{7}

Figure $2.4 C_{3}$-magic labelings of W_{4} and W_{6}.
and

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G) \Longleftrightarrow\left\{\begin{array}{l}
x_{1}=x_{2} \text { and } y_{1} y_{2} \in E\left(G_{2}\right) \text { or } \\
y_{1}=y_{2} \text { and } x_{1} x_{2} \in E\left(G_{1}\right) .
\end{array}\right.
$$

Clearly, for any graph G, the cartesian product $G \times K_{2}$ can be covered by 4 -cycles.

Theorem 2.13 Let G be a C_{4}-free supermagic graph of odd size. Then, the graph $G \times K_{2}$ is C_{4}-supermagic.

Proof. Let n and m be, respectively, the order and size of $G=(V, E)$. We have to show a C_{4}-supermagic total labeling of $G \times K_{2}$ with the integers in $[1,3 n+2 m]$.
For each vertex $x \in V(G)$ denote by $x_{0}, x_{1} \in V\left(G \times K_{2}\right)$ the corresponding vertices in the two copies of G and $x_{0} x_{1} \in E\left(G \times K_{2}\right)$ the edge joining them. Denote by $A_{x}=\left\{x_{0}, x_{1}, x_{0} x_{1}\right\}$ and by $A=\cup_{x \in V} A_{x} \subset V\left(G \times K_{2}\right) \cup$ $E\left(G \times K_{2}\right)$. We have $|A|=3 n$. Now, for each edge $x y \in E(G)$, denote
by $B_{x y}=\left\{x_{0} y_{0}, x_{1} y_{1}\right\}$ the corresponding edges in the two copies of G and $B=\cup_{x y \in E(G)} B_{x y}$. We have $|B|=2 \mathrm{~m}$. Clearly, $\{A, B\}$ is a partition of the set $V\left(G \times K_{2}\right) \cup E\left(G \times K_{2}\right)$.

By Lemma 2.6 there is a well-distributed n-equipartition $\mathcal{P}_{1}=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $[1,3 n]$, such that $\sum X_{i}=a+i$ for some integer a.

Since m is odd, Lemma 2.6 also ensures a well-distributed m-equipartition $\mathcal{P}_{2}=\left\{Y_{1}, \ldots, Y_{m}\right\}$ of $3 n+[1,2 m]$ such that $\sum Y_{i}=b+i$ for some integer b.
Let f be a supermagic labeling of G with supermagic sum $s(f)$. Define a total labeling f^{\prime} of $G \times K_{2}$ as follows. For $x \in V(G)$ define f^{\prime} on A_{x} by any bijection from A_{x} to $X_{f(x)}$ (the bijection depends on f). Similarly, for $x y \in E(G)$ define f^{\prime} on $B_{x y}$ by any bijection from $B_{x y}$ to $Y_{f(x y)-n}$ (again the bijection depends on f). Then, the map f^{\prime} is a bijection from $V\left(G \times K_{2}\right) \cup E\left(G \times K_{2}\right)$ to $[1,3 n+2 m]$. In addition, as \mathcal{P}_{1} is well-distributed in $[1,3 n]$, we can choose f^{\prime} verifying $f^{\prime}\left(V\left(G \times K_{2}\right)\right)=[1,2 n]$.
Now, let H be a subgraph of $G \times K_{2}$ isomorphic to a 4-cycle. Since G is C_{4}-free, every 4-cycle H of $G \times K_{2}$ has the form,

$$
V(H) \cup E(H)=A_{x} \cup A_{y} \cup B_{x y},
$$

where $x, y \in V(G)$ and $x y \in E(G)$. Then, the sum of the elements in any 4 -cycle H of $G \times K_{2}$ is

$$
\begin{aligned}
f^{\prime}(H) & =f^{\prime}\left(A_{x}\right)+f^{\prime}\left(A_{y}\right)+f^{\prime}\left(B_{x y}\right) \\
& =2 a+f(x)+f(y)+b+f(x y)-n, \\
& =2 a+b+s(f)-n
\end{aligned}
$$

independent of H.

As an application of Theorem 2.13 we have the next corollary.
Corollary 2.14 The following two families of graphs are C_{4}-supermagic for n odd.
(1) The prims, $C_{n} \times K_{2}$.
(2) The books, $K_{1, n} \times K_{2}$.

2.4.2 C_{r}-magic graphs

Here, we give a family of C_{r}-supermagic graphs for any integer $r \geq 3$. Let C_{r} be a cycle of length $r \geq 3$. Consider the graph $W(r, k)$ obtained by identifying one vertex in each of the $k \geq 2$ disjoint copies of the cycle C_{r}. The resulting graphs are called windmills, and $W(3, k)$ is also known as the friendship graph. Note that windmills clearly admit a C_{r}-covering. We next show that they are C_{r}-supermagic graphs.
A remark to keep in mind is that, for the proofs of the last part of this chapter, we shall use the notation introduced in Chapter 1 for $G \backslash A$ where $A \subseteq V(G)$. Recall that this is defined by the deletion of the vertices in A but not the incident edges.

Theorem 2.15 For any two integers $r \geq 3$ and $k \geq 2$, the windmill $W(r, k)$ is C_{r}-supermagic.

Proof. Let G_{1}, \ldots, G_{k} be the r-cycles of $W(r, k)$ and let v their only common vertex. Denote by $G^{*}=W(r, k) \backslash\{v\}$ and its set of vertices and edges by V^{*} and E^{*} respectively. Therefore, we have $\left|V^{*}\right|=(r-1) k$ and $\left|E^{*}\right|=r k$. We want to define a C_{r}-supermagic total labeling f of $W(r, k)$ with the integers from $[1,(2 r-1) k+1]$ such that $f(V(W(r, k)))=f\left(V^{*} \cup\{v\}\right)=$ $[1,(r-1) k]+1$.
Suppose first that k is odd. Let $f(v)=1$.
By Lemma 2.9 (1) there is a k-equipartition $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ of the set $1+[1,(2 r-1) k]$ such that $\left|\sum \mathcal{P}\right|=1$. Furthermore, as it is well-distributed, in each set X_{i} there are $r-1$ elements less or equal than $1+(r-1) k$.
Define f on each $G_{i}^{*}=G_{i} \backslash\{v\}, 1 \leq i \leq k$, by any bijection from G_{i}^{*} to X_{i} such that $f\left(V_{i}^{*}\right) \subset[1,(r-1) k]+1$, where V_{i}^{*} is the set of vertices of G_{i}^{*}.
Suppose now that k is even. In this case, let $f(v)=k / 2+1$.
By Lemma 2.9 (2) there is a k-equipartition $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ of the set $[1,(2 r-1) k+1] \backslash\{k / 2+1\}$ such that $\left|\sum \mathcal{P}\right|=1$. Furthermore, there are $r-1$ elements less or equal than $1+k(r-1)$ in each set X_{i}.
In this case, define also $f\left(G_{i}^{*}\right)$ by any bijection from G_{i}^{*} to X_{i} such that $f\left(V_{i}^{*}\right) \subset[1,(r-1) k+1] \backslash\{k / 2+1\}$.
In both cases, for each $1 \leq i \leq k$,

$$
f\left(G_{i}\right)=\sum X_{i}+f(v) .
$$

Figure $2.5 C_{k}$-supermagic labelings of $W(k, k)$, for $k=3,4$.

Hence f is a C_{r}-supermagic labeling of the windmill $W(r, k)$.

See Fig. 2.5 for examples of cycle-supermagic labelings of windmills for different parities of the cycles.
Next, we consider a family of graphs obtained by subdivisions of a wheel. Given the wheel W_{n}, we denote by $v_{1}, v_{2}, \ldots, v_{n}$ the vertices in the n-cycle and by v its central vertex, as in the proof of Theorem 2.11. The subdivided wheel $W_{n}(r, k)$ is the graph obtained from the wheel W_{n} by replacing each radial edge $v v_{i}, 1 \leq i \leq n$ by a $v v_{i}$-path of size $r \geq 1$, and every external edge $v_{i} v_{i+1}$ by a $v_{i} v_{i+1}$-path of size $k \geq 1$. It is clear that, $\left|V\left(W_{n}(r, k)\right)\right|=$ $n(r+k)+1$ and $\left|E\left(W_{n}(r, k)\right)\right|=n(r+k)$.
Fig. 2.6 shows a subdivided wheel from W_{6}.
Theorem 2.16 Let r and k be two positive integers. The subdivided wheel $W_{n}(r, k)$ is $C_{2 r+k}$-magic for any odd $n \neq \frac{2 r}{k}+1$. Furthermore, $W_{n}(r, 1)$ is $C_{2 r+1}$-supermagic.

Proof. Let $n \geq 3$ be an odd integer.
Denote by v the central vertex of the subdivided wheel $W_{n}(r, k)$ and by $v_{1}, v_{2}, \ldots, v_{n}$ the remaining vertices of degree >2. For $1 \leq i \leq n$ let P_{i} be the $v v_{i}$-path of length $r \geq 1$.

Let $P_{i}^{*}=P_{i} \backslash\{v\}, 1 \leq i \leq n$ and $P^{*}=\cup_{i=1}^{n} P_{i}^{*}$.

Figure 2.6 The subdivided wheel $W_{6}(3,2)$.

Suppose first $k=1$.
In this case, we want a $C_{2 r+1}$-magic labeling f on $W_{n}(r, 1)$ with the integers in $[1,1+2 n r+n]$ such that $f(V)=[1, n r+1]$. Let $f(v)=1$ and $f\left(v_{n} v_{1}\right)=$ $2 n r+2$, and label the remaining edges of the external cycle of $W_{n}(r, 1)$ by $f\left(v_{i} v_{i+1}\right)=2 n r+2+n-i, 1 \leq i<n$.

The only elements left to label are the ones in P^{*}, with $\left|P^{*}\right|=2 n r$. Since $n \geq 3$ is odd, Lemma 2.6 ensures the existence of a well-distributed n equipartition $\mathcal{P}_{1}=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $1+[1,2 n r]$ such that $\sum X_{i}=$ $a+i, 1 \leq i \leq n$ for some constant a. Moreover, as \mathcal{P}_{1} is well-distributed, each X_{i} has r elements in $1+[1, n r+1]$. Now define f on each P_{i}^{*} by a bijection with $X_{\alpha(i)}$ that assigns the first r values of $[1, n r]$ to the vertices, where α is the following permutation of $[1, n]$.

$$
\alpha(i)= \begin{cases}i / 2, & i \text { even } \\ (n+i) / 2, & i \text { odd }\end{cases}
$$

Note that, as n is odd, $\alpha(n)+\alpha(1)=n+(n+1) / 2$ and, for $1 \leq i<n$, we have $\alpha(i)+\alpha(i+1)=i+(n+1) / 2$.
Therefore, f is clearly a bijection from $W_{n}(r, 1)$ to $[1, n(2 r+1)+1]$, and $f(V)=[1, n r+1]$.
Now, since $n \neq 2 r+1$, for every subgraph H of $W_{n}(r, 1)$ isomorphic to $C_{2 r+1}$, we have either

$$
\begin{aligned}
V(H) \cup E(H) & =\{v\} \cup P_{n}^{*} \cup\left\{v_{n} v_{1}\right\} \cup P_{1}^{*} \text { or } \\
V(H) \cup E(H) & =\{v\} \cup P_{i}^{*} \cup\left\{v_{i} v_{i+1}\right\} \cup P_{i+1}^{*}, \text { for some } 1 \leq i<n .
\end{aligned}
$$

Then, for each $1 \leq i<n$, we have

$$
\begin{aligned}
\sum f(H) & =\sum f\left(P_{i}^{*}\right)+\sum f\left(P_{i+1}^{*}\right)+f\left(v_{i} v_{i+1}\right)+f(v) \\
& =2 a+\alpha(i)+\alpha(i+1)+(n(2 r+1)+2-i)+1 \\
& =2 a+2 n r+\frac{3 n+7}{2}
\end{aligned}
$$

which is independent of i. A similar computation shows that $\sum f\left(P_{n}^{*}\right)+$ $\sum f\left(P_{1}^{*}\right)+f\left(v_{n} v_{1}\right)+f(v)$ has the same value. Hence f is a $C_{2 r+1}$-supermagic labeling of $W_{n}(r, 1)$.
Suppose now $k>1$.
In this case, for each $1 \leq i \leq n$, let Q_{i} be the $v_{i} v_{i+1}$-path of length $k \geq 1$. Denote by $Q_{i}^{*}=Q_{i} \backslash\left\{v_{i}, v_{i+1}\right\}$ and $Q^{*}=\cup_{i} Q_{i}^{*}$.
By Lemma 2.6 there is a well-distributed n-equipartition $\mathcal{P}_{2}=\left\{Y_{1}, \ldots, Y_{n}\right\}$, of the set $2 n r+[1, n(2 k-1)]$ such that, for $1 \leq i \leq n, \sum Y_{i}=b+i$ for some constant b.
Define a total labeling f of $W_{n}(r, k)$ on $[1, n(2 k-1)]$ as follows. Set $f(v)=$ $2 n(r+k)-n+1$. Define f on P_{i}^{*} by any bijection from P_{i}^{*} to $X_{\alpha(i)}$, where $\mathcal{P}_{1}=\left\{X_{1}, \ldots, X_{k}\right\}$ and α are defined as in the above case. Define f on Q_{i}^{*} by any bijection to Y_{n+1-i}.
Since $n \neq \frac{2 r}{k}+1$, every subgraph H of $W_{n}(r, k)$ isomorphic to $C_{2 r+k}$ verifies either

$$
\begin{aligned}
V(H) \cup E(H) & =\{v\} \cup P_{n}^{*} \cup Q_{n}^{*} \cup P_{1}^{*} \text { or } \\
V(H) \cup E(H) & =\{v\} \cup P_{i}^{*} \cup Q_{i}^{*} \cup P_{i+1}^{*}, \text { for some } 1 \leq i<n .
\end{aligned}
$$

Then, for each $1 \leq i<n$ we have,

$$
\begin{aligned}
\sum f(H) & =\sum f\left(P_{i}^{*}\right)+\sum f\left(P_{i+1}^{*}\right)+f\left(Q_{i}^{*}\right)+f(v) \\
& =2 a+\alpha(i)+\alpha(i+1)+b+(n+1-i)+2 n(r+k)-n+1 \\
& =2 a+b+2 n(r+k)+\frac{n+5}{2}
\end{aligned}
$$

It is also immediate to check that the labels of the remaining $(2 r+k)$-cycle have also the same sum.

Fig. 2.7 shows examples of cycle-supermagic labelings defined in the above proof.

Figure 2.7 (a) C_{5}-supermagic labeling of $W_{7}(2,1)$. (b) C_{8}-magic labeling of $W_{3}(3,2)$.

We finish by giving another family of cycle-supermagic graphs. Recall that, for a sequence k_{1}, \ldots, k_{n} of positive integers, the graph $\Theta\left(k_{1}, \ldots, k_{n}\right)$ consists of n internally disjoint paths of orders $k_{1}+1, \ldots, k_{n}+1$ joined by two end vertices u and v. When all the paths have the same size p, this graph, denoted by $\Theta_{n}(p)$, admits a $C_{2 p}$-covering. We next show that such a graph is cycle-supermagic.

Theorem 2.17 The graph $\Theta_{n}(p)$ is $C_{2 p}$-supermagic for $n, p \geq 2$.
Proof. Let u and v be the common end vertices of the paths P_{1}, \ldots, P_{n} in $\Theta_{n}(p)=(V, E)$. Denote by $P_{i}^{*}=P_{i} \backslash\{u, v\}, 1 \leq i \leq n$.
We want to define a total labeling f of $\Theta_{n}(p)$ with integers from the interval $[1,(2+(p-1) n)+n p]$ such that $f(V)=[1,2+(p-1) n]$.
If n is odd, Lemma 2.9 (1) provides an n-equipartition $\mathcal{P}=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $2+[1,(2 p-1) n]$ such that $\sum X_{1}=\cdots=\sum X_{n}=a$, for some constant a, and, as it is well-distributed, in each X_{i} there are $p-1$ integers less or equal than $2+(p-1) n$.
Define a total labeling f on $\Theta_{n}(p)$ as follows. Set $f(u)=1, f(v)=2$ and f on P_{i}^{*} by a bijection from P_{i}^{*} to X_{i} such that the $p-1$ numbers in each X_{i} that are less or equal than $2+(p-1) n$ are used for the $p-1$ vertices in each P_{i}^{*}.

Figure $2.8 \quad C_{6}$-supermagic labeling of $\Theta_{4}(3)$ and C_{8}-supermagic labeling of $\Theta_{3}(4)$.

Every subgraph H of $\Theta_{n}(p)$ isomorphic to $C_{2 p}$ is of the form

$$
V(H) \cup E(H)=\{u\} \cup P_{i}^{*} \cup\{v\} \cup P_{j}^{*},
$$

for $1 \leq i<j \leq n$.
It is easy to check that $\sum f(H)=2 a+3$.
Assume now that n is even. By Lemma 2.9 (2) there exists an n-equipartition $\mathcal{P}=\left\{X_{1}, \ldots, X_{n}\right\}$ of the set $[1,(2 p-1) n+2] \backslash\{1, n / 2+2\}$ such that $\sum X_{1}=\cdots=\sum X_{n}=a$, for some constant a. Moreover, since \mathcal{P} is welldistributed, in each X_{i} there are $p-1$ numbers less or equal than $2+(p-1) n$.
Now, we proceed as before but setting $f(v)=n / 2+2$. It is immediate to check that we indeed get a $C_{2 p}$-supermagic labeling of $\Theta_{n}(p)$.

In Fig. 2.8 two supermagic labelings of $\Theta_{n}(p)$ for different parities of n and p are displayed.

Decomposing by trees

A conjecture of Graham and Häggkvist states that every tree with m edges decomposes every $2 m$-regular graph and every bipartite m-regular graph. In this chapter we present two results that can be seen as approximations to the complete solution of the conjecture.
Let T be a tree with a prime number p of edges. In Section 3.3 we show that if the growth ratio of T at some vertex v_{0} satisfies $\rho\left(T, v_{0}\right) \geq \phi^{1 / 2}$, where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio, then T decomposes $K_{2 p, 2 p}$. We also prove that if T has at least $p / 3$ leaves then it decomposes $K_{2 p, 2 p}$. This improves previous results by Häggkvist [30] and by Lladó and López [40]. The results follow from an application of Alon's Combinatorial Nullstellensatz [3] to obtain bigraceful labelings and they are collected in [11].

In Section 3.4 we consider a tree T of size m (not necessarily prime) and we show that there exists an integer n with $n \leq\lceil(3 m-1) / 2\rceil$ and a tree T_{1} with n edges such that decomposes $K_{2 n+1}$ and contains T. We also show that there exists an integer n^{\prime} with $n^{\prime} \leq 2 m-1$ and a tree T_{2} with n^{\prime} edges such that T_{2} decomposes $K_{n^{\prime}, n^{\prime}}$ and contains T. In the latter case, we can improve the bound if there exists a prime p such that $\lceil 3 m / 2\rceil \leq p<2 m-1$. The results of this part can be found in [41].

3.1 Introduction

A decomposition of a graph G is a partition \mathcal{P} of its set of edges. When the graph induced by each part of \mathcal{P} is isomorphic to a graph H, we say that H decomposes G and write $H \mid G$.

A famous conjecture of Ringel from 1963 states that every tree with m edges
decomposes the complete graph $K_{2 m+1}$ [46]. In spite of the hundreds of papers that have appeared in the literature on the subject (see the dynamic survey of Gallian [24]), Ringel's conjecture is still wide open. Graham and Häggkvist proposed the following generalization of Ringel's conjecture; see, e.g., [30]:

Conjecture 3.1 (Graham and Häggkvist) Every tree with m edges decomposes every $2 m$-regular graph and every bipartite m-regular graph.

Conjecture 3.1 in particular asserts that every tree with m edges decomposes the complete bipartite graph $K_{m, m}$. In the sequel we will refer to this particularization of Conjecture 3.1.
Some partial results are known on Conjecture 3.1 that motivate our study. Concerning the bipartite case, Häggkvist [30] showed, among other results, that any tree with m edges and at least $(m+1) / 2$ leaves decomposes $K_{2 m, 2 m}$. The authors of [40] showed that some families of trees, like trees whose base tree is a caterpillar, d-ary trees with d odd or trees of diameter at most five, decompose $K_{m, m}$ where m is the number of edges of the tree. In the same paper the authors also showed that a tree with m edges and growth ratio $\rho\left(T, v_{0}\right) \geq \sqrt{ } 2 \approx 1.414 \ldots$ at some vertex v_{0} decomposes $K_{2 m, 2 m}$. The growth ratio of T at vertex v_{0} is defined as

$$
\rho\left(T, v_{0}\right)=\min \left\{\frac{\left|V_{i+1}\right|}{\left|V_{i}\right|}, i=0,1, \ldots, h-1\right\},
$$

where V_{i} denote the set of vertices at distance i from v_{0} and h denotes the eccentricity of v_{0}. In Section 3.3 we show the following improvement of this result.

Theorem 3.2 Let T be a tree with a prime number p of edges. If the growth ratio of T at some vertex v_{0} satisfies $\rho\left(T, v_{0}\right) \geq \phi^{1 / 2} \approx 1.272 \ldots$, where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio, then T decomposes $K_{2 p, 2 p}$.

We also prove a similar but independent result. The base tree of a tree T is obtained by removing all its end vertices. Let $T=T^{(0)}$ and define $T^{(i)}$ as the base tree of $T^{(i-1)}$ for $i \geq 1$. The base growth ratio of T is defined as

$$
\rho_{b}(T)=\min \left\{\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}, i=1, \ldots, h^{\prime}\right\},
$$

where L_{i} is the set of leaves of $T^{(i)}$ for $0 \leq i<h^{\prime},\left|L_{h^{\prime}}\right|=1$, and h^{\prime} is the minimum positive integer k such that $T^{(k)}$ is a tree with at most one leaf.

Theorem 3.3 Let T be a tree with a prime number p of edges. If the base growth ratio of T satisfies $\rho_{b}(T) \geq \phi$, where $\phi=\frac{1+\sqrt{5}}{2}$, then T decomposes $K_{2 p, 2 p}$.

The following examples show that Theorems 3.2 and 3.3 are independent. Let T be a binary tree with eccentricity h such that $p=2^{h+1}-1$ is a prime and let T^{\prime} be the tree obtained from T by adding a new leaf to a vertex in the last level. Then T^{\prime} has size p and we clearly have $\rho_{b}(T)=2$ so that T^{\prime} decomposes $K_{2 p, 2 p}$ by Theorem 3.3. However, one can easily check that $\rho\left(T^{\prime}, v\right) \leq 1$ for each vertex v so that T^{\prime} does not satisfy the hypothesis of Theorem 3.2. On the other hand, let T be a tree with p edges, p a prime, and a vertex v with eccentricity h such that the levels from v satisfy $\left|V_{2}\right|=c\left|V_{1}\right|$, $\left|V_{i}\right| \geq c\left|V_{i-1}\right|, 2<i \leq h$, and with all leaves in V_{h}, where $\phi^{1 / 2}<c<\phi$. Then $\rho_{b}(T)=\rho(T, v)=c$ so that T satisfies the hypothesis of Theorem 3.2 but not the ones of Theorem 3.3.

Theorems 3.2 and 3.3 will be derived from the stronger statements of Theorems 3.11 and 3.15 respectively, which provide the same conclusion depending essentially on the cardinality of the last two levels of growth in each case.
We also improve the result of Häggkvist above mentioned on the decomposition by trees with large number of leaves in the case of trees with a prime number of edges.

Theorem 3.4 Let p be a prime and let T be a tree with p edges. If T has at least $p / 3$ leaves then it decomposes $K_{2 p, 2 p}$.

In one of the early papers on the subject, Kotzig [35] showed that the substitution of an edge by a sufficiently large path in an arbitrary tree results in a tree T for which Ringel's conjecture holds. Thus every tree is homeomorphic to a tree for which the conjecture holds. On the other hand Kézdy [33] showed that the addition of an unspecified number of leaves to a vertex of a tree results in a tree with n edges that decomposes $K_{2 n+1}$. An analogous result for the decomposition of $K_{n, n}$ was proved in [40]. Therefore, every tree contains the base tree of some tree for which both conjectures hold. However, neither result gives a quantitative estimate of the number of additional vertices that will suffice to make a tree decompose the appropriate complete graph.

In Section 3.4 we consider an approximation to both conjectures and prove that every tree is a large subtree of two trees for which the conjectures hold
respectively. Specifically we prove:
Theorem 3.5 Let T be a tree with m edges.
(1) For every odd $n \geq 2 m-1$, there exists a tree T^{\prime} with n edges that contains T and T^{\prime} decomposes $K_{n, n}$.
(2) For every prime $p \geq\lceil 3 m / 2\rceil$, there exists a tree T^{\prime} with p edges that contains T and T^{\prime} decomposes $K_{p, p}$.

Theorem 3.6 Let T be a tree with m edges. For every $n \geq\lceil(3 m-1) / 2\rceil$, there exists a tree T^{\prime} with n edges that decomposes $K_{2 n+1}$ and contains T.

The results of this chapter follow by an application of a general technique to obtain cyclic decompositions of complete bipartite graphs, which will be described in the following section.

3.2 Labelings and cyclic decompositions

The classical approach to the decomposition problem of graphs uses labeling techniques that aim to find cyclic decompositions. A tree T with m edges cyclically decomposes $K_{2 m+1}$ if there is an injection $\phi: V(T) \rightarrow[0,2 m]$ such that, for each edge $x y$ of T, the $2 m+1$ pairs

$$
\{\phi(x)+k \quad(\bmod 2 m+1), \phi(y)+k \quad(\bmod 2 m+1)\}
$$

for $k=0,1, \ldots, 2 m$, are pairwise disjoint. Thus the translations

$$
\phi(V(T))+k \quad(\bmod 2 m+1),
$$

for $k=0,1, \ldots, 2 m$, give $2 m+1$ edge-disjoint copies of T in $K_{2 m+1}$. Similarly, T cyclically decomposes $K_{m, m}$ if there is a map $\phi: V(T) \rightarrow[0, m-1]$ that is injective on each partite set of T such that the translations

$$
\phi(V(T))+k \quad(\bmod m)
$$

produce m edge-disjoint copies of T in $K_{m, m}$.
In this section we recall the well-known graph labelings that make possible the cyclic decompositions and we introduce new generalizations of them that will allow us to prove the main results of this chapter.

One of the ingredients of the proofs of this chapter is the polynomial method of Alon [3]. We will use Theorem 1.1 described in Chapter 1 to obtain the graph labelings used for the decompositions. The application of the polynomial method to other related graph labeling problems can be seen in [31], [33] and [34].

3.2.1 Bigraceful labelings

An appropriate bipartite labeling, the bigraceful labeling, was first introduced by Ringel and Lladó, see, e.g., [40]. A bigraceful labeling of a tree T with m edges and partite sets A and B is a map f of V on the integers $\{0,1, \ldots, m-1\}$ such that the restriction of f to each partite set is injective and the induced edge values, $f_{E}(u v)=f(u)-f(v) v$ for an edge $u v \in E(T)$ and $u \in A$, are pairwise distinct and must lie in $\{0,1, \ldots, m-1\}$. These authors conjectured that all trees are bigraceful. Since a tree T that admits a bigraceful labeling cyclically decomposes $K_{m, m}$, this conjecture would imply Conjecture 3.1 for the complete bipartite graph.

Here we consider the following modification of the bigraceful labeling introduced above, which take values in an arbitrary abelian group (see [11]).
Let $H=H(A, B)$ be a bipartite graph with partite sets A and B and let $(\mathcal{G},+)$ be an abelian group. A map $f: A \cup B \rightarrow \mathcal{G}$ is \mathcal{G}-bigraceful if
(i) the restrictions of f to each partite set are injective maps, and
(ii) the induced values of f over the edges of H are pairwise distinct, where for an edge $e=u v$, the induced value of f on e is $f_{E}(u v)=f(u)+f(v)$.

We will say that a \mathbb{Z}_{m}-bigraceful map of a bipartite graph H with m edges is a modular bigraceful labeling. Note that if H admits a bigraceful labeling f then it admits a modular bigraceful labeling f^{\prime} : if A and B are the two partite sets of H just define $f^{\prime}(x)=f(x)(\bmod m)$ if $x \in A$ and $f^{\prime}(x)=-f(x)$ $(\bmod m)$ if $x \in B$.
Note also that in the definition of the bigraceful labeling, the two partite sets of the bipartite graph play an asymmetric role, since the induced edge values are defined as the difference between labels of vertices in A minus the labels of the vertices in B and must be positive or zero, implying that the labels in A should be greater than the ones in B. We avoid this asymmetry in condition (ii) above since the labels are in a group. In order to perform
the cyclic decompositions from a \mathcal{G}-bigraceful map f we can use the auxiliary labeling f_{1} defined as f in A and as $-f$ in B. Fig. 3.1 shows an example.

Figure 3.1 Modular bigraceful labeling of a tree and the corresponding auxiliary labeling

With this remark in mind, it is shown in [40, Lemma 1.1] that, if a bipartite graph H admits a \mathcal{G}-bigraceful map on a group \mathcal{G} of order m, then the complete bipartite graph $K_{m, m}$ contains m edge-disjoint copies of H. In particular, if H has m edges then H decomposes $K_{m, m}$. Nevertheless, instead of trying to construct a \mathbb{Z}_{m}-bigraceful labeling for an arbitrary tree of size m, and thus decompose $K_{m, m}$, we will work with larger groups in order to decompose $K_{2 m, 2 m}$, a somewhat easier task for which our tools provide positive results.

Fig. 3.2 shows the cyclic decomposition of $K_{5,5}$ by the tree of Fig. 3.1. The auxiliary labeling obtained from the modular bigraceful map gives five different slopes for the edges of the tree and therefore, when performing the translations of the tree, there will be no edge overlaps.

Remark 3.7 In [41] a slight modification of the definition of the \mathcal{G}-bigraceful labelings is considered. This modification consists in defining the induced edge values by $f_{E}(u v)=f(v)-f(u)$, with $u \in A$ and $v \in B$. It is clear that both definitions are equivalent since we can switch from one to the other simply by changing the labels of one partite set by their inverses in \mathcal{G}. Therefore, all the decomposition properties also hold with this modification.

Throughout this chapter, and for the sake of simplicity, we shall use the original additive definition from [11].

Figure 3.2 Cyclic decomposition of $K_{5,5}$.

3.2.2 ρ-valuations

A ρ-valuation of a graph H on m edges is an injection $\rho: V(H) \rightarrow \mathbb{Z}_{2 m+1}$ such that the induced edge labels $\rho_{E}(u v):=\rho(u)-\rho(v)$, for $u v \in E(H)$, satisfy

$$
\rho_{E}(e) \neq \pm \rho_{E}(f) \quad(\bmod 2 m+1)
$$

for all distinct pairs of edges $e, f \in E(H)$. Rosa [47] proved that a graph H with m edges cyclically decomposes $K_{2 m+1}$ if and only if it admits a ρ-valuation.

For our present purposes we define a relaxation in the definition of a ρ valuation. Given a graph H with m edges and given $n \geq m$, a ρ_{n}-valuation is an injection $\rho_{n}: V(H) \rightarrow \mathbb{Z}_{2 n+1}$ such that the induced edge labels defined as above (but now taking the differences modulo $2 n+1$) are pairwise distinct (see [41]).

3.3 Decomposing $K_{2 p, 2 p}$

In this section we prove Theorems 3.2, 3.3 and 3.4.

3.3.1 The basic lemmas

The main results are based on the following two lemmas. They are obtained through an application of the polynomial method.

Lemma 3.8 Let p be a prime and let T be a tree with m edges and partite sets A and B. Let $A_{0} \subset A$ be a set of end vertices of T. If

$$
p-m \geq\left|A \backslash A_{0}\right|
$$

then every \mathbb{Z}_{p}-bigraceful map of $T-A_{0}$ can be extended to a \mathbb{Z}_{p}-bigraceful map of T.

Proof. Let f^{\prime} be a \mathbb{Z}_{p}-bigraceful map of $T^{\prime}=T-A_{0}$. Set $r=\left|A_{0}\right|$ and $r^{\prime}=\left|A \backslash A_{0}\right|$.

Let x_{1}, \ldots, x_{r} be the vertices of A_{0}. Denote by $g_{B}\left(x_{i}\right)$ the vertex in B adjacent to $x_{i}, i=1, \ldots, r$. Consider the following polynomials in $\mathbb{Z}_{p}\left[z_{1}, \ldots, z_{r}\right]$:

$$
\begin{aligned}
P_{1} & =V\left(z_{1}, \ldots, z_{r}\right) \\
P_{2} & =V\left(z_{1}-f^{\prime}\left(g_{B}\left(x_{1}\right)\right), \ldots, z_{r}-f^{\prime}\left(g_{B}\left(x_{r}\right)\right)\right) \\
P_{3} & =\prod_{i=1}^{r} \prod_{a \in A \backslash A_{0}}\left(z_{i}-f^{\prime}\left(g_{B}\left(x_{i}\right)\right)-f^{\prime}(a)\right)
\end{aligned}
$$

Let $P=P_{1} P_{2} P_{3}$. Note that

$$
P=\left(V\left(z_{1}, \ldots, z_{r}\right)\right)^{2} z_{1}^{r^{\prime}} \cdots z_{r}^{r^{\prime}}+\text { terms of lower degree. }
$$

By (1.2), the polynomial P has the monomial of maximum degree

$$
z_{1}^{r+r^{\prime}-1} \cdots z_{r}^{r+r^{\prime}-1}
$$

with coefficient $\pm r$!, and since $r<p$, it is nonzero modulo p.
Let $C \subset \mathbb{Z}_{p}$ be the set of edge values of f^{\prime} on T^{\prime}. Since $p-m \geq r^{\prime}$ and $|A|=r+r^{\prime}$, we have
$p-|C|=(|A|+|B|-1)+(p-m)-\left(r^{\prime}+|B|-1\right)=r+(p-m)>r+r^{\prime}-1$.

By Theorem 1.1, there exists $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ such that $a_{i} \in \mathbb{Z}_{p} \backslash C, 1 \leq i \leq r$, with $P(\mathbf{a}) \neq 0$.
Define f on A_{0} by $f\left(x_{i}\right)=a_{i}-f^{\prime}\left(g_{B}\left(x_{i}\right)\right), 1 \leq i \leq r$. In this way, a_{1}, \ldots, a_{r} are precisely the edge values of f on the edges connecting B with A_{0}, which are different from the edge values of f^{\prime} on T^{\prime} (since $\left.a_{i} \notin C\right)$. Since $P_{1}(\mathbf{a}) \neq 0$ these edge values a_{i} are pairwise distinct. Since $P_{2}(\mathbf{a}) \neq 0, f$ is injective on A_{0}. Finally, since $P_{3}(\mathbf{a}) \neq 0$, the values $g_{B}\left(x_{i}\right)+a_{i}$ do not belong to $f^{\prime}\left(A \backslash A_{0}\right)$ and f is injective on the whole set A. Thus f is a \mathbb{Z}_{p}-bigraceful map of T.

Next lemma shows the way to decompose $K_{2 p, 2 p}$.
Lemma 3.9 Let T be a tree with a prime number p of edges and partite sets A and B. Let $T_{0}=T-B_{0}-A_{0}$ where $B_{0} \subset B$ is a set of end vertices of T and $A_{0} \subset A$ is a set of end vertices of $T-B_{0}$. If T_{0} admits a \mathbb{Z}_{p}-bigraceful map then T decomposes $K_{2 p, 2 p}$.

Proof. Consider the graph G with vertex set $\mathbb{Z}_{p} \times \mathbb{Z}_{4}$ and vertex (α, β) is adjacent to $(\alpha+i, \beta+1)$ for each $i \in \mathbb{Z}_{p}$. This graph G is isomorphic to $K_{2 p, 2 p}$. We consider G as an edge-colored graph, the edge $(\alpha, \beta)(\alpha+i, \beta+1)$ being colored $i \in \mathbb{Z}_{p}$.
Let f_{0} be a \mathbb{Z}_{p}-bigraceful map of T_{0}. Consider the map $f_{0}^{\prime}: V\left(T_{0}\right) \rightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{4}$ defined as $f_{0}^{\prime}(x)=\left(f_{0}(x), 1\right)$ for $x \in A \backslash A_{0}$ and $f_{0}^{\prime}(y)=\left(f_{0}(y), 2\right)$ for $y \in B \backslash B_{0}$. Thus f_{0}^{\prime} is an embedding of T_{0} in G such that the colors of the edges, which are the edge-values of f_{0}, are pairwise distinct.

We will extend f_{0}^{\prime} to an embedding f^{\prime} of T in G in such a way that the colors of the edges will be pairwise distinct. The argument follows the same lines as the proof of Lemma 3.8.

Let C_{0} be the edge values of f_{0} on T_{0}. Set $r=\left|A_{0}\right|, r^{\prime}=\left|A \backslash A_{0}\right|, s=\left|B_{0}\right|$ and $s^{\prime}=\left|B \backslash B_{0}\right|$.

Let x_{1}, \ldots, x_{r} be the vertices in A_{0}. Consider the polynomials

$$
\begin{aligned}
P_{1}^{A} & =V\left(z_{1}, \ldots, z_{r}\right) \\
P_{2}^{A} & =V\left(z_{1}-f_{0}\left(g_{B}\left(x_{1}\right)\right), \ldots, z_{r}-f_{0}\left(g_{B}\left(x_{r}\right)\right)\right)
\end{aligned}
$$

where $g_{B}\left(x_{i}\right)$ is the vertex in $B \backslash B_{0}$ adjacent to $x_{i}, 1 \leq i \leq r$. By (1.2), the polynomial

$$
P^{A}=P_{1}^{A} P_{2}^{A}=\left(V\left(z_{1}, \ldots, z_{r}\right)\right)^{2}+\text { terms of lower degree }
$$

has a monomial of maximum degree

$$
z_{1}^{r-1} \cdots z_{r}^{r-1}
$$

with coefficient $\pm r!\not \equiv 0(\bmod p)$, as $r<p$. Since

$$
p-\left|C_{0}\right|=\left(r+r^{\prime}+s+s^{\prime}-1\right)-\left(r^{\prime}+s^{\prime}-1\right)>r-1,
$$

by Theorem 1.1 there is $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ with $a_{i} \in \mathbb{Z}_{p} \backslash C_{0}$ with $P^{A}(\mathbf{a}) \neq 0$.
Define an extension $f_{1}(x)$ of f_{0} to $T_{1}=T_{0}+A_{0}$ by $f_{1}(v)=f_{0}(v)$ if $v \in T_{0}$ and $f_{1}\left(x_{i}\right)=a_{i}-f_{0}\left(g_{B}\left(x_{i}\right)\right)$ if $x_{i} \in A_{0}$.
Define $f^{\prime}\left(x_{i}\right)=\left(f_{1}\left(x_{i}\right), 3\right)=\left(a_{i}-f_{0}\left(g_{B}\left(x_{i}\right)\right), 3\right), 1 \leq i \leq r$. Since $P_{2}^{A}(\mathbf{a}) \neq 0$, the values of f^{\prime} on A_{0} are pairwise distinct, and since $P_{1}^{A}(\mathbf{a}) \neq 0$ the a_{i} 's are pairwise distinct (and different from the edge values of f_{0} since $a_{i} \notin C_{0}$).
Similarly, let $\left\{y_{1}, \ldots, y_{s}\right\}=B_{0}$ and now let $g_{A}\left(y_{i}\right)$ denote the vertex in A adjacent to $y_{i}, 1 \leq i \leq s$. The polynomial $P^{B}=P_{1}^{B} P_{2}^{B}$, where

$$
\begin{aligned}
& P_{1}^{B}=V\left(z_{1}, \ldots, z_{s}\right), \\
& P_{2}^{B}=V\left(z_{1}-f_{1}\left(g_{A}\left(y_{1}\right)\right), \ldots, z_{s}-f_{1}\left(g_{A}\left(y_{s}\right)\right)\right),
\end{aligned}
$$

has a monomial of maximum degree

$$
z_{1}^{s-1} \cdots z_{s}^{s-1}
$$

with coefficient $\pm s!\not \equiv 0(\bmod p)$, as $s<p$. Let $C_{1}=C_{0} \cup\left\{a_{1}, \ldots, a_{r}\right\}$. Since

$$
p-\left|C_{1}\right|=\left(r+r^{\prime}+s+s^{\prime}-1\right)-\left(r+r^{\prime}+s^{\prime}-1\right)>s-1,
$$

again by Theorem 1.1 there is $\mathbf{b}=\left(b_{1}, \ldots, b_{s}\right)$ with $b_{i} \in \mathbb{Z}_{p} \backslash C_{1}$ with $P^{B}(\mathbf{b}) \neq 0$. Define $f^{\prime}\left(y_{i}\right)=\left(b_{i}-f_{1}\left(g_{A}\left(y_{i}\right)\right), 0\right), 1 \leq i \leq s$. Since $P_{2}^{A}(\mathbf{b}) \neq 0$, the values of f^{\prime} on B_{0} are pairwise distinct, and since $P_{1}^{B}(\mathbf{b}) \neq 0$ the b_{i} 's are pairwise distinct (and they do not belong to C_{1}).
Thus we have extended f_{0}^{\prime} to an embedding f^{\prime} of the whole tree T in G in such a way that the colors of the edges are pairwise distinct.
Each translation $(\alpha, \beta) \mapsto(\alpha, \beta)+(i, j)$ with fixed (i, j), preserves the edge colors. Hence, the translations by the vectors $(i, 0), 1 \leq i \leq p$ and the vectors $(0, j), 0 \leq j \leq 3$, give $4 p$ edge-disjoint copies of T covering all the edges of G exactly once, so that T decomposes $G \simeq K_{2 p, 2 p}$.

3.3.2 Trees with large growth ratio

In this section we shall prove Theorem 3.2. The result will be derived from the more general Theorem 3.11 below.
In what follows we use the following notation. Let T be a tree with partite sets A and B, and let $v_{0} \in A$ be a fixed vertex of T with eccentricity h. Denote by $V_{i}, 0 \leq i \leq h$, the set of vertices of T at distance i from v_{0}. We also define, for $0 \leq r \leq h, A_{r}^{+}=A \cap \bigcup_{j \leq r} V_{j}$ and $B_{r}^{+}=B \cap \bigcup_{j \leq r} V_{j}$. Note that, since $v_{0} \in A$, we have $A_{r}^{+}=\bigcup_{j \leq r, j \text { even }} V_{j}$ and $B_{r}^{+}=\bigcup_{j \leq r, j \text { odd }} V_{j}$.

Lemma 3.10 Let p be a prime and let T be a tree with m edges. Let v_{0} be a vertex of the tree with eccentricity $h \geq 2$. If

$$
p-m \geq \max \left\{\left|A_{h-2}^{+}\right|,\left|B_{h-2}^{+}\right|\right\}
$$

then T admits a \mathbb{Z}_{p}-bigraceful map.
Proof. For $k=1,2, \ldots, h$, let $T_{k}=T-\left(V_{k+1} \cup \cdots \cup V_{h}\right)$ denote the subtree of T induced by the first k levels of T. Suppose that T_{k-1} admits a \mathbb{Z}_{p}-bigraceful labeling f^{\prime}.
If m^{\prime} is the size of T_{k} then $p-m^{\prime} \geq p-m \geq \max \left\{\left|A_{h-2}^{+}\right|,\left|B_{h-2}^{+}\right|\right\} \geq$ $\max \left\{\left|A_{k-2}^{+}\right|,\left|B_{k-2}^{+}\right|\right\}$. Hence T_{k} satisfies the hypothesis of Lemma 3.8 (with $A_{0}=V_{k}$) and there is a \mathbb{Z}_{p}-bigraceful labeling of T_{k}. Since T_{1} is a star, which clearly admits a \mathbb{Z}_{p}-bigraceful labeling, the result follows by an iterated application of Lemma 3.8.

Theorem 3.11 Let p be a prime and let T be a tree with p edges. Let v_{0} be a vertex of the tree with eccentricity $h \geq 4$. If

$$
\left|V_{h}\right|+\left|V_{h-1}\right| \geq \max \left\{\left|A_{h-4}^{+}\right|,\left|B_{h-4}^{+}\right|\right\}
$$

then T decomposes $K_{2 p, 2 p}$.
Proof. Let $T^{\prime}=T-V_{h}-V_{h-1}$. Since $p-\left|E\left(T^{\prime}\right)\right|=\left|V_{h}\right|+\left|V_{h-1}\right| \geq$ $\max \left\{\left|A_{h-4}^{+}\right|,\left|B_{h-4}^{+}\right|\right\}$, Lemma 3.10 implies that T^{\prime} admits a $\left(\mathbb{Z}_{p}\right)$-bigraceful labeling and then by Lemma 3.9, T decomposes $K_{2 p, 2 p}$.

The hypothesis of Theorem 3.11 are illustrated in Fig. 3.3.
To prove that a tree with growth ratio $\sqrt{\frac{1+\sqrt{5}}{2}}$ and p edges decomposes $K_{2 p, 2 p}$ we will need the following technical lemma.

Figure 3.3 Hypothesis of Theorem 3.11

Lemma 3.12 Let T be a tree with growth ratio $\alpha \geq 1$ at some vertex v_{0} with eccentricity $h \geq 4$. Then

$$
\max \left\{\left|A_{h-4}^{+}\right|,\left|B_{h-4}^{+}\right|\right\}<\frac{c}{\alpha^{4}},
$$

where $c=|A|$ if h is even and $c=|B|$ if h is odd.

Proof. Suppose first that h is even. We have

$$
\begin{aligned}
\left|A_{h-4}^{+}\right|-\left|B_{h-4}^{+}\right| & =\sum_{\substack{j \leq h-4 \\
j \leq \text { even }}}\left|V_{j}\right|-\sum_{\substack{j \leq h-4 \\
j o d d}}\left|V_{j}\right| \\
& =\left|V_{0}\right|+\left(\left|V_{2}\right|-\left|V_{1}\right|\right)+\cdots+\left(\left|V_{h-4}\right|-\left|V_{h-5}\right|\right) \geq 0
\end{aligned}
$$

since $\left|V_{i+1}\right| \geq\left|V_{i}\right|$ for each $i=0,1, \ldots, h-1$. Thus max $\left\{\left|A_{h-4}^{+}\right|,\left|B_{h-4}^{+}\right|\right\}=$ $\left|A_{h-4}^{+}\right|$.

On the other hand,

$$
\begin{aligned}
\left|A_{h-4}^{+}\right|=\sum_{\substack{j \leq h-4 \\
j \text { even }}}\left|V_{j}\right| & \leq \frac{1}{\alpha} \sum_{\substack{j \leq h-3 \\
j \text { odd }}}\left|V_{j}\right|<\frac{1}{\alpha^{2}} \sum_{\substack{j \leq h-2 \\
j \leq \text { even }}}\left|V_{j}\right| \\
& \leq \frac{1}{\alpha^{3}} \sum_{\substack{j \leq h-1 \\
j \text { odd }}}\left|V_{j}\right|<\frac{1}{\alpha^{4}} \sum_{\substack{j \leq h \\
j \text { even }}}\left|V_{j}\right|=\frac{1}{\alpha^{4}}|A|,
\end{aligned}
$$

which proves the inequality.
The case h odd can be similarly seen by exchanging the roles of A_{h-4}^{+}and B_{h-4}^{+}.

Proof of Theorem 3.2. Since trees with diameter at most 7 decompose $K_{2 p, 2 p}$ [40, Corollary 3.2], we can assume that the eccentricity of v_{0} is $h \geq 4$.
Suppose that h is even. By Lemma 3.12,

$$
\begin{aligned}
\max \left\{\left|A_{h-4}^{+}\right|,\left|B_{h-4}^{+}\right|\right\} & <\frac{1}{\alpha^{4}}|A| \\
& \leq \frac{\left|V_{h}\right|}{\alpha^{4}}\left(1+\frac{1}{\alpha^{2}}+\frac{1}{\alpha^{4}}+\cdots+\frac{1}{\alpha^{h}}\right) \\
& =\frac{\left|V_{h}\right|}{\alpha^{4}}\left(\frac{1-1 / \alpha^{h+2}}{1-1 / \alpha^{2}}\right)
\end{aligned}
$$

Therefore, if $\frac{1-1 / \alpha^{h+2}}{\alpha^{4}\left(1-1 / \alpha^{2}\right)} \leq 1$ then we are on the hypothesis of Theorem 3.11. Last inequality holds if $\alpha^{4}\left(1-\frac{1}{\alpha^{2}}\right)=\alpha^{4}-\alpha^{2} \geq 1$, and this is true for all $\alpha \geq \sqrt{\frac{1+\sqrt{5}}{2}}$.
A similar reasoning for h odd gives the same conclusion.

3.3.3 Trees with large base growth ratio

We can study the decomposition of $K_{2 p, 2 p}$ from a similar, but not equivalent, point of view that leads to the proof of Theorems 3.3 and 3.4. These two theorems will be derived from the more general Theorem 3.15 below. We first state the following direct consequences of Lemma 3.8.

Lemma 3.13 Let p be a prime and let T be a tree with m edges. Let f^{\prime} be a \mathbb{Z}_{p}-bigraceful map of the base tree T^{\prime} of T. If $p-m \geq \max \left\{\left|A^{\prime}\right|,\left|B^{\prime}\right|\right\}$, where A^{\prime} and B^{\prime} are the two partite sets of T^{\prime} then f^{\prime} can be extended to a \mathbb{Z}_{p}-bigraceful map of T.

Proof. Let $A \supset A^{\prime}$ and $B \supset B^{\prime}$ be the partite sets of T. Let $A_{0}=A \backslash A^{\prime}$ and $B_{0}=B \backslash B^{\prime}$.
Since $p-\left(m-\left|B_{0}\right|\right) \geq p-m \geq\left|A^{\prime}\right|=\left|A \backslash A_{0}\right|$, it follows from Lemma 3.8 that f^{\prime} can be extended to a \mathbb{Z}_{p}-bigraceful labeling f_{1} of $T^{\prime}+A_{0}$. Similarly, since $p-m \geq\left|B^{\prime}\right|=\left|B \backslash B_{0}\right|$, Lemma 3.8 implies again that f_{1} can be extended to a \mathbb{Z}_{p}-bigraceful labeling of the whole tree T.

Corollary 3.14 Let p be a prime and let T be a tree with m edges. If $p-m \geq \max \left\{\left|A^{\prime}\right|,\left|B^{\prime}\right|\right\}$, where A^{\prime} and B^{\prime} are the two partite sets of the base tree T^{\prime} of T, then T admits a \mathbb{Z}_{p}-bigraceful map.

Proof. Note that the condition $p-m \geq \max \left\{\left|A^{\prime}\right|,\left|B^{\prime}\right|\right\}$ is also satisfied by T^{\prime} : if m^{\prime} is the number of edges of T^{\prime} then $p-m^{\prime}>p-m \geq \max \left\{\left|A^{\prime}\right|,\left|B^{\prime}\right|\right\}>$ $\max \left\{\left|A^{\prime \prime}\right|,\left|B^{\prime \prime}\right|\right\}$, where $A^{\prime \prime}$ and $B^{\prime \prime}$ are the two partite sets of the base tree $T^{\prime \prime}$ of T^{\prime}. In particular, this condition is also satisfied by each tree in the sequence $T, T^{\prime}, T^{\prime \prime}, \ldots, T^{(i)}, \ldots, T^{\left(h^{\prime}\right)}$, where $T^{(i)}$ is the base tree of $T^{(i-1)}$, $1 \leq i \leq h^{\prime}$. Since $T^{\left(h^{\prime}\right)}$ consists eventually of an edge or a single vertex, which trivially admits a \mathbb{Z}_{p}-bigraceful labeling, the iterated application of Lemma 3.13 gives the result.

Theorem 3.15 Let p be a prime and let T be a tree with p edges. Let T^{\prime} be the base tree of T and let $T^{\prime \prime}$ be the base tree of T^{\prime}. If

$$
\left|E(T) \backslash E\left(T^{\prime}\right)\right| \geq \max \left\{\left|A^{\prime \prime}\right|,\left|B^{\prime \prime}\right|\right\}
$$

where $A^{\prime \prime}$ and $B^{\prime \prime}$ are the partite sets of $T^{\prime \prime}$, then T decomposes $K_{2 p, 2 p}$.
Proof. Let $m^{\prime}=\left|E\left(T^{\prime}\right)\right|$. By Corollary 3.14 and the condition $p-m^{\prime}=$ $\left|E(T) \backslash E\left(T^{\prime}\right)\right| \geq \max \left\{\left|A^{\prime \prime}\right|,\left|B^{\prime \prime}\right|\right\}$, the base tree T^{\prime} of T admits a $\mathbb{Z}_{p^{-}}$ bigraceful labeling. Then, the result follows by Lemma 3.9.

Fig. 3.4 depicts an example of two trees that show that the statements of Theorems 3.11 and 3.15 are independent. The tree T_{1} satisfies the hypothesis of Theorem 3.15 but not the ones of Theorem 3.11, whereas T_{2} fulfills the requirements of Theorem 3.11 but not the ones in Theorem 3.15.

Proof of Theorem 3.3. Recall that we denote by L_{i} the set of leaves of $T^{(i)}, i=0,1, \ldots, h^{\prime}-1,\left|L_{h^{\prime}}\right|=1$, where $T^{(i)}$ is the base tree of $T^{(i-1)}$ for $i \geq 1$ and h^{\prime} is the minimum positive integer k such that $T^{(k)}$ is a tree with

Figure 3.4 Example of trees illustrating the independence of Theorems 3.11 and 3.15.
at most one leaf. We have

$$
\begin{aligned}
\max \left\{\left|A^{\prime \prime}\right|,\left|B^{\prime \prime}\right|\right\} & \leq \sum_{i=2}^{h^{\prime}}\left|L_{i}\right| \leq \frac{1}{\alpha^{2}} \sum_{i=0}^{h^{\prime}}\left|L_{i}\right| \\
& \leq \frac{1}{\alpha^{2}}\left|L_{0}\right|\left(1+\frac{1}{\alpha}+\cdots+\frac{1}{\alpha^{h^{\prime}}}\right) \\
& =\frac{1}{\alpha^{2}}\left|L_{0}\right| \frac{1-1 / \alpha^{h^{\prime}+1}}{1-1 / \alpha}
\end{aligned}
$$

where $\left|L_{0}\right|=\left|E(T) \backslash E\left(T^{\prime}\right)\right|$. Hence, if $\frac{1}{\alpha^{2}} \frac{1-1 / \alpha^{h^{\prime}+1}}{1-1 / \alpha} \leq 1$ we are on the hypothesis of the Theorem 3.15. Since $0<1-1 / \alpha^{h^{\prime}-1} \leq 1$, it suffices that $\alpha^{2}(1-1 / \alpha) \geq 1$. This last inequality holds for $\alpha \geq \phi$.

Proof of Theorem 3.4. We may assume that T^{\prime}, the base tree of T, is not a caterpillar since otherwise we know that T decomposes $K_{p, p}$ [40].
Let $m \geq p / 3$ be the number of leaves of T and let $T^{\prime \prime}$ the base tree of T^{\prime} and $A^{\prime \prime}, B^{\prime \prime}$ its partite sets with $\left|A^{\prime \prime}\right| \geq\left|B^{\prime \prime}\right|$. Note that the number $m^{\prime \prime}$ of leaves of $T^{\prime \prime}$ satisfies $m^{\prime \prime} \geq\left|A^{\prime \prime}\right|-\left|B^{\prime \prime}\right|+1$ and that the number of leaves of
T^{\prime} satisfies $m^{\prime} \geq m^{\prime \prime}$. Hence,

$$
p+1=m+m^{\prime}+\left|A^{\prime \prime}\right|+\left|B^{\prime \prime}\right| \geq p / 3+2\left|A^{\prime \prime}\right|+1,
$$

which implies $\left|A^{\prime \prime}\right| \leq p / 3 \leq m$. Therefore T satisfies the hypothesis of Theorem 3.15 and thus it decomposes $K_{2 p, 2 p}$.

3.4 Large subtrees

To prove Theorems 3.5 and 3.6 we shall show that a tree T with m edges can be embedded in a tree of the stated size that admits either a modular bigraceful labeling or a ρ-valuation.

We also use a well-known theorem by Kneser. The stabilizer $H(C)$ of a subset C in an abelian group \mathcal{G} is defined by

$$
H(C)=\{g \in \mathcal{G}: C+g=C\} .
$$

In other words, $H(C)$ is the largest subgroup of \mathcal{G} that has the property $H(C)+C=C$. If \mathcal{G} is finite, then $|H(C)|$ divides both $|\mathcal{G}|$ and $|C|$.

Theorem 3.16 (Kneser; see, e.g., [45]) If A and B are finite non-empty subsets of an abelian group satisfying $|A+B| \leq|A|+|B|-1$, and H is the stabilizer of $A+B$, then

$$
|A+B|=|A+H|+|B+H|-|H| .
$$

The next lemma, which is based on Kneser's theorem, will be used later to prove the existence of appropriate labelings.

Lemma 3.17 Let r be a positive integer and let X_{1}, X_{2}, Y be non-empty subsets of \mathbb{Z}_{r} with $\left|X_{1}\right| \geq\left|X_{2}\right|$ and $|Y|>1$. If the following condition holds

$$
\begin{equation*}
r-\left|X_{1}\right|-\left|X_{2}\right|=|Y|-1, \tag{3.1}
\end{equation*}
$$

then $\left|X_{1}+Y\right|>\left|X_{2}\right|$.

Proof. If $\left|X_{1}+Y\right| \leq\left|X_{2}\right|$, then we must have $\left|X_{1}+Y\right|=\left|X_{2}\right|=\left|X_{1}\right|<$ $\left|X_{1}\right|+|Y|-1$. By Theorem 3.16,

$$
\left|X_{1}+Y\right|=\left|X_{1}+H\right|+|Y+H|-|H|
$$

where H is the stabilizer of $X_{1}+Y$. From this relation and $\left|X_{1}+Y\right|=\left|X_{1}\right|$ we deduce that $|Y+H|=|H|$ and therefore $|Y| \leq|H|$.
Now, since $|H|$ divides the left hand-side of $(3.1),|H|$ must also divide $|Y|-1$. Finally, $|Y|>1$ implies that $|H| \leq|Y|-1$, contradicting $|Y| \leq|H|$.

3.4.1 Proof of Theorem 3.5

We first show that a tree that admits a \mathbb{Z}_{n}-bigraceful map can be embedded in a tree with n edges that decomposes $K_{n, n}$.

Lemma 3.18 Every tree T that admits a \mathbb{Z}_{n}-bigraceful map with n odd is a subtree of a tree T^{\prime} with n edges that admits a modular bigraceful labeling.

Proof. Let m be the number of edges of T. Let f be a \mathbb{Z}_{n}-bigraceful map of T. Clearly $n \geq m$. We define a sequence of trees $T_{m}, T_{m+1}, \ldots, T_{n}$, with $T_{m}=T$ and $T_{n}=T^{\prime}$, by adding one leaf at each step and extend f on T^{\prime} as a modular bigraceful map.

Suppose we have defined T_{i} and a \mathbb{Z}_{n}-bigraceful map f on T_{i} for some i such that $m \leq i<n$. Let A_{i} and B_{i} be the two partite sets of T_{i} with $\left|A_{i}\right| \geq\left|B_{i}\right|$. Let

$$
\begin{aligned}
A_{i}^{\prime} & =-f\left(A_{i}\right) \\
B_{i}^{\prime} & =f\left(B_{i}\right) \\
C_{i} & =\left\{f(x)+f(y): x y \in E\left(T_{i}\right)\right\} \\
D_{i} & =\mathbb{Z}_{n} \backslash C_{i}
\end{aligned}
$$

Since T_{i} is a tree, we have the following relation among these sets:

$$
\begin{equation*}
\left|A_{i}^{\prime}\right|+\left|B_{i}^{\prime}\right|=n-\left|D_{i}\right|+1 \tag{3.2}
\end{equation*}
$$

It suffices to prove that $\left|D_{i}+A_{i}^{\prime}\right|>\left|B_{i}^{\prime}\right|$. In this case there exists $d \in D_{i}$ and some $a \in f\left(A_{i}\right)$ such that $d-a \in \mathbb{Z}_{n} \backslash B_{i}^{\prime}$. Define $T_{i+1}=T_{i}+e_{i+1}$, where e_{i+1} joins the vertex in A_{i} labeled a to a new vertex v_{i+1} and $f\left(v_{i+1}\right)=d-a$; this gives the extension of f to T_{i+1}.

Since $\left|D_{i}\right|=n-\left|C_{i}\right|=n-i \geq 1$, either $\left|D_{i}\right|=1$ or $\left|D_{i}\right|>1$. In the former case $(i=n-1)$, since n, which equals $\left|A_{n-1}^{\prime}\right|+\left|B_{n-1}^{\prime}\right|$, is odd, $\left|D_{n-1}+A_{n-1}^{\prime}\right|=\left|A_{n-1}^{\prime}\right|>\left|B_{n-1}^{\prime}\right|$. In the latter case we apply Lemma 3.17 with $r=n, X_{1}=A_{i}^{\prime}, X_{2}=B_{i}^{\prime}$ and $Y=D_{i}$; the condition (3.1) of the lemma holds by (3.2).

In view of Lemma 3.18, and using the cyclic decomposition from [40], to prove the statement (1) of Theorem 3.5 it suffices to show that every tree T with m edges admits a \mathbb{Z}_{n}-bigraceful labeling for every odd $n \geq 2 m-1$. The next lemma shows that this is indeed the case.

Lemma 3.19 Every tree T with m edges admits a \mathbb{Z}_{n}-bigraceful map for every n such that $n \geq m+\max \{|A|,|B|\}-1$, where A and B are the partite sets of T.

Proof. The proof is by induction on m, the result being obvious for $m=1$. Let u be a leaf of T with neighbor v. Suppose first that $u \in A$. Let $T^{\prime}=T-u$, choose an integer n such that $n \geq m+\max \{|A|,|B|\}-1$, and let f be a \mathbb{Z}_{n}-bigraceful map on T^{\prime}. Let

$$
\begin{aligned}
C & =\left\{f(x)+f(y): x y \in E\left(T^{\prime}\right)\right\} \\
D & =\mathbb{Z}_{n} \backslash C
\end{aligned}
$$

Since $|D-f(v)|=|D|=n-m+1 \geq \max \{|A|,|B|\} \geq|A|$, there exists $d \in D$ such that $d-f(v) \notin f(A \backslash\{u\})$. Extending f to T by defining $f(u)=d-f(v)$ produces a \mathbb{Z}_{n}-bigraceful labeling of T. If $u \in B$, we can perform an analogous reasoning.

Statement (2) of Theorem 3.5 may give a better upper bound for the minimum n for which we can ensure that there is a tree T^{\prime} with n edges containing a given tree T with the property that T^{\prime} decomposes $K_{n, n}$. We use the following simple lemma.

Lemma 3.20 A tree T with partite sets A and B such that $|A| \geq|B|$ has at least $|A|-|B|+1$ leaves in A.

Proof. Let $A^{\prime} \subset A$ be the set of non-leaves in A, and let $T^{\prime}=T-\left(A \backslash A^{\prime}\right)$. Then $\left|A^{\prime}\right|+|B|-1=\left|E\left(T^{\prime}\right)\right|=\sum_{x \in A^{\prime}} d(x) \geq 2\left|A^{\prime}\right|$. Hence $\left|A^{\prime}\right| \leq|B|-1$, and T has at least $|A|-\left|A^{\prime}\right| \geq|A|-|B|+1$ leaves in A.

Lemma 3.21 Let T be a tree with m edges. If p is a prime such that $p \geq\lceil 3 m / 2\rceil$, then there is a \mathbb{Z}_{p}-bigraceful map of T.

Proof. Let A and B be the partite sets of T with $|A| \geq|B|$. By Lemma 3.20 there is a set $A_{0} \subset A$ of leaves such that $\left|A^{\prime}\right|=\left|A \backslash A_{0}\right|=|B|$. Let $T^{\prime}=T-A_{0}$. Since $|B| \leq\lceil m / 2\rceil$ and $p \geq m+|B|$, it follows from Lemma 3.19 that there is a \mathbb{Z}_{p}-bigraceful map f^{\prime} of T^{\prime}. If $A_{0}=\emptyset$ we are done. Otherwise, let C^{\prime} denote the set of edge values of f^{\prime}. Thus C^{\prime} is a subset of \mathbb{Z}_{p} of cardinality $2\left|A^{\prime}\right|-1$.
Let $A_{0}=\left\{a_{1}, \ldots, a_{k}\right\}$. Let $b_{\sigma(i)}$ be the vertex in B adjacent to a_{i}, for $1 \leq i \leq k$. Consider the polynomial $P \in \mathbb{Z}_{p}\left[z_{1}, \ldots, z_{k}\right]$ defined as
$P=\prod_{1 \leq i<j \leq k}\left(z_{i}-z_{j}\right) \prod_{1 \leq i<j \leq k}\left(z_{i}-b_{\sigma(i)}^{\prime}-\left(z_{j}-b_{\sigma(j)}^{\prime}\right)\right) \prod_{1 \leq i \leq k} \prod_{a \in A^{\prime}}\left(z_{i}-b_{\sigma(i)}^{\prime}-a^{\prime}\right)$,
where $b_{\sigma(i)}^{\prime}=f^{\prime}\left(b_{\sigma(i)}\right)$ and $a^{\prime}=f^{\prime}(a)$. We can write

$$
P=\prod_{1 \leq i<j \leq k}\left(z_{i}-z_{j}\right)^{2} \prod_{1 \leq i \leq k} z_{i}^{\left|A^{\prime}\right|}+\text { terms of lower degree. }
$$

It is known that the coefficient of the monomial $\prod_{i=1}^{k} z_{i}^{k-1}$ in the expansion of $\prod_{1 \leq i<j \leq k}\left(z_{i}-z_{j}\right)^{2}$ is $(-1)^{\binom{k}{2}} k$! (see, e.g., [4]), which is nonzero modulo p. Therefore P has a monomial

$$
z_{1}^{k+\left|A^{\prime}\right|-1} \cdots z_{k}^{k+\left|A^{\prime}\right|-1}
$$

of maximum degree with nonzero coefficient. Let $D=\mathbb{Z}_{p} \backslash C^{\prime}$. Note that $|D|=p-\left|C^{\prime}\right| \geq\left\lceil 3\left(2\left|A^{\prime}\right|+k-1\right) / 2\right\rceil-2\left|A^{\prime}\right|+1 \geq\left|A^{\prime}\right|+k$. By Theorem 1.1, there exist $d_{1}, \ldots, d_{k} \in D$ such that $P\left(d_{1}, \ldots, d_{k}\right) \neq 0$. Extend f^{\prime} on T^{\prime} to f on T by defining $f\left(a_{i}\right)=d_{i}-f^{\prime}\left(b_{\sigma(i)}\right)$. Since

$$
\prod_{1 \leq i \leq k} \prod_{a \in A^{\prime}}\left(d_{i}-b_{\sigma(i)}^{\prime}-a^{\prime}\right) \neq 0
$$

the values of f on A_{0} are different from the ones on A^{\prime}; since

$$
\prod_{1 \leq i<j \leq k}\left(d_{i}-b_{\sigma(i)}^{\prime}-\left(d_{j}-b_{\sigma(j)}^{\prime}\right)\right) \neq 0
$$

these values are pairwise distinct. Finally, since

$$
\prod_{1 \leq i<j \leq k}\left(d_{i}-d_{j}\right) \neq 0
$$

the edge values d_{1}, \ldots, d_{k} of the edges incident to a_{1}, \ldots, a_{k} are distinct and, since $d_{i} \in \mathbb{Z}_{p} \backslash C^{\prime}$, they are also different from the ones taken by f on T^{\prime}. Thus f is a \mathbb{Z}_{p}-bigraceful map of T.

Theorem 3.5 (2) follows from Lemmas 3.21 and 3.18, and using the cyclic decomposition from [40].

3.4.2 Proof of Theorem 3.6

Following the ideas of the proof of Theorem 3.5, we give an upper bound for the number of edges that have to be added to an arbitrary tree T to obtain a tree that admits a ρ-valuation in terms of the size of T.

Lemma 3.22 Every tree T with m edges has a ρ_{n}-valuation for every $n \geq$ $\lceil(3 m-1) / 2\rceil$.

Proof. Let $T_{1}, T_{2}, \ldots, T_{m}$ be trees such that $T_{m}=T, T_{1}$ has one edge $v_{0} v_{1}$, and T_{i+1} is obtained from T_{i} by adding a leaf v_{i+1} adjacent to some $u \in V\left(T_{i}\right)$. Define a ρ_{n}-valuation of T inductively as follows.
Define $f\left(v_{0}\right)=x_{0} \in \mathbb{Z}_{2 n+1}, f\left(v_{1}\right)=x_{1} \in \mathbb{Z}_{2 n+1}$ arbitrarily, with $x_{0} \neq x_{1}$. Suppose f is defined on T_{i} for $1 \leq i<m$, and let

$$
\begin{aligned}
V_{i} & =f\left(V\left(T_{i}\right)\right), \\
C_{i} & =\left\{ \pm(f(x)-f(y)): x y \in E\left(T_{i}\right)\right\} \cup\{0\}, \\
D_{i} & =\mathbb{Z}_{2 n+1} \backslash C_{i} .
\end{aligned}
$$

Since $\left|D_{i}+f(u)\right|=\left|D_{i}\right|=2 n+1-2 i-1 \geq m+1>\left|V_{i}\right|$, there exists $d \in D_{i}$ such that $d+f(u) \in \mathbb{Z}_{2 n+1} \backslash V_{i}$. Thus we can define $f\left(v_{i+1}\right)=d+f(u)$. At the end, we have a ρ_{n}-valuation of T.

Lemma 3.23 Every tree T of size m that admits a ρ_{n}-valuation for $n \geq m$ can be embedded into a tree T^{\prime} of size n that admits a ρ-valuation.

Proof. If $n=m$ we are done. Otherwise, let f be the ρ_{n}-valuation of T. We define a sequence of trees $T_{m}, T_{m+1}, \ldots, T_{n}$ with $T_{m}=T$ and $T_{n}=T^{\prime}$, by adding one leaf at each step and extend f to T^{\prime} as a ρ-valuation.

Suppose we have defined T_{i} and a ρ_{n}-valuation f on T_{i} for some i such that $m \leq i<n$. Let

$$
\begin{aligned}
V_{i} & =f\left(V\left(T_{i}\right)\right) \\
C_{i} & =\left\{ \pm(f(x)-f(y)): x y \in E\left(T_{i}\right)\right\} \cup\{0\} \\
D_{i} & =\mathbb{Z}_{2 n+1} \backslash C_{i}
\end{aligned}
$$

Since T_{i} is a tree, we have the following relation:

$$
\begin{equation*}
2\left|V_{i}\right|-1=2 n+1-\left|D_{i}\right| . \tag{3.3}
\end{equation*}
$$

Since $\left|D_{i}\right|=2 n+1-\left|C_{i}\right|=2 n-2 i \geq 2$ we can apply Lemma 3.17 with $r=2 n+1, X_{1}=X_{2}=V_{i}$, and $Y=D_{i}$ to obtain $\left|D_{i}+V_{i}\right|>\left|V_{i}\right|$. By (3.3), condition (3.1) of Lemma 3.17 holds. Therefore there exists $d \in D_{i}$ and some $a \in V_{i}$ such that $d+a \in \mathbb{Z}_{2 n+1} \backslash V_{i}$. Let $T_{i+1}=T_{i}+e_{i+1}$ where e_{i+1} joins the vertex in V_{i} labeled with a to a new vertex v_{i+1}. By defining $f\left(v_{i+1}\right)=d+a$ we extend f to a ρ_{n}-valuation of T_{i+1}. By iterating this procedure we eventually get a ρ-valuation of a tree T^{\prime} that contains T as a subtree.

Theorem 3.6 is a direct consequence of Lemmas 3.22 and 3.23 , and the fact that a graph with m edges cyclically decomposes $K_{2 m+1}$ if and only if it admits a ρ-valuation (Rosa, [47]).
Another related result is given by Van Bussel [10, Theorem 1]; it implies that every tree with m edges has a ρ_{n}-valuation, with $n=2 m-\operatorname{diam}(T)$. Since a random tree has diameter of order \sqrt{m}, this lower bound is in general worse than the one obtained in Theorem 3.6 (see also Lemma 3.22).

Sumset partition problem

A sequence $m_{1} \geq m_{2} \geq \cdots \geq m_{k}$ of k positive integers is n-realizable if there is a partition X_{1}, \ldots, X_{k} of the set $[n]$ such that the sum of the elements in X_{i} is m_{i} for each $i=1,2, \ldots, k$. In Section 4.2 we study the n realizable sequences by adopting a different viewpoint from the one that has been previously used in the literature. We consider the n-realizability of a sequence in terms of the length k of the sequence or the values of its distinct elements. We characterize all n-realizable sequences with $k \leq 4$ and, for $k \geq$ 5 , we prove that $n \geq 4 k-1, m_{k}>4 k-1$ and $\sum_{i=1}^{k} m_{i}=\binom{n+1}{2}$ are sufficient conditions for a sequence to be n-realizable. We also obtain characterizations for n-realizable sequences whose elements are almost all below n using some results on complete sets. These characterizations complement the one used in connection with the ascending subgraph decomposition conjecture of Alavi et al. [2]. Finally, in Section 4.3, we consider the modular version of the problem and prove that all sequences in \mathbb{Z}_{p} of length $k \leq(p-1) / 2$ are realizable for any prime $p \geq 3$. The bound on k is best possible. The main results of this chapter are summarized in [43].

4.1 Introduction

The sumset partition problem consists, given a sequence $m_{1}, m_{2}, \ldots, m_{k}$ of k positive integers and a set X of positive integers, in finding a partition of X into k subsets $X_{1}, X_{2}, \ldots, X_{k}$ such that the sum of the elements in X_{i} is m_{i}, for each $i=1,2, \ldots, k$.

For the sequences we will follow the notation of [12]. A sequence of positive integers $m_{1}, m_{2}, \ldots, m_{k}$ that is ordered in a non-increasing way, that is, $m_{1} \geq m_{2} \geq \cdots \geq m_{k}$, will be denoted by $\left\langle m_{1}, m_{2}, \ldots, m_{k}\right\rangle$. If the ordering
is not specified, we will simply denote a sequence by ($m_{1}, m_{2}, \ldots, m_{k}$). The parameter k is the length of the sequence. A sequence $\left\langle m_{1}, \ldots, m_{k}\right\rangle$ may be also denoted as $\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$, where $u_{i}<u_{i+1}, 1 \leq i \leq r-1$ and $\sum_{i=1}^{r} \alpha_{i}=k$. We also assume that for all $i, \alpha_{i} \geq 1$. Note that in the latter form, the sequence is depicted in increasing way. For example $\langle 7,7,7,4,2,2\rangle$ can be also denoted by $\left\langle 2^{2}, 4,7^{3}\right\rangle$. From here on we will use the two notations indistinctively if there is no risk of confusion.

As said at the beginning of the chapter, a sequence ($m_{1}, m_{2}, \ldots, m_{k}$) is said to be n-realizable if the set $X=[n]$ can be partitioned into k mutually disjoint subsets X_{1}, \ldots, X_{k} such that $\sum X_{i}=m_{i}$ for each $1 \leq i \leq k$. In this context, a sequence $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ that verifies $\sum_{i=1}^{k} m_{i}=\binom{n+1}{2}\left(=\sum[n]\right)$ is said to be n-feasible. Obviously, if a sequence is n-realizable, then it is n-feasible. Here we want to characterize the n-feasible sequences that are n-realizable.
The study of n-realizable sequences was motivated by the ascending subgraph decomposition problem posed by Alavi, Boals, Chartrand, Erdös and Oellerman in [2], which asks for a decomposition of a given graph G of size $\binom{n+1}{2}$ by subgraphs H_{1}, \ldots, H_{n} where H_{i} has size i and is a subgraph of H_{i+1} for each $i=1, \ldots, n-1$. These authors conjectured that a forest of stars of size $\binom{n+1}{2}$ with each component having at least n edges admits an ascending subgraph decomposition by stars. This is equivalent to the fact that every n-feasible sequence $\left\langle m_{1}, m_{2}, \ldots, m_{k}\right\rangle$ with $m_{k} \geq n$ is n-realizable, a result proved by Ma, Zhou and Zhou [44]. We will deal with the ascending subgraph decomposition problem of bipartite graphs in Chapter 5. Other instances of the sumset partition problem have been also considered in the literature, some of them related to graph decomposition problems; see for instance $[7,18,21,22,23,42]$. In particular, the following n-feasible sequences have been shown to be n-realizable.
(1) $\langle m, m, \ldots, m, l\rangle$, where $m \geq n[7]$;
(2) $\langle m+1, m+1, \ldots, m+1, m, m, \ldots, m\rangle$, where $m \geq n$ [21];
(3) $\langle m+k-2, m+k-3, \ldots, m+1, m, l\rangle$, where $m \geq n[21]$;
(4) $\left\langle m_{1}, m_{2}, \ldots, m_{k}\right\rangle$, where $m_{k} \geq n[44]$;
(5) $\left\langle m_{1}, m_{2}, \ldots, m_{k}\right\rangle$, where $m_{k-1} \geq n[12]$.

The condition $m_{k} \geq n$ is far from being necessary for a sequence to be n realizable. Chen, Fu, Wang and Zhou [12] showed that $m_{k-1} \geq n$ (sequence
(5) above) is a weaker sufficient condition, which is somewhat best possible in view of the fact that a sequence with $m_{k-1}=m_{k}=1$ is never n-realizable. However the characterization of n-realizable sequences is still a wide open problem. In our work we adopt a different viewpoint and consider the n realizability of a sequence in terms of the length k of the sequence or the values of its distinct elements.

4.2 Sequences in \mathbb{Z}

Here we consider the classic treatment of the problem where the set to be partitioned is $[n] \subset \mathbb{Z}$. The partition of \mathbb{Z}_{n} into subsets with prescribed sums shall be considered in Section 4.3. We first introduce the notion of forbidden sequences, which are used to discard an n-feasible sequence when exactly it contains a forbidden subsequence. Then, we will use some results on complete sets of integers, sets whose subset sums realize all possible values (see, e.g., [48]), to obtain new characterizations for n-realizable sequences.

4.2.1 Forbidden subsequences

We say that a sequence $\left\langle m_{1}, m_{2}, \ldots, m_{k}\right\rangle$ is simply realizable if there exist pairwise disjoint subsets X_{1}, \ldots, X_{k} of $\left[m_{1}\right]$ such that $\sum X_{i}=m_{i}$ for each $i=1,2, \ldots, k$. We say that a sequence is forbidden if it is not realizable. Note that if an n-feasible sequence contains a forbidden sequence as a subsequence then it is obviously not n-realizable. A remark to keep in mind is that an n feasible sequence not containing any forbidden sequence, does not necessarily have to be n-realizable, as shown in the following example.

Example 4.1 Consider the sequence $\langle 13,12,11,9,4,3,2,1\rangle$. It is 10 -feasible and clearly does not have any forbidden subsequence since all the elements of the sequence are pairwise distinct. We can easily check that the sequence is not 10 -realizable. The only possibility for the last 6 elements is $X_{8}=\{1\}$, $X_{7}=\{2\}, X_{6}=\{3\}, X_{5}=\{4\}, X_{4}=\{9\}$ and $X_{3}=\{5,6\}$. Therefore, there is only left the set $\{7,8,10\}$ to obtain $\langle 13,12\rangle$, which is impossible.

Let \mathcal{F}_{k} be the set of minimal forbidden sequences of length k, that is, every sequence in \mathcal{F}_{k} does not contain any proper forbidden subsequence. For
example,

$$
\begin{aligned}
& \mathcal{F}_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle\} ; \\
& \mathcal{F}_{3}=\{\langle 3,3,1\rangle,\langle 3,3,2\rangle,\langle 3,3,3\rangle,\langle 4,4,1\rangle,\langle 4,4,3\rangle,\langle 4,4,4\rangle\} .
\end{aligned}
$$

Realizable sequences of small length can be characterized only in terms of minimal forbidden sequences.

For small values of n a computer search shows that, for $n \leq 7$, the only n-feasible sequences of length three which are not n-realizable are the ones that contain a subsequence in \mathcal{F}_{2}. Similarly, for $n \in\{4,5,6,7\}$, an n-feasible sequence $\left\langle m_{1}, m_{2}, m_{3}, m_{4}\right\rangle$ is n-realizable if and only if it does not contain a subsequence in $\mathcal{F}_{2} \cup \mathcal{F}_{3}$, and is not any of the sequences in

$$
\mathcal{S}=\{\langle 6,6,2,1\rangle,\langle 8,7,3,3\rangle,\langle 8,8,3,2\rangle,\langle 10,10,4,4\rangle,\langle 14,8,3,3\rangle\},
$$

where the first sequence in \mathcal{S} is 5 -feasible and belongs to \mathcal{F}_{4}, the next two sequences are 6 -feasible and the last two sequences are 7 -feasible. By computer search one may verify that, for $n=8$, the only sequences of length four which are n-feasible and not n-realizable contain a forbidden sequence of length at most three. The algorithms which have been used to perform the computer search giving these results for $n \leq 8$ and $k \leq 4$ are detailed in the Appendix A.

Theorem 4.2 An n-feasible sequence $\left\langle m_{1}, m_{2}, m_{3}\right\rangle$ is n-realizable if and only if it does not contain the subsequences in \mathcal{F}_{2}.

Proof. The proof is by induction on n. By the above remarks we may assume $n>7$.
Let $m=\left\langle m_{1}, m_{2}, m_{3}\right\rangle$ be an n-feasible sequence not containing the subsequences $\langle 1,1\rangle$ nor $\langle 2,2\rangle$ with $n>7$. Since the length of the sequence is 3 , the greatest element of the sequence, m_{1}, should be at least $n+1$. If not, we would have $n(n+1) / 2=m_{1}+m_{2}+m_{3} \leq 3 n$, which implies $n \leq 5$.
Then, we can define $m^{\prime}=\left(m_{1}-n, m_{2}, m_{3}\right)$, which is a $(n-1)$-feasible sequence. If m^{\prime} is $(n-1)$-realizable, then by adding n to the set with sum $m_{1}-n$ we get a partition of $[1, n]$ that fits with the given sequence. Otherwise, the sequence m^{\prime} has a subsequence in \mathcal{F}_{2} implying that our original sequence is $\left\langle n+1, m_{2}, 1\right\rangle$ with $1 \leq m_{2} \leq n+1$ or $\left\langle n+2, m_{2}, 2\right\rangle$ with $2 \leq m_{2} \leq n+2$. In either case, $n(n+1) / 2=m_{1}+m_{2}+m_{3} \leq 2+2(n+2)$ implying $n \leq 7$.

Theorem 4.3 Let $n>7$. An n-feasible sequence $\left\langle m_{1}, m_{2}, m_{3}, m_{4}\right\rangle$ is n realizable if and only if it does not contain a subsequence in $\mathcal{F}=\mathcal{F}_{2} \cup \mathcal{F}_{3}$.

Proof. The proof is by induction on n. By the above remarks we know that the result is true for $n=8$. Let $m=\left\langle m_{1}, m_{2}, m_{3}, m_{4}\right\rangle$ be an n-feasible sequence that does not contain a subsequence in \mathcal{F} and $n>8$. Since the length of the sequence is 4 , the greatest element of the sequence, m_{1}, should be at least $n+1$. If not, we would have $n(n+1) / 2=m_{1}+m_{2}+m_{3}+$ $m_{4} \leq 4 n$, which implies $n \leq 7$. Consider the ($n-1$)-feasible sequence $m^{\prime}=\left(m_{1}-n, m_{2}, m_{3}, m_{4}\right)$. If m^{\prime} is $(n-1)$-realizable then by adding n to the part with sum $m_{1}-n$ we get a partition of $[1, n]$ with the desired sums. Otherwise, by the induction hypothesis, it contains a subsequence in \mathcal{F}, so that $m_{1}-n \in\{1,2,3,4\}$.
If $m_{1}-n=1$, then the original sequence is $m=\left\langle n+1, m_{2}, m_{3}, 1\right\rangle$. Therefore, $n(n+1) / 2=m_{1}+m_{2}+m_{3}+m_{4} \leq 1+3(n+1)$ implying $n \leq 7$.
If $m_{1}-n=2$, then $m=\left\langle n+2, m_{2}, m_{3}, 2\right\rangle$ or $m=\left\langle n+2, m_{2}, 2,1\right\rangle$ or $m=\left\langle n+2, m_{2}, 3,3\right\rangle$. In either case, $n(n+1) / 2 \leq 2+3(n+2)$ obtaining that $n \leq 7$.
If $m_{1}-n=3$, then $m=\left\langle n+3, m_{2}, 4,4\right\rangle$ or others with lower sum. In either case, $n(n+1) / 2 \leq 8+2(n+3)$ and $n \leq 7$.
If $m_{1}-n=4$ then $m=\left\langle n+4, m_{2}, 4,4\right\rangle$ or others with lower sum. In either case, $n(n+1) / 2 \leq 8+2(n+4)$ and $n \leq 7$.

For $k \geq 5$ we have the following sufficient condition:
Theorem 4.4 All n-feasible sequences $\left\langle m_{1}, \ldots, m_{k}\right\rangle$ with $n \geq 4 k-1$ and $m_{k}>4 k-1$ are n-realizable for $k \geq 5$.

Proof. The proof is by induction on n. If $n=4 k-1$, is the result of Ma, Zhou and Zhou [44].
Suppose $n>4 k-1$ and let $\left\langle m_{1}, m_{2}, \ldots, m_{k}\right\rangle$ be an n-feasible sequence with $m_{k}>4 k-1$.

Since the length of the sequence is k, the greatest element of the sequence, m_{1}, must be at least $n+1$, otherwise we would have $n(n+1) / 2=m_{1}+\cdots+$ $m_{k} \leq k n$, which implies $n \leq 2 k-1$.
Consider the sequence ($m_{1}-n, m_{2}, \ldots, m_{k}$), which is ($n-1$)-feasible. If $m_{1}-n>4 k-1$ then, by the induction hypothesis, we can realize this
sequence in $[n-1]$. That is, there is a partition X_{1}, \ldots, X_{k} of $[n-1]$ such that

$$
\sum\left(X_{1}\right)=m_{1}-n, \sum\left(X_{2}\right)=m_{2}, \ldots, \sum\left(X_{k}\right)=m_{k} .
$$

Then, by taking $X_{1}^{\prime}=X_{1} \cup\{n\}$ and $X_{2}^{\prime}=X_{2}, \ldots, X_{k}^{\prime}=X_{k}$, we obtain an n-realization of our original sequence.

Suppose now that $m_{1}-n \leq 4 k-1$. Therefore, $m_{1} \leq 4 k+n-1$. Since the original sequence is n-feasible, we know that

$$
n(n+1) / 2=m_{1}+\cdots+m_{k} \leq k m_{1} \leq k(4 k+n-1),
$$

implying $n^{2}+(1-2 k) n+\left(2 k-8 k^{2}\right) \leq 0$. This last inequality is satisfied when

$$
n \leq \frac{2 k-1+\sqrt{(1-2 k)^{2}-8 k+32 k^{2}}}{2}=4 k-1 .
$$

But we were in the case $n-1 \geq 4 k-1$, contradicting the last inequality.

Theorem 4.4 shows that, for n sufficiently large, the condition on the smaller term of an n-realizable sequence which ensures its n-realizability, can be expressed as a function of its length k instead as a function on n itself, as it is in the previously known results. We believe that essentially the same lower bound on n should suffice to ensure n-realizability as long as the sequence does not contain forbidden subsequences. The conjectured value of the lower bound for n is given at the end of this section after collecting some additional evidence. This also raises the question of characterizing the family of minimal forbidden sequences of a given length. We also formulate a conjecture at the end of this section which states that such sequences must be somewhat dense.

We now continue by characterizing realizable sequences. Note that sequences with no repeated elements are not forbidden by definition. Therefore nonrealizable sequences contain repetitions. Clearly, if a sequence $\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$ of length k is realizable, we must have $u_{r} \geq k$. The following lemma states a non-trivial lower bound on u_{r} when the sequence $\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$ is realizable. For an element u_{i} from a sequence $\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$, we denote by $\rho_{i}=\left\lfloor\frac{u_{i}+1}{2}\right\rfloor$, which is the number of representations of u_{i} as a sum of two nonnegative integers,

$$
\rho_{i}=\mid\left\{\{a, b\}: 0 \leq a<b \leq u_{i} \text { and } a+b=u_{i}\right\} \mid .
$$

Lemma 4.5 Suppose that $m=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$ is realizable. Then

$$
\rho_{r}-1 \geq \sum_{i=1}^{r}\left(\alpha_{i}-1\right)+\sum_{i=1}^{r^{\prime}} \alpha_{i}
$$

where r^{\prime} is the number of u_{i} 's less than ρ_{r}. Moreover, if the equality holds then all sets in a realization of m have cardinality at most two.

Proof. Let $\mathcal{X}=\left\{X_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq \alpha_{i}\right.$ and $\left.\sum\left(X_{i}^{j}\right)=u_{i}\right\}$ be a realization of m. Then,

$$
\begin{aligned}
\rho_{r}-1 & \geq \sum_{\substack{1 \leq i \leq r \\
1 \leq j \leq \alpha_{i}}}\left|X_{i}^{j} \cap\left[1, \rho_{r}-1\right]\right| \\
& \geq \sum_{i=1}^{r^{\prime}}\left(\left|X_{i}^{1}\right|+\cdots+\left|X_{i}^{\alpha_{i}}\right|\right)+\sum_{i=r^{\prime}+1}^{r}\left(\left|X_{i}^{1}\right|-1+\cdots+\left|X_{i}^{\alpha_{i}}\right|-1\right) \\
& \geq \sum_{i=1}^{r^{\prime}}\left(2 \alpha_{i}-1\right)+\sum_{i=r^{\prime}+1}^{r}\left(\alpha_{i}-1\right) \\
& =\sum_{i=1}^{r}\left(\alpha_{i}-1\right)+\sum_{1}^{r^{\prime}} \alpha_{i} .
\end{aligned}
$$

The second inequality can be seen in the following way. If $i \in\left[1, r^{\prime}\right]$, then the corresponding u_{i} is less than ρ_{r} and therefore the sets X_{i}^{j}, for $1 \leq j \leq \alpha_{i}$, have all its elements in the interval $\left[1, \rho_{r}-1\right]$. If $i \in\left[r^{\prime}+1, r\right]$, one element of each set may be outside of the interval. Finally, the third inequality is obtained since the cardinality of the sets $X_{i}^{1}, \ldots, X_{i}^{\alpha_{i}}$, for all $1 \leq i \leq r$, is always at least two, except one of them that may contain only a single element. The equality is attained if all the sets have cardinality at most two.

Given a sequence $m=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$, we introduce the edge-colored graph $G=G_{u_{1}, \ldots, u_{r}}$. The set of vertices is $\left[0, u_{r}\right]$, and the set E of edges is defined as $E=E_{1} \cup \cdots \cup E_{r}$ where for each $1 \leq i \leq r, E_{i}=\left\{\left\{l, u_{i}-l\right\}: 0 \leq l \leq\left\lfloor\frac{u_{i}+1}{2}\right\rfloor\right\}$ and we color the edges of E_{i} with u_{i}. Each realization of m by sets of cardinality at most two corresponds to a matching in $G_{u_{1}, \ldots, u_{r}}$ except that two or more edges can meet at 0. In Fig. 4.1 two examples of these graphs are depicted.

Using these graphs, we can obtain sufficient conditions for the realizability of an arbitrary sequence.
(a)

Figure 4.1 (a) The graph $G_{4,11}$. (b) The graph $G_{11,15}$.

Theorem 4.6 A sequence $m=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$ is realizable if the following conditions hold:

$$
\begin{aligned}
\alpha_{1} & \leq \rho_{1}, \\
\alpha_{t}+\sum_{i=1}^{t-1} 2 \alpha_{i} & \leq \rho_{t}+(t-1), \quad t=2, \ldots, r .
\end{aligned}
$$

Moreover, in this case there exists a realization with r sets of cardinality one and the remaining sets of cardinality two.

Proof. Consider the subsequences $m_{t}=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{t}^{\alpha_{t}}\right\rangle$. For $t=1$, if $\alpha_{1} \leq \rho_{1}$ it is clear that m_{1} is realizable by $\alpha_{1}-1$ sets of cardinality two and the set $\left\{u_{1}\right\}$ of cardinality one.

Let $t \geq 2$, and suppose that m_{t-1} is realizable by sets of cardinality two and the sets $\left\{u_{1}\right\}, \ldots,\left\{u_{t-1}\right\}$. This realization of m_{t-1} induces a matching in the graph $G_{u_{1}, \ldots, u_{t}}$. Now, we want to obtain α_{t} sets that add up to u_{t} using free elements, that is, vertices that are not in any edge of the matching except 0 . We pick up the edge $\left\{0, u_{t}\right\}$. The number of remaining edges colored u_{t} is $\rho_{t}-1=\left\lfloor\frac{u_{t}+1}{2}\right\rfloor-1$. In the worst case, we can assume that every edge of the matching touches two different u_{t}-edges, except the $t-1$ edges of the matching incident with 0 , which only touch one u_{t}-edge. Then, the number $\rho_{t}-1$ of remaining u_{t}-edges minus the number of u_{t}-edges touching an edge of the matching is at least

$$
\rho_{t}-1-\sum_{i=1}^{t-1}\left(2 \alpha_{i}-1\right)=\rho_{t}-1-\sum_{i=1}^{t-1} 2 \alpha_{i}+t-1 .
$$

From the t-th restriction we have that $\alpha_{t}-1$ is precisely less or equal than this quantity and therefore, we can select $\alpha_{t}-1$ free u_{t}-edges to complete the realization of m_{t}.

The converse of Theorem 4.6 is not true in general. For instance, take the sequence $\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{5}^{\alpha_{5}}\right\rangle=\left\langle 1,5,6,7,9^{2}\right\rangle$, for which $\left.10=\alpha_{5}+\sum_{i=1}^{4} 2 \alpha_{i}\right\rangle$ $\left\lfloor\frac{u_{5}+1}{2}\right\rfloor+4=9$. But the sequence is realizable with $X_{1}^{1}=\{1\}, X_{2}^{1}=\{5\}$, $X_{3}^{1}=\{6\}, X_{4}^{1}=\{7\}, X_{5}^{1}=\{9\}, X_{5}^{2}=\{2,3,4\}$. Next theorem characterizes completely the sequences with large gaps showing that, for these sequences, the converse of Theorem 4.6 is indeed true.

Theorem 4.7 A sequence $m=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$ with $u_{i+1}>2 u_{i}$ for each $1 \leq i \leq r-1$, is realizable if and only if the the restrictions of the statement of Theorem 4.6 hold. In this case, the sequence can be realized by sets of cardinality at most two.

Proof. If the sequence is realizable, the subsequences $m_{t}=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{t}^{\alpha_{t}}\right\rangle$ are also realizable for each $1 \leq t \leq r$. We can apply Lemma 4.5 for each m_{t}, implying

$$
\rho_{t}-1 \geq \sum_{i=1}^{t}\left(\alpha_{i}-1\right)+\sum_{i=1}^{t-1} \alpha_{i}, \quad 1 \leq t \leq r
$$

where the second sum adds up to $t-1$ since for all $t, u_{t}>2 u_{t-1}$. Therefore,

$$
\rho_{t}+(t-1) \geq 2 \alpha_{1}+\cdots+2 \alpha_{t-1}+\alpha_{t} \quad 1 \leq t \leq r .
$$

In order to show the complexity in the characterization of realizable sequences $\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$ when $u_{i+1} \leq 2 u_{i}$ for some $1 \leq i \leq r-1$, we present the following case that gives a tighter sufficient condition for a very specific sequence.

Theorem 4.8 The sequence $m=\left\langle u^{\alpha}, v^{\beta}\right\rangle$ with u, v odd and $u<v<2 u$ is realizable by sets of cardinality at most two if
(1) $\alpha=0$ and

$$
\beta \leq \frac{v+1}{2}
$$

(2) $k A+1 \leq \alpha \leq(k+1) A$ for some $0 \leq k \leq N_{1}-1$, and

$$
\alpha+\beta \leq \frac{v+1}{2}-k ;
$$

(3) $\left(N_{1}+k\right) A-k+1 \leq \alpha \leq\left(N_{1}+k+1\right) A-k-1$ for some $0 \leq k \leq N_{2}-1$, and

$$
\alpha+\beta \leq \frac{v+1}{2}-N_{1}-k ;
$$

where $A=\left\lceil\frac{u+1}{v-u}\right\rceil, N_{1}=\frac{v-p+1}{2}, N_{2}=\frac{p-1-u}{2}$ and $p=\left\lceil\frac{u+1}{v-u}\right\rceil(v-u)$.
Proof. We start the proof by analyzing the basic properties of the components of the graph $G_{u, v}$.
Each one of the components is a path that starts at a vertex x of the interval [$u+1, v]$ and, by alternating v-edges and u-edges, finishes at another point of the same interval. Let $P(x)$ denote the path that starts at vertex $x \in$ $[u+1, v]$. We have that

$$
P(x)=\left\{x_{1}=x, x_{2}=v-x_{1}, x_{3}=u-x_{2}, x_{4}=v-x_{3}, \ldots, l(x)\right\} .
$$

Since the path finishes always with a v-edge, we know that the last vertex of the path is $l(x)=Q(x)(v-u)+(v-x)$, where $Q(x)$ is the minimum integer such that $l(x) \in[u+1, v]$. Therefore, $Q(x)=\left\lceil\frac{u+x+1-v}{v-u}\right\rceil$ and

$$
\begin{equation*}
l(x)=\left\lceil\frac{u+x+1-v}{v-u}\right\rceil(v-u)+(v-x), \quad x \in[u+1, v] . \tag{4.1}
\end{equation*}
$$

To see the behavior of the function $l(x)$ we should focuss on the quotient $Q(x)$. It takes its maximum value at the point $x=v$, that is, $Q(v)=\left\lceil\frac{u+1}{v-u}\right\rceil$, and takes its minimum value at the point $x=u+1, Q(u+1)=\left\lceil\frac{2 u-v+2}{v-u}\right\rceil$. The difference between the numerators of $Q(v)$ and $Q(u+1)$ is $v-u-1$, and this means that $Q(v)=Q(u+1)+1$. From this observation, the fact that l is an involution and equation (4.1), we can partition the interval of vertices $[u+1, v]$ in two parts.

$$
[u+1, v]=\underbrace{[u+1, l(u+1)]}_{\Gamma_{2}} \cup \underbrace{[l(v), v]}_{\Gamma_{1}},
$$

such that for each vertex $x \in \Gamma_{i}, l(x)$ is the symmetric of x inside Γ_{i}, $i=1,2$. If we define $p=l(v)=\left\lceil\frac{u+1}{v-u}\right\rceil(v-u)$, we have that $\Gamma_{1}=[p, v]$ and $\Gamma_{2}=[u+1, p-1]$.
The components of the graph $G_{u, v}$ can be partitioned in two classes C_{1} and C_{2}, being C_{i} the components that have the end vertices in $\Gamma_{i}, i=1,2$. The
number of components that are in each class is $N_{1}=\left|C_{1}\right|=\frac{v-p+1}{2}$ and $N_{2}=\left|C_{2}\right|=\frac{p-u-1}{2}$.
Consider now the total number of u-edges belonging to a component $P(x)$, $x \in[u+1, v]$, which is precisely $Q(x)$. Since $Q(x)$ is constant inside each interval $\Gamma_{i}, i=1,2$, we have that the number of u-edges for a component in C_{1} is $A=Q(v)=\left\lceil\frac{u+1}{v-u}\right\rceil$, and the number of u-edges for a component in C_{2} is $A-1$.
Once we have defined all the parameters about the components of $G_{u, v}$, we can continue by characterizing the exponents (α, β) for which the sequence $\left\langle u^{\alpha}, v^{\beta}\right\rangle$ is realizable.
By choosing all the v-edges in each of the components we get the maximal exponent $(0, \beta)$ with $\beta=\frac{v+1}{2}$. Therefore, all the exponents described by restriction (1) will be also realizable.
We start with the components in C_{1} and concretely with $P(v)$. Replace the second v-edge by the first u-edge to obtain $(\alpha, \beta)=\left(1, \frac{v+1}{2}-1\right)$. We proceed by exchanging v-edges by u-edges one by one along the path until $(\alpha, \beta)=\left(A, \frac{v+1}{2}-A\right)$. This gives the following restriction: if $1 \leq \alpha \leq A$, then $\alpha+\beta \leq \frac{v+1}{2}$, which corresponds to restriction (2) with $k=0$. We next proceed with the rest of the components of C_{1}, and doing, one by one, the same procedure of interchanging v-edges by u-edges. With these components we must be careful because we have to remove the first v-edge to be able to add the first u-edge, since they do not meet at 0 like it was with the component $P(v)$. Therefore, we obtain the following set of restrictions:

$$
\begin{gathered}
\text { If } A+1 \leq \alpha \leq 2 A \text {, then } \alpha+\beta \leq \frac{v+1}{2}-1, \\
\text { if } 2 A+1 \leq \alpha \leq 3 A \text {, then } \alpha+\beta \leq \frac{v+1}{2}-2, \\
\vdots \\
\text { if }\left(N_{1}-1\right) A+1 \leq \alpha \leq N_{1} A \text {, then } \alpha+\beta \leq \frac{v+1}{2}-\left(N_{1}-1\right) .
\end{gathered}
$$

All these restrictions, together with the one for $P(v)$, are precisely the ones in (2).

At this point, we continue the edge interchanging with the components of the class C_{2}. Now, we should take in account that the number of u-edges in each component is $A-1$. One can easily see that the resulting restrictions are the ones in (3).

Note that the restrictions of Theorem 4.8 are more accurate than the general restrictions of Theorem 4.6. For the sequence $\left\langle u^{\alpha}, v^{\beta}\right\rangle=\left\langle 5^{2}, 7^{2}\right\rangle$, the conditions of Theorem 4.6 do not hold since $6=\beta+2 \alpha>\left\lfloor\frac{v+1}{2}\right\rfloor+(2-1)=5$. Dealing with the hypothesis of Theorem 4.8 we have that $A=3, N_{1}=1$ and $N_{2}=0$ and therefore we have to look at restriction (2) since for $k=0\left(\leq N_{1}-1\right), 1=0 A+1 \leq \alpha=2 \leq(0+1) A=3$. In this case, we can conclude that the sequence is definitively realizable as $4=\alpha+\beta \leq \frac{v+1}{2}=4$. In fact, $X_{1}^{1}=\{5\}, X_{1}^{2}=\{2,3\}, X_{2}^{1}=\{7\}$, and $X_{2}^{2}=\{1,6\}$ is a realization.
A corollary of Theorem 4.7 is that the largest element u_{r} in a forbidden sequence $\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle$ of \mathcal{F}_{k}, where the distinct elements have the growth established in the statement of the theorem, verifies $u_{r}<4 k$. This bound appears also in Theorem 4.4.

Corollary 4.9 Let $m=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle \in \mathcal{F}_{k}$ with $u_{i+1}>2 u_{i}, 1 \leq i \leq r-1$.
Then $u_{r}<4 k$.

Proof. Since the sequence m is not realizable, by Theorem 4.7, one or more of the following restrictions must fail:

$$
2 \alpha_{1}+\cdots+2 \alpha_{i-1}+\alpha_{i} \leq \rho_{i}+(i-1)
$$

for $1 \leq i \leq r$.
We consider the sequence $m^{\prime}=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r-1}^{\alpha_{r-1}}\right\rangle$, which is realizable. Now, again from Theorem 4.7, the above restrictions should be attained for $1 \leq$ $i \leq r-1$. Therefore, only the last restriction, for $i=r$, must be false. Then,

$$
\rho_{r}+(r-1)<2 \alpha_{1}+\cdots+2 \alpha_{r-1}+\alpha_{r}<2\left(\alpha_{1}+\cdots+\alpha_{r}\right)=2 k
$$

implying $\frac{u_{r}+1}{2}-\frac{1}{2}<2 k-r+1<2 k$. Finally, we get $u_{r}<4 k$.
These results suggest the following problem. Let $f(k)$ be the largest element in a sequence of \mathcal{F}_{k}. We have,

Proposition 4.10 For $k \geq 3, f(k) \geq 4 k-9$.
Proof. For $k \geq 3$, define $a=2 k-5$. Take the sequence $m=\left\langle a^{\frac{a+1}{2}}, 2 a+1^{2}\right\rangle$ of length k. It is easy to check that the inequality of Lemma 4.5 does not hold for m and thus, m is not realizable. We will see that all its subsequences of length $k-1$, and therefore all its proper subsequences, are realizable.
Case $1, m^{\prime}=\left\langle a^{\frac{a+1}{2}-1}, 2 a+1^{2}\right\rangle$.

Take $\mathcal{X}=\left\{\{a, a+1\},\{2 a+1\},\{1, a-1\},\{2, a-2\},\{3, a-3\}, \ldots,\left\{\frac{a-1}{2}, \frac{a+1}{2}\right\}\right\}$. Clearly, the first two sets add up to $2 a+1$ and the last $\frac{a+1}{2}-1$ add up to a. Case $2, m^{\prime}=\left\langle a^{\frac{a+1}{2}}, 2 a+1\right\rangle$.
Take $\mathcal{X}=\left\{\{2 a+1\},\{a\},\{1, a-1\},\{2, a-2\},\{3, a-3\}, \ldots,\left\{\frac{a-1}{2}, \frac{a+1}{2}\right\}\right\}$. In this case, the first set adds up to $2 a+1$ and the remaining $\frac{a+1}{2}$ sets add up to a.
So clearly $m \in \mathcal{F}_{k}$ and its maximum value is $2 a+1=2(2 k-5)+1=4 k-9$, implying that for all $k, f(k) \geq 4 k-9$.

We conjecture that the above lower bound is close to the true value.
Conjecture 4.11 For all $k \geq 2, f(k)<4 k$.
A conjecture that implies Conjecture 4.11, as we will next see, is the following one.

Conjecture 4.12 Let $\left\langle m_{1}, \ldots, m_{k}\right\rangle$ be a realizable sequence. Then there exists a realization X_{1}, \ldots, X_{k} with $\left|\cup_{i=1}^{k} X_{i}\right| \leq 2 k$.

It is easy to show that if Conjecture 4.12 is true, then $f(k)<4 k$. Let $m=\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r}^{\alpha_{r}}\right\rangle \in \mathcal{F}_{k}$. As the sequence $\left\langle u_{1}^{\alpha_{1}}, \ldots, u_{r-1}^{\alpha_{r-1}}\right\rangle$ is realizable, by Conjecture 4.12 there exists a realization

$$
\mathcal{X}=\left\{X_{i}^{j}: 1 \leq i \leq r-1,1 \leq j \leq \alpha_{i} \text { and } \sum\left(X_{i}^{j}\right)=u_{i}\right\}
$$

with $\sum_{i, j}\left|X_{i}^{j}\right| \leq 2 \alpha_{1}+\cdots+2 \alpha_{r-1}$. Using the same reasoning as in the proof of Theorem 4.6, if

$$
\rho_{r}-\sum_{i, j}\left|X_{i}^{j}\right| \geq \alpha_{r},
$$

the sequence m would be realizable. Therefore,

$$
\frac{u_{r}}{2} \leq\left\lfloor\frac{u_{r}+1}{2}\right\rfloor<\sum_{i, j}\left|X_{i}^{j}\right|+\alpha_{r} \leq 2 \alpha_{1}+\cdots+2 \alpha_{r-1}+\alpha_{r}<2 k,
$$

implying that $u_{r}<4 k$.
At this point, we pose the following key conjecture that shows the close connection between the realizable sequences and the n-realizable sequences.

Conjecture 4.13 Let $m=\left\langle m_{1}, \ldots, m_{k}\right\rangle$ be an n-feasible sequence. If m is realizable and $n \geq 4 k$ then m is n-realizable.

In other words, the above conjecture states that, for $n \geq 4 k$, a sequence of length k is n-realizable if and only if it does not contain minimal forbidden sequences.

4.2.2 Using complete sets

This section is devoted to analyze the n-realizability of sequences with small values. The main tool is the use of so-called complete sets of integers, a notion related to a vast area in Additive Number Theory.
Let $S(X)=\left\{\sum Y, Y \subseteq X\right\}$ denote the set of all subset sums of X. We say that a set X of positive integers is complete if

$$
S(X)=\left\{0,1,2, \ldots, \sum X\right\},
$$

that is, the subset sums cover all the interval from 0 to $\sum X$. It is clear that

$$
S([n])=\{0,1,2, \ldots, n(n+1) / 2\},
$$

that is, $[n]$ is a complete set.
There are several results on complete sets in \mathbb{Z}_{n} and in the integers, see for example the book of Tao and Vu [48].
We will start with the following key observation:
Proposition 4.14 Let X be a complete set. Then $X \cup\{a\}$ is complete if and only if $a \leq \sum X+1$.

Proof. Since X is complete, the set $S(X \cup\{a\})$ is clearly the union of two intervals, $I_{1}=\left\{0,1, \ldots, \sum X\right\}$ and $I_{2}=\left\{a, a+1, \ldots, a+\sum X\right\}$. Therefore, $I_{1} \cup I_{2}$ is another interval, and thus $X \cup\{a\}$ is complete, if and only if $a \leq \sum X+1$.

Using the above proposition, we are able to state the following result.
Theorem 4.15 Let be $X=\{1,2, \ldots, m\} \cup\left\{a_{1}\right\} \cup\left\{a_{2}\right\} \cup \cdots \cup\left\{a_{k}\right\}$ with $m+1<a_{1}<\cdots<a_{k}$ and let $l=\frac{m(m+1)}{2}$. If

$$
\begin{equation*}
a_{1} \leq l+1, \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i}-a_{i-1} \leq l+1, \quad 1<i \leq k, \tag{4.3}
\end{equation*}
$$

then X is complete.

Proof. From condition (4.2) and Proposition 4.14, the set $\{1,2, \ldots, m\} \cup$ $\left\{a_{1}\right\}$ is complete. Then, from condition (4.3) and again by Proposition 4.14, we can add successively the elements $a_{2}, a_{3}, \ldots, a_{k}$ and the resulting set will be still complete.

First, we are going to analyze how is the construction suggested by Theorem 4.15 .

Given n, we want to remove the maximum number of elements of $[n]$ in such a way that the remaining set is still complete. The naive approximation is the following one:
Take the minimum $m=m_{1}$ such that $\frac{\left(m_{1}+1\right) m_{1}}{2} \geq n-1$ and remove all the elements from $m_{1}+1$ to $n-1$. The remaining set will be

$$
X_{1}=\left\{1,2, \ldots, m_{1}\right\} \cup\{n\}
$$

It is easy to check that

$$
m_{1}=\left\lceil\frac{-1+\sqrt{8 n-7}}{2}\right\rceil
$$

and that the number of removed elements from $[n]$ is

$$
h_{n, 1}=n-m_{1}-1=\left\lfloor n-\frac{1+\sqrt{8 n-7}}{2}\right\rfloor .
$$

But Theorem 4.15 gives us a better construction:
We can reduce substantially this $m=m_{1}$ if we do not remove all the numbers from $m+1$ to $n-1$, but almost all. The construction is the following.

$$
X_{2}=\left\{1,2, \ldots, m_{2}\right\} \cup\{l+1\} \cup\{2 l+2\} \cup \cdots \cup\{s l+s\} \cup\{n\}
$$

where $l=\frac{\left(m_{2}+1\right) m_{2}}{2}, s$ is the maximum value such that $s l+s \leq n\left(s=\left\lfloor\frac{n}{l+1}\right\rfloor\right)$, and m_{2} will be taken as the point that maximizes the number of holes given by

$$
\begin{equation*}
h_{n, 2}(m)=(l-m)+\underbrace{l+\cdots+l}_{s-1}+(n-1-s l-s) . \tag{4.4}
\end{equation*}
$$

If we put the values of l and s inside (4.4), we obtain

$$
\begin{equation*}
h_{n, 2}(m)=n-m-1-\left\lfloor\frac{n}{\frac{m(m+1)}{2}+1}\right\rfloor . \tag{4.5}
\end{equation*}
$$

\boldsymbol{n}	$\boldsymbol{m}_{\mathbf{1}}$	$\boldsymbol{h}_{\boldsymbol{n}, \mathbf{1}}$	$\boldsymbol{m}_{\mathbf{2}}$	$\boldsymbol{h}_{\boldsymbol{n}, \mathbf{2}}$	$\boldsymbol{h}_{\boldsymbol{n}, \mathbf{2}}-\boldsymbol{h}_{\boldsymbol{n}, \mathbf{1}}$
20	6	13	3	14	1
50	10	39	5	41	2
100	14	85	6	89	4
1000	45	954	15	976	22
10000	141	9858	33	9949	91
100000	447	99552	73	99889	337
1000000	1414	998585	158	999762	1177

Table 4.1 Comparing constructions.

Finally, in order to work numerically with $h_{n, 2}$, we will take the approximation given by

$$
\begin{equation*}
h_{n, 2}(m) \simeq \frac{-m^{3}+(n-2) m^{2}+(n-3) m-2}{m^{2}+m+2} . \tag{4.6}
\end{equation*}
$$

The desired m_{2} will be the point that maximizes (4.6).
In Table 4.1 there are computed the parameters m_{1} and m_{2} for each construction and the corresponding number of holes for different values of n. For $n=20,50,100$ the values for m_{2} and $h_{n, 2}$ are exact. For the rest, the approximation by (4.6) is used.

For example, the sets constructed for $n=100$ are

$$
X_{1}=\{1, \ldots, 14\} \cup\{100\}, h_{100,1}=85,
$$

and

$$
X_{2}=\{1,2,3,4,5,6\} \cup\{22\} \cup\{44\} \cup\{66\} \cup\{88\} \cup\{100\}, h_{100,2}=89 .
$$

This analysis motivates the interesting subject of describing the structure of complete sets over the nonnegative integers. The natural question that arises is: what is the maximum number of elements that can be removed from $[n]$, except n, and how should they be eliminated so that the resulting set is still complete. However, it is not the objective of this work to study this issue in depth.

Next, we present the following corollary of Theorem 4.15 as a means to say something about the sequences.

Corollary 4.16 Let $H \subset[n]$ with $n \notin H$. If $\min H \geq \frac{3+\sqrt{8|H|+1}}{2}$, then $X=[n] \backslash H$ is complete.

Proof. If we define $m+1=\min H$, the set X can be described in the following way.

$$
[n] \backslash H=\{1,2, \ldots, m\} \cup\left\{a_{1}\right\} \cup \cdots \cup\left\{a_{k}=n\right\}
$$

with $m+1<a_{1}<\cdots<a_{k}$.
From the condition $\min H \geq \frac{3+\sqrt{8|H|+1}}{2}$, we can deduce that $|H| \leq \frac{m(m-1)}{2}$. Now, for a pair of consecutive numbers a_{i-1} and a_{i}, we have

$$
a_{i}-a_{i-1} \leq|H|+1 \leq \frac{m(m-1)}{2}+1 \leq \frac{m(m+1)}{2}+1
$$

satisfying the condition (4.3) of Theorem 4.15, and

$$
a_{1} \leq|H|+m+1 \leq \frac{m(m-1)}{2}+m+1=\frac{m(m+1)}{2}+1
$$

satisfying also the condition (4.2) of Theorem 4.15.

Example 4.17 For $n=100$, and $|H|=50$, the bound given by the corollary is $\min H \geq(3+\sqrt{8 \cdot 50+1}) / 2 \simeq 11.52$, so we can remove up to 50 numbers from 12 to 99 and the remaining set is still complete.

This corollary of Theorem 4.15 leads us to the following consequence about sequences.

Theorem 4.18 Let $S=\left\langle m_{1}, \ldots, m_{k}\right\rangle$ be a non-increasing n-feasible sequence. If

$$
n>m_{3}>\cdots>m_{k} \geq \frac{3+\sqrt{8 k-15}}{2}
$$

then S is n-realizable.

Proof. Let $X_{i}=\left\{m_{i}\right\}, 3 \leq i \leq k$. Let $H=\left\{m_{3}, \ldots, m_{k}\right\}$, which has cardinality $k-2$. Since

$$
\min H=m_{k} \geq \frac{3+\sqrt{8 k-15}}{2}=\frac{3+\sqrt{8|H|+1}}{2}
$$

by Corollary 4.16, $[n] \backslash\left\{m_{3}, \ldots, m_{k}\right\}$ is complete. Therefore, there exists a subset $X_{2} \subseteq[n] \backslash\left\{m_{3}, \ldots, m_{k}\right\}$ such that $\sum X_{2}=m_{2}$. Finally, with the remaining elements, define the set $X_{1}=[n] \backslash\left(X_{2} \cup\left\{m_{3}, \ldots, m_{k}\right\}\right)$, for which

$$
\sum X_{1}=n(n+1) / 2-\left(m_{2}+m_{3}+\cdots+m_{k}\right)=m_{1}
$$

Using the following result of Lev, we can eliminate the bound on m_{k} by adding a new condition on n.

Theorem $4.19(\operatorname{Lev},[39])$ Let $A \subseteq[n]$ be a set of $a \geq 1$ integers, and assume that $a \geq \frac{2 n+4}{3}$. Then

$$
\left[2 n-2 a+1, \sum A-(2 n-2 a+1)\right] \subseteq S(A) .
$$

Theorem 4.20 Let $m=\left\langle m_{1}, \ldots, m_{k}\right\rangle$ be a non-increasing n-feasible sequence. If $n \geq 3 k-2$ and $n>m_{3}>\cdots>m_{k}$ then m is n-realizable.

Proof. Since $n>m_{3}>\cdots>m_{k}$ we can take the sets $X_{i}=\left\{m_{i}\right\}$ for each $3 \leq i \leq k$. Assume that $m_{2}>n$, otherwise we can take $X_{2}=\left\{m_{2}\right\}$ and the remaining elements add up to m_{1} (as m is n-feasible) and we are done.
Let $A=[n] \backslash\left\{m_{3}, \ldots, m_{k}\right\}$ be the set of remaining elements of the interval. Then, since the sequence is n-feasible, we have $\sum A=m_{1}+m_{2}$.
Now, $|A|=n-k+2$ and, as $n \geq 3 k-2$, we have $|A| \geq \frac{2 n+4}{3}$. So we can apply Theorem 4.19 obtaining that

$$
\begin{aligned}
& {\left[2 n-2|A|+1, m_{1}+m_{2}-(2 n-2|A|+1)\right] \subseteq S(A) } \\
\Longrightarrow & {\left[2 n-2(n-k+2)+1, m_{1}+m_{2}-(2 n-2(n-k+2)+1)\right] \subseteq S(A) } \\
\Longrightarrow & {\left[2 k-3, m_{1}+m_{2}-(2 k-3)\right] \subseteq S(A) } \\
\Longrightarrow & {\left[n, m_{1}+m_{2}-n\right] \subseteq S(A) . }
\end{aligned}
$$

Since $m_{1} \geq m_{2}>n$, clearly both m_{1} and m_{2} belong to the interval and we can obtain, for instance, $X_{2} \subseteq A$ with $\sum X_{2}=m_{2}$. The remaining elements $X_{1}=[n] \backslash\left(\left\{m_{3}, \ldots, m_{k}\right\} \cup X_{2}\right)$ will add up to m_{1}.

Theorems 4.18 and 4.20 complement the result of Chen, Fu, Wang and Zhou [12] in the sense that in the latter almost all elements of the sequence must be larger than n, while here we require that almost all should be below n.

4.3 Modular sumset partition problem

We conclude the chapter by considering the modular version of the problem. A sequence $\left(m_{1}, \ldots, m_{k}\right)$ of elements in \mathbb{Z}_{n} is realizable modulo n if there is a family X_{1}, \ldots, X_{k} of pairwise disjoint sets of \mathbb{Z}_{n} such that $\sum X_{i}=m_{i}$ for each $i=1,2, \ldots, k$. Note that, for n odd, the sequence (m, m, \ldots, m) of length $(n+1) / 2$ is clearly not realizable for every $m \neq 0$. Theorem 4.21 shows that sequences in \mathbb{Z}_{p} of length at most $(p-1) / 2$ for any prime $p \geq 3$ are always realizable. Its proof uses the polynomial method of Alon described in Chapter 1. The application of the Combinatorial Nullsetellensatz to similar problems can be seen in [4] and [14].

Theorem 4.21 Let $p \geq 3$ be a prime number and $k=(p-1) / 2$. For each sequence $\left(m_{1}, \ldots, m_{k}\right)$ of elements in \mathbb{Z}_{p} with $\sum_{i=1}^{k} m_{i}=M$, there is a partition X_{1}, \ldots, X_{k} of $\mathbb{Z}_{p} \backslash\{-M\}$ with $\left|X_{i}\right|=2$ and $\sum X_{i}=m_{i}$, $i=1, \ldots, k$.

Proof. Consider the following polynomial in $\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right]$:

$$
f=V\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) \prod_{i=1}^{k}\left(1-\left(x_{i}+y_{i}-m_{i}\right)^{p-1}\right)
$$

The polynomial f takes a nonzero value if and only if there are pairwise distinct elements ($a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$) such that $a_{i}+b_{i}=m_{i}, 1 \leq i \leq k$. If this is the case, the sets $X_{i}=\left\{a_{i}, b_{i}\right\}$ fulfill the conclusion of the statement. Indeed, the X_{i} 's have cardinality two and they are pairwise disjoint, so they form a partition of $\mathbb{Z}_{p} \backslash\{\gamma\}$ for some γ. Since $\gamma+\sum_{i=1}^{k} m_{i}=\sum_{x \in \mathbb{Z}_{p}} x=0$, we have $\gamma=-\sum_{i=1}^{k} m_{i}=-M$.
Consider the monomial

$$
\begin{equation*}
x_{1}^{p-1} \cdots x_{k}^{p-1} y_{1}^{p-2} \cdots y_{k}^{p-2} \tag{4.7}
\end{equation*}
$$

in the expansion of f, which is a monomial of maximum degree. Let us show that this monomial has a nonzero coefficient, so that, by the Theorem 1.1, f takes a nonzero value in $\left(\mathbb{Z}_{p}\right)^{2 k}$.
We identify every monomial $x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} y_{1}^{\beta_{1}} \cdots y_{k}^{\beta_{k}}$ by its exponent sequence $\left(\alpha_{1}, \ldots, \alpha_{k} ; \beta_{1}, \ldots, \beta_{k}\right)$.
The monomial (4.7) arises in the expansion of f whenever we multiply one monomial with exponent sequence ($\alpha_{1}, \ldots, \alpha_{k} ; \beta_{1}, \ldots, \beta_{k}$) in the expansion of $V\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)$ by a monomial with exponent sequence
$\left(\alpha_{1}^{\prime}, \ldots, \alpha_{k}^{\prime} ; \beta_{1}^{\prime}, \ldots, \beta_{k}^{\prime}\right)$ in the expansion of $\prod_{i=1}^{k}\left(1-\left(x_{i}+y_{i}-m_{i}\right)^{p-1}\right)$ verifying

$$
\begin{aligned}
\alpha_{i}+\alpha_{i}^{\prime} & =p-1, & & i=1, \ldots, k ; \\
\beta_{i}+\beta_{i}^{\prime} & =p-2, & & i=1, \ldots, k .
\end{aligned}
$$

Since $\alpha_{i}^{\prime}+\beta_{i}^{\prime}=p-1$, the above relations lead to

$$
\begin{equation*}
\alpha_{i}+\beta_{i}=p-2, \quad i=1, \ldots, k . \tag{4.8}
\end{equation*}
$$

The last relation implies that these are precisely the only monomials from the Vandermonde polynomial that contribute to monomial (4.7). Moreover, this monomial arise in the decomposition by multiplying each monomial from the Vandermonde polynomial

$$
\left(\alpha_{1}, \ldots, \alpha_{k} ; \beta_{1}, \ldots, \beta_{k}\right) \quad \text { with } \alpha_{i}+\beta_{i}=p-2, \quad 1 \leq i \leq k,
$$

by the following monomial from the remaining factor of f :

$$
\begin{equation*}
(-1)\binom{p-1}{\alpha_{1}} x_{1}^{p-1-\alpha_{1}} y_{1}^{p-2-\beta_{1}} \ldots\binom{p-1}{\alpha_{k}} x_{k}^{p-1-\alpha_{k}} y_{k}^{p-2-\beta_{k}} . \tag{4.9}
\end{equation*}
$$

We know that the expansion of the Vandermonde polynomial is

$$
\begin{gather*}
V\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)= \\
=\sum_{\tau \in \operatorname{Sym}(2 k)} \operatorname{sgn}(\tau) x_{1}^{\tau(0)} x_{2}^{\tau(1)} \cdots x_{k}^{\tau(k-1)} y_{1}^{\tau(k)} y_{2}^{\tau(k+1)} \cdots y_{k}^{\tau(2 k-1)} \tag{4.10}
\end{gather*}
$$

(see Chapter 1, (1.1)). Observe that for a given τ we have $\alpha_{i}=\tau(i-1)$ and $\beta_{i}=\tau(k+i-1)$ for each $1 \leq i \leq k$. Now, from relation (4.8), we have that the only permutations τ in which we are interested are precisely the ones that satisfy $\tau(i)+\tau(k+i)=p-2$ for each $0 \leq i \leq k-1$. We can obtain such permutations by considering every permutation σ of $[0, k-1]$ and, for each $i \in[0, k-1]$, one of the two choices:

$$
\begin{array}{rll}
\tau(i)=\sigma(i) & \text { and } & \tau(k+i)=p-2-\sigma(i), \text { or } \\
\tau(i)=p-2-\sigma(i) & \text { and } & \tau(k+i)=\sigma(i) .
\end{array}
$$

With exactly these permutations, we obtain the desired exponent sequences from the Vandermonde polynomial. Each one of these exponent sequences
combined with the corresponding one from (4.9) will verify all the above relations. Thus, we have $2^{k} k$! such pairs of monomials.

Observe that given a permutation σ of $[0, k-1]$, one particular exponent $i \in[0, k-1]$ is initially in position $\alpha_{\sigma^{-1}(i)+1}$, and then we have the two choices for this position:

$$
\alpha_{\sigma^{-1}(i)+1} \in\{i, p-2-i\} .
$$

A pair of monomials corresponding to the permutation σ and all the choices being $\alpha_{\sigma^{-1}(i)+1}=i$ for all $1 \leq i \leq k$, has coefficient

$$
\begin{equation*}
C_{\sigma}=\rho(k) \prod_{i=0}^{k-1}\binom{p-1}{\alpha_{\sigma^{-1}(i)+1}}=\rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i}, \tag{4.11}
\end{equation*}
$$

where $\rho(k)=(-1)^{\left\lfloor\frac{k}{2}\right\rfloor+1}$ is the sign of τ from (4.10) with an extra -1 from (4.9). Note that τ, when all the choices are the first option, is a permutation by σ of the first k elements and the same permutation, but inverted, of the last k elements. Therefore, $(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}$ is the number of transpositions that should be applied to τ in order to obtain the same permutation σ of the last k elements, implying $\operatorname{sgn}(\tau)=(\operatorname{sgn}(\sigma))^{2}(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}=(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}$.
Observe that the coefficient C_{σ} does not depend on the permutation σ.
A pair corresponding to the permutation σ and a particular choice for every exponent $i \in[0, k-1]$, which is initially in position $\alpha_{\sigma^{-1}(i)+1}$, has coefficient

$$
C_{\sigma ; q_{1}, \ldots, q_{s}}=(-1)^{s} \rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i}\left(\frac{p-1-q_{1}}{q_{1}+1}\right) \cdots\left(\frac{p-1-q_{s}}{q_{s}+1}\right),
$$

where $q_{l} \in[0, k-1], 1 \leq l \leq s$, are the exponents for which the choice has been $\alpha_{\sigma^{-1}\left(q_{l}\right)+1}=p-2-q_{l}$. We next show that this expression arises from (4.11) and the relation $\binom{n}{i+1}=\binom{n}{i} \frac{n-i}{i+1}$ for $n>i$. Indeed, when in the pair $\left(\alpha_{\sigma^{-1}(i)+1}, \beta_{\sigma^{-1}(i)+1}\right)$ we choose the second option $\left(\alpha_{\sigma^{-1}(i)+1}=p-2-i\right)$, we are changing the corresponding coefficient $\binom{p-1}{i}$ of the first option by

$$
\binom{p-1}{p-2-i}=\binom{p-1}{i+1}=\binom{p-1}{i} \frac{p-1-i}{i+1} .
$$

The factor $(-1)^{s}$ shows the fact that when we choose the second option for one particular exponent, the sign of the permutation τ changes by -1 .

Again, the coefficients $C_{\sigma ; q_{1}, \ldots, q_{s}}$ do not depend on the permutation σ, and thus all the k ! permutations with the same choices will contribute the same to the coefficient. If we denote $j_{l}=q_{l}+1,1 \leq l \leq s$, the contribution of these k ! permutations to the coefficient is

$$
C_{j_{1}, \ldots, j_{s}}=k!(-1)^{s} \rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i}\left(\frac{p-j_{1}}{j_{1}}\right)\left(\frac{p-j_{2}}{j_{2}}\right) \cdots\left(\frac{p-j_{s}}{j_{s}}\right) .
$$

Finally we have to consider all the possible choices and therefore the coefficient of the monomial (4.7) is

$$
\begin{aligned}
C & =k!\rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i}+\sum_{s=1}^{k} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq k} C_{j_{1}, \ldots, j_{s}} \\
& =k!\rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i}\left(1+\sum_{s=1}^{k}(-1)^{s} \lambda(s, k)\right),
\end{aligned}
$$

where

$$
\lambda(s, k)=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq k}\left(\frac{p-j_{1}}{j_{1}}\right)\left(\frac{p-j_{2}}{j_{2}}\right) \cdots\left(\frac{p-j_{s}}{j_{s}}\right) .
$$

The goal now is to prove that C is nonzero modulo p. We have that

$$
\begin{aligned}
\lambda(s, k) & \equiv \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq k}\left(-j_{1}\right)\left(-j_{2}\right) \cdots\left(-j_{s}\right) \frac{1}{j_{1} j_{2} \cdots j_{s}} \\
& \equiv \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{s} \leq k}(-1)^{s} \\
& \equiv(-1)^{s}\binom{k}{s}(\bmod p) .
\end{aligned}
$$

Then, the coefficient C of the monomial (4.7) can be expressed modulo p as

$$
\begin{aligned}
C & \equiv k!\rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i}\left(1+\sum_{s=1}^{k}(-1)^{s} \lambda(s, k)\right) \\
& \equiv k!\rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i}\left(1+\sum_{s=1}^{k}(-1)^{2 s}\binom{k}{s}\right) \\
& \equiv k!\rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i} \sum_{s=0}^{k}\binom{k}{s} \\
& \equiv k!\rho(k) \prod_{i=0}^{k-1}\binom{p-1}{i} 2^{k},
\end{aligned}
$$

which is nonzero since $\prod_{i=0}^{k-1}\binom{p-1}{i} \equiv \pm 1(\bmod p), k!\not \equiv 0(\bmod p)$ and 2^{k} is obviously nonzero modulo p. This completes the proof.

Theorem 4.21 also applies for shorter sequences as we can see in the following corollary.

Corollary 4.22 Let p be an odd prime. For each sequence (m_{1}, \ldots, m_{r}) of elements in \mathbb{Z}_{p} with $r \leq(p-1) / 2$ and $\sum_{i=1}^{r} m_{i}=M$, there is a partition X_{1}, \ldots, X_{r} of $\mathbb{Z}_{p} \backslash\{-M\}$ with $\left|X_{i}\right|>1$ and $\sum X_{i}=m_{i}, i=1, \ldots, r$.

Proof. If $r=k$ then it is Theorem 4.21. Assume that $r<k$, and consider the following sequence of length k

$$
m_{1}^{\prime}=m_{1}, \ldots, m_{r}^{\prime}=m_{r}, m_{r+1}^{\prime}=0, \ldots, m_{k}^{\prime}=0
$$

Now, we apply Theorem 4.21 that gives a partition $X_{1}^{\prime}, \ldots, X_{k}^{\prime}$ of $\mathbb{Z}_{p} \backslash\{-M\}$ such that $\sum X_{i}^{\prime}=m_{i}^{\prime}$ and $\left|X_{i}^{\prime}\right|>1,1 \leq i \leq k$. Finally, the following sets

$$
X_{1}=X_{1}^{\prime} \cup\left(\cup_{i=r+1}^{k} X_{i}^{\prime}\right) \text { and } X_{2}=X_{2}^{\prime}, \ldots, X_{r}=X_{r}^{\prime}
$$

are a partition of $\mathbb{Z}_{p} \backslash\{-M\}$ with $\left|X_{i}\right|>1$ and the desired sumset.
If a sequence $\left(m_{1}, \ldots, m_{r}\right)$ is feasible modulo p, that is, if $\sum_{i=1}^{r} m_{i}=0$, we can extend the result to length $(p+1) / 2$.

Corollary 4.23 Let p be an odd prime and $k=(p-1) / 2$. For each sequence $\left(m_{1}, \ldots, m_{r}\right)$ of elements in \mathbb{Z}_{p} with $r \leq k+1$ and $\sum_{i=1}^{r} m_{i}=0$, there is a partition X_{1}, \ldots, X_{r} of \mathbb{Z}_{p} with $\sum X_{i}=m_{i}, i=1, \ldots, r$ and
(1) if $r \leq k,\left|X_{i}\right|>1,1 \leq i \leq r$;
(2) if $r=k+1$, we can choose $m_{i}, 1 \leq i \leq r$, for which $\left|X_{i}\right|=1$. The remaining sets will have cardinality two.

Proof. If $r \leq k=(p-1) / 2$, we can apply Corollary 4.22 and obtain a partition of $\mathbb{Z}_{p} \backslash\{0\}$. Therefore we can add 0 to any set without changing its sum to obtain the total partition.

If $r=k+1$, select the desired $m_{i}, 1 \leq i \leq r$, and take the truncated sequence $\left(m_{1}, \ldots, m_{i-1}, m_{i+1}, \ldots, m_{r}\right)$ of k elements. Let $J=\{1, \ldots, i-$ $1, i+1, \ldots, r\}$. Note that $\sum_{j \in J} m_{j}=-m_{i}$. So we can apply Theorem 4.21 to this sequence and obtain a partition $X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{r}$ of $\mathbb{Z}_{p} \backslash\left\{m_{i}\right\}$ with $\left|X_{j}\right|=2$ and $\sum X_{j}=m_{j}, j \in J$. Finally define $X_{i}=\left\{m_{i}\right\}$. The collection X_{1}, \ldots, X_{r} is a partition of \mathbb{Z}_{p} and $\sum X_{j}=m_{j}, 1 \leq j \leq r$.

We finish this chapter by providing an alternative simple proof of the result of Chen, Fu, Wang and Zhou for $n=p$ prime.

Theorem 4.24 ([12]) Let $p \geq 3$ be a prime and let $m=\left\langle m_{1}, \ldots, m_{k}\right\rangle$ be a p-feasible sequence. If $m_{k-1} \geq p$ then m is p-realizable.

Proof. We can assume that $m_{k}<p$, otherwise we are done by the result of Ma, Zhou and Zhou [44].
Suppose now that $m_{k-1}=p$. Consider the sequence $\left\langle m_{1}, \ldots, m_{k-2}, m_{k}\right\rangle$, which is $(p-1)$-feasible and $m_{k-2} \geq p$. By the inductive hypothesis, we can obtain a partition $X_{1}, \ldots, X_{k-2}, X_{k}$ of $[p-1]$ such that $\sum X_{i}=m_{i}$, $i=1, \ldots, k-2, k$. Adding the set $X_{k-1}=p$ to the collection, we obtain a partition of $[p]$ with $\sum X_{i}=m_{i}, 1 \leq i \leq k$. Therefore, we can also assume that $m_{k-1} \geq p+1$.

Now, $p(p+1) / 2>m_{1}+\cdots+m_{k-1} \geq(k-1)(p+1)$ implies $k \leq(p+1) / 2$. Denote by m_{i}^{\prime} the representative modulo p of m_{i} in $[1, p], 1 \leq i \leq k$. Observe that $m_{k}^{\prime}=m_{k}$. Let $t=(p+1) / 2-k$ (can be zero) and consider the sequence

$$
(m_{1}^{\prime}, \ldots, m_{k}^{\prime}, \underbrace{p, \ldots, p}_{t})
$$

of length $(p+1) / 2$. Since $\sum_{i=1}^{k} m_{i}^{\prime}+t p \equiv p(p+1) / 2+t p \equiv 0(\bmod p)$, by Corollary 4.23 (2) there is a partition

$$
X_{1}^{\prime}, \ldots, X_{k}^{\prime}, Y_{1}, \ldots, Y_{t}
$$

of $[1, p]$ with $\sum X_{i}^{\prime} \equiv m_{i}^{\prime}(\bmod p)$ for $i=1, \ldots, k, \sum Y_{j} \equiv 0(\bmod p)$ for $j=1, \ldots, t,\left|X_{k}^{\prime}\right|=1$ and $\left|X_{1}^{\prime}\right|=\cdots=\left|X_{k-1}^{\prime}\right|=\left|Y_{1}\right|=\cdots=\left|Y_{t}\right|=2$. Therefore, we have that $X_{k}^{\prime}=\left\{m_{k}\right\}, \sum X_{i}^{\prime} \in\left\{m_{i}^{\prime}, m_{i}^{\prime}+p\right\}$ for $i=1, \ldots, k-1$, and $\sum Y_{j}=p$ for $j=1, \ldots, t$. Moreover,

$$
\left\{X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{k-1}^{\prime}, X_{k}^{\prime}=\left\{m_{k}\right\}, Y_{1}, \ldots, Y_{t}\right\}
$$

is a partition of $[1, p]$, implying

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\sum X_{i}^{\prime}\right)+\sum_{j=1}^{t}\left(\sum Y_{j}\right)=p(p+1) / 2=m_{1}+\cdots+m_{k} \tag{4.12}
\end{equation*}
$$

Since $m_{k-1}>p$ we have $\sum X_{i}^{\prime} \leq m_{i}$ for each $i=1, \ldots, k, m_{i}-\sum X_{i}^{\prime}$ is a multiple of p for $i=1, \ldots, k$, and it follows from (4.12) that

$$
\sum_{j=1}^{t}\left(\sum Y_{j}\right)=\sum_{i=1}^{k}\left(m_{i}-\sum X_{i}^{\prime}\right)
$$

Hence, by joining the Y_{j} 's to the X_{i}^{\prime} 's appropriately, we can obtain a partition X_{1}, \ldots, X_{k} of $[1, p]$ with $\sum X_{i}=m_{i}$ for each $1 \leq i \leq k$.

Ascending subgraph decompositions of bipartite graphs

Let G be a graph of size $\binom{n+1}{2}$ for some integer $n \geq 1 . G$ is said to have an ascending subgraph decomposition if can be decomposed into n subgraphs H_{1}, \ldots, H_{n} such that H_{i} has i edges and is isomorphic to a subgraph of $H_{i+1}, i=1, \ldots, n-1$. In this chapter we deal with ascending subgraph decompositions of bipartite graphs, considering two different approaches.

In Section 5.2 we obtain sufficient conditions for a bipartite graph to have an ascending subgraph decomposition into stars, mainly based on the results about the sumset partition problem from Chapter 4. The connection between these two problems is shown in Section 5.1. In the same vein, in Section 5.3, we obtain an ascending subgraph decomposition for a bipartite graph $G(A, B)$ when $|A| \leq 4$ using the results for short sequences also from Chapter 4.
The second approach consists in finding ascending subgraph decompositions for a bipartite graph in which each factor of the decomposition is a forest of stars. In Section 5.4 we show that every bipartite graph G with $\binom{n+1}{2}$ edges such that the degree sequence $\left(d_{1}, \ldots, d_{k}\right)$ with $d_{i}>d_{i+1}$ for each $1 \leq i \leq k-1$, of one of the partite sets satisfies $d_{1} \geq(k-1)(n-k+1)$ and $d_{i} \geq n-i+2$ for each $2 \leq i \leq k$, admits an ascending subgraph decomposition into star forests. We also give a necessary condition on the degree sequence of G to have an ascending subgraph decomposition into star forests that is not far from the above sufficient one. Our results are based on the existence of certain matrices that we call ascending, and the construction of edge-colorings for some bipartite graphs with parallel edges.

5.1 Introduction

Let G be a graph of positive size q, and let n be the positive integer with $\binom{n+1}{2} \leq q \leq\binom{ n+2}{2}$. Then G is said to have an ascending subgraph decomposition, which we will denote by ASD, if G can be decomposed into n subgraphs H_{1}, \ldots, H_{n} without isolated vertices such that H_{i} is isomorphic to a proper subgraph of H_{i+1} for $i=1, \ldots, n-1$. Furthermore, if every subgraph H_{i} is a star (matching, path, star forest, ...), then we say that G admits an ascending star (matching, path, star forest, ...) subgraph decomposition or simply a star (matching, path, star forest, ...) ASD. In Fig. 5.1 an ascending subgraph decomposition of a graph G of size $\binom{4+1}{2}=10$ is shown.

Figure 5.1 ASD of G
In 1987 Alavi, Boals, Chartrand, Erdös and Oellerman proposed two conjectures:

Conjecture 5.1 (Alavi et al., [2]) A graph of positive size has an ASD.
Conjecture 5.2 (Alavi et al., [2]) A star forest of size $\binom{n+1}{2}$ with each component having size between n and $2 n-2$ inclusively has a star ASD.

In the same paper they reduced the verification of the first conjecture to the following equivalent version:

Conjecture 5.3 (Alavi et al., [2]) Every graph of size $\binom{n+1}{2}$ for $n \geq 1$, has an ASD.

Conjecture 5.2 was proved by Ma, Zhou and Zhou in [44], and it is equivalent to the n-realizability of sequence (4) in page 54 . The condition was later weakened to the effect that the smallest component of the star forest can have size below n; this was obtained by Chen, Fu, Wang and Zhou in [12] and it is equivalent to the n-realizability of sequence (5) in page 54. In order to obtain their proofs, they used the connection between the ASD problem and the sumset partition problem treated in Chapter 4.
Let us show the connection between these two problems. Consider a graph G with $\binom{n+1}{2}$ edges and N vertices. If G admits a star ASD, by orienting the edges of each star of the decomposition towards the leaves we get an orientation of the edges of G. Let $m_{i}=d^{+}\left(v_{i}\right), 1 \leq i \leq N$, where $d^{+}\left(v_{i}\right)$ is the out-degree of v_{i} in this orientation for some ordering of the vertices of G. Then the sequence $\left(m_{1}, m_{2}, \ldots, m_{N}\right)$ is n-realizable (the sizes of the stars in the star ASD provide a realization). Conversely, if G admits an orientation such that the sequence $\left(d^{+}\left(v_{1}\right), d^{+}\left(v_{2}\right), \ldots, d^{+}\left(v_{N}\right)\right)$ is n-realizable then G clearly admits a star ASD.

Conjecture 5.1 and its equivalent Conjecture 5.3 have turned out to be much more difficult. We can find three main directions to deal with them in the literature.

The first one concerns the number of vertices of the graph. Note that a graph G with $\binom{n+1}{2}$ edges has at least $n+1$ vertices, which corresponds to the complete graph. Faudree, Gyárfás and Schelp proved in [18] that the complete graph K_{n+1} has a star and a path ASD. They also showed that a graph with $n+2$ vertices has a star ASD.
The second direction is related with the maximum degree $\Delta(G)$. In 1990, Fu [19] proved that a graph G of size $\binom{n+1}{2}$ and $\Delta(G) \leq \frac{n-1}{2}$ has a matching ASD. Moreover, in the same paper showed that if $\Delta(G) \leq \frac{n+1}{2}$ then G has an ASD. These results extend pervious partial results concerning the maximum degree of G that can be found in $[2,18]$.
Finally, some authors have studied the conjecture for certain classes of graphs. It has already been commented that [12] and [44] are devoted to star ASD of star forests. Faudree and Gould [17] proved that a forest with $\binom{n+1}{2}$ edges has an ASD with each member a star forest. In 2002 Fu and Hu obtained that regular graphs have an ASD [23]. The same authors showed that complete multipartite graphs also admit an ASD [22], which extends
the result given by Fu [20] for complete bipartite graphs.
In the definition of an ASD of a graph, we require that each subgraph of the decomposition must be isomorphic to a proper subgraph of a greater factor. A closely related packing problem is considered in [29] by loosening this requirement. The authors conjectured that the complete graph $K_{2 n+1}$ can be decomposed into n trees of sizes $1,2, \ldots, n$. Observe that this conjecture is also related with Ringel's conjecture, treated in Chapter 3, which asks for the decomposition of $K_{2 n+1}$ into $2 n+1$ copies of a given tree of size n.
Our work is focused on the existence of ASD of bipartite graphs. In particular, we know from the above results that a bipartite graph G with $\binom{n+1}{2}$ edges has an ASD if:
(1) G is regular;
(2) G is complete bipartite;
(3) $\Delta(G) \leq \frac{n+1}{2}$.

Therefore, our main objective is to obtain sufficient conditions for a noncomplete, not necessarily regular, bipartite graph G with $\Delta(G)>\frac{n+1}{2}$ to have an ASD. Moreover, in view of the equivalence between Conjectures 5.1 and 5.3 , we will always consider graphs of size $\binom{n+1}{2}$.
For this chapter we use the definition and the notation as well as the known results of the sumset partition problem described in Chapter 4.

5.2 Star ASD

There is a strong connection between the sumset partition problem and the star ASD of a bipartite graph. Let $G(A, B)$ be a bipartite graph of size $\binom{n+1}{2}$ and $A=\left\{a_{1}, \ldots, a_{k}\right\}$. We denote by $d_{A}=\left\langle d_{1}, d_{2}, \ldots, d_{k}\right\rangle$ the degree sequence of the vertices in A, which are ordered in such a way that d_{A} is a non-increasing sequence. By the definition, d_{A} is an n-feasible sequence, and it is clear that d_{A} is n-realizable if and only if G admits a star ASD with every star centered at the vertices of A. Therefore, we can translate every result obtained on the sumset partition problem about n-realizable sequences to the current problem. We have directly, from the result of Chen, Fu, Wang and Zhou [12], that if $d_{k-1} \geq n$ then $G(A, B)$ admits a star ASD. Moreover, from Theorem 4.4 we have the following corollary.

Corollary 5.4 Let $G(A, B)$ be a bipartite graph of size $\binom{n+1}{2}$ and degree sequence $d_{A}=\left\langle d_{1}, d_{2}, \ldots, d_{k}\right\rangle$. If $n \geq 4 k-1$ and $d_{k} \geq 4 k$ then G admits a star $A S D$.

Using results on complete sets of positive integers, we obtained Theorems 4.18 and 4.20 , which have the following direct implications on the star ASD problem for bipartite graphs.

Corollary 5.5 Let $G(A, B)$ be a bipartite graph of size $\binom{n+1}{2}$ and degree sequence $d_{A}=\left\langle d_{1}, d_{2}, \ldots, d_{k}\right\rangle$. If

$$
n>d_{3}>\cdots>d_{k} \geq \frac{3+\sqrt{8 k-15}}{2}
$$

then G admits a star $A S D$.

Corollary 5.6 Let $G(A, B)$ be a bipartite graph of size $\binom{n+1}{2}$ and degree sequence $d_{A}=\left\langle d_{1}, d_{2}, \ldots, d_{k}\right\rangle$. If $n \geq 3 k-2$ and $n>m_{3}>\cdots>m_{k}$ then G admits a star $A S D$.

5.3 Small partite set

We can obtain ASD of bipartite graphs $G(A, B)$ when $|A| \leq 4$ using the results for short sequences from Chapter 4 . In particular, we will use Theorems 4.2 and 4.3 to obtain that every bipartite graph $G(A, B)$ with $\binom{n+1}{2}$ edges and $|A| \leq 4$ has an ASD if $n \geq 11$. For the proof of this result, we will denote by $A S D_{m}$ a partial ASD of a graph with $\binom{n+1}{2}$ edges and $n \geq m$, consisting on the m first subgraphs of the total $\mathrm{ASD}\left(=A S D_{n}\right)$.

Proposition 5.7 Let $G(A, B)$ be a bipartite graph with $M=\binom{n+1}{2}$ edges. Then G admits an $A S D$ if
(1) $|A|=1$ and $n \geq 1$;
(2) $|A|=2$ and $n \geq 2$;
(3) $|A|=3$ and $n \geq 3$;
(4) $|A|=4$ and $n \geq 11$.

Proof.

(1) If $|A|=1$, then for every $n \geq 1 G$ is a star with M edges, which admits a star ASD.
(2) If $|A|=2$, every n-feasible degree sequence $d_{A}=\left\langle d_{1}, d_{2}\right\rangle$ for $n \geq 2$ is n-realizable and G admits a star ASD.
(3) If $|A|=3$ we consider the degree sequence $d_{A}=\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ of the vertices $\left\{a_{1}, a_{2}, a_{3}\right\}$ of A. From Theorem 4.2, d_{A} is n-realizable and thus G admits a star ASD unless $\left\langle d_{2}, d_{3}\right\rangle \in \mathcal{F}_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle\}$. Therefore, for $n \geq 3$, we have three cases:

- $\left\langle d_{1}, d_{2}, d_{3}\right\rangle=\langle 2,2,2\rangle$

This case, which corresponds to $n=3$, clearly admits an ASD.

- $\left\langle d_{2}, d_{3}\right\rangle=\langle 1,1\rangle$

Form the vertex a_{2} we can obtain a star S_{1}. There are $M^{\prime}=\binom{n+1}{2}-2$ edges incident with a_{1} and, since $n \geq 3$, we have that

$$
2+\cdots+(n-1)+(n-1)=M^{\prime} .
$$

Take stars S_{2}, \ldots, S_{n-1} centered at a_{1}, which together with S_{1} form an $A S D_{n-1}$ of G. The last graph in the $A S D_{n}$ of G is the star induced by the $(n-1)$ remaining edges from a_{1} an the edge incident with a_{3}.

- $\left\langle d_{2}, d_{3}\right\rangle=\langle 2,2\rangle$

From the vertices a_{2} and a_{3} we can obtain an $A S D_{2}$ consisting of stars S_{1} and S_{2}, and remains a single edge e. There are $M^{\prime}=\binom{n+1}{2}-4$ edges incident with a_{1} and, since $n \geq 4$ (the case $n=3$ corresponds to $\left\langle d_{1}, d_{2}, d_{3}\right\rangle=\langle 2,2,2\rangle$), we have that

$$
3+\cdots+(n-1)+(n-1)=M^{\prime} .
$$

Take stars S_{3}, \ldots, S_{n-1} centered at a_{1}, which together with the stars S_{1} and S_{2} form an $A S D_{n-1}$ of G. The star induced by the $(n-1)$ remaining edges of a_{1} and the edge e is the last factor of G.
(4) If $|A|=4$ and $n \geq 11$ we consider the degree sequence $d_{A}=\left\langle d_{1}, d_{2}, d_{3}, d_{4}\right\rangle$ of the vertices $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of A. From Theorem 4.3, d_{A} is n-realizable and thus G admits a star ASD unless $\left\langle d_{1}, d_{2}, d_{3}, d_{4}\right\rangle$ has a subsequence in

$$
\begin{aligned}
\mathcal{F}_{2} \cup \mathcal{F}_{3}= & \{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3,1\rangle,\langle 3,3,2\rangle, \\
& \langle 3,3,3\rangle,\langle 4,4,1\rangle,\langle 4,4,3\rangle,\langle 4,4,4\rangle\} .
\end{aligned}
$$

We need now to check all these cases one by one:

- $\left\langle d_{3}, d_{4}\right\rangle=\langle 1,1\rangle$

If $n \geq 7$ we can choose $(n-2)+(n-1)$ edges incident with a_{1} and not touching the two remaining edges incident with a_{3} and a_{4}. Since the sequence $\left(d_{1}-(n-2)-(n-1), d_{2}\right)$ is $(n-2)$-feasible we can take a star $A S D_{n-2}$ of the remaining edges incident with a_{1} and a_{2}. The last two graphs in the $A S D_{n}$ of G are the star induced by the $(n-2)$ chosen edges and the edge incident with a_{3}, and the star induced by the $(n-1)$ chosen edges and the edge incident with a_{4}.

- $\left\langle d_{3}, d_{4}\right\rangle=\langle 2,2\rangle$

If $n \geq 11$ we can choose $(n-3)+(n-2)+(n-2)$ edges incident with a_{1} and not touching the four edges incident with a_{3} and a_{4}. Since the sequence $\left(d_{1}-(n-3)-(n-2)-(n-2), d_{2}\right)$ is $(n-3)$-feasible we can take a star $A S D_{n-3}$ of the remaining edges incident with a_{1} and a_{2}. The last three graphs in the $A S D_{n}$ of G are the star induced by the $(n-3)$ chosen edges and one edge incident with a_{3}, the star induced by the first $(n-2)$ chosen edges and the other edge incident with a_{3}, and the star induced by the last $(n-2)$ chosen edges and the two edges incident with a_{4}.

- $\left\langle d_{2}, d_{3}, d_{4}\right\rangle=\langle 2,2,1\rangle$

From the vertices a_{3} and a_{4} we can obtain an $A S D_{2}$ consisting of the stars S_{1} and S_{2}. There are $M^{\prime}=\binom{n+1}{2}-5$ edges incident with a_{1}. If $n \geq 5$, we have that

$$
3+\cdots+(n-2)+(n-2)+(n-1)=M^{\prime}
$$

and we can take $(n-2)+(n-1)$ edges incident with a_{1} and not touching the two edges incident with a_{2}. From the remaining edges of a_{1} take stars S_{3}, \ldots, S_{n-2}, which together with the stars S_{1} and S_{2} form an $A S D_{n-2}$ of G. Finally, the last two factors of G will be the star induced by the $(n-2)$ chosen edges and one of the edges incident with a_{2}, and the star induced by the $(n-1)$ chosen edges and the other edge incident with a_{2}.

- $\left\langle d_{2}, d_{3}, d_{4}\right\rangle=\langle 3,3,1\rangle$

From the vertices a_{2} and a_{3} we can obtain an $A S D_{3}$ consisting of the stars S_{1}, S_{2} and S_{3}. There are $M^{\prime}=\binom{n+1}{2}-7$ edges incident with a_{1}.

If $n \geq 5$, we have that

$$
4+\cdots+(n-1)+(n-1)=M^{\prime}
$$

and we can take stars S_{4}, \ldots, S_{n-1} centered at a_{1}, which together with the stars S_{1}, S_{2} and S_{3} form an $A S D_{n-1}$ of G. The star induced by the ($n-1$) remaining edges of a_{1} and the edge incident with a_{4} is the last factor of G.

- $\left\langle d_{2}, d_{3}, d_{4}\right\rangle=\langle 3,3,2\rangle$

From the vertices a_{2} and a_{3} we can obtain an $A S D_{3}$ consisting of the stars S_{1}, S_{2} and S_{3}. There are $M^{\prime}=\binom{n+1}{2}-8$ edges incident with a_{1}. If $n \geq 6$, we have that

$$
4+\cdots+(n-2)+(n-2)+(n-1)=M^{\prime}
$$

and we can take $(n-2)+(n-1)$ edges incident with a_{1} and not touching the two edges incident with a_{4}. From the remaining edges of a_{1} take stars S_{4}, \ldots, S_{n-2}, which together with the stars S_{1}, S_{2} and S_{3} form an $A S D_{n-2}$ of G. Finally, the last two factors of G will be the star induced by the $(n-2)$ chosen edges and one of the edges incident with a_{4}, and the star induced by the $(n-1)$ chosen edges and the other edge incident with a_{4}.

- $\left\langle d_{2}, d_{3}, d_{4}\right\rangle=\langle 3,3,3\rangle$

From the vertices a_{2} and a_{3} we can obtain an $A S D_{3}$ consisting of the stars S_{1}, S_{2} and S_{3}. There are $M^{\prime}=\binom{n+1}{2}-9$ edges incident with a_{1}. If $n \geq 6$, we have that

$$
4+\cdots+(n-2)+(n-2)+(n-2)=M^{\prime}
$$

and we can take $(n-2)+(n-2)$ edges incident with a_{1} and not touching the three edges incident with a_{4}. From the remaining edges of a_{1} take stars S_{4}, \ldots, S_{n-2}, which together with the stars S_{1}, S_{2} and S_{3} form an $A S D_{n-2}$ of G. Finally, the last two factors of G will be the star induced by the first $(n-2)$ chosen edges and one of the edges incident with a_{4}, and the star induced by the last $(n-2)$ chosen edges and the two remaining edges incident with a_{4}.

- $\left\langle d_{2}, d_{3}, d_{4}\right\rangle=\langle 4,4,1\rangle$

From the vertices a_{2} and a_{3} we can obtain stars S_{1}, S_{3} and S_{4}. There are $M^{\prime}=\binom{n+1}{2}-9$ edges incident with a_{1}. If $n \geq 6$, we have that

$$
2+5+\cdots+(n-1)+(n-1)=M^{\prime} .
$$

Take stars $S_{2}, S_{5}, \ldots, S_{n-1}$, which together with the stars S_{1}, S_{3} and S_{4} form an $A S D_{n-1}$ of G. The star induced by the $(n-1)$ remaining edges of a_{1} and the edge incident with a_{4} is the last factor of G.

- $\left\langle d_{2}, d_{3}, d_{4}\right\rangle=\langle 4,4,3\rangle$

From the vertices a_{2}, a_{3} and a_{4} we can obtain stars S_{1}, S_{2}, S_{3} and S_{4}, and remains a single edge e. There are $M^{\prime}=\binom{n+1}{2}-11$ edges incident with a_{1}. If $n \geq 6$, we have that

$$
5+\cdots+(n-1)+(n-1)=M^{\prime}
$$

Take stars $S_{5}, S_{6}, \ldots, S_{n-1}$, which together with the stars S_{1}, S_{2}, S_{3} and S_{4} form an $A S D_{n-1}$ of G. The star induced by the $(n-1)$ remaining edges of a_{1} and the edge e is the last factor of G.

- $\left\langle d_{2}, d_{3}, d_{4}\right\rangle=\langle 4,4,4\rangle$

From the vertices $a_{2} a_{3}$ and a_{4} we can obtain an $A S D_{4}$ consisting of the stars S_{1}, S_{2}, S_{3} and S_{4}, and remain two edges e and f. There are $M^{\prime}=\binom{n+1}{2}-12$ edges incident with a_{1}. If $n \geq 7$, we have that

$$
5+\cdots+(n-2)+(n-2)+(n-1)=M^{\prime}
$$

and we can take $(n-2)+(n-1)$ edges incident with a_{1} and not touching the two edges e and f. From the remaining edges of a_{1} take stars $S_{5}, S_{6}, \ldots, S_{n-2}$, which together with the stars S_{1}, S_{2}, S_{3} and S_{4} form an $A S D_{n-2}$ of G. Finally, the last two graphs in the $A S D_{n}$ of G will be the star induced by the $(n-2)$ chosen edges and the edge e, and the star induced by the $(n-1)$ chosen edges and the edge f.

We can observe from the above proof, that in almost all of the cases (including when de degree sequence d_{A} is n-realizable) we are decomposing the graph with stars. In some cases we need star forests, and for cases $\langle 1,1\rangle$ and $\langle 2,2\rangle$ for length 3 , and $\langle 3,3,1\rangle,\langle 4,4,1\rangle$ and $\langle 4,4,3\rangle$ for length 4 , the last
factor may be a star and an edge hanging from a spoke. Should be pointed out that for these cases the proof can be slightly modified to obtain star forest decompositions. Another observation is that, for $|A|=4$, the bound $n \geq 11$ is given by the single case $\left\langle d_{3}, d_{4}\right\rangle=\langle 2,2\rangle$. Hence, if the degree sequence does not contain it, $n>7$ is enough.

5.4 Star forest ASD

In order to weaken the sufficient conditions for a bipartite graph to obtain an ASD, here we consider star forest decompositions instead of star decompositions. In all this section we will consider that a star forest of $G(A, B)$ has the centers of all the stars in the partite set A.

5.4.1 Reduction lemma

Given a bipartite graph $G(A, B)$ with degree sequence $d_{A}=\left\langle d_{1}, \ldots, d_{k}\right\rangle$, we define the reduced graph $G_{d_{A}}(A, R)$ as the bipartite graph with same partite set A and $R=\left\{r_{1}, \ldots, r_{d_{1}}\right\}$ such that every vertex a_{i} is adjacent to the d_{i} first vertices $r_{1}, \ldots, r_{d_{i}}$ of $R, 1 \leq i \leq k$. In Fig. 5.2 a bipartite graph and its reduced graph are shown.

$$
G_{d_{A}}(A, R)
$$

Figure 5.2 The bipartite graph $G(A, B)$ and its reduced graph $G_{d_{A}}(A, R)$.

Since in the reduced graph we are collapsing all the edges into the first vertices, it seems plausible that if the reduced graph admits a star forest ASD then the original graph must admit also a star forest ASD. Lemma 5.9 below shows that this is indeed true. In order to prove it, we first need the following notions.
A proper edge-coloring of a graph (or multigraph) is and assignment of colors to its edges in such a way that two edges that are incident with the same vertex should have different colors. From here on, we will consider a multigraph as a graph with parallel edges but without loops.
Let $G(A, B)$ be a bipartite multigraph and let $\mathcal{L}=\left\{L_{a}: a \in A\right\}$ be a family of lists of colors. We say that G can be properly edge-colored with \mathcal{L} if the graph admits a proper edge-coloring and, for every $a \in A$, the edges incident with a are colored with a color from the list L_{a}.
To prove Lemma 5.9 we use the following result.
Theorem 5.8 (Häggkvist, [30]) Let $H(V, W)$ be a bipartite multigraph. If H admits a proper edge-coloring such that each vertex $v \in V$ is incident with edges colored $\{1,2, \ldots, d(v)\}$, then H can be properly edge-colored for an arbitrary assignment of lists $\{L(v): v \in V\}$ such that $|L(v)|=d(v)$ for each $v \in V$.

Lemma 5.9 (Reduction lemma) Let $G(A, B)$ be a bipartite graph with partite set $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and degree sequence $d_{A}=\left\langle d_{1}, \ldots, d_{k}\right\rangle$. If the reduced graph $G_{d_{A}}(A, R)$ has a decomposition

$$
F_{1}^{\prime}, \ldots, F_{t}^{\prime}
$$

where F_{i}^{\prime} is a star forest for each $i=1, \ldots, t$, then G has a decomposition

$$
F_{1}, \ldots, F_{t}
$$

where each F_{i} is a star forest and $d_{F_{i}}\left(a_{i}\right)=d_{F_{i}^{\prime}}\left(a_{i}\right)$ for $i=1, \ldots, t$.
Proof. Let C be the $k \times t$ matrix whose entry $c_{i j}$ is the number of edges incident to a_{i} in the star forest F_{j}^{\prime} of the decomposition of $G_{d_{A}}(A, R)$.
Consider the bipartite graph $H(A, U), U=\left\{u_{1}, \ldots, u_{t}\right\}$, where a_{i} is joined with u_{j} with $c_{i j}$ parallel edges. Now, for each pair (i, j), color the $c_{i j}$ parallel edges of H with the neighbors of a_{i} in the forest F_{j}^{\prime}. Note that in this way we get a proper edge-coloring of H : two edges incident with a vertex a_{i} receive
different colors since the original bipartite graph has no multiple edges, and two edges incident to a vertex u_{j} receive different colors since F_{j}^{\prime} is a star forest.

Consider the original graph $G(A, B)$ with partite sets $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{q}\right\}$. By the definition of the bipartite multigraph H, each vertex a_{i} in A is incident with edges colored $1,2, \ldots, d_{i}$. By Theorem 5.8, there is a proper edge-coloring of H in which the edges incident to vertex a_{i} in A receive the colors from the list $L\left(a_{i}\right)$ of neighbors of a_{i} in the original graph G. Now construct F_{s} for $s=1, \ldots, t$ by letting the edge $a_{i} b_{j}, 1 \leq i \leq k$ and $1 \leq j \leq q$, be in F_{s}, whenever the edge $a_{i} u_{s}$ is colored b_{j} in the latter edge-coloring of H. Hence, F_{s} has the same number of edges than F_{s}^{\prime} and the degree of a_{i} in F_{s} is $d_{F_{s}}\left(a_{i}\right)=c_{i s}$, the same as in F_{s}^{\prime}. Moreover, since the coloring is proper, F_{s}^{\prime} is a star forest. This concludes the proof.

Example 5.10 To illustrate how is the decomposition of a graph from the decomposition of the reduced graph we consider the following example. Let $G(A, B)$ be the bipartite graph depicted in Fig. 5.3, which has degree sequence $d_{A}=\langle 5,3,1,1\rangle$.

Figure 5.3 The graph $G(A, B)$.
For this graph we can obtain a star forest decomposition $F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}, F_{4}^{\prime}$ of its reduced graph as shown in the first part of Fig. 5.4. From this decomposition we have that the $k \times t$ matrix C defined in the above proof is

$$
C=\left(\begin{array}{llll}
0 & 2 & 0 & 3 \\
1 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The bipartite multigraph $H(A, U)$ obtained from matrix C is shown in Fig. 5.5, where it is properly edge-colored. In the same figure we can see a proper edge-coloring guaranteed by Theorem 5.8 in which each vertex from A is incident with colors from its neighbors in $G(A, B)$.

Figure 5.4 The reduced graph $G_{d_{A}}(A, R)$ with its star forest decomposition and the translation to the graph $G(A, B)$.

Finally, we return to Fig. 5.4 to view the translation of the star forest decomposition of the reduced graph to the original graph via the edge-coloring of the bipartite multigraph $H(A, U)$.

We will obtain later on sufficient conditions for the decomposition of reduced graphs but first we present a necessary condition for every bipartite graph to admit a star forest ASD.

As said in the beginning of this section, for a bipartite graph $G(A, B)$, we only consider star forest decompositions with the stars centered at the vertices of A. We say that a degree sequence $d=\left\langle d_{1}, \ldots, d_{k}\right\rangle$ with $\sum_{i=1}^{k} d_{i}=$ $\binom{n+1}{2}$ is strongly decomposable if every bipartite graph $G(A, B)$ with $d_{A}=d$ admits a star forest ASD with the centers of the stars in A.
(a)

(b)

Figure 5.5 (a) The multigraph $H(A, U)$ obtained from matrix C. (b) $H(A, U)$ properly edge-colored with the vertices of B.

Lemma 5.11 If the sequence $\left\langle d_{1}, \ldots, d_{k}\right\rangle$ is strongly decomposable then

$$
\begin{equation*}
\sum_{i=1}^{t} d_{i} \geq \sum_{i=1}^{t}(n-i+1) \tag{5.1}
\end{equation*}
$$

for each $t=1, \ldots, k$.

Proof. Consider the bipartite graph $G=G(A, B)$ with partite sets $A=$ $\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{d_{1}}\right\}$ such that $a_{i} \in A$ is adjacent to the first d_{i} elements $\left\{b_{j}: 1 \leq j \leq d_{i}\right\}, i=1, \ldots, k$. Let F_{1}, \ldots, F_{n} be a star forest ASD of G. Since F_{n} has n leaves in B we clearly have $|B|=d_{1} \geq n$.
Suppose that $d_{1}+\cdots+d_{t-1} \geq n+(n-1)+\cdots+(n-t+2)$ for some $t \geq 2$. If $d_{t} \geq n-t+1$ then the inequality extends to $d_{1}+\cdots+d_{t-1}+d_{t} \geq$ $n+(n-1)+\cdots+(n-t+2)+(n-t+1)$. Suppose that

$$
\begin{equation*}
n-t-d_{t} \geq 0 \tag{5.2}
\end{equation*}
$$

We will compute the minimum number of edges incident with the vertices a_{1}, \ldots, a_{t} and thus give a bound for $d_{1}+\cdots+d_{t}$.
F_{n} has n edges, and at least $\left(n-d_{t}\right)$ edges are adjacent to the vertices $\left\{b_{d_{t}+1}, \ldots, b_{d_{1}}\right\}$ and therefore adjacent to the vertices $\left\{a_{1}, \ldots, a_{t-1}\right\}$. Likewise, F_{n-i} has at least $\left(n-i+1-d_{t}\right)$ edges adjacent to the vertices
$\left\{a_{1}, \ldots, a_{t-1}\right\}, i=1, \ldots, t$. From (5.2) we know that all these quantities are positive. Moreover, every vertex a_{i}, with $1 \leq i \leq t$, has d_{t} edges incident with the vertices $b_{1}, \ldots, b_{d_{t}}$ still not counted. Hence,

$$
\begin{aligned}
\sum_{i=1}^{t} d_{i} & \geq t d_{t}+\left(n-d_{t}\right)+\left(n-1-d_{t}\right)+\cdots+\left(n-t+1-d_{t}\right) \\
& =n+(n-1)+\cdots+(n-t+1)
\end{aligned}
$$

5.4.2 Ascending matrices

Given two k-dimensional vectors $c=\left(c_{1}, \ldots, c_{k}\right)$ and $c^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{k}^{\prime}\right)$, we say that $c \preceq c^{\prime}$ if there is a permutation $\sigma \in \operatorname{Sym}(k)$ such that $c_{i} \leq c_{\sigma(i)}^{\prime}$ for $i=1,2, \ldots, k$. In other words, after reordering the components of each vector in non-increasing order, the i-th component of c is not larger than the i-th component of c^{\prime}. This definition is motivated by the following remark.

Remark 5.12 Let F, F^{\prime} be two forests of stars with centers x_{1}, \ldots, x_{k} and $x_{1}^{\prime}, \ldots, x_{k}^{\prime}$ respectively. Then F is isomorphic to a subgraph of F^{\prime} if and only if $\left(d_{F}\left(x_{1}\right), \ldots, d_{F}\left(x_{k}\right)\right) \preceq\left(d_{F^{\prime}}\left(x_{1}^{\prime}\right), \ldots, d_{F^{\prime}}\left(x_{k}^{\prime}\right)\right)$.

Given a sequence $d=\left\langle d_{1}, \ldots, d_{k}\right\rangle$ of positive integers with $\sum_{i=1}^{k} d_{i}=\binom{n+1}{2}$, we say that a $k \times n$ matrix C with nonnegative integer entries is a d-ascending matrix if it satisfies the following three properties:
(A1) $\sum_{j=1}^{n} c_{i j}=d_{i}, i=1, \ldots, k$,
(A2) $\sum_{i=1}^{k} c_{i j}=n-j+1, j=1, \ldots, n$,
(A3) $c^{j} \succeq c^{j+1}, j=1, \ldots, n-1$, where c^{j} denotes the j-th column of C.
Example 5.13 The following 4×7 matrix is d-ascending for the sequence $d=\langle 10,8,5,5\rangle$, which is 7 -feasible.

$$
C=\left(\begin{array}{lllllll}
3 & 2 & 2 & 1 & 1 & 1 & 0 \\
2 & 2 & 2 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

We next show that the existence of these matrices give, in fact, star forest ASD of reduced graphs and therefore, by Lemma 5.9, of every bipartite graph with the same degree sequence on a partite set. To show this we will need the following well-known theorems by König and Hall, which can be easily seen that also hold for bipartite graphs with parallel edges. The edge-chromatic number $\chi^{\prime}(G)$ of a graph (or multigraph) G is the minimum number of colors needed to obtain a proper edge-coloring of G.

Theorem 5.14 (König, see, e.g., [15]) If G is a bipartite graph then

$$
\chi^{\prime}(G)=\Delta(G) .
$$

A matching of A in a bipartite graph $G(A, B)$ is a matching of G such that each vertex of A is incident to an edge of the matching. For a subset X of the vertices of a graph, we denote by $N(X)$ to all the neighbors of the vertices of X, that is,

$$
N(X)=\cup_{v \in X} N(v) .
$$

Theorem 5.15 (Hall, see, e.g., [15]) A bipartite graph $G(A, B)$ contains a matching of A if and only if

$$
|N(X)| \geq|X| \quad \text { (marriage condition) }
$$

for all $X \subseteq A$.
Before proving the main result, we will show the following technical lemma by using Theorems 5.14 and 5.15.

Lemma 5.16 Let $H(A, U)$ be a bipartite multigraph. If

$$
\delta(A) \geq \Delta(U)
$$

where $\delta(A)=\min _{a \in A} d(a)$ and $\Delta(U)=\max _{u \in U} d(u)$, then there is a proper edge-coloring of H such that each vertex $a \in A$ is incident to edges colored with $\{1,2, \ldots, d(a)\}$.

Proof. Given a $X \subseteq A$ we denote by $e(X, N(X))$ the set of edges that join the vertices of X with their neighbors.

We have that

$$
|N(X)| \Delta(U) \geq e(X, N(X)) \geq|X| \delta(A) \geq|X| \Delta(U)
$$

which implies $|N(X)| \geq|X|$ and the marriage condition holds. By Theorem 5.15 there is a matching M from A to U in H. Let $A_{\Delta(A)} \subset A$ be the set of vertices with degree $\Delta(A)$ in A. If $\Delta(A)>\Delta(U)$, then color the edges in M incident to vertices in $A_{\Delta(A)}$ with $\Delta(A)$ and remove these edges from H. The resulting multigraph H^{\prime} still satisfies $\delta_{H^{\prime}}(A) \geq \Delta_{H^{\prime}}(U)$ but now $\Delta_{H^{\prime}}(A)=\Delta_{H}(A)-1$. By iterating this process we eventually reach a multigraph H_{0} with $m_{0}=\Delta_{H_{0}}(A)=\delta_{H_{0}}(A)=\Delta_{H}(U)$, which can be properly edge-colored, by using Theorem 5.14, with m_{0} colors. At the end, it is clear that the edges incident with each vertex a in A are colored with $\left\{1,2, \ldots, d_{H}(a)\right\}$.

Recall that a non-increasing degree sequence $\left(d_{1}, \ldots, d_{k}\right)$ is usually denoted by $\left\langle d_{1}, \ldots, d_{k}\right\rangle$. We introduce here a similar notation for strictly decreasing sequences. If $d_{i}>d_{i+1}$ for each $i=1, \ldots, k-1$ we denote the sequence by

$$
\left\langle d_{1}, \ldots, d_{k}\right\rangle_{S}
$$

With the stated previous results we are now able to prove the main decomposition theorem.

Theorem 5.17 Let $G(A, B)$ be a bipartite graph with $\binom{n+1}{2}$ edges and degree sequence $d_{A}=\left\langle d_{1}, \ldots, d_{k}\right\rangle_{S}$. Suppose that there is a d_{A}-ascending matrix C such that $c_{i j} \geq 1$ for each pair (i, j) with $i+j \leq k$. If $d_{i} \geq n-i+1$, $i=1, \ldots, k$, then G admits a star forest ASD.

Proof. Let $H(A, U)$ be the bipartite multigraph with $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $c_{i j}$ parallel edges joining $a_{i} \in A$ with $u_{j} \in U$.
Suppose that H admits a proper edge-coloring in which each vertex a_{i} in A is incident with the colors $\left\{1,2, \ldots, d_{i}\right\}, 1 \leq i \leq k$. This coloring can be used to obtain a family of subgraphs

$$
F_{1}, \ldots, F_{n}
$$

of the reduced graph $G_{d_{A}}(A, R)$ by letting $F_{s}, s=1, \ldots, n$, consist of the edges $a_{i} r_{j}, 1 \leq i \leq k$ and $1 \leq j \leq d_{1}$, such that $a_{i} u_{n-s+1}$ is colored j in the edge-colored multigraph $H(A, U)$. Thus F_{s} is a star forest and has degree sequence $d_{A}\left(F_{s}\right)=\left(c_{1, n-s+1}, \ldots, c_{k, n-s+1}\right)$ in $G_{d_{A}}(A, R)$. By the column
sum property (A2) of the matrix C, the star forest F_{s} has $\sum_{i=1}^{k} c_{i, n-s+1}=s$ edges and, by the ascending column property (A3) and Remark 5.12, it is isomorphic to a subgraph of F_{s+1}. Finally, by the row sum property (A1), $d_{F_{1}}\left(a_{i}\right)+\cdots+d_{F_{n}}\left(a_{i}\right)=d_{i}$ for each $i=1, \ldots, k$, therefore the collection F_{1}, \ldots, F_{n} of star forests forms an ASD of $G_{d_{A}}(A, R)$.

It follows from Lemma 5.9 that the given graph $G(A, B)$ admits an analogous star forest decomposition.

Therefore, we only need to prove that $H(A, U)$ admits such a coloring.
For each $s=1, \ldots, k-1$ denote by M_{s} the matching formed by the s edges $a_{i} u_{s-i+1}, 1 \leq i \leq s$, in H (such matchings exist by the condition $c_{i j} \geq 1$ for each pair (i, j) with $i+j \leq k)$.

Consider first the bipartite multigraph

$$
H^{\prime}(A, U)=H-\left(M_{1} \cup \cdots \cup M_{k-1}\right)
$$

consisting of the remaining edges, and let $d_{A}^{\prime}=\left\langle d_{1}^{\prime}, \ldots, d_{k}^{\prime}\right\rangle$ be the degree sequence of A in H^{\prime}. Since $d_{i} \geq n-i+1$ and from each vertex a_{i} we have removed $k-i$ incident edges, $1 \leq i \leq k-1$, we have $d_{i}^{\prime}=d_{i}-(k-i) \geq n-k+1$ for each $i=1, \ldots, k-1$, and $d_{k}^{\prime}=d_{k} \geq n-k+1$. On the other hand, each vertex $u_{i}, i=1, \ldots, n$, has $d_{H}\left(u_{i}\right)=n-i+1$ by the property (A2). Hence, the vertices u_{i} with $i=k, \ldots, n$, have degree in H (and H^{\prime}) at most $n-k+1$. Moreover, each one of the remaining vertices $u_{i}(i=1, \ldots, k-1)$ belongs to $k-i$ colored matchings, so that its degree is $d_{H^{\prime}}\left(u_{i}\right)=n-k+1$. Therefore, for $H^{\prime}, \delta(A)=n-k+1 \geq \Delta(U)$ and by Lemma 5.16 there is an edge-coloring such that each vertex a_{i} is incident with edges colored $\left\{1, \ldots, d_{i}^{\prime}\right\}, 1 \leq i \leq k$.

Now, we will successively add the removed matchings $M_{k-1}, M_{k-2}, \ldots, M_{1}$ to H^{\prime} in the following way.
Let $t=\min \left\{d_{i}^{\prime}: 1 \leq i \leq k\right\}$ and $r=\max \left\{d_{i}^{\prime}: 1 \leq i \leq k\right\}$. Since the sequence d_{A} is strictly decreasing we have that $t=d_{k}^{\prime}$.
If $t=r$, we can add all the matchings M_{k-1}, \ldots, M_{1} to H^{\prime} by assigning the color $r+k-s$ to the edges of M_{s}, and we have obtained a proper edgecoloring of H such that each vertex a_{i} in A is incident with edges colored $\left\{1,2, \ldots, d_{i}\right\}, 1 \leq i \leq k$.

Suppose that $t<r$. Since H^{\prime} is proper edge-colored, the edges colored with j define a matching Q_{j} of H^{\prime} for each $1 \leq j \leq r$. Consider the set of edges

$$
Q=Q_{t+1} \cup \cdots \cup Q_{r} .
$$

Now, we increase one unity the color of each edge in Q and then we add the matching M_{k-1} to H^{\prime} by assigning to its edges the free color $t+1$. In this way, each vertex a_{i} is incident with edges colored $\left\{1, \ldots, d_{i}^{\prime}+1\right\}$ for $i=1, \ldots, k-1$, and its degree has also increased one unity. The vertex a_{k} is incident with edges colored $\{1, \ldots, t\}=\left\{1, \ldots, d_{k}^{\prime}=d_{k}\right\}$.

At this point we can repeat the same procedure and successively add the matchings M_{k-2}, \ldots, M_{1}. At the end, we obtain a proper edge-coloring of H such that each vertex a_{i} in A is incident with edges colored $\left\{1,2, \ldots, d_{i}\right\}$, $1 \leq i \leq k$.

Note that the condition $d_{i} \geq n-i+1,1 \leq i \leq k$, from the hypothesis of Theorem 5.17, is not far from the necessary condition (5.1) from Lemma 5.11.

Now, our main goal is to prove the existence of an adequate ascending matrix for a given degree sequence. We actually believe that such matrices always exists.

Conjecture 5.18 For every n-feasible sequence $d=\left\langle d_{1}, \ldots, d_{k}\right\rangle$ with $d_{i} \geq$ $n-i+1,1 \leq i \leq k$, there exists a $k \times n$ ascending matrix $C=\left(c_{i j}\right)$ with $c_{i j} \geq 1$ for each pair (i, j) with $i+j \leq k$.

We have obtained two approximations to Conjecture 5.18 , which in turn, by Theorem 5.17, will provide star forest ASD for some degree sequences. The first result is the following.

Theorem 5.19 Let $G(A, B)$ be a bipartite graph with $\binom{n+1}{2}$ edges and degree sequence $d_{A}=\left\langle d_{1}, \ldots, d_{k}\right\rangle_{S}$. If
(1) $d_{1} \geq(k-1)(n-k+1)$,
(2) $d_{i} \geq n-i+2, i=2, \ldots, k$;
then there exists a star forest $A S D$ of G.
Proof. Define a matrix C^{\prime} in the following way. Let the first row be

$$
(\underbrace{n-k+1, \ldots, n-k+1}_{k-1}, n-k+1, n-k, n-k-1, \ldots, 2,1),
$$

and the i-th row be $(\underbrace{1, \ldots, 1}_{k-i+1}, 0, \ldots, 0)$, for $i=2, \ldots, k$.

From this construction we have that C^{\prime} has the ascending column property (A3).

It is clear that the sum of the elements of the column j is $(n-k+1)+(k-j)=$ $n-j+1$ for $j=1, \ldots, k-1$, and for $j=k, \ldots, n$, the only nonzero elements are the $n-j+1$ elements of the first row. Therefore the matrix C^{\prime} has the column sum property (A2).
Let $d_{2}^{\prime}, \ldots, d_{k}^{\prime}$ be the row sums of C^{\prime}. From condition (2):

$$
d_{i}-d_{i}^{\prime} \geq n-i+2-(k-i+1)=n-k+1 .
$$

Let $d_{1}^{\prime}=(k-1)(n-k+1)$. From condition (1):

$$
d_{1}-d_{1}^{\prime} \geq 0 .
$$

Consider the sequence

$$
S=\left(d_{1}-d_{1}^{\prime}, d_{2}-d_{2}^{\prime}, \ldots, d_{k}-d_{k}^{\prime}\right) .
$$

Then,

$$
\begin{aligned}
\sum_{i=1}^{k}\left(d_{i}-d_{i}^{\prime}\right) & =\binom{n+1}{2}-(k-1)(n-k+1)-\sum_{i=2}^{k} k-i+1 \\
& =\frac{n^{2}+3 n+k^{2}-3 k-2 n k+2}{2} \\
& =\binom{n-k+1}{2} .
\end{aligned}
$$

Therefore, S is $(n-k+1)$-feasible. Since all the elements of the sequence are above $n-k+1$ with the possible exception of $d_{1}-d_{1}^{\prime}$, by the result of Chen et al. (sequence (5) in page 54), there is a partition X_{1}, \ldots, X_{k} of the set $[n-k+1]$ such that $\sum\left(X_{i}\right)=d_{i}-d_{i}^{\prime}, 1 \leq i \leq k$. The elements of this set appear precisely in the last positions of the first row, which have zeros below them. Observe that if $d_{1}-d_{1}^{\prime}=0$, we can consider the same sequence and set $X_{1}=\emptyset$.

We define the matrix $C=\left(c_{i j}\right)$ to be the same matrix as C^{\prime} but applying the following switchings to the last $n-k+1$ columns. For every $x \in[n-k+1]$, which is in the set X_{i} for some $1 \leq i \leq k$, switch it with the corresponding zero in the same column and row i. In this way, we are not altering the ascending column property (A3) and the column sum property (A2) since
we are permuting elements in the same column; and finally, for each row $i=1, \ldots, k$,

$$
\sum_{j=1}^{n} c_{i j}=d_{i}^{\prime}+\sum X_{i}=d_{i}
$$

Therefore, the matrix C has the row sum property (A1) and it is clear that $c_{i j} \geq 1$ for each pair (i, j) with $i+j \leq k$. Thus we are in the hypothesis of Theorem 5.17 and G admits a star forest ASD.

Example 5.20 Let $d_{A}=\langle 16,8,7,5\rangle_{S}$, for which $k=4$ and $n=8$. The constructed matrices from the proof of Theorem 5.19 are the following.

$$
C^{\prime}=\left(\begin{array}{lll|lllll}
5 & 5 & 5 & 5 & 4 & 3 & 2 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad C=\left(\begin{array}{lll|lllll}
5 & 5 & 5 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 5 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 3 & 2 & 0 \\
1 & 0 & 0 & 0 & 4 & 0 & 0 & 0
\end{array}\right)
$$

The second result is:
Theorem 5.21 Let $G(A, B)$ be a bipartite graph with $\binom{n+1}{2}$ edges and degree sequence $d_{A}=\left\langle d_{1}, \ldots, d_{k}\right\rangle_{S}$. If
(1) $d_{i} \geq n-i+1,1 \leq i \leq k$, and
(2) the $(n-k)$-feasible sequence $\left(d_{1}-n, d_{2}-(n-1), \ldots, d_{k}-(n-k+1)\right)$ is $(n-k)$-realizable,
then there exists a star forest $A S D$ of G.
Proof. Let ϵ_{i} denote the n dimensional vector with entries 1 till the i-th coordinate and entries 0 for the rest:

$$
\epsilon_{i}=(\underbrace{1,1, \ldots, 1}_{i}, \underbrace{0, \ldots, 0}_{n-i})
$$

Construct an $n \times n$ matrix C^{\prime} with row i the vector ϵ_{n-i+1}.

From condition (1), the sum of each of the first k rows of C^{\prime} is at most the value d_{i}, so the first k rows have to be completed and the last $n-k$ deleted. To do this, we consider the sequence

$$
d^{\prime}=\left(d_{1}-n, d_{2}-(n-1), \ldots, d_{k}-(n-k+1)\right),
$$

which is clearly $(n-k)$-feasible. In the case that for some $i, d_{i}=n-i+1$, the row is completed and we consider the sequence d^{\prime} of length $k-1$ by removing the 0 .

We know from condition (2) that d^{\prime} is $(n-k)$-realizable, so there is a partition $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ of the set $[n-k]$ such that $\sum X_{i}=d_{i}-(n-i+1)$. Now, we construct the ascending matrix $C=\left(c_{i j}\right)$ from C^{\prime} in the following way:

For every set $X_{i}=\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$, we remove the rows of C^{\prime} with vectors $\epsilon_{\alpha_{1}}, \ldots, \epsilon_{\alpha_{t}}$ and add all them to the row i. Since \mathcal{P} is a partition of the set [$n-k$], we are deleting the $n-k$ last rows of C^{\prime}, thus C is a $k \times n$ matrix. Moreover,

$$
\sum_{j=1}^{n} c_{i j}=n-i+1+\sum\left(X_{i}\right)=d i, \quad 1 \leq i \leq k
$$

and the matrix C has the row sum property (A1). The column sum property (A2) is obvious since every column j of C^{\prime} has $n-j+1$ unities. Finally it is clear that every time that we add a row $\epsilon_{\alpha_{j}}$ to another row, we do not break the ascending column property (A3).

Hence, $C=\left(c_{i j}\right)$ is a $k \times n d_{A}$-ascending matrix and clearly $c_{i j} \geq 1$ for each pair (i, j) with $i+j \leq k$. Thus we are in the hypothesis of Theorem 5.17 and G admits a star forest ASD.

Example 5.22 Let $d_{A}=\langle 19,17,11,8\rangle_{S}$, for which $k=4$ and $n=10$. The starting matrix C^{\prime} is

$$
C^{\prime}=\left(\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

The sequence $d^{\prime}=(19-10,17-9,11-8,8-7)=(9,8,3,1)$ is 6 -realizable. Consider the following realization:

$$
X_{1}=\{5+4\}, \quad X_{2}=\{6+2\}, \quad X_{3}=\{3\}, \quad X_{4}=\{1\}
$$

Thus, once deleted the last 6 rows and added properly to the first k rows, the matrix C^{\prime} is transformed to the ascending matrix

$$
C=\left(\begin{array}{llllllllll}
3 & 3 & 3 & 3 & 2 & 1 & 1 & 1 & 1 & 1 \\
3 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 0 \\
2 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Non-realizable sequences

In Chapter 4, Section 4.2, we need to do some verifications. Specifically, we want to check the n-feasible but not n-realizable sequences of length $k=3$, $n=4,5,6,7$ and the same sequences of length $k=4, n=4,5,6,7,8$. In order to do these calculations that would be tedious by hand, we present a simple algorithm that given n and k computes the n-feasible sequences of length k that are not n-realizable. We call it $\operatorname{NonReal}(n, k)$. In order to describe this algorithm, we will need the following technical function Φ that adds one element in each sequence of a sequence list. It is defined as

$$
\begin{aligned}
& \Phi(\emptyset, m)=\emptyset \\
& \Phi\left(\left\{\left(a_{1}^{1}, \ldots, a_{l_{1}}^{1}\right), \ldots,\left(a_{1}^{s}, \ldots, a_{l_{s}}^{s}\right)\right\}, m\right)= \\
& =\left\{\left(a_{1}^{1}, \ldots, a_{l_{1}}^{1}, m\right), \ldots,\left(a_{1}^{s}, \ldots, a_{l_{s}}^{s}, m\right)\right\},
\end{aligned}
$$

where m is an arbitrary integer and a_{j}^{i} are also arbitrary integers indexed by the sequence in which belong (the total number of sequences is $s \geq 1$) and the position in each sequence (the length of each sequence is $l_{i} \geq 0$). A sequence of length zero is denoted by ().
$\operatorname{NonReal}(n, k)$ is split into two main procedures. The first procedure is a well-known recursive algorithm that gives all the partitions of the set $[n]$ into k non-empty parts. The entries of the procedure are n and k and it returns a set of sequences of length n, each one representing one specific k-partition, in such a way that the element $a_{j} \in\{1, \ldots, k\}$ of a returned sequence $\left(a_{1}, \ldots, a_{n}\right)$ says that the element j lies in part a_{j}. The procedure is detailed in Algorithm 1. To obtain all the different n-realizable sequences of length k we only have to sum all the parts of each k-partition and discard the repeated sequences.

```
Algorithm 1 Partitions of \([n]\) in \(k\) parts
    procedure SetPartitions \((n, k)\)
        var \(i\), out
        if \(n=1\) and \(k \neq 1\) then \(\operatorname{RETURN}(\emptyset)\) end if
        if \(n=1\) and \(k=1\) then \(\operatorname{RETURN}(\{(1)\})\) end if
        if \(n \neq 1\) then
            out \(:=\Phi(\operatorname{SetPartitions}(n-1, k-1), k)\)
            for \(i=1\) to \(k\) do
                out \(:=\) out \(\cup \Phi(\operatorname{SetPARTITIONS}(n-1, k), i)\)
            end for
            RETURN(out)
        end if
    end procedure
```

The second procedure is another well-known recursive algorithm that gives all the integer partitions of a positive integer m, that is, all the possible ways to add up to m with nonzero summands. Algorithm 2 takes an integer m and returns the set of all different sequences such that the sum of the elements of each sequence is m. To obtain the partitions of the integer m, the procedure should be called as Partitions (m, m).

```
Algorithm 2 Integer partitions of \(m\)
    procedure Partitions \((m, l)\)
        var \(i\), out
        if \(m=0\) then \(\operatorname{RETURN}(\{()\})\) end if
        if \(m \neq 0\) then
            out \(:=\emptyset\)
            for \(i=1\) to \(\min (m, l)\) do
                out \(:=\) out \(\cup \Phi(\) Partitions \((m-i, i), i)\)
            end for
            RETURN(out)
        end if
    end procedure
```

Since we want the n-feasible sequences of length k, we should only keep the sequences of length k from Partitions $\left(\frac{n(n+1)}{2}, \frac{n(n+1)}{2}\right)$.

The final algorithm $\operatorname{NonReal}(n, k)$ that returns all the n-feasible sequences of length k that are not n-realizable can be done by simply comparing the n feasible sequences given by the first procedure with the n-realizable sequences given by the second one.

For Theorem 4.2, we run the algorithm $\operatorname{NonReal}(n, k)$ for $k=3$ and $n=$ $4,5,6,7$ with the following results.

$$
\begin{aligned}
& \operatorname{NonReal}(4,3)=\{\langle 6,2,2\rangle,\langle 8,1,1\rangle\} \\
& \operatorname{NonReal}(5,3)=\{\langle 11,2,2\rangle,\langle 13,1,1\rangle\} \\
& \operatorname{NonReaL}(6,3)=\{\langle 17,2,2\rangle,\langle 19,1,1\rangle\} \\
& \operatorname{NonReal}(7,3)=\{\langle 24,2,2\rangle,\langle 26,1,1\rangle\}
\end{aligned}
$$

For Theorem 4.3, we run the algorithm for $k=4$ and $n=8$ with the following result.

$$
\begin{aligned}
\operatorname{NonREAL}(8,4)= & \{\langle 16,16,2,2\rangle,\langle 17,15,2,2\rangle,\langle 17,17,1,1\rangle,\langle 18,14,2,2\rangle, \\
& \langle 18,16,1,1\rangle,\langle 19,13,2,2\rangle,\langle 19,15,1,1\rangle,\langle 20,12,2,2\rangle, \\
& \langle 20,14,1,1\rangle,\langle 21,11,2,2\rangle,\langle 21,13,1,1\rangle,\langle 22,10,2,2\rangle, \\
& \langle 22,12,1,1\rangle,\langle 23,9,2,2\rangle,\langle 23,11,1,1\rangle,\langle 24,4,4,4\rangle, \\
& \langle 24,8,2,2\rangle,\langle 24,10,1,1\rangle,\langle 25,4,4,3\rangle,\langle 25,7,2,2\rangle, \\
& \langle 25,9,1,1\rangle,\langle 26,6,2,2\rangle,\langle 26,8,1,1\rangle,\langle 27,3,3,3\rangle, \\
& \langle 27,4,4,1\rangle,\langle 27,5,2,2\rangle,\langle 27,7,1,1\rangle,\langle 28,3,3,2\rangle, \\
& \langle 28,4,2,2\rangle,\langle 28,6,1,1\rangle,\langle 29,3,2,2\rangle,\langle 29,3,3,1\rangle, \\
& \langle 29,5,1,1\rangle,\langle 30,2,2,2\rangle,\langle 30,4,1,1\rangle,\langle 31,2,2,1\rangle, \\
& \langle 31,3,1,1\rangle,\langle 32,2,1,1\rangle,\langle 33,1,1,1\rangle\}
\end{aligned}
$$

Finally, to obtain the set \mathcal{S} in page 56 , we run the algorithm for $k=4$ and $n=4,5,6,7$.

$$
\begin{aligned}
\operatorname{NonREAL}(4,4)= & \{\langle 3,3,2,2\rangle,\langle 3,3,3,1\rangle,\langle 4,2,2,2\rangle,\langle 4,4,1,1\rangle \\
& \langle 5,2,2,1\rangle,\langle 5,3,1,1\rangle,\langle 6,2,1,1\rangle,\langle 7,1,1,1\rangle\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{NonREAL}(5,4)= & \{\langle 4,4,4,3\rangle,\langle 6,3,3,3\rangle,\langle 6,4,4,1\rangle,\langle 6,5,2,2\rangle, \\
& \langle 6,6,2,1\rangle^{*},\langle 7,3,3,2\rangle,\langle 7,4,2,2\rangle,\langle 7,6,1,1\rangle, \\
& \langle 8,3,2,2\rangle,\langle 8,3,3,1\rangle,\langle 8,5,1,1\rangle,\langle 9,2,2,2\rangle \\
& \langle 9,4,1,1\rangle,\langle 10,2,2,1\rangle,\langle 10,3,1,1\rangle,\langle 11,2,1,1\rangle, \\
& \langle 12,1,1,1\rangle\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{NonREAL}(6,4)= & \left\{\langle 8,7,3,3\rangle^{*},\langle 8,8,3,2\rangle^{*},\langle 9,4,4,4\rangle,\langle 9,8,2,2\rangle,\right. \\
& \langle 10,4,4,3\rangle,\langle 10,7,2,2\rangle,\langle 10,9,1,1\rangle,\langle 11,6,2,2\rangle, \\
& \langle 11,8,1,1\rangle,\langle 12,3,3,3\rangle,\langle 12,4,4,1\rangle,\langle 12,5,2,2\rangle, \\
& \langle 12,7,1,1\rangle,\langle 13,3,3,2\rangle,\langle 13,4,2,2\rangle,\langle 13,6,1,1\rangle, \\
& \langle 14,3,2,2\rangle,\langle 14,3,3,1\rangle,\langle 14,5,1,1\rangle,\langle 15,2,2,2\rangle, \\
& \langle 15,4,1,1\rangle,\langle 16,2,2,1\rangle,\langle 16,3,1,1\rangle,\langle 17,2,1,1\rangle, \\
& \langle 18,1,1,1\rangle\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{NonREAL}(7,4)= & \left\{\langle 10,10,4,4\rangle^{*},\langle 12,12,2,2\rangle,\langle 13,11,2,2\rangle,\langle 13,13,1,1\rangle,\right. \\
& \langle 14,8,3,3\rangle^{*},\langle 14,10,2,2\rangle,\langle 14,12,1,1\rangle,\langle 15,9,2,2\rangle, \\
& \langle 15,11,1,1\rangle,\langle 16,4,4,4\rangle,\langle 16,8,2,2\rangle,\langle 16,10,1,1\rangle, \\
& \langle 17,4,4,3\rangle,\langle 17,7,2,2\rangle,\langle 17,9,1,1\rangle,\langle 18,6,2,2\rangle \\
& \langle 18,8,1,1\rangle,\langle 19,3,3,3\rangle,\langle 19,4,4,1\rangle,\langle 19,5,2,2\rangle, \\
& \langle 19,7,1,1\rangle,\langle 20,3,3,2\rangle,\langle 20,4,2,2\rangle,\langle 20,6,1,1\rangle, \\
& \langle 21,3,2,2\rangle,\langle 21,3,3,1\rangle,\langle 21,5,1,1\rangle,\langle 22,2,2,2\rangle, \\
& \langle 22,4,1,1\rangle,\langle 23,2,2,1\rangle,\langle 23,3,1,1\rangle,\langle 24,2,1,1\rangle, \\
& \langle 25,1,1,1\rangle\}
\end{aligned}
$$

The sequences marked with * are precisely the only ones not containing any subsequence from $\mathcal{F}_{2} \cup \mathcal{F}_{3}$.

Bibliography

[1] B. D. Acharya, S. M. Hedge, Strongly indexable graphs, Discrete Mathematics 93 (1991), 275-299.
[2] Y. Alavi, A. J. Boals, G. Chartrand, P. Erdös, O. Oellerman, The ascending subgraph decomposition problem, Congressus Numeratium 58 (1987), 7-14.
[3] N. Alon, Combinatorial Nullstellensatz, Combinatorics Probability and Computing 8 (1999), 7-29.
[4] N. Alon, Additive Latin Transversals, Israel J. of Math. 117 (2000), 125-130.
[5] N. Alon, M. B. Nathanson, I. Z. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56 (1996), 404-417.
[6] N. Alon, M. Tarsi, Colorings and orientations of graphs. Combinatorica 12 (1992), 125-134.
[7] K. Ando, S. Gervacio, M. Kano, Disjoint integer subsets having a constant sum, Discrete Mathematics 82 (1990), 7-11.
[8] M. Bacca, On magic labelings of convex polytopes, Annals of Discrete Mathematics 51 (1992), 13-16.
[9] A. Blokhuis, Polynomials in finite geometries and combinatorics. Surveys in combinatorics, London Math. Soc. Lecture Note Ser. 187, Cambridge Univ. Press, (1993), 35-52.
[10] F. Van Bussel, Relaxed graceful labellings of trees, The Electronic Journal of Combinatorics 9 (2002) \# R4.
[11] M. Cámara, A. Lladó, J. Moragas, On a Conjecture of Graham and Häggkvist with the Polynomial Method, European Journal of Combinatorics 30 (2009), 1585-1592.
[12] F. L. Chen, H. L. Fu, Y. Wang, J. Zhou, Partition of a set of integers into subsets with prescribed sums, Taiwanese Journal of Mathematics 9 (4) (2005), 629-638.
[13] D. Craft, E. H. Tesar, On a question by Erdös about edge-magic graphs, Discrete Mathematics 207 (1999), 271-276.
[14] S. Dasgupta, G. Károlyi, O. Serra, B. Szegedy, Transversals of additive Latin squares, Israel J. Math. 126 (2001), 17-28.
[15] R. Diestel, Graph Theory (Third Edition), GTM Springer-Verlag 173, Berlin (2005).
[16] H. Enomoto, A. Llado, T. Nakimigawa, G. Ringel, Super edge-magic graphs, SUT Journal of Mathematics 34 (2) (1998), 105-109.
[17] R. J. Faudree, R. J. Gould, Ascending subgraph decompositions for forests, Congressus Numerantium 70 (1990), 221-229
[18] R. J. Faudree, A. Gyárfás, R. H. Schelp, Graphs which have an ascending subgraph decomposition, Congressus Numeratium 59 (1987), 49-54.
[19] H. L. Fu, A note on the ascending subgraph decomposition problem, Discrete Mathematics 84 (1990), 315-318.
[20] H. L. Fu, Some results on the ascending subgraph decomposition, Bull. Inst. Math. Acad. Sin. 16 (4) (1998) 341-345.
[21] H. L. Fu, W. H. Hu, A special partition of the set I_{n}, Bulletin of ICA 6 (1992), 57-61.
[22] H. L. Fu, W. H. Hu, A note on ascending subgraph decompositions of complete multipartite graphs, Discrete Mathematics 226 (2001), 397402.
[23] H. L. Fu, W. H. Hu, Ascending subgraph decomposition of regular graphs, Discrete Mathematics 253 (2002), 11-18.
[24] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics 16 (2009) \# DS6.
[25] R. Godbold, P. J. Slater, All cycles are edge-magic, Bull. Inst. Comb. Appl. 22 (1998), 93-97.
[26] S. W. Golomb, How to number a graph, Graph Theory and Computing, R. C. Read, ed., Academic Press, New York (1972), 23-37.
[27] R. L. Graham, N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth 1 (1980), 382-404.
[28] A. Gutierrez, A. Lladó, Magic coverings, J. Combin. Math. and Combin. Comput. 55 (2005), 43-56.
[29] A. Gyárfás, J. Lehel, Packing trees of different order into K_{n}, Colloquia Mathematica Societatis János Bolyai 18 (1976), 463-469.
[30] R. L. Häggkvist, Decompositions of Complete Bipartite Graphs, Surveys in Combinatorics, Johannes Siemons Ed., Cambridge University Press (1989), 115-146.
[31] D. Hefetz, Anti-magic graphs via the Combinatorial Nullstellensatz, Journal of Graph Theory 50 (4) (2005), 263-272.
[32] G. Kàrolyi, The Polynomial Method in Combinatorics, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser (2009).
[33] A. E. Kézdy, ρ-Valuations for some stunted trees, Discrete Mathematics 306 (21) (2006), 2786-2789.
[34] A. E. Kézdy, H. S. Snevily, Distinct sums modulo n and tree embeddings, Combin. Probab. Comput. 11 (1) (2002), 35-42.
[35] A. Kotzig, On certain vertex-valuations of finite graphs, Utilitas Math. 4 (1973), 261-290.
[36] A. Kotzig, On well spread sets of integers, Publications du CRM-161 (1972), (83 pages).
[37] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (4) (1970), 451-461.
[38] A. Kotzig, A. Rosa, Magic valuations of complete graphs, Centre de Recherches Mathematiques, Universite de Montreal (Internal Report) (1972), (8 pages).
[39] V. F. Lev, On consecutive subset sums, Discrete Mathematics 187 (1998), 151-160.
[40] A. Lladó, S. C. López, Edge-Decompositions of $K_{n, n}$ Into Isomorphic Copies of a Given Tree, Journal of Graph Theory 48 (1) (2005), 1-18.
[41] A. Lladó, S. C. López, J. Moragas, Every tree is a large subtree of a tree that decomposes K_{n} or $K_{n, n}$, Discrete Mathematics 310 (4) (2010), 838-842.
[42] A. Lladó, J. Moragas, Cycle-Magic Graphs, Discrete Mathematics 307 (2007), 2925-2933.
[43] A. Lladó, J. Moragas, On the Sumset Partition problem, Electronic notes in Discrete Mathematics 34 (2009), 15-19.
[44] K. Ma, H. Zhou, J. Zhou, On the ascending star subgraph decomposition of star forests, Combinatorica 14 (3) (1994), 307-320.
[45] M. Nathanson, Additive Number Theory: Inverse Theorems and the Geometry of Sumsets, GTM Springer 66, New York (1999).
[46] G. Ringel, Problem 25, Theory of Graphs and Its Applications (Proc. Symp. Smolence, 1963), Czech. Acad. Sci., (1964), p. 162.
[47] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966) New York and Dunod Paris (1967), 349-355.
[48] T. Tao, V. H. Vu, Additive combinatorics, Cambridge University Press, Cambridge (2006).
[49] W. D. Wallis, Magic Graphs, Birkhäuser Boston, (2001).

Index

$\rangle, 53$
$\left\rangle_{S}, 95\right.$
$A S D_{m}, 83$
$C_{h}, 6$
$c \preceq c^{\prime}, 93$
$\Delta(G), 5$
$\delta(G), 5$
$d(u), 5$
$d(u, v), 6$
$d_{A}, 82$
$d_{G}(u), 5$
$d_{G}(u, v), 6$
$\epsilon_{i}, 99$
$f(k), 64$
$\mathcal{F}_{k}, 55$
$G(A, B), 5$
$G * e H, 17$
$G-A, 4$
$G-F, 4$
$G \backslash A, 4$
$G_{1} \times G_{2}, 21$
$G_{d_{A}}(A, R), 88$
$G, 4$
$H \mid G, 6$
$K_{n}, 5$
$K_{n, m}, 5$
$k H, 17$
$m(f), 14$
$N(X), 94$
$N(u), 5$
$N_{G}(u), 5$
[n, m], 3
[n], 3
$P_{h}, 5$
$\rho\left(T, v_{0}\right), 32$
$\rho_{b}(T), 32$
$\rho_{i}, 58$
$S(X), 66$
$S_{n}, 5$
$\operatorname{Sym}(k), 3$
$s(f), 14$
$\operatorname{sgn}(\sigma), 3$
$\Theta_{n}(p), 28$
$W(r, k), 24$
$W_{n}, 6$
$W_{n}(r, k), 25$
$\chi^{\prime}(G), 94$
$\lceil x\rceil, 3$
$\lfloor x\rfloor, 3$
$\sum X, 3$
$|X|, 3$
$\mathbb{Z}, 3$
$\mathbb{Z}_{n}, 3$
ascending matrix, 93
ASD conjecture, 9, 80
cartesian product, 21
book, 23
prism, 23
coloring, 16
edge-chromatic number, 94
edge-coloring, 59
proper edge-coloring, 89
complement, 4
component, 6
covering, 7, 13
H-covering, 7, 13
decomposition, 6, 31
ASD, 9, 54, 80
cyclic decomposition, 34
factor, 6
H-decomposition, 6
H-design, 6
star ASD, 82-83
star forest ASD, 88-101
degree, 5
maximum, 5
minimum, 5
diameter, 6
distance, 6
eccentricity, 6
edge
deletion, 4
forest, 6
Graham and Häggkvist's conj., 9, 32
graph, 4
bipartite, 5
complete, 5
complete bipartite, 5
connected, 6
cycle, 6
length, 6
d-regular, 5
friendship graph, 24
k-connected, 6
order, 4
path, 5
length, 5
regular, 5
size, 4
star, 5
subdivided wheel, 25
Θ-graph, 28
t-partite, 5
wheel, 6
windmill, 24
graph isomorphism, 4
Häggkvist's theorem, 89
Hall's theorem, 94
König's theorem, 94
Kneser's theorem, 46
labeling
β-valuation, 8
bigraceful, 35
cycle-magic, 20
edge-magic total labeling, 8
face-magic, 20
\mathcal{G}-bigraceful, 35
graceful, 8
H-magic, 13
H-supermagic, 14
magic, 14
modular bigraceful, 35
ρ-valuation, 37
ρ_{n}-valuation, 37
super total-magic, 14
supermagic, 14
total-magic, 14
Lev's theorem, 70
marriage condition, 94
matching, 6
matching of $A, 94$
multigraph, 4,89
packing, 7
polynomial method, 11, 38-40, 4950, 71-75
Combin. Nullstellensatz, 11
Vandermonde polynomial, 11
reduced graph, 88
Ringel's conjecture, 8, 31, 82
sequence
degree sequence, 82
strongly decomposable, 91
feasible modulo $n, 75$
forbidden, 55
n-feasible, 54
n-realizable, 53
non-increasing, 53
realizable, 55
realizable modulo $n, 71$
strictly decreasing, 95
set
complete, 66-70
k-equipartition, 3,16
well-distributed, 17
k-partition, 3,53
partite, 5
partition, 3
stabilizer, 46
subgraph, 4
induced, 4
tree, 6
base growth ratio, $32,43-46$
base tree, 6,32
caterpillar, 6
growth ratio, 32, 41-43
lobster, 6
vertex
deletion, 4
end vertex, 5
leaf, 5

